Science.gov

Sample records for aerosol diameter dependent

  1. Solar Diameter Latitude Dependence

    NASA Astrophysics Data System (ADS)

    Emilio, M.; Leister, N. V.; Laclare, F.

    The observing programs of the Sun for determining the fundamental system of reference enable, as a by-product, to measure the apparent solar diameter (Poppe, P.C.R. et al. 1996; Leister et al. 1996; Laclare et al. 1991). The diameter obtained at the Calern Observatory (φ = 43-circ 44' 55''.9; λ = -0h 27m 42s.44) and at Abrahao de Moraes Observatory (OAM) (φ = -23-circ 00'6''.0; λ = 3h 07m 52s.22) was analyzed searching for periodicity evidences. For this we utilized the temporal methods CLEAN and CLEANEST. The analysis in function of heliographic latitude shows a dependence that may be correlated to mode of pulsation non-radial gravity. A discussion is made in terms of physical parameters like temperature luminosity and magnetic field involving the solar radius (Emilio M. 1997; Laclare et al. 1996).

  2. Diameter-dependent hydrophobicity in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kyakuno, Haruka; Fukasawa, Mamoru; Ichimura, Ryota; Matsuda, Kazuyuki; Nakai, Yusuke; Miyata, Yasumitsu; Saito, Takeshi; Maniwa, Yutaka

    2016-08-01

    Single-wall carbon nanotubes (SWCNTs) are a good model system that provides atomically smooth nanocavities. It has been reported that water-SWCNTs exhibit hydrophobicity depending on the temperature T and the SWCNT diameter D. SWCNTs adsorb water molecules spontaneously in their cylindrical pores around room temperature, whereas they exhibit a hydrophilic-hydrophobic transition or wet-dry transition (WDT) at a critical temperature Twd ≈ 220-230 K and above a critical diameter Dc ≈ 1.4-1.6 nm. However, details of the WDT phenomenon and its mechanism remain unknown. Here, we report a systematic experimental study involving X-ray diffraction, optical microscopy, and differential scanning calorimetry. It is found that water molecules inside thick SWCNTs (D > Dc) evaporate and condense into ice Ih outside the SWCNTs at Twd upon cooling, and the ice Ih evaporates and condenses inside the SWCNTs upon heating. On the other hand, residual water trapped inside the SWCNTs below Twd freezes. Molecular dynamics simulations indicate that upon lowering T, the hydrophobicity of thick SWCNTs increases without any structural transition, while the water inside thin SWCNTs (D < Dc) exhibits a structural transition, forming an ordered ice. This ice has a well-developed hydrogen bonding network adapting to the cylindrical pores of the SWCNTs. Thus, the unusual diameter dependence of the WDT is attributed to the adaptability of the structure of water to the pore dimension and shape.

  3. Diameter dependent electron transfer kinetics in semiconductor-enzyme complexes.

    PubMed

    Brown, Katherine A; Song, Qing; Mulder, David W; King, Paul W

    2014-10-28

    Excited state electron transfer (ET) is a fundamental step for the catalytic conversion of solar energy into chemical energy. To understand the properties controlling ET between photoexcited nanoparticles and catalysts, the ET kinetics were measured for solution-phase complexes of CdTe quantum dots and Clostridium acetobutylicum [FeFe]-hydrogenase I (CaI) using time-resolved photoluminescence spectroscopy. Over a 2.0-3.5 nm diameter range of CdTe nanoparticles, the observed ET rate (kET) was sensitive to CaI concentration. To account for diameter effects on CaI binding, a Langmuir isotherm and two geometric binding models were created to estimate maximal CaI affinities and coverages at saturating concentrations. Normalizing the ET kinetics to CaI surface coverage for each CdTe diameter led to k(ET) values that were insensitive to diameter, despite a decrease in the free energy for photoexcited ET (ΔGET) with increasing diameter. The turnover frequency (TOF) of CaI in CdTe-CaI complexes was measured at several molar ratios. Normalization for diameter-dependent changes in CaI coverage showed an increase in TOF with diameter. These results suggest that k(ET) and H2 production for CdTe-CaI complexes are not strictly controlled by ΔG(ET) and that other factors must be considered.

  4. Wavelength dependence of the apparent diameter of retinal blood vessels

    NASA Astrophysics Data System (ADS)

    Park, Robert; Twietmeyer, Karen; Chipman, Russell; Beaudry, Neil; Salyer, David

    2005-04-01

    Imaging of retinal blood vessels may assist in the diagnosis and monitoring of diseases such as glaucoma, diabetic retinopathy, and hypertension. However, close examination reveals that the contrast and apparent diameter of vessels are dependent on the wavelength of the illuminating light. In this study multispectral images of large arteries and veins within enucleated swine eyes are obtained with a modified fundus camera by use of intravitreal illumination. The diameters of selected vessels are measured as a function of wavelength by cross-sectional analysis. A fixed scale with spectrally independent dimension is placed above the retina to isolate the chromatic effects of the imaging system and eye. Significant apparent differences between arterial and venous diameters are found, with larger diameters observed at shorter wavelengths. These differences are due primarily to spectral absorption in the cylindrical blood column.

  5. Diameter dependent thermoelectric properties of individual SnTe nanowires

    DOE PAGES

    Xu, E. Z.; Li, Z.; Martinez, J. A.; ...

    2015-01-15

    The lead-free compound tin telluride (SnTe) has recently been suggested to be a promising thermoelectric material. In this work, we report on the first thermoelectric study of individual single-crystalline SnTe nanowires with different diameters ranging from ~ 218 to ~ 913 nm. Measurements of thermopower S, electrical conductivity σ and thermal conductivity κ were carried out on the same nanowires over a temperature range of 25 - 300 K. While the electrical conductivity does not show a strong diameter dependence, the thermopower increases by a factor of two when the nanowire diameter is decreased from ~ 913 nm to ~more » 218 nm. The thermal conductivity of the measured NWs is lower than that of the bulk SnTe, which may arise from the enhanced phonon - surface boundary scattering and phonon-defect scattering. Lastly, temperature dependent figure of merit ZT was determined for individual nanowires and the achieved maximum value at room temperature is about three times higher than that in bulk samples of comparable carrier density.« less

  6. Diameter dependent thermoelectric properties of individual SnTe nanowires

    SciTech Connect

    Xu, E. Z.; Li, Z.; Martinez, J. A.; Sinitsyn, N.; Htoon, H.; Li, Nan; Swartzentruber, B.; Hollingsworth, J. A.; Wang, Jian; Zhang, S. X.

    2015-01-15

    The lead-free compound tin telluride (SnTe) has recently been suggested to be a promising thermoelectric material. In this work, we report on the first thermoelectric study of individual single-crystalline SnTe nanowires with different diameters ranging from ~ 218 to ~ 913 nm. Measurements of thermopower S, electrical conductivity σ and thermal conductivity κ were carried out on the same nanowires over a temperature range of 25 - 300 K. While the electrical conductivity does not show a strong diameter dependence, the thermopower increases by a factor of two when the nanowire diameter is decreased from ~ 913 nm to ~ 218 nm. The thermal conductivity of the measured NWs is lower than that of the bulk SnTe, which may arise from the enhanced phonon - surface boundary scattering and phonon-defect scattering. Lastly, temperature dependent figure of merit ZT was determined for individual nanowires and the achieved maximum value at room temperature is about three times higher than that in bulk samples of comparable carrier density.

  7. Diameter dependent thermoelectric properties of individual SnTe nanowires

    DOE PAGES

    Xu, E. Z.; Li, Z.; Martinez, J. A.; ...

    2015-01-15

    The lead-free compound tin telluride (SnTe) has recently been suggested to be a potentially promising thermoelectric material because of its similar electronic band structure as the well-known lead telluride. Here we report on the first thermoelectric study of individual single crystalline SnTe nanowires (NWs) with different diameters ranging from ~200 to ~1000 nm. Measurements of thermopower S, electrical conductivity σ, and thermal conductivity κ were carried out on the same nanowires over a temperature range of 25 - 300 K. While σ does not show a strong diameter dependence, the thermopower increases by a factor of 2 when the nanowiremore » diameter is decreased from 1000 nm to 200 nm. The thermal conductivities of the measured NWs are only about half of that of the bulk SnTe, which may arise from the enhanced phonon-grain boundary and phonon-defect scatterings. Temperature dependent figure-of-merit ZT was determined and the maximum value at room temperature is ~3 times higher than what was obtained in bulk samples of comparable carrier density.« less

  8. Diameter Dependent Thermoelectric Properties of Individual SnTe Nanowires

    NASA Astrophysics Data System (ADS)

    Xu, E. Z.; Li, Z.; Martinez, J.; Sinitsyn, N.; Htoon, H.; Li, N.; Swartzentruber, B.; Hollingsworth, J.; Wang, J.; Zhang, S. X.

    2015-03-01

    Tin telluride (SnTe), a newly discovered topological crystalline insulator, has recently been suggested to be a promising thermoelectric material. In this work, we report on a systematic study of the thermoelectric properties of individual single-crystalline SnTe nanowires with different diameters. Measurements of thermopower, electrical conductivity and thermal conductivity were carried out on the same nanowires over a temperature range of 25 - 300 K. While the electrical conductivity does not show a strong diameter dependence, we found that the thermopower increases by a factor of two when the nanowire diameter is decreased from 913 nm to 218 nm. The thermal conductivity of the measured NWs is lower than that of the bulk SnTe, which may be attributed to the enhanced phonon - surface boundary scattering and phonon-defect scattering. We further calculated the temperature dependent figure of merit ZT for each individual nanowire. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000). We acknowledge support by the Los Alamos LDRD program.

  9. Base metal thermocouples drift rate dependence from thermoelement diameter

    NASA Astrophysics Data System (ADS)

    Pavlasek, P.; Duris, S.; Palencar, R.

    2015-02-01

    testing was used to establish the relation between the level of EMF drift and the lead diameter of the thermocouple thermoelements. Furthermore this data was also used to create a drift function which mathematically expresses the dependency between the drift rate and the diameter of the thermocouple leads.

  10. Size dependence of phase transitions in aerosol nanoparticles

    NASA Astrophysics Data System (ADS)

    Cheng, Yafang; Su, Hang; Koop, Thomas; Mikhailov, Eugene; Pöschl, Ulrich

    2015-04-01

    Phase transitions of nanoparticles are of fundamental importance in atmospheric sciences. Current understanding is insufficient to explain observations at the nano-scale. In particular, discrepancies exist between observations and model predictions of deliquescence and efflorescence transitions and the hygroscopic growth of salt nanoparticles. Here we show that these discrepancies can be resolved by consideration of particle size effects with consistent thermodynamic data. We present a new method for the determination of water and solute activities and interfacial energies in highly supersaturated aqueous solution droplets. Our analysis reveals that particle size can strongly alter the characteristic concentration of phase separation in mixed systems, resembling the influence of temperature. Due to similar effects, atmospheric secondary organic aerosol particles at room temperature are expected to be always liquid at diameters below ~20 nm. We thus propose and demonstrate that particle size should be included as an additional dimension in the equilibrium phase diagram of aerosol nanoparticles. Reference: Cheng, Y. et al. Size dependence of phase transitions in aerosol nanoparticles. Nature Communications. 5:5923 doi: 10.1038/ncomms6850 (2015).

  11. A correlation equation for the mass median aerodynamic diameter of the aerosol emitted by solution metered dose inhalers.

    PubMed

    Ivey, James W; Lewis, David; Church, Tanya; Finlay, Warren H; Vehring, Reinhard

    2014-04-25

    A correlation equation for the mass median aerodynamic diameter (MMAD) of the aerosol emitted by solution metered dose inhalers (MDIs) is presented. A content equivalent diameter is defined and used to describe aerosols generated by evaporating metered dose inhaler sprays. A large set of cascade impaction data is analyzed, and the MMAD and geometric standard deviation is calculated for each datum. Using dimensional analysis, the mass median content equivalent diameter is correlated with formulation variables. Based on this correlation in combination with mass balance considerations and the definition of the aerodynamic diameter, an equation for prediction of the MMAD of an inhaler given the pressure of the propellant in the metering chamber of the MDI valve and the surface tension of the propellant is derived. The accuracy of the correlation equation is verified by comparison with literature results. The equation is applicable to both HFA (hydrofluoroalkane) propellants 134a and 227ea, with varying levels of co-solvent ethanol.

  12. Diameter Dependence of Planar Defects in InP Nanowires

    PubMed Central

    Wang, Fengyun; Wang, Chao; Wang, Yiqian; Zhang, Minghuan; Han, Zhenlian; Yip, SenPo; Shen, Lifan; Han, Ning; Pun, Edwin Y. B.; Ho, Johnny C.

    2016-01-01

    In this work, extensive characterization and complementary theoretical analysis have been carried out on Au-catalyzed InP nanowires in order to understand the planar defect formation as a function of nanowire diameter. From the detailed transmission electron microscopic measurements, the density of stacking faults and twin defects are found to monotonically decrease as the nanowire diameter is decreased to 10 nm, and the chemical analysis clearly indicates the drastic impact of In catalytic supersaturation in Au nanoparticles on the minimized planar defect formation in miniaturized nanowires. Specifically, during the chemical vapor deposition of InP nanowires, a significant amount of planar defects is created when the catalyst seed sizes are increased with the lower degree of In supersaturation as dictated by the Gibbs-Thomson effect, and an insufficient In diffusion (or Au-rich enhancement) would lead to a reduced and non-uniform In precipitation at the NW growing interface. The results presented here provide an insight into the fabrication of “bottom-up” InP NWs with minimized defect concentration which are suitable for various device applications. PMID:27616584

  13. Diameter Dependence of Planar Defects in InP Nanowires

    NASA Astrophysics Data System (ADS)

    Wang, Fengyun; Wang, Chao; Wang, Yiqian; Zhang, Minghuan; Han, Zhenlian; Yip, Senpo; Shen, Lifan; Han, Ning; Pun, Edwin Y. B.; Ho, Johnny C.

    2016-09-01

    In this work, extensive characterization and complementary theoretical analysis have been carried out on Au-catalyzed InP nanowires in order to understand the planar defect formation as a function of nanowire diameter. From the detailed transmission electron microscopic measurements, the density of stacking faults and twin defects are found to monotonically decrease as the nanowire diameter is decreased to 10 nm, and the chemical analysis clearly indicates the drastic impact of In catalytic supersaturation in Au nanoparticles on the minimized planar defect formation in miniaturized nanowires. Specifically, during the chemical vapor deposition of InP nanowires, a significant amount of planar defects is created when the catalyst seed sizes are increased with the lower degree of In supersaturation as dictated by the Gibbs-Thomson effect, and an insufficient In diffusion (or Au-rich enhancement) would lead to a reduced and non-uniform In precipitation at the NW growing interface. The results presented here provide an insight into the fabrication of “bottom-up” InP NWs with minimized defect concentration which are suitable for various device applications.

  14. Humidity Dependent Extinction of Clay Aerosols

    NASA Astrophysics Data System (ADS)

    Greenslade, M. E.; Attwood, A. R.

    2010-12-01

    Aerosols play an important role in the Earth’s radiative balance by directly scattering and absorbing radiation. The magnitude of aerosol forcing can be altered by changes in relative humidity which cause aerosol size, shape and refractive index to vary. To quantify these effects, a custom cavity ring down instrument operated at 532 nm with two sample channels measures aerosols extinction under dry conditions and at elevated humidity. The optical growth, fRH(ext), is determined as a ratio of the extinction cross section at high relative humidity to that under dry conditions. Three key clay components of mineral dust and mixtures of clay components with ammonium sulfate are investigated using this method. Experimentally obtained optical growth is compared with physical growth factors from the literature and our work determined using several different techniques. Further, Mie theory calculations based on published optical constants are compared with experimental results. Differences between theory and experiment will be discussed.

  15. Diameter Dependence of Lattice Thermal Conductivity of Single-Walled Carbon Nanotubes: Study from Ab Initio.

    PubMed

    Yue, Sheng-Ying; Ouyang, Tao; Hu, Ming

    2015-10-22

    The effects of temperature, tube length, defects, and surface functionalization on the thermal conductivity (κ) of single-walled carbon nanotubes (SWCNTs) were well documented in literature. However, diameter dependence of thermal conductivity of SWCNTs received less attentions. So far, diverse trends of the diameter dependence have been discussed by different methods and all the previous results were based on empirical interatomic potentials. In this paper, we emphasize to clarify accurate κ values of SWCNTs with different diameters and in-plane κ of graphene. All the studies were under the framework of anharmonic lattice dynamics and Boltzmann transport equation (BTE) based on first principle calculations. We try to infer the right trend of diameter dependent thermal conductivity of SWCNTs. We infer that graphene is the limitation as SWCNT with an infinite diameter. We analyzed the thermal conductivity contributions from each phonon mode in SWCNTs to explain the trend. Meanwhile, we also identify the extremely low thermal conductivity of ultra-thin SWCNTs.

  16. Mass-mobility characterization of flame-made ZrO2 aerosols: primary particle diameter and extent of aggregation.

    PubMed

    Eggersdorfer, M L; Gröhn, A J; Sorensen, C M; McMurry, P H; Pratsinis, S E

    2012-12-01

    Gas-borne nanoparticles undergoing coagulation and sintering form irregular or fractal-like structures affecting their transport, light scattering, effective surface area, and density. Here, zirconia (ZrO(2)) nanoparticles are generated by scalable spray combustion, and their mobility diameter and mass are obtained nearly in situ by differential mobility analyzer (DMA) and aerosol particle mass (APM) measurements. Using these data, the density of ZrO(2) and a power law between mobility and primary particle diameters, the structure of fractal-like particles is determined (mass-mobility exponent, prefactor and average number, and surface area mean diameter of primary particles, d(va)). The d(va) determined by DMA-APM measurements and this power law is in good agreement with the d(va) obtained by ex situ nitrogen adsorption and microscopic analysis. Using this combination of measurements and above power law, the effect of flame spray process parameters (e.g., precursor solution and oxygen flow rate as well as zirconium concentration) on fractal-like particle structure characteristics is investigated in detail. This reveals that predominantly agglomerates (physically-bonded particles) and aggregates (chemically- or sinter-bonded particles) of nanoparticles are formed at low and high particle concentrations, respectively.

  17. Season - dependent and source-influenced aerosol in Northern Siberia

    NASA Astrophysics Data System (ADS)

    Popovicheva, Olga; Makshtas, Alexander; Bogorodsky, Peter; Eleftheriadis, Kostantinos; Diapouli, Evangelia; Shonia, Natalia; Uttal, Taneil

    2016-04-01

    Aerosol may serve as a tracer of arctic pollution, allowing a link to climate response if its major characteristics relating to natural and anthropogeneous sources are defined. It has been shown that BC and sulfates are the most important aerosol constituents measured in the Arctic boundary layer; these species demonstrate similar seasonal variations with a peak during winter to early spring and a minimum in summer. Long - time gap in consistent aerosol observations in the Russian Arctic strongly limits the assessment of air pollution and climate impacts. On-line monitoring, sampling, and analyses of atmospheric aerosols were carried out at the Tiksi Hydrometeorological Observatory, Northern Siberia, during one year from September 2014 to 2015. Physico-chemical characterization combining aethalometry, thermo-optical analysis, and analytical chemistry was used in order to identify the seasonal variability of aerosols and to link their composition to possible sources, as well as to characterize the differences in aerosol chemical composition between natural background conditions and BC-pollution episodes. The present study reports the first results from the Tiksi Observatory on season-dependent and source-influenced characteristics of aerosol species, such as carbon fractions (OC, EC), inorganic and organic functionalities of chemical compounds, sulfates, nitrates and other ion components, and elements. In addition, data obtained by individual particles analysis provide insight into micromarkers of combustion sources. Aerosol at the Tiksi Observatory is found to be originated from natural marine, biogenic, and continental sources as well as influenced by local residential activity and regional pollution. Characterization of aerosols during OC and BC-pollution episodes, combined with analysis of the wind direction, atmosphere stability, and air mass trajectories, allows for the identification of the sources which are responsible for the emission of hazardous compounds

  18. Measurement of relative humidity dependent light scattering of aerosols

    NASA Astrophysics Data System (ADS)

    Fierz-Schmidhauser, R.; Zieger, P.; Wehrle, G.; Jefferson, A.; Ogren, J. A.; Baltensperger, U.; Weingartner, E.

    2009-09-01

    Relative humidity (RH) influences the water content of aerosol particles and therefore has an important impact on the particles' ability to scatter visible light. The RH dependence of the particle light scattering coefficient (σsp) is therefore an important measure for climate forcing calculations. We built a humidification system for a nephelometer which allows the measurement of σsp at a defined RH in the range of 40-90%. This RH conditioner consists of a humidifier followed by a dryer, which enables us to measure the hysteresis behavior of deliquescent aerosol particles. In this paper we present the set-up of a new humidified nephelometer, a detailed characterization with well defined laboratory generated aerosols, and a first application in the field by comparing our instrument to another humidified nephelometer. Monodisperse ammonium sulfate and sodium chloride particles were measured at four different dry particle sizes. Agreement between measurement and prediction based on Mie theory was found for both σsp and f(RH)=σsp(RH)/σsp(dry) within the range of uncertainty. The two humidified nephelometers measuring at a rural site in the Black Forest (Germany) often detected different f(RH), probably caused by the aerosol hysteresis behavior: when the aerosol was metastable, therefore was scattering more light, only one instrument detected the higher f(RH).

  19. Measurement of relative humidity dependent light scattering of aerosols

    NASA Astrophysics Data System (ADS)

    Fierz-Schmidhauser, R.; Zieger, P.; Wehrle, G.; Jefferson, A.; Ogren, J. A.; Baltensperger, U.; Weingartner, E.

    2010-01-01

    Relative humidity (RH) influences the water content of aerosol particles and therefore has an important impact on the particles' ability to scatter visible light. The RH dependence of the particle light scattering coefficient (σsp is therefore an important measure for climate forcing calculations. We built a humidification system for a nephelometer which allows the measurement of σsp at a defined RH in the range of 40-90%. This RH conditioner consists of a humidifier followed by a dryer, which enables us to measure the hysteresis behavior of deliquescent aerosol particles. In this paper we present the set-up of a new humidified nephelometer, a detailed characterization with well defined laboratory generated aerosols, and a first application in the field by comparing our instrument to another humidified nephelometer. Monodisperse ammonium sulfate and sodium chloride particles were measured at four different dry particle sizes. Agreement between measurement and prediction based on Mie theory was found for both σsp and f(RH)=σsp(RH)/σsp(dry) within the range of uncertainty. The two humidified nephelometers measuring at a rural site in the Black Forest (Germany) often detected different f(RH), probably caused by the aerosol hysteresis behavior: when the aerosol was metastable, therefore was scattering more light, only one instrument detected the higher f(RH).

  20. Electrical characteristics of metal catalyst-assisted etched rough silicon nanowire depending on the diameter size.

    PubMed

    Lee, Sang Hoon; Lee, Tae Il; Lee, Su Jeong; Lee, Sang Myung; Yun, Ilgu; Myoung, Jae Min

    2015-01-14

    The dependence of electrical properties of rough and cylindrical Si nanowires (NWs) synthesized by diameter-controllable metal catalyst-assisted etching (MCE) on the size of the NW's diameter was demonstrated. Using a decal-printing and transfer process assisted by Al2O3 sacrificial layer, the Si NW field effect transistor (FET) embedded in a polyvinylphenol adhesive and dielectric layer were fabricated. As the diameter of Si NW increased, the mobility of FET increased from 80.51 to 170.95 cm(2)/V·s and the threshold voltage moved from -7.17 to 0 V because phonon-electron wave function overlaps, surface scattering, and defect scattering decreased and gate coupling increased as the ratio of surface-to-volume got reduced.

  1. Size-dependent chemical ageing of oleic acid aerosol under dry and humidified conditions

    NASA Astrophysics Data System (ADS)

    Al-Kindi, Suad S.; Pope, Francis D.; Beddows, David C.; Bloss, William J.; Harrison, Roy M.

    2016-12-01

    A chemical reaction chamber system has been developed for the processing of oleic acid aerosol particles with ozone under two relative humidity conditions: dry and humidified to 65 %. The apparatus consists of an aerosol flow tube, in which the ozonolysis occurs, coupled to a scanning mobility particle sizer (SMPS) and an aerosol time-of-flight mass spectrometer (ATOFMS) which measure the evolving particle size and composition. Under both relative humidity conditions, ozonolysis results in a significant decrease in particle size and mass which is consistent with the formation of volatile products that partition from the particle to the gas phase. Mass spectra derived from the ATOFMS reveal the presence of the typically observed reaction products: azelaic acid, nonanal, oxononanoic acid and nonanoic acid, as well as a range of higher molecular weight products deriving from the reactions of reaction intermediates with oleic acid and its oxidation products. These include octanoic acid and 9- and 10-oxooctadecanoic acid, as well as products of considerably higher molecular weight. Quantitative evaluation of product yields with the ATOFMS shows a marked dependence upon both particle size association (from 0.3 to 2.1 µm diameter) and relative humidity. Under both relative humidity conditions, the percentage residual of oleic acid increases with increasing particle size and the main lower molecular weight products are nonanal and oxononanoic acid. Under dry conditions, the percentage of higher molecular weight products increases with increasing particle size due to the poorer internal mixing of the larger particles. Under humidified conditions, the percentage of unreacted oleic acid is greater, except in the smallest particle fraction, with little formation of high molecular weight products relative to the dry particles. It is postulated that water reacts with reactive intermediates, competing with the processes which produce high molecular weight products. Whilst the

  2. Multiyear study of the dependence of sea salt aerosol on wind speed and sea ice conditions in the coastal Arctic

    NASA Astrophysics Data System (ADS)

    May, N. W.; Quinn, P. K.; McNamara, S. M.; Pratt, K. A.

    2016-08-01

    Thinning of Arctic sea ice gives rise to ice fracturing and leads (areas of open water surrounded by sea ice) that are a potential source of sea salt aerosol. Atmospheric particle inorganic ion concentrations, local sea ice conditions, and meteorology at Barrow, AK, from 2006 to 2009, were combined to investigate the dependence of submicron (aerodynamic diameter < 1 µm) and supermicron (aerodynamic diameter 1-10 µm) sea salt mass concentrations on sea ice coverage and wind speed. Consistent with a wind-dependent source, supermicron sea salt mass concentrations increased in the presence of nearby leads and wind speeds greater than 4 m s-1. Increased supermicron and submicron sea salt chloride depletion was observed for periods of low winds or a lack of nearby open water, consistent with transported sea salt influence. Sea salt aerosol produced from leads has the potential to alter cloud formation, as well as the chemical composition of the Arctic atmosphere and snowpack.

  3. Diameter Dependence of Giant Magneto-Impedance Effect in Co-BASED Melt Extracted Amorphous Wires

    NASA Astrophysics Data System (ADS)

    Zhang, Shuling; Xing, Dawei; Sun, Jianfei

    2011-06-01

    Naked Co68.25Fe4.5Si12.25B15 amorphous wires of 67μm, 56μm, 52μm, 47μm and 31μm in diameter are produced by melt extraction method. Their giant magneto impedance (GMI) effect is investigated at frequencies from 0.1MHz to13MHz. Significant diameter dependence of GMI effect is studied. Thicker wires exhibit strong GMI effect and have clear characteristic frequencies at which their impedance ratio ΔZ/Z are largest. Largest impedance response is obtained in 67μm wires with the ΔZ/Z of 442% and field sensitivity of 71.5%/Oe. Wires of 31μm in diameter show increasing ΔZ/Z as frequency and have a steady field sensitivity of 30.7-33.6%/Oe in a wide frequency range from 3MHz to 13MHz. The different frequency dependence of GMI effect is discussed in the light of the skin effect. These amorphous wires are suitable for applications in high performance field sensors and can fit different demand.

  4. CdSe nanocrystals: controlled growth and diameter-dependent photoluminescence

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Yang, Ping; Chen, Hsueh Shin; Huang, Baibiao; Shen, Jianxing

    2014-02-01

    Phosphonic and carboxylic acids were used as capping agents to fabricate CdSe nanocrystals (NCs) through organic synthesis, leading to a controlled growth of the NCs with adjustable morphologies from dots to rods. The binding energies and steric hindrance of ligands dramatically affected the growth kinetics of CdSe NCs, and therefore the resulting geometry of NCs. The detailed investigations of ligand effect on the growth of NCs and an efficient control over the NCs morphology were presented. CdSe nanorods (NRs) with various aspect ratios were created for studying relation between the diameter of NRs and photoluminescence (PL). Consequently, a synergic use of PL spectra and transmission electron microscopy images allowed us to systematically investigate the relationship between morphology and PL properties of as-prepared CdSe rods. The PL properties of CdSe NRs were finally found to be strongly diameter dependent and weakly related to their lengths.

  5. Role of Nucleation Mechanism on the Size Dependent Morphology of Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Altaf, M. B.; Freedman, M. A.

    2015-12-01

    Cloud condensation nuclei (CCN) activation is sensitive to the size, composition, and morphology of aerosol particles < 200 nm. The properties of particles can differ on the nanoscale compared to larger sizes, as observed in atmospheric chemistry for the crystallization of particles < 40 nm in diameter. We have applied cryogenic-transmission electron microscopy (cryo-TEM) for the study of the morphology of dry, submicron organic aerosol to explore whether nanoscale effects impact the morphology of particles. Specifically, we have characterized the morphology of the poly(ethylene glycol) 400 (PEG-400)/ammonium sulfate system. We have shown that depending on the composition of the system and the mechanism of phase separation (i.e. nucleation and growth vs. spinodal decomposition), a size dependence of morphology is observed. Since phase separation by nucleation and growth should be a common occurrence in the atmosphere, we expect the majority of phase separating atmospheric particles to have a size dependent morphology, which may have important implications for CCN activation. Size dependent morphology may impact the hygroscopic properties of these particles which can affect CCN concentrations and further influence cloud formation, reflectivity, and precipitation, which will have consequences for Earth's radiation budget.

  6. Effect of microgravity and hypergravity on deposition of 0.5- to 3-micron-diameter aerosol in the human lung

    NASA Technical Reports Server (NTRS)

    Darquenne, C.; Paiva, M.; West, J. B.; Prisk, G. K.

    1997-01-01

    We measured intrapulmonary deposition of 0. 5-, 1-, 2-, and 3-micron-diameter particles in four subjects on the ground (1 G) and during parabolic flights both in microgravity (microG) and at approximately 1.6 G. Subjects breathed aerosols at a constant flow rate (0.4 l/s) and tidal volume (0.75 liter). At 1 G and approximately 1.6 G, deposition increased with increasing particle size. In microG, differences in deposition as a function of particle size were almost abolished. Deposition was a nearly linear function of the G level for 2- and 3-micron-diameter particles, whereas for 0.5- and 1.0-micron-diameter particles, deposition increased less between microG and 1 G than between 1 G and approximately 1.6 G. Comparison with numerical predictions showed good agreement for 1-, 2-, and 3-micron-diameter particles at 1 and approximately 1.6 G, whereas the model consistently underestimated deposition in microG. The higher deposition observed in microG compared with model predictions might be explained by a larger deposition by diffusion because of a higher alveolar concentration of aerosol in microG and to the nonreversibility of the flow, causing additional mixing of the aerosols.

  7. Diameter-dependent dissipation of vibration energy of cantilevered multiwall carbon nanotubes.

    PubMed

    Sawaya, Shintaro; Arie, Takayuki; Akita, Seiji

    2011-04-22

    This study investigated the mechanical properties of vibrating cantilevered multiwall carbon nanotubes in terms of energy loss in a vibrating nanotube. Young's moduli of the nanotubes show a clear dependence of the perfection of the sp(2) carbon network, as determined from Raman spectroscopy. The energy loss corresponding to the inverse of the quality factor increases with increasing tube diameter, although the nanotube maintains high mechanical strength around 0.5 TPa. This fact implies that the vibration energy is dissipated mainly not by defects, but by van der Waals interactions between walls.

  8. New understanding and quantification of the regime dependence of aerosol-cloud interaction for studying aerosol indirect effects

    SciTech Connect

    Chen, Jingyi; Liu, Yangang; Zhang, Minghua; Peng, Yiran

    2016-02-28

    In this study, aerosol indirect effects suffer from large uncertainty in climate models and among observations. This study focuses on two plausible factors: regime dependence of aerosol-cloud interactions and the effect of cloud droplet spectral shape. We show, using a new parcel model, that combined consideration of droplet number concentration (Nc) and relative dispersion (ε, ratio of standard deviation to mean radius of the cloud droplet size distribution) better characterizes the regime dependence of aerosol-cloud interactions than considering Nc alone. Given updraft velocity (w), ε increases with increasing aerosol number concentration (Na) in the aerosol-limited regime, peaks in the transitional regime, and decreases with further increasing Na in the updraft-limited regime. This new finding further reconciles contrasting observations in literature and reinforces the compensating role of dispersion effect. The nonmonotonic behavior of ε further quantifies the relationship between the transitional Na and w that separates the aerosol- and updraft-limited regimes.

  9. New understanding and quantification of the regime dependence of aerosol-cloud interaction for studying aerosol indirect effects

    DOE PAGES

    Chen, Jingyi; Liu, Yangang; Zhang, Minghua; ...

    2016-02-28

    In this study, aerosol indirect effects suffer from large uncertainty in climate models and among observations. This study focuses on two plausible factors: regime dependence of aerosol-cloud interactions and the effect of cloud droplet spectral shape. We show, using a new parcel model, that combined consideration of droplet number concentration (Nc) and relative dispersion (ε, ratio of standard deviation to mean radius of the cloud droplet size distribution) better characterizes the regime dependence of aerosol-cloud interactions than considering Nc alone. Given updraft velocity (w), ε increases with increasing aerosol number concentration (Na) in the aerosol-limited regime, peaks in the transitionalmore » regime, and decreases with further increasing Na in the updraft-limited regime. This new finding further reconciles contrasting observations in literature and reinforces the compensating role of dispersion effect. The nonmonotonic behavior of ε further quantifies the relationship between the transitional Na and w that separates the aerosol- and updraft-limited regimes.« less

  10. Introduction of a Nozzle Throat Diameter Dependency into the SRM Dust Size Distribution

    NASA Astrophysics Data System (ADS)

    Stabroth, S.; Wegener, P.; Oswald, M.; Wiedemann, C.; Klinkrad, H.; Vörsmann, P.

    In the exhaust gas of SRM (Solid Rocket Motor) firings, a considerable amount of very small aluminium oxide (Al2O3) particles is generally included. In order to increase motor performance and to dampen burn instabilities, aluminium is used as an additive in the propellant. During the burn process this aluminium is transformed into Al2O3. A large number of small dust particles (< 1 μ m up to about 50 μ m) is generated continuously during a burn. At the end of a burn, a second group of much larger fragments from an Al2O3 slag pool clustering inside the motor leaves the nozzle. The ESA space debris population model MASTER-2001 considers 1,032 SRM firings with the associated generation of SRM slag and dust. The resulting Al2O3 population is a major contribution to the micron size space debris environment in Earth orbit. For the modelling of each SRM dust release event a detailed knowledge of the size distribution is essential. However, the knowledge of the particle size distribution after passing the nozzle throat is poor. The current dust implementation in the MASTER-2001 space debris model therefore assumes an average motor size, since information on the actual motor size is normally not available in common databases. Thus, a fixed distribution is identically used for large upper stages as well as small apogee motors. This assumption can lead to an over-representation of large dust in regions, where mainly apogee motors are used (i.e. GEO) and an under-representation in lower altitudes, where large stages predominate. In this paper, a concept for the improvement of SRM dust size modelling is discussed. It will be shown that an introduction of a nozzle throat diameter dependency into the dust size distribution could lead to a more precise modelling of SRM dust release events. Investigations showed that there is a good correlation between the propellant mass flow and the nozzle's throat diameter, which is in turn the determining term for the actual diameter

  11. Shortwave and longwave radiative forcings of aerosols depending on the vertical stratification of aerosols and clouds

    NASA Astrophysics Data System (ADS)

    Oikawa, Eiji; Suzuki, Kentaroh; Nakajima, Teruyuki; Nishizawa, Tomoaki

    2017-02-01

    We investigate four scenarios for estimating shortwave (SW) and longwave (LW) direct aerosol radiative forcing (DARF) at the top of atmosphere (TOA) using the global data set of the vertical distributions for aerosols and clouds of CALIPSO and CloudSat Level 2 products. One scenario is clear-sky (cloud-free) condition and three scenarios are cloudy-sky condition: the case that aerosols exists above clouds (AAC case), and the case that aerosols exist below high clouds such as cirrus, but without clouds below the aerosol layers (ABC case), and the case that aerosols are not observed in cloudy-sky condition. In clear-sky and ABC cases, aerosols mainly scatter sunlight and SWDARFs show negative values, except for bright surfaces, such as desert regions and the North and South Poles. In AAC case, aerosols absorb the reflected light from underlying low-level clouds to TOA, so that SWDARF at TOA shows positive value. Mineral dust absorbs the Earth's radiation and LWDARF indicates strong positive over Saharan and Arabian deserts. The global mean values of SW plus LW DARFs are -2.77, -0.77, and -1.40 Wm-2 under clear-sky, cloudy-sky, and all-sky conditions.

  12. Electron mean free path from angle-dependent photoelectron spectroscopy of aerosol particles

    SciTech Connect

    Goldmann, Maximilian; Miguel-Sánchez, Javier; West, Adam H. C.; Yoder, Bruce L.; Signorell, Ruth

    2015-06-14

    We propose angle-resolved photoelectron spectroscopy of aerosol particles as an alternative way to determine the electron mean free path of low energy electrons in solid and liquid materials. The mean free path is obtained from fits of simulated photoemission images to experimental ones over a broad range of different aerosol particle sizes. The principal advantage of the aerosol approach is twofold. First, aerosol photoemission studies can be performed for many different materials, including liquids. Second, the size-dependent anisotropy of the photoelectrons can be exploited in addition to size-dependent changes in their kinetic energy. These finite size effects depend in different ways on the mean free path and thus provide more information on the mean free path than corresponding liquid jet, thin film, or bulk data. The present contribution is a proof of principle employing a simple model for the photoemission of electrons and preliminary experimental data for potassium chloride aerosol particles.

  13. The dependence of aerosol light-scattering on RH over the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Hegg, D. A.; Covert, D. S.; Crahan, K.; Jonssen, H.

    2002-04-01

    Measurements of the relative humidity dependence of aerosol light scattering are reported from three experimental venues over the Pacific Ocean. The measurement platform utilized was the CIRPAS Twin Otter aircraft. Results are compared with previous measurements at other locales and with theoretical models. The relatively low values of hygroscopicity obtained in marine air are consistent with a substantial organic component to the aerosol.

  14. Aerosols

    Atmospheric Science Data Center

    2013-04-17

    ... article title:  Aerosols over Central and Eastern Europe     View Larger Image ... last weeks of March 2003, widespread aerosol pollution over Europe was detected by several satellite-borne instruments. The Multi-angle ...

  15. Strong Wavelength Dependence of Aerosol Light Absorption from Peat Combustion

    NASA Astrophysics Data System (ADS)

    Gyawali, M. S.; Chakrabarty, R. K.; Yatavelli, R. L. N.; Chen, L. W. A. A.; Knue, J.; Samburova, V.; Watts, A.; Moosmüller, H.; Arnott, W. P.; Wang, X.; Zielinska, B.; Chow, J. C.; Watson, J. G.; Tsibart, A.

    2014-12-01

    Globally, organic soils and peats may store as much as 600 Gt of terrestrial carbon, representing 20 - 30% of the planet's terrestrial organic carbon mass. This is approximately the same carbon mass as that contained in Earth's atmosphere, despite peatlands occupying only 3% of its surface. Effects of fires in these ecosystems are of global concern due to their potential for enormous carbon release into the atmosphere. The implications for contributions of peat fires to the global carbon cycle and radiative forcing scenarios are significant. Combustion of peat mostly takes place in the low temperature, smoldering phase of a fire. It consumes carbon that may have accumulated over a period of hundreds to thousands of years. In comparison, combustion of aboveground biomass fuels releases carbon that has accumulated much more recently, generally over a period of years or decades. Here, we report our findings on characterization of emissions from laboratory combustion of peat soils from three locations representing the biomes in which these soils occur. Peat samples from Alaska and Florida (USA) and Siberia (Russia) were burned at two different fuel moisture levels. Burns were conducted in an 8-m3 volume combustion chamber located at the Desert Research Institute, Reno, NV, USA. We report significant brown carbon production from combustion of all three peat soils. We used a multispectral (405, 532, 781 nm) photoacoustic instrument equipped with integrating nephelometer to measure the wavelength-dependent aerosol light absorption and scattering. Absorption Ångström exponents (between 405 and 532 nm) as high as ten were observed, revealing strongly enhanced aerosol light absorption in the violet and blue wavelengths. Single scattering albedos (SSA) of 0.94 and 0.99 were observed at 405 and 532 nm, respectively, for the same sample. Variability of these optical parameters will be discussed as a function of fuel and combustion conditions. Other real-time measurements

  16. Aircraft studies of size-dependent aerosol sampling through inlets

    NASA Technical Reports Server (NTRS)

    Porter, J. N.; Clarke, A. D.; Ferry, G.; Pueschel, R. F.

    1992-01-01

    Representative measurement of aerosol from aircraft-aspirated systems requires special efforts in order to maintain near isokinetic sampling conditions, estimate aerosol losses in the sample system, and obtain a measurement of sufficient duration to be statistically significant for all sizes of interest. This last point is especially critical for aircraft measurements which typically require fast response times while sampling in clean remote regions. This paper presents size-resolved tests, intercomparisons, and analysis of aerosol inlet performance as determined by a custom laser optical particle counter. Measurements discussed here took place during the Global Backscatter Experiment (1988-1989) and the Central Pacific Atmospheric Chemistry Experiment (1988). System configurations are discussed including (1) nozzle design and performance, (2) system transmission efficiency, (3) nonadiabatic effects in the sample line and its effect on the sample-line relative humidity, and (4) the use and calibration of a virtual impactor.

  17. The evolution of biomass-burning aerosol size distributions due to coagulation: dependence on fire and meteorological details and parameterization

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kimiko M.; Laing, James R.; Stevens, Robin G.; Jaffe, Daniel A.; Pierce, Jeffrey R.

    2016-06-01

    Biomass-burning aerosols have a significant effect on global and regional aerosol climate forcings. To model the magnitude of these effects accurately requires knowledge of the size distribution of the emitted and evolving aerosol particles. Current biomass-burning inventories do not include size distributions, and global and regional models generally assume a fixed size distribution from all biomass-burning emissions. However, biomass-burning size distributions evolve in the plume due to coagulation and net organic aerosol (OA) evaporation or formation, and the plume processes occur on spacial scales smaller than global/regional-model grid boxes. The extent of this size-distribution evolution is dependent on a variety of factors relating to the emission source and atmospheric conditions. Therefore, accurately accounting for biomass-burning aerosol size in global models requires an effective aerosol size distribution that accounts for this sub-grid evolution and can be derived from available emission-inventory and meteorological parameters. In this paper, we perform a detailed investigation of the effects of coagulation on the aerosol size distribution in biomass-burning plumes. We compare the effect of coagulation to that of OA evaporation and formation. We develop coagulation-only parameterizations for effective biomass-burning size distributions using the SAM-TOMAS large-eddy simulation plume model. For the most-sophisticated parameterization, we use the Gaussian Emulation Machine for Sensitivity Analysis (GEM-SA) to build a parameterization of the aged size distribution based on the SAM-TOMAS output and seven inputs: emission median dry diameter, emission distribution modal width, mass emissions flux, fire area, mean boundary-layer wind speed, plume mixing depth, and time/distance since emission. This parameterization was tested against an independent set of SAM-TOMAS simulations and yields R2 values of 0.83 and 0.89 for Dpm and modal width, respectively. The

  18. The Dependence of Cloud Particle Size on Non-Aerosol-Loading Related Variables

    SciTech Connect

    Shao, H.; Liu, G.

    2005-03-18

    An enhanced concentration of aerosol may increase the number of cloud drops by providing more cloud condensation nuclei (CCN), which in turn results in a higher cloud albedo at a constant cloud liquid water path. This process is often referred to as the aerosol indirect effect (AIE). Many in situ and remote sensing observations support this hypothesis (Ramanathan et al. 2001). However, satellite observed relations between aerosol concentration and cloud drop size are not always in agreement with the AIE. Based on global analysis of cloud effective radius (r{sub e}) and aerosol number concentration (N{sub a}) derived from satellite data, Sekiguchi et al. (2003) found that the correlations between the two variables can be either negative, or positive, or none, depending on the location of the clouds. They discovered that significantly negative r{sub e} - N{sub a} correlation can only be identified along coastal regions of the continents where abundant continental aerosols inflow from land, whereas Feingold et al. (2001) found that the response of r{sub e} to aerosol loading is the greatest in the region where aerosol optical depth ({tau}{sub a}) is the smallest. The reason for the discrepancy is likely due to the variations in cloud macroscopic properties such as geometrical thickness (Brenguier et al. 2003). Since r{sub e} is modified not only by aerosol but also by cloud geometrical thickness (H), the correlation between re and {tau}{sub a} actually reflects both the aerosol indirect effect and dependence of H. Therefore, discussing AIE based on the r{sub e}-{tau}{sub a} correlation without taking into account variations in cloud geometrical thickness may be misleading. This paper is motivated to extract aerosols' effect from overall effects using the independent measurements of cloud geometrical thickness, {tau}{sub a} and r{sub e}.

  19. Unraveling the 13C NMR chemical shifts in single-walled carbon nanotubes: dependence on diameter and electronic structure.

    PubMed

    Engtrakul, Chaiwat; Irurzun, Veronica M; Gjersing, Erica L; Holt, Josh M; Larsen, Brian A; Resasco, Daniel E; Blackburn, Jeffrey L

    2012-03-14

    The atomic specificity afforded by nuclear magnetic resonance (NMR) spectroscopy could enable detailed mechanistic information about single-walled carbon nanotube (SWCNT) functionalization as well as the noncovalent molecular interactions that dictate ground-state charge transfer and separation by electronic structure and diameter. However, to date, the polydispersity present in as-synthesized SWCNT populations has obscured the dependence of the SWCNT (13)C chemical shift on intrinsic parameters such as diameter and electronic structure, meaning that no information is gleaned for specific SWCNTs with unique chiral indices. In this article, we utilize a combination of (13)C labeling and density gradient ultracentrifugation (DGU) to produce an array of (13)C-labeled SWCNT populations with varying diameter, electronic structure, and chiral angle. We find that the SWCNT isotropic (13)C chemical shift decreases systematically with increasing diameter for semiconducting SWCNTs, in agreement with recent theoretical predictions that have heretofore gone unaddressed. Furthermore, we find that the (13)C chemical shifts for small diameter metallic and semiconducting SWCNTs differ significantly, and that the full-width of the isotropic peak for metallic SWCNTs is much larger than that of semiconducting nanotubes, irrespective of diameter.

  20. Diameter-Dependent Modulus and Melting Behavior in Electrospun Semicrystalline Polymer Fibers

    SciTech Connect

    Y Liu; S Chen; E Zussman; C Korach; W Zhao; M Rafailovich

    2011-12-31

    Confinement of the semicrystalline polymers, poly(ethylene-co-vinyl acetate) (PEVA) and low-density polyethylene (LDPE), produced by electrospinning has been observed to produce fibers with large protrusions, which have not been previously observed in fibers of comparable diameters produced by other methods. SAXS spectra confirmed the crystalline structure and determined that the lamellar spacing was almost unchanged from the bulk. Measurement of the mechanical properties of these fibers, by both shear modulation force microscopy (SMFM) and atomic force acoustic microscopy (AFAM), indicates that the modulii of these fibers increases with decreasing diameter, with the onset at {approx}10 {micro}m, which is an order of magnitude larger than previously reported. Melting point measurements indicate a decrease of more than 7% in T{sub m}/T{sub 0} (where T{sub m} is the melting point of semicrystalline polymer fibers and T{sub 0} is the melting point of the bulk polymer) for fibers ranging from 4 to 10 {micro}m in diameter. The functional form of the decrease followed a universal curve for PEVA, when scaled with T{sub 0}.

  1. Phase-Angle Dependence of Determinations of Diameter, Albedo, and Taxonomy: A Case Study of NEO 3691 Bede

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Lederer, Susan M.; Jehin, Emmanuel; Howell, Ellen S.; Fernandez, Yan; Harker, David E.; Ryan, Erin; Lovell, Amy; Woodward, Charles E.; Benner, Lance A.

    2015-01-01

    Parameters important for NEO risk assessment and mitigation include Near-Earth Object diameter and taxonomic classification, which translates to surface composition. Diameters of NEOs are derived from the thermal fluxes measured by WISE, NEOWISE, Spitzer Warm Mission and ground-based telescopes including the IRTF and UKIRT. Diameter and its coupled parameters Albedo and IR beaming parameter (a proxy for thermal inertia and/or surface roughness) are dependent upon the phase angle, which is the Sun-target-observer angle. Orbit geometries of NEOs, however, typically provide for observations at phase angles greater than 20 degrees. At higher phase angles, the observed thermal emission is sampling both the day and night sides of the NEO. We compare thermal models for NEOs that exclude (NEATM) and include (NESTM) night-side emission. We present a case study of NEO 3691 Bede, which is a higher albedo object, X (Ec) or Cgh taxonomy, to highlight the range of H magnitudes for this object (depending on the albedo and phase function slope parameter G), and to examine at different phase angles the taxonomy and thermal model fits for this NEO. Observations of 3691 Bede include our observations with IRTF+SpeX and with the 10 micrometer UKIRT+Michelle instrument, as well as WISE and Spitzer Warm mission data. By examining 3691 Bede as a case study, we highlight the interplay between the derivation of basic physical parameters and observing geometry, and we discuss the uncertainties in H magnitude, taxonomy assignment amongst the X-class (P, M, E), and diameter determinations. Systematic dependencies in the derivation of basic characterization parameters of H-magnitude, diameter, albedo and taxonomy with observing geometry are important to understand. These basic characterization parameters affect the statistical assessments of the NEO population, which in turn, affects the assignment of statistically-assessed basic parameters to discovered but yet-to-be-fully-characterized NEOs.

  2. Phase-Angle Dependence of Determinations of Diameter, Albedo, and Taxonomy: A case study of NEO 3691 Bede

    NASA Astrophysics Data System (ADS)

    Wooden, D. H.; Lederer, S. M.; Jehin, E.; Howell, E. S.; Fernandez, Y. R.; Harker, D. E.; Ryan, E. L.; Lovell, A. J.; Woodward, C. E.; Benner, L.

    2015-12-01

    Parameters important for NEO risk assessment and mitigation include Near-Earth Object diameter and taxonomic classification, which translates to surface composition. Diameters of NEOs are derived from the thermal fluxes measured by WISE, NEOWISE, Spitzer Warm Mission and ground-based telescopes including the IRTF and UKIRT. Diameter and its coupled parameters Albedo and IR beaming parameter (a proxy for thermal inertia and/or surface roughness) are dependent upon the phase angle, which is the Sun-target-observer angle. Orbit geometries of NEOs, however, typically provide for observations at phase angles > 20 degrees. At higher phase angles, the observed thermal emission is sampling both the day and night sides of the NEO. We compare thermal models for NEOs that exclude (NEATM) and include (NESTM) night-side emission. We present a case study of NEO 3691 Bede, which is a higher albedo object, X (Ec) or Cgh taxonomy, to highlight the range of H magnitudes for this object (depending on the albedo and phase function slope parameter G), and to examine at different phase angles the taxonomy and thermal model fits for this NEO. Observations of 3691 Bede include our observations with IRTF+SpeX and with the 10μm UKIRT+Michelle instrument, as well as WISE and Spitzer Warm mission data. By examining 3691 Bede as a case study, we highlight the interplay between the derivation of basic physical parameters and observing geometry, and we discuss the uncertainties in H magnitude, taxonomy assignment amongst the X-class (P, M, E), and diameter determinations. Systematic dependencies in the derivation of basic characterization parameters of H-magnitude, diameter, albedo and taxonomy with observing geometry are important to understand. These basic characterization parameters affect the statistical assessments of the NEO population, which in turn, affects the assignment of statistically-assessed basic parameters to discovered but yet-to-be-fully-characterized NEOs.

  3. The Humidity Dependence of N2O5 Uptake to Citric Acid Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Grzinic, G.; Bartels-Rausch, T.; Tuerler, A.; Ammann, M.

    2013-12-01

    Dinitrogen pentoxide is a significant reactive intermediate in the night time chemistry of nitrogen oxides. Depending on atmospheric conditions it can act either as a NO3 radical reservoir or as a major NOx sink by heterogeneous hydrolysis on aerosol surfaces. As such, it can influence tropospheric ozone production and therefore the oxidative capacity of the atmosphere. The heterogeneous loss of N2O5 to aerosol particles has remained uncertain, and reconciling lab and field data has demonstrated some gaps in our understanding of the detailed mechanism. We used the short-lived radioactive tracer 13N to study N2O5 uptake kinetics on aerosol particles in an aerosol flow reactor at ambient pressure, temperature and relative humidity. Citric acid, representing strongly oxidized polyfunctional organic compounds in atmospheric aerosols, has been chosen as a proxy due to its well established physical properties. Aerosol uptake measurements were performed with citric acid aerosols in a humidity range of 15-75 % RH, within which the uptake coefficient varies between about 0.001 and about 0.02. Taking into account the well established hygroscopic properties of citric acid, we interpret uptake in terms of disproportionation of N2O5 into nitrate ion and nitronium ion and reaction of the latter with liquid water.

  4. Dependence of alpha particle track diameter on the free volume holes size using positron annihilation lifetime technique

    NASA Astrophysics Data System (ADS)

    El-Gamal, S.; Abdalla, Ayman M.; Abdel-Hady, E. E.

    2015-09-01

    The alpha particle track diameter dependence of the free volume holes size (Vf) in DAM-ADC and CR-39 nuclear track detectors was investigated using positron annihilation lifetime technique. The effect of temperature on the alpha particle track diameter and free volume were also investigated in the T-range (RT-130 °C). The obtained results revealed that the values of ortho-positronium lifetime τ3 and Vf increases while I3 slightly increases as T increases for the two detectors. The values of τ3, Vf and I3 are higher in CR-39 than DAM-ADC. The interpretation of obtained results is based on the fact that increasing T leads to significant enhancement of thermal expansion of the polymer matrix and consequently Vf increases. The track diameter increases as T increases. This can be explained by the fact that the increase in T increases the crystal size and Vf in the polymer. A relationship between Vf and the alpha particle track diameter was obtained. Moreover results of detector irradiation, along with free volume evaluation are addressed and thoroughly discussed.

  5. SU-F-18C-11: Diameter Dependency of the Radial Dose Distribution in a Long Polyethylene Cylinder

    SciTech Connect

    Bakalyar, D; McKenney, S; Feng, W

    2014-06-15

    Purpose: The radial dose distribution in the central plane of a long cylinder following a long CT scan depends upon the diameter and composition of the cylinder. An understanding of this behavior is required for determining the spatial average of the dose in the central plane. Polyethylene, the material for construction of the TG200/ICRU phantom (30 cm in diameter) was used for this study. Size effects are germane to the principles incorporated in size specific dose estimates (SSDE); thus diameter dependency was explored as well. Method: ssuming a uniform cylinder and cylindrically symmetric conditions of irradiation, the dose distribution can be described using a radial function. This function must be an even function of the radial distance due to the conditions of symmetry. Two effects are accounted for: The direct beam makes its weakest contribution at the center while the contribution due to scatter is strongest at the center and drops off abruptly at the outer radius. An analytic function incorporating these features was fit to Monte Carlo results determined for infinite polyethylene cylinders of various diameters. A further feature of this function is that it is integrable. Results: Symmetry and continuity dictate a local extremum at the center which is a minimum for the larger sizes. The competing effects described above can Resultin an absolute maximum occurring between the center and outer edge of the cylinders. For the smallest cylinders, the maximum dose may occur at the center. Conclusion: An integrable, analytic function can be used to characterize the radial dependency of dose for cylindrical CT phantoms of various sizes. One use for this is to help determine average dose distribution over the central cylinder plane when equilibrium dose has been reached.

  6. Understanding double-resonant Raman scattering in chiral carbon nanotubes: Diameter and energy dependence of the D mode

    NASA Astrophysics Data System (ADS)

    Herziger, Felix; Vierck, Asmus; Laudenbach, Jan; Maultzsch, Janina

    2015-12-01

    We present a theoretical model to describe the double-resonant scattering process in arbitrary carbon nanotubes (CNTs). We use this approach to investigate the defect-induced D mode in CNTs and unravel the dependence of the D -mode frequency on the CNT diameter and on the energy of the resonant optical transition. Our approach is based on the symmetry of the hexagonal lattice and geometric considerations; hence the method is independent of the exact model that is chosen to describe the electronic band structure or the phonon dispersion. We finally clarify the diameter dependence of this Raman mode that has been under discussion in the past and demonstrate that, depending on the experimental conditions, in general two different dependencies can be measured. We also prove that CNTs with an arbitrary chiral index can exhibit a D mode in their Raman spectrum, in contrast to previous symmetry-based arguments. Furthermore, we give a direct quantification of the curvature-induced phonon frequency corrections of the D mode in CNTs with respect to graphite.

  7. Satellite-Based Evidence of Wavelength-Dependent Aerosol Absorption in Biomass Burning Smoke Inferred from Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Jethva, H.; Torres, O.

    2012-01-01

    We provide satellite-based evidence of the spectral dependence of absorption in biomass burning aerosols over South America using near-UV measurements made by the Ozone Monitoring Instrument (OMI) during 2005-2007. In the current near-UV OMI aerosol algorithm (OMAERUV), it is implicitly assumed that the only absorbing component in carbonaceous aerosols is black carbon whose imaginary component of the refractive index is wavelength independent. With this assumption, OMI-derived aerosol optical depth (AOD) is found to be significantly over-estimated compared to that of AERONET at several sites during intense biomass burning events (August-September). Other well-known sources of error affecting the near-UV method of aerosol retrieval do not explain the large observed AOD discrepancies between the satellite and the ground-based observations. A number of studies have revealed strong spectral dependence in carbonaceous aerosol absorption in the near-UV region suggesting the presence of organic carbon in biomass burning generated aerosols. A sensitivity analysis examining the importance of accounting for the presence of wavelength-dependent aerosol absorption in carbonaceous particles in satellite-based remote sensing was carried out in this work. The results convincingly show that the inclusion of spectrally-dependent aerosol absorption in the radiative transfer calculations leads to a more accurate characterization of the atmospheric load of carbonaceous aerosols.

  8. Modeling immersion freezing with aerosol-dependent prognostic ice nuclei in Arctic mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Paukert, M.; Hoose, C.

    2014-07-01

    While recent laboratory experiments have thoroughly quantified the ice nucleation efficiency of different aerosol species, the resulting ice nucleation parameterizations have not yet been extensively evaluated in models on different scales. Here the implementation of an immersion freezing parameterization based on laboratory measurements of the ice nucleation active surface site density of mineral dust and ice nucleation active bacteria, accounting for nucleation scavenging of ice nuclei, into a cloud-resolving model with two-moment cloud microphysics is presented. We simulated an Arctic mixed-phase stratocumulus cloud observed during Flight 31 of the Indirect and Semi-Direct Aerosol Campaign near Barrow, Alaska. Through different feedback cycles, the persistence of the cloud strongly depends on the ice number concentration. It is attempted to bring the observed cloud properties, assumptions on aerosol concentration, and composition and ice formation parameterized as a function of these aerosol properties into agreement. Depending on the aerosol concentration and on the ice crystal properties, the simulated clouds are classified as growing, dissipating, and quasi-stable. In comparison to the default ice nucleation scheme, the new scheme requires higher aerosol concentrations to maintain a quasi-stable cloud. The simulations suggest that in the temperature range of this specific case, mineral dust can only contribute to a minor part of the ice formation. The importance of ice nucleation active bacteria and possibly other ice formation modes than immersion freezing remains poorly constrained in the considered case, since knowledge on local variations in the emissions of ice nucleation active organic aerosols in the Arctic is scarce.

  9. Aerosol ion concentration dependence on atmospheric conditions in Chicago

    NASA Astrophysics Data System (ADS)

    Fosco, Tinamarie; Schmeling, Martina

    This study seeks to determine the influence of precursor trace gases and local meteorology, including lake breeze events, on the concentrations of secondary aerosol species in Chicago. For this, two particulate air samples per day were collected onto quartz fiber filters at the Loyola University Chicago Air Station (LUCAS) during the summer months of 2002 and 2003 and subsequently analyzed by ion chromatography for sulfate, nitrate and oxalate. In parallel, mixing ratios of ozone (O 3) and nitrogen oxides (NO and NO 2dbnd NO x) were monitored and weather parameters were recorded. In addition, backward trajectories were obtained to estimate air mass transport to Chicago. Ozone and NO x mixing ratios as well as sulfate, nitrate and oxalate concentrations varied substantially throughout the study, but three situations could be distinguished based on meteorology and chemistry. Case one had the lowest ozone, NO x and ion levels due to wind directions constantly from Lake Michigan. Case two comprised of days showing the highest pollutant levels because of to predominantly southwestern air currents and warm temperatures and case three experienced an air stagnation situation in the morning leading to high NO x mixing ratios and a subsequent lake breeze event. In the last case, elevated ozone mixing ratios and ion concentrations were observed after lake breeze onset indicating pollutant transport.

  10. Nonmonotonic Diameter Dependence of Thermal Conductivity of Extremely Thin Si Nanowires: Competition between Hydrodynamic Phonon Flow and Boundary Scattering.

    PubMed

    Zhou, Yanguang; Zhang, Xiaoliang; Hu, Ming

    2017-02-08

    By carefully and systematically performing Green-Kubo equilibrium molecular dynamics simulations, we report that the thermal conductivity (κ) of Si nanowires (NWs) does not diverge but converges and increases steeply when NW diameter (D) becomes extremely small (dκ/dD < 0), a long debate of one-dimensional heat conduction in history. The κ of the thinnest possible Si NWs reaches a superhigh level that is as large as more than 1 order of magnitude higher than its bulk counterpart. The abnormality is explained in terms of the dominant normal (N) process (energy and momentum conservation) of low frequency acoustic phonons that induces hydrodynamic phonon flow in the Si NWs without being scattered. With D increasing, the downward shift of optical phonons triggers strong Umklapp (U) scattering with acoustic phonons and attenuates the N process, leading to the regime of phonon boundary scattering (dκ/dD < 0). The two competing mechanisms result in nonmonotonic diameter dependence of κ with minima at critical diameter of 2-3 nm. Our results unambiguously demonstrate the converged κ and the clear trend of κ ∼ D for extremely thin Si NWs by fully elucidating the competition between the hydrodynamic phonon flow and phonon boundary scattering.

  11. NEAs: Phase Angle Dependence of Asteroid Class and Diameter from Observational Studies

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Lederer, Susan M.; Bus, Schlete; Tokunaga, Alan; Jehin, Emmanuel; Howell, Ellen S.; Nolan, Michael C.; Ryan, Erin; Fernandez, Yan; Harker, David; Benner, Lance A.; Lovell, Amy; Moskovitz, Nicholas; Kerr, Tom; Woodward, Charles

    2015-01-01

    We will discuss the results of a planned observation campaign of Near Earth Asteroids (NEAs), 1999 CU3, 2002 GM2, 2002 FG7, and 3691 Bede with instruments on the United Kingdom Infrared Telescope (UKIRT) from 15-Mar-2015 to 28-April 2015 UT. We will study the phase-angle dependence of the reflectance and thermal emission spectra. Recent publications reveal that the assignment of the asteroid class from visible and near-IR spectroscopy can change with phase angle for NEAs with silicate-bearing minerals on their surfaces (S-class asteroids) (Thomas et al. 2014, Icarus 228, 217; Sanchez et al. 2012 Icarus 220, 36). Only three of the larger NEAs have been measured at a dozen phase angles and the trends are not all the same, so there is not yet enough information to create a phase-angle correction. Also, the phase angle effect is not characterized well for the thermal emission including determination of the albedo and the thermal emission. The few NEAs were selected for our study amongst many possible targets based on being able to observe them through a wide range of phase angles, ranging from less than about 10 degrees to greater than 45 degrees over the constrained date range. The orbits of NEAs often generate short observing windows at phase angles higher than 45 deg (i.e., whizzing by Earth and/or close to dawn or dusk). Ultimately, lowering the uncertainty of the translation of asteroid class to meteorite analog and of albedo and size determinations are amongst our science goals. On a few specific nights, we plan to observe the 0.75-2.5 micron spectra with IRTF+SpeX for comparison with UKIRT data including 5-20 micron with UKIRT+UIST/Michelle to determine as best as possible the albedos. To ensure correct phasing of spectroscopic data, we augment with TRAPPIST-telescope light curves and R-band guider image data. Our observations will contribute to understanding single epoch mid-IR and near-IR measurements to obtain albedo, size and IR beaming parameters (the

  12. NEAs: Phase Angle Dependence of Asteroid Class and Diameter from Observational Studies

    NASA Astrophysics Data System (ADS)

    Wooden, Diane H.; Lederer, Susan M.; Bus, Schelte; Tokunaga, Alan; Jehin, Emmanuel; Howell, Ellen S.; Nolan, Michael C.; Ryan, Erin; Fernandez, Yan; Harker, David; Reddy, Vishnu; Benner, Lance AM; Lovell, Amy; Moskovitz, Nicholas; Kerr, Tom; Woodward, Charles

    2015-08-01

    We will discuss the results of a planned observation campaign of Near Earth Asteroids (NEAs), 1999 CU3, 2002 GM2, 2002 FG7, and 3691 Bede with instruments on the United Kingdom Infrared Telescope (UKIRT) from 15-Mar-2015 to 28-April 2015 UT. We will study the phase-angle dependence of the reflectance and thermal emission spectra. Recent publications reveal that the assignment of the asteroid class from visible and near-IR spectroscopy can change with phase angle for NEAs with silicate-bearing minerals on their surfaces (S-class asteroids) (Thomas et al. 2014, Icarus 228, 217; Sanchez et al. 2012 Icarus 220, 36). Only three of the larger NEAs have been measured at a dozen phase angles and the trends are not all the same, so there is not yet enough information to create a phase-angle correction. Also, the phase angle effect is not characterized well for the thermal emission including determination of the albedo and the thermal emission. The few NEAs were selected for our study amongst many possible targets based on being able to observe them through a wide range of phase angles, ranging from less than about 10 degrees to greater than 45 degrees over the constrained date range. The orbits of NEAs often generate short observing windows at phase angles higher than 45 deg (i.e., whizzing by Earth and/or close to dawn or dusk). Ultimately, lowering the uncertainty of the translation of asteroid class to meteorite analog and of albedo and size determinations are amongst our science goals. On a few specific nights, we plan to observe the 0.75-2.5 micron spectra with IRTF+SpeX for comparison with UKIRT data including 5-20 micron with UKIRT+UIST/Michelle to determine as best as possible the albedos. To ensure correct phasing of spectroscopic data, we augment with TRAPPIST-telescope light curves and R-band guider image data. Our observations will contribute to understanding single epoch mid-IR and near-IR measurements to obtain albedo, size and IR beaming parameters (the

  13. Aerosol size distribution and aerosol water content measurements during Atlantic Stratocumulus Transition Experiment/Marine Aerosol and Gas Exchange

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Sievering, H.; Boatman, J.; Wellman, D.; Pszenny, A.

    1995-11-01

    Aerosol size distribution data measured during the June 1992 Marine Aerosol and Gas Exchange experiment are analyzed to investigate the characteristics of fine marine aerosol particles measured over the North Atlantic near the Azores Islands. Measured aerosol size distribution data were corrected using the corrected size calibration data based on the optical properties of particles being measured. The corrected size distribution data were then approximated with either one or two lognormal size distributions, depending on air mass conditions. Under clean air mass conditions <3 μm diameter aerosol size distributions typically exhibited two modes, consisting of an accumulation mode and the small end of the sea-salt particle mode. However, under the influence of continental polluted air masses, the aerosol size distribution was dominated by <1 μm diameter particles in a single mode with an increased aerosol concentration. Aerosol water content of accumulation mode marine aerosols was estimated from differences between several series of ambient and dried aerosol size distributions. The average aerosol water fraction was 0.31, which is in good agreement with an empirical aerosol growth model estimate. The average rate of SO4= production in the accumulation mode aerosol water by H2O2 oxidation was estimated to be <7×10-10 mol L-1 s-1, which is an insignificant contributor to the observed non-sea-salt SO4= in the accumulation mode.

  14. Size-dependent photoconductivity and dark conductivity of m-axial GaN nanowires with small critical diameter

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Yi; Chen, Reui-San; Chang, Fu-Chieh; Chen, Li-Chyong; Chen, Kuei-Hsien; Yang, Ying-Jay

    2009-10-01

    The size effects on both the photoconductivity and dark conductivity have been observed in m-axial GaN nanowires grown by chemical vapor deposition (CVD). For these nanowires with diameters at 50-130 nm, the products of carrier lifetime (τ) and mobility (μ) derived from the photocurrent measurements are typically at (2-8)×10-1 cm2/V, which are over two orders of magnitude higher than the maximal reported values [τμ=(1-5)×10-4 cm2/V] for their thin film counterparts. A significant decrease of τμ value at diameter below the critical values (dcrt) at 30-40 nm is observed. Similar size dependence is also found from the dark conductivity study. The temperature-dependent measurements further indicate two different thermal activation mechanisms in GaN nanowires with sizes above and below the dcrt. These results suggest a surface-dominant transport property in GaN nanowires both in dark and under light illumination due to the presence of surface depletion and band bending. Probable reasons leading to the smaller dcrt of the CVD-grown m-axial GaN nanowires, compared to the c-axial ones grown by molecular beam epitaxy are discussed as well.

  15. FY 2010 Fourth Quarter Report: Evaluation of the Dependency of Drizzle Formation on Aerosol Properties

    SciTech Connect

    Lin, W; McGraw, R; Liu, Y; Wang, J; Vogelmann, A; Daum, PH

    2010-10-01

    Metric for Quarter 4: Report results of implementation of composite parameterization in single-column model (SCM) to explore the dependency of drizzle formation on aerosol properties. To better represent VOCALS conditions during a test flight, the Liu-Duam-McGraw (LDM) drizzle parameterization is implemented in the high-resolution Weather Research and Forecasting (WRF) model, as well as in the single-column Community Atmosphere Model (CAM), to explore this dependency.

