Science.gov

Sample records for aerosol direct effects

  1. Direct radiative effect by multicomponent aerosol over China

    SciTech Connect

    Huang, Xin; Song, Yu; Zhao, Chun; Cai, Xuhui; Zhang, Hongsheng; Zhu, Tong

    2015-05-01

    The direct radiative effect (DRE) of multiple aerosol species (sulfate, nitrate, ammonium, black carbon (BC), organic carbon (OC), and mineral aerosol) and their spatiotemporal variations over China were investigated using a fully coupled meteorology–chemistry model (WRF-Chem) for the entire year of 2006. We made modifications to improve model performance, including updating land surface parameters, improving the calculation of transition metal-catalyzed oxidation of SO2, and adding in heterogeneous reactions between mineral aerosol and acid gases. The modified model well reproduced the magnitude, seasonal pattern, and spatial distribution of the measured meteorological conditions, concentrations of PM10 and its components, and aerosol optical depth (AOD). A diagnostic iteration method was used to estimate the overall DRE of aerosols and contributions from different components. At the land surface, all kinds of aerosol species reduced the incident net radiation flux with a total DRE of 10.2 W m-2 over China. Aerosols significantly warm the atmosphere with the national mean DRE of +10.8 W m-2. BC was the leading radiative-heating component (+8.7 W m-2), followed by mineral aerosol (+1.1 W m-2). At the top of the atmosphere (TOA), BC introduced the largest radiative perturbation (+4.5 W m-2), followed by sulfate (-1.4 W m-2). The overall perturbation of aerosols on radiation transfer is quite small over China, demonstrating the counterbalancing effect between scattering and adsorbing aerosols. Aerosol DRE at the TOA had distinct seasonality, generally with a summer maximum and winter minimum, mainly determined by mass loadings, hygroscopic growth, and incident radiation flux.

  2. Direct and semidirect aerosol effects of Southern African biomass burning aerosol

    SciTech Connect

    Sakaeda, Naoko; Wood, Robert; Rasch, Philip J.

    2011-06-21

    The direct and semi-direct radiative effects of biomass burning aerosols from Southern African fires during July-October are investigated using 20 year runs of the Community Atmospheric Model (CAM) coupled to a slab ocean model. The aerosol optical depth is constrained using observations in clear skies from MODIS and for aerosol layers above clouds from CALIPSO. Over the ocean, where the absorbing biomass burning aerosol layers are primarily located above cloud, negative top of atmosphere (TOA) semi-direct radiative effects associated with increased low cloud cover dominate over a weaker positive all-sky direct radiative effect (DRE). In contrast, over the land where the aerosols are often below or within cloud layers, reductions in cloud liquid water path (LWP) lead to a positive semi-direct radiative effect that dominates over a near-zero DRE. Over the ocean, the cloud response can be understood as a response to increased lower tropospheric stability (LTS) which is caused both by aerosol absorptive warming in overlying layers and surface cooling in response to direct aerosol forcing. The ocean cloud changes are robust to changes in the cloud parameterization (removal of the hard-wired dependence of clouds on LTS), suggesting that they are physically realistic. Over land where cloud cover changes are minimal, decreased LWP is consistent with weaker convection driven by increased static stability. Over the entire region the overall TOA radiative effect from the biomass burning aerosols is almost zero due to opposing effects over the land and ocean. However, the surface forcing is strongly negative requiring a reduction in precipitation. This is primarily realized through reductions in convective precipitation on both the southern and northern flanks of the convective precipitation region spanning the equatorial rainforest and the ITCZ in the southern Sahel. The changes are consistent with the low-level aerosol forced cooling pattern. The results highlight the

  3. Modeling the Relationships Between Aerosol Properties and the Direct and Indirect Effects of Aerosols on Climate

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.

    1994-01-01

    Aerosols may affect climate directly by scattering and absorbing visible and infrared energy, They may also affect climate indirectly by modifying the properties of clouds through microphysical processes, and by altering abundances of radiatively important gases through heterogeneous chemistry. Researchers understand which aerosol properties control the direct effect of aerosols on the radiation budget. Unfortunately, despite an abundance of data on certain types of aerosols, much work remains to be done to determine the values of these properties. For instance we have little idea about the global distribution, seasonal variation, or interannual variability of the aerosol optical depth. Also we do not know the visible light absorption properties of tropical aerosols which may contain much debris from slash and burn agriculture. A positive correlation between aerosol concentrations and albedos of marine stratus clouds is observed, and the causative microphysics is understood. However, models suggest that it is difficult to produce new particles in the marine boundary layer. Some modelers have suggested that the particles in the marine boundary layer may originate in the free troposphere and be transported into the boundary layer. Others argue that the aerosols are created in the marine boundary layer. There are no data linking aerosol concentration and cirrus cloud albedo, and models suggest cirrus properties may not be very sensitive to aerosol abundance. There is clear evidence of a radiatively significant change in the global lower stratospheric ozone abundance during the past few decades. These changes are caused by heterogeneous chemical reactions occurring on the surfaces of particles. The rates of these reactions depend upon the chemical composition of the particles. Although rapid advances in understanding heterogeneous chemistry have been made, much remains to be done.

  4. Impact of Cloud-Borne Aerosol Representation on Aerosol Direct and Indirect Effects

    SciTech Connect

    Ghan, Steven J.; Easter, Richard C.

    2006-09-21

    Aerosol particles attached to cloud droplets are much more likely to be removed from the atmosphere and are much less efficient at scattering sunlight than if unattached. Models used to estimate direct and indirect effects of aerosols employ a variety of representations of such cloud-borne particles. Here we use a global aerosol model with a relatively complete treatment of cloud-borne particles to estimate the sensitivity of simulated aerosol, cloud and radiation fields to various approximations to the representation of cloud-borne particles. We find that neglecting transport of cloud-borne particles introduces little error, but that diagnosing cloud-borne particles produces global mean biases of 20% and local errors of up to 40% for many variables of interest. A treatment that predicts the total mass concentration of cloud-borne particles for each mode yields smaller errors and runs 20% faster than the complete treatment.

  5. Global profiles of the direct aerosol effect using vertically resolved aerosol data

    NASA Astrophysics Data System (ADS)

    Korras Carraca, Marios Bruno; Pappas, Vasilios; Matsoukas, Christos; Hatzianastassiou, Nikolaos; Vardavas, Ilias

    2014-05-01

    Atmospheric aerosols, both natural and anthropogenic, can cause climate change through their direct, indirect, and semi-direct effects on the radiative energy budget of the Earth-atmosphere system. In general, aerosols cause cooling of the surface and the planet, while they warm the atmosphere due to scattering and absorption of incoming solar radiation. The importance of vertically resolved direct radiative effect (DRE) and heating/cooling effects of aerosols is strong, while large uncertainties still lie with their magnitudes. In order to be able to quantify them throughout the atmosphere, a detailed vertical profile of the aerosol effect is required. Such data were made available recently by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite. CALIOP is the first polarization lidar to fly in space and has been acquiring unique data on aerosols and clouds since June 2006. The aim of this study is to investigate both the vertically resolved geographic and seasonal variation of the DRE due to aerosols. The vertical profile of DRE under all-sky and clear-sky conditions is computed using the deterministic spectral radiative transfer model FORTH. From the DRE, the effect on atmospheric heating/cooling rate profiles due to aerosols can also be derived. We use CALIOP Level 2-Version 3 Layer aerosol optical depth data as input to our radiation transfer model, for a period of 3 complete years (2007-2009). These data are provided on a 5 km horizontal resolution and in up to 8 vertical layers and have been regridded on our model horizontal and vertical resolutions. We use cloud data from the International Satellite Cloud Climatology Project (ISCCP), while the aerosol asymmetry factor and single scattering albedo are taken from the Global Aerosol Data Set (GADS). The model computations are performed on a monthly, 2.5°× 2.5° resolution on global scale, at 40

  6. Quantifying Aerosol Direct Effects from Broadband Irradiance and Spectral Aerosol Optical Depth Observations

    SciTech Connect

    Creekmore, Torreon N.; Joseph, Everette; Long, Charles N.; Li, Siwei

    2014-05-16

    We outline a methodology using broadband and spectral irradiances to quantify aerosol direct effects on the surface diffuse shortwave (SW) irradiance. Best Estimate Flux data span a 13 year timeframe at the Department of Energy Atmospheric Radiation Measurement Program’s Southern Great Plains (SGP) site. Screened clear-sky irradiances and aerosol optical depth (AOD), for solar zenith angles ≤ 65°, are used to estimate clear-sky diffuse irradiances. We validate against detected clear-sky observations from SGP’s Basic Radiation System (BRS). BRS diffuse irradiances were in accordance with estimates, producing a root-mean-square error and mean bias errors of 4.0 W/m2 and -1.4 W/m2, respectively. Absolute differences show 99% of estimates within ±10 W/m2 (10%) of the mean BRS observations. Clear-sky diffuse estimates are used to derive quantitative estimates of aerosol radiative effects, represented as the aerosol diffuse irradiance (ADI). ADI is the contribution of diffuse SW to global SW, attributable to scattering of atmospheric transmission by natural plus anthropogenic aerosols. Estimated slope for the ADI as a function of AOD indicates an increase of ~22 W/m2 in diffuse SW for every 0.1 increase in AOD. Such significant increases in the diffuse fraction could possibly increase photosynthesis. Annual mean ADI is 28.2 W/m2, and heavy aerosol loading at SGP provides up to a maximum increase of 120 W/m2 in diffuse SW over background conditions. With regard to seasonal variation, the mean diffuse forcings are 17.2, 33.3, 39.0, and 23.6 W/m2 for winter, spring, summer, and fall, respectively.

  7. Influence of Observed Diurnal Cycles of Aerosol Optical Depth on Aerosol Direct Radiative Effect

    NASA Technical Reports Server (NTRS)

    Arola, A.; Eck, T. F.; Huttunen, J.; Lehtinen, K. E. J.; Lindfors, A. V.; Myhre, G.; Smirinov, A.; Tripathi, S. N.; Yu, H.

    2013-01-01

    The diurnal variability of aerosol optical depth (AOD) can be significant, depending on location and dominant aerosol type. However, these diurnal cycles have rarely been taken into account in measurement-based estimates of aerosol direct radiative forcing (ADRF) or aerosol direct radiative effect (ADRE). The objective of our study was to estimate the influence of diurnal aerosol variability at the top of the atmosphere ADRE estimates. By including all the possible AERONET sites, we wanted to assess the influence on global ADRE estimates. While focusing also in more detail on some selected sites of strongest impact, our goal was to also see the possible impact regionally.We calculated ADRE with different assumptions about the daily AOD variability: taking the observed daily AOD cycle into account and assuming diurnally constant AOD. Moreover, we estimated the corresponding differences in ADREs, if the single AOD value for the daily mean was taken from the the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra or Aqua overpass times, instead of accounting for the true observed daily variability. The mean impact of diurnal AOD variability on 24 h ADRE estimates, averaged over all AERONET sites, was rather small and it was relatively small even for the cases when AOD was chosen to correspond to the Terra or Aqua overpass time. This was true on average over all AERONET sites, while clearly there can be much stronger impact in individual sites. Examples of some selected sites demonstrated that the strongest observed AOD variability (the strongest morning afternoon contrast) does not typically result in a significant impact on 24 h ADRE. In those cases, the morning and afternoon AOD patterns are opposite and thus the impact on 24 h ADRE, when integrated over all solar zenith angles, is reduced. The most significant effect on daily ADRE was induced by AOD cycles with either maximum or minimum AOD close to local noon. In these cases, the impact on 24 h ADRE was

  8. Effect of Increasing Temperature on Carbonaceous Aerosol Direct Radiative Effect over Southeastern US

    NASA Astrophysics Data System (ADS)

    Mielonen, Tero; Kokkola, Harri; Hienola, Anca; Kühn, Thomas; Merikanto, Joonas; Korhonen, Hannele; Arola, Antti; Kolmonen, Pekka; Sogacheva, Larisa; de Leeuw, Gerrit

    2016-04-01

    Aerosols are an important regulator of the Earth's climate. They scatter and absorb incoming solar radiation and thus cool the climate by reducing the amount of energy reaching the atmospheric layers and the surface below (direct effect). A certain subset of the particles can also act as initial formation sites for cloud droplets and thereby modify the microphysics, dynamics, radiative properties and lifetime of clouds (indirect effects). The magnitude of aerosol radiative effects remains the single largest uncertainty in current estimates of anthropogenic radiative forcing. One of the key quantities needed for accurate estimates of anthropogenic radiative forcing is an accurate estimate of the radiative effects from natural unperturbed aerosol. The dominant source of natural aerosols over Earth's vast forested regions are biogenic volatile organic compounds (BVOC) which, following oxidation in the atmosphere, can condense onto aerosol particles to form secondary organic aerosol (SOA) and significantly modify the particles' properties. In accordance with the expected positive temperature dependence of BVOC emissions, several previous studies have shown that some aerosol properties, such as mass concentration and ability to act as cloud condensation nuclei (CCN), also correlate positively with temperature at many forested sites. There is conflicting evidence as to whether the aerosol direct effects have a temperature dependence due to increased BVOC emissions. The main objective of this study is to investigate the causes of the observed effect of increasing temperatures on the aerosol direct radiative effect, and to provide a quantitative estimate of this effect and of the resulting negative feedback in a warming climate. More specifically, we will investigate the causes of the positive correlation between aerosol optical depth (AOD) and land surface temperature (LST) over southeastern US where biogenic emissions are a significant source of atmospheric particles. In

  9. CALIPSO-inferred aerosol direct radiative effects: Bias estimates using ground-based Raman lidars

    NASA Astrophysics Data System (ADS)

    Thorsen, Tyler J.; Fu, Qiang

    2015-12-01

    Observational constraints on the change in the radiative energy budget caused by the presence of aerosols, i.e., the aerosol direct radiative effect (DRE), have recently been made using observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO). CALIPSO observations have the potential to provide improved global estimates of aerosol DRE compared to passive sensor-derived estimates due to CALIPSO's ability to perform vertically resolved aerosol retrievals over all surface types and over cloud. In this study, uncertainties in CALIPSO-inferred aerosol DRE are estimated using multiple years of observations from the Atmospheric Radiation Measurement (ARM) program's Raman lidars at midlatitude and tropical sites. We find that CALIPSO is unable to detect all radiatively significant aerosol, resulting in an underestimate in the magnitude of the aerosol DRE by 30-50% at the two ARM sites. The undetected aerosol is likely the consequence of random noise in CALIPSO measurements and therefore will affect global observations as well. This suggests that the global aerosol DRE inferred from CALIPSO observations are likely too weak. Also examined is the impact of the ratio of extinction-to-backscatter (i.e., the lidar ratio) whose value CALIPSO retrievals must assume to obtain the aerosol extinction profile. It is shown that if CALIPSO can reproduce the climatological value of the lidar ratio at a given location, then the aerosol DRE there can be accurately calculated (within about 3%).

  10. CALIPSO-inferred aerosol direct radiative effects: Bias estimates using ground-based Raman lidars

    NASA Astrophysics Data System (ADS)

    Thorsen, T. J.; Fu, Q.

    2015-12-01

    Observational constraints on the change in radiative energy budget caused by the presence of aerosols, i.e. the aerosol direct radiative effect (DRE), have recently been made using observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO). CALIPSO observations have the potential to provide improved global estimates of aerosol DRE compared to passive sensor-derived estimates due to CALIPSO's ability to perform vertically-resolved aerosol retrievals over all surface types and over cloud. In this study we estimate the uncertainties in CALIPSO-inferred aerosol DRE using multiple years of observations from the Atmospheric Radiation Measurement (ARM) program's Raman lidars (RL) at midlatitude and tropical sites. Examined are assumptions about the ratio of extinction-to-backscatter (i.e. the lidar ratio) made by the CALIPSO retrievals, which are needed to retrieve the aerosol extinction profile. The lidar ratio is shown to introduce minimal error in the mean aerosol DRE at the top-of-atmosphere and surface. It is also shown that CALIPSO is unable to detection all radiatively-significant aerosol, resulting in an underestimate in the magnitude of the aerosol DRE. Therefore, global estimates of the aerosol DRE inferred from CALIPSO are likely too weak.

  11. Estimating the direct and indirect effects of secondary organic aerosols using ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    O'Donnell, D.; Tsigaridis, K.; Feichter, J.

    2011-08-01

    Secondary organic aerosol (SOA) has been introduced into the global climate-aerosol model ECHAM5/HAM. The SOA module handles aerosols originating from both biogenic and anthropogenic sources. The model simulates the emission of precursor gases, their chemical conversion into condensable gases, the partitioning of semi-volatile condenable species into the gas and aerosol phases. As ECHAM5/HAM is a size-resolved model, a new method that permits the calculation of partitioning of semi-volatile species between different size classes is introduced. We compare results of modelled organic aerosol concentrations against measurements from extensive measurement networks in Europe and the United States, running the model with and without SOA. We also compare modelled aerosol optical depth against measurements from the AERONET network of grond stations. We find that SOA improves agreement between model and measurements in both organic aerosol mass and aerosol optical depth, but does not fully correct the low bias that is present in the model for both of these quantities. Although many models now include SOA, any overall estimate of the direct and indirect effects of these aerosols is still lacking. This paper makes a first step in that direction. The model is applied to estimate the direct and indirect effects of SOA under simulated year 2000 conditions. The modelled SOA spatial distribution indicates that SOA is likely to be an important source of free and upper tropospheric aerosol. We find a negative shortwave (SW) forcing from the direct effect, amounting to -0.31 Wm-2 on the global annual mean. In contrast, the model indicates a positive indirect effect of SOA of +0.23 Wm-2, arising from the enlargement of particles due to condensation of SOA, together with an enhanced coagulation sink of small particles. In the longwave, model results are a direct effect of +0.02 Wm-2 and an indirect effect of -0.03 Wm-2.

  12. Potential sensitivity of photosynthesis and isoprene emission to direct radiative effects of atmospheric aerosol pollution

    NASA Astrophysics Data System (ADS)

    Strada, S.; Unger, N.

    2015-09-01

    A global Earth system model is applied to quantify the impacts of direct anthropogenic aerosol effective radiative forcing on gross primary productivity (GPP) and isoprene emission. The impacts of different pollution aerosol sources (all anthropogenic, biomass burning and non-biomass burning) are investigated by performing sensitivity experiments. On the global scale, our results show that land carbon fluxes (GPP and isoprene emission) are not sensitive to pollution aerosols, even under a global decline in surface solar radiation (direct + diffuse) by ~ 9 %. At the regional scale, plant productivity (GPP) and isoprene emission show a robust but opposite sensitivity to pollution aerosols, in regions where complex canopies dominate. In eastern North America and Europe, anthropogenic pollution aerosols (mainly from non-biomass burning sources) enhance GPP by +8-12 % on an annual average, with a stronger increase during the growing season (> 12 %). In the Amazon basin and central Africa, biomass burning aerosols increase GPP by +2-5 % on an annual average, with a peak in the Amazon basin during the dry-fire season (+5-8 %). In Europe and China, anthropogenic pollution aerosols drive a decrease in isoprene emission of -2 to -12 % on the annual average. Anthropogenic aerosols affect land carbon fluxes via different mechanisms and we suggest that the dominant mechanism varies across regions: (1) light scattering dominates in the eastern US; (2) cooling in the Amazon basin; and (3) reduction in direct radiation in Europe and China.

  13. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer

    Mccomiskey, Allison

    2008-01-15

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  14. Sensitivity studies for incorporating the direct effect of sulfate aerosols into climate models

    NASA Astrophysics Data System (ADS)

    Miller, Mary Rawlings Lamberton

    2000-09-01

    Aerosols have been identified as a major element of the climate system known to scatter and absorb solar and infrared radiation, but the development of procedures for representing them is still rudimentary. This study addresses the need to improve the treatment of sulfate aerosols in climate models by investigating how sensitive radiative particles are to varying specific sulfate aerosol properties. The degree to which sulfate particles absorb or scatter radiation, termed the direct effect, varies with the size distribution of particles, the aerosol mass density, the aerosol refractive indices, the relative humidity and the concentration of the aerosol. This study develops 504 case studies of altering sulfate aerosol chemistry, size distributions, refractive indices and densities at various ambient relative humidity conditions. Ammonium sulfate and sulfuric acid aerosols are studied with seven distinct size distributions at a given mode radius with three corresponding standard deviations implemented from field measurements. These test cases are evaluated for increasing relative humidity. As the relative humidity increases, the complex index of refraction and the mode radius for each distribution correspondingly change. Mie theory is employed to obtain the radiative properties for each case study. The case studies are then incorporated into a box model, the National Center of Atmospheric Research's (NCAR) column radiation model (CRM), and NCAR's community climate model version 3 (CCM3) to determine how sensitive the radiative properties and potential climatic effects are to altering sulfate properties. This study found the spatial variability of the sulfate aerosol leads to regional areas of intense aerosol forcing (W/m2). These areas are particularly sensitive to altering sulfate properties. Changes in the sulfate lognormal distribution standard deviation can lead to substantial regional differences in the annual aerosol forcing greater than 2 W/m 2. Changes in the

  15. A review of measurement-based assessments of the aerosol direct radiative effect and forcing

    NASA Astrophysics Data System (ADS)

    Yu, H.; Kaufman, Y. J.; Chin, M.; Feingold, G.; Remer, L. A.; Anderson, T. L.; Balkanski, Y.; Bellouin, N.; Boucher, O.; Christopher, S.; Decola, P.; Kahn, R.; Koch, D.; Loeb, N.; Reddy, M. S.; Schulz, M.; Takemura, T.; Zhou, M.

    2006-02-01

    Aerosols affect the Earth's energy budget directly by scattering and absorbing radiation and indirectly by acting as cloud condensation nuclei and, thereby, affecting cloud properties. However, large uncertainties exist in current estimates of aerosol forcing because of incomplete knowledge concerning the distribution and the physical and chemical properties of aerosols as well as aerosol-cloud interactions. In recent years, a great deal of effort has gone into improving measurements and datasets. It is thus feasible to shift the estimates of aerosol forcing from largely model-based to increasingly measurement-based. Our goal is to assess current observational capabilities and identify uncertainties in the aerosol direct forcing through comparisons of different methods with independent sources of uncertainties. Here we assess the aerosol optical depth (τ), direct radiative effect (DRE) by natural and anthropogenic aerosols, and direct climate forcing (DCF) by anthropogenic aerosols, focusing on satellite and ground-based measurements supplemented by global chemical transport model (CTM) simulations. The multi-spectral MODIS measures global distributions of aerosol optical depth (τ) on a daily scale, with a high accuracy of ±0.03±0.05τ over ocean. The annual average τ is about 0.14 over global ocean, of which about 21%±7% is contributed by human activities, as estimated by MODIS fine-mode fraction. The multi-angle MISR derives an annual average AOD of 0.23 over global land with an uncertainty of ~20% or ±0.05. These high-accuracy aerosol products and broadband flux measurements from CERES make it feasible to obtain observational constraints for the aerosol direct effect, especially over global the ocean. A number of measurement-based approaches estimate the clear-sky DRE (on solar radiation) at the top-of-atmosphere (TOA) to be about -5.5±0.2 Wm-2 (median ± standard error from various methods) over the global ocean. Accounting for thin cirrus contamination

  16. Quantifying the aerosol semi-direct effect in the NASA GEOS-5 AGCM

    NASA Astrophysics Data System (ADS)

    Randles, C. A.; Colarco, P. R.; da Silva, A.

    2011-12-01

    Aerosols such as black carbon, dust, and some organic carbon species both scatter and absorb incoming solar radiation. This direct aerosol radiative forcing (DARF) redistributes solar energy both by cooling the surface and warming the atmosphere. As a result, these aerosols affect atmospheric stability and cloud cover (the semi-direct effect, or SDE). Furthermore, in regions with persistent high loadings of absorbing aerosols (e.g. Asia), regional circulation patterns may be altered, potentially resulting in changes in precipitation patterns. Here we investigate aerosol-climate coupling using the NASA Goddard Earth Observing System model version 5 (GEOS-5) atmospheric general circulation model (AGCM), in which we have implemented an online version of the Goddard Chemistry, Aerosol, Radiation and Transport (GOCART) model. GOCART includes representations of the sources, sinks, and chemical transformation of externally mixed dust, sea salt, sulfate, and carbonaceous aerosols. We examine a series of free-running ensemble climate simulations of the present-day period (2000-2009) forced by observed sea surface temperatures to determine the impact of aerosols on the model climate. The SDE and response of each simulation is determined by differencing with respect to the control simulation (no aerosol forcing). In a free-running model, any estimate of the SDE includes changes in clouds due both to atmospheric heating from aerosols and changes in circulation. To try and quantify the SDE without these circulation changes we then examine the DARF and SDE in GEOS-5 with prescribed meteorology introduced by the MERRA analysis. By doing so, we are able to examine changes in model clouds that occur on shorter scales (six hours). In the GEOS-5 data assimilation system (DAS), the analysis is defined as the best estimate of the atmospheric state at any given time, and it is determined by optimally combining a first-guess short-term GCM forecast with all available observations. The

  17. Quantifying the Aerosol Semi-Direct Effect in the NASA GEOS-5 AGCM

    NASA Technical Reports Server (NTRS)

    Randles, Cynthia A.; Colarco, Peter R.; daSilva, Arlindo

    2011-01-01

    Aerosols such as black carbon, dust, and some organic carbon species both scatter and absorb incoming solar radiation. This direct aerosol radiative forcing (DARF) redistributes solar energy both by cooling the surface and warming the atmosphere. As a result, these aerosols affect atmospheric stability and cloud cover (the semi-direct effect, or SDE). Furthermore, in regions with persistent high loadings of absorbing aerosols (e.g. Asia), regional circulation patterns may be altered, potentially resulting in changes in precipitation patterns. Here we investigate aerosol-climate coupling using the NASA Goddard Earth Observing System model version 5 (GEOS-5) atmospheric general circulation model (AGCM), in which we have implemented an online version of the Goddard Chemistry, Aerosol, Radiation and Transport (GOCART) model. GOCART includes representations of the sources, sinks, and chemical transformation of externally mixed dust, sea salt, sulfate, and carbonaceous aerosols. We examine a series of free-running ensemble climate simulations of the present-day period (2000-2009) forced by observed sea surface temperatures to determine the impact of aerosols on the model climate. The SDE and response of each simulation is determined by differencing with respect to the control simulation (no aerosol forcing). In a free-running model, any estimate of the SDE includes changes in clouds due both to atmospheric heating from aerosols and changes in circulation. To try and quantify the SDE without these circulation changes we then examine the DARF and SDE in GEOS-5 with prescribed meteorological analyses introduced by the MERRA analysis. By doing so, we are able to examine changes in model clouds that occur on shorter scales (six hours). In the GEOS-5 data assimilation system (DAS), the analysis is defined as the best estimate of the atmospheric state at any given time, and it is determined by optimally combining a first-guess short-term GCM forecast with all available

  18. Quantitative analysis of the direct effect of aerosols over decadal scale by using ECHAM6-standalone

    NASA Astrophysics Data System (ADS)

    Muhammad, K.; Bott, A.; Hense, A.

    2013-12-01

    The influence of aerosols on climate is an important but still highly uncertain aspect in climate research. By using atmospheric general circulation model ECHAM6 our objective is to quantify the direct effect of aerosols over decadal time scale in comparison to the variability induced by the varying sea surface temperatures (SST) and sea ice concentrations (SIC) taken by the AMIP-II data base and the inevitable internal and unpredictable climate noise. We integrated the model with prescribed SST/SIC along with observed green house gases and aerosols concentrations for ten year period 1995-2004. Two ensembles with sample size ten, each have been created by starting the integrations on January 1st, 1995 with ten different initial conditions derived from two control runs over 15-years. These ensembles differ for tropospheric aerosols (TA): the non-aerosol case (NAC) is without any TA and aerosol case (AC) is utilizing a time variable data set of aerosols optical properties for input into the solar part of the ECHAM6 radiation code (Kinne et al, 2006). This set-up allows for a quantitative estimation and separation of the stationary and transient aerosol effects, the SST/SIC induced variability and the internal variability due to large scale atmospheric instabilities and non-linearities with the help of a two-way analysis of variance. We analyzed ensemble data for top of atmosphere (TOA) energy balance and temperature at 850 hPa. In the NAC, the ensemble exhibits a global and annual mean 3 W/m2 imbalance of the TOA radiation balance whereas the AC shows only 0.6 W/m2 being much closer in radiative balance over ten year period. The aerosols increase global planetary albedo from 0.29 (non-aerosol) to 0.30 for aerosol case. Extending the analysis to regional values of annual mean TOA radiation balance components, we find that the changes in TOA solar radiation budget are highly significant for static direct aerosol effect with local contributions to the total variability

  19. Potential sensitivity of photosynthesis and isoprene emission to direct radiative effects of atmospheric aerosol pollution

    NASA Astrophysics Data System (ADS)

    Strada, Susanna; Unger, Nadine

    2016-04-01

    A global Earth system model is applied to quantify the impacts of direct anthropogenic aerosol effective radiative forcing on gross primary productivity (GPP) and isoprene emission. The impacts of different pollution aerosol sources (anthropogenic, biomass burning, and non-biomass burning) are investigated by performing sensitivity experiments. The model framework includes all known light and meteorological responses of photosynthesis, but uses fixed canopy structures and phenology. On a global scale, our results show that global land carbon fluxes (GPP and isoprene emission) are not sensitive to pollution aerosols, even under a global decline in surface solar radiation (direct + diffuse) by ˜ 9 %. At a regional scale, GPP and isoprene emission show a robust but opposite sensitivity to pollution aerosols in regions where forested canopies dominate. In eastern North America and Eurasia, anthropogenic pollution aerosols (mainly from non-biomass burning sources) enhance GPP by +5-8 % on an annual average. In the northwestern Amazon Basin and central Africa, biomass burning aerosols increase GPP by +2-5 % on an annual average, with a peak in the northwestern Amazon Basin during the dry-fire season (+5-8 %). The prevailing mechanism varies across regions: light scattering dominates in eastern North America, while a reduction in direct radiation dominates in Europe and China. Aerosol-induced GPP productivity increases in the Amazon and central Africa include an additional positive feedback from reduced canopy temperatures in response to increases in canopy conductance. In Eurasia and northeastern China, anthropogenic pollution aerosols drive a decrease in isoprene emission of -2 to -12 % on an annual average. Future research needs to incorporate the indirect effects of aerosols and possible feedbacks from dynamic carbon allocation and phenology.

  20. Estimation of the direct aerosol radiative effect over China based on satellite remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Sundström, A.-M.; Huttunen, J.; Arola, A.; Kolmonen, P.; Sogacheva, L.; de Leeuw, G.

    2012-04-01

    Aerosols influence the radiative budget of the Earth-atmosphere system directly by scattering and absorbing solar and thermal infrared radiation, and indirectly by modifying the microphysical, and hence the radiative properties and lifetimes of clouds. However, the quantification of aerosol radiative effects is complex and large uncertainties still exist, mainly due to the high spatial and temporal variation of the aerosol concentration and mass, as well as their relatively short lifetime in the atmosphere. The clear-sky direct aerosol radiative effect at the top of the atmosphere (TOA) is defined as the difference between the net solar flux ΔFTOA (difference between downward and upward fluxes) defined with (F) and without (F0) aerosols. The negative values of ΔFTOA correspond to planetary cooling, whereas positive values correspond to increased atmospheric warming. Satellites offer an opportunity to observe the spatial distribution of aerosol properties with adequate resolution and coverage from regional to global scales. In this work multisensor satellite observations are used to estimate the direct aerosol radiative effect at the top of the atmosphere over China within the shortwave (SW, 0.3-5 microns) region. The Moderate Imaging Spectroradiometer onboard (MODIS) NASA's Terra and Aqua platforms offer global observations of aerosol and cloud optical properties nearly on a daily basis, whereas the Clouds and the Earth's Radian Energy System (CERES) instruments measure simultaneously TOA broadband fluxes e.g. in the shortwave region. Hence, the instantaneous aerosol direct radiative effect for a month at TOA can be estimated using the MODIS aerosol optical depth (AOD) and coincident broadband flux from the CERES instrument. The values for F and F0 are obtained by performing a linear regression between MODIS AOD at 0.55 microns wavelength and CERES SW flux. The instantaneous values are converted to monthly means by using a radiative transfer code. Preliminary

  1. Direct and indirect methods for correcting the aerosol effect on remote sensing

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tanre, Didier

    1994-01-01

    Aspects of aerosol studies and remote sensing are reviewed. Aerosol scatters solar radiation before it reaches the surface and scatters and absorbs it again after it is reflected from the surface and before it reaches the satellite sensor. The effect is spectrally and spatially dependent. Therefore atmospheric aerosol (dust, smoke and air pollution particles) has a significant effect on remote sensing. Correction for the aerosol effect was never achieved on an operational basis though several case studies were demonstrated. Correction can be done in a direct way by deriving the aerosol loading from the image itself and correcting for it using the appropriate radiative transfer model or by an indirect way, by defining remote sensing functions that are less dependent on the aerosol loading. To some degree this was already achieved in global remote sensing of vegetation where a composite of several days of NDVI (Normalized Difference Vegetation Index) measurements, choosing the maximal value, was used instead of a single cloud screened value. The Atmospheric Resistant Vegetation Index (ARVI) introduced recently for the NASA Earth Observing System EOS-MODIS is the most appropriate example of indirect correction, where the index is defined in such a way that the atmospheric effect in the blue spectral channel cancels to a large degree the atmospheric in the red channel in computations of a vegetation index. Atmospheric corrections can also use aerosol climatology and ground based instrumentation.

  2. A review of measurement-based assessment of aerosol direct radiative effect and forcing

    NASA Astrophysics Data System (ADS)

    Yu, H.; Kaufman, Y. J.; Chin, M.; Feingold, G.; Remer, L. A.; Anderson, T. L.; Balkanski, Y.; Bellouin, N.; Boucher, O.; Christopher, S.; Decola, P.; Kahn, R.; Koch, D.; Loeb, N.; Reddy, M. S.; Schulz, M.; Takemura, T.; Zhou, M.

    2005-08-01

    Aerosols affect the Earth's energy budget ''directly'' by scattering and absorbing radiation and ''indirectly'' by acting as cloud condensation nuclei and, thereby, affecting cloud properties. However, large uncertainties exist in current estimates of aerosol forcing because of incomplete knowledge concerning the distribution and the physical and chemical properties of aerosols as well as aerosol-cloud interactions. In recent years, a great deal of effort has gone into improving measurements and datasets. It is thus feasible to shift the estimates of aerosol forcing from largely model-based to increasingly measurement-based. Here we assess the aerosol optical depth, direct radiative effect (DRE) by natural and anthropogenic aerosols, and direct climate forcing (DCF) by anthropogenic aerosols, focusing on satellite and ground-based measurements supplemented by global chemical transport model (CTM) simulations. The multi-spectral MODIS measures global distributions of aerosol optical thickness (τ) on a daily scale, with a high accuracy of ±0.03±0.05τ over ocean. The annual average τ is about 0.14 over global ocean, of which about 21% is contributed by human activities, as determined by MODIS fine-mode fraction. The multi-angle MISR derives an annual average AOT of 0.23 over global land with an uncertainty of ~20% or ± 0.05. These high-accuracy aerosol products and broadband flux measurements from CERES make it feasible to obtain observational constraints for the aerosol direct effect, especially over global ocean. A number of measurement-based approaches estimate the clear-sky DRE (on solar radiation) at the top-of-atmosphere (TOA) to be about -5.5±0.2 Wm-2 (median ± standard error) over global ocean. Accounting for thin cirrus contamination of the satellite derived aerosol field will reduce the TOA DRE to -5.0 Wm-2. Because of a lack of measurements of aerosol absorption and difficulty in characterizing land surface reflection, estimates of DRE over land and

  3. Measurement-based estimates of direct radiative effects of absorbing aerosols above clouds

    NASA Astrophysics Data System (ADS)

    Feng, Nan; Christopher, Sundar A.

    2015-07-01

    The elevated layers of absorbing smoke aerosols from western African (e.g., Gabon and Congo) biomass burning activities have been frequently observed above low-level stratocumulus clouds off the African coast, which presents an excellent natural laboratory for studying the effects of aerosols above clouds (AAC) on regional energy balance in tropical and subtropical environments. Using spatially and temporally collocated Moderate Resolution Imaging Spectroradiometer, Ozone Monitoring Instrument (OMI), and Clouds and the Earth's Radiant Energy System data sets, the top-of-atmosphere shortwave aerosol direct shortwave radiative effects (ARE) of absorbing aerosols above low-level water clouds in the southeast Atlantic Ocean was examined in this study. The regional averaged instantaneous ARE has been estimated to be 36.7 ± 20.5 Wm-2 (regional mean ± standard deviation) along with a mean positive OMI Aerosol Index at 1.3 in August 2006 based on multisensors measurements. The highest magnitude of instantaneous ARE can even reach 138.2 Wm-2. We assess that the 660 nm cloud optical depth (COD) values of 8-12 is the critical value above (below) which aerosol absorption (scattering) effect dominates and further produces positive (negative) ARE values. The results further show that ARE values are more sensitive to aerosols above lower COD values than cases for higher COD values. This is among the first studies to provide quantitative estimates of shortwave ARE due to AAC events from an observational perspective.

  4. Impact of aerosol vertical distribution on aerosol direct radiative effect and heating rate in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Pappas, Vasileios; Hatzianastassiou, Nikolaos; Matsoukas, Christos; Koras Carracca, Mario; Kinne, Stefan; Vardavas, Ilias

    2015-04-01

    been presented and its validity has been tested against satellite-based retrievals. A detailed spectral radiative transfer model (RTM), already used in a number of planetary and regional studies, has been used in the present study to calculate the vertically distributed aerosol direct radiative effects (DREs) and the associated aerosol heating/cooling profiles within the troposphere. Specific emphasis is given to assessment of the crucial issue of the differences between modeling the aerosol DREs using either columnar aerosol optical properties, as usually done, or vertically layered information on those properties, which is the state of the art and ideal practice. To address this problem, the following experiment has been performed: the same RTM has been used twice with the same meteorological conditions but in the first run (set1) columnar values for aerosol optical depth (AOD) have been used while using vertically distributed AOD in the second run (set2). In the second run vertically layered information for AOD is considered for 20 layers extending from the surface to 20 km a.m.s.l.. The vertical profile of AOD has been mainly based on ECHAM model. The aerosol DREs are computed at the Earth's surface, at TOA and at various levels in the atmosphere. Apart from AOD, the model also requires single-scattering albedo (SSA) and asymmetry parameter (ASY) in 18 different wavelengths, which are obtained by linear interpolation from the available wavelengths in HAC. The comparison between the obtained two sets of DRE (set1 and set2) reveal small, but notable differences which vary from one place to another. Within the atmosphere, the difference -averaged over the four seasons - ranges from -0.3 to 1.7 Wm-2 with a mean value of 0.32 Wm-2. Given the fact that the average column-integrated DREAtm values for the entire Mediterranean region based on columnar aerosol optical properties is 11.44 Wm-2, there is an average variance of 3.7 %, which locally could get to 14

  5. Ground-based remote sensing of aerosol climatology in China: Aerosol optical properties, direct radiative effect and its parameterization

    NASA Astrophysics Data System (ADS)

    Xia, X.; Che, H.; Zhu, J.; Chen, H.; Cong, Z.; Deng, X.; Fan, X.; Fu, Y.; Goloub, P.; Jiang, H.; Liu, Q.; Mai, B.; Wang, P.; Wu, Y.; Zhang, J.; Zhang, R.; Zhang, X.

    2016-01-01

    Spatio-temporal variation of aerosol optical properties and aerosol direct radiative effects (ADRE) are studied based on high quality aerosol data at 21 sunphotometer stations with at least 4-months worth of measurements in China mainland and Hong Kong. A parameterization is proposed to describe the relationship of ADREs to aerosol optical depth at 550 nm (AOD) and single scattering albedo at 550 nm (SSA). In the middle-east and south China, the maximum AOD is always observed in the burning season, indicating a significant contribution of biomass burning to AOD. Dust aerosols contribute to AOD significantly in spring and their influence decreases from the source regions to the downwind regions. The occurrence frequencies of background level AOD (AOD < 0.10) in the middle-east, south and northwest China are very limited (0.4%, 1.3% and 2.8%, respectively). However, it is 15.7% in north China. Atmosphere is pristine in the Tibetan Plateau where 92.0% of AODs are <0.10. Regional mean SSAs at 550 nm are 0.89-0.90, although SSAs show substantial site and season dependence. ADREs at the top and bottom of the atmosphere for solar zenith angle of 60 ± 5° are -16--37 W m-2 and -66--111 W m-2, respectively. ADRE efficiency shows slight regional dependence. AOD and SSA together account for more than 94 and 87% of ADRE variability at the bottom and top of the atmosphere. The overall picture of ADRE in China is that aerosols cool the climate system, reduce surface solar radiation and heat the atmosphere.

  6. Direct and semi-direct aerosol radiative effect on the Mediterranean climate variability using a coupled regional climate system model

    NASA Astrophysics Data System (ADS)

    Nabat, Pierre; Somot, Samuel; Mallet, Marc; Sevault, Florence; Chiacchio, Marc; Wild, Martin

    2015-02-01

    A fully coupled regional climate system model (CNRM-RCSM4) has been used over the Mediterranean region to investigate the direct and semi-direct effects of aerosols, but also their role in the radiation-atmosphere-ocean interactions through multi-annual ensemble simulations (2003-2009) with and without aerosols and ocean-atmosphere coupling. Aerosols have been taken into account in CNRM-RCSM4 through realistic interannual monthly AOD climatologies. An evaluation of the model has been achieved, against various observations for meteorological parameters, and has shown the ability of CNRM-RCSM4 to reproduce the main patterns of the Mediterranean climate despite some biases in sea surface temperature (SST), radiation and cloud cover. The results concerning the aerosol radiative effects show a negative surface forcing on average because of the absorption and scattering of the incident radiation. The SW surface direct effect is on average -20.9 Wm-2 over the Mediterranean Sea, -14.7 Wm-2 over Europe and -19.7 Wm-2 over northern Africa. The LW surface direct effect is weaker as only dust aerosols contribute (+4.8 Wm-2 over northern Africa). This direct effect is partly counterbalanced by a positive semi-direct radiative effect over the Mediterranean Sea (+5.7 Wm-2 on average) and Europe (+5.0 Wm-2) due to changes in cloud cover and atmospheric circulation. The total aerosol effect is consequently negative at the surface and responsible for a decrease in land (on average -0.4 °C over Europe, and -0.5 °C over northern Africa) and sea surface temperature (on average -0.5 °C for the Mediterranean SST). In addition, the latent heat loss is shown to be weaker (-11.0 Wm-2) in the presence of aerosols, resulting in a decrease in specific humidity in the lower troposphere, and a reduction in cloud cover and precipitation. Simulations also indicate that dust aerosols warm the troposphere by absorbing solar radiation, and prevent radiation from reaching the surface, thus

  7. FY 2011 4th Quarter Metric: Estimate of Future Aerosol Direct and Indirect Effects

    SciTech Connect

    Koch, D

    2011-09-21

    The global and annual mean aerosol direct and indirect effects, relative to 1850 conditions, estimated from CESM simulations are 0.02 W m-2 and -0.39 W m-2, respectively, for emissions in year 2100 under the IPCC RCP8.5 scenario. The indirect effect is much smaller than that for 2000 emissions because of much smaller SO2 emissions in 2100; the direct effects are small due to compensation between warming by black carbon and cooling by sulfate.

  8. A satellite view of the direct effect of aerosols on solar radiation at global scale

    NASA Astrophysics Data System (ADS)

    Hatzianastassiou, Nikolaos; Papadimas, Christos D.; Matsoukas, Christos; Fotiadi, Aggeliki; Benas, Nikolaos; Vardavas, Ilias

    2016-04-01

    Aerosols are a key parameter for better understanding and predicting current and future climate change. They are determining, apart from clouds, patterns of solar radiation through scattering and absorption processes. Especially, under cloud-free skies, aerosols are the major modulator of the solar radiation budget of the Earth-atmosphere system. Although significant improvement has been made as to better understanding the direct radiative effect (DRE) of aerosols, there is still a need for further improvement in our knowledge of the DRE spatial and temporal patterns, in particular with respect to extended spatial and temporal coverage of relevant information. In an ongoing rapidly evolving era of great satellite-based achievements, concerning the knowledge of solar radiation budget and its modulators, and with the great progress in obtaining significant information on key aerosol optical properties needed for modeling DRE, it is a great challenge to use all this new aerosol information and to see what is the new acquired scientific knowledge. The objective of this study is to obtain an improved view of global aerosol DRE effects using contemporary accurate data for the important atmospheric and surface parameters determining the solar radiation budget, with emphasis to state of the art aerosol data. Thus, a synergy is made of different datasets providing the necessary input data and of a detailed spectral radiative transfer model (RTM) to compute spectral globally distributed aerosol DREs. Emphasis is given on using highly accurate and well-tested aerosol optical properties. Spectral information on aerosol optical depth (AOD) is taken from retrieved products of the MODerate resolution Imaging Spectroradiometer (MODIS) instrument, while similar information is taken from MODIS for the aerosol asymmetry parameter (AP) over ocean. Information from MODIS is also taken for the aerosol single scattering albedo (SSA). All this information comes from the latest Collection

  9. Direct radiative effects of anthropogenic aerosols on Indian summer monsoon circulation

    NASA Astrophysics Data System (ADS)

    Das, Sushant; Dey, Sagnik; Dash, S. K.

    2016-05-01

    The direct radiative impacts of anthropogenic aerosols on the dynamics of Indian summer monsoon circulation are examined using the regional climate model version 4.1 (RegCM4.1). High anthropogenic aerosol optical depth (AAOD >0.1) and surface shortwave cooling (<-6 W m-2) are simulated over the Indo-Gangetic Basin (IGB), northeast India, east coast of India, and its outflow to the Bay of Bengal (BoB) during the monsoon season (June to September) in the period 2001 to 2010. The analysis reveals a decrease in near surface air temperature at 2 m over the IGB and east coast of India by >0.2 °C due to the dimming effect of anthropogenic aerosols. The aerosol-induced cooling leads to an increase in surface pressure over the local hotspots in the Indian landmass, which reduces the land-sea pressure contrast resulting in weakening of summer monsoon circulation. The simulated surface pressure anomaly also inhibits moisture transport from the BoB towards Indian landmass thereby enhancing precipitation over the BoB and parts of the east coast of India. The impacts are interpreted as conservative estimates because of the underestimation of AAOD by the model due to uncertainties in emission inventory and biases in simulated meteorology. Our results demonstrate the direct radiative impacts of anthropogenic aerosols on the Indian monsoon circulation and call for future studies combining the dynamical and microphysical impacts, which are not considered in this study.

  10. Impact of aerosol direct effect on East Asian air quality during the EAST-AIRE campaign

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Allen, Dale J.; Pickering, Kenneth E.; Li, Zhanqing; He, Hao

    2016-06-01

    WRF-Chem simulations were performed for the March 2005 East Asian Studies of Tropospheric Aerosols: an International Regional Experiment (EAST-AIRE) Intensive Observation Campaign (IOC) to investigate the direct effects of aerosols on surface radiation and air quality. Domain-wide, WRF-Chem showed a decrease of 20 W/m2 in surface shortwave (SW) radiation due to the aerosol direct effect (ADE), consistent with observational studies. The ADE caused 24 h surface PM2.5 (particulate matter with diameter < 2.5 µm) concentrations to increase in eastern China (4.4%), southern China (10%), western China (2.3%), and the Sichuan Basin (9.6%), due to different aerosol compositions in these four regions. Conversely, surface 1 h maximum ozone was reduced by 2.3% domain-wide and up to 12% in eastern China because less radiation reached the surface. We also investigated the impact of reducing SO2 and black carbon (BC) emissions by 80% on aerosol amounts via two sensitivity simulations. Reducing SO2 decreased surface PM2.5 concentrations in the Sichuan Basin and southern China by 5.4% and decreased ozone by up to 6 ppbv in the Sichuan Basin and Southern China. Reducing BC emissions decreased PM2.5 by 3% in eastern China and the Sichuan Basin but increased surface ozone by up to 3.6 ppbv in eastern China and the Sichuan Basin. This study indicates that the benefits of reducing PM2.5 associated with reducing absorbing aerosols may be partially offset by increases in ozone at least for a scenario when NOx and VOC emissions are unchanged.

  11. Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations

    SciTech Connect

    Myhre, G.; Samset, B. H.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Chin, M.; Diehl, T.; Easter, R. C.; Feichter, J.; Ghan, S. J.; Hauglustaine, D.; Iversen, T.; Kinne, S.; Kirkevåg, A.; Lamarque, J. -F.; Lin, G.; Liu, X.; Lund, M. T.; Luo, G.; Ma, X.; van Noije, T.; Penner, J. E.; Rasch, P. J.; Ruiz, A.; Seland, Ø.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Wang, P.; Wang, Z.; Xu, L.; Yu, H.; Yu, F.; Yoon, J. -H.; Zhang, K.; Zhang, H.; Zhou, C.

    2013-01-01

    We report on the AeroCom Phase II direct aerosol effect (DAE) experiment where 16 detailed global aerosol models have been used to simulate the changes in the aerosol distribution over the industrial era. All 16 models have estimated the radiative forcing (RF) of the anthropogenic DAE, and have taken into account anthropogenic sulphate, black carbon (BC) and organic aerosols (OA) from fossil fuel, biofuel, and biomass burning emissions. In addition several models have simulated the DAE of anthropogenic nitrate and anthropogenic influenced secondary organic aerosols (SOA). The model simulated all-sky RF of the DAE from total anthropogenic aerosols has a range from -0.58 to -0.02 Wm-2, with a mean of -0.27 Wm-2 for the 16 models. Several models did not include nitrate or SOA and modifying the estimate by accounting for this with information from the other AeroCom models reduces the range and slightly strengthens the mean. Modifying the model estimates for missing aerosol components and for the time period 1750 to 2010 results in a mean RF for the DAE of -0.35 Wm-2. Compared to AeroCom Phase I (Schulz et al., 2006) we find very similar spreads in both total DAE and aerosol component RF. However, the RF of the total DAE is stronger negative and RF from BC from fossil fuel and biofuel emissions are stronger positive in the present study than in the previous AeroCom study. We find a tendency for models having a strong (positive) BC RF to also have strong (negative) sulphate or OA RF. This relationship leads to smaller uncertainty in the total RF of the DAE compared to the RF of the sum of the individual aerosol components. The spread in results for the individual aerosol components is substantial, and can be divided into diversities in burden, mass extinction coefficient (MEC), and normalized RF with respect to AOD. We find that these three factors give similar contributions to the spread in results.

  12. Radiative Forcing of the Direct Aerosol Effect from AeroCom Phase II Simulations

    NASA Technical Reports Server (NTRS)

    Myhre, G.; Samset, B. H.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Chin, M.; Diehl, T.; Easter, R. C.; Feichter, J.; Ghan, S. J.; Hauglustaine, D.; Iversen, T.; Kinne, S.; Kirkevag, A.; Lamarque, J.-F.; Lin, G.; Liu, X.; Lund, M. T.; Luo, G.; Ma, X.; vanNoije, T.; Penner, J. E.; Rasch, P. J.; Ruiz, A.; Seland, O.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Wang, P.; Wang, Z.; Xu, L.; Yu, H.; Yu, F.; Yoon, J. -H.; Zhang, K.; Zhang, H.; Zhou, C.

    2013-01-01

    We report on the AeroCom Phase II direct aerosol effect (DAE) experiment where 16 detailed global aerosol models have been used to simulate the changes in the aerosol distribution over the industrial era. All 16 models have estimated the radiative forcing (RF) of the anthropogenic DAE, and have taken into account anthropogenic sulphate, black carbon (BC) and organic aerosols (OA) from fossil fuel, biofuel, and biomass burning emissions. In addition several models have simulated the DAE of anthropogenic nitrate and anthropogenic influenced secondary organic aerosols (SOA). The model simulated all-sky RF of the DAE from total anthropogenic aerosols has a range from -0.58 to -0.02 W m(sup-2), with a mean of -0.27 W m(sup-2 for the 16 models. Several models did not include nitrate or SOA and modifying the estimate by accounting for this with information slightly strengthens the mean. Modifying the model estimates for missing aerosol components and for the time period 1750 to 2010 results in a mean RF for the DAE of -0.35 W m(sup-2). Compared to AeroCom Phase I (Schulz et al., 2006) we find very similar spreads in both total DAE and aerosol component RF. However, the RF of the total DAE is stronger negative and RF from BC from fossil fuel and biofuel emissions are stronger positive in the present study than in the previous AeroCom study.We find a tendency for models having a strong (positive) BC RF to also have strong (negative) sulphate or OA RF. This relationship leads to smaller uncertainty in the total RF of the DAE compared to the RF of the sum of the individual aerosol components. The spread in results for the individual aerosol components is substantial, and can be divided into diversities in burden, mass extinction coefficient (MEC), and normalized RF with respect to AOD. We find that these three factors give similar contributions to the spread in results

  13. Direct and Semi-direct Effects of Aerosol on the Climate System

    NASA Astrophysics Data System (ADS)

    Mahajan, S.; Evans, K. J.; Hack, J. J.; Truesdale, J.

    2011-12-01

    High-resolution (1x1 degree) global tropospheric aerosol datasets are generated using the atmospheric component of CESM1.0 coupled to an active bulk aerosol model for the 1850's and the period 1960-2000. The interactive aerosol module incorporates surface and elevated emissions of anthropogenic and natural aerosol precursors and oxidants. Experiments performed with the new aerosol datasets in atmosphere only GCM runs reveal that current level of aerosols can cause significant surface cooling and shift precipitation when compared to pre-industrial levels of aerosols. Experiments performed with the atmosphere component coupled to a slab ocean model reveal that aerosols can enhance the land-sea contrast, and cross-equatorial SST gradient leading to enhanced reduction in monsoon and shift in the ITCZ over the tropical Atlantic as compared to the atmosphere only runs. AMIP style experiments with the new aerosol dataset further reveal that aerosols could have had a significant impact on the trends in regional surface temperature and precipitation in the later part of the 20th century.

  14. Global Aerosol Direct Radiative Effect from CALIOP and C3M

    NASA Astrophysics Data System (ADS)

    Winker, Dave; Kato, Seiji; Tackett, Jason

    2016-06-01

    Aerosols are responsible for the largest uncertainties in current estimates of climate orcing. These uncertainties are due in part to the limited abilities of passive sensors to retrieve aerosols in cloudy skies. We use a dataset which merges CALIOP observations together with other A-train observations to estimate aerosol radiative effects in cloudy skies as well as in cloud-free skies. The results can be used to quantify the reduction of aerosol radiative effects in cloudy skies relative to clear skies and to reduce current uncertainties in aerosol radiative effects.

  15. Global Aerosol Direct Radiative Effect From CALIOP and C3M

    NASA Technical Reports Server (NTRS)

    Winker, Dave; Kato, Seiji; Tackett, Jason

    2015-01-01

    Aerosols are responsible for the largest uncertainties in current estimates of climate forcing. These uncertainties are due in part to the limited abilities of passive sensors to retrieve aerosols in cloudy skies. We use a dataset which merges CALIOP observations together with other A-train observations to estimate aerosol radiative effects in cloudy skies as well as in cloud-free skies. The results can be used to quantify the reduction of aerosol radiative effects in cloudy skies relative to clear skies and to reduce current uncertainties in aerosol radiative effects.

  16. “Modeling Trends in Aerosol Direct Radiative Effects over the Northern Hemisphere using a Coupled Meteorology-Chemistry Model”

    EPA Science Inventory

    While aerosol radiative effects have been recognized as some of the largest sources of uncertainty among the forcers of climate change, the verification of the spatial and temporal variability of the magnitude and directionality of aerosol radiative forcing has remained challengi...

  17. "Investigation of Trends in Aerosol Direct Radiative Effects over North America Using a Coupled Meteorology-Chemistry Model"

    EPA Science Inventory

    While aerosol radiative effects have been recognized as some of the largest sources of uncertainty among the forcers of climate change, there has been little effort devoted to verification of the spatial and temporal variability of the magnitude and directionality of aerosol radi...

  18. Impact of Aerosol Direct Effect on East Asian Air Quality During the EAST-AIRE Campaign

    NASA Astrophysics Data System (ADS)

    Wang, J.; Allen, D. J.; Pickering, K. E.; Li, Z.

    2015-12-01

    Three WRF-Chem simulations were conducted for East Asia region during March 2005 East Asian Studies of Tropospheric Aerosols: an International Regional Experiment (EAST-AIRE) Intensive Observation Campaign (IOC) period to investigate the direct effects of aerosols on surface radiation and air quality. WRF-Chem captured the temporal and spatial variations of meteorological fields, trace gases, and aerosol loadings. Surface shortwave radiation changes due to the aerosol direct effect (ADE) were calculated and compared with data from six World Radiation Data Center (WRDC) stations. The comparison indicated that WRF-Chem can simulate the surface short wave radiation moderately well, with temporal correlations between 0.4 and 0.7, and high biases between 9 to 120 W/m2. Domain-wide, WRF-Chem showed a decrease of 22 W/m2 in surface SW radiation due to the aerosol direct effect, consistent with observational studies. The ADE demonstrates diverse influences on air quality in East Asian. For example, the surface concentration of PM2.5 increases in eastern China (~11.1%) due to ADE, but decreases in central China (-7.3%), western China (-8.8%), and Sichuan Basin (-4%). Surface 1-hour maximum ozone is reduced by 2.3%, owing to less radiation reaching the surface due to the ADE. Since PM2.5 pollution raises serious public concern in China, regulations that control the emissions of PM2.5 and its precursors have been implemented. We investigate the impact of reducing two different types of aerosols, sulfate (scattering) and black carbon (absorbing), by cutting 80% of SO2 and black carbon (BC) emissions in two sensitivity simulations. We found that reducing SO2 emissions results in the decline of PM2.5 as much as 16mg/m3 in eastern China, and 20mg/m3 in the Sichuan Basin. Reducing the BC emissions by the same percentage causes the PM2.5 to decrease as much as 40mg/m3 in eastern China, and 25mg/m3 in the Sichuan Basin. The monthly averaged surface 1-hour maximum ozone increases 3

  19. Direct and indirect radiative effects of aerosols using the coupled system of aerosol HAM module and the Weather Research and Forecasting (WRF) model

    NASA Astrophysics Data System (ADS)

    Mashayekhi, Rabab; Irannejad, Parviz; Feichter, Johann; Akbari Bidokhti, Abbas Ali Ali

    2010-05-01

    The fully coupled aerosol-cloud and radiation WRF-HAM modeling system is presented. The aerosol HAM model is implemented within the chemistry version of WRF modeling system. HAM is based on a "pseudo-modal" approach for representation of the particle size distribution. Aerosols are grouped into four geometrical size classes and two types of mixed and insoluble particles. The aerosol components considered are sulfate, black carbon, particulate organic matter, sea salt and mineral dust. Microphysical processes including nucleation, condensation and coagulation of aerosol particles are considered using the microphysics M7 scheme. Horizontal transport of the aerosol particles is simulated using the advection scheme in WRF. Convective transport and vertical mixing of aerosol particles are also considered in the coupled system. A flux-resistance method is used for dry deposition of aerosol particles. Aerosol sizes and chemical compositions are used to determine the aerosol optical properties. Direct effects of aerosols on incoming shortwave radiation flux are simulated by transferring the aerosol optical parameters to the Goddard shortwave radiation scheme. Indirect effects of aerosols are simulated by using a prognostic treatment of cloud droplet number and adding modules that activate aerosol particles to form cloud droplets. The first and second indirect effects, i.e. the interactions of clouds and incoming solar radiation are implemented in WRF-Chem by linking the simulated cloud droplet number with the Goddard shortwave radiation scheme and the Lin et al. microphysics scheme. The simulations are carried out for a 6-day period from 22 to 28 February 2006 in a domain with 30-km grid spacing, encompassing the south-western Asia, North Africa and some parts of Europe. The results show a negative radiative forcing over most parts of the domain, mainly due to the presence of mineral dust aerosols. The simulations are evaluated using the measured downward radiation in

  20. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1997-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size resolved aerosol microphysics and chemistry. Both profiles included pollution haze layer from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core.

  1. Estimation of Aerosol Direct Radiative Effects from Satellite and In Situ Measurements

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Russell, Philip B.; Schmid, Beat; Redemann, Jens; McIntosh, Dawn

    2000-01-01

    Ames researchers have combined measurements from satellite, aircraft, and the surface to estimate the effect of airborne particles (aerosols) on the solar radiation over the North Atlantic region. These aerosols (which come from both natural and pollution sources) can reflect solar radiation, causing a cooling effect that opposes the warming caused by carbon dioxide. Recently, increased attention has been paid to aerosol effects to better understand the Earth climate system.

  2. Corrigendum to "Impact of cloud-borne aerosol representation on aerosol direct and indirect effects" published in Atmos. Chem. Phys., 6, 4163-4174, 2006

    SciTech Connect

    Ghan, Steven J; Easter, Richard C

    2007-01-19

    Ghan and Easter (2006) (hereafter referred to as GE2006) used a global aerosol model to estimate the sensitivity of aerosol direct and indirect effects to a variety of simplified treatments of the cloud-borne aerosol. They found that neglecting transport of cloud-borne particles introduces little error, but that diagnosing cloud-borne particles produces global mean biases of 20% and local errors of up to 40% for aerosol, droplet number, and direct and indirect radiative forcing However, we have recently found that in those experiments we had inadvertently turned off the first aerosol indirect effect. In the radiation module, the droplet effective radius was prescribed at 10 microns rather than related to the droplet number concentration. The second indirect effect, in which droplet number influences droplet collision and coalescence, was treated, so that the simulations produced an aerosol indirect effect, albeit one that is much smaller (about -0.2Wm-2 for anthropogenic sulfate) than other previous estimates.

  3. QUantifying the Aerosol Direct and Indirect Effect over Eastern Mediterranean from Satellites (QUADIEEMS): Overview and preliminary results

    NASA Astrophysics Data System (ADS)

    Georgoulias, Aristeidis K.; Zanis, Prodromos; Pöschl, Ulrich; Kourtidis, Konstantinos A.; Alexandri, Georgia; Ntogras, Christos; Marinou, Eleni; Amiridis, Vassilis

    2013-04-01

    An overview and preliminary results from the research implemented within the framework of QUADIEEMS project are presented. For the scopes of the project, satellite data from five sensors (MODIS aboard EOS TERRA, MODIS aboard EOS AQUA, TOMS aboard Earth Probe, OMI aboard EOS AURA and CALIOP aboard CALIPSO) are used in conjunction with meteorological data from ECMWF ERA-interim reanalysis and data from a global chemical-aerosol-transport model as well as simulation results from a regional climate model (RegCM4) coupled with a simplified aerosol scheme. QUADIEEMS focuses on Eastern Mediterranean [30oN-45No, 17.5oE-37.5oE], a region situated at the crossroad of different aerosol types and thus ideal for the investigation of the direct and indirect effects of various aerosol types at a high spatial resolution. The project consists of five components. First, raw data from various databases are acquired, analyzed and spatially homogenized with the outcome being a high resolution (0.1x0.1 degree) and a moderate resolution (1.0x1.0 degree) gridded dataset of aerosol and cloud optical properties. The marine, dust and anthropogenic fraction of aerosols over the region is quantified making use of the homogenized dataset. Regional climate model simulations with REGCM4/aerosol are also implemented for the greater European region for the period 2000-2010 at a resolution of 50 km. REGCM4's ability to simulate AOD550 over Europe is evaluated. The aerosol-cloud relationships, for sub-regions of Eastern Mediterranean characterized by the presence of predominant aerosol types, are examined. The aerosol-cloud relationships are also examined taking into account the relative position of aerosol and cloud layers as defined by CALIPSO observations. Within the final component of the project, results and data that emerged from all the previous components are used in satellite-based parameterizations in order to quantify the direct and indirect (first) radiative effect of the different

  4. Combined multispectral/hyperspectral remote sensing of tropospheric aerosols for quantification of their direct radiative effect

    NASA Astrophysics Data System (ADS)

    McGarragh, Gregory R.

    Scattering and absorption of solar radiation by aerosols in the atmosphere has a direct radiative effect on the climate of the Earth. Unfortunately, according to the IPCC the uncertainties in aerosol properties and their effect on the climate system represent one of the largest uncertainties in climate change research. Related to aerosols, one of the largest uncertainties is the fraction of the incident radiation that is scattered rather than absorbed, or their single scattering albedo. In fact, differences in single scattering albedo have a significant impact on the magnitude of the cooling effect of aerosols (opposite to that of greenhouse gasses) which can even have a warming effect for strongly absorbing aerosols. Satellites provide a unique opportunity to measure aerosol properties on a global scale. Traditional approaches use multispectral measurements of intensity at a single view angle to retrieve at most two aerosol parameters over land but it is being realized that more detail is required for accurate quantification of the direct effect of aerosols, in particular its anthropogenic component, and therefore more measurement information is required. One approach to more advanced measurements is to use not only intensity measurements but also polarimetric measurements and to use multiple view angles. In this work we explore another alternative: the use of hyperspectral measurements in molecular absorption bands. Our study can be divided into three stages the first of which is the development of a fast radiative transfer model for rapid simulation of measurements. Our approach is matrix operator based and uses the Pade approximation for the matrix exponential to evaluate the homogeneous solution. It is shown that the method is two to four times faster than the standard and efficient discrete ordinate technique and is accurate to the 6th decimal place. The second part of our study forms the core and is divided into two chapters the first of which is a rigorous

  5. North Atlantic Aerosol Properties and Direct Radiative Effects: Key Results from TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Livingston, J. M.; Schmid, B.; Bergstrom, R. A.; Hignett, P.; Hobbs, P. V.; Durkee, P. A.; Condon, Estelle (Technical Monitor)

    1998-01-01

    Aerosol effects on atmospheric radiative fluxes provide a forcing function that can change the climate in potentially significant ways. This aerosol radiative Forcing is a major source of uncertainty in understanding the observed climate change of the past century and in predicting, future climate. To help reduce this uncertainty, the International Global Atmospheric Chemistry Project (IGAC) has endorsed a series of multiplatform aerosol field campaigns. The Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the second Aerosol Characterization Experiment (ACE-2) were the first IGAC campaigns to address the impact of anthropogenic aerosols. Both TARFOX and ACE-2 gathered extensive data sets on aerosol properties and radiative effects. TARFOX focused on the urban-industrial haze plume flowing from the eastern United States over the western Atlantic Ocean, whereas ACE-2 studied aerosols carried over the eastern Atlantic from both European urban/industrial and African mineral sources. These aerosols often have a marked influence on the top-of-atmosphere radiances measured by satellites, as illustrated in Figure 1. Shown there are contours of aerosol optical depth derived from radiances measured by the AVHRR sensor on the NOAA-11 satellite. The contours readily show that aerosols originating in North America, Europe, and Africa impact the radiative properties of air over the North Atlantic. However, the accurate derivation of flux chances, or radiative forcing, from the satellite-measured radiances or 'etrieved optical depths remains a difficult challenge. In this paper we summarize key Initial results from TARFOX and, to a lesser extent ACE-2, with a focus on those results that allow an improved assessment of the flux changes caused by North Atlantic aerosols at middle and high latitudes.

  6. North Atlantic Aerosol Properties and Direct Radiative Effects: Key Results from TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Livingston, J. M.; Schmid, B.; Bergstrom, Robert A.; Hignett, P.; Hobbs, P. V.; Durkee, P. A.

    2000-01-01

    Aerosol effects on atmospheric radiative fluxes provide a forcing function that can change the climate In potentially significant ways. This aerosol radiative forcing is a major source of uncertainty in understanding the observed climate change of the past century and in predicting future climate. To help reduce this uncertainty, the International Global Atmospheric Chemistry Project (IGAC) has endorsed a series of multiplatform aerosol field campaigns. The Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the second Aerosol Characterization Experiment (ACE-2) were the first IGAC campaigns to address the impact of anthropogenic aerosols, Both TARFOX and ACE-2 gathered extensive data sets on aerosol properties and radiative effects, TARFOX focused on the urban-industrial haze plume flowing from the eastern United States over the western Atlantic Ocean, whereas ACE-2 studied aerosols carried over the eastern Atlantic from both European urban/industrial and African mineral sources. These aerosols often have a marked influence on the top-of-atmosphere radiances measured by satellites. Shown there are contours of aerosol optical depth derived from radiances measured by the AVHRR sensor on the NOAA-11 satellite. The contours readily show that aerosols originating in North America, Europe, and Africa impact the radiative properties of air over the North Atlantic. However, the accurate derivation of flux changes, or radiative forcing, from the satellite measured radiances or retrieved optical depths remains a difficult challenge. In this paper we summarize key initial results from TARFOX and, to a lesser extent, ACE-2, with a focus on those results that allow an improved assessment of the flux changes caused by North Atlantic aerosols at middle latitudes.

  7. SILAM and MACC reanalysis aerosol data used for simulating the aerosol direct radiative effect with the NWP model HARMONIE for summer 2010 wildfire case in Russia

    NASA Astrophysics Data System (ADS)

    Toll, V.; Reis, K.; Ots, R.; Kaasik, M.; Männik, A.; Prank, M.; Sofiev, M.

    2015-11-01

    Persistent high pressure conditions over the European part of Russia during summer 2010 were responsible for an extended period of hot and dry weather, creating favourable conditions for severe wildfires. The chemical transport model SILAM is used to simulate the dispersion of smoke aerosol for this case. Aerosol fields from SILAM are compared to the Monitoring Atmospheric Composition and Climate (MACC) reanalysis. Moreover, the model output is compared to in situ and remote sensing measurements, paying particular attention to the most intense fire period of August 7 to 9, when the plume reached the Baltic countries and Finland. The maximum observed aerosol optical depth was more than 4 at 550 nm during this time. The aerosol distributions from the SILAM run and the MACC reanalysis are subsequently used in meteorological simulations using the Hirlam Aladin Research for Mesoscale Operational Numerical Weather Prediction in Euromed (HARMONIE) model. The modelling results show a significant reduction of the daily average shortwave radiation fluxes at the surface (up to 125 W/m2) and daily average near-surface temperature (up to 4 °C) through the aerosol direct radiative effect. The simulated near-surface temperature and vertical temperature profile agree better with the observations, when the aerosol direct radiative effect is considered in the meteorological simulation. The boundary layer is more stably stratified, creating poorer dispersion conditions for the smoke.

  8. QUantifying the Aerosol Direct and Indirect Effect over Eastern Mediterranean from Satellites (QUADIEEMS): Satellite, model and reanalysis data synergy

    NASA Astrophysics Data System (ADS)

    Georgoulias, A.; Zanis, P.; Poeschl, U.; Kourtidis, K.; Alexandri, G.; Dogras, C.; Marinou, E.; Amiridis, V.

    2013-12-01

    The research implemented within the QUADIEEMS project is presented here. Satellite data from five sensors (MODIS aboard EOS TERRA, MODIS aboard EOS AQUA, TOMS aboard Earth Probe, OMI aboard EOS AURA and CALIOP aboard CALIPSO) are combined with meteorological data from ECMWF ERA-interim reanalysis, aerosol data from a global chemical-aerosol-transport model (GOCART) and MACC reanalysis as well as simulation results from a regional climate model (RegCM4) coupled with a simplified aerosol scheme. QUADIEEMS focuses on Eastern Mediterranean [30N-45N, 17.5E-37.5E]. Various sources, like industry and transport, occasional Saharan dust intrusions, sea spray and agricultural fires in Southeastern and Eastern Europe as well as occasional fire events in the region, create an ideal environment for the investigation of the direct and indirect effects of various aerosol types. The acquired data were spatially homogenized resulting in a novel satellite-model-reanalysis high resolution (0.1x0.1 degree) dataset of aerosol and cloud optical properties. The relative contribution of marine, dust and anthropogenic aerosols to the total aerosol optical depth (AOD550) is quantified combining different parameters from our high resolution dataset. The same procedure is repeated at a moderate resolution (1.0x1.0 degree). Within QUADIEEMS, decadal REGCM4/aerosol regional climate model simulations are implemented for the greater European region at a resolution of 50 km. We evaluate the ability of REGCM4 to simulate AOD550 patterns. For different sub-regions of Eastern Mediterranean, the aerosol-cloud relationships are examined. The same procedure is repeated also taking into account the relative position of aerosol and cloud layers as defined by CALIPSO observations. Results and data from the first four components of the project are used in satellite-based parameterizations to quantify the direct and indirect (first) radiative effect of the different aerosol types at a resolution of 0.1x0

  9. Combined multispectral/hyperspectral remote sensing of tropospheric aerosols for quantification of their direct radiative effect

    NASA Astrophysics Data System (ADS)

    McGarragh, Gregory R.

    Scattering and absorption of solar radiation by aerosols in the atmosphere has a direct radiative effect on the climate of the Earth. Unfortunately, according to the IPCC the uncertainties in aerosol properties and their effect on the climate system represent one of the largest uncertainties in climate change research. Related to aerosols, one of the largest uncertainties is the fraction of the incident radiation that is scattered rather than absorbed, or their single scattering albedo. In fact, differences in single scattering albedo have a significant impact on the magnitude of the cooling effect of aerosols (opposite to that of greenhouse gasses) which can even have a warming effect for strongly absorbing aerosols. Satellites provide a unique opportunity to measure aerosol properties on a global scale. Traditional approaches use multispectral measurements of intensity at a single view angle to retrieve at most two aerosol parameters over land but it is being realized that more detail is required for accurate quantification of the direct effect of aerosols, in particular its anthropogenic component, and therefore more measurement information is required. One approach to more advanced measurements is to use not only intensity measurements but also polarimetric measurements and to use multiple view angles. In this work we explore another alternative: the use of hyperspectral measurements in molecular absorption bands. Our study can be divided into three stages the first of which is the development of a fast radiative transfer model for rapid simulation of measurements. Our approach is matrix operator based and uses the Pade approximation for the matrix exponential to evaluate the homogeneous solution. It is shown that the method is two to four times faster than the standard and efficient discrete ordinate technique and is accurate to the 6th decimal place. The second part of our study forms the core and is divided into two chapters the first of which is a rigorous

  10. Modeling Trends in Aerosol Direct Radiative Effects over the Northern Hemisphere using a Coupled Meteorology-Chemistry Model

    NASA Astrophysics Data System (ADS)

    Mathur, R.; Pleim, J.; Wong, D.; Hogrefe, C.; Xing, J.; Wei, C.; Gan, M.