  16. Evaluation and Windspeed Dependence of MODIS Aerosol Retrievals Over Open Ocean

    NASA Technical Reports Server (NTRS)

    Kleidman, Richard G.; Smirnov, Alexander; Levy, Robert C.; Mattoo, Shana; Tanre, Didier

    2011-01-01

    The Maritime Aerosol Network (MAN) data set provides high quality ground-truth to validate the MODIS aerosol product over open ocean. Prior validation of the ocean aerosol product has been limited to coastal and island sites. Comparing MODIS Collection 5 ocean aerosol retrieval products with collocated MAN measurements from ships shows that MODIS is meeting the pre-launch uncertainty estimates for aerosol optical depth (AOD) with 64% and 67% of retrievals at 550 nm, and 74% and 78% of retrievals at 870 nm, falling within expected uncertainty for Terra and Aqua, respectively. Angstrom Exponent comparisons show a high correlation between MODIS retrievals and shipboard measurements (R= 0.85 Terra, 0.83 Aqua), although the MODIS aerosol algorithm tends to underestimate particle size for large particles and overestimate size for small particles, as seen in earlier Collections. Prior analysis noted an offset between Terra and Aqua ocean AOD, without concluding which sensor was more accurate. The simple linear regression reported here, is consistent with other anecdotal evidence that Aqua agreement with AERONET is marginally better. However we cannot claim based on the current study that the better Aqua comparison is statistically significant. Systematic increase of error as a function of wind speed is noted in both Terra and Aqua retrievals. This wind speed dependency enters the retrieval when winds deviate from the 6 m/s value assumed in the rough ocean surface and white cap parameterizations. Wind speed dependency in the results can be mitigated by using auxiliary NCEP wind speed information in the retrieval process.

  17. Viscosity controls humidity dependence of N2O5 uptake to citric acid aerosol

    NASA Astrophysics Data System (ADS)

    Gržinić, G.; Bartels-Rausch, T.; Berkemeier, T.; Türler, A.; Ammann, M.

    2015-08-01

    The heterogeneous loss of dinitrogen pentoxide (N2O5) to aerosol particles has a significant impact on the night time nitrogen oxide cycle and therefore the oxidative capacity in the troposphere. Using a 13N short lived radioactive tracer method we studied the uptake kinetics of N2O5 on citric acid aerosol particles as a function of relative humidity (RH). The results show that citric acid exhibits lower reactivity than similar di- and polycarboxylic acids, with uptake coefficients between ~ 3 × 10-4-~ 3 × 10-3 depending on humidity (17-70 % RH). This humidity dependence can be explained by a changing viscosity and, hence, diffusivity in the organic matrix. Since the viscosity of highly concentrated citric acid solutions is not well established, we present four different parameterizations of N2O5 diffusivity based on the available literature data or estimates for viscosity and diffusivity. Above 50 % RH, uptake is consistent with the reacto-diffusive kinetic regime whereas below 50 % RH, the uptake coefficient is higher than expected from hydrolysis of N2O5 within the bulk of the particles, and the uptake kinetics may be limited by loss on the surface only. This study demonstrates the impact of viscosity in highly oxidized and highly functionalized secondary organic aerosol material on the heterogeneous chemistry of N2O5 and may explain some of the unexpectedly low loss rates to aerosol derived from field studies.

  18. Diameter dependent polarization in ZnO/MgO disk-in-wire emitters: Multiscale modeling of optical quantum efficiency

    NASA Astrophysics Data System (ADS)

    Al-Qahtani, Saad Mubarak; Abdullah, Abdulmuin Mostafa A.; Nishat, Md. Rezaul Karim; Ahmed, Shaikh S.

    2017-03-01

    A multiscale computational study is performed to investigate how electronic structure, optical transitions, and terminal characteristics of nanostructured ZnO/MgO disk-in-wire emitters are governed by an intricate coupling of size-quantization, atomicity, and built-in structural and polarization fields. As for the models, an 8-band sp3 (with spin) atomistic tight-binding basis set was used to construct the Hamiltonian of the device in wurtzite crystal symmetry. Strain and the associated distortions of bond directions and bond lengths were modeled via the valence force-field (VFF) molecular mechanics framework. Specifically, in this work, a recently proposed ab initio based diameter-dependent model for the piezoelectric fields was implemented, which, as compared to the conventional diameter-independent model, was found to curb the influence of spontaneous (pyroelectric) polarization significantly. This particular finding is further illustrated through the calculation of electronic bandgap and localization of wavefunctions, optical emission characteristics, and the internal quantum efficiency of the device.

  19. Relative Humidity Dependent Optical Properties of Clay Aerosols and their Mixtures

    NASA Astrophysics Data System (ADS)

    Greenslade, M. E.; Attwood, A. R.

    2012-12-01

    Mineral dust particles impact the Earth's radiative budget significantly because they comprise a large fraction of the total aerosol mass. Their impact is complex due to variable shapes and compositions that can cause optical properties to deviate from predictive models. A range of clay proxies for mineral dust including montmorillonite, illite and kaolinite have been interrogated with visible cavity ring down spectroscopy to determine the humidity dependent aerosol extinction. In addition, mixtures of montmorillonite with ammonium sulfate, sodium chloride, and three atmospherically relevant dicarboxylic acids (succinic, glutaric, and malonic acid) have been studied. The results are not always in agreement with simple models such as Mie theory or linear mixing rules based on the Zdanovskii, Stokes and Robinson method. Unexpected decreases in the fRH were observed for illite and kaolinite, but these can be explained based on physical and chemical composition. Similar to previous observations by other researchers, the deliquescence relative humidity was lower than predicted for mixed aerosols in cases where the salt fraction was large. The difference between experiment and model for all of the mixed aerosol species was greatest at higher relative humidity, especially above 80%. Explanations for these results will be discussed.

  20. Mapping axonal density and average diameter using non-monotonic time-dependent gradient-echo MRI

    NASA Astrophysics Data System (ADS)

    Nunes, Daniel; Cruz, Tomás L.; Jespersen, Sune N.; Shemesh, Noam

    2017-04-01

    White Matter (WM) microstructures, such as axonal density and average diameter, are crucial to the normal function of the Central Nervous System (CNS) as they are closely related with axonal conduction velocities. Conversely, disruptions of these microstructural features may result in severe neurological deficits, suggesting that their noninvasive mapping could be an important step towards diagnosing and following pathophysiology. Whereas diffusion based MRI methods have been proposed to map these features, they typically entail the application of powerful gradients, which are rarely available in the clinic, or extremely long acquisition schemes to extract information from parameter-intensive models. In this study, we suggest that simple and time-efficient multi-gradient-echo (MGE) MRI can be used to extract the axon density from susceptibility-driven non-monotonic decay in the time-dependent signal. We show, both theoretically and with simulations, that a non-monotonic signal decay will occur for multi-compartmental microstructures - such as axons and extra-axonal spaces, which were here used as a simple model for the microstructure - and that, for axons parallel to the main magnetic field, the axonal density can be extracted. We then experimentally demonstrate in ex-vivo rat spinal cords that its different tracts - characterized by different microstructures - can be clearly contrasted using the MGE-derived maps. When the quantitative results are compared against ground-truth histology, they reflect the axonal fraction (though with a bias, as evident from Bland-Altman analysis). As well, the extra-axonal fraction can be estimated. The results suggest that our model is oversimplified, yet at the same time evidencing a potential and usefulness of the approach to map underlying microstructures using a simple and time-efficient MRI sequence. We further show that a simple general-linear-model can predict the average axonal diameters from the four model parameters, and

  1. New Examination of the Traditional Raman Lidar Technique II: Temperature Dependence Aerosol Scattering Ratio and Water Vapor Mixing Ratio Equations

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Abshire, James B. (Technical Monitor)

    2002-01-01

    In a companion paper, the temperature dependence of Raman scattering and its influence on the Raman water vapor signal and the lidar equations was examined. New forms of the lidar equation were developed to account for this temperature sensitivity. Here we use those results to derive the temperature dependent forms of the equations for the aerosol scattering ratio, aerosol backscatter coefficient, extinction to backscatter ratio and water vapor mixing ratio. Pertinent analysis examples are presented to illustrate each calculation.

  2. Examination of Organic Reactions in UT/LS Aerosols: Temperature Dependence in Sulfuric Acid Solution

    NASA Astrophysics Data System (ADS)

    Iraci, L. T.; Michelsen, R. R.

    2004-12-01

    Sulfuric acid has been used for decades as an industrial catalyst for organic reactions, but its parallel role in atmospheric aerosols is relatively unexplored, despite identification of a wide array of organic compounds in particles. Several recent studies have demonstrated possible reactions in acidic particles, generally involving carbonyl groups (C=O) and leading to the formation of larger molecules. Reactions of oxygenated organic compounds in acidic solution are most often studied near room temperature, while the sulfate particles of the upper troposphere and lower stratosphere are significantly colder. Our studies of ethanal (acetaldehyde) suggest that reactivity in ~50 wt% H2SO4 solutions may be enhanced at lower temperatures, contrary to expectations. We will present temperature-dependent results of acid catalyzed condensation reactions, leading to formation of higher molecular weight products. Implications for aerosol composition and reactivity will be discussed.

  3. Viscosity controls humidity dependence of N2O5 uptake to citric acid aerosol

    NASA Astrophysics Data System (ADS)

    Gržinić, G.; Bartels-Rausch, T.; Berkemeier, T.; Türler, A.; Ammann, M.

    2015-12-01

    The heterogeneous loss of dinitrogen pentoxide (N2O5) to aerosol particles has a significant impact on the night-time nitrogen oxide cycle and therefore the oxidative capacity in the troposphere. Using a 13N short-lived radioactive tracer method, we studied the uptake kinetics of N2O5 on citric acid aerosol particles as a function of relative humidity (RH). The results show that citric acid exhibits lower reactivity than similar dicarboxylic and polycarboxylic acids, with uptake coefficients between ∼ 3 × 10-4-∼ 3 × 10-3 depending on humidity (17-70 % RH). At RH above 50 %, the magnitude and the humidity dependence can be best explained by the viscosity of citric acid as compared to aqueous solutions of simpler organic and inorganic solutes and the variation of viscosity with RH and, hence, diffusivity in the organic matrix. Since the diffusion rates of N2O5 in highly concentrated citric acid solutions are not well established, we present four different parameterizations of N2O5 diffusivity based on the available literature data or estimates for viscosity and diffusivity of H2O. Above 50 % RH, uptake is consistent with the reacto-diffusive kinetic regime whereas below 50 % RH, the uptake coefficient is higher than expected from hydrolysis of N2O5 within the bulk of the particles, and the uptake kinetics is most likely limited by loss on the surface only. This study demonstrates the impact of viscosity in highly oxidized and highly functionalized secondary organic aerosol material on the heterogeneous chemistry of N2O5 and may explain some of the unexpectedly low loss rates to aerosol derived from field studies.

  4. Relationship between fluid bed aerosol generator operation and the aerosol produced

    SciTech Connect

    Carpenter, R.L.; Yerkes, K.

    1980-12-01

    The relationships between bed operation in a fluid bed aerosol generator and aerosol output were studied. A two-inch diameter fluid bed aerosol generator (FBG) was constructed using stainless steel powder as a fluidizing medium. Fly ash from coal combustion was aerosolized and the influence of FBG operating parameters on aerosol mass median aerodynamic diameter (MMAD), geometric standard deviation (sigma/sub g/) and concentration was examined. In an effort to extend observations on large fluid beds to small beds using fine bed particles, minimum fluidizing velocities and elutriation constant were computed. Although FBG minimum fluidizing velocity agreed well with calculations, FBG elutriation constant did not. The results of this study show that the properties of aerosols produced by a FBG depend on fluid bed height and air flow through the bed after the minimum fluidizing velocity is exceeded.

  5. On deriving the accurate aerosol extinction profiles in the troposphere and lower stratosphere using the range dependent scattering ratio

    NASA Astrophysics Data System (ADS)

    Satyanarayana, M. V.; Radhakrishnan, S. R.; Mahadevanpillai, V. P.; Krishnakumar, V.

    2008-12-01

    Lidar has proven to be an effective instrument for obtaining high resolution profiles of atmospheric aerosols. Deriving the optical properties of aerosols from the experimentally obtained lidar data is one of the most interesting and challenging task for the atmospheric scientists. A few methods had been developed so far, to obtain the quantitative profiles of extinction and backscattering coefficient of aerosols from the pulsed backscattering lidar measurements. Most of the existing inversion methods assume a range independent value for the scattering ratio for inverting the lidar signal even though it is known that the scattering ratio depends on the nature of aerosols and as such range dependent. We used a modified Klett's method for the inversion of lidar signal that uses range dependent scattering ratio (s) for the characterization of atmospheric aerosols. This method provides the constants k and s for all the altitude regions of the atmosphere and leads to derive the aerosol extinction profile for the lidar data. In this paper we made a study on the errors involved in the extinction profiles derived using the range dependent scattering ratio and discuss the approach in this regard to obtain the accurate extinction profiles.

  6. Temperature dependence of secondary organic aerosol yield from the ozonolysis of β-pinene

    NASA Astrophysics Data System (ADS)

    Stenby, C.; Pöschl, U.; von Hessberg, P.; Bilde, M.; Nielsen, O. J.; Moortgat, G. K.

    2006-10-01

    The temperature dependence of secondary organic aerosol (SOA) formation from ozonolysis of β-pinene was studied in a flow reactor at 263-303 K and 1007 hPa. The observed SOA yields were of similar magnitude as predicted by a two-product model based on detailed gas phase chemistry (Jenkin, 2004), reaching maximum values of 0.22-0.39 at high particle mass concentrations. However, the measurement data exhibited significant deviations (up to 50%) from the predicted linear dependence on inverse temperature. When fitting the measurement data with a two-product model, we found that both the partitioning coefficients (Kom,i) and the stoichiometric yields (αi) of the low-volatile and semi-volatile species vary with temperature. The results indicate that not only the reaction product vapour pressures but also the relative contributions of different gas-phase or multiphase reaction channels are dependent on temperature. We suggest that the modelling of secondary organic aerosol formation in the atmosphere needs to take into account the effects of temperature on the pathways and kinetics of the involved chemical reactions as well as on the gas-particle partitioning of the reaction products.

  7. Secondary organic aerosol formation during the photooxidation of toluene: NOx dependence of chemical composition.

    PubMed

    Sato, Kei; Hatakeyama, Shiro; Imamura, Takashi

    2007-10-04

    The photooxidation of toluene is a potential source of secondary organic aerosol (SOA) in urban air, but only a small portion of the compounds present in SOA have been identified. In this study, we analyzed the chemical compositions of SOA produced by photoirradiation of the toluene/NOx/air system in laboratory chamber experiments by a combination of liquid chromatography-mass spectrometry, hybrid high-performance liquid chromatography-mass spectrometry, and iodometry-spectrophotometry. The dependence of the chemical composition on the initial NOx concentration was examined at initial NO concentrations ([NO]0) of 0.2 and 1 ppmv. Fifteen semivolatile products, including aromatic and ring-cleavage compounds, were quantified. However, the quantified products comprised only a small portion ( approximately 1 wt %) of the total aerosol mass. The total SOA yield ( approximately 13 wt %), the ratio of organic peroxides to total SOA mass ( approximately 17 wt %), and the density of SOA ( approximately 1.4 g cm-3) were independent of the NOx level, suggesting that the reaction mechanisms of the formation of major SOA products at [NO]0 = 0.2 and 1 ppmv are essentially the same. The negative-ion mass spectra of SOA samples showed that ion signals attributed to hemiacetal oligomers and/or decomposition products of peroxy hemiacetal oligomers were detected in the range of mass-to-charge ratios (m/z) between 200 and 500. The highest signals were detected at m/z = 155 and 177, and these were tentatively assigned to C7 unsaturated oxacyclic oxocarboxylic acids and C7 unsaturated oxacyclic dicarboxylic acids, respectively. We conclude that the major chemical components of the aerosol are hemiacetal and peroxy hemiacetal oligomers and low-molecular-weight dicarboxylic acids.

  8. Diameter and chiral angle distribution dependencies on the carbon precursors in surface-grown single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    He, Maoshuai; Jiang, Hua; Kauppinen, Esko I.; Lehtonen, Juha

    2012-11-01

    Carbon nanotubes grown from discrete Fe-containing nanoparticles dispersed on a silicon nitride transmission electron microscope grid were systematically studied. The (n,m) indices of produced single-walled carbon nanotubes (SWNTs) were deduced from their electron diffraction patterns. Relatively small diameter SWNTs with a narrow diameter distribution (0.7-1.6 nm) were produced using CO as the carbon source at 800 °C, while large diameter SWNTs ranging from 1.0 nm to 4.7 nm were synthesized when using CH4 as the carbon source. The chiral angle distributions of the SWNTs produced from different carbon sources are also different, which are attributed to the preferred cap nucleation associated with the carbon feed rate on the catalyst instead of carbon nanotube growth kinetics. Furthermore, growth of carbon laminar nanoclusters inside carbon nanotubes was achieved at a higher growth temperature, suggesting that dissociated carbon diffuses across the nanoparticle during the nanotube growth process.Carbon nanotubes grown from discrete Fe-containing nanoparticles dispersed on a silicon nitride transmission electron microscope grid were systematically studied. The (n,m) indices of produced single-walled carbon nanotubes (SWNTs) were deduced from their electron diffraction patterns. Relatively small diameter SWNTs with a narrow diameter distribution (0.7-1.6 nm) were produced using CO as the carbon source at 800 °C, while large diameter SWNTs ranging from 1.0 nm to 4.7 nm were synthesized when using CH4 as the carbon source. The chiral angle distributions of the SWNTs produced from different carbon sources are also different, which are attributed to the preferred cap nucleation associated with the carbon feed rate on the catalyst instead of carbon nanotube growth kinetics. Furthermore, growth of carbon laminar nanoclusters inside carbon nanotubes was achieved at a higher growth temperature, suggesting that dissociated carbon diffuses across the nanoparticle during the

  9. Black carbon and wavelength-dependent aerosol absorption in the North China Plain based on two-year aethalometer measurements

    NASA Astrophysics Data System (ADS)

    Ran, L.; Deng, Z. Z.; Wang, P. C.; Xia, X. A.

    2016-10-01

    Light-absorbing components of atmospheric aerosols have gained particular attention in recent years due to their climatic and environmental effects. Based on two-year measurements of aerosol absorption at seven wavelengths, aerosol absorption properties and black carbon (BC) were investigated in the North China Plain (NCP), one of the most densely populated and polluted regions in the world. Aerosol absorption was stronger in fall and the heating season (from November to March) than in spring and summer at all seven wavelengths. Similar spectral dependence of aerosol absorption was observed in non-heating seasons despite substantially strong absorption in fall. With an average absorption Angström exponent (α) of 1.36 in non-heating seasons, freshly emitted BC from local fossil fuel burning was thought to be the major component of light-absorbing aerosols. In the heating season, strong ultraviolet absorption led to an average α of 1.81, clearly indicating the importance of non-BC light-absorbing components, which were possibly from coal burning for domestic heating and aging processes on a regional scale. Diurnally, the variation of BC mass concentrations experienced a double-peak pattern with a higher level at night throughout the year. However, the diurnal cycle of α in the heating season was distinctly different from that in non-heating seasons. α peaked in the late afternoon in non-heating seasons with concomitantly observed low valley in BC mass concentrations. In contrast, α peaked around the midnight in the heating season and lowered down during the daytime. The relationship of aerosol absorption and winds in non-heating seasons also differed from that in the heating season. BC mass concentrations declined while α increased with increasing wind speed in non-heating seasons, which suggested elevated non-BC light absorbers in transported aged aerosols. No apparent dependence of α on wind speed was found in the heating season, probably due to well mixed

  10. Dependence of the spectral diffuse-direct irradiance ratio on aerosol spectral distribution and single scattering albedo

    NASA Astrophysics Data System (ADS)

    Kaskaoutis, D. G.; Kambezidis, H. D.; Dumka, U. C.; Psiloglou, B. E.

    2016-09-01

    This study investigates the modification of the clear-sky spectral diffuse-direct irradiance ratio (DDR) as a function of solar zenith angle (SZA), spectral aerosol optical depth (AOD) and single scattering albedo (SSA). The solar spectrum under various atmospheric conditions is derived with Simple Model of the Atmospheric Radiative Transfer of Sunshine (SMARTS) radiative transfer code, using the urban and continental aerosol models as inputs. The spectral DDR can be simulated with great accuracy by an exponentially decreasing curve, while the aerosol optical properties strongly affect the scattering processes in the atmosphere, thus modifying the DDR especially in the ultraviolet (UV) spectrum. Furthermore, the correlation between spectral DDR and spectral AOD can be represented precisely by an exponential function and can give valuable information about the dominance of specific aerosol types. The influence of aerosols on spectral DDR increases with increasing SZA, while the simulations using the urban aerosol model as input in SMARTS are closer to the measurements taken in the Athens urban environment. The SMARTS simulations are interrelated with spectral measurements and can be used for indirect estimations of SSA. Overall, the current work provides some theoretical approximations and functions that help in understanding the dependence of DDR on astronomical and atmospheric parameters.

  11. The filter-loading effect by ambient aerosols in filter absorption photometers depends on the coating of the sampled particles

    NASA Astrophysics Data System (ADS)

    Drinovec, Luka; Gregorič, Asta; Zotter, Peter; Wolf, Robert; Bruns, Emily Anne; Prévôt, André S. H.; Petit, Jean-Eudes; Favez, Olivier; Sciare, Jean; Arnold, Ian J.; Chakrabarty, Rajan K.; Moosmüller, Hans; Filep, Agnes; Močnik, Griša

    2017-03-01

    Black carbon is a primary aerosol tracer for high-temperature combustion emissions and can be used to characterize the time evolution of its sources. It is correlated with a decrease in public health and contributes to atmospheric warming. Black carbon measurements are usually conducted with absorption filter photometers, which are prone to several artifacts, including the filter-loading effect - a saturation of the instrumental response due to the accumulation of the sample in the filter matrix. In this paper, we investigate the hypothesis that this filter-loading effect depends on the optical properties of particles present in the filter matrix, especially on the black carbon particle coating. We conducted field campaigns in contrasting environments to determine the influence of source characteristics, particle age and coating on the magnitude of the filter-loading effect. High-time-resolution measurements of the filter-loading parameter in filter absorption photometers show daily and seasonal variations of the effect. The variation is most pronounced in the near-infrared region, where the black carbon mass concentration is determined. During winter, the filter-loading parameter value increases with the absorption Ångström exponent. It is suggested that this effect is related to the size of the black carbon particle core as the wood burning (with higher values of the absorption Ångström exponent) produces soot particles with larger diameters. A reduction of the filter-loading effect is correlated with the availability of the coating material. As the coating of ambient aerosols is reduced or removed, the filter-loading parameter increases. Coatings composed of ammonium sulfate and secondary organics seem to be responsible for the variation of the loading effect. The potential source contribution function analysis shows that high values of the filter-loading parameter in the infrared are indicative of local pollution, whereas low values of the filter

  12. Diameter-dependent release of a cisplatin pro-drug from small and large functionalized carbon nanotubes.

    PubMed

    Muzi, Laura; Ménard-Moyon, Cécilia; Russier, Julie; Li, Jian; Chin, Chee Fei; Ang, Wee Han; Pastorin, Giorgia; Risuleo, Gianfranco; Bianco, Alberto

    2015-03-12

    The use of platinum-based chemotherapeutic drugs in cancer therapy still suffers from severe disadvantages, such as lack of appropriate selectivity for tumor tissues and insurgence of multi-drug resistance. Moreover, drug efficacy can be attenuated by several mechanisms such as premature drug inactivation, reduced drug uptake inside cells and increased drug efflux once internalized. The use of functionalized carbon nanotubes (CNTs) as chemotherapeutic drug delivery systems is a promising strategy to overcome such limitations due to their ability to enhance cellular internalization of poorly permeable drugs and thus increase the drug bioavailability at the diseased site, compared to the free drug. Furthermore, the possibility to encapsulate agents in the nanotubes' inner cavity can protect the drug from early inactivation and their external functionalizable surface is useful for selective targeting. In this study, a hydrophobic platinum(IV) complex was encapsulated within the inner space of two different diameter functionalized multi-walled CNTs (Pt(IV)@CNTs). The behavior of the complexes, compared to the free drug, was investigated on both HeLa human cancer cells and RAW 264.7 murine macrophages. Both CNT samples efficiently induced cell death in HeLa cancer cells 72 hours after the end of exposure to CNTs. Although the larger diameter CNTs were more cytotoxic on HeLa cells compared to both the free drug and the smaller diameter nanotubes, the latter allowed a prolonged release of the encapsulated drug, thus increasing its anticancer efficacy. In contrast, both Pt(IV)@CNT constructs were poorly cytotoxic on macrophages and induced negligible cell activation and no pro-inflammatory cytokine production. Both CNT samples were efficiently internalized by the two types of cells, as demonstrated by transmission electron microscopy observations and flow cytometry analysis. Finally, the platinum levels found in the cells after Pt(IV)@CNT exposure demonstrate that they can

  13. Salt-dependent DNA superhelix diameter studied by small angle neutron scattering measurements and Monte Carlo simulations.

    PubMed Central

    Hammermann, M; Brun, N; Klenin, K V; May, R; Tóth, K; Langowski, J

    1998-01-01

    Using small angle neutron scattering we have measured the static form factor of two different superhelical DNAs, p1868 (1868 bp) and pUC18 (2686 bp), in dilute aqueous solution at salt concentrations between 0 and 1.5 M Na+ in 10 mM Tris at 0% and 100% D2O. For both DNA molecules, the theoretical static form factor was also calculated from an ensemble of Monte Carlo configurations generated by a previously described model. Simulated and measured form factors of both DNAs showed the same behavior between 10 and 100 mM salt concentration: An undulation in the scattering curve at a momentum transfer q = 0.5 nm-1 present at lower concentration disappears above 100 mM. The position of the undulation corresponds to a distance of approximately 10-20 nm. This indicated a change in the DNA superhelix diameter, as the undulation is not present in the scattering curve of the relaxed DNA. From the measured scattering curves of superhelical DNA we estimated the superhelix diameter as a function of Na+ concentration by a quantitative comparison with the scattering curve of relaxed DNA. The ratio of the scattering curves of superhelical and relaxed DNA is very similar to the form factor of a pair of point scatterers. We concluded that the distance of this pair corresponds to the interstrand separation in the superhelix. The computed superhelix diameter of 16.0 +/- 0.9 nm at 10 mM decreased to 9.0 +/- 0.7 nm at 100 mM salt concentration. Measured and simulated scattering curves agreed almost quantitatively, therefore we also calculated the superhelix diameter from the simulated conformations. It decreased from 18.0 +/- 1.5 nm at 10 mM to 9.4 +/- 1.5 nm at 100 mM salt concentration. This value did not significantly change to lower values at higher Na+ concentration, in agreement with results obtained by electron microscopy, scanning force microscopy imaging in aqueous solution, and recent MC simulations, but in contrast to the observation of a lateral collapse of the DNA superhelix

  14. Background Southeast United States Aerosol Optical Properties and Their Dependence Upon Meteorology

    NASA Astrophysics Data System (ADS)

    Pawlyszyn, C.; West, M.; Sherman, J. P.; Link, M.; Zhou, Y.

    2015-12-01

    Aerosol effects on SE U.S. radiation budget are highly-seasonal. Aerosol loading is much higher in summer, due largely to high levels of biogenic secondary organic aerosol and sulfates. Aerosol loading is lowest in winter. Aerosol optical properties relevant to radiative forcing have been measured continuously at the Appalachian Atmospheric Interdisciplinary Research facility (AppalAIR) since the summer of 2009. AppalAIR is the only site in the eastern US to house co-located NOAA ESRL and NASA AeroNET instrumentation and is located in the mountains of Boone, NC. Lower tropospheric sub-micron (PM1) light scattering and absorption coefficients measured over seven summers and six winters are presented here, in addition to PM1 organic and sulfate aerosol mass concentrations measured during summers 2012-2013 as well as winter 2013. The objective is to determine the influence of aerosol sources and meteorology along the air mass back-trajectories on aerosol loading and composition. PM1 aerosol mass was dominated by organic aerosol and sulfate during the periods measured. Aerosol light scattering and organic aerosol concentrations were positively correlated during summer with temperature and solar flux along the parcel back-trajectory and negatively-correlated with rainfall along the back-trajectory. Wet deposition was a major factor in the difference between the upper and lower scattering coefficient quartiles for both summer and winter. Summer PM1 light scattering coefficient declined by approximately 30-40% since 2009, with smaller decreases during winter months. Long-term studies of aerosol optical properties from the regionally-representative AppalAIR site are necessary to determine the relationships between changing SE U.S. air quality and aerosol effects on regional climate and weather.

  15. Diameter-dependent release of a cisplatin pro-drug from small and large functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Muzi, Laura; Ménard-Moyon, Cécilia; Russier, Julie; Li, Jian; Chin, Chee Fei; Ang, Wee Han; Pastorin, Giorgia; Risuleo, Gianfranco; Bianco, Alberto

    2015-03-01

    The use of platinum-based chemotherapeutic drugs in cancer therapy still suffers from severe disadvantages, such as lack of appropriate selectivity for tumor tissues and insurgence of multi-drug resistance. Moreover, drug efficacy can be attenuated by several mechanisms such as premature drug inactivation, reduced drug uptake inside cells and increased drug efflux once internalized. The use of functionalized carbon nanotubes (CNTs) as chemotherapeutic drug delivery systems is a promising strategy to overcome such limitations due to their ability to enhance cellular internalization of poorly permeable drugs and thus increase the drug bioavailability at the diseased site, compared to the free drug. Furthermore, the possibility to encapsulate agents in the nanotubes' inner cavity can protect the drug from early inactivation and their external functionalizable surface is useful for selective targeting. In this study, a hydrophobic platinum(iv) complex was encapsulated within the inner space of two different diameter functionalized multi-walled CNTs (Pt(iv)@CNTs). The behavior of the complexes, compared to the free drug, was investigated on both HeLa human cancer cells and RAW 264.7 murine macrophages. Both CNT samples efficiently induced cell death in HeLa cancer cells 72 hours after the end of exposure to CNTs. Although the larger diameter CNTs were more cytotoxic on HeLa cells compared to both the free drug and the smaller diameter nanotubes, the latter allowed a prolonged release of the encapsulated drug, thus increasing its anticancer efficacy. In contrast, both Pt(iv)@CNT constructs were poorly cytotoxic on macrophages and induced negligible cell activation and no pro-inflammatory cytokine production. Both CNT samples were efficiently internalized by the two types of cells, as demonstrated by transmission electron microscopy observations and flow cytometry analysis. Finally, the platinum levels found in the cells after Pt(iv)@CNT exposure demonstrate that they can

  16. Diameter dependence of the growth velocity of silicon nanowires synthesized via the vapor-liquid-solid mechanism

    NASA Astrophysics Data System (ADS)

    Schmidt, V.; Senz, S.; Gösele, U.

    2007-01-01

    We present a model for the radius dependence of the growth velocity of Si nanowires synthesized via the vapor-liquid-solid mechanism. By considering the interplay of the Si incorporation and crystallization rate at steady state conditions we show that the radius dependence of the growth velocity in general depends on the derivatives of the incorporation and crystallization velocity with respect to the supersaturation. Taking this into account, the apparently contradictory experimental observations regarding the radius dependence of the growth velocity can be reconciled and explained consistently.

  17. Extracting Diameter and Chirality Dependences of Optical and Electronic Properties of Semiconducting Single-Wall Carbon Nanotubes from First-Principles Calculations

    NASA Astrophysics Data System (ADS)

    Capaz, Rodrigo B.; Deslippe, Jack; Louie, Steven G.

    2012-02-01

    First-principles methods based on the combination of density-functional theory (DFT) for ground-state properties, GW approximation for quasiparticle properties and Bethe-Salpeter equation (BSE) for optical properties represent the state-of-art for accurate and reliable calculations of optical and electronic properties of solids and molecules. For semiconducting carbon nanotubes (CNTs), they have been applied successfully to selected small-diameter tubes. In this work, we systematically calculate such properties for all zig-zag semiconducting single-wall carbon nanotubes with diameters ranging from (10,0) to (20,0) CNTs, allowing us to extract in a reliable way the diameter and chirality dependence of many properties, such as: (i) optical transition energies; (ii) quasiparticle band gaps; (iii) exciton binding energies; (iv) bright-dark exciton splittings; (v) excited exciton states properties; (vi) transverse-polarized exciton states properties; (vii) electron and hole effective masses (and therefore excitonic reduced masses). All properties are described with good accuracy by diameter- and chirality-dependent analytical formulas, with parameters extracted from the first-principles calculations.

  18. Summary of long-term data on latitudinal dependence of the near-water aerosol microphysical characteristics in eastern Atlantic

    NASA Astrophysics Data System (ADS)

    Pol'kin, Viktor V.; Sakerin, Sergey M.; Pol'kin, Vasily V.; Turchinovich, Ury S.; Terpugova, Swetlana A.; Tikhomirov, Aleksey B.; Radionov, Vladimir F.

    2015-11-01

    Latitudinal dependences of aerosol microphysical characteristics are analyzed. The data were obtained in the Russian Antarctic Expedition (RAE) onboard the expedition vessels "Akademik Fedorov" and "Akademik Treshnikov" in 2006- 2014, as well as the research vessel "Akademik Sergey Vavilov" in 2004.

  19. Diameter- and current-density-dependent growth orientation of hexagonal CdSe nanowire arrays via electrodeposition.

    PubMed

    Sun, Hongyu; Li, Xiaohong; Chen, Yan; Guo, Defeng; Xie, Yanwu; Li, Wei; Liu, Baoting; Zhang, Xiangyi

    2009-10-21

    Controlling the growth orientation of semiconductor nanowire arrays is of vital importance for their applications in the fields of nanodevices. In the present work, hexagonal CdSe nanowire arrays with various preferential growth orientations have been successfully yielded by employing the electrodeposition technique using porous alumina as templates (PATs). We demonstrate by experimental and theoretical efforts that the growth orientation of the CdSe nanowires can be effectively manipulated by varying either the nanopore diameter of the PATs or the deposited current density, which has significant effects on the optical properties of the CdSe nanowires. The present study provides an alternative approach to tuning the growth direction of electrodeposited nanowires and thus is of importance for the fabrication of nanodevices with controlled functional properties.

  20. Diameter- and current-density-dependent growth orientation of hexagonal CdSe nanowire arrays via electrodeposition

    NASA Astrophysics Data System (ADS)

    Sun, Hongyu; Li, Xiaohong; Chen, Yan; Guo, Defeng; Xie, Yanwu; Li, Wei; Liu, Baoting; Zhang, Xiangyi

    2009-10-01

    Controlling the growth orientation of semiconductor nanowire arrays is of vital importance for their applications in the fields of nanodevices. In the present work, hexagonal CdSe nanowire arrays with various preferential growth orientations have been successfully yielded by employing the electrodeposition technique using porous alumina as templates (PATs). We demonstrate by experimental and theoretical efforts that the growth orientation of the CdSe nanowires can be effectively manipulated by varying either the nanopore diameter of the PATs or the deposited current density, which has significant effects on the optical properties of the CdSe nanowires. The present study provides an alternative approach to tuning the growth direction of electrodeposited nanowires and thus is of importance for the fabrication of nanodevices with controlled functional properties.

  1. Estimation of fine-root production using rates of diameter-dependent root mortality, decomposition and thickening in forests.

    PubMed

    Van Do, Tran; Osawa, Akira; Sato, Tamotsu

    2016-04-01

    Current studies indicate that fine roots of different diameter classes show different rates of decomposition. This study developed a new method to estimate fine-root production by considering the difference in the production of fine roots of two size classes, fine roots thinner than 1 mm and those between 1 and 2 mm, and their corresponding rates of decomposition. A litter bag experiment was used to estimate the decomposition rates, while the sequential soil core technique was used to identify mass values of live roots and dead roots at a given period of observation. The continuous inflow method was applied to estimate the amount of root decomposition, mortality and production with a framework of two diameter classes of fine roots and for quantification of the amount of mass transfer from the thicker fine-root class to the coarser root category (>2 mm). The results indicated that the estimate of fine-root production was greater when two size classes of fine roots were distinguished. Using a framework of two size classes developed in this study resulted in 21.3% higher fine-root production than a method that did not recognize fine-root size classes or mass transfer to the category of coarse roots. In addition, using shorter collection intervals led to higher production estimates than longer intervals. The production estimate with a 1-month interval was 21.4% higher than that with a 6-month interval. We consider that the use of the sequential soil core technique with continuous inflow estimate method by differentiating size classes of fine roots is likely to minimize the underestimation of the parameters of fine-root dynamics by accounting for decomposition and mortality of fine roots more appropriately.

  2. Dependences of the electrical properties on the diameter and the doping concentration of the Si nanowire field effect transistors with a Schottky metal-semiconductor contact.

    PubMed

    You, Joo Hyung; Lee, Se Han; You, Chan Ho; Yu, Yun Seop; Kim, Tae Whan

    2010-05-01

    A compact model of the current-voltage (I-V) characteristics for the Si nanowire field effect transistor (FET) taking into account dependence of the analytical electrical properties on the diameter and the concentration of the Si nanowire of the FETs with a Schottky metal-semiconductor contact has been proposed. I-V characteristics of the nanowire FETs were analytically calculated by using a quantum drift-diffusion current transport model taking into account an equivalent circuit together with the quantum effect of the Si nanowires and a Schottky model at Schottky barriers. The material parameters dependent on different diameters and concentrations of the Si nanowire were numerically estimated from the physical properties of the Si nanowire. The threshold voltage, the mobility, and the doping density of the Si nanowire and the Schottky barrier height at a metal-Si nanowire heterointerface in the nanowire FET were estimated by using the theoretical model.

  3. Wavelength dependent near-range lidar profiling of smog aerosol over Athens

    NASA Astrophysics Data System (ADS)

    Stachlewska, Iwona S.; Marinou, Eleni; Engelmann, Ronny; Costa Surós, Montserrat; Kottas, Mickael; Baars, Holger; Janicka, Lucja; Solomos, Stavros; Heese, Birgit; Kumala, Wojciech; Tsekeri, Alexandra; Binietoglou, Ioannis; Markowicz, Krzysztof M.; Amiridis, Vassilis; Balis, Dimitris; Althausen, Dietrich; Wandinger, Ulla; Ansmann, Albert

    2016-04-01

    Recently, the ACTRIS2 JRA1 field campaign focusing on joint remote and in-situ sensing of absorbing aerosols has been conducted in Athens (http://actris-athens.eu). In the frame of the ACTRIS2 BL-Smog TNA, co-located measurements of the near-range lidar receiver (NARLa) of the University of Warsaw with the multi-wavelength PollyXT lidar of the National Observatory of Athens were performed. The excellent capacities of the PollyXT-NOA lidar, equipped with eight far-range channels (355, 355s, 387, 407, 532, 532s, 607, and 1064nm) and two near-range channels (532 and 607 nm), were enhanced by integrating the NARLa for simultaneous observations. By using the NARLa, equipped with the elastic channels (355 and 532nm) and Raman channels (387 and 607nm), the wavelength dependence of the aerosol particles properties within boundary layer was captured. The dominant conditions observed during the JRA1 period were the fresh winter smog layers occurring in lowermost boundary layer over Athens. NARLa provided profiles as close to surface as 50m, thus the data obtained in the near-range were used for the incomplete overlap region of the far-field channels. With NARLa we assessed the overlap at 355 and 532nm wavelengths and concluded on the possibility of using the single near-range 532 nm channel for the overlap correction in both VIS and UV channels of the PollyXT-NOA. As a result, the obtained lidar profiles are expected to be more consistent with the sunphotometer measurements. In the future, the GARRLiC code can be applied on the synergy of combined near and far range lidar profiles with AERONET data sets in order to study improvement on the inversion results.

  4. Liquid-liquid phase separation in atmospheric aerosol particles: dependence on organic functionalities and mixture complexity

    NASA Astrophysics Data System (ADS)

    Song, M.; Marcolli, C.; Krieger, U. K.; Zuend, A.; Peter, T.

    2012-04-01

    In the troposphere, aerosol particles undergo phase transitions such as deliquescence and efflorescence during humidity cycles (Marcolli and Krieger, 2006). In addition, interactions between organic and inorganic compounds lead to liquid-liquid phase separation (LLPS) (Ciobanu et al., 2009). Recent studies on a limited number of model systems have shown that oxygen-to-carbon ratios (O:C) of the organic aerosol fraction might be a good predictor for LLPS in mixed organic/ammonium sulfate (AS) particles (Bertram et al., 2011; Song et al., 2011). However, in order to corroborate this hypothesis experiments with an organic fraction that consists of a higher number of components with different O:C ratios and functional groups are needed. In order to determine the influence of O:C ratio, the specific organic functionalities and the mixture complexity on LLPS, we subjected organic/AS particles deposited on a hydrophobically coated substrate to relative humidity (RH) cycles and observed phase changes using optical microscopy and micro-Raman spectroscopy. To determine the influence of mixture complexity, we mixed together up to 10 organic compounds. We also prepared mixtures that were rich in different types of functional groups like polyols, aromatics and dicarboxylic acids which were identified from field measurements. We screened for a miscibility gap by varying the organic-to-inorganic ratio from 2:1 to 1:6. AS in the investigated single particles effloresced at 27 - 50 %RH and deliquesced at 72 - 79 %RH during humidity cycles. The occurrence of LLPS is determined to a high degree by the O:C of the organics: there was no LLPS for mixtures with O:C > 0.8 and there was always LLPS for mixtures with O:C < 0.57. In the range in between, we observed a dependence on the specific functional groups: a high share of aromatic functionalities shifts the range of O:C for which LLPS occurs to lower values. A correlation was also found for the onset RH of LLPS as a function of O

  5. The Dependence of Auditory Nerve Rate Adaptation on Electric Stimulus Parameters, Electrode Position, and Fiber Diameter: A Computer Model Study

    PubMed Central

    Woo, Jihwan; Abbas, Paul J.

    2009-01-01

    This paper describes results from a stochastic computational neuron model that simulates the effects of rate adaptation on the responses to electrical stimulation in the form of pulse trains. We recently reported results from a single-node computational model that included a novel element that tracks external potassium ion concentration so as to modify membrane voltage and cause adaptation-like responses. Here, we report on an improved version of the model that incorporates the anatomical components of a complete feline auditory nerve fiber (ANF) so that conduction velocity and effects of manipulating the site of excitation can be evaluated. Model results demonstrate rate adaptation and changes in spike amplitude similar to those reported for feline ANFs. Changing the site of excitation from a central to a peripheral axonal site resulted in plausible changes in latency and relative spread (i.e., dynamic range). Also, increasing the distance between a modeled ANF and a stimulus electrode tended to decrease the degree of rate adaptation observed in pulse-train responses. This effect was clearly observed for high-rate (5,000 pulse/s) trains but not low-rate (250 pulse/s) trains. Finally, for relatively short electrode-to-ANF distances, increases in modeled ANF diameter increased the degree of rate adaptation. These results are compared against available feline ANF data, and possible effects of individual parameters are discussed. PMID:20033248

  6. Atmospheric electric field measurements in urban environment and the pollutant aerosol weekly dependence

    NASA Astrophysics Data System (ADS)

    Silva, H. G.; Conceição, R.; Melgão, M.; Nicoll, K.; Mendes, P. B.; Tlemçani, M.; Reis, A. H.; Harrison, R. G.

    2014-11-01

    The weekly dependence of pollutant aerosols in the urban environment of Lisbon (Portugal) is inferred from the records of atmospheric electric field at Portela meteorological station (38°47‧N, 9°08‧W). Measurements were made with a Bendorf electrograph. The data set exists from 1955 to 1990, but due to the contaminating effect of the radioactive fallout during 1960 and 1970s, only the period between 1980 and 1990 is considered here. Using a relative difference method a weekly dependence of the atmospheric electric field is found in these records, which shows an increasing trend between 1980 and 1990. This is consistent with a growth of population in the Lisbon metropolitan area and consequently urban activity, mainly traffic. Complementarily, using a Lomb-Scargle periodogram technique the presence of a daily and weekly cycle is also found. Moreover, to follow the evolution of theses cycles, in the period considered, a simple representation in a colour surface plot representation of the annual periodograms is presented. Further, a noise analysis of the periodograms is made, which validates the results found. Two datasets were considered: all days in the period, and fair-weather days only.

  7. Ozonolysis of beta-pinene: temperature dependence of secondary organic aerosol mass fraction.

    PubMed

    Pathak, Ravikant; Donahue, Neil M; Pandis, Spyros N

    2008-07-15

    The SOA formation from beta-pinene ozonolysis at modest precursor concentrations (2-40 ppb) was investigated in the temperature range of 0-40 degrees C. The presence of inert seeds and high ozone concentrations is necessary to minimize losses of semivolatile vapors to the walls of the smog chamber. beta-pinene secondary organic aerosol production increases significantly with decreasing temperature. An increase by a factor of 2-3, depending on the reacted beta-pinene concentration, was observed as the temperature decreased from 40 to 0 degrees C. This increase appearsto be due mainly to the shifting of partitioning of the semivolatile SOA componentstoward the particulate phase and not to a change of the beta-pinene product distribution with temperature. The measurements are used to develop a new temperature-dependent parametrization for the four-component basis-set. The parametrization predicts much higher SOA production for beta-pinene ozonolysis for typical atmospheric conditions than the values that have been suggested by previous studies.

  8. Global Backscatter Experiment (GLOBE) Results: Aerosol Backscatter Global Distribution and Wavelength Dependence

    NASA Technical Reports Server (NTRS)

    Bowdle, David A.

    1992-01-01

    The GLObal Backscatter Experiment (GLOBE) was initiated by NASA in 1986 as an interagency and international research effort to characterize tropospheric backscatter properties. The primary objective of the program is to develop realistic aerosol backscatter inputs for design and simulation studies for NASA's prospective Laser Atmospheric Wind Sounder (LAWS). To achieve this, GLOBE incorporates several different types of aerosol sensors, which operate from a variety of sensor platforms, covering a wide range of spatial and temporal scales, and measure a diverse set of aerosol physical, chemical, and optical properties. The results of this analysis have provided important new information on the life cycles and physicochemical properties of global scale tropospheric aerosol systems. In addition, GLOBE analytical methods will be useful for the Earth Observing System (EOS) and other studies that involve the assimilation of large, complex atmospheric aerosol databases.

  9. Temperature and humidity dependence of secondary organic aerosol yield from the ozonolysis of β-pinene

    NASA Astrophysics Data System (ADS)

    Stenby, C.; Pöschl, U.; von Hessberg, P.; Bilde, M.; Nielsen, O. J.; Moortgat, G. K.

    2007-02-01

    The temperature dependence of secondary organic aerosol (SOA) formation from ozonolysis of β-pinene was studied in a flow reactor at 263 K-303 K and 1007 hPa under dry and humid conditions (0% and 26%-68% relative humidity, respectively). The observed SOA yields were of similar magnitude as predicted by a two-product model based on detailed gas phase chemistry (Jenkin, 2004), reaching maximum values of 0.18-0.39 at high particle mass concentrations (Mo). Under dry conditions, however, the measurement data exhibited significant oscillatory deviations from the predicted linear increase with inverse temperature (up to 50% at high Mo). Under humid conditions the SOA yield exhibited a linear decrease with inverse temperature, which is opposite to modelled temperature dependence and implies that the model substantially overestimates the yield at low temperatures and underestimates it at high temperatures (deviations up to 80% at high Mo). For the atmospherically relevant concentration level of Mo=10 μg m-3 and temperature range 263 K-293 K, the results from humid experiments in this study indicate that the SOA yield of β-pinene ozonolysis may be well represented by an average value of 0.15 with an uncertainty estimate of ±0.05. When fitting the measurement data with a two-product model, both the partitioning coefficients (Kom,i) and the stoichiometric yields (αi) of the low-volatile and semi-volatile model species were found to vary with temperature. The results indicate that not only the reaction product vapour pressures but also the relative contributions of different gas-phase or multiphase reaction channels are strongly dependent on temperature and the presence of water vapour. In fact, the oscillatory positive temperature dependence observed under dry conditions and the negative temperature dependence observed under humid conditions indicate that the SOA yield is governed much more by the temperature and humidity dependence of the involved chemical reactions

  10. Temperature and humidity dependence of secondary organic aerosol yield from the ozonolysis of β-pinene

    NASA Astrophysics Data System (ADS)

    von Hessberg, C.; von Hessberg, P.; Pöschl, U.; Bilde, M.; Nielsen, O. J.; Moortgat, G. K.

    2009-06-01

    The temperature dependence of secondary organic aerosol (SOA) formation from ozonolysis of β-pinene was studied in a flow reactor at 263 K-303 K and 1007 hPa under dry and humid conditions (0% and 26%-68% relative humidity, respectively). The observed SOA yields reached maximum values of 0.18-0.39 at high particle mass concentrations (Mo). Under dry conditions, the measurement data showed an overall increase in SOA yield with inverse temperature, but significant oscillatory deviations from the predicted linear increase with inverse temperature (up to 50% at high Mo) was observed. Under humid conditions the SOA yield exhibited a linear decrease with inverse temperature. For the atmospherically relevant concentration level of Mo=10 μg m-3 and temperature range 263 K-293 K, the results from humid experiments in this study indicate that the SOA yield of β-pinene ozonolysis may be well represented by an average value of 0.15 with an uncertainty estimate of ±0.05. When fitting the measurement data with a two-product model, both the partitioning coefficients (Kom,i) and the stoichiometric yields (αi) of the low-volatile and semi-volatile model species were found to vary with temperature. The results indicate that not only the reaction product vapour pressures but also the relative contributions of different gas-phase or multiphase reaction channels are strongly dependent on temperature and the presence of water vapour. In fact, the oscillatory positive temperature dependence observed under dry conditions and the negative temperature dependence observed under humid conditions indicate that the SOA yield is governed much more by the temperature and humidity dependence of the involved chemical reactions than by vapour pressure temperature dependencies. We suggest that the elucidation and modelling of SOA formation need to take into account the effects of temperature and humidity on the pathways and kinetics of the involved chemical reactions as well as on the gas

  11. Model describing the dependence of aerosol microstructure on different sea bottom types

    SciTech Connect

    Zielinski, T.; Zielinski, A.

    1996-12-31

    This model describes variations of aerosol size distribution function, aerosol fluxes and their residence times as a function of two different formula for roughness length coefficient including developing roughness and fully developed roughness, diverse sea bottom types with various slopes and different weather conditions with changing wind velocity, direction and duration. This model has been verified experimentally on two types of Baltic Sea bottoms and it allows for the good estimation of aerosol dynamics in the coastal zone provided that wind conditions and the sea bottom type are known.

  12. Frequency-dependent damping model for the hydroacoustic finite element analysis of fluid-filled pipes with diameter changes

    NASA Astrophysics Data System (ADS)

    Herrmann, Jan; Koreck, Jürgen; Maess, Matthias; Gaul, Lothar; von Estorff, Otto

    2011-04-01

    The integration of a model for longitudinal hydroacoustic fluid damping in thin hydraulic pipes in 3D finite element models is presented in this paper. In order to perform quantitative prediction of the vibroacoustic behavior and resulting noise levels of such fluid-structure coupled system due to hydraulic excitation, an accurate frequency-dependent fluid damping model including friction effects near the pipe wall is required. This step is achieved by matching complex wave numbers from analytical derivation into a parameterized damped wave equation and consecutive translation into finite element modeling. Since the friction effect close to the pipe wall changes locally with the inner pipe radius, the fluid damping model is applied segment-wise in order to model the influence of cross-sectional discontinuity, such as orifices, on the oscillating pressure pulsations. A component synthesis approach, which uses pipe segments as substructures, allows a simple model generation and fast computation times. The numerical harmonic results are compared to experimental frequency response functions, which are performed on a hydraulic test bench driven by a dynamic pressure source in the kHz-range.

  13. Measurement of the temperature dependent partitioning of semi-volatile organics onto aerosol near roadways

    NASA Astrophysics Data System (ADS)

    Wentzell, J. J.; Liggio, J.; Li, S.; Brook, J.; Staebler, R. M.; Evans, G. J.; Jeong, C.; Sheppard, A.; Lu, G.; Gordon, M.; Mihele, C.

    2010-12-01

    The volatility of the organic aerosol fraction has received a great deal of attention recently in light of new volatility-based modelling approaches and due to the inability of current models to fully account for secondary organic aerosol (SOA). In this regard, evaporation of primary organic aerosol species and their subsequent oxidation may contribute significantly to SOA downwind of sources. This implies that moderate ambient temperature fluctuations can significantly increase or decrease the aerosol bound fraction of semi-volatile and intermediate volatility (SVOC + IVOC) compounds. In order to examine the importance of these more volatile organic components, a temperature controlled inlet was developed with the ability to heat and cool the aerosol in 2 C increments to 15 C above or below ambient temperature. The inlet was coupled to an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and deployed on a mobile platform upwind and downwind of a major Southern Ontario highway as part of the Fast Evolution of Vehicle Emissions near Roadways (FEVER 2010) campaign. Preliminary results suggest that changes in temperature of 5-10 C can alter the partitioning of volatile organic aerosol components by up to 30%. Although the largest affect was observed 10-13 meters downwind of the vehicle emissions, a measurable affect was observed beyond 500 m and in aerosol upwind of the highway. These results suggest that a significant pool of semi-volatile organics exist, which can condense onto particles at slightly lower temperatures or evaporate to the gas phase and be further oxidized. The nature of these organic species at locations upwind and downwind of vehicle emissions will be discussed.

  14. FRACTIONAL AEROSOL FILTRATION EFFICIENCY OF IN-DUCT VENTILATION AIR CLEANERS

    EPA Science Inventory

    The filtration efficiency of ventilation air cleaners is highly particle-size dependent over the 0.01 to 3 μm diameter size range. Current standardized test methods, which determine only overall efficiencies for ambient aerosol or other test aerosols, provide data of limited util...

  15. Measurement of Transport Properties of Aerosolized Nanomaterials

    PubMed Central

    Ku, Bon Ki; Kulkarni, Pramod

    2015-01-01

    Airborne engineered nanomaterials such as single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), functionalized MWCNT, graphene, fullerene, silver and gold nanorods were characterized using a tandem system of a differential mobility analyzer and an aerosol particle mass analyzer to obtain their airborne transport properties and understand their relationship to morphological characteristics. These nanomaterials were aerosolized using different generation methods such as electrospray, pneumatic atomization, and dry aerosolization techniques, and their airborne transport properties such as mobility and aerodynamic diameters, mass scaling exponent, dynamic shape factor, and effective density were obtained. Laboratory experiments were conducted to directly measure mobility diameter and mass of the airborne nanomaterials using tandem mobility-mass measurements. Mass scaling exponents, aerodynamic diameters, dynamic shape factors and effective densities of mobility-classified particles were obtained from particle mass and the mobility diameter. Microscopy analysis using Transmission Electron Microscopy (TEM) was performed to obtain morphological descriptors such as envelop diameter, open area, aspect ratio, and projected area diameter. The morphological information from the TEM was compared with measured aerodynamic and mobility diameters of the particles. The results showed that aerodynamic diameter is smaller than mobility diameter below 500 nm by a factor of 2 to 4 for all nanomaterials except silver and gold nanorods. Morphologies of MWCNTs generated by liquid-based method, such as pneumatic atomization, are more compact than those of dry dispersed MWCNTs, indicating that the morphology depends on particle generation method. TEM analysis showed that projected area diameter of MWCNTs appears to be in reasonable agreement with mobility diameter in the size range from 100 – 400 nm. Principal component analysis of the obtained airborne particle

  16. The combustion of large particles of char in bubbling fluidized beds: The dependence of Sherwood number and the rate of burning on particle diameter

    SciTech Connect

    Dennis, J.S.; Hayhurst, A.N.; Scott, S.A.

    2006-11-15

    Particles of char derived from a variety of fuels (e.g., biomass, sewage sludge, coal, or graphite), with diameters in excess of {approx}1.5mm, burn in fluidized bed combustors containing smaller particles of, e.g., sand, such that the rate is controlled by the diffusion both of O{sub 2} to the burning solid and of the products CO and CO{sub 2} away from it into the particulate phase. It is therefore important to characterize these mass transfer processes accurately. Measurements of the burning rate of char particles made from sewage sludge suggest that the Sherwood number, Sh, increases linearly with the diameter of the fuel particle, d{sub char} (for d{sub char}>{approx}1.5mm). This linear dependence of Sh on d{sub char} is expected from the basic equation Sh=2{epsilon}{sub mf}(1+d{sub char}/2{delta}{sub diff})/{tau}, provided the thickness of the boundary layer for mass transfer, {delta}{sub diff}, is constant in the region of interest (d{sub char}>{approx}1.5mm). Such a dependence is not seen in the empirical equations currently used and based on the Frossling expression. It is found here that for chars made from sewage sludge (for d{sub char}>{approx}1.5mm), the thickness of the boundary layer for mass transfer in a fluidized bed, {delta}{sub diff}, is less than that predicted by empirical correlations based on the Frossling expression. In fact, {delta}{sub diff} is not more than the diameter of the fluidized sand particles. Finally, the experiments in this study indicate that models based on surface renewal theory should be rejected for a fluidized bed, because they give unrealistically short contact times for packets of fluidized particles at the surface of a burning sphere. The result is the new correlation Sh = 2{epsilon}{sub mf}/{tau} + (A{sub cush}/A{sub char})(d{sub char}/ {delta}{sub diff}) for the dependence of Sh on d{sub char}, the diameter of a burning char particle. This equation is based on there being a gas-cushion of fluidizing gas underneath a

  17. Permeability dependence study of the focused ultrasound-induced blood-brain barrier opening at distinct pressures and microbubble diameters using DCE-MRI.

    PubMed

    Vlachos, Fotios; Tung, Yao-Sheng; Konofagou, Elisa

    2011-09-01

    Blood-brain barrier opening using focused ultrasound and microbubbles has been experimentally established as a noninvasive and localized brain drug delivery technique. In this study, the permeability of the opening is assessed in the murine hippocampus after the application of focused ultrasound at three different acoustic pressures and microbubble sizes. Using dynamic contrast-enhanced MRI, the transfer rates were estimated, yielding permeability maps and quantitative K(trans) values for a predefined region of interest. The volume of blood-brain barrier opening according to the K(trans) maps was proportional to both the pressure and the microbubble diameter. A K(trans) plateau of ∼0.05 min(-1) was reached at higher pressures (0.45 and 0.60 MPa) for the larger sized bubbles (4-5 and 6-8 μm), which was on the same order as the K(trans) of the epicranial muscle (no barrier). Smaller bubbles (1-2 μm) yielded significantly lower permeability values. A small percentage (7.5%) of mice showed signs of damage under histological examination, but no correlation with permeability was established. The assessment of the blood-brain barrier permeability properties and their dependence on both the pressure and the microbubble diameter suggests that K(trans) maps may constitute an in vivo tool for the quantification of the efficacy of the focused ultrasound-induced blood-brain barrier opening.

  18. Measurement and analysis of aerosol and black carbon in the southwestern United States and Panama and their dependence on air mass origin

    NASA Astrophysics Data System (ADS)

    Junker, C.; Sheahan, J. N.; Jennings, S. G.; O'Brien, P.; Hinds, B. D.; Martinez-Twary, E.; Hansen, A. D. A.; White, C.; Garvey, D. M.; Pinnick, R. G.

    2004-07-01

    Total aerosol mass loading, aerosol absorption, and black carbon (BC) content were determined from aerosol collected on 598 quartz fiber filters at a remote, semiarid site near Orogrande, New Mexico from December 1989 to October 1995. Aerosol mass was determined by weighing filters before and after exposure, and aerosol absorption was determined by measuring the visible light transmitted through loaded filter samples and converting these measurements to aerosol absorption. BC content was determined by measuring visible light transmitted through filter samples before and after firing and converting the absorption to BC mass, assuming a BC absorption cross section of 19 m2/g in the fiber filter medium. Two analyses were then performed on each of the logged variables: an autoregressive integrating moving average (ARIMA) analysis and a decomposition analysis using an autoregressive model to accommodate first-order autocorrelation. The two analyses reveal that BC mass has no statistically significant seasonal dependence at the 5% level of significance but only random fluctuations varying around an average annual value that has a long-term decreasing trend (from 0.16 to 0.11 μg/m3 during 1990-1995). Aerosol absorption, which is dominated by BC, also displays random fluctuations about an average value, and decreases from 1.9 Mm-1 to 1.3 Mm-1 during the same period. Unlike BC, aerosol mass at the Orogrande site displays distinctly different character. The analyses reveal a pronounced seasonal dependence, but no long-term trend for aerosol mass. The seasonal indices resulting from the autoregression analysis have a minimum in January (-0.78) and maximum in June (+0.58). The geometric mean value over the 1990-1995 period for aerosol mass is 16.0 μg/m3. Since BC aerosol at the Orogrande site is a product of long-range atmospheric transport, a back trajectory analysis of air masses was conducted. Back trajectory analyses indicate that air masses traversing high population

  19. Modeling aerosol water uptake in the arctic based on the κ-Kohler theory

    NASA Astrophysics Data System (ADS)

    Rastak, N.; Ekman, A.; Silvergren, S.; Zieger, P.; Wideqvist, U.; Ström, J.; Svenningsson, B.; Tunved, P.; Riipinen, I.

    2013-05-01

    Water uptake or hygroscopicity is one of the most fundamental properties of atmospheric aerosols. Aerosol particles containing soluble materials can grow in size by absorbing water in ambient atmosphere. This property is measured by a parameter known as growth factor (GF), which is defined as the ratio of the wet diameter to the dry diameter. Hygroscopicity controls the size of an aerosol particle and therefore its optical properties in the atmosphere. Hygroscopic growth depends on the dry size of the particle, its chemical composition and the relative humidity in the ambient air (Fitzgerald, 1975; Pilinis et al., 1995). One of the typical problems in aerosol studies is the lack of measurements of aerosol size distributions and optical properties in ambient conditions. The gap between dry measurements and the real humid atmosphere is filled in this study by utilizing a hygroscopic model which calculates the hygroscopic growth of aerosol particles at Mt Zeppelin station, Ny Ålesund, Svalbard during 2008.

  20. Liquid-liquid phase separation in aerosol particles: Dependence on O:C, organic functionalities, and compositional complexity

    NASA Astrophysics Data System (ADS)

    Song, M.; Marcolli, C.; Krieger, U. K.; Zuend, A.; Peter, T.

    2012-10-01

    Atmospheric aerosol particles may undergo liquid-liquid phase separation (LLPS) when exposed to varying relative humidity. In this study we investigated the occurrence of LLPS for mixtures consisting of up to ten organic compounds, ammonium sulfate, and water in relationship with the organic oxygen-to-carbon (O:C) ratio. LLPS always occurred for O:C < 0.56, never occurred for O:C > 0.80, and depended on the specific types and compositions of organic functional groups in the regime 0.56 < O:C < 0.80. In the intermediate regime, mixtures with a high share of aromatic compounds shifted the limit of occurrence of LLPS to lower O:C ratios. The number of mixture components and the spread of the O:C range did not notably influence the conditions for LLPS to occur. Since in ambient aerosols O:C range typically between 0.2 and 1.0, LLPS is expected to be a common feature of tropospheric aerosols.

  1. Initial investigation of the wavelength dependence of optical properties measured with a new multi-pass Aerosol Extinction Differential Optical Absorption Spectrometer (AE-DOAS)

    NASA Astrophysics Data System (ADS)

    Chartier, R. T.; Greenslade, M. E.

    2012-04-01

    Atmospheric aerosols directly affect climate by scattering and absorbing radiation. The magnitude of the impact is dependent upon the wavelength of light, but is often estimated near 550 nm. When light scattering and absorption by aerosols is approximated, the wavelength dependence of the refractive index for specific components is lost. As a result, climate models would have inherent uncertainties for aerosol contributions to radiative forcing when considering the entire solar spectrum. An aerosol extinction differential optical absorption spectrometer has been developed to directly measure aerosol extinction at mid-ultraviolet to near infrared wavelengths. The instrument consists of a spectrometer coupled to a closed White-type multi-pass gas cell with an adjustable path length of up to approximately 20 m. Laboratory measurements of various gases are compared with known absorption cross sections. Additionally, the extinction of monodisperse samples of polystyrene latex spheres are measured and compared to Mie theory generated with refractive index values from the literature to validate the new instrument. The polystyrene experiments also emphasize the ability of the new instrument to retrieve the wavelength dependent refractive index, especially in the ultraviolet wavelength regions where variability is expected. The spectrometer will be a significant advancement for determining wavelength dependent complex refractive indices in future laboratory studies as well as provide the ability to monitor ambient aerosol light extinction.

  2. Initial investigation of the wavelength dependence of optical properties measured with a new multi-pass aerosol extinction differential optical absorption spectrometer (AE-DOAS)

    NASA Astrophysics Data System (ADS)

    Chartier, R. T.; Greenslade, M. E.

    2011-10-01

    Atmospheric aerosols directly affect climate by scattering and absorbing radiation. The magnitude of the impact is dependent upon the wavelength of light, but is often estimated near 550 nm. When light scattering and absorption by aerosols is approximated, the wavelength dependence of the refractive index for specific components is lost. As a result, climate models would have inherent uncertainties for aerosol contributions to radiative forcing when considering the entire solar spectrum. An aerosol extinction differential optical absorption spectrometer has been developed to directly measure aerosol extinction at mid-ultraviolet to near infrared wavelengths. The instrument consists of a spectrometer coupled to a closed White-type multi-pass gas cell with an adjustable path length of up to approximately 20 m. Laboratory measurements of various gases are compared with known absorption cross sections. Additionally, the extinction of monodisperse samples of polystyrene latex spheres are measured and compared to Mie theory generated with refractive index values from the literature to validate the new instrument. The polystyrene experiments also emphasize the ability of the new instrument to retrieve the wavelength dependent refractive index, especially in the ultraviolet wavelength regions where variability is expected. The spectrometer will be a significant advancement for determining wavelength dependent complex refractive indices in future laboratory studies as well as provide the ability to monitor ambient aerosol light extinction.

  3. The weather dependence of particle size distribution of indoor radioactive aerosol associated with radon decay products.

    PubMed

    Mostafa, A M A; Tamaki, K; Moriizumi, J; Yamazawa, H; Iida, T

    2011-07-01

    This study was performed to measure the activity size distribution of aerosol particles associated with short-lived radon decay products in indoor air at Nagoya University, Nagoya, Japan. The measurements were performed using a low pressure Andersen cascade impactor under variable meteorological conditions. The results showed that the greatest activity fraction was associated with aerosol particles in the accumulation size range (100-1000 nm) with a small fraction of nucleation mode (10-100 nm). Regarding the influence of the weather conditions, the decrease in the number of accumulation particles was observed clearly after rainfall without significant change in nucleation particles, which may be due to a washout process for the large particles.

  4. Influence of semi-volatile aerosol on physical and optical properties of aerosol in Kathmandu valley

    NASA Astrophysics Data System (ADS)

    Shrestha, Sujan; Praveen, Ps; Adhikary, Bhupesh; Shrestha, Kundan; Panday, Arnico

    2016-04-01

    A field study was conducted in the urban atmosphere of Kathmandu valley to study the influence of the semi-volatile aerosol fraction on physical and optical properties of aerosols. The study was carried out during the 2015 pre-monsoon period. Experimental setup consisted of air from an ambient air inlet being split to two sets of identical sampling instruments. The first instrument received the ambient sample directly, while the second instrument received the air sample through a thermodenuder (TDD). Four sets of experiments were conducted to understand aerosol number, size distribution, scattering and absorption properties using Condensation Particle Counter (CPC), Scanning Mobility Particle Sizer (SMPS), Aethalometer (AE33) and Nephelometer. The influence of semi-volatile aerosols was calculated from the fraction of particles evaporated in the TDD at set temparetures: room temperature, 50°C, 100°C, 150°C, 200°C, 250°C and 300°C. Results show that, with increasing temperature, the evaporated fraction of semi-volatile aerosol also increased. At room temperature the fraction of semi-volatile aerosols was 12% while at 300°C it was as high as to 49%. Aerosol size distribution analysis shows that with an increase in TDD temperature from 50°C to 300°C, peak mobility diameter of particles shifted from around 60nm to 40nm. However we found little change in effective diameter of aerosol size distribution with increase in set TDD temperature. The change in size of aerosols due to loss of semi-volatile component has a stronger influence (~70%) in higher size bins when compared to at lower size bins (~20%). Studies using the AE33 showed that absorption by black carbon (BC) is amplified due to influence of semi-volatile aerosols by upto 37% at 880nm wavelength. Similarly nephelometer measurements showed that upto 71% of total scattering was found to be contributed by semi-volatile aerosol fraction. The scattering Angstrom Exponent (SAE) of semi-volatile aerosol

  5. New Examination of the Raman Lidar Technique for Water Vapor and Aerosols. Paper 1; Evaluating the Temperature Dependent Lidar Equations

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.

    2003-01-01

    The intent of this paper and its companion is to compile together the essential information required for the analysis of Raman lidar water vapor and aerosol data acquired using a single laser wavelength. In this first paper several details concerning the evaluation of the lidar equation when measuring Raman scattering are considered. These details include the influence of the temperature dependence of both pure rotational and vibrational-rotational Raman scattering on the lidar profile. These are evaluated for the first time using a new form of the lidar equation. The results indicate that, for the range of temperatures encountered in the troposphere, the magnitude of the temperature dependent effect can reach 10% or more for narrowband Raman water vapor measurements. Also the calculation of atmospheric transmission is examined carefully including the effects of depolarization. Different formulations of Rayleigh cross section determination commonly used in the lidar field are compared revealing differences up to 5% among the formulations. The influence of multiple scattering on the measurement of aerosol extinction using the Raman lidar technique is considered as are several photon pulse-pileup correction techniques.

  6. MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): an aerosol microphysical module for global atmospheric models

    NASA Astrophysics Data System (ADS)

    Bauer, S. E.; Wright, D.; Koch, D.; Lewis, E. R.; McGraw, R.; Chang, L.-S.; Schwartz, S. E.; Ruedy, R.

    2008-05-01

    A new aerosol microphysical module MATRIX, the Multiconfiguation Aerosol TRacker of mIXing state, and its application in the Goddard Institute for Space Studies (GISS) climate model (ModelE) is described. This module, which is based on the quadrature method of moments (QMOM), represents nucleation, condensation, coagulation, internal and external mixing, and cloud-drop activation and provides aerosol particle mass and number concentration and particle size information for up to 16 mixed-mode aerosol populations. Internal and external mixing among aerosol components sulfate, nitrate, ammonium, carbonaceous aerosols, dust and sea-salt particles are represented. The solubility of each aerosol mode, which is explicitly calculated based on its soluble and insoluble components, enables calculation of the dependence of cloud drop activation on the microphysical characterization of multiple soluble modes. A detailed model description and results of box-model simulations of various mode configurations are presented. The number concentration of aerosol particles activated to cloud drops depends on the mode configuration. Simulations on the global scale with the GISS climate model are evaluated against aircraft and station measurements of aerosol mass and number concentration and particle size. The model accurately captures the observed size distributions in the aitken and accumulation modes up to particle diameter 1 μm, in which sulfate, nitrate, black and organic carbon are predominantly located; however the model underestimates coarse-mode number concentration and size, especially in the marine environment.

  7. Strain-dependent CNS dissemination in guinea pigs after Mycobacterium tuberculosis aerosol challenge.

    PubMed

    Be, Nicholas A; Klinkenberg, Lee G; Bishai, William R; Karakousis, Petros C; Jain, Sanjay K

    2011-09-01

    Clinical reports suggest an association of distinct Mycobacterium tuberculosis strains with CNS disease. We therefore examined CNS dissemination by different laboratory strains (two M. tuberculosis H37Rv, one CDC1551) in a guinea pig aerosol infection model. Although all strains grew exponentially in lungs, with similar bacterial burdens at the time of extrapulmonary dissemination, M. tuberculosis CDC1551 disseminated to the CNS significantly more than the H37Rv strains. No CNS lesions were observed throughout the study, with only a modest cytokine response. These data suggest that M. tuberculosis may have virulence factors that promote CNS dissemination, distinct from those required for pulmonary TB.

  8. Measurement of wavelength-dependent extinction to distinguish between absorbing and nonabsorbing aerosol particulates

    NASA Technical Reports Server (NTRS)

    Portscht, R.

    1977-01-01

    Measurements of spectral transmission factors in smoky optical transmission paths reveal a difference between wavelength exponents of the extinction cross section of high absorption capacity and those of low absorption capacity. A theoretical explanation of this behavior is presented. In certain cases, it is possible to obtain data on the absorption index of aerosol particles in the optical path by measuring the spectral decadic extinction coefficient at, at least, two wavelengths. In this manner it is possible, for instance, to distinguish smoke containing soot from water vapor.

  9. Wavelength Dependence of the Absorption of Black Carbon Particles: Predictions and Results from the TARFOX Experiment and Implications for the Aerosol Single Scattering Albedo

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Russell, Philip B.; Hignett, Phillip

    2002-01-01

    Measurements are presented of the wavelength dependence of the aerosol absorption coefficient taken during the Tropical Aerosol Radiative Forcing Observational Experiment (TARFOX) over the northern Atlantic. The data show an approximate lamda(exp -1) variation between 0.40 and 1.0 micrometers. The theoretical basis of the wavelength variation of the absorption of solar radiation by elemental carbon [or black carbon (BC)] is explored. For a wavelength independent refractive index the small particle absorption limit simplifies to a lambda(exp -1) variation in relatively good agreement with the data. This result implies that the refractive indices of BC were relatively constant in this wavelength region, in agreement with much of the data on refractive indices of BC. However, the result does not indicate the magnitude of the refractive indices. The implications of the wavelength dependence of BC absorption for the spectral behavior of the aerosol single scattering albedo are discussed. It is shown that the single scattering albedo for a mixture of BC and nonabsorbing material decreases with wavelength in the solar spectrum (i.e., the percentage amount of absorption increases). This decease in the single scattering albedo with wavelength for black carbon mixtures is different from the increase in single scattering allied for most mineral aerosols (dusts). This indicates that, if generally true, the spectral variation of the single- scattering albedo can be used to distinguish aerosol types. It also highlights the importance of measurements of the spectral variation of the aerosol absorption coefficient and single scattering albedo.

  10. Aerosol deposition and losses in two alpha air monitors

    SciTech Connect

    Biermann, A.H.; Sawyer, S.R.

    1985-11-27

    We assessed particle deposition and loss occurring in two alpha-air monitors: an Eberline Alpha-3 Continuous Air Monitor (CAM) and a working-area transuranic aerosol monitor (WOTAMS). We investigated the dependence of particle size on losses in the sampling inlets and the real-time alpha detector areas for both instruments. We determined the uniformity of particle deposition on the filter to ascertain the effectiveness of the detector and collection-filter configuration. Results indicate that particle losses are a strong function of particle size in the CAM unit, with a 44% loss occurring for 6-..mu..m-diameter aerosols and a 0.3% loss for 0.6-..mu..m-diameter aerosols. Losses in the WOTAMS were less than 1% for particle diameters in the 0.6-to-7 ..mu..m range.

  11. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    SciTech Connect

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-03-02

    We used an electrostatic size classification technique to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Moreover, we counted size-segregated particles with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized by the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10-5 to 10-11. Free molecular heat and mass transfer

  12. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-05-01

    An electrostatic size classification technique was used to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Size-segregated particles were counted with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized by the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10- 5 to 10- 11. Free molecular heat and mass transfer theory was applied, but

  13. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    DOE PAGES

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-03-02

    We used an electrostatic size classification technique to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Moreover, we counted size-segregated particles with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized bymore » the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10-5 to 10-11. Free molecular heat and mass transfer theory was

  14. Uncertainties in aerosol deposition within the respiratory tract using the icrp 66 model: a study in workers.

    PubMed

    Fritsch, P

    2006-02-01

    This study estimates uncertainties in aerosol deposition within the main regions of the human respiratory tract calculated using the ICRP 66 model. Uniform, triangular, normal, or lognormal distributions were assigned to the model parameters, which involve physical properties of aerosols, their inhalability, their thermo- and aerodynamic deposition efficiencies, and the anatomy, physiology, and exertion level of the individuals. Calculations were performed over a range of aerosol sizes from 0.01 to 50 mum. Monodispersed aerosols were characterized by their aerodynamic diameter (dae). Polydispersed aerosols were characterized by their activity median aerodynamic diameters (AMADs) and the geometric standard deviation (GSD) in diameter. Lognormal distributions of particle deposition were generally observed with low GSD (< 2). The highest uncertainties were observed within the deep lung for the smallest and the largest aerosol sizes, which were mainly due either to particle density or to aerodynamic deposition efficiencies and anatomical and physiological variability, respectively. In the case of diameters larger than 5 mum, uncertainties in the deep lung deposition were much more important for monodispersed than for polydispersed aerosols. This was explained both by the size distribution of the deposited aerosol, the median of which corresponded to a maximal dae value of about 7 and 5 in bronchioles and alveoli, respectively, and by the absence of deposition, which occurs for dae equal to or larger than 50 mum, depending on the exertion level. Thus, in the range of AMADs considered, for the four default workers proposed by ICRP 66, uncertainties in aerosol deposition remain low, with GSD smaller than 3.

  15. MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): an aerosol microphysical module for global atmospheric models

    NASA Astrophysics Data System (ADS)

    Bauer, S. E.; Wright, D. L.; Koch, D.; Lewis, E. R.; McGraw, R.; Chang, L.-S.; Schwartz, S. E.; Ruedy, R.

    2008-10-01

    A new aerosol microphysical module MATRIX, the Multiconfiguration Aerosol TRacker of mIXing state, and its application in the Goddard Institute for Space Studies (GISS) climate model (ModelE) are described. This module, which is based on the quadrature method of moments (QMOM), represents nucleation, condensation, coagulation, internal and external mixing, and cloud-drop activation and provides aerosol particle mass and number concentration and particle size information for up to 16 mixed-mode aerosol populations. Internal and external mixing among aerosol components sulfate, nitrate, ammonium, carbonaceous aerosols, dust and sea-salt particles are represented. The solubility of each aerosol population, which is explicitly calculated based on its soluble and insoluble components, enables calculation of the dependence of cloud drop activation on the microphysical characterization of multiple soluble aerosol populations. A detailed model description and results of box-model simulations of various aerosol population configurations are presented. The box model experiments demonstrate the dependence of cloud activating aerosol number concentration on the aerosol population configuration; comparisons to sectional models are quite favorable. MATRIX is incorporated into the GISS climate model and simulations are carried out primarily to assess its performance/efficiency for global-scale atmospheric model application. Simulation results were compared with aircraft and station measurements of aerosol mass and number concentration and particle size to assess the ability of the new method to yield data suitable for such comparison. The model accurately captures the observed size distributions in the Aitken and accumulation modes up to particle diameter 1 μm, in which sulfate, nitrate, black and organic carbon are predominantly located; however the model underestimates coarse-mode number concentration and size, especially in the marine environment. This is more likely due to

  16. Dependence of Aerosol Light Absorption and Single-Scattering Albedo On Ambient Relative Humidity for Sulfate Aerosols with Black Carbon Cores

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Russell, Philip B.; Hamill, Patrick

    2001-01-01

    Atmospheric aerosols frequently contain hygroscopic sulfate species and black carbon (soot) inclusions. In this paper we report results of a modeling study to determine the change in aerosol absorption due to increases in ambient relative humidity (RH), for three common sulfate species, assuming that the soot mass fraction is present as a single concentric core within each particle. Because of the lack of detailed knowledge about various input parameters to models describing internally mixed aerosol particle optics, we focus on results that were aimed at determining the maximum effect that particle humidification may have on aerosol light absorption. In the wavelength range from 450 to 750 nm, maximum absorption humidification factors (ratio of wet to 'dry=30% RH' absorption) for single aerosol particles are found to be as large as 1.75 when the RH changes from 30 to 99.5%. Upon lesser humidification from 30 to 80% RH, absorption humidification for single particles is only as much as 1.2, even for the most favorable combination of initial ('dry') soot mass fraction and particle size. Integrated over monomodal lognormal particle size distributions, maximum absorption humidification factors range between 1.07 and 1.15 for humidification from 30 to 80% and between 1.1 and 1.35 for humidification from 30 to 95% RH for all species considered. The largest humidification factors at a wavelength of 450 nm are obtained for 'dry' particle size distributions that peak at a radius of 0.05 microns, while the absorption humidification factors at 700 nm are largest for 'dry' size distributions that are dominated by particles in the radius range of 0.06 to 0.08 microns. Single-scattering albedo estimates at ambient conditions are often based on absorption measurements at low RH (approx. 30%) and the assumption that aerosol absorption does not change upon humidification (i.e., absorption humidification equal to unity). Our modeling study suggests that this assumption alone can

  17. Tropospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    It is widely believed that "On a clear day you can see forever," as proclaimed in the 1965 Broadway musical of the same name. While an admittedly beautiful thought, we all know that this concept is only figurative. Aside from Earth's curvature and Rayleigh scattering by air molecules, aerosols - colloidal suspensions of solid or liquid particles in a gas - limit our vision. Even on the clearest day, there are billions of aerosol particles per cubic meter of air.Atmospheric aerosols are commonly referred to as smoke, dust, haze, and smog, terms that are loosely reflective of their origin and composition. Aerosol particles have arisen naturally for eons from sea spray, volcanic emissions, wind entrainment of mineral dust, wildfires, and gas-to-particle conversion of hydrocarbons from plants and dimethylsulfide from the oceans. However, over the industrial period, the natural background aerosol has been greatly augmented by anthropogenic contributions, i.e., those produced by human activities. One manifestation of this impact is reduced visibility (Figure 1). Thus, perhaps more than in other realms of geochemistry, when considering the composition of the troposphere one must consider the effects of these activities. The atmosphere has become a reservoir for vast quantities of anthropogenic emissions that exert important perturbations on it and on the planetary ecosystem in general. Consequently, much recent research focuses on the effects of human activities on the atmosphere and, through them, on the environment and Earth's climate. For these reasons consideration of the geochemistry of the atmosphere, and of atmospheric aerosols in particular, must include the effects of human activities. (201K)Figure 1. Impairment of visibility by aerosols. Photographs at Yosemite National Park, California, USA. (a) Low aerosol concentration (particulate matter of aerodynamic diameter less than 2.5 μm, PM2.5=0.3 μg m-3; particulate matter of aerodynamic diameter less than 10

  18. Aerosol black carbon characteristics over Central India: Temporal variation and its dependence on mixed layer height

    NASA Astrophysics Data System (ADS)

    Kompalli, Sobhan Kumar; Babu, S. Suresh; Moorthy, K. Krishna; Manoj, M. R.; Kumar, N. V. P. Kiran; Shaeb, K. Hareef Baba; Joshi, Ashok Kumar

    2014-10-01

    In a first of its kind study over the Indian region, concurrent and extensive measurements of black carbon (BC) concentration and atmospheric boundary layer parameters are used to quantify the role of atmospheric boundary layer in producing temporal changes in BC. During this study, 18 months (2011-12) data of continuous measurements of BC aerosols, made over a semi-urban location, Nagpur, in Central India are used along with concurrent measurements of vertical profiles of atmospheric thermodynamics, made using weekly ascents of GPS aided Radiosonde for a period of 1 year. From the balloon data, mixed layer heights and ventilation coefficients are estimated, and the monthly and seasonal changes in BC mass concentration are examined in the light of the boundary layer changes. Seasonally, the BC mass concentration was highest (~ 4573 ± 1293 ng m- 3) in winter (December-February), and lowest (~ 1588 ± 897 ng m- 3) in monsoon (June-September), while remained moderate (~ 3137 ± 1446 ng m- 3) in pre-monsoon (March-May), and post-monsoon (~ 3634 ± 813 ng m- 3) (October-November) seasons. During the dry seasons, when the rainfall is scanty or insignificantly small, the seasonal variations in BC concentrations have a strong inverse relationship with mixed layer height and ventilation coefficient. However, the lowest BC concentrations do not occur during the season when the mixed layer height (MLH) is highest or the ventilation coefficient is the highest; rather it occurs when the rainfall is strong (during summer monsoon season) and airmass changes to primarily of marine origin.

  19. n-Alkanoic monocarboxylic acid concentrations in urban and rural aerosols: Seasonal dependence and major sources

    NASA Astrophysics Data System (ADS)

    Shannigrahi, Ardhendu S.; Pettersson, Jan B. C.; Langer, Sarka; Arrhenius, Karine; Hagström, Magnus; Janhäll, Sara; Hallquist, Mattias; Pathak, Ravi Kant

    2014-06-01

    We report new data on the abundance and distribution of n-monocarboxylic acids (n-MCAs) in fine- and coarse-mode aerosols in rural and urban areas of Sweden, and determine their possible sources. Overall, C6-C16n-MCAs accounted for ~ 0.5-1.2% of the total PM10 (particulate matter ≤ 10 μm) mass. In general, the C12-C16 fraction was the most abundant (> 75%), with the exception of wintertime samples from a rural site, where C6-C11 acids accounted for 65% of the total C6-C16n-MCA mass. Positive matrix factorization analysis revealed four major sources of n-MCAs: traffic emissions, wood combustion, microbial activity, and a fourth factor that was dominated by semi-volatile n-MCAs. Traffic emissions were important in the urban environment in both seasons and at the rural site during winters, and were a major source of C9-C11 acids. Wood combustion was a significant source at urban sites during the winter and also to some extent at the rural site in both seasons. This is consistent with the use of wood for domestic heating but may also be related to meat cooking. Thus, during the winter, traffic, wood combustion and microbial activity were all important sources in the urban environment, while traffic was the dominant source at the rural site. During the summer, there was considerable day-to-day variation in n-MCA concentrations but microbial activity was the dominant source. The semi-volatile low molecular weight C6-C8 acids accounted for a small (~ 5-10%) fraction of the total mass of n-MCAs. This factor is unlikely to be linked to a single source and its influence instead reflects the partitioning of these compounds between the gas and particle phases. This would explain their greater contribution during the winter.

  20. Temperature-dependent formation of NaCl dihydrate in levitated NaCl and sea salt aerosol particles.

    PubMed

    Peckhaus, Andreas; Kiselev, Alexei; Wagner, Robert; Duft, Denis; Leisner, Thomas

    2016-12-28

    Recent laboratory studies indicate that the hydrated form of crystalline NaCl is potentially important for atmospheric processes involving depositional ice nucleation on NaCl dihydrate particles under cirrus cloud conditions. However, recent experimental studies reported a strong discrepancy between the temperature intervals where the efflorescence of NaCl dihydrate has been observed. Here we report the measurements of the volume specific nucleation rate of crystalline NaCl in the aqueous solution droplets of pure NaCl suspended in an electrodynamic balance at constant temperature and humidity in the range from 250 K to 241 K. Based on these measurements, we derive the interfacial energy of crystalline NaCl dihydrate in a supersaturated NaCl solution and determined its temperature dependence. Taking into account both temperature and concentration dependence of nucleation rate coefficients, we explain the difference in the observed fractions of NaCl dihydrate reported in the previous studies. Applying the heterogeneous classical nucleation theory model, we have been able to reproduce the 5 K shift of the NaCl dihydrate efflorescence curve observed for the sea salt aerosol particles, assuming the presence of super-micron solid inclusions (hypothetically gypsum or hemihydrate of CaSO4). These results support the notion that the phase transitions in microscopic droplets of supersaturated solution should be interpreted by accounting for the stochastic nature of homogeneous and heterogeneous nucleation and cannot be understood on the ground of bulk phase diagrams alone.

  1. Large atmospheric shortwave radiative forcing by Mediterranean aerosols derived from simultaneous ground-based and spaceborne observations and dependence on the aerosol type and single scattering albedo

    NASA Astrophysics Data System (ADS)

    di Biagio, Claudia; di Sarra, Alcide; Meloni, Daniela

    2010-05-01

    Aerosol optical properties and shortwave irradiance measurements at the island of Lampedusa (central Mediterranean) during 2004-2007 are combined with Clouds and the Earth's Radiant Energy System observations of the outgoing shortwave flux at the top of the atmosphere (TOA). The measurements are used to estimate the surface (FES), the top of the atmosphere (FETOA), and the atmospheric (FEATM) shortwave aerosol forcing efficiencies for solar zenith angle (θ) between 15° and 55° for desert dust (DD), urban/industrial-biomass burning aerosols (UI-BB), and mixed aerosols (MA). The forcing efficiency at the different atmospheric levels is derived by applying the direct method, that is, as the derivative of the shortwave net flux versus the aerosol optical depth at fixed θ. The diurnal average forcing efficiency at the surface/TOA at the equinox is (-68.9 ± 4.0)/(-45.5 ± 5.4) W m-2 for DD, (-59.0 ± 4.3)/(-19.2 ± 3.3) W m-2 for UI-BB, and (-94.9 ± 5.1)/(-36.2 ± 1.7) W m-2 for MA. The diurnal average atmospheric radiative forcing at the equinox is (+7.3 ± 2.5) W m-2 for DD, (+8.4 ± 1.9) W m-2 for UI-BB, and (+8.2 ± 1.9) W m-2 for MA, suggesting that the mean atmospheric forcing is almost independent of the aerosol type. The largest values of the atmospheric forcing may reach +35 W m-2 for DD, +23 W m-2 for UI-BB, and +34 W m-2 for MA. FETOA is calculated for MA and 25° ≤ θ ≤ 35° for three classes of single scattering albedo (0.7 ≤ ω < 0.8, 0.8 ≤ ω < 0.9, and 0.9 ≤ ω ≤ 1) at 415.6 and 868.7 nm: FETOA increases, in absolute value, for increasing ω. A 0.1 increment in ω determines an increase in FETOA by 10-20 W m-2.

  2. Wavelength dependence of coherent and incoherent satellite-based lidar measurements of wind velocity and aerosol backscatter

    NASA Technical Reports Server (NTRS)

    Kavaya, M. J.; Huffaker, R. M.

    1986-01-01

    The results are presented of a capability study of Earth orbiting lidar systems, at various wavelengths from 1.06 to 10.6 microns, for the measurement of wind velocity and aerosol backscatter, and for the detection of clouds. Both coherent and incoherent lidar systems were modeled and compared for the aerosol backscatter and cloud detection applications.

  3. Aerosol typing - key information from aerosol studies

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  4. Characteristics of regional aerosols: Southern Arizona and eastern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Prabhakar, Gouri

    Atmospheric aerosols impact the quality of our life in many direct and indirect ways. Inhalation of aerosols can have harmful effects on human health. Aerosols also have climatic impacts by absorbing or scattering solar radiation, or more indirectly through their interactions with clouds. Despite a better understanding of several relevant aerosol properties and processes in the past years, they remain the largest uncertainty in the estimate of global radiative forcing. The uncertainties arise because although aerosols are ubiquitous in the Earth's atmosphere they are highly variable in space, time and their physicochemical properties. This makes in-situ measurements of aerosols vital in our effort towards reducing uncertainties in the estimate of global radiative forcing due to aerosols. This study is an effort to characterize atmospheric aerosols at a regional scale, in southern Arizona and eastern Pacific Ocean, based on ground and airborne observations of aerosols. Metals and metalloids in particles with aerodynamic diameter (Dp) smaller than 2.5 μm are found to be ubiquitous in southern Arizona. The major sources of the elements considered in the study are identified to be crustal dust, smelting/mining activities and fuel combustion. The spatial and temporal variability in the mass concentrations of these elements depend both on the source strength and meteorological conditions. Aircraft measurements of aerosol and cloud properties collected during various field campaigns over the eastern Pacific Ocean are used to study the sources of nitrate in stratocumulus cloud water and the relevant processes. The major sources of nitrate in cloud water in the region are emissions from ships and wildfires. Different pathways for nitrate to enter cloud water and the role of meteorology in these processes are examined. Observations of microphysical properties of ambient aerosols in ship plumes are examined. The study shows that there is an enhancement in the number

  5. Evidence of seasonally dependent stratosphere-troposphere exchange and purging of lower stratospheric aerosol from a multiyear lidar data set

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.; Tratt, David M.

    1995-01-01

    Tropospheric and lower stratospheric aerosol backscatter data obtained from a calibrated backscatter lidar at Pasadena, California (34 deg N latitude) over the 1984-1993 period clearly indicate tightly coupled aerosol optical properties in the upper troposphere and lower stratosphere in the winter and early spring, due to the active midlatitude stratospheric-tropospheric (ST) exchange processes occurring at this time of year. Lidar data indicate that during pre-Pinaturbo background conditions, the subsequent purging of the aerosol in the upper troposphere caused a significant reduction in the aerosol content throughout the 8 - 18 km altitude region in the early spring period. The post-Pinatubo evidence of intense exchange in the winter and early spring is a significant increase in the upper tropospheric aerosol content, such that the backscatter levels reach values nearly equivalent to the enhanced backscatter levels existing in the lower stratosphere. The calculated stratospheric mass extrusion rate is consistent with a 45-day lifetime of lower stratospheric aerosol during this part of the year, which implies that midlatitude ST exchange is a significant sink for stratospheric aerosol.

  6. MELCOR 1. 8. 1 assessment: LACE aerosol experiment LA4

    SciTech Connect

    Kmetyk, L.N.

    1991-09-01

    The MELCOR code has been used to simulate LACE aerosol experiment LA4. In this test, the behavior of single- and double-component, hygroscopic and nonhygroscopic, aerosols in a condensing environment was monitored. Results are compared to experimental data, and to CONTAIN calculations. Sensitivity studies have been done on time step effects and machine dependencies; thermal/hydraulic parameters such as condensation on heat structures and on pool surface, and radiation heat transfer; and aerosol parameters such as number of MAEROS components and sections assumed, the degree to which plated aerosols are washed off heat structures by condensate film draining, and the effect of non-default values for shape factors and diameter limits. 9 refs., 50 figs., 13 tabs.

  7. Light extinction by aerosols during summer air pollution

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Fraser, R. S.

    1983-01-01

    In order to utilize satellite measurements of optical thickness over land for estimating aerosol properties during air pollution episodes, the optical thickness was measured from the surface and investigated. Aerosol optical thicknesses have been derived from solar transmission measurements in eight spectral bands within the band lambda 440-870 nm during the summers of 1980 and 1981 near Washington, DC. The optical thicknesses for the eight bands are strongly correlated. It was found that first eigenvalue of the covariance matrix of all observations accounts for 99 percent of the trace of the matrix. Since the measured aerosol optical thickness was closely proportional to the wavelength raised to a power, the aerosol size distribution derived from it is proportional to the diameter (d) raised to a power for the range of diameters between 0.1 to 1.0 micron. This power is insensitive to the total optical thickness. Changes in the aerosol optical thickness depend on several aerosol parameters, but it is difficult to identify the dominant one. The effects of relative humidity and accumulation mode concentration on the optical thickness are analyzed theoretically, and compared with the measurements.

  8. Four-year long-path monitoring of ambient aerosol extinction at a central European urban site: dependence on relative humidity

    NASA Astrophysics Data System (ADS)

    Skupin, A.; Ansmann, A.; Engelmann, R.; Seifert, P.; Müller, T.

    2016-02-01

    The ambient aerosol particle extinction coefficient is measured with the Spectral Aerosol Extinction Monitoring System (SÆMS) along a 2.84 km horizontal path at 30-50 m height above ground in the urban environment of Leipzig (51.3° N, 12.4° E), Germany, since 2009. The dependence of the particle extinction coefficient (wavelength range from 300 to 1000 nm) on relative humidity up to almost 100 % was investigated. The main results are presented. For the wavelength of 550 nm, the mean extinction enhancement factor was found to be 1.75 ± 0.4 for an increase of relative humidity from 40 to 80 %. The respective 4-year mean extinction enhancement factor is 2.8 ± 0.6 for a relative-humidity increase from 40 to 95 %. A parameterization of the dependency of the urban particle extinction coefficient on relative humidity is presented. A mean hygroscopic exponent of 0.46 for the 2009-2012 period was determined. Based on a backward trajectory cluster analysis, the dependence of several aerosol optical properties for eight air flow regimes was investigated. Large differences were not found, indicating that local pollution sources widely control the aerosol conditions over the urban site. The comparison of the SÆMS extinction coefficient statistics with respective statistics from ambient AERONET sun photometer observations yields good agreement. Also, time series of the particle extinction coefficient computed from in situ-measured dry particle size distributions and humidity-corrected SÆMS extinction values (for 40 % relative humidity) were found in good overall consistency, which verifies the applicability of the developed humidity parameterization scheme. The analysis of the spectral dependence of particle extinction (Ångström exponent) revealed an increase of the 390-881 nm Ångström exponent from, on average, 0.3 (at 30 % relative humidity) to 1.3 (at 95 % relative humidity) for the 4-year period.

  9. Wind Power Charged Aerosol Generator

    SciTech Connect

    Marks, A.M.

    1980-07-01

    This describes experimental results on a Charged Aerosol Wind/Electric Power Generator, using Induction Electric Charging with a water jet issuing under water pressure from a small diameter (25-100 ..mu..m) orifice.

  10. Aqueous aerosol SOA formation: impact on aerosol physical properties.

    PubMed

    Woo, Joseph L; Kim, Derek D; Schwier, Allison N; Li, Ruizhi; McNeill, V Faye

    2013-01-01

    Organic chemistry in aerosol water has recently been recognized as a potentially important source of secondary organic aerosol (SOA) material. This SOA material may be surface-active, therefore potentially affecting aerosol heterogeneous activity, ice nucleation, and CCN activity. Aqueous aerosol chemistry has also been shown to be a potential source of light-absorbing products ("brown carbon"). We present results on the formation of secondary organic aerosol material in aerosol water and the associated changes in aerosol physical properties from GAMMA (Gas-Aerosol Model for Mechanism Analysis), a photochemical box model with coupled gas and detailed aqueous aerosol chemistry. The detailed aerosol composition output from GAMMA was coupled with two recently developed modules for predicting a) aerosol surface tension and b) the UV-Vis absorption spectrum of the aerosol, based on our previous laboratory observations. The simulation results suggest that the formation of oligomers and organic acids in bulk aerosol water is unlikely to perturb aerosol surface tension significantly. Isoprene-derived organosulfates are formed in high concentrations in acidic aerosols under low-NO(x) conditions, but more experimental data are needed before the potential impact of these species on aerosol surface tension may be evaluated. Adsorption of surfactants from the gas phase may further suppress aerosol surface tension. Light absorption by aqueous aerosol SOA material is driven by dark glyoxal chemistry and is highest under high-NO(x) conditions, at high relative humidity, in the early morning hours. The wavelength dependence of the predicted absorption spectra is comparable to field observations and the predicted mass absorption efficiencies suggest that aqueous aerosol chemistry can be a significant source of aerosol brown carbon under urban conditions.

  11. Weather-dependent change of cesium, strontium, barium and tellurium contamination deposited as aerosols on various cultures.

    PubMed

    Madoz-Escande, C; Santucci, P

    2005-01-01

    Various types of plants (wheat, bean, lettuce, radish and grass) were contaminated by dry deposition of radioactive aerosols ((137)Cs, (85)Sr, (133)Ba and (123 m)Te) in order to supplement the radio-ecological data necessary for operational post-accidental codes. A few days after deposition, rainfalls were applied to these cultures to evaluate the influence of some characteristics of the rain on the contamination of the culture over time. On the other hand, for wheat and bean, the influence of the humidity condition of the foliage at the contamination time was considered. For a given plant species at a given vegetative stage, the four radionuclides were intercepted in an identical way. The interception varied from 30% for bean (young sprout) to 80% for lettuce (near maturity). The global transfer factor values were dependent on both the radionuclides and the plant species; nevertheless, a higher value was obtained for cesium, regardless of the plant and the rainfall (from 0.006 m(2)kg(fresh)(-1) for wheat-grains - contaminated at the shooting stage - or for bean-pods - contaminated at the pre-flowering stage - to 0.1m(2)kg(fresh)(-1) for a whole lettuce). The analysis of the results allowed us on the one hand, to extract parameter values of the foliar transfer directly usable in operational codes, in particular those relating to barium and tellurium, unknown until then, and on the other hand, to lay the foundations of a future, more mechanistic model, taking into account the foliar processes in a finer way.

  12. Stellar diameters and temperatures. IV. Predicting stellar angular diameters

    SciTech Connect

    Boyajian, Tabetha S.; Van Belle, Gerard; Von Braun, Kaspar

    2014-03-01

    The number of stellar angular diameter measurements has greatly increased over the past few years due to innovations and developments in the field of long baseline optical interferometry. We use a collection of high-precision angular diameter measurements for nearby, main-sequence stars to develop empirical relations that allow the prediction of stellar angular sizes as a function of observed photometric color. These relations are presented for a combination of 48 broadband color indices. We empirically show for the first time a dependence on metallicity of these relations using Johnson (B – V) and Sloan (g – r) colors. Our relations are capable of predicting diameters with a random error of less than 5% and represent the most robust and empirical determinations of stellar angular sizes to date.

  13. Aerosol Dynamics Laboratory

    SciTech Connect

    Rader, D.J.; Mondy, L.A.

    1990-04-01

    In past five years, Department 1510 has developed a state-of-the-art Aerosol Dynamics Laboratory (ADL). This report documents the current instrumentation and capabilities that exist in this laboratory. The ADL was developed from a variety of sources, with a primary contribution from Department 1510's Independent Research and Development program in aerosol dynamics. Current capabilities of the ADL include: (1) generation of calibration-quality monodisperse particles with diameters between 0.005 to 100 {mu}m, (2) real-time measurement of particle size distributions for particle diameters between 0.01 and 100 {mu}m, (3) in situ, real-time measurement of particle size distributions for particle diameters between 0.3 and 100 {mu}m, and (4) real-time measurement of particle charge distributions for particle diameters between 0.01 and 1.0 {mu}m. 14 refs., 5 figs.

  14. Aerosol optical properties at a coastal site in Hong Kong, South China: temporal features, size dependencies and source analysis

    NASA Astrophysics Data System (ADS)

    Wang, Jiaping; Ding, Aijun; Virkkula, Aki; Lee, Shuncheng; Shen, Yicheng; Chi, Xuguang; Xu, Zheng

    2016-04-01

    Hong Kong is a typical coastal city adjacent to the Pearl River Delta (PRD) region in southern China, which is one of the regions suffering from severe air pollution. Atmospheric aerosols can affect the earth's radiative balance by scattering and absorbing incoming solar radiation. Black Carbon (BC) aerosol is a particularly emphasized component due to its strong light absorption. Aerosol transported from different source areas consists of distinct size distributions, leading to different optical properties. As the byproducts of the incomplete oxidation, BC and CO both have relatively long life time, their relationship is a good indicator for distinguishing different pollutant sources. In this study, temporal variations of aerosol optical properties and concentrations of BC and CO at a coastal background station in Hong Kong were investigated. Transport characteristics and origins of aerosol were elucidated by analyzing backward Lagrangian particle dispersion modeling (LPDM) results, together with related parameters including the relationships between optical properties and particle size, BC-CO correlations, ship location data and meteorological variables. From February 2012 to September 2013 and March 2014 to February 2015, continuous in-situ measurements of light scattering and absorption coefficients, particle size distribution and concentrations of BC and CO were conducted at Hok Tsui (HT), a coastal background station on the southeast tip of Hong Kong Island (22.22°N, 114.25°E, 60 m above the sea level) with few local anthropogenic activities. Affected by the Asian monsoon, this region is dominated by continental outflow in winter and by marine inflow from the South China Sea in summer, which is an ideal station for identifying the transport characteristics of aerosol and their effects on optical properties from different anthropogenic emission sources. 7-day backward Lagrangian particle dispersion modeling was performed for source identification. Three

  15. Aerosol generation by blower motors as a bias in assessing aerosol penetration into cabin filtration systems.

    PubMed

    Heitbrink, William A; Collingwood, Scott

    2005-01-01

    In cabin filtration systems, blower motors pressurize a vehicle cabin with clean filtered air and recirculate air through an air-conditioning evaporator coil and a heater core. The exposure reduction offered by these cabins is evaluated by optical particle counters that measure size-dependent aerosol concentration inside and outside the cabin. The ratio of the inside-to-outside concentration is termed penetration. Blower motors use stationary carbon brushes to transmit an electrical current through a rotating armature that abrades the carbon brushes. This creates airborne dust that may affect experimental evaluations of aerosol penetration. To evaluate the magnitude of these dust emissions, blower motors were placed in a test chamber and operated at 12 and 13.5 volts DC. A vacuum cleaner drew 76 m3/hour (45 cfm) of air through HEPA filters, the test chamber, and through a 5 cm diameter pipe. An optical particle counter drew air through an isokinetic sampling probe and measured the size-dependent particle concentrations from 0.3 to 15 microm. The concentration of blower motor aerosol was between 2 x 10(5) and 1.8 x 10(6) particles/m3. Aerosol penetration into three stationary vehicles, two pesticide application vehicles and one tractor were measured at two conditions: low concentration (outside in the winter) and high concentration (inside repair shops and burning incense sticks used as a supplemental aerosol source). For particles smaller than 1 microm, the in-cabin concentrations can be explained by the blower motor emissions. For particles larger than 1 microm, other aerosol sources, such as resuspended dirt, are present. Aerosol generated by the operation of the blower motor and by other sources can bias the exposure reduction measured by optical particle counters.

  16. Interpreting stem diameter changes

    NASA Astrophysics Data System (ADS)

    Hölttä, T.; Sevanto, S.; Nikinmaa, E.

    2009-12-01

    Detecting phloem transport in stem diameter changes Teemu Hölttä1, Sanna Sevanto2, Eero Nikinmaa1 1Department of Forest Ecology, P.O. Box 27, FIN-00014 University of Helsinki, Finland 2Department of Physics, P.O. Box 48, FIN-00014 University of Helsinki, Finland Introduction The volume of living cells and xylem conduits vary according to pressures they are subjected to. Our proposition is that the behavior of the inner bark diameter variation which cannot be explained by changes in xylem water status arise from changes in the osmotic concentration of the phloem and cambial growth. Materials and methods Simultaneous xylem and stem diameter measurements were conducted between June 28th to October 4th 2006 in Southern Finland on a 47-year old, 15 meter tall, Scots pine tree (DBH 15 cm) at heights of 1.5 and 10 meters. The difference between the measured inner bark diameter and the inner bark diameter predicted from xylem diameter change with a simple model (assuming there was no change in the osmotic concentration of the phloem) is hypothesized to give the changes in the osmotic concentration of the inner bark. The simple model calculates the radial water exchange between the xylem and phloem driven by the water potential changes in the xylem. Results and Discussion The major signal in the inner bark diameter was the transpiration rate as assumed, but also a signal arising from the change in the osmotic concentration (Fig 1a). The predicted osmotic concentration of the phloem typically increased during the afternoon due to the loading of photosynthesized sugars to the phloem. Inner bark osmotic concentration followed the photosynthesis rate with a 3 and 4 hour time-lag at the top and base, respectively (Fig 1b). The connection between photosynthesis and the predicted change in phloem osmotic concentration was stronger in the upper part of the tree compared to lower part. The changes in the predicted osmotic concentration were not similar every day, indicating that

  17. Development of an aerosol microphysical module: Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS)

    SciTech Connect

    Matsui, H.; Koike, Makoto; Kondo, Yutaka; Fast, Jerome D.; Takigawa, M.

    2014-09-30

    Number concentrations, size distributions, and mixing states of aerosols are essential parameters for accurate estimation of aerosol direct and indirect effects. In this study, we developed an aerosol module, designated Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS), that can represent these parameters explicitly by considering new particle formation (NPF), black carbon (BC) aging, and secondary organic aerosol (SOA) processes. A two-dimensional bin representation is used for particles with dry diameters from 40 nm to 10 µm to resolve both aerosol size (12 bins) and BC mixing state (10 bins) for a total of 120 bins. The particles with diameters from 1 to 40 nm are resolved using an additional 8 size bins to calculate NPF. The ATRAS module was implemented in the WRF-chem model and applied to examine the sensitivity of simulated mass, number, size distributions, and optical and radiative parameters of aerosols to NPF, BC aging and SOA processes over East Asia during the spring of 2009. BC absorption enhancement by coating materials was about 50% over East Asia during the spring, and the contribution of SOA processes to the absorption enhancement was estimated to be 10 – 20% over northern East Asia and 20 – 35% over southern East Asia. A clear north-south contrast was also found between the impacts of NPF and SOA processes on cloud condensation nuclei (CCN) concentrations: NPF increased CCN concentrations at higher supersaturations (smaller particles) over northern East Asia, whereas SOA increased CCN concentrations at lower supersaturations (larger particles) over southern East Asia. Application of ATRAS to East Asia also showed that the impact of each process on each optical and radiative parameter depended strongly on the process and the parameter in question. The module can be used in the future as a benchmark model to evaluate the accuracy of simpler aerosol models and examine interactions between NPF, BC aging, and SOA

  18. Development of an aerosol microphysical module: Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS)

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Koike, M.; Kondo, Y.; Fast, J. D.; Takigawa, M.

    2014-09-01

    Number concentrations, size distributions, and mixing states of aerosols are essential parameters for accurate estimations of aerosol direct and indirect effects. In this study, we develop an aerosol module, designated the Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS), that can explicitly represent these parameters by considering new particle formation (NPF), black carbon (BC) aging, and secondary organic aerosol (SOA) processes. A two-dimensional bin representation is used for particles with dry diameters from 40 nm to 10 μm to resolve both aerosol sizes (12 bins) and BC mixing states (10 bins) for a total of 120 bins. The particles with diameters between 1 and 40 nm are resolved using additional eight size bins to calculate NPF. The ATRAS module is implemented in the WRF-Chem model and applied to examine the sensitivity of simulated mass, number, size distributions, and optical and radiative parameters of aerosols to NPF, BC aging, and SOA processes over East Asia during the spring of 2009. The BC absorption enhancement by coating materials is about 50% over East Asia during the spring, and the contribution of SOA processes to the absorption enhancement is estimated to be 10-20% over northern East Asia and 20-35% over southern East Asia. A clear north-south contrast is also found between the impacts of NPF and SOA processes on cloud condensation nuclei (CCN) concentrations: NPF increases CCN concentrations at higher supersaturations (smaller particles) over northern East Asia, whereas SOA increases CCN concentrations at lower supersaturations (larger particles) over southern East Asia. The application of ATRAS in East Asia also shows that the impact of each process on each optical and radiative parameter depends strongly on the process and the parameter in question. The module can be used in the future as a benchmark model to evaluate the accuracy of simpler aerosol models and examine interactions between NPF, BC aging, and SOA

  19. Development of an aerosol microphysical module: Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS)

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Koike, M.; Kondo, Y.; Fast, J. D.; Takigawa, M.

    2014-04-01

    Number concentrations, size distributions, and mixing states of aerosols are essential parameters for accurate estimation of aerosol direct and indirect effects. In this study, we develop an aerosol module, designated Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS), that can represent these parameters explicitly by considering new particle formation (NPF), black carbon (BC) aging, and secondary organic aerosol (SOA) processes. A two-dimensional bin representation is used for particles with dry diameters from 40 nm to 10 μm to resolve both aerosol size (12 bins) and BC mixing state (10 bins) for a total of 120 bins. The particles with diameters from 1 to 40 nm are resolved using an additional 8 size bins to calculate NPF. The ATRAS module is implemented in the WRF-chem model and applied to examine the sensitivity of simulated mass, number, size distributions, and optical and radiative parameters of aerosols to NPF, BC aging and SOA processes over East Asia during the spring of 2009. BC absorption enhancement by coating materials is about 50% over East Asia during the spring, and the contribution of SOA processes to the absorption enhancement is estimated to be 10-20% over northern East Asia and 20-35% over southern East Asia. A clear north-south contrast is also found between the impacts of NPF and SOA processes on cloud condensation nuclei (CCN) concentrations: NPF increases CCN concentrations at higher supersaturations (smaller particles) over northern East Asia, whereas SOA increases CCN concentrations at lower supersaturations (larger particles) over southern East Asia. Application of ATRAS to East Asia also shows that the impact of each process on each optical and radiative parameter depends strongly on the process and the parameter in question. The module can be used in the future as a benchmark model to evaluate the accuracy of simpler aerosol models and examine interactions between NPF, BC aging, and SOA processes under

  20. ELECTRICAL AEROSOL DETECTOR (EAD) MEASUREMENTS AT THE ST. LOUIS SUPERSITE

    EPA Science Inventory

    The Model 3070A Electrical Aerosol Detector (EAD) measures a unique aerosol parameter called total aerosol length. Reported as mm/cm3, aerosol length can be thought of as a number concentration times average diameter, or simply as d1 weighting. This measurement falls between nu...

  1. An Investigation of Size-Dependent Concentration of Trace Elements in Aerosols Emitted from the Oil-Fired Heating Plants

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Sentell, R. J.; Khandelwal, G. S.

    1976-01-01

    Aerosols emitted from two oil-fired heating plants were aerodynamically separated into eight size groups and were analyzed using the photon-induced X-ray emission (PIXE) technique. It was found that Zn, Mo, Ag, and Pb, and (to a lesser extent) Cd, have a tendency to concentrate preferentially on the smaller aerosols. All of these elements, in certain chemical forms, are known to be toxic. Zinc and molybdenum, although present in low concentrations in the parent fuels, show the strongest tendencies to be concentrated in finer aerosols. Selenium, previously reported to show a very strong tendency to concentration in finer fly ash from coal-fired power plants shows little preference for surface residence. Vanadium, which occurs in significant concentration in the oil fuels for both plants, also shows little preference for surface concentration. Even though the absolute concentrations of the toxic elements involved are well below the safety levels established by the National Institute for Occupational Safety and Health (NIOSH), it would be advisable to raise the heights of the heating-plant exhaust chimneys well above the neighborhood buildings to insure more efficient aerosol dispersal.

  2. Phoretic forces on aerosol particles surrounding an evaporating droplet in microgravity conditions

    NASA Astrophysics Data System (ADS)

    Prodi, F.; Santachiara, G.; Belosi, F.; Vedernikov, A.; Balapanov, D.

    2014-06-01

    The work presents the results of an experimental campaign performed at the Drop Tower Facility (Bremen) in microgravity conditions, concerning the scavenging process of an evaporating single droplet in stationary conditions. In the experimental conditions the thermo- and diffusiophoretic forces are the only ones that can determine the scavenging of the aerosol. The research is finalized to help solve the open question concerning the contribution of thermo- and diffusiophoretic forces in aerosol scavenging process due to cloud droplets. Although earlier theoretical and experimental papers have addressed this problem, the results are contradictory and inconclusive. As phoretic forces depend on aerosol diameter and water vapour pressure gradient, experiments were performed by changing the aerosol diameter (range 0.4 μm-2 μm) and the water vapour gradient. The experimental results show a prevalence of the diffusiophoretic over thermophoretic force, for the considered aerosol. The measured values of the particle velocities due to phoretic forces increase with increasing aerosol diameter and vapour pressure gradient.

  3. Composition-dependent freezing nucleation rates for HNO3/H2O aerosols resembling gravity-wave-perturbed stratospheric particles

    NASA Astrophysics Data System (ADS)

    Prenni, Anthony J.; Onasch, Timothy B.; Tisdale, Robert T.; Siefert, Ronald L.; Tolbert, Margaret A.

    1998-11-01

    Laboratory measurements are presented for the freezing kinetics of H2O/HNO3 aerosols over the temperature range of 188-204 K. For 2:1 H2O:HNO3 aerosols crystallizing to NAD we observed a maximum nucleation rate of J = 9.3×109 cm-3 s-1 at 194 K. This temperature is between the glass point of 161 K [Ji et al., 1993] and the melting point of 235.5 K [Ji et al., 1996]. This can be compared to a previous measurement of J = 6.7×109 cm-3 s-1 at 193 K [Disselkamp et al., 1996] and lower temperature measurements of J ≈ 1010-1012 cm-3 s-1 at 178.8 - 175.8 K [Bertram and Sloan, 1998a]. Measured nucleation rates decrease as the aerosol becomes dilute, but NAD formation is still observable for 2.5:1 H2O:HNO3 at temperatures near 195 K. In contrast, freezing of 3:1 H2O:HNO3 aerosol was not observed for constant temperature experiments throughout this temperature range, yielding an upper limit of J<1.5×109 cm-3 s-1. This is the lowest experimental value determined for 3:1 H2O:HNO3 freezing rates at these temperatures. From the measured freezing rates and knowledge of the free energy of diffusion the average interfacial free energy for NAD in a 2:1 H2O:HNO3 solution was determined to be σ = 25.2 ergs cm-2. A limit for the interfacial free energy was placed on 3:1 H2O:HNO3 particles, for which freezing was not observed. These data imply that if aerosols reach compositions more concentrated than 3:1 H2O:HNO3 in the atmosphere, NAD may play a role in polar stratospheric cloud formation.

  4. Annual cycle and temperature dependence of pinene oxidation products and other water-soluble organic compounds in coarse and fine aerosol samples

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Müller, L.; Winterhalter, R.; Moortgat, G. K.; Hoffmann, T.; Pöschl, U.

    2010-05-01

    Filter samples of fine and coarse particulate matter were collected over a period of one year and analyzed for water-soluble organic compounds, including the pinene oxidation products pinic acid, pinonic acid, 3-methyl-1,2,3-butanetricarboxylic acid (3-MBTCA) and a variety of dicarboxylic acids (C5-C16) and nitrophenols. Seasonal variations and other characteristic features are discussed with regard to aerosol sources and sinks and data from other studies and regions. The ratios of adipic acid (C6) and phthalic acid (Ph) to azelaic acid (C9) indicate that the investigated aerosols samples were mainly influenced by biogenic sources. An Arrhenius-type correlation was found between the 3-MBTCA concentration and inverse temperature. Model calculations suggest that the temperature dependence is largely due to enhanced emissions and OH radical concentrations at elevated temperatures, whereas the influence of gas-particle partitioning appears to play a minor role. Enhanced ratios of pinic acid to 3-MBTCA indicate strong chemical aging of the investigated aerosols in summer and spring. Acknowledgment: The authors would like to thank M. Claeys for providing synthetic 3-methyl-1,2,3-butanetricarboxylic acid standards for LC-MS analysis and J. Fröhlich for providing filter samples and related information.

  5. Computation of liquid-liquid equilibria and phase stabilities: implications for RH-dependent gas/particle partitioning of organic-inorganic aerosols

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Marcolli, C.; Peter, T.; Seinfeld, J. H.

    2010-08-01

    Semivolatile organic and inorganic aerosol species partition between the gas and aerosol particle phases to maintain thermodynamic equilibrium. Liquid-liquid phase separation into an organic-rich and an aqueous electrolyte phase can occur in the aerosol as a result of the salting-out effect. Such liquid-liquid equilibria (LLE) affect the gas/particle partitioning of the different semivolatile compounds and might significantly alter both particle mass and composition as compared to a one-phase particle. We present a new liquid-liquid equilibrium and gas/particle partitioning model, using as a basis the group-contribution model AIOMFAC (Zuend et al., 2008). This model allows the reliable computation of the liquid-liquid coexistence curve (binodal), corresponding tie-lines, the limit of stability/metastability (spinodal), and further thermodynamic properties of multicomponent systems. Calculations for ternary and multicomponent alcohol/polyol-water-salt mixtures suggest that LLE are a prevalent feature of organic-inorganic aerosol systems. A six-component polyol-water-ammonium sulphate system is used to simulate effects of relative humidity (RH) and the presence of liquid-liquid phase separation on the gas/particle partitioning. RH, salt concentration, and hydrophilicity (water-solubility) are identified as key features in defining the region of a miscibility gap and govern the extent to which compound partitioning is affected by changes in RH. The model predicts that liquid-liquid phase separation can lead to either an increase or decrease in total particulate mass, depending on the overall composition of a system and the particle water content, which is related to the hydrophilicity of the different organic and inorganic compounds. Neglecting non-ideality and liquid-liquid phase separations by assuming an ideal mixture leads to an overestimation of the total particulate mass by up to 30% for the composition and RH range considered in the six-component system

  6. Computation of liquid-liquid equilibria and phase stabilities: implications for RH-dependent gas/particle partitioning of organic-inorganic aerosols

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Marcolli, C.; Peter, T.; Seinfeld, J. H.

    2010-05-01

    Semivolatile organic and inorganic aerosol species partition between the gas and aerosol particle phases to maintain thermodynamic equilibrium. Liquid-liquid phase separation into an organic-rich and an aqueous electrolyte phase can occur in the aerosol as a result of the salting-out effect. Such liquid-liquid equilibria (LLE) affect the gas/particle partitioning of the different semivolatile compounds and might significantly alter both particle mass and composition as compared to a one-phase particle. We present a new liquid-liquid equilibrium and gas/particle partitioning model, using as a basis the group-contribution model AIOMFAC (Zuend et al., 2008). This model allows the reliable computation of the liquid-liquid coexistence curve (binodal), corresponding tie-lines, the limit of stability/metastability (spinodal), and further thermodynamic properties of the phase diagram. Calculations for ternary and multicomponent alcohol/polyol-water-salt mixtures suggest that LLE are a prevalent feature of organic-inorganic aerosol systems. A six-component polyol-water-ammonium sulphate system is used to simulate effects of relative humidity (RH) and the presence of liquid-liquid phase separation on the gas/particle partitioning. RH, salt concentration, and hydrophilicity (water-solubility) are identified as key features in defining the region of a miscibility gap and govern the extent to which compound partitioning is affected by changes in RH. The model predicts that liquid-liquid phase separation can lead to either an increase or decrease in total particulate mass, depending on the overall composition of a system and the particle water content, which is related to the hydrophilicity of the different organic and inorganic compounds. Neglecting non-ideality and liquid-liquid phase separations by assuming an ideal mixture leads to an overestimation of the total particulate mass by up to 30% for the composition and RH range considered in the six-component system simulation

  7. Four-year long-path monitoring of ambient aerosol extinction at a central European urban site: dependence on relative humidity

    NASA Astrophysics Data System (ADS)

    Skupin, A.; Ansmann, A.; Engelmann, R.; Seifert, P.; Müller, T.

    2015-04-01

    The ambient aerosol particle extinction coefficient is measured with the Spectral Aerosol Extinction Monitoring System (SÆMS) along a 2.84 km horizontal path at 30-50 m height above ground in the urban environment of Leipzig (51.3° N, 12.4° E), Germany, since 2009. The dependence of the particle extinction coefficient (wavelength range from 300-1000 nm) on relative humidity up to almost 100% was investigated. The main results are presented. For the wavelength of 550 nm, the mean extinction enhancement factor was found to be 1.75 ± 0.4 for an increase of relative humidity from 40 to 80%. The respective four-year mean extinction enhancement factor is 2.8 ± 0.6 for a relative-humidty increase from 40 to 95%. A parameterization of the dependency of the urban particle extinction coefficient on relative humidity is presented. A mean hygroscopic exponent of 0.463 for the 2009-2012 period was determined. Based on a backward trajectory cluster analysis, the dependence of several aerosol optical properties for eight air flow regimes was investigated. Large differences were not found indicating that local pollution sources widely control the aerosol conditions over the urban site. The comparison of the SÆMS extinction coefficient statistics with respective statistics from ambient AERONET sun photometer observations yield good agreement. Also, time series of the particle extinction coefficient computed from in-situ-measured dry particle size distributions and humidity-corrected SÆMS extinction values (for 40% relative humidity) were found in good overall consistency, which corroborates the applicability of the developed humidity parameterization scheme. The analysis of the spectral dependence of particle extinction (Ångström exponent) revealed an increase of the 390-881 nm Ångström exponent from, on average, 0.3 (at 30% relative humidity) to 1.3 (at 95% relative humidity) for the four-year period.

  8. Indoor/outdoor radon decay products associated aerosol particle-size distributions and their relation to total number concentrations.

    PubMed

    Moriizumi, Jun; Yamada, Shinya; Xu, Yang; Matsuki, Satoru; Hirao, Shigekazu; Yamazawa, Hiromi

    2014-07-01

    The activity size distributions of indoor and outdoor radioactive aerosol associated with short-lived radon decay products were observed at Nagoya, Japan, for some periods from 2010 to 2012, following the indoor observation by Mostafa et al. [Mostafa, A. M. A., Tamaki, K., Moriizumi, J., Yamazawa, H. and Iida, T. The weather dependence of particle size distribution of indoor radioactive aerosol associated with radon decay products. Radiat. Prot. Dosim. 146: (1-3), 19-22 (2011)]. The tendency of smaller indoor activity median aerodynamic diameter (AMAD) after rainfalls showed in the previous study was not consistently obtained, while the consistent tendency of less indoor radioactive particles with diameters in the accumulation mode was observed again after rainfalls. The indoor aerosols showed activity size distributions similar to the outdoor ones. Non-radioactive aerosol particle concentrations measured with a laser particle counter suggested a somewhat liner relationship with AMAD.

  9. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer

    Mccomiskey, Allison

    2008-01-15

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  10. Dependence of Ice Formation in Sierra Winter Orographic Clouds on the Mixing State of Aerosols Serving as Ice Nuclei

    NASA Astrophysics Data System (ADS)

    DeMott, P. J.; Prather, K. A.; Sullivan, R. C.; Suski, K.; Comstock, J. M.; Tomlinson, J. M.; Rosenfeld, D.; Prenni, A. J.; Cazorla, A.

    2011-12-01

    The CalWater study of February to March 2011 offered the opportunity for observations of aerosols from local, regional and long distance sources as they were integrated into clouds and precipitation in the Sierra Nevada. Single particle chemical analysis of cloud particle residual nuclei and surface precipitation, and their association with changes in cloud microphysical differences, suggest that ice initiation and precipitation formation were strongly affected by intrusions of Asian dust. This is consistent with coincident processing of aerosols present in ambient air and cloud particle residuals as ice nuclei. Elevated ice nuclei concentrations were associated with the presence of dust detected in cloud particle residuals, and dust particles dominated ice nuclei chemical compositions assessed by transmission electron microscopy x-ray analyses at these same times. Evidence of the role of Asian dust as ice nuclei during 2011 are consistent with back trajectory analyses and with recently published observational findings from CalWater Early Start data from 2009. The relative roles of aerosols from the marine boundary layer, biomass burning, and pollution as ice nuclei will also be discussed.

  11. Studies of single aerosol particles containing malonic acid, glutaric acid, and their mixtures with sodium chloride. I. Hygroscopic growth.

    PubMed

    Pope, Francis D; Dennis-Smither, Ben J; Griffiths, Paul T; Clegg, Simon L; Cox, R Anthony

    2010-04-29

    We describe a newly constructed electrodynamic balance with which to measure the relative mass of single aerosol particles at varying relative humidity. Measurements of changing mass with respect to the relative humidity allow mass (m) growth factors (m(aqueous)/m(dry)) and diameter (d) growth factors (d(aqueous)/d(dry)) of the aerosol to be determined. Four aerosol types were investigated: malonic acid, glutaric acid, mixtures of malonic acid and sodium chloride, and mixtures of glutaric acid and sodium chloride. The mass growth factors of the malonic acid and glutaric acid aqueous phase aerosols, at 85% relative humidity, were 2.11 +/- 0.08 and 1.73 +/- 0.19, respectively. The mass growth factors of the mixed organic/inorganic aerosols are dependent upon the molar fraction of the individual components. Results are compared with previous laboratory determinations and theoretical predictions.

  12. [Factors influencing particle measurement of aerosols and their retention in the lung].

    PubMed

    Le Bouffant, L

    1977-01-01

    The dimensional characteristics of the particles of an aerosol depend on the means used for producing them. Mechanical spray and ultrasonic dispersion give polydispersed particles. On the other hand, centrifugal atomization produces a monodispersed aerosol. Particle retention in the lung system depends on the particle diameter. In addition, retention varies according to the respiratory characteristics: it is minimal for about 15 inspirations per minute. Using iron-59 labeled particles, it was shown that the degree of retention varies considerably from one individual to the other and accessibility to the depths of the lungs is decreased under the effect of certain lesions. Bronchial retention appears to be increased in smokers.

  13. Effects of morphology on the radiative properties of internally mixed light absorbing carbon aerosols with different aging status.

    PubMed

    Cheng, Tianhai; Wu, Yu; Chen, Hao

    2014-06-30

    Light absorbing carbon aerosols play a substantial role in climate change through radiative forcing, which is the dominant absorber of solar radiation. Radiative properties of light absorbing carbon aerosols are strongly dependent on the morphological factors and the mixing mechanism of black carbon with other aerosol components. This study focuses on the morphological effects on the optical properties of internally mixed light absorbing carbon aerosols using the numerically exact superposition T-matrix method. Three types aerosols with different aging status such as freshly emitted BC particles, thinly coated light absorbing carbon aerosols, heavily coated light absorbing carbon aerosols are studied. Our study showed that morphological factors change with the aging of internally mixed light absorbing carbon aerosols to result in a dramatic change in their optical properties. The absorption properties of light absorbing carbon aerosols can be enhanced approximately a factor of 2 at 0.67 um, and these enhancements depend on the morphological factors. A larger shell/core diameter ratio of volume-equivalent shell-core spheres (S/C), which indicates the degree of coating, leads to stronger absorption. The enhancement of absorption properties accompanies a greater enhancement of scattering properties, which is reflected in an increase in single scattering albedo (SSA). The enhancement of single scattering albedo due to the morphological effects can reach a factor of 3.75 at 0.67 μm. The asymmetry parameter has a similar yet smaller enhancement. Moreover, the corresponding optical properties of shell-and-core model determined by using Lorenz -Mie solutions are presented for comparison. We found that the optical properties of internally mixed light absorbing carbon aerosol can differ fundamentally from those calculated for the Mie theory shell-and-core model, particularly for thinly coated light absorbing carbon aerosols. Our studies indicate that the complex morphology

  14. Weekly cycle of aerosol-meteorology interaction over China

    SciTech Connect

    Gong, Daoyi; Ho, Chang-Hoi; Chen, Deliang; Qian, Yun; Choi, Yong-Sang; Kim, Jinwon

    2007-11-21

    Weekly cycles of the concentration of anthropogenic aerosols have been observed in many regions around the world. The phase and the magnitude of these cycles, however, vary greatly depending on region and season. In the present study the authors investigated important features of the weekly cycles of aerosol concentration and the co-variations in meteorological conditions in major urban regions over east China, one of the most polluted areas in the world, in summertime during the period 2001-2005/2006. The PM10 (aerosol particulate matters of diameter < 10μm) concentrations at 29 monitoring stations show significant weekly cycles with the largest values around midweek and smallest values in weekend. Accompanying the PM10 cycle, the meteorological variables also show notable and consistent weekly cycles. The wind speed in lower troposphere is relatively small in the early part of the week, and increases after about Wednesday. At the same time, the air temperature anomalies in low levels are positive, and then become negative in the later part of the week. The authors hypothesized that the changes in the atmospheric circulation may be triggered by the accumulation of PM10 through diabatic heating of lower troposphere. During the early part of a week the anthropogenic aerosols are gradually accumulated in the lower troposphere. Around midweek, the accumulated aerosols could induce radiative heating, likely destabilizing the mid- to lower troposphere and generating anomalously vertical air motion, and thus resulting in stronger winds. The resulting circulation could promote ventilation to reduce aerosol concentrations in the boundary layer during the later part of the week. Corresponding to this cycle in anthropogenic aerosols the frequency of precipitation, particularly the light rain events, tends to be suppressed around mid-weekdays through indirect aerosol effects. This is consistent with the observed anthropogenic weather cycles, i.e., more (less) solar radiation

  15. Distinct impact of different types of aerosols on surface solar radiation in China

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Zhao, Chuanfeng; Zhou, Lijing; Wang, Yang; Liu, Xiaohong

    2016-06-01

    Observations of surface direct solar radiation (DSR) and visibility, particulate matter with aerodynamic diameters less than 2.5 µm (PM2.5), together with the aerosol optical thickness (AOT) taken from Moderate-Resolution Imaging Spectroradiometer and Multiangle Imaging Spectroradiometer, were investigated to gain insight into the impact of aerosol pollution on surface solar radiation in China. The surface DSR decreased during 2004-2014 compared with 1993~2003 over eastern China, but no clear reduction was observed in remote regions with cleaner air. Significant correlations of visibility, PM2.5, and regionally averaged AOT with the surface DSR over eastern China indicate that aerosol pollution greatly affects the energy available at the surface. The net loss of surface solar radiation also reduces the surface ground temperature over eastern China. However, the slope of the linear variation of the radiation with respect to atmospheric visibility is distinctly different at different stations, implying that the main aerosol type varies regionally. The largest slope value occurs at Zhengzhou and indicates that the aerosol absorption in central China is the highest, and lower slope values suggest relatively weakly absorbing types of aerosols at other locations. The spatial distribution of the linear slopes agrees well with the geographical distribution of the absorbing aerosols derived from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations and Ozone Monitoring Instrument over China. The regional correlation between a larger slope value and higher absorbance properties of aerosols indicates that the net effects of aerosols on the surface solar energy and corresponding climatic effects are dependent on both aerosol amount and optical properties.

  16. The Surprising mid-IR Appearance of the Asymptotic Giant Branch Stars R Aql, R Aqr, R Hya, V Hya and W Hya : Molecular and dust shell diameters and their pulsation dependence probed with the MIDI interferometer

    NASA Astrophysics Data System (ADS)

    Zhao-Geisler, Ronny

    2011-01-01

    . The circumstellar silicate dust shells of all oxygen-rich stars are found to be very extended except for R Aqr. For the carbon-rich star V Hya, it can only be concluded that amorphous carbon and SiC dust is already present close to the star. The observed angular diameters are smaller at visual minimum than at visual maximum with peak-to-peak variations on the order of 20% to 30% except for W Hya for which the variation is 6%. The diameter periodicity can be explained with the phase-dependent water vapor and corundum dust presence and its temperature sensitivity. Since this variation traces only the location of constituents which are not relevant for the wind formation, no firm conclusions can be drawn concerning the mass loss mechanism. One can only speculate that more dust forms at visual minimum. Cycle-to-cycle variations of the layer traced with MIDI are lower than intracycle variations, and are on the order of 6%. R Hya does not show any deviations from circular symmetry, while an asymmetry of the extended atmosphere of W Hya can be confirmed. These observations of a larger sample of stars than available before confirm previous results, and emphasize the need for dynamic stellar model atmospheres with consistently included dust formation close to the star. It can also be concluded that interferometric observations in the N-band are an irreplaceable tool to resolve close stellar structures and to search for atmospheric constituents.

  17. Organic aerosols

    SciTech Connect

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN.

  18. A painful neuropathy-associated Nav1.7 mutant leads to time-dependent degeneration of small-diameter axons associated with intracellular Ca2+ dysregulation and decrease in ATP levels.

    PubMed

    Rolyan, Harshvardhan; Liu, Shujun; Hoeijmakers, Janneke Gj; Faber, Catharina G; Merkies, Ingemar Sj; Lauria, Giuseppe; Black, Joel A; Waxman, Stephen G

    2016-01-01

    Small fiber neuropathy is a painful sensory nervous system disorder characterized by damage to unmyelinated C- and thinly myelinated Aδ- nerve fibers, clinically manifested by burning pain in the distal extremities and dysautonomia. The clinical onset in adulthood suggests a time-dependent process. The mechanisms that underlie nerve fiber injury in small fiber neuropathy are incompletely understood, although roles for energetic stress have been suggested. In the present study, we report time-dependent degeneration of neurites from dorsal root ganglia neurons in culture expressing small fiber neuropathy-associated G856D mutant Nav1.7 channels and demonstrate a time-dependent increase in intracellular calcium levels [Ca(2+)]i and reactive oxygen species, together with a decrease in ATP levels. Together with a previous clinical report of burning pain in the feet and hands associated with reduced levels of Na(+)/K(+)-ATPase in humans with high altitude sickness, the present results link energetic stress and reactive oxygen species production with the development of a painful neuropathy that preferentially affects small-diameter axons.

  19. A painful neuropathy-associated Nav1.7 mutant leads to time-dependent degeneration of small-diameter axons associated with intracellular Ca2+ dysregulation and decrease in ATP levels

    PubMed Central

    Rolyan, Harshvardhan; Liu, Shujun; Hoeijmakers, Janneke GJ; Faber, Catharina G; Merkies, Ingemar SJ; Lauria, Giuseppe; Black, Joel A

    2016-01-01

    Small fiber neuropathy is a painful sensory nervous system disorder characterized by damage to unmyelinated C- and thinly myelinated Aδ- nerve fibers, clinically manifested by burning pain in the distal extremities and dysautonomia. The clinical onset in adulthood suggests a time-dependent process. The mechanisms that underlie nerve fiber injury in small fiber neuropathy are incompletely understood, although roles for energetic stress have been suggested. In the present study, we report time-dependent degeneration of neurites from dorsal root ganglia neurons in culture expressing small fiber neuropathy-associated G856D mutant Nav1.7 channels and demonstrate a time-dependent increase in intracellular calcium levels [Ca2+]i and reactive oxygen species, together with a decrease in ATP levels. Together with a previous clinical report of burning pain in the feet and hands associated with reduced levels of Na+/K+-ATPase in humans with high altitude sickness, the present results link energetic stress and reactive oxygen species production with the development of a painful neuropathy that preferentially affects small-diameter axons. PMID:27821467

  20. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1996-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size-resolved aerosol microphysics and chemistry. Both profiles included a pollution haze from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core. The soot core increased the calculated extinction by about 10% in the most polluted drier layer relative to a pure sulfate aerosol but had significantly less effect at higher humidities. A 3 km descent through a boundary layer air mass dominated by pollutant aerosol with relative humidities (RH) 10-77% yielded a close agreement between the measured and calculated aerosol optical depths (550 nm) of 0.160 (+/- 0.07) and 0. 157 (+/- 0.034) respectively. During descent the aerosol mass scattering coefficient per unit sulfate mass varied from about 5 to 16 m(exp 2)/g and primarily dependent upon ambient RH. However, the total scattering coefficient per total fine mass was far less variable at about 4+/- 0.7 m(exp 2)/g. A subsequent descent through a Saharan dust layer located above the pollution aerosol layer revealed that both layers contributed similarly to aerosol optical depth. The scattering per unit mass of the coarse aged dust was estimated at 1.1 +/- 0.2 m(exp 2)/g. The large difference (50%) in measured and calculated optical depth for the dust layer exceeded measurements.

  1. Double diameter boring tool

    DOEpatents

    Ashbaugh, Fred N.; Murry, Kenneth R.

    1988-12-27

    A boring tool and a method of operation are provided for boring two concentric holes of precision diameters and depths in a single operation. The boring tool includes an elongated tool body, a shank for attachment to a standard adjustable boring head which is used on a manual or numerical control milling machine and first and second diametrically opposed cutting edges formed for cutting in opposite directions. The diameter of the elongated tool body is substantially equal to the distance from the first cutting edge tip to the axis of rotation plus the distance from the second cutting edge tip to the axis of rotation. The axis of rotation of the tool is spaced from the tool centerline a distance substantially equal to one-half the distance from the second cutting edge tip to the axis of rotation minus one-half the distance from the first cutting edge tip to the axis of rotation. The method includes the step of inserting the boring tool into the boring head, adjusting the distance between the tool centerline and the tool axis of rotation as described above and boring the two concentric holes.

  2. Double diameter boring tool

    DOEpatents

    Ashbaugh, F.A.; Murry, K.R.

    1986-02-10

    A boring tool and a method of operation are provided for boring two concentric holes of precision diameters and depths in a single operation. The boring tool includes an elongated tool body, a shank for attachment to a standard adjustable boring head which is used on a manual or numerical control milling machine and first and second diametrically opposed cutting flutes formed for cutting in opposite directions. The diameter of the elongated tool body is substantially equal to the distance from the first flute tip to the axis of rotation plus the distance from the second flute tip to the axis of rotation. The axis of rotation of the tool is spaced from the tool centerline a distance substantially equal to one-half the distance from the second flute tip to the axis of rotation minus one-half the distance from the first flute tip to the axis of rotation. The method includes the step of inserting the boring tool into the boring head, adjusting the distance between the tool centerline and the tool axis of rotation as described above and boring the two concentric holes.

  3. Characterization of key aerosol, trace gas and meteorological properties and particle formation and growth processes dependent on air mass origins in coastal Southern Spain

    NASA Astrophysics Data System (ADS)

    Diesch, J.; Drewnick, F.; Sinha, V.; Williams, J.; Borrmann, S.

    2011-12-01

    The chemical composition and concentration of aerosols at a certain site can vary depending on season, the air mass source region and distance from sources. Regardless of the environment, new particle formation (NPF) events are one of the major sources for ultrafine particles which are potentially hazardous to human health. Grown particles are optically active and efficient CCN resulting in important implications for visibility and climate (Zhang et al., 2004). The study presented here is intended to provide information about various aspects of continental, urban and marine air masses reflected by wind patterns of the air arriving at the measurement site. Additionally we will be focusing on NPF events associated with different types of air masses affecting their emergence and temporal evolution. Measurements of the ambient aerosol, various trace gases and meteorological parameters were performed within the framework of the DOMINO (Diel Oxidant Mechanisms In relation to Nitrogen Oxides) project. The field campaign took place from mid-November to mid-December 2008 at the atmospheric research station "El Arenosillo" located at the interface between a natural park, industrial cities (Huelva, Seville) and the Atlantic Ocean. Number and mass as well as PAH and black carbon concentrations were measured in PM1 and size distribution instruments covered the size range 6 nm up to 32 μm. The chemical composition of the non-refractory submicron aerosol was measured by means of an Aerosol Mass Spectrometer (AMS). In order to evaluate the characteristics of different air masses linking local and regional sources as well as NPF processes, characteristic air mass types were classified dependent on backwards trajectory pathways and local meteorology. Large nuclei mode concentrations in the number size distribution were found within continental and urban influenced air mass types due to frequently occurring NPF events. Exploring individual production and sink variables, sulfuric

  4. Aerosol Deposition in the Human Lung in Reduced Gravity

    PubMed Central

    2014-01-01

    Abstract The deposition of aerosol in the human lung occurs mainly through a combination of inertial impaction, gravitational sedimentation, and diffusion. For 0.5- to 5-μm-diameter particles and resting breathing conditions, the primary mechanism of deposition in the intrathoracic airways is sedimentation, and therefore the fate of these particles is markedly affected by gravity. Studies of aerosol deposition in altered gravity have mostly been performed in humans during parabolic flights in both microgravity (μG) and hypergravity (∼1.6G), where both total deposition during continuous aerosol mouth breathing and regional deposition using aerosol bolus inhalations were performed with 0.5- to 3-μm particles. Although total deposition increased with increasing gravity level, only peripheral deposition as measured by aerosol bolus inhalations was strongly dependent on gravity, with central deposition (lung depth<200 mL) being similar between gravity levels. More recently, the spatial distribution of coarse particles (mass median aerodynamic diameter≈5 μm) deposited in the human lung was assessed using planar gamma scintigraphy. The absence of gravity caused a smaller portion of 5-μm particles to deposit in the lung periphery than in the central region, where deposition occurred mainly in the airways. Indeed, 5-μm-diameter particles deposit either by inertial impaction, a mechanism most efficient in the large and medium-sized airways, or by gravitational sedimentation, which is most efficient in the distal lung. On the contrary, for fine particles (∼1 μm), both aerosol bolus inhalations and studies in small animals suggest that particles deposit more peripherally in μG than in 1G, beyond the reach of the mucociliary clearance system. PMID:24870702

  5. Aerosol pollution potential from major population centers

    NASA Astrophysics Data System (ADS)

    Kunkel, D.; Tost, H.; Lawrence, M. G.