    2013-12-01

    While aerosol radiative effects have been recognized as some of the largest sources of uncertainty among the forcers of climate change, the verification of the spatial and temporal variability of the magnitude and directionality of aerosol radiative forcing has remained challenging. A detailed investigation of the processes regulating aerosol distributions, their optical properties, and their radiative effects and verification of their simulated effects for past conditions relative to measurements is needed in order to build confidence in the estimates of the projected impacts arising from changes in both anthropogenic forcing and climate change. Anthropogenic emissions of primary aerosol and gaseous precursors have witnessed dramatic changes over the past two decades across the northern hemisphere. During the period 1990-2010, SO2 and NOx emissions across the US have reduced by about 66% and 50%, respectively, mainly due to Title IV of the U.S. Clean Air Act Amendments (CAA). In contrast, anthropogenic emissions have increased dramatically in many developing regions during this period. We conduct a systematic investigation of changes in anthropogenic emissions of primary aerosols and gaseous precursors over the past two decades, their impacts on trends and spatial heterogeneity in anthropogenic aerosol loading across the northern hemisphere troposphere, and subsequent impacts on regional radiation budgets. The coupled WRF-CMAQ model is applied for selected time periods spanning the period 1990-2010 over a domain covering the northern hemisphere and a nested finer resolution continental U.S. domain. The model includes detailed treatment of direct effects of aerosols on photolysis rates as well as on shortwave radiation. Additionally, treatment of aerosol indirect effects on clouds has also recently been implemented. A methodology is developed to consistently estimate U.S. emission inventories for the 20-year period accounting for air quality regulations as well as

  11. Simulation of bulk aerosol direct radiative effects and its climatic feedbacks in South Africa using RegCM4

    NASA Astrophysics Data System (ADS)

    Tesfaye, M.; Botai, J.; Sivakumar, V.; Mengistu Tsidu, G.; Rautenbach, C. J. deW.; Moja, Shadung J.

    2016-05-01

    In this study, 12 year runs of the Regional Climate Model (RegCM4) have been used to analyze the bulk aerosol radiative effects and its climatic feedbacks in South Africa. Due to the geographical locations where the aerosol potential source regions are situated and the regional dynamics, the South African aerosol spatial-distribution has a unique feature. Across the west and southwest areas, desert dust particles are dominant. However, sulfate and carbonaceous aerosols are primarily distributed over the east and northern regions of the country. Analysis of the Radiative Effects (RE) shows that in South Africa the bulk aerosols play a role in reducing the net radiation absorbed by the surface via enhancing the net radiative heating in the atmosphere. Hence, across all seasons, the bulk aerosol-radiation-climate interaction induced statistically significant positive feedback on the net atmospheric heating rate. Over the western and central parts of South Africa, the overall radiative feedbacks of bulk aerosol predominantly induces statistically significant Cloud Cover (CC) enhancements. Whereas, over the east and southeast coastal areas, it induces minimum reductions in CC. The CC enhancement and RE of aerosols jointly induce radiative cooling at the surface which in turn results in the reduction of Surface Temperature (ST: up to -1 K) and Surface Sensible Heat Flux (SSHF: up to -24 W/m2). The ST and SSHF decreases cause a weakening of the convectively driven turbulences and surface buoyancy fluxes which lead to the reduction of the boundary layer height, surface pressure enhancement and dynamical changes. Throughout the year, the maximum values of direct and semi-direct effects of bulk aerosol were found in areas of South Africa which are dominated by desert dust particles. This signals the need for a strategic regional plan on how to reduce the dust production and monitoring of the dust dispersion as well as it initiate the need of further research on different

  12. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1996-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size-resolved aerosol microphysics and chemistry. Both profiles included a pollution haze from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core. The soot core increased the calculated extinction by about 10% in the most polluted drier layer relative to a pure sulfate aerosol but had significantly less effect at higher humidities. A 3 km descent through a boundary layer air mass dominated by pollutant aerosol with relative humidities (RH) 10-77% yielded a close agreement between the measured and calculated aerosol optical depths (550 nm) of 0.160 (+/- 0.07) and 0. 157 (+/- 0.034) respectively. During descent the aerosol mass scattering coefficient per unit sulfate mass varied from about 5 to 16 m(exp 2)/g and primarily dependent upon ambient RH. However, the total scattering coefficient per total fine mass was far less variable at about 4+/- 0.7 m(exp 2)/g. A subsequent descent through a Saharan dust layer located above the pollution aerosol layer revealed that both layers contributed similarly to aerosol optical depth. The scattering per unit mass of the coarse aged dust was estimated at 1.1 +/- 0.2 m(exp 2)/g. The large difference (50%) in measured and calculated optical depth for the dust layer exceeded measurements.

  13. Air pollution and climate response to aerosol direct radiative effects: A modeling study of decadal trends across the northern hemisphere

    NASA Astrophysics Data System (ADS)

    Xing, Jia; Mathur, Rohit; Pleim, Jonathan; Hogrefe, Christian; Gan, Chuen-Meei; Wong, David C.; Wei, Chao; Wang, Jiandong

    2015-12-01

    Decadal hemispheric Weather Research and Forecast-Community Multiscale Air Quality simulations from 1990 to 2010 were conducted to examine the meteorology and air quality responses to the aerosol direct radiative effects. The model's performance for the simulation of hourly surface temperature, relative humidity, wind speed, and direction was evaluated through comparison with observations from NOAA's National Climatic Data Center Integrated Surface Data. The inclusion of aerosol direct radiative effects improves the model's ability to reproduce the trend in daytime temperature range which over the past two decades was increasing in eastern China but decreasing in eastern U.S. and Europe. Trends and spatial and diurnal variations of the surface-level gaseous and particle concentrations to the aerosol direct effect were analyzed. The inclusion of aerosol direct radiative effects was found to increase the surface-level concentrations of SO2, NO2, O3, SO42-, NO3-, and particulate matter 2.5 in eastern China, eastern U.S., and Europe by 1.5-2.1%, 1-1.5%, 0.1-0.3%, 1.6-2.3%, 3.5-10.0%, and 2.2-3.2%, respectively, on average over the entire 21 year period. However, greater impacts are noted during polluted days with increases of 7.6-10.6%, 6.2-6.7%, 2.0-3.0%, 7.8-9.5%, 11.1-18.6%, and 7.2-10.1%, respectively. Due to the aerosol direct radiative effects, stabilizing of the atmosphere associated with reduced planetary boundary layer height and ventilation leads to an enhancement of pollution. Consequently, the continual increase of aerosol optical depth (AOD) in eastern China leads to an increasing trend in the air quality feedback which exacerbates air pollution, while emission reductions in eastern U.S. and Europe result in a declining trend in both AODs and feedback which make the air pollution control strategies more effective.

  14. Parameterization of clear-sky surface irradiance and its implications for estimation of aerosol direct radiative effect and aerosol optical depth

    PubMed Central

    Xia, Xiangao

    2015-01-01

    Aerosols impact clear-sky surface irradiance () through the effects of scattering and absorption. Linear or nonlinear relationships between aerosol optical depth (τa) and have been established to describe the aerosol direct radiative effect on (ADRE). However, considerable uncertainties remain associated with ADRE due to the incorrect estimation of (τa in the absence of aerosols). Based on data from the Aerosol Robotic Network, the effects of τa, water vapor content (w) and the cosine of the solar zenith angle (μ) on are thoroughly considered, leading to an effective parameterization of as a nonlinear function of these three quantities. The parameterization is proven able to estimate with a mean bias error of 0.32 W m−2, which is one order of magnitude smaller than that derived using earlier linear or nonlinear functions. Applications of this new parameterization to estimate τa from , or vice versa, show that the root-mean-square errors were 0.08 and 10.0 Wm−2, respectively. Therefore, this study establishes a straightforward method to derive from τa or estimate τa from measurements if water vapor measurements are available. PMID:26395310

  15. Parameterization of clear-sky surface irradiance and its implications for estimation of aerosol direct radiative effect and aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Xia, Xiangao

    2015-09-01

    Aerosols impact clear-sky surface irradiance () through the effects of scattering and absorption. Linear or nonlinear relationships between aerosol optical depth (τa) and have been established to describe the aerosol direct radiative effect on (ADRE). However, considerable uncertainties remain associated with ADRE due to the incorrect estimation of (τa in the absence of aerosols). Based on data from the Aerosol Robotic Network, the effects of τa, water vapor content (w) and the cosine of the solar zenith angle (μ) on are thoroughly considered, leading to an effective parameterization of as a nonlinear function of these three quantities. The parameterization is proven able to estimate with a mean bias error of 0.32 W m-2, which is one order of magnitude smaller than that derived using earlier linear or nonlinear functions. Applications of this new parameterization to estimate τa from , or vice versa, show that the root-mean-square errors were 0.08 and 10.0 Wm-2, respectively. Therefore, this study establishes a straightforward method to derive from τa or estimate τa from measurements if water vapor measurements are available.

  16. Simultaneous retrieval of aerosol properties and clear-sky direct radiative effect over the global ocean from MODIS

    NASA Astrophysics Data System (ADS)

    Lee, Jaehwa; Kim, Jhoon; Lee, Yun Gon

    2014-08-01

    A unified satellite algorithm is presented to simultaneously retrieve aerosol properties (aerosol optical depth; AOD and aerosol type) and clear-sky shortwave direct radiative effect (hereafter, DREA) over ocean. The algorithm is applied to Moderate Resolution Imaging spectroradiometer (MODIS) observations for a period from 2003 to 2010 to assess the DREA over the global ocean. The simultaneous retrieval utilizes lookup table (LUT) containing both spectral reflectances and solar irradiances calculated using a single radiative transfer model with the same aerosol input data. This study finds that aerosols cool the top-of-atmosphere (TOA) and bottom-of-atmosphere (BOA) by 5.2 ± 0.5 W/m2 and 8.3 W/m2, respectively, and correspondingly warm the atmosphere (hereafter, ATM) by 3.1 W/m2. These quantities, solely based on the MODIS observations, are consistent with those of previous studies incorporating chemical transport model simulations and satellite observations. However, the DREAs at BOA and ATM are expected to be less accurate compared to that of TOA due to low sensitivity in retrieving aerosol type information, which is related with the atmospheric heating by aerosols, particularly in low AOD conditions; consequently, the uncertainties could not be quantified. Despite the issue in the aerosol type information, the present method allows us to confine the DREA attributed only to fine-mode dominant aerosols, which are expected to be mostly anthropogenic origin, in the range from -1.1 W/m2 to -1.3 W/m2 at TOA. Improvements in size-resolved AOD and SSA retrievals from current and upcoming satellite instruments are suggested to better assess the DREA, particularly at BOA and ATM, where aerosol absorptivity induces substantial uncertainty.

  17. Direct aerosol effects during periods of solar dimming and brightening hidden in the regression residuals: Evidence from Potsdam measurements

    NASA Astrophysics Data System (ADS)

    Vetter, Tobias; Wechsung, Frank

    2015-11-01

    A recent empirical study of Stanhill et al. (2014), which was based on the Angstrom-Prescott relationship between global radiation and sunshine duration, was evaluated. The parameters of this relationship seemed to be rather stable across the dimming and brightening periods. Thus, the authors concluded that the variation in global radiation is more influenced by changes in cloud cover and sunshine duration than by the direct aerosol effects. In our study, done for the Potsdam station (one of six globally distributed stations, the source of one of the longest observational records and closely located to former hot spots of aerosol emission), we tested and rejected the hypothesis that the dimming of global radiation directly caused by aerosols is negligible. The residuals of the Angstrom-Prescott regression reveal a statistically significant positive temporal trend and a temporal level segmentation. The latter was consistent with the temporal emission patterns around Potsdam. The trend in the residuals only disappeared when the model intercept varied according to the temporal level segmentation. The magnitude of the direct aerosol effect on the level changes in global radiation derived from the modified Angstrom-Prescott relationship was in the range indicated in previous studies. Thus, from here, a specific request cannot be made for a revision of current climate models state-of-the-art representation of both the cooling effect directly caused by aerosols and the temperature sensitivity to the increase of greenhouse gases.

  18. Aerosol direct radiative effect of smoke over clouds over the southeast Atlantic Ocean from 2006 to 2009

    NASA Astrophysics Data System (ADS)

    Graaf, M.; Bellouin, N.; Tilstra, L. G.; Haywood, J.; Stammes, P.

    2014-11-01

    The aerosol direct radiative effect (DRE) of African smoke was analyzed in cloud scenes over the southeast Atlantic Ocean, using Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) satellite observations and Hadley Centre Global Environmental Model version 2 (HadGEM2) climate model simulations. The observed mean DRE was about 30-35 W m-2 in August and September 2006-2009. In some years, short episodes of high-aerosol DRE can be observed, due to high-aerosol loadings, while in other years the loadings are lower but more prolonged. Climate models that use evenly distributed monthly averaged emission fields will not reproduce these high-aerosol loadings. Furthermore, the simulated monthly mean aerosol DRE in HadGEM2 is only about 6 W m-2 in August. The difference with SCIAMACHY mean observations can be partly explained by an underestimation of the aerosol absorption Ångström exponent in the ultraviolet. However, the subsequent increase of aerosol DRE simulation by about 20% is not enough to explain the observed discrepancy between simulations and observations.

  19. Diurnal variations of aerosol optical properties in the North China Plain and their influences on the estimates of direct aerosol radiative effect

    NASA Astrophysics Data System (ADS)

    Kuang, Y.; Zhao, C. S.; Tao, J. C.; Ma, N.

    2015-05-01

    In this paper, the diurnal variations of aerosol optical properties and their influences on the estimation of daily average direct aerosol radiative effect (DARE) in the North China Plain (NCP) are investigated based on in situ measurements from Haze in China campaign. For ambient aerosol, the diurnal patterns of single scattering albedo (SSA) and asymmetry factor (g) in the NCP are both highest at dawn and lowest in the late afternoon, and quite different from those of dry-state aerosol. The relative humidity (RH) is the dominant factor which determines the diurnal pattern of SSA and g for ambient aerosol. Basing on the calculated SSA and g, several cases are designed to investigate the impacts of the diurnal changes of aerosol optical properties on DARE. The results demonstrate that the diurnal changes of SSA and g in the NCP have significant influences on the estimation of DARE at the top of the atmosphere (TOA). If the full temporal coverage of aerosol optical depth (AOD), SSA and g are available, an accurate estimation of daily average DARE can be achieved by using the daily averages of AOD, SSA and g. However, due to the lack of full temporal coverage data sets of SSA and g, their daily averages are usually not available. Basing on the results of designed cases, if the RH plays a dominant role in the diurnal variations of SSA and g, we suggest that using both SSA and g averaged over early morning and late afternoon as inputs for radiative transfer model to improve the accurate estimation of DARE. If the temporal samplings of SSA or g are too few to adopt this method, either averaged over early morning or late afternoon of both SSA and g can be used to improve the estimation of DARE at the TOA.

  20. Diurnal variations of aerosol optical properties in the North China Plain and their influences on the estimates of direct aerosol radiative effect

    NASA Astrophysics Data System (ADS)

    Kuang, Ye; Zhao, Chunsheng

    2016-04-01

    In this paper, the diurnal variations of aerosol optical properties and their influences on the estimation of daily average direct aerosol radiative effect (DARE) in the North China Plain (NCP) are investigated based on in situ measurements from Haze in China campaign. For ambient aerosol, the diurnal patterns of single scattering albedo (SSA) and asymmetry factor (g) in the NCP are both highest at dawn and lowest in the late afternoon, and quite different from those of dry-state aerosol. The relative humidity is the dominant factor which determines the diurnal patterns of SSA and g for ambient aerosol. Basing on the calculated SSA and g, several cases are designed to investigate the impacts of the diurnal changes of aerosol optical properties on DARE. The results demonstrate that the diurnal changes of SSA and g in the NCP have significant influences on the estimation of DARE at the top of the atmosphere (TOA). If the full temporal coverage of aerosol optical depth (AOD), SSA and g are available, an accurate estimation of daily average DARE can be achieved by using the daily averages of AOD, SSA and g. However, due to the lack of full temporal coverage datasets of SSA and g, their daily averages are usually not available. Basing on the results of designed cases, if the RH plays a dominant role in the diurnal variations of SSA and g, we suggest that using both SSA and g averaged over early morning and late afternoon as inputs for radiative transfer model to improve the accurate estimation of DARE. If the temporal samplings of SSA or g are too few to adopt this method, either averaged over early morning or late afternoon of both SSA and g can be used to improve the estimation of DARF at TOA.

  1. Top-of-Atmosphere Direct Radiative Effect of Aerosols over Global Oceans from Merged CERES and MODIS Observations

    NASA Technical Reports Server (NTRS)

    Loeb, N. G.; Smith, N. M.

    2004-01-01

    The direct radiative effect of aerosols (DREA) is defined as the difference between radiative fluxes in the absence and presence of aerosols. In this study, the direct radiative effect of aerosols is estimated for 46 months (March, 2000 to December, 2003) of merged CERES and MODIS Terra global measurements over ocean. This analysis includes the contribution from clear regions in both clear and partly cloudy CERES footprints. MODIS-CERES narrow-to-broadband regressions are developed to convert clear-sky MODIS narrowband radiances to broadband SW radiances, and CERES clear-sky Angular Distribution Models (ADMs) are used to estimate the corresponding TOA radiative fluxes needed to determine the DREA. Clear-sky MODIS pixels are identified using two independent cloud masks: (i) the NOAA-NESDIS algorithm used for inferring aerosol properties from MODIS on the CERES Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product (NOAA-SSF); and (ii) the standard algorithm used by the MODIS aerosol group to produce the MODO4 product (MODO4). Over global oceans, direct radiative cooling by aerosols for clear scenes identified from MODO4 is estimated to be 5.5 W m-2, compared to 3.8 W m-2 for clear scenes from NOAA-SSF. Regionally, differences are largest in areas affected by dust aerosol, such as oceanic regions adjacent to the Saharan and Saudi Arabian deserts, and in northern Pacific Ocean regions influenced by dust transported from Asia. The net total-sky (clear and cloudy) DREA is negative (cooling) and is estimated to be -2.0 W m-2 from MOD04, and -1.6 W m-2 from NOAA-SSF. The DREA is shown to have pronounced seasonal cycles in the Northern Hemisphere and large year-to-year fluctuations near deserts. However, no systematic trend in deseasonalized anomalies of the DREA is observed over the 46-month time series considered.

  2. A Novel Method for Estimating Shortwave Direct Radiative Effect of Above-Cloud Aerosols Using CALIOP and MODIS Data

    NASA Technical Reports Server (NTRS)

    Zhang, Z.; Meyer, K.; Platnick, S.; Oreopoulos, L.; Lee, D.; Yu, H.

    2014-01-01

    This paper describes an efficient and unique method for computing the shortwave direct radiative effect (DRE) of aerosol residing above low-level liquid-phase clouds using CALIOP and MODIS data. It accounts for the overlapping of aerosol and cloud rigorously by utilizing the joint histogram of cloud optical depth and cloud top pressure. Effects of sub-grid scale cloud and aerosol variations on DRE are accounted for. It is computationally efficient through using grid-level cloud and aerosol statistics, instead of pixel-level products, and a pre-computed look-up table in radiative transfer calculations. We verified that for smoke over the southeast Atlantic Ocean the method yields a seasonal mean instantaneous shortwave DRE that generally agrees with more rigorous pixel-level computation within 4. We have also computed the annual mean instantaneous shortwave DRE of light-absorbing aerosols (i.e., smoke and polluted dust) over global ocean based on 4 yr of CALIOP and MODIS data. We found that the variability of the annual mean shortwave DRE of above-cloud light-absorbing aerosol is mainly driven by the optical depth of the underlying clouds.

  3. Direct effect of aerosol on incident solar radiation at the surface as a function of aerosol mixtures measured in the center of Rome.

    NASA Astrophysics Data System (ADS)

    Campanelli, M.; Bassani, C.; Cacciani, M.; Siani, A. M.; Perrino, C.; Canepari, S.; Di Sarra, A.; Salzano, R.; Casasanta, G. P.; Tirelli, C.; Estelles, V.

    2012-04-01

    Aerosols determine a radiative effect in the atmosphere by affecting the amount of solar radiation reaching the surface and then acting on the temperature of both the layer where they are located and the surface. The presence of very absorbent particles typical of the urban environment, is therefore dangerous not only for human health but also because they are able to increase the temperature of the atmospheric layer in which they are located interacting with the "heath island" phenomenon. The resulting variation of both surface temperature and temperature vertical profile influences the dilution of atmospheric pollutants and needs to be studied in more detail, particularly in the summer period when heat waves are more frequent. Chemical analysis of surface particulate matter performed at the urban site of Rome (Perrino et al. 2009) showed that sea salt, locally produced urban aerosol and desert dust can be recognized depending on the intensity of the episodes transporting different particles types. As a result: i) the direct effect of aerosol at the surface change as a function of aerosol mixtures; ii) the variation of incident solar radiation affects the local convective air motion modifying the low level circulation and having an effect on the particles deposition and hence on the chemical characterization of the mixture. On the base of above issues a day-time intensive field campaign was held in Rome (Italy) in June and July 2011 at the University of Rome, La Sapienza, located in the city center (lat 41.9°N, long 12.5 °E). Chemical analysis of the aerosol particles was performed on particulate collected by PM10 collectors. Columnar aerosol optical and physical properties in clear sky were retrieved by using a PREDE sun-sky radiometer, part of ESR/SKYNET network. Vertical profiles of aerosol were obtained by a Lidar and incoming total solar radiation was measured by a Black and White Pyranometer . A Brewer spectrophotometer, a Sodar, and a MFRSR provided

  4. Air pollution and climate response to aerosol direct radiative effects: A modeling study of decadal trends across the northern hemisphere

    EPA Science Inventory

    Decadal hemispheric Weather Research and Forecast-Community Multiscale Air Quality simulations from 1990 to 2010 were conducted to examine the meteorology and air quality responses to the aerosol direct radiative effects. The model's performance for the simulation of hourly surfa...

  5. Global modelling of direct and indirect effects of sea spray aerosol using a source function encapsulating wave state

    NASA Astrophysics Data System (ADS)

    Partanen, A.-I.; Dunne, E. M.; Bergman, T.; Laakso, A.; Kokkola, H.; Ovadnevaite, J.; Sogacheva, L.; Baisnée, D.; Sciare, J.; Manders, A.; O'Dowd, C.; de Leeuw, G.; Korhonen, H.

    2014-02-01

    Recently developed parameterizations for the sea spray aerosol source flux, encapsulating wave state, and its organic fraction were incorporated into the aerosol-climate model ECHAM-HAMMOZ to investigate the direct and indirect radiative effects of sea spray aerosol particles. Our simulated global sea salt emission of 805 Tg yr-1 (uncertainty range 378-1233 Tg yr-1) was much lower than typically found in previous studies. Modelled sea salt and sodium ion concentrations agreed relatively well with measurements in the smaller size ranges at Mace Head (annual normalized mean model bias -13% for particles with vacuum aerodynamic diameter Dva < 1 μm), Point Reyes (-29% for particles with aerodynamic diameter Da < 2.5 μm) and Amsterdam Island (-52% for particles with Da < 1 μm) but the larger sizes were overestimated (899% for particles with 2.5 μm aerosol at Mace Head (-82%) and Amsterdam Island (-68%). The large overestimation (212%) of organic matter at Point Reyes was due to the contribution of continental sources. At the remote Amsterdam Island site, the organic concentration was underestimated especially in the biologically active months, suggesting a need to improve the parameterization of the organic sea spray fraction. Globally, the satellite-retrieved AOD over the oceans, using PARASOL data, was underestimated by the model (means over ocean 0.16 and 0.10, respectively); however, in the pristine region around Amsterdam Island the measured AOD fell well within the simulated uncertainty range. The simulated sea spray aerosol contribution to the indirect radiative effect was positive (0.3 W m-2), in contrast to previous studies. This positive effect was ascribed to the tendency of sea salt aerosol to

  6. Global modelling of direct and indirect effects of sea spray aerosol using a source function encapsulating wave state

    NASA Astrophysics Data System (ADS)

    Partanen, A.-I.; Dunne, E. M.; Bergman, T.; Laakso, A.; Kokkola, H.; Ovadnevaite, J.; Sogacheva, L.; Baisnée, D.; Sciare, J.; Manders, A.; O'Dowd, C.; de Leeuw, G.; Korhonen, H.

    2014-11-01

    Recently developed parameterizations for the sea spray aerosol source flux, encapsulating wave state, and its organic fraction were incorporated into the aerosol-climate model ECHAM-HAMMOZ to investigate the direct and indirect radiative effects of sea spray aerosol particles. Our simulated global sea salt emission of 805 Tg yr-1 (uncertainty range 378-1233 Tg yr-1) was much lower than typically found in previous studies. Modelled sea salt and sodium ion concentrations agreed relatively well with measurements in the smaller size ranges at Mace Head (annual normalized mean model bias -13% for particles with vacuum aerodynamic diameter Dva < 1 μm), Point Reyes (-29% for particles with aerodynamic diameter Da < 2.5 μm) and Amsterdam Island (-52% for particles with Da < 1 μm) but the larger sizes were overestimated (899% for particles with 2.5 μm < Da < 10 μm) at Amsterdam Island. This suggests that at least the high end of the previous estimates of sea spray mass emissions is unrealistic. On the other hand, the model clearly underestimated the observed concentrations of organic or total carbonaceous aerosol at Mace Head (-82%) and Amsterdam Island (-68%). The large overestimation (212%) of organic matter at Point Reyes was due to the contribution of continental sources. At the remote Amsterdam Island site, the organic concentration was underestimated especially in the biologically active months, suggesting a need to improve the parameterization of the organic sea spray fraction. Globally, the satellite-retrieved AOD over the oceans, using PARASOL data, was underestimated by the model (means over ocean 0.16 and 0.10, respectively); however, in the pristine region around Amsterdam Island the measured AOD fell well within the simulated uncertainty range. The simulated sea spray aerosol contribution to the indirect radiative effect was positive (0.3 W m-2), in contrast to previous studies. This positive effect was ascribed to the tendency of sea salt aerosol to

  7. Impacts of the direct radiative effect of aerosols in numerical weather prediction over Europe using the ALADIN-HIRLAM NWP system

    NASA Astrophysics Data System (ADS)

    Toll, V.; Gleeson, E.; Nielsen, K. P.; Männik, A.; Mašek, J.; Rontu, L.; Post, P.

    2016-05-01

    Aerosol feedbacks are becoming more accepted as physical mechanisms that should be included in numerical weather prediction models in order to improve the accuracy of the weather forecasts. The default set-up in the Aire Limitee Adaptation dynamique Developpement INternational (ALADIN) - High Resolution Limited Area Model (HIRLAM) numerical weather prediction system includes monthly aerosol climatologies to account for the average direct radiative effect of aerosols. This effect was studied using the default aerosol climatology in the system and compared to experiments run using the more up-to-date Max-Planck-Institute Aerosol Climatology version 1 (MACv1), and time-varying aerosol data from the Monitoring Atmospheric Composition and Climate (MACC) reanalysis aerosol dataset. Accounting for the direct radiative effect using monthly aerosol climatologies or near real-time aerosol distributions improved the accuracy of the simulated radiative fluxes and temperature and humidity forecasts in the lower troposphere. However, the dependency of forecast meteorological conditions on the aerosol dataset itself was found to be weak.

  8. A Novel Method for Estimating Shortwave Direct Radiative Effect of Above-Cloud Aerosols Using CALIOP and MODIS Data

    NASA Technical Reports Server (NTRS)

    Zhang, Zhibo; Meyer, Kerry G.; Platnick, Steven; Oreopoulos, Lazaros; Lee, Dongmin; Yu, Hongbin

    2014-01-01

    This paper describes an efficient and unique method for computing the shortwave direct radiative effect (DRE) of aerosol residing above low-level liquid-phase clouds using CALIOP and MODIS data. It addresses the overlap of aerosol and cloud rigorously by utilizing the joint histogram of cloud optical depth and cloud top pressure while also accounting for subgrid-scale variations of aerosols. The method is computationally efficient because of its use of grid-level cloud and aerosol statistics, instead of pixel-level products, and a pre-computed look-up table based on radiative transfer calculations. We verify that for smoke over the southeast Atlantic Ocean the method yields a seasonal mean instantaneous (approximately 1:30PM local time) shortwave DRE of above cloud aerosol (ACA) that generally agrees with more rigorous pixel-level computation within 4 percent. We also estimate the impact of potential CALIOP aerosol optical depth (AOD) retrieval bias of ACA on DRE. We find that the regional and seasonal mean instantaneous DRE of ACA over southeast Atlantic Ocean would increase, from the original value of 6.4 W m(-2) based on operational CALIOP AOD to 9.6 W m(-2) if CALIOP AOD retrieval are biased low by a factor of 1.5 (Meyer et al., 2013) and further to 30.9 W m(-2) if CALIOP AOD retrieval are biased low by a factor of 5 as suggested in (Jethva et al., 2014). In contrast, the instantaneous ACA radiative forcing efficiency (RFE) remains relatively invariant in all cases at about 53 W m(-2) AOD(-1), suggesting a near linear relation between the instantaneous RFE and AOD. We also compute the annual mean instantaneous shortwave DRE of light-absorbing aerosols (i.e., smoke and polluted dust) over global oceans based on 4 years of CALIOP and MODIS data. We find that the variability of the annual mean shortwave DRE of above-cloud light-absorbing aerosol is mainly driven by the optical depth of the underlying clouds. While we demonstrate our method using CALIOP and MODIS

  9. Can a coupled meteorology-chemistry model reproduce the historical trend in aerosol direct radiative effects over the Northern Hemisphere?

    NASA Astrophysics Data System (ADS)

    Xing, J.; Mathur, R.; Pleim, J.; Hogrefe, C.; Gan, C.-M.; Wong, D. C.; Wei, C.

    2015-09-01

    The ability of a coupled meteorology-chemistry model, i.e., Weather Research and Forecast and Community Multiscale Air Quality (WRF-CMAQ), to reproduce the historical trend in aerosol optical depth (AOD) and clear-sky shortwave radiation (SWR) over the Northern Hemisphere has been evaluated through a comparison of 21-year simulated results with observation-derived records from 1990 to 2010. Six satellite-retrieved AOD products including AVHRR, TOMS, SeaWiFS, MISR, MODIS-Terra and MODIS-Aqua as well as long-term historical records from 11 AERONET sites were used for the comparison of AOD trends. Clear-sky SWR products derived by CERES at both the top of atmosphere (TOA) and surface as well as surface SWR data derived from seven SURFRAD sites were used for the comparison of trends in SWR. The model successfully captured increasing AOD trends along with the corresponding increased TOA SWR (upwelling) and decreased surface SWR (downwelling) in both eastern China and the northern Pacific. The model also captured declining AOD trends along with the corresponding decreased TOA SWR (upwelling) and increased surface SWR (downwelling) in the eastern US, Europe and the northern Atlantic for the period of 2000-2010. However, the model underestimated the AOD over regions with substantial natural dust aerosol contributions, such as the Sahara Desert, Arabian Desert, central Atlantic and northern Indian Ocean. Estimates of the aerosol direct radiative effect (DRE) at TOA are comparable with those derived by measurements. Compared to global climate models (GCMs), the model exhibits better estimates of surface-aerosol direct radiative efficiency (Eτ). However, surface-DRE tends to be underestimated due to the underestimated AOD in land and dust regions. Further investigation of TOA-Eτ estimations as well as the dust module used for estimates of windblown-dust emissions is needed.

  10. Satellite-Based Assessment of Possible Dust Aerosols Semi-Direct Effect on Cloud Water Path over East Asia

    NASA Technical Reports Server (NTRS)

    Huang, Jianping; Lin, Bing; Minnis, Patrick; Wang, Tainhe; Wang, Xin; Hu, Yongxiang; Yi, Yuhong; Ayers, J. Kirk

    2006-01-01

    The semi-direct effects of dust aerosols are analyzed over eastern Asia using 2 years (June 2002 to June 2004) of data from the Clouds and the Earth s Radiant Energy System (CERES) scanning radiometer and MODerate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite, and 18 years (1984 to 2001) of International Satellite Cloud Climatology Project (ISCCP) data. The results show that the water path of dust-contaminated clouds is considerably smaller than that of dust-free clouds. The mean ice water path (IWP) and liquid water path (LWP) of dusty clouds are less than their dust-free counterparts by 23.7% and 49.8%, respectively. The long-term statistical relationship derived from ISCCP also confirms that there is significant negative correlation between dust storm index and ISCCP cloud water path. These results suggest that dust aerosols warm clouds, increase the evaporation of cloud droplets and further reduce cloud water path, the so-called semi-direct effect. The semi-direct effect may play a role in cloud development over arid and semi-arid areas of East Asia and contribute to the reduction of precipitation.

  11. Shortwave direct radiative effects of above cloud aerosols over global oceans derived from eight years of CALIOP and MODIS observations

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Meyer, K.; Yu, H.; Platnick, S.; Colarco, P.; Liu, Z.; Oreopoulos, L.

    2015-09-01

    In this paper, we studied the frequency of occurrence and shortwave direct radiative effects (DRE) of above-cloud aerosols (ACAs) over global oceans using eight years of collocated CALIOP and MODIS observations. Similar to previous work, we found high ACA occurrence in four regions: Southeast (SE) Atlantic region where ACAs are mostly light-absorbing aerosols, i.e., smoke and polluted dust according to CALIOP classification, originating from biomass burning over African Savanna; Tropical Northeast Atlantic and Arabian Sea where ACAs are predominantly windblown dust from the Sahara and Arabian desert, respectively; and Northwest Pacific where ACAs are mostly transported smoke and polluted dusts from Asian. From radiative transfer simulations based on CALIOP-MODIS observations and a set of the preselected aerosol optical models, we found the DREs of ACAs at the top of atmosphere (TOA) to be positive (i.e., warming) in the SE Atlantic and NW Pacific regions, but negative (i.e., cooling) in TNE Atlantic and Arabian Sea. The cancellation of positive and negative regional DREs results in a global ocean annual mean diurnally averaged cloudy-sky DRE of 0.015 W m-2 (range of -0.03 to 0.06 W m-2) at TOA. The DREs at surface and within atmosphere are -0.15 W m-2 (range of -0.09 to -0.21 W m-2), and 0.17 W m-2 (range of 0.11 to 0.24 W m-2), respectively. The regional and seasonal mean DREs are much stronger. For example, in the SE Atlantic region the JJA (July ~ August) seasonal mean cloudy-sky DRE is about 0.7 W m-2 (range of 0.2 to 1.2 W m-2) at TOA. The uncertainty in our DRE computations is mainly cause by the uncertainties in the aerosol optical properties, in particular aerosol absorption, and uncertainties in the CALIOP operational aerosol optical thickness retrieval. In situ and remotely sensed measurements of ACA from future field campaigns and satellite missions, and improved lidar retrieval algorithm, in particular vertical feature masking, would help reduce the

  12. Assessment of regional effects in pulmonary aerosol delivery using Direct Numerical Simulation (DNS)

    NASA Astrophysics Data System (ADS)

    Kassinos, Stavros; Stylianou, Fotos; Koullapis, Pantelis; UCY-Compsci Team

    2014-11-01

    Recent computational studies have shown that the airflow in the upper human airways is turbulent during much of the respiratory cycle. One of the features of respiratory airflow that poses a challenge to computations based on Reynolds-Averaged Navier-Stokes (RANS) closures is the laminar-turbulent-laminar transition as the flow moves from the mouth through the glottis and down to the lower conducting airways. Turbulence and unsteadiness are expected at least through the first few bifurcations of the airways. In the case of inhaled medicines, and depending on the size of the particles in the formulation, airway bifurcations are areas of preferential deposition. Here, we use Direct Numerical Simulations (DNS) to examine aerosol deposition in the case of turbulent flow through a realistic representation of the tracheal bifurcation. We examine the flow characteristics in detail, including the turbulent structures and how they affect the deposition of particles of different sizes. DNS results are compared with RANS computations. Supported by the European Union Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. 315760 HEXACOMM.

  13. Understanding the direct and indirect effects of Biomass Burning Aerosols over Southeast-East Asia by employing McRAS-AC in the GEOS-5 AGCM

    NASA Astrophysics Data System (ADS)

    Lee, D.; Oreopoulos, L.; Sud, Y. C.; Kim, K.; Lau, W. K.; Kang, I.

    2013-12-01

    Biomass burning (BB) aerosols can potentially be important players in the monsoon system since they may either slow down the hydrological cycle via surface dimming (Ramanathan et al., 2005), or strengthen it via atmospheric heating (the ';Elevated Heat Pump' hypothesis, Lau et al. 2006). Moreover previous studies have reported the possibility that aerosol interaction with cloud microphysics (indirect effect) may be operating in conjunction with the direct effect to bring about significant perturbations during the pre-monsoon season. In this study we focus on the massive BB aerosol production over Southeast Asia during this part of the year spring, which can be transported to southern China, and affect regional precipitation by direct/indirect effects on the early phase of the monsoon, as suggested by observations. For the investigation of combined aerosol effects, GCM experiments are designed using the GEOS-5 AGCM equipped with McRAS-AC double moment cloud microphysics, interactive GOCART aerosols model, advanced RRTMG radiative transfer package RRTMG with Monte Carlo Independent Column Approximation modes, and CFMIP Observation Simulator Package (COSP). Analysis of GEOS-5 integrations with and without biomass burning emission allows us to identify the responses of clouds and precipitation to aerosol rather than dynamics, and meteorological field. Furthermore, valuable addition would be the separation of the relative importance of direct versus indirect effects is examined in experiments where the by turning off aerosol direct effect is turned off. Ramanathan et al. 2005, Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle, PNAS Lau et al. 2006, Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau, Clim. Dyn.

  14. Toward a minimal representation of aerosol direct and indirect effects: model description and evaluation

    NASA Astrophysics Data System (ADS)

    Liu, X.; Easter, R. C.; Ghan, S. J.; Zaveri, R.; Rasch, P.; Shi, X.; Lamarque, J.-F.; Gettelman, A.; Morrison, H.; Vitt, F.; Conley, A.; Park, S.; Neale, R.; Hannay, C.; Ekman, A. M. L.; Hess, P.; Mahowald, N.; Collins, W.; Iacono, M. J.; Bretherton, C. S.; Flanner, M. G.; Mitchell, D.

    2011-12-01

    A modal aerosol module (MAM) has been developed for the Community Atmosphere Model version 5 (CAM5), the atmospheric component of the Community Earth System Model version 1 (CESM1). MAM is capable of simulating the aerosol size distribution and both internal and external mixing between aerosol components, treating numerous complicated aerosol processes and aerosol physical, chemical and optical properties in a physically based manner. Two MAM versions were developed: a more complete version with seven lognormal modes (MAM7), and a version with three lognormal modes (MAM3) for the purpose of long-term (decades to centuries) simulations. Major approximations in MAM3 include assuming immediate mixing of primary organic matter (POM) and black carbon (BC) with other aerosol components, merging of the MAM7 fine dust and fine sea salt modes into the accumulation mode, merging of the MAM7 coarse dust and coarse sea salt modes into the single coarse mode, and neglecting the explicit treatment of ammonia and ammonium cycles. Simulated sulfate and secondary organic aerosol (SOA) mass concentrations are remarkably similar between MAM3 and MAM7 as most (~90%) of these aerosol species are in the accumulation mode. Differences of POM and BC concentrations between MAM3 and MAM7 are also small (mostly within 10%) because of the assumed hygroscopic nature of POM, so that much of the freshly emitted POM and BC is wet-removed before mixing internally with soluble aerosol species. Sensitivity tests with the POM assumed to be hydrophobic and with slower aging increase the POM and BC concentrations, especially at high latitudes (by several times). The mineral dust global burden differs by 10% and sea salt burden by 30-40% between MAM3 and MAM7 mainly due to the different size ranges for dust and sea salt modes and different standard deviations of the log-normal size distribution for sea salt modes between MAM3 and MAM7. The model is able to qualitatively capture the observed geographical

  15. Investigation of Multi-decadal Trends in Aerosol Direct Radiative Effects over North America using a Coupled Meteorology-Chemistry Model

    NASA Astrophysics Data System (ADS)

    Mathur, R.; Pleim, J.; Wong, D.; Wei, C.; Xing, J.; Gan, M.; Yu, S.; Binkowski, F.

    2012-12-01

    While aerosol radiative effects have been recognized as some of the largest sources of uncertainty among the forcers of climate change, there has been little effort devoted to verification of the spatial and temporal variability of the magnitude and directionality of aerosol radiative forcing. A comprehensive investigation of the processes regulating aerosol distributions, their optical properties, and their radiative effects and verification of their simulated effects for past conditions relative to measurements is needed in order to build confidence in the estimates of the projected impacts arising from changes in both anthropogenic forcing and climate change. This study aims at addressing this issue through a systematic investigation of changes in anthropogenic emissions of SO2 and NOx over the past two decades in the United States, their impacts on anthropogenic aerosol loading in the North American troposphere, and subsequent impacts on regional radiation budgets. A newly developed 2-way coupled meteorology and air pollution model composed of the Weather Research and Forecasting (WRF) model and the Community Multiscale Air Quality (CMAQ) model is being run for 20 years (1990 - 2010) on a 12 km resolution grid that covers most of North America including the entire conterminous US. During this period US emissions of SO2 and NOx have been reduced by about 66% and 50%, respectively, mainly due to Title IV of the U.S. Clean Air Act Amendments (CAA) that aimed to reduce emissions that contribute to acid deposition. A methodology is developed to consistently estimate emission inventories for the 20-year period accounting for air quality regulations as well as population trends, economic conditions, and technology changes in motor vehicles and electric power generation. The coupled WRF-CMAQ model includes detailed treatment of direct effects of aerosols on photolysis rates as well as on shortwave radiation and the direct effects of tropospheric ozone on the long

  16. Top-of-Atmosphere Direct Radiative Effect of Aerosols from the Clouds and the Earth's Radiant Energy System Satellite Instrument (CERES)

    NASA Technical Reports Server (NTRS)

    Loeb, N. G.; Kato, S.

    2002-01-01

    Nine months of CERES/TRMM broadband fluxes combined with VIRS high-resolution imager measurements are used to estimate the daily average direct radiative effect of aerosols for clear-sky conditions over the tropical oceans. On average, aerosols have a cooling effect over the tropics of 4.6 +/- 1 W/sq m. The magnitude is approx.2 W/sq m smaller over the southern tropical oceans than it is over northern tropical oceans. The direct effect derived from CERES is highly correlated with coincident aerosol optical depth retrievals inferred from 0.63 microns VIRS radiances (correlation coefficient of 0.96). The slope of the regression line is approx. -32 W/sq m/t over the equatorial Pacific Ocean, but changes both regionally and seasonally, depending on the aerosol characteristics. Near sources of biomass burning and desert dust, the aerosol direct effect reaches -25 W sq m to -30 W/sq m. The direct effect from CERES also shows a dependence on wind speed. The reason for this dependence is unclear-it may be due to increased aerosol (e.g. sea-salt or aerosol transport) or increased surface reflection (e.g. due to whitecaps). The uncertainty in the tropical average direct effect from CERES is approx. 1 W/sq m (approx. 20%) due mainly to cloud contamination, the radiance-to-flux conversion, and instrument calibration. By comparison, uncertainties in the direct effect from the ERBE and CERES "ERBE-Like" products are a factor of 3 to 5 larger.

  17. Interpreting the ultraviolet aerosol index observed with the OMI satellite instrument to understand absorption by organic aerosols: implications for atmospheric oxidation and direct radiative effects

    NASA Astrophysics Data System (ADS)

    Hammer, Melanie S.; Martin, Randall V.; van Donkelaar, Aaron; Buchard, Virginie; Torres, Omar; Ridley, David A.; Spurr, Robert J. D.

    2016-03-01

    , thus reducing the bias against observed values. We calculate the direct radiative effect (DRE) of BrC using GEOS-Chem coupled with the radiative transfer model RRTMG (GC-RT). Treating organic aerosol as containing more strongly absorbing BrC changes the global annual mean all-sky top of atmosphere (TOA) DRE by +0.03 W m-2 and all-sky surface DRE by -0.08 W m-2. Regional changes of up to +0.3 W m-2 at TOA and down to -1.5 W m-2 at the surface are found over major biomass burning regions.

  18. Interpreting the Ultraviolet Aerosol Index observed with the OMI satellite instrument to understand absorption by organic aerosols: implications for atmospheric oxidation and direct radiative effects

    NASA Astrophysics Data System (ADS)

    Hammer, M. S.; Martin, R. V.; van Donkelaar, A.; Buchard, V.; Torres, O.; Ridley, D. A.; Spurr, R. J. D.

    2015-10-01

    reducing the bias against observed values. We calculate the direct radiative effect (DRE) of BrC using GEOS-Chem coupled with the radiative transfer model RRTMG (GC-RT). Treating organic aerosol as containing absorbing BrC rather than as primarily scattering changes global annual mean all-sky top of atmosphere (TOA) DRE by +0.05 W m-2 and all-sky surface DRE by -0.06 W m-2. Regional changes of up to +0.5 W m-2 at TOA and down to -1 W m-2 at the surface are found over major biomass burning regions.

  19. Interpreting the Ultraviolet Aerosol Index Observed with the OMI Satellite Instrument to Understand Absorption by Organic Aerosols: Implications for Atmospheric Oxidation and Direct Radiative Effects

    NASA Technical Reports Server (NTRS)

    Hammer, Melanie S.; Martin, Randall V.; Donkelaar, Aaron van; Buchard, Virginie; Torres, Omar; Ridley, David A.; Spurr, Robert J. D.

    2016-01-01

    reducing the bias against observed values. We calculate the direct radiative effect (DRE) of BrC using GEOS-Chem coupled with the radiative transfer model RRTMG (GC-RT). Treating organic aerosol as containing more strongly absorbing BrC changes the global annual mean all-sky top of atmosphere (TOA) DRE by +0.03Wm(exp -2) and all-sky surface DRE by -0.08Wm(exp -2). Regional changes of up to +0.3Wm(exp -2) at TOA and down to -1.5Wm(exp -2) at the surface are found over major biomass burning regions.

  20. Investigation of Trends in Aerosol Direct Radiative Effects over North America Using a Coupled Meteorology-Chemistry Model

    EPA Science Inventory

    A comprehensive investigation of the processes regulating tropospheric aerosol distributions, their optical properties, and their radiative effects in conjunction with verification of their simulated radiative effects for past conditions relative to measurements is needed in orde...

  1. Effect of Spectrally Varying Albedo of Vegetation Surfaces on Shortwave Radiation Fluxes and Aerosol Direct Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Zhu, L.; Martins, J. V.; Yu, H.

    2012-01-01

    This study develops an algorithm for representing detailed spectral features of vegetation albedo based on Moderate Resolution Imaging Spectrometer (MODIS) observations at 7 discrete channels, referred to as the MODIS Enhanced Vegetation Albedo (MEVA) algorithm. The MEVA algorithm empirically fills spectral gaps around the vegetation red edge near 0.7 micrometers and vegetation water absorption features at 1.48 and 1.92 micrometers which cannot be adequately captured by the MODIS 7 channels. We then assess the effects of applying MEVA in comparison to four other traditional approaches to calculate solar fluxes and aerosol direct radiative forcing (DRF) at the top of atmosphere (TOA) based on the MODIS discrete reflectance bands. By comparing the DRF results obtained through the MEVA method with the results obtained through the other four traditional approaches, we show that filling the spectral gap of the MODIS measurements around 0.7 micrometers based on the general spectral behavior of healthy green vegetation leads to significant improvement in the instantaneous aerosol DRF at TOA (up to 3.02Wm(exp -2) difference or 48% fraction of the aerosol DRF, .6.28Wm(exp -2), calculated for high spectral resolution surface reflectance from 0.3 to 2.5 micrometers for deciduous vegetation surface). The corrections of the spectral gaps in the vegetation spectrum in the near infrared, again missed by the MODIS reflectances, also contributes to improving TOA DRF calculations but to a much lower extent (less than 0.27Wm(exp -2), or about 4% of the instantaneous DRF). Compared to traditional approaches, MEVA also improves the accuracy of the outgoing solar flux between 0.3 to 2.5 micrometers at TOA by over 60Wm(exp -2) (for aspen 3 surface) and aerosol DRF by over 10Wm(exp -2) (for dry grass). Specifically, for Amazon vegetation types, MEVA can improve the accuracy of daily averaged aerosol radiative forcing in the spectral range of 0.3 to 2.5 micrometers at equator at the

  2. Direct Radiative Effect and Heating Rate of black carbon aerosol: high time resolution measurements and source-identified forcing effects

    NASA Astrophysics Data System (ADS)

    Ferrero, Luca; Mocnik, Grisa; Cogliati, Sergio; Comi, Alberto; Degni, Francesca; Di Mauro, Biagio; Colombo, Roberto; Bolzacchini, Ezio

    2016-04-01

    Black carbon (BC) absorbs sunlight in the atmosphere heating it. However, up to now, heating rate (HR) calculations from the divergence of the net radiative flux with altitude or from the modelling activity are too sparse. This work fills the aforementioned gap presenting a new methodology based on a full set of physical equations to experimentally determine both the radiative power density absorbed into a ground-based atmospheric layer (ADRE), and the consequent HR induced by the absorptive component of aerosol. In urban context, it is essentially related to the BC. The methodology is also applicable to natural components (i.e. dust) and is obtained solving the first derivative of the main radiative transfer equations. The ADRE and the consequent HR can be determined coupling spectral aerosol absorption measurements with the spectrally resolved measurements of the direct, diffuse downward radiation and the surface reflected radiance components. Moreover, the spectral absorption of BC aerosol allows its source apportionment (traffic and biomass burning (BB)) allowing the same apportionment on HR. This work reports one year of high-time resolution measurements (5 min) of sunlight absorption and HR induced by BC aerosol over Milan. A unique sampling site was set up from March 2015 with: 1) Aethalometer (AE-31, Magee Scientific, 7-λ), 2) the Multiplexer-Radiometer-Irradiometer which detects downward and reflected radiance (350-1000 nm in 3648 spectral bands) coupled with a rotating shadow-band to measure spectrally-resolved global and diffuse radiation (thus direct), 3) a meteorological station (LSI-Lastem) equipped with 3 pyranometers (global, diffuse and refrected radiation; 300-3000 nm), a thermohygrometer, a barometer, an anemometer, 4) condensation and optical particle counters (TSI 3775 and Grimm 1.107), 5) low volume sampler (FAI Hydra dual sampler, PM2.5 and PM10) for sample collection and chemistry determination. Results concerning the radiative power

  3. Impacts of Aerosol Direct Effects on the South Asian Climate: Assessment of Radiative Feedback Processes Using Model Simulations and Satellite/Surface Measurements

    NASA Technical Reports Server (NTRS)

    Wang, Sheng-Hsiang; Gautam, Ritesh; Lau, William K. M.; Tsay, Si-Chee; Sun, Wen-Yih; Kim, Kyu-Myong; Chern, Jiun-Dar; Hsu, Christina; Lin, Neng-Huei

    2011-01-01

    Current assessment of aerosol radiative effect is hindered by our incomplete knowledge of aerosol optical properties, especially absorption, and our current inability to quantify physical and microphysical processes. In this research, we investigate direct aerosol radiative effect over heavy aerosol loading areas (e.g., Indo-Gangetic Plains, South/East Asia) and its feedbacks on the South Asian climate during the pre-monsoon season (March-June) using the Purdue Regional Climate Model (PRCM) with prescribed aerosol data derived by the NASA Goddard Earth Observing System Model (GEOS-5). Our modeling domain covers South and East Asia (60-140E and 0-50N) with spatial resolutions of 45 km in horizontal and 28 layers in vertical. The model is integrated from 15 February to 30 June 2008 continuously without nudging (i.e., only forced by initial/boundary conditions). Two numerical experiments are conducted with and without the aerosol-radiation effects. Both simulations are successful in reproducing the synoptic patterns on seasonal-to-interannual time scales and capturing a pre-monsoon feature of the northward rainfall propagation over Indian region in early June which shown in Tropical Rainfall Measuring Mission (TRMM) observation. Preliminary result suggests aerosol-radiation interactions mainly alter surface-atmosphere energetics and further result in an adjustment of the vertical temperature distribution in lower atmosphere (below 700 hPa). The modifications of temperature and associated rainfall and circulation feedbacks on the regional climate will be discussed in the presentation.

  4. Investigation on semi-direct and indirect climate effects of fossil fuel black carbon aerosol over China

    NASA Astrophysics Data System (ADS)

    Zhuang, Bingliang; Liu, Qian; Wang, Tijian; Yin, Changqin; Li, Shu; Xie, Min; Jiang, Fei; Mao, Huiting

    2013-11-01

    A Regional Climate Chemistry Modeling System that employed empirical parameterizations of aerosol-cloud microphysics was applied to investigate the spatial distribution, radiative forcing (RF), and climate effects of black carbon (BC) over China. Results showed high levels of BC in Southwest, Central, and East China, with maximum surface concentrations, column burden, and optical depth (AOD) up to 14 μg m-3, 8 mg m-2, and 0.11, respectively. Black carbon was found to result in a positive RF at the top of the atmosphere (TOA) due to its direct effect while a negative RF due to its indirect effect. The regional-averaged direct and indirect RF of BC in China was about +0.81 and -0.95 W m-2, respectively, leading to a net RF of -0.15 W m-2 at the TOA. The BC indirect RF was larger than its direct RF in South China. Due to BC absorption of solar radiation, cloudiness was decreased by 1.33 %, further resulting in an increase of solar radiation and subsequently a surface warming over most parts of China, which was opposite to BC's indirect effect. Further, the net effect of BC might cause a decrease of precipitation of -7.39 % over China. Investigations also suggested large uncertainties and non-linearity in BC's indirect effect on regional climate. Results suggested that: (a) changes in cloud cover might be more affected by BC's direct effect, while changes in surface air temperature and precipitation might be influenced by BC's indirect effect; and (b) BC second indirect effect might have more influence on cloud cover and water content compared to first indirect effect. This study highlighted a substantial role of BC on regional climate changes.

  5. Aerosol Direct Radiative Effect at the Top of the Atmosphere Over Cloud Free Ocean Derived from Four Years of MODIS Data

    NASA Technical Reports Server (NTRS)

    Remer, L. A.; Kaufman, Y. J.

    2006-01-01

    A four year record of MODIS spaceborne data provides a new measurement tool to assess the aerosol direct radiative effect at the top of the atmosphere. MODIS derives the aerosol optical thickness and microphysical properties from the scattered sunlight at 0.55-2.1 microns. The monthly MODIS data used here are accumulated measurements across a wide range of view and scattering angles and represent the aerosol s spectrally resolved angular properties. We use these data consistently to compute with estimated accuracy of +/-0.6W/sq m the reflected sunlight by the aerosol over global oceans in cloud free conditions. The MODIS high spatial resolution (0.5 km) allows observation of the aerosol impact between clouds that can be missed by other sensors with larger footprints. We found that over the clear-sky global ocean the aerosol reflected 5.3+/-0.6W/sq m with an average radiative efficiency of 49+/-2W/sq m per unit optical thickness. The seasonal and regional distribution of the aerosol radiative effects are discussed. The analysis adds a new measurement perspective to a climate change problem dominated so far by models.

  6. Spatially Refined Aerosol Direct Radiative Focusing Efficiencies

    EPA Science Inventory

    Global aerosol direct radiative forcing (DRF) is an important metric for assessing potential climate impacts of future emissions changes. However, the radiative consequences of emissions perturbations are not readily quantified nor well understood at the level of detail necessary...

  7. Spatially Refined Aerosol Direct Radiative Forcing Efficiencies

    EPA Science Inventory

    Global aerosol direct radiative forcing (DRF) is an important metric for assessing potential climate impacts of future emissions changes. However, the radiative consequences of emissions perturbations are not readily quantified nor well understood at the level of detail necessary...

  8. Effect of spectrally varying albedo of vegetation surfaces on shortwave radiation fluxes and direct aerosol forcing

    NASA Astrophysics Data System (ADS)

    Zhu, L.; Martins, J. V.; Yu, H.

    2012-06-01

    This study develops an algorithm for the representation of large spectral variations of albedo over vegetation surfaces based on Moderate Resolution Imaging Spectrometer (MODIS) observations at 7 discrete channels centered at 0.47, 0.55, 0.67, 0.86, 1.24, 1.63, and 2.11 μm. The MODIS 7-channel observations miss several major features of vegetation albedo including the vegetation red edge near 0.7 μm and vegetation absorption features at 1.48 and 1.92 μm. We characterize these features by investigating aerosol forcing in different spectral ranges. We show that the correction at 0.7 μm is the most sensitive and important due to the presence of the red edge and strong solar radiation; the other two corrections are less sensitive due to the weaker solar radiation and strong atmospheric water absorption. Four traditional approaches for estimating the reflectance spectrum and the MODIS enhanced vegetation albedo (MEVA) are tested against various vegetation types: dry grass, green grass, conifer, and deciduous from the John Hopkins University (JHU) spectral library; aspens from the US Geological Survey (USGS) digital spectral library; and Amazon vegetation types. Compared to traditional approaches, MEVA improves the accuracy of the outgoing flux at the top of the atmosphere by over 60 W m-2 and aerosol forcing by over 10 W m-2. Specifically, for Amazon vegetation types, MEVA can improve the accuracy of daily averaged aerosol forcing at equator at equinox by 3.7 W m-2 (about 70% of the aerosol forcing calculated with high spectral resolution surface reflectance). These improvements indicate that MEVA can contribute to vegetation covered regional climate studies, and help to improve understanding of climate processes and climate change.

  9. The direct effect of aerosols on the radiation budget and climate of the Earth-atmosphere system: its variability in space and time

    NASA Astrophysics Data System (ADS)

    Hatzianastassiou, N.

    2009-04-01

    Atmospheric aerosols, these tiny particles suspended in the air, play a very important role for the Earth-atmosphere climate system on both global and regional scales through various mechanisms and physical processes. The climatic effects of aerosols are determined by modifications they induce on the various components of the Earth's radiation budget. Despite the progress that has been made lately, there is still much to learn about the climatic role of aerosols in various aspects. One of the most important issues that has to be addressed is the spatial and temporal variability, especially the temporal variability of aerosol properties and their consequent radiative effects. For example, there is uncertainty with regard to aerosol radiative properties and whether or not aerosol loads are increasing or decreasing with time, and what the consequences are. Moreover, the extent to which aerosols cool or warm the planet is not clear, as well as the contribution to this cooling/warming by aerosols of natural and anthropogenic origin. Given that the aerosol radiative effects, especially on radiation reaching the Earth's surface and in the atmosphere, cannot be directly measured/observed, models are necessary to overcome this problem. Specifically, radiative transfer models (RTMs) are able to calculate the radiation fluxes within the entire Earth-atmosphere system from regional to planetary scale, and the flux changes caused by aerosols. Yet, what is more interesting for models is that they allow us to study in detail the space and time resolved aerosol radiative effects and their sensitivity to various physical parameters. Using RTMs the aerosol direct effect on solar radiation can be determined at the top of the atmosphere (DRETOA) in the atmosphere (DREatm) and at the Earth's surface (DREsurf). Using a detailed radiative transfer model together with climatological input data for surface and atmospheric variables, the direct radiative effects of aerosols (DREs) were

  10. Advancing Solar Irradiance Measurement for Climate-Related Studies: Accurate Constraint on Direct Aerosol Radiative Effect (DARE)

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Ji, Q. Jack

    2011-01-01

    Earth's climate is driven primarily by solar radiation. As summarized in various IPCC reports, the global average of radiative forcing for different agents and mechanisms, such as aerosols or CO2 doubling, is in the range of a few W/sq m. However, when solar irradiance is measured by broadband radiometers, such as the fleet of Eppley Precision Solar Pyranometers (PSP) and equivalent instrumentation employed worldwide, the measurement uncertainty is larger than 2% (e.g., WMO specification of pyranometer, 2008). Thus, out of the approx. 184 W/sq m (approx.263 W/sq m if cloud-free) surface solar insolation (Trenberth et al. 2009), the measurement uncertainty is greater than +/-3.6 W/sq m, overwhelming the climate change signals. To discern these signals, less than a 1 % measurement uncertainty is required and is currently achievable only by means of a newly developed methodology employing a modified PSP-like pyranometer and an updated calibration equation to account for its thermal effects (li and Tsay, 2010). In this talk, we will show that some auxiliary measurements, such as those from a collocated pyrgeometer or air temperature sensors, can help correct historical datasets. Additionally, we will also demonstrate that a pyrheliometer is not free of the thermal effect; therefore, comparing to a high cost yet still not thermal-effect-free "direct + diffuse" approach in measuring surface solar irradiance, our new method is more economical, and more likely to be suitable for correcting a wide variety of historical datasets. Modeling simulations will be presented that a corrected solar irradiance measurement has a significant impact on aerosol forcing, and thus plays an important role in climate studies.

  11. Describing the direct and indirect radiative effects of atmospheric aerosols over Europe by using coupled meteorology-chemistry simulations: a contribution from the AQMEII-Phase II exercise

    NASA Astrophysics Data System (ADS)

    Jimenez-Guerrero, Pedro; Balzarini, Alessandra; Baró, Rocío; Curci, Gabriele; Forkel, Renate; Hirtl, Marcus; Honzak, Luka; Langer, Matthias; Pérez, Juan L.; Pirovano, Guido; San José, Roberto; Tuccella, Paolo; Werhahn, Johannes; Zabkar, Rahela

    2014-05-01

    The study of the response of the aerosol levels in the atmosphere to a changing climate and how this affects the radiative budget of the Earth (direct, semi-direct and indirect effects) is an essential topic to build confidence on climate science, since these feedbacks involve the largest uncertainties nowadays. Air quality-climate interactions (AQCI) are, therefore, a key, but uncertain contributor to the anthropogenic forcing that remains poorly understood. To build confidence in the AQCI studies, regional-scale integrated meteorology-atmospheric chemistry models (i.e., models with on-line chemistry) that include detailed treatment of aerosol life cycle and aerosol impacts on radiation (direct effects) and clouds (indirect effects) are in demand. In this context, the main objective of this contribution is the study and definition of the uncertainties in the climate-chemistry-aerosol-cloud-radiation system associated to the direct radiative forcing and the indirect effect caused by aerosols over Europe, using an ensemble of fully-coupled meteorology-chemistry model simulations with the WRF-Chem model run under the umbrella of AQMEII-Phase 2 international initiative. Simulations were performed for Europe for the entire year 2010. According to the common simulation strategy, the year was simulated as a sequence of 2-day time slices. For better comparability, the seven groups applied the same grid spacing of 23 km and shared common processing of initial and boundary conditions as well as anthropogenic and fire emissions. With exception of a simulation with different cloud microphysics, identical physics options were chosen while the chemistry options were varied. Two model set-ups will be considered here: one sub-ensemble of simulations not taking into account any aerosol feedbacks (the baseline case) and another sub-ensemble of simulations which differs from the former by the inclusion of aerosol-radiation feedback. The existing differences for meteorological

  12. Direct impact aerosol sampling by electrostatic precipitation

    DOEpatents

    Braden, Jason D.; Harter, Andrew G.; Stinson, Brad J.; Sullivan, Nicholas M.

    2016-02-02

    The present disclosure provides apparatuses for collecting aerosol samples by ionizing an air sample at different degrees. An air flow is generated through a cavity in which at least one corona wire is disposed and electrically charged to form a corona therearound. At least one grounded sample collection plate is provided downstream of the at least one corona wire so that aerosol ions generated within the corona are deposited on the at least one grounded sample collection plate. A plurality of aerosol samples ionized to different degrees can be generated. The at least one corona wire may be perpendicular to the direction of the flow, or may be parallel to the direction of the flow. The apparatus can include a serial connection of a plurality of stages such that each stage is capable of generating at least one aerosol sample, and the air flow passes through the plurality of stages serially.

  13. Direct numerical simulation of turbulent aerosol coagulation

    NASA Astrophysics Data System (ADS)

    Reade, Walter Caswell

    There are numerous systems-including both industrial applications and natural occurring phenomena-in which the collision/coagulation rates of aerosols are of significant interest. Two examples are the production of fine powders (such as titanium dioxide) and the formation of rain drops in the atmosphere. During the last decade, it has become apparent that dense aerosol particles behave much differently in a turbulent fluid than has been previously assumed. Particles with a response time on the order of the small-scale fluid time scale tend to collect in regions of low vorticity. The result is a particle concentration field that can be highly non-uniform. Sundaram and Collins (1997) recently demonstrated the effect that turbulence can have on the particle collision rate of a monodisperse system. The collision rates of finite-inertia particles can be as much as two orders of magnitude greater than particles that precisely follow the fluid streamlines. Sundaram and Collins derived a general collision expression that explicitly accounted for the two phenomena that affect the collision rate-changes in the particle concentration field and changes in the particle relative velocities. The result of Sundaram and Collins has generated further interest in the turbulent-aerosol problem. This thesis shows that, in addition to changing the rate that an aerosol size distribution might form, turbulence has the potential of dramatically changing the shape of the distribution. This result is demonstrated using direct numerical simulation of a turbulent-aerosol system over a wide range of particle parameters, and a moderate range of turbulence levels. Results show that particles with a small (but finite) initial inertia have the greatest potential of forming broad size distributions. The shape of the resulting size distribution is also affected by the initial size of the particles. Observations are explained using the statistics identified by Sundaram and Collins (1997). A major

  14. A Novel Method for Estimating Shortwave Direct Radiative Effect of Above-cloud Aerosols over Ocean Using CALIOP and MODIS Data

    NASA Technical Reports Server (NTRS)

    Zhang, Z.; Meyer, K.; Platnick, S.; Oreopoulos, L.; Lee, D.; Yu, H.

    2013-01-01

    This paper describes an efficient and unique method for computing the shortwave direct radiative effect (DRE) of aerosol residing above low-level liquid-phase clouds using CALIOP and MODIS data. It accounts for the overlapping of aerosol and cloud rigorously by utilizing the joint histogram of cloud optical depth and cloud top pressure. Effects of sub-grid scale cloud and aerosol variations on DRE are accounted for. It is computationally efficient through using grid-level cloud and aerosol statistics, instead of pixel-level products, and a pre-computed look-up table in radiative transfer calculations. We verified that for smoke over the southeast Atlantic Ocean the method yields a seasonal mean instantaneous shortwave DRE that generally agrees with more rigorous pixel-level computation within 4%. We have also computed the annual mean instantaneous shortwave DRE of light-absorbing aerosols (i.e., smoke and polluted dust) over global ocean based on 4 yr of CALIOP and MODIS data. We found that the variability of the annual mean shortwave DRE of above-cloud light-absorbing aerosol is mainly driven by the optical depth of the underlying clouds.

  15. An assessment of the quality of aerosol retrievals over the Red Sea and evaluation of the climatological cloud-free dust direct radiative effect in the region

    NASA Astrophysics Data System (ADS)

    Brindley, H.; Osipov, S.; Bantges, R.; Smirnov, A.; Banks, J.; Levy, R.; Jish Prakash, P.; Stenchikov, G.

    2015-10-01

    Ground-based and satellite observations are used in conjunction with the Rapid Radiative Transfer Model (RRTM) to assess climatological aerosol loading and the associated cloud-free aerosol direct radiative effect (DRE) over the Red Sea. Aerosol optical depth (AOD) retrievals from the Moderate Resolution Imaging Spectroradiometer and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instruments are first evaluated via comparison with ship-based observations. Correlations are typically better than 0.9 with very small root-mean-square and bias differences. Calculations of the DRE along the ship cruises using RRTM also show good agreement with colocated estimates from the Geostationary Earth Radiation Budget instrument if the aerosol asymmetry parameter is adjusted to account for the presence of large particles. A monthly climatology of AOD over the Red Sea is then created from 5 years of SEVIRI retrievals. This shows enhanced aerosol loading and a distinct north to south gradient across the basin in the summer relative to the winter months. The climatology is used with RRTM to estimate the DRE at the top and bottom of the atmosphere and the atmospheric absorption due to dust aerosol. These climatological estimates indicate that although longwave effects can reach tens of W m-2, shortwave cooling typically dominates the net radiative effect over the Sea, being particularly pronounced in the summer, reaching 120 W m-2 at the surface. The spatial gradient in summertime AOD is reflected in the radiative effect at the surface and in associated differential heating by aerosol within the atmosphere above the Sea. This asymmetric effect is expected to exert a significant influence on the regional atmospheric and oceanic circulation.

  16. Aerosol Direct, Indirect, Semidirect, and Surface Albedo Effects from Sector Contributions Based on the IPCC AR5 Emissions for Preindustrial and Present-day Conditions

    NASA Technical Reports Server (NTRS)

    Bauer, Susanne E.; Menon, Surabi

    2012-01-01

    The anthropogenic increase in aerosol concentrations since preindustrial times and its net cooling effect on the atmosphere is thought to mask some of the greenhouse gas-induced warming. Although the overall effect of aerosols on solar radiation and clouds is most certainly negative, some individual forcing agents and feedbacks have positive forcing effects. Recent studies have tried to identify some of those positive forcing agents and their individual emission sectors, with the hope that mitigation policies could be developed to target those emitters. Understanding the net effect of multisource emitting sectors and the involved cloud feedbacks is very challenging, and this paper will clarify forcing and feedback effects by separating direct, indirect, semidirect and surface albedo effects due to aerosols. To this end, we apply the Goddard Institute for Space Studies climate model including detailed aerosol microphysics to examine aerosol impacts on climate by isolating single emission sector contributions as given by the Coupled Model Intercomparison Project Phase 5 (CMIP5) emission data sets developed for Intergovernmental Panel on Climate Change (IPCC) AR5. For the modeled past 150 years, using the climate model and emissions from preindustrial times to present-day, the total global annual mean aerosol radiative forcing is -0.6 W/m(exp 2), with the largest contribution from the direct effect (-0.5 W/m(exp 2)). Aerosol-induced changes on cloud cover often depends on cloud type and geographical region. The indirect (includes only the cloud albedo effect with -0.17 W/m(exp 2)) and semidirect effects (-0.10 W/m(exp 2)) can be isolated on a regional scale, and they often have opposing forcing effects, leading to overall small forcing effects on a global scale. Although the surface albedo effects from aerosols are small (0.016 W/m(exp 2)), triggered feedbacks on top of the atmosphere (TOA) radiative forcing can be 10 times larger. Our results point out that each

  17. Aerosol direct, indirect, semidirect, and surface albedo effects from sector contributions based on the IPCC AR5 emissions for preindustrial and present-day conditions

    NASA Astrophysics Data System (ADS)

    Bauer, Susanne E.; Menon, Surabi

    2012-01-01

    The anthropogenic increase in aerosol concentrations since preindustrial times and its net cooling effect on the atmosphere is thought to mask some of the greenhouse gas-induced warming. Although the overall effect of aerosols on solar radiation and clouds is most certainly negative, some individual forcing agents and feedbacks have positive forcing effects. Recent studies have tried to identify some of those positive forcing agents and their individual emission sectors, with the hope that mitigation policies could be developed to target those emitters. Understanding the net effect of multisource emitting sectors and the involved cloud feedbacks is very challenging, and this paper will clarify forcing and feedback effects by separating direct, indirect, semidirect and surface albedo effects due to aerosols. To this end, we apply the Goddard Institute for Space Studies climate model including detailed aerosol microphysics to examine aerosol impacts on climate by isolating single emission sector contributions as given by the Coupled Model Intercomparison Project Phase 5 (CMIP5) emission data sets developed for Intergovernmental Panel on Climate Change (IPCC) AR5. For the modeled past 150 years, using the climate model and emissions from preindustrial times to present-day, the total global annual mean aerosol radiative forcing is -0.6 W/m2, with the largest contribution from the direct effect (-0.5 W/m2). Aerosol-induced changes on cloud cover often depends on cloud type and geographical region. The indirect (includes only the cloud albedo effect with -0.17 W/m2) and semidirect effects (-0.10 W/m2) can be isolated on a regional scale, and they often have opposing forcing effects, leading to overall small forcing effects on a global scale. Although the surface albedo effects from aerosols are small (0.016 W/m2), triggered feedbacks on top of the atmosphere (TOA) radiative forcing can be 10 times larger. Our results point out that each emission sector has varying

  18. Direct Radiative Effects of Particulate Aerosols Emitted by the Space Transport Sector

    NASA Astrophysics Data System (ADS)

    Ross, M.; Zittel, P.; Toohey, D. W.; Mills, M. J.

    2010-12-01

    Rockets are the sole source of human produced nonvolatile particulate directly injected into the atmosphere above 20 km altitude. The main components of rocket particulate are submicron black carbon soot (BC) from hydrocarbon (HC) fueled engines and Al2O3 (alumina) from solid rocket motors. Since the emission index and atmospheric lifetime of BC emitted by rockets are each several orders of magnitude greater than those of aircraft, the direct shortwave (SW) radiative forcing (RF) of rocket BC could be comparable to aircraft, even though the amount of HC fuel burned in the stratosphere by rockets is small compared to aircraft. The net RF of alumina particulate, on the other hand, is more uncertain. Alumina possesses large SW scattering and large longwave (LW) absorption so that the net RF for alumina is a strong function of particle size. For submicron alumina particles that constitute the steady state stratospheric population from solid rockets, the SW scattering and LW absorption efficiencies are comparable and the net RF depends on the assumed properties of the steady state population. We present calculations of the SW and LW optical properties of BC and alumina emitted by rocket engines and estimates of the global direct RF under various assumptions of engine type combinations and growth in the space transport sector. We compare these results to the RF associated with other transport sectors and the direct RF from the CO2 emissions from the space transport sector.

  19. Direct and Semi-direct Radiative Responses to Observation-Constrained Aerosol Absorption over S Asia

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Kotamarthi, V. R.; Manoharan, V.

    2013-12-01

    addition, much higher ceilometer lowest cloud base height (>5 km) is observed coincident with high aerosol absorption coefficient (>50 Mm-1 at 528nm), which may be indicative of the semi-direct 'burning off' effect due to absorbing aerosols, as the prevailing lowest cloud base height observed is below 3km from the ground. In comparison, the model-simulated aerosol absorption is significantly lower around 15 Mm-1 during these time periods and the model calculated OC/BC ratios are about 2~4 also smaller than observations. This may likely suggest an underestimate of absorbing organics from the biomass burning or biogenic sources. In the presentation, we will present the model sensitivity studies of aerosol absorption constrained by the observed absorption AOD and spectral dependence, and discuss the subsequent changes in the simulated atmospheric heating rates and cloud distributions over this region.