    2013-04-01

    estimate regions with high deposition, that is more than 1% or more than 5% of the corresponding tracer emission deposited in this region. In doing so, we find that the high deposition areas are larger for aerosols with diameters of 10.0 μm, and these differ less between the MPCs than for aerosols with diameters smaller than 2.5 μm due to faster deposition. Furthermore, cities in regions with high precipitation rates or unfavorable geographic locations, e.g., in a basin, suffer most of this high deposition. Most of the high deposition occurs over land, although about 50% of the MPCs are located along coastlines. By folding the aerosol deposition fields with geographical distributions of cropland, pasture, and forest, the impact on different land ecosystems is assessed. In general, forest is exposed most to deposition from MPCs while pastureland is least affected. Moreover, the impact on humans, measured with a threshold exceedance of pollutant surface mixing ratios, is more dependent on population densities than on the size of the area with a certain mixing ratio.

  6. Changes in abdominal aortic diameter in response to the cold pressor test and nitroglycerin: a new noninvasive model for the assessment of endothelial-dependent and endothelial-independent vascular relaxation.

    PubMed

    Chandraratna, Premindra Anthony N; Wijegunaratne, Kanishka; Farag, Kameel F; Nimalasuriya, Anoshie R; Mathews, Sajen J

    2009-11-01

    Coronary vascular responses to the cold pressor test (CPT) have been shown to parallel changes caused by infusion of acetylcholine. Whereas the CPT is a method of assessing endothelial-dependent vasodilation, nitroglycerin produces endothelial-independent vasodilation. We performed histological studies on autopsy specimens of abdominal aorta and demonstrated that it is predominantly muscular artery. To test the hypothesis that vasodilatory responses of the abdominal aorta to interventions would parallel those of peripheral vessels, 33 normal males without hypertension, diabetes, or hyperlipidemia, and 10 younger male smokers had ultrasound imaging of the abdominal aorta conducted in the control state, 2 minutes after immersion of the hand in cold water and 10 minutes after rewarming the hand (i.e., cold pressor test). The internal diameter of the abdominal aorta at the onset of the QRS complex was determined for each intervention by averaging 4 beats. It was found that the cold pressor test and nitroglycerin resulted in similar degrees of dilation of the abdominal aorta in nonsmoking subjects, and that these responses were attenuated in smokers. Thus, both endothelial-dependent and endothelial-independent vascular relaxation were impaired in smokers.

  7. Pulmonary deposition of aerosols by different mechanical devices.

    PubMed

    Matthys, H; Köhler, D

    1985-01-01

    With a new method for easy labeling of beta 2-agonists we measured intra- and extrapulmonary aerosol deposition after the administration of a bolus from a metered-dose inhaler at residual volume (RV) inhaling after a pause of 2 s and after immediate administration into the inspiratory flow at functional residual capacity (FRC). Immediate administration during a slow inspiratory vital capacity maneuver gives the highest intrapulmonary deposition (30-40%). Compressed air and ultrasonic nebulizers with a particle distribution pattern of 2-5 micron aerodynamic mass median diameter (AMMD) allow in normal subjects to achieve an intrapulmonary deposition of 30-60% during standardized tidal breathing at rest, the magnitude of the deposition depending mainly on each subject's larynx geometry. The outlet system leads to different deposition patterns in aerosol generators with the same AMMD. Many commercially available aerosol generators do not fulfill the criteria for any intrapulmonary aerosol deposition. For drug administration into the lungs, condensation aerosol generators ('steam boiler nebulizers') are useless as well as compressed-air, ultrasonic and steam driven nebulizers with a particle size of more than 10 micron AMMD.

  8. CURRENT AND EMERGING TECHNIQUES FOR CHARACTERIZING TROPOSPHERIC AEROSOLS

    EPA Science Inventory

    Particulate matter generally includes dust, smoke, soot, or aerosol particles. Environmental research addresses the origin, size, chemical composition, and the formation mechanics of aerosols. In the troposphere, fine aerosols (e.g. with diameters < 2.5 um) remain suspended until...

  9. Radioactive Aerosols as an Index of Air Pollution in the City of Thessaloniki, Greece

    SciTech Connect

    Ioannidou, A.; Papastefanou, C.

    2010-01-21

    This study summarizes results of an investigation done in order to find out how the radioactive aerosols of {sup 7}Be could serve as indicators of air pollution conditions. Beryllium-7 is a cosmic-ray produced radionuclide with an important fraction of its production to take place in the upper troposphere. Once it is formed is rapidly associated with submicron aerosol particles and participates in the formation and growth of the accumulation mode aerosols, which is a major reservoir of pollutants in the atmosphere. In order to define any influence of AMAD of {sup 7}Be aerosols by air pollution conditions, the aerodynamic size distribution of {sup 7}Be aerosols was determined by collecting samples at different locations in the suburban area of the city of Thessaloniki, including rural areas, industrial areas, high elevations, marine environment and the airport area. The aerodynamic size distribution of {sup 7}Be aerosols in different locations was obtained by using Andersen 1-ACFM cascade impactors and the Activity Median Aerodynamic Diameter (AMAD) was determined. Some dependency of the AMADs on height has been observed, while in near marine environment the {sup 7}Be activity size distribution was dominant in the upper size range of aerosol particles. Low AMADs as low as 0.62 to 0.74 {mu}m of {sup 7}Be aerosols have been observed at locations characterized with relative low pollution, while it is concluded that in the activity size distribution of ambient aerosols, {sup 7}Be changes to larger particle sizes in the presence of pollutants, since low AMADs of {sup 7}Be aerosols have been observed at low polluted locations. Preliminary data of simultaneous measurements of {sup 214}Pb and {sup 212}Pb with gaseous air pollutants CO, NO, NO{sub X}, SO{sub 2} and total suspended particulate matter (TSP) show that radon decay products near the ground could be a useful index of air pollution potential conditions and transport processes in the boundary layer.

  10. Measurement of size-dependent single scattering albedo of fresh biomass burning aerosols using the extinction-minus-scattering technique with a combination of cavity ring-down spectroscopy and nephelometry

    NASA Astrophysics Data System (ADS)

    Singh, Sujeeta; Fiddler, Marc N.; Bililign, Solomon

    2016-11-01

    Biomass burning (BB) aerosols have a significant effect on regional climate, and represent a significant uncertainty in our understanding of climate change. Using a combination of cavity ring-down spectroscopy and integrating nephelometry, the single scattering albedo (SSA) and Ångstrom absorption exponent (AAE) were measured for several North American biomass fuels. This was done for several particle diameters for the smoldering and flaming stage of white pine, red oak, and cedar combustion. Measurements were done over a wider wavelength range than any previous direct measurement of BB particles. While the offline sampling system used in this work shows promise, some changes in particle size distribution were observed, and a thorough evaluation of this method is required. The uncertainty of SSA was 6 %, with the truncation angle correction of the nephelometer being the largest contributor to error. While scattering and extinction did show wavelength dependence, SSA did not. SSA values ranged from 0.46 to 0.74, and were not uniformly greater for the smoldering stage than the flaming stage. SSA values changed with particle size, and not systematically so, suggesting the proportion of tar balls to fractal black carbon change with fuel type/state and particle size. SSA differences of 0.15-0.4 or greater can be attributed to fuel type or fuel state for fresh soot. AAE values were quite high (1.59-5.57), despite SSA being lower than is typically observed in wildfires. The SSA and AAE values in this work do not fit well with current schemes that relate these factors to the modified combustion efficiency of a burn. Combustion stage, particle size, fuel type, and fuel condition were found to have the most significant effects on the intrinsic optical properties of fresh soot, though additional factors influence aged soot.

  11. Aerosol Variability Observed with Rpas

    NASA Astrophysics Data System (ADS)

    Altstädter, B.; Lampert, A.; Scholtz, A.; Bange, J.; Platis, A.; Hermann, M.; Wehner, B.

    2013-08-01

    To observe the origin, vertical and horizontal distribution and variability of aerosol particles, and especially ultrafine particles recently formed, we plan to employ the remotely piloted aircraft system (RPAS) Carolo-P360 "ALADINA" of TU Braunschweig. The goal of the presented project is to investigate the vertical and horizontal distribution, transport and small-scale variability of aerosol particles in the atmospheric boundary layer using RPAS. Two additional RPAS of type MASC of Tübingen University equipped with turbulence instrumentation add the opportunity to study the interaction of the aerosol concentration with turbulent transport and exchange processes of the surface and the atmosphere. The combination of different flight patterns of the three RPAS allows new insights in atmospheric boundary layer processes. Currently, the different aerosol sensors are miniaturized at the Leibniz Institute for Tropospheric Research, Leipzig and together with the TU Braunschweig adapted to fit into the RPAS. Moreover, an additional meteorological payload for measuring temperature, humidity and turbulence properties is constructed by Tübingen University. Two condensation particle counters determine the total aerosol number with a different lower detection threshold in order to investigate the horizontal and vertical aerosol variability and new particle formation (aerosol particles of some nm diameter). Further the aerosol size distribution in the range from about 0.300 to ~5 μm is given by an optical particle counter.

  12. Aerosol in the Pacific troposphere

    NASA Technical Reports Server (NTRS)

    Clarke, Antony D.

    1989-01-01

    The use of near real-time optical techniques is emphasized for the measurement of mid-tropospheric aerosol over the Central Pacific. The primary focus is on measurement of the aerosol size distribution over the range of particle diameters from 0.15 to 5.0 microns that are essential for modeling CO2 backscatter values in support of the laser atmospheric wind sounder (LAWS) program. The measurement system employs a LAS-X (Laser Aerosol Spectrometer-PMS, Boulder, CO) with a custom 256 channel pulse height analyzer and software for detailed measurement and analysis of aerosol size distributions. A thermal preheater system (Thermo Optic Aerosol Descriminator (TOAD) conditions the aerosol in a manner that allows the discrimination of the size distribution of individual aerosol components such as sulfuric acid, sulfates and refractory species. This allows assessment of the relative contribution of each component to the BCO2 signal. This is necessary since the different components have different sources, exhibit independent variability and provide different BCO2 signals for a given mass and particle size. Field activities involve experiments designed to examine both temporal and spatial variability of these aerosol components from ground based and aircraft platforms.

  13. Multiphase chemical kinetics of OH radical uptake by molecular organic markers of biomass burning aerosols: humidity and temperature dependence, surface reaction, and bulk diffusion.

    PubMed

    Arangio, Andrea M; Slade, Jonathan H; Berkemeier, Thomas; Pöschl, Ulrich; Knopf, Daniel A; Shiraiwa, Manabu

    2015-05-14

    Multiphase reactions of OH radicals are among the most important pathways of chemical aging of organic aerosols in the atmosphere. Reactive uptake of OH by organic compounds has been observed in a number of studies, but the kinetics of mass transport and chemical reaction are still not fully understood. Here we apply the kinetic multilayer model of gas-particle interactions (KM-GAP) to experimental data from OH exposure studies of levoglucosan and abietic acid, which serve as surrogates and molecular markers of biomass burning aerosol (BBA). The model accounts for gas-phase diffusion within a cylindrical coated-wall flow tube, reversible adsorption of OH, surface-bulk exchange, bulk diffusion, and chemical reactions at the surface and in the bulk of the condensed phase. The nonlinear dependence of OH uptake coefficients on reactant concentrations and time can be reproduced by KM-GAP. We find that the bulk diffusion coefficient of the organic molecules is approximately 10(-16) cm(2) s(-1), reflecting an amorphous semisolid state of the organic substrates. The OH uptake is governed by reaction at or near the surface and can be kinetically limited by surface-bulk exchange or bulk diffusion of the organic reactants. Estimates of the chemical half-life of levoglucosan in 200 nm particles in a biomass burning plume increase from 1 day at high relative humidity to 1 week under dry conditions. In BBA particles transported to the free troposphere, the chemical half-life of levoglucosan can exceed 1 month due to slow bulk diffusion in a glassy matrix at low temperature.

  14. Enhanced extinction of visible radiation due to hydrated aerosols in mist and fog

    NASA Astrophysics Data System (ADS)

    Elias, T.; Dupont, J.-C.; Hammer, E.; Hoyle, C. R.; Haeffelin, M.; Burnet, F.; Jolivet, D.

    2015-06-01

    The study assesses the contribution of aerosols to the extinction of visible radiation in the mist-fog-mist cycle. Relative humidity is large in the mist-fog-mist cycle, and aerosols most efficient in interacting with visible radiation are hydrated and compose the accumulation mode. Measurements of the microphysical and optical properties of these hydrated aerosols with diameters larger than 0.4 μm were carried out near Paris, during November 2011, under ambient conditions. Eleven mist-fog-mist cycles were observed, with a cumulated fog duration of 96 h, and a cumulated mist-fog-mist cycle duration of 240 h. In mist, aerosols grew by taking up water at relative humidities larger than 93%, causing a visibility decrease below 5 km. While visibility decreased down from 5 to a few kilometres, the mean size of the hydrated aerosols increased, and their number concentration (Nha) increased from approximately 160 to approximately 600 cm-3. When fog formed, droplets became the strongest contributors to visible radiation extinction, and liquid water content (LWC) increased beyond 7 mg m-3. Hydrated aerosols of the accumulation mode co-existed with droplets, as interstitial non-activated aerosols. Their size continued to increase, and some aerosols achieved diameters larger than 2.5 μm. The mean transition diameter between the aerosol accumulation mode and the small droplet mode was 4.0 ± 1.1 μm. Nha also increased on average by 60 % after fog formation. Consequently, the mean contribution to extinction in fog was 20 ± 15% from hydrated aerosols smaller than 2.5 μm and 6 ± 7% from larger aerosols. The standard deviation was large because of the large variability of Nha in fog, which could be smaller than in mist or 3 times larger. The particle extinction coefficient in fog can be computed as the sum of a droplet component and an aerosol component, which can be approximated by 3.5 Nha (Nha in cm-3 and particle extinction coefficient in Mm-1. We observed an influence of

  15. Photoacoustic Optical Properties at UV, VIS, and near IR Wavelengths for Laboratory Generated and Winter Time Ambient Urban Aerosols

    NASA Technical Reports Server (NTRS)

    Gyawali, M.; Arnott, W. P.; Zaveri, R. A.; Song, C.; Moosmuller, H.; Liu, L.; Mishchenko, M. I.; Chen, L.-W.A.; Green, M. C.; Watson, J. G.; Chow, J. C.

    2012-01-01

    We present the laboratory and ambient photoacoustic (PA) measurement of aerosol light absorption coefficients at ultraviolet wavelength (i.e., 355 nm) and compare with measurements at 405, 532, 870, and 1047 nm. Simultaneous measurements of aerosol light scattering coefficients were achieved by the integrating reciprocal nephelometer within the PA's acoustic resonator. Absorption and scattering measurements were carried out for various laboratory generated aerosols, including salt, incense, and kerosene soot to evaluate the instrument calibration and gain insight on the spectral dependence of aerosol light absorption and scattering. Ambient measurements were obtained in Reno, Nevada, between 18 December 2009 and 18 January 2010. The measurement period included days with and without strong ground level temperature inversions, corresponding to highly polluted (freshly emitted aerosols) and relatively clean (aged aerosols) conditions. Particulate matter (PM) concentrations were measured and analyzed with other tracers of traffic emissions. The temperature inversion episodes caused very high concentration of PM (sub 2.5) and PM( sub 10) (particulate matter with aerodynamic diameters less than 2.5 micrometers and 10 micrometers, respectively) and gaseous pollutants: carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO2). The diurnal change of absorption and scattering coefficients during the polluted (inversion) days increased approximately by a factor of two for all wavelengths compared to the clean days. The spectral variation in aerosol absorption coefficients indicated a significant amount of absorbing aerosol from traffic emissions and residential wood burning. The analysis of single scattering albedo (SSA), Angstrom exponent of absorption (AEA), and Angstrom exponent of scattering (AES) for clean and polluted days provides evidences that the aerosol aging and coating process is suppressed by strong temperature inversion under cloudy conditions. In

  16. Effects of Airflow and Changing Humidity on the Aerosolization of Respirable Fungal Fragments and Conidia of Botrytis cinerea

    PubMed Central

    2012-01-01

    The purpose of this study was to investigate the aerosolization of particles (micro- and macroconidia and fragments) from Botrytis cinerea cultures in relation to potential human inhalation in indoor environments. The influence of the following factors on the aerosolization of B. cinerea particles was studied: exposure to airflow, relative humidity (rh), changing rh, and plant or building materials. The aerodynamic diameter (da) and the respirable fraction of the aerosolized particles were determined. Conidia and fragments of B. cinerea were not aerosolized as a response to a decrease in the rh. In contrast, both micro- and macroconidia and fungal fragments were aerosolized when exposed to an airflow of 1.5 m s−1 or 0.5 m s−1. Significantly more particles of microconidial size and fragment size were aerosolized at a low rh (18 to 40% rh) than at a higher rh (60 to 80% rh) when cultures were exposed to airflow. The size of the respirable fraction of the aerosolized particles was dependent on the rh but not on the growth material. At high rh, about 30% of the aerosolized particles were of respirable size, while at low rh, about 70% were of respirable size. During low rh, more fungal (1→3)-β-d-glucan and chitinase were aerosolized than during high rh. In conclusion, exposure to external physical forces such as airflow is necessary for the aerosolization of particles from B. cinerea. The amount and size distribution are highly affected by the rh, and more particles of respirable sizes were aerosolized at low rh than at high rh. PMID:22447608

  17. Aerosol measurement program strategy for global aerosol backscatter model development

    NASA Technical Reports Server (NTRS)

    Bowdle, David A.

    1985-01-01

    The purpose was to propose a balanced program of aerosol backscatter research leading to the development of a global model of aerosol backscatter. Such a model is needed for feasibility studies and systems simulation studies for NASA's prospective satellite-based Doppler lidar wind measurement system. Systems of this kind measure the Doppler shift in the backscatter return from small atmospheric aerosol wind tracers (of order 1 micrometer diameter). The accuracy of the derived local wind estimates and the degree of global wind coverage for such a system are limited by the local availability and by the global scale distribution of natural aerosol particles. The discussions here refer primarily to backscatter model requirements at CO2 wavelengths, which have been selected for most of the Doppler lidar systems studies to date. Model requirements for other potential wavelengths would be similar.

  18. Inorganic ions in ambient fine particles over a National Park in central India: Seasonality, dependencies between SO42-, NO3-, and NH4+, and neutralization of aerosol acidity

    NASA Astrophysics Data System (ADS)

    Kumar, Samresh; Sunder Raman, Ramya

    2016-10-01

    Twelve hour integrated ambient fine particles (PM2.5) were collected over an Van Vihar National Park (VVNP), in Bhopal, Central India. Samples were collected on filter substrates every-other-day for two years (2012 and 2013). In addition to PM2.5 mass concentration, water soluble inorganic ions (WSIIs) were also measured. Further, on-site meteorological parameters including temperature, wind speed, wind direction, relative humidity, rainfall and atmospheric pressure were recorded. During 2012, the average PM2.5 concentration was 40 ± 31 μgm-3 while during 2013 it was 48 ± 50 μgm-3. Further, in about 20% of the samples the 12 h integrated fine PM mass exceeded the daily (24 h) average standards (60 μgm-3). This observation suggests that the PM2.5 mass concentration at the study site is likely to be in violation of the National Ambient Air Quality Standard (NAAQS), India. During the study period the sum of three major ions (SO42-, NO3-, and NH4+) accounted for 19.4% of PM2.5 mass on average. Air parcel back trajectory ensembles revealed that emissions from thermal power plants were likely to be the main regional source of particulate SO42- and NO3- measured over VVNP. Further, local traffic activities appeared to have no significant impact on the concentrations of PM2.5 and its WSIIs constituents, as revealed by a day-of-the-week analysis. PM2.5 mass, SO42-, NO3-, and NH4+ showed a pronounced seasonal trend with winter (Jan, Feb) and post-monsoon (Oct, Nov, Dec) highs and pre-monsoon (Mar, Apr, May) and monsoon (Jun, Jul, Aug, Sep) lows, during both 2012 and 2013. Further, when the sum of SO42- and NO3- constituted greater than 90% of water soluble inorganic anions by mass, they were linearly dependent on one another and moderately anti-correlated (r2 = 0.60). The molar ratios of NH4+ and non-sea salt SO42- were examined to understand the aerosol neutralization mechanisms and particulate NO3- formation. An assessment of these ratios and subsequent analyses

  19. Growth of nanostructures with controlled diameter

    DOEpatents

    Pfefferle, Lisa; Haller, Gary; Ciuparu, Dragos

    2009-02-03

    Transition metal-substituted MCM-41 framework structures with a high degree of structural order and a narrow pore diameter distribution were reproducibly synthesized by a hydrothermal method using a surfactant and an anti-foaming agent. The pore size and the mesoporous volume depend linearly on the surfactant chain length. The transition metals, such as cobalt, are incorporated substitutionally and highly dispersed in the silica framework. Single wall carbon nanotubes with a narrow diameter distribution that correlates with the pore diameter of the catalytic framework structure were prepared by a Boudouard reaction. Nanostructures with a specified diameter or cross-sectional area can therefore be predictably prepared by selecting a suitable pore size of the framework structure.

  20. The DIAMET campaign

    NASA Astrophysics Data System (ADS)

    Vaughan, G.

    2012-04-01

    DIAMET (DIAbatic influences on Mesoscale structures in ExTratropical storms) is a joint project between the UK academic community and the Met Office. Its focus is on understanding and predicting mesoscale structures in synoptic-scale storms, and in particular on the role of diabatic processes in generating and maintaining them. Such structures include fronts, rain bands, secondary cyclones, sting jets etc, and are important because much of the extreme weather we experience (e.g. strong winds, heavy rain) comes from such regions. The project conducted two field campaigns in the autumn of 2011, from September 14 - 30 and November 24 - December 14, based around the FAAM BAe146 aircraft with support from ground-based radar and radiosonde measurements. Detailed modelling, mainly using the Met Office Unified model, supported the planning and interpretation of these campaigns. This presentation will give a brief overview of the campaigns. Both in September and November-December the weather regime was westerly, with a strong jet stream directed across the Atlantic. Three IOPs were conducted in September, to observe a convective band ahead of an upper-level trough, waves on a long trailing cold front, and a warm conveyor belt associated with a secondary cyclone. In November-December six IOPs were conducted, to observe frontal passages and high winds. This period was notable for a number of very strong windstorms passing across the north of the UK, and gave us an opportunity to examine bent-back warm fronts in the southern quadrant of these storms where the strongest winds are found. The case studies fell into two basic patterns. In the majority of cases, dropsonde legs at high level were used to obtain a cross-section of winds and thermodynamic structure (e.g. across a front), followed by in situ legs at lower levels (generally where the temperature was between 0 and -10°) to examine microphysical processes, especially ice multiplication and the extent of supercooled water

  1. Lanthanum Affects Bell Pepper Seedling Quality Depending on the Genotype and Time of Exposure by Differentially Modifying Plant Height, Stem Diameter and Concentrations of Chlorophylls, Sugars, Amino Acids, and Proteins.

    PubMed

    García-Jiménez, Atonaltzin; Gómez-Merino, Fernando C; Tejeda-Sartorius, Olga; Trejo-Téllez, Libia I

    2017-01-01

    Lanthanum (La) is considered a beneficial element, capable of inducing hormesis. Hormesis is a dose-response relationship phenomenon characterized by low-dose stimulation and high-dose inhibition. Herein we tested the effect of 0 and 10 μM La on growth and biomolecule concentrations of seedlings of four sweet bell pepper (Capsicum annuum L.) varieties, namely Sven, Sympathy, Yolo Wonder, and Zidenka. Seedling evaluations were performed 15 and 30 days after treatment applications (dat) under hydroponic greenhouse conditions. Seedling height was significantly increased by La, growing 20% taller in Yolo Wonder plants, in comparison to the control. Similarly, La significantly enhanced shoot diameter, with increases of 9 and 9.8% in measurements performed 15 and 30 dat, respectively, as compared to the control. Likewise, La-treated seedlings had a higher number of flower buds than the control. An increase in the number of leaves because of La application was observed in Yolo Wonder seedlings, both 15 and 30 dat, while leaf area was augmented in this variety only 30 dat. Nevertheless, La did not affect dry biomass accumulation. La effects on biomolecule concentration were differential over time. In all varieties, La stimulated the biosynthesis of chlorophyll a, b and total 15 dat, though 30 dat only the varieties Sympathy and Yolo Wonder showed enhanced concentrations of these molecules because of La. Total soluble sugars increased in La-treated seedlings 30 dat. Interestingly, while most varieties exposed to La showed a reduction in amino acid concentration 15 dat, the opposite trend was observed 30 dat. Importantly, in all varieties evaluated, La stimulated soluble protein concentration 30 dat. It is important to note that while chlorophyll concentrations increased in all varieties exposed to La, both 15 and 30 dat, those of soluble sugars and proteins consistently increased only 30 dat, but not 15 dat. Our results confirm that La may improve seedling quality by

  2. Enhanced extinction of visible radiation due to hydrated aerosols in mist and fog

    NASA Astrophysics Data System (ADS)

    Elias, T.; Dupont, J.-C.; Hammer, E.; Hoyle, C. R.; Haeffelin, M.; Burnet, F.; Jolivet, D.

    2015-01-01

    The study assesses the contribution of aerosols to the extinction of visible radiation in the mist-fog-mist cycle. Measurements of the microphysical and optical properties of hydrated aerosols with diameters larger than 400 nm, composing the accumulation mode, which are the most efficient to interact with visible radiation, were carried out near Paris, during November 2011, in ambient conditions. Eleven mist-fog-mist cycles were observed, with cumulated fog duration of 95 h, and cumulated mist-fog-mist duration of 240 h. In mist, aerosols grew up by taking up water at relative humidities larger than 93%, causing a visibility decrease below 5 km. While visibility decreased down to few km, the mean size of the hydrated aerosols increased, and their number concentration (Nha) increased from approximately 160 to approximately 600 cm-3. When fog formed, droplets became the strongest contributors to visible radiation extinction, and liquid water content (LWC) increased beyond 7 mg m-3. Hydrated aerosols of the accumulation mode co-existed with droplets, as interstitial non-activated aerosols. Their size continued to increase, and a significant proportion of aerosols achieved diameters larger than 2.5 μm. The mean transition diameter between the accumulation mode and the small droplet mode was 4.0 ± 1.1 μm. Moreover Nha increased on average by 60% after fog formation. Consequently the mean aerosol contribution to extinction in fog was 20 ± 15% for diameter smaller than 2.5 μm and 6 ± 7% beyond. The standard deviation is large because of the large variability of Nha in fog, which could be smaller than in mist or three times larger. The particle extinction coefficient in fog can be computed as the sum of a droplet component and an aerosol component, which can be approximated by 3.5 Nha (Nha in cm-3 and particle extinction coefficient in Mm-1). We observed an influence of the main formation process on Nha, but not on the contribution to fog extinction by aerosols

  3. Stratospheric Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf, F.; Gore, Warren J. (Technical Monitor)

    1998-01-01

    Stratospheric aerosols affect the atmospheric energy balance by scattering and absorbing solar and terrestrial radiation. They also can alter stratospheric chemical cycles by catalyzing heterogeneous reactions which markedly perturb odd nitrogen, chlorine and ozone levels. Aerosol measurements by satellites began in NASA in 1975 with the Stratospheric Aerosol Measurement (SAM) program, to be followed by the Stratospheric Aerosol and Gas Experiment (SAGE) starting in 1979. Both programs employ the solar occultation, or Earth limb extinction, techniques. Major results of these activities include the discovery of polar stratospheric clouds (PSCs) in both hemispheres in winter, illustrations of the impacts of major (El Chichon 1982 and Pinatubo 1991) eruptions, and detection of a negative global trend in lower stratospheric/upper tropospheric aerosol extinction. This latter result can be considered a triumph of successful worldwide sulfur emission controls. The SAGE record will be continued and improved by SAGE III, currently scheduled for multiple launches beginning in 2000 as part of the Earth Observing System (EOS). The satellite program has been supplemented by in situ measurements aboard the ER-2 (20 km ceiling) since 1974, and from the DC-8 (13 km ceiling) aircraft beginning in 1989. Collection by wire impactors and subsequent electron microscopic and X-ray energy-dispersive analyses, and optical particle spectrometry have been the principle techniques. Major findings are: (1) The stratospheric background aerosol consists of dilute sulfuric acid droplets of around 0.1 micrometer modal diameter at concentration of tens to hundreds of monograms per cubic meter; (2) Soot from aircraft amounts to a fraction of one percent of the background total aerosol; (3) Volcanic eruptions perturb the sulfuric acid, but not the soot, aerosol abundance by several orders of magnitude; (4) PSCs contain nitric acid at temperatures below 195K, supporting chemical hypotheses

  4. Organic Composition and Morphology of Sea Spray Aerosols as a Function of Biological Life during IMPACTS

    NASA Astrophysics Data System (ADS)

    Pham, D.; Moffet, R.; Fraund, M. W.; O'Brien, R.; Laskina, O.; Prather, K. A.; Grassian, V. H.; Beall, C.; Wang, X.; Forestieri, S.; Cappa, C. D.

    2015-12-01

    Aerosols influence climate by directly reflecting or absorbing sunlight, or indirectly by affecting clouds. A major source of aerosols is from oceanic wave breaking. Due to their complexity, the effects of marine aerosol on climate are uncertain. To provide more detailed measurements of the chemical composition of marine aerosols, Scanning Transmission X-Ray Microscopy coupled with Near Edge X-Ray Absorption Fine Structure (SXTM-NEXAFS) was used to give spatially resolved molecular information for carbon and oxygen. Application of STXM/NEXAFS to particles collected during a mesocosm study using a unique wave channel facility to generate aerosols shows that the organic volume fraction of aerosols at the aerodynamic diameter size range of 0.18-0.32 μm are a direct function of the biological activity in the sea water. Aerosol organic volume fraction increased from 0.32 for particles generated from seawater containing low biolife to 0.49 and 0.40 for particles produced during phytoplankton blooms. However, the organic volume fraction of aerosols at the aerodynamic diameter size range of 0.56-1 μm did not change with biological activity. Measurements also show that different types of organics can concentrate into aerosols depending on the enzyme activity expressed at the time. Enhanced spectral signatures for aliphatic hydrocarbons were observed during the first phytoplankton bloom compared to a second phytoplankton bloom occurring directly thereafter. The decreased signature of aliphatic organics in the second phytoplankton bloom was correlated with increased lipase activity from heterobacteria. Organic aggregates having similar morphology also differ in composition from their carbon spectra from the two blooms. For July 17, organic aggregates were much richer in hydrocarbons, which showed a remarkably intense C-H absorbance and a broad C-C absorbance. Organic aggregates observed for July 26-27, did not have the C-H and C-C signatures, but contained more polar

  5. Temporal and spatial variation of morphological descriptors for atmospheric aerosols collected in Mexico City

    NASA Astrophysics Data System (ADS)

    China, S.; Mazzoleni, C.; Dubey, M. K.; Chakrabarty, R. K.; Moosmuller, H.; Onasch, T. B.; Herndon, S. C.

    2010-12-01

    We present an analysis of morphological characteristics of atmospheric aerosol collected during the MILAGRO (Megacity Initiative: Local and Global Research Observations) field campaign that took place in Mexico City in March 2006. The sampler was installed on the Aerodyne mobile laboratory. The aerosol samples were collected on nuclepore clear polycarbonate filters mounted in Costar pop-top membrane holders. More than one hundred filters were collected at different ground sites with different atmospheric and geographical characteristics (urban, sub-urban, mountain-top, industrial, etc.) over a month period. Selected subsets of these filters were analyzed for aerosol morphology using a scanning electron microscope and image analysis techniques. In this study we investigate spatial and temporal variations of aerosol shape descriptors, morphological parameters, and fractal dimension. We also compare the morphological results with other aerosol measurements such as aerosol optical properties(scattering and absorption) and size distribution data. Atmospheric aerosols have different morphological characteristics depending on many parameters such as emission sources, atmospheric formation pathways, aging processes, and aerosol mixing state. The aerosol morphology influences aerosol chemical and mechanical interactions with the environment, physical properties, and radiative effects. In this study, ambient aerosol particles have been classified in different shape groups as spherical, irregularly shaped, and fractal-like aggregates. Different morphological parameters such as aspect ratio, roundness, feret diameter, etc. have been estimated for irregular shaped and spherical particles and for different kinds of soot particles including fresh soot, collapsed and coated soot. Fractal geometry and image processing have been used to obtain morphological characteristics of different soot particles. The number of monomers constituting each aggregate and their diameters were

  6. Lanthanum Affects Bell Pepper Seedling Quality Depending on the Genotype and Time of Exposure by Differentially Modifying Plant Height, Stem Diameter and Concentrations of Chlorophylls, Sugars, Amino Acids, and Proteins

    PubMed Central

    García-Jiménez, Atonaltzin; Gómez-Merino, Fernando C.; Tejeda-Sartorius, Olga; Trejo-Téllez, Libia I.

    2017-01-01

    Lanthanum (La) is considered a beneficial element, capable of inducing hormesis. Hormesis is a dose-response relationship phenomenon characterized by low-dose stimulation and high-dose inhibition. Herein we tested the effect of 0 and 10 μM La on growth and biomolecule concentrations of seedlings of four sweet bell pepper (Capsicum annuum L.) varieties, namely Sven, Sympathy, Yolo Wonder, and Zidenka. Seedling evaluations were performed 15 and 30 days after treatment applications (dat) under hydroponic greenhouse conditions. Seedling height was significantly increased by La, growing 20% taller in Yolo Wonder plants, in comparison to the control. Similarly, La significantly enhanced shoot diameter, with increases of 9 and 9.8% in measurements performed 15 and 30 dat, respectively, as compared to the control. Likewise, La-treated seedlings had a higher number of flower buds than the control. An increase in the number of leaves because of La application was observed in Yolo Wonder seedlings, both 15 and 30 dat, while leaf area was augmented in this variety only 30 dat. Nevertheless, La did not affect dry biomass accumulation. La effects on biomolecule concentration were differential over time. In all varieties, La stimulated the biosynthesis of chlorophyll a, b and total 15 dat, though 30 dat only the varieties Sympathy and Yolo Wonder showed enhanced concentrations of these molecules because of La. Total soluble sugars increased in La-treated seedlings 30 dat. Interestingly, while most varieties exposed to La showed a reduction in amino acid concentration 15 dat, the opposite trend was observed 30 dat. Importantly, in all varieties evaluated, La stimulated soluble protein concentration 30 dat. It is important to note that while chlorophyll concentrations increased in all varieties exposed to La, both 15 and 30 dat, those of soluble sugars and proteins consistently increased only 30 dat, but not 15 dat. Our results confirm that La may improve seedling quality by

  7. Generation of aerosolized drugs.

    PubMed

    Wolff, R K; Niven, R W

    1994-01-01

    The expanding use of inhalation therapy has placed demands on current aerosol generation systems that are difficult to meet with current inhalers. The desire to deliver novel drug entities such as proteins and peptides, as well as complex formulations including liposomes and microspheres, requires delivery systems of improved efficiency that will target the lung in a reproducible manner. These efforts have also been spurred by the phase out of chlorofluorocarbons (CFCs) and this has included a directed search for alternative propellants. Consequently, a variety of new aerosol devices and methods of generating aerosols are being studied. This includes the use of freon replacement propellants, dry powder generation systems, aqueous unit spray systems and microprocessor controlled technologies. Each approach has advantages and disadvantages depending upon each principle of action and set of design variables. In addition, specific drugs may be better suited for one type of inhaler device vs. another. The extent to which aerosol generation systems achieve their goals is discussed together with a summary of selected papers presented at the recent International Congress of Aerosols in Medicine.

  8. Aerosol chemistry in GLOBE

    NASA Technical Reports Server (NTRS)

    Clarke, Antony D.; Rothermel, Jeffry; Jarzembski, Maurice A.

    1993-01-01

    This task addresses the measurement and understanding of the physical and chemical properties of aerosol in remote regions that are responsible for aerosol backscatter at infrared wavelengths. Because it is representative of other clean areas, the remote Pacific is of extreme interest. Emphasis is on the determination size dependent aerosol properties that are required for modeling backscatter at various wavelengths and upon those features that may be used to help understand the nature, origin, cycling and climatology of these aerosols in the remote troposphere. Empirical relationships will be established between lidar measurements and backscatter derived from the aerosol microphysics as required by the NASA Doppler Lidar Program. This will include the analysis of results from the NASA GLOBE Survey Mission Flight Program. Additional instrument development and deployment will be carried out in order to extend and refine this data base. Identified activities include participation in groundbased and airborne experiments. Progress to date includes participation in, analysis of, and publication of results from Mauna Loa Backscatter Intercomparison Experiment (MABIE) and Global Backscatter Experiment (GLOBE).

  9. Cloud Forming Potential of Aminium Carboxylate Aerosols

    NASA Astrophysics Data System (ADS)

    Gomez Hernandez, M. E.; McKeown, M.; Taylor, N.; Collins, D. R.; Lavi, A.; Rudich, Y.; Zhang, R.

    2014-12-01

    Atmospheric aerosols affect visibility, air quality, human health, climate, and in particular the aerosol direct and indirect forcings represent the largest uncertainty in climate projections. In this paper, we present laboratory measurements of the hygroscopic growth factors (HGf) and cloud condensation nuclei (CCN) activity of a series of aminium carboxylate salt aerosols, utilizing a Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) coupled to a Condensation Particle Counter (CPC) and a CCN counter. HGf measurements were conducted for size-selected aerosols with diameters ranging from 46 nm to 151 nm and at relative humidity (RH%) values ranging from 10 to 90%. In addition, we have calculated the CCN activation diameters for the aminium carboxylate aerosols and derived the hygroscopicity parameter (k or kappa) values for all species using three methods, i.e., the mixing rule approximation, HGf, and CCN results. Our results show that variations in the ratio of acid to base directly affect the activation diameter, HGf, and (k) values of the aminium carboxylate aerosols. Atmospheric implications of the variations in the chemical composition of aminium carboxylate aerosols on their cloud forming potential will be discussed.

  10. Systematic biases in radiometric diameter determinations

    NASA Technical Reports Server (NTRS)

    Spencer, John R.; Lebofsky, Larry A.; Sykes, Mark V.

    1989-01-01

    Radiometric diameter determinations are presently shown to often be significantly affected by the effect of rotation. This thermal effect of rotation depends not only on the object's thermal inertia, rotation rate, and pole orientation, but also on its temperature, since colder objects having constant rotation rate and thermal inertia will radiate less of their heat on the diurnal than on the nocturnal hemisphere. A disk-integrated beaming parameter of 0.72 is determined for the moon, and used to correct empirically for the roughness effects in thermophysical models; the standard thermal model is found to systematically underestimate cold object diameters, while overstating their albedos.

  11. THERMAL EVALUATION OF DIFFERENT DRIFT DIAMETER SIZES

    SciTech Connect

    H.M. Wade

    1999-01-04

    The purpose of this calculation is to estimate the thermal response of a repository-emplaced waste package and its corresponding drift wall surface temperature with different drift diameters. The case examined is that of a 21 pressurized water reactor (PWR) uncanistered fuel (UCF) waste package loaded with design basis spent nuclear fuel assemblies. This calculation evaluates a 3.5 meter to 6.5 meter drift diameter range in increments of 1.0 meters. The time-dependent temperatures of interest, as determined by this calculation, are the spent nuclear fuel cladding temperature, the waste package surface temperature, and the drift wall surface temperature.

  12. Background aerosol over the Himalayas and Tibetan Plateau: observed characteristics of aerosol mass loading

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Cong, Zhiyuan; Wang, Yuesi; Xin, Jinyuan; Wan, Xin; Pan, Yuepeng; Liu, Zirui; Wang, Yonghong; Zhang, Guoshuai; Wang, Zhongyan; Wang, Yongjie; Kang, Shichang

    2017-01-01

    To investigate the atmospheric aerosols of the Himalayas and Tibetan Plateau (HTP), an observation network was established within the region's various ecosystems, including at the Ngari, Qomolangma (QOMS), Nam Co, and Southeastern Tibetan (SET) stations. In this paper we illustrate aerosol mass loadings by integrating in situ measurements with satellite and ground-based remote sensing datasets for the 2011-2013 period, on both local and large scales. Mass concentrations of these surface atmospheric aerosols were relatively low and varied with land cover, showing a general tendency of Ngari and QOMS (barren sites) > Nam Co (grassland site) > SET (forest site). Daily averages of online PM2.5 (particulates with aerodynamic diameters below 2.5 µm) at these sites were sequentially 18.2 ± 8.9, 14.5 ± 7.4, 11.9 ± 4.9 and 11.7 ± 4.7 µg m-3. Correspondingly, the ratios of PM2.5 to total suspended particles (TSP) were 27.4 ± 6.65, 22.3 ± 10.9, 37.3 ± 11.1 and 54.4 ± 6.72 %. Bimodal mass distributions of size-segregated particles were found at all sites, with a relatively small peak in accumulation mode and a more notable peak in coarse mode. Diurnal variations in fine-aerosol masses generally displayed a bi-peak pattern at the QOMS, Nam Co and SET stations and a single-peak pattern at the Ngari station, controlled by the effects of local geomorphology, mountain-valley breeze circulation and aerosol emissions. Dust aerosol content in PM2.1 samples gave fractions of 26 % at the Ngari station and 29 % at the QOMS station, or ˜ 2-3 times that of reported results at human-influenced sites. Furthermore, observed evidence confirmed the existence of the aerodynamic conditions necessary for the uplift of fine particles from a barren land surface. Combining surface aerosol data and atmospheric-column aerosol optical properties, the TSP mass and aerosol optical depth (AOD) of the Multi-angle Imaging Spectroradiometer (MISR) generally decreased as land cover changed from

  13. ENCAPSULATED AEROSOLS

    DTIC Science & Technology

    acetate, polymerized rapidly and produced some polymer film encapsulation of the aerosol droplets. A two-stage microcapsule generator was designed...encapsulating material, the generator also produced microcapsules of dibutyl phosphite in polyethylene, nitrocellulose, and natural rubber.

  14. Wheel Diameter and Speedometer Reading

    ERIC Educational Resources Information Center

    Murray, Clifton

    2010-01-01

    Most introductory physics students have seen vehicles with nonstandard wheel diameters; some may themselves drive "low-rider" cars or "big-wheel" pickup trucks. But how does changing wheel diameter affect speedometer readout for a given speed? Deriving the answer can be followed readily by students who have been introduced to rotation, and it…

  15. Processing of Ambient Aerosols During Fog Events: Role of Acidity

    NASA Astrophysics Data System (ADS)

    Chakraborty, A.; Gupta, T.; Tripathi, S. N.; Bhattu, D.

    2013-12-01

    Fog is a major processing and removal agent of ambient aerosols. Enhanced secondary organic aerosol (SOA) production has been reported during fog events indicating major role of aqueous processing. Present study was carried out in a heavily polluted city of Kanpur situated in Indo-Gangetic plain of India,from 02- 18 Nov, 2012 and then from 22 Dec, 2012 to 10 January, 2013. 12 fog events were identified from 22 Dec to 10 January based on low visibility (< 300 m) with high liquid water content (~ 0.04 g/m3) and termed as foggy period while remaining as non-foggy period. Foggy period typically showed very high RH (~95%), low temperatures (~2-6°C) compared to non-foggy period. An array of instruments were deployed during this campaign for real time measurement of aerosol physico-chemical properties - High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS), Scanning Mobility Particle Sizer (SMPS), Cloud Combination Probe (CCP), Cloud Condensation Nuclei counter (CCN), fog water collector and Vaisala RH & T sensor. Average aerosol loading during foggy period was 104×44 μg/m3, much higher than 73×49 μg/m3of non-foggy period, but during actual fog events the loading reduced to 85×23 μg/m3 indicating overall aerosol removal by fog. Overall aerosol composition during both the period was dominated by organics which constitutes about 60-70% of the total AMS mass followed by nitrate, but during foggy period sulfate was found to be increased many fold.HR analysis of AMS data revealed noticeable differences in the diurnal average values of O:C ratio between foggy and non -foggy period. Although diurnal O:C ratio was highest around noontime for both period but during fog events, night to early morning O:C ratio was 0.51×0.04, higher than that of non-foggy period 0.44×0.07, clearly indicating enhanced oxidation. AMS data also showed that mode size of all the species specially of organics and sulphate had shifted to a higher diameter during foggy period, an

  16. Smoke and Pollution Aerosol Effect on Cloud Cover

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Koren, Ilan

    2006-01-01

    Pollution and smoke aerosols can increase or decrease the cloud cover. This duality in the effects of aerosols forms one of the largest uncertainties in climate research. Using solar measurements from Aerosol Robotic Network sites around the globe, we show an increase in cloud cover with an increase in the aerosol column concentration and an inverse dependence on the aerosol absorption of sunlight. The emerging rule appears to be independent of geographical location or aerosol type, thus increasing our confidence in the understanding of these aerosol effects on the clouds and climate. Preliminary estimates suggest an increase of 5% in cloud cover.

  17. Aerosol Production from the Great Lakes Surface

    NASA Astrophysics Data System (ADS)

    Slade, J. H.; Mwaniki, G.; Bertman, S. B.; Vanreken, T. M.; Shepson, P. B.

    2009-12-01

    It is well understood that oceans generate airborne particulate matter from mechanical processes such as sea spray and bubble bursting. These particles are primarily composed of salts and other nonvolatile inorganic material; however, the organic mass fraction can vary by location and the extent of biological activity. The size distributions of aerosols in these environments depend greatly on relative humidity with diameters ranging from typically several hundred nanometers to several micrometers. There has been much less discussion of particle formation from fresh water ecosystems, a hub for organic activity, and thus a more likely medium for organic aerosol production. We investigated particle formation over the Great Lakes during the summer of 2009 as a part of the Community Atmosphere-Biosphere Interactions Experiments (CABINEX) at the University of Michigan Biological Station (UMBS) in Pellston, MI. With a scanning mobility particle sizer (SMPS) aboard Purdue University’s Airborne Laboratory for Atmospheric Research (ALAR) for size-distribution analysis of accumulation-mode aerosol, we conducted vertical profiles above Lake Michigan and the UMBS deciduous forest, and transects across the peninsula between Lakes Michigan and Huron to study particle formation, transport, and deposition. Preliminary results reveal a well-mixed troposphere above the forest with a mode ~0.1 μm, while in several cases, the total particle concentration over Lake Michigan is an order of magnitude greater than over the forest. There is a consistent bimodal distribution of particle sizes over Lake Michigan the lowest of which is centered at ~0.025 μm, suggesting the possibility of new particle formation. This mode is consistent with the presence of breaking waves on the lake’s surface, and this mode and the vertical structure depend greatly on wind speed. We present here evidence for new particle production from breaking waves on fresh water lakes, and discuss the results

  18. The dependence of ice microphysics on aerosol concentration in arctic mixed-phase stratus clouds during ISDAC and M-PACE

    SciTech Connect

    Jackson, Robert C.; McFarquhar, Greg; Korolev, Alexei; Earle, Michael; Liu, Peter S.; Lawson, R. P.; Brooks, Sarah D.; Wolde, Mengistu; Laskin, Alexander; Freer, Matthew

    2012-08-14

    Cloud and aerosol data acquired by the National Research Council of Canada (NRC) Convair-580 aircraft in, above, and below single-layer arctic stratocumulus cloud during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in April 2008 were used to test three aerosol indirect effects hypothesized to act in mixed-phase clouds: the riming indirect effect, the glaciation indirect effect, and the cold second indirect effect. The data showed a correlation of R= 0.75 between liquid drop number concentration, Nliq, inside cloud and ambient aerosol number concentration NPCASP below cloud. This, combined with increasing liquid water content LWC with height above cloud base and the nearly constant profile of Nliq, suggested that liquid drops were nucleated from aerosol at cloud base. No strong evidence of a riming indirect effect was observed, but a strong correlation of R = 0.69 between ice crystal number concentration Ni and NPCASP above cloud was noted. Increases in ice nuclei (IN) concentration with NPCASP above cloud combined with the subadiabatic LWC profiles suggest possible mixing of IN from cloud top consistent with the glaciation indirect effect. The higher Nice and lower effective radius rel for the more polluted ISDAC cases compared to data collected in cleaner single-layer stratocumulus conditions during the Mixed-Phase Arctic Cloud Experiment is consistent with the operation of the cold second indirect effect. However, more data in a wider variety of meteorological and surface conditions, with greater variations in aerosol forcing, are required to identify the dominant aerosol forcing mechanisms in mixed-phase arctic clouds.

  19. Fiber diameter control in electrospinning

    NASA Astrophysics Data System (ADS)

    Stepanyan, R.; Subbotin, A.; Cuperus, L.; Boonen, P.; Dorschu, M.; Oosterlinck, F.; Bulters, M.

    2014-10-01

    A simple model is proposed to predict the fiber diameter in electrospinning. We show that the terminal diameter is determined by the kinetics of the jet elongation—under the influence of the electric and viscous forces—and the solvent evaporation. Numerical and simple scaling analyses are performed, predicting the fiber diameter to scale as a power 1/3 of viscosity and 2/3 of polymer solution throughput divided by electrical current. Model predictions show a good agreement to our own electrospinning experiments on polyamide-6 solutions as well as to the data available in the literature.

  20. Aerosol Behavior Log-Normal Distribution Model.

    SciTech Connect

    GIESEKE, J. A.

    2001-10-22

    HAARM3, an acronym for Heterogeneous Aerosol Agglomeration Revised Model 3, is the third program in the HAARM series developed to predict the time-dependent behavior of radioactive aerosols under postulated LMFBR accident conditions. HAARM3 was developed to include mechanisms of aerosol growth and removal which had not been accounted for in the earlier models. In addition, experimental measurements obtained on sodium oxide aerosols have been incorporated in the code. As in HAARM2, containment gas temperature, pressure, and temperature gradients normal to interior surfaces are permitted to vary with time. The effects of reduced density on sodium oxide agglomerate behavior and of nonspherical shape of particles on aerosol behavior mechanisms are taken into account, and aerosol agglomeration due to turbulent air motion is considered. Also included is a capability to calculate aerosol concentration attenuation factors and to restart problems requiring long computing times.

  1. Wheel Diameter and Speedometer Reading

    NASA Astrophysics Data System (ADS)

    Murray, Clifton

    2010-09-01

    Most introductory physics students have seen vehicles with nonstandard wheel diameters; some may themselves drive "low-rider" cars or "big-wheel" pickup trucks. But how does changing wheel diameter affect speedometer readout for a given speed? Deriving the answer can be followed readily by students who have been introduced to rotation, and it makes a good illustration of how reasoning in physics can lead to a result that is useful outside the classroom.

  2. Observed aerosol effects on marine cloud nucleation and supersaturation

    NASA Astrophysics Data System (ADS)

    Russell, Lynn M.; Sorooshian, Armin; Seinfeld, John H.; Albrecht, Bruce A.; Nenes, Athanasios; Leaitch, W. Richard; Macdonald, Anne Marie; Ahlm, Lars; Chen, Yi-Chun; Coggon, Matthew; Corrigan, Ashley; Craven, Jill S.; Flagan, Richard C.; Frossard, Amanda A.; Hawkins, Lelia N.; Jonsson, Haflidi; Jung, Eunsil; Lin, Jack J.; Metcalf, Andrew R.; Modini, Robin; Mülmenstädt, Johannes; Roberts, Greg C.; Shingler, Taylor; Song, Siwon; Wang, Zhen; Wonaschütz, Anna

    2013-05-01

    Aerosol particles in the marine boundary layer include primary organic and salt particles from sea spray and combustion-derived particles from ships and coastal cities. These particle types serve as nuclei for marine cloud droplet activation, although the particles that activate depend on the particle size and composition as well as the supersaturation that results from cloud updraft velocities. The Eastern Pacific Emitted Aerosol Cloud Experiment (EPEACE) 2011 was a targeted aircraft campaign to assess how different particle types nucleate cloud droplets. As part of E-PEACE 2011, we studied the role of marine particles as cloud droplet nuclei and used emitted particle sources to separate particle-induced feedbacks from dynamical variability. The emitted particle sources included shipboard smoke-generated particles with 0.05-1 μm diameters (which produced tracks measured by satellite and had drop composition characteristic of organic smoke) and combustion particles from container ships with 0.05-0.2 μm diameters (which were measured in a variety of conditions with droplets containing both organic and sulfate components) [1]. Three central aspects of the collaborative E-PEACE results are: (1) the size and chemical composition of the emitted smoke particles compared to ship-track-forming cargo ship emissions as well as background marine particles, with particular attention to the role of organic particles, (2) the characteristics of cloud track formation for smoke and cargo ships, as well as the role of multi-layered low clouds, and (3) the implications of these findings for quantifying aerosol indirect effects. For comparison with the E-PEACE results, the preliminary results of the Stratocumulus Observations of Los-Angeles Emissions Derived Aerosol-Droplets (SOLEDAD) 2012 provided evidence of the cloud-nucleating roles of both marine organic particles and coastal urban pollution, with simultaneous measurements of the effective supersaturations of the clouds in the

  3. Air ions and aerosol science

    SciTech Connect

    Tammet, H.

    1996-03-01

    Collaboration between Gas Discharge and Plasma Physics, Atmospheric Electricity, and Aerosol Science is a factor of success in the research of air ions. The concept of air ion as of any carrier of electrical current through the air is inherent to Atmospheric Electricity under which a considerable statistical information about the air ion mobility spectrum is collected. A new model of air ion size-mobility correlation has been developed proceeding from Aerosol Science and joining the methods of neighboring research fields. The predicted temperature variation of the mobility disagrees with the commonly used Langevin rule for the reduction of air ion mobilities to the standard conditions. Concurrent errors are too big to be neglected in applications. The critical diameter distinguishing cluster ions and charged aerosol particles has been estimated to be 1.4{endash}1.8 nm. {copyright} {ital 1996 American Institute of Physics.}

  4. Control over hygroscopic growth of saline aqueous aerosol using Pluronic polymer additives.

    PubMed

    Haddrell, Allen E; Hargreaves, Graham; Davies, James F; Reid, Jonathan P

    2013-02-25

    difference in diameter is RH dependent, and may be much greater at higher humidities. These findings suggest that the addition of μM concentrations of larger Pluronic polymers to nebulizer formulations may greatly reduce the size of aerosols produced.

  5. Trace elemental characteristics of aerosols emitted from municipal incinerators

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1978-01-01

    As part of a continuing investigation of high temperature combustion aerosols, elemental composition of size differentiated aerosols emitted from a local municipal incinerator was studied. Aerosols were aerodynamically separated into eight diameter groups ranging from 0.43 mm to 20 mm, collected, and analyzed by charged particle induced X-ray emission technique. On line data collection and reduction codes generated aerial densities for elements from Na to U with sensitivities in the ng/cu m range for most elements. From the total weights of aerosols collected per stage, their size distribution was determined to be bimodal, with one group centered at a diameter of 0.54 mm and the other at a diameter of 5.6 mm. Measured elemental concentrations in various size ranges indicate that K and S show a strong tendency to concentrate on aerosol surfaces. A weaker trend for surface preference was also observed for Mn and Ni, but other elements show no such trend.

  6. Light Scattering Study of Titania Aerosols

    NASA Astrophysics Data System (ADS)

    Oh, Choonghoon; Sorensen, Chris

    1997-03-01

    We studied the fractal morphology of titania aerosols by light scattering. Titania aerosols were generated by the thermal decomposition of titanium tetraisopropoxide (TTIP) in a silica tube furnace. TTIP was evaporated at temperatures up to 80^circC and its vapor was carried by dry nitrogen to a furnace with temperature in the range of 400 - 600^circC. A TEM analysis of the generated particles showed a typical DLCA structure with a monomer diameter about 50 nm. The particles were then made to flow through a narrow outlet as a laminar stream. The light scattering from these particles was measured using a He-Ne laser as a light source. The measured structure factor clearly showed the Rayleigh, Guinier, and fractal regimes. The fractal morphological parameters, such as the cluster radius of gyration, the fractal dimension, and the fractal prefactor were studied from the structure factor as a function of particle generation conditions. The cluster radius of gyration was about 1 μm and showed a modest dependency on the generation conditions. The fractal dimension was about 1.7 in all cases. These results are in good agreement with the TEM analysis.

  7. Subarctic atmospheric aerosol composition: 1. Ambient aerosol characterization

    SciTech Connect

    Friedman, Beth; Herich, Hanna; Kammermann, Lukas; Gross, Deborah S.; Ameth, Almut; Holst, Thomas; Lohmann, U.; Cziczo, Daniel J.

    2009-07-10

    Sub-Arctic aerosol was sampled during July 2007 at the Abisko Research Station Stordalen field site operated by the Royal Swedish Academy of Sciences. Located in northern Sweden at 68º latitude and 385 meters above sea level (msl), this site is classified as a semi-continuous permafrost mire. Number density, size distribution, cloud condensation nucleus properties, and chemical composition of the ambient aerosol were determined. Backtrajectories showed that three distinct airmasses were present over Stordalen during the sampling period. Aerosol properties changed and correlated with airmass origin to the south, northeast, or west. We observe that Arctic aerosol is not compositionally unlike that found in the free troposphere at mid-latitudes. Internal mixtures of sulfates and organics, many on insoluble biomass burning and/or elemental carbon cores, dominate the number density of particles from ~200 to 2000 nm aerodynamic diameter. Mineral dust which had taken up gas phase species was observed in all airmasses. Sea salt, and the extent to which it had lost volatile components, was the aerosol type that most varied with airmass.

  8. Determination of the broadband optical properties of biomass burning aerosol

    NASA Astrophysics Data System (ADS)

    Bluvshtein, Nir; Flores, J. Michel; Segev, Lior; Lin, Peng; Laskin, Alexander; Rudich, Yinon

    2016-04-01

    The direct and semi-direct effects of atmospheric aerosol on the Earth's energy balance are still the two of the largest uncertainties in our understanding of anthropogenic radiative forcing. In this study we developed a new approach for determining high sensitivity broadband UV-Vis spectrum (300-650 nm) of extinction, scattering and absorption coefficients, single scattering albedo and the complex refractive index for continuous, spectral and time dependent, monitoring of polydisperse aerosols population. This new approach was applied in a study of biomass burning aerosol. Extinction, scattering and absorption coefficients (αext, αsca, αabs, respectively) were continually monitored using photoacoustic spectrometer coupled to a cavity ring down spectrometer (PA-CRD-AS) at 404 nm, a dual-channel Broadband cavity-enhanced spectrometer (BBCES) at 315-345 nm and 390-420 nm and a three channel integrating nephelometer (IN) centered at 457, 525 and 637 nm. During the biomass burning event, the measured aerosol number concentration increased by more than an order of magnitude relative to other week nights and the mode of the aerosols size distribution increased from 40-50 nm to 110nm diameter. αext and αsca increased by a factor of about 5.5 and 4.5, respectively. The αabs increased by a factor over 20, indicating a significant change in the aerosol overall chemical composition. The imaginary part of the complex RI at 404nm increased from its background level at about 0.02 to a peak of about 0.08 and the SSA decreased from 0.9 to about 0.6. Significant change of the absorption spectral dependence indicates formation of visible-light absorbing compounds. The mass absorption cross section of the water soluble organic aerosol (MACWSOA) reached up to about 12% of the corresponding value for black carbon (BC) at 450 nm and up to 30% at 300 nm. These results demonstrate the importance of biomass burning in understanding global and regional radiative forcing.

  9. AERONET: The Aerosol Robotic Network

    DOE Data Explorer

    The AERONET (AErosol RObotic NETwork) program is a federation of ground-based remote sensing aerosol networks established by NASA and LOA-PHOTONS (CNRS) and is greatly expanded by collaborators from national agencies, institutes, universities, individual scientists, and partners. The program provides a long-term, continuous and readily accessible public domain database of aerosol optical, mircrophysical and radiative properties for aerosol research and characterization, validation of satellite retrievals, and synergism with other databases. The network imposes standardization of instruments, calibration, processing and distribution. AERONET collaboration provides globally distributed observations of spectral aerosol optical Depth (AOD), inversion products, and precipitable water in diverse aerosol regimes. Aerosol optical depth data are computed for three data quality levels: Level 1.0 (unscreened), Level 1.5 (cloud-screened), and Level 2.0 (cloud screened and quality-assured). Inversions, precipitable water, and other AOD-dependent products are derived from these levels and may implement additional quality checks.[Copied from http://aeronet.gsfc.nasa.gov/new_web/system_descriptions.html

  10. Evaluation of the discmini personal aerosol monitor for submicrometer sodium chloride and metal aerosols

    NASA Astrophysics Data System (ADS)

    Mills, Jessica Breyan

    This work evaluated the robust, lightweight DiSCmini (DM) aerosol monitor for its ability to measure the concentration and mean diameter of submicrometer aerosols. Tests were conducted with monodispersed and polydispersed aerosols composed of two particle types (sodium chloride, NaCl, and spark generated metal particles, which simulate particles found in welding fume) at three different steady-state concentration ranges (Low, <103; Medium, 103-104; and High, >104 particles/cm3). Particle number concentration, lung deposited surface area (LDSA) concentration, and mean size measured with the DM were compared to those measured with reference instruments, a scanning mobility particle sizer (SMPS) and a handheld condensation particle counter (CPC). Particle number concentrations measured with the DM were within 16% of those measured by the CPC for polydispersed aerosols. Poorer agreement was observed for monodispersed aerosols (+/-35% for most tests and +101% for 300-nm NaCl). LDSA concentrations measured by the DM were 96% to 155% of those estimated with the SMPS. The geometric mean diameters measured with the DM were within 30% of those measured with the SMPS for monodispersed aerosols and within 25% for polydispersed aerosols (except for the case when the aerosol contained a substantial number of particles larger than 300 nm). The accuracy of the DM is reasonable for particles smaller than 300 nm but caution should be exercised when particles larger than 300 nm are present.

  11. Evaluation of Aerosol Delivery of Nanosuspension for Pre-clinical Pulmonary Drug Delivery

    NASA Astrophysics Data System (ADS)

    Chiang, Po-Chang; Alsup, Jason W.; Lai, Yurong; Hu, Yiding; Heyde, Bruce R.; Tung, David

    2009-03-01

    Asthma and chronic obstructive pulmonary disease (COPD) are pulmonary diseases that are characterized by inflammatory cell infiltration, cytokine production, and airway hyper-reactivity. Most of the effector cells responsible for these pathologies reside in the lungs. One of the most direct ways to deliver drugs to the target cells is via the trachea. In a pre-clinical setting, this can be achieved via intratracheal (IT), intranasal (IN), or aerosol delivery in the desired animal model. In this study, we pioneered the aerosol delivery of a nanosuspension formulation in a rodent model. The efficiency of different dosing techniques and formulations to target the lungs were compared, and fluticasone was used as the model compound. For the aerosol particle size determination, a ten-stage cascade impactor was used. The mass median aerodynamic diameter (MMAD) was calculated based on the percent cumulative accumulation at each stage. Formulations with different particle size of fluticasone were made for evaluation. The compatibility of regular fluticasone suspension and nanosuspension for aerosol delivery was also investigated. The in vivo studies were conducted on mice with optimized setting. It was found that the aerosol delivery of fluticasone with nanosuspension was as efficient as intranasal (IN) dosing, and was able to achieve dose dependent lung deposition.

  12. Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land

    NASA Astrophysics Data System (ADS)

    Levy, Robert C.; Remer, Lorraine A.; Dubovik, Oleg

    2007-07-01

    As more information about global aerosol properties has become available from remotely sensed retrievals and in situ measurements, it is prudent to evaluate this new information, both on its own and in the context of satellite retrieval algorithms. Using the climatology of almucantur retrievals from global Aerosol Robotic Network (AERONET) Sun photometer sites, we perform cluster analysis to determine aerosol type as a function of location and season. We find that three spherical-derived types (describing fine-sized dominated aerosol) and one spheroid-derived types (describing coarse-sized dominated aerosol, presumably dust) generally describe the range of AERONET observed global aerosol properties. The fine-dominated types are separated mainly by their single scattering albedo (ω0), ranging from nonabsorbing aerosol (ω0 ˜ 0.95) in developed urban/industrial regions, to moderately absorbing aerosol (ω0 ˜ 0.90) in forest fire burning and developing industrial regions, to absorbing aerosol (ω0 ˜ 0.85) in regions of savanna/grassland burning. We identify the dominant aerosol type at each site, and extrapolate to create seasonal 1° × 1° maps of expected aerosol types. Each aerosol type is bilognormal, with dynamic (function of optical depth) size parameters (radius, standard deviation, volume distribution) and complex refractive index. Not only are these parameters interesting in their own right, they can also be applied to aerosol retrieval algorithms, such as to aerosol retrieval over land from Moderate Resolution Imaging Spectroradiometer. Independent direct-Sun AERONET observations of spectral aerosol optical depth (τ) are consistent the spectral dependence of the models, indicating that our derived aerosol models are relevant.

  13. Variation in penetration of submicrometric particles through electrostatic filtering facepieces during exposure to paraffin oil aerosol.

    PubMed

    Plebani, Carmela; Listrani, Stefano; Tranfo, Giovanna; Tombolini, Francesca

    2012-01-01

    Several studies show the increase of penetration through electrostatic filters during exposure to an aerosol flow, because of particle deposition on filter fibers. We studied the effect of increasing loads of paraffin oil aerosol on the penetration of selected particle sizes through an electrostatic filtering facepiece. FFP2 facepieces were exposed for 8 hr to a flow rate of 95.0 ± 0.5 L/min of polydisperse paraffin aerosol at 20.0 ± 0.5 mg/m(3). The penetration of bis(2-ethylhexyl)sebacate (DEHS) monodisperse neutralized aerosols, with selected particle size in the 0.03-0.40 μm range, was measured immediately prior to the start of the paraffin aerosol loading and at 1, 4, and 8 hr after the start of paraffin aerosol loading. Penetration through isopropanol-treated facepieces not oil paraffin loaded was also measured to evaluate facepiece behavior when electrostatic capture mechanisms are practically absent. During exposure to paraffin aerosol, DEHS penetration gradually increased for all aerosol sizes, and the most penetrating particle size (0.05 μm at the beginning of exposure) shifted slightly to larger diameters. After the isopropanol treatment, the higher penetration value was 0.30 μm. In addition to an increased penetration during paraffin loading at a given particle size, the relative degree of increase was greater as the particle size increased. Penetration value measured after 8 hr for 0.03-μm particles was on average 1.6 times the initial value, whereas it was about 8 times for 0.40-μm particles. This behavior, as well evidenced in the measurements of isopropanol-treated facepieces, can be attributed to the increasing action in particle capture of the electrostatic forces (Coulomb and polarization), which depend strictly on the diameter and electrical charge of neutralized aerosol particles. With reference to electrostatic filtering facepieces as personal protective equipment, results suggest the importance of complying with the manufacturer

  14. Mass Spectrometric Analysis of Pristine Aerosol Particles During the wet Season of Amazonia - Detection of Primary Biological Particles?

    NASA Astrophysics Data System (ADS)

    Schneider, J.; Zorn, S. R.; Freutel, F.; Borrmann, S.; Chen, Q.; Farmer, D. K.; Jimenez, J. L.; Flores, M.; Roldin, P.; Artaxo, P.; Martin, S. T.

    2008-12-01

    The contribution of primary biological aerosol (POA) particles to the natural organic aerosol is a subject of current research. Estimations of the POA contribution to the total aerosol particle concentration range between 25 and 80%, depending on location and season. Especially in the tropical rain forest it is expected that POA is a major source of supermicron, possibly also of submicron particles. During AMAZE (Amazonian Aerosol CharacteriZation Experiment), a field project near Manaus, Brazil, in February/March 2008, an Aerodyne ToF-AMS was equipped with a high pressure aerodynamic lens. This high pressure lens (operating pressure 14.6 torr) is designed with the objective to extend the detectable size range of the AMS into the supermicron size range where primary biological particles are expected. Size distribution measured by the AMS were compared with size distribution from an optical particle counter and indicate that the high pressure lens has a 50% cut-off at a vacuum aerodynamic diameter of about 1 μm, but still has significant transmission up to a vacuum aerodynamic diameter of about 2 μm, thus extending the detectable size range of the AMS into the coarse mode. The measuring instruments were situated in a container at ground level. The aerosol was sampled through a 40 m vertical, laminar inlet, which was heated and dried to maintain a relative humidity between 30 and 40%. The inlet was equipped with a 7 μm cut-off cyclone. Size distributions recorded with an optical particle counter parallel to the AMS show that the inlet transmitted aerosol particles up to an optically detected diameter of 10 μm. POA particles like plant fragments, pollen, spores, fungi, viruses etc. contain chemical compounds as proteins, sugars, amino acids, chlorophyll, and cellular material as cellulose. Laboratory experiments have been performed in order to identify typical mass spectral patterns of these compounds. These laboratory data were compared to size resolved particle

  15. Performance of personal inhalable aerosol samplers in very slowly moving air when facing the aerosol source.

    PubMed

    Witschger, O; Grinshpun, S A; Fauvel, S; Basso, G

    2004-06-01

    While personal aerosol samplers have been characterized primarily based on wind tunnel tests conducted at relatively high wind speeds, modern indoor occupational environments are usually represented by very slow moving air. Recent surveys suggest that elevated levels of occupational exposure to inhalable airborne particles are typically observed when the worker, operating in the vicinity of the dust source, faces the source. Thus, the first objective of this study was to design and test a new, low cost experimental protocol for measuring the sampling efficiency of personal inhalable aerosol samplers in the vicinity of the aerosol source when the samplers operate in very slowly moving air. In this system, an aerosol generator, which is located in the centre of a room-sized non-ventilated chamber, continuously rotates and omnidirectionally disperses test particles of a specific size. The test and reference samplers are equally distributed around the source at the same distance from the centre and operate in parallel (in most of our experiments, the total number of simultaneously operating samplers was 15). Radial aerosol transport is driven by turbulent diffusion and some natural convection. For each specific particle size and the sampler, the aerosol mass concentration is measured by weighing the collection filter. The second objective was to utilize the new protocol to evaluate three widely used aerosol samplers: the IOM Personal Inhalable Sampler, the Button Personal Inhalable Aerosol Sampler and the 25 mm Millipore filter holder (closed-face C25 cassette). The sampling efficiencies of each instrument were measured with six particle fractions, ranging from 6.9 to 76.9 micro m in their mass median aerodynamic diameter. The Button Sampler efficiency data demonstrated a good agreement with the standard inhalable convention and especially with the low air movement inhalabilty curve. The 25 mm filter holder was found to considerably under-sample the particles larger

  16. High voltage variable diameter insulator

    DOEpatents

    Vanacek, D.L.; Pike, C.D.

    1982-07-13

    A high voltage feedthrough assembly having a tubular insulator extending between the ground plane ring and the high voltage ring. The insulator is made of Pyrex and decreases in diameter from the ground plane ring to the high voltage ring, producing equipotential lines almost perpendicular to the wall of the insulator to optimize the voltage-holding capability of the feedthrough assembly.

  17. Susceptibility of Tribolium confusum (Coleoptera: Tenebrionidae) to pyrethrin aerosol: effects of aerosol particle size, concentration, and exposure conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of laboratory studies were conducted to assess effect of droplet size on efficacy of pyrethrin aerosol against adults of Tribolium confusum Jacqueline DuVal, the confused flour beetle. A vertical flow aerosol exposure chamber that generated a standardized particle size diameter was used for...

  18. Micro-capillary aerosol focusing device: theoretical modeling, experimental verification, and device fabrication.

    NASA Astrophysics Data System (ADS)

    Hoey, Justin; Akhatov, Iskander; Swenson, Orven; Schulz, Doug

    2007-11-01

    A theoretical model for the focusing of aerosol particles in a linearly-varying micro-capillary with a diameter on the order of 100 microns is presented. This theoretical model is experimentally verified by visualizing an aerosol beam of silver-ink aerosol particles of approximately 1 micron in diameter emitted from a micro-capillary. Additional validation is presented in the deposited lines where linewidth is a function of aerosol beamwidth. From the theoretical model a new design for the focusing of aerosol particles is developed, physically produced, and experimentally validated. The new device will be implemented in the areas of high frequency RFID manufacturing, and the semiconductor industry.

  19. Using the OMI Aerosol Index and Absorption Aerosol Optical Depth to Evaluate the NASA MERRA Aerosol Reanalysis.

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M., Jr.; Colarco, P. R.; Darmenov, A.; Govindaraju, R.

    2014-12-01

    A radiative transfer interface has been developed to simulate the UV Aerosol Index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). In this presentation we show comparisons of model produced AI with the corresponding OMI measurements during several months of 2007 characterized by a good sampling of dust and biomass burning events. In parallel, model produced Absorption Aerosol Optical Depth (AAOD) were compared to OMI AAOD for the same period, identifying regions where the model representation of absorbing aerosols were deficient. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, aerosol retrievals from the Aerosol Robotic Network (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain misplacement of plume height by the model.

  20. Characterization of aerosols produced by surgical procedures

    SciTech Connect

    Yeh, H.C.; Muggenburg, B.A.; Lundgren, D.L.; Guilmette, R.A.; Snipes, M.B.; Jones, R.K.; Turner, R.S.

    1994-07-01

    In many surgeries, especially orthopedic procedures, power tools such as saws and drills are used. These tools may produce aerosolized blood and other biological material from bone and soft tissues. Surgical lasers and electrocautery tools can also produce aerosols when tissues are vaporized and condensed. Studies have been reported in the literature concerning production of aerosols during surgery, and some of these aerosols may contain infectious material. Garden et al. (1988) reported the presence of papilloma virus DNA in the fumes produced from laser surgery, but the infectivity of the aerosol was not assessed. Moon and Nininger (1989) measured the size distribution and production rate of emissions from laser surgery and found that particles were generally less than 0.5 {mu}m diameter. More recently there has been concern expressed over the production of aerosolized blood during surgical procedures that require power tools. In an in vitro study, the production of an aerosol containing the human immunodeficiency virus (HIV) was reported when power tools were used to cut tissues with blood infected with HIV. Another study measured the size distribution of blood aerosols produced by surgical power tools and found blood-containing particles in a number of size ranges. Health care workers are anxious and concerned about whether surgically produced aerosols are inspirable and can contain viable pathogens such as HIV. Other pathogens such as hepatitis B virus (HBV) are also of concern. The Occupational Safety and Health funded a project at the National Institute for Inhalation Toxicology Research Institute to assess the extent of aerosolization of blood and other tissues during surgical procedures. This document reports details of the experimental and sampling approach, methods, analyses, and results on potential production of blood-associated aerosols from surgical procedures in the laboratory and in the hospital surgical suite.

  1. A satellite view of aerosols in the climate system

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tanre, Didier; Boucher, Olivier

    2002-01-01

    Anthropogenic aerosols are intricately linked to the climate system and to the hydrologic cycle. The net effect of aerosols is to cool the climate system by reflecting sunlight. Depending on their composition, aerosols can also absorb sunlight in the atmosphere, further cooling the surface but warming the atmosphere in the process. These effects of aerosols on the temperature profile, along with the role of aerosols as cloud condensation nuclei, impact the hydrologic cycle, through changes in cloud cover, cloud properties and precipitation. Unravelling these feedbacks is particularly difficult because aerosols take a multitude of shapes and forms, ranging from desert dust to urban pollution, and because aerosol concentrations vary strongly over time and space. To accurately study aerosol distribution and composition therefore requires continuous observations from satellites, networks of ground-based instruments and dedicated field experiments. Increases in aerosol concentration and changes in their composition, driven by industrialization and an expanding population, may adversely affect the Earth's climate and water supply.

  2. A satellite view of aerosols in the climate system.

    PubMed

    Kaufman, Yoram J; Tanré, Didier; Boucher, Olivier

    2002-09-12

    Anthropogenic aerosols are intricately linked to the climate system and to the hydrologic cycle. The net effect of aerosols is to cool the climate system by reflecting sunlight. Depending on their composition, aerosols can also absorb sunlight in the atmosphere, further cooling the surface but warming the atmosphere in the process. These effects of aerosols on the temperature profile, along with the role of aerosols as cloud condensation nuclei, impact the hydrologic cycle, through changes in cloud cover, cloud properties and precipitation. Unravelling these feedbacks is particularly difficult because aerosols take a multitude of shapes and forms, ranging from desert dust to urban pollution, and because aerosol concentrations vary strongly over time and space. To accurately study aerosol distribution and composition therefore requires continuous observations from satellites, networks of ground-based instruments and dedicated field experiments. Increases in aerosol concentration and changes in their composition, driven by industrialization and an expanding population, may adversely affect the Earth's climate and water supply.

  3. Toxicity of atmospheric aerosols on marine phytoplankton

    PubMed Central

    Paytan, Adina; Mackey, Katherine R. M.; Chen, Ying; Lima, Ivan D.; Doney, Scott C.; Mahowald, Natalie; Labiosa, Rochelle; Post, Anton F.

    2009-01-01

    Atmospheric aerosol deposition is an important source of nutrients and trace metals to the open ocean that can enhance ocean productivity and carbon sequestration and thus influence atmospheric carbon dioxide concentrations and climate. Using aerosol samples from different back trajectories in incubation experiments with natural communities, we demonstrate that the response of phytoplankton growth to aerosol additions depends on specific components in aerosols and differs across phytoplankton species. Aerosol additions enhanced growth by releasing nitrogen and phosphorus, but not all aerosols stimulated growth. Toxic effects were observed with some aerosols, where the toxicity affected picoeukaryotes and Synechococcus but not Prochlorococcus. We suggest that the toxicity could be due to high copper concentrations in these aerosols and support this by laboratory copper toxicity tests preformed with Synechococcus cultures. However, it is possible that other elements present in the aerosols or unknown synergistic effects between these elements could have also contributed to the toxic effect. Anthropogenic emissions are increasing atmospheric copper deposition sharply, and based on coupled atmosphere–ocean calculations, we show that this deposition can potentially alter patterns of marine primary production and community structure in high aerosol, low chlorophyll areas, particularly in the Bay of Bengal and downwind of South and East Asia. PMID:19273845

  4. Toxicity of atmospheric aerosols on marine phytoplankton

    USGS Publications Warehouse

    Paytan, A.; Mackey, K.R.M.; Chen, Y.; Lima, I.D.; Doney, S.C.; Mahowald, N.; Labiosa, R.; Post, A.F.

    2009-01-01

    Atmospheric aerosol deposition is an important source of nutrients and trace metals to the open ocean that can enhance ocean productivity and carbon sequestration and thus influence atmospheric carbon dioxide concentrations and climate. Using aerosol samples from different back trajectories in incubation experiments with natural communities, we demonstrate that the response of phytoplankton growth to aerosol additions depends on specific components in aerosols and differs across phytoplankton species. Aerosol additions enhanced growth by releasing nitrogen and phosphorus, but not all aerosols stimulated growth. Toxic effects were observed with some aerosols, where the toxicity affected picoeukaryotes and Synechococcus but not Prochlorococcus.We suggest that the toxicity could be due to high copper concentrations in these aerosols and support this by laboratory copper toxicity tests preformed with Synechococcus cultures. However, it is possible that other elements present in the aerosols or unknown synergistic effects between these elements could have also contributed to the toxic effect. Anthropogenic emissions are increasing atmospheric copper deposition sharply, and based on coupled atmosphere-ocean calculations, we show that this deposition can potentially alter patterns of marine primary production and community structure in high aerosol, low chlorophyll areas, particularly in the Bay of Bengal and downwind of South and East Asia.

  5. Using the OMI Aerosol Index and Absorption Aerosol Optical Depth to evaluate the NASA MERRA Aerosol Reanalysis

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2014-12-01

    A radiative transfer interface has been developed to simulate the UV Aerosol Index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and Aerosol Absorption Optical Depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of Aerosol Optical Depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the Aerosol Robotic Network (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the South African and South American biomass burning regions indicates that revising the spectrally-dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  6. Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2015-05-01

    A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the AErosol RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  7. ENCAPSULATED AEROSOLS

    DTIC Science & Technology

    materials determine the range of applicability of each method. A useful microencapsulation method, based on coagulation by inertial force was developed...The generation apparatus, consisting of two aerosol generators in series, was utilized to produce many kinds of microcapsules . A fluid energy mill...was found useful for the production of some microcapsules . The permeability of microcapsule films and the effect of exposure time and humidity were

  8. High-solids paint overspray aerosols in a spray painting booth: particle size analysis and scrubber efficiency

    SciTech Connect

    Chan, T.L.; D'arcy, J.B.; Schreck, R.M.

    1986-07-01

    Particle size distributions of high-solids acrylic-enamel paint overspray aerosols were determined isokinetically in a typical downdraft spray painting booth in which a 7-stage cascade impactor was used. Three different industrial paint atomizers were used, and the paint aerosols were characterized before and after a paint both scrubber. The mass median aerodynamic diameter (MMAD) of a metallic basecoat and an acrylic clearcoat paint aerosol from air-atomized spray guns ranged from 4-12 ..mu..m and was dependent on atomization pressure. When the paint booth was operated under controlled conditions simulating those in a plant, the collection efficiency of paint overspray aerosols by a paint scrubber was found to be size dependent and decreased sharply for particles smaller than 2 ..mu..m to as low as 64% for clearcoat paint particles of 0.6 ..mu..m. Improvement in the overall particulate removal efficiency can be achieved by optimizing the spray painting operations so as to produce the least amount of fine overspray paint aerosols less than 2 ..mu..m. Maintaining a higher static pressure drop across the paint both scrubber also will improve scrubber performance.

  9. Large-diameter astromast development

    NASA Technical Reports Server (NTRS)

    Finley, L. A.

    1984-01-01

    The 15-m-long by 0.75-diameter deployable supermast was delivered. The performance characteristics, design parameters, and developmental work associated with this mast are described. The main differences, besides the length of these two mast sections, are a change in the longeron material (the principal structural member) to a circular cross section and the incorporation of a lanyard-bridle system which makes unaided deployment and retraction possible in zero gravity.

  10. High voltage variable diameter insulator

    DOEpatents

    Vanecek, David L.; Pike, Chester D.

    1984-01-01

    A high voltage feedthrough assembly (10) having a tubular insulator (15) extending between the ground plane ring (16) and the high voltage ring (30). The insulator (15) is made of Pyrex and decreases in diameter from the ground plane ring (16) to the high voltage ring (30), producing equipotential lines almost perpendicular to the wall (27) of the insulator (15) to optimize the voltage-holding capability of the feedthrough assembly (10).

  11. Applications of UV Scattering and Absorbing Aerosol Indices

    NASA Astrophysics Data System (ADS)

    Penning de Vries, M.; Beirle, S.; Wagner, T.

    2009-04-01

    Aerosols cause a substantial amount of radiative forcing, but quantifying this amount is difficult: determining aerosol concentrations in the atmosphere and, especially, characterizing their (optical) properties, has proved to be quite a challenge. A good way to monitor aerosol characteristics on a global scale is to perform satellite remote sensing. Most satellite aerosol retrieval algorithms are based on fitting of aerosol-induced changes in earth reflectance, which are usually subtle and have a smooth wavelength dependence. In such algorithms certain aerosol models are assumed, where optical parameters such as single scattering albedo, asymmetry parameter and size parameter (or Angstrom exponent) are defined. Another, semi-quantitative technique for detecting aerosols is the calculation of UV Aerosol Indices (UVAI). The Absorbing and Scattering Aerosol Indices detect "UV-absorbing" aerosols (most notably mineral dust, black and brown carbon particles) and "scattering" aerosols (sulfate and secondary organic aerosol particles), respectively. UVAI are essentially a measure of the contrast between two wavelengths in the UV range. The advantages of UVAI are: they can be determined in the presence of clouds, they are rather insensitive to surface type, and they are very sensitive to aerosols. The Absorbing Aerosol Index (AAI) has been in use for over a decade, and the Scattering Aerosol Index (SAI) was recently introduced by our group. Whereas the AAI is mainly used to detect desert dust and biomass burning plumes, the SAI can be used to study regions with high concentrations of non-absorbing aerosols, either anthropogenic (e.g. sulfate aerosols in eastern China) or biogenic (e.g. secondary organic aerosols formed from VOCs emitted by plants). Here we will present our recent UVAI results from SCIAMACHY: we will discuss the seasonal trend of SAI, and correlate our UVAI data with other datasets such as trace gases (HCHO, NO2, CO) and fire counts from the (A

  12. Lung deposition of droplet aerosols in monkeys.

    PubMed

    Cheng, Y S; Irshad, H; Kuehl, P; Holmes, T D; Sherwood, R; Hobbs, C H

    2008-09-01

    Nonhuman primates are often the animal models of choice to study the infectivity and therapy of inhaled infectious agents. Most animal models for inhaled infectious diseases use aerosol/droplets generated by an atomization technique such as a Collison nebulizer that produces particles in the size range of 1 to 3 microm in diameter. There are few data in the literature on deposition patterns in monkeys. Our study was designed to measure the deposition pattern in monkeys using droplets having diameters of 2 and 5 microm using an exposure system designed to expose monkeys to aerosols of infectious agents. Six cynomolgus monkeys were exposed to droplets. The aerosol solution was generated from a Vero cell supernate containing DMEM + 10% fetal bovine serum tagged with Tc-99m radiolabel. Collison and Retec nebulizers were used to generate small and large droplets, respectively. The particle size (as determined from a cascade impactor) showed an activity median aerodynamic diameter (AMAD) of 2.3 and 5.1 microm for the Collison and Retec nebulizer, respectively. The animals were anesthetized, placed in a plethysmography box, and exposed to the aerosol. The deposition pattern was determined using a gamma camera. Deposition in the head airways was 39% and 58% for 2.3- and 5.1-microm particle aerosols, respectively, whereas the deposition in the deep lung was 12% and 8%, respectively. This information will be useful in developing animal models for inhaled infectious agents.

  13. Superresolution measurement of nanofiber diameter by modes beating

    NASA Astrophysics Data System (ADS)

    Fenton, E. F.; Solano, P.; Hoffman, J. E.; Orozco, L. A.; Rolston, S. L.; Fatemi, F. K.

    2016-05-01

    Nanofibers are becoming an important tool in quantum information technologies for coupling photonics systems to atomic systems. Nondestructive techniques for characterizing these nanofibers prior to integration into an apparatus are desirable. In this work, we probe the light propagating in a fused silica optical nanofiber (750-nm-diameter) by coupling it evanescently to a 6- μm-diameter microfiber that is scanned along the nanofiber length. This technique is capable of observing all possible beat lengths among different propagating modes. The beat lengths are strongly dependent on the nanofiber diameter and refractive index of the fiber. The steep dependence has enabled measurements of the fiber diameter with sub-Angstrom sensitivity. The diameter extracted from the beat length measurements agrees with a measurement made using scanning electron microscopy. Work supported by NSF.

  14. Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO3− aerosol during the 2013 Southern Oxidant and Aerosol Study

    DOE PAGES

    Allen, H. M.; Draper, D. C.; Ayres, B. R.; ...

    2015-09-25

    Inorganic aerosol composition was measured in the southeastern United States, a region that exhibits high aerosol mass loading during the summer, as part of the 2013 Southern Oxidant and Aerosol Study (SOAS) campaign. Measurements using a Monitor for AeRosols and GAses (MARGA) revealed two periods of high aerosol nitrate (NO3−) concentrations during the campaign. These periods of high nitrate were correlated with increased concentrations of supermicron crustal and sea spray aerosol species, particularly Na+ and Ca2+, and with a shift towards aerosol with larger (1 to 2.5 μm) diameters. We suggest this nitrate aerosol forms by multiphase reactions of HNO3more » and particles, reactions that are facilitated by transport of crustal dust and sea spray aerosol from a source within the United States. The observed high aerosol acidity prevents the formation of NH4NO3, the inorganic nitrogen species often dominant in fine-mode aerosol at higher pH. In addition, calculation of the rate of the heterogeneous uptake of HNO3 on mineral aerosol supports the conclusion that aerosol NO3− is produced primarily by this process, and is likely limited by the availability of mineral cation-containing aerosol surface area. Modeling of NO3− and HNO3 by thermodynamic equilibrium models (ISORROPIA II and E-AIM) reveals the importance of including mineral cations in the southeastern United States to accurately balance ion species and predict gas–aerosol phase partitioning.« less

  15. New Large Diameter RF Complex Plasma Device

    NASA Astrophysics Data System (ADS)

    Meyer, John; Nosenko, Volodymyr; Thomas, Hubertus

    2016-10-01

    The Complex Plasma Research Group at the German Aerospace Center (DLR) in Oberpfaffenhofen has built a new large diameter rf plasma setup for dusty plasma experiments. The vacuum chamber is a stainless steel cylinder 0.90 m in diameter and 0.34 m in height with ports for viewing and measurement. A 0.85 m diameter plate in about the center serves as a powered electrode (13.56 MHz) with the chamber walls as the ground. It is pumped on by one of two Oerlikon turbo pumps with a pumping rate of 1100 l/s or 270 l/s. Argon gas is admitted into the chamber by an MKS mass flow meter and pumping is regulated by a butterfly valve to set pressure for experiments. A manual dropper is used to insert dust into the plasma. The dust is illuminated horizontally by a 660 nm 100 mW laser sheet and viewed from above by a Photron FASTCAM 1024 PCI camera. A vertical laser sheet of 635 nm will be used for side imaging. So far, single-layer plasma crystals of up to 15000 particles have been suspended. The particle velocity fluctuation spectra were measured and from these, the particle charge and screening length were calculated. Future experiments will explore the system-size dependence of the plasma crystal properties.

  16. CCN frequency distributions and aerosol chemical composition from long-term observations at European ACTRIS supersites

    NASA Astrophysics Data System (ADS)

    Decesari, Stefano; Rinaldi, Matteo; Schmale, Julia Yvonne; Gysel, Martin; Fröhlich, Roman; Poulain, Laurent; Henning, Silvia; Stratmann, Frank; Facchini, Maria Cristina

    2016-04-01

    Cloud droplet number concentration is regulated by the availability of aerosol acting as cloud condensation nuclei (CCN). Predicting the air concentrations of CCN involves knowledge of all physical and chemical processes that contribute to shape the particle size distribution and determine aerosol hygroscopicity. The relevance of specific atmospheric processes (e.g., nucleation, coagulation, condensation of secondary organic and inorganic aerosol, etc.) is time- and site-dependent, therefore the availability of long-term, time-resolved aerosol observations at locations representative of diverse environments is strategic for the validation of state-of-the-art chemical transport models suited to predict CCN concentrations. We focused on long-term (year-long) datasets of CCN and of aerosol composition data including black carbon, and inorganic as well as organic compounds from the Aerosol Chemical Speciation Monitor (ACSM) at selected ACTRIS supersites (http://www.actris.eu/). We discuss here the joint frequency distribution of CCN levels and of aerosol chemical components concentrations for two stations: an alpine site (Jungfraujoch, CH) and a central European rural site (Melpitz, DE). The CCN frequency distributions at Jungfraujoch are broad and generally correlated with the distributions of the concentrations of aerosol chemical components (e.g., high CCN concentrations are most frequently found for high organic matter or black carbon concentrations, and vice versa), which can be explained as an effect of the strong seasonality in the aerosol characteristics at the mountain site. The CCN frequency distributions in Melpitz show a much weaker overlap with the distributions of BC concentrations or other chemical compounds. However, especially at high CCN concentration levels, a statistical correlation with organic matter (OM) concentration can be observed. For instance, the number of CCN (with particle diameter between 20 and 250 nm) at a supersaturation of 0.7% is

  17. Aerosol Sampling with Low Wind Sensitivity.

    NASA Astrophysics Data System (ADS)

    Kalatoor, Suresh

    Occupational exposure to airborne particles is generally evaluated by wearing a personal sampler that collects aerosol particles from the worker's breathing zone during the work cycle. The overall sampling efficiency of most currently available samplers is sensitive to wind velocity and direction. In addition, most samplers have internal losses due to gravitational settling, electrostatic interactions, and internal turbulence. A new sampling technique has been developed, theoretically and experimentally evaluated, and compared to existing techniques. The overall sampling efficiency of the protoype sampler was compared to that of a commonly used sampler, 25 mm closed-face cassette. Uranine was used as the challange aerosol with particle physical diameters 13.5, 20 and 30 mum. The wind velocity ranged from 100 to 300 cm s^ {-1}. It was found to have less internal losses and less dependence on wind velocity and direction. It also yielded better uniformity in the distribution of large particles on the filter surface, an advantage for several types of analysis. A new general equation for sharp-edged inlets was developed that predicts the sampling efficiency of sharp-edged (or thin-walled) inlets in most occupational environments that are weakly disturbed with air motions that cannot be strictly classified as calm-air or fast -moving air. Computational analysis was carried out using the new general equation and was applied to situations when the wind velocity vector is not steady, but fluctuates around predominant average values of its magnitude and orientation. Two sampling environments, horizontal aerosol flow (ambient atmosphere) and vertical aerosol flow (industrial stacks) have been considered. It was found, that even for small fluctuations in wind direction the sampling efficiency may be significantly less than that obtained for the mean wind direction. Time variations in wind magnitude at a fixed wind direction were found to affect the sampling efficiency to a

  18. Combined aerosol in-situ measurements during the SALTRACE field experiment for the investigation of Saharan mineral dust microphysical and CCN properties and their spatial-temporal evolution during trans-Atlantic long-range transport

    NASA Astrophysics Data System (ADS)

    Walser, Adrian; Dollner, Maximilian; Sauer, Daniel; Weinzierl, Bernadett

    2015-04-01

    The Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) was a field experiment conducted in June/July 2013, which aimed to investigate the transport and modification of Saharan mineral dust from the Sahara across the Atlantic Ocean to the Caribbean. In addition to ground-based measurements and satellite remote sensing, the DLR Falcon research aircraft was equipped with a number of aerosol in-situ instruments to gain direct information on the properties of airborne aerosol such as size distributions, microphysical, optical and cloud-condensation nuclei (CCN) properties. For the first time, several outbreaks of Saharan dust were probed with the same airborne instrumentation on both sides of the Atlantic. During transport, various processes may take place that modify the aerosol composition. Dry and wet deposition lead to a size-dependent aerosol removal. In case of wet deposition, the removal additionally depends on the particle's ability to act as CCN. Processes in the aqueous phase in subsequently re-evaporating cloud droplets can further alter microphysical and CCN properties of re-released particles. All resulting changes in the size distribution and particle properties impact the radiative feedback and CCN activity of the aged aerosol. This study aims to use combined airborne in-situ measurements to retrieve and compare vertically resolved aerosol size distributions, microphysical and CCN properties for both, short-range transported Saharan dust in the Cape Verde region and long-range transported dust in the Caribbean. We use this data to investigate the influence of long-range transport and associated processes on those properties. We will present vertical profiles of size-resolved aerosol concentrations and volatile fractions as well as CCN activated fractions and draw conclusions for aerosol mixing state, CCN activation diameters and particle hygroscopicities. We will discuss differences in vertical profiles and

  19. 7 CFR 51.2934 - Diameter.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Apricots Definitions § 51.2934 Diameter. Diameter means the greatest diameter, measured through the center of the apricot, at right angles to a...

  20. 7 CFR 51.2934 - Diameter.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Standards for Grades of Apricots Definitions § 51.2934 Diameter. Diameter means the greatest diameter, measured through the center of the apricot, at right angles to a line running from the stem to the...

  1. 7 CFR 51.2934 - Diameter.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Standards for Grades of Apricots Definitions § 51.2934 Diameter. Diameter means the greatest diameter, measured through the center of the apricot, at right angles to a line running from the stem to the...

  2. 7 CFR 51.2934 - Diameter.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Standards for Grades of Apricots Definitions § 51.2934 Diameter. Diameter means the greatest diameter, measured through the center of the apricot, at right angles to a line running from the stem to the...

  3. 7 CFR 51.2934 - Diameter.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Apricots Definitions § 51.2934 Diameter. Diameter means the greatest diameter, measured through the center of the apricot, at right angles to a...

  4. The analysis of in situ and retrieved aerosol properties measured during three airborne field campaigns

    NASA Astrophysics Data System (ADS)

    Corr, Chelsea A.

    actinic flux (AF SSA) to those retrieved using ratios of direct and diffuse irradiance (DDR SSA) at four wavelengths: 332, 368, 415, and 500 mn. Both actinic flux and irradiance were measured atop the University of Houston's Moody Tower in Houston, TX as part of the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission in September 2013. AF SSA values were consistently lower than DDR SSAs with largest offsets observed when aerosol optical depths was < ~0.2. AF SSA were also lower than those reported by the AErosol RObotic NETwork (AERONET) and column-averaged values calculated from aerosol scattering and absorption coefficients measured aboard the NASA P3-B aircraft at 450 and 550 nm. However, AAE values calculated from AF SSAs compared well to AERONET and column-averaged AAEs suggesting actinic flux retrievals can correctly resolve the spectral dependence of aerosol absorption. Recent work has suggested that mineral dust is the most important IN found in both anvil and synoptically formed cirrus clouds over North America. The vertical transport processes sustaining significant mineral dust in the upper troposphere (> 9 km) where these clouds form are not well understood, but deep convective systems (thunder storms) likely play a role. Bulk aerosol Ca2+ concentrations and volume size distributions were measured aboard the NASA DC-8 during the NCAR Deep Convective Clouds and Chemistry Experiment (DC-3) conducted in May/June 2012 in both the inflow and outflow regions of twelve isolated, high cloud base storms over CO and OK. Outflow/inflow ratios of both Ca2+ and total coarse (limn < diameter < 5 microm) aerosol volume (Vc)were high (> ~0.9) suggesting a significant fraction of ingested coarse mode dust was transported through these systems. Elevated Ca2+ and Vc in the outflow were most likely not artifacts of ice shattering given the general absence of a relationship between these

  5. Absorbing aerosols over Asia: A Geophysical Fluid Dynamics Laboratory general circulation model sensitivity study of model response to aerosol optical depth and aerosol absorption

    NASA Astrophysics Data System (ADS)

    Randles, C. A.; Ramaswamy, V.

    2008-11-01

    Forcing by absorbing atmospheric black carbon (BC) tends to heat the atmosphere, cool the surface, and reduce the surface latent and sensible heat fluxes. BC aerosol can have a large impact on regional climates and the hydrologic cycle. However, significant uncertainties remain concerning the increases in (1) the total amount of all aerosol species and (2) the amount of aerosol absorption that may have occurred over the 1950-1990 period. Focusing on south and east Asia, the sensitivity of a general circulation model's climate response (with prescribed sea surface temperatures and aerosol distributions) to such changes is investigated by considering a range of both aerosol absorption and aerosol extinction optical depth increases. We include direct and semidirect aerosol effects only. Precipitation changes are less sensitive to changes in aerosol absorption optical depth at lower aerosol loadings. At higher-extinction optical depths, low-level convergence and increases in vertical velocity overcome the stabilizing effects of absorbing aerosols and enhance the monsoonal circulation and precipitation in northwestern India. In contrast, the presence of increases in only scattering aerosols weakens the monsoonal circulation and inhibits precipitation here. Cloud amount changes can enhance or counteract surface solar flux reduction depending on the aerosol loading and absorption, with the changes also influencing the surface temperature and the surface energy balance. The results have implications for aerosol reduction strategies in the future that seek to mitigate air pollution concerns. At higher optical depths, if absorbing aerosol is present, reduction of scattering aerosol alone has a reduced effect on precipitation changes, implying that reductions in BC aerosols should be undertaken at the same time as reductions in sulfate aerosols.

  6. Photothermal spectroscopy of aerosols

    SciTech Connect

    Campillo, A.J.; Lin, H.B.

    1981-04-01

    In situ aerosol absorption spectroscopy was performed using two novel photothermal detection schemes. The first, based on a photorefractive effect and coherent detection, called phase fluctuation optical heterodyne (PFLOH) spectroscopy, could, depending on the geometry employed, yield particle specific or particle and gas absorption data. Single particles of graphite as small as 1 ..mu..m were detected in the particle specific mode. In another geometrical configuration, the total absorption (both gas and particle) of submicron sized aerosols of ammonium sulfate particles in equilibrium with gaseous ammonia and water vapor were measured at varying CO/sub 2/ laser frequencies. The specific absorption coefficient for the sulfate ion was measured to be 0.5 m/sup 2//g at 1087 cm/sup -1/. The absorption coefficient sensitivity of this scheme was less than or equal to 10/sup -8/ cm/sup -1/. The second scheme is a hybrid visible Mie scattering scheme incorporating photothermal modulation. Particle specific data on ammonium sulfate droplets were obtained. For chemically identical species, the relative absorption spectrum versus laser frequency can be obtained for polydisperse aerosol distributions directly from the data without the need for complex inverse scattering calculations.

  7. Characterization of Aerosols Containing Microcystin

    PubMed Central

    Cheng, Yung Sung; Zhou, Yue; Irvin, C. Mitch; Kirkpatrick, Barbara; Backer, Lorraine C.

    2007-01-01

    Toxic blooms of cyanobacteria are ubiquitous in both freshwater and brackish water sources throughout the world. One class of cyanobacterial toxins, called microcystins, is cyclic peptides. In addition to ingestion and dermal, inhalation is a likely route of human exposure. A significant increase in reporting of minor symptoms, particularly respiratory symptoms was associated with exposure to higher levels of cyanobacteria during recreational activities. Algae cells, bacteria, and waterborne toxins can be aerosolized by a bubble-bursting process with a wind-driven white-capped wave mechanism. The purposes of this study were to: evaluate sampling and analysis techniques for microcystin aerosol, produce aerosol droplets containing microcystin in the laboratory, and deploy the sampling instruments in field studies. A high-volume impactor and an IOM filter sampler were tried first in the laboratory to collect droplets containing microcystins. Samples were extracted and analyzed for microcystin using an ELISA method. The laboratory study showed that cyanotoxins in water could be transferred to air via a bubble-bursting process. The droplets containing microcystins showed a bimodal size distribution with the mass median aerodynamic diameter (MMAD) of 1.4 and 27.8 μm. The sampling and analysis methods were successfully used in a pilot field study to measure microcystin aerosol in situ. PMID:18463733

  8. CCN activity of aliphatic amine secondary aerosol

    NASA Astrophysics Data System (ADS)

    Tang, X.; Price, D.; Praske, E.; Vu, D.; Purvis-Roberts, K.; Silva, P. J.; Cocker, D. R., III; Asa-Awuku, A.

    2014-01-01

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g. hydroxyl radical and nitrate radical). The particle composition can contain both secondary organic aerosol (SOA) and inorganic salts. The fraction of organic to inorganic materials in the particulate phase influences aerosol hygroscopicity and cloud condensation nuclei (CCN) activity. SOA formed from trimethylamine (TMA) and butylamine (BA) reactions with hydroxyl radical (OH) is composed of organic material of low hygroscopicity (single hygroscopicity parameter, κ ≤ 0.25). Secondary aerosol formed from the tertiary aliphatic amine (TMA) with N2O5 (source of nitrate radical, NO3), contains less volatile compounds than the primary aliphatic amine (BA) aerosol. TMA + N2O5 form semi-volatile organics in low RH conditions that have κ ~ 0.20, indicative of slightly soluble organic material. As RH increases, several inorganic amine salts are formed as a result of acid-base reactions. The CCN activity of the humid TMA-N2O5 aerosol obeys Zdanovskii, Stokes, and Robinson (ZSR) ideal mixing rules. Higher CCN activity (κ > 0.3) was also observed for humid BA+N2O5 aerosols compared with dry aerosol (κ ~ 0.2), as a result of the formation of inorganic salts such as NH4NO3 and butylamine nitrate (C4H11N · HNO3). Compared with TMA, BA+N2O5 reactions produce more volatile aerosols. The BA+N2O5 aerosol products under humid experiments were found to be very sensitive to the temperature within the stream-wise continuous flow thermal gradient CCN counter. The CCN counter, when set above a 21 °C temperature difference, evaporates BA+N2O5 aerosol formed at RH ≥ 30%; κ ranges from 0.4 to 0.7 and is dependent on the instrument supersaturation (ss) settings. The aerosol behaves non-ideally, hence simple ZSR rules cannot be applied to the CCN results from the primary aliphatic amine system. Overall, aliphatic amine aerosol systems κ ranges from 0.2 < κ < 0.7. This work indicates that

  9. Characterization of aerosol events based on the column integrated optical aerosol properties and polarimetric measurements

    NASA Astrophysics Data System (ADS)

    Mandija, Florian; Markowicz, Krzysztof; Zawadzka, Olga

    2016-12-01

    Aerosol optical properties are very useful tools for analyzing their radiative effects, which are directly or indirectly related to the global radiation budget. Investigation of column-integrated aerosol optical properties is a worldwide and well-accepted method. The introduction of new methodologies, like those of operation with polarimetric measurements, represent a new challenge to interpret the measurement data and give more detailed information about the aerosol events and their characteristics. Aerosol optical properties during the period June - August 2015 in AERONET Strzyzow station in Poland were analyzed. The aerosol properties like aerosol optical depth, Ångström exponent, fine mode fraction, fine mode contribution on AOD, asymmetry parameter, single scattering angle are analyzed synergistically with the polarimetric measurements of the degree of polarization in different solar zenith and zenith viewing angles at several wavelengths. The overall results show that aerosol events in Strzyzow were characterized mostly by fine mode aerosols. Backward-trajectories suggest that the majority of air masses come from the west. The principal component of the aerosol load was urban/industrial contamination, especially from the inner part of the continent. Additionally, the maximal values of the degree of linear polarization were found to be dependent on the solar zenith and zenith viewing angles and aerosol optical properties like aerosol optical depth and Ångström exponent. These dependencies were further analyzed in a specific case with very high mean values of AOD500 (0.59) and AE440-870 (1.91). The diurnal variations of aerosol optical properties investigated during this special case, suggest that biomass burning products are the main cause of that aerosol load over the stations.

  10. Physical and Optical/Radiative Characteristics of Aerosol and Cloud Particles in Tropical Cirrus: Importance in Radiation Balance

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Howard, S. D.; Foster, T. C.; Hallett, J.; Arnott, W. P.; Condon, Estelle P. (Technical Monitor)

    1996-01-01

    Whether cirrus clouds heat or cool the Earth-atmosphere system depends on the relative importance of the cloud shortwave albedo effect and the cloud thermal greenhouse effect. Both are determined by the distribution of ice condensate with cloud particle size. The microphysics instrument package flown aboard the NASA DC-8 in TOGA/COARE included an ice crystal replicator, a 2D Greyscale Cloud Particle Probe and a Forward Scattering Spectrometer Aerosol Probe. In combination, the electro-optical instruments permitted particle size measurements between 0.5 micrometer and 2.6 millimeter diameter. Ice crystal replicas were used to validate signals from the electrooptical instruments. Both optical and scanning electron microscopy were utilized to analyze aerosol and ice particle replicas between 0.1 micrometer and several 100 micrometer diameter. In first approximation, the combined aerosol-cloud particle spectrum in several clouds followed a power law N alpha D(sup -2.5). Thus, large cloud particles carried most of the condensate mass, while small cloud and aerosol particles determined the surface area. The mechanism of formation of small particles is growth of (hygroscopic, possibly ocean-derived) aerosol particles along the Kohler curves. The concentration of small particles is higher and less variable in space and time, and their tropospheric residence time is longer, than those of large cloud particles because of lower sedimentation velocities. Small particles shift effective cloud particle radii to sizes much smaller than the mean diameter of the cloud particles. This causes an increase in shortwave reflectivity and IR emissivity, and a decrease in transmissivity. Occasionally, the cloud reflectivity increased with altitude (decreasing temperature) stronger than did cloud emissivity, yielding enhanced radiative cooling at higher altitudes. Thus, cirrus produced by deep convection in the tropics may be critical in controlling processes whereby energy from warm

  11. Effect of Aerosol Size and Hygroscopicity on Aerosol Optical Depth in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Brock, Charles; Wagner, Nick; Gordon, Timothy

    2016-04-01

    Aerosol optical depth (AOD) is affected by the size, optical characteristics, and hygroscopicity of particles, confounding attempts to link remote sensing observations of AOD to measured or modeled aerosol mass concentrations. In situ airborne observations of aerosol optical, chemical, microphysical and hygroscopic properties were made in the southeastern United States in the daytime in summer 2013. We use these observations to constrain a simple model that is used to test the sensitivity of AOD to the various measured parameters. As expected, the AOD was found to be most sensitive to aerosol mass concentration and to aerosol water content, which is controlled by aerosol hygroscopicity and the ambient relative humidity. However, AOD was also fairly sensitive to the mean particle diameter and the width of the size distribution. These parameters are often prescribed in global models that use simplified modal parameterizations to describe the aerosol, suggesting that the values chosen could substantially bias the calculated relationship between aerosol mass and optical extinction, AOD, and radiative forcing.

  12. WRF-Chem Simulations of Aerosols and Anthropogenic Aerosol Radiative Forcing in East Asia

    SciTech Connect

    Gao, Yi; Zhao, Chun; Liu, Xiaohong; Zhang, Meigen; Leung, Lai-Yung R.

    2014-08-01

    This study aims to provide a first comprehensive evaluation of WRF-Chem for modeling aerosols and anthropogenic aerosol radiative forcing (RF) over East Asia. Several numerical experiments were conducted from November 2007 to December 2008. Comparison between model results and observations shows that the model can generally reproduce the observed spatial distributions of aerosol concentration, aerosol optical depth (AOD) and single scattering albedo (SSA) from measurements at different sites, including the relatively higher aerosol concentration and AOD over East China and the relatively lower AOD over Southeast Asia, Korean, and Japan. The model also depicts the seasonal variation and transport of pollutions over East Asia. Particulate matter of 10 um or less in the aerodynamic diameter (PM10), black carbon (BC), sulfate (SO42-), nitrate (NO3-) and ammonium (NH4+) concentrations are higher in spring than other seasons in Japan due to the pollutant transport from polluted area of East Asia. AOD is high over Southwest and Central China in winter, spring and autumn and over North China in summer while is low over South China in summer due to monsoon precipitation. SSA is lowest in winter and highest in summer. The model also captures the dust events at the Zhangye site in the semi-arid region of China. Anthropogenic aerosol RF is estimated to range from -5 to -20 W m-2 over land and -20 to -40 W m-2 over ocean at the top of atmosphere (TOA), 5 to 30 W m-2 in the atmosphere (ATM) and -15 to -40 W m-2 at the bottom (BOT). The warming effect of anthropogenic aerosol in ATM results from BC aerosol while the negative aerosol RF at TOA is caused by scattering aerosols such as SO4 2-, NO3 - and NH4+. Positive BC RF at TOA compensates 40~50% of the TOA cooling associated with anthropogenic aerosol.

  13. The influence of metallurgy on the formation of welding aerosols.

    PubMed

    Zimmer, Anthony T

    2002-10-01

    Recent research has indicated that insoluble ultrafine aerosols (ie., particles whose physical diameters are less than 100 nm) may cause adverse health effects due to their small size, and that toxicological response may be more appropriately represented by particle number or particle surface area. Unfortunately, current exposure criteria and the associated air-sampling techniques are primarily mass-based. Welding processes are high-temperature operations that generate substantial number concentrations of ultrafine aerosols. Welding aerosols are formed primarily through the nucleation of metal vapors followed by competing growth mechanisms such as coagulation and condensation. Experimental results and mathematical tools are presented to illustrate how welding metallurgy influences the chemical aspects and dynamic processes that initiate and evolve the resultant aerosol. This research suggests that a fundamental understanding of metallurgy and aerosol physics can be exploited to suppress the formation of undesirable chemical species as well as the amount of aerosol generated during a welding process.

  14. A Global Data Assimilation System for Atmospheric Aerosol

    NASA Technical Reports Server (NTRS)

    daSilva, Arlindo

    1999-01-01

    We will give an overview of an aerosol data assimilation system which combines advances in remote sensing of atmospheric aerosols, aerosol modeling and data assimilation methodology to produce high spatial and temporal resolution 3D aerosol fields. Initially, the Goddard Aerosol Assimilation System (GAAS) will assimilate TOMS, AVHRR and AERONET observations; later we will include MODIS and MISR. This data assimilation capability will allows us to integrate complementing aerosol observations from these platforms, enabling the development of an assimilated aerosol climatology as well as a global aerosol forecasting system in support of field campaigns. Furthermore, this system provides an interactive retrieval framework for each aerosol observing satellites, in particular TOMS and AVHRR. The Goddard Aerosol Assimilation System (GAAS) takes advantage of recent advances in constituent data assimilation at DAO, including flow dependent parameterizations of error covariances and the proper consideration of model bias. For its prognostic transport model, GAAS will utilize the Goddard Ozone, Chemistry, Aerosol, Radiation and Transport (GOCART) model developed at NASA/GSFC Codes 916 and 910.3. GOCART includes the Lin-Rood flux-form, semi-Langrangian transport model with parameterized aerosol chemistry and physical processes for absorbing (dust and black carbon) and non-absorbing aerosols (sulfate and organic carbon). Observations and model fields are combined using a constituent version of DAO's Physical-space Statistical Analysis System (PSAS), including its adaptive quality control system. In this talk we describe the main components of this assimilation system and present preliminary results obtained by assimilating TOMS data.

  15. Equilibrium size of atmospheric aerosol sulfates as a function of the relative humidity

    NASA Astrophysics Data System (ADS)

    Koutrakis, Petros; Wolfson, Jack M.; Spengler, John D.; Stern, Bonnie; Franklin, Claire A.

    1989-05-01

    Size-fractionated acid aerosols were collected, using a microorifice cascade impactor, during the summer of 1986 in Dunnville, Ontario, as part of the Canadian Children Acute Respiratory Effects Study (CARES), sponsored by the Department of National Health and Welfare, Canada. Sulfate and hydrogen ions showed similar size distributions. The molar ratio of H+/SO42- varied little with particle size, but there was a considerable time-dependent variation in aerosol acid content. It was also found that there is a distinct relationship between the geometric mean aerodynamic diameter of sulfate, da, and ambient relative humidity (RH). Atmospheric sulfate particle sizes observed in this study were slightly higher than those found in laboratory experiments at corresponding humidities. However, considering the uncertainties involved, the agreement between the field and laboratory data was remarkable.

  16. The influence of marine microbial activities on aerosol production: A laboratory mesocosm study

    NASA Astrophysics Data System (ADS)

    Alpert, Peter A.; Kilthau, Wendy P.; Bothe, Dylan W.; Radway, JoAnn C.; Aller, Josephine Y.; Knopf, Daniel A.

    2015-09-01

    The oceans cover most of the Earth's surface, contain nearly half the total global primary biomass productivity, and are a major source of atmospheric aerosol particles. Here we experimentally investigate links between biological activity in seawater and sea spray aerosol (SSA) flux, a relationship of potential significance for organic aerosol loading and cloud formation over the oceans and thus for climate globally. Bubbles were generated in laboratory mesocosm experiments either by recirculating impinging water jets or glass frits. Experiments were conducted with Atlantic Ocean seawater collected off the eastern end of Long Island, NY, and with artificial seawater containing cultures of bacteria and phytoplankton Thalassiosira pseudonana, Emiliania huxleyi, and Nannochloris atomus. Changes in SSA size distributions occurred during all phases of bacterial and phytoplankton growth, as characterized by cell concentrations, dissolved organic carbon, total particulate carbon, and transparent exopolymer particles (gel-forming polysaccharides representing a major component of biogenic exudate material). Over a 2 week growth period, SSA particle concentrations increased by a factor of less than 2 when only bacteria were present and by a factor of about 3 when bacteria and phytoplankton were present. Production of jet-generated SSA particles of diameter less than 200 nm increased with time, while production of all particle diameters increased with time when frits were used. The implications of a marine biological activity dependent SSA flux are discussed.

  17. Microphysical and compositional influences on shortwave radiative forcing of climate by sulfate aerosols

    SciTech Connect

    Schwartz, S.E.; Wagener, R.; Nemesure, S.

    1995-02-01

    Anthropogenic sulfate aerosols scatter shortwave (solar) radiation iincident upon the atmosphere, thereby exerting a cooling influence on climate relative to pre-industrial times. Previous estimates of this forcing place its global and annual average value at about {minus}1 W M{sup {minus}2}, uncertain to a factor of somewhat more than 2, comparable in magnitude to greenhouse gas forcing over the same period but opposite in sign and much more uncertain. Key sources of uncertainty are atmospheric chemistry factors (yield, residence time), and microphysical factors (scattering efficiency, upscatter fraction, and the dependence of these quantities on particle size and relative humidity, RH). This paper examines these microphysical influences to indentify properties required to obtain more a accurate description of this forcing. The mass scattering efficiency exhibits a maximum at a particle diameter ({approximately}0.5 {mu}m) roughly equal to the wavelength of maximum power in the solar spectrum and roughly equal to diameter typical of anthropogenic sulfate aerosols. Particle size, and hence mass scattering efficiency, increase with increasing on RH because of accretion of water by deliquescent salt aerosols.

  18. Aerosol volatility in a boreal forest environment

    NASA Astrophysics Data System (ADS)

    Häkkinen, S. A. K.; ńijälä, M.; Lehtipalo, K.; Junninen, H.; Virkkula, A.; Worsnop, D. R.; Kulmala, M.; Petäjä, T.; Riipinen, I.

    2012-04-01

    during spring and autumn 2008. Results from the aerosol mass spectrometry indicate that the non-volatile residual consists of nitrate and organic compounds, especially during autumn. These compounds may be low-volatile organic nitrates or salts. During winter and spring the non-volatile core (black carbon removed) correlated markedly with carbon monoxide, which is a tracer of anthropogenic emissions. Due to this, the non-volatile residual may also contain other pollutants in addition to black carbon. Thus, it seems that the amount of different compounds in submicron aerosol particles varies with season and as a result the chemical composition of the non-volatile residual changes within a year. This work was supported by University of Helsinki three-year research grant No 490082 and Maj and Tor Nessling Foundation grant No 2010143. Aalto et al., (2001). Physical characterization of aerosol particles during nucleation events. Tellus B, 53, 344-358. Jayne, et al., (2000). Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. Aerosol Sci. Technol., 33(1-2), 49-70. Kalberer et al., (2004). Identification of Polymers as Major Components of Atmospheric Organic Aerosols. Science, 303, 1659-1662. Smith et al., (2010). Observations of aminium salts in atmospheric nanoparticles and possible climatic implications. P. Natl. Acad. Sci., 107(15). Vesala et al., (1998). Long-term field measurements of atmosphere-surface interactions in boreal forest combining forest ecology, micrometeorology, aerosol physics and atmospheric chemistry. Trends Heat, Mass Mom. Trans., 4, 17-35. Wehner et al., (2002). Design and calibration of a thermodenuder with an improved heating unit to measure the size-dependent volatile fraction of aerosol particles. J. Aerosol Sci., 33, 1087-1093.

  19. Informing Aerosol Transport Models With Satellite Multi-Angle Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Limbacher, J.; Patadia, F.; Petrenko, M.; Martin, M. Val; Chin, M.; Gaitley, B.; Garay, M.; Kalashnikova, O.; Nelson, D.; Scollo, S.

    2011-01-01

    As the aerosol products from the NASA Earth Observing System's Multi-angle Imaging SpectroRadiometer (MISR) mature, we are placing greater focus on ways of using the aerosol amount and type data products, and aerosol plume heights, to constrain aerosol transport models. We have demonstrated the ability to map aerosol air-mass-types regionally, and have identified product upgrades required to apply them globally, including the need for a quality flag indicating the aerosol type information content, that varies depending upon retrieval conditions. We have shown that MISR aerosol type can distinguish smoke from dust, volcanic ash from sulfate and water particles, and can identify qualitative differences in mixtures of smoke, dust, and pollution aerosol components in urban settings. We demonstrated the use of stereo imaging to map smoke, dust, and volcanic effluent plume injection height, and the combination of MISR and MODIS aerosol optical depth maps to constrain wildfire smoke source strength. This talk will briefly highlight where we stand on these application, with emphasis on the steps we are taking toward applying the capabilities toward constraining aerosol transport models, planet-wide.

  20. Overview of ACE-Asia Spring 2001 Investigations On Aerosol-Radiation Interactions

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Flatau, P. J.; Valero, F. P. J.; Nakajima, T.; Holben, B.; Pilewskie, P.; Bergin, M.; Schmid, B.; Bergstrom, R. W.; Vogelmann, A.; Hipskind, R. Stephen (Technical Monitor)

    2002-01-01

    ACE-Asia's extensive measurements from land, ocean, air and space quantified aerosol-radiation interactions. Results from each platform type, plus satellite-suborbital combinations, include: 1. Time series of multiwavelength aerosol optical depth (ADD), Angstrom exponent (alpha), single-scattering albedo (SSA), and size distribution from AERONET radiometry at 13 stations. In China and Korea AOD and alpha were strongly anticorrelated (reflecting transient dust events); dust volume-size modes peaked near 8 microns diameter; and SSA(dust) greater than SSA(pollution). 2. Calculations and measurements of photosynthetically active radiation and aerosols in China yield 24-h average downward surface radiative forcing per AOD(500 nm) of -27 W/sq m (400-700 nm). 3. The Hawaii-Japan cruise sampled a gradient with AOD(500 nm) extremes of 0.1 and 1.1. Shipboard measurements showed that adding dust to pollution increased SSA(550 nm, 55% RH), typically from -0.91 to approx. 0.97. Downwelling 8-12 micron radiances showed aerosol effects, especially in the major April dust event, with longwave forcing estimated at -5 to 15 W/sq m. 4. Extinction profiles from airborne sunphotometry and total-direct-diffuse radiometry show wavelength dependence often varying strongly with height, reflecting layering of dust-dominated over pollution-dominated aerosols. Comparing sunphotometric extinction profiles to those from in situ measurements (number and composition vs size, or scattering and absorption) shows layer heights agree, but extinction sometimes differs. 5. Airborne solar spectral flux radiometry yields absorption spectra for layers. Combining with AOD spectra yields best-fit aerosol single scattering albedo spectra. 6. Visible, NIR and total solar fluxes combined with AOD give radiative forcing efficiencies at surface and aloft.

  1. Aerosols and criteria gases in an underground mine that uses FAME biodiesel blends.

    PubMed

    Bugarski, Aleksandar D; Janisko, Samuel J; Cauda, Emanuele G; Patts, Larry D; Hummer, Jon A; Westover, Charles; Terrillion, Troy

    2014-10-01

    The contribution of heavy-duty haulage trucks to the concentrations of aerosols and criteria gases in underground mine air and the physical properties of those aerosols were assessed for three fuel blends made with fatty acid methyl esters biodiesel and petroleum-based ultra-low-sulfur diesel (ULSD). The contributions of blends with 20, 50, and 57% of biodiesel as well as neat ULSD were assessed using a 30-ton truck operated over a simulated production cycle in an isolated zone of an operating underground metal mine. When fueled with the B20 (blend of biodiesel with ULSD with 20% of biodiesel content), B50 (blend of biodiesel with ULSD with 50% of biodiesel content), and B57 (blend of biodiesel with ULSD with 57% of biodiesel content) blends in place of ULSD, the truck's contribution to mass concentrations of elemental and total carbon was reduced by 20, 50, and 61%, respectively. Size distribution measurements showed that the aerosols produced by the engine fueled with these blends were characterized by smaller median electrical mobility diameter and lower peak concentrations than the aerosols produced by the same engine fueled with ULSD. The use of the blends resulted in number concentrations of aerosols that were 13-29% lower than those when ULSD was used. Depending on the content of biodiesel in the blends, the average reductions in the surface area concentrations of aerosol which could be deposited in the alveolar region of the lung (as measured by a nanoparticle surface area monitor) ranged between 6 and 37%. The use of blends also resulted in slight but measurable reductions in CO emissions, as well as an increase in NOX emissions. All of the above changes in concentrations and physical properties were found to be correlated with the proportion of biodiesel in the blends.

  2. [Comparison of the aerosol produced by electronic cigarettes with conventional cigarettes and the shisha].

    PubMed

    Bertholon, J-F; Becquemin, M H; Roy, M; Roy, F; Ledur, D; Annesi Maesano, I; Dautzenberg, B

    2013-11-01

    In previous studies of the smoke from regular cigarettes and water pipes, we measured aerosol particle sizes in three streams; S1, inhaled by the smoker, S2, released by the device itself and S3, exhaled by the smoker. We used an electrostatic low-pressure impactor (ELPI), giving particle size distributions in real time and calculated median diameters, D50, and dispersion (σg). This allowed us to predict airway deposition. In addition, the aerosol particle half-life in the air was used as a measure of the risk to others from passive smoking. With the same equipment, we measured the particle sizes and persistence in air of the liquid aerosol generated by e-cigarettes (Cigarettec®) containing water, propylene glycol and flavorings with or without nicotine. Aerosol generation was triggered by a syringe or by the inspiration of volunteer smokers. The D50 data obtained in S1, were 0.65 μm with nicotine and 0.60 μm without nicotine. Deposition in the airways could then be calculated: 26% of the total would deposit, of which 14% would reach the alveoli. These data are close to those found with regular cigarettes. For S3, D50 data were 0.34 μm and 0.29 μm with or without nicotine. The half-life in air of the S3 stream was 11 seconds due to a rapid evaporation. The-e-cigarette aerosol, as measured here, is made of particles bigger than those of cigarette and water pipe aerosols. Their deposition in the lung depends on their fate in the airways, which is unknown. Contrary to tobacco smoke, which has a half-life in air of 19 to 20 minutes, the risk of passive "smoking" exposure from e-cigarettes is modest.

  3. Aerosols and Criteria Gases in an Underground Mine That Uses FAME Biodiesel Blends

    PubMed Central

    Bugarski, Aleksandar D.; Janisko, Samuel J.; Cauda, Emanuele G.; Patts, Larry D.; Hummer, Jon A.; Westover, Charles; Terrillion, Troy

    2015-01-01

    The contribution of heavy-duty haulage trucks to the concentrations of aerosols and criteria gases in underground mine air and the physical properties of those aerosols were assessed for three fuel blends made with fatty acid methyl esters biodiesel and petroleum-based ultra-low-sulfur diesel (ULSD). The contributions of blends with 20, 50, and 57% of biodiesel as well as neat ULSD were assessed using a 30-ton truck operated over a simulated production cycle in an isolated zone of an operating underground metal mine. When fueled with the B20 (blend of biodiesel with ULSD with 20% of biodiesel content), B50 (blend of biodiesel with ULSD with 50% of biodiesel content), and B57 (blend of biodiesel with ULSD with 57% of biodiesel content) blends in place of ULSD, the truck’s contribution to mass concentrations of elemental and total carbon was reduced by 20, 50, and 61%, respectively. Size distribution measurements showed that the aerosols produced by the engine fueled with these blends were characterized by smaller median electrical mobility diameter and lower peak concentrations than the aerosols produced by the same engine fueled with ULSD. The use of the blends resulted in number concentrations of aerosols that were 13–29% lower than those when ULSD was used. Depending on the content of biodiesel in the blends, the average reductions in the surface area concentrations of aerosol which could be deposited in the alveolar region of the lung (as measured by a nanoparticle surface area monitor) ranged between 6 and 37%. The use of blends also resulted in slight but measurable reductions in CO emissions, as well as an increase in NOX emissions. All of the above changes in concentrations and physical properties were found to be correlated with the proportion of biodiesel in the blends. PMID:25060241

  4. Global Atmospheric Aerosol Modeling

    NASA Technical Reports Server (NTRS)

    Hendricks, Johannes; Aquila, Valentina; Righi, Mattia

    2012-01-01

    Global aerosol models are used to study the distribution and properties of atmospheric aerosol particles as well as their effects on clouds, atmospheric chemistry, radiation, and climate. The present article provides an overview of the basic concepts of global atmospheric aerosol modeling and shows some examples from a global aerosol simulation. Particular emphasis is placed on the simulation of aerosol particles and their effects within global climate models.

  5. Evaluation of a tractor cab using real-time aerosol counting instrumentation.

    PubMed

    Hall, Ronald M; Heitbrink, William A; Reed, Laurence D

    2002-01-01

    concentration / inside concentration) was used to calculate how efficient the tractor cab was at removing aerosols. The John Deere cab was more than 99 percent efficient at removing aerosols larger than 3.0 microm in diameter and had protection factors greater than 260 for particles larger than 3.0 microm (indicated by the PDM results). The Nelson cab was more than 99 percent efficient at removing aerosols larger than 3.0 microm in diameter and had protection factors greater than 200 for particles larger than 3.0 microm (indicated by the PDM results). For aerosols smaller than 1.0 microm in diameter (indicated by a PortaCount Plus instrument), the John Deere cab provided a mean protection factor of 43 and the Nelson cab provided a mean protection factor of 16. The results from this study indicate that tractor cabs can be effective at removing different size aerosols depending on the seals and filters used with the enclosure. This study has also demonstrated the practical use of real-time aerosol counting instrumentation to evaluate the effectiveness of enclosures and to help identify leak sources. The method used in this study can be applied to various cabs used in different industries including agriculture, construction, and manufacturing.

  6. Using OMI Observations to Measure Aerosol Absorption of Biomass Burning Aerosols Above Clouds

    NASA Technical Reports Server (NTRS)

    Torres, Omar; Bhartia, P. K.; Jethva, Hiren

    2011-01-01

    The presence of absorbing aerosol layers above clouds is unambiguously detected by the TOMS/OMI UV Aerosol Index (AI) that uses satellite observations at two near-UV channels. A sensitivity study using radiative transfer calculations shows that the AI signal of resulting from the presence of aerosols above clouds is mainly driven by the aerosol absorption optical depth and the optical depth of the underlying cloud. Based on these results, an inversion algorithm has been developed to retrieve the aerosol optical depth (AOD) of aerosol layers above clouds. In this presentation we will discuss the sensitivity analysis, describe the retrieval approach, and present results of applications of the retrieval method to OMI observations over the South Atlantic Ocean. Preliminary error analyses, to be discussed, indicate that the AOD can be underestimated (up to -30%) or overestimated (up to 60%) depending on algorithmic assumptions.

  7. Identification of aerosol composition from multi-wavelength lidar measurements

    NASA Technical Reports Server (NTRS)

    Wood, S. A.

    1984-01-01

    This paper seeks to develop the potential of lidar for the identification of the chemical composition of atmospheric aerosols. Available numerical computations suggest that aerosols can be identified by the wavelength dependence of aerosol optical properties. Since lidar can derive the volume backscatter coefficient as a function of wavelength, a multi-wavelength lidar system may be able to provide valuable information on the composition of aerosols. This research theoretically investigates the volume backscatter coefficients for the aerosol classes, sea-salts, and sulfates, as a function of wavelength. The results show that these aerosol compositions can be characterized and identified by their backscatter wavelength dependence. A method to utilize multi-wavelength lidar measurements to discriminate between compositionally different thin aerosol layers is discussed.

  8. Impacts of ENSO events on cloud radiative effects in preindustrial conditions: Changes in cloud fraction and their dependence on interactive aerosol emissions and concentrations

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Russell, Lynn M.; Xu, Li; Lou, Sijia; Lamjiri, Maryam A.; Somerville, Richard C. J.; Miller, Arthur J.; Cayan, Daniel R.; DeFlorio, Michael J.; Ghan, Steven J.; Liu, Ying; Singh, Balwinder; Wang, Hailong; Yoon, Jin-Ho; Rasch, Philip J.

    2016-06-01

    We use three 150 year preindustrial simulations of the Community Earth System Model to quantify the impacts of El Niño-Southern Oscillation (ENSO) events on shortwave and longwave cloud radiative effects (CRESW and CRELW). Compared to recent observations from the Clouds and the Earth's Radiant Energy System data set, the model simulation successfully reproduces larger variations of CRESW and CRELW over the tropics. The ENSO cycle is found to dominate interannual variations of cloud radiative effects. Simulated cooling (warming) effects from CRESW (CRELW) are strongest over the tropical western and central Pacific Ocean during warm ENSO events, with the largest difference between 20 and 60 W m-2, with weaker effects of 10-40 W m-2 over Indonesian regions and the subtropical Pacific Ocean. Sensitivity tests show that variations of cloud radiative effects are mainly driven by ENSO-related changes in cloud fraction. The variations in midlevel and high cloud fractions each account for approximately 20-50% of the interannual variations of CRESW over the tropics and almost all of the variations of CRELW between 60°S and 60°N. The variation of low cloud fraction contributes to most of the variations of CRESW over the midlatitude oceans. Variations in natural aerosol concentrations explained 10-30% of the variations of both CRESW and CRELW over the tropical Pacific, Indonesian regions, and the tropical Indian Ocean. Changes in natural aerosol emissions and concentrations enhance 3-5% and 1-3% of the variations of cloud radiative effects averaged over the tropics.

  9. Aerosol deposition along the respiratory tract at zero gravity: a theoretical study

    SciTech Connect

    Lehnert, B.E.; Smith, D.M.; Holland, L.M.; Tillery, M.I.; Thomas, R.G.

    1984-01-01

    Significant fractions of airborne particles composing inhaled aerosols can deposit along the respiratory tract during breathing. Depending on the environmental condition, some particles that enter the body via the respiratory route can pose health hazards. On earth, three general rate mechanisms are active in this deposition process: (1) inertial impaction; (2) diffusion; and (3) gravity-dependent sedimentation. Space craft, stations, and bases represent unique settings where potentially pathogenic aerosols may be encountered under the unique condition of zero or reduced gravity. The present study was undertaken in order to predict how particle deposition in the human respiratory tract at zero gravity may differ from that on earth. We employed the aerosol deposition model of the Task Group on Lung Dynamics to assess the regional deposition of particles ranging from 0.01 to 10 ..mu..m diameter at two particulate densities, 1 and 4, during simulated tidal breathing and breathing during moderate - heavy exercise. Our results suggest the gas exchange regions of the lungs of space travelers and residents are afforded some protection, relative to their earth-bound counterparts, against the deposition of particles due to the absence of gravity; and approximately 2 to 10 fold reduction in the efficiency of collection of particles > 0.5 ..mu..m in diameter occurred in the pulmonary region during resting conditions and exercise. Deposition along the tracheobronchial tree, however, is not markedly altered in the absence of gravity, indicating airway sites contributing to this structure remain susceptible to insults by inhaled aerosols. 18 references, 2 figures, 2 tables.

  10. Aerosol gels

    NASA Technical Reports Server (NTRS)

    Sorensen, Christopher M. (Inventor); Chakrabarti, Amitabha (Inventor); Dhaubhadel, Rajan (Inventor); Gerving, Corey (Inventor)

    2010-01-01

    An improved process for the production of ultralow density, high specific surface area gel products is provided which comprises providing, in an enclosed chamber, a mixture made up of small particles of material suspended in gas; the particles are then caused to aggregate in the chamber to form ramified fractal aggregate gels. The particles should have a radius (a) of up to about 50 nm and the aerosol should have a volume fraction (f.sub.v) of at least 10.sup.-4. In preferred practice, the mixture is created by a spark-induced explosion of a precursor material (e.g., a hydrocarbon) and oxygen within the chamber. New compositions of matter are disclosed having densities below 3.0 mg/cc.

  11. Cloud condensation nuclei activity of isoprene secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Engelhart, Gabriella J.; Moore, Richard H.; Nenes, Athanasios; Pandis, Spyros N.

    2011-01-01

    This work explores the cloud condensation nuclei (CCN) activity of isoprene secondary organic aerosol (SOA), likely a significant source of global organic particulate matter and CCN, produced from the oxidation with OH from HONO/HOOH photolysis in a temperature-controlled SOA chamber. CCN concentrations, activation diameter, and droplet growth kinetic information were monitored as a function of supersaturation (from 0.3% to 1.5%) for several hours using a cylindrical continuous-flow streamwise thermal gradient CCN counter connected to a scanning mobility particle sizer. The initial SOA concentrations ranged from 2 to 30 μg m-3 and presented CCN activity similar to monoterpene SOA with an activation diameter of 35 nm for 1.5% supersaturation and 72 nm for 0.6% supersaturation. The CCN activity improved slightly in some experiments as the SOA aged chemically and did not depend significantly on the level of NOx during the SOA production. The measured activation diameters correspond to a hygroscopicity parameter κ value of 0.12, similar to κ values of 0.1 ± 0.04 reported for monoterpene SOA. Analysis of the water-soluble carbon extracted from filter samples of the SOA suggest that it has a κ of 0.2-0.3 implying an average molar mass between 90 and 150 g mol-1 (assuming a zero and 5% surface tension reduction with respect to water, respectively). These findings are consistent with known oxidation products of isoprene. Using threshold droplet growth analysis, the CCN activation kinetics of isoprene SOA was determined to be similar to pure ammonium sulfate aerosol.

  12. A Cough Aerosol Simulator for the Study of Disease Transmission by Human Cough-Generated Aerosols

    PubMed Central

    Lindsley, William G.; Reynolds, Jeffrey S.; Szalajda, Jonathan V.; Noti, John D.; Beezhold, Donald H.

    2015-01-01

    Aerosol particles expelled during human coughs are a potential pathway for infectious disease transmission. However, the importance of airborne transmission is unclear for many diseases. To better understand the role of cough aerosol particles in the spread of disease and the efficacy of different types of protective measures, we constructed a cough aerosol simulator that produces a humanlike cough in a controlled environment. The simulated cough has a 4.2 l volume and is based on coughs recorded from influenza patients. In one configuration, the simulator produces a cough aerosol containing particles from 0.1 to 100 µm in diameter with a volume median diameter (VMD) of 8.5 µm and a geometric standard deviation (GSD) of 2.9. In a second configuration, the cough aerosol has a size range of 0.1–30 µm, a VMD of 3.4 µm, and a GSD of 2.3. The total aerosol volume expelled during each cough is 68 µl. By generating a controlled and reproducible artificial cough, the simulator allows us to test different ventilation, disinfection, and personal protection scenarios. The system can be used with live pathogens, including influenza virus, which allows isolation precautions used in the healthcare field to be tested without risk of exposure for workers or patients. The information gained from tests with the simulator will help to better understand the transmission of infectious diseases, develop improved techniques for infection control, and improve safety for healthcare workers and patients. PMID:26500387

  13. Variation of the pressure limits of flame propagation with tube diameter for propane-air mixtures

    NASA Technical Reports Server (NTRS)

    Belles, Frank E; Simon, Dorothy M

    1951-01-01

    An investigation was made of the variation of the pressure limits of flame propagation with tube diameter for quiescent propane with tube diameter for quiescent propane-air mixtures. Pressure limits were measured in glass tubes of six different inside diameters, with a precise apparatus. Critical diameters for flame propagation were calculated and the effect of pressure was determined. The critical diameters depended on the pressure to the -0.97 power for stoichiometric mixtures. The pressure dependence decreased with decreasing propane concentration. Critical diameters were related to quenching distance, flame speeds, and minimum ignition energy.

  14. Aerosol optical hygroscopicity measurements during the 2010 CARES campaign

    DOE PAGES

    Atkinson, D. B.; Radney, J. G.; Lum, J.; ...

    2015-04-17

    Measurements of the effect of water uptake on particulate light extinction or scattering made at two locations during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) study around Sacramento, CA are reported. The observed influence of water uptake, characterized through the dimensionless optical hygroscopicity parameter γ, is compared with calculations constrained by observed particle size distributions and size-dependent particle composition. A closure assessment has been carried out that allowed for determination of the average hygroscopic growth factors (GFs) at 85% relative humidity and the dimensionless hygroscopicity parameter κ for oxygenated organic aerosol (OA) and for supermicron particles (defined heremore » as particles with aerodynamic diameters between 1 and 2.5 microns), yielding κ = 0.1–0.15 and 0.9–1.0, respectively. The derived range of oxygenated OA κ values are in line with previous observations. The relatively large values for supermicron particles is consistent with substantial contributions of sea-salt-containing particles in this size range. Analysis of time-dependent variations in the supermicron particle hygroscopicity suggest that atmospheric processing, specifically chloride displacement by nitrate and the accumulation of secondary organics on supermicron particles, can lead to substantial depression of the observed GF.« less

  15. Properties of aerosol processed by ice clouds

    NASA Astrophysics Data System (ADS)

    Rudich, Y.; Adler, G.; Moise, T.; Erlick-Haspel, C.

    2012-12-01

    We suggest that highly porous aerosol (HPA) can form in the upper troposphere/lower stratosphere when ice particles encounter sub-saturation leading to ice sublimation similar to freeze drying. This process can occur at the lower layers of cirrus clouds (few km), at anvils of high convective clouds and thunderstorms, in clouds forming in atmospheric gravitational waves, in contrails and in high convective clouds injecting to the stratosphere. A new experimental system that simulates freeze drying of proxies for atmospheric aerosol at atmospheric pressure was constructed and various proxies for atmospheric soluble aerosol were studied. The properties of resulting HPA were characterized by various methods. It was found that the resulting aerosol have larger sizes (extent depends on substance and mixing), lower density (largevoid fraction), lower optical extinction and higher CCN activity and IN activity. Implication of HPA's unique properties and their atmospheric consequences to aerosol processing in ice clouds and to cloud cycles will be discussed.