  20. Direct Radiative Forcing and Regional Climatic Effects of Anthropogenic Aerosols Over East Asia: A Regional Coupled Climate-Chemistry/Aerosol Model Study

    SciTech Connect

    Giorgi, Filippo; Bi, Xunqiang; Qian, Yun )

    2002-09-01

    We present a series of regional climate model simulations aimed at assessing the radiative forcing and surface climatic effects of anthropogenic sulfate and fossil fuel soot over east Asia. The simulations are carried out with a coupled regional climate-chemistry/aerosol model for the 5-year period of 1993-1997 using published estimates of sulfur emissions for the period. Anthropogenic sulfate induces a negative radiative forcing spatially varying from -1 to -8 W/m2 in the winter to -1 to -15 W/m2 in the summer, with maxima over the Sichan Basin of southwest China and over some areas of east and northeast China. This forcing induces a surface cooling in the range of -0.1 to -0.7 K. Fossil fuel soot exerts a positive atmospheric radiative forcing of 0.5 to 2 W/m2 and enhances the surface cooling by a few tenths of K due to increased surface shielding from solar radiation. Doubling of sulfur emissions induces a substantial increase in radiative forcing (up to -7 to -8 W/m2) and associated surface cooling. With doubled sulfur emissions, the surface cooling exceeds -1 K and is statistically significant at the 90% confidence level over various areas of China. The aerosol forcing and surface cooling tend to inhibit precipitation over the region, although this effect is relatively small in the simulations. Some features of the simulated aerosol-induced cooling are consistent with temperature trends observed in recent decades over different regions of China.

  1. The impacts of volcanic aerosol on stratospheric ozone and the Northern Hemisphere polar vortex: separating radiative-dynamical changes from direct effects due to enhanced aerosol heterogeneous chemistry

    NASA Astrophysics Data System (ADS)

    Muthers, S.; Arfeuille, F.; Raible, C. C.; Rozanov, E.

    2015-10-01

    After major volcanic eruptions the enhanced aerosol causes ozone changes due to greater heterogeneous chemistry on the particle surfaces (HET-AER) and from dynamical effects related to the radiative heating of the lower stratosphere (RAD-DYN). We carry out a series of experiments with an atmosphere-ocean-chemistry-climate model to assess how these two processes change stratospheric ozone and Northern Hemispheric (NH) polar vortex dynamics. Ensemble simulations are performed under present day and preindustrial conditions, and with aerosol forcings representative of different eruption strength, to investigate changes in the response behaviour. We show that the halogen component of the HET-AER effect dominates under present-day conditions with a global reduction of ozone (-21 DU for the strongest eruption) particularly at high latitudes, whereas the HET-AER effect increases stratospheric ozone due to N2O5 hydrolysis in a preindustrial atmosphere (maximum anomalies +4 DU). The halogen-induced ozone changes in the present-day atmosphere offset part of the strengthening of the NH polar vortex during mid-winter (reduction of up to -16 m s-1 in January) and slightly amplify the dynamical changes in the polar stratosphere in late winter (+11 m s-1 in March). The RAD-DYN mechanism leads to positive column ozone anomalies which are reduced in a present-day atmosphere by amplified polar ozone depletion (maximum anomalies +12 and +18 DU for present day and preindustrial, respectively). For preindustrial conditions, the ozone response is consequently dominated by RAD-DYN processes, while under present-day conditions, HET-AER effects dominate. The dynamical response of the stratosphere is dominated by the RAD-DYN mechanism showing an intensification of the NH polar vortex in winter (up to +10 m s-1 in January). Ozone changes due to the RAD-DYN mechanism slightly reduce the response of the polar vortex after the eruption under present-day conditions.

  2. Estimating the Direct Radiative Effect of Absorbing Aerosols Overlying Marine Boundary Layer Clouds in the Southeast Atlantic Using MODIS and CALIOP

    NASA Technical Reports Server (NTRS)

    Meyer, Kerry; Platnick, Steven; Oreopoulos, Lazaros; Lee, Dongmin

    2013-01-01

    Absorbing aerosols such as smoke strongly absorb solar radiation, particularly at ultraviolet and visible/near-infrared (VIS/NIR) wavelengths, and their presence above clouds can have considerable implications. It has been previously shown that they have a positive (i.e., warming) direct aerosol radiative effect (DARE) when overlying bright clouds. Additionally, they can cause biased passive instrument satellite retrievals in techniques that rely on VIS/NIR wavelengths for inferring the cloud optical thickness (COT) and effective radius (re) of underlying clouds, which can in turn yield biased above-cloud DARE estimates. Here we investigate Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical property retrieval biases due to overlying absorbing aerosols observed by Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and examine the impact of these biases on above-cloud DARE estimates. The investigation focuses on a region in the southeast Atlantic Ocean during August and September (2006-2011), where smoke from biomass burning in southern Africa overlies persistent marine boundary layer stratocumulus clouds. Adjusting for above-cloud aerosol attenuation yields increases in the regional mean liquid COT (averaged over all ocean-only liquid clouds) by roughly 6%; mean re increases by roughly 2.6%, almost exclusively due to the COT adjustment in the non-orthogonal retrieval space. It is found that these two biases lead to an underestimate of DARE. For liquid cloud Aqua MODIS pixels with CALIOP-observed above-cloud smoke, the regional mean above-cloud radiative forcing efficiency (DARE per unit aerosol optical depth (AOD)) at time of observation (near local noon for Aqua overpass) increases from 50.9Wm(sup-2)AOD(sup-1) to 65.1Wm(sup-2)AOD(sup -1) when using bias-adjusted instead of nonadjusted MODIS cloud retrievals.

  3. CARES: Carbonaceous Aerosol and Radiative Effects Study Science Plan

    SciTech Connect

    Zaveri, RA; Shaw, WJ; Cziczo, DJ

    2010-05-27

    Carbonaceous aerosol components, which include black carbon (BC), urban primary organic aerosols (POA), biomass burning aerosols, and secondary organic aerosols (SOA) from both urban and biogenic precursors, have been previously shown to play a major role in the direct and indirect radiative forcing of climate. The primary objective of the CARES 2010 intensive field study is to investigate the evolution of carbonaceous aerosols of different types and their effects on optical and cloud formation properties.

  4. Assessment of multi-decadal WRF-CMAQ simulations for understanding direct aerosol effects on radiation "brightening" in the United States

    NASA Astrophysics Data System (ADS)

    Gan, C.-M.; Pleim, J.; Mathur, R.; Hogrefe, C.; Long, C. N.; Xing, J.; Wong, D.; Gilliam, R.; Wei, C.

    2015-07-01

    Multi-decadal simulations with the coupled WRF-CMAQ model have been conducted to systematically investigate the changes in anthropogenic emissions of SO2 and NOx over the past 21 years (1990-2010) across the United States (US), their impacts on anthropogenic aerosol loading over North America, and subsequent impacts on regional radiation budgets. In particular, this study attempts to determine the consequences of the changes in tropospheric aerosol burden arising from substantial reductions in emissions of SO2 and NOx associated with control measures under the Clean Air Act (CAA) especially on trends in solar radiation. Extensive analyses conducted by Gan et al. (2014) utilizing observations (e.g. SURFRAD, CASTNET, IMPROVE and ARM) over the past 16 years (1995-2010) indicate a shortwave (SW) radiation (both all-sky and clear-sky) "brightening" in the US. The relationship of the radiation brightening trend with decreases in the aerosol burden is less apparent in the western US. One of the main reasons for this is that the emission controls under the CAA were aimed primarily at reducing pollutants in areas violating national air quality standards, most of which were located in the eastern US while the relatively less populated areas in the western US were less polluted at the beginning of this study period. Comparisons of model results with observations of aerosol optical depth (AOD), aerosol concentration, and radiation demonstrate that the coupled WRF-CMAQ model is capable of replicating the trends well even through it tends to underestimate the AOD. In particular, the sulfate concentration predictions were well matched with the observations. The discrenpancies found in the clear-sky diffuse SW radiation are likely due to several factors such as potential increase of ice particles associated with increasing air traffic, the definition of "clear-sky" in the radiation retrieval methodology and aerosol semi-direct and/or indirect effects which cannot be readily

  5. Indirect and semi-direct aerosol campaign: The impact of Arctic aerosols on clouds

    DOE PAGESBeta

    McFarquhar, Greg M.; Ghan, Steven; Verlinde, Johannes; Korolev, Alexei; Strapp, J. Walter; Schmid, Beat; Tomlinson, Jason M.; Wolde, Menqistu; Brooks, Sarah D.; Cziczo, Dan; et al

    2011-02-01

    A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the boundary layer in the vicinity of Barrow, Alaska, was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC). ISDAC's primary aim was to examine the effects of aerosols, including those generated by Asian wildfires, on clouds that contain both liquid and ice. ISDAC utilized the Atmospheric Radiation Measurement Pro- gram's permanent observational facilities at Barrow and specially deployed instruments measuring aerosol, ice fog, precipitation, and radiation. The National Research Council of Canada Convair-580 flew 27 sorties and collected data using an unprecedented 41more » stateof- the-art cloud and aerosol instruments for more than 100 h on 12 different days. Aerosol compositions, including fresh and processed sea salt, biomassburning particles, organics, and sulfates mixed with organics, varied between flights. Observations in a dense arctic haze on 19 April and above, within, and below the single-layer stratocumulus on 8 and 26 April are enabling a process-oriented understanding of how aerosols affect arctic clouds. Inhomogeneities in reflectivity, a close coupling of upward and downward Doppler motion, and a nearly constant ice profile in the single-layer stratocumulus suggests that vertical mixing is responsible for its longevity observed during ISDAC. Data acquired in cirrus on flights between Barrow and Fairbanks, Alaska, are improving the understanding of the performance of cloud probes in ice. Furthermore, ISDAC data will improve the representation of cloud and aerosol processes in models covering a variety of spatial and temporal scales, and determine the extent to which surface measurements can provide retrievals of aerosols, clouds, precipitation, and radiative heating.« less

  6. Indirect and semi-direct aerosol campaign: The impact of Arctic aerosols on clouds

    SciTech Connect

    McFarquhar, Greg M.; Ghan, Steven; Verlinde, Johannes; Korolev, Alexei; Strapp, J. Walter; Schmid, Beat; Tomlinson, Jason M.; Wolde, Menqistu; Brooks, Sarah D.; Cziczo, Dan; Dubey, Manvendra K.; Fan, Jiwen; Flynn, Connor; Gultepe, Ismail; Hubbe, John; Gilles, Mary K.; Laskin, Alexander; Lawson, Paul; Leaitch, W. Richard; Liu, Peter; Liu, Xiaohong; Lubin, Dan; Mazzoleni, Claudio; Macdonald, Ann -Marie; Moffet, Ryan C.; Morrison, Hugh; Ovchinnikov, Mikhail; Ronfeld, Debbie; Shupe, Matthew D.; Xie, Shaocheng; Zelenyuk, Alla; Bae, Kenny; Freer, Matt; Glen, Andrew

    2011-02-01

    A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the boundary layer in the vicinity of Barrow, Alaska, was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC). ISDAC's primary aim was to examine the effects of aerosols, including those generated by Asian wildfires, on clouds that contain both liquid and ice. ISDAC utilized the Atmospheric Radiation Measurement Pro- gram's permanent observational facilities at Barrow and specially deployed instruments measuring aerosol, ice fog, precipitation, and radiation. The National Research Council of Canada Convair-580 flew 27 sorties and collected data using an unprecedented 41 stateof- the-art cloud and aerosol instruments for more than 100 h on 12 different days. Aerosol compositions, including fresh and processed sea salt, biomassburning particles, organics, and sulfates mixed with organics, varied between flights. Observations in a dense arctic haze on 19 April and above, within, and below the single-layer stratocumulus on 8 and 26 April are enabling a process-oriented understanding of how aerosols affect arctic clouds. Inhomogeneities in reflectivity, a close coupling of upward and downward Doppler motion, and a nearly constant ice profile in the single-layer stratocumulus suggests that vertical mixing is responsible for its longevity observed during ISDAC. Data acquired in cirrus on flights between Barrow and Fairbanks, Alaska, are improving the understanding of the performance of cloud probes in ice. Furthermore, ISDAC data will improve the representation of cloud and aerosol processes in models covering a variety of spatial and temporal scales, and determine the extent to which surface measurements can provide retrievals of aerosols, clouds, precipitation, and radiative heating.

  7. The Effect of Aerosol Hygroscopicity and Volatility on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2014-12-01

    Secondary organic aerosol (SOA) from biogenic sources can influence optical properties of ambient aerosol by altering its hygroscopicity and contributing to light absorption directly via formation of brown carbon and indirectly by enhancing light absorption by black carbon ("lensing effect"). The magnitude of these effects remains highly uncertain. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of relative humidity and temperature on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). The sample-conditioning system provided measurements at ambient RH, 10%RH ("dry"), 85%RH ("wet"), and 200 C ("TD"). In parallel to these measurements, a long residence time temperature-stepping thermodenuder (TD) and a variable residence time constant temperature TD in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. We will present results of the on-going analysis of the collected data set. We will show that both temperature and relative humidity have a strong effect on aerosol optical properties. SOA appears to increase aerosol light absorption by about 10%. TD measurements suggest that aerosol equilibrated fairly quickly, within 2 s. Evaporation varied substantially with ambient aerosol loading and composition and meteorology.

  8. Indirect and Semi-Direct Aerosol Campaign: The Impact of Arctic Aerosols on Clouds

    SciTech Connect

    McFarquhar, Greg; Ghan, Steven J.; Verlinde, J.; Korolev, Alexei; Strapp, J. Walter; Schmid, Beat; Tomlinson, Jason M.; Wolde, Mengistu; Brooks, Sarah D.; Cziczo, Daniel J.; Dubey, Manvendra K.; Fan, Jiwen; Flynn, Connor J.; Gultepe, Ismail; Hubbe, John M.; Gilles, Mary K.; Laskin, Alexander; Lawson, Paul; Leaitch, W. R.; Liu, Peter S.; Liu, Xiaohong; Lubin, Dan; Mazzoleni, Claudio; Macdonald, A. M.; Moffet, Ryan C.; Morrison, H.; Ovchinnikov, Mikhail; Shupe, Matthew D.; Turner, David D.; Xie, Shaocheng; Zelenyuk, Alla; Bae, Kenny; Freer, Matthew; Glen, Andrew

    2011-02-01

    A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the arctic boundary layer in the vicinity of Barrow, Alaska was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) sponsored by the Department of Energy Atmospheric Radiation Measurement (ARM) and Atmospheric Science Programs. The primary aim of ISDAC was to examine indirect effects of aerosols on clouds that contain both liquid and ice water. The experiment utilized the ARM permanent observational facilities at the North Slope of Alaska (NSA) in Barrow. These include a cloud radar, a polarized micropulse lidar, and an atmospheric emitted radiance interferometer as well as instruments specially deployed for ISDAC measuring aerosol, ice fog, precipitation and spectral shortwave radiation. The National Research Council of Canada Convair-580 flew 27 sorties during ISDAC, collecting data using an unprecedented 42 cloud and aerosol instruments for more than 100 hours on 12 different days. Data were obtained above, below and within single-layer stratus on 8 April and 26 April 2008. These data enable a process-oriented understanding of how aerosols affect the microphysical and radiative properties of arctic clouds influenced by different surface conditions. Observations acquired on a heavily polluted day, 19 April 2008, are enhancing this understanding. Data acquired in cirrus on transit flights between Fairbanks and Barrow are improving our understanding of the performance of cloud probes in ice. Ultimately the ISDAC data will be used to improve the representation of cloud and aerosol processes in models covering a variety of spatial and temporal scales, and to determine the extent to which long-term surface-based measurements can provide retrievals of aerosols, clouds, precipitation and radiative heating in the Arctic.

  9. Can Aerosol Offset Urban Heat Island Effect?

    NASA Astrophysics Data System (ADS)

    Jin, M. S.; Shepherd, J. M.

    2009-12-01

    The Urban Heat Island effect (UHI) refers to urban skin or air temperature exceeding the temperatures in surrounding non-urban regions. In a warming climate, the UHI may intensify extreme heat waves and consequently cause significant health and energy problems. Aerosols reduce surface insolation via the direct effect, namely, scattering and absorbing sunlight in the atmosphere. Combining the National Aeronautics and Space Administration (NASA) AERONET (AErosol RObotic NETwork) observations over large cities together with Weather Research and Forecasting Model (WRF) simulations, we find that the aerosol direct reduction of surface insolation range from 40-100 Wm-2, depending on seasonality and aerosol loads. As a result, surface skin temperature can be reduced by 1-2C while 2-m surface air temperature by 0.5-1C. This study suggests that the aerosol direct effect is a competing mechanism for the urban heat island effect (UHI). More importantly, both aerosol and urban land cover effects must be adequately represented in meteorological and climate modeling systems in order to properly characterize urban surface energy budgets and UHI.

  10. The impact of the direct effects of sulfate and black carbon aerosols on the subseasonal march of the East Asian subtropical summer monsoon

    NASA Astrophysics Data System (ADS)

    Wang, Dongdong; Zhu, Bin; Jiang, Zhihong; Yang, Xiu-Qun; Zhu, Tong

    2016-03-01

    Aerosol emissions have rapidly increased in East Asia since the late 1970s. During the same period, the East Asian summer monsoon has shown a weakening trend. In this work, the direct effects (DE) of sulfate and black carbon (BC) aerosols on the subseasonal (pentad mean) march of the East Asian subtropical summer monsoon (EASSM) are investigated using an interactive global climate-chemistry model. The simulation results suggest that the DE of sulfate aerosols have a notable effect on the cooling of the low troposphere across the continent in spring and autumn, hence, changing the time of the seasonal transition of the zonal land-sea thermal contrast (ZTC). The DE of BC result in cooling of the low troposphere and heating of the middle troposphere, leading to a different impact than that caused by sulfates. The cooling of the surface and troposphere by sulfates leads to a delay in the warming of East Asian continent in spring and the EASSM onset time; it also accelerates the process of the continent turning colder and advances the retreat of the EASSM. The deeper heating in the middle-upper troposphere than the cooling in the low troposphere due to the DE of BC or the combination of both lead to an advance in the onset time of the monsoon caused by the continent turning warmer earlier in spring. In autumn, the same cooling effect by sulfates leads to the continent turning colder earlier, resulting in an advance in the retreat time.

  11. Shortwave direct radiative effects of above-cloud aerosols over global oceans derived from 8 years of CALIOP and MODIS observations

    NASA Astrophysics Data System (ADS)

    Zhang, Zhibo; Meyer, Kerry; Yu, Hongbin; Platnick, Steven; Colarco, Peter; Liu, Zhaoyan; Oreopoulos, Lazaros

    2016-03-01

    In this paper, we studied the frequency of occurrence and shortwave direct radiative effects (DREs) of above-cloud aerosols (ACAs) over global oceans using 8 years (2007-2014) of collocated CALIOP and MODIS observations. Similar to previous work, we found high ACA occurrence in four regions: southeastern (SE) Atlantic region, where ACAs are mostly light-absorbing aerosols, i.e., smoke and polluted dust according to CALIOP classification, originating from biomass burning over the African Savanna; tropical northeastern (TNE) Atlantic and the Arabian Sea, where ACAs are predominantly windblown dust from the Sahara and Arabian deserts, respectively; and the northwestern (NW) Pacific, where ACAs are mostly transported smoke and polluted dusts from Asian. From radiative transfer simulations based on CALIOP-MODIS observations and a set of the preselected aerosol optical models, we found the DREs of ACAs at the top of atmosphere (TOA) to be positive (i.e., warming) in the SE Atlantic and NW Pacific regions, but negative (i.e., cooling) in the TNE Atlantic Ocean and the Arabian Sea. The cancellation of positive and negative regional DREs results in a global ocean annual mean diurnally averaged cloudy-sky DRE of 0.015 W m-2 (range of -0.03 to 0.06 W m-2) at TOA. The DREs at surface and within the atmosphere are -0.15 W m-2 (range of -0.09 to -0.21 W m-2), and 0.17 W m-2 (range of 0.11 to 0.24 W m-2), respectively. The regional and seasonal mean DREs are much stronger. For example, in the SE Atlantic region, the JJA (July-August) seasonal mean cloudy-sky DRE is about 0.7 W m-2 (range of 0.2 to 1.2 W m-2) at TOA. All our DRE computations are publicly available1. The uncertainty in our DRE computations is mainly caused by the uncertainties in the aerosol optical properties, in particular aerosol absorption, the uncertainties in the CALIOP operational aerosol optical thickness retrieval, and the ignorance of cloud and potential aerosol diurnal cycle. In situ and remotely sensed

  12. Direct Aerosol Radiative Forcing: Calculations and Measurements from the Tropospheric

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Hignett, P.; Stowe, L. L.; Livingston, J. M.; Kinne, S.; Wong, J.; Chan, K. Roland (Technical Monitor)

    1997-01-01

    Radiative forcing is defined as the change in the net (downwelling minus upwelling) radiative flux at a given level in the atmosphere. This net flux is the radiative power density available to drive climatic processes in the earth-atmosphere system below that level. Recent research shows that radiative forcing by aerosol particles is a major source of uncertainty in climate predictions. To reduce those uncertainties, TARFOX was designed to determine direct (cloud-free) radiative forcing by the aerosols in one of the world's major industrial pollution plumes--that flowing from the east coast of the US over the Atlantic Ocean. TARFOX measured a variety of aerosol radiative effects (including direct forcing) while simultaneously measuring the chemical, physical, and optical properties of the aerosol particles causing those effects. The resulting data sets permit a wide variety of tests of the consistency, or closure, among the measurements and the models that link them. Because climate predictions use the same or similar model components, closure tests help to assess and reduce prediction uncertainties. In this work we use the TARFOX-determined aerosol, gas, and surface properties to compute radiative forcing for a variety of aerosol episodes, with inadvisable optical depths ranging from 0.07 to 0.6. We calculate forcing by several techniques with varying degrees of sophistication, in part to test the range of applicability of simplified techniques--which are often the only ones feasible in climate predictions by general circulation models (GCMs). We then compare computed forcing to that determined from: (1) Upwelling and downwelling fluxes (0.3-0.7 mm and 0.7-3.0 mm) measured by radiometers on the UK MRF C-130. and (2) Daily average cloud-free absorbed solar and emitted thermal radiative flux at the top of the atmosphere derived from the AVHRR radiometer on the NOAA- 14 satellite. The calculations and measurements all yield aerosol direct radiative forcing in the

  13. Assessment of multi-decadal WRF-CMAQ simulations for understanding direct aerosol effects on radiation "brightening" in the United States

    DOE PAGESBeta

    Gan, C.-M.; Pleim, J.; Mathur, R.; Hogrefe, C.; Long, C. N.; Xing, J.; Wong, D.; Gilliam, R.; Wei, C.

    2015-07-01

    Multi-decadal simulations with the coupled WRF-CMAQ model have been conducted to systematically investigate the changes in anthropogenic emissions of SO2 and NOx over the past 21 years (1990–2010) across the United States (US), their impacts on anthropogenic aerosol loading over North America, and subsequent impacts on regional radiation budgets. In particular, this study attempts to determine the consequences of the changes in tropospheric aerosol burden arising from substantial reductions in emissions of SO2 and NOx associated with control measures under the Clean Air Act (CAA) especially on trends in solar radiation. Extensive analyses conducted by Gan et al. (2014) utilizingmore » observations (e.g. SURFRAD, CASTNET, IMPROVE and ARM) over the past 16 years (1995–2010) indicate a shortwave (SW) radiation (both all-sky and clear-sky) "brightening" in the US. The relationship of the radiation brightening trend with decreases in the aerosol burden is less apparent in the western US. One of the main reasons for this is that the emission controls under the CAA were aimed primarily at reducing pollutants in areas violating national air quality standards, most of which were located in the eastern US while the relatively less populated areas in the western US were less polluted at the beginning of this study period. Comparisons of model results with observations of aerosol optical depth (AOD), aerosol concentration, and radiation demonstrate that the coupled WRF-CMAQ model is capable of replicating the trends well even through it tends to underestimate the AOD. In particular, the sulfate concentration predictions were well matched with the observations. The discrenpancies found in the clear-sky diffuse SW radiation are likely due to several factors such as potential increase of ice particles associated with increasing air traffic, the definition of "clear-sky" in the radiation retrieval methodology and aerosol semi-direct and/or indirect effects which cannot be

  14. On the use of a satellite remote-sensing-based approach for determining aerosol direct radiative effect over land: a case study over China

    NASA Astrophysics Data System (ADS)

    Sundström, A.-M.; Arola, A.; Kolmonen, P.; Xue, Y.; de Leeuw, G.; Kulmala, M.

    2015-01-01

    A satellite-based approach to derive the aerosol direct shortwave (SW) radiative effect (ADRE) was studied in an environment with highly variable aerosol conditions over eastern China from March to October 2009. The method is based on using coincident SW top-of-the-atmosphere (TOA) fluxes from the Clouds and the Earth's Radiant Energy System (CERES) and aerosol optical depths (AODs) from the MODerate Resolution Imaging Spectroradiometer (MODIS) to derive SW clear-sky ADRE. The estimate for the aerosol-free TOA flux (F0,TOA) is obtained by establishing linear regression between CERES SW TOA fluxes and MODIS AODs. A normalization procedure to a fixed solar zenith angle, Earth-Sun distance and atmospheric water vapor content was applied to the CERES fluxes prior to the linear fit against AOD to reduce the flux variation not related to aerosols. In the majority of the cases, the normalization increased positive correlation between observed SW TOA fluxes and AODs, and it decreased RMSE. The key question in the satellite-based approach is the accuracy of the estimated F0,TOA. Comparison with simulated F0,TOA showed that both the satellite method and the model produced qualitatively similar spatial patterns, but absolute values differed. In 58 % of the cases the satellite-based F0,TOA was within ±10 W m-2 of the modeled value (about 7-8 % difference in flux values). Over bright surfaces, the satellite-based method tend to produce lower F0,TOA than the model. The satellite-based clear-sky estimates for median instantaneous and diurnally averaged ADRE over the study area were -8.8 W m-2 and -5.1 W m-2, respectively. Over heavily industrialized areas, the cooling at TOA was 2 to more than 3 times the median value, and associated with high AODs (> 0.5). Especially during the summer months, positive ADREs were observed locally over dark surfaces. This was most probably a method artifact related to systematic change of aerosol type, sub-visual cloud contamination or both.

  15. On the use of satellite remote sensing based approach for determining aerosol direct radiative effect over land: a case study over China

    NASA Astrophysics Data System (ADS)

    Sundström, A.-M.; Arola, A.; Kolmonen, P.; Xue, Y.; de Leeuw, G.; Kulmala, M.

    2014-06-01

    A satellite-based approach to derive the aerosol direct short wave (SW) radiative effect (ADRE) was studied in an environment with highly variable aerosol conditions over Eastern China from March to October 2009. The method is based on using coincident SW Top of the Atmosphere (TOA) fluxes from the Clouds and the Earth's Radiant Energy System (CERES) and aerosol optical depths (AODs) from the Moderate Resolution Imaging Sectroradiometer (MODIS). The estimate for instantaneous clear sky ADRE is obtained by establishing linear regression between CERES fluxes and MODIS AODs. Even though the approach has been used in a number of studies, less focus has been paid to the method itself. In this study the main goals were first to study the method in more detail as well as it's applicability over Eastern China, and second to derive a satellite-based estimate of ADRE over the study area. Before the linear fitting, CERES fluxes were normalized to a fixed solar zenith angle, Earth-Sun distance and atmospheric water vapour content to reduce the noise in the flux observations that was not related to aerosols. The satellite based clear sky estimates for median instantaneous and diurnally averaged ADRE over the study area were -8.8 W m-2, and -5.1 W m-2, respectively. Over heavily industrialized areas the cooling at TOA was two to more than three times the median value, and associated with high AODs (>0.5). Especially during the summer months positive ADREs were observed locally over dark surfaces. This was most probably a method artifact related to systematic change of aerosol type, subvisual cloud contamination or both. The key question in the satellite-based approach is the accuracy of the estimated aerosol-free TOA flux (F0,TOA). Comparison with simulated F0,TOA showed that both the satellite method and the model produced qualitatively similar spatial patterns, but absolute values differed. In 58% of the cases the satellite based F0,TOA was within ±10 W m-2 of the modeled

  16. Assessment of long-term WRF-CMAQ simulations for understanding direct aerosol effects on radiation "brightening" in the United States

    NASA Astrophysics Data System (ADS)

    Gan, C.-M.; Pleim, J.; Mathur, R.; Hogrefe, C.; Long, C. N.; Xing, J.; Wong, D.; Gilliam, R.; Wei, C.

    2015-11-01

    aerosol semi-direct and/or indirect effects which cannot be readily isolated from the observed data.

  17. Assessment of long-term WRF–CMAQ simulations for understanding direct aerosol effects on radiation "brightening" in the United States

    DOE PAGESBeta

    Gan, C.-M.; Pleim, J.; Mathur, R.; Hogrefe, C.; Long, C. N.; Xing, J.; Wong, D.; Gilliam, R.; Wei, C.

    2015-11-03

    methodology, and aerosol semi-direct and/or indirect effects which cannot be readily isolated from the observed data.« less

  18. Spatially Refined Aerosol Direct Radiative Forcing Efficiencies

    NASA Technical Reports Server (NTRS)

    Henze, Daven K.; Shindell, Drew Todd; Akhtar, Farhan; Spurr, Robert J. D.; Pinder, Robert W.; Loughlin, Dan; Kopacz, Monika; Singh, Kumaresh; Shim, Changsub

    2012-01-01

    Global aerosol direct radiative forcing (DRF) is an important metric for assessing potential climate impacts of future emissions changes. However, the radiative consequences of emissions perturbations are not readily quantified nor well understood at the level of detail necessary to assess realistic policy options. To address this challenge, here we show how adjoint model sensitivities can be used to provide highly spatially resolved estimates of the DRF from emissions of black carbon (BC), primary organic carbon (OC), sulfur dioxide (SO2), and ammonia (NH3), using the example of emissions from each sector and country following multiple Representative Concentration Pathway (RCPs). The radiative forcing efficiencies of many individual emissions are found to differ considerably from regional or sectoral averages for NH3, SO2 from the power sector, and BC from domestic, industrial, transportation and biomass burning sources. Consequently, the amount of emissions controls required to attain a specific DRF varies at intracontinental scales by up to a factor of 4. These results thus demonstrate both a need and means for incorporating spatially refined aerosol DRF into analysis of future emissions scenario and design of air quality and climate change mitigation policies.

  19. Sensitivity of clear-sky direct radiative effect of the aerosol to micro-physical properties by using 6SV radiative transfer model: preliminary results

    NASA Astrophysics Data System (ADS)

    Bassani, Cristiana; Tirelli, Cecilia; Manzo, Ciro; Pietrodangelo, Adriana; Curci, Gabriele

    2015-04-01

    The aerosol micro-physical properties are crucial to analyze their radiative impact on the Earth's radiation budget [IPCC, 2007]. The 6SV model, last generation of the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) radiative transfer code [Kotchenova et al., 2007; Vermote et al., 1997] has been used to perform physically-based atmospheric correction of hyperspectral airborne and aircraft remote sensing data [Vermote et al., 2009; Bassani et al. 2010; Tirelli et al., 2014]. The atmospheric correction of hyperspectral data has been shown to be sensitive to the aerosol micro-physical properties, as reported in Bassani et al., 2012. The role of the aerosol micro-physical properties on the accuracy of the atmospheric correction of hyperspectral data acquired over water and land targets is investigated within the framework of CLAM-PHYM (Coasts and Lake Assessment and Monitoring by PRISMA HYperspectral Mission) and PRIMES (Synergistic use of PRISMA products with high resolution meteo-chemical simulations and their validation on ground and from satellite) projects, both funded by Italian Space Agency (ASI). In this work, the results of the radiative field of the Earth/Atmosphere coupled system simulated by using 6SV during the atmospheric correction of hyperspectral data are presented. The analysis of the clear-sky direct radiative effect is performed considering the aerosol micro-physical properties used to define the aerosol model during the atmospheric correction process. In particular, the AERONET [Holben et al., 1998] and FLEXAOD [Curci et al., 2014] micro-physical properties are used for each image to evaluate the contribution of the size distribution and refractive index of the aerosol type on the surface reflectance and on the direct radiative forcing. The results highlight the potential of the hyperspectral remote sensing data for atmospheric studies as well as for environmental studies. Currently, the future hyperspectral missions, such as the

  20. Can a coupled meteorology–chemistry model reproduce the historical trend in aerosol direct radiative effects over the Northern Hemisphere?

    EPA Science Inventory

    The ability of a coupled meteorology–chemistry model, i.e., Weather Research and Forecast and Community Multiscale Air Quality (WRF-CMAQ), to reproduce the historical trend in aerosol optical depth (AOD) and clear-sky shortwave radiation (SWR) over the Northern Hemisphere h...

  1. Inter-annual Tropospheric Aerosol Variability in Late Twentieth Century and its Impact on Tropical Atlantic and West African Climate by Direct and Semi-direct Effects

    SciTech Connect

    Evans, Katherine J; Hack, James J; Truesdale, John; Mahajan, Salil; Lamarque, J-F

    2012-01-01

    A new high-resolution (0.9$^{\\circ}$x1.25$^{\\circ}$ in the horizontal) global tropospheric aerosol dataset with monthly resolution is generated using the finite-volume configuration of Community Atmosphere Model (CAM4) coupled to a bulk aerosol model and forced with recent estimates of surface emissions for the latter part of twentieth century. The surface emissions dataset is constructed from Coupled Model Inter-comparison Project (CMIP5) decadal-resolution surface emissions dataset to include REanalysis of TROpospheric chemical composition (RETRO) wildfire monthly emissions dataset. Experiments forced with the new tropospheric aerosol dataset and conducted using the spectral configuration of CAM4 with a T85 truncation (1.4$^{\\circ}$x1.4$^{\\circ}$) with prescribed twentieth century observed sea surface temperature, sea-ice and greenhouse gases reveal that variations in tropospheric aerosol levels can induce significant regional climate variability on the inter-annual timescales. Regression analyses over tropical Atlantic and Africa reveal that increasing dust aerosols can cool the North African landmass and shift convection southwards from West Africa into the Gulf of Guinea in the spring season in the simulations. Further, we find that increasing carbonaceous aerosols emanating from the southwestern African savannas can cool the region significantly and increase the marine stratocumulus cloud cover over the southeast tropical Atlantic ocean by aerosol-induced diabatic heating of the free troposphere above the low clouds. Experiments conducted with CAM4 coupled to a slab ocean model suggest that present day aerosols can shift the ITCZ southwards over the tropical Atlantic and can reduce the ocean mixed layer temperature beneath the increased marine stratocumulus clouds in the southeastern tropical Atlantic.

  2. Aerosol feed direct methanol fuel cell

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor); Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor)

    2002-01-01

    Improvements to fuel cells include introduction of the fuel as an aerosol of liquid fuel droplets suspended in a gas. The particle size of the liquid fuel droplets may be controlled for optimal fuel cell performance by selection of different aerosol generators or by separating droplets based upon size using a particle size conditioner.

  3. Direct Measurement of Aerosol Absorption Using Photothermal Interferometry

    NASA Astrophysics Data System (ADS)

    Sedlacek, A. J.; Lee, J. A.

    2007-12-01

    Efforts to bound the contribution of light absorption in aerosol radiative forcing is still very much an active area of research in large part because aerosol extinction is dominated by light scattering. In response to this and other technical issues, the aerosol community has actively pursued the development of new instruments to measure aerosol absorption (e.g., photoacoustic spectroscopy (PAS) and multi-angle absorption photometer (MAAP)). In this poster, we introduce the technique of photothermal interferometry (PTI), which combines the direct measurement capabilities of photothermal spectroscopy (PTS) with high-sensitivity detection of the localized heating brought about by the PT process through interferometry. At its most fundamental level, the PTI technique measures the optical pathlength change that one arm of an interferometer (referred to as the 'probe' arm) experiences relative to the other arm of the interferometer (called the 'reference' arm). When the two arms are recombined at a beamsplitter, an interference pattern is created. If the optical pathlength in one arm of the interferometer changes, a commensurate shift in the interference pattern will take place. For the specific application of measuring light absorption, the heating of air surrounding the light- absorbing aerosol following laser illumination induces the optical pathlength change. This localized heating creates a refractive index gradient causing the probe arm of the interferometer to take a slightly different optical pathlength relative to the unperturbed reference arm. This effect is analogous to solar heating of a road causing mirages. As discussed above, this altered optical pathlength results in a shift in the interference pattern that is then detected as a change in the signal intensity by a single element detector. The current optical arrangement utilizes a folded Jamin interferometer design (Sedlacek, 2006) that provides a platform that is robust with respect to sensitivity

  4. Photoacoustics of single laser-trapped nanodroplets for the direct observation of nanofocusing in aerosol photokinetics

    NASA Astrophysics Data System (ADS)

    Cremer, Johannes W.; Thaler, Klemens M.; Haisch, Christoph; Signorell, Ruth

    2016-03-01

    Photochemistry taking place in atmospheric aerosol droplets has a significant impact on the Earth's climate. Nanofocusing of electromagnetic radiation inside aerosols plays a crucial role in their absorption behaviour, since the radiation flux inside the droplet strongly affects the activation rate of photochemically active species. However, size-dependent nanofocusing effects in the photokinetics of small aerosols have escaped direct observation due to the inability to measure absorption signatures from single droplets. Here we show that photoacoustic measurements on optically trapped single nanodroplets provide a direct, broadly applicable method to measure absorption with attolitre sensitivity. We demonstrate for a model aerosol that the photolysis is accelerated by an order of magnitude in the sub-micron to micron size range, compared with larger droplets. The versatility of our technique promises broad applicability to absorption studies of aerosol particles, such as atmospheric aerosols where quantitative photokinetic data are critical for climate predictions.

  5. Photoacoustics of single laser-trapped nanodroplets for the direct observation of nanofocusing in aerosol photokinetics.

    PubMed

    Cremer, Johannes W; Thaler, Klemens M; Haisch, Christoph; Signorell, Ruth

    2016-01-01

    Photochemistry taking place in atmospheric aerosol droplets has a significant impact on the Earth's climate. Nanofocusing of electromagnetic radiation inside aerosols plays a crucial role in their absorption behaviour, since the radiation flux inside the droplet strongly affects the activation rate of photochemically active species. However, size-dependent nanofocusing effects in the photokinetics of small aerosols have escaped direct observation due to the inability to measure absorption signatures from single droplets. Here we show that photoacoustic measurements on optically trapped single nanodroplets provide a direct, broadly applicable method to measure absorption with attolitre sensitivity. We demonstrate for a model aerosol that the photolysis is accelerated by an order of magnitude in the sub-micron to micron size range, compared with larger droplets. The versatility of our technique promises broad applicability to absorption studies of aerosol particles, such as atmospheric aerosols where quantitative photokinetic data are critical for climate predictions. PMID:26979973

  6. Photoacoustics of single laser-trapped nanodroplets for the direct observation of nanofocusing in aerosol photokinetics

    PubMed Central

    Cremer, Johannes W.; Thaler, Klemens M.; Haisch, Christoph; Signorell, Ruth

    2016-01-01

    Photochemistry taking place in atmospheric aerosol droplets has a significant impact on the Earth's climate. Nanofocusing of electromagnetic radiation inside aerosols plays a crucial role in their absorption behaviour, since the radiation flux inside the droplet strongly affects the activation rate of photochemically active species. However, size-dependent nanofocusing effects in the photokinetics of small aerosols have escaped direct observation due to the inability to measure absorption signatures from single droplets. Here we show that photoacoustic measurements on optically trapped single nanodroplets provide a direct, broadly applicable method to measure absorption with attolitre sensitivity. We demonstrate for a model aerosol that the photolysis is accelerated by an order of magnitude in the sub-micron to micron size range, compared with larger droplets. The versatility of our technique promises broad applicability to absorption studies of aerosol particles, such as atmospheric aerosols where quantitative photokinetic data are critical for climate predictions. PMID:26979973

  7. Characterization of Speciated Aerosol Direct Radiative Forcing Over California

    SciTech Connect

    Zhao, Chun; Leung, Lai-Yung R.; Easter, Richard C.; Hand, Jenny; Avise, J.

    2013-03-16

    . Aerosol radiative forcing is presented along with the contribution from individual aerosol species from the simulation with anthropogenic EC emission doubled. On statewide average over California, aerosol reduces the seasonal-average surface radiation fluxes by about 3 W m-2 with a maximum of 10 W m-2 in summer. In the atmosphere, aerosol introduces a warming effect of about 2 W m-2 with a maximum of 10 W m-2 also in summer. EC and dust contribute about 75-95% and 1-10% of the total warming through the seasons, respectively. At the top of atmosphere (TOA), the overall aerosol radiative effect is cooling with a maximum of -3.5 W m-2. EC contributes exclusively to the TOA warming of up to about 0.7 W m-2. The encouraging performance of WRF-Chem in simulating aerosols and their radiative forcing suggests that the model is suitable for further investigation of the impact of emission control on radiative forcing and regional climate over California.

  8. Cloud Cover Increase with Increasing Aerosol Absorptivity: A Counterexample to the Conventional Semidirect Aerosol Effect

    NASA Technical Reports Server (NTRS)

    Perlwitz, Jan; Miller, Ron L.

    2010-01-01

    We reexamine the aerosol semidirect effect using a general circulation model and four cases of the single-scattering albedo of dust aerosols. Contrary to the expected decrease in low cloud cover due to heating by tropospheric aerosols, we find a significant increase with increasing absorptivity of soil dust particles in regions with high dust load, except during Northern Hemisphere winter. The strongest sensitivity of cloud cover to dust absorption is found over land during Northern Hemisphere summer. Here even medium and high cloud cover increase where the dust load is highest. The cloud cover change is directly linked to the change in relative humidity in the troposphere as a result of contrasting changes in specific humidity and temperature. More absorption by aerosols leads to larger diabatic heating and increased warming of the column, decreasing relative humidity. However, a corresponding increase in the specific humidity exceeds the temperature effect on relative humidity. The net effect is more low cloud cover with increasing aerosol absorption. The higher specific humidity where cloud cover strongly increases is attributed to an enhanced convergence of moisture driven by dust radiative heating. Although in some areas our model exhibits a reduction of low cloud cover due to aerosol heating consistent with the conventional description of the semidirect effect, we conclude that the link between aerosols and clouds is more varied, depending also on changes in the atmospheric circulation and the specific humidity induced by the aerosols. Other absorbing aerosols such as black carbon are expected to have a similar effect.

  9. Jet and ultrasonic nebuliser output: use of a new method for direct measurement of aerosol output.

    PubMed Central

    Dennis, J H; Stenton, S C; Beach, J R; Avery, A J; Walters, E H; Hendrick, D J

    1990-01-01

    Output from jet nebulisers is calibrated traditionally by weighing them before and after nebulisation, but the assumption that the weight difference is a close measure of aerosol generation could be invalidated by the concomitant process of evaporation. A method has been developed for measuring aerosol output directly by using a solute (fluoride) tracer and aerosol impaction, and this has been compared with the traditional weight loss method for two Wright, six Turbo, and four Micro-Cirrus jet nebulisers and two Microinhaler ultrasonic nebulisers. The weight loss method overestimated true aerosol output for all jet nebulisers. The mean aerosol content, expressed as a percentage of the total weight loss, varied from as little as 15% for the Wright jet nebulisers to 54% (range 45-61%) for the Turbo and Micro-Cirrus jet nebulisers under the operating conditions used. In contrast, there was no discrepancy between weight loss and aerosol output for the ultrasonic nebulisers. These findings, along with evidence of both concentrating and cooling effects from jet nebulisation, confirm that total output from jet nebulisers contains two distinct fractions, vapour and aerosol. The vapour fraction, but not the aerosol fraction, was greatly influenced by reservoir temperature within the nebuliser; so the ratio of aerosol output to total weight loss varied considerably with temperature. It is concluded that weight loss is an inappropriate method of calibrating jet nebuliser aerosol output, and that this should be measured directly. PMID:2247862

  10. The aerosol radiative effects of uncontrolled combustion of domestic waste

    NASA Astrophysics Data System (ADS)

    Kodros, John K.; Cucinotta, Rachel; Ridley, David A.; Wiedinmyer, Christine; Pierce, Jeffrey R.

    2016-06-01

    Open, uncontrolled combustion of domestic waste is a potentially significant source of aerosol; however, this aerosol source is not generally included in many global emissions inventories. To provide a first estimate of the aerosol radiative impacts from domestic-waste combustion, we incorporate the Wiedinmyer et al. (2014) emissions inventory into GEOS-Chem-TOMAS, a global chemical-transport model with online aerosol microphysics. We find domestic-waste combustion increases global-mean black carbon and organic aerosol concentrations by 8 and 6 %, respectively, and by greater than 40 % in some regions. Due to uncertainties regarding aerosol optical properties, we estimate the globally averaged aerosol direct radiative effect to range from -5 to -20 mW m-2; however, this range increases from -40 to +4 mW m-2 when we consider uncertainties in emission mass and size distribution. In some regions with significant waste combustion, such as India and China, the aerosol direct radiative effect may exceed -0.4 W m-2. Similarly, we estimate a cloud-albedo aerosol indirect effect of -13 mW m-2, with a range of -4 to -49 mW m-2 due to emission uncertainties. In the regions with significant waste combustion, the cloud-albedo aerosol indirect effect may exceed -0.4 W m-2.

  11. New Directions: Emerging Satellite Observations of Above-cloud Aerosols and Direct Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Zhang, Zhibo

    2013-01-01

    Spaceborne lidar and passive sensors with multi-wavelength and polarization capabilities onboard the A-Train provide unprecedented opportunities of observing above-cloud aerosols and direct radiative forcing. Significant progress has been made in recent years in exploring these new aerosol remote sensing capabilities and generating unique datasets. The emerging observations will advance the understanding of aerosol climate forcing.

  12. Direct photolysis of α-pinene ozonolysis secondary organic aerosol: effect on particle mass and peroxide content.

    PubMed

    Epstein, Scott A; Blair, Sandra L; Nizkorodov, Sergey A

    2014-10-01

    Primary and secondary organic aerosols (POA and SOA) contain a complex mixture of multifunctional chemicals, many of which are photolabile. Much of the previous work that aimed to understand the chemical evolution (aging) of POA and SOA has focused on the reactive uptake of gas-phase oxidants by particles. By stripping volatile compounds and ozone from α-pinene ozonolysis SOA with three 1-m-long denuders, and exposing the residual particles in a flow cell to near-ultraviolet (λ>300 nm) radiation, we find that condensed-phase photochemistry can induce significant changes in SOA particle size and chemical composition. The particle-bound organic peroxides, which are highly abundant in α-pinene ozonolysis SOA (22 ± 5% by weight), have an atmospheric photolysis lifetime of about 6 days at a 24-h average solar zenith angle (SZA) of 65° experienced at 34° latitude (Los Angeles) in the summer. In addition, the particle diameter shrinks 0.56% per day under these irradiation conditions as a result of the loss of volatile photolysis products. Experiments with and without the denuders show similar results, suggesting that condensed-phase processes dominate over heterogeneous reactions of particles with organic vapors, excess ozone, and gas-phase free radicals. These condensed-phase photochemical processes occur on atmospherically relevant time scales and should be considered when modeling the evolution of organic aerosol in the atmosphere. PMID:25165890

  13. Unexpected Benefits of Reducing Aerosol Cooling Effects.

    PubMed

    Xing, Jia; Wang, Jiandong; Mathur, Rohit; Pleim, Jonathan; Wang, Shuxiao; Hogrefe, Christian; Gan, Chuen-Meei; Wong, David C; Hao, Jiming

    2016-07-19

    Impacts of aerosol cooling are not limited to changes in surface temperature since modulation of atmospheric dynamics resulting from the increased stability can deteriorate local air quality and impact human health. Health impacts from two manifestations of the aerosol direct effects (ADE) are estimated in this study: (1) the effect on surface temperature and (2) the effect on air quality through atmospheric dynamics. Average mortalities arising from the enhancement of surface PM2.5 concentration due to ADE in East Asia, North America and Europe are estimated to be 3-6 times higher than reduced mortality from decreases of temperature due to ADE. Our results suggest that mitigating aerosol pollution is beneficial in decreasing the impacts of climate change arising from these two manifestations of ADE health impacts. Thus, decreasing aerosol pollution gets direct benefits on health, and indirect benefits on health through changes in local climate and not offsetting changes associated only with temperature modulations as traditionally thought. The modulation of air pollution due to ADE also translates into an additional human health dividend in regions (e.g., U.S. Europe) with air pollution control measures but a penalty for regions (e.g., Asia) witnessing rapid deterioration in air quality. PMID:27310144

  14. Overview of ACE-Asia Spring 2001 Investigations on Aerosol Radiative Effects and Related Aerosol Properties

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Valero, F. P. J.; Flatau, P. J.; Bergin, M.; Holben, B.; Nakajima, T.; Pilewskie, P.; Bergstrom, R.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    A primary, ACE-Asia objective was to quantify the interactions between aerosols and radiation in the Asia-Pacific region. Toward this end, radiometric and related aerosol measurements were made from ocean, land, air and space platforms. Models that predict aerosol fields guided the measurements and are helping integrate and interpret results. Companion overview's survey these measurement and modeling components. Here we illustrate how these components were combined to determine aerosol radiative. impacts and their relation to aerosol properties. Because clouds can obscure or change aerosol direct radiative effects, aircraft and ship sorties to measure these effects depended on predicting and finding cloud-free areas and times with interesting aerosols present. Pre-experiment satellite cloud climatologies, pre-flight aerosol and cloud forecasts, and in-flight guidance from satellite imagery all helped achieve this. Assessments of aerosol regional radiative impacts benefit from the spatiotemporal coverage of satellites, provided satellite-retrieved aerosol properties are accurate. Therefore, ACE-Asia included satellite retrieval tests, as part of many comparisons to judge the consistency (closure) among, diverse measurements. Early results include: (1) Solar spectrally resolved and broadband irradiances and optical depth measurements from the C-130 aircraft and at Kosan, Korea yielded aerosol radiative forcing efficiencies, permitting comparisons between efficiencies of ACE-Asia and INDOEX aerosols, and between dust and "pollution" aerosols. Detailed results will be presented in separate papers. (2) Based on measurements of wavelength dependent aerosol optical depth (AOD) and single scattering albedo the estimated 24-h a average aerosol radiative forcing efficiency at the surface for photosynthetically active radiation (400 - 700 nm) in Yulin, China is approx. 30 W sq m per AOD(500 nm). (3) The R/V Brown cruise from Honolulu to Sea of Japan sampled an aerosol optical

  15. How Well Will MODIS Measure Top of Atmosphere Aerosol Direct Radiative Forcing?

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Kaufman, Yoram J.; Levin, Zev; Ghan, Stephen; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The new generation of satellite sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS) will be able to detect and characterize global aerosols with an unprecedented accuracy. The question remains whether this accuracy will be sufficient to narrow the uncertainties in our estimates of aerosol radiative forcing at the top of the atmosphere. Satellite remote sensing detects aerosol optical thickness with the least amount of relative error when aerosol loading is high. Satellites are less effective when aerosol loading is low. We use the monthly mean results of two global aerosol transport models to simulate the spatial distribution of smoke aerosol in the Southern Hemisphere during the tropical biomass burning season. This spatial distribution allows us to determine that 87-94% of the smoke aerosol forcing at the top of the atmosphere occurs in grid squares with sufficient signal to noise ratio to be detectable from space. The uncertainty of quantifying the smoke aerosol forcing in the Southern Hemisphere depends on the uncertainty introduced by errors in estimating the background aerosol, errors resulting from uncertainties in surface properties and errors resulting from uncertainties in assumptions of aerosol properties. These three errors combine to give overall uncertainties of 1.5 to 2.2 Wm-2 (21-56%) in determining the Southern Hemisphere smoke aerosol forcing at the top of the atmosphere. The range of values depend on which estimate of MODIS retrieval uncertainty is used, either the theoretical calculation (upper bound) or the empirical estimate (lower bound). Strategies that use the satellite data to derive flux directly or use the data in conjunction with ground-based remote sensing and aerosol transport models can reduce these uncertainties.

  16. Revisiting Aerosol Effects in Global Climate Models Using an Aerosol Lidar Simulator

    NASA Astrophysics Data System (ADS)

    Ma, P. L.; Chepfer, H.; Winker, D. M.; Ghan, S.; Rasch, P. J.

    2015-12-01

    Aerosol effects are considered a major source of uncertainty in global climate models and the direct and indirect radiative forcings have strong model dependency. These forcings are routinely evaluated (and calibrated) against observations, among them satellite retrievals are greatly used for their near-global coverage. However, the forcings calculated from model output are not directly comparable with those computed from satellite retrievals since sampling and algorithmic differences (such as cloud screening, noise reduction, and retrieval) between models and observations are not accounted for. It is our hypothesis that the conventional model validation procedures for comparing satellite observations and model simulations can mislead model development and introduce biases. Hence, we have developed an aerosol lidar simulator for global climate models that simulates the CALIOP lidar signal at 532nm. The simulator uses the same algorithms as those used to produce the "GCM-oriented CALIPSO Aerosol Product" to (1) objectively sample lidar signal profiles; and (2) derive aerosol fields (e.g., extinction profile, aerosol type, etc) from lidar signals. This allows us to sample and derive aerosol fields in the model and real atmosphere in identical ways. Using the Department of Energy's ACME model simulations, we found that the simulator-retrieved aerosol distribution and aerosol-cloud interactions are significantly different from those computed from conventional approaches, and that the model is much closer to satellite estimates than previously believed.

  17. Toward a Minimal Representation of Aerosols in Climate Models: Comparative Decomposition of Aerosol Direct, Semidirect, and Indirect Radiative Forcing

    SciTech Connect

    Ghan, Steven J.; Liu, Xiaohong; Easter, Richard C.; Zaveri, Rahul A.; Rasch, Philip J.; Yoon, Jin-Ho; Eaton, Brian

    2012-10-01

    The authors have decomposed the anthropogenic aerosol radiative forcing into direct contributions from each aerosol species to the planetary energy balance through absorption and scattering of solar radiation, indirect effects of anthropogenic aerosol on solar and infrared radiation through droplet and crystal nucleation on aerosol, and semidirect effects through the influence of solar absorption on the distribution of clouds. A three-mode representation of the aerosol in version 5.1 of the Community Atmosphere Model (CAM5.1) yields global annual mean radiative forcing estimates for each of these forcing mechanisms that are within 0.1 W m–2 of estimates using a more complex seven-mode representation that distinguishes between fresh and aged black carbon and primary organic matter. Simulating fresh black carbon particles separately from internally mixed accumulation mode particles is found to be important only near fossil fuel sources. In addition to the usual large indirect effect on solar radiation, this study finds an unexpectedly large positive longwave indirect effect (because of enhanced cirrus produced by homogenous nucleation of ice crystals on anthropogenic sulfate), small shortwave and longwave semidirect effects, and a small direct effect (because of cancelation and interactions of direct effects of black carbon and sulfate). Differences between the threemode and seven-mode versions are significantly larger (up to 0.2 W m–2) when the hygroscopicity of primary organic matter is decreased from 0.1 to 0 and transfer of the primary carbonaceous aerosol to the accumulation mode in the seven-mode version requires more hygroscopic material coating the primary particles. Radiative forcing by cloudborne anthropogenic black carbon is only 20.07 W m–2.

  18. Anthropogenic Aerosol Effects on Sea Surface Temperatures: Mixed-Layer Ocean Experiments with Explicit Aerosol Representation

    NASA Astrophysics Data System (ADS)

    Dallafior, Tanja; Folini, Doris; Wild, Martin; Knutti, Reto

    2014-05-01

    Anthropogenic aerosols affect the Earth's radiative balance both through direct and indirect effects. These effects can lead to a reduction of the incoming solar radiation at the surface, i.e. dimming, which may lead to a change in sea surface temperatures (SST) or SST pattern. This, in turn, may affect precipitation patterns. The goal of the present work is to achieve an estimate of the equilibrium SST changes under anthropogenic aerosol forcing since industrialisation. We show preliminary results from mixed-layer ocean (MLO) experiments with explicit aerosol representation performed with ECHAM6-HAM. The (fixed) MLO heat flux into the deep ocean was derived from atmosphere only runs with fixed climatological SSTs (1961-1990 average) and present day (year 2000) aerosols and GHG burdens. Some experiments we repeated with an alternative MLO deep ocean heat flux (based on pre-industrial conditions) to test the robustness of our results with regard to this boundary condition. The maximum surface temperature responses towards anthropogenic aerosol and GHG forcing (separately and combined) were derived on a global and regional scale. The same set of experiments was performed with aerosol and GHG forcings representative of different decades over the past one and a half centuries. This allows to assess how SST patterns at equilibrium changed with changing aerosol (and GHG) forcing. Correlating SST responses with the change in downward clear-sky and all-sky shortwave radiation provides a first estimate of the response to anthropogenic aerosols. Our results show a clear contrast in hemispheric surface temperature response, as expected from the inter-hemispheric asymmetry of aerosol forcing The presented work is part of a project aiming at quantifying the effect of anthropogenic aerosol forcing on SSTs and the consequences for global precipitation patterns. Results from this study will serve as a starting point for further experiments involving a dynamic ocean model, which

  19. Science Overview Document Indirect and Semi-Direct Aerosol Campaign (ISDAC) April 2008

    SciTech Connect

    SJ Ghan; B Schmid; JM Hubbe; CJ Flynn; A Laskin; AA Zelenyuk; DJ Czizco; CN Long; G McFarquhar; J Verlinde; J Harrington; JW Strapp; P Liu; A Korolev; A McDonald; M Wolde; A Fridlind; T Garrett; G Mace; G Kok; S Brooks; D Collins; D Lubin; P Lawson; M Dubey; C Mazzoleni; M Shupe; S Xie; DD Turner; Q Min; EJ Mlawer; D Mitchell

    2007-11-01

    The ARM Climate Research Facility’s (ACRF) Aerial Vehicle Program (AVP) will deploy an intensive cloud and aerosol observing system to the ARM North Slope of Alaska (NSA) locale for a five week Indirect and Semi-Direct Aerosol Campaign (ISDAC) during period 29 March through 30 April 2008. The deployment period is within the International Polar Year, thus contributing to and benefiting from the many ancillary observing systems collecting data synergistically. We will deploy the Canadian National Research Council Convair 580 aircraft to measure temperature, humidity, total particle number, aerosol size distribution, single particle composition, concentrations of cloud condensation nuclei and ice nuclei, optical scattering and absorption, updraft velocity, cloud liquid water and ice contents, cloud droplet and crystal size distributions, cloud particle shape, and cloud extinction. In addition to these aircraft measurements, ISDAC will deploy two instruments at the ARM site in Barrow: a spectroradiometer to retrieve cloud optical depth and effective radius, and a tandem differential mobility analyzer to measure the aerosol size distribution and hygroscopicity. By using many of the same instruments used during Mixed-Phase Arctic Cloud Experiment (M-PACE), conducted in October 2004, we will be able to contrast the arctic aerosol and cloud properties during the fall and spring transitions. The aerosol measurements can be used in cloud models driven by objectively analyzed boundary conditions to test whether the cloud models can simulate the aerosol influence on the clouds. The influence of aerosol and boundary conditions on the simulated clouds can be separated by running the cloud models with all four combinations of M-PACE and ISDAC aerosol and boundary conditions: M-PACE aerosol and boundary conditions, M-PACE aerosol and ISDAC boundary conditions, ISDAC aerosol and M-PACE boundary conditions, and ISDAC aerosol and boundary conditions. ISDAC and M-PACE boundary

  20. Evaluation of Aerosol Direct Radiative Forcing in MIRAGE

    SciTech Connect

    Ghan, Steven J.; Laulainen, Nels S.; Easter, Richard C.; Wagener, Richard; Nemesure, Seth; Chapman, Elaine G.; Zhang, Yang; Leung, Lai-Yung R.

    2001-04-01

    A variety of measurements have been used to evaluate the treatment of aerosol radiative properties and radiative impacts of aerosols simulated by the Model for Integrated Research on Atmospheric Global Exchanges (MIRAGE). The treatment of water uptake in MIRAGE agrees with laboratory measurements for the aerosol components that have been measured. The simulated frequency of relative humidity near 100% is about twice that of European Center for Medium-range Weather Forecasts analyzed relative humidity. When the analyzed relative humidity is used to calculate aerosol water uptake in MIRAGE, the simulated aerosol optical depth agrees with most surface measurements after cloudy conditions are filtered out and differences between model and station elevations are accounted for. Simulated optical depths are low over sites in Brazil during the biomass burning season and over sites in central Canada during the wildfire season, which can be attributed to limitations in the organic and black car bon emissions data used by MIRAGE. The simulated aerosol optical depths are mostly within a factor of two of satellite estimates, but MIRAGE simulates excessively high aerosol optical depths off the east coast of the US and China, and too little dust off the coast of West Africa and in the Arabian Sea. The simulated distribution of single-scatter albedo is consistent with the available in situ surface measurements. The simulated sensitivity of radiative forcing to aerosol optical depth is consistent with estimates from measurements where available. The simulated spatial distribution of aerosol radiance is broadly consistent with estimates from satellite measurements, but with the same errors as the aerosol optical depth. The simulated direct forcing is within the uncertainty of estimates from measurements in the North Atlantic.

  1. Evaluating aerosol indirect effect through marine stratocumulus clouds

    SciTech Connect

    Kogan, Z.N.; Kogan, Y.L.; Lilly, D.K.

    1996-04-01

    During the last decade much attention has been focused on anthropogenic aerosols and their radiative influence on the global climate. Charlson et al. and Penner et al. have demonstrated that tropospheric aerosols and particularly anthropogenic sulfate aerosols may significantly contribute to the radiative forcing exerting a cooling influence on climate (-1 to -2 W/m{sup 2}) which is comparable in magnitude to greenhouse forcing, but opposite in sign. Aerosol particles affect the earth`s radiative budget either directly by scattering and absorption of solar radiation by themselves or indirectly by altering the cloud radiative properties through changes in cloud microstructure. Marine stratocumulus cloud layers and their possible cooling influence on the atmosphere as a result of pollution are of special interest because of their high reflectivity, durability, and large global cover. We present an estimate of thet aerosol indirect effect, or, forcing due to anthropogenic sulfate aerosols.

  2. Total aerosol effect: forcing or radiative flux perturbation?

    SciTech Connect

    Lohmann, Ulrike; Storelvmo, Trude; Jones, Andy; Rotstayn, Leon; Menon, Surabi; Quaas, Johannes; Ekman, Annica; Koch, Dorothy; Ruedy, Reto

    2009-09-25

    Uncertainties in aerosol forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of rain formation. Traditionally these feedbacks were not included in estimates of total aerosol forcing. Here we argue that they should be included because these feedbacks act quickly compared with the time scale of global warming. We show that for different forcing agents (aerosols and greenhouse gases) the radiative forcings as traditionally defined agree rather well with estimates from a method, here referred to as radiative flux perturbations (RFP), that takes these fast feedbacks and interactions into account. Thus we propose replacing the direct and indirect aerosol forcing in the IPCC forcing chart with RFP estimates. This implies that it is better to evaluate the total anthropogenic aerosol effect as a whole.

  3. Evaluation of aerosol direct radiative forcing in MIRAGE

    NASA Astrophysics Data System (ADS)

    Ghan, Steven; Laulainen, Nels; Easter, Richard; Wagener, Richard; Nemesure, Seth; Chapman, Elaine; Zhang, Yang; Leung, Ruby

    2001-03-01

    A variety of measurements have been used to evaluate the treatment of aerosol radiative properties and radiative impacts of aerosols simulated by the Model for Integrated Research on Atmospheric Global Exchange (MIRAGE). The treatment of water uptake in MIRAGE agrees with laboratory measurements, and the growth of aerosol extinction with relative humidity in MIRAGE simulations agrees with field measurements. The simulated frequency of relative humidity near 100% is about twice that of analyzed relative humidity. When the analyzed relative humidity is used to calculate aerosol water uptake in MIRAGE, the simulated aerosol optical depth agrees with most surface measurements after cloudy conditions are filtered out and differences between model and station elevations are accounted for, but simulated optical depths are too low over Brazil and central Canada. Simulated optical depths are mostly within a factor of 2 of satellite estimates, but are too high off the east coasts of the United States and China and too low off the coast of West Africa and in the Arabian Sea. The simulated single-scatter albedo is consistent with surface measurements. MIRAGE correctly simulates a larger Ångström exponent near regions with emissions of submicron particles and aerosol precursor gases, and a smaller exponent near regions with emissions of coarse particles. The simulated sensitivity of radiative forcing to aerosol optical depth is consistent with estimates from measurements. The simulated direct forcing is within the uncertainty of estimates from measurements in the North Atlantic.

  4. A direct method for e-cigarette aerosol sample collection.

    PubMed

    Olmedo, Pablo; Navas-Acien, Ana; Hess, Catherine; Jarmul, Stephanie; Rule, Ana

    2016-08-01

    E-cigarette use is increasing in populations around the world. Recent evidence has shown that the aerosol produced by e-cigarettes can contain a variety of toxicants. Published studies characterizing toxicants in e-cigarette aerosol have relied on filters, impingers or sorbent tubes, which are methods that require diluting or extracting the sample in a solution during collection. We have developed a collection system that directly condenses e-cigarette aerosol samples for chemical and toxicological analyses. The collection system consists of several cut pipette tips connected with short pieces of tubing. The pipette tip-based collection system can be connected to a peristaltic pump, a vacuum pump, or directly to an e-cigarette user for the e-cigarette aerosol to flow through the system. The pipette tip-based system condenses the aerosol produced by the e-cigarette and collects a liquid sample that is ready for analysis without the need of intermediate extraction solutions. We tested a total of 20 e-cigarettes from 5 different brands commercially available in Maryland. The pipette tip-based collection system condensed between 0.23 and 0.53mL of post-vaped e-liquid after 150 puffs. The proposed method is highly adaptable, can be used during field work and in experimental settings, and allows collecting aerosol samples from a wide variety of e-cigarette devices, yielding a condensate of the likely exact substance that is being delivered to the lungs. PMID:27200479

  5. Simulation of aerosol direct radiative forcing with RAMS-CMAQ in East Asia

    NASA Astrophysics Data System (ADS)

    Han, Xiao; Zhang, Meigen; Han, Zhiwei; Xin, Jinyuan; Liu, Xiaohong

    2011-11-01

    The air quality modeling system RAMS-CMAQ is developed to assess aerosol direct radiative forcing by linking simulated meteorological parameters and aerosol mass concentration with the aerosol optical properties/radiative transfer module in this study. The module is capable of accounting for important factors that affect aerosol optical properties and radiative effect, such as incident wave length, aerosol size distribution, water uptake, and internal mixture. Subsequently, the modeling system is applied to simulate the temporal and spatial variations in mass burden, optical properties, and direct radiative forcing of diverse aerosols, including sulfate, nitrate, ammonium, black carbon, organic carbon, dust, and sea salt over East Asia throughout 2005. Model performance is fully evaluated using various observational data, including satellite monitoring of MODIS and surface measurements of EANET (Acid Deposition Monitoring Network), AERONET (Aerosol Robotic Network), and CSHNET (Chinese Sun Hazemeter Network). The correlation coefficients of the comparisons of daily average mass concentrations of sulfate, PM2.5, and PM10 between simulations and EANET measurements are 0.70, 0.61, and 0.64, respectively. It is also determined that the modeled aerosol optical depth (AOD) is in congruence with the observed results from the AERONET, the CSHNET, and the MODIS. The model results suggest that the high AOD values ranging from 0.8 to 1.2 are mainly distributed over the Sichuan Basin as well as over central and southeastern China, in East Asia. The aerosol direct radiative forcing patterns generally followed the AOD patterns. The strongest forcing effect ranging from -12 to -8 W m -2 was mainly distributed over the Sichuan Basin and the eastern China's coastal regions in the all-sky case at TOA, and the forcing effect ranging from -8 to -4 W m -2 could be found over entire eastern China, Korea, Japan, East China Sea, and the sea areas of Japan

  6. Simulation of aerosol direct radiative forcing with RAMS-CMAQ in East Asia

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Han, X.; Liu, X.

    2011-12-01

    The air quality modeling system RAMS-CMAQ is developed to assess aerosol direct radiative forcing by linking simulated meteorological parameters and aerosol mass concentration with the aerosol optical properties/radiative transfer module in this study. The module is capable of accounting for important factors that affect aerosol optical properties and radiative effect, such as incident wave length, aerosol size distribution, water uptake, and internal mixture. Subsequently, the modeling system is applied to simulate the temporal and spatial variations in mass burden, optical properties, and direct radiative forcing of diverse aerosols, including sulfate, nitrate, ammonium, black carbon, organic carbon, dust, and sea salt over East Asia throughout 2005. Model performance is fully evaluated using various observational data, including satellite monitoring of MODIS and surface measurements of EANET (Acid Deposition Monitoring Network), AERONET (Aerosol Robotic Network), and CSHNET (Chinese Sun Hazemeter Network). The correlation coefficients of the comparisons of daily average mass concentrations of sulfate, PM2.5, and PM10 between simulations and EANET measurements are 0.70, 0.61, and 0.64, respectively. It is also determined that the modeled aerosol optical depth (AOD) is in congruence with the observed results from the AERONET, the CSHNET, and the MODIS. The model results suggest that the high AOD values ranging from 0.8 to 1.2 are mainly distributed over the Sichuan Basin as well as over central and southeastern China, in East Asia. The aerosol direct radiative forcing patterns generally followed the AOD patterns. The strongest forcing effect ranging from -12 to -8 W/m2 was mainly distributed over the Sichuan Basin and the eastern China's coastal regions in the all-sky case at TOA, and the forcing effect ranging from -8 to -4 W/m2 could be found over entire eastern China, Korea, Japan, East China Sea, and the sea areas of Japan.

  7. Simulation of aerosol direct radiative forcing with RAMS-CMAQ in East Asia

    SciTech Connect

    Han, Xiao; Zhang, Meigen; Han, Zhiewi; Xin, Jin-Yuan; Liu, Xiaohong

    2011-11-14

    The air quality modeling system RAMS-CMAQ is developed to assess aerosol direct radiative forcing by linking simulated meteorological parameters and aerosol mass concentration with the aerosol optical properties/radiative transfer module in this study. The module is capable of accounting for important factors that affect aerosol optical properties and radiative effect, such as incident wave length, aerosol size distribution, water uptake, and internal mixture. Subsequently, the modeling system is applied to simulate the temporal and spatial variations in mass burden, optical properties, and direct radiative forcing of diverse aerosols, including sulfate, nitrate, ammonium, black carbon, organic carbon, dust, and sea salt over East Asia throughout 2005. Model performance is fully evaluated using various observational data, including satellite monitoring of MODIS and surface measurements of EANET (Acid Deposition Monitoring Network), AERONET (Aerosol Robotic Network), and CSHNET (Chinese Sun Hazemeter Network). The correlation coefficients of the comparisons of daily average mass concentrations of sulfate, PM2.5, and PM10 between simulations and EANET measurements are 0.70, 0.61, and 0.64, respectively. It is also determined that the modeled aerosol optical depth (AOD) is in congruence with the observed results from the AERONET, the CSHNET, and the MODIS. The model results suggest that the high AOD values ranging from 0.8 to 1.2 are mainly distributed over the Sichuan Basin as well as over central and southeastern China, in East Asia. The aerosol direct radiative forcing patterns generally followed the AOD patterns. The strongest forcing effect ranging from -12 to -8 W m-2 was mainly distributed over the Sichuan Basin and the eastern China's coastal regions in the all-sky case at TOA, and the forcing effect ranging from -8 to -4 W m-2 could be found over entire eastern China, Korea, Japan, East China Sea, and the sea areas of Japan

  8. The contribution of aerosol hygroscopic growth to the modeled aerosol radiative effect

    NASA Astrophysics Data System (ADS)

    Kokkola, Harri; Kühn, Thomas; Kirkevåg, Alf; Romakkaniemi, Sami; Arola, Antti

    2016-04-01

    The hygroscopic growth of atmospheric aerosols can have a significant effect on the direct radiative effect of atmospheric aerosol. However, there are significant uncertainties concerning how much of the radiative forcing is due to different chemical compounds, especially water. For example, modeled optical depth of water in global aerosol-climate models varies by more than a factor of two. These differences can be attributed to differences in modeled 1) hygroscopicity, 2) ambient relative humidity, and/or 3) aerosol size distribution. In this study, we investigate which of these above-mentioned factors cause the largest variability in the modeled optical depth of water. In order to do this, we have developed a tool that calculates aerosol extinction using interchangeable global 3D data of aerosol composition, relative humidity, and aerosol size distribution fields. This data is obtained from models that have taken part in the open international initiative AeroCom (Aerosol Comparisons between Observations and Models). In addition, we use global 3D data for relative humidity from the Atmospheric Infrared Sounder (AIRS) flying on board NASA's Aqua satellite and the National Centers for Environmental Prediction (NCEP) reanalysis data. These observations are used to evaluate the modeled relative humidity fields. In the first stage of the study, we made a detailed investigation using the aerosol-chemistry-climate model ECHAM-HAMMOZ in which most of the aerosol optical depth is caused by water. Our results show that the model significantly overestimates the relative humidity over the oceans while over land, the overestimation is lower or it is underestimated. Since this overestimation occurs over the oceans, the water optical depth is amplified as the hygroscopic growth is very sensitive to changes in high relative humidities. Over land, error in modeled relative humidity is unlikely to cause significant errors in water optical depth as relative humidities are generally

  9. Aerosol radiative effects over BIMSTEC regions

    NASA Astrophysics Data System (ADS)

    Kumar, Sumit; Kar, S. C.; Mupparthy, Raghavendra S.