  16. Chemical composition and sources of aerosol particles at Zeppelin Mountain (Ny Ålesund, Svalbard): An electron microscopy study

    NASA Astrophysics Data System (ADS)

    Weinbruch, Stephan; Wiesemann, David; Ebert, Martin; Schütze, Katharina; Kallenborn, Roland; Ström, Johan

    2012-03-01

    Aerosol particles were collected at the Zeppelin Mountain Atmospheric Research Station (474 m asl) near Ny Ålesund (Svalbard, Norway) on 27 different days between July 2007 and December 2008. The size, morphology and chemical composition of 57,617 individual particles were studied by high-resolution scanning electron microscopy and energy-dispersive X-ray microanalysis. Based on chemical composition, morphology, mixing state and stability under electron bombardment, the particles were assigned to one of the following groups: sea salt, aged sea salt, Ca sulphates, Na sulphates, carbonates, soot, silicates, fly ashes, secondary aerosol, secondary aerosol plus sodium, secondary aerosol plus soot, mixed particles and others. Sea salt, aged sea salt, silicates and mixed particles (mixtures of sea salt, silicates and Ca sulphates) are the most abundant groups for particles with aerodynamic diameters > 0.5 μm, secondary aerosol, mixed particles and secondary aerosol with soot inclusions below 0.5 μm. Silicate fly ashes (major source coal burning) and metal fly ashes (from metallurgical high temperature processes) occur only at very low number concentrations. In contrast to previous work, the fly ash abundance is not correlated with air masses that crossed industrialized regions in Central and Eastern Europe, Scandinavia or Russia. These observations indicate a significant reduction of long-range transport of heavy metals to Svalbard. Soot (external and internally mixed with secondary aerosol) shows a pronounced seasonal pattern with a much lower abundance during summer compared to spring, autumn and winter. The soot abundance is not correlated with the air mass back-trajectories. During summer (July and August), soot was only observed when cruise ships were present in the area around Ny Ålesund (Kongsfjorden). Pronounced seasonal patterns were observed for the abundance of the mineral dust component which is generally lower in summer compared to the other seasons. The

  17. Overview of ACE-Asia Spring 2001 Investigations on Aerosol Radiative Effects and Related Aerosol Properties

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Valero, F. P. J.; Flatau, P. J.; Bergin, M.; Holben, B.; Nakajima, T.; Pilewskie, P.; Bergstrom, R.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    A primary, ACE-Asia objective was to quantify the interactions between aerosols and radiation in the Asia-Pacific region. Toward this end, radiometric and related aerosol measurements were made from ocean, land, air and space platforms. Models that predict aerosol fields guided the measurements and are helping integrate and interpret results. Companion overview's survey these measurement and modeling components. Here we illustrate how these components were combined to determine aerosol radiative. impacts and their relation to aerosol properties. Because clouds can obscure or change aerosol direct radiative effects, aircraft and ship sorties to measure these effects depended on predicting and finding cloud-free areas and times with interesting aerosols present. Pre-experiment satellite cloud climatologies, pre-flight aerosol and cloud forecasts, and in-flight guidance from satellite imagery all helped achieve this. Assessments of aerosol regional radiative impacts benefit from the spatiotemporal coverage of satellites, provided satellite-retrieved aerosol properties are accurate. Therefore, ACE-Asia included satellite retrieval tests, as part of many comparisons to judge the consistency (closure) among, diverse measurements. Early results include: (1) Solar spectrally resolved and broadband irradiances and optical depth measurements from the C-130 aircraft and at Kosan, Korea yielded aerosol radiative forcing efficiencies, permitting comparisons between efficiencies of ACE-Asia and INDOEX aerosols, and between dust and "pollution" aerosols. Detailed results will be presented in separate papers. (2) Based on measurements of wavelength dependent aerosol optical depth (AOD) and single scattering albedo the estimated 24-h a average aerosol radiative forcing efficiency at the surface for photosynthetically active radiation (400 - 700 nm) in Yulin, China is approx. 30 W sq m per AOD(500 nm). (3) The R/V Brown cruise from Honolulu to Sea of Japan sampled an aerosol optical

  18. Integrated approach towards understanding interactions of mineral dust aerosol with warm clouds

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant

    2011-12-01

    Mineral dust is ubiquitous in the atmosphere and represents a dominant type of particulate matter by mass. Dust particles can serve as cloud condensation nuclei (CCN), giant CCN (GCCN), or ice nuclei (IN), thereby, affecting cloud microphysics, albedo, and lifetime. Despite its well-recognized importance, assessments of dust impacts on clouds and climate remain highly uncertain. This thesis addresses the role of dust as CCN and GCCN with the goal of improving our understanding of dust-warm cloud interactions and their representation in climate models. Most studies to date focus on the soluble fraction of aerosol particles when describing cloud droplet nucleation, and overlook the interactions of the hydrophilic insoluble fraction with water vapor. A new approach to include such interactions (expressed by the process of water vapor adsorption) is explored, by combining multilayer Frenkel-Halsey-Hill (FHH) physical adsorption isotherm and curvature (Kelvin) effects. The importance of adsorption activation theory (FHH-AT) is corroborated by measurements of CCN activity of mineral aerosols generated from clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern America. A new aerosol generation setup for CCN measurements was developed based on a dry generation technique capable of reproducing natural dust aerosol emission. Based on the dependence of critical supersaturation with particle dry diameter, it is found that the FHH-AT is a better framework for describing fresh (and unprocessed) dust CCN activity than the classical Kohler theory (KT). Ion Chromatography (IC) measurements performed on fresh regional dust samples indicate negligible soluble fraction, and support that water vapor adsorption is the prime source of CCN activity in the dust. CCN measurements with the commonly used wet generated mineral aerosol (from atomization of a dust aqueous suspension) are also carried out. Results indicate that the method is subject

  19. Atmospheric responses to stratospheric aerosol geoengineering

    NASA Astrophysics Data System (ADS)

    Ferraro, Angus; Highwood, Eleanor; Charlton-Perez, Andrew

    2013-04-01

    Stratospheric aerosol geoengineering, also called solar radiation management (SRM), involves the injection of aerosol into the stratosphere to increase the planetary albedo. It has been conceieved as a policy option in response to human-induced global warming. It is well-established from modelling studies and observations following volcanic eruptions that stratospheric sulphate aerosols cause global cooling. Some aspects of the climate response, especially those involving large-scale dynamical changes, are more uncertain. This work attempts to identify the physical mechanisms operating in the climate response to stratospheric aerosol geoengineering using idealised model experiments. The radiative forcing produced by the aerosol depends on its type (species) and size. Aerosols absorb terrestrial and solar radiation, which drives stratospheric temperature change. The stratospheric temperature change also depends on aerosol type and size. We calculate the stratospheric temperature change due to geoengineering with sulphate, titania, limestone and soot in a fixed-dynamical-heating radiative model. Sulphate produces tropical heating of up to ~6 K. Titania produces much less heating, whereas soot produces much more. Most aerosols increase the meridional temperature gradient in the lower stratosphere which, by thermal wind balance, would be expected to intensify the zonal winds in the polar vortex. An intermediate-complexity general circulation model is used to investigate the dynamical response to geoengineering aerosols. Atmospheric carbon dioxide concentrations are quadrupled. The carbon dioxide forcing is then balanced using stratospheric sulphate aerosol. We assess dynamical changes in the stratosphere, for example, the frequency of stratospheric sudden warmings and the strength of the Brewer-Dobson overturning circulation. We also assess changes in the strength and position of the tropospheric jets. We compare results for sulphate with those for titania.

  20. Fire protection covering for small diameter missiles

    NASA Technical Reports Server (NTRS)

    Riccitiello, S. R.; Sawko, P. M. (Inventor)

    1979-01-01

    Flexible intumescent protection sheeting of unusually uniform thickness were prepared from epoxy-polysulfide compositions, containing microfibers and the ammonium salt of 1,4-nitroaniline-2-sulfonic acid, as disclosed in U.S. Pat. No. 3,663,464, except that an ammonium salt particle size in the order of 5 to 8 microns and a fiber size of about 1/128th inch in length and 3 to 5 microns in diameter were found critical to obtain the required density of 1.46 to 1.50 g/cc. The insulation sheeting was prepared by a continuous process involving vacuum mixing, calendering, and curing under very strict conditions which depend to some extent upon the thickness of the sheet produced.

  1. Sources of Size Segregated Sulfate Aerosols in the Arctic Summer

    NASA Astrophysics Data System (ADS)

    Ghahremaninezhadgharelar, R.; Norman, A. L.; Abbatt, J.; Levasseur, M.

    2015-12-01

    Aerosols drive significant radiative forcing and affect Arctic climate. Despite the importance of these particles in Arctic climate change, there are some key uncertainties in the estimation of their effects and sources. Aerosols in six size fractions between <0.49 to 7.0 microns in diameter were collected on board the Canadian Coast Guard Ship (CCGS) Amundsen in the Arctic, during July 2014. A cascade impactor fitted to a high volume sampler was used for this study and was modified to permit collection of SO2 after aerosols were removed from the gas stream. The isotopic composition of sulfate aerosols and SO2 was measured and apportionment calculations have been performed to quantify the contribution of biogenic as well as anthropogenic sources to the growth of different aerosol size fractions in the atmosphere. The presence of sea salt sulfate aerosols was especially high in coarse mode aerosols as expected. The contribution of biogenic sulfate concentration in this study was higher than anthropogenic sulfate. Around 70% of fine aerosols (<0.49 μm) and 86% of SO2 were from biogenic sources. Concentrations of biogenic sulfate for fine aerosols, ranging from 18 to 625 ng/m3, were five times higher than total biogenic sulfate concentrations measured during Fall in the same region (Rempillo et al., 2011). A comparison of the isotope ratio for SO2 and fine aerosols offers a way to determine aerosol growth from local SO2 oxidation. For some samples, the values for SO2 and fine aerosols were close together suggesting the same source for SO2 and aerosol sulfur.Aerosols drive significant radiative forcing and affect Arctic climate. Despite the importance of these particles in Arctic climate change, there are some key uncertainties in the estimation of their effects and sources. Aerosols in six size fractions between <0.49 to 7.0 microns in diameter were collected on board the Canadian Coast Guard Ship (CCGS) Amundsen in the Arctic, during July 2014. A cascade impactor

  2. Aerosols in the study of convective acinar mixing

    NASA Technical Reports Server (NTRS)

    Darquenne, Chantal; Prisk, G. Kim

    2005-01-01

    Convective mixing (CM) refers to the different transport mechanisms except Brownian diffusion that irreversibly transfer inspired air into resident air and can be studied using aerosol bolus inhalations. This paper provides a review of the present understanding of how each of these mechanisms contributes to CM. Original data of the combined effect of stretch and fold and gravitational sedimentation on CM are also presented. Boli of 0.5 microm-diameter particles were inhaled at penetration volumes (V(p)) of 300 and 1200 ml in eight subjects. Inspiration was followed by a 10-s breath hold, during which small flow reversals (FR) were imposed, and expiration. There was no physiologically significant dependence in dispersion and deposition with increasing FR. The results were qualitatively similar to those obtained in a previous study in microgravity in which it was speculated that the phenomenon of stretch and fold occurred during the first breathing cycle without the need of any subsequent FR.

  3. A Simple Model of Global Aerosol Indirect Effects

    SciTech Connect

    Ghan, Steven J.; Smith, Steven J.; Wang, Minghuai; Zhang, Kai; Pringle, K. J.; Carslaw, K. S.; Pierce, Jeffrey; Bauer, Susanne E.; Adams, P. J.

    2013-06-28

    Most estimates of the global mean indirect effect of anthropogenic aerosol on the Earth’s energy balance are from simulations by global models of the aerosol lifecycle coupled with global models of clouds and the hydrologic cycle. Extremely simple models have been developed for integrated assessment models, but lack the flexibility to distinguish between primary and secondary sources of aerosol. Here a simple but more physically-based model expresses the aerosol indirect effect using analytic representations of droplet nucleation, cloud and aerosol vertical structure, and horizontal variability in cloud water and aerosol concentration. Although the simple model is able to produce estimates of aerosol indirect effects that are comparable to those from some global aerosol models using the same global mean aerosol properties, the estimates are found to be sensitive to several uncertain parameters, including the preindustrial cloud condensation nuclei concentration, primary and secondary anthropogenic emissions, the size of the primary particles, the fraction of the secondary anthropogenic emissions that accumulates on the coarse mode, the fraction of the secondary mass that forms new particles, and the sensitivity of liquid water path to droplet number concentration. Aerosol indirect effects are surprisingly linear in emissions. This simple model provides a much stronger physical basis for representing aerosol indirect effects than previous representations in integrated assessment models designed to quickly explore the parameter space of emissions-climate interactions. The model also produces estimates that depend on parameter values in ways that are consistent with results from detailed global aerosol-climate simulation models.

  4. Effect of Aerosol and Ocean Representation on Simulated Climate Responses

    NASA Astrophysics Data System (ADS)

    Dallafior, Tanja; Folini, Doris; Knutti, Reto; Wild, Martin

    2016-04-01

    It is still debated to what extent anthropogenic aerosols shaped 20th century surface temperatures, especially sea surface temperatures (SSTs), through alteration of surface solar radiation (SSR). SSTs, in turn, are crucial in the context of atmospheric circulation and ocean heat uptake. Uncertainty considering anthropogenic aerosol forcing thus translates into uncertainty regarding ocean heat uptake and, ultimately, climate responses towards anthropogenic influences. We use the global climate model ECHAM to analyse the 20th century climate response towards either anthropogenic aerosols or well-mixed greenhouse gases or both with different representations of ocean and aerosols: atmosphere-only with prescribed SSTs and interactive aerosols; mixed-layer ocean and interactive or prescribed aerosols; fully coupled with prescribed aerosols. For interactive aerosols we use the Hamburg Aerosol Module (HAM). Our results suggest that up to 15% of global ocean surfaces undergo an SSR reduction of at least -4W/m² in the year 2000, due to anthropogenic aerosols. The area affected depends on how aerosols are represented and whether clear sky or all sky SSR is considered. In MLO equilibria with interactive aerosols, anthropogenic aerosols clearly shape surface temperature response patterns. This is to a lesser degree the case for the transient fully coupled case. Additivity of global mean temperature responses towards single forcings - an assumption often made in the literature - is not fulfilled for the MLO experiments, but for the fully coupled experiments. While some of these differences can be attributed to the differing ocean representation, it is implied that differing aerosol representation may play an even more relevant role. Thus, our results corroborate not only the relevance of anthropogenic aerosols for surface temperature responses, but also highlight the relevance of choice of aerosol representation.

  5. 7 CFR 51.2656 - Diameter.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Standards for Grades for Sweet Cherries 1 Definitions § 51.2656 Diameter. Diameter means the greatest dimension measured at right angles to a line from the stem to the blossom end of the cherry....

  6. Competing effects of viscosity and surface-tension depression on the hygroscopicity and CCN activity of laboratory surrogates for oligomers in atmospheric aerosol

    NASA Astrophysics Data System (ADS)

    Hodas, N.; Zuend, A.; Shiraiwa, M.; Flagan, R. C.; Seinfeld, J.; Schilling, K.; Berkemeier, T.

    2015-12-01

    The presence of oligomers in biomass burning aerosol, as well as secondary organic aerosol derived from other sources, influences particle viscosity and can introduce kinetic limitations to water uptake. This, in turn, impacts aerosol optical properties and the efficiency with which these particles serve as cloud condensation nuclei (CCN). To explore the influence of organic-component viscosity on aerosol hygroscopicity, the water-uptake behavior of aerosol systems comprised of polyethylene glycol (PEG) and mixtures of PEG and ammonium sulfate (AS) was measured under sub- and supersaturated relative humidity (RH) conditions. Experiments were conducted with systems containing PEG with average molecular weights ranging from 200 to 10,000 g/mol, corresponding to a range in viscosity of 0.004 - 4.5 Pa s under dry conditions. While evidence suggests that viscous aerosol components can suppress water uptake at RH < 90%, under supersaturated conditions (with respect to RH), an increase in CCN activity with increasing PEG molecular weight was observed. We attribute this to an increase in the efficiency with which PEG serves as a surfactant with increasing molecular weight. This effect is most pronounced for PEG-AS mixtures and, in fact, a modest increase in CCN activity is observed for the PEG 10,000-AS mixture as compared to pure AS, as evidenced by a 4% reduction in critical activation diameter. Experimental results are compared with calculations of hygroscopic growth at thermodynamic equilibrium using the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients model and the potential influence of kinetic limitations to observed water uptake is further explored with the Kinetic Multi-Layer Model of Gas-Particle Interactions. Results suggest the competing effects of organic-component viscosity and surface-tension depression may lead to RH-dependent differences in hygroscopicity for oligomers and other surface-active compounds present in atmospheric

  7. Diameter-dependent wetting of tungsten disulfide nanotubes.

    PubMed

    Goldbart, Ohad; Cohen, Sidney R; Kaplan-Ashiri, Ifat; Glazyrina, Polina; Wagner, H Daniel; Enyashin, Andrey; Tenne, Reshef

    2016-11-29

    The simple process of a liquid wetting a solid surface is controlled by a plethora of factors-surface texture, liquid droplet size and shape, energetics of both liquid and solid surfaces, as well as their interface. Studying these events at the nanoscale provides insights into the molecular basis of wetting. Nanotube wetting studies are particularly challenging due to their unique shape and small size. Nonetheless, the success of nanotubes, particularly inorganic ones, as fillers in composite materials makes it essential to understand how common liquids wet them. Here, we present a comprehensive wetting study of individual tungsten disulfide nanotubes by water. We reveal the nature of interaction at the inert outer wall and show that remarkably high wetting forces are attained on small, open-ended nanotubes due to capillary aspiration into the hollow core. This study provides a theoretical and experimental paradigm for this intricate problem.

  8. Encapsulation effects on carbonaceous aerosol light absorption

    SciTech Connect

    Sedlacek, A.J.; Onasch, T.; Davidovits, P.; Cross, E.; Mazzoleni, C.

    2010-03-15

    monotonic increase in light absorption to nearly 100% is observed as a function of DOS coating thickness. This observation is consistent with a coating-induced amplification in particle light absorption (Bond et al. 2006). In contrast, light absorption by sulfuric acid-coated soot displays unexpectedly complex behavior where the degree of amplification appears to be dependent upon the underlying soot core diameter.

  9. 7 CFR 51.587 - Diameter.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Diameter. 51.587 Section 51.587 Agriculture..., CERTIFICATION, AND STANDARDS) United States Standards for Celery Definitions § 51.587 Diameter. Diameter means... lowest outer branch to the base....

  10. 7 CFR 51.587 - Diameter.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Diameter. 51.587 Section 51.587 Agriculture..., CERTIFICATION, AND STANDARDS) United States Standards for Celery Definitions § 51.587 Diameter. Diameter means... lowest outer branch to the base....

  11. 7 CFR 51.587 - Diameter.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Diameter. 51.587 Section 51.587 Agriculture... Standards for Celery Definitions § 51.587 Diameter. Diameter means the greatest dimension of the stalk measured at a point 2 inches above the point of attachment of the lowest outer branch to the base....

  12. 7 CFR 51.587 - Diameter.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Diameter. 51.587 Section 51.587 Agriculture... Standards for Celery Definitions § 51.587 Diameter. Diameter means the greatest dimension of the stalk measured at a point 2 inches above the point of attachment of the lowest outer branch to the base....

  13. Streamer velocity and diameter observed in sprites and laboratory discharges

    NASA Astrophysics Data System (ADS)

    Stenbaek-Nielsen, H.; Kammae, T.; McHarg, M. G.; Haaland, R. K.

    2012-12-01

    Analysis of the relation between the reduced diameter (scaled with atmospheric density) and velocity of sprite streamers has found a roughly linear dependence (Kanmae et al., J. Phys. D, 45, 275203, 2012). This linear dependence agrees with modeling by Naidis (Phys. Rev. E, 79,057401, 2009). Comparing observations of diameters in sprites with those of laboratory streamers (Briels et al., J. Phys. D, 39, 5201, 2006) show that the laboratory streamers, while following the linear diameter-velocity relation, have smaller diameters (and velocities) than what we observe in sprite streamers. We suggest that this may be an artifact of the smaller reduced scale sizes of the laboratory experimental setup where the streamers are observed much earlier relative to streamer onset. Another systematic difference between laboratory and sprite streamers is that while sprite streamers often split into many sub-streamers, laboratory streamers only rarely split into more than two. There have been several studies of streamer stability against splitting. Lui & Pasko (J. Geophys. Res. 109, A04301, 2004) found that the streamer radius limit of 97 m at 70 km altitude for stability. Sprite streamers are often significantly larger, suggesting that the relatively larger streamer diameter in sprites compared to laboratory streamers is responsible for the larger number of sub streamers. However, we note that the distance sprite streamers travel between splitting is highly varying between events and seemingly not related to the sprite diameter.

  14. A critical review of ultralow-volume aerosols of insecticide applied with vehicle-mounted generators for adult mosquito control.

    PubMed

    Mount, G A

    1998-09-01

    This review of ultralow-volume (ULV) ground aerosols for adult mosquito control includes discussion on application volume, aerosol generators, droplet size, meteorology, swath, dispersal speed, assay methods, insecticide efficacy, and nontarget effects. It summarizes the efficacy of ULV insecticidal aerosols against many important pest and disease-bearing species of mosquitoes in a wide range of locations and habitats in the United States and in some countries of Asia and the Americas. Fourteen conclusions were drawn from the review. 1) ULV ground aerosol applications of insecticide are as efficacious against adult mosquitoes as high- or low-volume aerosols. 2) ULV aerosols with an optimum droplet size spectrum can be produced by several types of nozzles including vortex, pneumatic, and rotary. Droplet size of a particular insecticide formulation is dependent primarily on nozzle air pressure or rotation speed and secondarily on insecticide flow rate. 3) Label flow rates of insecticide for ULV aerosol application can be delivered accurately during routine operations with speed-correlated metering systems within a calibrated speed range, usually not exceeding 20 mph. 4) The most economical and convenient method of droplet size determination for ULV aerosols of insecticide is the waved-slide technique. 5) The efficacy of ULV ground aerosols against adult mosquitoes is related to droplet size because it governs air transport and impingement. The optimum droplet size for mosquito adulticiding is 8-15 microns volume median diameter (VMD) on the basis of laboratory wind-tunnel tests and field research with caged mosquitoes. 6) In general, ULV aerosols should be applied following sunset when mosquitoes are active and meteorological conditions are favorable for achieving maximum levels of control. Application can be made during daytime hours when conditions permit, but rates may have to be increased. The critical meteorological factors are wind velocity and direction

  15. Diameter estimation of cylinders by the rigorous diffraction model.

    PubMed

    Sanchez-Brea, Luis Miguel

    2005-07-01

    The Fraunhofer diffraction formula is commonly used for estimating the diameter of thin cylinders by far field diffractometry. However, an experimental systematic overestimation of the value of the cylinder diameter by this diffraction model and other three-dimensional models has been reported when this estimation is compared with those obtained from interferometric techniques. In this work, a rigorous electromagnetic diffraction model is analyzed to determine the cylinder diameter by using the envelope minima of the far field diffraction pattern. The results of this rigorous model are compared with those from the Fraunhofer diffraction formula. The overestimation by the Fraunhofer model is predicted theoretically, presenting a dependence on the wavelength, the polarization state of the incident wave, and the cylinder diameter. The discrepancies are shown to be due to the three-dimensional geometry.

  16. AEROSOL AND GAS MEASUREMENT

    EPA Science Inventory

    Measurements provide fundamental information for evaluating and managing the impact of aerosols on air quality. Specific measurements of aerosol concentration and their physical and chemical properties are required by different users to meet different user-community needs. Befo...

  17. Radiative forcing under mixed aerosol conditions

    NASA Astrophysics Data System (ADS)

    GarcíA, O. E.; Expósito, F. J.; DíAz, J. P.; DíAz, A. M.

    2011-01-01

    The mixture of mineral dust with biomass burning or urban-industrial aerosols presents significant differences in optical properties when compared to those of the individual constituents, leading to different impacts on solar radiation levels. This effect is assessed by estimating the direct radiative forcing (ΔF) of these aerosols from solar flux models using the radiative parameters derived from the Aerosol Robotic Network (AERONET). These data reveal that, in oceanic and vegetative covers (surface albedo (SA) < 0.30), the aerosol effect at the top of atmosphere (TOA) is always cooling the Earth-atmosphere system, regardless of the aerosol type. The obtained average values of ΔF range between -27 ± 15 Wm-2 (aerosol optical depth (AOD) at 0.55 μm, 0.3 ± 0.3) for mineral dust mixed with urban-industrial aerosols, registered in the East Asia region, and -34 ± 18 Wm-2 (AOD = 0.8 ± 0.4) for the mixture of the mineral dust and biomass burning particles, observed in the Central Africa region. In the intermediate SA range (0.30-0.50) the TOA radiative effect depends on the aerosol absorption properties. Thus, aerosols with single scattering albedo at 0.55 μm lower than ˜0.88 lead to a warming of the system, with ΔF of 10 ± 11 Wm-2 for the mixture of mineral dust and biomass burning. Cases with SA > 0.30 are not present in East Asia region. At the bottom of atmosphere (BOA) the maximum ΔF values are associated with the highest AOD levels obtained for the mixture of mineral dust and biomass burning aerosols (-130 ± 44 Wm-2 with AOD = 0.8 ± 0.4 for SA < 0.30).

  18. A review of atmospheric aerosol measurements

    NASA Astrophysics Data System (ADS)

    McMurry, Peter H.

    Recent developments in atmospheric aerosol measurements are reviewed. The topics included complement those covered in the recent review by Chow (JAWMA 45: 320-382, 1995) which focuses on regulatory compliance measurements and filter measurements of particulate composition. This review focuses on measurements of aerosol integral properties (total number concentration, CCN concentration, optical coefficients, etc.), aerosol physical chemical properties (density, refractive index, equilibrium water content, etc.), measurements of aerosol size distributions, and measurements of size-resolved aerosol composition. Such measurements play an essential role in studies of secondary aerosol formation by atmospheric chemical transformations and enable one to quantify the contributions of various species to effects including light scattering/absorption, health effects, dry deposition, etc. Aerosol measurement evolved from an art to a science in the 1970s following the development of instrumentation to generate monodisperse calibration aerosols of known size, composition, and concentration. While such calibration tools permit precise assessments of instrument responses to known laboratory-generated aerosols, unquantifiable uncertainties remain even when carefully calibrated instruments are used for atmospheric measurements. This is because instrument responses typically depend on aerosol properties including composition, shape, density, etc., which, for atmospheric aerosols, may vary from particle-to-particle and are often unknown. More effort needs to be made to quantify measurement accuracies that can be achieved for realistic atmospheric sampling scenarios. The measurement of organic species in atmospheric particles requires substantial development. Atmospheric aerosols typically include hundreds of organic compounds, and only a small fraction (˜10%) of these can be identified by state-of-the-art analytical methodologies. Even the measurement of the total particulate organic

  19. Aerosol Size Distribution in the marine regions

    NASA Astrophysics Data System (ADS)

    Markuszewski, Piotr; Petelski, Tomasz; Zielinski, Tymon; Pakszys, Paulina; Strzalkowska, Agata; Makuch, Przemyslaw; Kowalczyk, Jakub

    2014-05-01

    We would like to present the data obtained during the regular research cruises of the S/Y Oceania over a period of time between 2009 - 2012. The Baltic Sea is a very interesting polygon for aerosol measurements, however, also difficult due to the fact that mostly cases of a mixture of continental and marine aerosols are observed. It is possible to measure clear marine aerosol, but also advections of dust from southern Europe or even Africa. This variability of data allows to compare different conditions. The data is also compared with our measurements from the Arctic Seas, which have been made during the ARctic EXperiment (AREX). The Arctic Seas are very suitable for marine aerosol investigations since continental advections of aerosols are far less frequent than in other European sea regions. The aerosol size distribution was measured using the TSI Laser Aerosol Spectrometer model 3340 (99 channels, measurement range 0.09 μm to 7 μm), condensation particle counter (range 0.01 μm to 3 μm) and laser particle counter PMS CSASP-100-HV-SP (range 0.5 μm to 47 μm in 45 channels). Studies of marine aerosol production and transport are important for many Earth sciences such as cloud physics, atmospheric optics, environmental pollution studies and interaction between ocean and atmosphere. All equipment was placed on one of the masts of S/Y Oceania. Measurements using the laser aerosol spectrometer and condensation particle counter were made on one level (8 meters above sea level). Measurements with the laser particle counter were performed at five different levels above the sea level (8, 11, 14, 17 and 20 m). Based on aerosol size distribution the parameterizations with a Log-Normal and a Power-Law distributions were made. The aerosol source functions, characteristic for the region were also determined. Additionally, poor precision of the sea spray emission determination was confirmed while using only the aerosol concentration data. The emission of sea spray depends

  20. Microphysical and compositional influences on shortwave radiative forcing of climate by sulfate aerosols

    SciTech Connect

    Schwartz, S F; Wagener, Richard; Nemesure, S

    1995-01-01

    Anthropogenic sulfate aerosols scatter shortwave (solar) radiation incident upon the atmosphere, thereby exerting a cooling influence on climate relative to pre-industrial times. Previous estimates of this forcing place its global and annual average value at about -1 W m{sup -2}, uncertain to a factor of somewhat more than 2, comparable in magnitude to greenhouse gas forcing over the same period but opposite in sign and much more uncertain. Key sources of uncertainty are atmospheric chemistry factors (yield, residence time), and microphysical factors (scattering efficiency, upscatter fraction, and the dependence of these quantities on particle size and relative humidity, RH). This paper examines these microphysical influences to identify properties required to obtain more a accurate description of this forcing. The mass scattering efficiency exhibits a maximum at a particle diameter ({approximately}0.5 M) roughly equal to the wavelength of maximum power in the solar spectrum and roughly equal to diameter typical of anthropogenic sulfate aerosols. Particle size, and hence mass scattering efficiency, increase with increasing on RH because of accretion of water by deliquescent salt aerosols. For example the scattering efficiency of aqueous (NH{sub 4}){sub 2}SO{sub 4} (dry radius 0.2 {mu}m) increases from 8 to 80 m{sup 2}/g (SO{sub 4}{sup 2-}) as RH increases from 39 to 97%. The sensitivity of forcing to particle dry mass and relative humidity suggest the need to explicitly represent these properties if the sulfate aerosol forcing is to be accurately described in climate models.

  1. Phase transformation and growth of hygroscopic aerosols

    SciTech Connect

    Tang, I.N.

    1999-11-01

    Ambient aerosols play an important role in many atmospheric processes affecting air quality, visibility degradation, and climatic changes as well. Both natural and anthropogenic sources contribute to the formation of ambient aerosols, which are composed mostly of sulfates, nitrates, and chlorides in either pure or mixed forms. These inorganic salt aerosols are hygroscopic by nature and exhibit the properties of deliquescence and efflorescence in humid air. For pure inorganic salt particles with diameter larger than 0.1 micron, the phase transformation from a solid particle to a saline droplet occurs only when the relative humidity in the surrounding atmosphere reaches a certain critical level corresponding to the water activity of the saturated solution. The droplet size or mass in equilibrium with relative humidity can be calculated in a straightforward manner from thermodynamic considerations. For aqueous droplets 0.1 micron or smaller, the surface curvature effect on vapor pressure becomes important and the Kelvin equation must be used.

  2. Using Retrieved Aerosol Spectral Properties to Characterize Aerosol Composition and Mixing

    NASA Astrophysics Data System (ADS)

    Li, J.

    2015-12-01

    The spectral dependence of aerosol properties, such as aerosol absorption optical depth (AAOD) and single scattering albedo (SSA), can be used to infer aerosol composition. In particular, aerosol mixtures dominated by dust absorption will have monotonically increasing SSA with wavelength while that dominated by black carbon absorption has monotonically decreasing SSA spectra. However, spectral AAOD and SSA measured in reality may differ from these extreme cases, due to the complicated composition and mixing states. In this study, we use spectral SSA and AAOD retrieved from AERONET measurements, assisted by CALIPSO aerosol type product and Mie calculations, to characterize aerosol mixtures over representative regions. Moreover, in addition to the monotonically increasing or decreasing AAOD and SSA spectra, we find the spectral dependence of these two parameters are frequently peaked (at 675 nm or 870 nm) over several places including East Asia, India, West Africa and South America. We thus suggest that SSA spectral curvature, defined as the negative of the second derivative of SSA as a function of wavelength, can provide additional information on the composition of these aerosol mixtures. Further analysis indicates that moderate mixing of black carbon with dust or organic carbon is mainly responsible for producing the SSA curvature. An optimization scheme was developed to match the observed AAOD and SSA spectra with Mie calculations assuming different aerosol composition and mixing states. Results suggest that while external mixing can explain most of the observed AAOD and SSA spectral dependence, internal mixing or core-shell mode is also likely under many circumstances, such as East Asia during winter and post-monsoon and winter seasons over India. This method offers the potential to quantitatively infer aerosol composition from these spectral measurements of aerosol optical properties.

  3. Comparison of activity coefficient models for atmospheric aerosols containing mixtures of electrolytes, organics, and water

    NASA Astrophysics Data System (ADS)

    Tong, Chinghang; Clegg, Simon L.; Seinfeld, John H.

    Atmospheric aerosols generally comprise a mixture of electrolytes, organic compounds, and water. Determining the gas-particle distribution of volatile compounds, including water, requires equilibrium or mass transfer calculations, at the heart of which are models for the activity coefficients of the particle-phase components. We evaluate here the performance of four recent activity coefficient models developed for electrolyte/organic/water mixtures typical of atmospheric aerosols. Two of the models, the CSB model [Clegg, S.L., Seinfeld, J.H., Brimblecombe, P., 2001. Thermodynamic modelling of aqueous aerosols containing electrolytes and dissolved organic compounds. Journal of Aerosol Science 32, 713-738] and the aerosol diameter dependent equilibrium model (ADDEM) [Topping, D.O., McFiggans, G.B., Coe, H., 2005. A curved multi-component aerosol hygroscopicity model framework: part 2—including organic compounds. Atmospheric Chemistry and Physics 5, 1223-1242] treat ion-water and organic-water interactions but do not include ion-organic interactions; these can be referred to as "decoupled" models. The other two models, reparameterized Ming and Russell model 2005 [Raatikainen, T., Laaksonen, A., 2005. Application of several activity coefficient models to water-organic-electrolyte aerosols of atmospheric interest. Atmospheric Chemistry and Physics 5, 2475-2495] and X-UNIFAC.3 [Erdakos, G.B., Change, E.I., Pandow, J.F., Seinfeld, J.H., 2006. Prediction of activity coefficients in liquid aerosol particles containing organic compounds, dissolved inorganic salts, and water—Part 3: Organic compounds, water, and ionic constituents by consideration of short-, mid-, and long-range effects using X-UNIFAC.3. Atmospheric Environment 40, 6437-6452], include ion-organic interactions; these are referred to as "coupled" models. We address the question—Does the inclusion of a treatment of ion-organic interactions substantially improve the performance of the coupled models over

  4. Size and mass distributions of ground-level sub-micrometer biomass burning aerosol from small wildfires

    NASA Astrophysics Data System (ADS)

    Okoshi, Rintaro; Rasheed, Abdur; Chen Reddy, Greeshma; McCrowey, Clinton J.; Curtis, Daniel B.

    2014-06-01

    Biomass burning emits large amounts of aerosol particles globally, influencing human health and climate, but the number and size of the particles is highly variable depending on fuel type, burning and meteorological conditions, and secondary reactions in the atmosphere. Ambient measurements of aerosol during wildfire events can therefore improve our understanding of particulate matter produced from biomass burning. In this study, time-resolved sub-micrometer ambient aerosol size and mass distributions of freshly emitted aerosol were measured for three biomass burning wildfire events near Northridge, California, located in the highly populated San Fernando Valley area of Los Angeles. One fire (Marek) was observed during the dry Santa Ana conditions that are typically present during large Southern California wildfires, but two smaller fires (Getty and Camarillo) were observed during the more predominant non-Santa Ana weather conditions. Although the fires were generally small and extinguished quickly, they produced particle number concentrations as high as 50,000 cm-3 and mass concentrations as large as 150 μg cm-3, well above background measurements and among the highest values observed for fires in Southern California. Therefore, small wildfires can have a large impact on air quality if they occur near urban areas. Particle number distributions were lognormal, with peak diameters in the accumulation mode at approximately 100 nm. However, significant Aitken mode and nucleation mode particles were observed in bimodal distributions for one fire. Significant variations in the median diameter were observed over time, as particles generally became smaller as the fires were contained. The results indicate that it is likely that performing mass measurements alone could systematically miss detection of the smaller particles and size measurements may be better suited for studies of ambient biomass burning events. Parameters of representative unimodal and bimodal lognormal

  5. Implementation of the Missing Aerosol Physics into LLNL IMPACT

    SciTech Connect

    Chuang, C

    2005-02-09

    In recent assessments of climate forcing, the Intergovernmental Panel on Climate Change lists aerosol as one o f the most important anthropogenic agents that influence climate. Atmospheric aerosols directly affect the radiative fluxes at the surface and top of the Earth's atmosphere by scattering and/or absorbing radiation. Further, aerosols indirectly change cloud microphysical properties (such as cloud drop effective radius) that also affect the radiative fluxes. However, the estimate of the magnitude of aerosol climatic effect varies widely, and aerosol/cloud interactions remain one of the most uncertain aspects of climate models today. The Atmospheric Sciences Division has formulated a plan to enhance and expand our modeling expertise in aerosol/cloud/climate interactions. Under previous LDRD support, we successfully developed a computationally efficient version of IMPACT to simulate aerosol climatology. This new version contains a compact chemical mechanism for the prediction of sulfate and also predicts the distributions of organic carbon (OC), black carbon (BC), dust, and sea salt. Furthermore, we implemented a radiation package into IMPACT to calculate the radiative forcing and heating/cooling rates by aerosols. This accomplishment built the foundation of our currently funded projects under the NASA Global Modeling and Analysis Program as well as the DOE Atmospheric Radiation Program. Despite the fact that our research is being recognized as an important effort to quantify the effects of anthropogenic aerosols on climate, the major shortcoming of our previous simulations on aerosol climatic effects is the over simplification of spatial and temporal variations of aerosol size distributions that are shaped by complicated nucleation, growth, transport and removal processes. Virtually all properties of atmospheric aerosols and clouds depend strongly on aerosol size distribution. Moreover, molecular processing on aerosol surfaces alters the hygroscopic

  6. Aerosol distribution apparatus

    DOEpatents

    Hanson, W.D.

    An apparatus for uniformly distributing an aerosol to a plurality of filters mounted in a plenum, wherein the aerosol and air are forced through a manifold system by means of a jet pump and released into the plenum through orifices in the manifold. The apparatus allows for the simultaneous aerosol-testing of all the filters in the plenum.

  7. Improved solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1988-07-19

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  8. Solid aerosol generator

    DOEpatents

    Prescott, Donald S.; Schober, Robert K.; Beller, John

    1992-01-01

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates.

  9. Solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1992-03-17

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration is disclosed. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  10. Introducing the aerosol-climate model MAECHAM5-SAM2

    NASA Astrophysics Data System (ADS)

    Hommel, R.; Timmreck, C.; Graf, H. F.

    2009-04-01

    We are presenting a new global aerosol model MAECHAM5-SAM2 to study the aerosol dynamics in the UTLS under background and volcanic conditions. The microphysical core modul SAM2 treats the formation, the evolution and the transport of stratospheric sulphuric acid aerosol. The aerosol size distribution and the weight percentage of the sulphuric acid solution is calculated dependent on the concentrations of H2SO4 and H2O, their vapor pressures, the atmospheric temperature and pressure. The fixed sectional method is used to resolve an aerosol distribution between 1 nm and 2.6 micron in particle radius. Homogeneous nucleation, condensation and evaporation, coagulation, water-vapor growth, sedimentation and sulphur chemistry are included. The module is applied in the middle-atmosphere MAECHAM5 model, resolving the atmosphere up to 0.01 hPa (~80 km) in 39 layers. It is shown here that MAECHAM5-SAM2 well represents in-situ measured size distributions of stratospheric background aerosol in the northern hemisphere mid-latitudes. Distinct differences can be seen when derived integrated aerosol parameters (surface area, effective radius) are compared with aerosol climatologies based on the SAGE II satellite instrument (derived by the University of Oxford and the NASA AMES laboratory). The bias between the model and the SAGE II data increases as the moment of the aerosol size distribution decreases. Thus the modeled effective radius show the strongest bias, followed by the aerosol surface area density. Correspondingly less biased are the higher moments volume area density and the mass density of the global stratospheric aerosol coverage. This finding supports the key finding No. 2 of the SPARC Assessment of Stratospheric Aerosol Properties (2006), where it was shown that during periods of very low aerosol load in the stratosphere, the consistency between in-situ and satellite measurements, which exist in a volcanically perturbed stratosphere, breaks down and significant

  11. Comparison of MADE3-simulated and observed aerosol distributions with a focus on aerosol vertical profiles

    NASA Astrophysics Data System (ADS)

    Kaiser, Christopher; Hendricks, Johannes; Righi, Mattia; Jöckel, Patrick

    2016-04-01

    The reliability of aerosol radiative forcing estimates from climate models depends on the accuracy of simulated global aerosol distribution and composition, as well as on the models' representation of the aerosol-cloud and aerosol-radiation interactions. To help improve on previous modeling studies, we recently developed the new aerosol microphysics submodel MADE3 that explicitly tracks particle mixing state in the Aitken, accumulation, and coarse mode size ranges. We implemented MADE3 into the global atmospheric chemistry general circulation model EMAC and evaluated it by comparison of simulated aerosol properties to observations. Compared properties include continental near-surface aerosol component concentrations and size distributions, continental and marine aerosol vertical profiles, and nearly global aerosol optical depth. Recent studies have shown the specific importance of aerosol vertical profiles for determination of the aerosol radiative forcing. Therefore, our focus here is on the evaluation of simulated vertical profiles. The observational data is taken from campaigns between 1990 and 2011 over the Pacific Ocean, over North and South America, and over Europe. The datasets include black carbon and total aerosol mass mixing ratios, as well as aerosol particle number concentrations. Compared to other models, EMAC with MADE3 yields good agreement with the observations - despite a general high bias of the simulated mass mixing ratio profiles. However, BC concentrations are generally overestimated by many models in the upper troposphere. With MADE3 in EMAC, we find better agreement of the simulated BC profiles with HIPPO data than the multi-model average of the models that took part in the AeroCom project. There is an interesting difference between the profiles from individual campaigns and more "climatological" datasets. For instance, compared to spatially and temporally localized campaigns, the model simulates a more continuous decline in both total

  12. Radiative Importance of Aerosol-Cloud Interaction

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee

    1999-01-01

    Aerosol particles are input into the troposphere by biomass burning, among other sources. These aerosol palls cover large expanses of the earth's surface. Aerosols may directly scatter solar radiation back to space, thus increasing the earth's albedo and act to cool the earth's surface and atmosphere. Aerosols also contribute to the earth's energy balance indirectly. Hygroscopic aerosol act as cloud condensation nuclei (CCN) and thus affects cloud properties. In 1977, Twomey theorized that additional available CCN would create smaller but more numerous cloud droplets in a cloud with a given amount of liquid water. This in turn would increase the cloud albedo which would scatter additional radiation back to space and create a similar cooling pattern as the direct aerosol effect. Estimates of the magnitude of the aerosol indirect effect on a global scale range from 0.0 to -4.8 W/sq m. Thus the indirect effect can be of comparable magnitude and opposite in sign to the estimates of global greenhouse gas forcing Aerosol-cloud interaction is not a one-way process. Just as aerosols have an influence on clouds through the cloud microphysics, clouds have an influence on aerosols. Cloud droplets are solutions of liquid water and CCN, now dissolved. When the cloud droplet evaporates it leaves behind an aerosol particle. This new particle does not have to have the same properties as the original CCN. In fact, studies show that aerosol particles that result from cloud processing are larger in size than the original CCN. Optical properties of aerosol particles are dependent on the size of the particles. Larger particles have a smaller backscattering fraction, and thus less incoming solar radiation will be backscattered to space if the aerosol particles are larger. Therefore, we see that aerosols and clouds modify each other to influence the radiative balance of the earth. Understanding and quantifying the spatial and seasonal patterns of the aerosol indirect forcing may have

  13. Aerosol algorithm evaluation within aerosol-CCI

    NASA Astrophysics Data System (ADS)

    Kinne, Stefan; Schulz, Michael; Griesfeller, Jan

    Properties of aerosol retrievals from space are difficult. Even data from dedicated satellite sensors face contaminations which limit the accuracy of aerosol retrieval products. Issues are the identification of complete cloud-free scenes, the need to assume aerosol compositional features in an underdetermined solution space and the requirement to characterize the background at high accuracy. Usually the development of aerosol is a slow process, requiring continuous feedback from evaluations. To demonstrate maturity, these evaluations need to cover different regions and seasons and many different aerosol properties, because aerosol composition is quite diverse and highly variable in space and time, as atmospheric aerosol lifetimes are only a few days. Three years ago the ESA Climate Change Initiative started to support aerosol retrieval efforts in order to develop aerosol retrieval products for the climate community from underutilized ESA satellite sensors. The initial focus was on retrievals of AOD (a measure for the atmospheric column amount) and of Angstrom (a proxy for aerosol size) from the ATSR and MERIS sensors on ENVISAT. The goal was to offer retrieval products that are comparable or better in accuracy than commonly used NASA products of MODIS or MISR. Fortunately, accurate reference data of ground based sun-/sky-photometry networks exist. Thus, retrieval assessments could and were conducted independently by different evaluation groups. Here, results of these evaluations for the year 2008 are summarized. The capability of these newly developed retrievals is analyzed and quantified in scores. These scores allowed a ranking of competing efforts and also allow skill comparisons of these new retrievals against existing and commonly used retrievals.

  14. Inferring Aerosol Angstrom Absorption Exponent using satellite observations

    NASA Astrophysics Data System (ADS)

    Torres, O.; Bhartia, P. K.; Jethva, H. T.; Ahn, C.

    2013-12-01

    The Angstrom Absorption Exponent (AAE) is a parameter commonly used to characterize the wavelength-dependence of aerosol absorption optical depth (AAOD). It is closely related to aerosol composition. Black carbon (BC) containing aerosols yield AAE values near unity whereas Organic carbon (OC) aerosol particles are associated with values larger than 2. Even larger AAE values have been reported for desert dust aerosol particles. Knowledge of spectral AAOD is necessary for the calculation of direct radiative forcing effect of aerosols and for inferring aerosol composition. We have developed a satellite-based method of determining the spectral AAOD of absorbing aerosols. The technique uses multi-spectral measurements of upwelling radiation from scenes where absorbing aerosols are present above clouds. The upwelling reflectance at the cloud top is attenuated by the absorption effects of the overlying aerosol layer. This attenuation effect can be described using an approximations of Beer's Law. The upwelling reflectance at the cloud-top in an aerosol-free atmospheric column is mainly a function of cloud optical depth (COD). In the proposed method of AAE derivation, the first step is determining COD which is retrieved using a previously developed color-ratio based approach. In the second step, the spectral AAOD is derived by an inversion of the measured spectral reflectance. The proposed technique will be discussed and application results making use of OMI multi-spectral measurements in the UV-Vis. will be presented.

  15. Statistical characteristics of atmospheric aerosol as determined from AERONET measurements

    NASA Astrophysics Data System (ADS)

    Yoon, Jongmin; Kokhanovsky, Alexander

    2015-04-01

    Seasonal means and standard deviations of column-integrated aerosol optical properties (e.g. spectral aerosol optical thickness (AOT), single scattering albedo, phase function, Ångström exponent, volume particle size distribution, complex refractive index, absorbing aerosol optical thickness) from several Aerosol Robotic Network (AERONET) sites located in typical aerosol source and background regions are investigated (Holben et al., 1998). The AERONET program is an inclusive network of ground-based sun-photometers that measure atmospheric aerosol optical properties (http://aeronet.gsfc.nasa.gov/). The results can be used for improving the accuracy of satellite-retrieved AOT, assessments of the global aerosol models, studies of atmospheric pollution and aerosol radiative forcing on climate. We have paid a special attention to several AERONET sites that are Mexico_City (Mexico), Alta_Floresta (Brazil), Avignon (France), Solar_Village (Saudi Arabia), and Midway_Island (Pacific) representative for industrial/urban, biomass burning, rural, desert dust and oceanic aerosols, respectively. We have found that the optical and microphysical aerosol properties are highly dependent on the local aerosol emission sources and seasonal meteorological conditions.

  16. Size and concentration measurement of an industrial aerosol

    SciTech Connect

    O'Brien, D.; Baron, P.; Willeke, K.

    1986-07-01

    Several real-time particle sizing instruments were evaluated for measuring the size distribution and concentration of the aerosol produced during the high speed grinding of gray iron castings. Aerosol was sampled in the airstream entrained by the motion of a spinning grinding wheel in a pilot grinding operation. Measurement methods based on differing physical principles were selected for evaluation and compared: particle inertia (aerodynamic particle sizer and quartz crystal microbalance cascade impactor); light scattering (laser aerosol spectrometer); and projected-area microscopy (scanning electron microscope). Inferences of aerodynamic diameter based on measurements by the laser aerosol spectrometer consistently undersized that determined by the aerodynamic particle sizer by a factor of 1.5. Estimates of aerodynamic diameters from projected area diameters determined by scanning electron microscopy differed from those obtained by the aerodynamic particle sizer by a factor of 2. Differences appeared to be a non-linear function of particle diameter. Estimates of respirable mass determined from mass-weighted particle size spectra varied by a factor of 6 between the largest estimate (scanning electron microscope) and the smallest estimate (laser aerosol spectrometer).

  17. Size and concentration measurement of an industrial aerosol.

    PubMed

    O'Brien, D; Baron, P; Willeke, K

    1986-07-01

    Several real-time particle sizing instruments were evaluated for measuring the size distribution and concentration of the aerosol produced during the high speed grinding of gray iron castings. Aerosol was sampled in the airstream entrained by the motion of a spinning grinding wheel in a pilot grinding operation. Measurement methods based on differing physical principles were selected for evaluation and compared: particle inertia (aerodynamic particle sizer and quartz crystal microbalance cascade impactor); light scattering (laser aerosol spectrometer); and projected-area microscopy (scanning electron microscope). Inferences of aerodynamic diameter based on measurements by the laser aerosol spectrometer consistently undersized that determined by the aerodynamic particle sizer by a factor of 1.5. Estimates of aerodynamic diameters from projected area diameters determined by scanning electron microscopy differed from those obtained by the aerodynamic particle sizer by a factor of 2. Differences appeared to be a non-linear function of particle diameter. Estimates of respirable mass determined from mass-weighted particle size spectra varied by a factor of 6 between the largest estimate (scanning electron microscope) and the smallest estimate (laser aerosol spectrometer).

  18. Intercontinental Transport of Aerosols: Implication for Regional Air Quality

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Ginoux, Paul

    2006-01-01

    Aerosol particles, also known as PM2.5 (particle diameter less than 2.5 microns) and PM10 (particle diameter less than 10 microns), is one of the key atmospheric components that determine ambient air quality. Current US air quality standards for PM10 (particles with diameter < 10 microns) and PM2.5 (particles with diameter 2.5 microns) are 50 pg/cu m and 15 pg/cu m, respectively. While local and regional emission sources are the main cause of air pollution problems, aerosols can be transported on a hemispheric or global scale. In this study, we use the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model to quantify contributions of long-range transport vs. local/regional pollution sources and from natural vs. anthropogenic sources to PM concentrations different regions. In particular, we estimate the hemispheric impact of anthropogenic sulfate aerosols and dust from major source areas on other regions in the world. The GOCART model results are compared with satellite remote sensing and ground-based network measurements of aerosol optical depth and concentrations.

  19. Long-term Observation of Aerosol Optical Properties at the SORPES station in Nanjing, China

    NASA Astrophysics Data System (ADS)

    Shen, Yicheng; Ding, Aijun; Virkkula, Aki; Wang, Jiaping; Chi, Xuguang; Qi, Ximeng; Liu, Qiang; Zheng, Longfei; Xie, Yuning

    2016-04-01

    Atmospheric aerosols influence the earth's radiation budget by scattering and absorbing solar radiation and contribute substantial uncertainty in the estimation of climate forcing. Thorough and comprehensive measurements on different parameters including absorption and scattering coefficient, wavelength dependence and angular dependence along with their daily and seasonal variation help to understand the influence of aerosol on radiation. 2-years continuous measurement of aerosol optical properties has been conducted from June 2013 to May 2015 at the Station for Observing Regional Process of Earth System (SORPES) station, which is a regional background station located in downwind direction of Yangtze River Delta (YRD) urban agglomeration in China. A 7-wavelenths aethalometer and a 3-wavelenths nephelometer were used to measure absorption and scattering coefficient, and also other parameters like single scattering albedo (SSA), absorption angstrom Exponent (AAE), scattering angstrom exponent (SAE) and back-scattering refraction. In addtion, simultaneous measurements on chemical composition and particle size distribution were performed so as to investigate the dependencies of aerosol optical properties on chemical composition and size distribution. To get further insight on the influencing factors, Lagrangian particle dispersion modeling (LPDM) was employed for source identification in this study. The averages of absorption coefficient, scattering coefficient and SSA are 26.0±18.7 Mm-1, 426±327 Mm-1 , 0.936±0.3 at 520nm respectively for whole period. SAE between 450 and 635nm is 1.299±0.34 and have strong negative correlation with particle Surface Mean Diameter (SMD). AAE between 370 and 950nm is 1.043±0.15 for whole period but growth to more than 1.6 in all identified Biomass Burning (BB) events.

  20. Supersonic jet deposition of silver nanoparticle aerosols: Correlations of impact conditions and film morphologies

    SciTech Connect

    Huang, Chong; Nichols, William T.; O'Brien, Daniel T.; Becker, Michael F.; Kovar, Desiderio; Keto, John W.

    2007-03-15

    We describe experiments and modeling for the deposition of silver lines and films via the impaction of a silver nanoparticle aerosol delivered through a supersonic jet. The aerosol gas dynamics of the jet flow field, nanoparticle acceleration in the jet, and deposition by impaction onto the substrate were modeled for both a flat-plate nozzle and for a conical nozzle designed to obtain higher impaction velocities. We modeled nanoparticle dynamics for He, Ar, and N{sub 2} gasses, all initially at room temperature and 1 atm pressure, flowing through a 250 {mu}m orifice into vacuum with a pressure ratio of {approx}5000. Experiments were conducted to deposit silver nanoparticle aerosols under the same conditions as were modeled. The silver nanoparticles were generated by laser ablation of a flowing microparticle aerosol entrained in either He or Ar that produced nanoparticles 5-10 and 15-20 nm in diameter, respectively. Deposition was made onto an unheated substrate in vacuum. The morphology of the deposited films was determined by scanning electron microscope cross-section images and crystallite size was determined by x-ray diffraction analysis. The morphological features and crystallite size were correlated with the nanoparticle impaction velocity and impaction energy derived from the model. We found that, for a given gas type, the size of the grains and morphological features within the impacted films were similar to the size of the nanoparticles from which the films were formed. The density and the degree of consolidation of the films were highly dependent on the nanoparticle impaction velocity/energy and were highest for helium. Control of film morphology, grain size, and film density during supersonic impaction of nanoparticle aerosols are discussed in light of these results.

  1. Chemical composition of atmospheric aerosols from Zhenbeitai, China, and Gosan, South Korea, during ACE-Asia

    NASA Astrophysics Data System (ADS)

    Arimoto, R.; Zhang, X. Y.; Huebert, B. J.; Kang, C. H.; Savoie, D. L.; Prospero, J. M.; Sage, S. K.; Schloesslin, C. A.; Khaing, H. M.; Oh, S. N.

    2004-10-01

    Studies were conducted as part of Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) to characterize the major ion and elemental composition of aerosol particle samples collected at Gosan, an ACE-Asia supersite (GOS, Korea, total suspended particle or TSP samples) and at Zhenbeitai (ZBT, China, TSP and particles < 2.5 μm diameter or PM2.5 samples), a site closer to the sources for Asia dust. The concentrations of 24 elements in the ZBT PM2.5 samples were correlated with Al (an indicator of mineral dust), and the ratios of these elements to Al were similar to those in a loess certified reference material, but a second group of elements was enriched over crustal proportions most likely as a result of pollution emissions. The concentrations of various water-soluble (WS) cations (Na+, K+, Ca2+, Mg2+) also were generally well correlated with Al in both the ZBT and GOS samples, with the exception being WS K+ at ZBT, where biomass burning may have had an effect. The percentage of calcium that was soluble approached 100% at ZBT versus ˜60% at GOS, and the ratio WS Ca2+/Al also was higher at ZBT. The molar ratio of sulfate to WS Ca2+ was ˜0.1 at ZBT but increased to near unity at GOS, where the aerosol nitrate/WS Ca2+ ratio was tenfold to hundredfold higher compared with ZBT, presumably because of anthropogenic influences. The observed differences in aerosol characteristics between sites can only be explained as the end product of different source contributions combined with complex processes involving gas-particle conversion, size-dependent fractionation, and aerosol mixing.

  2. Airborne Atmospheric Aerosol Measurement System

    NASA Astrophysics Data System (ADS)

    Ahn, K.; Park, Y.; Eun, H.; Lee, H.

    2015-12-01

    It is important to understand the atmospheric aerosols compositions and size distributions since they greatly affect the environment and human health. Particles in the convection layer have been a great concern in global climate changes. To understand these characteristics satellite, aircraft, and radio sonde measurement methods have usually been used. An aircraft aerosol sampling using a filter and/or impactor was the method commonly used (Jay, 2003). However, the flight speed particle sampling had some technical limitations (Hermann, 2001). Moreover, the flight legal limit, altitude, prohibited airspace, flight time, and cost was another demerit. To overcome some of these restrictions, Tethered Balloon Package System (T.B.P.S.) and Recoverable Sonde System(R.S.S.) were developed with a very light optical particle counter (OPC), impactor, and condensation particle counter (CPC). Not only does it collect and measure atmospheric aerosols depending on altitudes, but it also monitors the atmospheric conditions, temperature, humidity, wind velocity, pressure, GPS data, during the measurement (Eun, 2013). In this research, atmospheric aerosol measurement using T.B.P.S. in Ansan area is performed and the measurement results will be presented. The system can also be mounted to an unmanned aerial vehicle (UAV) and create an aerial particle concentration map. Finally, we will present measurement data using Tethered Balloon Package System (T.B.P.S.) and R.S.S (Recoverable Sonde System).

  3. Electronic cigarette aerosol particle size distribution measurements.

    PubMed

    Ingebrethsen, Bradley J; Cole, Stephen K; Alderman, Steven L

    2012-12-01

    The particle size distribution of aerosols produced by electronic cigarettes was measured in an undiluted state by a spectral transmission procedure and after high dilution with an electrical mobility analyzer. The undiluted e-cigarette aerosols were found to have particle diameters of average mass in the 250-450 nm range and particle number concentrations in the 10(9) particles/cm(3) range. These measurements are comparable to those observed for tobacco burning cigarette smoke in prior studies and also measured in the current study with the spectral transmission method and with the electrical mobility procedure. Total particulate mass for the e-cigarettes calculated from the size distribution parameters measured by spectral transmission were in good agreement with replicate determinations of total particulate mass by gravimetric filter collection. In contrast, average particle diameters determined for e-cigarettes by the electrical mobility method are in the 50 nm range and total particulate masses calculated based on the suggested diameters are orders of magnitude smaller than those determined gravimetrically. This latter discrepancy, and the very small particle diameters observed, are believed to result from almost complete e-cigarette aerosol particle evaporation at the dilution levels and conditions of the electrical mobility analysis. A much smaller degree, ~20% by mass, of apparent particle evaporation was observed for tobacco burning cigarette smoke. The spectral transmission method is validated in the current study against measurements on tobacco burning cigarette smoke, which has been well characterized in prior studies, and is supported as yielding an accurate characterization of the e-cigarette aerosol particle size distribution.

  4. Rowlinson’s concept of an effective hard sphere diameter

    PubMed Central

    Henderson, Douglas

    2010-01-01

    Attention is drawn to John Rowlinson’s idea that the repulsive portion of the intermolecular interaction may be replaced by a temperature-dependent hard sphere diameter. It is this approximation that made the development of perturbation theory possible for realistic fluids whose intermolecular interactions have a steep, but finite, repulsion at short separations. PMID:20953320

  5. GCM Simulations of the Aerosol Indirect Effect: Sensitivity to Cloud Parameterization and Aerosol Burden

    NASA Technical Reports Server (NTRS)

    Menon, Surabi; DelGenio, Anthony D.; Koch, Dorothy; Tselioudis, George; Hansen, James E. (Technical Monitor)

    2001-01-01

    We describe the coupling of the Goddard Institute for Space Studies (GISS) general circulation model (GCM) to an online sulfur chemistry model and source models for organic matter and sea-salt that is used to estimate the aerosol indirect effect. The cloud droplet number concentration is diagnosed empirically from field experiment datasets over land and ocean that observe droplet number and all three aerosol types simultaneously; corrections are made for implied variations in cloud turbulence levels. The resulting cloud droplet number is used to calculate variations in droplet effective radius, which in turn allows us to predict aerosol effects on cloud optical thickness and microphysical process rates. We calculate the aerosol indirect effect by differencing the top-of-the-atmosphere net cloud radiative forcing for simulations with present-day vs. pre-industrial emissions. Both the first (radiative) and second (microphysical) indirect effects are explored. We test the sensitivity of our results to cloud parameterization assumptions that control the vertical distribution of cloud occurrence, the autoconversion rate, and the aerosol scavenging rate, each of which feeds back significantly on the model aerosol burden. The global mean aerosol indirect effect for all three aerosol types ranges from -1.55 to -4.36 W m(exp -2) in our simulations. The results are quite sensitive to the pre-industrial background aerosol burden, with low pre-industrial burdens giving strong indirect effects, and to a lesser extent to the anthropogenic aerosol burden, with large burdens giving somewhat larger indirect effects. Because of this dependence on the background aerosol, model diagnostics such as albedo-particle size correlations and column cloud susceptibility, for which satellite validation products are available, are not good predictors of the resulting indirect effect.

  6. GCM Simulations of the Aerosol Indirect Effect: Sensitivity to Cloud Parameterization and Aerosol Burden

    NASA Technical Reports Server (NTRS)

    Menon, Surabi; DelGenio, Anthony D.; Koch, Dorothy; Tselioudis, George; Hansen, James E. (Technical Monitor)

    2001-01-01

    We describe the coupling of the Goddard Institute for Space Studies (GISS) general circulation model (GCM) to an online sulfur chemistry model and source models for organic matter and sea-salt that is used to estimate the aerosol indirect effect. The cloud droplet number concentration is diagnosed empirically from field experiment datasets over land and ocean that observe droplet number and all three aerosol types simultaneously; corrections are made for implied variations in cloud turbulence levels. The resulting cloud droplet number is used to calculate variations in droplet effective radius, which in turn allows us to predict aerosol effects on cloud optical thickness and microphysical process rates. We calculate the aerosol indirect effect by differencing the top-of-the-atmosphere net cloud radiative forcing for simulations with present-day vs. pre-industrial emissions. Both the first (radiative) and second (microphysical) indirect effects are explored. We test the sensitivity of our results to cloud parameterization assumptions that control the vertical distribution of cloud occurrence, the autoconversion rate, and the aerosol scavenging rate, each of which feeds back significantly on the model aerosol burden. The global mean aerosol indirect effect for all three aerosol types ranges from -1.55 to -4.36 W/sq m in our simulations. The results are quite sensitive to the pre-industrial background aerosol burden, with low pre-industrial burdens giving strong indirect effects, and to a lesser extent to the anthropogenic aerosol burden, with large burdens giving somewhat larger indirect effects. Because of this dependence on the background aerosol, model diagnostics such as albedo-particle size correlations and column cloud susceptibility, for which satellite validation products are available, are not good predictors of the resulting indirect effect.

  7. Aldebaran's angular diameter: How well do we know it?

    NASA Astrophysics Data System (ADS)

    Richichi, A.; Roccatagliata, V.

    2005-04-01

    The bright, well-known K5 giant Aldebaran, α Tau, is probably the star with the largest number of direct angular diameter determinations, achieved over a long time by several authors using various techniques. In spite of this wealth of data, or perhaps as a direct result of it, there is not a very good agreement on a single angular diameter value. This is particularly unsettling if one considers that Aldebaran is also used as a primary calibrator for some angular resolution methods, notably for optical and infrared long baseline interferometry. Directly connected to Aldebaran's angular diameter and its uncertainties is its effective temperature, which also has been used for several empirical calibrations. Among the proposed explanations for the elusiveness of an accurate determination of the angular diameter of Aldebaran are the possibility of temporal variations as well as a possible dependence of the angular diameter on the wavelength. We present here a few, very accurate new determinations obtained by means of lunar occultations and long baseline interferometry. We derive an average value of 19.96±0.03 milliarcsec for the uniform disk diameter. The corresponding limb-darkened value is 20.58±0.03 milliarcsec, or 44.2±0.9 R⊙. We discuss this result, in connection with previous determinations and with possible problems that may affect such measurements. Based on observations collected at TIRGO (Gornergrat, Switzerland). TIRGO is operated by CNR - CAISMI Arcetri, Italy.

  8. Comparison of Aerosol Formulations of Formoterol Fumarate and Budesonide

    PubMed Central

    Nirale, N. M.; Nagarsenker, M. S.; Mendon, S. B.; Chanagare, R.; Katkurwar, A.; Lugade, V.

    2011-01-01

    The aerodynamic diameter of pharmaceutical aerosols is the main factor governing their deposition in the human respiratory tract. Particle size of the pharmaceutical aerosols is characterized by liquid impingers and Andersen Cascade Impactors. The present study was aimed at comparing two metered dose inhaler formulation containing formoterol fumarate (6 μg) and budesonide (200 μg). These two formulations were evaluated by using Twin Stage Impinger and Andersen Cascade Impactor. Study revealed that developed metered dose inhaler I formulation of the formoterol fumarate and budesonide had lower mass median aerodynamic diameter and higher fine particle fraction than marketed formulation. PMID:22457551

  9. Low power acoustic harvesting of aerosols

    SciTech Connect

    Kaduchak, G.; Sinha, D. N.

    2001-01-01

    A new acoustic device for levitation and/or concentration of aerosols and sniall liquid/solid samples (up to several millimeters in diameter) in air has been developed. The device is inexpensive, low-power, and, in its simplest embodiment, does not require accurate alignmen1 of a resonant cavity. It is constructed from a cylindrical PZT tube of outside diameter D = 19.0 mm and thickness-to-radius ratio h/a - 0.03. The lowest-order breathing mode of the tube is tuned to match a resonant mode of the interior air-filled cylindrical cavity. A high Q cavity results that can be driven efficiently. An acoustic standing wave is created in the inteirior cavity of the cylindrical shell where particle concrmtration takes place at the nodal planes of the field. It is shown that drops of water in excess of 1 mm in diameter may be levitated against the force of gravity for approxirnately 100 mW of input electrical power. The main objective of the research is to implement this lowpower device to concentrate and harvest aerosols in a flowing system. Several different cavity geonietries iwe presented for efficient collection of 1 he conaartratetl aerosols. Concentraiion factors greater than 40 iue demonstrated for particles of size 0.7 1.1 in a flow volume of 50 L/minute.

  10. Connecting the solubility and CCN activation of complex organic aerosols: a theoretical study using solubility distributions

    NASA Astrophysics Data System (ADS)

    Riipinen, I.; Rastak, N.; Pandis, S. N.

    2015-06-01

    We present a theoretical study investigating the cloud activation of multicomponent organic particles. We modeled these complex mixtures using solubility distributions (analogous to volatility distributions in the VBS, i.e., volatility basis set, approach), describing the mixture as a set of surrogate compounds with varying water solubilities in a given range. We conducted Köhler theory calculations for 144 different mixtures with varying solubility range, number of components, assumption about the organic mixture thermodynamics and the shape of the solubility distribution, yielding approximately 6000 unique cloud condensation nucleus (CCN)-activation points. The results from these comprehensive calculations were compared to three simplifying assumptions about organic aerosol solubility: (1) complete dissolution at the point of activation; (2) combining the aerosol solubility with the molar mass and density into a single effective hygroscopicity parameter κ; and (3) assuming a fixed water-soluble fraction ϵeff. The complete dissolution was able to reproduce the activation points with a reasonable accuracy only when the majority (70-80%) of the material was dissolved at the point of activation. The single-parameter representations of complex mixture solubility were confirmed to be powerful semi-empirical tools for representing the CCN activation of organic aerosol, predicting the activation diameter within 10% in most of the studied supersaturations. Depending mostly on the condensed-phase interactions between the organic molecules, material with solubilities larger than about 0.1-100 g L-1 could be treated as soluble in the CCN activation process over atmospherically relevant particle dry diameters and supersaturations. Our results indicate that understanding the details of the solubility distribution in the range of 0.1-100 g L-1 is thus critical for capturing the CCN activation, while resolution outside this solubility range will probably not add

  11. Pupil Diameter Tracks Lapses of Attention

    PubMed Central

    Murphy, Peter R.; Nieuwenhuis, Sander

    2016-01-01

    Our ability to sustain attention for prolonged periods of time is limited. Studies on the relationship between lapses of attention and psychophysiological markers of attentional state, such as pupil diameter, have yielded contradicting results. Here, we investigated the relationship between tonic fluctuations in pupil diameter and performance on a demanding sustained attention task. We found robust linear relationships between baseline pupil diameter and several measures of task performance, suggesting that attentional lapses tended to occur when pupil diameter was small. However, these observations were primarily driven by the joint effects of time-on-task on baseline pupil diameter and task performance. The linear relationships disappeared when we statistically controlled for time-on-task effects and were replaced by consistent inverted U-shaped relationships between baseline pupil diameter and each of the task performance measures, such that most false alarms and the longest and most variable response times occurred when pupil diameter was both relatively small and large. Finally, we observed strong linear relationships between the temporal derivative of pupil diameter and task performance measures, which were largely independent of time-on-task. Our results help to reconcile contradicting findings in the literature on pupil-linked changes in attentional state, and are consistent with the adaptive gain theory of locus coeruleus-norepinephrine function. Moreover, they suggest that the derivative of baseline pupil diameter is a potentially useful psychophysiological marker that could be used in the on-line prediction and prevention of attentional lapses. PMID:27768778

  12. Diameter Effect In Initiating Explosives, Numerical Simulations

    SciTech Connect

    Lefrancois, A.; Benterou, J.; Roeske, F.; Roos, E.

    2006-02-10

    The ability to safely machine small pieces of HE with the femtosecond laser allows diameter effect experiments to be performed in initiating explosives in order to study the failure diameter, the reduction of the detonation velocity and curvature versus the diameter. The reduced diameter configuration needs to be optimized, so that the detonation products of the first cylinder will not affect the measurement of the detonation velocity of the second cylinder with a streak camera. Different 2D axi-symmetrical configurations have been calculated to identify the best solution using the Ignition and Growth reactive flow model for LX16 Pellet with Ls-Dyna.

  13. Revisiting Aerosol Effects in Global Climate Models Using an Aerosol Lidar Simulator

    NASA Astrophysics Data System (ADS)

    Ma, P. L.; Chepfer, H.; Winker, D. M.; Ghan, S.; Rasch, P. J.