    Aerosols can have variety of shapes, composition, sizes and other properties that influence their optical characteristics and thus the radiative impact. The visible impact of aerosol is the formation of haze, a layer of particles from vehicular, industrial emissions and biomass burning. The characterization of these fine particles is important for regulators and researchers because of their potential impact on human health, their ability to travel thousands of kilometers crossing international borders, and their influence on climate forcing and global warming. The Bay of Bengal Initiative for Multi-Sectoral Technical and Economic Cooperation (BIMSTEC) with Member Countries Bangladesh, Bhutan, India, Myanmar, Nepal, Sri Lanka and Thailand has emerged as an important regional group for technical and economic Cooperation. Continuing the quest for a deeper understanding of BIMSTEC countries weather and climate, in this paper we focused on aerosols and their direct radiative effects. Because of various contrasts like geophysical, agricultural practices, heterogeneous land/ocean surface, population etc these regions present an excellent natural laboratory for studying aerosol-meteorology interactions in tropical to sub-tropical environments. We exploited data available on multiple platforms (such as MISR, MODIS etc) and models (OPAC, SBDART etc) to compute the results. Ten regions were selected with different surface characteristics, also having considerable differences in the long-term trends and seasonal distribution of aerosols. In a preliminary analysis pertaining to pre-monsoon (March-April-May) of 2013, AOD _{555nm} is found to be maximum over Bangladesh (>0.52) and minimum over Bhutan (0.22), whereas other regions have intermediate values. Concurrent to these variability of AOD we found a strong reduction in incoming flux at surface of all the regions (> -25 Wm (-2) ), except Bhutan and Sri Lanka (< -18Wm (-2) ). The top of the atmosphere (TOA) forcing values are

  10. Direct measurements of mass-specific optical cross sections of single-component aerosol mixtures.

    PubMed

    Radney, James G; Ma, Xiaofei; Gillis, Keith A; Zachariah, Michael R; Hodges, Joseph T; Zangmeister, Christopher D

    2013-09-01

    The optical properties of atmospheric aerosols vary widely, being dependent upon particle composition, morphology, and mixing state. This diversity and complexity of aerosols motivates measurement techniques that can discriminate and quantify a variety of single- and multicomponent aerosols that are both internally and externally mixed. Here, we present a new combination of techniques to directly measure the mass-specific extinction and absorption cross sections of laboratory-generated aerosols that are relevant to atmospheric studies. Our approach employs a tandem differential mobility analyzer, an aerosol particle mass analyzer, cavity ring-down and photoacoustic spectrometers, and a condensation particle counter. This suite of instruments enables measurement of aerosol particle size, mass, extinction and absorption coefficients, and aerosol number density, respectively. Taken together, these observables yield the mass-specific extinction and absorption cross sections without the need to model particle morphology or account for sample collection artifacts. Here we demonstrate the technique in a set of case studies which involve complete separation of aerosol by charge, separation of an external mixture by mass, and discrimination between particle types by effective density and single-scattering albedo. PMID:23875772

  11. Unexpected Benefits of Reducing Aerosol Cooling Effects

    EPA Science Inventory

    Impacts of aerosol cooling are not limited to changes in surface temperature since modulation of atmospheric dynamics resulting from the increased stability can deteriorate local air quality and impact human health. Health impacts from two manifestations of the aerosol direct eff...

  12. Effect of aerosols on evapo-transpiration

    NASA Astrophysics Data System (ADS)

    Murthy, B. S.; Latha, R.; Manoj, Kumar; Mahanti, N. C.

    2014-06-01

    Aerosol direct radiative forcing (ARF) at surface is estimated from instantaneous, simultaneous observations of global radiation and aerosol optical depth (AOD) during winter, pre-monsoon and monsoon seasons over a tropical Indian station at the south-eastern end of Indo Gangetic basin. A comparison of observed and model derived ARFs is made and possible reasons for mismatch are discussed. Aerosol-induced reduction in solar visible (0.4-0.7 μm) spectrum energy (SWvis), contributing 44% to total broad band (0.3-3.0 μm) energy (SW), and its effect on surface energy fluxes are discussed in this study. Aerosols on an average reduce SWvis at surface by ˜27%. SWvis reduces by 14.5 W m-2 for a 0.1 increase in AOD when single scattering albedo (SSA) is 0.979 where as it reduces by 67.5 W m-2 when SSA is 0.867 indicating the significant effect of absorbing aerosols. Effect of ARF on net radiation, Rn, sensible heat flux, H and latent heat flux/evapo-transpiration, LE are estimated using the observed ratios of Rn/SW, H/Rn and LE/Rn, having reasonably good correlation. Observed Rn/SW varies between 0.59 and 0.75 with a correlation of 0.99 between them. LE, calculated by energy balance method, varies from 56% to 74% of Rn but with a lesser correlation, the possible reasons are discussed. For a given ARF, LE decreases by ˜14% and Rn by ˜15% with respect to observed LE and Rn respectively. The reduction in LE increases from 37% to 54% of ARF when LE increases from 220 W m-2 to 440 W m-2, suggesting that wet soil induces relatively larger reduction in evaporation. The results agree with earlier model sensitivity studies that Rn reduces more with increase in aerosol absorption which is compensated by proportionate reductions in H and LE depending on soil and atmospheric conditions.

  13. Aerosol direct radiative forcing at the top of atmosphere based on satellite remote sensing over China Seas: a preliminary study

    NASA Astrophysics Data System (ADS)

    Hao, Zengzhou; Pan, Delu; Gong, Fang

    2010-09-01

    Radiative forcing as an index of climate change can reflect the relative effect of climate factors. To understand climatic implications of aerosols over the China Seas, the aerosol direct radiative forcing at the top of atmosphere (TOA) is computed using three-year collocated Clouds and the Earth's Radiant Energy System (CERES) radiation fluxes and Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical thickness data on the platform Terra. The upward radiation flux for clear skies is a key for the aerosol radiative forcing at the TOA. A linear relationship is found between the solar radiation fluxes at the TOA from CERES and the aerosol optical thickness is at 550 nm from MODIS over the China Seas. In a linear regression Eq., the intercept for zero aerosol optical thickness is the radiation flux at the TOA for clear skies. Based on the definition of the aerosol direct radiative forcing at TOA and the diurnal correction factor from a simulated radiative forcing using radiation transfer model, the daily averaged aerosol direct radiative forcing at the TOA is estimated and its seasonal variations over the cloud-free China Seas are presented. In total, the aerosol radiative forcing over the China Seas is negative. It implies that the aerosol over the China Seas is mainly a cooling effect on climate change, which is opposite to the greenhouse effect. The largest aerosol radiative forcing is found in spring, while the smallest is in summer. The aerosol radiative forcing over the coastal region is always more than that in the open ocean in four seasons. The method in the study can be used for evaluation of the aerosols impact on global or region climate from satellite measurements.

  14. A Strategy to Assess Aerosol Direct Radiative Forcing of Climate Using Satellite Radiation Measurements

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tanre, Didier; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Atmospheric aerosols have a complex internal chemical composition and optical properties. Therefore it is difficult to model their impact on redistribution and absorption of solar radiation, and the consequent impact on atmospheric dynamics and climate. The use in climate models of isolated aerosol parameters retrieved from satellite data (e.g. optical thickness) may result in inconsistent calculations, if the model assumptions differ from these of the satellite retrieval schemes. Here we suggest a strategy to assess the direct impact of aerosol on the radiation budget at the top and bottom of the atmosphere using satellite and ground based measurements of the spectral solar radiation scattered by the aerosol. This method ensures consistent use of the satellite data and increases its accuracy. For Kaufman and Tanre: Strategy for aerosol direct forcing anthropogenic aerosol in the fine mode (e.g. biomass burning smoke and urban pollution) consistent use of satellite derived optical thickness can yield the aerosol impact on the spectral solar flux with accuracy an order of magnitude better than the optical thickness itself. For example, a simulated monthly average smoke optical thickness of 0.5 at 0.55 microns (forcing of 40-50 W/sq m) derived with an error of 20%, while the forcing can be measured directly with an error of only 0-2 W/sq m. Another example, the effect of large dust particles on reflection of solar flux can be derived three times better than retrievals of optical thickness. Since aerosol impacts not only the top of the atmosphere but also the surface irradiation, a combination of satellite and ground based measurements of the spectral flux, can be the most direct mechanism to evaluate the aerosol effect on climate and assimilate it in climate models. The strategy is applied to measurements from SCAR-B and the Tarfox experiments. In SCAR-B aircraft spectral data are used to derive the 24 hour radiative forcing of smoke at the top of the atmosphere of

  15. An investigation of Raman lidar aerosol measurements and their application to the study of the aerosol indirect effect

    NASA Astrophysics Data System (ADS)

    Russo, Felicita

    The problem of the increasing global atmospheric temperature has motivated a large interest in studying the mechanisms that can influence the radiative balance of the planet. Aerosols are responsible for several radiative effects in the atmosphere: an increase of aerosol loading in the atmosphere increases the reflectivity of the atmosphere and has an estimated cooling effect and is called the aerosol direct effect. Another process involving aerosols is the effect that an increase in their concentration in the atmosphere has on the formation of clouds and is called the aerosol indirect effect. In the latest IPCC report, the aerosol indirect effect was estimated to be responsible for a radiative forcing ranging between -0.3 W/m2 to -1.8 W/m2, which can be as large as, but opposite in sign to, the radiative forcing due to greenhouse gases. The main goal of this dissertation is to study the Raman lidar measurements of quantities relevant for the investigation of the aerosol indirect effect and ultimately to apply these measurements to a quantification of the aerosol indirect effect. In particular we explore measurements of the aerosol extinction from both the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) and the US Department of Energy (DOE) ARM Climate Research Facility Raman Lidar (CARL). An algorithm based on the chi-squared technique to calculate the aerosol extinction, which was introduced first by Whiteman (1999), is here validated using both simulated and experimental data. It has been found as part of this validation that the aerosol extinction uncertainty retrieved with this technique is on average smaller that the uncertainty calculated with the technique traditionally used. This algorithm was then used to assess the performance of the CARL aerosol extinction retrieval for low altitudes. Additionally, since CARL has been upgraded with a channel for measuring Raman liquid water scattering, measurements of cloud liquid water content, droplet

  16. Global aerosol effects on convective clouds

    NASA Astrophysics Data System (ADS)

    Wagner, Till; Stier, Philip

    2013-04-01

    Atmospheric aerosols affect cloud properties, and thereby the radiation balance of the planet and the water cycle. The influence of aerosols on clouds is dominated by increase of cloud droplet and ice crystal numbers (CDNC/ICNC) due to enhanced aerosols acting as cloud condensation and ice nuclei. In deep convective clouds this increase in CDNC/ICNC is hypothesised to increase precipitation because of cloud invigoration through enhanced freezing and associated increased latent heat release caused by delayed warm rain formation. Satellite studies robustly show an increase of cloud top height (CTH) and precipitation with increasing aerosol optical depth (AOD, as proxy for aerosol amount). To represent aerosol effects and study their influence on convective clouds in the global climate aerosol model ECHAM-HAM, we substitute the standard convection parameterisation, which uses one mean convective cloud for each grid column, with the convective cloud field model (CCFM), which simulates a spectrum of convective clouds, each with distinct values of radius, mixing ratios, vertical velocity, height and en/detrainment. Aerosol activation and droplet nucleation in convective updrafts at cloud base is the primary driver for microphysical aerosol effects. To produce realistic estimates for vertical velocity at cloud base we use an entraining dry parcel sub cloud model which is triggered by perturbations of sensible and latent heat at the surface. Aerosol activation at cloud base is modelled with a mechanistic, Köhler theory based, scheme, which couples the aerosols to the convective microphysics. Comparison of relationships between CTH and AOD, and precipitation and AOD produced by this novel model and satellite based estimates show general agreement. Through model experiments and analysis of the model cloud processes we are able to investigate the main drivers for the relationship between CTH / precipitation and AOD.

  17. Aerosol effects over China investigated with a high resolution convection permitting weather model

    NASA Astrophysics Data System (ADS)

    Pagh Nielsen, Kristian; Mahura, Alexander; Yang, Xiaohua

    2016-04-01

    We investigate aerosol effects in the operational high resolution (2.5 km) convection permitting non-hydrostatical weather model HARMONIE (HIRLAM-ALADIN Regional Mesoscale Operational NWP in Euromed). Aerosol input from the global C-IFS model is downscaled and used. The impact of using realistic aerosols on both the direct and the indirect aerosol effects is studied and compared with default simulations that include only the direct aerosol effect of climatological aerosols. The study is performed as a part of the MarcoPolo FP7 project for a selected region of China during the months January and July 2010, where in particular January 2010 saw several cases of high anthropogenic aerosol loads. We also investigate the impact of accounting for realistic aerosol single scattering albedos and asymmetry factors in the simulations of the direct aerosol forcing. In many studies only variations in the aerosol optical depth are accounted for. We show this to be inadequate, when the assumed aerosol types have different optical properties than the actual aerosols.

  18. Aerosol microphysical retrievals from precision filter radiometer direct solar radiation measurements and comparison with AERONET

    NASA Astrophysics Data System (ADS)

    Kazadzis, S.; Veselovskii, I.; Amiridis, V.; Gröbner, J.; Suvorina, A.; Nyeki, S.; Gerasopoulos, E.; Kouremeti, N.; Taylor, M.; Tsekeri, A.; Wehrli, C.

    2014-07-01

    Synchronized sun-photometric measurements from the AERONET-CIMEL (AErosol RObotic NETwork) and GAW-PFR (Global Atmospheric Watch-Precision Filter Radiometer) aerosol networks are used to compare retrievals of the aerosol optical depth (AOD), effective radius, and volume concentration during a high-temporal-resolution measurement campaign at the Athens site in the Mediterranean Basin from 14 to 22 July 2009. During this period, direct-sun AOD retrievals from both instruments exhibited small differences in the range 0.01-0.02. The AODs measured with CIMEL and PFR instruments were inverted to retrieve particle microphysical properties using the linear estimation (LE) technique. For low aerosol loads (AOD < 0.2), measurements of the effective radius by the PFR were found to be -20% to +30% different from CIMEL values for both direct-sun data and inversion data. At higher loads (AOD > 0.4), measurements of the effective radius by the PFR are consistently 20 % lower than CIMEL for both direct-sun and inversion data. Volume concentrations at low aerosol loads from the PFR are up to 80% higher than the CIMEL for direct-sun data but are up to 20% lower when derived from inversion data under these same conditions. At higher loads, the percentage difference in volume concentrations from the PFR and CIMEL is systematically negative, with inversion data predicting differences 30% lower than those obtained from direct-sun data. An assessment of the effect of errors in the AOD retrieval on the estimation of PFR bulk parameters was performed and demonstrates that it is possible to estimate the particle volume concentration and effective radius with an uncertainty < 65% when AOD < 0.2 and when input errors are as high as 10%.

  19. The impact of aerosol optical depth assimilation on aerosol forecasts and radiative effects during a wild fire event over the United States

    NASA Astrophysics Data System (ADS)

    Chen, D.; Liu, Z.; Schwartz, C. S.; Lin, H.-C.; Cetola, J. D.; Gu, Y.; Xue, L.

    2014-11-01

    The Gridpoint Statistical Interpolation three-dimensional variational data assimilation (DA) system coupled with the Weather Research and Forecasting/Chemistry (WRF/Chem) model was utilized to improve aerosol forecasts and study aerosol direct and semi-direct radiative feedbacks during a US wild fire event. Assimilation of MODIS total 550 nm aerosol optical depth (AOD) retrievals clearly improved WRF/Chem forecasts of surface PM2.5 and organic carbon (OC) compared to the corresponding forecasts without aerosol data assimilation. The scattering aerosols in the fire downwind region typically cooled layers both above and below the aerosol layer and suppressed convection and clouds, which led to an average of 2% precipitation decrease during the fire week. This study demonstrated that, even with no input of fire emissions, AOD DA improved the aerosol forecasts and allowed a more realistic model simulation of aerosol radiative effects.

  20. The impact of aerosol optical depth assimilation on aerosol forecasts and radiative effects during a wild fire event over the United States

    NASA Astrophysics Data System (ADS)

    Chen, D.; Liu, Z.; Schwartz, C. S.; Lin, H.-C.; Cetola, J. D.; Gu, Y.; Xue, L.

    2014-06-01

    The Gridpoint Statistical Interpolation three-dimensional variational data assimilation (DA) system coupled with the Weather Research and Forecasting/Chemistry (WRF/Chem) model was utilized to improve aerosol forecasts and study aerosol direct and semi-direct radiative feedbacks during a US wild fire event. Assimilation of MODIS total 550 nm aerosol optical depth (AOD) retrievals clearly improved WRF/Chem forecasts of surface PM2.5 and organic carbon (OC) compared to the corresponding forecasts without aerosol data assimilation. The scattering aerosols in the fire downwind region typically cooled layers both above and below the aerosol layer and suppressed convection and clouds, which led to an average 2% precipitation decease during the fire week. This study demonstrated that even with no input of fire emissions, AOD DA improved the aerosol forecasts and allowed a more realistic model simulation of aerosol radiative effects.

  1. Effects of aerosol organics on cloud condensation nucleus (CCN) concentration and first indirect aerosol effect

    SciTech Connect

    Wang, J. X.; Lee, Y.- N.; Daum, Peter H.; Jayne, John T.; Alexander, M. L.

    2008-11-03

    Abstract. Aerosol microphysics, chemical composition, and CCN properties were measured on the Department of Energy Gulfstream-1 aircraft during the Marine Stratus/ Stratocumulus Experiment (MASE) conducted over the coastal waters between Point Reyes National Seashore and Monterey Bay, California, in July 2005. Aerosols measured during MASE included free tropospheric aerosols, marine boundary layer aerosols, and aerosols with high organic concentration within a thin layer above the cloud. Closure analysis was carried out for all three types of aerosols by comparing the measured CCN concentrations at 0.2% supersaturation to those predicted based on size distribution and chemical composition using K¨ohler theory. The effect of aerosol organic species on predicted CCN concentration was examined using a single hygroscopicity parameterization.

  2. Global fine-mode aerosol radiative effect, as constrained by comprehensive observations

    NASA Astrophysics Data System (ADS)

    Chung, Chul E.; Chu, Jung-Eun; Lee, Yunha; van Noije, Twan; Jeoung, Hwayoung; Ha, Kyung-Ja; Marks, Marguerite

    2016-07-01

    Aerosols directly affect the radiative balance of the Earth through the absorption and scattering of solar radiation. Although the contributions of absorption (heating) and scattering (cooling) of sunlight have proved difficult to quantify, the consensus is that anthropogenic aerosols cool the climate, partially offsetting the warming by rising greenhouse gas concentrations. Recent estimates of global direct anthropogenic aerosol radiative forcing (i.e., global radiative forcing due to aerosol-radiation interactions) are -0.35 ± 0.5 W m-2, and these estimates depend heavily on aerosol simulation. Here, we integrate a comprehensive suite of satellite and ground-based observations to constrain total aerosol optical depth (AOD), its fine-mode fraction, the vertical distribution of aerosols and clouds, and the collocation of clouds and overlying aerosols. We find that the direct fine-mode aerosol radiative effect is -0.46 W m-2 (-0.54 to -0.39 W m-2). Fine-mode aerosols include sea salt and dust aerosols, and we find that these natural aerosols result in a very large cooling (-0.44 to -0.26 W m-2) when constrained by observations. When the contribution of these natural aerosols is subtracted from the fine-mode radiative effect, the net becomes -0.11 (-0.28 to +0.05) W m-2. This net arises from total (natural + anthropogenic) carbonaceous, sulfate and nitrate aerosols, which suggests that global direct anthropogenic aerosol radiative forcing is less negative than -0.35 W m-2.

  3. Direct gravimetric determination of aerosol mass concentration in central antarctica.

    PubMed

    Annibaldi, Anna; Truzzi, Cristina; Illuminati, Silvia; Scarponi, Giuseppe

    2011-01-01

    In Antarctica, experimental difficulties due to extreme conditions have meant that aerosol mass has rarely been measured directly by gravimetry, and only in coastal areas where concentrations were in the range of 1-7 μg m(-3). The present work reports on a careful differential weighing methodology carried out for the first time on the plateau of central Antarctica (Dome C, East Antarctica). To solve problems of accurate aerosol mass measurements, a climatic room was used for conditioning and weighing filters. Measurements were carried out in long stages of several hours of readings with automatic recording of temperature/humidity and mass. This experimental scheme allowed us to sample from all the measurements (up to 2000) carried out before and after exposure, those which were recorded under the most stable humidity conditions and, even more importantly, as close to each other as possible. The automatic reading of the mass allowed us in any case to obtain hundreds of measurements from which to calculate average values with uncertainties sufficiently low to meet the requirements of the differential weighing procedure (±0.2 mg in filter weighing, between ±7% and ±16% both in aerosol mass and concentration measurements). The results show that the average summer aerosol mass concentration (aerodynamic size ≤10 μm) in central Antarctica is about 0.1 μg m(-3), i.e., about 1/10 of that of coastal Antarctic areas. The concentration increases by about 4-5 times at a site very close to the station. PMID:21141836

  4. Model Intercomparison of Indirect Aerosol Effects

    NASA Technical Reports Server (NTRS)

    Penner, J. E.; Quaas, J.; Storelvmo, T.; Takemura, T.; Boucher, O.; Guo, H.; Kirkevag, A.; Kristjansson, J. E.; Seland, O.

    2006-01-01

    Modeled differences in predicted effects are increasingly used to help quantify the uncertainty of these effects. Here, we examine modeled differences in the aerosol indirect effect in a series of experiments that help to quantify how and why model-predicted aerosol indirect forcing varies between models. The experiments start with an experiment in which aerosol concentrations, the parameterization of droplet concentrations and the autoconversion scheme are all specified and end with an experiment that examines the predicted aerosol indirect forcing when only aerosol sources are specified. Although there are large differences in the predicted liquid water path among the models, the predicted aerosol first indirect effect for the first experiment is rather similar, about -0.6 W/sq m to -0.7 W/sq m. Changes to the autoconversion scheme can lead to large changes in the liquid water path of the models and to the response of the liquid water path to changes in aerosols. Adding an autoconversion scheme that depends on the droplet concentration caused a larger (negative) change in net outgoing shortwave radiation compared to the 1st indirect effect, and the increase varied from only 22% to more than a factor of three. The change in net shortwave forcing in the models due to varying the autoconversion scheme depends on the liquid water content of the clouds as well as their predicted droplet concentrations, and both increases and decreases in the net shortwave forcing can occur when autoconversion schemes are changed. The parameterization of cloud fraction within models is not sensitive to the aerosol concentration, and, therefore, the response of the modeled cloud fraction within the present models appears to be smaller than that which would be associated with model "noise". The prediction of aerosol concentrations, given a fixed set of sources, leads to some of the largest differences in the predicted aerosol indirect radiative forcing among the models, with values of

  5. In Situ Chemical Characterization of Organic Aerosol Surfaces using Direct Analysis in Real Time

    NASA Astrophysics Data System (ADS)

    Chan, M.; Nah, T.; Wilson, K. R.

    2012-12-01

    Obtaining in situ information on the molecular composition of atmospheric aerosol is important for understanding the sources, formation mechanisms, aging and physiochemical properties of atmospheric aerosol. Most recently, we have used Direct Analysis in Real Time (DART), which is a "soft" atmospheric pressure ionization technique, for in situ chemical characterization of a variety of laboratory generated organic aerosol and heterogeneous processing oleic acid aerosol. A stream of aerosol particles is crossed with a thermal flow of metastable He atoms (produced by the DART source) in front of an inlet of a mass spectrometer. The thermally desorbed analytes are subsequently ionized with minimal fragmentation by reactive species in the DART ionization source (e.g., metastable He atoms). The ion signal scales with the aerosol surface area rather than aerosol volume, suggesting that aerosol particles are not completely vaporized in the ionization region. The DART can thus measure the chemical composition as a function of aerosol depth. Probing aerosol depth is determined by the thermal desorption rates of aerosol particles. Here, we investigate how the experimental parameters (e.g., DART gas temperature and residence time) and the physiochemical properties of aerosol particles (e.g., enthalpy of vaporization) affect the probing aerosol depth and the desorption-ionization mechanism of aerosol particles in the DART using a series of model organic compounds. We also demonstrate the potential application of DART for in situ chemically analyzing wet aerosol particles undergoing oxidation reactions.

  6. Investigation of multiple scattering effects in aerosols

    NASA Technical Reports Server (NTRS)

    Deepak, A.

    1980-01-01

    The results are presented of investigations on the various aspects of multiple scattering effects on visible and infrared laser beams transversing dense fog oil aerosols contained in a chamber (4' x 4' x 9'). The report briefly describes: (1) the experimental details and measurements; (2) analytical representation of the aerosol size distribution data by two analytical models (the regularized power law distribution and the inverse modified gamma distribution); (3) retrieval of aerosol size distributions from multispectral optical depth measurements by two methods (the two and three parameter fast table search methods and the nonlinear least squares method); (4) modeling of the effects of aerosol microphysical (coagulation and evaporation) and dynamical processes (gravitational settling) on the temporal behavior of aerosol size distribution, and hence on the extinction of four laser beams with wavelengths 0.44, 0.6328, 1.15, and 3.39 micrometers; and (5) the exact and approximate formulations for four methods for computing the effects of multiple scattering on the transmittance of laser beams in dense aerosols, all of which are based on the solution of the radiative transfer equation under the small angle approximation.

  7. Aerosol-cloud interactions: effect on precipitation

    NASA Astrophysics Data System (ADS)

    Takle, Jasmine; Maheskumar, R.

    2016-05-01

    Aerosols are tiny suspended particle in the atmosphere with high variability in time and space, play a major role in modulating the cloud properties and thereby precipitation. To understand the aerosol induced Invigoration effect predictors like aerosol optical depth, cloud optical depth, cloud top temperature, cloud effective radii, ice water path, retrieved from the Moderate resolution Imaging Spectroradiometer (MODIS) level-3 aqua satellite data were analysed for pre monsoon April-May and post monsoon October-November months over the Indian subcontinent 8 ° N to 33° N, 65 °E to 100 °E during the period 2003-2013. Apart from the above data, mesoscale dynamical parameters such as vertical wind shear of horizontal wind, relative humidity, were also considered to understand their role in invigoration. Case studies have been carried out for the regions having heavy rainfall events & minimal rainfall events during high Aerosol optical depths occasions respectively. Analysis revealed that the heavy rainfall which occurred in this region with higher optical depths might be due to invigoration effect of aerosols wherein the dynamical as well as thermodynamical parameters were also found favourable. Minimal rainfall events were also observed most probably due to the suppression of rain formation/delay in precipitation due to high amount of aerosol concentration in these regions. Prominent 36 such cases were studied all over India during Pre & Post monsoon months.

  8. The effect of aerosols on northern hemisphere wintertime stationary waves

    NASA Astrophysics Data System (ADS)

    Lewinschal, Anna; Ekman, Annica M. L.

    2010-05-01

    Aerosol particles have a considerable impact on the energy budget of the atmosphere because of their ability to scatter and absorb incoming solar radiation. Since the beginning of the industrialisation a large increase has been seen mainly in the concentrations of sulphate and black carbon as a result of combustion of fossil fuel and biomass burning. Aerosol particles have a relatively short residence time in the atmosphere why the aerosol concentration shows a large variation spatially as well as in time where high concentrations are found close to emission sources. This leads to a highly varying radiative forcing pattern which modifies temperature gradients which in turn can alter the pressure distribution and lead to changes in the circulation in the atmosphere. In this study, the effect on the wintertime planetary scale waves on the northern hemisphere is specifically considered together with the regional climate impact due to changes in the stationary waves. To investigate the effect of aerosols on the circulation a global general circulation model based on the ECMWF operational forecast model is used (EC-Earth). The aerosol description in EC-Earth consists of prescribed monthly mean mass concentration fields of five different types of aerosols: sulphate, black carbon, organic carbon, dust and sea salt. Only the direct radiative effect is considered and the different aerosol types are treated as external mixtures. Changes in the stationary wave pattern are determined by comparing model simulations using present-day and pre-industrial concentrations of aerosol particles. Since the planetary scale waves largely influence the storm tracks and are an important part of the meridional heat transport, changes in the wave pattern may have substantial impact on the climate globally and locally. By looking at changes in the model simulations globally it can be found that the aerosol radiative forcing has the potential to change the stationary wave pattern. Furthermore

  9. Past and future direct radiative forcing of nitrate aerosol in East Asia

    NASA Astrophysics Data System (ADS)

    Li, Jiandong; Wang, Wei-Chyung; Liao, Hong; Chang, Wenyuan

    2015-08-01

    Nitrate as a rapidly increasing aerosol species in recent years affects the present climate and potentially has large implications on the future climate. In this study, the long-term direct radiative forcing (DRF) of nitrate aerosol is investigated using State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG) atmospheric general circulation model (AGCM) and the aerosol dataset simulated by a chemical transport model with focus on East Asia. The DRF due to other aerosols, especially sulfate, is also evaluated for comparisons. Although the chemical transport model underestimates the magnitudes of nitrate and sulfate aerosols when compared with Chinese site observations, some insights into the significances of nitrate climate effects still emerge. The present-day global annual mean all-sky DRF of nitrate is calculated to be -0.025 W m-2 relative to the preindustrial era, which is much weaker than -0.37 W m-2 for sulfate. However, nitrate DRF may become increasingly important in the future especially over East Asia, given the expectation that decreasing trend in global sulfate continues while the projected nitrate maintains at the present level for a mid-range forcing scenario and even be a factor of two larger by the end of the 21st century for high emission scenarios. For example, the anthropogenic nitrate DRF of -2.0 W m-2 over eastern China could persist until the 2050s, and nitrate is projected to account for over 60 % of total anthropogenic aerosol DRF over East Asia by 2100. In addition, we illustrate that the regional nitrate DRF and its seasonal variation are sensitive to meteorological parameters, in particular the relative humidity and cloud amount. It thus remains a need for climate models to include more realistically nitrate aerosol in projecting future climate changes.

  10. Assessing the direct occupational and public health impacts of solar radiation management with stratospheric aerosols.

    PubMed

    Effiong, Utibe; Neitzel, Richard L

    2016-01-01

    Geoengineering is the deliberate large-scale manipulation of environmental processes that affects the Earth's climate, in an attempt to counteract the effects of climate change. Injecting sulfate aerosol precursors and designed nanoparticles into the stratosphere to (i.e., solar radiation management [SRM]), has been suggested as one approach to geoengineering. Although much is being done to unravel the scientific and technical challenges around geoengineering, there have been few efforts to characterize the potential human health impacts of geoengineering, particularly with regards to SRM approaches involving stratospheric aerosols. This paper explores this information gap. Using available evidence, we describe the potential direct occupational and public health impacts of exposures to aerosols likely to be used for SRM, including environmental sulfates, black carbon, metallic aluminum, and aluminum oxide aerosols. We speculate on possible health impacts of exposure to one promising SRM material, barium titanate, using knowledge of similar nanomaterials. We also explore current regulatory efforts to minimize exposure to these toxicants. Our analysis suggests that adverse public health impacts may reasonably be expected from SRM via deployment of stratospheric aerosols. Little is known about the toxicity of some likely candidate aerosols, and there is no consensus regarding acceptable levels for public exposure to these materials. There is also little infrastructure in place to evaluate potential public health impacts in the event that stratospheric aerosols are deployed for solar radiation management. We offer several recommendations intended to help characterize the potential occupation and public health impacts of SRM, and suggest that a comprehensive risk assessment effort is needed before this approach to geoengineering receives further consideration. PMID:26786592

  11. Impacts of emission reductions on aerosol radiative effects

    NASA Astrophysics Data System (ADS)

    Pietikainen, J.-P.; Kupiainen, K.; Klimont, Z.; Makkonen, R.; Korhonen, H.; Karinkanta, R.; Hyvarinen, A.-P.; Karvosenoja, N.; Laaksonen, A.; Lihavainen, H.; Kerminen, V.-M.

    2015-05-01

    The global aerosol-climate model ECHAM-HAMMOZ was used to investigate changes in the aerosol burden and aerosol radiative effects in the coming decades. Four different emissions scenarios were applied for 2030 (two of them applied also for 2020) and the results were compared against the reference year 2005. Two of the scenarios are based on current legislation reductions: one shows the maximum potential of reductions that can be achieved by technical measures, and the other is targeted to short-lived climate forcers (SLCFs). We have analyzed the results in terms of global means and additionally focused on eight subregions. Based on our results, aerosol burdens show an overall decreasing trend as they basically follow the changes in primary and precursor emissions. However, in some locations, such as India, the burdens could increase significantly. The declining emissions have an impact on the clear-sky direct aerosol effect (DRE), i.e. the cooling effect. The DRE could decrease globally 0.06-0.4 W m-2 by 2030 with some regional increases, for example, over India (up to 0.84 W m-2). The global changes in the DRE depend on the scenario and are smallest in the targeted SLCF simulation. The aerosol indirect radiative effect could decline 0.25-0.82 W m-2 by 2030. This decrease takes place mostly over the oceans, whereas the DRE changes are greatest over the continents. Our results show that targeted emission reduction measures can be a much better choice for the climate than overall high reductions globally. Our simulations also suggest that more than half of the near-future forcing change is due to the radiative effects associated with aerosol-cloud interactions.

  12. Measurements of Semi-volatile Aerosol and Its Effect on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2013-12-01

    Semi-volatile compounds, including particle-bound water, comprise a large part of aerosol mass and have a significant influence on aerosol lifecycle and its optical properties. Understanding the properties of semi-volatile compounds, especially those pertaining to gas/aerosol partitioning, is of critical importance for our ability to predict concentrations and properties of ambient aerosol. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of temperature and relative humidity on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). In parallel to these measurements, a long residence time temperature-stepping thermodenuder and a variable residence time constant temperature thermodenuder in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. It was found that both temperature and relative humidity have a strong effect on aerosol optical properties. The variable residence time thermodenuder data suggest that aerosol equilibrated fairly quickly, within 2 s, in contrast to other ambient observations. Preliminary analysis show that approximately 50% and 90% of total aerosol mass evaporated at temperatures of 100 C and 180C, respectively. Evaporation varied substantially with ambient aerosol loading and composition and meteorology. During course of this study, T50 (temperatures at which 50% aerosol mass evaporates) varied from 60 C to more than 120 C.

  13. Impacts of emission reductions on aerosol radiative effects

    NASA Astrophysics Data System (ADS)

    Pietikäinen, J.-P.; Kupiainen, K.; Klimont, Z.; Makkonen, R.; Korhonen, H.; Karinkanta, R.; Hyvärinen, A.-P.; Karvosenoja, N.; Laaksonen, A.; Lihavainen, H.; Kerminen, V.-M.

    2014-12-01

    The global aerosol-climate model ECHAM-HAMMOZ is used to study the aerosol burden and forcing changes in the coming decades. Four different emissions scenarios are applied for 2030 (two of them applied also for 2020) and the results are compared against reference year 2005. Two of the scenarios are based on current legislation reductions, one shows the maximum potential of reductions that can be achieved by technical measures, and the last one is targeted to short-lived climate forcers (SLCFs). We have analysed the results in terms of global means and additionally focused on 8 sub-regions. Based on our results, aerosol burdens overall show decreasing trend, but in some locations, such as India, the burdens could increase significantly. This has impact on the direct aerosol effect (DRE), which could reduce globally 0.06-0.4 W m-2 by 2030, but can increase over India (up to 0.84 W m-2). The global values depend on the scenario and are lowest with the targeted SLCF simulation. The cloud radiative effect could decline 0.25-0.82 W m-2 by 2030 and occurs mostly over oceans, whereas the DRE effect is mostly over land. Our results show that targeted emission reduction measures can be a~much better choice for the climate than overall high reductions globally. Our simulations also suggest that more than half of the near-future forcing change is due to the radiative effects associated with aerosol-cloud interactions.

  14. Long-term AOD timeseries by Precision Filter Radiometer and assessment of radiative forcing due to the aerosol direct effect at four sites in Switzerland over the last two decades.

    NASA Astrophysics Data System (ADS)

    Martucci, Giovanni; Vuilleumier, Laurent

    2016-04-01

    In association with the WMO GAW Precision Filter Radiometer network, MeteoSwiss operates four automatic stations measuring the direct solar irradiance in 16 narrow spectral bands within the range 305-1024 nm since 1998. The four sites are (i) Payerne (timeseries 2002-2016), characterized by rural environment (Swiss plateau), (ii) Davos (timeseries 1998-2016), characterized by alpine environment, (iii) Jungfraujoch (timeseries 1999-2016), characterized by alpine environment and partial free tropospheric conditions (mainly in winter, Hermann et al, 2015), and (iv) Locarno-Monti (timeseries 2001-2016), characterized by semi-alpine and urban environment (southern side of the Swiss-Italian Alps). WE present the long-term, almost uninterrupted, timeseries of Aerosol Optical Depth (AOD) in the spectral range 368-1024 nm that has been calculated for each of the four sites along the last two decades. Additionally, we present a study of the trends over almost twenty years of the AOD at different wavelengths. Based on the simulations of the LibRadtran software package for radiative transfer calculations (Meyer and Kylling, 2005) and on the PFR-based timeseries of AOD it has been possible to assess the radiative forcing due to the direct effect of aerosols over Switzerland since 1998.

  15. Smoke and Pollution Aerosol Effect on Cloud Cover

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Koren, Ilan

    2006-01-01

    Pollution and smoke aerosols can increase or decrease the cloud cover. This duality in the effects of aerosols forms one of the largest uncertainties in climate research. Using solar measurements from Aerosol Robotic Network sites around the globe, we show an increase in cloud cover with an increase in the aerosol column concentration and an inverse dependence on the aerosol absorption of sunlight. The emerging rule appears to be independent of geographical location or aerosol type, thus increasing our confidence in the understanding of these aerosol effects on the clouds and climate. Preliminary estimates suggest an increase of 5% in cloud cover.

  16. Future Climate Impacts of Direct Radiative Forcing Anthropogenic Aerosols, Tropospheric Ozone, and Long-lived Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Chen, Wei-Ting; Liao, Hong; Seinfeld, John H.

    2007-01-01

    Long-lived greenhouse gases (GHGs) are the most important driver of climate change over the next century. Aerosols and tropospheric ozone (O3) are expected to induce significant perturbations to the GHG-forced climate. To distinguish the equilibrium climate responses to changes in direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and GHG between present day and year 2100, four 80-year equilibrium climates are simulated using a unified tropospheric chemistry-aerosol model within the Goddard Institute for Space Studies (GISS) general circulation model (GCM) 110. Concentrations of sulfate, nitrate, primary organic (POA) carbon, secondary organic (SOA) carbon, black carbon (BC) aerosols, and tropospheric ozone for present day and year 2100 are obtained a priori by coupled chemistry-aerosol GCM simulations, with emissions of aerosols, ozone, and precursors based on the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenario (SRES) A2. Changing anthropogenic aerosols, tropospheric ozone, and GHG from present day to year 2100 is predicted to perturb the global annual mean radiative forcing by +0.18 (considering aerosol direct effects only), +0.65, and +6.54 W m(sup -2) at the tropopause, and to induce an equilibrium global annual mean surface temperature change of +0.14, +0.32, and +5.31 K, respectively, with the largest temperature response occurring at northern high latitudes. Anthropogenic aerosols, through their direct effect, are predicted to alter the Hadley circulation owing to an increasing interhemispheric temperature gradient, leading to changes in tropical precipitation. When changes in both aerosols and tropospheric ozone are considered, the predicted patterns of change in global circulation and the hydrological cycle are similar to those induced by aerosols alone. GHG-induced climate changes, such as amplified warming over high latitudes, weakened Hadley circulation, and increasing precipitation over the

  17. Assessing effects of esfenvalerate aerosol applications on resident populations of Tribolium castaneum (Herbst), the red flour beetle, through direct and indirect sampling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Small-scale field sheds were infested with resident populations of the red flour beetle, Tribolium castaneum (Herbst), and either left untreated or treated every two or four weeks with an aerosol spray of esfenvalerate (Conquer ®). The sheds were infested by placing flour food patches underneath she...

  18. Quantifying the climatological cloud-free direct radiative forcing of aerosol over the Red Sea

    NASA Astrophysics Data System (ADS)

    Brindley, Helen; Osipov, Serega; Bantges, Richard; Smirnov, Alexander; Banks, Jamie; Levy, Robert; Prakash, P.-Jish; Stenchikov, Georgiy

    2015-04-01

    A combination of ground-based and satellite observations are used, in conjunction with column radiative transfer modelling, to assess the climatological aerosol loading and quantify its corresponding cloud-free direct radiative forcing (DRF) over the Red Sea. While there have been campaigns designed to probe aerosol-climate interactions over much of the world, relatively little attention has been paid to this region. Because of the remoteness of the area, satellite retrievals provide a crucial tool for assessing aerosol loading over the Sea. However, agreement between aerosol properties inferred from measurements from different instruments, and even in some cases from the same measurements using different retrieval algorithms can be poor, particularly in the case of mineral dust. Ground based measurements which can be used to evaluate retrievals are thus highly desirable. Here we take advantage of ship-based sun-photometer micro-tops observations gathered from a series of cruises which took place across the Red Sea during 2011 and 2013. To our knowledge these data represent the first set of detailed aerosol measurements from the Sea. They thus provide a unique opportunity to assess the performance of satellite retrieval algorithms in this region. Initially two aerosol optical depth (AOD) retrieval algorithms developed for the MODerate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instruments are evaluated via comparison with the co-located cruise observations. These show excellent agreement, with correlations typically better than 0.9 and very small root-mean-square and bias differences. Calculations of radiative fluxes and DRF along one of the cruises using the observed aerosol and meteorological conditions also show good agreement with co-located estimates from the Geostationary Earth Radiation Budget (GERB) instrument if the aerosol asymmetry parameter is adjusted to account for the presence of large

  19. Parameterizations of Cloud Microphysics and Indirect Aerosol Effects

    SciTech Connect

    Tao, Wei-Kuo

    2014-05-19

    1. OVERVIEW Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds [NRC, 2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path [Twomey, 1977] and the "semi-direct" effect on cloud coverage [e.g., Ackerman et al., 2000]. Enhanced aerosol concentrations can also suppress warm rain processes by producing a narrow droplet spectrum that inhibits collision and coalescence processes [e.g., Squires and Twomey, 1961; Warner and Twomey, 1967; Warner, 1968; Rosenfeld, 1999]. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect [Albrecht, 1989], is even more complex, especially for mixed-phase convective clouds. Table 1 summarizes the key observational studies identifying the microphysical properties, cloud characteristics, thermodynamics and dynamics associated with cloud systems from high-aerosol continental environments. For example, atmospheric aerosol concentrations can influence cloud droplet size distributions, warm-rain process, cold-rain process, cloud-top height, the depth of the mixed phase region, and occurrence of lightning. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing an enhanced source of cloud condensation nuclei (CCN). Hypotheses have been developed to explain the effect of urban regions on convection and precipitation [van den Heever and Cotton, 2007 and Shepherd

  20. BAECC Biogenic Aerosols - Effects on Clouds and Climate

    SciTech Connect

    Petäjä, Tuukka; Moisseev, Dmitri; Sinclair, Victoria; O'Connor, Ewan J.; Manninen, Antti J.; Levula, Janne; Väänänen, Riikka; Heikkinen, Liine; Äijälä, Mikko; Aalto, Juho; Bäck, Jaana

    2015-11-01

    “Biogenic Aerosols - Effects on Clouds and Climate (BAECC)”, featured the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Program’s 2nd Mobile Facility (AMF2) in Hyytiälä, Finland. It operated for an 8-month intensive measurement campaign from February to September 2014. The main research goal was to understand the role of biogenic aerosols in cloud formation. One of the reasons to perform BAECC study in Hyytiälä was the fact that it hosts SMEAR-II (Station for Measuring Forest Ecosystem-Atmosphere Relations), which is one of the world’s most comprehensive surface in-situ observation sites in a boreal forest environment. The station has been measuring atmospheric aerosols, biogenic emissions and an extensive suite of parameters relevant to atmosphere-biosphere interactions continuously since 1996. The BAECC enables combining vertical profiles from AMF2 with surface-based in-situ SMEAR-II observations and allows the processes at the surface to be directly related to processes occurring throughout the entire tropospheric column. With the inclusion of extensive surface precipitation measurements, and intensive observation periods involving aircraft flights and novel radiosonde launches, the complementary observations of AMF2 and SMEAR-II provide a unique opportunity for investigating aerosol-cloud interactions, and cloud-to-precipitation processes. The BAECC dataset will initiate new opportunities for evaluating and improving models of aerosol sources and transport, cloud microphysical processes, and boundary-layer structures.

  1. Radiative effects of aerosols on the environment in China

    NASA Astrophysics Data System (ADS)

    Yu, Hongbin

    Anthropogenic emissions and concentrations of aerosol precursors and aerosols over China are among the highest in major countries of the world. Due to large emissions of soot and dust, aerosol absorption is high. Based on the observed direct and diffuse irradiance, a single scattering albedo of about 0.8 is derived for two large agri/eco/industrial areas. Aerosol direct effect can exert various environmental impacts in China. Photochemical activities in the atmospheric boundary layer (ABL) are significantly reduced because of reductions in photolysis rates and in emissions of biogenic hydrocarbons. Crop yields under optimal conditions can be reduced due to the reduction in surface solar irradiance. The most significant aerosol radiative perturbation is in changing the air-surface interaction and diurnal evolution of ABL. Reductions in various surface heat fluxes due to aerosols depend on soil moisture. Over a relatively dry surface, the evaporation has a small change, leading to the largest decrease of surface skin temperature at noon. Over a relatively wet surface, a substantial reduction in evaporation results in the largest surface cooling in the early morning. The diurnal temperature range (DTR) can be reduced by an amount comparable to the observed decrease of DTR. The longwave absorption of aerosols can lead to an increase of the daily minimum temperature and contributes to about 20% of the decrease in the DTR. The near-surface air temperature has the largest cooling in the early morning because the ABL is shallow and the temperature is sensitive to the radiative perturbation. As a result of the reduced sensible heat flux, the surface layer becomes more stable. Moreover, the aerosol heating enhances the stabilization of surface layer and in turn further reduces the sensible heat flux. As a result the ABL height can be reduced substantially. This will have many important ramifications, including trapping/accumulation of air pollutants, and perturbing the water

  2. Aerosol Climate Effects: Local Radiative Forcing and Column Closure Experiments

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Bergstrom, Robert W.; Kinne, S. A.

    2000-01-01

    In an effort to reduce uncertainties in climate change predictions, experiments are being planned and conducted to measure anthropogenic aerosol properties and effects, including effects on radiative fields. The global average, direct anthropogenic aerosol effect on upwelling shortwave fluxes is estimated to be about +1/2 W/sq m, whereas errors in flux changes measured with airborne and spaceborne radiometers are 2 to 8 W/sq m or larger. This poses the question of whether flux changes expected in field experiments will be large enough to measure accurately. This paper obtains a new expression for the aerosol-induced change in upwelling flux, compares it to two-stream and adding-doubling (AD) results, and uses all three methods to estimate expected flux changes. The new expression accounts for the solar zenith angle dependences of aerosol transmission and reflection, as well as of surface albedo, all of which can have a strong effect in determining flux changes measured in field experiments. Despite its relative simplicity, the new expression gives results similar to previous two-stream results. Relative to AD results, it agrees within a few watts per square meter for the intermediate solar elevation angles where the flux changes peak (roughly 10 to 30 degrees), but it has negative errors for higher Sun and positive errors for lower Sun. All three techniques yield aerosol-induced changes in upwelling flux of +8 to +50 W/sq m for aerosol midvisible optical depths of 0.1 to 0.5. Because such aerosol optical depths occur frequently off the U.S. and European Atlantic coasts in summer, the flux changes they induce should be measurable by airborne, and possibly by spaceborne, radiometers, provided sufficient care is taken in experiment design (including measurements to separate aerosol radiative effects from those of absorbing gases). The expected flux changes are about 15 to 100 times larger than the global average flux change expected for the global average

  3. Comprehensive tool for calculation of radiative fluxes: illustration of shortwave aerosol radiative effect sensitivities to the details in aerosol and underlying surface characteristics

    NASA Astrophysics Data System (ADS)

    Derimian, Yevgeny; Dubovik, Oleg; Huang, Xin; Lapyonok, Tatyana; Litvinov, Pavel; Kostinski, Alex B.; Dubuisson, Philippe; Ducos, Fabrice

    2016-05-01

    The evaluation of aerosol radiative effect on broadband hemispherical solar flux is often performed using simplified spectral and directional scattering characteristics of atmospheric aerosol and underlying surface reflectance. In this study we present a rigorous yet fast computational tool that accurately accounts for detailed variability of both spectral and angular scattering properties of aerosol and surface reflectance in calculation of direct aerosol radiative effect. The tool is developed as part of the GRASP (Generalized Retrieval of Aerosol and Surface Properties) project. We use the tool to evaluate instantaneous and daily average radiative efficiencies (radiative effect per unit aerosol optical thickness) of several key atmospheric aerosol models over different surface types. We then examine the differences due to neglect of surface reflectance anisotropy, nonsphericity of aerosol particle shape and accounting only for aerosol angular scattering asymmetry instead of using full phase function. For example, it is shown that neglecting aerosol particle nonsphericity causes mainly overestimation of the aerosol cooling effect and that magnitude of this overestimate changes significantly as a function of solar zenith angle (SZA) if the asymmetry parameter is used instead of detailed phase function. It was also found that the nonspherical-spherical differences in the calculated aerosol radiative effect are not modified significantly if detailed BRDF (bidirectional reflectance distribution function) is used instead of Lambertian approximation of surface reflectance. Additionally, calculations show that usage of only angular scattering asymmetry, even for the case of spherical aerosols, modifies the dependence of instantaneous aerosol radiative effect on SZA. This effect can be canceled for daily average values, but only if sun reaches the zenith; otherwise a systematic bias remains. Since the daily average radiative effect is obtained by integration over a range

  4. Volcanic aerosols: Chemistry, evolution, and effects

    NASA Technical Reports Server (NTRS)

    Turco, Richard

    1991-01-01

    Stratospheric aerosols have been the subject of scientific speculation since the 1880s, when the powerful eruption of Krakatoa attracted worldwide attention to the upper atmosphere through spectacular optical displays. The presence of a permanent tenuous dust layer in the lower stratosphere was postulated in the 1920s following studies of the twilight glow. Junge collected the first samples of these 'dust' particles and demonstrated that they were actually composed of sulfates, most likely concentrated sulfuric acid (Junge and Manson, 1961; Junge, 1963). Subsequent research has been spurred by the realization that stratospheric particles can influence the surface climate of earth through their effects on atmospheric radiation. Such aerosols can also influence, through chemical and physical effects, the trace composition of the atmosphere, ozone concentrations, and atmospheric electrical properties. The properties of stratospheric aerosols (both the background particles and those enhanced by volcanic eruptions) were measured in situ by balloon ascents and high altitude aircraft sorties. The aerosols were also observed remotely from the ground and from satellites using both active (lidar) and passive (solar occultation) techniques (remote sensing instruments were carried on aircraft and balloon platforms as well). In connection with the experimental work, models were developed to test theories of particle formation and evolution, to guide measurement strategies, to provide a means of connecting laboratory and field data, and to apply the knowledge gained to answer practical questions about global changes in climate, depletion of the ozone layer, and related environmental problems.

  5. Radiative Effects of Aerosol in the Marine Environment: Tales from the Two-Column Aerosol Project

    NASA Astrophysics Data System (ADS)

    Berg, L. K.; Fast, J. D.; Barnard, J.; Chand, D.; Chapman, E. G.; Comstock, J. M.; Ferrare, R. A.; Flynn, C. J.; Hair, J. W.; Hostetler, C. A.; Hubbe, J.; Johnson, R.; Kassianov, E.; Kluzek, C.; Laskin, A.; Lee, Y.; Mei, F.; Michalsky, J. J.; Redemann, J.; Rogers, R. R.; Russell, P. B.; Sedlacek, A. J.; Schmid, B.; Shilling, J. E.; Shinozuka, Y.; Springston, S. R.; Tomlinson, J. M.; Wilson, J. M.; Zelenyuk, A.; Berkowitz, C. M.

    2013-12-01

    There is still uncertainty associated with the direct radiative forcing by atmospheric aerosol and its representation in atmospheric models. This is particularly true in marine environments near the coast where the aerosol loading is a function of both naturally occurring and anthropogenic aerosol. These regions are also subject to variable synoptic and thermally driven flows (land-sea breezes) that transport aerosol between the continental and marine environments. The situation is made more complicated due to seasonal changes in aerosol emissions. Given these differences in emissions, we expect significant differences in the aerosol intensive and extensive properties between summer and winter and data is needed to evaluate models over the wide range of conditions. To address this issue, the recently completed Two Column Aerosol Project (TCAP) was designed to measure the key aerosol parameters in two atmospheric columns, one located over Cape Cod, Massachusetts and another approximately 200 km from the coast over the Atlantic Ocean. Measurements included aerosol size distribution, chemical composition, optical properties and vertical distribution. Several aspects make TCAP unique, including the year-long deployment of a suite of surface-based instruments by the US Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility and two aircraft intensive operations periods supported by the ARM Airborne Facility, one conducted in July 2012 and a second in February 2013. The presentation will include a discussion of the impact of the aerosol optical properties and their uncertainty on simulations of the radiation budget within the TCAP domain in the context of both single column and regional scale models. Data from TCAP will be used to highlight a number of important factors, including diurnal variation in aerosol optical depth measured at the surface site, systematic changes in aerosol optical properties (including scattering, absorption, and

  6. Atmospheric aerosols: Their Optical Properties and Effects

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Measured properties of atmospheric aerosol particles are presented. These include aerosol size frequency distribution and complex retractive index. The optical properties of aerosols are computed based on the presuppositions of thermodynamic equilibrium and of Mie-theory.

  7. Signatures of semi-direct radiative forcing by absorbing aerosols in satellite observations and models

    NASA Astrophysics Data System (ADS)

    Wilcox, E. M.; Hosseinpour, F.; Colarco, P. R.

    2014-12-01

    Semi-direct radiative forcing of climate occurs when interactions between aerosols and radiative fluxes in the atmosphere yield a dynamical response in clouds. Semi-direct forcing is typically thought to be a positive radiative forcing whereby soot and biomass burning aerosols absorb sunlight and burn-off clouds. However, a negative semi-direct forcing is suspected in at least two regimes, the summertime Southeast Atlantic Ocean and the wintertime North Indian Ocean, where the heating profile by aerosol absorption by solar radiation is elevated above the elevation of the low clouds. Here we use a combination of satellite data and a model simulation to further characterize the signature of semi-direct radiative forcing in these two locations and elsewhere on the globe. We apply CERES albedos, Calipso profiles of aerosol extinction and cloud-top altitude, and a simulation with the Goddard Earth Observing System Model version 5 (GEOS-5) Earth system model with meteorology constrained by MERRA and an assimilation of MODIS AOT (MERRAero). to quantify the vertical heating profile by aerosols under clear and cloudy skies. We seek to determine: (1) where aerosol heating by soot and biomass burning aerosol is occurring; (2) where vertically in the column the heating is occurring relative to the observed level of low cloud development; and (3) whether the variations of albedo with aerosol forcing suggest a positive, negative, or inconclusive semi-direct radiative forcing.

  8. The Effects of Black Carbon and Sulfate Aerosols in ChinaRegions on East Asia Monsoons

    SciTech Connect

    Yang, Bai; Liu, Yu; Sun, Jiaren

    2009-01-01

    In this paper we examine the direct effects of sulfate and black carbon aerosols in China on East Asia monsoons and its precipitation processes by using the CAM3.0 model. It is demonstrated that sulfate and black carbon aerosols in China both have the effects to weaken East Asia monsoons in both summer and winter seasons. However, they certainly differ from each other in affecting vertical structures of temperature and atmospheric circulations. Their differences are expected because of their distinct optical properties, i.e., scattering vs. absorbing. Even for a single type of aerosol, its effects on temperature structures and atmospheric circulations are largely season-dependent. Applications of T-test on our results indicate that forcing from black carbon aerosols over China is relatively weak and limited. It is also evident from our results that the effects of synthetic aerosols (sulfate and black carbon together) on monsoons are not simply a linear summation between these two types of aerosols. Instead, they are determined by their integrated optical properties. Synthetic aerosols to a large degree resemble effects of sulfate aerosols. This implies a likely scattering property for the integration of black carbon and sulfate aerosols in China.

  9. A Simple Model of Global Aerosol Indirect Effects

    SciTech Connect

    Ghan, Steven J.; Smith, Steven J.; Wang, Minghuai; Zhang, Kai; Pringle, K. J.; Carslaw, K. S.; Pierce, Jeffrey; Bauer, Susanne E.; Adams, P. J.

    2013-06-28

    Most estimates of the global mean indirect effect of anthropogenic aerosol on the Earth’s energy balance are from simulations by global models of the aerosol lifecycle coupled with global models of clouds and the hydrologic cycle. Extremely simple models have been developed for integrated assessment models, but lack the flexibility to distinguish between primary and secondary sources of aerosol. Here a simple but more physically-based model expresses the aerosol indirect effect using analytic representations of droplet nucleation, cloud and aerosol vertical structure, and horizontal variability in cloud water and aerosol concentration. Although the simple model is able to produce estimates of aerosol indirect effects that are comparable to those from some global aerosol models using the same global mean aerosol properties, the estimates are found to be sensitive to several uncertain parameters, including the preindustrial cloud condensation nuclei concentration, primary and secondary anthropogenic emissions, the size of the primary particles, the fraction of the secondary anthropogenic emissions that accumulates on the coarse mode, the fraction of the secondary mass that forms new particles, and the sensitivity of liquid water path to droplet number concentration. Aerosol indirect effects are surprisingly linear in emissions. This simple model provides a much stronger physical basis for representing aerosol indirect effects than previous representations in integrated assessment models designed to quickly explore the parameter space of emissions-climate interactions. The model also produces estimates that depend on parameter values in ways that are consistent with results from detailed global aerosol-climate simulation models.

  10. Reducing the Uncertainties in Direct Aerosol Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2011-01-01

    Airborne particles, which include desert and soil dust, wildfire smoke, sea salt, volcanic ash, black carbon, natural and anthropogenic sulfate, nitrate, and organic aerosol, affect Earth's climate, in part by reflecting and absorbing sunlight. This paper reviews current status, and evaluates future prospects for reducing the uncertainty aerosols contribute to the energy budget of Earth, which at present represents a leading factor limiting the quality of climate predictions. Information from satellites is critical for this work, because they provide frequent, global coverage of the diverse and variable atmospheric aerosol load. Both aerosol amount and type must be determined. Satellites are very close to measuring aerosol amount at the level-of-accuracy needed, but aerosol type, especially how bright the airborne particles are, cannot be constrained adequately by current techniques. However, satellite instruments can map out aerosol air mass type, which is a qualitative classification rather than a quantitative measurement, and targeted suborbital measurements can provide the required particle property detail. So combining satellite and suborbital measurements, and then using this combination to constrain climate models, will produce a major advance in climate prediction.

  11. The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean.

    PubMed

    Kaufman, Yoram J; Koren, Ilan; Remer, Lorraine A; Rosenfeld, Daniel; Rudich, Yinon

    2005-08-01

    Clouds developing in a polluted environment tend to have more numerous but smaller droplets. This property may lead to suppression of precipitation and longer cloud lifetime. Absorption of incoming solar radiation by aerosols, however, can reduce the cloud cover. The net aerosol effect on clouds is currently the largest uncertainty in evaluating climate forcing. Using large statistics of 1-km resolution MODIS (Moderate Resolution Imaging Spectroradiometer) satellite data, we study the aerosol effect on shallow water clouds, separately in four regions of the Atlantic Ocean, for June through August 2002: marine aerosol (30 degrees S-20 degrees S), smoke (20 degrees S-5 degrees N), mineral dust (5 degrees N-25 degrees N), and pollution aerosols (30 degrees N- 60 degrees N). All four aerosol types affect the cloud droplet size. We also find that the coverage of shallow clouds increases in all of the cases by 0.2-0.4 from clean to polluted, smoky, or dusty conditions. Covariability analysis with meteorological parameters associates most of this change to aerosol, for each of the four regions and 3 months studied. In our opinion, there is low probability that the net aerosol effect can be explained by coincidental, unresolved, changes in meteorological conditions that also accumulate aerosol, or errors in the data, although further in situ measurements and model developments are needed to fully understand the processes. The radiative effect at the top of the atmosphere incurred by the aerosol effect on the shallow clouds and solar radiation is -11 +/- 3 W/m2 for the 3 months studied; 2/3 of it is due to the aerosol-induced cloud changes, and 1/3 is due to aerosol direct radiative effect. PMID:16076949

  12. The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean

    PubMed Central

    Kaufman, Yoram J.; Koren, Ilan; Remer, Lorraine A.; Rosenfeld, Daniel; Rudich, Yinon

    2005-01-01

    Clouds developing in a polluted environment tend to have more numerous but smaller droplets. This property may lead to suppression of precipitation and longer cloud lifetime. Absorption of incoming solar radiation by aerosols, however, can reduce the cloud cover. The net aerosol effect on clouds is currently the largest uncertainty in evaluating climate forcing. Using large statistics of 1-km resolution MODIS (Moderate Resolution Imaging Spectroradiometer) satellite data, we study the aerosol effect on shallow water clouds, separately in four regions of the Atlantic Ocean, for June through August 2002: marine aerosol (30°S–20°S), smoke (20°S–5°N), mineral dust (5°N–25°N), and pollution aerosols (30°N– 60°N). All four aerosol types affect the cloud droplet size. We also find that the coverage of shallow clouds increases in all of the cases by 0.2–0.4 from clean to polluted, smoky, or dusty conditions. Covariability analysis with meteorological parameters associates most of this change to aerosol, for each of the four regions and 3 months studied. In our opinion, there is low probability that the net aerosol effect can be explained by coincidental, unresolved, changes in meteorological conditions that also accumulate aerosol, or errors in the data, although further in situ measurements and model developments are needed to fully understand the processes. The radiative effect at the top of the atmosphere incurred by the aerosol effect on the shallow clouds and solar radiation is –11 ± 3 W/m2 for the 3 months studied; 2/3 of it is due to the aerosol-induced cloud changes, and 1/3 is due to aerosol direct radiative effect. PMID:16076949

  13. Uncertainties in global aerosols and climate effects due to biofuel emissions

    NASA Astrophysics Data System (ADS)

    Kodros, J. K.; Scott, C. E.; Farina, S. C.; Lee, Y. H.; L'Orange, C.; Volckens, J.; Pierce, J. R.

    2015-08-01

    Aerosol emissions from biofuel combustion impact both health and climate; however, while reducing emissions through improvements to combustion technologies will improve health, the net effect on climate is largely unconstrained. In this study, we examine sensitivities in global aerosol concentration, direct radiative climate effect, and cloud-albedo aerosol indirect climate effect to uncertainties in biofuel emission factors, optical mixing state, and model nucleation and background secondary organic aerosol (SOA). We use the Goddard Earth Observing System global chemical-transport model (GEOS-Chem) with TwO Moment Aerosol Sectional (TOMAS) microphysics. The emission factors include amount, composition, size, and hygroscopicity, as well as optical mixing-state properties. We also evaluate emissions from domestic coal use, which is not biofuel but is also frequently emitted from homes. We estimate the direct radiative effect assuming different mixing states (homogeneous, core-shell, and external) with and without absorptive organic aerosol (brown carbon). We find the global-mean direct radiative effect of biofuel emissions ranges from -0.02 to +0.06 W m-2 across all simulation/mixing-state combinations with regional effects in source regions ranging from -0.2 to +0.8 W m-2. The global-mean cloud-albedo aerosol indirect effect (AIE) ranges from +0.01 to -0.02 W m-2 with regional effects in source regions ranging from -1.0 to -0.05 W m-2. The direct radiative effect is strongly dependent on uncertainties in emissions mass, composition, emissions aerosol size distributions, and assumed optical mixing state, while the indirect effect is dependent on the emissions mass, emissions aerosol size distribution, and the choice of model nucleation and secondary organic aerosol schemes. The sign and magnitude of these effects have a strong regional dependence. We conclude that the climate effects of biofuel aerosols are largely unconstrained, and the overall sign of the aerosol

  14. Climatic Effects of 1950-2050 Changes in US Anthropogenic Aerosols. Part 1; Aerosol Trends and Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Leibensperger, E. M.; Mickley, L. J.; Jacob, D. J.; Chen, W.-T.; Seinfeld, J. H.; Nenes, A.; Adams, P. J.; Streets, D. G.; Kumar, N.; Rind, D.

    2012-01-01

    We calculate decadal aerosol direct and indirect (warm cloud) radiative forcings from US anthropogenic sources over the 1950-2050 period. Past and future aerosol distributions are constructed using GEOS-Chem and historical emission inventories and future projections from the IPCC A1B scenario. Aerosol simulations are evaluated with observed spatial distributions and 1980-2010 trends of aerosol concentrations and wet deposition in the contiguous US. Direct and indirect radiative forcing is calculated using the GISS general circulation model and monthly mean aerosol distributions from GEOS-Chem. The radiative forcing from US anthropogenic aerosols is strongly localized over the eastern US. We find that its magnitude peaked in 1970-1990, with values over the eastern US (east of 100 deg W) of -2.0Wm(exp-2 for direct forcing including contributions from sulfate (-2.0Wm-2), nitrate (-0.2Wm(exp-2), organic carbon (-0.2Wm(exp-2), and black carbon (+0.4Wm(exp-2). The uncertainties in radiative forcing due to aerosol radiative properties are estimated to be about 50 %. The aerosol indirect effect is estimated to be of comparable magnitude to the direct forcing. We find that the magnitude of the forcing declined sharply from 1990 to 2010 (by 0.8Wm(exp-2) direct and 1.0Wm(exp-2 indirect), mainly reflecting decreases in SO2 emissions, and project that it will continue declining post-2010 but at a much slower rate since US SO2 emissions have already declined by almost 60% from their peak. This suggests that much of the warming effect of reducing US anthropogenic aerosol sources has already been realized. The small positive radiative forcing from US BC emissions (+0.3Wm(exp-2 over the eastern US in 2010; 5% of the global forcing from anthropogenic BC emissions worldwide) suggests that a US emission control strategy focused on BC would have only limited climate benefit.

  15. GCM Simulations of the Aerosol Indirect Effect: Sensitivity to Cloud Parameterization and Aerosol Burden

    NASA Technical Reports Server (NTRS)

    Menon, Surabi; DelGenio, Anthony D.; Koch, Dorothy; Tselioudis, George; Hansen, James E. (Technical Monitor)

    2001-01-01

    We describe the coupling of the Goddard Institute for Space Studies (GISS) general circulation model (GCM) to an online sulfur chemistry model and source models for organic matter and sea-salt that is used to estimate the aerosol indirect effect. The cloud droplet number concentration is diagnosed empirically from field experiment datasets over land and ocean that observe droplet number and all three aerosol types simultaneously; corrections are made for implied variations in cloud turbulence levels. The resulting cloud droplet number is used to calculate variations in droplet effective radius, which in turn allows us to predict aerosol effects on cloud optical thickness and microphysical process rates. We calculate the aerosol indirect effect by differencing the top-of-the-atmosphere net cloud radiative forcing for simulations with present-day vs. pre-industrial emissions. Both the first (radiative) and second (microphysical) indirect effects are explored. We test the sensitivity of our results to cloud parameterization assumptions that control the vertical distribution of cloud occurrence, the autoconversion rate, and the aerosol scavenging rate, each of which feeds back significantly on the model aerosol burden. The global mean aerosol indirect effect for all three aerosol types ranges from -1.55 to -4.36 W m(exp -2) in our simulations. The results are quite sensitive to the pre-industrial background aerosol burden, with low pre-industrial burdens giving strong indirect effects, and to a lesser extent to the anthropogenic aerosol burden, with large burdens giving somewhat larger indirect effects. Because of this dependence on the background aerosol, model diagnostics such as albedo-particle size correlations and column cloud susceptibility, for which satellite validation products are available, are not good predictors of the resulting indirect effect.

  16. GCM Simulations of the Aerosol Indirect Effect: Sensitivity to Cloud Parameterization and Aerosol Burden

    NASA Technical Reports Server (NTRS)

    Menon, Surabi; DelGenio, Anthony D.; Koch, Dorothy; Tselioudis, George; Hansen, James E. (Technical Monitor)

    2001-01-01

    We describe the coupling of the Goddard Institute for Space Studies (GISS) general circulation model (GCM) to an online sulfur chemistry model and source models for organic matter and sea-salt that is used to estimate the aerosol indirect effect. The cloud droplet number concentration is diagnosed empirically from field experiment datasets over land and ocean that observe droplet number and all three aerosol types simultaneously; corrections are made for implied variations in cloud turbulence levels. The resulting cloud droplet number is used to calculate variations in droplet effective radius, which in turn allows us to predict aerosol effects on cloud optical thickness and microphysical process rates. We calculate the aerosol indirect effect by differencing the top-of-the-atmosphere net cloud radiative forcing for simulations with present-day vs. pre-industrial emissions. Both the first (radiative) and second (microphysical) indirect effects are explored. We test the sensitivity of our results to cloud parameterization assumptions that control the vertical distribution of cloud occurrence, the autoconversion rate, and the aerosol scavenging rate, each of which feeds back significantly on the model aerosol burden. The global mean aerosol indirect effect for all three aerosol types ranges from -1.55 to -4.36 W/sq m in our simulations. The results are quite sensitive to the pre-industrial background aerosol burden, with low pre-industrial burdens giving strong indirect effects, and to a lesser extent to the anthropogenic aerosol burden, with large burdens giving somewhat larger indirect effects. Because of this dependence on the background aerosol, model diagnostics such as albedo-particle size correlations and column cloud susceptibility, for which satellite validation products are available, are not good predictors of the resulting indirect effect.

  17. Technical Note: Estimating Aerosol Effects on Cloud Radiative Forcing

    SciTech Connect

    Ghan, Steven J.

    2013-10-09

    Estimating anthropogenic aerosol effects on the planetary energy balance through the aerosol influence on clouds using the difference in cloud radiative forcing from simulations with and without anthropogenic emissions produces estimates that are positively biased. A more representative method is suggested using the difference in cloud radiative forcing calculated with aerosol radiative effects neglected. The method also yields an aerosol radiative forcing decomposition that includes a term quantifying the impact of changes in surface albedo. The method requires only two additional diagnostic calculations: the whole-sky and clear-sky top-of-atmosphere radiative flux with aerosol radiative effects neglected.

  18. A Measurement-Based Climatology of Aerosol Radiative Properties and Direct Radiative Forcing in the Southeastern U.S.-Initial Results from a Regionally-Representative Site

    NASA Astrophysics Data System (ADS)

    Sherman, J. P.; Robertson, L.; Taubman, B.; Brewbaker, A.; Sheridan, P. J.

    2011-12-01

    The southeastern U.S.(SEUS), home to large emission sources of biogenic VOCs, is one of only a few regions where surface temperatures did not increase from 1901-2005. Recent studies (Goldstein et al., 2008) show that negative top-of-atmosphere (TOA) aerosol direct radiative forcing (DRF) is consistent with a warm-season regional cooling effect dominated by secondary organic aerosols resulting from BVOC oxidation in the presence of anthropogenic NOx and SO2. Established in 2009, the Appalachian Atmospheric Interdisciplinary Research Facility (AppalAIR) at Appalachian State University is home to the only co-located NOAA-ESRL and NASA AERONET aerosol monitoring sites in the SEUS. Equipped with a comprehensive list of aerosol optical, microphysical, and newly-added chemical measurements, this regionally representative, high elevation site (1100 m asl) removed from local pollution sources allows us to significantly advance the state of the science by better quantifying regional aerosol DRF, the relative contributions of source types and source regions to DRF, seasonal and diurnal DRF variability, and an estimate of the anthropogenic contribution to DRF. Seasonal statistics of measured aerosol optical and microphysical properties, aerosol optical depth, and aerosol DRF will be presented. The optical property statistics are placed in the context of those measured at the other three U.S.-based NOAA-ESRL aerosol monitoring sites. Winter months are characterized by smaller, more absorbing particles, low aerosol loading, and negligible DRF. Summer months are characterized by lower aerosol concentrations of primarily scattering particles, high aerosol loading, and a significant negative DRF. Aerosols measured at AppalAIR were smaller in size than those measured at the other U.S. NOAA-ESRL sites for all seasons and seasonal variability of aerosol light scattering was largest. Air mass back-trajectories were used to classify aerosols by source type and region for each season in

  19. Effects of aerosols on clear-sky solar radiation in the ALADIN-HIRLAM NWP system

    NASA Astrophysics Data System (ADS)

    Gleeson, Emily; Toll, Velle; Pagh Nielsen, Kristian; Rontu, Laura; Masek, Jan

    2016-05-01

    The direct shortwave radiative effect of aerosols under clear-sky conditions in the Aire Limitee Adaptation dynamique Developpement InterNational - High Resolution Limited Area Model (ALADIN-HIRLAM) numerical weather prediction system was investigated using three shortwave radiation schemes in diagnostic single-column experiments: the Integrated Forecast System (IFS), acraneb2 and the hlradia radiation schemes. The multi-band IFS scheme was formerly used operationally by the European Centre for Medium Range Weather Forecasts (ECMWF) whereas hlradia and acraneb2 are broadband schemes. The former is a new version of the HIRLAM radiation scheme while acraneb2 is the radiation scheme in the ALARO-1 physics package. The aim was to evaluate the strengths and weaknesses of the numerical weather prediction (NWP) system regarding aerosols and to prepare it for use of real-time aerosol information. The experiments were run with particular focus on the August 2010 Russian wildfire case. Each of the three radiation schemes accurately (within ±4 % at midday) simulates the direct shortwave aerosol effect when observed aerosol optical properties are used. When the aerosols were excluded from the simulations, errors of more than +15 % in global shortwave irradiance were found at midday, with the error reduced to +10 % when standard climatological aerosols were used. An error of -11 % was seen at midday if only observed aerosol optical depths at 550 nm, and not observation-based spectral dependence of aerosol optical depth, single scattering albedos and asymmetry factors, were included in the simulations. This demonstrates the importance of using the correct aerosol optical properties. The dependency of the direct radiative effect of aerosols on relative humidity was tested and shown to be within ±6 % in this case. By modifying the assumptions about the shape of the IFS climatological vertical aerosol profile, the inherent uncertainties associated with assuming fixed vertical

  20. Effect of aerosol vertical distribution on aerosol-radiation interaction: A theoretical prospect.

    PubMed

    Mishra, Amit Kumar; Koren, Ilan; Rudich, Yinon

    2015-10-01

    This study presents a theoretical investigation of the effect of the aerosol vertical distribution on the aerosol radiative effect (ARE). Four aerosol composition models (dust, polluted dust, pollution and pure scattering aerosols) with varying aerosol vertical profiles are incorporated into a radiative transfer model. The simulations show interesting spectral dependence of the ARE on the aerosol layer height. ARE increases with the aerosol layer height in the ultraviolet (UV: 0.25-0.42 μm) and thermal-infrared (TH-IR: 4.0-20.0 μm) regions, whereas it decreases in the visible-near infrared (VIS-NIR: 0.42-4.0 μm) region. Changes in the ARE with aerosol layer height are associated with different dominant processes for each spectral region. The combination of molecular (Rayleigh) scattering and aerosol absorption is the key process in the UV region, whereas aerosol (Mie) scattering and atmospheric gaseous absorption are key players in the VIS-NIR region. The longwave emission fluxes are controlled by the environmental temperature at the aerosol layer level. ARE shows maximum sensitivity to the aerosol layer height in the TH-IR region, followed by the UV and VIS-NIR regions. These changes are significant even in relatively low aerosol loading cases (aerosol optical depth ∼0.2-0.3). Dust aerosols are the most sensitive to altitude followed by polluted dust and pollution in all three different wavelength regions. Differences in the sensitivity of the aerosol type are explained by the relative strength of their spectral absorption/scattering properties. The role of surface reflectivity on the overall altitude dependency is shown to be important in the VIS-NIR and UV regions, whereas it is insensitive in the TH-IR region. Our results indicate that the vertical distribution of water vapor with respect to the aerosol layer is an important factor in the ARE estimations. Therefore, improved estimations of the water vapor profiles are needed for the further reduction in

  1. Stratospheric aerosol properties and their effects on infrared radiation.

    NASA Technical Reports Server (NTRS)

    Remsberg, E. E.

    1973-01-01

    This paper presents a stratospheric aerosol model and infers its effects on terrestrial radiation. Composition of the aerosol is assumed to be concentrated sulfuric acid. An appropriate size distribution has been determined from available size distribution measurements of other investigators. Aerosols composed of concentrated sulfuric acid emit energy in the atmospheric window region of the infrared spectrum, 8-13 microns. Laboratory measurements of optical constant data obtained at room temperature are presented for 75 and 90% aqueous sulfuric acid. Calculations of an aerosol extinction coefficient are then performed by using the above data. Effects of changes in aerosol phase and temperature are discussed but not resolved.

  2. A Global Modeling Study on Carbonaceous Aerosol Microphysical Characteristics and Radiative Effects

    NASA Technical Reports Server (NTRS)

    Bauer, S. E.; Menon, S.; Koch, D.; Bond, T. C.; Tsigaridis, K.

    2010-01-01

    Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, indirect and semi-direct aerosol effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative effects. Our best estimate for net direct and indirect aerosol radiative flux change between 1750 and 2000 is -0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative flux change can vary between -0.32 to -0.75 W/m2 depending on these carbonaceous particle properties at emission. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Absorption of black carbon aerosols is amplified by sulfate and nitrate coatings and, even more strongly, by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative fluxeswhen sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to a reduction in positive radiative flux.

  3. Aerosol effect on the mobility of cloud droplets

    NASA Astrophysics Data System (ADS)

    Koren, Ilan; Altaratz, Orit; Dagan, Guy

    2015-10-01

    Cloud droplet mobility is referred to here as a measure of the droplets’ ability to move with ambient air. We claim that an important part of the aerosol effect on convective clouds is driven by changes in droplet mobility. We show that the mass-weighted average droplet terminal velocity, defined here as the ‘effective terminal velocity’ (η) and its spread ({σ }η ) serve as direct measures of this effect. Moreover, we develop analytical estimations for η and {σ }η to show that changes in the relative dispersion of η ({\\varepsilon }η ={σ }η /η ) can serve as a sensitive predictor of the onset of droplet-collection processes.

  4. Uncertainties in global aerosols and climate effects due to biofuel emissions

    NASA Astrophysics Data System (ADS)

    Kodros, J. K.; Scott, C. E.; Farina, S. C.; Lee, Y. H.; L'Orange, C.; Volckens, J.; Pierce, J. R.

    2015-04-01

    Aerosol emissions from biofuel combustion impact both health and climate; however, while reducing emissions through improvements to combustion technologies will improve health, the net effect on climate is largely unconstrained. In this study, we examine sensitivities in global aerosol concentration, direct radiative climate effect, and cloud-albedo aerosol indirect climate effect to uncertainties in biofuel emission factors, optical mixing-state, and model nucleation and background SOA. We use the Goddard Earth Observing System global chemical-transport model (GEOS-Chem) with TwO Moment Aerosol Sectional (TOMAS) microphysics. The emission factors include: amount, composition, size and hygroscopicity, as well as optical mixing-state properties. We also evaluate emissions from domestic coal use, which is not biofuel but is also frequently emitted from homes. We estimate the direct radiative effect assuming different mixing states (internal, core-shell, and external) with and without absorptive organic aerosol (brown carbon). We find the global-mean direct radiative effect of biofuel emissions ranges from -0.02 to +0.06 W m-2 across all simulation/mixing state combinations with regional effects in source regions ranging from -0.2 to +1.2 W m-2. The global-mean cloud-albedo aerosol indirect effect ranges from +0.01 to -0.02 W m-2 with regional effects in source regions ranging from -1.0 to -0.05 W m-2. The direct radiative effect is strongly dependent on uncertainties in emissions mass, composition, emissions aerosol size distributions and assumed optical mixing state, while the indirect effect is dependent on the emissions mass, emissions aerosol size distribution and the choice of model nucleation and secondary organic aerosol schemes. The sign and magnitude of these effects have a strong regional dependence. We conclude that the climate effects of biofuel aerosols are largely unconstrained, and the overall sign of the aerosol effects is unclear due to uncertainties

  5. A modeling study of the effects of aerosols on clouds and precipitation over East Asia

    NASA Astrophysics Data System (ADS)

    Liu, Xiaodong; Xie, Xiaoning; Yin, Zhi-Yong; Liu, Changhai; Gettelman, Andrew

    2011-12-01

    The National Center for Atmospheric Research Community Atmosphere Model (version 3.5) coupled with the Morrison-Gettelman two-moment cloud microphysics scheme is employed to simulate the aerosol effects on clouds and precipitation in two numerical experiments, one representing present-day conditions (year 2000) and the other the pre-industrial conditions (year 1750) over East Asia by considering both direct and indirect aerosol effects. To isolate the aerosol effects, we used the same set of boundary conditions and only altered the aerosol emissions in both experiments. The simulated results show that the cloud microphysical properties are markedly affected by the increase in aerosols, especially for the column cloud droplet number concentration (DNC), liquid water path (LWP), and the cloud droplet effective radius (DER). With increased aerosols, DNC and LWP have been increased by 137% and 28%, respectively, while DER is reduced by 20%. Precipitation rates in East Asia and East China are reduced by 5.8% and 13%, respectively, by both the aerosol's second indirect effect and the radiative forcing that enhanced atmospheric stability associated with the aerosol direct and first indirect effects. The significant reduction in summer precipitation in East Asia is also consistent with the weakening of the East Asian summer monsoon, resulting from the decreasing thermodynamic contrast between the Asian landmass and the surrounding oceans induced by the aerosol's radiative effects. The increase in aerosols reduces the surface net shortwave radiative flux over the East Asia landmass, which leads to the reduction of the land surface temperature. With minimal changes in the sea surface temperature, hence, the weakening of the East Asian summer monsoon further enhances the reduction of summer precipitation over East Asia.

  6. Case Studies of the Vertical Structure of the Direct Shortwave Aerosol Radiative Forcing During TARFOX

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Turco, R. P.; Liou, K. N.; Hobbs, P. V.; Hartley, W. S.; Bergstrom, R. W.; Browell, E. V.; Russell, P. B.

    2000-01-01

    The vertical structure of aerosol-induced radiative flux changes in the Earth's troposphere affects local heating rates and thereby convective processes, the formation and lifetime of clouds, and hence the distribution of chemical constituents. We present observationally-based estimates of the vertical structure of direct shortwave aerosol radiative forcing for two case studies from the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) which took place on the US East coast in July 1996. The aerosol radiative forcings are computed using the Fu-Liou broadband radiative transfer model. The aerosol optical properties used in the radiative transfer simulations are calculated from independent vertically-resolved estimates of the complex aerosol indices of refraction in two to three distinct vertical layers, using profiles of in situ particle size distributions measured aboard the University of Washington research aircraft. Aerosol single-scattering albedos at 450 nm thus determined range from 0.9 to 0.985, while the asymmetry factor varies from 0.6 to 0.8. The instantaneous shortwave aerosol radiative forcings derived from the optical profiles of the aerosols are of the order of -36 W/sq m at the top of the atmosphere and about -56 W/sq m at the surface for both case studies.

  7. Case Studies of the Vertical Structure of the Direct Shortwave Aerosol Radiative Forcing During TARFOX

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Turco, R. P.; Liou, K. N.; Hobbs, P. V.; Hartley, W. S.; Bergstrom, R. W.; Browell, E. V.; Russell, P. B.

    2000-01-01

    The vertical structure of aerosol-induced radiative flux changes in the Earth's troposphere affects local heating rates and thereby convective processes, the formation and lifetime of clouds, and hence the distribution of chemical constituents. We present observationally based estimates of the vertical structure of direct shortwave aerosol radiative forcing for two case studies from the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) which took place on the U.S. east coast in July 1996. The aerosol radiative forcings are computed using the Fu-Liou broadband radiative transfer model. The aerosol optical properties used in the radiative transfer simulations are calculated from independent vertically resolved estimates of the complex aerosol indices of refraction in two to three distinct vertical layers, using profiles of in situ particle size distributions measured aboard the University of Washington research aircraft. Aerosol single-scattering albedos at 450 nm thus determined range from 0.9 to 0.985, while the asymmetry factor varies from 0.6 to 0.8. The instantaneous shortwave aerosol radiative forcings derived from the optical properties of the aerosols are of the order of -36 Wm(exp -2) at the top of the atmosphere and about -56 Wm(exp -2) at the surface for both case studies.

  8. New Results from Space and Field Observations on the Aerosol Direct and Indirect Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Remer, Lorraine; Tanre, Didier; Boucher, Olivier; Chin, Mian; Dubovik, Oleg; Holben, Brent

    2002-01-01

    New space observations from the MODIS instrument on board the Terra satellite and analysis of POLDER data flown on the ADEOS satellite, show in great details the spatial and seasonal variability of the global aerosol system. These spaceborne instruments distinguish fine aerosol from man-made regional pollution and biomass burning from mostly natural coarse dust and sea salt aerosol. E.g. fine regional pollution in and around the Indian sub-continent, Europe and North America; smoke from biomass burning in Southern Africa and Southern America; coarse dust from West Africa and mixed dust pollution and smoke from West and central Africa and East Asia. These regions were also studied extensively in focused field experiments and by the distributed AERONET network. The results generate the first climatologies of the aerosol system, are used to derive the aerosol radiative effects and to estimate the anthropogenic component. The measurements are also used to evaluate each other and constrain aerosol transport models.

  9. Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols

    NASA Astrophysics Data System (ADS)

    Jacobson, Mark Z.

    2001-01-01

    Global simulations of the composition of and direct forcing due to aerosols containing natural and/or anthropogenic sulfate, nitrate, chloride, carbonate, ammonium, sodium, calcium, magnesium, potassium, black carbon, organic matter, silica, ferrous oxide, and aluminum oxide were carried out. Chloride and natural sulfate were found to be the most important natural aerosol constituents in the atmosphere in terms of solar plus thermal-infrared forcing. Sea spray was the most important natural aerosol type, indicating that it should be accounted for in weather and climate calculations. Ammonium was found to have a positive direct forcing, since it reduces water uptake in sulfate-containing solutions; thus, anthropogenic ammonium contributes to global warming. The magnitudes of ammonium and nitrate forcing were smaller than those of chloride or sulfate forcing. When organics were divided into three groups with different assumed UV absorption characteristics, total aerosol direct forcing at the tropopause increased by about +0.03 to +0.05 W m-2 (direct forcing by organics remained negative), suggesting that UV absorption by organics is a nontrivial component of the global energy balance. Gypsum [CaSO4-2H2O], sal ammoniac [NH4Cl], halite [NaCl], halite, and nitrum [KNO3] were estimated to be the most common sulfate-, ammonium-, sodium-, chloride-, and nitrate-containing solid-phase aerosol constituents, respectively, in the global atmosphere. Solid formation in aerosols was found to increase total-aerosol direct forcing by +0.03 to +0.05 W m-2. Spatial and vertical forcing estimates, sensitivities of forcing to relative humidity and concentration, and estimates of global aerosol liquid water content are given. Modeled aerosol optical properties are compared with satellite and field measurements.

  10. Satellite Estimates of the Direct Radiative Forcing of Biomass Burning Aerosols Over South America and Africa

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.; Wang, Min; Kliche, Donna V.; Berendes, Todd; Welch, Ronald M.; Yang, S.K.

    1997-01-01

    Atmospheric aerosol particles, both natural and anthropogenic are important to the earth's radiative balance. Therefore it is important to provide adequate validation information on the spatial, temporal and radiative properties of aerosols. This will enable us to predict realistic global estimates of aerosol radiative effects more confidently. The current study utilizes 66 AVHRR LAC (Local Area Coverage) and coincident Earth Radiation Budget Experiment (ERBE) images to characterize the fires, smoke and radiative forcings of biomass burning aerosols over four major ecosystems of South America.

  11. Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    Lohmann, U.; Stier, P.; Hoose, C.; Ferrachat, S.; Kloster, S.; Roeckner, E.; Zhang, J.

    2007-07-01

    The double-moment cloud microphysics scheme from ECHAM4 that predicts both the mass mixing ratios and number concentrations of cloud droplets and ice crystals has been coupled to the size-resolved aerosol scheme ECHAM5-HAM. ECHAM5-HAM predicts the aerosol mass, number concentrations and mixing state. The simulated liquid, ice and total water content and the cloud droplet and ice crystal number concentrations as a function of temperature in stratiform mixed-phase clouds between 0 and -35° C agree much better with aircraft observations in the ECHAM5 simulations. ECHAM5 performs better because more realistic aerosol concentrations are available for cloud droplet nucleation and because the Bergeron-Findeisen process is parameterized as being more efficient. The total anthropogenic aerosol effect includes the direct, semi-direct and indirect effects and is defined as the difference in the top-of-the-atmosphere net radiation between present-day and pre-industrial times. It amounts to -1.9 W m-2 in ECHAM5, when a relative humidity dependent cloud cover scheme and aerosol emissions representative for the years 1750 and 2000 from the AeroCom emission inventory are used. The contribution of the cloud albedo effect amounts to -0.7 W m-2. The total anthropogenic aerosol effect is larger when either a statistical cloud cover scheme or a different aerosol emission inventory are employed because the cloud lifetime effect increases.

  12. Organic aerosol effects on fog droplet spectra

    NASA Astrophysics Data System (ADS)

    Ming, Yi; Russell, Lynn M.

    2004-05-01

    Organic aerosol alters cloud and fog properties through surface tension and solubility effects. This study characterizes the role of organic compounds in affecting fog droplet number concentration by initializing and comparing detailed particle microphysical simulations with two field campaigns in the Po Valley. The size distribution and chemical composition of aerosol were based on the measurements made in the Po Valley Fog Experiments in 1989 and 1998-1999. Two types of aerosol with different hygroscopicity were considered: the less hygroscopic particles, composed mainly of organic compounds, and the more hygroscopic particles, composed mainly of inorganic salts. The organic fraction of aerosol mass was explicitly modeled as a mixture of seven soluble compounds [, 2001] by employing a functional group-based thermodynamic model [, 2002]. Condensable gases in the vapor phase included nitric acid, sulfuric acid, and ammonia. The maximum supersaturation in the simulation is 0.030% and is comparable to the calculation by [1992] inferred from measured residual particle fractions. The minimum activation diameters of the less and more hygroscopic particles are 0.49 μm and 0.40 μm, respectively. The predicted residual particle fractions are in agreement with measurements. The organic components of aerosol account for 34% of the droplet residual particle mass and change the average droplet number concentration by -10-6%, depending on the lowering of droplet surface tension and the interactions among dissolving ions. The hygroscopic growth of particles due to the presence of water-soluble organic compounds enhances the condensation of nitric acid and ammonia due to the increased surface area, resulting in a 9% increase in the average droplet number concentration. Assuming ideal behavior of aqueous solutions of water-soluble organic compounds overestimates the hygroscopic growth of particles and increases droplet numbers by 6%. The results are sensitive to microphysical

  13. Aerosol Direct Radiative Forcing and Forcing Efficiencies at Surface from the shortwave Irradiance Measurements in Abu Dhabi, UAE

    NASA Astrophysics Data System (ADS)

    Beegum S, N.; Ben Romdhane, H.; Ghedira, H.

    2013-12-01

    Atmospheric aerosols are known to affect the radiation balance of the Earth-Atmospheric system directly by scattering and absorbing the solar and terrestrial radiation, and indirectly by affecting the lifetime and albedo of the clouds. Continuous and simultaneous measurements of short wave global irradiance in combination with synchronous spectral aerosol optical depth (AOD) measurements (from 340 nm to 1640 nm in 8 channels), for a period of 1 year from June 2012 to May 2013, were used for the determination of the surface direct aerosol radiative forcing and forcing efficiencies under cloud free conditions in Abu Dhabi (24.42°N, 54.61o E, 7m MSL), a coastal location in United Arab Emirates (UAE) in the Arabian Peninsula. The Rotating Shadow band Pyranometer (RSP, LI-COR) was used for the irradiance measurements (in the spectral region 400-1100 nm), whereas the AOD measurements were carried out using CIMEL Sunphotometer (CE 318-2, under AERONET program). The differential method, which is neither sensitive to calibration uncertainties nor model assumptions, has been employed for estimating forcing efficiencies from the changes in the measured fluxes. The forcing efficiency, which quantifies the net change in irradiance per unit change in AOD, is an appropriate parameter for the characterization of the aerosol radiative effects even if the microphysical and optical properties of the aerosols are not completely understood. The corresponding forcing values were estimated from the forcing efficiencies. The estimated radiative forcing and forcing efficiencies exhibited strong monthly variations. The forcing efficiencies (absolute magnitudes) were highest during March, and showed continuous decrease thereafter to reach the lowest value during September. In contrast, the forcing followed a slightly different pattern of variability, with the highest solar dimming during April ( -60 W m-2) and the minimum during February ( -20 W m-2). The results indicate that the aerosol

  14. The Invigoration of Deep Convective Clouds Over the Atlantic: Aerosol Effect, Meteorology or Retrieval Artifact?

    NASA Technical Reports Server (NTRS)

    Koren, Ilan; Feingold, Graham; Remer, Lorraine A.

    2010-01-01

    Associations between cloud properties and aerosol loading are frequently observed in products derived from satellite measurements. These observed trends between clouds and aerosol optical depth suggest aerosol modification of cloud dynamics, yet there are uncertainties involved in satellite retrievals that have the potential to lead to incorrect conclusions. Two of the most challenging problems are addressed here: the potential for retrieved aerosol optical depth to be cloud-contaminated, and as a result, artificially correlated with cloud parameters; and the potential for correlations between aerosol and cloud parameters to be erroneously considered to be causal. Here these issues are tackled directly by studying the effects of the aerosol on convective clouds in the tropical Atlantic Ocean using satellite remote sensing, a chemical transport model, and a reanalysis of meteorological fields. Results show that there is a robust positive correlation between cloud fraction or cloud top height and the aerosol optical depth, regardless of whether a stringent filtering of aerosol measurements in the vicinity of clouds is applied, or not. These same positive correlations emerge when replacing the observed aerosol field with that derived from a chemical transport model. Model-reanalysis data is used to address the causality question by providing meteorological context for the satellite observations. A correlation exercise between the full suite of meteorological fields derived from model reanalysis and satellite-derived cloud fields shows that observed cloud top height and cloud fraction correlate best with model pressure updraft velocity and relative humidity. Observed aerosol optical depth does correlate with meteorological parameters but usually different parameters from those that correlate with observed cloud fields. The result is a near-orthogonal influence of aerosol and meteorological fields on cloud top height and cloud fraction. The results strengthen the case

  15. Assessment of dust aerosol effect on cloud properties over Northwest China using CERES SSF data

    NASA Astrophysics Data System (ADS)

    Huang, J.; Wang, X.; Wang, T.; Su, J.; Minnis, P.; Lin, B.; Hu, Y.; Yi, Y.

    Dust aerosols not only have direct effects on the climate through reflection and absorption of the short and long wave radiation but also modify cloud properties such as the number concentration and size of cloud droplets indirect effect and contribute to diabatic heating in the atmosphere that often enhances cloud evaporation and reduces the cloud water path In this study indirect and semi-direct effects of dust aerosols are analyzed over eastern Asia using two years June 2002 to June 2004 of CERES Clouds and the Earth s Radiant Energy Budget Scanner and MODIS MODerate Resolution Imaging Spectroradiometer Aqua Edition 1B SSF Single Scanner Footprint data sets The statistical analysis shows evidence for both indirect and semi-direct effect of Asia dust aerosols The dust appears to reduce the ice cloud effective particle diameter and increase high cloud amount On average ice cloud effective particle diameters of cirrus clouds under dust polluted conditions dusty cloud are 11 smaller than those derived from ice clouds in dust-free atmospheric environments The water paths of dusty clouds are also considerably smaller than those of dust-free clouds Dust aerosols could warm clouds thereby increasing the evaporation of cloud droplets resulting in reduced cloud water path semi-direct effect The semi-direct effect may be dominated the interaction between dust aerosols and clouds over arid and semi-arid areas and partly contribute to reduced precipitation

  16. A new chemistry option in WRF-Chem v. 3.4 for the simulation of direct and indirect aerosol effects using VBS: evaluation against IMPACT-EUCAARI data

    NASA Astrophysics Data System (ADS)

    Tuccella, P.; Curci, G.; Grell, G. A.; Visconti, G.; Crumeyrolle, S.; Schwarzenboeck, A.; Mensah, A. A.

    2015-09-01

    condensation nuclei (CCN) are also overestimated, but the bias is more contained with respect to that of CN. The CCN efficiency, which is a characterization of the ability of aerosol particles to nucleate cloud droplets, is underestimated by a factor of 1.5 and 3.8 in the PBL and FT, respectively. The comparison with MODIS data shows that the model overestimates the aerosol optical thickness (AOT). The domain averages (for 1 day) are 0.38 ± 0.12 and 0.42 ± 0.10 for MODIS and WRF-Chem data, respectively. The droplet effective radius (Re) in liquid-phase clouds is underestimated by a factor of 1.5; the cloud liquid water path (LWP) is overestimated by a factor of 1.1-1.6. The consequence is the overestimation of average liquid cloud optical thickness (COT) from a few percent up to 42 %. The predicted cloud water path (CWP) in all phases displays a bias in the range +41-80 %, whereas the bias of COT is about 15 %. In sensitivity tests where we excluded SOA, the skills of the model in reproducing the observed patterns and average values of the microphysical and optical properties of liquid and all phase clouds decreases. Moreover, the run without SOA (NOSOA) shows convective clouds with an enhanced content of liquid and frozen hydrometers, and stronger updrafts and downdrafts. Considering that the previous version of WRF-Chem coupled with a modal aerosol module predicted very low SOA content (secondary organic aerosol model (SORGAM) mechanism) the new proposed option may lead to a better characterization of aerosol-cloud feedbacks.

  17. Intercomparison of Models Representing Direct Shortwave Radiative Forcing by Sulfate Aerosols

    NASA Technical Reports Server (NTRS)

    Boucher, O.; Schwartz, S. E.; Ackerman, T. P.; Anderson, T. L.; Bergstrom, B.; Bonnel, B.; Dahlback, A.; Fouquart, Y.; Chylek, P.; Fu, Q.; Halthore, R. N.; Haywood, J. M.; Iversen, T.; Kato, S.; Kinne, S.; Kirkevag, A.; Knapp, K. R.; Lacis, A.; Laszlo, I.; Mishchenko, M. I.

    2000-01-01

    The importance of aerosols as agents of climate change has recently been highlighted. However, the magnitude of aerosol forcing by scattering of shortwave radiation (direct forcing) is still very uncertain even for the relatively well characterized sulfate aerosol. A potential source of uncertainty is in the model representation of aerosol optical properties and aerosol influences on radiative transfer in the atmosphere. Although radiative transfer methods and codes have been compared in the past, these comparisons have not focused on aerosol forcing (change in net radiative flux at the top of the atmosphere). Here we report results of a project involving 12 groups using 15 models to examine radiative forcing by sulfate aerosol for a wide range of values of particle radius, aerosol optical depth, surface albedo, and solar zenith angle. Among the models that were employed were high and low spectral resolution models incorporating a variety of radiative transfer approximations as well as a line-by-line model. The normalized forcings (forcing per sulfate column burden) obtained with the several radiative transfer models were examined, and the discrepancies were characterized. All models simulate forcings of comparable amplitude and exhibit a similar dependence on input parameters. As expected for a non-light-absorbing aerosol, forcings were negative (cooling influence) except at high surface albedo combined with small solar zenith angle. The relative standard deviation of the zenith-angle-averaged normalized broadband forcing for 15 models-was 8% for particle radius near the maximum in this forcing (approx. 0.2 microns) and at low surface albedo. Somewhat greater model-to-model discrepancies were exhibited at specific solar zenith angles. Still greater discrepancies were exhibited at small particle radii and much greater discrepancies were exhibited at high surface albedos, at which the forcing changes sign; in these situations, however, the normalized forcing is

  18. Aerosol Absorption Effects in the TOMS UV Algorithm

    NASA Technical Reports Server (NTRS)

    Torres, O.; Krotkov, N.; Bhartia, P. K.

    2004-01-01

    The availability of global long-term estimates of surface UV radiation is very important, not only for preventive medicine considerations, but also as an important tool to monitor the effects of the stratospheric ozone recovery expected to occur in the next few decades as a result of the decline of the stratospheric chlorine levels. In addition to the modulating effects of ozone and clouds, aerosols also affect the levels of UV-A and W-B radiation reaching the surface. Oscillations in surface W associated with the effects of aerosol absorption may be comparable in magnitude to variations associated with the stratospheric ozone recovery. Thus, the accurate calculation of surface W radiation requires that both the scattering and absorption effects of tropospheric aerosols be taken into account. Although absorption effects of dust and elevated carbonaceous aerosols are already accounted for using Aerosol Index technique, this approach does not work for urban/industrial aerosols in the planetary boundary layer. The use of the new TOMS long-term global data record on UV aerosol absorption optical depth, can improve the accuracy of TOMS spectral UV products, by properly including the spectral attenuation effects of carbonaceous, urban/industrial and mineral aerosols. The TOMS data set on aerosol properties will be discussed, and results of its use in the TOMS surface W algorithm will be presented.

  19. Aerosol transport in the coastal environment and effects on extinction

    NASA Astrophysics Data System (ADS)

    Vignati, Elizabetta; de Leeuw, Gerrit; Berkowicz, Ruwim

    1998-11-01

    The aerosol in the coastal environment consists of a complicated mixture of anthropogenic and rural aerosol generated over land, and sea spray aerosol. Also, particles are generate dover sea by physical and chemical processes and the chemical composition may change due to condensation/evaporation of gaseous materials. The actual composition is a function of air mass history and fetch. At the land-sea transition the continental sources cease to exist, and thus the concentrations of land-based particles and gases will gradually decrease. At the same time, sea spray is generated due to the interaction between wind and waves in a developing wave field. A very intense source for sea spray aerosol is the surf zone. Consequently, the aerosol transported over sea in off-shore winds will abruptly charge at the land-sea transition and then gradually loose its continental character, while also the contribution of the surf-generated aerosol will decrease. The latter will be compensated, at least in part, by the production of sea spray aerosol. A Coastal Aerosol Transport model is being developed describing the evolution of the aerosol size distribution in an air column advected from the coast line over sea in off-shore winds. Both removal and production are taken into account. The result are applied to estimate the effect of the changing size distribution on the extinction coefficients. In this contribution, preliminary results are presented from a study of the effects of the surf-generated aerosol and the surface production.

  20. Simultaneous Measurements of direct, semi-direct and indirect aerosol forcing with Stacked Autonomous UAVs: A New Observing Platform

    NASA Astrophysics Data System (ADS)

    Ramanathan, V.; Roberts, G.; Ramana, M. V.; Corrigan, C.; Nguyen, H.

    2006-12-01

    We report here first time demonstration with three autonomously flying Unmanned Aerial Vehicles (UAVs) of cloudy sky albedo, transmission atmospheric solar absorption, aerosol and cloud droplet concentrations and number densities. From these direct measurements we derive the direct, semi-direct and the first indirect aerosol forcing. The observing system consisted of 3 light weight UAVs, instrumented with miniaturized instruments (Roberts et al, 2006; Ramana et al, 2006; Corrigan et al 2006) for measuring aerosol concentrations and size distribution, cloud microphysical properties, black carbon concentration and broad band and narrow band solar fluxes. The airborne measurements were validated and augmented by the Atmospheric Brown Clouds Maldives Climate Observatory (ABC_MCO) in the island of Hanimaadhoo in the N. Indian Ocean (Corrigan et al, 2006; Ramana and Ramanathan 2006). The campaign was conducted during March and early April of 2006 when this region is subject to long range transport of pollution from S. Asia. In the stacked 3_UAV configuration, one flew in the boundary layer below clouds to characterize the aerosols feeding the clouds and the transmission of solar radiation by the absorbing aerosol layer and clouds above; the second inside the trade cumulus clouds to directly observe the fully nucleated cloud drop size and concentrations and total liquid water content; and the third above the cloud to determine the incoming solar and the reflected solar radiation. The 3-UAVs were programmed to sample the same region(or clouds) within seconds of each other, thus providing unique insights into how aerosols and boundary layer dynamics modulate the cloud microphysics and thus the albedo and solar absorption of cloudy skies in the planet. The period of observations also included a major dust-soot event which revealed a large increase in atmospheric solar absorption. We will present results on how 3- dimensional clouds with absorbing aerosols modulate

  1. Aerosol Indirect Effects on Cirrus Clouds in Global Aerosol-Climate Models

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zhang, K.; Wang, Y.; Neubauer, D.; Lohmann, U.; Ferrachat, S.; Zhou, C.; Penner, J.; Barahona, D.; Shi, X.

    2015-12-01

    Cirrus clouds play an important role in regulating the Earth's radiative budget and water vapor distribution in the upper troposphere. Aerosols can act as solution droplets or ice nuclei that promote ice nucleation in cirrus clouds. Anthropogenic emissions from fossil fuel and biomass burning activities have substantially perturbed and enhanced concentrations of aerosol particles in the atmosphere. Global aerosol-climate models (GCMs) have now been used to quantify the radiative forcing and effects of aerosols on cirrus clouds (IPCC AR5). However, the estimate uncertainty is very large due to the different representation of ice cloud formation and evolution processes in GCMs. In addition, large discrepancies have been found between model simulations in terms of the spatial distribution of ice-nucleating aerosols, relative humidity, and temperature fluctuations, which contribute to different estimates of the aerosol indirect effect through cirrus clouds. In this presentation, four GCMs with the start-of-the art representations of cloud microphysics and aerosol-cloud interactions are used to estimate the aerosol indirect effects on cirrus clouds and to identify the causes of the discrepancies. The estimated global and annual mean anthropogenic aerosol indirect effect through cirrus clouds ranges from 0.1 W m-2 to 0.3 W m-2 in terms of the top-of-the-atmosphere (TOA) net radiation flux, and 0.5-0.6 W m-2 for the TOA longwave flux. Despite the good agreement on global mean, large discrepancies are found at the regional scale. The physics behind the aerosol indirect effect is dramatically different. Our analysis suggests that burden of ice-nucleating aerosols in the upper troposphere, ice nucleation frequency, and relative role of ice formation processes (i.e., homogeneous versus heterogeneous nucleation) play key roles in determining the characteristics of the simulated aerosol indirect effects. In addition to the indirect effect estimate, we also use field campaign

  2. Scattering directionality parameters of fractal black carbon aerosols and comparison with the Henyey-Greenstein approximation.

    PubMed

    Pandey, Apoorva; Chakrabarty, Rajan K

    2016-07-15

    Current radiation transfer schemes employ the Henyey-Greenstein (HG) phase function to connect three single parameter representations of aerosol scattering directionality-the hemispherical upscatter fraction (β), the backscatter fraction (b), and the asymmetry parameter (g). The HG phase function does not account for particle morphology, which could lead to significant errors. In this Letter, we compute these single parameters for fractal black carbon (BC) aerosols using the numerically exact superposition T-matrix method. The variations in β, g, and b as a function of aerosol morphology are examined. Corrected empirical relationships connecting these parameters are proposed. We find that the HG phase function could introduce up to a 35% error in β and g estimates. Interestingly, these errors are suppressed by the large mass absorption cross-sections of BC aerosols in radiative transfer calculations and contribute to ≤8% error in direct forcing efficiencies. PMID:27420533

  3. Directed aerosol writing of ordered silica nanostructures on arbitrary surfaces with self-assembling inks.

    PubMed

    Pang, Jiebin; Stuecker, John N; Jiang, Yingbing; Bhakta, Ajay J; Branson, Eric D; Li, Peng; Cesarano, Joseph; Sutton, David; Calvert, Paul; Brinker, C Jeffrey

    2008-07-01

    This paper reports the fabrication of micro- and macropatterns of ordered mesostructured silica on arbitrary flat and curved surfaces using a facile robot-directed aerosol printing process. Starting with a homogenous solution of soluble silica, ethanol, water, and surfactant as a self-assembling ink, a columnated stream of aerosol droplets is directed to the substrate surface. For deposition at room temperature droplet coalescence on the substrates and attendant solvent evaporation result in continuous, highly ordered mesophases. The pattern profiles are varied by changing any number of printing parameters such as material deposition rate, printing speed, and aerosol-head temperature. Increasing the aerosol temperature results in a decrease of the mesostructure ordering, since faster solvent evaporation and enhanced silica condensation at higher temperatures kinetically impede the molecular assembly process. This facile technique provides powerful control of the printed materials at both the nanoscale and microscale through chemical self-assembly and robotic engineering, respectively. PMID:18581410

  4. Overview of the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate (ChArMEx/ADRIMED) summer 2013 campaign

    NASA Astrophysics Data System (ADS)

    Mallet, M.; Dulac, F.; Formenti, P.; Nabat, P.; Sciare, J.; Roberts, G.; Pelon, J.; Ancellet, G.; Tanré, D.; Parol, F.; Denjean, C.; Brogniez, G.; di Sarra, A.; Alados-Arboledas, L.; Arndt, J.; Auriol, F.; Blarel, L.; Bourrianne, T.; Chazette, P.; Chevaillier, S.; Claeys, M.; D'Anna, B.; Derimian, Y.; Desboeufs, K.; Di Iorio, T.; Doussin, J.-F.; Durand, P.; Féron, A.; Freney, E.; Gaimoz, C.; Goloub, P.; Gómez-Amo, J. L.; Granados-Muñoz, M. J.; Grand, N.; Hamonou, E.; Jankowiak, I.; Jeannot, M.; Léon, J.-F.; Maillé, M.; Mailler, S.; Meloni, D.; Menut, L.; Momboisse, G.; Nicolas, J.; Podvin, T.; Pont, V.; Rea, G.; Renard, J.-B.; Roblou, L.; Schepanski, K.; Schwarzenboeck, A.; Sellegri, K.; Sicard, M.; Solmon, F.; Somot, S.; Torres, B.; Totems, J.; Triquet, S.; Verdier, N.; Verwaerde, C.; Waquet, F.; Wenger, J.; Zapf, P.

    2016-01-01

    levels of atmospheric pollutants or intense biomass burning events in the region. However, numerous mineral dust plumes were observed during the campaign, with the main sources located in Morocco, Algeria and Tunisia, leading to aerosol optical depth (AOD) values ranging between 0.2 and 0.6 (at 440 nm) over the western and central Mediterranean basins. One important point of this experiment concerns the direct observations of aerosol extinction onboard the ATR-42, using the CAPS system, showing local maxima reaching up to 150 M m-1 within the dust plume. Non-negligible aerosol extinction (about 50 M m-1) has also been observed within the marine boundary layer (MBL). By combining the ATR-42 extinction coefficient observations with absorption and scattering measurements, we performed a complete optical closure revealing excellent agreement with estimated optical properties. This additional information on extinction properties has allowed calculation of the dust single scattering albedo (SSA) with a high level of confidence over the western Mediterranean. Our results show a moderate variability from 0.90 to 1.00 (at 530 nm) for all flights studied compared to that reported in the literature on this optical parameter. Our results underline also a relatively low difference in SSA with values derived near dust sources. In parallel, active remote-sensing observations from the surface and onboard the F-20 aircraft suggest a complex vertical structure of particles and distinct aerosol layers with sea spray and pollution located within the MBL, and mineral dust and/or aged North American smoke particles located above (up to 6-7 km in altitude). Aircraft and balloon-borne observations allow one to investigate the vertical structure of the aerosol size distribution showing particles characterized by a large size (> 10 µm in diameter) within dust plumes. In most of cases, a coarse mode characterized by an effective diameter ranging between 5 and 10 µm, has been detected above the

  5. Assessing the Potential Effect of Anthropogenic Aerosol Dimming on Sea Surface Temperatures (SSTs)

    NASA Astrophysics Data System (ADS)

    Dallafior, Tanja; Folini, Doris; Wild, Martin; Knutti, Reto

    2014-05-01

    It is beyond doubt that anthropogenic aerosols have an impact on the Earth's radiative balance and hydrological cycle through both direct and indirect effects. The focus of this presentation is the statistically robust quantification of anthropogenic aerosol dimming over oceans, using a global climate model (ECHAM5 at T42L19 resolution) combined with a detailed aerosol microphysics module (HAM, the Hamburg Aerosol Module). The long term goal is to quantify consequences of such forcing on sea surface temperatures (SSTs). We use a series of atmosphere only experiments with prescribed observed transient SSTs covering the years 1870-2000. All experimental setups are identical except for anthropogenic aerosol emissions, which are once transient (13 ensemble members) and once held constant at pre-industrial levels (9 ensemble members). On regional scales and in recent decades, anthropogenic aerosol dimming at the sea surface can reach considerable magnitudes, exceeding 20W/m2 in the model. To quantify these findings in more detail, we assume that anthropogenic aerosols spread from the continents in plumes, and introduce identification criteria for said plumes based on statistical testing of changes in aerosol optical thickness and downward short-wave radiation (clear-sky and all-sky). Using the pre-industrial experiment data to construct a reference distribution, the above three variables are tested at each grid point for each month and decade of the transient experiment against the respective reference distribution to identify significant changes in aerosol-induced surface forcing, in the form of changes in downward clearsky shortwave radiation (direct aerosol effect) or in the form or changes of downward allsky shortwave radiation (including also indirect aerosol effects). The resulting aerosol plume regions are analysed for size, intensity and associated surface dimming, persistence, seasonality, and interdecadal trends. The sensitivity of the results towards the

  6. Sulfur in aerosol versus wind direction in New York City and a nearby rural site

    NASA Astrophysics Data System (ADS)

    Bauman, S. E.; Ferek, R.; Williams, E. T.; Finston, H. L.

    1981-03-01

    Analysis of aerosol samples collected simultaneously in New York City and in a rural area in New Jersey showed that concentrations of sulfur were similar at both locations. Summer measurements in New York City, five months later, showed that sulfur in aerosol was as much as ten times greater when the wind blew from the southwest quarter compared to other wind directions. We infer from these results that the bulk of particulate sulfur in New York City is transport from the west.

  7. Aerosol effects and corrections in the Halogen Occultation Experiment

    NASA Technical Reports Server (NTRS)

    Hervig, Mark E.; Russell, James M., III; Gordley, Larry L.; Daniels, John; Drayson, S. Roland; Park, Jae H.

    1995-01-01

    The eruptions of Mt. Pinatubo in June 1991 increased stratospheric aerosol loading by a factor of 30, affecting chemistry, radiative transfer, and remote measurements of the stratosphere. The Halogen Occultation Experiment (HALOE) instrument on board Upper Atmosphere Research Satellite (UARS) makes measurements globally for inferring profiles of NO2, H2O, O3, HF, HCl, CH4, NO, and temperature in addition to aerosol extinction at five wavelengths. Understanding and removing the aerosol extinction is essential for obtaining accurate retrievals from the radiometer channels of NO2, H2O and O3 in the lower stratosphere since these measurements are severely affected by contaminant aerosol absorption. If ignored, aerosol absorption in the radiometer measurements is interpreted as additional absorption by the target gas, resulting in anomalously large mixing ratios. To correct the radiometer measurements for aerosol effects, a retrieved aerosol extinction profile is extrapolated to the radiometer wavelengths and then included as continuum attenuation. The sensitivity of the extrapolation to size distribution and composition is small for certain wavelength combinations, reducing the correction uncertainty. The aerosol corrections extend the usable range of profiles retrieved from the radiometer channels to the tropopause with results that agree well with correlative measurements. In situations of heavy aerosol loading, errors due to aerosol in the retrieved mixing ratios are reduced to values of about 15, 25, and 60% in H2O, O3, and NO2, respectively, levels that are much less than the correction magnitude.

  8. Regional Biases in Droplet Activation Parameterizations: Strong Influence on Aerosol Second Indirect Effect in the Community Atmosphere Model v5.

    NASA Astrophysics Data System (ADS)

    Morales, R.; Nenes, A.

    2014-12-01

    Aerosol-cloud interactions constitute one of the most uncertain aspects of anthropogenic climate change estimates. The magnitude of these interactions as represented in climate models strongly depends on the process of aerosol activation. This process is the most direct physical link between aerosols and cloud microphysical properties. Calculation of droplet number in GCMs requires the computation of new droplet formation (i.e., droplet activation), through physically based activation parameterizations. Considerable effort has been placed in ensuring that droplet activation parameterizations have a physically consistent response to changes in aerosol number concentration. However, recent analyses using an adjoint sensitivity approach showed that parameterizations can exhibit considerable biases in their response to other aerosol properties, such as aerosol modal diameter or to the aerosol chemical composition. This is a potentially important factor in estimating aerosol indirect effects since changes in aerosol properties from pre-industrial times to present day exhibit a very strong regional signature. In this work we use the Community Atmosphere Model (CAM5) to show that the regional imprint of the changes in aerosol properties during the last century interacts with the droplet activation parameterization in a way that these biases are amplified over climatically relevant regions. Two commonly used activation routines, the CAM5 default, Abdul-Razzak and Ghan parameterization, as well as the Fountoukis and Nenes parameterization are used in this study. We further explored the impacts of Nd parameterization biases in the first and second aerosol indirect effects separately, by performing simulations were droplet number was not allowed to intervene in the precipitation initiation process. The simulations performed show that an unphysical response to changes in the diameter of accumulation mode aerosol translates into extremely high Nd concentrations over South

  9. Aerosol speckle effects on atmospheric pulsed lidar backscattered signals

    NASA Technical Reports Server (NTRS)

    Murty, S. R.

    1989-01-01

    Lidar systems using atmospheric aerosols as targets exhibit return signal amplitude and power fluctuations which indicate speckle effects. The effects of refractive turbulence along the path on the aerosol speckle field propagation and on the decorrelation time are studied for coherent pulsed lidar systems.

  10. A Study of Direct and Cloud-Mediated Radiative Forcing of Climate Due to Aerosols

    NASA Technical Reports Server (NTRS)

    Yu, Shao-Cai

    1999-01-01

    radiative properties to aerosol composition, size distribution, relative humidity (RH) is examined for the following aerosol systems: inorganic and organic ions (Cl-, Br-, NO3 -, SO4 2-, Na+, NH4 +, K+, Ca2+, Mg2+, HCOO-, CH3COO-, CH3CH2COO-, CH3COCOO-, OOCCOO2-, MSA-1); water-insoluble inorganic and organic compounds (elemental carbon, n-alkanes, SiO2, Al2O3, Fe2O3 and other organic compounds). The partial molar refraction method was used to calculate the real part of the refractive index. It was found that the asymmetry factor increased by approximately 48% with the real part varying from 1.40 to 1.65, and the single scattering albedo decreased by 24% with the imaginary part varying from -0.005 to -0.1. The asymmetry factor increased by 5.4 times with the geometric standard deviation varying from 1.2 to 3.0. The radiation transmission is very sensitive to the change in size distribution; other factors are not as significant. To determine the aerosol direct radiative forcing (ADRF), the aerosol optical depth (AOD) values at the three operational wavelengths (415, 500 and 673 nm) were determined at a regionally representative site, namely, Mt. Gibbs (35.78 deg N, 82.29 deg W, elevation 2006 m) in Mt. Mitchell State Park, NC, and a site located in an adjacent valley (Black Mountain, 35.66 deg N, 82.38 deg W, elevation 951 m) in the southeastern US. The two sites are separated horizontally by 10 km and vertically by 1 km. It was found that the representative total AOD values at 500 nm at the valley site for highly polluted (HP), marine (M) and continental (C) air masses were 0.68 +/- 0.33, 0.29 +/- 0.19 and 0.10 +/- 0.04, respectively. A search-graph method was used to retrieve the columnar size distribution (number concentration N, effective radius reff and geometric standard deviation=?g) from the optical depth observations at three operational wavelengths. The ground albedo, single scattering albedo and imaginary part of the refractive index were calculated using a

  11. Effects of aerosols and relative humidity on cumulus clouds

    NASA Astrophysics Data System (ADS)

    Fan, Jiwen; Zhang, Renyi; Li, Guohui; Tao, Wei-Kuo

    2007-07-01

    The influences of the aerosol type and concentration and relative humidity (RH) on cumulus clouds have been investigated using a two-dimensional spectral-bin cloud model. Three simulations are conducted to represent the polluted continental, clean continental, and marine aerosol types. Under the same initial dynamic and thermodynamic conditions, the maritime aerosol case results in more intensive radar reflectivity in both developing and mature stages than the continental aerosol cases, because of enhanced warm rain by collisions and ice processes by deposition growth due to larger droplet sizes and higher supersaturation, respectively. The considerable delay in convective development due to reduced droplet condensation is responsible for the longer cloud lifetime in the marine aerosol case. For the continental case, the most noticeable effects of increasing aerosol number concentrations (with 15 different initial values) are the increases of the cloud droplet number concentration and cloud water content but a decrease in the effective droplet radius. More latent heat release from increasing condensation results in stronger convection and more melting precipitation at the higher aerosol concentrations. Melting precipitation and secondary clouds primarily contribute to enhanced precipitation with increasing aerosols. The precipitation, however, decreases with increasing aerosol in the extremely high aerosol cases (over 5 × 104 cm-3) due to suppression of convection from depleted water vapor and inefficient coalescence. When the initial aerosol concentration exceeds a critical level, most of the cloud properties become less sensitive to aerosols, implying that the aerosol effect on deep convection is more pronounced in relatively clean air than in heavily polluted air. The aerosol effect on the cloud properties is strongly dependent on RH. As the surface RH increases from 40 to 70%, the cloud changes from shallow warm to deep convective types due to a significant

  12. Encapsulation effects on carbonaceous aerosol light absorption

    SciTech Connect

    Sedlacek, A.J.; Onasch, T.; Davidovits, P.; Cross, E.; Mazzoleni, C.

    2010-03-15

    The contribution of aerosol absorption on direct radiative forcing is still an active area of research, in part, because aerosol extinction is dominated by light scattering and, in part, because the primary absorbing aerosol of interest, soot, exhibits complex aging behavior that alters its optical properties. The consequences of this can be evidenced by the work of Ramanathan and Carmichael (2008) who suggest that incorporating the atmospheric heating due to brown clouds (plumes containing soot byproducts from automobiles, biomass burning, wood-burning kitchen stoves, and coal-fired power plants) will increase black carbon (BC) radiative forcing from the Intergovernmental Panel on Climate Change best estimate of 0.34 Wm-2 (±0.25 Wm-2) (IPCC 2007) to 0.9 Wm-2. This noteworthy degree of uncertainty is due largely to the interdependence of BC optical properties on particle mixing state and aggregate morphology, each of which changes as the particle ages in the atmosphere and becomes encapsulated within a coating of inorganic and/or organic substances. In July 2008, a laboratory-based measurement campaign, led by Boston College and Aerodyne, was initiated to begin addressing this interdependence. To achieve insights into the interdependence of BC optical properties on particle mixing state and aggregate morphology, measurements of both the optical and physical properties of flame-generated soot under nascent, coated, and denuded conditions were conducted. This poster presents data on black carbon (BC) light absorption measured by Photothermal Interferometry (Sedlacek and Lee 2007). In addition to examining nascent BC—to provide a baseline measurement—encapsulation with varying thicknesses of either dioctyl sebacate (DOS) or sulfuric acid was conducted to glean insights into the interplay between particle mixing state and optical properties. Additionally, some experiments were carried out where BC was coated and then denuded. In the case of DOS-coated soot, a

  13. Climatic effects of 1950-2050 changes in US anthropogenic aerosols - Part 2: Climate response

    NASA Astrophysics Data System (ADS)

    Leibensperger, E. M.; Mickley, L. J.; Jacob, D. J.; Chen, W.-T.; Seinfeld, J. H.; Nenes, A.; Adams, P. J.; Streets, D. G.; Kumar, N.; Rind, D.

    2012-04-01

    We investigate the climate response to changing US anthropogenic aerosol sources over the 1950-2050 period by using the NASA GISS general circulation model (GCM) and comparing to observed US temperature trends. Time-dependent aerosol distributions are generated from the GEOS-Chem chemical transport model applied to historical emission inventories and future projections. Radiative forcing from US anthropogenic aerosols peaked in 1970-1990 and has strongly declined since due to air quality regulations. We find that the regional radiative forcing from US anthropogenic aerosols elicits a strong regional climate response, cooling the central and eastern US by 0.5-1.0 °C on average during 1970-1990, with the strongest effects on maximum daytime temperatures in summer and autumn. Aerosol cooling reflects comparable contributions from direct and indirect (cloud-mediated) radiative effects. Absorbing aerosol (mainly black carbon) has negligible warming effect. Aerosol cooling reduces surface evaporation and thus decreases precipitation along the US east coast, but also increases the southerly flow of moisture from the Gulf of Mexico resulting in increased cloud cover and precipitation in the central US. Observations over the eastern US show a lack of warming in 1960-1980 followed by very rapid warming since, which we reproduce in the GCM and attribute to trends in US anthropogenic aerosol sources. Present US aerosol concentrations are sufficiently low that future air quality improvements are projected to cause little further warming in the US (0.1 °C over 2010-2050). We find that most of the warming from aerosol source controls in the US has already been realized over the 1980-2010 period.

  14. Climatic effects of 1950-2050 changes in US anthropogenic aerosols - Part 2: Climate response

    NASA Astrophysics Data System (ADS)

    Leibensperger, E. M.; Mickley, L. J.; Jacob, D. J.; Chen, W.-T.; Seinfeld, J. H.; Nenes, A.; Adams, P. J.; Streets, D. G.; Kumar, N.; Rind, D.

    2011-08-01

    We investigate the climate response to US anthropogenic aerosol sources over the 1950 to 2050 period by using the NASA GISS general circulation model (GCM) and comparing to observed US temperature trends. Time-dependent aerosol distributions are generated from the GEOS-Chem chemical transport model applied to historical emission inventories and future projections. Radiative forcing from US anthropogenic aerosols peaked in 1970-1990 and has strongly declined since due to air quality regulations. We find that the regional radiative forcing from US anthropogenic aerosols elicits a strong regional climate response, cooling the central and eastern US by 0.5-1.0 °C on average during 1970-1990, with the strongest effects on maximum daytime temperatures in summer and autumn. Aerosol cooling reflects comparable contributions from direct and indirect (cloud-mediated) radiative effects. Absorbing aerosol (mainly black carbon) has negligible warming effect. Aerosol cooling reduces surface evaporation and thus decreases precipitation along the US east coast, but also increases the southerly flow of moisture from the Gulf of Mexico resulting in increased cloud cover and precipitation in the central US. Observations over the eastern US show a lack of warming in 1960-1980 followed by very rapid warming since, which we reproduce in the GCM and attribute to trends in US anthropogenic aerosol sources. Present US aerosol concentrations are sufficiently low that future air quality improvements are projected to cause little further warming in the US (0.1 °C over 2010-2050). We find that most of the potential warming from aerosol source controls in the US has already been realized over the 1980-2010 period.

  15. New Satellite Measurements of Aerosol Direct Radiative Forcing from MODIS, MISR, and POLDER

    NASA Technical Reports Server (NTRS)

    Kaufman, Y.

    2000-01-01

    New set of satellites, MODIS and MISR launched on EOS-Terra and POLDER launched on ADEOS-1, and scheduled for ADEOS-II and PARASOL in orbit with EOS-AQUA, open exciting opportunities to measure aerosol and their radiative forcing of climate. Each of these instruments has a different approach to invert remote sensing data to derive the aerosol properties. MODIS is using wide spectral range 0.47-2.1 micron. MISR is using narrower spectral range (0.44 to 0.87 micron) but observing the same spot from 9 different angles along the satellite track. POLDER using similar wavelengths, uses two dimensional view with a wide angle optics and adds polarization to the inversion process. Among these instruments, we expect to measure the global distribution of aerosol, to distinguish small pollution particles from large particles from deserts and ocean spray. We shall try to measure the aerosol absorption of solar radiation, and their refractive index that indicates the effect of liquid water on the aerosol size and interaction with sunlight. The radiation field measured by these instruments in variety of wavelengths and angles, is also used to derive the effect of the aerosol on reflection of sunlight spectral fluxes to space. When combined with flux measurements at the ground, it gives a complete characterization of the effect of aerosol on solar illumination, heating in the atmosphere and reflection to space.

  16. Analysis of Atmospheric Aerosol Data Sets and Application of Radiative Transfer Models to Compute Aerosol Effects

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Bergstrom, Robert W.; Redemann, Jens

    2002-01-01

    This report is the final report for "Analysis of Atmospheric Aerosol Data Sets and Application of Radiative Transfer Models to Compute Aerosol Effects". It is a bibliographic compilation of 29 peer-reviewed publications (published, in press or submitted) produced under this Cooperative Agreement and 30 first-authored conference presentations. The tasks outlined in the various proposals are listed below with a brief comment as to the research performed. Copies of title/abstract pages of peer-reviewed publications are attached.

  17. Aerosol effect on Umkehr ozone profiles using Stratospheric Aerosol and Gas Experiment II measurements

    NASA Technical Reports Server (NTRS)

    Newchurch, M. J.; Cunnold, D. M.

    1994-01-01

    This study examines 1211 cases of coincident ozone profiles derived from 1164 Umkehrs and 928 Stratospheric Aerosol and Gas Experiment II (SAGE II) profiles within 1000 km and 12 hours between October 1984 and April 1989 to study the stratospheric-aerosol effect on Umkehr ozone profiles. Because of the close correspondence of stratospheric aerosol optical depth at the SAGE II-measured 0.525-micrometer wavelength and the extrapolated 0.32 Umkehr wavelength determined in this study we use the 0.525-micrometer data to determine the aerosol effect on Umkehr profiles. At the 95% confidence level, we find the following errors to the Umkehr ozone amounts: in Umkehr layer 9 (-2.9 +/- 2.1), layer 8 (-2.3 +/- 1.1), layer 7 (0.1 +/- 1.1), layer 6 (2.2 +/- 1.0), layer 5 (-1.5 +/- 0.8), and layer 4 (-2.4 +/- 1.7) in percent ozone amount per 0.01 stratospheric aerosol optical depth. These results agree with previous theoretical and empirical studies within their respective error bounds in layers 9, 8, and 7. The results in layers 6, 5, and 4 differ significantly from those in previous works. Using only those eight stations with more than 47 coincidences results in mean aerosol effects that are not significantly different from the 14-station results. Because SAGE II and Umkehr produce different ozone retrievals in layer 9 and because the intralayer correlation of SAGE II ozone and aerosol in layer 9 is nonzero, one must exercise some caution in attributing the entire SAGE II-Umkehr difference in this layer to an aerosol effect.

  18. Comparison of Asian aerosol's radiative effect in Seoul and Gosan, Korea

    NASA Astrophysics Data System (ADS)

    Yoon, S.; Lee, S.; Choi, I.

    2007-05-01

    Seasonal variations of aerosol optical properties as well as their direct radiative effects were investigated using the ground-based aerosol measurements and an optical model calculation in Seoul, a mega city, and Gosan, a background rural island, Korea. From the yearly AERONET dataset, our analysis of seasonal and monthly cycle of aerosol optical depth (AOD) shows that AODs in Seoul are higher than those in Gosan because of the higher concentrations of water soluble ions in Seoul. Especially, seasonal AOD differences of both sites becomes maximum in Summer due to the synoptic meteorological patterns and hygroscopic growth of anthropogenic aerosols. OPAC (Optical Properties of Aerosol and Clouds) model and Fu-Liou RTM (Radiative Transfer Model) were employed for the evaluation of aerosol direct radiative forcing (ADRF) at surface and top of the atmosphere (TOA). A method of determining the values of aerosol optical properties as input parameters was utilized for the ADRF calculation from the AERONET dataset. In each season, the mean ADRF in Seoul turned out to be larger than that of Gosan. The ADRF in Gosan from RTM calculation was compared with the ground-based radiation measurements during the ACE-Asia IOP in 2001 and the ABC-EAREX2005 IOP in 2005. In addition, ADRF contributions by chemical compositions were compared in this study between Seoul and Gosan.

  19. Urban aerosol effects on surface insolation and surface temperature

    NASA Astrophysics Data System (ADS)

    Jin, M.; Burian, S. J.; Remer, L. A.; Shepherd, M. J.

    2007-12-01

    Urban aerosol particulates may play a fundamental role in urban microclimates and city-generated mesoscale circulations via its effects on energy balance of the surface. Key questions that need to be addressed include: (1) How do these particles affect the amount of solar energy reaching the surface and resulting surface temperature? (2) Is the effect the same in all cities? and (3) How does it vary from city to city? Using NASA AERONET in-situ observations, a radiative transfer model, and a regional climate mode (MM5), we assess aerosol effects on surface insolation and surf ace temperature for dense urban-polluted regions. Two big cities, one in a developing country (Beijing, P.R. China) and another in developed country (New York City, USA), are selected for inter-comparison. The study reveals that aerosol effects on surface temperature depends largely on aerosols' optical and chemical properties as well as atmosphere and land surface conditions, such as humidity and land cover. Therefore, the actual magnitudes of aerosol effects differ from city to city. Aerosol measurements from AERONET show both average and extreme cases for aerosol impacts on surface insolation. In general, aerosols reduce surface insolation by 30Wm-2. Nevertheless, in extreme cases, such reduction can exceed 100 Wm-2. Consequently, this reduces surface skin temperature 2-10C in an urban environment.

  20. Influence of the vertical absorption profile of mixed Asian dust plumes on aerosol direct radiative forcing over East Asia

    NASA Astrophysics Data System (ADS)

    Noh, Young Min; Lee, Kwonho; Kim, Kwanchul; Shin, Sung-Kyun; Müller, Detlef; Shin, Dong Ho

    2016-08-01

    We estimate the aerosol direct radiative forcing (ADRF) and heating rate profiles of mixed East Asian dust plumes in the solar wavelength region ranging from 0.25 to 4.0 μm using the Santa Barbara Discrete Ordinate Atmospheric Radiative Transfer (SBDART) code. Vertical profiles of aerosol extinction coefficients and single-scattering albedos (SSA) were derived from measurements with a multi-wavelength Raman lidar system. The data are used as input parameters for our radiative transfer calculations. We considered four cases of radiative forcing in SBDART: 1. dust, 2. pollution, 3. mixed dust plume and the use of vertical profiles of SSA, and 4. mixed dust plumes and the use of column-averaged values of SSA. In our sensitivity study we examined the influence of SSA and aerosol layer height on our results. The ADRF at the surface and in the atmosphere shows a small dependence on the specific shape of the aerosol extinction vertical profile and its light-absorption property for all four cases. In contrast, at the top of the atmosphere (TOA), the ADRF is largely affected by the vertical distribution of the aerosols extinction. This effect increases if the light-absorption capacity (decrease of SSA) of the aerosols increases. We find different radiative effects in situations in which two layers of aerosols had different light-absorption properties. The largest difference was observed at the TOA for an absorbing aerosol layer at high altitude in which we considered in one case the vertical profile of SSA and in another case the column-averaged SSA only. The ADRF at the TOA increases when the light-absorbing aerosol layer is located above 3 km altitude. The differences between height-resolved SSA, which can be obtained from lidar data, and total layer-mean SSA indicates that the use of a layer-mean SSA can be rather misleading as it can induce a large error in the calculation of the ADRF at the TOA, which in turn may cause errors in the vertical profiles of heating rates.

  1. Aerosol, Cloud and Trace Gas Observations Derived from Airborne Hyperspectral Radiance and Direct Beam Measurements in Recent Field Campaigns

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; LeBlanc, S.; Russell, P. B.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.; Johnson, R. R.

    2014-01-01

    The AERONET (AErosol RObotic NETwork) ground-based suite of sunphotometers provides measurements of spectral aerosol optical depth (AOD), precipitable water and spectral sky radiance, which can be inverted to retrieve aerosol microphysical properties that are critical to assessments of aerosol-climate interactions. Because of data quality criteria and sampling constraints, there are significant limitations to the temporal and spatial coverage of AERONET data and their representativeness for global aerosol conditions. The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument, jointly developed by NASA Ames and PNNL with NASA Goddard collaboration, combines airborne sun tracking and AERONET-like sky scanning with spectroscopic detection. Being an airborne instrument, 4STAR has the potential to fill gaps in the AERONET data set. Dunagan et al. [2013] present results establishing the performance of the instrument, along with calibration, engineering flight test, and preliminary scientific field data. The 4STAR instrument operated successfully in the SEAC4RS [Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys] experiment in Aug./Sep. 2013 aboard the NASA DC-8 and in the DoE [Department of Energy]-sponsored TCAP [Two Column Aerosol Project, July 2012 & Feb. 2013] experiment aboard the DoE G-1 aircraft (Shinozuka et al., 2013), and acquired a wealth of data in support of mission objectives on all SEAC4RS and TCAP research flights. 4STAR provided direct beam measurements of hyperspectral AOD, columnar trace gas retrievals (H2O, O3, NO2; Segal-Rosenheimer et al., 2014), and the first ever airborne hyperspectral sky radiance scans, which can be inverted to yield the same products as AERONET ground-based observations. In addition, 4STAR measured zenith radiances underneath cloud decks for retrievals of cloud optical depth and effective diameter. In this presentation, we provide an overview of the new

  2. Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model

    NASA Astrophysics Data System (ADS)

    Fast, Jerome D.; Gustafson, William I.; Easter, Richard C.; Zaveri, Rahul A.; Barnard, James C.; Chapman, Elaine G.; Grell, Georg A.; Peckham, Steven E.

    2006-11-01

    A new fully coupled meteorology-chemistry-aerosol model is used to simulate the urban- to regional-scale variations in trace gases, particulates, and aerosol direct radiative forcing in the vicinity of Houston over a 5 day summer period. Model performance is evaluated using a wide range of meteorological, chemistry, and particulate measurements obtained during the 2000 Texas Air Quality Study. The predicted trace gas and particulate distributions were qualitatively similar to the surface and aircraft measurements with considerable spatial variations resulting from urban, power plant, and industrial sources of primary pollutants. Sulfate, organic carbon, and other inorganics were the largest constituents of the predicted particulates. The predicted shortwave radiation was 30 to 40 W m-2 closer to the observations when the aerosol optical properties were incorporated into the shortwave radiation scheme; however, the predicted hourly aerosol radiative forcing was still underestimated by 10 to 50 W m-2. The predicted aerosol radiative forcing was larger over Houston and the industrial ship channel than over the rural areas, consistent with surface measurements. The differences between the observed and simulated aerosol radiative forcing resulted from transport errors, relative humidity errors in the upper convective boundary layer that affect aerosol water content, secondary organic aerosols that were not yet included in the model, and uncertainties in the primary particulate emission rates. The current model was run in a predictive mode and demonstrates the challenges of accurately simulating all of the meteorological, chemical, and aerosol parameters over urban to regional scales that can affect aerosol radiative forcing.

  3. Effect of Aerosols on Surface Radiation and Air Quality in the Central American Region Estimated Using Satellite UV Instruments

    NASA Astrophysics Data System (ADS)

    Bhartia, P. K.; Torres, O.; Krotkov, N. A.

    2007-05-01

    Solar radiation reaching the Earth's surface is reduced by both aerosol scattering and aerosol absorption. Over many parts of the world the latter effect can be as large or larger than the former effect, and small changes in the aerosol single scattering albedo can either cancel the former effect or enhance it. In addition, absorbing aerosols embedded in clouds can greatly reduce the amount of radiation reaching the surface by multiple scattering. Though the potential climatic effects of absorbing aerosols have received considerable attention lately, their effect on surface UV, photosynthesis, and photochemistry can be equally important for our environment and may affect human health and agricultural productivity. Absorption of all aerosols commonly found in the Earth's atmosphere becomes larger in the UV and blue wavelengths and has a relatively strong wavelength dependence. This is particularly true of mineral dust and organic aerosols. However, these effects have been very difficult to estimate on a global basis since the satellite instruments that operate in the visible are primarily sensitive to aerosol scattering. A notable exception is the UV Aerosol Index (AI), first produced using NASA's Nimbus-7 TOMS data. AI provides a direct measure of the effect of aerosol absorption on the backscattered UV radiation in both clear and cloudy conditions, as well as over snow/ice. Although many types of aerosols produce a distinct color cast in the visible images, and aerosols absorption over clouds and snow/ice could, in principle be detected from their color, so far this technique has worked well only in the UV. In this talk we will discuss what we have learned from the long-term record of AI produced from TOMS and Aura/OMI about the possible role of aerosols on surface radiation and air quality in the Central American region.

  4. Aerosol direct radiative forcing in desert and semi-desert regions of northwestern China

    NASA Astrophysics Data System (ADS)

    Xin, Jinyuan; Gong, Chongshui; Wang, Shigong; Wang, Yuesi

    2016-05-01

    The optical properties of dust aerosols were measured using narrow-band data from a portable sun photometer at four desert and semi-desert stations in northwestern China from 2004 to 2007. Ground-based and satellite observations indicated absorbing dust aerosol loading over the region surrounded by eight large-scale deserts. Radiation forcing was identified by using the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model. The ranges of annual mean aerosol optical depth (AOD), Angström exponents, and single-scattering albedo (SSA) were from 0.25 to 0.35, from - 0.73 to 1.18, and from 0.77 to 0.86, respectively. The ranges of annual mean aerosol direct radiative forcing values at the top of the atmosphere (TOA), mid-atmosphere, and on the surface were from 3.9 to 12.0, from 50.0 to 53.1, and from - 39.1 to - 48.1 W/m2, respectively. The aerosols' optical properties and radiative characteristics showed strong seasonal variations in both the desert and semi-desert regions. Strong winds and relatively low humidity will lead dust aerosols in the atmosphere to an increase, which played greatly affected these optical properties during spring and winter in northwestern China. Based on long-term observations and retrieved data, aerosol direct radiative forcing was confirmed to heat the atmosphere (50-53 W/m2) and cool the surface (- 39 to - 48 W/m2) above the analyzed desert. Radiative forcing in the atmosphere in spring and winter was 18 to 21 W/m2 higher than other two seasons. Based on the dust sources around the sites, the greater the AOD, the more negative the forcing. The annual averaged heating rates for aerosols close to the ground (1 km) were approximately 0.80-0.85 K/day.

  5. EFFECT OF ACIDITY ON SECONDARY ORGANIC AEROSOL FORMATION FROM ISOPRENE

    EPA Science Inventory

    The effect of particle-phase acidity on secondary organic aerosol (SOA) formation from isoprene is investigated in a laboratory chamber study, in which the acidity of the inorganic seed aerosol was controlled systematically. The observed enhancement in SOA mass concentration is c...

  6. Modeling Trends in Tropospheric Aerosol Burden & Its Radiative Effects

    EPA Science Inventory

    Large changes in emissions of aerosol precursors have occurred across the southeast U.S., North America, as well as the northern hemisphere. The spatial heterogeneity and contrasting trends in the aerosol burden is resulting in differing effects on regional radiative balance. Mul...

  7. On the influence of the diurnal variations of aerosol content to estimate direct aerosol radiative forcing using MODIS data

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Guo, Jianping; Ceamanos, Xavier; Roujean, Jean-Louis; Min, Min; Carrer, Dominique

    2016-09-01

    Long-term measurements of aerosol optical depth (AOD) from the Aerosol Robotic Network (AERONET) located in Beijing reveal a strong diurnal cycle of aerosol load staged by seasonal patterns. Such pronounced variability is matter of importance in respect to the estimation of daily averaged direct aerosol radiative forcing (DARF). Polar-orbiting satellites could only offer a daily revisit, which turns in fact to be even much less in case of frequent cloudiness. Indeed, this places a severe limit to properly capture the diurnal variations of AOD and thus estimate daily DARF. Bearing this in mind, the objective of the present study is however to evaluate the impact of AOD diurnal variations for conducting quantitative assessment of DARF using Moderate Resolution Imaging Spectroradiometer (MODIS) AOD data over Beijing. We provide assessments of DARF with two different assumptions about diurnal AOD variability: taking the observed hourly-averaged AOD cycle into account and assuming constant MODIS (including Terra and Aqua) AOD value throughout the daytime. Due to the AOD diurnal variability, the absolute differences in annual daily mean DARFs, if the constant MODIS/Terra (MODIS/Aqua) AOD value is used instead of accounting for the observed hourly-averaged daily variability, is 1.2 (1.3) Wm-2 at the top of the atmosphere, 27.5 (30.6) Wm-2 at the surface, and 26.4 (29.3) Wm-2 in the atmosphere, respectively. During the summertime, the impact of the diurnal AOD variability on seasonal daily mean DARF estimates using MODIS Terra (Aqua) data can reach up to 2.2 (3.9) Wm-2 at the top of the atmosphere, 43.7 (72.7) Wm-2 at the surface, and 41.4 (68.8) Wm-2 in the atmosphere, respectively. Overall, the diurnal variation in AOD tends to cause large bias in the estimated DARF on both seasonal and annual scales. In summertime, the higher the surface albedo, the stronger impact on DARF at the top of the atmosphere caused by dust and biomass burning (continental) aerosol. This

  8. Direct aerosol chemical composition measurements to evaluate the physicochemical differences between controlled sea spray aerosol generation schemes

    NASA Astrophysics Data System (ADS)

    Collins, D. B.; Zhao, D. F.; Ruppel, M. J.; Laskina, O.; Grandquist, J. R.; Modini, R. L.; Stokes, M. D.; Russell, L. M.; Bertram, T. H.; Grassian, V. H.; Deane, G. B.; Prather, K. A.

    2014-11-01

    Controlled laboratory studies of the physical and chemical properties of sea spray aerosol (SSA) must be under-pinned by a physically and chemically accurate representation of the bubble-mediated production of nascent SSA particles. Bubble bursting is sensitive to the physico-chemical properties of seawater. For a sample of seawater, any important differences in the SSA production mechanism are projected into the composition of the aerosol particles produced. Using direct chemical measurements of SSA at the single-particle level, this study presents an intercomparison of three laboratory-based, bubble-mediated SSA production schemes: gas forced through submerged sintered glass filters ("frits"), a pulsed plunging-waterfall apparatus, and breaking waves in a wave channel filled with natural seawater. The size-resolved chemical composition of SSA particles produced by breaking waves is more similar to particles produced by the plunging waterfall than those produced by sintered glass filters. Aerosol generated by disintegrating foam produced by sintered glass filters contained a larger fraction of organic-enriched particles and a different size-resolved elemental composition, especially in the 0.8-2 μm dry diameter range. Interestingly, chemical differences between the methods only emerged when the particles were chemically analyzed at the single-particle level as a function of size; averaging the elemental composition of all particles across all sizes masked the differences between the SSA samples. When dried, SSA generated by the sintered glass filters had the highest fraction of particles with spherical morphology compared to the more cubic structure expected for pure NaCl particles produced when the particle contains relatively little organic carbon. In addition to an intercomparison of three SSA production methods, the role of the episodic or "pulsed" nature of the waterfall method on SSA composition was under-taken. In organic-enriched seawater, the continuous

  9. Quantification of regional radiative impacts and climate effects of tropical fire aerosols

    NASA Astrophysics Data System (ADS)

    Tosca, M. G.; Zender, C. S.; Randerson, J. T.

    2011-12-01

    Regionally expansive smoke clouds originating from deforestation fires in Indonesia can modify local precipitation patterns via direct aerosol scattering and absorption of solar radiation (Tosca et al., 2010). Here we quantify the regional climate impacts of fire aerosols for three tropical burning regions that together account for about 70% of global annual fire emissions. We use the Community Atmosphere Model, version 5 (CAM5) coupled to a slab ocean model (SOM) embedded within the Community Earth System Model (CESM). In addition to direct aerosol radiative effects, CAM5 also quantifies indirect, semi-direct and cloud microphysical aerosol effects. Climate impacts are determined using regionally adjusted emissions data that produce realistic aerosol optical depths in CAM5. We first analyzed a single 12-year transient simulation (1996-2007) forced with unadjusted emissions estimates from the Global Fire Emissions Database, version 3 (GFEDv3) and compared the resulting aerosol optical depths (AODs) for 4 different burning regions (equatorial Asia, southern Africa, South America and boreal North America) to observed MISR and MODIS AODs for the same period. Based on this analysis we adjusted emissions for each burning region between 150 and 300% and forced a second simulation with the regionally adjusted emissions. Improved AODs from this simulation are compared to AERONET observations available at 15 stations throughout the tropics. We present here two transient simulations--one with the adjusted fire emissions and one without fires--to quantify the cumulative fire aerosol climate impact for three major tropical burning regions (equatorial Asia, southern Africa and South America). Specifically, we quantify smoke effects on radiation, precipitation, and temperature. References Tosca, M.G., J.T. Randerson, C.S. Zender, M.G. Flanner and P.J. Rasch (2010), Do biomass burning aerosols intensify drought in equatorial Asia during El Nino?, Atmos. Chem. Phys., 10, 3515

  10. Simulations of aerosols and their effects on photolysis and ozone formation in Mexico City

    NASA Astrophysics Data System (ADS)

    Li, G.; Zavala, M.; Lei, W.; Karydis, V. A.; Tsimpidi, A. P.; Pandis, S.; Molina, L. T.

    2009-04-01

    Atmospheric aerosols, formed from natural and anthropogenic sources, are believed to be associated with adverse human effects at high levels in polluted urban areas. They also play a key role in climate through direct and indirect effects. Therefore, accurate simulations of aerosol composition and distribution in the atmospheric models are important in evaluating their impact on environment and climate. In the present study, a flexible gas phase chemical module with SAPRC mechanism and the CMAQ/models3 aerosol module developed by EPA have been implemented into the WRF-CHEM model. Additionally, to further improve the aerosol, especially the secondary organic aerosol (SOA) simulations, an advanced SOA module [Tsimpidi et al., 2009] has been incorporated into the WRF-CHEM model. The new SOA module is based on the volatility basis-set approach in which both primary and secondary organic components are assumed to be semivolatile and photochemically reactive [Lane et al., 2008]. Gas phase species and aerosol simulation results are compared with the available measurements obtained during the MILAGRO 2006 campaign. When the advanced SOA mechanism is employed, the SOA simulations are significantly improved. Furthermore, the aerosol impacts on the photochemistry in Mexico City have been evaluated using the FTUV [Tie et al., 2005]. Aerosol optical properties are calculated using the Mie theory and compared with available observations in Mexico City [Paredes-Miranda et al., 2008]. Aerosols, principally black carbon, reduce the photolysis frequencies of J[O3(1D)] and J[NO2] in the planetary boundary layer and hence decrease the ground-level ozone concentration. Our study demonstrates that the impact of aerosols on photochemistry is significant in polluted urban atmosphere. References: Lane, T. E., N. M. Donahue, and S. N. Pandis (2008), Simulating secondary organic aerosol formation using the volatility basis-set approach in a chemical transport model, PMCAMx, Atmos. Environ

  11. EFFECTS OF SULFURIC ACID AEROSOLS ON VEGETATION

    EPA Science Inventory

    A continuous flow system for exposing plants to submicron aerosols of sulfuric acid has been developed and an operational model has been constructed. Exposure chambers have been designed to allow simultaneous exposures of the same plant to aerosol and control environments. All su...