    2015-12-01

    Aerosol effects are considered a major source of uncertainty in global climate models and the direct and indirect radiative forcings have strong model dependency. These forcings are routinely evaluated (and calibrated) against observations, among them satellite retrievals are greatly used for their near-global coverage. However, the forcings calculated from model output are not directly comparable with those computed from satellite retrievals since sampling and algorithmic differences (such as cloud screening, noise reduction, and retrieval) between models and observations are not accounted for. It is our hypothesis that the conventional model validation procedures for comparing satellite observations and model simulations can mislead model development and introduce biases. Hence, we have developed an aerosol lidar simulator for global climate models that simulates the CALIOP lidar signal at 532nm. The simulator uses the same algorithms as those used to produce the "GCM-oriented CALIPSO Aerosol Product" to (1) objectively sample lidar signal profiles; and (2) derive aerosol fields (e.g., extinction profile, aerosol type, etc) from lidar signals. This allows us to sample and derive aerosol fields in the model and real atmosphere in identical ways. Using the Department of Energy's ACME model simulations, we found that the simulator-retrieved aerosol distribution and aerosol-cloud interactions are significantly different from those computed from conventional approaches, and that the model is much closer to satellite estimates than previously believed.

  14. MATRIX-ASSISTED LASER DESORPTION IONIZATION OF SIZE AND COMPOSITION SELECTED AEROSOL PARTICLES. (R823980)

    EPA Science Inventory

    Matrix-assisted laser desorption/ionization (MALDI) was performed on individual,
    size-selected aerosol particles in the 2-8 mu m diameter range, Monodisperse aerosol droplets
    containing matrix, analyte, and solvent were generated and entrained in a dry stream of air, The dr...

  15. Recent Rainfall and Aerosol Chemistry From Bermuda

    NASA Astrophysics Data System (ADS)

    Landing, W. M.; Shelley, R.; Kadko, D. C.

    2014-12-01

    This project was devoted to testing the use of Be-7 as a tracer for quantifying trace element fluxes from the atmosphere to the oceans. Rainfall and aerosol samples were collected between June 15, 2011 and July 27, 2013 at the Bermuda Institute of Ocean Sciences (BIOS) located near the eastern end of the island of Bermuda. Collectors were situated near ground level, clear of surrounding vegetation, at a meteorological monitoring station in front of the BIOS laboratory, about 10 m above sea level. This is a Bermuda Air Quality Program site used for ambient air quality monitoring. To quantify the atmospheric deposition of Be-7, plastic buckets were deployed for collection of fallout over ~3 week periods. Wet deposition was collected for trace element analysis using a specially modified "GEOTRACES" N-CON automated wet deposition collector. Aerosol samples were collected with a Tisch TE-5170V-BL high volume aerosol sampler, modified to collect 12 replicate samples on acid-washed 47mm diameter Whatman-41 filters, using procedures identical to those used for the US GEOTRACES aerosol program (Morton et al., 2013). Aerosol and rainfall samples were analyzed for total Na, Mg, Al, P, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Zr, Cd, Sb, Ba, La, Ce, Nd, Pb, Th, and U using ICPMS. Confirming earlier data from Bermuda, strong seasonality in rainfall and aerosol loading and chemistry was observed, particularly for aerosol and rainfall Fe concentrations when Saharan dust arrives in July/August with SE trajectories.

  16. Production of Highly Charged Pharmaceutical Aerosols Using a New Aerosol Induction Charger

    PubMed Central

    Golshahi, Laleh; Longest, P. Worth; Holbrook, Landon; Snead, Jessica; Hindle, Michael

    2015-01-01

    Purpose Properly charged particles can be used for effective lung targeting of pharmaceutical aerosols. The objective of this study was to characterize the performance of a new induction charger that operates with a mesh nebulizer for the production of highly charged submicrometer aerosols to bypass the mouth-throat and deliver clinically relevant doses of medications to the lungs. Methods Variables of interest included combinations of model drug (i.e. albuterol sulfate) and charging excipient (NaCl) as well as strength of the charging field (1–5 kV/cm). Aerosol charge and size were measured using a modified electrical low pressure impactor system combined with high performance liquid chromatography. Results At the approximate mass median aerodynamic diameter (MMAD) of the aerosol (~ 0.4 μm), the induction charge on the particles was an order of magnitude above the field and diffusion charge limit. The nebulization rate was 439.3 ± 42.9 μl/min, which with a 0.1 % w/v solution delivered 419.5 ± 34.2 μg of medication per minute. A new correlation was developed to predict particle charge produced by the induction charger. Conclusions The combination of the aerosol induction charger and predictive correlations will allow for the practical generation and control of charged submicrometer aerosols for targeting deposition within the lungs. PMID:25823649

  17. Interrelationships Between Aerosol Characteristics and Light Scattering During Late-winter in a Eastern Mediterranean Arid Environment

    NASA Technical Reports Server (NTRS)

    Ichoku, C.; Andreae, M. O.; Meixner, F. X.; Schebeske, G.; Formenti, P.; Maenhaut, W.; Cafmeyer, J.; Ptasinski, J.; Karnieli, A.; Orlovsky, L.

    1999-01-01

    An intensive field campaign involving measurement of various aerosol physical, chemical, and radiative properties was conducted at Sde Boker in the Negev Desert of Israel, from 18 February to 15 March 1997. Nephelometer measurements gave average background scattering coefficient values of about 25 M/m at 550 nm wavelength, but strong dust events caused the value of this parameter to rise up to about 800 M/m Backscattering fractions did not depend on aerosol loading, and generally fell in the range of 0.1 to 0.25, comparable to values reported for marine and Arctic environments. Chemical analysis of the aerosol revealed that, in the coarse size range (2 - 10 micrometer equivalent aerodynamic diameter (EAD)), calcium (Ca) was by far the most abundant element followed by silicon (Si), both of which are indicators for mineral dust. In the fine size fraction (< 2 micrometers EAD), sulfur (S) generally was the dominant element, except during high dust episodes when Ca and Si were again the most abundant. Furthermore, fine black carbon (BC) correlates with S, suggesting that they may have originated from the same sources or source regions. An indication of the short-term effect of aerosol loading on radiative forcing was provided by measurements of global and diffuse solar radiation, which showed that during high turbidity periods (strong dust events) almost all of the solar radiation reaching the area is scattered or absorbed.

  18. Climatology of Aerosol Optical Properties in Southern Africa

    NASA Technical Reports Server (NTRS)

    Queface, Antonio J.; Piketh, Stuart J.; Eck, Thomas F.; Tsay, Si-Chee

    2011-01-01

    A thorough regionally dependent understanding of optical properties of aerosols and their spatial and temporal distribution is required before we can accurately evaluate aerosol effects in the climate system. Long term measurements of aerosol optical depth, Angstrom exponent and retrieved single scattering albedo and size distribution, were analyzed and compiled into an aerosol optical properties climatology for southern Africa. Monitoring of aerosol parameters have been made by the AERONET program since the middle of the last decade in southern Africa. This valuable information provided an opportunity for understanding how aerosols of different types influence the regional radiation budget. Two long term sites, Mongu in Zambia and Skukuza in South Africa formed the core sources of data in this study. Results show that seasonal variation of aerosol optical thicknesses at 500 nm in southern Africa are characterized by low seasonal multi-month mean values (0.11 to 0.17) from December to May, medium values (0.20 to 0.27) between June and August, and high to very high values (0.30 to 0.46) during September to November. The spatial distribution of aerosol loadings shows that the north has high magnitudes than the south in the biomass burning season and the opposite in none biomass burning season. From the present aerosol data, no long term discernable trends are observable in aerosol concentrations in this region. This study also reveals that biomass burning aerosols contribute the bulk of the aerosol loading in August-October. Therefore if biomass burning could be controlled, southern Africa will experience a significant reduction in total atmospheric aerosol loading. In addition to that, aerosol volume size distribution is characterized by low concentrations in the non biomass burning period and well balanced particle size contributions of both coarse and fine modes. In contrast high concentrations are characteristic of biomass burning period, combined with

  19. Attachment of radon progeny to cigarette-smoke aerosols

    SciTech Connect

    Biermann, A.H.; Sawyer, S.R.

    1995-05-01

    The daughter products of radon gas are now recognized as a significant contributor to radiation exposure to the general public. It is also suspected that a synergistic effect exists with the combination cigarette smoking and radon exposure. We have conducted an experimental investigation to determine the physical nature of radon progeny interactions with cigarette smoke aerosols. The size distributions of the aerosols are characterized and attachment rates of radon progeny to cigarette-smoke aerosols are determined. Both the mainstream and sidestream portions of the smoke aerosol are investigated. Unattached radon progeny are very mobile and, in the presence of aerosols, readily attach to the particle surfaces. In this study, an aerosol chamber is used to contain the radon gas, progeny and aerosol mixture while allowing the attachment process to occur. The rate of attachment is dependent on the size distribution, or diffusion coefficient, of the radon progeny as well as the aerosol size distribution. The size distribution of the radon daughter products is monitored using a graded-screen diffusion battery. The diffusion battery also enables separation of the unattached radon progeny from those attached to the aerosol particles. Analysis of the radon decay products is accomplished using alpha spectrometry. The aerosols of interest are size fractionated with the aid of a differential mobility analyzer and cascade impactor. The measured attachment rates of progeny to the cigarette smoke are compared to those found in similar experiments using an ambient aerosol. The lowest attachment coefficients observed, {approximately}10{sup {minus}6} cm{sup 3}/s, occurred for the ambient aerosol. The sidestream and mainstream smoke aerosols exhibited higher attachment rates in that order. The results compared favorably with theories describing the coagulation process of aerosols.

  20. Light Absorbing Aerosols in Mexico City

    NASA Astrophysics Data System (ADS)

    Marley, N. A.; Kelley, K. L.; Kilaparty, P. S.; Gaffney, J. S.

    2008-12-01

    The direct effects of aerosol radiative forcing has been identified by the IPCC as a major uncertainty in climate modeling. The DOE Megacity Aerosol Experiment-Mexico City (MAX-Mex), as part of the MILAGRO study in March of 2006, was undertaken to reduce these uncertainties by characterization of the optical, chemical, and physical properties of atmospheric aerosols emitted from this megacity environment. Aerosol samples collected during this study using quartz filters were characterized in the uv-visible-infrared by using surface spectroscopic techniques. These included the use of an integrating sphere approach combined with the use of Kubelka-Munk theory to obtain aerosol absorption spectra. In past work black carbon has been assumed to be the only major absorbing species in atmospheric aerosols with an broad band spectral profile that follows a simple inverse wavelength dependence. Recent work has also identified a number of other absorbing species that can also add to the overall aerosol absorption. These include primary organics from biomass and trash burning and secondary organic aerosols including nitrated PAHs and humic-like substances, or HULIS. By using surface diffuse reflection spectroscopy we have also obtained spectra in the infrared that indicate significant IR absorption in the atmospheric window-region. These data will be presented and compared to spectra of model compounds that allow for evaluation of the potential importance of these species in adding strength to the direct radiative forcing of atmospheric aerosols. This work was supported by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-07ER64327 as part of the Atmospheric Science Program.

  1. Characterization of Spectral Absorption Properties of Aerosols Using Satellite Observations

    NASA Technical Reports Server (NTRS)

    Torres, O.; Jethva, H.; Bhartia, P. K.; Ahn, C.

    2012-01-01

    The wavelength-dependence of aerosol absorption optical depth (AAOD) is generally represented in terms of the Angstrom Absorption Exponent (AAE), a parameter that describes the dependence of AAOD with wavelength. The AAE parameter is closely related to aerosol composition. Black carbon (BC) containing aerosols yield AAE values near unity whereas Organic carbon (OC) aerosol particles are associated with values larger than 2. Even larger AAE values have been reported for desert dust aerosol particles. Knowledge of spectral AAOD is necessary for the calculation of direct radiative forcing effect of aerosols and for inferring aerosol composition. We have developed a satellitebased method of determining the spectral AAOD of absorbing aerosols. The technique uses high spectral resolution measurements of upwelling radiation from scenes where absorbing aerosols lie above clouds as indicated by the UV Aerosol Index. For those conditions, the satellite measured reflectance (rho lambda) is approximately given by Beer's law rho lambda = rho (sub 0 lambda) e (exp -mtau (sub abs lambda)) where rho(sub 0 lambda) is the cloud reflectance, m is the geometric slant path and tau (sub abs lambda) is the spectral AAOD. The rho (sub 0 lambda) term is determined by means of radiative transfer calculations using as input the cloud optical depth derived as described in Torres et al. [JAS, 2012] that accounts for the effects of aerosol absorption. In the second step, corrections for molecular and aerosol scattering effects are applied to the cloud reflectance term, and the spectral AAOD is then derived by inverting the equation above. The proposed technique will be discussed in detail and application results will be presented. The technique can be easily applied to hyper-spectral satellite measurements that include UV such as OMI, GOME and SCIAMACHY, or to multi-spectral visible measurements by other sensors provided that the aerosol-above-cloud events are easily identified.

  2. Solar diameter measurements from eclipses as a solar variability proxy

    NASA Astrophysics Data System (ADS)

    Dunham, David W.; Sofia, Sabatino; Guhl, Konrad; Herald, David

    The widths of total solar eclipse paths depends on the diameter of the Sun, so if observations are obtained near both the northern and southern limits of the eclipse path, in principle, the angular diameter of the Sun can be measured. Concerted efforts have been made to obtain contact timings from locations near total solar eclipse path edges since the mid 19th century, and Edmund Halley organized a rather successful first effort in 1715. Members of IOTA have been making increasingly sophisticated observations of the Baily's bead phenomena near central solar eclipse path edges since 1970.

  3. Thermodynamic characterization of Mexico City aerosol during MILAGRO 2006

    NASA Astrophysics Data System (ADS)

    Fountoukis, C.; Nenes, A.; Sullivan, A.; Weber, R.; van Reken, T.; Fischer, M.; Matías, E.; Moya, M.; Farmer, D.; Cohen, R. C.

    2009-03-01

    Fast measurements of aerosol and gas-phase constituents coupled with the ISORROPIA-II thermodynamic equilibrium model are used to study the partitioning of semivolatile inorganic species and phase state of Mexico City aerosol sampled at the T1 site during the MILAGRO 2006 campaign. Overall, predicted semivolatile partitioning agrees well with measurements. PM2.5 is insensitive to changes in ammonia but is to acidic semivolatile species. For particle sizes up to 1μm diameter, semi-volatile partitioning requires 15-30 min to equilibrate; longer time is typically required during the night and early morning hours. Aerosol and gas-phase speciation always exhibits substantial temporal variability, so that aerosol composition measurements (bulk or size-resolved) obtained over large integration periods are not reflective of its true state. When the aerosol sulfate-to-nitrate molar ratio is less than unity, predictions improve substantially if the aerosol is assumed to follow the deliquescent phase diagram. Treating crustal species as "equivalent sodium" (rather than explicitly) in the thermodynamic equilibrium calculations introduces important biases in predicted aerosol water uptake, nitrate and ammonium; neglecting crustals further increases errors dramatically. This suggests that explicitly considering crustals in the thermodynamic calculations is required to accurately predict the partitioning and phase state of aerosols.

  4. Effect of relative humidity on mixed aerosols in atmosphere.

    PubMed

    Lee, W M; Huang, W M; Chen, Y Y

    2001-01-01

    In this study, the effects of relative humidity on the deliquescent point and size of internally mixed aerosols diameter, NH4NO3 and (NH4)2SO4 were investigated using a Tandem Differential Mobility Analyzer (TDMA) with a relative humidity conditioner. The growth of mixed aerosols appears to have two deliquescent steps. The first one was at about 61.2-61.3%, but the second one was at around 77-78%. At the first deliquescence point, growth ratio at phase change was 7.5%, which agrees with the growth ratio of ammonium nitrate aerosol. Growth ratio of phase change at the second deliquescence point was about 20%, lower than the growth ratio of ammonium sulfate aerosol. In the relative humidity range of 80-85%, the growth ratio of the mixed aerosols reached 60%. In other words, it appears that growth ratio increases with the size of aerosol. Furthermore, a theoretical growth model of mixed aerosols was developed and applied to estimate the amount of composition of the mixed aerosols dissolved at each deliquescence point. The results also show that some of ammonium sulfate already dissolved at the first deliquescence point according to the theoretical growth model.

  5. Stellar angular diameters from occultation observations.

    NASA Astrophysics Data System (ADS)

    Qian, B.-C.

    This paper reviews the history of measuring stellar angular diameters from lunar occultation observations and the techniques of data analysis. Several effects which can affect the results of measurement are discussed. The author finds that there may be systematic errors in angular diameters measured by various observatories for Aldebaran.

  6. Remote continental aerosol characteristics in the Rocky Mountains of Colorado and Wyoming

    NASA Astrophysics Data System (ADS)

    Levin, Ezra J. T.

    number concentrations were correlated with the frequency of events typical of new particle formation. Measured sub-micron organic mass fractions were between 70 -- 90% during the summer months, when new particle formation events were most frequent, suggesting the importance of organic species in the nucleation or growth process, or both. Aerosol composition derived from hygroscopicity measurements indicate organic mass fractions of 50 - 60% for particles with diameters larger than 0.15 mum during the winter. The composition of smaller diameter particles appeared to be organic dominated year-round. High organic mass fractions led to low values of aerosol hygroscopicity, described using the kappa parameter. Over the entire year-long BEACHON study, kappa had an average value of 0.16 +/- 0.08, similar to values determined during biologically active periods in tropical and boreal forests, and lower than the commonly assumed value of kappacontinental = 0.3. There was also an observed increase in kappa with size, due to external mixing of the fine mode aerosol. Incorrect representations of kappa or its size dependence led to erroneous values of calculated CCN concentrations, especially for supersaturation values less than 0.3%. At higher supersaturations, most of the measured variability in CCN concentrations was captured by changes in total measured aerosol number concentrations. While data from the three measurement sites were generally well correlated, indicating similarities in seasonal cycles and in total number concentrations, there were some variations between measurements made at different sites and during different years that may be partly due to the effects of local emissions. The averaged data provide reasonable, observationally-based parameters for modeling of aerosol number size distributions and corresponding CCN concentrations. Field observations clearly indicated the episodic influence of wildfire smoke on particle number concentrations and compositions. However

  7. Aerosol-Cloud Interactions in the South-East Atlantic

    NASA Astrophysics Data System (ADS)

    Andersen, Hendrik; Cermak, Jan

    2014-05-01

    In this contribution, a satellite-based study on aerosol-cloud interactions (ACI) in the South-East Atlantic with explicit consideration of meteorological conditions is presented. Aerosol-Cloud Interactions remain difficult to quantify and contribute the largest uncertainty to global radiative forcing. These uncertainties make them one of the most important factors for anthropogenic climate perturbations. Interactions are highly complex as microphysical and macrostructural cloud adjustments to aerosol perturbations do not transpire in a black box but are highly dependent on a variety of factors like cloud regime, meteorology and aerosol properties. To gain understanding of the processes that govern ACI in order to increase accuracy of climate models and predictions of future changes in the climate system is thus of great importance. This process study uses multiple statistical approaches to untangle the various influences on ACI. Stratocumulus clouds in the South-East Atlantic are investigated over a time span of 10 years using daily Terra MODIS L3 data for aerosol and cloud parameters. Together with ERA-Interim reanalysis data of cloud-relevant meteorological parameters, statistical relationships between aerosol and cloud properties are derived for different weather types on the basis of a kmeans cluster analysis, in addition to bivariate relationships. Also, the influence of aerosol loading on aerosol-cloud relationships is investigated. Relationships between aerosol and cloud microphysical properties are established. Macrostructural cloud adjustments are more ambiguous, as the observed positive relationship between aerosol and cloud liquid water path (LWP) is inconsistent with the Albrecht hypothesis (more cloud water due to drizzle suppression). Adjustments of cloud optical thickness (COT) to aerosol perturbations are negligible as COT is highly dependent on LWP. Strong relationships between aerosol and cloud fraction are identified, but might be spurious and

  8. Measurement of wire diameter by optical diffraction

    NASA Astrophysics Data System (ADS)

    Khodier, Soraya A.

    2004-02-01

    A combined interference and diffraction pattern, in the form of equidistant interference fringes, resulting from illuminating a vertical metallic wire by a laser beam is analyzed to measure the diameter of four standard wires. The diameters range from 170 to 450 μm. It is found that the error in the diameter measurements increases for small metallic wires and for small distances between the wire and the screen due to scattering effects. The intensity of the incident laser beam was controlled by a pair of sheet polaroids to minimize the scattered radiation. The used technique is highly sensitive, but requires controlled environmental conditions and absence of vibration effects. The expanded uncertainty for k=2 is calculated and found to decrease from U(D)=±1.45 μm for the wire of nominal diameter 170 μm to ±0.57 μm for the diameter 450 μm.

  9. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions.

    PubMed

    Chandrakar, Kamal Kant; Cantrell, Will; Chang, Kelken; Ciochetto, David; Niedermeier, Dennis; Ovchinnikov, Mikhail; Shaw, Raymond A; Yang, Fan

    2016-12-13

    The influence of aerosol concentration on the cloud-droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud-droplet growth and fallout. As aerosol concentration is increased, the cloud-droplet mean diameter decreases, as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics ([Formula: see text]) for high aerosol concentration, and slow microphysics ([Formula: see text]) for low aerosol concentration; here, [Formula: see text] is the phase-relaxation time and [Formula: see text] is the turbulence-correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as [Formula: see text], and the measurements are in excellent agreement with this finding. The result underscores the importance of droplet size dispersion for aerosol indirect effects: increasing aerosol concentration changes the albedo and suppresses precipitation formation not only through reduction of the mean droplet diameter but also by narrowing of the droplet size distribution due to reduced supersaturation fluctuations. Supersaturation fluctuations in the low aerosol/slow microphysics limit are likely of leading importance for precipitation formation.

  10. Measurement of Critical Diameter, Shock and Impact Sensitivity of a Special Propellant

    DTIC Science & Technology

    1981-03-01

    of detonation ) and the charge density. At smaller charge diameters the detonation velocity is less than the ideal value and decreases with a...velocity is in- dependent of diameter and is the ideal velocity, T)±, whose value depends only on the specific energy released by the detonation ( heat

  11. Polarization properties of aerosol particles over western Japan: classification, seasonal variation, and implications for air quality

    NASA Astrophysics Data System (ADS)

    Pan, Xiaole; Uno, Itsushi; Hara, Yukari; Osada, Kazuo; Yamamoto, Shigekazu; Wang, Zhe; Sugimoto, Nobuo; Kobayashi, Hiroshi; Wang, Zifa

    2016-08-01

    Ground-based observation of the polarization properties of aerosol particles using a polarization optical particle counter (POPC) was made from 27 October 2013, to 31 December 2015, at a suburban site in the Kyushu area of Japan. We found that the depolarization ratio (DR, the fraction of s-polarized signal in the total backward light scattering signal) of aerosol particles showed prominent seasonal variability, with peaks in spring (0.21-0.23) and winter (0.19-0.23), and a minimum value (0.09-0.14) in summer. The aerosol compositions in both fine mode (aerodynamic diameter of particle, Dp < 2.5 µm) and coarse mode (2.5 µm < Dp < 10 µm), and the size-dependent polarization characteristics were analyzed for long-range transport dust particles, sea salt, and anthropogenic pollution-dominant aerosols. The DR value increased with increasing particle size, and DR = 0.1 was a reliable threshold value to identify the sphericity of supermicron (Dp > 1 µm) particles. Occurrence of substandard air quality days in Kyushu was closely related with mixed type (coexistence of anthropogenic pollutants and dust particles in the atmosphere), especially in winter and spring, indicating that dust events in the Asian continent played a key role in the cross-boundary transport of continental pollution. Backward trajectory analysis demonstrated that air masses originating from the western Pacific contained large amounts of spherical particles due to the influence of sea salt, especially in summer; however, for air masses from the Asian continent, the dependence of number fraction of spherical particles on air relative humidity was insignificant, indicating the predominance of less-hygroscopic substances (e.g., mineral dust), although the mass concentrations of anthropogenic pollutants were elevated.

  12. The effect of aerosols on the earth-atmosphere albedo

    NASA Technical Reports Server (NTRS)

    Herman, B. M.; Browning, S. R.

    1975-01-01

    The paper presents calculations of the change in reflected flux by the earth-atmosphere system in response to increases in the atmospheric aerosol loading for a range of complex indices of refraction, solar elevation angle and ground albedo. Results show that, for small values of ground albedo, the reflected solar flux may either increase or decrease with increasing aerosol loadings, depending upon the complex part of the index of refraction of the aerosols. For high ground albedos, an increase in aerosol levels always results in a decrease of reflected flux (i.e., a warming of the earth-atmosphere system).

  13. Dust size parameterization in RegCM4: Impact on aerosol burden and radiative forcing

    NASA Astrophysics Data System (ADS)

    Tsikerdekis, A.; Zanis, P.; Steiner, A. L.; Solmon, F.; Amiridis, V.; Marinou, E.; Katragkou, E.; Karacostas, T.; Foret, G.

    2015-12-01

    We investigate the sensitivity of two dust parameterizations of the regional climate model RegCM4, for the period 2008-2012, over a large domain focused on the Sahara and the Mediterranean. We implement two size bin distributions: 1) a 4-bin approach, where each bin is delimited using an isolog approach and every size group has equal ranges in logarithmic scale according to the diameter of the dust particles, and 2) a 12-bin approach with each bin defined according to an isogradient method, where the size ranges are dependent on the dry deposition velocity of dust particles. Increasing the number of the transported dust size bin improves the representation of the physical properties of dust particles that belong on the same group. Thus, more size bins minimize the error and improve the simulation of atmospheric processes. The emission, deposition and transport of dust are evaluated combined for each experiment to determine the impact of dust size bin partition. The radiative effects of dust over the area are also discussed and evaluated with the CALIPSO Aerosol Optical Depth (AOD) pure dust product. Techniques for the discrimination of the dust component from other aerosol types have been recently developed in the framework of the LIVAS (LIdar climatology of Vertical Aerosol Structure for space-based lidar simulation studies- http://lidar.space.noa.gr:8080/livas/).

  14. Overview of Aerosol Distribution

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram

    2005-01-01

    Our knowledge of atmospheric aerosols (smoke, pollution, dust or sea salt particles, small enough to be suspended in the air), their evolution, composition, variability in space and time and interaction with clouds and precipitation is still lacking despite decades of research. Understanding the global aerosol system is fundamental for progress in climate change and hydrological cycle research. While a single instrument was used to demonstrate 50 years ago that the global CO2 levels are rising, posing threat of global warming, we need an array of satellites and field measurements coupled with chemical transport models to understand the global aerosol system. This complexity of the aerosol problem results from their short lifetime (1 week) and variable chemical composition. A new generation of satellites provides exciting opportunities to measure the global distribution of aerosols, distinguishing natural from anthropogenic aerosol and measuring their interaction with clouds and climate. I shall discuss these topics and application of the data to air quality monitoring.

  15. Influences of relative humidity on aerosol optical properties and aerosol radiative forcing during ACE-Asia

    NASA Astrophysics Data System (ADS)

    Yoon, Soon-Chang; Kim, Jiyoung

    In situ measurements at Gosan, South Korea, and onboard C-130 aircraft during ACE-Asia were analyzed to investigate the influence of relative humidity (RH) on aerosol optical properties and radiative forcing. The temporal variation of aerosol chemical composition at the Gosan super-site was highly dependent on the air mass transport pathways and source region. RH in the springtime over East Asia were distributed with very high spatial and temporal variation. The RH profile onboard C-130 aircraft measurements exhibits a mixed layer height of about 2 km. Aerosol scattering coefficient ( σsp) under ambient RH was greatly enhanced as compared with that at dry RH (RH<40%). From the aerosol optical and radiative transfer modeling studies, we found that the extinction and scattering coefficients are greatly enhanced with RH. Single scattering albedo with RH is also sensitively changed in the longer wavelength. Asymmetry parameter ( g) is gradually increased with RH although g decreases with wavelength at a given RH. Aerosol optical depth (AOD) at 550 nm and RH of 50% increased to factors 1.24, 1.51, 2.16, and 3.20 at different RH levels 70, 80, 90, and 95%, respectively. Diurnal-averaged aerosol radiative forcings for surface, TOA, and atmosphere were increased with RH because AOD was increased with RH due to hygroscopic growth of aerosol particles. This result implies that the hygroscopic growth due to water-soluble or hydrophilic particles in the lower troposphere may significantly modify the magnitude of aerosol radiative forcing both at the surface and TOA. However, the diurnal-averaged radiative forcing efficiencies at the surface, TOA, and atmosphere were decreased with increasing RH. The decrease of the forcing efficiency with RH results from the fact that increasing rate of aerosol optical depth with RH is greater than the increasing rate of aerosol radiative forcing with RH.

  16. Modeling the Relationships Between Aerosol Properties and the Direct and Indirect Effects of Aerosols on Climate

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.

    1994-01-01

    Aerosols may affect climate directly by scattering and absorbing visible and infrared energy, They may also affect climate indirectly by modifying the properties of clouds through microphysical processes, and by altering abundances of radiatively important gases through heterogeneous chemistry. Researchers understand which aerosol properties control the direct effect of aerosols on the radiation budget. Unfortunately, despite an abundance of data on certain types of aerosols, much work remains to be done to determine the values of these properties. For instance we have little idea about the global distribution, seasonal variation, or interannual variability of the aerosol optical depth. Also we do not know the visible light absorption properties of tropical aerosols which may contain much debris from slash and burn agriculture. A positive correlation between aerosol concentrations and albedos of marine stratus clouds is observed, and the causative microphysics is understood. However, models suggest that it is difficult to produce new particles in the marine boundary layer. Some modelers have suggested that the particles in the marine boundary layer may originate in the free troposphere and be transported into the boundary layer. Others argue that the aerosols are created in the marine boundary layer. There are no data linking aerosol concentration and cirrus cloud albedo, and models suggest cirrus properties may not be very sensitive to aerosol abundance. There is clear evidence of a radiatively significant change in the global lower stratospheric ozone abundance during the past few decades. These changes are caused by heterogeneous chemical reactions occurring on the surfaces of particles. The rates of these reactions depend upon the chemical composition of the particles. Although rapid advances in understanding heterogeneous chemistry have been made, much remains to be done.

  17. Aerosol Absorption Measurements in MILAGRO.

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    During the month of March 2006, a number of instruments were used to determine the absorption characteristics of aerosols found in the Mexico City Megacity and nearby Valley of Mexico. These measurements were taken as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City (MAX-Mex) that was carried out in collaboration with the Megacity Interactions: Local and Global Research Observations (MILAGRO) campaign. MILAGRO was a joint effort between the DOE, NSF, NASA, and Mexican agencies aimed at understanding the impacts of a megacity on the urban and regional scale. A super-site was operated at the Instituto Mexicano de Petroleo in Mexico City (designated T-0) and at the Universidad Technologica de Tecamac (designated T-1) that was located about 35 km to the north east of the T-0 site in the State of Mexico. A third site was located at a private rancho in the State of Hidalgo approximately another 35 km to the northeast (designated T-2). Aerosol absorption measurements were taken in real time using a number of instruments at the T-0 and T-1 sites. These included a seven wavelength aethalometer, a multi-angle absorption photometer (MAAP), and a photo-acoustic spectrometer. Aerosol absorption was also derived from spectral radiometers including a multi-filter rotating band spectral radiometer (MFRSR). The results clearly indicate that there is significant aerosol absorption by the aerosols in the Mexico City megacity region. The absorption can lead to single scattering albedo reduction leading to values below 0.5 under some circumstances. The absorption is also found to deviate from that expected for a "well-behaved" soot anticipated from diesel engine emissions, i.e. from a simple 1/lambda wavelength dependence for absorption. Indeed, enhanced absorption is seen in the region of 300-450 nm in many cases, particularly in the afternoon periods indicating that secondary organic aerosols are contributing to the aerosol absorption. This is likely due

  18. ModelE2-TOMAS development and evaluation using aerosol optical depths, mass and number concentrations

    NASA Astrophysics Data System (ADS)

    Lee, Y. H.; Adams, P. J.; Shindell, D. T.

    2014-09-01

    The TwO-Moment Aerosol Sectional microphysics model (TOMAS) has been integrated into the state-of-the-art general circulation model, GISS ModelE2. TOMAS has the flexibility to select a size resolution as well as the lower size cutoff. A computationally efficient version of TOMAS is used here, which has 15 size bins covering 3 nm to 10 μm aerosol dry diameter. For each bin, it simulates the total aerosol number concentration and mass concentrations of sulphate, pure elementary carbon (hydrophobic), mixed elemental carbon (hydrophilic), hydrophobic organic matter, hydrophilic organic matter, sea salt, mineral dust, ammonium, and aerosol-associated water. This paper provides a detailed description of the ModelE2-TOMAS model and evaluates the model against various observations including aerosol precursor gas concentrations, aerosol mass and number concentrations, and aerosol optical depths. Additionally, global budgets in ModelE2-TOMAS are compared with those of other global aerosol models, and the TOMAS model is compared to the default aerosol model in ModelE2, which is a bulk aerosol model. Overall, the ModelE2-TOMAS predictions are within the range of other global aerosol model predictions, and the model has a reasonable agreement with observations of sulphur species and other aerosol components as well as aerosol optical depth. However, ModelE2-TOMAS (as well as the bulk aerosol model) cannot capture the observed vertical distribution of sulphur dioxide over the Pacific Ocean possibly due to overly strong convective transport. The TOMAS model successfully captures observed aerosol number concentrations and cloud condensation nuclei concentrations. Anthropogenic aerosol burdens in the bulk aerosol model running in the same host model as TOMAS (ModelE2) differ by a few percent to a factor of 2 regionally, mainly due to differences in aerosol processes including deposition, cloud processing, and emission parameterizations. Larger differences are found for naturally

  19. Climate Engineering with Stratospheric Aerosols and Associated Engineering Parameters

    SciTech Connect

    Kravitz, Benjamin S.

    2013-02-12

    Climate engineering with stratospheric aerosols, an idea inspired by large volcaniceruptions, could cool the Earth’s surface and thus alleviate some of the predicted dangerous impacts of anthropogenic climate change. However, the effectiveness of climate engineering to achieve a particular climate goal, and any associated side effects, depend on certain aerosol parameters and how the aerosols are deployed in the stratosphere. Through the examples of sulfate and black carbon aerosols, this paper examines "engineering" parameters-aerosol composition, aerosol size, and spatial and temporal variations in deployment-for stratospheric climate engineering. The effects of climate engineering are sensitive to these parameters, suggesting that a particle could be found ordesigned to achieve specific desired climate outcomes. This prospect opens the possibility for discussion of societal goals for climate engineering.

  20. Interfacing the NRL 1-D High Vertical Resolution Aerosol Model with COAMPS

    DTIC Science & Technology

    2016-06-13

    TERM GOALS Identify, understand and quantify all the physical processes that govern the aerosols in the marine environment and develop a...size and composition distributions are required. Many of the aerosol source, sink and transformation processes are highly dependent on meteorological...parameters such as wind speed, humidity profile, clouds, precipitation scavenging, etc. The NRL 1-D aerosol- processes model includes all these

  1. Characterization of ambient aerosols at the San Francisco International Airport using BioAerosol Mass Spectrometry

    SciTech Connect

    Steele, P T; McJimpsey, E L; Coffee, K R; Fergenson, D P; Riot, V J; Tobias, H J; Woods, B W; Gard, E E; Frank, M

    2006-03-16

    The BioAerosol Mass Spectrometry (BAMS) system is a rapidly fieldable, fully autonomous instrument that can perform correlated measurements of multiple orthogonal properties of individual aerosol particles. The BAMS front end uses optical techniques to nondestructively measure a particle's aerodynamic diameter and fluorescence properties. Fluorescence can be excited at 266nm or 355nm and is detected in two broad wavelength bands. Individual particles with appropriate size and fluorescence properties can then be analyzed more thoroughly in a dual-polarity time-of-flight mass spectrometer. Over the course of two deployments to the San Francisco International Airport, more than 6.5 million individual aerosol particles were fully analyzed by the system. Analysis of the resulting data has provided a number of important insights relevant to rapid bioaerosol detection, which are described here.

  2. Aerosol, radiation, and climate

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.

    1983-01-01

    Airborne, spaceborne, and ground-based measurements are used to study the radiative and climatic effects of aerosols. The data, which are modelled with a hierarchy of radiation and climate models, and their implications are summarized. Consideration is given to volcanic aerosols, polar stratospheric clouds, and the Arctic haze. It is shown that several types of aerosols (volcanic particles and the Arctic haze) cause significant alterations to the radiation budget of the regions where they are located.

  3. Initial Verification of GEOS-4 Aerosols Using CALIPSO and MODIS: Scene Classification

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Colarco, Peter R.; Hlavka, Dennis; Levy, Robert C.; Vaughan, Mark A.; daSilva, Arlindo

    2007-01-01

    A-train sensors such as MODIS and MISR provide column aerosol properties, and in the process a means of estimating aerosol type (e.g. smoke vs. dust). Correct classification of aerosol type is important because retrievals are often dependent upon selection of the right aerosol model. In addition, aerosol scene classification helps place the retrieved products in context for comparisons and analysis with aerosol transport models. The recent addition of CALIPSO to the A-train now provides a means of classifying aerosol distribution with altitude. CALIPSO level 1 products include profiles of attenuated backscatter at 532 and 1064 nm, and depolarization at 532 nm. Backscatter intensity, wavelength ratio, and depolarization provide information on the vertical profile of aerosol concentration, size, and shape. Thus similar estimates of aerosol type using MODIS or MISR are possible with CALIPSO, and the combination of data from all sensors provides a means of 3D aerosol scene classification. The NASA Goddard Earth Observing System general circulation model and data assimilation system (GEOS-4) provides global 3D aerosol mass for sulfate, sea salt, dust, and black and organic carbon. A GEOS-4 aerosol scene classification algorithm has been developed to provide estimates of aerosol mixtures along the flight track for NASA's Geoscience Laser Altimeter System (GLAS) satellite lidar. GLAS launched in 2003 and did not have the benefit of depolarization measurements or other sensors from the A-train. Aerosol typing from GLAS data alone was not possible, and the GEOS-4 aerosol classifier has been used to identify aerosol type and improve the retrieval of GLAS products. Here we compare 3D aerosol scene classification using CALIPSO and MODIS with the GEOS-4 aerosol classifier. Dust, smoke, and pollution examples will be discussed in the context of providing an initial verification of the 3D GEOS-4 aerosol products. Prior model verification has only been attempted with surface mass

  4. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1997-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size resolved aerosol microphysics and chemistry. Both profiles included pollution haze layer from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core.

  5. Comparison of Aerosol Classification from Airborne High Spectral Resolution Lidar and the CALIPSO Vertical Feature Mask

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Ferrare, R. A.; Omar, A. H.; Hostetler, C. A.; Hair, J. W.; Rogers, R.; Obland, M. D.; Butler, C. F.; Cook, A. L.; Harper, D. B.

    2012-12-01

    The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL-1) on the NASA B200 aircraft has acquired large datasets of aerosol extinction (532nm), backscatter (532 and 1064nm), and depolarization (532 and 1064nm) profiles during 349 science flights in 19 field missions across North America since 2006. The extinction-to-backscatter ratio ("lidar ratio"), aerosol depolarization ratios, and backscatter color ratio measurements from HSRL-1 are scale-invariant parameters that depend on aerosol type but not concentration. These four aerosol intensive parameters are combined to qualitatively classify HSRL aerosol measurements into eight separate composition types. The classification methodology uses models formed from "training cases" with known aerosol type. The remaining measurements are then compared with these models using the Mahalanobis distance. Aerosol products from the CALIPSO satellite include aerosol type information as well, which is used as input to the CALIPSO aerosol retrieval. CALIPSO aerosol types are inferred using a mix of aerosol loading-dependent parameters, estimated aerosol depolarization, and location, altitude, and surface type information. The HSRL instrument flies beneath the CALIPSO satellite orbit track, presenting the opportunity for comparisons between the HSRL aerosol typing and the CALIPSO Vertical Feature Mask Aerosol Subtype product, giving insight into the performance of the CALIPSO aerosol type algorithm. We find that the aerosol classification from the two instruments frequently agree for marine aerosols and pure dust, and somewhat less frequently for pollution and smoke. In addition, the comparison suggests that the CALIPSO polluted dust type is overly inclusive, encompassing cases of dust combined with marine aerosol as well as cases without much evidence of dust. Qualitative classification of aerosol type combined with quantitative profile measurements of aerosol backscatter and extinction has many useful

  6. Aerosols near by a coal fired thermal power plant: chemical composition and toxic evaluation.

    PubMed

    Jayasekher, T

    2009-06-01

    Industrial processes discharge fine particulates containing organic as well as inorganic compounds into the atmosphere which are known to induce damage to cell and DNA, both in vitro and in vivo. Source and area specific studies with respect to the chemical composition, size and shape of the particles, and toxicity evaluations are very much limited. This study aims to investigate the trace elements associated with the aerosol particles distributed near to a coal burning thermal power plant and to evaluate their toxicity through Comet assay. PM(10) (particles determined by mass passing an inlet with a 50% cut-off efficiency having a 10-microm aerodynamic diameter) samples were collected using respirable dust samplers. Twelve elements (Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb, Se, Hg, and As) were analyzed using ICP-AES. Comet assay was done with the extracts of aerosols in phosphate buffered saline (PBS). Results show that Fe and Zn were found to be the predominant elements along with traces of other analyzed elements. Spherical shaped ultrafine particles of <1 microm aerodynamic diameter were detected through scanning electron microscope. PM(10) particles near to the coal burning power plant produced comets indicating their potential to induce DNA damage. DNA damage property is found to be depending upon the chemical characteristics of the components associated with the particles besides the physical properties such as size and shape.

  7. WRF-Chem simulations of aerosols and anthropogenic aerosol radiative forcing in East Asia

    NASA Astrophysics Data System (ADS)

    Gao, Yi; Zhao, Chun; Liu, Xiaohong; Zhang, Meigen; Leung, L. Ruby

    2014-08-01

    This study aims to provide a first comprehensive evaluation of WRF-Chem for modeling aerosols and anthropogenic aerosol radiative forcing (RF, including direct, semi-direct and indirect forcing) over East Asia. Several numerical experiments were conducted from November 2007 to December 2008. Comparison between model results and observations shows that the model can generally reproduce the observed spatial distributions of aerosol concentration, aerosol optical depth (AOD) and single scattering albedo (SSA) from measurements at many sites, including the relatively higher aerosol concentration and AOD over East China and the relatively lower AOD over Southeast Asia, Korea, and Japan. The model also depicts the seasonal variation and transport of pollutions over East Asia. Particulate matter of 10 μm or less in the aerodynamic diameter (PM10), black carbon (BC), sulfate (SO42-), nitrate (NO3-) and ammonium (NH4+) concentrations are higher in spring than other seasons in Japan, which indicates the possible influence of pollutant transport from polluted area of East Asia. The model underestimates SO42- and organic carbon (OC) concentrations over mainland China by about a factor of 2, while overestimates NO3- concentration in autumn along the Yangtze River. The model captures the dust events at the Zhangye site in the semi-arid region of China. AOD is high over Southwest and Central China in winter and spring and over North China in winter, spring and summer while is low over South China in summer due to monsoon precipitation. SSA is lowest in winter and highest in summer. Anthropogenic aerosol RF is estimated to range from -5 to -20 W m-2 over land and -20 to -40 W m-2 over adjacent oceans at the top of atmosphere (TOA), 5-30 W m-2 in the atmosphere (ATM) and -15 to -40 W m-2 at the bottom (BOT). The warming effect of anthropogenic aerosol in ATM results from BC aerosol while the negative aerosol RF at TOA is caused by scattering aerosols such as SO42-, NO3- and NH4

  8. Aerosol Classification from High Spectral Resolution Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Hair, J. W.; Ferrare, R. A.; Hostetler, C. A.; Kahnert, M.; Vaughan, M. A.; Cook, A. L.; Harper, D. B.; Berkoff, T.; Seaman, S. T.; Collins, J. E., Jr.; Fenn, M. A.; Rogers, R. R.

    2015-12-01

    The NASA Langley airborne High Spectral Resolution Lidars, HSRL-1 and HSRL-2, have acquired large datasets of vertically resolved aerosol extinction, backscatter, and depolarization during >30 airborne field missions since 2006. The lidar measurements of aerosol intensive parameters like lidar ratio and color ratio embed information about intrinsic aerosol properties, and are combined to qualitatively classify HSRL aerosol measurements into aerosol types. Knowledge of aerosol type is important for assessing aerosol radiative forcing, and can provide useful information for source attribution studies. However, atmospheric aerosol is frequently not a single pure type, but instead is a mixture, which affects the optical and radiative properties of the aerosol. We show that aerosol intensive parameters measured by lidar can be understood using mixing rules for cases of external mixing. Beyond coarse classification and mixing between classes, variations in the lidar aerosol intensive parameters provide additional insight into aerosol processes and composition. This is illustrated by depolarization measurements at three wavelengths, 355 nm, 532 nm, and 1064 nm, made by HSRL-2. Particle depolarization ratio is an indicator of non-spherical particles. Three cases each have a significantly different spectral dependence of the depolarization ratio, related to the size of the depolarizing particles. For two dust cases, large non-spherical particles account for the depolarization of the lidar light. The spectral dependence reflects the size distribution of these particles and reveals differences in the transport histories of the two plumes. For a smoke case, the depolarization is inferred to be due to the presence of small coated soot aggregates. Interestingly, the depolarization at 355 nm is similar for this smoke case compared to the dust cases, having potential implications for the upcoming EarthCARE satellite, which will measure particle depolarization ratio only at 355 nm.

  9. Cloud Scavenging Effects on Aerosol Radiative and Cloud-nucleating Properties - Final Technical Report

    SciTech Connect

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2009-03-05

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  10. Cloud-Driven Changes in Aerosol Optical Properties - Final Technical Report

    SciTech Connect

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2007-09-30

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  11. Hygroscopic Behavior of Ambient Aerosols at an Anthropogenically Perturbed Continental U.S.A. Site, Bondville, Illinois.

    NASA Astrophysics Data System (ADS)

    Kus, P.; Rood, M. J.; Ogren, J.; Quinn, P.; Covert, D. S.

    2002-12-01

    The dependence of ambient aerosols' light scattering coefficient on controlled relative humidity (RH) conditions was measured for ambient aerosol at the Bondville Aerosol Research Site (BEARS), located in east-central Illinois, USA. The measurements were made with a controlled RH nephelometry system between 1995 and 2000. The fact that an aerosol's hygroscopic growth is one of the most important parameters in estimating an aerosol's ability to cause radiative forcing makes it important to characterize that property at relevant locations on a regional scale. Total and hemispheric back scattering coefficients were measured by two nephelometers operating in series as a function of wavelength of light (450, 550, and 700 nm), controlled RH, and upper particle diameter (Dp) of 1 and 10 μm. In addition, gravimetric and inorganic ion composition of the sub-micrometer diameter particles were determined using filter samples. Particle size distributions were measured by a combined system of Differential Mobility Analyzer (DMA) and Aerodynamic Particle Sizer (APS) during a 20-day intensive field campaign. Hygroscopic growth factor (f(RH=82%)) is expressed as the ratio of the scattering coefficient at 82% RH to the scattering at a reference RH (RH<40%). The measured f(RH) values exhibited both deliquescent and monotonic types of growth and were fitted to two different nonlinear equations depending on the type of observed growth. The value of f(RH=82%) at 550 nm was 1.84 +/- 0.43 for sub-micrometer and almost the same with 1.83 +/- 0.42 for super-micrometer aerosols. Higher f(RH) values were associated with the periods where the scattering was dominated by sub-micrometer diameter particles. Deliquescent type of growth was observed 20% of the time. The f(RH) values were higher for aerosol exhibiting deliquescent growth by 8%, which is statistically significant. Available air mass trajectories revealed that the highest f(RH) values were observed when the air mass reaching the

  12. Unique DNA-barcoded aerosol test particles for studying aerosol transport

    SciTech Connect

    Harding, Ruth N.; Hara, Christine A.; Hall, Sara B.; Vitalis, Elizabeth A.; Thomas, Cynthia B.; Jones, A. Daniel; Day, James A.; Tur-Rojas, Vincent R.; Jorgensen, Trond; Herchert, Edwin; Yoder, Richard; Wheeler, Elizabeth K.; Farquar, George R.

    2016-03-22

    Data are presented for the first use of novel DNA-barcoded aerosol test particles that have been developed to track the fate of airborne contaminants in populated environments. Until DNATrax (DNA Tagged Reagents for Aerosol eXperiments) particles were developed, there was no way to rapidly validate air transport models with realistic particles in the respirable range of 1–10 μm in diameter. The DNATrax particles, developed at Lawrence Livermore National Laboratory (LLNL) and tested with the assistance of the Pentagon Force Protection Agency, are the first safe and effective materials for aerosol transport studies that are identified by DNA molecules. The use of unique synthetic DNA barcodes overcomes the challenges of discerning the test material from pre-existing environmental or background contaminants (either naturally occurring or previously released). The DNATrax particle properties are demonstrated to have appropriate size range (approximately 1–4.5 μm in diameter) to accurately simulate bacterial spore transport. As a result, we describe details of the first field test of the DNATrax aerosol test particles in a large indoor facility.

  13. Unique DNA-barcoded aerosol test particles for studying aerosol transport

    DOE PAGES

    Harding, Ruth N.; Hara, Christine A.; Hall, Sara B.; ...

    2016-03-22

    Data are presented for the first use of novel DNA-barcoded aerosol test particles that have been developed to track the fate of airborne contaminants in populated environments. Until DNATrax (DNA Tagged Reagents for Aerosol eXperiments) particles were developed, there was no way to rapidly validate air transport models with realistic particles in the respirable range of 1–10 μm in diameter. The DNATrax particles, developed at Lawrence Livermore National Laboratory (LLNL) and tested with the assistance of the Pentagon Force Protection Agency, are the first safe and effective materials for aerosol transport studies that are identified by DNA molecules. The usemore » of unique synthetic DNA barcodes overcomes the challenges of discerning the test material from pre-existing environmental or background contaminants (either naturally occurring or previously released). The DNATrax particle properties are demonstrated to have appropriate size range (approximately 1–4.5 μm in diameter) to accurately simulate bacterial spore transport. As a result, we describe details of the first field test of the DNATrax aerosol test particles in a large indoor facility.« less

  14. Evaluation of the sectional aerosol microphysics module SALSA implementation in ECHAM5-HAM aerosol-climate model

    NASA Astrophysics Data System (ADS)

    Bergman, T.; Kerminen, V.-M.; Korhonen, H.; Lehtinen, K. J.; Makkonen, R.; Arola, A.; Mielonen, T.; Romakkaniemi, S.; Kulmala, M.; Kokkola, H.

    2011-12-01

    We present the implementation and evaluation of a sectional aerosol microphysics model SALSA within the aerosol-climate model ECHAM5-HAM. This aerosol microphysics module has been designed to be flexible and computationally efficient so that it can be implemented in regional or global scale models. The computational efficiency has been achieved by keeping the number of variables needed to describe the size and composition distribution to the minimum. The aerosol size distribution is described using 20 size sections with 10 size sections in size space which cover diameters ranging from 3 nm to 10 μm divided to three subranges each having distinct optimised process and compound selection. The ability of the module to describe the global aerosol properties was evaluated by comparison against (1) measured continental and marine size distributions, (2) observed variability of continental modal number concentrations, (3) measured sulphate, organic carbon, black carbon and sea salt mass concentrations, (4) observations of AOD and other aerosol optical properties from satellites and AERONET network, (5) global aerosol budgets and concentrations from previous model studies, and (6) model results using M7 which is the default aerosol microphysics module in ECHAM5-HAM. The evaluation shows that the global aerosol properties can be reproduced reasonably well using the coarse resolution of 10 size sections in size space. The simulated global aerosol budgets are within the range of previous studies. Surface concentrations of sea salt, sulphate and carbonaceous species have an annual mean within a factor of five of the observations, while the simulated sea salt concentrations reproduce the observations less accurately and show high variability. Regionally, AOD is in relatively good agreement with the observations (within a factor of two). At mid-latitudes the observed AOD is captured well, while at high-latitudes as well as in some polluted and dust regions the modeled AOD is

  15. Sensitivity of aerosol retrieval over snow surfaces

    NASA Astrophysics Data System (ADS)

    Seidel, F. C.; Painter, T. H.

    2011-12-01

    Significant amounts of black carbon and dust aerosols are transported to and accumulated in snowpacks of mountain ranges around the globe. The direct climate forcing of these particles is increasingly understood, whereas its indirect radiative forcing due to snow albedo and snow cover changes is still under investigation. In-situ and new remote sensing techniques are used to estimate snowpack properties from local to regional scales. Nevertheless, orbital and suborbital Earth observation data are difficult to analyze due to high spatial variability of the snowpack in rugged terrain. In addition, changes in atmospheric turbidity significantly complicate the estimation of snow cover characteristics and requires prior retrieval of optical and microphysical aerosol properties. Unfortunately, most aerosol retrieval techniques work only over dark surfaces. We therefore present a study on the sensitivity of aerosol optical depth (AOD) retrieval over snow surfaces. Radiative transfer calculations show that the sensitivity to surface spectral albedo depends strongly on the aerosol single scattering albedo (ratio of scattering efficiency to total extinction efficiency). Absorbing aerosol types (e.g. soot) provide a relatively good AOD retrieval sensitivity for very bright surfaces. The findings provide a basis for the development of future techniques and algorithms, which are able to concurrently retrieve snow and aerosol properties using remote sensing data. We explore these sensitivities with synthetic data and a time series of imaging spectrometer data, in situ spectral irradiance measurements, and sunphotometer measurements of AOD in the mountains of the Upper Colorado River Basin, USA. Ultimately, this research is important to map and better understand regional influences of aerosol and climate forcings on the cryosphere and water cycle in mountainous and other cold regions.

  16. Impact Structures: What Does Crater Diameter Mean?

    NASA Astrophysics Data System (ADS)

    Turtle, E. P.; Pierazzo, E.; Collins, G. S.; Osinski, G. R.; Melosh, H. J.; Morgan, J. V.; Reimold, W. U.; Spray, J. G.

    2004-03-01

    Crater diameter is an important parameter in energy scaling and impact simulations. However, disparate types of data make the use of consistent metrics difficult. We suggest a consistent terminology and discuss it in the context of several examples.

  17. Separating Hazardous Aerosols from Ambient Aerosols: Role of Fluorescence-Spectral Determination, Aerodynamic Deflector and Pulse Aerodynamic Localizer (PAL)

    SciTech Connect

    Pan, Yong-Le; Cobler, Patrick J.; Rhodes, Scott A.; Halverson, Justin; Chang, Richard K.

    2005-08-22

    An aerosol deflection technique based on the single-shot UV-laser-induced fluorescence spectrum from a flowing particle is presented as a possible front-end bio-aerosol/hazardous-aerosol sensor/identifier. Cued by the fluorescence spectra, individual flowing bio-aerosol particles (1-10 {micro}m in diameter) have been successfully deflected from a stream of ambient aerosols. The electronics needed to compare the fluorescence spectrum of a particular particle with that of a pre-determined fluorescence spectrum are presented in some detail. The deflected particles, with and without going through a funnel for pulse aerodynamic localization (PAL), were collected onto a substrate for further analyses. To demonstrate how hazardous materials can be deflected, TbCl{sub 3} {center_dot} 6H{sub 2}O (a simulant material for some chemical forms of Uranium Oxide) aerosol particles (2 {micro}m in diameter) mixed with Arizona road dust was separated and deflected with our system.

  18. Flow tracing fidelity of scattering aerosol in laser Doppler velocimetry

    NASA Technical Reports Server (NTRS)

    Mazumder, M. K.; Kirsch, K. J.

    1974-01-01

    An experimental method for determinating the flow tracing fidelity of a scattering aerosol used in laser Doppler velocimeters was developed with particular reference to the subsonic turbulence measurements. The method employs the measurement of the dynamic response of a flow seeding aerosol excited by acoustic waves. The amplitude and frequency of excitation were controlled to simulate the corresponding values of fluid turbulence components. Experimental results are presented on the dynamic response of aerosols over the size range from 0.1 to 2.0 microns in diameter and over the frequency range 100 Hz to 100 kHz. It was observed that unit density spherical scatterers with diameters of 0.2 microns followed subsonic air turbulence frequency components up to 100 kHz with 98 percent fidelity.

  19. Characterization of aerosols from eruptions of Mount St. Helens

    SciTech Connect

    Chuan, R.L.; Woods, D.C.; McCormick, M.P.

    1981-01-01

    Measurements of mass concentration and size distribution of aerosols from eruptions of Mount St. Helens as well as morphological and elemental analyses were obtained between 7 April and 7 August 1980. In situ measurements were made in early phreatic and later, minor phreatomagmatic eruption clouds near the vent of the volcano and in plumes injected into the stratosphere from the major eruptions of 18 and 25 May. The phreatic aerosol was characterized by an essentially monomodal size distribution dominated by silicate particles larger than 10 micrometers in diameter. The phreatomagmatic eruption cloud was multimodal; the large size mode consisted of silicate particles and the small size modes were made up of mixtures of sulfuric acid and silicate particles. The stratospheric aerosol from the main eruption exhibited a characteristic narrow single mode with particles less than 1 micrometer in diameter and nearly all of the mass made up of sulfuric acid droplets.

  20. Characterization of aerosols from eruptions of mount st. Helens.

    PubMed

    Chuan, R L; Woods, D C; McCormick, M P

    1981-02-20

    Measurements of mass concentration and size distribution of aerosols from eruptions of Mount St. Helens as well as morphological and elemental analyses were obtained between 7 April and 7 August 1980. In situ measurements were made in early phreatic and later, minor phreatomagmatic eruption clouds near the vent of the volcano and in plumes injected into the stratosphere from the major eruptions of 18 and 25 May. The phreatic aerosol was characterized by an essentially monomodal size distribution dominated by silicate particles larger than 10 micrometers in diameter. The phreatomagmatic eruption cloud was multimodal; the large size mode consisted of silicate particles and the small size modes were made up of mixtures of sulfuric acid and silicate particles. The stratospheric aerosol from the main eruption exhibited a characteristic narrow single mode with particles less than 1 micrometer in diameter and nearly all of the mass made up of sulfuric acid droplets.

  1. Precision wire feeder for small diameter wire

    DOEpatents

    Brandon, E.D.; Hooper, F.M.; Reichenbach, M.L.

    1992-08-11

    A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut. 1 figure.

  2. Precision wire feeder for small diameter wire

    DOEpatents

    Brandon, Eldon D.; Hooper, Frederick M.; Reichenbach, Marvin L.

    1992-01-01

    A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut.

  3. Controlling the Fiber Diameter during Electrospinning

    NASA Astrophysics Data System (ADS)

    Fridrikh, Sergey V.; Yu, Jian H.; Brenner, Michael P.; Rutledge, Gregory C.

    2003-04-01

    We present a simple analytical model for the forces that determine jet diameter during electrospinning as a function of surface tension, flow rate, and electric current in the jet. The model predicts the existence of a terminal jet diameter, beyond which further thinning of the jet due to growth of the whipping instability does not occur. Experimental data for various electrospun fibers attest to the accuracy of the model.

  4. Making Jointless Dual-Diameter Tubes

    NASA Technical Reports Server (NTRS)

    Kirkham, Kathleen E.

    1989-01-01

    Welds between sections having different diameters eliminated. Single tube made with integral tapered transition section between straight sections of different diameters and wall thicknesses. Made from single piece; contains no joints, welded or otherwise. Not prone to such weld defects as voids and need not be inspected for them. Tube fabricated by either of two methods: drawing or reduction. Both methods used to fabricate tubes of 316L corrosion-resistant stainless steel for use as heat-exchanger coil.

  5. Large diameter carbon-boron fiber

    NASA Technical Reports Server (NTRS)

    Veltri, R. D.; Jacob, B. A.; Galasso, F. S.

    1975-01-01

    Investigations concerned with a development of large-diameter carbon fibers are considered, taking into account the employment of vapor deposition techniques. In the experiments a carbon monofilament substrate is used together with reacting gases which consist of combinations of hydrogen, methane, and boron trichloride. It is found that the described approach can be used to obtain a large-diameter carbon filament containing boron. The filament has reasonable strength and modulus properties.

  6. Development of Portable Aerosol Mobility Spectrometer for Personal and Mobile Aerosol Measurement

    PubMed Central

    Kulkarni, Pramod; Qi, Chaolong; Fukushima, Nobuhiko

    2017-01-01

    We describe development of a Portable Aerosol Mobility Spectrometer (PAMS) for size distribution measurement of submicrometer aerosol. The spectrometer is designed for use in personal or mobile aerosol characterization studies and measures approximately 22.5 × 22.5 × 15 cm and weighs about 4.5 kg including the battery. PAMS uses electrical mobility technique to measure number-weighted particle size distribution of aerosol in the 10–855 nm range. Aerosol particles are electrically charged using a dual-corona bipolar corona charger, followed by classification in a cylindrical miniature differential mobility analyzer. A condensation particle counter is used to detect and count particles. The mobility classifier was operated at an aerosol flow rate of 0.05 L/min, and at two different user-selectable sheath flows of 0.2 L/min (for wider size range 15–855 nm) and 0.4 L/min (for higher size resolution over the size range of 10.6–436 nm). The instrument was operated in voltage stepping mode to retrieve the size distribution, which took approximately 1–2 minutes, depending on the configuration. Sizing accuracy and resolution were probed and found to be within the 25% limit of NIOSH criterion for direct-reading instruments (NIOSH 2012). Comparison of size distribution measurements from PAMS and other commercial mobility spectrometers showed good agreement. The instrument offers unique measurement capability for on-person or mobile size distribution measurements of ultrafine and nanoparticle aerosol.

  7. Estimating aerosol light-scattering enhancement from dry aerosol optical properties at different sites

    NASA Astrophysics Data System (ADS)

    Titos, Gloria; Jefferson, Anne; Sheridan, Patrick; Andrews, Elisabeth; Lyamani, Hassan; Ogren, John; Alados-Arboledas, Lucas

    2014-05-01

    Microphysical and optical properties of aerosol particles are strongly dependent on the relative humidity (RH). Knowledge of the effect of RH on aerosol optical properties is of great importance for climate forcing calculations and for comparison of in-situ measurements with satellite and remote sensing retrievals. The scattering enhancement factor, f(RH), is defined as the ratio of the scattering coefficient at a high and reference RH. Predictive capability of f(RH) for use in climate models would be enhanced if other aerosol parameters could be used as proxies to estimate hygroscopic growth. Toward this goal, we explore the relationship between aerosol light-scattering enhancement and dry aerosol optical properties such as the single scattering albedo (SSA) and the scattering Ångström exponent (SAE) at multiple sites around the world. The measurements used in this study were conducted by the US Department of Energy at sites where different aerosol types predominate (pristine marine, polluted marine, dust dominated, agricultural and forest environments, among others). In all cases, the scattering enhancement decreases as the SSA decreases, that is, as the contribution of absorbing particles increases. On the other hand, for marine influenced environments the scattering enhancement clearly increases as the contribution of coarse particles increases (SAE decreases), evidence of the influence of hygroscopic coarse sea salt particles. For other aerosol types the relationship between f(RH) and SAE is not so straightforward. Combining all datasets, f(RH) was found to exponentially increase with SSA with a high correlation coefficient.

  8. Aerosol optical properties in the ABL over arctic sea ice from airborne aerosol lidar measurements

    NASA Astrophysics Data System (ADS)

    Schmidt, Lukas; Neuber, Roland; Ritter, Christoph; Maturilli, Marion; Dethloff, Klaus; Herber, Andreas

    2014-05-01

    Between 2009 and 2013 aerosols, sea ice properties and meteorological variables were measured during several airborne campaigns covering a wide range of the western Arctic Ocean. The campaigns were carried out with the aircraft Polar 5 of the German Alfred-Wegener-Institute (AWI) during spring and summer periods. Optical properties of accumulation mode aerosol and clouds were measured with the nadir looking AMALi aerosol lidar covering the atmospheric boundary layer and the free troposphere up to 3000m, while dropsondes provided coincident vertical profiles of meteorological quantities. Based on these data we discuss the vertical distribution of aerosol backscatter in and above the atmospheric boundary layer and its dependence on relative humidity, dynamics and underlying sea ice properties. We analyze vertical profiles of lidar and coincident dropsonde measurements from various locations in the European and Canadian Arctic from spring and summer campaigns. Sea ice cover is derived from modis satellite and aircraft onboard camera images. The aerosol load in the arctic atmospheric boundary layer shows a high variability. Various meteorological parameters and in particular boundary layer properties are discussed with their respective influence on aerosol features. To investigate the effect of the frequency and size of open water patches on aerosol properties, we relate the profiles to the sea ice properties influencing the atmosphere in the upwind region.

  9. THE MASS ACCOMMODATION COEFFICIENT OF AMMONIUM NITRATE AEROSOL. (R823514)

    EPA Science Inventory

    The mass transfer rate of pure ammonium nitrate between the aerosol and gas phases was
    quantified experimentally by the use of the tandem differential mobility analyzer/scanning mobility
    particle sizer (TDMA/SMPS) technique. Ammonium nitrate particles 80-220 nm in diameter<...

  10. A diagnostic stratospheric aerosol size distribution inferred from SAGE II measurements

    NASA Technical Reports Server (NTRS)

    Thomason, Larry W.

    1991-01-01

    An aerosol size distribution model for the stratosphere is inferred based on 5 years of Stratospheric Aerosol and Gas Experiment (SAGE) II measurements of multispectral aerosol and water vapor extinction. The SAGE II aerosol and water vapor extinction data strongly suggest that there is a critical particle radius below which there is a relatively weak dependence of particle number density with size and above which there are few, if any, particles. A segmented power law model, as a simple representation of this dependence, is used in theoretical calculations and intercomparisons with a variety of aerosol measurements including dustsondes, longwave lidar, and wire impactors and shows a consistently good agreement.

  11. Ultra-efficient Engine Diameter Study

    NASA Technical Reports Server (NTRS)

    Daggett, David L.; Brown, Stephen T.; Kawai, Ron T.

    2003-01-01

    Engine fan diameter and Bypass Ratio (BPR) optimization studies have been conducted since the beginning of the turbofan age with the recognition that reducing the engine core jet velocity and increasing fan mass flow rate generally increases propulsive efficiency. However, performance tradeoffs limit the amount of fan flow achievable without reducing airplane efficiency. This study identifies the optimum engine fan diameter and BPR, given the advanced Ultra-Efficient Engine Technology (UEET) powerplant efficiencies, for use on an advanced subsonic airframe. Engine diameter studies have historically focused on specific engine size options, and were limited by existing technology and transportation infrastructure (e.g., ability to fit bare engines through aircraft doors and into cargo holds). This study is unique in defining the optimum fan diameter and drivers for future 2015 (UEET) powerplants while not limiting engine fan diameter by external constraints. This report follows on to a study identifying the system integration issues of UEET engines. This Engine Diameter study was managed by Boeing Phantom Works, Seattle, Washington through the NASA Glenn Revolutionary Aero Space Engine Research (RASER) contract under task order 10. Boeing Phantom Works, Huntington Beach, completed the engine/airplane sizing optimization, while the Boeing Commercial Airplane group (BCA) provided design oversight. A separate subcontract to support the overall project was issued to Tuskegee University.

  12. Instrument comparison for Aerosolized Titanium Dioxide

    NASA Astrophysics Data System (ADS)

    Ranpara, Anand

    Recent toxicological studies have shown that the surface area of ultrafine particles (UFP i.e., particles with diameters less than 0.1 micrometer) has a stronger correlation with adverse health effects than does mass of these particles. Ultrafine titanium dioxide (TiO2) particles are widely used in industry, and their use is associated with adverse health outcomes, such as micro vascular dysfunctions and pulmonary damages. The primary aim of this experimental study was to compare a variety of laboratory and industrial hygiene (IH) field study instruments all measuring the same aerosolized TiO2. The study also observed intra-instrument variability between measurements made by two apparently identical devices of the same type of instrument placed side-by-side. The types of instruments studied were (1) DustTrak(TM) DRX, (2) Personal Data RAMs(TM) (PDR), (3) GRIMM, (4) Diffusion charger (DC) and (5) Scanning Mobility Particle Sizer (SMPS). Two devices of each of the four IH field study instrument types were used to measure six levels of mass concentration of fine and ultrafine TiO2 aerosols in controlled chamber tests. Metrics evaluated included real-time mass, active surface area and number/geometric surface area distributions, and off-line gravimetric mass and morphology on filters. DustTrak(TM) DRXs and PDRs were used for mass concentration measurements. DCs were used for active surface area concentration measurements. GRIMMs were used for number concentration measurements. SMPS was used for inter-instrument comparisons of surface area and number concentrations. The results indicated that two apparently identical devices of each DRX and PDR were statistically not different with each other for all the trials of both the sizes of powder (p < 5%). Mean difference between mass concentrations measured by two DustTrak DRX devices was smaller than that measured by two PDR devices. DustTrak DRX measurements were closer to the reference method, gravimetric mass concentration

  13. Experimental studies of gas-aerosol reactions

    NASA Astrophysics Data System (ADS)

    Gupta, Anand

    1991-05-01

    The aqueous phase oxidation of SO2 by H2O2 is believed to the principle mechanism for atmospheric sulfate formation in cloud droplets. However, no studies in noncloud aerosol systems have been reported. The objective is to quantify the importance of the noncloud liquid phase reactions of SO2 by H2O2 in the atmosphere. Growth rates of submicron droplets exposed to SO2 and H2O2 were measured using the tandem differential mobility analyzer (TDMA) technique (Rader and McMurry, 1986). The technique uses differential mobility analyzers (DMA's) to generate monodisperse particles and to measure particle size after the reaction. To facilitate submicron monodisperse droplet production with the DMA, a low-ion-concentration charter capable of generating singly charged particles up to 1.0 microns was developed and experimentally evaluated. The experiments were performed using dry and deliquesced (NH4)2SO4 particles with SO2 and H2O2 concentrations from 0-860 ppb and 0-150 ppb, respectively. No growth was observed for dry particles. For droplets greater than or equal to 0.3 microns, the fractional diameter growth was independent of particle size and for droplets less than or equal to 0.2 microns, it decreased as particle size decreased. The observed decrease is due to NH3 evaporation. As ammonia evaporates, droplet pH decreases causing the oxidation rate to decrease, leading to a lower growth rate. To predict the size-dependent growth rates, a theoretical model was developed using solution thermodynamics, gas/particle equilibrium, and chemical kinetics. The experimental and theoretical results are in reasonable agreement. For dry (NH4)2SO4 particles exposed to SO2, H2O2, NH3, and H2O vapor, surface reaction-controlled growth was observed. Particle growth was very sensitive to particle composition. No growth was observed for Polystyrene latex particles, whereas (NH4)2SO4 particles doped with catalysts (Fe(2+), Fe(3+), Mn(2+) and Cu(2+)) in a molar ratio of 1:500 grew slower than

  14. Experimental Studies of Gas-Aerosol Reactions

    NASA Astrophysics Data System (ADS)

    Gupta, Anand

    1991-02-01

    The aqueous phase oxidation of SO_2 by H_2O_2 is believed to be the principle mechanism for atmospheric sulfate formation in cloud droplets. However, no studies in noncloud aerosol systems have been reported. The objective of this thesis is to quantify the importance of the noncloud liquid phase reactions of SO_2 by H_2O_2 in the atmosphere. In this thesis growth rates of submicron droplets exposed to SO_2 and H_2 O_2 were measured using the tandem differential mobility analyzer (TDMA) technique (Rader and McMurry, 1986). The technique uses differential mobility analyzers (DMAs) to generate monodisperse particles and to measure particle size after the reaction. To facilitate submicron monodisperse droplet production with the DMA, a low-ion-concentration charger capable of generating singly charged particles up to 1.0 μm was developed and experimentally evaluated. The experiments were performed using dry and deliquesced (NH_4)_2SO _4 particles with SO_2 and H_2O_2 concentrations from 0-860 ppb and 0-150 ppb, respectively. No growth was observed for dry particles. For droplets >=0.3 mum, the fractional diameter growth was independent of particle size and for droplets <=0.2 mum, it decreased as particle size decreased. The observed decrease is due to NH_3 evaporation. As ammonia evaporates, droplet pH decreases causing the oxidation rate to decrease, leading to a lower growth rate. To predict the size-dependent growth rates, a theoretical model was developed using solution thermodynamics, gas/particle equilibrium and chemical kinetics. The experimental and theoretical results are in reasonable agreement. For dry (NH_4) _2SO_4 particles exposed to SO_2, H_2O _2, NH_3 and H_2O vapor, surface reaction-controlled growth was observed. Particle growth was very sensitive to particle composition. No growth was observed for Polystyrene latex particles, whereas (NH_4) _2SO_4 particles doped with catalysts (Fe^{2+} , Fe^{3+}, Mn ^{2+}, Cu^{2+ }) in a molar ratio of 1:500 grew

  15. CADS:Cantera Aerosol Dynamics Simulator.

    SciTech Connect

    Moffat, Harry K.