  12. Characterization of Mojave Desert aerosols: Their effect on radiometer performance

    SciTech Connect

    Mathews, L.A.; Salgado, D.P.; Walker, P.L.

    1994-12-31

    The Antelope Valley is part of the southwestern Mojave Desert lying fifty miles north of Los Angeles International Airport. The Antelope Valley is separated from the Los Angeles and San Fernando Valley air basins by the San Gabriel Mountains. The Tehachapi Mountains, to the west, separate the Antelope Valley from the San Joaquin Valley. Combustion aerosols are transported from the San Joaquin Valley through the Tehachapi Pass and through the Soledad and Cajun passes from the Los Angeles air basin. Thus the valley`s atmosphere contains a spatially and temporally complex mixture of aerosols of urban, industrial and desert origin. The Visibility Impact Summer Study held from July to September 1990 was an intense, comprehensive study intended to measure aerosol size and chemical composition and to ascertain their optical effects. Size distributions for particle diameters from 0.01 to 10 {micro} were measured at hourly intervals and particle samplers were used to obtain chemical compositions at daily intervals at Tehachapi Pass and Edwards AFB, California. The extracted aerosol characteristics are discussed and compared to the desert aerosol model in LOWTRAN and the size and estimated composition of aerosols at China Lake reported upon earlier. The authors obtain relationships between aerosol mass and wind speed, diurnal size changes, and meteorological effects. Secondarily, extinction was calculated and used with LOWTRAN and radiosonde data for examination of aerosol effects on narrow band 3--5 and 8--12 {micro} imaging radiometer performance.

  13. How Do Aerosol Radiative Effects Influence Wind? a Sensitivity Study of the Aerosol Impact on the Spatially-Distributed Wind over Europe

    NASA Astrophysics Data System (ADS)

    Baro Esteban, R.; Lorente-Plazas, R.; Jerez, S.; Montavez, J. P.; Jimenez-guerrero, P.

    2014-12-01

    Atmospheric aerosols affect the Earth's climate through their radiative effects, being one of the most uncertain areas in climate modeling. Radiative effects depend mainly on the aerosol optical properties and can be divided into direct and semi-direct effect, produced by the scattering and absorption of radiation; and indirect effect, which influences the aerosols-cloud interactions. Aerosols are widely known to affect radiation, temperature, stability, clouds, and precipitation. However, scientific literature about their effects on wind is scarce. In this sense, the effects of aerosol particles on spatially-distributed winds over Europe are examined. The methodology carried out consists of two WRF-Chem simulations for Europe for the entire year 2010 differing only in the inclusion (or not) of aerosol radiative feedbacks. These simulations have been carried out under the umbrella of the second phase of the AQMEII (Air Quality Model Evaluation International Initiative, http://aqmeii.jrc.ec.europa.eu/). A Euro-CORDEX compliant domain at 0.22º and 23 km resolution has been used. The first simulation does not take into account any aerosol feedbacks (NFB) and the second simulation differs from the base case by the inclusion of direct and indirect radiative feedbacks (FB). Results show that the presence of aerosol generally reduces the wind over Europe. The absorption and scattering of solar radiation by the aerosol particles heat the air and cool the ground temperature leading to an atmospheric stability. This increases the atmospheric stability and decreases the turbulence, as consequence the vertical transfer of momentum diminishes and the surface winds are slower. In addition, the decrease of solar radiation to the ground weakens the thermal circulations, such as land-sea breezes which is more noticeable in the southern of Europe in summer. On the other hand, the indirect effect of the aerosols through their enhancement of clouds also favors a decline of winds

  14. Evaluation of aerosol indirect radiative effects on climate in the EMAC model

    NASA Astrophysics Data System (ADS)

    Chang, Dong Yeong; Tost, Holger; Steil, Benedikt; Lelieveld, Jos

    2013-04-01

    Anthropogenic aerosol particles directly and indirectly influence cloud properties and the Earth's radiative energy budget. Several studies have estimated the effects on climate using global circulation models (GCMs), indicating large differences between different models and large uncertainty ranges. These are mostly attributed to different cloud microphysical process parameterizations and uncertainties in the representation of aerosols. Without detailed cloud microphysical processes, using empirical relations between aerosol number or mass and cloud droplet number potentially even large discrepancies may arise. In the present study, a mechanistic aerosol activation scheme, based on double moment cloud microphysics, is used to compute aerosol indirect radiative and cloud effects in the EMAC model. Aerosol activation is linked to the cloud droplet nucleation processes in warm clouds, accounting for the number, size, and chemical composition of particles under ambient meteorological conditions. This approach uses a combination of empirical and semi-empirical parameters to represent aerosol water uptake and hygroscopic growth into cloud droplets. To evaluate the performance of our approach satellite datasets are used; for example, total cloud fraction from MODIS data and cloud radiative forcing at the top of atmosphere from CERES EBAF data.

  15. Observations of relative humidity effects on aerosol light scattering in the Yangtze River Delta of China

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Sun, J. Y.; Shen, X. J.; Zhang, Y. M.; Che, H.; Ma, Q. L.; Zhang, Y. W.; Zhang, X. Y.; Ogren, J. A.

    2015-07-01

    Scattering of solar radiation by aerosol particles is highly dependent on relative humidity (RH) as hygroscopic particles take up water with increasing RH. To achieve a better understanding of the effect of aerosol hygroscopic growth on light scattering properties and radiative forcing, the aerosol scattering coefficients at RH in the range of 40 to ~ 90 % were measured using a humidified nephelometer system in the Yangtze River Delta of China in March 2013. In addition, the aerosol size distribution and chemical composition were measured. During the observation period, the mean and standard deviation (SD) of enhancement factors at RH = 85 % for the scattering coefficient (f(85 %)), backscattering coefficient (fb(85 %)), and hemispheric backscatter fraction (fβ(85 %)) were 1.58 ± 0.12, 1.25 ± 0.07, and 0.79 ± 0.04, respectively, i.e., aerosol scattering coefficient and backscattering coefficient increased by 58 and 25 % as the RH increased from 40 to 85 %. Concurrently, the aerosol hemispheric backscatter fraction decreased by 21 %. The relative amount of organic matter (OM) or inorganics in PM1 was found to be a main factor determining the magnitude of f(RH). The highest values of f(RH) corresponded to the aerosols with a small fraction of OM, and vice versa. The relative amount of NO3- in fine particles was strongly correlated with f(85 %), which suggests that NO3- played a vital role in aerosol hygroscopic growth during this study. The mass fraction of nitrate also had a close relationship to the curvature of the humidograms; higher mass fractions of nitrate were associated with humidograms that had the least curvature. Aerosol hygroscopic growth caused a 47 % increase in the calculated aerosol direct radiative forcing at 85 % RH, compared to the forcing at 40 % RH.

  16. Reallocation in modal aerosol models: impacts on predicting aerosol radiative effects

    NASA Astrophysics Data System (ADS)

    Korhola, T.; Kokkola, H.; Korhonen, H.; Partanen, A.-I.; Laaksonen, A.; Lehtinen, K. E. J.; Romakkaniemi, S.

    2014-01-01

    Atmospheric models often represent the aerosol particle size distribution with a modal approach, in which particles are described with log-normal modes within predetermined size ranges. This approach reallocates particles numerically from one mode to another for example during particle growth, potentially leading to artificial changes in the aerosol size distribution. In this study we analysed how the modal reallocation affects climate-relevant variables: cloud droplet number concentration (CDNC), aerosol-cloud interaction parameter (ACI) and light extinction coefficient (qext). The ACI parameter gives the response of CDNC to a change in total aerosol number concentration. We compared these variables between a modal model (with and without reallocation routines) and a high resolution sectional model, which was considered a reference model. We analysed the relative differences in the chosen variables in four experiments designed to assess the influence of atmospheric aerosol processes. We find that limiting the allowed size ranges of the modes, and subsequent remapping of the distribution, leads almost always to an underestimation of cloud droplet number concentrations (by up to 100%) and an overestimation of light extinction (by up to 20%). On the other hand, the aerosol-cloud interaction parameter can be either over- or underestimated by the reallocating model, depending on the conditions. For example, in the case of atmospheric new particle formation events followed by rapid particle growth, the reallocation can cause on average a 10% overestimation of the ACI parameter. Thus it is shown that the reallocation affects the ability of a model to estimate aerosol climate effects accurately, and this should be taken into account when using and developing aerosol models.

  17. Aerosol composition and sources during the Chinese Spring Festival: fireworks, secondary aerosol, and holiday effects

    NASA Astrophysics Data System (ADS)

    Jiang, Q.; Sun, Y. L.; Wang, Z.; Yin, Y.

    2015-06-01

    Aerosol particles were characterized by an Aerodyne aerosol chemical speciation monitor along with various collocated instruments in Beijing, China, to investigate the role of fireworks (FW) and secondary aerosol in particulate pollution during the Chinese Spring Festival of 2013. Three FW events, exerting significant and short-term impacts on fine particles (PM2.5), were observed on the days of Lunar New Year, Lunar Fifth Day, and Lantern Festival. The FW were shown to have a large impact on non-refractory potassium, chloride, sulfate, and organics in submicron aerosol (PM1), of which FW organics appeared to be emitted mainly in secondary, with its mass spectrum resembling that of secondary organic aerosol (SOA). Pollution events (PEs) and clean periods (CPs) alternated routinely throughout the study. Secondary particulate matter (SPM = SOA + sulfate + nitrate + ammonium) dominated the total PM1 mass on average, accounting for 63-82% during nine PEs in this study. The elevated contributions of secondary species during PEs resulted in a higher mass extinction efficiency of PM1 (6.4 m2 g-1) than during CPs (4.4 m2 g-1). The Chinese Spring Festival also provides a unique opportunity to study the impact of reduced anthropogenic emissions on aerosol chemistry in the city. Primary species showed ubiquitous reductions during the holiday period with the largest reduction being in cooking organic aerosol (OA; 69%), in nitrogen monoxide (54%), and in coal combustion OA (28%). Secondary sulfate, however, remained only slightly changed, and the SOA and the total PM2.5 even slightly increased. Our results have significant implications for controlling local primary source emissions during PEs, e.g., cooking and traffic activities. Controlling these factors might have a limited effect on improving air quality in the megacity of Beijing, due to the dominance of SPM from regional transport in aerosol particle composition.

  18. A Simple Model of Global Aerosol Indirect Effects

    NASA Technical Reports Server (NTRS)

    Ghan, Steven J.; Smith, Steven J.; Wang, Minghuai; Zhang, Kai; Pringle, Kirsty; Carslaw, Kenneth; Pierce, Jeffrey; Bauer, Susanne; Adams, Peter

    2013-01-01

    Most estimates of the global mean indirect effect of anthropogenic aerosol on the Earth's energy balance are from simulations by global models of the aerosol lifecycle coupled with global models of clouds and the hydrologic cycle. Extremely simple models have been developed for integrated assessment models, but lack the flexibility to distinguish between primary and secondary sources of aerosol. Here a simple but more physically based model expresses the aerosol indirect effect (AIE) using analytic representations of cloud and aerosol distributions and processes. Although the simple model is able to produce estimates of AIEs that are comparable to those from some global aerosol models using the same global mean aerosol properties, the estimates by the simple model are sensitive to preindustrial cloud condensation nuclei concentration, preindustrial accumulation mode radius, width of the accumulation mode, size of primary particles, cloud thickness, primary and secondary anthropogenic emissions, the fraction of the secondary anthropogenic emissions that accumulates on the coarse mode, the fraction of the secondary mass that forms new particles, and the sensitivity of liquid water path to droplet number concentration. Estimates of present-day AIEs as low as 5 W/sq m and as high as 0.3 W/sq m are obtained for plausible sets of parameter values. Estimates are surprisingly linear in emissions. The estimates depend on parameter values in ways that are consistent with results from detailed global aerosol-climate simulation models, which adds to understanding of the dependence on AIE uncertainty on uncertainty in parameter values.

  19. Assessment of aerosol optical property and radiative effect for the layer decoupling cases over the northern South China Sea during the 7-SEAS/Dongsha Experiment

    NASA Astrophysics Data System (ADS)

    Pani, Shantanu Kumar; Wang, Sheng-Hsiang; Lin, Neng-Huei; Tsay, Si-Chee; Lolli, Simone; Chuang, Ming-Tung; Lee, Chung-Te; Chantara, Somporn; Yu, Jin-Yi

    2016-05-01

    The aerosol radiative effect can be modulated by the vertical distribution and optical properties of aerosols, particularly when aerosol layers are decoupled. Direct aerosol radiative effects over the northern South China Sea (SCS) were assessed by incorporating an observed data set of aerosol optical properties obtained from the Seven South East Asian Studies (7-SEAS)/Dongsha Experiment into a radiative transfer model. Aerosol optical properties for a two-layer structure of aerosol transport were estimated. In the radiative transfer calculations, aerosol variability (i.e., diversity of source region, aerosol type, and vertical distribution) for the complex aerosol environment was also carefully quantified. The column-integrated aerosol optical depth (AOD) at 500 nm was 0.1-0.3 for near-surface aerosols and increased 1-5 times in presence of upper layer biomass-burning aerosols. A case study showed the strong aerosol absorption (single-scattering albedo (ω) ≈ 0.92 at 440 nm wavelength) exhibited by the upper layer when associated with predominantly biomass-burning aerosols, and the ω (≈0.95) of near-surface aerosols was greater than that of the upper layer aerosols because of the presence of mixed type aerosols. The presence of upper level aerosol transport could enhance the radiative efficiency at the surface (i.e., cooling) and lower atmosphere (i.e., heating) by up to -13.7 and +9.6 W m-2 per AOD, respectively. Such enhancement could potentially modify atmospheric stability, can influence atmospheric circulation, as well as the hydrological cycle over the tropical and low-latitude marginal northern SCS.

  20. An increase in aerosol burden and radiative effects in a warmer world

    NASA Astrophysics Data System (ADS)

    Allen, Robert J.; Landuyt, William; Rumbold, Steven T.

    2016-03-01

    Atmospheric aerosols are of significant environmental importance, due to their effects on air quality, as well as their ability to alter the planet’s radiative balance. Recent studies characterizing the effects of climate change on air quality and the broader distribution of aerosols in the atmosphere show significant, but inconsistent results, including the sign of the effect. Using a suite of state-of-the-art climate models, we show that climate change is associated with a negative aerosol-climate feedback of -0.02 to -0.09 W m-2 K-1 for direct radiative effects, with much larger values likely for indirect radiative effects. This is related to an increase in most aerosol species, particularly over the tropics and Northern Hemisphere midlatitudes, largely due to a decrease in wet deposition associated with less large-scale precipitation over land. Although simulation of aerosol processes in global climate models possesses uncertainty, we conclude that climate change may increase aerosol burden and surface concentration, which may have implications for future air quality.

  1. Clinical side effects during aerosol therapy: cutaneous and ocular effects.

    PubMed

    Geller, David E

    2007-01-01

    Aerosolized medications maximize clinical benefit by targeting the airways and minimize side effects by reducing (though not eliminating) systemic exposure. Aerosolized drugs delivered with a facemask may inadvertently deposit on the face and in the eyes, raising concerns about cutaneous and ocular side effects with these drugs. Cases of anisocoria have been reported from exposure of the eyes to aerosol bronchodilators. Whether inhaled corticosteroids (ICS) can cause skin and eye problems like those seen with systemic or topical steroids is more difficult to answer. Patients who take ICS may have other corticosteroid exposures, or have other conditions that predispose them to side effects, making the analysis of the ICS risk challenging. Also, many studies were not designed to search for cutaneous or ocular effects, or may have been too short to detect these effects. Nevertheless, ICS have been associated with an increased risk of skin thinning, bruising, cataracts and possibly glaucoma in adults, but not in children. The risks increase with advanced age, higher doses, and longer duration of use. In children, the risks of cataracts and glaucoma were negligible with ICS, whether a mouthpiece or a mask interface was used. Side effects like skin rash and conjunctivitis occurred at low frequencies similar to placebo or comparator drugs. We do not know whether exposed children will have increased risks from ICS later in life. Therefore, it is wise to avoid face and eye deposition when possible, and to use the minimally effective dose. PMID:17411401

  2. Effect of Dust and Anthropogenic Aerosols on Columnar Aerosol Optical Properties over Darjeeling (2200 m asl), Eastern Himalayas, India

    PubMed Central

    Chatterjee, Abhijit; Ghosh, Sanjay K.; Adak, Anandamay; Singh, Ajay K.; Devara, Panuganti C. S.; Raha, Sibaji

    2012-01-01

    Background The loading of atmospheric particulate matter (aerosol) in the eastern Himalaya is mainly regulated by the locally generated anthropogenic aerosols from the biomass burning and by the aerosols transported from the distance sources. These different types of aerosol loading not only affect the aerosol chemistry but also produce consequent signature on the radiative properties of aerosol. Methodology/Principal Findings An extensive study has been made to study the seasonal variations in aerosol components of fine and coarse mode aerosols and black carbon along with the simultaneous measurements of aerosol optical depth on clear sky days over Darjeeling, a high altitude station (2200 masl) at eastern Himalayas during the year 2008. We observed a heavy loading of fine mode dust component (Ca2+) during pre-monsoon (Apr – May) which was higher by 162% than its annual mean whereas during winter (Dec – Feb), the loading of anthropogenic aerosol components mainly from biomass burning (fine mode SO42− and black carbon) were higher (76% for black carbon and 96% for fine mode SO42−) from their annual means. These high increases in dust aerosols during pre-monsoon and anthropogenic aerosols during winter enhanced the aerosol optical depth by 25 and 40%, respectively. We observed that for every 1% increase in anthropogenic aerosols, AOD increased by 0.55% during winter whereas for every 1% increase in dust aerosols, AOD increased by 0.46% during pre-monsoon. Conclusion/Significance The natural dust transport process (during pre-monsoon) plays as important a role in the radiation effects as the anthropogenic biomass burning (during winter) and their differential effects (rate of increase of the AOD with that of the aerosol concentration) are also very similar. This should be taken into account in proper modeling of the atmospheric environment over eastern Himalayas. PMID:22792264

  3. Effects of Aerosols over the Indian Ocean

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Aerosols that contain black carbon both absorb and reflect incoming sunlight. Even as these atmospheric particles reduce the amount of sunlight reaching the surface, they increase the amount of solar energy absorbed in the atmosphere, thus making it possible to both cool the surface and warm the atmosphere. The images above show satellite measurements of the region studied during the Indian Ocean Experiment (INDOEX)a vast region spanning the Arabian Sea and Bay of Bengal (west to east), and from the foot of the Himalayan Mountains, across the Indian subcontinent to the southern Indian Ocean (north to south). The Aerosol images show aerosol pollution (brownish pixels) in the lower atmosphere over the INDOEX study area, as measured by the Moderate-resolution Imaging Spectroradiometer (MODIS) aboard Terra. These were composited from March 14-21, 2001. The Albedo images show the total solar energy reflected back to space, as measured by Clouds and Earth's Radiant Energy System (CERES) aboard Terra. White pixels show high values, greens are intermediate values, and blues are low. Note how the aerosols, particularly over the ocean, increase the amount of energy reflected back to space. The Atmospheric Warming images show the absorption of the black carbon aerosols in the atmosphere. Where the aerosols are most dense, the absorption is highest. Red pixels indicate the highest levels of absorption, blues are low. The Surface Cooling images show that the aerosol particles reduce the amount of sunlight reaching the surface. Dark pixels show where the aerosols exert their cooling influence on the surface (or a high magnitude of negative radiative forcing). The bright pixels show where there is much less aerosol pollution and the incoming sunlight is relatively unaffected.

  4. Aerosol chemical characterization and role of carbonaceous aerosol on radiative effect over Varanasi in central Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Tiwari, S.; Dumka, U. C.; Kaskaoutis, D. G.; Ram, Kirpa; Panicker, A. S.; Srivastava, M. K.; Tiwari, Shani; Attri, S. D.; Soni, V. K.; Pandey, A. K.

    2016-01-01

    This study investigates the chemical composition of PM10 aerosols at Varanasi, in the central Indo-Gangetic Plain (IGP) during April to July 2011, with emphasis on examining the contribution of elemental carbon (EC) to the estimates of direct aerosol radiative effect (DARE). PM10 samples are analysed for carbonaceous aerosols (Organic Carbon, OC and EC) and water-soluble ionic species (WSIS: Cl-, SO42-, NO3-, PO42- NH4+, Na+, K+, Mg2+ and Ca2+) and several diagnostic ratios (OC/EC, K+/EC, etc) have been also used for studying the aerosol sources at Varanasi. PM10 mass concentration varies between 53 and 310 μg m-3 (mean of 168 ± 73 μg m-3), which is much higher than the National and International air quality standards. The OC mass concentration varies from 6 μg m-3 to 24 μg m-3 (mean of 12 ± 5 μg m-3; 7% of PM10 mass), whereas EC ranges between 1.0 and 14.3 μg m-3 (4.4 ± 3.9 μg m-3; ˜3% of PM10 mass). The relative low OC/EC of 3.9 ± 2.0 and strong correlation (R2 = 0.82) between them suggest the dominance of primary carbonaceous aerosols. The contribution of WSIS to PM10 is found to be ˜12%, out of which ˜57% and 43% are anions and cations, respectively. The composite DARE estimates via SBDART model reveal significant radiative effect and atmospheric heating rates (0.9-2.3 K day-1). Although the EC contributes only ˜3% to the PM10 mass, its contribution to the surface and atmospheric forcing is significantly high (37-63% and 54-77%, respectively), thus playing a major role in climate implications over Varanasi.

  5. Effects of aerosol emission pathways on future warming and human health

    NASA Astrophysics Data System (ADS)

    Partanen, Antti-Ilari; Matthews, Damon

    2016-04-01

    The peak global temperature is largely determined by cumulative emissions of long-lived greenhouse gases. However, anthropogenic emissions include also so-called short-lived climate forcers (SLCFs), which include aerosol particles and methane. Previous studies with simple models indicate that the timing of SLCF emission reductions has only a small effect on the rate of global warming and even less of an effect on global peak temperatures. However, these simple model analyses do not capture the spatial dynamics of aerosol-climate interactions, nor do they consider the additional effects of aerosol emissions on human health. There is therefore merit in assessing how the timing of aerosol emission reductions affects global temperature and premature mortality caused by elevated aerosol concentrations, using more comprehensive climate models. Here, we used an aerosol-climate model ECHAM-HAMMOZ to simulate the direct and indirect radiative forcing resulting from aerosol emissions. We simulated Representative Concentration Pathway (RCP) scenarios, and we also designed idealized low and high aerosol emission pathways based on RCP4.5 scenario (LOW and HIGH, respectively). From these simulations, we calculated the Effective Radiative Forcing (ERF) from aerosol emissions between 1850 and 2100, as well as aerosol concentrations used to estimate the premature mortality caused by particulate pollution. We then use the University of Victoria Earth System Climate Model to simulate the spatial and temporal pattern of climate response to these aerosol-forcing scenarios, in combination with prescribed emissions of both short and long-lived greenhouse gases according to the RCP4.5 scenario. In the RCP scenarios, global mean ERF declined during the 21st century from ‑1.3 W m‑2 to ‑0.4 W m‑2 (RCP8.5) and ‑0.2 W m‑2 (RCP2.6). In the sensitivity scenarios, the forcing at the end of the 21st century was ‑1.6 W m‑2 (HIGH) and practically zero (LOW). The difference in global

  6. An Overview of the 2010 Carbonaceous Aerosol and Radiative Effects Study (CARES) Field Campaign

    NASA Astrophysics Data System (ADS)

    Zaveri, R. A.; Shaw, W. J.; Cziczo, D. J.

    2010-12-01

    The primary objective of the DOE Carbonaceous Aerosol and Radiative Effects Study (CARES) in June 2010 was to investigate the evolution of carbonaceous aerosols of different types and their optical and hygroscopic properties in central California, with a focus on the Sacramento urban plume. Carbonaceous aerosol components, which include black carbon (BC), urban primary organic aerosols (POA), biomass burning aerosols, and secondary organic aerosols (SOA) from both urban and biogenic precursors, have been shown to play a major role in the direct and indirect radiative forcing of climate. However, significant knowledge gaps and uncertainties still exist in the process-level understanding of: 1) SOA formation, 2) BC mixing state evolution, and 3) the optical and hygroscopic properties of fresh and aged carbonaceous aerosols. The CARES 2010 field study was designed to address several specific science questions under these three topics. During summer the Sacramento-Blodgett Forest corridor effectively serves as a mesoscale daytime flow reactor in which the urban aerosols undergo significant aging as they are transported to the northeast by upslope flow. The CARES campaign observation strategy consisted of the DOE G-1 aircraft sampling upwind, within, and outside of the evolving Sacramento urban plume in the morning and again in the afternoon. The G-1 payload consisted of a suite of instruments to measure trace gases, aerosol size distribution, composition, and optical properties. The NASA B-200 aircraft carrying a High Spectral Resolution Lidar (HSRL) and a Research Scanning Polarimeter (RSP) was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties. The aircraft measurements were complemented by heavily-instrumented ground sites within the Sacramento urban area and at a downwind site in Cool, California, to characterize the diurnal evolution of meteorological variables, trace gases, aerosol precursors, aerosol

  7. Overview of the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate (ChArMEx/ADRIMED) summer 2013 campaign

    NASA Astrophysics Data System (ADS)

    Mallet, M.; Dulac, F.; Formenti, P.; Nabat, P.; Sciare, J.; Roberts, G.; Pelon, J.; Ancellet, G.; Tanré, D.; Parol, F.; Denjean, C.; Brogniez, G.; di Sarra, A.; Alados-Arboledas, L.; Arndt, J.; Auriol, F.; Blarel, L.; Bourrianne, T.; Chazette, P.; Chevaillier, S.; Claeys, M.; D'Anna, B.; Derimian, Y.; Desboeufs, K.; Di Iorio, T.; Doussin, J.-F.; Durand, P.; Féron, A.; Freney, E.; Gaimoz, C.; Goloub, P.; Gómez-Amo, J. L.; Granados-Muñoz, M. J.; Grand, N.; Hamonou, E.; Jankowiak, I.; Jeannot, M.; Léon, J.-F.; Maillé, M.; Mailler, S.; Meloni, D.; Menut, L.; Momboisse, G.; Nicolas, J.; Podvin, T.; Pont, V.; Rea, G.; Renard, J.-B.; Roblou, L.; Schepanski, K.; Schwarzenboeck, A.; Sellegri, K.; Sicard, M.; Solmon, F.; Somot, S.; Torres, B.; Totems, J.; Triquet, S.; Verdier, N.; Verwaerde, C.; Waquet, F.; Wenger, J.; Zapf, P.

    2016-01-01

    levels of atmospheric pollutants or intense biomass burning events in the region. However, numerous mineral dust plumes were observed during the campaign, with the main sources located in Morocco, Algeria and Tunisia, leading to aerosol optical depth (AOD) values ranging between 0.2 and 0.6 (at 440 nm) over the western and central Mediterranean basins. One important point of this experiment concerns the direct observations of aerosol extinction onboard the ATR-42, using the CAPS system, showing local maxima reaching up to 150 M m-1 within the dust plume. Non-negligible aerosol extinction (about 50 M m-1) has also been observed within the marine boundary layer (MBL). By combining the ATR-42 extinction coefficient observations with absorption and scattering measurements, we performed a complete optical closure revealing excellent agreement with estimated optical properties. This additional information on extinction properties has allowed calculation of the dust single scattering albedo (SSA) with a high level of confidence over the western Mediterranean. Our results show a moderate variability from 0.90 to 1.00 (at 530 nm) for all flights studied compared to that reported in the literature on this optical parameter. Our results underline also a relatively low difference in SSA with values derived near dust sources. In parallel, active remote-sensing observations from the surface and onboard the F-20 aircraft suggest a complex vertical structure of particles and distinct aerosol layers with sea spray and pollution located within the MBL, and mineral dust and/or aged North American smoke particles located above (up to 6-7 km in altitude). Aircraft and balloon-borne observations allow one to investigate the vertical structure of the aerosol size distribution showing particles characterized by a large size (> 10 µm in diameter) within dust plumes. In most of cases, a coarse mode characterized by an effective diameter ranging between 5 and 10 µm, has been detected above the

  8. Profiling Transboundary Aerosols over Taiwan and Assessing Their Radiative Effects

    NASA Technical Reports Server (NTRS)

    Wang, Sheng-Hsiang; Lin, Neng-Huei; Chou, Ming-Dah; Tsay, Si-Chee; Welton, Ellsworth J.; Hsu, N. Christina; Giles, David M.; Liu, Gin-Rong; Holben, Brent N.

    2010-01-01

    A synergistic process was developed to study the vertical distributions of aerosol optical properties and their effects on solar heating using data retrieved from ground-based radiation measurements and radiative transfer simulations. Continuous MPLNET and AERONET observations were made at a rural site in northern Taiwan from 2005 to 2007. The aerosol vertical extinction profiles retrieved from ground-based lidar measurements were categorized into near-surface, mixed, and two-layer transport types, representing 76% of all cases. Fine-mode (Angstrom exponent, alpha, approx.1.4) and moderate-absorbing aerosols (columnar single-scattering albedo approx.0.93, asymmetry factor approx.0.73 at 440 nm wavelength) dominated in this region. The column-integrated aerosol optical thickness at 500 nm (tau(sub 500nm)) ranges from 0.1 to 0.6 for the near-surface transport type, but can be doubled in the presence of upper-layer aerosol transport. We utilize aerosol radiative efficiency (ARE; the impact on solar radiation per unit change of tau(sub 500nm)) to quantify the radiative effects due to different vertical distributions of aerosols. Our results show that the ARE at the top-of-atmosphere (-23 W/ sq m) is weakly sensitive to aerosol vertical distributions confined in the lower troposphere. On the other hand, values of the ARE at the surface are -44.3, -40.6 and -39.7 W/sq m 38 for near-surface, mixed, and two-layer transport types, respectively. Further analyses show that the impact of aerosols on the vertical profile of solar heating is larger for the near-surface transport type than that of two-layer transport type. The impacts of aerosol on the surface radiation and the solar heating profiles have implications for the stability and convection in the lower troposphere.

  9. A Study of Surface Directional Reflectance Properties To Enhance Aerosol Retrieval Capability Over Land Using MISR Data

    NASA Astrophysics Data System (ADS)

    Martonchik, J.; Bull, M.; Dang, V. T.

    2007-12-01

    The nearly-simultaneous multiangle, multispectral,radiometrically calibrated imagery of the Multi-angle Imaging SpectroRadiometer (MISR) has a nominal spatial resolution of 1.1 km and covers the globe in about 9 days. Once the imagery is co-located and co-registered, an aerosol retrieval is performed, over both land and ocean, using an aerosol model look-up database. The technique for aerosol retrieval over ocean is conventional, namely assuming that measurements in the red and near-IR spectral bands are measurements of radiance scattered only within the atmosphere. Over land, however, the radiance measurements generally are a combination of atmosphereric and surface scattering events, the proportions which vary with wavelength and usually are not known a priori. This makes the retrieval of aersosls over land a much more intractable process. In fact any retrieval of aerosol properties over land from space with a passive instrument requires some constraints to be placed on the surface reflectance properties so that atmospheric radiance can be effectively separated from surface reflected radiance in the measurements. To facilitate the MISR standard aerosol retrieval process over land, it is assumed that the surface directional reflectance at any given location has the same (or very similar) angular form or shape in the different spectral bands. There is some theoretical basis for this assumption, especially when the surface spectral albedos have similar values, but an empirical verification in the context of multiangle remote sensing data is necessary if further progress in aerosol retrieval quality over land is to be made. This poster presents some results of a study to test the surface directional reflectance spectral similarity assumption. It focuses on MISR data taken over a number of AERONET sunphotometer sites with different surface conditions, ranging from urban areas to forested regions, at a spatial scale of 1.1 km. In contrast to MISR data alone, the

  10. Exploring the Longwave Radiative Effects of Dust Aerosols

    NASA Technical Reports Server (NTRS)

    Hansell, Richard A., Jr.

    2012-01-01

    Dust aerosols not only affect air quality and visibility where they pose a significant health and safety risk, but they can also play a role in modulating the energy balance of the Earth-atmosphere system by directly interacting with local radiative fields. Consequently, dust aerosols can impact regional climate patterns such as changes in precipitation and the evolution of the hydrological cycle. Assessing the direct effect of dust aerosols at the solar wavelengths is fairly straightforward due in part to the relatively large signal-to-noise ratio in broadband irradiance measurements. The longwave (LW) impacts, on the other hand, are rather difficult to ascertain since the measured dust signal level (10 Wm-2) is on the same order as the instrumental uncertainties. Moreover, compared to the shortwave (SW), limited experimental data on the LW optical properties of dust makes it a difficult challenge for constraining the LW impacts. Owing to the strong absorption features found in many terrestrial minerals (e.g., silicates and clays), the LW effects, although much smaller in magnitude compared to the SW, can still have a sizeable impact on the energetics of the Earth-atmosphere system, which can potentially trigger changes in the heat and moisture surface budgets, and dynamics of the atmosphere. The current endeavor is an integral part of an on-going research study to perform detailed assessments of dust direct aerosol radiative effects (DARE) using comprehensive global datasets from NASA Goddards mobile ground-based facility (cf. http://smartlabs.gsfc.nasa.gov/) during previous field experiments near key dust source regions. Here we examine and compare the results from two of these studies: the 2006 NASA African Monsoon Multidisciplinary Activities and the 2008 Asian Monsoon Years. The former study focused on transported Saharan dust at Sal Island (16.73N, 22.93W), Cape Verde along the west coast of Africa while the latter focused on Asian dust at Zhangye China (39

  11. Estimation of aerosol direct radiative forcing in Lecce during the 2013 ADRIMED campaign

    NASA Astrophysics Data System (ADS)

    Barragan, Ruben; Romano, Salvatore; Sicard, Michaël.; Burlizzi, Pasquale; Perrone, Maria-Rita; Comeron, Adolfo

    2015-10-01

    In the framework of the ChArMEx (Chemistry-Aerosol Mediterranean Experiment, http://charmex.lsce.ipsl.fr/) initiative, a field campaign took place in the western Mediterranean Basin between 10 June and 5 July 2013 within the ADRIMED (Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) project. The scientific objectives of ADRIMED are the characterization of the typical "Mediterranean aerosol" and its direct radiative forcing (column closure and regional scale). This work is focused on the multi-intrusion Saharan dust transport period of moderate intensity that occurred over the western and central Mediterranean Basin during the period 14 - 27 June. The dust plumes were detected by the EARLINET/ACTRIS (European Aerosol Research Lidar Network / Aerosols, Clouds, and Trace gases Research InfraStructure Network, http://www.actris.net/) lidar stations of Barcelona (16 and 17 June) and Lecce (22 June). First, two well-known and robust radiative transfer models, parametrized by lidar profiles for the aerosol vertical distribution, are validated both in the shortwave and longwave spectral range 1) at the surface with down- and up-ward flux measurements from radiometers and 2) at the top of the atmosphere with upward flux measurements from the CERES (Clouds and the Earth's Radiant Energy System) radiometers on board the AQUA and TERRA satellites. The differences between models and their limitations are discussed. The instantaneous and clear-sky direct radiative forcing of mineral dust is then estimated using lidar data for parametrizing the particle vertical distribution at Lecce. The difference between the obtained forcings is discussed in regard to the mineralogy and vertical structure of the dust plume.

  12. Aerosol Direct Radiative Forcing over Delhi NCR, India: Sensitivity to Mixing State and Particle Shape

    NASA Astrophysics Data System (ADS)

    Srivastava, Parul; Dey, Sagnik; Srivastava, Atul; Singh, Sachchidanand; Agarwal, Poornima

    2015-04-01

    Aerosol properties changes with the change in mixing state of aerosols and thus aerosol direct radiative forcing (DRF). The problem is important in the Indo-Gangetic Basin, Northern India, where various aerosol types mix and show strong seasonal variations. A detailed chemical composition analysis of aerosols for Delhi National capital region (NCR) is carried out during 2007-2008. These results were used to examine the sensitivity of optical properties to the aerosol mixing state. Black carbon, BC was measured directly by Aethalometer. The species are grouped into four major components; dust, water soluble (WS), water insoluble (WINS) and BC. To infer the probable mixing state of aerosols in the Delhi NCR, eight different mixing cases, external mixing, internal mixing, and six combinations of core- shell type mixing which includes two modes of dust (accumulation and coarse) have been considered. Core-shell mixing cases are considered to be as follows - BC over dust, WS over dust, BC over WS and, WS over BC. These core shell mixed components are then externally mixed with rest of the aerosol species. The spectral aerosol optical properties - extinction coefficient, single scattering albedo (SSA) and asymmetry parameter (g) for each of the mixing state cases are calculated. These optical properties are utilized to estimate the radiative forcing using a radiative transfer model. The surface-reaching fluxes for each of the cases are compared with MERRA downward shortwave surface flux. MISR aerosol products were also analyzed to understand the seasonal variations of the bulk aerosol properties that may help in interpreting the sensitivity results. We observed that for the pre-monsoon season (MAMJ), core shell mixed case; BC coated over WS (surface DRF is -10.52 Wm-2) and BC over coarse dust (surface DRF is -2.81 Wm-2) are the most probable mixing states. For monsoon season (JAS,) BC coated over coarse dust (often referred to as polluted dust) (surface DRF is -0.60 Wm-2

  13. Effect of CALIPSO Cloud Aerosol Discrimination (CAD) Confidence Levels on Observations of Aerosol Properties near Clouds

    NASA Technical Reports Server (NTRS)

    Yang, Weidong; Marshak, Alexander; Varnai, Tamas; Liu, Zhaoyan

    2012-01-01

    CALIPSO aerosol backscatter enhancement in the transition zone between clouds and clear sky areas is revisited with particular attention to effects of data selection based on the confidence level of cloud-aerosol discrimination (CAD). The results show that backscatter behavior in the transition zone strongly depends on the CAD confidence level. Higher confidence level data has a flatter backscatter far away from clouds and a much sharper increase near clouds (within 4 km), thus a smaller transition zone. For high confidence level data it is shown that the overall backscatter enhancement is more pronounced for small clear-air segments and horizontally larger clouds. The results suggest that data selection based on CAD reduces the possible effects of cloud contamination when studying aerosol properties in the vicinity of clouds.

  14. Evaluation of Global Anthropogenic Aerosol Indirect Effects in the GISS Model III

    NASA Astrophysics Data System (ADS)

    Chen, W.; Nenes, A.; Liao, H.; Adams, P. J.; Seinfeld, J. H.

    2008-12-01

    In this study the implementation of the aerosol indirect effect in the 23-layer Goddard Institute for Space Studies (GISS) Global Climate Middle Atmosphere Model III is described. Explicit dependence on cloud droplet number concentrations (Nc) is introduced in the calculations of cloud optical depths and autoconversion rates in liquid-phase stratiform clouds to account for both first and second indirect effects. To diagnose Nc, correlation with concentrations of aerosol soluble ions is developed separately for each model grid and in each month, to reflect seasonal and spatial variations in aerosol-cloud interactions. Based on estimates of pre-industrial, present-day (year 2000), and future (year 2100) concentrations of sulfate, nitrate, ammonium, sea salt, and organic aerosols from the fully coupled Caltech unified model, corresponding offline, monthly averaged Nc were derived and applied to equilibrium climate simulations. Modeled present-day global distributions of Nc, droplet size, cloud cover, and radiative balance are in good agreement with satellite-retrieved climatology. A global anthropogenic indirect forcing of -1.7 W m-2, with a decrease in mean droplet radius of 0.8 μm, and an increase in total liquid water path of 0.2 g cm-2, from pre-industrial to year 2000 is estimated. Future climate responses to aerosol direct and indirect effects are also analyzed and compared to previous studies that consider chemistry- aerosol-climate coupling, revealing the influences of this coupling on climate predictions.

  15. Real Effect or Artifact of Cloud Cover on Aerosol Optical Thickness?

    SciTech Connect

    Jeong, M-J.; Li, Z.

    2005-03-18

    retrievals of AOT from both satellite and ground sensors; (2) separate artifact from real effect; (3) create ''clean'' aerosol products for studying their direct and indirect effect. Presented are some very preliminary findings.

  16. How skillfully can we simulate drivers of aerosol direct climate forcing at the regional scale?

    NASA Astrophysics Data System (ADS)

    Crippa, P.; Sullivan, R. C.; Thota, A.; Pryor, S. C.

    2015-10-01

    Assessing the ability of global and regional models to describe aerosol optical properties is essential to reducing uncertainty in aerosol direct radiative forcing in the contemporary climate and to improving confidence in future projections. Here we evaluate the skill of high-resolution simulations conducted using the Weather Research and Forecasting model with coupled chemistry (WRF-Chem) in capturing spatio-temporal variability of aerosol optical depth (AOD) and Ångström exponent (AE) by comparison with ground- and space- based remotely sensed observations. WRF-Chem is run over eastern North America at a resolution of 12 km for a representative year (2008). A small systematic positive bias in simulated AOD relative to observations is found (annual MFB = 0.17 and 0.50 when comparing with MODIS and AERONET respectively), whereas the spatial variability is well captured during most months. The spatial correlation of AOD shows a clear seasonal cycle with highest correlation during summer months (r = 0.5-0.7) when the aerosol loading is large and more observations are available. AE is retrieved with higher uncertainty from the remote sensing observations. The model is biased towards simulation of coarse mode aerosols (annual MFB for AE = -0.10 relative to MODIS and -0.59 for AERONET), but the spatial correlation for AE with observations is 0.3-0.5 during most months. WRF-Chem also exhibits high skill in identifying areas of extreme and non-extreme aerosol loading, and its ability to correctly simulate the location and relative intensity of an extreme aerosol event (i.e. AOD > 75th percentile) varies between 30 and 70 % during winter and summer months respectively.

  17. Global direct radiative forcing by process-parameterized aerosol optical properties

    NASA Astrophysics Data System (ADS)

    KirkevâG, Alf; Iversen, Trond

    2002-10-01

    A parameterization of aerosol optical parameters is developed and implemented in an extended version of the community climate model version 3.2 (CCM3) of the U.S. National Center for Atmospheric Research. Direct radiative forcing (DRF) by monthly averaged calculated concentrations of non-sea-salt sulfate and black carbon (BC) is estimated. Inputs are production-specific BC and sulfate from [2002] and background aerosol size distribution and composition. The scheme interpolates between tabulated values to obtain the aerosol single scattering albedo, asymmetry factor, extinction coefficient, and specific extinction coefficient. The tables are constructed by full calculations of optical properties for an array of aerosol input values, for which size-distributed aerosol properties are estimated from theory for condensation and Brownian coagulation, assumed distribution of cloud-droplet residuals from aqueous phase oxidation, and prescribed properties of the background aerosols. Humidity swelling is estimated from the Köhler equation, and Mie calculations finally yield spectrally resolved aerosol optical parameters for 13 solar bands. The scheme is shown to give excellent agreement with nonparameterized DRF calculations for a wide range of situations. Using IPCC emission scenarios for the years 2000 and 2100, calculations with an atmospheric global cliamte model (AFCM) yield a global net anthropogenic DRF of -0.11 and 0.11 W m-2, respectively, when 90% of BC from biomass burning is assumed anthropogenic. In the 2000 scenario, the individual DRF due to sulfate and BC has separately been estimated to -0.29 and 0.19 W m-2, respectively. Our estimates of DRF by BC per BC mass burden are lower than earlier published estimates. Some sensitivity tests are included to investigate to what extent uncertain assumptions may influence these results.

  18. Estimates of the Spectral Aerosol Single Sea Scattering Albedo and Aerosol Radiative Effects during SAFARI 2000

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Pilewskie, Peter; Schmid, Beat; Russell, Philip B.

    2003-01-01

    Using measurements of the spectral solar radiative flux and optical depth for 2 days (24 August and 6 September 2000) during the SAFARI 2000 intensive field experiment and a detailed radiative transfer model, we estimate the spectral single scattering albedo of the aerosol layer. The single scattering albedo is similar on the 2 days even though the optical depth for the aerosol layer was quite different. The aerosol single scattering albedo was between 0.85 and 0.90 at 350 nm, decreasing to 0.6 in the near infrared. The magnitude and decrease with wavelength of the single scattering albedo are consistent with the absorption properties of small black carbon particles. We estimate the uncertainty in the single scattering albedo due to the uncertainty in the measured fractional absorption and optical depths. The uncertainty in the single scattering albedo is significantly less on the high-optical-depth day (6 September) than on the low-optical-depth day (24 August). On the high-optical-depth day, the uncertainty in the single scattering albedo is 0.02 in the midvisible whereas on the low-optical-depth day the uncertainty is 0.08 in the midvisible. On both days, the uncertainty becomes larger in the near infrared. We compute the radiative effect of the aerosol by comparing calculations with and without the aerosol. The effect at the top of the atmosphere (TOA) is to cool the atmosphere by 13 W/sq m on 24 August and 17 W/sq m on 6 September. The effect on the downward flux at the surface is a reduction of 57 W/sq m on 24 August and 200 W/sq m on 6 September. The aerosol effect on the downward flux at the surface is in good agreement with the results reported from the Indian Ocean Experiment (INDOEX).

  19. A numerical study of the effect of different aerosol types on East Asian summer clouds and precipitation

    SciTech Connect

    Jiang, Yiquan; Liu, Xiaohong; Yang, Xiuqun; Wang, Minghuai

    2013-05-01

    The impact of anthropogenic aerosol on the East Asian summer monsoon (EASM) is investigated with NCAR CAM5, a state-of-the-art climate model with aerosol’s direct and indirect effects. Results indicate that anthropogenic aerosol tends to cause a weakened EASM with a southward shift of precipitation in East Asia mostly by its radiative effect. Anthropogenic aerosol induced surface cooling stabilizes the boundary layer, suppresses the convection and latent heat release in northern China, and reduces the tropospheric temperature over land and land-sea thermal contrast, thus leading to a weakened EASM. Meanwhile, acting as cloud condensation nuclei (CCN), anthropogenic aerosol can significantly increase the cloud droplet number concentration but decrease the cloud droplet effective radius over Indochina and Indian Peninsulas as well as over southwestern and northern China, inhibiting the precipitation in these regions. Thus, anthropogenic aerosol tends to reduce Southeast and South Asian summer monsoon precipitation by its indirect effect.

  20. Aerosol indirect effects -- general circulation model intercomparison and evaluation with satellite data

    SciTech Connect

    Quaas, Johannes; Ming, Yi; Menon, Surabi; Takemura, Toshihiko; Wang, Minghuai; Penner, Joyce E.; Gettelman, Andrew; Lohmann, Ulrike; Bellouin, Nicolas; Boucher, Olivier; Sayer, Andrew M.; Thomas, Gareth E.; McComiskey, Allison; Feingold, Graham; Hoose, Corinna; Kristjansson, Jon Egill; Liu, Xiaohong; Balkanski, Yves; Donner, Leo J.; Ginoux, Paul A.; Stier, Philip; Feichter, Johann; Sednev, Igor; Bauer, Susanne E.; Koch, Dorothy; Grainger, Roy G.; Kirkevag, Alf; Iversen, Trond; Seland, Oyvind; Easter, Richard; Ghan, Steven J.; Rasch, Philip J.; Morrison, Hugh; Lamarque, Jean-Francois; Iacono, Michael J.; Kinne, Stefan; Schulz, Michael

    2009-04-10

    . Nevertheless, the strengths of the statistical relationships are good predictors for the aerosol forcings in the models. An estimate of the total short-wave aerosol forcing inferred from the combination of these predictors for the modelled forcings with the satellite-derived statistical relationships yields a global annual mean value of -1.5+-0.5 Wm-2. An alternative estimate obtained by scaling the simulated clear- and cloudy-sky forcings with estimates of anthropogenic Ta and satellite-retrieved Nd - Ta regression slopes, respectively, yields a global annual mean clear-sky (aerosol direct effect) estimate of -0.4+-0.2 Wm-2 and a cloudy-sky (aerosol indirect effect) estimate of -0.7+-0.5 Wm-2, with a total estimate of -1.2+-0.4 Wm-2.

  1. On direct passive microwave remote sensing of sea spray aerosol production

    NASA Astrophysics Data System (ADS)

    Savelyev, I. B.; Anguelova, M. D.; Frick, G. M.; Dowgiallo, D. J.; Hwang, P. A.; Caffrey, P. F.; Bobak, J. P.

    2014-11-01

    This study addresses and attempts to mitigate persistent uncertainty and scatter among existing approaches for determining the rate of sea spray aerosol production by breaking waves in the open ocean. The new approach proposed here utilizes passive microwave emissions from the ocean surface, which are known to be sensitive to surface roughness and foam. Direct, simultaneous, and collocated measurements of the aerosol production and microwave emissions were collected aboard the FLoating Instrument Platform (FLIP) in deep water ~ 150 km off the coast of California over a period of ~ 4 days. Vertical profiles of coarse-mode aerosol (0.25-23.5 μm) concentrations were measured with a forward-scattering spectrometer and converted to surface flux using dry deposition and vertical gradient methods. Back-trajectory analysis of eastern North Pacific meteorology verified the clean marine origin of the sampled air mass over at least 5 days prior to measurements. Vertical and horizontal polarization surface brightness temperature were measured with a microwave radiometer at 10.7 GHz frequency. Data analysis revealed a strong sensitivity of the brightness temperature polarization difference to the rate of aerosol production. An existing model of microwave emission from the ocean surface was used to determine the empirical relationship and to attribute its underlying physical basis to microwave emissions from surface roughness and foam within active and passive phases of breaking waves. A possibility of and initial steps towards satellite retrievals of the sea spray aerosol production are briefly discussed in concluding remarks.

  2. On direct passive microwave remote sensing of sea spray aerosol production

    NASA Astrophysics Data System (ADS)

    Savelyev, I. B.; Anguelova, M. D.; Frick, G. M.; Dowgiallo, D. J.; Hwang, P. A.; Caffrey, P. F.; Bobak, J. P.

    2014-06-01

    This study addresses and attempts to mitigate persistent uncertainty and scatter among existing approaches for determining the rate of sea spray aerosol production by breaking waves in the open ocean. The new approach proposed here utilizes passive microwave emissions from the ocean surface, which are known to be sensitive to surface roughness and foam. Direct, simultaneous, and collocated measurements of the aerosol production and microwave emissions were collected on-board FLoating Instrument Platform (FLIP) in deep water ∼150 km off the coast of California over a period of ∼4 days. Vertical profiles of coarse-mode aerosol (0.25-23.5 μm) concentrations were measured with a forward scattering spectrometer and converted to surface flux using dry deposition and vertical gradient methods. Back trajectory analysis of Northeast Pacific meteorology verified the clean marine origin of the sampled air mass over at least 5 days prior to measurements. Vertical and horizontal polarization surface brightness temperatures were measured with a microwave radiometer at 10.7 GHz frequency. Data analysis revealed a strong sensitivity of the brightness temperature polarization difference to the rate of aerosol production. An existing model of microwave emission from the ocean surface was used to determine the empirical relationship and to attribute its underlying physical basis to microwave emissions from surface roughness and foam within active and passive phases of breaking waves. A possibility of and initial steps towards satellite retrievals of the sea spray aerosol production are briefly discussed in concluding remarks.

  3. Direct radiative forcing and atmospheric absorption by boundary layer aerosols in the southeastern US: model estimates on the basis of new observations

    NASA Astrophysics Data System (ADS)

    Yu, Shaocai; Zender, Charles S.; Saxena, V. K.

    In an effort to reduce uncertainties in the quantification of aerosol direct radiative forcing (ADRF) in the southeastern United States (US), a field column experiment was conducted to measure aerosol radiative properties and effects at Mt. Mitchell, North Carolina, and at an adjacent valley site. The experimental period was from June 1995 to mid-December 1995. The aerosol optical properties (single scattering albedo and asymmetry factor) needed to compute ADRF were obtained on the basis of a procedure involving a Mie code and a radiative transfer code in conjunction with the retrieved aerosol size distribution, aerosol optical depth, and diffuse-to-direct solar irradiance ratio. The regional values of ADRF at the surface and top of atmosphere (TOA), and atmospheric aerosol absorption are derived using the obtained aerosol optical properties as inputs to the column radiation model (CRM) of the community climate model (CCM3). The cloud-free instantaneous TOA ADRFs for highly polluted (HP), marine (M) and continental (C) air masses range from 20.3 to -24.8, 1.3 to -10.4, and 1.9 to -13.4 W m -2, respectively. The mean cloud-free 24-h ADRFs at the TOA (at the surface) for HP, M, and C air masses are estimated to be -8±4 (-33±16), -7±4 (-13±8), and -0.14±0.05 (-8±3) W m -2, respectively. On the assumption that the fractional coverage of clouds is 0.61, the annual mean ADRFs at the TOA and the surface are -2±1, and -7±2 W m -2, respectively. This also implies that aerosols currently heat the atmosphere over the southeastern US by 5±3 W m -2 on annual timescales due to the aerosol absorption in the troposphere.

  4. Direct aerosol chemical composition measurements to evaluate the physicochemical differences between controlled sea spray aerosol generation schemes

    NASA Astrophysics Data System (ADS)

    Collins, D. B.; Zhao, D. F.; Ruppel, M. J.; Laskina, O.; Grandquist, J. R.; Modini, R. L.; Stokes, M. D.; Russell, L. M.; Bertram, T. H.; Grassian, V. H.; Deane, G. B.; Prather, K. A.

    2014-07-01

    Controlled laboratory studies of the physical and chemical properties of sea spray aerosol (SSA) must be underpinned by a physically and chemically accurate representation of the bubble mediated production of nascent SSA particles. Since bubble bursting is sensitive to the physicochemical properties of seawater, any important differences in the SSA production mechanism are projected into SSA composition. Using direct chemical measurements of SSA at the single-particle level, this study presents an inter-comparison of three laboratory-based, bubble-mediated SSA production schemes: gas forced through submerged sintered glass filters ("frits"), a pulsed plunging waterfall apparatus, and breaking waves in a wave channel filled with natural seawater. The size-resolved chemical composition of SSA particles produced by breaking waves is more similar to particles produced by the plunging waterfall than sintered glass filters. Aerosol generated by disintegrating foam produced by sintered glass filters contained a larger fraction of organic enriched particles and a different size-resolved elemental composition, especially in the 0.8-2 μm size range. These particles, when dried, had more spherical morphologies compared to the more cubic structure expected for pure NaCl particles, which can be attributed to the presence of additional organic carbon. In addition to an inter-comparison of three SSA production methods, the role of the episodic or "pulsed" nature of the waterfall method utilized in this study on SSA composition was undertaken. In organic-enriched seawater, the continuous operation of the plunging waterfall mechanism resulted in the accumulation of surface foam and an over-expression of organic matter in SSA particles compared to pulsed plunging waterfall. Throughout this set of experiments, comparative differences in the SSA number size distribution were coincident with differences in aerosol composition, indicating that the production mechanism of SSA exerts

  5. Closing the Confidence Gap in Aerosol Contributions to Direct Radiative Forcing Using Space-based and Suborbital Resources

    NASA Astrophysics Data System (ADS)

    Kahn, R. A.

    2009-12-01

    As expected, the aerosol data products from the NASA Earth Observing System’s MISR and MODIS instruments provide significant advances in regional and global aerosol optical depth (AOD) mapping, aerosol type measurement, and source plume characterization from space. Although these products have been and are being used for many applications, ranging from regional air quality assessment, to aerosol air mass type evolution, to aerosol injection height and aerosol transport model validation, uncertainties still limit the quantitative constraints these satellite data place on global-scale direct aerosol radiative forcing. Some further refinement of the current aerosol products is possible, but a major advance in this area seems to require a different paradigm, involving the integration of satellite and suborbital data with models. This presentation will briefly summarize where we stand, and what incremental advances we can expect, with the current aerosol products, and will then elaborate on some initial steps aimed at the necessary integration. Many other AGU presentations, covering parts of the community’s emerging efforts in this direction, will be referenced, and key points from the recently released CCSP-SAP (US Climate Change Program - Synthesis and Assessment Product) 2.3 - Atmospheric aerosols: Properties and Climate Impacts, will be included in the discussion.

  6. International Workshop on Stratospheric Aerosols: Measurements, Properties, and Effects

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf F. (Editor)

    1991-01-01

    Following a mandate by the International Aerosol Climatology Program under the auspices of International Association of Meteorology and Atmospheric Physics International Radiation Commission, 45 scientists from five nations convened to discuss relevant issues associated with the measurement, properties, and effects of stratospheric aerosols. A summary is presented of the discussions on formation and evolution, transport and fate, effects on climate, role in heterogeneous chemistry, and validation of lidar and satellite remote sensing of stratospheric aerosols. Measurements are recommended of the natural (background) and the volcanically enhanced aerosol (sulfuric acid and silica particles), the exhaust of shuttle, civil aviation and supersonic aircraft operations (alumina, soot, and ice particles), and polar stratospheric clouds (ice, condensed nitric and hydrochloric acids).

  7. Direct normal irradiance forecasting at dust sites based on aerosol data assimilation

    NASA Astrophysics Data System (ADS)

    Hoppe, Charlotte; Friese, Elmar; Berndt, Jonas; Elbern, Hendrik

    2016-04-01

    The optimal operation of concentrating solar thermal power plants (CSP) or concentrating photovoltaic plants (CPV) requires precise forecasts of direct normal irradiance (DNI). Aerosols have a strong impact on DNI. High aerosol loads may cause a reduction of DNI of up to 20-30% under clear-sky conditions. Thus, an accurate representation of the aerosol optical depth (AOD) is crucial for reliable DNI forecasts. Concentrating solar power plants are often located in desert/arid regions where dust events are likely to occur. For those locations with strong aerosol or especially dust sources in the vicinity, using only large scale, low resolution aerosol information from satellites might not be sufficient. Ground-based measurements of particulate matter (PM10 and PM2.5) provide additional, more precise, local information. On the other hand, sparsely populated desert areas are only poorly equipped with in-situ measurement devices. Thus, data assimilation seeks to make optimal use of all available observations. Within the EU FP7 project DNICast, assimilation based simulations are performed using the EURopean pollution Dispersion-Inverse Model (EURAD-IM) including a 3D/4D- Var data assimilation scheme and sophisticated aerosol dynamics and aerosol chemistry schemes. The setup includes all aerosol related observation streams along with routine data assimilation plus available on-site data and will provide assimilation based short term forecasts of AOD at selected test sites. The system is embedded in the European Earth observation system MACC (now: CAMS) and benefits from near-real time in situ and space borne measurements. The system is coupled to the WRF model to provide radiation forecasts based on aerosol information from the EURAD-IM data assimilation scheme. We will present simulation results for CSP sites on the Iberian Peninsula evaluating the gain of information obtained by data assimilation to capture small-scale dust events and large scale Saharan dust events

  8. Seasonal and inter-annual variability of the aerosol content in Cairo (Egypt) as deduced from the comparison of MODIS aerosol retrievals with direct AERONET measurements

    NASA Astrophysics Data System (ADS)

    El-Metwally, M.; Alfaro, S. C.; Abdel Wahab, M. M.; Zakey, A. S.; Chatenet, B.

    2010-07-01

    As this is the case in many megacities of the developing countries, the atmospheric aerosol load is usually particularly large over the Cairo (Egypt) conurbation. However, being the result of a combination of meteorological factors and of the activity of various particle sources, some of which are seasonal, this load is variable in time. The objective of this study is to document this variability at the intra- and inter-annual scales. For this we use the qualitative Aerosol Absorption Index (AAI) derived from Aura-OMI (the ultimate version of the Total Ozone Mapping Spectrometer, TOMS) and the Aerosol Optical Depth (AOD) derived from the radiance measurements performed between 2000 and 2008 by the Moderate Resolution Imaging Spectroradiometers (MODIS) implemented aboard either the Terra or the Aqua satellites. In the sense that AOD maxima are always obtained in April and in October at the peaks of the desert dust and biomass burning periods, respectively, the results yielded by these two methods are in good qualitative agreement with those of direct sunphotometer observations performed in Cairo for more than one year (from end of October 2004 to the end of March 2006). However, a quantitative comparison of the MODIS and AERONET products for their common period of measurements reveals that MODIS tends to overestimate systematically the AOD and underestimate the aerosol's Ångström exponent. We propose an empirical method for correcting the AOD retrieved by MODIS at 550 nm and match it with the sunphotometer values. When applied to the whole MODIS dataset, the effect of this correction is to smooth the inter-annual differences. As a result, the month-to-month variations of the AOD can be described by the same pattern independently of the year in the period of study (from 2000 to 2008). The monthly averaged AOD obtained by this method is minimal (0.24 ± 0.04 at 550 nm) from December to February because of the washing out of airborne particles by rain events more

  9. Effects of Aircraft On Aerosol Abundance in the Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Ferry, G. V.; Pueschel, R. F.; Strawa, A. W.; Howard, S. D.; Verma, S.; Mahoney, M. J.; Bui, T. P.; Hannan, J. R.; Fuelberg, H. E.; Condon, Estelle P. (Technical Monitor)

    1999-01-01

    A significant increase in sulfuric acid aerosol concentration was detected above 10 km pressure altitude during a cross-corridor flight out of Shannon on October 23, 1997. The source of this aerosol is ascribed to commercial aircraft operations in flight corridors above 10 km, because (1) a stable atmosphere prevented vertical air mass exchanges and thus eliminated surface sources, (2) air mass back trajectories documented the absence of remote continental sources, and (3) temperature profiler data showed the tropopause at least one kilometers above flight altitude throughout the flight. Particle volatility identified 70% H2SO4, 20% (NH4)2SO4 and 10% nonvolatile aerosol in the proximity of flight corridors, and (10-30)% H2SO4, up to 50% (NH4)2SO4, and (40-60)% nonvolatile aerosols in air that was not affected by aircraft operations below 10 km. Only a very small fraction of the nonvolatile particles (determined with a condensation nucleus counter) could be morphologically identified as soot aerosol (validated by scanning electron microscopy of wire impactor samples). The newly formed H2SO4 particles did not measurably affect surface area and volume of the background aerosol due to their small size, hence did not affect radiative transfer directly.

  10. Determination of the single scattering albedo and direct radiative forcing of biomass burning aerosol with data from the MODIS (Moderate Resolution Imaging Spectroradiometer) satellite instrument

    NASA Astrophysics Data System (ADS)

    Zhu, Li

    Biomass burning aerosols absorb and scatter solar radiation and therefore affect the energy balance of the Earth-atmosphere system. The single scattering albedo (SSA), the ratio of the scattering coefficient to the extinction coefficient, is an important parameter to describe the optical properties of aerosols and to determine the effect of aerosols on the energy balance of the planet and climate. Aerosol effects on radiation also depend strongly on surface albedo. Large uncertainties remain in current estimates of radiative impacts of biomass burning aerosols, due largely to the lack of reliable measurements of aerosol and surface properties. In this work we investigate how satellite measurements can be used to estimate the direct radiative forcing of biomass burning aerosols. We developed a method using the critical reflectance technique to retrieve SSA from the Moderate Resolution Imaging Spectroradiometer (MODIS) observed reflectance at the top of the atmosphere (TOA). We evaluated MODIS retrieved SSAs with AErosol RObotic NETwork (AERONET) retrievals and found good agreements within the published uncertainty of the AERONET retrievals. We then developed an algorithm, the MODIS Enhanced Vegetation Albedo (MEVA), to improve the representations of spectral variations of vegetation surface albedo based on MODIS observations at the discrete 0.67, 0.86, 0.47, 0.55, 1.24, 1.64, and 2.12 mu-m channels. This algorithm is validated using laboratory measurements of the different vegetation types from the Amazon region, data from the Johns Hopkins University (JHU) spectral library, and data from the U.S. Geological Survey (USGS) digital spectral library. We show that the MEVA method can improve the accuracy of flux and aerosol forcing calculations at the TOA compared to more traditional interpolated approaches. Lastly, we combine the MODIS retrieved biomass burning aerosol SSA and the surface albedo spectrum determined from the MEVA technique to calculate TOA flux and

  11. Direct radiative feedback due to biogenic secondary organic aerosol estimated from boreal forest site observations

    NASA Astrophysics Data System (ADS)

    Lihavainen, Heikki; Asmi, Eija; Aaltonen, Veijo; Makkonen, Ulla; Kerminen, Veli-Matti

    2015-10-01

    We used more than five years of continuous aerosol measurements to estimate the direct radiative feedback parameter associated with the formation of biogenic secondary organic aerosol (BSOA) at a remote continental site at the edge of the boreal forest zone in Northern Finland. Our upper-limit estimate for this feedback parameter during the summer period (ambient temperatures above 10 °C) was -97 ± 66 mW m-2 K-1 (mean ± STD) when using measurements of the aerosol optical depth (fAOD) and -63 ± 40 mW m-2 K-1 when using measurements of the ‘dry’ aerosol scattering coefficient at the ground level (fσ). Here STD represents the variability in f caused by the observed variability in the quantities used to derive the value of f. Compared with our measurement site, the magnitude of the direct radiative feedback associated with BSOA is expected to be larger in warmer continental regions with more abundant biogenic emissions, and even larger in regions where biogenic emissions are mixed with anthropogenic pollution.

  12. Evolution of Ozone, Particulates, and Aerosol Direct Radiative Forcing in the Vicinity of Houston Using a Fully Coupled Meteorology-Chemistry-Aerosol Model

    SciTech Connect

    Fast, Jerome D.; Gustafson, William I.; Easter, Richard C.; Zaveri, Rahul A.; Barnard, James C.; Chapman, Elaine G.; Grell, Georg; Peckham, S. E.

    2006-11-11

    A new fully-coupled meteorology-chemistry-aerosol model is used to simulate the urban to regional scale variations in trace gases, particulates, and aerosol direct radiative forcing in the vicinity of Houston over a five day summer period. Model performance is evaluated using a wide range of meteorological, chemistry, and particulate measurements obtained during 2000 Texas Air Quality Study. The predicted trace gas and particulate distributions were qualitatively similar to the surface and aircraft measurements with considerable spatial variations resulting from urban, power plant, and industrial sources of primary pollutants. Sulfate, organic carbon, and other inorganics were the largest constituents of the predicted particulates. The predicted shortwave radiation was 30 to 40 W m-2 closer to the observations when the aerosol optical properties were incorporated into the shortwave radiation scheme; however, the predicted hourly aerosol radiative forcing was still under-estimated by 10 to 50 W m-2. The predicted aerosol radiative forcing was larger over Houston and the industrial ship channel than over the rural areas, consistent with surface measurements. The differences between the observed and simulated aerosol radiative forcing resulted from transport errors, relative humidity errors in the upper convective boundary layer that affect aerosol water content, secondary organic aerosols that were not yet included in the model, and uncertainties in the primary particulate emission rates. The current model was run in a predictive mode and demonstrates the challenges of accurately simulating all of the meteorological, chemical, and aerosol parameters over urban to regional scales that can affect aerosol radiative forcing.

  13. New understanding and quantification of the regime dependence of aerosol-cloud interaction for studying aerosol indirect effects

    NASA Astrophysics Data System (ADS)

    Chen, Jingyi; Liu, Yangang; Zhang, Minghua; Peng, Yiran

    2016-02-01

    Aerosol indirect effects suffer from large uncertainty in climate models and among observations. This study focuses on two plausible factors: regime dependence of aerosol-cloud interactions and the effect of cloud droplet spectral shape. We show, using a new parcel model, that combined consideration of droplet number concentration (Nc) and relative dispersion (ɛ, ratio of standard deviation to mean radius of the cloud droplet size distribution) better characterizes the regime dependence of aerosol-cloud interactions than considering Nc alone. Given updraft velocity (w), ɛ increases with increasing aerosol number concentration (Na) in the aerosol-limited regime, peaks in the transitional regime, and decreases with further increasing Na in the updraft-limited regime. This new finding further reconciles contrasting observations in literature and reinforces the compensating role of dispersion effect. The nonmonotonic behavior of ɛ further quantifies the relationship between the transitional Na and w that separates the aerosol- and updraft-limited regimes.

  14. Effects of Aerosol PSD on Precipitation in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Bracho, S. M.; Hosannah, N.

    2013-12-01

    The influence of aerosols on clouds and on the climate remains an uncertainty, however, it is of great importance to determine their effects on the formation of clouds and on precipitation. The objective is to study the effects of aerosol particle concentrations on precipitation. The is goal is, by using the aerosols particle size distribution (PSD) data from the Island of Puerto Rico (PR) located in the Caribbean, to better predict precipitation in PR and other Caribbean regions that are heavily exposed to naturally occurring maritime and continental aerosols (ex. Sea Salt, Saharan Dust). The aerosol PSD, and precipitation data values for the study was collected, respectively, from the Aerosol Robotic Network (AERONET) and the National Climatic Data Center (NCDC). The data from three sites, Mayaguez (Western Region), La Parguera (Southwestern Region) and San Juan (Northeastern Region), was analyzed to determine and formulate seasonal and intra-seasonal relationships. PSD's were analyzed for fine and coarse mode size distributions and seasonal concentrations. Correlations between these variables with precipitation climatologies were identified. Correlations of concentrations of fine/course modes with suppression/enhancement of Caribbean precipitation in early rainfall, mid-summer droughts and rainfall seasons are formulated and hypotheses are established to comprehend these effects. Episodic and mean events are analyzed to justify these observations.

  15. Aerosol-radiation-cloud interactions in a regional coupled model: the effects of convective parameterisation and resolution

    NASA Astrophysics Data System (ADS)

    Archer-Nicholls, Scott; Lowe, Douglas; Schultz, David M.; McFiggans, Gordon

    2016-05-01

    The Weather Research and Forecasting model with Chemistry (WRF-Chem) has been used to simulate a region of Brazil heavily influenced by biomass burning. Nested simulations were run at 5 and 1 km horizontal grid spacing for three case studies in September 2012. Simulations were run with and without fire emissions, convective parameterisation on the 5 km domain, and aerosol-radiation interactions in order to explore the differences attributable to the parameterisations and to better understand the aerosol direct effects and cloud responses. Direct aerosol-radiation interactions due to biomass burning aerosol resulted in a net cooling, with an average short-wave direct effect of -4.08 ± 1.53 Wm-2. However, around 21.7 Wm-2 is absorbed by aerosol in the atmospheric column, warming the atmosphere at the aerosol layer height, stabilising the column, inhibiting convection, and reducing cloud cover and precipitation. The changes to clouds due to radiatively absorbing aerosol (traditionally known as the semi-direct effects) increase the net short-wave radiation reaching the surface by reducing cloud cover, producing a secondary warming that counters the direct cooling. However, the magnitude of the semi-direct effect was found to be extremely sensitive to the model resolution and the use of convective parameterisation. Precipitation became organised in isolated convective cells when not using a convective parameterisation on the 5 km domain, reducing both total cloud cover and total precipitation. The SW semi-direct effect varied from 6.06 ± 1.46 with convective parameterisation to 3.61 ± 0.86 Wm-2 without. Convective cells within the 1 km domain are typically smaller but with greater updraft velocity than equivalent cells in the 5 km domain, reducing the proportion of the domain covered by cloud in all scenarios and producing a smaller semi-direct effect. Biomass burning (BB) aerosol particles acted as cloud condensation nuclei (CCN), increasing the droplet number

  16. Aerosol composition and sources during the Chinese Spring Festival: fireworks, secondary aerosol, and holiday effects

    NASA Astrophysics Data System (ADS)

    Jiang, Q.; Sun, Y. L.; Wang, Z.; Yin, Y.

    2014-08-01

    Aerosol particles were characterized by an Aerodyne Aerosol Chemical Speciation Monitor (ACSM) along with various collocated instruments in Beijing, China to investigate the aerosol composition and sources during the Chinese Spring Festival, 2013. Three fireworks (FW) events exerting significant and short-term impacts on fine particles (PM2.5) were observed on the days of Lunar New Year, Lunar Fifth Day, and Lantern Festival. The FW showed major impacts on non-refractory potassium, chloride, sulfate, and organics in PM1, of which the FW organics appeared to be mainly secondary with its mass spectrum resembling to that of secondary organic aerosol (SOA). Pollution events (PEs) and clean periods (CPs) alternated routinely throughout the study. Secondary particulate matter (SPM = SOA + sulfate + nitrate + ammonium) dominated PM1 accounting for 63-82% during the nine PEs observed. The elevated contributions of secondary species during PEs resulted in a higher mass extinction efficiency of PM1 (6.4 m2 g-1) than that during CPs (4.4 m2 g-1). The Chinese Spring Festival also provides a unique opportunity to study the impacts of reduced anthropogenic emissions on aerosol chemistry in the city. The primary species showed ubiquitous reductions during the holiday period with the largest reduction for cooking OA (69%), nitrogen monoxide (54%), and coal combustion OA (28%). The secondary sulfate, however, remained minor change, and the SOA and the total PM2.5 even slightly increased. These results have significant implications that controlling local primary source emissions, e.g., cooking and traffic activities, might have limited effects on improving air quality during PEs when SPM that is formed over regional scales dominates aerosol particle composition.

  17. Effect of tropospheric aerosols on environment

    SciTech Connect

    Indira, K.

    1995-12-31

    The primary mechanism by which aerosols influences the environment is through changes in the amount of energy reaching the ground and the energy diffusing back to space. Keeping the above in view, a study has been undertaken to observe the effect of fire from an oil well at Pasarlapudi near Amalapuram, situated almost in the middle of the coastal Andhra belt, on environment. Fire started from an oil well at Pasarlapudi (16{degrees}N 82{degrees}E) near Amalapuram in Andhra Pradesh on 8 January 1995 and continues till today. For the above study daily maximum and minimum temperatures in celsius and rainfall in mm were collected from India Meteorological Department for two stations Kakinada and Machilipatnam from 19 January 1995 to 1 March 1995. It is seen from the above data at both Kakinada and Machilipatnam from 19 January to 1 February 1995 a decrease in minimum temperature from 0.5{degrees}C to 1.0{degrees}C. There is not much change in maximum temperature. 35 mm of excess rainfall was reported in coastal Andhra Pradesh from 1 Jan. to 25 Jan 1995 when the fire from the oil well was at maximum intensity. Some places near the Pasarlapudi reported rain with black carbon particles during third week of January. Pictures of the raging fire show a jet of burning gas extending into the atmosphere. The accompanying heat and smoke from the oil well fire could have led to cloud formation and rain containing black carbon particles in coastal belt of Andhra Pradesh.

  18. Method for estimating the atmospheric content of sub-micrometer aerosol using direct-sun photometric data

    NASA Astrophysics Data System (ADS)

    Stefan, S.; Filip, L.

    2009-04-01

    It is well known that the aerosol generated by human activity falls in the sub-micrometer rage [1]. The rapid increase of such emissions led to massive accumulations in the planetary boundary layer. Aerosol pollutants influence the quality of life on the Earth in at least two ways: by direct physiological effects following their penetration into living organisms and by the indirect implications on the overall energy balance of the Earth-atmosphere system. For these reasons monitoring the sub-micrometer aerosol on a global scale, become a stringent necessity in protecting the environment. The sun-photometry proved a very efficient way for such monitoring activities, mainly when vast networks of instruments (like AERONET [2]) are used. The size distribution of aerosols is currently a product of AERONET obtained through an inversion algorithm of sky-photometry data [3, 4]. Alternatively, various methods of investigating the aerosol size distribution have been developed through the use of direct-sun photometric data, with the advantages of simpler computation algorithms and a more convenient use [5, 6]. Our research aims to formulate a new simpler way to retrieve aerosol fine and coarse mode volume concentrations, as well as dimensional information, from direct-sun data. As in other works from the literature [3-6], the main hypothesis is that of a bi-modal shape of the size distribution of aerosols that can be reproduced rather satisfactorily by a linear combination of two lognormal functions. Essentially, the method followed in this paper relies on aerosol size information retrieval through fitting theoretical computations to measured aerosol optical depth (AOD) and related data. To this purpose, the experimental spectral dependence of AOD is interpolated and differentiated numerically to obtain the Ǻngström parameter. The reduced (i.e. normalized to the corresponding columnar volumetric content) contributions of the fine and coarse modes to the AOD have also been

  19. Downscaling Aerosols and the Impact of Neglected Subgrid Processes on Direct Aerosol Radiative Forcing for a Representative Global Climate Model Grid Spacing

    SciTech Connect

    Gustafson, William I.; Qian, Yun; Fast, Jerome D.

    2011-07-13

    Recent improvements to many global climate models include detailed, prognostic aerosol calculations intended to better reproduce the observed climate. However, the trace gas and aerosol fields are treated at the grid-cell scale with no attempt to account for sub-grid impacts on the aerosol fields. This paper begins to quantify the error introduced by the neglected sub-grid variability for the shortwave aerosol radiative forcing for a representative climate model grid spacing of 75 km. An analysis of the value added in downscaling aerosol fields is also presented to give context to the WRF-Chem simulations used for the sub-grid analysis. We found that 1) the impact of neglected sub-grid variability on the aerosol radiative forcing is strongest in regions of complex topography and complicated flow patterns, and 2) scale-induced differences in emissions contribute strongly to the impact of neglected sub-grid processes on the aerosol radiative forcing. The two of these effects together, when simulated at 75 km vs. 3 km in WRF-Chem, result in an average daytime mean bias of over 30% error in top-of-atmosphere shortwave aerosol radiative forcing for a large percentage of central Mexico during the MILAGRO field campaign.

  20. Aerosol Microphysical and Macrophysical Effects on Deep Convective Clouds

    NASA Astrophysics Data System (ADS)

    Yuan, T.; Li, Z.; Wilcox, E. M.; Oreopoulos, L.; Remer, L. A.; Yu, H.; Platnick, S. E.; Posselt, D. J.; Zhang, Z.; Martins, J. V.

    2014-12-01

    We illustrate a conceptual model of hydrometeor vertical development inside a convective cloud and its utility in studying of aerosol-DCC interactions. Both case studies and ensemble means are used to investigate aerosol-DCC interactions. We identify a few scenarios where possible signal of aerosol effect on DCC may be extracted. The results show a consistent and physically sound picture of aerosols affecting DCC microphysics as well as macrophysical properties. Specifically, pollutions and smokes are shown to consistently decrease ice particle size. On the contrary, dust particles close to source regions are shown to make cloud ice particle size more maritime like. We postulate that dust may achieve this by acting as either heterogeneous ice nuclei or giant cloud condensation nuclei. This contrast between smoke or pollution and dust also exists for their effects on cloud glaciation temperature. Smoke and pollution aerosols are shown to decrease glaciation temperature while dust particles do the opposite. Possible Implications of our results for studying aerosol indirect forcing, cirrus cloud properties, troposphere-stratosphere water vapor exchange and cloud latent heating are discussed.

  1. Aerosol indirect effects ? general circulation model intercomparison and evaluation with satellite data

    SciTech Connect

    Quaas, Johannes; Ming, Yi; Menon, Surabi; Takemura, Toshihiko; Wang, Minghuai; Penner, Joyce E.; Gettelman, Andrew; Lohmann, Ulrike; Bellouin, Nicolas; Boucher, Olivier; Sayer, Andrew M.; Thomas, Gareth E.; McComiskey, Allison; Feingold, Graham; Hoose, Corinna; Kristansson, Jon Egill; Liu, Xiaohong; Balkanski, Yves; Donner, Leo J.; Ginoux, Paul A.; Stier, Philip; Grandey, Benjamin; Feichter, Johann; Sednev, Igor; Bauer, Susanne E.; Koch, Dorothy; Grainger, Roy G.; Kirkevag, Alf; Iversen, Trond; Seland, Oyvind; Easter, Richard; Ghan, Steven J.; Rasch, Philip J.; Morrison, Hugh; Lamarque, Jean-Francois; Iacono, Michael J.; Kinne, Stefan; Schulz, Michael

    2010-03-12

    strongly influenced by the simulated anthropogenic fraction of {tau}{sub a}, and parameterization assumptions such as a lower bound on N{sub d}. Nevertheless, the strengths of the statistical relationships are good predictors for the aerosol forcings in the models. An estimate of the total short-wave aerosol forcing inferred from the combination of these predictors for the modelled forcings with the satellite-derived statistical relationships yields a global annual mean value of -1.5 {+-} 0.5 Wm{sup -2}. In an alternative approach, the radiative flux perturbation due to anthropogenic aerosols can be broken down into a component over the cloud-free portion of the globe (approximately the aerosol direct effect) and a component over the cloudy portion of the globe (approximately the aerosol indirect effect). An estimate obtained by scaling these simulated clear- and cloudy-sky forcings with estimates of anthropogenic {tau}{sub a} and satellite-retrieved Nd - {tau}{sub a} regression slopes, respectively, yields a global, annual-mean aerosol direct effect estimate of -0.4 {+-} 0.2 Wm{sup -2} and a cloudy-sky (aerosol indirect effect) estimate of -0.7 {+-} 0.5 Wm{sup -2}, with a total estimate of -1.2 {+-} 0.4 Wm{sup -2}.

  2. Improved representation of stratocumulus clouds and the anthropogenic aerosol effect

    NASA Astrophysics Data System (ADS)

    Neubauer, David; Lohmann, Ulrike; Hoose, Corinna; Frontoso, Grazia M.

    2014-05-01

    Stratocumulus clouds are important for future climate predictions as they have a strong cooling effect and the feedback of low clouds is believed to be a major cause of the model spread in climate sensitivity. Stratocumulus clouds are difficult to represent in a general circulation model because of their small vertical extent. Stratocumulus regions are also areas of a strong anthropogenic aerosol effect. Simulations of the anthropogenic aerosol effect can be expected to depend on the representation of stratocumulus clouds in climate models. We address the representation of several of the physical processes that have to be accounted for when modeling stratocumuli in the general circulation model ECHAM6 (Stevens et al., 2013) coupled to the aerosol module HAM2 (Zhang et al., 2012). As a 'long tail' stability function can lead to excessive mixing at high stabilities we replaced it with a 'sharp' stability function. The stratocumulus cloud cover and liquid water path increase, similar to previous studies, with the 'sharp' stability function in ECHAM6-HAM2. We also study the impact of increased vertical resolution in the lower troposphere in ECHAM6-HAM2 on stratocumulus clouds. First results show improvements for the cloud height and thickness with increased vertical resolution. To simulate a realistic mixing state and size of particles released by evaporation of clouds and precipitation we include aerosol processing in stratiform clouds. First results from multi-year simulations show that using a 'sharp' stability function decreases the anthropogenic aerosol effect from -1.5 W/m2 to -1.2 W/m2 and in-cloud aerosol processing to -0.8 W/m2. This strong decrease is due to an increase in the background aerosol load. Increased vertical resolution doesn't seem to affect the anthropogenic aerosol effect in the global average. Further results on the impact of changing the vertical resolution, a different stability function and in-cloud aerosol processing in ECHAM6-HAM2 on the

  3. Direct radiative forcing properties of atmospheric aerosols over semi-arid region, Anantapur in India.

    PubMed

    Kalluri, Raja Obul Reddy; Gugamsetty, Balakrishnaiah; Kotalo, Rama Gopal; Nagireddy, Siva Kumar Reddy; Tandule, Chakradhar Rao; Thotli, Lokeswara Reddy; Rajuru Ramakrishna, Reddy; Surendranair, Suresh Babu

    2016-10-01

    This paper describes the aerosols optical, physical characteristics and the aerosol radiative forcing pertaining to semi-arid region, Anantapur for the period January 2013-December 2014. Collocated measurements of Aerosol Optical Depth (AOD) and Black Carbon mass concentration (BC) are carried out by using MICROTOPS II and Aethalometer and estimated the aerosol radiative forcing over this location. The mean values of AOD at 500nm are found to be 0.47±0.09, 0.34±0.08, 0.29±0.06 and 0.30±0.07 during summer, winter, monsoon and post-monsoon respectively. The Angstrom exponent (α380-1020) value is observed maximum in March (1.25±0.19) and which indicates the predominance of fine - mode aerosols and lowest in the month of July (0.33±0.14) and may be due to the dominance of coarse-mode aerosols. The diurnal variation of BC is exhibited two height peaks during morning 07:00-08:00 (IST) and evening 19:00-21:00 (IST) hours and one minima noticed during afternoon (13:00-16:00). The highest monthly mean BC concentration is observed in the month of January (3.4±1.2μgm(-3)) and the lowest in July (1.1±0.2μgm(-3)). The estimated Aerosol Direct Radiative Forcing (ADRF) in the atmosphere is found to be +36.8±1.7Wm(-2), +26.9±0.2Wm(-2), +18.0±0.6Wm(-2) and +18.5±3.1Wm(-2) during summer, winter, monsoon and post-monsoon seasons, respectively. Large difference between TOA and BOA forcing is observed during summer which indicate the large absorption of radiant energy (36.80Wm(-2)) which contributes more increase in atmospheric heating by ~1K/day. The BC contribution on an average is found to be 64% and is responsible for aerosol atmospheric heating. PMID:27344510

  4. Evidence for a Glaciation Aerosol Indirect Effect from Ship Tracks

    NASA Astrophysics Data System (ADS)

    Christensen, M.; Suzuki, K.; Stephens, G. L.

    2013-12-01

    Ship tracks are a prominent manifestation of the aerosol indirect effect that provides a unique opportunity to study aerosol interactions in both warm and mixed-phase clouds. While ample evidence supports that an increase in aerosol concentration generally suppresses warm phase precipitation leading to longer cloud lifetime and more reflected sunlight (Albrecht, 1989) there is less understood about these effects in mixed-phase clouds. Lohmann, (2002) propose that an increase in IN (Ice Nuclei) may cause a glaciation indirect effect which results in more frequent glaciation of super-cooled droplets via the Bergeron process thereby increasing the amount of precipitation, which could decrease cloud cover, cloud longevity, and reflected sunlight. In this study, over 200 ship tracks are identified in mixed phase clouds using MODIS (MODerate resolution Imaging Spectroradiometer) imagery. Retrievals of the ice phase are obtained using CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations). These measurements provide evidence that glaciation is more frequent in polluted clouds compared to the unpolluted clouds that lie adjacent to ship tracks. Larger ice fractions may result from the increased IN emitted from the ship or by other processes (e.g., immersion/contact freezing) that lead to faster ice multiplication in polluted clouds with smaller and more numerous supercooled droplets. Observations from the profiling radar on CloudSat show that aerosol suppresses warm phase precipitation but enhances the cold phase precipitation. For mixed-phase clouds, these differences roughly cancel resulting in small changes in precipitation between polluted and unpolluted clouds. When cloud tops are warm, aerosol decreases precipitation rates and cloud water paths due to the entrainment effect but the differences in cloud water amount are considerably smaller than those found in cold phase clouds. These results provide the first glance of ship tracks in mixed

  5. UV spectral irradiance measurements in New Zealand: Effects of Pinatubo volcanic aerosol

    NASA Technical Reports Server (NTRS)

    Mckenzie, Richard L.

    1994-01-01

    Since late 1989, regular UV spectral irradiance measurements have been made at Lauder, New Zealand (45 deg S, 170 deg E), whenever weather permits. Here, the instrumentation and measurement strategy are outlined, and early results are discussed. Following the eruption of Mt Pinatubo in June 1991, large amounts of volcanic aerosol were injected into the stratosphere and were subsequently transported to New Zealand's latitudes in the latter half of 1991. This provides an opportunity to investigate the effects of volcanic aerosols on UV irradiances measured at this clean-air site. Although changes in global (sum of diffuse plus direct) irradiances were below the detection threshold, there were significant changes in the partitioning of radiation between the direct beam and diffuse skylight. Decreases by nearly a factor of two in the direct/diffuse ratio were observed at longer wavelengths, and at smaller solar zenith angles (sza's). The aerosol optical depth due to volcanic aerosol over Lauder in December 1991 was 0.15 plus or minus 0.02 at 450 nm, with lower values at shorter wavelengths. Although effects were relatively small in the UVB region, an implication of the changes is that the contrast between shade and direct sun is reduced, so that shaded areas received relatively more radiation in the summer of 1991/92 in New Zealand.

  6. Radiative Effects of Aerosols Generated from Biomass Burning, Dust Storms, and Forest Fires

    NASA Technical Reports Server (NTRS)

    Christopher Sundar A.; Vulcan, Donna V.; Welch, Ronald M.

    1996-01-01

    Atmospheric aerosol particles, both natural and anthropogenic, are important to the earth's radiative balance. They scatter the incoming solar radiation and modify the shortwave reflective properties of clouds by acting as Cloud Condensation Nuclei (CCN). Although it has been recognized that aerosols exert a net cooling influence on climate (Twomey et al. 1984), this effect has received much less attention than the radiative forcings due to clouds and greenhouse gases. The radiative forcing due to aerosols is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign (Houghton et al. 1990). Atmospheric aerosol particles generated from biomass burning, dust storms and forest fires are important regional climatic variables. A recent study by Penner et al. (1992) proposed that smoke particles from biomass burning may have a significant impact on the global radiation balance. They estimate that about 114 Tg of smoke is produced per year in the tropics through biomass burning. The direct and indirect effects of smoke aerosol due to biomass burning could add up globally to a cooling effect as large as 2 W/sq m. Ackerman and Chung (1992) used model calculations and the Earth Radiation Budget Experiment (ERBE) data to show that in comparison to clear days, the heavy dust loading over the Saudi Arabian peninsula can change the Top of the Atmosphere (TOA) clear sky shortwave and longwave radiant exitance by 40-90 W/sq m and 5-20 W/sq m, respectively. Large particle concentrations produced from these types of events often are found with optical thicknesses greater than one. These aerosol particles are transported across considerable distances from the source (Fraser et al. 1984). and they could perturb the radiative balance significantly. In this study, the regional radiative effects of aerosols produced from biomass burning, dust storms and forest fires are examined using the Advanced Very High Resolution Radiometer (AVHRR) Local Area

  7. Type-segregated aerosol effects on regional monsoon activity: A study using ground-based experiments and model simulations

    NASA Astrophysics Data System (ADS)

    Vijayakumar, K.; Devara, P. C. S.; Sonbawne, S. M.

    2014-12-01

    Classification of observed aerosols into key types [e.g., clean-maritime (CM), desert-dust (DD), urban-industrial/biomass-burning (UI/BB), black carbon (BC), organic carbon (OC) and mixed-type aerosols (MA)] would facilitate to infer aerosol sources, effects, and feedback mechanisms, not only to improve the accuracy of satellite retrievals but also to quantify the assessment of aerosol radiative impacts on climate. In this paper, we report the results of a study conducted in this direction, employing a Cimel Sun-sky radiometer at the Indian Institute of Tropical Meteorology (IITM), Pune, India during 2008 and 2009, which represent two successive contrasting monsoon years. The study provided an observational evidence to show that the local sources are subject to heavy loading of absorbing aerosols (dust and black carbon), with strong seasonality closely linked to the monsoon annual rainfall cycle over Pune, a tropical urban station in India. The results revealed the absence of CM aerosols in the pre-monsoon as well as in the monsoon seasons of 2009 as opposed to 2008. Higher loading of dust aerosols is observed in the pre-monsoon and monsoon seasons of 2009; majority may be coated with fine BC aerosols from local emissions, leading to reduction in regional rainfall. Further, significant decrease in coarse-mode AOD and presence of carbonaceous aerosols, affecting the aerosol-cloud interaction and monsoon-rain processes via microphysics and dynamics, is considered responsible for the reduction in rainfall during 2009. Additionally, we discuss how optical depth, contributed by different types of aerosols, influences the distribution of monsoon rainfall over an urban region using the Monitoring Atmospheric Composition and Climate (MACC) aerosol reanalysis. Furthermore, predictions of the Dust REgional Atmospheric Model (DREAM) simulations combined with HYSPLIT (HYbrid Single Particle Lagrangian Integrated Trajectory) cluster model are also discussed in support of the

  8. Direct evidence of atmospheric secondary organic aerosol formation in forest atmosphere through heteromolecular nucleation.

    PubMed

    Kavouras, Ilias G; Stephanou, Euripides G

    2002-12-01

    Atmospheric aerosols play a central role in climate and atmospheric chemistry. Organic matter frequently composes aerosol major fraction over continental areas. Reactions of natural volatile organic compounds, with atmospheric oxidants, are a key formation pathway of fine particles. The gas and particle atmospheric concentration of organic compounds directly emitted from conifer leaf epicuticular wax and of those formed through the photooxidation of alpha- and beta-pinene were simultaneously collected and measured in a conifer forest by using elaborated sampling and GC/ MS techniques. The saturation concentrations of acidic and carbonyl photooxidation products were estimated, by taking into consideration primary gas- and particle-phase organic species. Primary organic aerosol components represented an important fraction of the atmospheric gas-phase organic content Consequently, saturation concentrations of photooxidation products have been lowered facilitating new particle formation between molecules of photooxidation products and semi-volatile organic compounds. From the measured concentrations of the above-mentioned compounds, saturation concentrations (Csat,i) of alpha- and beta-pinene photooxidation products were calculated for nonideal conditions using a previously developed absorptive model. The results of these calculations indicated that primarily emitted organic species and ambient temperature play a crucial role in secondary organic aerosol formation. PMID:12523424

  9. Total reflection X-ray fluorescence (TXRF) for direct analysis of aerosol particle samples.

    PubMed

    Bontempi, E; Zacco, A; Benedetti, D; Borgese, L; Colombi, P; Stosnach, H; Finzi, G; Apostoli, P; Buttini, P; Depero, L E

    2010-04-14

    Atmospheric aerosol particles have a great impact on the environment and on human health. Routine analysis of the particles usually involves only the mass determination. However, chemical composition and phases provide fundamental information about the particles' origins and can help to prevent health risks. For example, these particles may contain heavy metals such as Pb, Ni and Cd, which can adversely affect human health. In this work, filter samples were collected in Brescia, an industrial town located in Northern Italy. In order to identify the chemical composition and the phases of the atmospheric aerosols, the samples were analysed by means of total reflection X-ray fluorescence (TXRF) spectrometry with a laboratory instrument and X-ray microdiffraction at Synchrotron Daresbury Laboratories, Warrington (Cheshire, UK). The results are discussed and correlated to identify possible pollution sources. The novelty of this analytical approach is that filter samples for TXRF were analysed directly and did not require chemical pretreatment to leach elements from the aerosol particulates. The results of this study clearly show that TXRF is a powerful technique for the analysis of atmospheric aerosols on 'as-received' filters, thereby leaving samples intact and unaltered for possible subsequent analyses by other methods. In addition, the low detection limits for many elements (low ng/cm2) indicate that this method may hold promise in various application fields, such as nanotechnology. PMID:20480822

  10. Scattering of intense femtosecond laser radiation at water aerosol in backward direction

    NASA Astrophysics Data System (ADS)

    Efimenko, E. S.; Malkov, Yu. A.; Murzanev, A. A.; Stepanov, A. N.

    2015-12-01

    We investigated the scattering of femtosecond laser pulses with intensities within the 1012-1013W/cm2 range at a water aerosol jet at 20° to backward direction. The scattered energy and spectra transformation as a function of incident intensity obtained in experiment show good agreement with the results of extensive numerical modeling based on self-consistent solution of Maxwell equations using a nonlinear 3D FDTD code and balance equation for plasma density.

  11. Indirect aerosol effect increases CMIP5 models projected Arctic warming

    DOE PAGESBeta

    Chylek, Petr; Vogelsang, Timothy J.; Klett, James D.; Hengartner, Nicholas; Higdon, Dave; Lesins, Glen; Dubey, Manvendra K.

    2016-02-20

    Phase 5 of the Coupled Model Intercomparison Project (CMIP5) climate models’ projections of the 2014–2100 Arctic warming under radiative forcing from representative concentration pathway 4.5 (RCP4.5) vary from 0.9° to 6.7°C. Climate models with or without a full indirect aerosol effect are both equally successful in reproducing the observed (1900–2014) Arctic warming and its trends. However, the 2014–2100 Arctic warming and the warming trends projected by models that include a full indirect aerosol effect (denoted here as AA models) are significantly higher (mean projected Arctic warming is about 1.5°C higher) than those projected by models without a full indirect aerosolmore » effect (denoted here as NAA models). The suggestion is that, within models including full indirect aerosol effects, those projecting stronger future changes are not necessarily distinguishable historically because any stronger past warming may have been partially offset by stronger historical aerosol cooling. In conclusion, the CMIP5 models that include a full indirect aerosol effect follow an inverse radiative forcing to equilibrium climate sensitivity relationship, while models without it do not.« less

  12. Aerosol climate effects and air quality impacts from 1980 to 2030

    SciTech Connect

    Menon, Surabi; Menon, Surabi; Unger, Nadine; Koch, Dorothy; Francis, Jennifer; Garrett, Tim; Sednev, Igor; Shindell, Drew; Streets, David

    2007-11-26

    We investigate aerosol effects on climate for 1980, 1995 (meant to reflect present-day) and 2030 using the NASA Goddard Institute for Space Studies climate model coupled to an on-line aerosol source and transport model with interactive oxidant and aerosol chemistry. Aerosols simulated include sulfates, organic matter (OM), black carbon (BC), sea-salt and dust and additionally, the amount of tropospheric ozone is calculated, allowing us to estimate both changes to air quality and climate for different time periods and emission amounts. We include both the direct aerosol effect and indirect aerosol effects for liquid-phase clouds. Future changes for the 2030 A1B scenario are examined, focusing on the Arctic and Asia, since changes are pronounced in these regions. Our results for the different time periods include both emission changes and physical climate changes. We find that the aerosol indirect effect (AIE) has a large impact on photochemical processing, decreasing ozone amount and ozone forcing, especially for the future (2030-1995). Ozone forcings increase from 0 to 0.12 Wm{sup -2} and the total aerosol forcing increases from -0.10 Wm{sup -2} to -0.94 Wm{sup -2} (AIE increases from -0.13 to -0.68 Wm{sup -2}) for 1995-1980 versus 2030-1995. Over the Arctic we find that compared to ozone and the direct aerosol effect, the AIE contributes the most to net radiative flux changes. The AIE, calculated for 1995-1980, is positive (1.0 Wm{sup -2}), but the magnitude decreases (-0.3Wm{sup -2}) considerably for the future scenario. Over Asia, we evaluate the role of biofuel and transportation-based emissions (for BC and OM) via a scenario (2030A) that includes a projected increase (factor of two) in biofuel and transport-based emissions for 2030 A1B over Asia. Projected changes from present-day due to the 2030A emissions versus 2030 A1B are a factor of 4 decrease in summertime precipitation in Asia. Our results are sensitive to emissions used. Uncertainty in present

  13. Effects of biomass burning aerosols on CO2 fluxes on Amazon Region

    NASA Astrophysics Data System (ADS)

    Soares Moreira, Demerval; Freitas, Saulo; Longo, Karla; Rosario, Nilton

    2015-04-01

    During the dry season in Central Brazil and Southern Amazon, there is an usually high concentration of aerosol particles associated with intense human activities, with extensive biomass burning. It has been observed through remote sensing that the smoke clouds in these areas often cover an area of about 4 to 5 million km2. Thus, the average aerosol optical depth of these regions at 500 ηm, is usually below 0.1 during the rainy season and can exceed 0.9 in the fire season. Aerosol particles act as condensation nuclei and also increase scattering and absorption of the incident radiation. Therefore, the layer of the aerosol alters the precipitation rate; reduces the amount of solar energy that reaches the surface, producing a cooling; and causes an increase of diffuse radiation. These factors directly and indirectly affect the CO2 fluxes at the surface. In this work, the chemical-atmospheric model CCATT-BRAMS (Coupled Chemistry-Aerosol-Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System) coupled to the surface model JULES (Joint UK Land Environment Simulator) was used to simulate the effects of biomass burning aerosols in CO2 fluxes in the Amazon region. Both the total effect of the aerosols and the contribution related only to the increase of the diffuse fraction caused by the their presence were analyzed. The results show that the effect of the scattered fraction is dominant over all other effects. It was also noted that the presence of aerosols from fires can substantially change biophysiological processes of the carbon cycle. In some situations, it can lead to a sign change in the net ecosystem exchange (NEE), turning it from a source of CO2 to the atmosphere, when the aerosol is not considered in the simulations, to a sink, when it is considered. Thus, this work demonstrates the importance of considering the presence of aerosols in numerical simulations of weather and climate, since carbon dioxide is a major

  14. The Effect of Non-Lambertian Surface Reflectance on Aerosol Radiative Forcing

    SciTech Connect

    Ricchiazzi, P.; O'Hirok, W.; Gautier, C.

    2005-03-18

    Surface reflectance is an important factor in determining the strength of aerosol radiative forcing. Previous studies of radiative forcing assumed that the reflected surface radiance is isotropic and does not depend on incident illumination angle. This Lambertian reflection model is not a very good descriptor of reflectance from real land and ocean surfaces. In this study we present computational results for the seasonal average of short and long wave aerosol radiative forcing at the top of the atmosphere and at the surface. The effect of the Lambertian assumption is found through comparison with calculations using a more detailed bi-direction reflectance distribution function (BRDF).

  15. Modelled radiative effects of sea spray aerosol using a source function encapsulating wave state

    NASA Astrophysics Data System (ADS)

    Partanen, Antti-Ilari; Dunne, Eimear M.; Bergman, Tommi; Laakso, Anton; Kokkola, Harri; Ovadnevaite, Jurgita; Sogacheva, Larisa; Baisnée, Dominique; Sciare, Jean; Manders, Astrid; O'Dowd, Colin; de Leeuw, Gerrit; Korhonen, Hannele

    2014-05-01

    Sea spray aerosol particles have significant effects on global climate by scattering solar radiation (direct effect) and modifying cloud properties (indirect effect). Sea spray consists mainly of sea salt, but in biologically active regions, major fraction of sea spray may come in the form of primary marine organic matter (PMOM). Traditionally, sea spray flux has been parameterized in global models in terms of wind speed, and organic fraction of sea spray in terms of chlorophyll-a concentration. In this study, we have incorporated recently developed parameterizations for the sea spray aerosol source flux into the global aerosol-climate model ECHAM-HAMMOZ. The parameterizations encapsulate the wave state via Reynolds number, and predict the organic fraction of the sea spray aerosol source flux. The model was then used to investigate the direct and indirect effects of sea spray aerosol particles. We compared simulated sea spray concentrations with in-situ measurements from Mace Head (North Atlantic), Point Reyes (North Pacific), and Amsterdam Island (Southern Indian Ocean). Aerosol optical depth (AOD) was compared with satellite measurements from PARASOL. Modelled annual mean global emissions of sea salt and PMOM were 805 Tg yr-1 (uncertainty range of 378-1233 Tg yr-1) and 1.1 Tg yr-1 (0.5-1.8 Tg yr-1), respectively. Sea salt emissions were considerably lower than the majority of previous estimates, but PMOM was in the range of previous studies. The model captured sea salt concentrations fairly well in the smaller size ranges at Mace Head (annual normalized mean bias of -13% for particles with vacuum aerodynamic diameter Dva

  16. Method for estimating the atmospheric content of sub-micrometer aerosol using direct-sun photometric data

    NASA Astrophysics Data System (ADS)

    Stefan, S.; Filip, L.

    2009-04-01

    It is well known that the aerosol generated by human activity falls in the sub-micrometer rage [1]. The rapid increase of such emissions led to massive accumulations in the planetary boundary layer. Aerosol pollutants influence the quality of life on the Earth in at least two ways: by direct physiological effects following their penetration into living organisms and by the indirect implications on the overall energy balance of the Earth-atmosphere system. For these reasons monitoring the sub-micrometer aerosol on a global scale, become a stringent necessity in protecting the environment. The sun-photometry proved a very efficient way for such monitoring activities, mainly when vast networks of instruments (like AERONET [2]) are used. The size distribution of aerosols is currently a product of AERONET obtained through an inversion algorithm of sky-photometry data [3, 4]. Alternatively, various methods of investigating the aerosol size distribution have been developed through the use of direct-sun photometric data, with the advantages of simpler computation algorithms and a more convenient use [5, 6]. Our research aims to formulate a new simpler way to retrieve aerosol fine and coarse mode volume concentrations, as well as dimensional information, from direct-sun data. As in other works from the literature [3-6], the main hypothesis is that of a bi-modal shape of the size distribution of aerosols that can be reproduced rather satisfactorily by a linear combination of two lognormal functions. Essentially, the method followed in this paper relies on aerosol size information retrieval through fitting theoretical computations to measured aerosol optical depth (AOD) and related data. To this purpose, the experimental spectral dependence of AOD is interpolated and differentiated numerically to obtain the Ǻngström parameter. The reduced (i.e. normalized to the corresponding columnar volumetric content) contributions of the fine and coarse modes to the AOD have also been

  17. Evaluation of atmospheric aerosol and tropospheric ozone effects on global terrestrial ecosystem carbon dynamics

    NASA Astrophysics Data System (ADS)

    Chen, Min

    The increasing human activities have produced large amounts of air pollutants ejected into the atmosphere, in which atmospheric aerosols and tropospheric ozone are considered to be especially important because of their negative impacts on human health and their impacts on global climate through either their direct radiative effect or indirect effect on land-atmosphere CO2 exchange. This dissertation dedicates to quantifying and evaluating the aerosol and tropospheric ozone effects on global terrestrial ecosystem dynamics using a modeling approach. An ecosystem model, the integrated Terrestrial Ecosystem Model (iTem), is developed to simulate biophysical and biogeochemical processes in terrestrial ecosystems. A two-broad-band atmospheric radiative transfer model together with the Moderate-Resolution Imaging Spectroradiometer (MODIS) measured atmospheric parameters are used to well estimate global downward solar radiation and the direct and diffuse components in comparison with observations. The atmospheric radiative transfer modeling framework were used to quantify the aerosol direct radiative effect, showing that aerosol loadings cause 18.7 and 12.8 W m -2 decrease of direct-beam Photosynthetic Active Radiation (PAR) and Near Infrared Radiation (NIR) respectively, and 5.2 and 4.4 W m -2 increase of diffuse PAR and NIR, respectively, leading to a total 21.9 W m-2 decrease of total downward solar radiation over the global land surface during the period of 2003-2010. The results also suggested that the aerosol effect may be overwhelmed by clouds because of the stronger extinction and scattering ability of clouds. Applications of the iTem with solar radiation data and with or without considering the aerosol loadings shows that aerosol loading enhances the terrestrial productions [Gross Primary Production (GPP), Net Primary Production (NPP) and Net Ecosystem Production (NEP)] and carbon emissions through plant respiration (RA) in global terrestrial ecosystems over the

  18. Daytime Variation of Shortwave Direct Radiative Forcing of Biomass Burning Aerosols from GOES-8 Imager.

    NASA Astrophysics Data System (ADS)

    Christopher, Sundar A.; Zhang, Jianglong

    2002-02-01

    Hourly Geostationary Operational Environmental Satellite-8 (GOES-8) imager data (1344-1944 UTC) from 20 July-31 August 1998 were used to study the daytime variation of shortwave direct radiative forcing (SWARF) of smoke aerosols over biomass burning regions in South America (4°-16°S, 51°-65°W). Vicarious calibration procedures were used to adjust the GOES visible channel reflectance values for the degradation in signal response. Using Mie theory and discrete ordinate radiative transfer (DISORT) calculations, smoke aerosol optical thickness (AOT) was estimated at 0.67 m. The GOES-retrieved AOT was then compared against ground-based AOT retrieved values. Using the retrieved GOES-8 AOT, a four-stream broadband radiative transfer model was used to compute shortwave fluxes for smoke aerosols at the top of the atmosphere (TOA). The daytime variation of smoke AOT and SWARF was examined for the study area. For selected days, the Clouds and the Earth's Radiant Energy System (CERES) TOA shortwave (SW) fluxes are compared against the model-derived SW fluxes.Results of this study show that the GOES-derived AOT is in excellent agreement with Aerosol Robotic Network (AERONET)-derived AOT values with linear correlation coefficient of 0.97. The TOA CERES-estimated SW fluxes compare well with the model-calculated SW fluxes with linear correlation coefficient of 0.94. For August 1998 the daytime diurnally averaged AOT and SWARF for the study area is 0.63 ± 0.39 and 45.8 ± 18.8 W m2, respectively. This is among the first studies to estimate the daytime diurnal variation of SWARF of smoke aerosols using satellite data.

  19. Whole-atmosphere aerosol microphysics simulations of the Mt Pinatubo eruption: Part 2: Quantifying the direct and indirect (dynamical) radiative forcings

    NASA Astrophysics Data System (ADS)

    Mann, Graham; Dhomse, Sandip; Carslaw, Ken; Chipperfield, Martyn; Lee, Lindsay; Emmerson, Kathryn; Abraham, Luke; Telford, Paul; Pyle, John; Braesicke, Peter; Bellouin, Nicolas; Dalvi, Mohit; Johnson, Colin

    2016-04-01

    The Mt Pinatubo volcanic eruption in June 1991 injected between 10 and 20 Tg of sulphur dioxide into the tropical lower stratosphere. Following chemical conversion to sulphuric acid, the stratospheric aerosol layer thickened substantially causing a strong radiative, dynamical and chemical perturbation to the Earth's atmosphere with effects lasting several years. In this presentation we show results from model experiments to isolate the different ways the enhanced stratospheric aerosol from Pinatubo influenced the Earth's climate. The simulations are carried out in the UK Chemistry and Aerosol composition-climate model (UKCA) which extends the high-top (to 80km) version of the UK Met Office Unified Model (UM). The UM-UKCA model uses the GLOMAP-mode aerosol microphysics module coupled with a stratosphere-troposphere chemistry scheme including sulphur chemistry. By running no-feedback and standard integrations, we separate the main radiative forcings due to aerosol-radiation interactions (i.e. the direct forcings) from those induced by dynamical changes which alter meridional heat transport and distributions of aerosol, ozone and water vapour.

  20. Assessing aerosol indirect effect through ice clouds in CAM5

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Liu, Xiaohong; Yoon, Jin-Ho; Wang, Minghuai; Comstock, Jennifer M.; Barahona, Donifan; Kooperman, Gabriel

    2013-05-01

    Ice clouds play an important role in regulating the Earth's radiative budget and influencing the hydrological cycle. Aerosols can act as solution droplets or ice nuclei for ice crystal formation, thus affecting the physical properties of ice clouds. Because the related dynamical and microphysical processes happen at very small spatial and temporal scales, it is a great challenge to accurately represent them in global climate models. Consequently, the aerosol indirect effect through ice clouds (ice AIE) estimated by global climate models is associated with large uncertainties. In order to better understand these processes and improve ice cloud parameterization in the Community Atmospheric Model, version 5 (CAM5), we analyze in-situ measurements from various research campaigns, and use the derived statistical information to evaluate and constrain the model [1]. We also make use of new model capabilities (prescribed aerosols and nudging) to estimate the aerosol indirect effect through ice clouds, and quantify the uncertainties associated with ice nucleation processes. In this study, a new approach is applied to separate the impact of aerosols on warm and cold clouds by using the prescribed-aerosol capability in CAM5 [2]. This capability allows a single simulation to simultaneously include up to three aerosol fields: online calculated, as well as prescribed pre-industrial (PI) and present-day conditions (PD). In a set of sensitivity simulations, we use the same aerosol fields to drive droplet activation in warm clouds, and different (PD and PI) conditions for different components of the ice nucleation parameterization in pure ice clouds, so as to investigate various ice nucleation mechanisms in an isolated manner. We also applied nudging in our simulations, which helps to increase the signal-to-noise ratio in much shorter simulation period [3] and isolate the impact of aerosols on ice clouds from other factors, such as temperature and relative humidity change. The

  1. Susceptibility of Tribolium confusum (Coleoptera: Tenebrionidae) to pyrethrin aerosol: effects of aerosol particle size, concentration, and exposure conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of laboratory studies were conducted to assess effect of droplet size on efficacy of pyrethrin aerosol against adults of Tribolium confusum Jacqueline DuVal, the confused flour beetle. A vertical flow aerosol exposure chamber that generated a standardized particle size diameter was used for...

  2. Development of RAMS-CMAQ to Simulate Aerosol Optical Depth and Aerosol Direct Radiative Forcing and Its Application to East Asia

    SciTech Connect

    Han, Xiao; Zhang, Meigen; Liu, Xiaohong; Ghan, Steven J; Xin, Jin-Yuan; Wang, Li-Li

    2009-11-16

    The air quality modeling system RAMS (Regional Atmospheric Modeling System)-CMAQ (Models-3 Community Multi-scale Air Quality) is developed to simulate the aerosol optical depth (AOD) and aerosol direct forcing (DF). The aerosol-specific extinction, single scattering albedo, and asymmetry factor are parameterized based on Mie theory taking into account the aerosol size distribution, composition, refractive index, and water uptake of solution particles. A two-stream solar radiative model considers all gaseous molecular absorption, Rayleigh scattering, and aerosols and clouds. RAMSCMAQ is applied to simulate all major aerosol concentrations (e.g., sulfate, nitrate, ammonium, organic carbon, black carbon, fine soil, and sea salt) and AOD and DF over East Asia in 2005. To evaluate its performance, the simulated AOD values were compared with ground-based in situ measurements. The comparison shows that RAMSCMAQ performed well in most of the model domain and generally captured the observed variations. High AOD values (0.2-1.0) mainly appear in the Sichuan Basin as well as in central and southeastern China. The geographic distribution of DF generally follows the AOD distribution patterns, and the DF at the top-of-the-atmosphere is less than -25 and -20 W m-2 in clear-sky and all-sky over the Sichuan Basin. Both AOD and DF exhibit seasonal variations with lower values in July and higher ones in January. The DF could obviously be impacted by high cloud fractions.

  3. Aerosol Indirect effect on Stratocumulus Organization

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Heus, T.; Kollias, P.

    2015-12-01

    Large-eddy simulations are used to investigate the role of aerosol loading on organized Stratocumulus. We prescribed the cloud droplet number concentration (Nc) and considered it as the proxy for different aerosol loading. While the presence of drizzle amplifies the mesoscale variability as is in Savic-Jovcic and Stevens (JAS, 2008), two noticeable findings are discussed here: First, the scale of marine boundary layer circulation appears to be independent of aerosol loading, suggesting a major role of the turbulence. The precise role of the turbulence in stratocumulus organization is studied by modifying the large scale fluctuations from the LES domain. Second, while it is commonly thought that the whole circulation needs to be represented for robust cloud development, we find that stratocumulus dynamics, including variables like w'w' and w'w'w', are remarkably robust even if large scales are ignored by simply reducing the domain sizes. The only variable that is sensitive to the change of the scale is the amount of cloudiness. Despite their smaller cloud thickness and inhomogeneous macroscopic structure for low Nc, individual drizzling clouds have sizes that are commensurate with circulation scale. We observe an Nc threshold below which stratocumulus is thin enough so that a little decrease of Nc would lead to great change of cloud fraction. The simulated cloud albedo is more sensitive to in-cloud liquid water content than to the amount of cloudiness since the former decreases at least three times faster than the latter due to drizzle. The main impact of drizzle evaporation is observed to keep the sub-cloud layer moist and as a result to extend the lifetime of stratocumulus by a couple of hours.

  4. A new high spectral resolution lidar technique for direct retrievals of cloud and aerosol extinction

    NASA Astrophysics Data System (ADS)

    Yorks, J. E.; McGill, M. J.; Hlavka, D. L.

    2014-12-01

    The Airborne Cloud-Aerosol Transport System (ACATS) is a Doppler lidar system and high spectral resolution lidar (HSRL) recently developed at NASA Goddard Space Flight Center (GSFC). ACATS passes the returned atmospheric backscatter through a single etalon and divides the transmitted signal into several channels (wavelength intervals), which are measured simultaneously and independently (Figure 1). Both the particulate and molecular scattered signal can be directly and unambiguously measured, allowing for direct retrievals of particle extinction. The broad Rayleigh-scattered spectrum is imaged as a nearly flat background, illustrated in Figure 1c. The integral of the particulate backscattered spectrum is analogous to the aerosol measurement from the typical absorption filter HSRL technique in that the molecular and particulate backscatter components can be separated (Figure 1c and 1d). The main difference between HSRL systems that use the iodine filter technique and the multichannel etalon technique used in the ACATS instrument is that the latter directly measures the spectral broadening of the particulate backscatter using the etalon to filter out all backscattered light with the exception of a narrow wavelength interval (1.5 picometers for ACATS) that contains the particulate spectrum (grey, Figure 1a). This study outlines the method and retrieval algorithms for ACATS data products, focusing on the HSRL derived cloud and aerosol properties. While previous ground-based multi-channel etalon systems have been built and operated for wind retrievals, there has been no airborne demonstration of the technique and the method has not been used to derive HSRL cloud and aerosol properties. ACATS has flown on the NASA ER-2 during flights over Alaska in July 2014 and as part of the Wallops Airborne Vegetation Experiment (WAVE) in September 2012. This study will focus on the HSRL aspect of the ACATS instrument, since the method and retrieval algorithms have direct application

  5. Effect of hydrophilic organic seed aerosols on secondary organic aerosol formation from ozonolysis of α-pinene.

    PubMed

    Song, Chen; Zaveri, Rahul A; Shilling, John E; Alexander, M Lizabeth; Newburn, Matt

    2011-09-01

    Gas-particle partitioning theory is widely used in atmospheric models to predict organic aerosol loadings. This theory predicts that secondary organic aerosol (SOA) yield of an oxidized volatile organic compound product will increase as the mass loading of preexisting organic aerosol increases. In a previous work, we showed that the presence of model hydrophobic primary organic aerosol (POA) had no detectable effect on the SOA yields from ozonolysis of α-pinene, suggesting that the condensing SOA compounds form a separate phase from the preexisting POA. However, a substantial faction of atmospheric aerosol is composed of polar, hydrophilic organic compounds. In this work, we investigate the effects of model hydrophilic organic aerosol (OA) species such as fulvic acid, adipic acid, and citric acid on the gas-particle partitioning of SOA from α-pinene ozonolysis. The results show that only citric acid seed significantly enhances the absorption of α-pinene SOA into the particle-phase. The other two seed particles have a negligible effect on the α-pinene SOA yields, suggesting that α-pinene SOA forms a well-mixed organic aerosol phase with citric acid and a separate phase with adipic acid and fulvic acid. This finding highlights the need to improve the thermodynamics treatment of organics in current aerosol models that simply lump all hydrophilic organic species into a single phase, thereby potentially introducing an erroneous sensitivity of SOA mass to emitted OA species. PMID:21790137

  6. Effects of Organic-Inorganic Interactions on the Hygroscopicity of Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Lienhard, D.; Krieger, U. K.

    2013-12-01

    Aerosol hygroscopicity is an important property affecting size as well as phase transitions and viscosity of soluble or partially soluble particles following changes in ambient relative humidity (RH) and temperature. The effects of hygroscopic particle growth on the water contents and physical states of aerosol phases in turn may significantly affect multiphase chemistry, the direct effect of aerosols on climate, and the ability of specific particles to act as cloud condensation or ice nuclei. The hygroscopic growth of organic-inorganic mixtures in stable or metastable equilibrium with the RH of the surrounding air is governed by chemical thermodynamics and can be described, in principle, by adequate thermodynamic models. Organic-inorganic interactions involving dissolved ionic species in liquid (potentially highly viscous) phases tend to deviate substantially from ideal mixing and can lead to hygroscopicity behaviour deviating from simple linear additivity assumptions at given RH. The latter assumptions are employed in the Zdanovskii-Stokes-Robinson (ZSR) mixing rule, which is typically found to describe hygroscopic mass growth well in the RH range of completely liquid aerosol systems. We present a comparison and discussion of thermodynamic calculations based on the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model and hygroscopic growth factor data from new measurements with an electrodynamic balance (EDB) as well as data from the literature. We focus on the different hygroscopicity features below the full deliquescence RH of multicomponent organic-inorganic systems. Experiments and model calculations are performed for different multicomponent systems showing varying degrees of organic-inorganic miscibility, including liquid-liquid phase separation, hygroscopicity, and hysteresis effects between metastable and stable gas-aerosol equilibria. It is found that depending on the hygroscopicity of the organic aerosol fraction

  7. Observations of relative humidity effects on aerosol light scattering in the Yangtze River Delta of China

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Sun, J. Y.; Shen, X. J.; Zhang, Y. M.; Che, H. C.; Ma, Q. L.; Zhang, Y. W.; Zhang, X. Y.; Ogren, J. A.

    2015-01-01

    Scattering of solar radiation by aerosol particles is highly dependent on relative humidity (RH) as hygroscopic particles take up water with increasing RH. To achieve a better understanding of the effect of aerosol hygroscopic growth on light scattering properties and radiative forcing, a field campaign was carried out in the Yangtze River Delta of China in March 2013. During the observation period, the mean and standard deviation of enhancement factors at RH=85% for the scattering coefficient (f(85%)), backscattering coefficient (fb(85%)) and hemispheric backscatter fraction (fβ(85%)) were 1.58 ± 0.12, 1.25 ± 0.07 and 0.79 ± 0.04, respectively, i.e. aerosol scattering coefficient and backscattering coefficient increased by 58 and 25% as the RH increased from 40 to 85%. Meanwhile, the aerosol hemispheric backscatter fraction decreased by 21%. The relative amount of organic matter (OM) and inorganics in PM1 was found to be a main factor determining the magnitude of f(RH), the highest values of f(RH) corresponded to the aerosols with a small fraction of organic matter (OM), and vice versa. The relative amount of NO3- in fine particles was strongly correlated to f(85%), which suggests NO3- played a vital role in aerosol hygroscopic growth during this study. The mass percentage of nitrate also had a close relation to the curvature of humidograms, namely, the higher the nitrate concentration is, the straighter the humidogram will be. Air masses that arrived at LinAn in March can be classified into northerly-polluted, locally-polluted and dust-influenced types, the scattering enhancement factors at 85% RH were 1.52 ± 0.10, 1.64 ± 0.09 and 1.48 ± 0.05, respectively. The sensitivity of the aerosol radiative forcing to f(RH) at the measured mean ambient RH 67% for various aerosol types was also estimated. The direct radiative forcing increased by 11.8, 19.5, and 10.5%, respectively, for locally-polluted, northerly-polluted and dust-influenced aerosols due to aerosol

  8. Direct observation of aerosol particles in aged agricultural biomass burning plumes impacting urban atmospheres

    NASA Astrophysics Data System (ADS)

    Li, W. Y.; Shao, L. Y.

    2010-04-01

    Emissions from agricultural biomass burning (ABB) in northern China have a significant impact on the regional and the global climate. According to the Giovanni's Aerosol optical depth (AOD) map, the monthly average AOD at 550 nm in northern China in 2007 shows a maximum value of 0.7 in June, suggesting that episodes of severe aerosol pollution occurred in this region. Aerosol particles were collected in urban Beijing during regional brown hazes from 12 to 30 June, 2007. Transmission electron microscopy with energy-dispersive X-ray spectrometry characterized the morphology, composition, and mixing state of aerosol particles. Potassium salts (K2SO4 and KNO3), ammonium sulfate, soot, and organic particles predominated in fine particles (diameter <1 μm) collected from 12 to 20 June, 2007. In contrast, from 21 to 30 June, 2007, ammonium sulfate, soot, and organic particles were dominant. Potassium-dominant particles as a tracer of biomass burning, together with wildfire maps, show that intensive regional ABB in northern China from 10 to 20 June, 2007 contributed significantly to the regional haze. After long-range transport, ABB particles exhibited marked changes in their morphology, elemental composition, and mixing state. Heterogeneous reactions completely converted KCl particles from ABB into K2SO4 and KNO3. Soot particles were generally mixed with potassium salts, ammonium salts, and organic particles. In addition, the abundant aged organic particles and soluble salts emitted by ABB become more hygroscopic and increase their size during long-range transport, becoming in effect additional cloud condensation nuclei. The high AOD (average value at 2.2) during 12 to 20 June, 2007, in Beijing is partly explained by the hygroscopic growth of aged fine aerosol particles and by the strong absorption of internally mixed soot particles, both coming from regional ABB emissions.

  9. A survey of effects of gaseous and aerosol pollutants on pulmonary function of normal males.

    PubMed

    Stacy, R W; Seal, E; House, D E; Green, J; Roger, L J; Raggio, L

    1983-01-01

    A total of 231 normal male human subjects were exposed for 4 hr to air, ozone, nitrogen dioxide, or sulfur dioxide; to sulfuric acid, ammonium bisulfate, ammonium sulfate, or ammonium nitrate aerosols; or to mixtures of these gaseous and aerosol pollutants. Only one concentration of each pollutant was used. This study, therefore, represents a preliminary survey, intended to allow direct comparison of studies to plan future research. During exposure each subject had two 15-min exercise sessions on a treadmill at 4 mph and 10% grade. Environmental conditions were mildly stressful, i.e., temperature = 30 degrees C and relative humidity = 60%. A battery of 19 measurements of pulmonary function was performed just prior to exposure (air control); 2 hr into the exposure, following the first exercise session; 4 hr into the exposure, following the second exercise session; and 24 hr after exposure. Significant differences were noted in specific airway resistance (SRAW), forced vital capacity (FVC), and forced expiratory flow at 50% of FVC (FEF50) and in related measurements in those experimental groups exposed to ozone or to ozone plus aerosols. None of the aerosols alone, nitrogen dioxide or sulfur dioxide alone, or mixtures of nitrogen dioxide or sulfur dioxide with aerosols produced significant effects. A distribution analysis of subject responsivity to ozone gave a normal distribution among subjects not exposed to ozone, and a distribution shifted to the right and skewed to the right among those exposed to ozone alone or in mixture, with no evidence of bimodal distribution of ozone sensitivity. PMID:6847251

  10. An effective inversion algorithm for retrieving bimodal aerosol particle size distribution from spectral extinction data

    NASA Astrophysics Data System (ADS)

    He, Zhenzong; Qi, Hong; Yao, Yuchen; Ruan, Liming

    2014-12-01

    The Ant Colony Optimization algorithm based on the probability density function (PDF-ACO) is applied to estimate the bimodal aerosol particle size distribution (PSD). The direct problem is solved by the modified Anomalous Diffraction Approximation (ADA, as an approximation for optically large and soft spheres, i.e., χ≫1 and |m-1|≪1) and the Beer-Lambert law. First, a popular bimodal aerosol PSD and three other bimodal PSDs are retrieved in the dependent model by the multi-wavelength extinction technique. All the results reveal that the PDF-ACO algorithm can be used as an effective technique to investigate the bimodal PSD. Then, the Johnson's SB (J-SB) function and the modified beta (M-β) function are employed as the general distribution function to retrieve the bimodal PSDs under the independent model. Finally, the J-SB and M-β functions are applied to recover actual measurement aerosol PSDs over Beijing and Shanghai obtained from the aerosol robotic network (AERONET). The numerical simulation and experimental results demonstrate that these two general functions, especially the J-SB function, can be used as a versatile distribution function to retrieve the bimodal aerosol PSD when no priori information about the PSD is available.

  11. Quantifying Aerosol influences on the Cloud Radiative Effect

    NASA Astrophysics Data System (ADS)

    Feingold, Graham; McComiskey, Allison; Sena, Elisa; Yamaguchi, Takanobu

    2016-04-01

    Although evidence of aerosol influences on the microphysical properties of shallow liquid cloud fields abounds, a rigorous assessment of aerosol effects on the radiative properties of these clouds has proved to be elusive because of adjustments in the evolving cloud system. We will demonstrate through large numbers of idealized large eddy simulation and 14 years of surface-based remote sensing at a continental US site that the existence of a detectable cloud microphysical response to aerosol perturbations is neither a necessary, nor a sufficient condition for detectability of a radiative response. We will use a new framework that focuses on the cloud field properties that most influence shortwave radiation, e.g., cloud fraction, albedo, and liquid water path. In this framework, scene albedo is shown to be a robust function of cloud fraction for a variety of cloud systems, and appears to be insensitive to averaging scale. The albedo-cloud fraction framework will be used to quantify the cloud radiative effect of shallow liquid clouds and to demonstrate (i) the primacy of cloud field properties such as cloud fraction and liquid water path for driving the cloud radiative effect; and (ii) that the co-variability between meteorological and aerosol drivers has a strong influence on the detectability of the cloud radiative effect, regardless of whether a microphysical response is detected. A broad methodology for systematically quantifying the cloud radiative effect will be presented.

  12. Effects of aerosol phase and water uptake for understanding organic aerosol oxidation

    NASA Astrophysics Data System (ADS)

    Fitzgerald, C.; Gallimore, P. J.; Fuller, S.; Lee, J.; Garrascon, V.; Achakulwisut, P.; Björkegren, A.; Spring, D. R.; Pope, F. D.; Kalberer, M.

    2012-04-01

    Oxidation reactions of atmospheric organic aerosols strongly influence many important processes in the atmosphere such as aerosol-cloud interactions or heterogeneous chemistry. We present results of an experimental laboratory study with three organic model aerosol systems (maleic, arachidonic and oleic acid) investigating the effect of particle phase and humidity on the oxidative processing of the particle. Two experimental techniques are combined in this investigation. An electrodynamic balance is used to levitate single particles and assess changes in particle size and mass (due to water uptake and/or loss of volatile oxidation products) and phase (liquid or solid) during and after chemical processing with ozone. An aerosol flow tube was used to investigate the detailed chemical composition of the oxidized aerosol with offline ultra-high resolution mass spectrometry. The role of water (i.e., relative humidity) in the oxidation scheme of the three carboxylic acids is very compound specific and the particle phase has a strong effect on the particle processing. Relative humidity was observed to have a major influence on the oxidation scheme of maleic acid and arachidonic acid, whereas no dependence was observed for the oxidation of oleic acid. In both, maleic acid and arachidonic acid, an evaporation of volatile oxidation products could only be observed when the particle was exposed to high relative humidities. Maleic and arachidonic acid change their phase from liquid to solid upon oxidation or upon changes in humidity and efficient oxidative processing of the particle bulk can only occur when the particle is in liquid form. A detailed oxidation mechanism for maleic acid is presented taking the strong effects of water into account. In contrast, oleic acid is liquid under all conditions at room temperature (dry or elevated humidity, pure or oxidized particle). Thus ozone can easily diffuse into the bulk of the particle irrespective of the oxidation conditions. In

  13. North Atlantic Aerosol Radiative Effects Based on Satellite Measurements and Aerosol Intensive Properties from TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Russell, Philip B.

    2000-01-01

    We estimate the impact of North Atlantic aerosols on the net shortwave flux at the tropopause by combining maps of satellite-derived aerosol optical depth (AOD) with model aerosol properties. We exclude African dust, primarily by restricting latitudes to 25-60 N. Aerosol properties were determined via column closure analyses in two recent experiments, TARFOX and ACE 2. The analyses use in situ measurements of aerosol composition and air- and ship-borne sunphotometer measurements of AOD spectra. The resulting aerosol model yields computed flux sensitivities (dFlux/dAOD) that agree with measurements by airborne flux radiometers in TARFOX. It has a midvisible single-scattering albedo of 0.9, which is in the range obtained from in situ measurements of aerosol scattering and absorption in both TARFOX and ACE 2. Combining seasonal maps of AVHRR-derived midvisible AOD with the aerosol model yields maps of 24-hour average net radiative flux changes at the tropopause. For cloud-free conditions, results range from -9 W/sq m near the eastern US coastline in the summer to -1 W/sq m in the mid-Atlantic during winter; the regional annual average is -3.5 W/sq m. Using a non- absorbing aerosol model increases these values by about 30%. We estimate the effect of clouds using ISCCP cloud-fraction maps. Because ISCCP midlatitude North Atlantic cloud fractions are relatively large, they greatly reduce the computed aerosol-induced flux changes. For example, the regional annual average decreases from -3.5 W/sq m to -0.8 W/sq m. We compare results to previous model calculations for a variety of aerosol types.

  14. Measurements of aerosol optical depth and diffuse-to-direct irradiance ratios in the Northeastern United States

    SciTech Connect

    Laulainen, N.; Larson, N.; Michalsky, J.J.

    1995-12-31

    Simultaneous observations of total and diffuse irradiance on a horizontal surface in six narrowband filtered detectors and one broadband shortwave detector have been made since late 1991 at a nine-site network of multi-filter rotating shadowband radiometers. From these measurements, the direct normal irradiance values are calculated. These data are then used to calculate the outside-the-atmosphere direct irradiance (lo) and total optical depth using the Langley method of regressing the natural logarithm of the direct irradiance against air mass for cloud-free conditions. Frequent determinations of lo allow tracking of changes in lo caused by soiling and filter degradation. The daily average total optical depth is calculated in two ways: (1) from the slope of the Langley regression line and (2) from 30-minute averages calculated from the Beer-Lambert-Bougeur law using the median lo for that day. Finally, aerosol optical depths for five wavelengths (the other narrowband wavelength is used to estimate water vapor) are obtained by subtracting Rayleigh scattering and Chappuis ozone absorption optical depths from the total optical depths. The aerosol pattern at each site is consistent with an annual cycle superimposed on a decaying aerosol loading associated with the Mt. Pinatubo eruption. Moreover, the wavelength dependence of the aerosol pattern shows seasonal changes in the aerosol size distribution. The irradiance data are also used to calculate the diffuse-to-direct irradiance ratio, a quantity which in theory is related to the aerosol optical depth and surface albedo. A radiative transfer model based on the adjoint method, combined with a nonlinear least squares method. is used to estimate aerosol optical depth and surface albedo from the observed diffuse-to-direct ratios. The aerosol optical depths are in good agreement with those calculated from the direct beam data and the surface albedos are in accord with other observations.

  15. Direct observation of aqueous secondary organic aerosol from biomass-burning emissions.

    PubMed

    Gilardoni, Stefania; Massoli, Paola; Paglione, Marco; Giulianelli, Lara; Carbone, Claudio; Rinaldi, Matteo; Decesari, Stefano; Sandrini, Silvia; Costabile, Francesca; Gobbi, Gian Paolo; Pietrogrande, Maria Chiara; Visentin, Marco; Scotto, Fabiana; Fuzzi, Sandro; Facchini, Maria Cristina

    2016-09-01

    The mechanisms leading to the formation of secondary organic aerosol (SOA) are an important subject of ongoing research for both air quality and climate. Recent laboratory experiments suggest that reactions taking place in the atmospheric liquid phase represent a potentially significant source of SOA mass. Here, we report direct ambient observations of SOA mass formation from processing of biomass-burning emissions in the aqueous phase. Aqueous SOA (aqSOA) formation is observed both in fog water and in wet aerosol. The aqSOA from biomass burning contributes to the "brown" carbon (BrC) budget and exhibits light absorption wavelength dependence close to the upper bound of the values observed in laboratory experiments for fresh and processed biomass-burning emissions. We estimate that the aqSOA from residential wood combustion can account for up to 0.1-0.5 Tg of organic aerosol (OA) per y in Europe, equivalent to 4-20% of the total OA emissions. Our findings highlight the importance of aqSOA from anthropogenic emissions on air quality and climate. PMID:27551086

  16. Cloud Scavenging Effects on Aerosol Radiative and Cloud-nucleating Properties - Final Technical Report

    SciTech Connect

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2009-03-05

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  17. ECOLOGICAL EFFECTS OF AEROSOL DRIFT FROM A SALTWATER COOLING SYSTEM

    EPA Science Inventory

    The local terrestrial effects of salt aerosol drift from powered spray modules and a mechanical draft cooling tower at Turkey Point, Florida were evaluated through field and controlled exposure studies. Indigenous vegetation, soil and fresh water were sampled over a year long per...

  18. HYGROSCOPIC GROWTH: ITS EFFECT ON AEROSOL THERAPY AND INHALATION TOXICOLOGY

    EPA Science Inventory

    The success of an aerosol therapy protocol is contingent upon a proper quantity of drug being delivered to an appropriate site within the respiratory tract to elicit a therapeutic effect. Likewise, an accurate risk assessment of the threat to human health presented by airborne po...

  19. Modeling Aerosol Effects on Shallow Cumuli and Turbulent Activities Under Various Meteorological Conditions

    NASA Astrophysics Data System (ADS)

    Wang, H.; McFarquhar, G. M.

    2007-12-01

    To determine conditions over the Indian Ocean for which cloud fields are most susceptible to modification from aerosols and to study how turbulent activities and shallow cumuli vary for different meteorological scenarios, the National Center for Atmospheric Research Eulerian-semi-Lagrangian (EULAG) three-dimensional large-eddy simulation model was initialized using data collected during the Indian Ocean Experiment (INDOEX). Radiosonde data were used to construct 6 soundings encompassing the range of temperature and humidity observed in the trade-wind boundary layer. By then adding the characteristics (height, depth and strength) of either a typical transition layer (TL), a strong inversion layer (IL) or no stable layer a total of 18 meteorological scenarios were produced. Separate simulations were conducted using EULAG assuming pristine and polluted conditions (i.e., cloud droplet number concentrations, aerosol extinction profiles and single-scattering albedos) using INDOEX observations. For the range of meteorological conditions observed during INDOEX, sensitivity studies showed that the semi- direct effect always dominated indirect effects, producing a positive daytime mean net indirect forcing varying between 0.2 and 4.5 W m-2. The simulations showed that changes in the environmental relative humidity (RH) and the presence of the TL had critical impacts on the cloud properties, turbulence and lateral detrainment rates, and on how aerosols affect these quantities. The net indirect forcing was larger when the RH was higher and in the absence of any dry and stable layers. It was reduced to less than 1.2 W m-2 when the TL was present. The impact of the IL was dependent on convective strength which increases with increasing RH. In fact, changes in meteorological factors had larger impacts on the simulated cloud properties than did the presence of anthropogenic aerosols, indicating large uncertainties can be introduced when solely using observations of aerosols and

  20. Simulating Changes in Tropospheric Aerosol Burden and its Radiative Effects across the Northern Hemisphere: Contrasting Multi-Decadal Trends between Asia and North America

    EPA Science Inventory

    Though aerosol radiative effects have been recognized as some of the largest sources of uncertainty among the forcers of climate change, the verification of the spatial and temporal variability of the magnitude and directionality of aerosol radiative forcing has remained challeng...

  1. Elastic light scattering from aerosol particles and direct coupling of micro-resonators

    NASA Astrophysics Data System (ADS)

    Fernandes, Gustavo Eddino

    Two unrelated topics are treated in this thesis. In Part I the measurement and interpretation of two-angle optical scattering (TAOS) patterns from aerosol particles in the respiratory size-range (1-10 microm) is discussed. Three experiments are presented. The first experiment introduces a different light-collection scheme than previously used, which allows for the simultaneous measurement of TAOS patterns in both the forward and backward scattering hemispheres of aerosols in real-time. In the second experiment, the collection of TAOS patterns in the near-backward hemisphere, which is important for remote sensing applications such as light detection and ranging (LIDAR) applications, is explored. In particular, a light collection scheme is introduced which allows for the simultaneous measurement of TAOS patterns in both parallel and perpendicular polarizations for single aerosol particles. Finally, a study that correlates the appearance of speckles in the TAOS patterns of aerosol aggregates with their surface roughness, and uses speckle characteristics to sort between several types of aerosol aggregates is presented. In Part 2, a study of semiconductor micro-disk resonators that are seamlessly (end-to-end) coupled to one another is presented. The seamless coupling scheme, referred to as "direct-coupling", enables coupling not only of the lasing modes, but also of the amplified spontaneous emission (ASE) produced in the resonators. The exchange of ASE between the elements in a coupled micro-disk device is shown to lead to many unique characteristics in the light output versus injection current (L-I) curves of' these devices. Devices consisting of two and three directly-coupled micro-disk elements are considered. In particular, it is shown that ON-OFF-ON switching of the output intensity as well as discontinuous shifts in the output wavelength as a function of increasing injected current in one of the elements can be achieved in the three-element devices. These

  2. Experimental Measurements of the Effects of Photo-chemical Oxidation on Aerosol Emissions in Aircraft Exhaust

    NASA Astrophysics Data System (ADS)

    Miracolo, M. A.; Presto, A. A.; Hennigan, C. J.; Nguyen, N.; Ranjan, M.; Reeder, A.; Lipsky, E.; Donahue, N. M.; Robinson, A. L.

    2009-12-01

    dominant. At low loads, photo-oxidation increased aerosol loadings in the chamber by a factor of fifty. We attribute this substantial secondary organic aerosol (SOA) production to oxidation of low-volatility organic vapors emitted under low loads. At higher loads, we see more modest secondary aerosol production from both organics and inorganics. Therefore secondary aerosol production can substantially exceed the direct aerosol emissions from aircraft. The results underscore the dramatic effects that photo-oxidation has on aerosol emissions from aircraft.

  3. The effect of aerosol on radiation fog life-cycle

    NASA Astrophysics Data System (ADS)

    Romakkaniemi, Sami; Maalick, Zubair; Tonttila, Juha; Kuhn, Thomas; Kokkola, Harri

    2016-04-01

    Radiation fog is formed during the night under clear skies when emission of long wave radiation cools the surface and air above it. After formation, the development of fog is further influenced by longwave cooling and turbulence entrainment-detrainment at the top of the fog layer, and microphysical processes through droplet activation and sedimentation. After sunrise, the fog is dissipated due heating of the surface and the air above it. Like in the case of clouds, atmospheric aerosol particles also affect the properties of fog and together with meteorological conditions determine their life cycle from formation to dissipation. To explore how aerosols are affecting radiation fog properties and lifetime, we have used a Large Eddy Model with explicit representation of aerosol particles and aerosol-fog droplet interactions. Our results show that the fog droplet concentration increases with increasing aerosol concentration. In the early stages of fog formation the radiative cooling at the top of the fog controls the maximum water supersaturation and droplet formation in a similar manner than the updraft velocity does at the base of a cloud. The liquid water content in the fog is mainly determined by the droplet concentration as large droplets are efficiently removed through sedimentation. Thus, with increasing aerosol particle concentration, the more numerous, but smaller fog droplets increase the fog's optical depth and thereby delay the fog dissipation after sunrise, because the surface warms more slowly. This effect is further enhanced if turbulence inside the fog leads to secondary activation of droplets. Overall, the radiation fog dissipation in polluted conditions can be delayed up to hours when compared to clean conditions.

  4. Comparison of Aerosol Classification From Airborne High Spectral Resolution Lidar and the CALIPSO Vertical Feature Mask

    NASA Technical Reports Server (NTRS)

    Burton, Sharon P.; Ferrare, Rich A.; Omar, Ali H.; Vaughan, Mark A.; Rogers, Raymond R.; Hostetler, Chris a.; Hair, Johnathan W.; Obland, Michael D.; Butler, Carolyn F.; Cook, Anthony L.; Harper, David B.

    2012-01-01

    Knowledge of aerosol composition and vertical distribution is crucial for assessing the impact of aerosols on climate. In addition, aerosol classification is a key input to CALIOP aerosol retrievals, since CALIOP requires an inference of the lidar ratio in order to estimate the effects of aerosol extinction and backscattering. In contrast, the NASA airborne HSRL-1 directly measures both aerosol extinction and backscatter, and therefore the lidar ratio (extinction-to-backscatter ratio). Four aerosol intensive properties from HSRL-1 are combined to infer aerosol type. Aerosol classification results from HSRL-1 are used here to validate the CALIOP aerosol type inferences.

  5. Estimation of uncertainty of direct radiative forcing of the aerosol for a rural site in central Europe

    NASA Astrophysics Data System (ADS)

    Feczkó, T.; Marton, A.; Molnár, A.; Szentes, G.

    Direct climate forcing due to scattering and absorption of the main aerosol components (ammonium sulfate and total carbon) was estimated seasonally in Hungary by a box model. Ammonium sulfate played an important role in the direct forcing while the carbonaceous aerosol contributed significantly to the development of extinction. In summer, the scattering effect of both species showed a maximum (ammonium sulfate: -2.21±1.73 W m -2, total carbon: -0.88±0.73 W m -2), while the absorption of carbon was the most significant in autumn (+0.40±0.41 W m -2). Uncertainty of these data was obtained by using the theory of error propagation and by taking into consideration the standard deviation of the experimental parameters. The relatively high values of the calculated relative standard deviations of the climate forcing data were attributed partly to the large number of the model parameters (9 and 11) and partly to their large uncertainty. The calculated uncertainties of various forcings were found to be in between the factors of 1.7 and 2.1 which were lower than those generally applied in forcing calculations. Parameter sensitivity analysis of the model equation proved that the reliability of the calculated data could be improved if attention is paid to the measurement of certain parameters such as: mass concentration, cloud coverage, surface albedo, upscattered fraction, single-scattering albedo and the fractional transmittance of the atmosphere.

  6. Effect of Hydrophilic Organic Seed Aerosols on Secondary Organic Aerosol Formation from Ozonolysis of α-Pinene

    SciTech Connect

    Song, Chen; Zaveri, Rahul A.; Shilling, John E.; Alexander, M. L.; Newburn, Matthew K.

    2011-07-26

    Gas-particle partitioning theory is widely used in atmospheric models to predict organic aerosol loadings. This theory predicts that secondary organic aerosol (SOA) yield of an oxidized VOC product will increase as the mass loading of preexisting organic aerosol increases. In a previous study, we showed that the presence of model hydrophobic primary organic aerosol (POA) had no detectable effect on the secondary organic aerosol (SOA) yields from ozonolysis of {alpha}-pinene, suggesting that the condensing SOA compounds form a separate phase from the preexisting POA. However, non-polar, hydrophobic POA may gradually become polar and hydrophilic as it undergoes oxidative aging while POA formed from biomass burning is already somewhat polar and hydrophilic. In this study, we investigate the effects of model hydrophilic POA such as fulvic acid, adipic acid and citric acid on the gas-particle partitioning of SOA from {alpha}-pinene ozonolysis. The results show that only citric acid seed significantly enhances the absorption of {alpha}-pinene SOA into the particle-phase. The other two POA seed particles have negligible effect on the {alpha}-pinene SOA yields, suggesting that {alpha}-pinene SOA forms a well-mixed organic aerosol phase with citric acid while a separate phase with adipic acid and fulvic acid. This finding highlights the need to improve the thermodynamics treatment of organics in current aerosol models that simply lump all hydrophilic organic species into a single phase, thereby potentially introducing an erroneous sensitivity of SOA mass to emitted POA.

  7. Distinct effects of anthropogenic aerosols on the East Asian summer monsoon between multi-decadal strong and weak monsoon stages: Effects of aerosols on EASM

    DOE PAGESBeta

    Xie, Xiaoning; Wang, Hongli; Liu, Xiaodong; Li, Jiandong; Wang, Zhaosheng; Liu, Yangang

    2016-06-18

    Industrial emissions of anthropogenic aerosols over East Asia have greatly increased in recent decades, and so the interactions between atmospheric aerosols and the East Asian summer monsoon (EASM) have attracted enormous attention. In order to further understand the aerosol-EASM interaction, we investigate the impacts of anthropogenic aerosols on the EASM during the multidecadal strong (1950–1977) and weak (1978–2000) EASM stages using the Community Atmospheric Model 5.1. Numerical experiments are conducted for the whole period, including the two different EASM stages, with present day (PD, year 2000) and preindustrial (PI, year 1850) aerosol emissions, as well as the observed time-varying aerosolmore » emissions. A comparison of the results from PD and PI shows that, with the increase in anthropogenic aerosols, the large-scale EASM intensity is weakened to a greater degree (-9.8%) during the weak EASM stage compared with the strong EASM stage (-4.4%). The increased anthropogenic aerosols also result in a significant reduction in precipitation over North China during the weak EASM stage, as opposed to a statistically insignificant change during the strong EASM stage. Because of greater aerosol loading and the larger sensitivity of the climate system during weak EASM stages, the aerosol effects are more significant during these EASM stages. Moreover, these results suggest that anthropogenic aerosols from the same aerosol emissions have distinct effects on the EASM and the associated precipitation between the multidecadal weak and strong EASM stages.« less

  8. Aerosol properties and associated radiative effects over Cairo (Egypt)

    NASA Astrophysics Data System (ADS)

    El-Metwally, M.; Alfaro, S. C.; Wahab, M. M. Abdel; Favez, O.; Mohamed, Z.; Chatenet, B.