    2007-07-01

    This manual describes a library for aerosol kinetics and transport, called CADS (Cantera Aerosol Dynamics Simulator), which employs a section-based approach for describing the particle size distributions. CADS is based upon Cantera, a set of C++ libraries and applications that handles gas phase species transport and reactions. The method uses a discontinuous Galerkin formulation to represent the particle distributions within each section and to solve for changes to the aerosol particle distributions due to condensation, coagulation, and nucleation processes. CADS conserves particles, elements, and total enthalpy up to numerical round-off error, in all of its formulations. Both 0-D time dependent and 1-D steady state applications (an opposing-flow flame application) have been developed with CADS, with the initial emphasis on developing fundamental mechanisms for soot formation within fires. This report also describes the 0-D application, TDcads, which models a time-dependent perfectly stirred reactor.

  16. Measurements of Hygroscopicity- and Size-Resolved Sea Spray Aerosol

    NASA Astrophysics Data System (ADS)

    Phillips, B.; Dawson, K. W.; Royalty, T. M.; Reed, R. E.; Petters, M.; Meskhidze, N.

    2015-12-01

    Atmospheric aerosols play a central role in many environmental processes by influencing the Earth's radiative balance, tropospheric chemistry, clouds, biogeochemical cycles, and visibility as well as adversely impacting human health. Based on their origin, atmospheric aerosols can be defined as anthropogenic or natural. Recent studies have shown that a large fraction of uncertainty in the radiative effects of anthropogenic aerosols is related to uncertainty in natural—background—aerosols. Marine aerosols are of particular interest due to the abundance of oceans covering the Earth's surface. Despite their importance, limited information is currently available for size- and composition-resolved marine aerosol emission fluxes. Our group has designed and built an instrument for measuring the size- and hygroscopicity-resolved sea spray aerosol fluxes. The instrument was first deployed during spring 2015 at the end of the 560 m pier of the US Army Corps of Engineers' Field Research Facility in Duck, NC. Measurements include 200 nm-sized diameter growth factor (hygroscopicity) distributions, sea spray particle flux measurements, and total sub-micron sized aerosol concentration. Ancillary ocean data includes salinity, pH, sea surface temperature, dissolved oxygen content, and relative fluorescence (proxy for [Chl-a]). Hygroscopicity distribution measurements show two broad peaks, one indicative of organics and sulfates and another suggestive of sea salt. The fraction of 200 nm-sized salt particles having hygroscopicity similar to that of sea-spray aerosol contributes up to ~24% of the distribution on days with high-speed onshore winds and up to ~3% on calm days with winds blowing from the continent. However, the total concentration of sea-spray-like particles originating from offshore versus onshore winds was relatively similar. Changes in the relative contribution of sea-salt to number concentration were caused by a concomitant changes in total aerosol concentration

  17. Contribution of Primary and Secondary Sources to Organic Aerosol and PM2.5 at SEARCH Network Sites

    EPA Science Inventory

    Chemical tracer methods for determining contributions to primary organic aerosol (POA) are fairly well established, whereas similar techniques for secondary organic aerosol (SOA), inherently complicated by time-dependent atmospheric processes, are only beginning to be studied. La...

  18. Puffing and inhalation behaviour in cigarette smoking: Implications for particle diameter and dose

    NASA Astrophysics Data System (ADS)

    Dickens, Colin; McGrath, Conor; Warren, Nigel; Biggs, Philip; McAughey, John

    2009-02-01

    Inhalation of tobacco smoke aerosol is a two-step process involving puffing followed by inhalation. Measured smoke deposition efficiencies in the lung (20-70%) are greater than expected for smoke particles of diameter 150 -- 250 nm CMD. Various mechanisms have been put forward to explain this enhanced deposition pattern, including coagulation, hygroscopic growth, condensation and evaporation, changes in composition, or changes in inhalation behaviour. This paper represents one of a series of studies seeking to better quantify smoke chemistry, inhalation behaviour and cumulative particle growth. The studies have been conducted to better understand smoke dosimetry and links to disease as part of a wider programme defining risk and potential harm reduction. In this study, it was noted that particle deposition increased with increasing inhalation depth, and that smoke inhalation volumes were generally greater than normal tidal breathing volumes. A weak association was observed between particle diameter and puff flow, but no strong association between particle diameter and retention efficiency.

  19. Mass-based hygroscopicity parameter interaction model and measurement of atmospheric aerosol water uptake

    NASA Astrophysics Data System (ADS)

    Mikhailov, E.; Merkulov, V.; Vlasenko, S.; Rose, D.; Pöschl, U.

    2011-11-01

    concentration dependence of κm can be described by a simple KIM model equation based on observable mass growth factors and six fit parameters summarizing the combined effects of the dilute intrinsic hygroscopicity and interaction parameters of all involved chemical components. One of the fit parameters represents κm,∞ and can be used to predict CCN activation diameters as a function of water vapor supersaturation. For sodium chloride reference particles as well as for pristine rainforest aerosols consisting mostly of secondary organic matter, we obtained good agreement between the predicted and measured critical diameters of CCN activation. The application of KIM and mass-based measurement techniques shall help to bridge gaps in the current understanding of water uptake by atmospheric aerosols: (1) the gap between hygroscopicity parameters determined by HTDMA (hygroscopicity tandem differential mobility analyzer) or FDHA measurements under sub-saturated conditions and by CCN measurements at water vapor supersaturation, and (2) the gap between the results of simplified single parameter models widely used in atmospheric or climate science and the results of complex multi-parameter ion- and molecule-interaction models frequently used in physical chemistry and thermodynamics (AIM, E-AIM, UNIFAC, AIOMFAC etc.).

  20. Global Aerosol Observations

    Atmospheric Science Data Center

    2013-04-19

    ... atmosphere, directly influencing global climate and human health. Ground-based networks that accurately measure column aerosol amount and ... being used to improve Air Quality Models and for regional health studies. To assess the human-health impact of chronic aerosol exposure, ...

  1. Portable Aerosol Contaminant Extractor

    DOEpatents

    Carlson, Duane C.; DeGange, John J.; Cable-Dunlap, Paula

    2005-11-15

    A compact, portable, aerosol contaminant extractor having ionization and collection sections through which ambient air may be drawn at a nominal rate so that aerosol particles ionized in the ionization section may be collected on charged plate in the collection section, the charged plate being readily removed for analyses of the particles collected thereon.

  2. Ganges valley aerosol experiment.

    SciTech Connect

    Kotamarthi, V.R.; Satheesh, S.K.

    2011-08-01

    In June 2011, the Ganges Valley Aerosol Experiment (GVAX) began in the Ganges Valley region of India. The objective of this field campaign is to obtain measurements of clouds, precipitation, and complex aerosols to study their impact on cloud formation and monsoon activity in the region.

  3. Measured and modelled cloud condensation nuclei (CCN) concentration in São Paulo, Brazil: the importance of aerosol size-resolved chemical composition on CCNhack concentration prediction

    NASA Astrophysics Data System (ADS)

    Almeida, G. P.; Brito, J.; Morales, C. A.; Andrade, M. F.; Artaxo, P.

    2014-07-01

    Measurements of cloud condensation nuclei (CCN), aerosol size distribution and non-refractory chemical composition were performed from 16 to 31 October 2012 in the São Paulo Metropolitan Area (SPMA), Brazil. CCN measurements were performed at 0.23, 0.45, 0.68, 0.90 and 1.13% water supersaturation and were subsequently compared with the Köhler theory, considering the chemical composition. Real-time chemical composition has been obtained by deploying, for the first time in the SPMA, an aerosol chemical ionization monitor (ACSM). CCN closure analyses were performed considering internal mixtures. Average aerosol composition during the studied period yielded (arithmetic mean~± standard deviation) 4.81 ± 3.05, 3.26 ± 2.10, 0.30 ± 0.27, 0.52 ± 0.32, 0.37 ± 0.21 and 0.04 ± 0.04 μg m-3 for organics, BC, NH4, SO4, NO3 and Cl, respectively. Particle number concentration was 12 813 ± 5350 cm-3, with a dominant nucleation mode. CCN concentrations were on average 1090 ± 328 and 3570 ± 1695 cm-3 at SS = 0.23% and SS = 1.13%, respectively. Results show an increase in aerosol hygroscopicity in the afternoon as a result of aerosol photochemical processing, leading to an enhancement of both organic and inorganic secondary aerosols in the atmosphere, as well as an increase in aerosol average diameter. Considering the bulk composition alone, observed CCN concentrations were substantially overpredicted when compared with the Köhler theory (44.1 ± 47.9% at 0.23% supersaturation and 91.4 ± 40.3% at 1.13% supersaturation). Overall, the impact of composition on the calculated CCN concentration (NCCN) decreases with decreasing supersaturation, partially because using bulk composition introduces less bias for large diameters and lower critical supersaturations, defined as the supersaturation at which the cloud droplet activation will take place. Results suggest that the consideration of only inorganic fraction improves the calculated NCCN. Introducing a size-dependent chemical

  4. Comparison of cloud residual and background aerosol particle composition during the hill cap cloud experiment HCCT 2010 in Central Germany

    NASA Astrophysics Data System (ADS)

    Roth, A.; Mertes, S.; van Pinxteren, D.; Klimach, T.; Herrmann, H.; Schneider, J.; Borrmann, S.

    2013-12-01

    Physical and chemical characterization of cloud residual and background aerosol particles as well as aerosol-cloud interactions were investigated during the Hill Cap Cloud Thuringia (HCCT) experiment in September and October 2010 on the mountain site Schmücke (938m a.s.l.) in Germany. Background aerosol particles were sampled by an interstitial inlet whereas cloud droplets from orographic clouds were collected by a counter flow virtual impactor (CVI). Chemical composition analysis and sizing of the particles was done by single particle mass spectrometry using the bipolar Aircraft-based Laser Ablation Aerosol Mass Spectrometer (ALABAMA, particle diameter range 150 nm - 900 nm; Brands et al., 2011) and by two Aerodyne Aerosol Mass Spectrometers (C-ToF, HR-ToF). Supplementary, the particle size distribution was measured with an optical particle counter (OPC, size range 0.25 μm - 32 μm). During the field campaign about 21000 positive and negative single particle mass spectra could be obtained from cloud residual particles and about 239000 from background aerosol particles. The data were clustered by means of the fuzzy c-means algorithm. The resulting clusters consisting of mass spectra with similar fragmentation patterns were, dependent on presence and combination of peaks, assigned to certain particle types. For both sampled particle types a large portion is internally mixed with nitrate and/or sulfate. This might be an explanation, why a comparison of the composition shows a higher fraction of soot particles and amine-containing particles among cloud residuals. Furthermore cloud residuals show a decreased fraction of particles being internally mixed only with nitrate (10%) compared to background aerosol particles (19%) of the same air masses, whereas the fraction of particles containing both nitrate and sulfate increases from 39% to 63% indicating cloud processing by uptake and oxidation of SO2 (Harris et al, 2013). Brands, M., Kamphus, M., Böttger, T., Schneider

  5. Variability of Aerosol Optical Properties at Four North American Surface Monitoring Sites.

    NASA Astrophysics Data System (ADS)

    Delene, David J.; Ogren, John A.

    2002-03-01

    Aerosol optical properties measured over several years at surface monitoring stations located at Bondville, Illinois (BND); Lamont, Oklahoma (SGP); Sable Island, Nova Scotia (WSA); and Barrow, Alaska (BRW), have been analyzed to determine the importance of the variability in aerosol optical properties to direct aerosol radiative forcing calculations. The amount of aerosol present is of primary importance and the aerosol optical properties are of secondary importance to direct aerosol radiative forcing calculations. The mean aerosol light absorption coefficient (ap) is 10 times larger and the mean aerosol scattering coefficient (sp) is 5 times larger at the anthropogenically influenced site at BND than at BRW. The aerosol optical properties of single scattering albedo (o) and hemispheric backscatter fraction (b) have variability of approximately ±3% and ±8%, respectively, in mean values among the four stations. To assess the importance of the variability in o and b on top of the atmosphere aerosol radiative forcing calculations, the aerosol radiative forcing efficiency (F/) is calculated. The F/ is defined as the aerosol forcing (F) per unit optical depth () and does not depend explicitly on the amount of aerosol present. Based on measurements at four North American stations, radiative transfer calculations that assume fixed aerosol properties can have errors of 1%-6% in the annual average forcing at the top of the atmosphere due to variations in average single scattering albedo and backscatter fraction among the sites studied. The errors increase when shorter-term variations in aerosol properties are considered; for monthly and hourly timescales, errors are expected to be greater than 8% and 15%, respectively, approximately one-third of the time. Systematic relationships exist between various aerosol optical properties [ap, o, b, F/, and Ångström exponent (å)] and the amount of aerosol present (measured by sp) that are qualitatively similar but quantitatively

  6. GUIDE TO CALCULATING TRANSPORT EFFICIENCY OF AEROSOLS IN OCCUPATIONAL AIR SAMPLING SYSTEMS

    SciTech Connect

    Hogue, M.; Hadlock, D.; Thompson, M.; Farfan, E.

    2013-11-12

    This report will present hand calculations for transport efficiency based on aspiration efficiency and particle deposition losses. Because the hand calculations become long and tedious, especially for lognormal distributions of aerosols, an R script (R 2011) will be provided for each element examined. Calculations are provided for the most common elements in a remote air sampling system, including a thin-walled probe in ambient air, straight tubing, bends and a sample housing. One popular alternative approach would be to put such calculations in a spreadsheet, a thorough version of which is shared by Paul Baron via the Aerocalc spreadsheet (Baron 2012). To provide greater transparency and to avoid common spreadsheet vulnerabilities to errors (Burns 2012), this report uses R. The particle size is based on the concept of activity median aerodynamic diameter (AMAD). The AMAD is a particle size in an aerosol where fifty percent of the activity in the aerosol is associated with particles of aerodynamic diameter greater than the AMAD. This concept allows for the simplification of transport efficiency calculations where all particles are treated as spheres with the density of water (1g cm-3). In reality, particle densities depend on the actual material involved. Particle geometries can be very complicated. Dynamic shape factors are provided by Hinds (Hinds 1999). Some example factors are: 1.00 for a sphere, 1.08 for a cube, 1.68 for a long cylinder (10 times as long as it is wide), 1.05 to 1.11 for bituminous coal, 1.57 for sand and 1.88 for talc. Revision 1 is made to correct an error in the original version of this report. The particle distributions are based on activity weighting of particles rather than based on the number of particles of each size. Therefore, the mass correction made in the original version is removed from the text and the calculations. Results affected by the change are updated.

  7. Measurement of size distributions of a coagulating aerosol. [Calcium carbonate

    SciTech Connect

    Loos, H.G.

    1984-05-01

    Measurements have been performed for the determination of the size distribution of a coagulating ultrafine aerosol over a time interval of up to about 30 min. The aerosol was contained in a balloon with an initial volume of 60 l subject to a temperature inversion for the purpose of quenching the free convection and thereby diminishing the aerosol loss to the balloon wall. The aerosol size distribution was measured with the TSI electrostatic aerosol classifier hooked up to a TSI aerosol electrometer. The initial aerosol had an average diameter of about 12 nm. Measurements were taken by computer at a rate of 1 measurement cycle every 3 s; 1 cycle consists of a measurement of time, and burst measurements of electrometer current, classifier rod voltage, 3 flow rates, and 5 temperatures, followed by the calculation of averages and standard deviations, and storage of the results in a data string. The TSI instruments have been modified to permit the automatic computer reading of the parameters mentioned above. A multiplexer has been built to allow the multiplet data to be measured by a single system voltmeter. Channel switching in the multiplexer can be done either automatically by using the ''delay'' signal emitted by the system voltmeter every time it makes a reading or by software control through the 16-bit parallel interface of the computer.

  8. The Finokalia Aerosol Measurement Experiment - 2008 (FAME-08): an overview

    NASA Astrophysics Data System (ADS)

    Pikridas, M.; Bougiatioti, A.; Hildebrandt, L.; Engelhart, G. J.; Kostenidou, E.; Mohr, C.; Prevot, A. S. H.; Kouvarakis, G.; Zarmpas, P.; Burkhart, J. F.; Lee, B.-H.; Psichoudaki, M.; Mihalopoulos, N.; Pilinis, C.; Stohl, A.; Baltensperger, U.; Kulmala, M.; Pandis, S. N.

    2010-03-01

    A month (4 May to 8 June 2008) of ambient aerosol, air ion and gas phase sampling (Finokalia Aerosol Measurement Experiment 2008, FAME-08) was conducted at Finokalia, on the island of Crete, Greece. The purpose of the study was to characterize the physical and chemical properties of aged aerosol and to investigate new particle formation. Measurements included aerosol and air ion size distributions, size-resolved chemical composition, organic aerosol thermal volatility, water uptake and particle optical properties (light scattering and absorption). Statistical analysis of the aerosol mass concentration variations revealed the absence of diurnal patterns suggesting the lack of strong local sources. Sulfates accounted for approximately half of the particulate matter less than 1 micrometer in diameter (PM1) and organics for 26%. The PM1 organic aerosol fraction was highly oxidized with 80% water soluble. The supermicrometer particles were dominated by crustal components (50%), sea salt (24%) and nitrates (16%). The organic carbon to elemental carbon (OC/EC) ratio correlated with ozone measurements but with a one-day lag. The average OC/EC ratio for the study period was equal to 5.4. For three days air masses from North Africa resulted in a 6-fold increase of particulate matter less than 10 micrometers in diameter (PM10) and a decrease of the OC/EC ratio by a factor of 2. Back trajectory analysis, based on FLEXPART footprint plots, identified five source regions (Athens, Greece, Africa, other continental and marine), each of which influenced the PM1 aerosol composition and properties. Marine air masses had the lowest PM1 concentrations and air masses from the Balkans, Turkey and Eastern Europe the highest.

  9. The Finokalia Aerosol Measurement Experiment - 2008 (FAME-08): an overview

    NASA Astrophysics Data System (ADS)

    Pikridas, M.; Bougiatioti, A.; Hildebrandt, L.; Engelhart, G. J.; Kostenidou, E.; Mohr, C.; Prévôt, A. S. H.; Kouvarakis, G.; Zarmpas, P.; Burkhart, J. F.; Lee, B.-H.; Psichoudaki, M.; Mihalopoulos, N.; Pilinis, C.; Stohl, A.; Baltensperger, U.; Kulmala, M.; Pandis, S. N.

    2010-07-01

    A month (4 May to 8 June 2008) of ambient aerosol, air ion and gas phase sampling (Finokalia Aerosol Measurement Experiment 2008, FAME-08) was conducted at Finokalia, on the island of Crete, Greece. The purpose of the study was to characterize the physical and chemical properties of aged aerosol and to investigate new particle formation. Measurements included aerosol and air ion size distributions, size-resolved chemical composition, organic aerosol thermal volatility, water uptake and particle optical properties (light scattering and absorption). Statistical analysis of the aerosol mass concentration variations revealed the absence of diurnal patterns suggesting the lack of strong local sources. Sulfates accounted for approximately half of the particulate matter less than 1 micrometer in diameter (PM1) and organics for 28%. The PM1 organic aerosol fraction was highly oxidized with 80% water soluble. The supermicrometer particles were dominated by crustal components (50%), sea salt (24%) and nitrates (16%). The organic carbon to elemental carbon (OC/EC) ratio correlated with ozone measurements but with a one-day lag. The average OC/EC ratio for the study period was equal to 5.4. For three days air masses from North Africa resulted in a 6-fold increase of particulate matter less than 10 micrometers in diameter (PM10) and a decrease of the OC/EC ratio by a factor of 2. Back trajectory analysis, based on FLEXPART footprint plots, identified five source regions (Athens, Greece, Africa, other continental and marine), each of which influenced the PM1 aerosol composition and properties. Marine air masses had the lowest PM1 concentrations and air masses from the Balkans, Turkey and Eastern Europe the highest.

  10. Comparison of the DiSCmini aerosol monitor to a handheld condensation particle counter and a scanning mobility particle sizer for submicrometer sodium chloride and metal aerosols

    PubMed Central

    Mills, Jessica B.; Park, Jae Hong; Peters, Thomas M.

    2016-01-01

    We evaluated the robust, lightweight DiSCmini (DM) aerosol monitor for its ability to measure the concentration and mean diameter of submicrometer aerosols. Tests were conducted with monodispersed and polydispersed aerosols composed of two particle types (sodium chloride, NaCl, and spark generated metal particles, which simulate particles found in welding fume) at three different steady-state concentration ranges (Low, <103; Medium, 103–104; and High, >104 particles/cm3). Particle number concentration, lung deposited surface area (LDSA) concentration, and mean size measured with the DM were compared to those measured with reference instruments, a scanning mobility particle sizer (SMPS) and a handheld condensation particle counter (CPC). Particle number concentrations measured with the DM were within 21% of those measured by reference instruments for polydisperse aerosols. Poorer agreement was observed for monodispersed aerosols (±35% for most tests and +130% for 300-nm NaCl). LDSA concentrations measured by the DM were 96% to 155% of those estimated with the SMPS. The geometric mean diameters measured with the DM were within 30% of those measured with the SMPS for monodispersed aerosols and within 25% for polydispersed aerosols (except for the case when the aerosol contained a substantial number of particles larger than 300 nm). The accuracy of the DM is reasonable for particles smaller than 300 nm but caution should be exercised when particles larger than 300 nm are present. PMID:23473056

  11. Investigating ice nucleation in cirrus clouds with an aerosol-enabled Multiscale Modeling Framework

    SciTech Connect

    Zhang, Chengzhu; Wang, Minghuai; Morrison, H.; Somerville, Richard C.; Zhang, Kai; Liu, Xiaohong; Li, J-L F.

    2014-11-06

    In this study, an aerosol-dependent ice nucleation scheme [Liu and Penner, 2005] has been implemented in an aerosol-enabled multi-scale modeling framework (PNNL MMF) to study ice formation in upper troposphere cirrus clouds through both homogeneous and heterogeneous nucleation. The MMF model represents cloud scale processes by embedding a cloud-resolving model (CRM) within each vertical column of a GCM grid. By explicitly linking ice nucleation to aerosol number concentration, CRM-scale temperature, relative humidity and vertical velocity, the new MMF model simulates the persistent high ice supersaturation and low ice number concentration (10 to 100/L) at cirrus temperatures. The low ice number is attributed to the dominance of heterogeneous nucleation in ice formation. The new model simulates the observed shift of the ice supersaturation PDF towards higher values at low temperatures following homogeneous nucleation threshold. The MMF models predict a higher frequency of midlatitude supersaturation in the Southern hemisphere and winter hemisphere, which is consistent with previous satellite and in-situ observations. It is shown that compared to a conventional GCM, the MMF is a more powerful model to emulate parameters that evolve over short time scales such as supersaturation. Sensitivity tests suggest that the simulated global distribution of ice clouds is sensitive to the ice nucleation schemes and the distribution of sulfate and dust aerosols. Simulations are also performed to test empirical parameters related to auto-conversion of ice crystals to snow. Results show that with a value of 250 μm for the critical diameter, Dcs, that distinguishes ice crystals from snow, the model can produce good agreement to the satellite retrieved products in terms of cloud ice water path and ice water content, while the total ice water is not sensitive to the specification of Dcs value.

  12. Investigating ice nucleation in cirrus clouds with an aerosol-enabled Multiscale Modeling Framework

    DOE PAGES

    Zhang, Chengzhu; Wang, Minghuai; Morrison, H.; ...

    2014-11-06

    In this study, an aerosol-dependent ice nucleation scheme [Liu and Penner, 2005] has been implemented in an aerosol-enabled multi-scale modeling framework (PNNL MMF) to study ice formation in upper troposphere cirrus clouds through both homogeneous and heterogeneous nucleation. The MMF model represents cloud scale processes by embedding a cloud-resolving model (CRM) within each vertical column of a GCM grid. By explicitly linking ice nucleation to aerosol number concentration, CRM-scale temperature, relative humidity and vertical velocity, the new MMF model simulates the persistent high ice supersaturation and low ice number concentration (10 to 100/L) at cirrus temperatures. The low ice numbermore » is attributed to the dominance of heterogeneous nucleation in ice formation. The new model simulates the observed shift of the ice supersaturation PDF towards higher values at low temperatures following homogeneous nucleation threshold. The MMF models predict a higher frequency of midlatitude supersaturation in the Southern hemisphere and winter hemisphere, which is consistent with previous satellite and in-situ observations. It is shown that compared to a conventional GCM, the MMF is a more powerful model to emulate parameters that evolve over short time scales such as supersaturation. Sensitivity tests suggest that the simulated global distribution of ice clouds is sensitive to the ice nucleation schemes and the distribution of sulfate and dust aerosols. Simulations are also performed to test empirical parameters related to auto-conversion of ice crystals to snow. Results show that with a value of 250 μm for the critical diameter, Dcs, that distinguishes ice crystals from snow, the model can produce good agreement to the satellite retrieved products in terms of cloud ice water path and ice water content, while the total ice water is not sensitive to the specification of Dcs value.« less

  13. Photochemical aging of secondary organic aerosols: effects on hygroscopic growth and CCN activation

    NASA Astrophysics Data System (ADS)

    Buchholz, A.; Mentel, Th. F.; Tillmann, R.; Schlosser, E.; Mildenberger, K.; Clauss, T.; Henning, S.; Kiselev, A.; Stratmann, F.

    2009-04-01

    Plant emitted volatile organic carbons (VOCs) are a major precursor of secondary organic aerosols (SOA), an important constituent of atmospheric aerosols. The precursors are oxidized via ozonolysis, photooxidation, or by NO3 and form aerosol particles. Due to further oxidation of the organic matter the composition of the SOA may age with time. This will also change the hygroscopic growth (HG) and cloud condensation nuclei (CCN) activation of the particles. In this study we generated and aged SOA in the SAPHIR chamber at the Research Centre Juelich under near atmospheric conditions: natural sunlight, low precursor and O3 concentrations, and long reaction times. As precursor we used a mixture of 5 monoterpenes (MT) or 5 MT with 2 sesquiterpenes which had been identified as major constituents of plant emissions in previous experiments. Concentrations ranged between 4 and 100 ppb MT and the total reaction time was 36h. HG was measured at RH=10-97% by a Hygroscopic Tandem Differential Analyser (HTDMA, FZ Juelich) and at RH=97-99% by the Leipzig Aerosol Cloud Interaction Simulator (LACIS-mobile, IfT Leipzig). The agreement between HTDMA and LACIS-mobile data was generally good. CCN properties were measured with a continuous flow CCN Counter from DMT. SOA particles generated on a sunny day were more hygroscopic and had a lower activation diameter (Dcrit) than SOA formed under cloudy conditions. With aging it became more hygroscopic and Dcrit decreased. Sunlight enhanced this effect. But the change in HG and Dcrit due to aging was less than the difference between SOA generated under different conditions (i.e. sunny or cloudy). We did not observe a dependence of the HG on the precursor concentration.

  14. Regional source identification of atmospheric aerosols in Beijing based on sulfur isotopic compositions

    NASA Astrophysics Data System (ADS)

    Lianfang, Wei; Pingqing, Fu; Xiaokun, Han; Qingjun, Guo; Yele, Sun; Zifa, Wang

    2016-04-01

    65 daily PM2.5 (aerosol particle with aerodynamic diameter less than 2.5 μm) samples were collected from an urban site in Beijing in four months representing the four seasons between September 2013 and July 2014. Inorganic ions, organic/elemental carbon and stable sulfur isotopes of sulfate aerosols were analyzed systematically. The "fingerprint" characteristics of the stable sulfur isotopic composition, together with trajectory clustering modeled by HYSPLIT-4 and potential source contribution function (PSCF), were employed for identifying potential regional sources. Results obviously exhibited the distinctive seasonality for various aerosol speciation associated with PM2.5 in Beijing with sulfate, nitrate, ammonium, organic matter, and element carbon being the dominant species. Elevated chloride associated with higher concentration of organics were found in autumn and winter, due to enhanced coal combustion emissions. The δ34S values of Beijing aerosol samples ranged from 2.94‰ to 10.2‰ with an average value of 6.18±1.87‰ indicating that the major sulfur source is direct fossil fuel burning-related emissions. Owning to a temperature-dependent fractionation and elevated biogenic sources of isotopically light sulfur in summer, the δ34S values had significant seasonal variations with a winter maximum ( 8.6‰)and a summer minimum ( 5.0‰). The results of trajectory clustering and the PSCF method demonstrated that higher concentrations of sulfate with lower sulfur isotope ratios ( 4.83‰) were associated with air masses from the south, southeast or east, whereas lower sulfate concentrations with higher δ34S values ( 6.69‰) when the air masses were mainly from north or northwest. These results suggested two main different kinds of regional coal combustion sources contributed to the pollution in Beijing.

  15. Cloud condensation nuclei (CCN) activity of aliphatic amine secondary aerosol

    NASA Astrophysics Data System (ADS)

    Tang, X.; Price, D.; Praske, E.; Vu, D. N.; Purvis-Roberts, K.; Silva, P. J.; Cocker, D. R., III; Asa-Awuku, A.

    2014-06-01

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g., hydroxyl radical and nitrate radical). The particle can contain both secondary organic aerosol (SOA) and inorganic salts. The ratio of organic to inorganic materials in the particulate phase influences aerosol hygroscopicity and cloud condensation nuclei (CCN) activity. SOA formed from trimethylamine (TMA) and butylamine (BA) reactions with hydroxyl radical (OH) is composed of organic material of low hygroscopicity (single hygroscopicity parameter, κ, ≤ 0.25). Secondary aerosol formed from the tertiary aliphatic amine (TMA) with N2O5 (source of nitrate radical, NO3) contains less volatile compounds than the primary aliphatic amine (BA) aerosol. As relative humidity (RH) increases, inorganic amine salts are formed as a result of acid-base reactions. The CCN activity of the humid TMA-N2O5 aerosol obeys Zdanovskii, Stokes, and Robinson (ZSR) ideal mixing rules. The humid BA + N2O5 aerosol products were found to be very sensitive to the temperature at which the measurements were made within the streamwise continuous-flow thermal gradient CCN counter; κ ranges from 0.4 to 0.7 dependent on the instrument supersaturation (ss) settings. The variance of the measured aerosol κ values indicates that simple ZSR rules cannot be applied to the CCN results from the primary aliphatic amine system. Overall, aliphatic amine aerosol systems' κ ranges within 0.2 < κ < 0.7. This work indicates that aerosols formed via nighttime reactions with amines are likely to produce hygroscopic and volatile aerosol, whereas photochemical reactions with OH produce secondary organic aerosol of lower CCN activity. The contributions of semivolatile secondary organic and inorganic material from aliphatic amines must be considered for accurate hygroscopicity and CCN predictions from aliphatic amine systems.

  16. Retrieval of Aerosol Absorption Properties from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Torres, Omar; Bhartia, Pawan K.; Jethva, H.; Ahn, Chang-Woo

    2012-01-01

    The Angstrom Absorption Exponent (AAE) is a parameter commonly used to characterize the wavelength-dependence of aerosol absorption optical depth (AAOD). It is closely related to aerosol composition. Black carbon (BC) containing aerosols yield AAE values near unity whereas Organic carbon (OC) aerosol particles are associated with values larger than 2. Even larger AAE values have been reported for desert dust aerosol particles. Knowledge of spectral AAOD is necessary for the calculation of direct radiative forcing effect of aerosols and for inferring aerosol composition. We have developed a satellitebased method of determining the spectral AAOD of absorbing aerosols. The technique uses multi-spectral measurements of upwelling radiation from scenes where absorbing aerosols lie above clouds as indicated by the UV Aerosol Index. For those conditions, the satellite measurement can be explained, using an approximations of Beer's Law (BL), as the upwelling reflectance at the cloud top attenuated by the absorption effects of the overlying aerosol layer. The upwelling reflectance at the cloud-top in an aerosol-free atmospheric column is mainly a function of cloud optical depth (COD). In the proposed method of AAE derivation, the first step is determining COD which is retrieved using a previously developed color-ratio based approach. In the second step, corrections for molecular scattering effects are applied to both the observed ad the calculated cloud reflectance terms, and the spectral AAOD is then derived by an inversion of the BL approximation. The proposed technique will be discussed in detail and application results making use of OMI multi-spectral measurements in the UV-Vis. will be presented.

  17. A missing source of aerosols in Antarctica - beyond long-range transport, phytoplankton, and photochemistry

    NASA Astrophysics Data System (ADS)

    Giordano, Michael R.; Kalnajs, Lars E.; Avery, Anita; Goetz, J. Douglas; Davis, Sean M.; DeCarlo, Peter F.

    2017-01-01

    Understanding the sources and evolution of aerosols is crucial for constraining the impacts that aerosols have on a global scale. An unanswered question in atmospheric science is the source and evolution of the Antarctic aerosol population. Previous work over the continent has primarily utilized low temporal resolution aerosol filters to answer questions about the chemical composition of Antarctic aerosols. Bulk aerosol sampling has been useful in identifying seasonal cycles in the aerosol populations, especially in populations that have been attributed to Southern Ocean phytoplankton emissions. However, real-time, high-resolution chemical composition data are necessary to identify the mechanisms and exact timing of changes in the Antarctic aerosol. The recent 2ODIAC (2-Season Ozone Depletion and Interaction with Aerosols Campaign) field campaign saw the first ever deployment of a real-time, high-resolution aerosol mass spectrometer (SP-AMS - soot particle aerosol mass spectrometer - or AMS) to the continent. Data obtained from the AMS, and a suite of other aerosol, gas-phase, and meteorological instruments, are presented here. In particular, this paper focuses on the aerosol population over coastal Antarctica and the evolution of that population in austral spring. Results indicate that there exists a sulfate mode in Antarctica that is externally mixed with a mass mode vacuum aerodynamic diameter of 250 nm. Springtime increases in sulfate aerosol are observed and attributed to biogenic sources, in agreement with previous research identifying phytoplankton activity as the source of the aerosol. Furthermore, the total Antarctic aerosol population is shown to undergo three distinct phases during the winter to summer transition. The first phase is dominated by highly aged sulfate particles comprising the majority of the aerosol mass at low wind speed. The second phase, previously unidentified, is the generation of a sub-250 nm aerosol population of unknown composition

  18. Evaluation of the sectional aerosol microphysics module SALSA implementation in ECHAM5-HAM aerosol-climate model

    NASA Astrophysics Data System (ADS)

    Bergman, T.; Kerminen, V.-M.; Korhonen, H.; Lehtinen, K. J.; Makkonen, R.; Arola, A.; Mielonen, T.; Romakkaniemi, S.; Kulmala, M.; Kokkola, H.

    2012-06-01

    We present the implementation and evaluation of a sectional aerosol microphysics module SALSA within the aerosol-climate model ECHAM5-HAM. This aerosol microphysics module has been designed to be flexible and computationally efficient so that it can be implemented in regional or global scale models. The computational efficiency has been achieved by minimising the number of variables needed to describe the size and composition distribution. The aerosol size distribution is described using 10 size classes with parallel sections which can have different chemical compositions. Thus in total, the module tracks 20 size sections which cover diameters ranging from 3 nm to 10 μm and are divided into three subranges, each with an optimised selection of processes and compounds. The implementation of SALSA into ECHAM5-HAM includes the main aerosol processes in the atmosphere: emissions, removal, radiative effects, liquid and gas phase sulphate chemistry, and the aerosol microphysics. The aerosol compounds treated in the module are sulphate, organic carbon, sea salt, black carbon, and mineral dust. In its default configuration, ECHAM5-HAM treats aerosol size distribution using the modal method. In this implementation, the aerosol processes were converted to be used in a sectional model framework. The ability of the module to describe the global aerosol properties was evaluated by comparing against (1) measured continental and marine size distributions, (2) observed variability of continental number concentrations, (3) measured sulphate, organic carbon, black carbon and sea-salt mass concentrations, (4) observations of aerosol optical depth (AOD) and other aerosol optical properties from satellites and AERONET network, (5) global aerosol budgets and concentrations from previous model studies, and (6) model results using M7, which is the default aerosol microphysics module in ECHAM5-HAM. The evaluation shows that the global aerosol properties can be reproduced reasonably well

  19. DiameterJ: A validated open source nanofiber diameter measurement tool.

    PubMed

    Hotaling, Nathan A; Bharti, Kapil; Kriel, Haydn; Simon, Carl G

    2015-08-01

    Despite the growing use of nanofiber scaffolds for tissue engineering applications, there is not a validated, readily available, free solution for rapid, automated analysis of nanofiber diameter from scanning electron microscope (SEM) micrographs. Thus, the goal of this study was to create a user friendly ImageJ/FIJI plugin that would analyze SEM micrographs of nanofibers to determine nanofiber diameter on a desktop computer within 60 s. Additional design goals included 1) compatibility with a variety of existing segmentation algorithms, and 2) an open source code to enable further improvement of the plugin. Using existing algorithms for centerline determination, Euclidean distance transforms and a novel pixel transformation technique, a plugin called "DiameterJ" was created for ImageJ/FIJI. The plugin was validated using 1) digital synthetic images of white lines on a black background and 2) SEM images of nominally monodispersed steel wires of known diameters. DiameterJ analyzed SEM micrographs in 20 s, produced diameters not statistically different from known values, was over 10-times closer to known diameter values than other open source software, provided hundreds of times the sampling of manual measurement, and was hundreds of times faster than manual assessment of nanofiber diameter. DiameterJ enables users to rapidly and thoroughly determine the structural features of nanofiber scaffolds and could potentially allow new insights to be formed into fiber diameter distribution and cell response.

  20. Nicotine Delivery to Rats via Lung Alveolar Region-Targeted Aerosol Technology Produces Blood Pharmacokinetics Resembling Human Smoking

    PubMed Central

    2013-01-01

    Introduction: Nicotine is a heavily used addictive drug acquired through smoking tobacco. Nicotine in cigarette smoke is deposited and absorbed in the lungs, which results in a rapidly peaked slowly declining arterial concentration. This pattern plays an important role in initiation of nicotine addiction. Methods: A method and device were developed for delivering nicotine to rodents with lung alveolar region-targeted aerosol technology. The dose of delivery can be controlled by the nicotine aerosol concentration and duration of exposure. Results: Our data showed that, in the breathing zone of the nose-only exposure chamber, the aerosol droplet size distribution was within the respirable diameter range. Rats were exposed to nicotine aerosol for 2min. The arterial blood nicotine concentration reached 43.2±15.7ng/ml (mean ± SD) within 1–4min and declined over the next 20min, closely resembling the magnitude and early pharmacokinetics of a human smoking a cigarette. The acute inhalation toxicity of nicotine: LC50 = 2.3mg/L was determined; it was affected by pH, suggesting that acidification decreases nicotine absorption and/or bioavailability. Conclusions: A noninvasive method and toolkit were developed for delivering nicotine to rodents that enable rapid delivery of a controllable amount of nicotine into the systemic circulation and brain-inducing dose-dependent pharmacological effects, even a lethal dose. Aerosol inhalation can produce nicotine kinetics in both arterial and venous blood resembling human smoking. This method can be applied to studies of the effects of chronic intermittent nicotine exposure, nicotine addiction, toxicology, tobacco-related diseases, teratogenicity, and for discovery of pharmacological therapeutics. PMID:23239844

  1. Black Carbon, Aerosols, and the Tooth Fairy

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Adachi, K.; Posfai, M.

    2012-12-01

    Black carbon (BC) is widely cited in the atmospheric literature as a major aerosol particle type with significant effects on climate warming. Several analytical techniques are used for its determination, primarily through optical absorption measurements. A recently developed and widely used method is single particle soot photometry (SP2). During attempts to obtain reliable BC samples for study using transmission electron microscopy (TEM), it became apparent that no such samples exist. Instead, surrogate materials such as graphite, fullerene, Aquadag, and perhaps other things are used as calibration standards. It became rapidly evident that BC is an inferred rather than actual, identifiable substance with distinct material properties other than its absorption spectrum and refractory character (accounting for the subset of refractory black carbon, or rBC). Since climate effects depend on optical properties, and these are estimated for BC, it may not be critical at this time whether or not it is a discrete material. However, the same term is also used by other environmental communities for things that are distinctly different. Such imprecision in terms can lead to unnecessary confusion. The situation is summarized in the Table. We propose that 1) the term BC should be restricted to light-absorbing refractory carbonaceous matter of uncertain character and 2) the uncertainty be stated explicitly. We also propose a more precise definition for soot as a specific material, which we call ns-soot, where "ns" refers to carbon nanospheres. We define ns-soot as particles that consist of nanospheres, typically with diameters <100 nm, that possess distinct structures of concentrically wrapped, graphene-like layers of carbon and with grape-like (acinoform) morphologies.;

  2. Optical modeling of aerosol extinction for remote sensing in the marine environment

    NASA Astrophysics Data System (ADS)

    Kaloshin, G. A.

    2013-05-01

    A microphysical model is presented for the surface layer marine and coastal atmospheric aerosols that is based on long-term observations of size distributions for 0.01-100 μm particles in different geographic sites. The fundamental feature of the model is a parameterization of amplitudes and widths for aerosol modes of the aerosol size distribution function (ASDF) as functions of fetch and wind speed. The shape of the ASDF and its dependence on meteorological parameters, altitudes above sea level (H), fetch (X), wind speed (U) and relative humidity (RH) are investigated. The spectral profiles of the aerosol extinction coefficients calculated by MaexPro (Marine Aerosol Extinction Profiles) are in good agreement with observational data and the numerical results obtained from the Navy Aerosol Model (NAM) and the Advanced Navy Aerosol Model (ANAM). Moreover, MaexPro was found to be an accurate and reliable tool for investigation of the optical properties of atmospheric aerosols.

  3. Large diameter astromast development, phase 1

    NASA Technical Reports Server (NTRS)

    Preiswerk, P. R.; Finley, L. A.; Knapp, K.

    1983-01-01

    Coilable-longeron lattice columns called Astromasts (trademark) were manufactured for a variety of spacecraft missions. These flight structures varied in diameter from 0.2 to 0.5 meter (9 to 19 in.), and the longest Astromast of this type deploys to a length of 30 meters (100 feet). A double-laced diagonal Astromast design referred to as the Supermast (trademark) which, because it has shorter baylengths than an Astromast, is approximately four times as strong. The longeron cross section and composite material selection for these structures are limited by the maximum strain associated with stowage and deployment. As a result, future requirements for deployable columns with high stiffness and strength require the development of both structures in larger diameters. The design, development, and manufacture of a 6.1-m-long (20-ft), 0.75-m-diameter (30-in.), double-laced diagonal version of the Astromast is described.

  4. Submicron diameter single crystal sapphire optical fiber

    DOE PAGES

    Hill, Cary; Homa, Daniel; Liu, Bo; ...

    2014-10-02

    In this work, a submicron-diameter single crystal sapphire optical fiber was demonstrated via wet acid etching at elevated temperatures. Etch rates on the order 2.3 µm/hr were achievable with a 3:1 molar ratio sulfuric-phosphoric acid solution maintained at a temperature of 343°C. A sapphire fiber with an approximate diameter of 800 nm was successfully fabricated from a commercially available fiber with an original diameter of 50 µm. The simple and controllable etching technique provides a feasible approach to the fabrication of unique waveguide structures via traditional silica masking techniques. The ability to tailor the geometry of sapphire optical fibers ismore » the first step in achieving optical and sensing performance on par with its fused silica counterpart.« less

  5. Submicron diameter single crystal sapphire optical fiber

    SciTech Connect

    Hill, Cary; Homa, Daniel; Liu, Bo; Yu, Zhihao; Wang, Anbo; Pickrell, Gary

    2014-10-02

    In this work, a submicron-diameter single crystal sapphire optical fiber was demonstrated via wet acid etching at elevated temperatures. Etch rates on the order 2.3 µm/hr were achievable with a 3:1 molar ratio sulfuric-phosphoric acid solution maintained at a temperature of 343°C. A sapphire fiber with an approximate diameter of 800 nm was successfully fabricated from a commercially available fiber with an original diameter of 50 µm. The simple and controllable etching technique provides a feasible approach to the fabrication of unique waveguide structures via traditional silica masking techniques. The ability to tailor the geometry of sapphire optical fibers is the first step in achieving optical and sensing performance on par with its fused silica counterpart.

  6. Aerosol penetration through filtering facepieces and respirator cartridges.

    PubMed

    Chen, C C; Lehtimäki, M; Willeke, K

    1992-09-01

    Air-purifying respirators must be certified following the National Institute for Occupational Safety and Health (NIOSH) filter test criteria (30 CFR 11). The criteria specify a range for the mean particle size and the measure of spread permissible for the test aerosol. The authors' experiments have shown that aerosol penetration as a function of particle size differs considerably among certified respirators of the same type. Filtering facepieces (disposable respirators) and cartridges of the dust-mist, dust-mist-fume, and high-efficiency particulate air type were tested. The respirators were sealed to mannequins in a test chamber. The aerosol concentrations inside and outside the respirator were measured by an aerodynamic particle sizer and a laser aerosol spectrometer over a particle size range of 0.1 to 15 microns. Five flow rates ranging from 5 to 100 L/min were used to study flow dependency. The aerosol penetration through the filters is presented as a function of particle size. Aerosol penetration and pressure drop are combined to express the performance of each filter in terms of "quality factor." Under the same test conditions, the quality factor of one respirator may be as much as 6.6 times more than that of another respirator of the same type. The filter quality factor has a greater aerosol size dependency as airflow and aerosol size increase. In general, cartridges have a larger surface area than filtering facepieces but not necessarily lower filter penetration or higher filter quality.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. A Simple Model of Global Aerosol Indirect Effects

    NASA Technical Reports Server (NTRS)

    Ghan, Steven J.; Smith, Steven J.; Wang, Minghuai; Zhang, Kai; Pringle, Kirsty; Carslaw, Kenneth; Pierce, Jeffrey; Bauer, Susanne; Adams, Peter

    2013-01-01

    Most estimates of the global mean indirect effect of anthropogenic aerosol on the Earth's energy balance are from simulations by global models of the aerosol lifecycle coupled with global models of clouds and the hydrologic cycle. Extremely simple models have been developed for integrated assessment models, but lack the flexibility to distinguish between primary and secondary sources of aerosol. Here a simple but more physically based model expresses the aerosol indirect effect (AIE) using analytic representations of cloud and aerosol distributions and processes. Although the simple model is able to produce estimates of AIEs that are comparable to those from some global aerosol models using the same global mean aerosol properties, the estimates by the simple model are sensitive to preindustrial cloud condensation nuclei concentration, preindustrial accumulation mode radius, width of the accumulation mode, size of primary particles, cloud thickness, primary and secondary anthropogenic emissions, the fraction of the secondary anthropogenic emissions that accumulates on the coarse mode, the fraction of the secondary mass that forms new particles, and the sensitivity of liquid water path to droplet number concentration. Estimates of present-day AIEs as low as 5 W/sq m and as high as 0.3 W/sq m are obtained for plausible sets of parameter values. Estimates are surprisingly linear in emissions. The estimates depend on parameter values in ways that are consistent with results from detailed global aerosol-climate simulation models, which adds to understanding of the dependence on AIE uncertainty on uncertainty in parameter values.

  8. Parameter sensitivity study of Arctic aerosol vertical distribution in CAM5

    NASA Astrophysics Data System (ADS)

    Jiao, C.; Flanner, M.

    2015-12-01

    Arctic surface temperature response to light-absorbing aerosols (black carbon, brown carbon and dust) depends strongly on their vertical distributions. Improving model simulations of three dimensional aerosol fields in the remote Arctic region will therefore lead to improved projections of the climate change caused by aerosol emissions. In this study, we investigate how different physical parameterizations in the Community Atmosphere Model version 5 (CAM5) influence the simulated vertical distribution of Arctic aerosols. We design experiments to test the sensitivity of the simulated aerosol fields to perturbations of selected aerosol process-related parameters in the Modal Aerosol Module with seven lognormal modes (MAM7), such as those govern aerosol aging, in-cloud and below-cloud scavenging, aerosol hygroscopicity and so on. The simulations are compared with observed aerosol vertical distributions and total optical depth to assess model performance and quantify uncertainties associated with these model parameterizations. Observations applied here include Arctic aircraft measurements of black carbon and sulfate vertical profiles, along with Aerosol Robotic Network (AERONET) optical depth measurements. We also assess the utility of using High Spectral Resolution Lidar (HSRL) measurements from the ARM Barrow site to infer vertical profiles of aerosol extinction. The sensitivity study explored here will provide guidance for optimizing global aerosol simulations.

  9. [Microorganisms distribution in the aerosol of a manned sealed cabin and the effect of artificial air ionization on this process].

    PubMed

    Zaloguev, S N; Anisimov, B V; Viktorov, A N; Gorshkov, V P

    1981-01-01

    In a manned enclosure the distribution of bacterial aerosol with respect to the size of particles is bimodal. Artificial bipolar ionization of the air may decrease the content of relatively large particles of bacterial aerosol, leaving particles with 2.0-0.6/micrometer in diameter in predominance. These properties of the bacterial aerosol structure may be of importance in the prophylaxis of aerogenic infections of cosmonauts.

  10. Shaft Diameter Measurement Using Structured Light Vision.

    PubMed

    Liu, Siyuan; Tan, Qingchang; Zhang, Yachao

    2015-08-12

    A method for measuring shaft diameters is presented using structured light vision measurement. After calibrating a model of the structured light measurement, a virtual plane is established perpendicular to the measured shaft axis and the image of the light stripe on the shaft is projected to the virtual plane. On the virtual plane, the center of the measured shaft is determined by fitting the projected image under the geometrical constraints of the light stripe, and the shaft diameter is measured by the determined center and the projected image. Experiments evaluated the measuring accuracy of the method and the effects of some factors on the measurement are analyzed.

  11. Fabrication of 10nm diameter carbon nanopores

    SciTech Connect

    Radenovic, Aleksandra; Trepagnier, Eliane; Csencsits, Roseann; Downing, Kenneth H; Liphardt, Jan

    2008-09-25

    The addition of carbon to samples, during imaging, presents a barrier to accurate TEM analysis, the controlled deposition of hydrocarbons by a focused electron beam can be a useful technique for local nanometer-scale sculpting of material. Here we use hydrocarbon deposition to form nanopores from larger focused ion beam (FIB) holes in silicon nitride membranes. Using this method, we close 100-200nm diameter holes to diameters of 10nm and below, with deposition rates of 0.6nm per minute. I-V characteristics of electrolytic flow through these nanopores agree quantitatively with a one dimensional model at all examined salt concentrations.

  12. The truth about small-diameter implants.

    PubMed

    Christensen, Gordon J; Child, Paul L

    2010-05-01

    SDIs that are treatment planned correctly, placed and loaded properly, and are within a well-adjusted occlusion, are working in an excellent manner for the patients described in this article. It is time for those practitioners unfamiliar with SDIs and their uses to discontinue their discouragement of this technique. SDIs are easily placed, minimally invasive, and a true service to those patients described. They do not replace conventional diameter implants; however, they are a significant and important augmentation to the original root-form implant concept. There is obvious evidence of the growing acceptance of small-diameter implants by both general practitioners and specialists.

  13. Aggregate Morphology Evolution by Sintering: Number & Diameter of Primary Particles

    PubMed Central

    Eggersdorfer, Max L.; Kadau, Dirk; Herrmann, Hans J.; Pratsinis, Sotiris E.

    2013-01-01

    The structure of fractal-like agglomerates (physically-bonded) and aggregates (chemically- or sinter-bonded) is important in aerosol synthesis of nanoparticles, and in monitoring combustion emissions and atmospheric particles. It influences also particle mobility, scattering, and eventually performance of nanocomposites, suspensions and devices made with such particles. Here, aggregate sintering by viscous flow of amorphous materials (silica, polymers) and grain boundary diffusion of crystalline ceramics (titania, alumina) or metals (Ni, Fe, Ag etc.) is investigated. A scaling law is found between average aggregate projected area and equivalent number of constituent primary particles during sintering: from fractal-like agglomerates to aggregates and eventually compact particles (e.g. spheres). This is essentially a relation independent of time, material properties and sintering mechanisms. It is used to estimate the equivalent primary particle diameter and number in aggregates. The evolution of aggregate morphology or structure is quantified by the effective fractal dimension (Df) and mass-mobility exponent (Dfm) and the corresponding prefactors. The Dfm increases monotonically during sintering converging to 3 for a compact particle. Therefore Dfm and its prefactor could be used to gauge the degree or extent of sintering of agglomerates made by a known collision mechanism. This analysis is exemplified by comparison to experiments of silver nanoparticle aggregates sintered at different temperatures in an electric tube furnace. PMID:23658467

  14. Aggregate Morphology Evolution by Sintering: Number & Diameter of Primary Particles.

    PubMed

    Eggersdorfer, Max L; Kadau, Dirk; Herrmann, Hans J; Pratsinis, Sotiris E

    2012-04-01

    The structure of fractal-like agglomerates (physically-bonded) and aggregates (chemically- or sinter-bonded) is important in aerosol synthesis of nanoparticles, and in monitoring combustion emissions and atmospheric particles. It influences also particle mobility, scattering, and eventually performance of nanocomposites, suspensions and devices made with such particles. Here, aggregate sintering by viscous flow of amorphous materials (silica, polymers) and grain boundary diffusion of crystalline ceramics (titania, alumina) or metals (Ni, Fe, Ag etc.) is investigated. A scaling law is found between average aggregate projected area and equivalent number of constituent primary particles during sintering: from fractal-like agglomerates to aggregates and eventually compact particles (e.g. spheres). This is essentially a relation independent of time, material properties and sintering mechanisms. It is used to estimate the equivalent primary particle diameter and number in aggregates. The evolution of aggregate morphology or structure is quantified by the effective fractal dimension (Df ) and mass-mobility exponent (Dfm ) and the corresponding prefactors. The Dfm increases monotonically during sintering converging to 3 for a compact particle. Therefore Dfm and its prefactor could be used to gauge the degree or extent of sintering of agglomerates made by a known collision mechanism. This analysis is exemplified by comparison to experiments of silver nanoparticle aggregates sintered at different temperatures in an electric tube furnace.

  15. Sugars in Antarctic aerosol

    NASA Astrophysics Data System (ADS)

    Barbaro, Elena; Kirchgeorg, Torben; Zangrando, Roberta; Vecchiato, Marco; Piazza, Rossano; Barbante, Carlo; Gambaro, Andrea

    2015-10-01

    The processes and transformations occurring in the Antarctic aerosol during atmospheric transport were described using selected sugars as source tracers. Monosaccharides (arabinose, fructose, galactose, glucose, mannose, ribose, xylose), disaccharides (sucrose, lactose, maltose, lactulose), alcohol-sugars (erythritol, mannitol, ribitol, sorbitol, xylitol, maltitol, galactitol) and anhydrosugars (levoglucosan, mannosan and galactosan) were measured in the Antarctic aerosol collected during four different sampling campaigns. For quantification, a sensitive high-pressure anion exchange chromatography was coupled with a single quadrupole mass spectrometer. The method was validated, showing good accuracy and low method quantification limits. This study describes the first determination of sugars in the Antarctic aerosol. The total mean concentration of sugars in the aerosol collected at the "Mario Zucchelli" coastal station was 140 pg m-3; as for the aerosol collected over the Antarctic plateau during two consecutive sampling campaigns, the concentration amounted to 440 and 438 pg m-3. The study of particle-size distribution allowed us to identify the natural emission from spores or from sea-spray as the main sources of sugars in the coastal area. The enrichment of sugars in the fine fraction of the aerosol collected on the Antarctic plateau is due to the degradation of particles during long-range atmospheric transport. The composition of sugars in the coarse fraction was also investigated in the aerosol collected during the oceanographic cruise.

  16. Climatic Effects of Marine Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Xu, J.; Meskhidze, N.; Zhang, Y.; Gantt, B.; Ghan, S. J.; Nenes, A.; Liu, X.; Easter, R. C.; Zaveri, R. A.

    2009-12-01

    Recent studies suggest that the emissions of primary organic matter (POM) of marine biogenic origin and secondary organic aerosol (SOA) from phytoplankton-produced volatile organic compounds can lead to changes of chemical composition and size distribution of marine aerosol, thus modifying the cloud droplet activation potential and affecting climate. In this study, the effects of marine organic aerosol emissions and the dissolved marine organic aerosol components as surfactant are explored using the National Center of Atmospheric Research’s Community Atmosphere Model, coupled with the Pacific Northwest National Laboratory’s Modal Aerosol Model (CAM-MAM). Primary marine organic aerosol emissions are separated into sub- and super-micron modes, and calculated based on wind speed-dependent sea-spray mass flux and remotely-sensed surface chlorophyll-a concentration. Two distinct sea spray emission functions used in this study yield different amounts and spatial distributions of sub-micron marine POM mass flux. The super-micron sea-spray flux is determined based on simulated sea-spray number flux. Both sub and super-micron marine POM are assumed to be mostly water-insoluble and added in the accumulation mode and coarse sea-salt mode, respectively. A prescribed soluble mass fraction of 50% is assumed for marine SOA, formed from phytoplankton-emitted isoprene and allowed to be condensed on existing aerosols in different modes. Surfactant effects from the soluble part of sub-micron marine POM are included in the cloud droplet activation parameterization by some modifications based on the mass fraction of dissolved marine POM. 10 year model simulations are conducted to examine the effects of marine organic aerosols on cloud microphysical and optical properties. Analyses of model results show that different marine aerosol emissions and cloud droplet activation mechanisms can yield 9% to 16% increase in global maritime mean cloud droplet number concentration. Changes

  17. Infrared spectroscopy of aerosols

    NASA Astrophysics Data System (ADS)

    Mentel, Th.; Sebald, H.

    2003-04-01

    In our large Aerosol Chamber at the FZ Jülich we apply HR FTIR absorption spectroscopy for the determination of trace gases. In the FTIR spectra we also observe broad absorptions of several 10 to a few 100 cm-1 widths that arise from species in the condensed aerosol phase: liquid H_2O, NO_3^-, SO_42-, HSO_4^-, or dicarboxylic acids. Moreover, the aerosol droplets caused extinctions over several 1000 cm-1 by IR scattering. This allows for in-situ observation of changes in the condensed aerosol phase e.g. on HNO_3 uptake, like the shift of the sulfate/bisulfate equilibrium or the growth by water condensation. The IR absorptions of the condensed aerosol phase provide useful extra information in process studies, if they can be quantified. Therefore the absorption cross section, respective, the absorption index which is the imaginary part of the complex refractive index is needed. We set up an aerosol flow tube in which IR spectroscopy on a 8 m light path and aerosol size distribution measurements in the range from 20 nm - 10 μm can be performed simultaneously. We measured sulfate aerosols at several relative humidities (dry, metastable, deliquescent). We will demonstrate an iterative procedure based on Mie calculations and Kramers Kronig transformation to retrieve the absorption index from the observed IR spectra and the corresponding size distribution (for dry ammonium sulfate). We will compare resulting absorption indices for aqueous sodium bisulfate aerosols at several relative humidties with thermodynamic model calculations for the Na^+/H^+/HSO_4^-/SO_42-/H_2O system.

  18. Long-term observations of cloud condensation nuclei in the Amazon rain forest - Part 1: Aerosol size distribution, hygroscopicity, and new model parametrizations for CCN prediction

    NASA Astrophysics Data System (ADS)

    Pöhlker, Mira L.; Pöhlker, Christopher; Ditas, Florian; Klimach, Thomas; Hrabe de Angelis, Isabella; Araújo, Alessandro; Brito, Joel; Carbone, Samara; Cheng, Yafang; Chi, Xuguang; Ditz, Reiner; Gunthe, Sachin S.; Kesselmeier, Jürgen; Könemann, Tobias; Lavrič, Jošt V.; Martin, Scot T.; Mikhailov, Eugene; Moran-Zuloaga, Daniel; Rose, Diana; Saturno, Jorge; Su, Hang; Thalman, Ryan; Walter, David; Wang, Jian; Wolff, Stefan; Barbosa, Henrique M. J.; Artaxo, Paulo; Andreae, Meinrat O.; Pöschl, Ulrich

    2016-12-01

    Size-resolved long-term measurements of atmospheric aerosol and cloud condensation nuclei (CCN) concentrations and hygroscopicity were conducted at the remote Amazon Tall Tower Observatory (ATTO) in the central Amazon Basin over a 1-year period and full seasonal cycle (March 2014-February 2015). The measurements provide a climatology of CCN properties characteristic of a remote central Amazonian rain forest site.The CCN measurements were continuously cycled through 10 levels of supersaturation (S = 0.11 to 1.10 %) and span the aerosol particle size range from 20 to 245 nm. The mean critical diameters of CCN activation range from 43 nm at S = 1.10 % to 172 nm at S = 0.11 %. The particle hygroscopicity exhibits a pronounced size dependence with lower values for the Aitken mode (κAit = 0.14 ± 0.03), higher values for the accumulation mode (κAcc = 0.22 ± 0.05), and an overall mean value of κmean = 0.17 ± 0.06, consistent with high fractions of organic aerosol.The hygroscopicity parameter, κ, exhibits remarkably little temporal variability: no pronounced diurnal cycles, only weak seasonal trends, and few short-term variations during long-range transport events. In contrast, the CCN number concentrations exhibit a pronounced seasonal cycle, tracking the pollution-related seasonality in total aerosol concentration. We find that the variability in the CCN concentrations in the central Amazon is mostly driven by aerosol particle number concentration and size distribution, while variations in aerosol hygroscopicity and chemical composition matter only during a few episodes.For modeling purposes, we compare different approaches of predicting CCN number concentration and present a novel parametrization, which allows accurate CCN predictions based on a small set of input data.

  19. Aerodynamic Focusing Of High-Density Aerosols

    SciTech Connect

    Ruiz, D. E.; Fisch, Nathaniel

    2014-02-24

    High-density micron-sized particle aerosols might form the basis for a number of applications in which a material target with a particular shape might be quickly ionized to form a cylindrical or sheet shaped plasma. A simple experimental device was built in order to study the properties of high-density aerosol focusing for 1 m silica spheres. Preliminary results recover previous findings on aerodynamic focusing at low densities. At higher densities, it is demonstrated that the focusing properties change in a way which is consistent with a density dependent Stokes number.

  20. Impact of aerosol hygroscopic growth on the direct aerosol radiative effect in summer on North China Plain

    NASA Astrophysics Data System (ADS)

    Kuang, Y.; Zhao, C. S.; Tao, J. C.; Bian, Y. X.; Ma, N.

    2016-12-01

    In this paper, relative humidity (RH) profiles and their impacts on the vertical variations of aerosol optical properties and the direct aerosol radiative effect (DARE) have been investigated based on surface measurements from the Haze in China campaign and sounding data from the North China Plain. Among the profiles obtained from July to September in 2008, about half have RHs greater than 80% within the mixed layer. The vertical variations in the aerosol optical properties at ambient RH, including the extinction coefficient (σext), single scattering albedo (SSA) and asymmetry factor (g), are remarkably different from the variations in the dry aerosols and are highly dependent on the RH profiles. Increases of the aerosol optical depth and column-averaged SSA and g due to aerosol water uptake can reach up to 64%, 0.052 and 0.079, respectively. The fractional contribution to the instantaneous DARE at the top of the atmosphere due to aerosol hygroscopic growth reaches 60% in high RH profiles. DARE estimates can be significantly biased if the RH dependence of SSA or g is not considered. We suggest that if their vertical profiles or column-averaged values are absent, then the ambient values of SSA and g at the surface should be used rather than the values of SSA and g obtained from dry aerosols when estimating DAREs.

  1. Empirical Relationships Between Optical Properties and Equivalent Diameters of Fractal Soot Aggregates at 550 Nm Wavelength.

    NASA Technical Reports Server (NTRS)

    Pandey, Apoorva; Chakrabarty, Rajan K.; Liu, Li; Mishchenko, Michael I.

    2015-01-01

    Soot aggregates (SAs)-fractal clusters of small, spherical carbonaceous monomers-modulate the incoming visible solar radiation and contribute significantly to climate forcing. Experimentalists and climate modelers typically assume a spherical morphology for SAs when computing their optical properties, causing significant errors. Here, we calculate the optical properties of freshly-generated (fractal dimension Df = 1.8) and aged (Df = 2.6) SAs at 550 nm wavelength using the numericallyexact superposition T-Matrix method. These properties were expressed as functions of equivalent aerosol diameters as measured by contemporary aerosol instruments. This work improves upon previous efforts wherein SA optical properties were computed as a function of monomer number, rendering them unusable in practical applications. Future research will address the sensitivity of variation in refractive index, fractal prefactor, and monomer overlap of SAs on the reported empirical relationships.

  2. Asian aerosols in North America: Extracting the chemical composition and mass concentration of the Asian continental aerosol plume from long-term aerosol records in the western United States

    NASA Astrophysics Data System (ADS)

    Vancuren, Richard A.

    2003-10-01

    Empirical assessment of the frequency and intensity of dust transport from Asia to North America has found that the dust regularly impacts elevated sites in the western United States, revealing a pattern of consistent, frequent transport above the marine boundary layer. Using the dust as a marker for Asian transport, a subset of Asian-influenced samples was identified within a decade of routine aerosol samples from two sites in the western cordillera of North America: Crater Lake, Oregon, and Mount Lassen, California. This subset was used to guide a statistical analysis to isolate Asian aerosol against the "background" of local contaminants. The analysis was then generalized to all samples during the transport season (March-October) for 1989-1999. A mixture of dust and combustion products dominates the Asian aerosol with typical concentration around 5 μg/m3 and mass median diameter between 2 and 3 μm. Major fine particle (<2.5 μm diameter) constituent fractions are ˜30% mineral, 28% organic compounds, 4% elemental carbon, 10% sulfate, <5% nitrate, and <1% sea salt. A second, possibly Asian, component of aged biomass smoke and sea salt is also present, with typical concentration (when present) around 1.5 μg/m3. Averaged over the transport season the dusty Asian aerosol and the smoky aerosol comprise 60 and 6%, respectively, of total particle mass (<10 μm diameter) and 72 and 13% of fine particle mass at these sites. These data indicate that the Asian continental plume is a significant contributor to aerosol loading at remote high-altitude sites across western North America. This implies a significant influence for Asian emissions on free troposphere aerosols over North America and suggests that they need to be explicitly accounted for in aerosol analyses ranging from climate studies to aerosol regulatory programs.

  3. Aerosol Deposition and Solar Panel Performance

    NASA Astrophysics Data System (ADS)

    Arnott, W. P.; Rollings, A.; Taylor, S. J.; Parks, J.; Barnard, J.; Holmes, H.

    2015-12-01

    Passive and active solar collector farms are often located in relatively dry desert regions where cloudiness impacts are minimized. These farms may be susceptible to reduced performance due to routine or episodic aerosol deposition on collector surfaces. Intense episodes of wind blown dust deposition may negatively impact farm performance, and trigger need to clean collector surfaces. Aerosol deposition rate depends on size, morphology, and local meteorological conditions. We have developed a system for solar panel performance testing under real world conditions. Two identical 0.74 square meter solar panels are deployed, with one kept clean while the other receives various doses of aerosol deposition or other treatments. A variable load is used with automation to record solar panel maximum output power every 10 minutes. A collocated sonic anemometer measures wind at 10 Hz, allowing for both steady and turbulent characterization to establish a link between wind patterns and particle distribution on the cells. Multispectral photoacoustic instruments measure aerosol light scattering and absorption. An MFRSR quantifies incoming solar radiation. Solar panel albedo is measured along with the transmission spectra of particles collected on the panel surface. Key questions are: At what concentration does aerosol deposition become a problem for solar panel performance? What are the meteorological conditions that most strongly favor aerosol deposition, and are these predictable from current models? Is it feasible to use the outflow from an unmanned aerial vehicle hovering over solar panels to adequately clean their surface? Does aerosol deposition from episodes of nearby forest fires impact performance? The outlook of this research is to build a model that describes environmental effects on solar panel performance. Measurements from summer and fall 2015 will be presented along with insights gleaned from them.

  4. Source contributions to organic aerosol in the eastern United States

    NASA Astrophysics Data System (ADS)

    Lane, Timothy Edward

    Organic aerosols (OA) and elemental carbon (EC) are important components of atmospheric particulate matter (PM), potentially posing health hazards and contributing to global climate change. Secondary organic aerosol (SOA) is formed when condensable products from the oxidation of volatile organic compounds (VOCs) in the gas phase partition into the aerosol phase. Implementation of effective control strategies for organic PM2.5 (organic particles with diameters less than 2.5 mum) requires the quantification of the contribution of each source to the ambient OA and EC concentrations. The overall goal of this work is to determine which sources contribute the most to the organic aerosol concentrations across the eastern US. First, a source-resolved model is developed to predict the contribution of eight different sources to primary organic aerosol concentrations. Primary organic aerosol (OA) and elemental carbon (EC) concentrations are tracked for eight different sources: gasoline vehicles, non-road diesel vehicles, on-road diesel vehicles, biomass burning, wood burning, natural gas combustion, road dust, and all other sources. The results of the source-resolved model are compared to the results of chemical mass balance (CMB) models for Pittsburgh and multiple urban/rural sites from the Southeastern Aerosol Research and Characterization (SEARCH) network. Significant discrepancies exist between the source-resolved model and the CMB model predictions for several of the sources. There is strong evidence that the organic PM emissions from natural gas combustion are overestimated. Other similarities and discrepancies between the source-resolved model and the CMB model for primary OA and EC are discussed along with problems in the current emission inventory for certain sources. Next, the importance of isoprene as a source of SOA is determined using PMCAMx to predict the isoprene SOA concentration across the eastern US. Isoprene, the most abundant non-methane hydrocarbon

  5. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds.

    PubMed

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H; Rudich, Yinon

    2013-12-17

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we