    2011-02-01

    Cairo is one of the largest megacities in the World and the particle load of its atmosphere is known to be particularly important. In this work we aim at assessing the temporal variability of the aerosol's characteristics and the magnitude of its impacts on the transfer of solar radiation. For this we use the level 2 quality assured products obtained by inversion of the instantaneous AERONET sunphotometer measurements performed in Cairo during the Cairo Aerosol CHaracterization Experiment (CACHE), which lasted from the end of October 2004 to the end of March 2006. The analysis of the temporal variation of the aerosol's optical depth (AOD) and spectral dependence suggests that the aerosol is generally a mixture of at least 3 main components differing in composition and size. This is confirmed by the detailed analysis of the monthly-averaged size distributions and associated optical properties (single scattering albedo and asymmetry parameter). The components of the aerosol are found to be 1) a highly absorbing background aerosol produced by daily activities (traffic, industry), 2) an additional, 'pollution' component produced by the burning of agricultural wastes in the Nile delta, and 3) a coarse desert dust component. In July, an enhancement of the accumulation mode is observed due to the atmospheric stability favoring its building up and possibly to secondary aerosols being produced by active photochemistry. More generally, the time variability of the aerosol's characteristics is due to the combined effects of meteorological factors and seasonal production processes. Because of the large values of the AOD achieved during the desert dust and biomass burning episodes, the instantaneous aerosol radiative forcing (RF) at both the top (TOA) and bottom (BOA) of the atmosphere is maximal during these events. For instance, during the desert dust storm of April 8, 2005 RF BOA, RF TOA, and the corresponding atmospheric heating rate peaked at - 161.7 W/m 2, - 65.8 W/m 2

  9. Black carbon reduction will weaken the aerosol net cooling effect

    NASA Astrophysics Data System (ADS)

    Wang, Z. L.; Zhang, H.; Zhang, X. Y.

    2014-12-01

    Black carbon (BC), a distinct type of carbonaceous material formed from the incomplete combustion of fossil and biomass based fuels under certain conditions, can interact with solar radiation and clouds through its strong light-absorption ability, thereby warming the Earth's climate system. Some studies have even suggested that global warming could be slowed down in a short term by eliminating BC emission due to its short lifetime. In this study, we estimate the influence of removing some sources of BC and other co-emitted species on the aerosol radiative effect by using an aerosol-climate coupled model BCC_AGCM2.0.1_CUACE/Aero, in combination with the aerosol emissions from the Representative Concentration Pathways (RCPs) scenarios. We find that the global annual mean aerosol net cooling effect at the top of the atmosphere (TOA) will be enhanced by 0.12 W m-2 compared with present-day conditions if the BC emission is reduced exclusively to the level projected for 2100 based on the RCP2.6 scenario. This will be beneficial for the mitigation of global warming. However, the global annual mean aerosol net cooling effect at the TOA will be weakened by 1.7-2.0 W m-2 relative to present-day conditions if emissions of BC and co-emitted sulfur dioxide and organic carbon are simultaneously reduced as the most close conditions to the actual situation to the level projected for 2100 in different ways based on the RCP2.6, RCP4.5, and RCP8.5 scenarios. Because there are no effective ways to remove the BC exclusively without influencing the other co-emitted components, our results therefore indicate that a reduction in BC emission can lead to an unexpected warming on the Earth's climate system in the future.

  10. Interpretation of Aerosol Optical and Morphological Properties during the Carbonaceous Aerosols and Radiative Effects Study in Sacramento, June 2010

    NASA Astrophysics Data System (ADS)

    Gorkowski, K.; Mazzoleni, C.; China, S.; Sharma, N.; Flowers, B. A.; Dubey, M. K.; Gyawali, M. S.; Arnott, W. P.; Zaveri, R. A.

    2010-12-01

    The Sacramento Carbonaceous Aerosols and Radiative Effects Study (CARES) utilized two ground sites T0 and T1 along with an aircraft platform to characterize carbonaceous aerosol chemical and physical properties and their evolution. The T0 site was chosen within the Sacramento metropolitan area for measuring primary and secondary aerosols generated in the city. The T1 site was chosen East of Sacramento on the Sierra foothill to study the evolution and processing of the Sacramento aerosol plume and to assess the characteristics of the background air. To reach T1, the Sacramento aerosols traveled often over the Blodgett Forest resulting in significant aging due coagulation, condensation, and photochemical processes. The ground sites were chosen for this unique and reoccurring transport pattern of the aerosols. The campaign took place in June 2010. Six Integrated Photoacoustic/Nephelometer Spectrometers (IPNSs) were installed at the sites to simultaneously record aerosol light scattering and absorption data. The optical properties of the aerosols were measured at 355nm (ultraviolet), 375nm (ultraviolet), 405nm (blue), 532nm (green), and 781nm (red). In conjugation with the IPNSs, aerosol filters for electron microscopy analysis were collected at each site; these were examined using a field emission scanning electron microscope to study the aerosol morphology. The origins of the air masses did vary daily, but a few general trends emerged. The processing of the IPNS data with a wavelet denoising technique greatly enhanced the signal to noise ratio of the measurements enabling a better understanding of the aerosol optical properties for various airmasses with different characteristics. Typically signals at both sites were lower than expected, however the processed signals from T0 clearly showed a daily rise and dilution of the Sacramento plume. Using the processed signals from both sites the transportation of the Sacramento plume was detectable. The IPNS data were

  11. Emulation of Cloud-Aerosol Indirect Radiative Effects (ECLAIRE)

    NASA Astrophysics Data System (ADS)

    Dunne, E. M.; Korhonen, H.; Kokkola, H.; Lee, L.; Romakkaniemi, S.

    2014-12-01

    Resolving sub-grid-scale interactions between clouds and aerosols is one of the biggest challenges facing climate models in the 21st century. By carefully selecting boundary conditions to represent grid boxes in larger-scale models, an emulator of a cloud-resolving model can be created and implemented in a regional or global model. Emulators can estimate the output of a model, based on a statistical analysis of outputs from simulations with known inputs. This method may reduce uncertainties in a range of cloud-scale processes, including calculations of aerosol indirect radiative effects, precipitation rates, and wet removal rates of aerosol. The Finnish Academy has recently funded the Emulation of Cloud-Aerosol Indirect Radiative Effects (ECLAIRE) project, whose aim is to construct emulators of cloud-scale processes from the WRF-Chem model and implement them into the ECHAM climate model. This poster will describe the goals and proposed methods of the project, together with any initial results.

  12. Use of ARM Mobile Facility (AMF) Data to Study Aerosol Indirect Effects in China

    SciTech Connect

    Li, Zhanqing

    2012-12-19

    General goals: 1) Facilitating the deployment of the ARM Mobile Facility (AMF) and Ancillary Facility (AAF) in China in 2008, 2) Processing, retrieving, improving and analyzing observation data from ground-based, air-borne and space-borne instruments; 3) Conducting a series of studies to gain insights into the direct and indirect effects of these aerosols on radiation, clouds, and precipitation using both

  13. Effects of diesel exhaust aftertreatment devices on concentrations and size distribution of aerosols in underground mine air.

    PubMed

    Bugarski, Aleksandar D; Schnakenberg, George H; Hummer, Ion A; Cauda, Emanuele; Janisko, Samuel I; Patts, Larry D

    2009-09-01

    Three types of uncatalyzed diesel particulate filter (DPF) systems, three types of high-temperature disposable filter elements (DFEs), and one diesel oxidation catalytic converter (DOC) were evaluated in underground mine conditions for their effects on the concentrations and size distributions of diesel aerosols. Those effects were compared with the effects of a standard muffler. The experimental work was conducted directly in an underground environment using a unique diesel laboratory developed in an underground experimental mine. The DPF systems reduced total mass of aerosols in the mine air approximately 10-fold for light-load and 20-fold or more for high-load test conditions. The DFEs offered similar reductions in aerosol mass concentrations. The efficiency of the new DFEs significantly increased with accumulation of operating time and buildup of diesel particulate matter in the porous structure of the filter elements. A single laundering process did not exhibit substantial effects on performance of the filter element The effectiveness of DPFs and DFEs in removing aerosols by number was strongly influenced by engine operating mode. The concentrations of nucleation mode aerosols in the mine air were found to be substantially higher for both DPFs and DFEs when the engine was operated at high-load modes than at low-load modes. The effects of the DOC on mass and number concentrations of aerosols in mine air were relatively minor when compared to those of the DPF and DFE systems. PMID:19764243

  14. Effects of aerosol optical properties on deep convective clouds and radiative forcing

    SciTech Connect

    Fan, Jiwen; Zhang, Renyi; Tao, Wei-Kuo; Mohr, Karen I

    2008-04-23

    The aerosol radiative effects (ARE) on the deep convective clouds are investigated by using a spectral-bin cloud-resolving model coupled with a radiation scheme and an explicit land surface model. The sensitivity of cloud properties and the associated radiative forcing to aerosol single-scattering albedo (SSA) are examined. The ARE on cloud properties is pronounced for mid-visible SSA of 0.85. Relative to the case without ARE, the cloud fraction and optical depth decrease by about 18% and 20%, respectively. Ice particle number concentrations, liquid water path, ice water path, and droplet size decrease by more than 15% when the ARE is introduced. The ARE causes a surface cooling of about 0.35 K and significantly high heating rates in the lower troposphere (about 0.6 K day-1 higher at 2 km), both of which lead to a more stable atmosphere and hence weaker convection. The weaker convection explains the less cloudiness, lower cloud optical depth, less LWP and IWP, smaller droplet size, and less precipitation resulting from the ARE. The daytime-mean direct forcing induced by black carbon is about 2.2 W m-2 at the top of atmosphere (TOA) and -17.4 W m-2 at the surface for SSA of 0.85. The semi-direct forcing is positive, about 10 and 11.2 W m-2 at the TOA and surface, respectively. Both the TOA and surface total radiative forcing values are strongly negative for the deep convective clouds, attributed mostly to aerosol indirect forcing. Aerosol direct and semi-direct effects are very sensitive to SSA when aerosol optical depth is high. Because the positive semi-direct forcing compensates the negative direct forcing at the surface, the surface temperature and heat fluxes decrease less significantly with the increase of aerosol absorption (decreasing SSA). The cloud fraction, optical depth, convective strength, and precipitation decrease with the increase of absorption, resulting from a more stable atmosphere due to enhanced

  15. Effects of aerosol optical properties on deep convective clouds and radiative forcing

    NASA Astrophysics Data System (ADS)

    Fan, Jiwen; Zhang, Renyi; Tao, Wei-Kuo; Mohr, Karen I.

    2008-04-01

    The aerosol radiative effects (ARE) on the deep convective clouds are investigated by using a spectral-bin cloud-resolving model coupled with a radiation scheme and an explicit land surface model. The sensitivity of cloud properties and the associated radiative forcing to aerosol single-scattering albedo (SSA) are examined. The ARE on cloud properties is pronounced for mid-visible SSA of 0.85. Relative to the case without ARE, the cloud fraction and optical depth decrease by about 18% and 20%, respectively. Ice particle number concentrations, liquid water path, ice water path, and droplet size decrease by more than 15% when the ARE is introduced. The ARE causes a surface cooling of about 0.35 K and significantly high heating rates in the lower troposphere (about 0.6 K day-1 higher at 2 km), both of which lead to a more stable atmosphere and hence weaker convection. The weaker convection explains the less cloudiness, lower cloud optical depth, less LWP and IWP, smaller droplet size, and less precipitation resulting from the ARE. The daytime-mean direct forcing induced by black carbon is about 2.2 W m-2 at the top of atmosphere (TOA) and -17.4 W m-2 at the surface for SSA of 0.85. The semi-direct forcing is positive, about 10 and 11.2 W m-2 at the TOA and surface, respectively. Both the TOA and surface total radiative forcing values are strongly negative for the deep convective clouds, attributed mostly to aerosol indirect forcing. Aerosol direct and semi-direct effects are very sensitive to SSA when aerosol optical depth is high. Because the positive semi-direct forcing compensates the negative direct forcing at the surface, the surface temperature and heat fluxes decrease less significantly with the increase of aerosol absorption (decreasing SSA). The cloud fraction, optical depth, convective strength, and precipitation decrease with the increase of absorption, resulting from a more stable atmosphere due to enhanced surface cooling and atmospheric heating.

  16. Aerosol Monitoring during Carbon Nanofiber Production: Mobile Direct-Reading Sampling

    PubMed Central

    Evans, Douglas E.; Ku, Bon Ki; Birch, M. Eileen; Dunn, Kevin H.

    2010-01-01

    Detailed investigations were conducted at a facility that manufactures and processes carbon nanofibers (CNFs). Presented research summarizes the direct-reading monitoring aspects of the study. A mobile aerosol sampling platform, equipped with an aerosol instrument array, was used to characterize emissions at different locations within the facility. Particle number, respirable mass, active surface area, and photoelectric response were monitored with a condensation particle counter (CPC), a photometer, a diffusion charger, and a photoelectric aerosol sensor, respectively. CO and CO2 were additionally monitored. Combined simultaneous monitoring of these metrics can be utilized to determine source and relative contribution of airborne particles (CNFs and others) within a workplace. Elevated particle number concentrations, up to 1.15 × 106 cm−3, were found within the facility but were not due to CNFs. Ultrafine particle emissions, released during thermal treatment of CNFs, were primarily responsible. In contrast, transient increases in respirable particle mass concentration, with a maximum of 1.1 mg m−3, were due to CNF release through uncontrolled transfer and bagging. Of the applied metrics, our findings suggest that particle mass was probably the most useful and practical metric for monitoring CNF emissions in this facility. Through chemical means, CNFs may be selectively distinguished from other workplace contaminants (Birch et al., in preparation), and for direct-reading monitoring applications, the photometer was found to provide a reasonable estimate of respirable CNF mass concentration. Particle size distribution measurements were conducted with an electrical low-pressure impactor and a fast particle size spectrometer. Results suggest that the dominant CNF mode by particle number lies between 200 and 250 nm for both aerodynamic and mobility equivalent diameters. Significant emissions of CO were also evident in this facility. Exposure control recommendations

  17. Case studies on aerosol feedback effects in online coupled chemistry-meteorology models during the 2010 Russian fire event

    NASA Astrophysics Data System (ADS)

    Forkel, Renate; Brunner, Dominik; Balzarini, Alessandra; Baró, Rocio; Hirtl, Marcus; Jiménez-Guerrero, Pedro; Jorba, Oriol; Perez, Juan L.; Pirovano, Guido; San Jose, Roberto; Schröder, Wolfram; Werhahn, Johannes; Wolke, Ralf; Žabkar, Rahela

    2015-04-01

    Aerosol particles are known to have an impact on weather and climate directly via radiation and via their impact on cloud formation and subsequent modified optical properties of clouds. Integrated or "online" coupled regional meteorology-chemistry models like WRF-Chem, COSMO-ART, COSMO-Muscat, EnviroHIRLAM, NMMB/BSC-CTM, RAMS/ICLAMS or WRF-CMAQ are able to account for this impact of aerosol on simulated meteorological variables. However, besides of the meteorological situation simulated effects may also depend on model configuration. In order to analyse these effects and to compare their representation in different models currently used in Europe, multi model simulations were performed for two episodes with high aerosol loads as a coordinated exercise of the COST Action ES1004 (EuMetChem). Here we analyze the first of these two case studies, the severe Russian forest fires in summer 2010. Emission data, boundary conditions, simulation strategy and data output format were harmonized as much as possible to maximize the comparability of the results from the different models. The high aerosol emissions during the summer 2010 Russian wildfire episode led to pronounced feedback effects. For example, the direct aerosol effect lowered the summer mean solar radiation by 20 W m-3 and seasonal mean temperature by 0.25 degrees. This might be considered as a lower limit as it must be taken into account that aerosol concentrations were generally underestimated by the WRF-Chem simulations by up to 50%. The high aerosol concentrations emitted from the wildfires over Russia were found to decrease the small amount of precipitation over Russia during this episode by another 10% to 30% when aerosol cloud interactions were taken into account. The focus of the discussion will be on case study results from WRF-Chem and a comparison with results from COSMO-ART, COSMO-Muscat, and NMMB/BSC-CTM.

  18. Effect of tropospheric aerosols upon atmospheric infrared cooling rates

    NASA Technical Reports Server (NTRS)

    Harshvardhan, MR.; Cess, R. D.

    1978-01-01

    The effect of tropospheric aerosols on atmospheric infrared cooling rates is investigated by the use of recent models of infrared gaseous absorption. A radiative model of the atmosphere that incorporates dust as an absorber and scatterer of infrared radiation is constructed by employing the exponential kernel approximation to the radiative transfer equation. Scattering effects are represented in terms of a single scattering albedo and an asymmetry factor. The model is applied to estimate the effect of an aerosol layer made of spherical quartz particles on the infrared cooling rate. Calculations performed for a reference wavelength of 0.55 microns show an increased greenhouse effect, where the net upward flux at the surface is reduced by 10% owing to the strongly enhanced downward emission. There is a substantial increase in the cooling rate near the surface, but the mean cooling rate throughout the lower troposphere was only 10%.

  19. Aerosol Direct Radiative Forcing in the Southern Appalachian Mountains: Initial Results from the Appalachian Atmospheric Interdisciplinary Research (AppalAIR) Facility

    NASA Astrophysics Data System (ADS)

    Taubman, B.; Sherman, J.; Sheridan, P. J.; Perry, L. B.; Neufeld, H.; Emanuel, R. E.; Tashakkori, R.; Bowman, D.; Long, C.

    2009-12-01

    AppalAIR (Appalachian Atmospheric Interdisciplinary Research, http://appalair.appstate.edu/) is a new interdisciplinary, atmospheric research facility located on the campus of Appalachian State University (1076 m; 36.2° N, 81.7° W) in the southern Appalachian Mountains. The facility was designed to investigate air pollution formation and transport, the relationships among biogenic and anthropogenic inputs to a changing climate, and the effects of these factors on regional ecosystems. AppalAIR is a collaborating member of the NOAA Earth System Research Laboratory Global Monitoring Division (NOAA/ESRL GMD) Collaborative Global Aerosol Network (http://www.esrl.noaa.gov/gmd/aero/net/app/index.html). Measurements are made from a 34 m tower and include aerosol light scattering (3-λ nephelometer) and absorption (3-λ PSAP, 7-λ aethalometer, 6-λ UV aethalometer), particle number concentration (CPC), and aerosol chemistry, size, and morphology using SPME/GC-MS and SEM analyses on 24 h filter samples. Initial results indicate alternating periods of small, highly absorptive (ssa < 0.90) fractal agglomerates and large, highly scattering (ssa > 0.95) spherical particles that are strongly dependent upon the highly variably meteorological patterns that have occurred over the summertime (JJA) in the southeastern U.S. By quantifying the aerosol direct radiative forcing during discrete meteorological patterns as defined by statistical cluster analysis as well as from specific aerosol chemical sources, we are able to extrapolate the results beyond the immediate region.

  20. Effects of Ocean Ecosystem on Marine Aerosol-Cloud Interaction

    DOE PAGESBeta

    Meskhidze, Nicholas; Nenes, Athanasios

    2010-01-01

    Using smore » atellite data for the surface ocean, aerosol optical depth (AOD), and cloud microphysical parameters, we show that statistically significant positive correlations exist between ocean ecosystem productivity, the abundance of submicron aerosols, and cloud microphysical properties over different parts of the remote oceans. The correlation coefficient for remotely sensed surface chlorophyll a concentration ([Chl- a ]) and liquid cloud effective radii over productive areas of the oceans varies between − 0.2 and − 0.6 . Special attention is given to identifying (and addressing) problems from correlation analysis used in the previous studies that can lead to erroneous conclusions. A new approach (using the difference between retrieved AOD and predicted sea salt aerosol optical depth, AOD diff ) is developed to explore causal links between ocean physical and biological systems and the abundance of cloud condensation nuclei (CCN) in the remote marine atmosphere. We have found that over multiple time periods, 550 nm AOD diff (sensitive to accumulation mode aerosol, which is the prime contributor to CCN) correlates well with [Chl- a ] over the productive waters of the Southern Ocean. Since [Chl- a ] can be used as a proxy of ocean biological productivity, our analysis demonstrates the role of ocean ecology in contributing CCN, thus shaping the microphysical properties of low-level marine clouds.« less

  1. Global Impacts of Gas-Phase Chemistry-Aerosol Interactions on Direct Radiative Forcing by Anthropogenic Aerosols and Ozone

    NASA Technical Reports Server (NTRS)

    Liao, Hong; Seinfeld, John H.

    2005-01-01

    We present here a first global modeling study on the influence of gas-phase chemistry/aerosol interactions on estimates of anthropogenic forcing by tropospheric O3 and aerosols. Concentrations of gas-phase species and sulfate, nitrate, ammonium, black carbon, primary organic carbon, secondary organic carbon, sea salt, and mineral dust aerosols in the preindustrial, present-day, and year 2100 (IPCC SRES A2) atmospheres are simulated online in the Goddard Institute for Space Studies general circulation model II' (GISS GCM II'). With fully coupled chemistry and aerosols, the preindustrial, presentday, and year 2100 global burdens of tropospheric ozone are predicted to be 190, 319, and 519 Tg, respectively. The burdens of sulfate, nitrate, black carbon, and organic carbon are predicted respectively to be 0.32. 0.18, 0.01, 0.33 Tg in preindustrial time, 1.40, 0.48, 0.23, 1.60 Tg in presentday, and 1.37, 1.97, 0.54, 3.31 Tg in year 2100. Anthropogenic O3 is predicted to have a globally and annually averaged present-day forcing of +0.22 W m(sup -2) and year 2100 forcing of +0.57 W m(sup -2) at the top of the atmosphere (TOA). Net anthropogenic TOA forcing by internally mixed sulfate, nitrate, organic carbon, and black carbon aerosols is estimated to be virtually zero in the present-day and +0.34 W m(sup -2) in year 2100, whereas it is predicted to be -0.39 W m(sup -2) in present-day and -0.61 W m(sup -2) in year 2100 if the aerosols are externally mixed. Heterogeneous reactions are shown to be important in affecting anthropogenic forcing. When reactions of N2O5, NO3, NO2, and HO2 on aerosols are accounted for, TOA anthropogenic O3 forcing is less by 20-45% in present-day and by 20-32% in year 2100 at mid to high latitudes in the Northern Hemisphere, as compared with values predicted in the absence of heterogeneous gas aerosol reactions. Mineral dust uptake of HNO3 and O3 is shown to have practically no influence on anthropogenic O3 forcing. Heterogeneous reactions of N2Os

  2. Climate impact of biofuels in shipping: global model studies of the aerosol indirect effect.

    PubMed

    Righi, Mattia; Klinger, Carolin; Eyring, Veronika; Hendricks, Johannes; Lauer, Axel; Petzold, Andreas

    2011-04-15

    Aerosol emissions from international shipping are recognized to have a large impact on the Earth's radiation budget, directly by scattering and absorbing solar radiation and indirectly by altering cloud properties. New regulations have recently been approved by the International Maritime Organization (IMO) aiming at progressive reductions of the maximum sulfur content allowed in marine fuels from current 4.5% by mass down to 0.5% in 2020, with more restrictive limits already applied in some coastal regions. In this context, we use a global bottom-up algorithm to calculate geographically resolved emission inventories of gaseous (NO(x), CO, SO(2)) and aerosol (black carbon, organic matter, sulfate) species for different kinds of low-sulfur fuels in shipping. We apply these inventories to study the resulting changes in radiative forcing, attributed to particles from shipping, with the global aerosol-climate model EMAC-MADE. The emission factors for the different fuels are based on measurements at a test bed of a large diesel engine. We consider both fossil fuel (marine gas oil) and biofuels (palm and soy bean oil) as a substitute for heavy fuel oil in the current (2006) fleet and compare their climate impact to that resulting from heavy fuel oil use. Our simulations suggest that ship-induced surface level concentrations of sulfate aerosol are strongly reduced, up to about 40-60% in the high-traffic regions. This clearly has positive consequences for pollution reduction in the vicinity of major harbors. Additionally, such reductions in the aerosol loading lead to a decrease of a factor of 3-4 in the indirect global aerosol effect induced by emissions from international shipping. PMID:21428387

  3. Light absorption by secondary organic aerosol from α-pinene: Effects of oxidants, seed aerosol acidity, and relative humidity

    SciTech Connect

    Song, Chen; Gyawali, Madhu; Zaveri, Rahul A.; Shilling, John E.; Arnott, W. Patrick

    2013-10-25

    It is well known that light absorption from dust and black carbon aerosols has a warming effect on climate while light scattering from sulfate, nitrate, and sea salt aerosols has a cooling effect. However, there are large uncertainties associated with light absorption and scattering by different types of organic aerosols, especially in the near-UV and UV spectral regions. In this paper, we present the results from a systematic laboratory study focused on measuring light absorption by secondary organic aerosols (SOAs) generated from dark α-pinene + O3 and α-pinene + NOx + O3 systems in the presence of neutral and acidic sulfate seed aerosols. Light absorption was monitored using photoacoustic spectrometers at four different wavelengths: 355, 405, 532, and 870 nm. Significant light absorption at 355 and 405 nm was observed for the SOA formed from α-pinene + O3 + NO3 system only in the presence of highly acidic sulfate seed aerosols under dry conditions. In contrast, no absorption was observed when the relative humidity was elevated to greater than 27% or in the presence of neutral sulfate seed aerosols. Organic nitrates in the SOA formed in the presence of neutral sulfate seed aerosols were found to be nonabsorbing, while the light-absorbing compounds are speculated to be aldol condensation oligomers with nitroxy organosulfate groups that are formed in highly acidic sulfate aerosols. Finally and overall, these results suggest that dark α-pinene + O3 and α-pinene + NOx + O3 systems do not form light-absorbing SOA under typical atmospheric conditions.

  4. Light absorption by secondary organic aerosol from α-pinene: Effects of oxidants, seed aerosol acidity, and relative humidity

    NASA Astrophysics Data System (ADS)

    Song, Chen; Gyawali, Madhu; Zaveri, Rahul A.; Shilling, John E.; Arnott, W. Patrick

    2013-10-01

    is well known that light absorption from dust and black carbon aerosols has a warming effect on climate while light scattering from sulfate, nitrate, and sea salt aerosols has a cooling effect. However, there are large uncertainties associated with light absorption and scattering by different types of organic aerosols, especially in the near-UV and UV spectral regions. In this paper, we present the results from a systematic laboratory study focused on measuring light absorption by secondary organic aerosols (SOAs) generated from dark α-pinene + O3 and α-pinene + NOx + O3 systems in the presence of neutral and acidic sulfate seed aerosols. Light absorption was monitored using photoacoustic spectrometers at four different wavelengths: 355, 405, 532, and 870 nm. Significant light absorption at 355 and 405 nm was observed for the SOA formed from α-pinene + O3 + NO3 system only in the presence of highly acidic sulfate seed aerosols under dry conditions. In contrast, no absorption was observed when the relative humidity was elevated to greater than 27% or in the presence of neutral sulfate seed aerosols. Organic nitrates in the SOA formed in the presence of neutral sulfate seed aerosols were found to be nonabsorbing, while the light-absorbing compounds are speculated to be aldol condensation oligomers with nitroxy organosulfate groups that are formed in highly acidic sulfate aerosols. Overall, these results suggest that dark α-pinene + O3 and α-pinene + NOx + O3 systems do not form light-absorbing SOA under typical atmospheric conditions.

  5. A new chemistry option in WRF/Chem v. 3.4 for the simulation of direct and indirect aerosol effects using VBS: evaluation against IMPACT-EUCAARI data

    NASA Astrophysics Data System (ADS)

    Tuccella, P.; Curci, G.; Grell, G. A.; Visconti, G.; Crumeroylle, S.; Schwarzenboeck, A.; Mensah, A. A.

    2015-02-01

    A parameterization for secondary organic aerosol (SOA) production based on the volatility basis set (VBS) approach has been coupled with microphysics and radiative scheme in WRF/Chem model. The new chemistry option called "RACM/MADE/VBS" was evaluated on a cloud resolving scale against ground-based and aircraft measurements collected during the IMPACT-EUCAARI campaign, and complemented with satellite data from MODIS. The day-to-day variability and the diurnal cycle of ozone (O3) and nitrogen oxides (NOx) at the surface is captured by the model. Surface aerosol mass of sulphate (SO4), nitrate (NO3), ammonium (NH4), and organic matter (OM) is simulated with a correlation larger than 0.55. WRF/Chem captures the vertical profile of the aerosol mass in both the planetary boundary layer (PBL) and free troposphere (FT) as a function of the synoptic condition, but the model does not capture the full range of the measured concentrations. Predicted OM concentration is at the lower end of the observed mass. The bias may be attributable to the missing aqueous chemistry processes of organic compounds, the uncertainties in meteorological fields, the assumption on the deposition velocity of condensable organic vapours, and the uncertainties in the anthropogenic emissions of primary organic carbon. Aerosol particle number concentration (condensation nuclei, CN) is overestimated by a factor 1.4 and 1.7 within PBL and FT, respectively. Model bias is most likely attributable to the uncertainties of primary particle emissions (mostly in the PBL) and to the nucleation rate. The overestimation of simulated cloud condensation nuclei (CCN) is more contained with respect to that of CN. The CCN efficiency, which is a measure of the ability of aerosol particles to nucleate cloud droplets, is underestimated by a factor of 1.5 and 3.8 in the PBL and FT, respectively. The comparison with MODIS data shows that the model overestimates the aerosol optical thickness (AOT). The domain averages (for

  6. MODIS Aerosol Optical Depth retrieval over land considering surface BRDF effects

    NASA Astrophysics Data System (ADS)

    Wu, Yerong; de Graaf, Martin; Menenti, Massimo

    2016-04-01

    Aerosols in the atmosphere play an important role in the climate system and human health. Retrieval from satellite data, Aerosol Optical Depth (AOD), one of most important indices of aerosol optical properties, has been extensively investigated. Benefiting from the high resolution at spatial and temporal and the maturity of the aerosol retrieval algorithm, MOderate Resolution Imaging Spectroradiometer (MODIS) Dark Target AOD product has been extensively applied in other scientific research such as climate change and air pollution. The latest product - MODIS Collection 6 Dark Target AOD (C6_DT) has been released. However, the accuracy of C6_DT AOD (global mean ±0.03) over land is still too low for the constraint on radiative forcing in the climate system, where the uncertainty should be reduced to ±0.02. The major uncertainty mainly lies on the underestimation/overestimation of the surface contribution to the Top Of Atmosphere (TOA) radiance since a lambertian surface is assumed in the C6_DT land algorithm. In the real world, it requires considering the heterogeneity of the surface reflection in the radiative transfer process. Based on this, we developed a new algorithm to retrieve AOD by considering surface Bidirectional Reflectance Distribution Function (BRDF) effects. The surface BRDF is much more complicated than isotropic reflection, described as 4 elements: directional-directional, directional-hemispherical, hemispherical-directional and hemispherical-hemispherical reflectance, and coupled into radiative transfer equation to generate an accurate top of atmosphere reflectance. The limited MODIS measurements (three channels available) allow us to retrieve only three parameters, which including AOD, the surface directional-directional reflectance and fine aerosol ratio η. The other three elements of the surface reflectance are expected to be constrained by ancillary data and assumptions or "a priori" information since there are more unknowns than MODIS

  7. Overview of Aerosolized Florida Red Tide Toxins: Exposures and Effects

    PubMed Central

    Fleming, Lora E.; Backer, Lorraine C.; Baden, Daniel G.

    2005-01-01

    Florida red tide is caused by Karenia brevis, a dinoflagellate that periodically blooms, releasing its potent neurotoxin, brevetoxin, into the surrounding waters and air along the coast of the Gulf of Mexico. Exposure to Florida red tide toxins has been associated with adverse human health effects and massive fish and marine mammal deaths. The articles in this mini-monograph describe the ongoing interdisciplinary and interagency research program that characterizes the exposures and health effects of aerosolized Florida red tide toxins (brevetoxins). The interdisciplinary research program uses animal models and laboratory studies to develop hypotheses and apply these findings to in situ human exposures. Our ultimate goal is to develop appropriate prevention measures and medical interventions to mitigate or prevent adverse health effects from exposure to complex mixtures of aerosolized red tide toxins. PMID:15866773

  8. Effects of mineral dust on the semivolatile inorganic aerosol components in a polluted Megacity

    NASA Astrophysics Data System (ADS)

    Karydis, V. A.; Tsimpidi, A. P.; Fountoukis, C.; Nenes, A.; Zavala, M.; Lei, W.; Molina, L. T.; Pandis, S. N.

    2009-04-01

    Aerosols play a significant role in the atmosphere having adverse impacts on human health and directly affecting air quality, visibility and climate change. One of the most challenging tasks for models is the prediction of the partitioning of the semivolatile inorganic aerosol components (ammonia, nitric acid, hydrochloric acid, etc) between the gas and particulate phases. Moreover, the effects of mineral aerosols in the atmosphere remain largely uncertain. As a result, most current models have serious difficulties in reproducing the observed particulate nitrate and chloride concentrations. The improved aerosol thermodynamic model ISORROPIA II (Fountoukis and Nenes, 2007) simulating explicitly the chemistry of Ca, Mg, and K salts has been linked to the regional chemical transport model PMCAMx (Gaydos et al., 2007). PMCAMx also includes the CMU inorganic aerosol growth module (Gaydos et al., 2003; Koo et al., 2003a) and the VSRM aqueous-phase chemistry module (Fahey and Pandis, 2001). The hybrid approach (Koo et al., 2003b) for modeling aerosol dynamics is applied in order to accurately simulate the inorganic components in the coarse mode. This approach assumes that the smallest particles are in equilibrium, while the condensation/evaporation equation is solved for the larger ones. PMCAMx is applied to the Mexico City Metropolitan Area (MCMA). The emission inventory has been improved and now includes more accurate dust and NaCl emissions. The April 2003 (MCMA Campaign) and the March 2006 (MILAGRO campaign) datasets are used to evaluate the inorganic aerosol module of PMCAMx in order to test our understanding of inorganic aerosol. The results from the new modeling framework are also compared with the results from the previous version of PMCAMx in order to investigate the influence of each of the added features to the formation of the semivolatile inorganic components. References Fountoukis, C. and Nenes, A., (2007). ISORROPIA II: a computationally efficient

  9. The Effect of Recent Aerosol Trends on Solar Radiation in the Central and Southeastern United States: Implications for Regional Hydrology.

    NASA Astrophysics Data System (ADS)

    Cusworth, D.; Mickley, L. J.; Leibensperger, E. M.; Iacono, M. J.

    2015-12-01

    Observations show large increases in summertime (JJA) surface solar radiation (SWdn) over the central and southeastern United States during the last 20 years, as much as a +40 Wm-2 at midday. At the same time, in response to environmental regulations in the early 1990s, emissions of U.S. aerosol precursors have decreased by as much as 60%. Detecting a possible connection between these two trends has been difficult due to the secondary effects of aerosols on cloud concentration and lifetime, and previous efforts have failed to find a direct link. Here we investigate the clear-sky direct effect of decreasing U.S. aerosols on climate, using a radiative transfer model (RRTMG) driven by 1997-2014 measurements of aerosol optical depth at Surface Radiation Budget Network (SURFRAD) sites in the central and southeastern United States. We impose aerosol asymmetry parameters and single scattering albedos from nearby Aerosol Robotic Network (AERONET) sites. Preliminary results indicate that declining aerosols drive a summer noontime change in clear-sky SWdn of +25 Wm-2 since 1997 at Goodwin Creek, MS, accounting for 56% of the observed increase in SWdn at that site. Similarly, we find that aerosols increase clear-sky SWdn by +6.5 Wm-2 in Bondville, IL, which accounts for 21% of the observed SWdn trend there. These results suggest that the climate in these regions of the U.S. may be sensitive to recent reductions in aerosol concentrations, especially during summer months. We also analyze in situ soil measurements from the Illinois Climate Network from 1990-present, and find that a significant decrease in soil moisture (-0.6 m3 m-3 a-1) accompanies the increase in SWdn, implying a link between aerosol trends and regional hydrology. Aerosol reductions are expected to continue in the United States and may further influence regional climate including hydrological factors. Our work has implications for polluted regions outside the U.S., where future reductions in the aerosol burden

  10. In situ observations of aerosol and chlorine monoxide after the 1991 eruption of Mount Pinatubo - Effect of reactions on sulfate aerosol

    NASA Technical Reports Server (NTRS)

    Wilson, J. C.; Jonsson, H. H.; Brock, C. A.; Toohey, D. W.; Avallone, L. M.; Baumgardner, D.; Dye, J. E.; Poole, L. R.; Woods, D. C.; Decoursey, R. J.

    1993-01-01

    Highly resolved aerosol size distributions measured from high-altitude aircraft can be used to describe the effect of the 1991 eruption of Mount Pinatubo on the stratospheric aerosol. In some air masses, aerosol mass mixing ratios increased by factors exceeding 100 and aerosol surface area concentrations increased by factors of 30 or more. Increases in aerosol surface area concentration were accompanied by increases in chlorine monoxide at mid-latitudes when confounding factors were controlled. This observation supports the assertion that reactions occurring on the aerosol can increase the fraction of stratospheric chlorine that occurs in ozone-destroying forms.

  11. Aerosol Radiative Effects: Expected Variations in Optical Depth Spectra and Climate Forcing, with Implications for Closure Experiment Strategies

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Stowe, L. L.; Hobbs, P. V.; Podolske, James R. (Technical Monitor)

    1995-01-01

    We examine measurement strategies for reducing uncertainties in aerosol direct radiative forcing by focused experiments that combine surface, air, and space measurements. Particularly emphasized are closure experiments, which test the degree of agreement among different measurements and calculations of aerosol properties and radiative effects. By combining results from previous measurements of large-scale smokes, volcanic aerosols, and anthropogenic aerosols with models of aerosol evolution, we estimate the spatial and temporal variability in optical depth spectra to be expected in the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX, planned for summer 1996 off the Eastern U.S. seaboard). In particular, we examine the expected changes in the wavelength dependence of optical depth as particles evolve through nucleation, growth by condensation and coagulation, and removal via sedimentation. We then calculate the expected radiative climate forcing (i.e. change in net radiative flux) for typical expected aerosols and measurement conditions (e.g. solar elevations, surface albedos, radiometer altitudes). These calculations use new expressions for flux and albedo changes, which account not only for aerosol absorption, but also for instantaneous solar elevation angles and the dependence of surface albedo on solar elevation. These factors, which are usually ignored or averaged in calculations of global aerosol effects, can have a strong influence on fluxes measured in closure experiments, and hence must be accounted for in calculations if closure is to be convincingly tested. We compare the expected measurement signal to measurement uncertainties expected for various techniques in various conditions. Thereby we derive recommendations for measurement strategies that combine surface, airborne, and spaceborne measurements.

  12. Improving bulk microphysics parameterizations in simulations of aerosol effects

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Fan, Jiwen; Zhang, Renyi; Leung, L. Ruby; Franklin, Charmaine

    2013-06-01

    To improve the microphysical parameterizations for simulations of the aerosol effects in regional and global climate models, the Morrison double-moment bulk microphysical scheme presently implemented in the Weather Research and Forecasting model is modified by replacing the prescribed aerosols in the original bulk scheme (Bulk-OR) with a prognostic double-moment aerosol representation to predict both aerosol number concentration and mass mixing ratio (Bulk-2M). Sensitivity modeling experiments are performed for two distinct cloud regimes: maritime warm stratocumulus clouds (Sc) over southeast Pacific Ocean from the VOCALS project and continental deep convective clouds in the southeast of China. The results from Bulk-OR and Bulk-2M are compared against atmospheric observations and simulations produced by a spectral bin microphysical scheme (SBM). The prescribed aerosol approach (Bulk-OR) produces unreliable aerosol and cloud properties throughout the simulation period, when compared to the results from those using Bulk-2M and SBM, although all of the model simulations are initiated by the same initial aerosol concentration on the basis of the field observations. The impacts of the parameterizations of diffusional growth and autoconversion of cloud droplets and the selection of the embryonic raindrop radius on the performance of the bulk microphysical scheme are also evaluated by comparing the results from the modified Bulk-2M with those from SBM simulations. Sensitivity experiments using four different types of autoconversion schemes reveal that the autoconversion parameterization is crucial in determining the raindrop number, mass concentration, and drizzle formation for warm stratocumulus clouds. An embryonic raindrop size of 40 µm is determined as a more realistic setting in the autoconversion parameterization. The saturation adjustment employed in calculating condensation/evaporation in the bulk scheme is identified as the main factor responsible for the large

  13. Spatial distributions and seasonal cycles of aerosol climate effects in India seen in a global climate-aerosol model

    NASA Astrophysics Data System (ADS)

    Henriksson, S. V.; Pietikäinen, J.-P.; Hyvärinen, A.-P.; Räisänen, P.; Kupiainen, K.; Tonttila, J.; Hooda, R.; Lihavainen, H.; O'Donnell, D.; Backman, L.; Klimont, Z.; Laaksonen, A.

    2014-09-01

    Climate-aerosol interactions in India are studied by employing the global climate-aerosol model ECHAM5-HAM and the GAINS inventory for anthropogenic aerosol emissions. Model validation is done for black carbon surface concentrations in Mukteshwar and for features of the monsoon circulation. Seasonal cycles and spatial distributions of radiative forcing and the temperature and rainfall responses are presented for different model setups. While total aerosol radiative forcing is strongest in the summer, anthropogenic forcing is considerably stronger in winter than in summer. Local seasonal temperature anomalies caused by aerosols are mostly negative with some exceptions, e.g., parts of northern India in March-May. Rainfall increases due to the elevated heat pump (EHP) mechanism and decreases due to solar dimming mechanisms (SDMs) and the relative strengths of these effects during different seasons and for different model setups are studied. Aerosol light absorption does increase rainfall in northern India, but effects due to solar dimming and circulation work to cancel the increase. The total aerosol effect on rainfall is negative for northern India in the months of June-August, but during March-May the effect is positive for most model setups. These differences between responses in different seasons might help converge the ongoing debate on the EHPs and SDMs. Due to the complexity of the problem and known or potential sources for error and bias, the results should be interpreted cautiously as they are completely dependent on how realistic the model is. Aerosol-rainfall correlations and anticorrelations are shown not to be a reliable sole argument for deducing causality.

  14. The Effects of Aerosols on Intense Convective Precipitation in the Northeastern U.S.

    SciTech Connect

    Ntelekos, Alexandros A.; Smith, James S.; Donner, Leo J.; Fast, Jerome D.; Gustafson, William I.; Chapman, Elaine G.; Krajewski, Witold F.

    2009-08-03

    A fully coupled meteorology-chemistry-aerosol mesoscale model (WRF-Chem) is used to assess the effects of aerosols on intense convective precipitation over the northeastern United States. Numerical experiments are performed for three intense convective storm days and for two scenarios representing “typical” and “low” aerosol conditions. The results of the simulations suggest that increasing concentrations of aerosols can lead to either enhancement or suppression of precipitation. Quantification of the aerosol effect is sensitive to the metric used due to a shift of rainfall accumulation distribution when realistic aerosol concentrations are included in the simulations. Maximum rainfall accumulation amounts and areas with rainfall accumulations exceeding specified thresholds provide robust metrics of the aerosol effect on convective precipitation. Storms developing over areas with medium to low aerosol concentrations showed a suppression effect on rainfall independent of the meteorologic environment. Storms developing in areas of relatively high particulate concentrations showed enhancement of rainfall when there were simultaneous high values of CAPE, relative humidity and wind shear. In these cases, elevated aerosol concentrations resulted in stronger updrafts and downdrafts and more coherent organization of convection. For the extreme case, maximum rainfall accumulation differences exceeded 40 mm. The modeling results suggest that areas of the northeastern U.S. urban corridor that are close or downwind of intense sources of aerosols, could be more favorable for rainfall enhancement due to aerosols for the aerosol concentrations typical of this area.

  15. Observations of the first aerosol indirect effect in shallow cumuli

    SciTech Connect

    Berg, Larry K.; Berkowitz, Carl M.; Barnard, James C.; Senum, Gunar; Springston, Stephen R.

    2011-02-08

    Data from the Cumulus Humilis Aerosol Processing Study (CHAPS) are used to estimate the impact of both aerosol indirect effects and cloud dynamics on the microphysical and optical properties of shallow cumuli observed in the vicinity of Oklahoma City, Oklahoma. Not surprisingly, we find that the amount of light scattered by the clouds is dominated by their liquid water content (LWC), which in turn is driven by cloud dynamics. However, removing the effect of cloud dynamics by examining the scattering normalized by LWC shows a strong sensitivity of scattering to pollutant loading. These results suggest that even moderately sized cities, like Oklahoma City, can have a measureable impact on the optical properties of shallow cumuli.

  16. New understanding and quantification of the regime dependence of aerosol-cloud interaction for studying aerosol indirect effects

    DOE PAGESBeta

    Chen, Jingyi; Liu, Yangang; Zhang, Minghua; Peng, Yiran

    2016-02-28

    In this study, aerosol indirect effects suffer from large uncertainty in climate models and among observations. This study focuses on two plausible factors: regime dependence of aerosol-cloud interactions and the effect of cloud droplet spectral shape. We show, using a new parcel model, that combined consideration of droplet number concentration (Nc) and relative dispersion (ε, ratio of standard deviation to mean radius of the cloud droplet size distribution) better characterizes the regime dependence of aerosol-cloud interactions than considering Nc alone. Given updraft velocity (w), ε increases with increasing aerosol number concentration (Na) in the aerosol-limited regime, peaks in the transitionalmore » regime, and decreases with further increasing Na in the updraft-limited regime. This new finding further reconciles contrasting observations in literature and reinforces the compensating role of dispersion effect. The nonmonotonic behavior of ε further quantifies the relationship between the transitional Na and w that separates the aerosol- and updraft-limited regimes.« less

  17. Effect of aerosol concentration and absorbing aerosol on the radiation fog life cycle

    NASA Astrophysics Data System (ADS)

    Maalick, Z.; Kühn, T.; Korhonen, H.; Kokkola, H.; Laaksonen, A.; Romakkaniemi, S.

    2016-05-01

    Analogous to cloud formation, the formation and life cycle of fogs is largely influenced by aerosol particles. The objective of this work is to analyze how changes in aerosol properties affect the fog life cycle, with special emphasis on how droplet concentrations change with cloud condensation nuclei (CCN) concentrations and on the effect that absorbing black carbon (BC) particles have on fog dissipation. For our simulation case study, we chose a typical fall time radiation fog at mid-latitudes (45° north) in fairly highly polluted conditions. Our results show that CCN concentrations have a strong influence on the fog lifetime. This is because the immediate effect of CCN on cloud droplet number concentrations (CDNC) is enhanced through two positive feedback loops: (1) Higher CDNC leads to more radiative cooling at the fog top, which leads to even stronger activation and (2) if CDNC is higher, the average droplet size is smaller, which slows down droplet removal through sedimentation. The effect that radiation fogs have on solar surface irradiation is large - the daily mean can change by 50% if CCN concentrations are doubled or halved (considering a reference CCN mixing ratio of 800 #/mg). With the same changes in CCN, the total fog lifetime increases 160 min or decreases 65 min, respectively. Although BC has a noticeable effect on fog height and dissipation time, its relative effect compared to CCN is small, even if BC concentrations are high. The fog formation is very sensitive to initial meteorological conditions which may be altered considerably if fog was present the previous day. This effect was neglected here, and future simulations, which span several days, may thus be a valuable extension of this study.

  18. CALIPSO Observations of Aerosol Properties Near Clouds

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Varnai, Tamas; Yang, Weidong

    2010-01-01

    Clouds are surrounded by a transition zone of rapidly changing aerosol properties. Characterizing this zone is important for better understanding aerosol-cloud interactions and aerosol radiative effects as well as for improving satellite measurements of aerosol properties. We present a statistical analysis of a global dataset of CALIPSO (Cloud-Aerosol Lidar and infrared Pathfinder Satellite Observation) Lidar observations over oceans. The results show that the transition zone extends as far as 15 km away from clouds and it is ubiquitous over all oceans. The use of only high confidence level cloud-aerosol discrimination (CAD) data confirms the findings. However, the results underline the need for caution to avoid biases in studies of satellite aerosol products, aerosol-cloud interactions, and aerosol direct radiative effects.

  19. Discernible signals of aerosol effects on the diurnal, weekly and decadal variations in thunderstorm activities

    NASA Astrophysics Data System (ADS)

    Li, Z.

    2015-12-01

    Aerosol can affect atmospheric convection, cloud and precipitation in a variety of means by altering energy balance at the surface and in the atmospheric column, and by altering cloud micro- and macro-physical properties. The effects are often contingent upon meteorological variables and aerosol properties. By reducing surface energy budget, aerosol tends to suppress convection, but aerosol-induced heating in the lower atmosphere can destabilize the upper atmosphere and strengthen convection. Aerosol-induced altering cloud microphysics may also suppress or invigorate cloud development pending on various factors. In this talk, I will illustrate how aerosols likely contribute to the thunderstorm variability on three distinct time scales from diurnal, weekly to decadal and how different types of aerosols and varying meteorological conditions may affect with the observed trends. I will first demonstrate the opposite effects of conservative scattering and hygroscopic aerosols versus absorbing and hydrophobic aerosol on the long-term trends of thunderstorms. I will then illustrate that aerosol can have a discernible effect on the weekly cycle of thunderstorms and there is the dependence of the phase of the weekly cycle on aerosol types. Last, I will show how aerosol delays the occurrence of thunderstorms. Of course, the plausible connections are subject to various uncertainties that should be tackled with more rigorous modeling and extensive observation studies.

  20. Observed aerosol-induced radiative effect on plant productivity in the eastern United States

    NASA Astrophysics Data System (ADS)

    Strada, S.; Unger, N.; Yue, X.

    2015-12-01

    We apply satellite observations of aerosol optical depth (AOD) in conjunction with flux tower-derived estimates of gross primary productivity (GPP) to probe the relationship between atmospheric aerosol loading and carbon uptake rate at 10 select sites (4 deciduous broadleaf, 3 cropland, 1 evergreen needle leaf, 1 mixed forest and 1 grassland) on hourly time scales in the growing season in the eastern United States. For deciduous and mixed forests, the aerosol light scattering increases GPP with a maximum effect observed under polluted conditions (AOD >0.6), when diffuse radiation is 40-60%. During midday hours, high AOD conditions (>0.4) enhance plant productivity by ∼13% in deciduous forests. In contrast, we find that high diffuse light fraction does not increase the carbon uptake rate in croplands and grasslands; for these ecosystems, we estimate that high AOD conditions reduce GPP by ∼17% during midday hours. Our findings are consistent with previous studies that have attributed these contrasting response sensitivities to the complex and closed canopy architecture of forests versus crops and grasslands. C4 but not C3 crops may benefit from pollution-induced changes in diffuse and direct light. Further research is needed to investigate the role of local meteorology as a possible confounder in the connection between atmospheric aerosols and plant productivity.

  1. Multi-Decadal Change of Atmospheric Aerosols and Their Effect on Surface Radiation

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Tan, Qian; Wild, Martin; Qian, Yun; Yu, Hongbin; Bian, Huisheng; Wang, Weiguo

    2012-01-01

    We present an investigation on multi-decadal changes of atmospheric aerosols and their effects on surface radiation using a global chemistry transport model along with the near-term to long-term data records. We focus on a 28-year time period of satellite era from 1980 to 2007, during which a suite of aerosol data from satellite observations and ground-based remote sensing and in-situ measurements have become available. We analyze the long-term global and regional aerosol optical depth and concentration trends and their relationship to the changes of emissions" and assess the role aerosols play in the multi-decadal change of solar radiation reaching the surface (known as "dimming" or "brightening") at different regions of the world, including the major anthropogenic source regions (North America, Europe, Asia) that have been experiencing considerable changes of emissions, dust and biomass burning regions that have large interannual variabilities, downwind regions that are directly affected by the changes in the source area, and remote regions that are considered to representing "background" conditions.

  2. Overview of the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate (ChArMEx/ADRIMED) summer 2013 campaign

    NASA Astrophysics Data System (ADS)

    Mallet, M.; Dulac, F.; Formenti, P.; Nabat, P.; Sciare, J.; Roberts, G.; Pelon, J.; Ancellet, G.; Tanré, D.; Parol, F.; di Sarra, A.; Alados, L.; Arndt, J.; Auriol, F.; Blarel, L.; Bourrianne, T.; Brogniez, G.; Chazette, P.; Chevaillier, S.; Claeys, M.; D'Anna, B.; Denjean, C.; Derimian, Y.; Desboeufs, K.; Di Iorio, T.; Doussin, J.-F.; Durand, P.; Féron, A.; Freney, E.; Gaimoz, C.; Goloub, P.; Gómez-Amo, J. L.; Granados-Muñoz, M. J.; Grand, N.; Hamonou, E.; Jankowiak, I.; Jeannot, M.; Léon, J.-F.; Maillé, M.; Mailler, S.; Meloni, D.; Menut, L.; Momboisse, G.; Nicolas, J.; Podvin, J.; Pont, V.; Rea, G.; Renard, J.-B.; Roblou, L.; Schepanski, K.; Schwarzenboeck, A.; Sellegri, K.; Sicard, M.; Solmon, F.; Somot, S.; Torres, B.; Totems, J.; Triquet, S.; Verdier, N.; Verwaerde, C.; Wenger, J.; Zapf, P.

    2015-07-01

    The Chemistry-Aerosol Mediterranean Experiment (ChArMEx; http://charmex.lsce.ipsl.fr) is a collaborative research program federating international activities to investigate Mediterranean regional chemistry-climate interactions. A special observing period (SOP-1a) including intensive airborne measurements was performed in the framework of the Aerosol Direct Radiative Forcing on the Mediterranean Climate (ADRIMED) project during the Mediterranean dry season over the western and central Mediterranean basins, with a focus on aerosol-radiation measurements and their modeling. The SOP-1a took place from 11 June to 5 July 2013. Airborne measurements were made by both the ATR-42 and F-20 French research aircraft operated from Sardinia (Italy) and instrumented for in situ and remote-sensing measurements, respectively, and by sounding and drifting balloons, launched in Minorca. The experimental set-up also involved several ground-based measurement sites on islands including two ground-based reference stations in Corsica and Lampedusa and secondary monitoring sites in Minorca and Sicily. Additional measurements including lidar profiling were also performed on alert during aircraft operations at EARLINET/ACTRIS stations at Granada and Barcelona in Spain, and in southern Italy. Remote sensing aerosol products from satellites (MSG/SEVIRI, MODIS) and from the AERONET/PHOTONS network were also used. Dedicated meso-scale and regional modelling experiments were performed in relation to this observational effort. We provide here an overview of the different surface and aircraft observations deployed during the ChArMEx/ADRIMED period and of associated modeling studies together with an analysis of the synoptic conditions that determined the aerosol emission and transport. Meteorological conditions observed during this campaign (moderate temperatures and southern flows) were not favorable to produce high level of atmospheric pollutants nor

  3. Can anthropogenic aerosol concentrations effect the snowfall rate?

    NASA Astrophysics Data System (ADS)

    Lohmann, U.; Zhang, J.; Pi, J.

    2003-04-01

    The mesoscale model GESIMA is used to simulate microphysical properties of Arctic clouds and their effect on radiation. Different case studies during the FIRE.ACE/SHEBA project show that GESIMA is able to simulate the cloud boundaries, ice and liquid water content and effective radii in good agreement with observations. For two different aerosol scenarios, the simulation results show that the anthropogenic aerosol can alter microphysical properties of Arctic clouds, and consequently modify surface precipitation. Borys et al. (2000) proposed that anthropogenically-induced decreases in cloud droplet size inhibit the riming process. On the contrary, we find that the accretion of snow crystals with cloud droplets is increased in the polluted cloud due to its higher cloud droplet number concentration. Instead the autoconversion rate of cloud droplets and accretion of drizzle by snow decreases caused by the shut-down of the collision-coalescence process in the polluted cloud. The amount of precipitation reaching the surface as snow depends crucially on the crystal shape. If aggregates are assumed, then a 10-fold increase in aerosol concentration leads to an increase in accumulated snow by 40% after 7 hours of simulation whereas the snow amount decreases by 30% when planar crystals are assumed because of the larger accretion efficiency of snow crystals with cloud droplets in case of aggregates. We will also perform climate model simulations to estimate the importance of this effect globally.

  4. Aerosol indirect effects – general circulation model intercomparison and evaluation with satellite data

    SciTech Connect

    Quaas, Johannes; Ming, Yi; Menon, Surabi; Takemura, T.; Wang, Minghuai; Penner, Joyce E.; Gettelman, A.; Lohmann, U.; Bellouin, N.; Boucher, Olivier; Sayer, Andrew M.; Thomas, Gareth E.; McComiskey, A.; Feingold, G.; Hoose, Corinna; Kristjansson, J. E.; Liu, Xiaohong; Balkanski, Y.; Donner, Leo J.; Ginoux, P.; Stier, P.; Grandey, B.; Feichter, J.; Sednev, Igor; Bauer, Susanne E.; Koch, D.; Grainger, Roy G.; Kirkevag, A.; Iversen, T.; Seland, O.; Easter, Richard C.; Ghan, Steven J.; Rasch, Philip J.; Morrison, H.; Lamarque, J. F.; Iacono, Michael J.; Kinne, Stefan; Schulz, M.

    2009-11-16

    -wave total aerosol forcings in the models. An estimate of the total short-wave aerosol forcing inferred from the combination of these predictors for the modelled forcings with the satellite-derived statistical relationships yields a global annual mean value of -1.5±0.5 Wm-2. An alternative estim¬ate obtained by scaling the simulated clear- and cloudy-sky forcings with estimates of anthropogenic τa and satellite-retrieved Nd – τa regression slopes, respectively, yields a global annual mean clear-sky (aerosol direct effect) es¬timate of -0.4±0.2 Wm-2 and a cloudy-sky (aerosol indirect effect) estimate of -0.7±0.5 Wm-2, with a total estimate of -1.2±0.4 Wm-2.

  5. Aerosols optical and physical characteristics and direct radiative forcing during a "Shamal" dust storm, a case study

    NASA Astrophysics Data System (ADS)

    Saeed, T. M.; Al-Dashti, H.; Spyrou, C.

    2013-09-01

    Dust aerosols are analyzed for their optical and physical properties during an episode of dust storm that hit Kuwait on 26 March 2003 when "Iraqi Freedom" military operation was in full swing. The intensity of the dust storm was such that it left a thick suspension of dust throughout the following day, 27 March, resulting in a considerable cooling effect at the surface on both days. Ground-based measurements of aerosol optical thickness reached 3.617 and 4.17 on 26-27 March respectively while Ångstrom coefficient, α870/440, dropped to -0.0234 and -0.0318. Particulate matter concentration of diameter 10 μm or less, PM10, peaked at 4800 μg m-3 during dust storm hours of 26 March. Moderate resolution imaging spectrometer (MODIS) retrieved optical and physical characteristics that exhibited extreme values as well. The synoptic of the dust storm is presented and source regions are identified using total ozone mapping spectrometer (TOMS) aerosol index retrieved images. The vertical profile of the dust layer was simulated using SKIRON atmospheric model. Instantaneous net direct radiative forcing is calculated at top of atmosphere (TOA) and surface level. The thick dust layer of 26 March resulted in cooling the TOA by -60 Wm-2 and surface level by -175 Wm-2 for a surface albedo of 0.35. Slightly higher values were obtained for 27 March due to the increase in aerosol optical thickness. The large reduction in the radiative flux at the surface level had caused a drop in surface temperature by approximately 6 °C below its average value. Radiative heating/cooling rates in the shortwave and longwave bands were also examined. Shortwave heating rate reached a maximum value of 2 °K day-1 between 3 and 5 km, dropped to 1.5 °K day-1 at 6 km and diminished at 8 km. Longwave radiation initially heated the lower atmosphere by a maximum value of 0.2 °K day-1 at surface level, declined sharply at increasing altitude and diminished at 4 km. Above 4 km longwave radiation started to

  6. Wet scavenging limits the detection of aerosol effects on precipitation

    NASA Astrophysics Data System (ADS)

    Gryspeerdt, E.; Stier, P.; White, B. A.; Kipling, Z.

    2015-07-01

    Satellite studies of aerosol-cloud interactions usually make use of retrievals of both aerosol and cloud properties, but these retrievals are rarely spatially co-located. While it is possible to retrieve aerosol properties above clouds under certain circumstances, aerosol properties are usually only retrieved in cloud-free scenes. Generally, the smaller spatial variability of aerosols compared to clouds reduces the importance of this sampling difference. However, as precipitation generates an increase in spatial variability of aerosols, the imperfect co-location of aerosol and cloud property retrievals may lead to changes in observed aerosol-cloud-precipitation relationships in precipitating environments. In this work, we use a regional-scale model, satellite observations and reanalysis data to investigate how the non-coincidence of aerosol, cloud and precipitation retrievals affects correlations between them. We show that the difference in the aerosol optical depth (AOD)-precipitation relationship between general circulation models (GCMs) and satellite observations can be explained by the wet scavenging of aerosol. Using observations of the development of precipitation from cloud regimes, we show how the influence of wet scavenging can obscure possible aerosol influences on precipitation from convective clouds. This obscuring of aerosol-cloud-precipitation interactions by wet scavenging suggests that even if GCMs contained a perfect representation of aerosol influences on convective clouds, the difficulty of separating the "clear-sky" aerosol from the "all-sky" aerosol in GCMs may prevent them from reproducing the correlations seen in satellite data.

  7. Aerosol Radiative Effects on Deep Convective Clouds and Associated Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Fan, J.; Zhang, R.; Tao, W.-K.; Mohr, I.

    2007-01-01

    The aerosol radiative effects (ARE) on the deep convective clouds are investigated by using a spectral-bin cloud-resolving model (CRM) coupled with a radiation scheme and an explicit land surface model. The sensitivity of cloud properties and the associated radiative forcing to aerosol single-scattering albedo (SSA) are examined. The ARE on cloud properties is pronounced for mid-visible SSA of 0.85. Relative to the case excluding the ARE, cloud fraction and optical depth decrease by about 18% and 20%, respectively. Cloud droplet and ice particle number concentrations, liquid water path (LWP), ice water path (IWP), and droplet size decrease significantly when the ARE is introduced. The ARE causes a surface cooling of about 0.35 K and significantly high heating rates in the lower troposphere (about 0.6K/day higher at 2 km), both of which lead to a more stable atmosphere and hence weaker convection. The weaker convection and the more desiccation of cloud layers explain the less cloudiness, lower cloud optical depth, LWP and IWP, smaller droplet size, and less precipitation. The daytime-mean direct forcing induced by black carbon is about 2.2 W/sq m at the top of atmosphere (TOA) and -17.4 W/sq m at the surface for SSA of 0.85. The semi-direct forcing is positive, about 10 and 11.2 W/sq m at the TOA and surface, respectively. Both the TOA and surface total radiative forcing values are strongly negative for the deep convective clouds, attributed mostly to aerosol indirect forcing. Aerosol direct and semi-direct effects are very sensitive to SSA. Because the positive semi-direct forcing compensates the negative direct forcing at the surface, the surface temperature and heat fluxes decrease less significantly with the increase of aerosol absorption (decreasing SSA). The cloud fraction, optical depth, convective strength, and precipitation decrease with the increase of absorption, resulting from a more stable and dryer atmosphere due to enhanced surface cooling and

  8. Aerosol Indirect Effects on Stratocumulus Clouds in the Southeast Pacific

    NASA Astrophysics Data System (ADS)

    Twohy, C. H.; Adams, A.; Toohey, D. W.; Anderson, J.; Shank, L.; Howell, S.; Clarke, A. D.; Wood, R.

    2009-12-01

    The southeast Pacific Ocean is covered by the world’s largest stratocumulus cloud layer, which has a strong impact on ocean temperatures and climate in the region. Anthropogenic sources of aerosol particles such as smelters, power plants and urban pollution are expected to impact properties of the eastern portion of the stratocumulus deck. During the VOCALS (VAMOS Ocean-Cloud-Atmosphere-Land Study) field experiment, aerosol measurements below and above cloud were made with a ultra-high sensitivity aerosol spectrometer, an aerosol mass spectrometer, and analytical electron microscopy. In addition to more standard in-cloud measurements, droplets were collected and evaporated using a counterflow virtual impactor (CVI), and the non-volatile residual particles were analyzed. Many flights focused on the gradient in cloud properties along an E-W track from near the Chilean coast to remote areas offshore. Mean statistics from seven flights and about forty individual legs were compiled. Consistent with a continental source of cloud condensation nuclei, below-cloud aerosol and droplet number concentration generally decreased from near shore to offshore. This applied for particles larger than 0.05 and 0.1 µm in diameter, but not for total particles larger than 0.01 µm diameter. This suggests pollution contributed aged accumulation-mode aerosols to the stratocumulus layer, but fresher nuclei-mode particles were generated from other sources as well. Liquid water content and drizzle concentration tended to increase with distance from shore, but exhibited much greater variability. Aerosol number concentration in the >0.05 and >0.1 µm size range was correlated with droplet number concentration, and anti-correlated with droplet effective radius. These variables were especially well correlated on individual flights with near constant liquid water content (LWC), but were also statistically significant for the data set as a whole. When data were stratified into different LWC

  9. Delineating the effect of El-Nino Southern Oscillations using oxygen and sulfur isotope anomalies of sulfate aerosols

    NASA Astrophysics Data System (ADS)

    Shaheen, R.; Abaunza Quintero, M. M.; Jackson, T.; McCabe, J.; Savarino, J. P.; Thiemens, M. H.

    2013-12-01

    Sulfate aerosols, unlike greenhouse gases, contribute to global cooling by acting as cloud condensation nuclei in the troposphere and by directly reflecting solar radiation in the stratosphere. To understand the long-term effect of natural and anthropogenic sulfate aerosol on the climate cycle, it is critical to obtain a clear picture of the factors controlling the transport and transformation of sulfate aerosols. We have employed both oxygen triple isotopes and sulfur quadruple isotopes on sulfates from Antarctic ice samples to define the oxidation history, long range transport dynamics, and sources of sulfate aerosols over time. The measurements are used to deconvolve the impact of natural and anthropogenic aerosols on the stratospheric sulfate aerosol composition. Sulfate aerosols were extracted from a snow pit at the South Pole (1979-2002) with a high resolution temporal (6 month) record of the winter and summer seasons covering two largest volcanic events, Pinatubo and El-chichon and three largest ENSO events of the century. All three oxygen and four sulfur isotopes were measured on the extracted sulfate (Shaheen et al., 2013). The high temperature pyrolysis (1000oC) of silver sulfate yielded O2 and SO2. The oxygen triple isotopic composition of the O2 gas was used to determine the oxidation history of sulfate aerosol and SO2 gas obtained during this reaction was utilized to measure sulfur quadruple isotopes following appropriate reaction chemistry (Farquhar et al., 2001). The data revealed that oxygen isotope anomalies in Antarctic aerosols (Δ17O = 0.8-3.7‰) from 1990 to 2001 are strongly linked to the variation in ozone levels in the upper stratosphere/lower stratosphere. The variations in ozone levels are reflective of the intensity of the ENSO events and changes in relative humidity in the atmosphere during this time period. Sulfate concentrations and sulfur quadruple isotopic composition and associated anomalies were used to elucidate the sources of

  10. Simultaneous Retrieval of Aerosol and Surface Optical Properties from Combined Airborne- and Ground-Based Direct and Diffuse Radiometric Measurements

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2010-01-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR) and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 m) and angular range (180 ) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  11. Simultaneous retrieval of aerosol and surface optical properties from combined airborne- and ground-based direct and diffuse radiometric measurements

    NASA Astrophysics Data System (ADS)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2010-03-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR) and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 μm) and angular range (180°) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  12. Simultaneous retrieval of aerosol and surface optical properties from combined airborne- and ground-based direct and diffuse radiometric measurements

    NASA Astrophysics Data System (ADS)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2009-12-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer, CAR, and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 μm) and angular range (180°) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  13. Dependence of the spectral diffuse-direct irradiance ratio on aerosol spectral distribution and single scattering albedo

    NASA Astrophysics Data System (ADS)

    Kaskaoutis, D. G.; Kambezidis, H. D.; Dumka, U. C.; Psiloglou, B. E.

    2016-09-01

    This study investigates the modification of the clear-sky spectral diffuse-direct irradiance ratio (DDR) as a function of solar zenith angle (SZA), spectral aerosol optical depth (AOD) and single scattering albedo (SSA). The solar spectrum under various atmospheric conditions is derived with Simple Model of the Atmospheric Radiative Transfer of Sunshine (SMARTS) radiative transfer code, using the urban and continental aerosol models as inputs. The spectral DDR can be simulated with great accuracy by an exponentially decreasing curve, while the aerosol optical properties strongly affect the scattering processes in the atmosphere, thus modifying the DDR especially in the ultraviolet (UV) spectrum. Furthermore, the correlation between spectral DDR and spectral AOD can be represented precisely by an exponential function and can give valuable information about the dominance of specific aerosol types. The influence of aerosols on spectral DDR increases with increasing SZA, while the simulations using the urban aerosol model as input in SMARTS are closer to the measurements taken in the Athens urban environment. The SMARTS simulations are interrelated with spectral measurements and can be used for indirect estimations of SSA. Overall, the current work provides some theoretical approximations and functions that help in understanding the dependence of DDR on astronomical and atmospheric parameters.

  14. Meteorological and aerosol effects on marine cloud microphysical properties

    NASA Astrophysics Data System (ADS)

    Sanchez, K. J.; Russell, L. M.; Modini, R. L.; Frossard, A. A.; Ahlm, L.; Corrigan, C. E.; Roberts, G. C.; Hawkins, L. N.; Schroder, J. C.; Bertram, A. K.; Zhao, R.; Lee, A. K. Y.; Lin, J. J.; Nenes, A.; Wang, Z.; Wonaschütz, A.; Sorooshian, A.; Noone, K. J.; Jonsson, H.; Toom, D.; Macdonald, A. M.; Leaitch, W. R.; Seinfeld, J. H.

    2016-04-01

    Meteorology and microphysics affect cloud formation, cloud droplet distributions, and shortwave reflectance. The Eastern Pacific Emitted Aerosol Cloud Experiment and the Stratocumulus Observations of Los-Angeles Emissions Derived Aerosol-Droplets studies provided measurements in six case studies of cloud thermodynamic properties, initial particle number distribution and composition, and cloud drop distribution. In this study, we use simulations from a chemical and microphysical aerosol-cloud parcel (ACP) model with explicit kinetic drop activation to reproduce observed cloud droplet distributions of the case studies. Four cases had subadiabatic lapse rates, resulting in fewer activated droplets, lower liquid water content, and higher cloud base height than an adiabatic lapse rate. A weighted ensemble of simulations that reflect measured variation in updraft velocity and cloud base height was used to reproduce observed droplet distributions. Simulations show that organic hygroscopicity in internally mixed cases causes small effects on cloud reflectivity (CR) (<0.01), except for cargo ship and smoke plumes, which increased CR by 0.02 and 0.07, respectively, owing to their high organic mass fraction. Organic hygroscopicity had larger effects on droplet concentrations for cases with higher aerosol concentrations near the critical diameter (namely, polluted cases with a modal peak near 0.1 µm). Differences in simulated droplet spectral widths (k) caused larger differences in CR than organic hygroscopicity in cases with organic mass fractions of 60% or less for the cases shown. Finally, simulations from a numerical parameterization of cloud droplet activation suitable for general circulation models compared well with the ACP model, except under high organic mass fraction.

  15. Analysis of Atmospheric Aerosol Data Sets and Application of Radiative Transfer Models to Compute Aerosol Effects

    NASA Technical Reports Server (NTRS)

    Schmid, Beat

    2005-01-01

    The Bay Area Environmental Research Institute (BAER) scientists have worked with the NASA Ames Research Center sunphotometer group led by Dr. Philip Russell for many years researching the climatic effects of aerosol particles in the stratosphere and troposphere. We have continued to work with the NASA Ames sunphotometer group in research activities representing funded, peer-reviewed proposals to NASA, NOAA and DOE. The activities are described in those proposals and also in the documents provided to the Grants Office earlier. This is the final report from January 1,2002 - June 30, 2005. The report consists of a compilation of 41 peer-reviewed publications (published, in press or submitted) produced under this Cooperative Agreement and 43 first-authored conference presentations. To save paper, reprints are not included but will, of course, be provided upon request.

  16. Aerosol Properties Derived from Airborne Sky Radiance and Direct Beam Measurements in Recent NASA and DoE Field Campaigns

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Russell, P. B.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.; Johnson, R. R.; LeBlanc, S.; Schmidt, S.; Pilewskie, P.; Song, S.

    2014-01-01

    The AERONET (AErosol RObotic NETwork) ground-based suite of sunphotometers provides measurements of spectral aerosol optical depth (AOD), precipitable water and spectral sky radiance, which can be inverted to retrieve aerosol microphysical properties that are critical to assessments of aerosol-climate interactions. Because of data quality criteria and sampling constraints, there are significant limitations to the temporal and spatial coverage of AERONET data and their representativeness for global aerosol conditions.The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument, jointly developed by NASA Ames and PNNL (Pacific Northwest National Laboratory) with NASA Goddard collaboration, combines airborne sun tracking and AERONET-like sky scanning with spectroscopic detection. Being an airborne instrument, 4STAR has the potential to fill gaps in the AERONET data set. The 4STAR instrument operated successfully in the SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) experiment in Aug./Sep. 2013 aboard the NASA DC-8 and in the DoE (Department of Energy)-sponsored TCAP (Two Column Aerosol Project, July 2012 & Feb. 2013) experiment aboard the DoE G-1 aircraft. 4STAR provided direct beam measurements of hyperspectral AOD, columnar trace gas retrievals (H2O, O3, NO2), and the first ever airborne hyperspectral sky radiance scans, which can be inverted to yield the same products as AERONET ground-based observations. In this presentation, we provide an overview of the new 4STAR capabilities, with an emphasis on 26 high-quality sky radiance measurements carried out by 4STAR in SEAC4RS. We compare collocated 4STAR and AERONET sky radiances, as well as their retrievals of aerosol microphysical properties for a subset of the available case studies. We summarize the particle property and air-mass characterization studies made possible by the combined 4STAR direct beam and sky radiance

  17. Organic aerosols

    SciTech Connect

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN.

  18. Effect of aging on morphology, hygroscopicity, and optical properties of soot aerosol

    NASA Astrophysics Data System (ADS)

    Khalizov, A. F.; Xue, H.; Pagels, J.; McMurry, P. H.; Zhang, R.

    2009-12-01

    Soot from incomplete combustion represents one of the major forms of particulate matter pollution, profoundly impacting human health, air quality, and climate. The direct and indirect radiative effects of soot aerosol depend on particle composition and morphology, which may vary significantly when aerosol is subjected to atmospheric aging. We will present an overview of a comprehensive set of experimental measurements performed in our laboratory at Texas A&M to study the effect of internal mixing with atmospheric species on morphology, hygroscopicity, and optical properties of combustion soot. In our experiments, size-classified soot aerosol was exposed to 0.1 - 1000 ppb (part per billion) mixing ratios of sulfuric acid and dicarboxylic organic acids and resulting changes particle morphology and mixing state under dry and humid conditions were characterized through mass-mobility measurements by aerosol particle mass analyzer (APM) and tandem differential mobility analyzer (TDMA). Light absorption and scattering cross-sections for well-characterized fresh and coated soot aerosol were derived using a cavity ring-down spectrometer and an integrati