Science.gov

Sample records for aerosol elemental composition

  1. Elemental Composition of Primary Aerosols Emitted from Burning of 21 Biomass Fuels Measured by Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Desyaterik, Y.; Mack, L.; Lee, T.; Kreidenweis, S. M.; Collett, J. L.; Jimenez, J. L.; Worsnop, D. R.

    2010-12-01

    Biomass burning emissions are an important contributor to regional aerosol loading and have a large impact of on air quality, visibility, and radiative forcing. However, the detailed chemical composition of the aerosols emitted during biomass burning is largely unknown. In order to gain a better understanding of the chemical and physical properties of these emissions, 92 burns were undertaken in the combustion chamber of the USDA/FS Fire Sciences Laboratory in Missoula, Montana, in well-defined laboratory conditions. A set of 21 different fuels was tested that represents biomass burned annually in the western and southeastern U.S. The chemical composition of the resulting biomass smoke aerosols was analyzed with a high-resolution aerosol mass spectrometer (Aerodyne HR-ToF-AMS). Simultaneous measurements of CO2 and CO concentrations allowed flaming and smoldering fire regimes to be distinguished. The elemental composition of the organic portion of the aerosols was extracted from the AMS measurements. Here we present the variation of O/C, H/C and organic mass to organic carbon ratios (OM/OC) versus fire regime and fuel type. We also discuss the influence on the organic aerosol chemical composition of various factors such as fuel moisture content and total aerosol loading, as well as the approach used to account for water vapor ions derived from water originally present in sampled particles versus water vapor ions produced by electron impact fragmentation of organic molecules.

  2. Biogenic Aerosols Over the Amazon Basin: Optical Properties and Relationship With Elemental and Ionic Composition

    NASA Astrophysics Data System (ADS)

    Artaxo, P.; Martin, S. T.; Andreae, M. O.; Godoy, J. M.; Godoy, M. L.; Rizzo, L. V.; Paixao, M.

    2008-12-01

    We investigated the optical properties of natural biogenic aerosol particles over the central Amazon Basin near Manaus during the wet season in February and March 2008. The measurements were conducted as part of the AMAZE-08 (Amazonian Aerosol Characterization Experiment) sampling campaign. Light absorption was determined with the use of an Aethalometer and an MAAP (Multi Angle Absorption Photometer). Light scattering was measured with a 3 wavelength TSI nephelometer and an Ecotech nephelometer. The elemental composition was measured trough PIXE and IC. Single scattering albedo shows relatively low values varying from 0.86 to 0.95. Very low fine mode aerosol mass was measured, and coarse mode particles are responsible for a significant fraction of scattering and absorption. Sulfur was observed in very low concentrations, and most of the aerosol mass was organic. Long range transport of soil dust from Sahara were observed and reflected in the light scattering coefficient. Wavelength dependence of absorption indicates the strong influence of coarse mode aerosol. Aerosol optical thickness shows low values, but with significant single scattering albedo values, showing strong absorption properties of these biogenic aerosols. Size distribution measurements shows consistence with the scattering coefficients measured, if the coarse mode particles are taken into account.

  3. Elemental composition of aerosols in fourteen experiments of the Cloud Condensation Nuclei Workshop

    NASA Technical Reports Server (NTRS)

    Mach, W. H.; Hucek, R. R.

    1981-01-01

    Aeosols were collected with two Ci impactors and analyzed with proton induced X-ray emission (PIXE) for chemical composition and to detect if contamination was present. One of the impactors sampled the generated aerosols; the other impactor sampled droplets from a diffusion cloud chamber. The purpose of the experiments was to test the feasibility of a study of the transfer of chemical elements from the fine particle sizes to the coarse particle sizes, after CCN are activated and cloud droplets are formed. The data indicated that sulfur-containing aerosols did exhibit the expected transfer.

  4. Monitoring aerosol elemental composition in particle size fractions of long-range transport

    NASA Astrophysics Data System (ADS)

    Metternich, P.; Georgii, H.-W.; Groeneveld, K. O.

    1983-04-01

    Collection of atmospheric samples was performed at Malta, a semi-remote environment in the Mediterranean, in case of long-range transport studies of pollutants and natural substances. Using PIXE as a non-destructive trace-element analytical tool, the elemental composition of these samples was determined. Atmospheric concentrations obtained in this study were of one magnitude higher than those observed over the open North Alantic in purely marine air. For most of the anomalously enriched elements in the Mediterranean aerosol, the high concentrations can be explained by long-range transport.

  5. Elemental and ionic composition of atmospheric aerosols in the dust storm season in Mongolian Gobi Desert

    NASA Astrophysics Data System (ADS)

    Soyol-Erdene, T. O.; Shagjjamba, D.; Hong, S.; Sarangerel, E.; Byambatsogt, K.

    2014-12-01

    TSP (Total Suspended Particulate) PM10 (particle size smaller than 10 μm) and PM2.5 (particle size smaller than 2.5 μm) aerosol samples in the dust storm session in Mongolian Gobi Desert were collected and their water soluble ionic and elemental composition were elaborated in demonstrating the mixing of mineral aerosol with pollution aerosol. During the sampling period (5-15 April, 2014) the dust storm peaked on 14 April, in which the highest concentrations of PM10 and PM2.5 were 250.1 and 33.4 respectively. The water soluble anions (SO42-, NO3-, Cl- and HCO3- and PO43-) and cations (Na+, K+, NH4+, Ca2+, Mg2+ and Li+) of the samples were determined by ion chromatograph. Elemental composition for 48 elements determined by using X-ray fluorescence analyzer. For the PM2.5 samples, concentrations of V, Ge, As, Se, Br, Ag, Hg, Tl, Bi were less than instrumental detection limit and Cr, Co, Cu, Nb, Mo, Sb, I, Ba, Ce, Hf, W, Au, Pb were determined only in a few samples. Other elements were observed in most samples. For the PM2.5-10 samples, concentrations of Ge, As, Se, Br, Ag, Hf, Tl were less than instrumental detection limit and V, Co, Nb, Mo, I, Ce, W, Pb were determined only small samples. Others are determined in most samples. Aerosol sources, sources fractions (mineral and pollution), and mixing of aerosols from various sources will be investigated by further data analyses.

  6. Sources and elemental composition of summer aerosols in the Larsemann Hills (Antarctica).

    PubMed

    Budhavant, Krishnakant; Safai, P D; Rao, P S P

    2015-02-01

    Atmospheric aerosols play a major role in the global climate change. A better physical characterization of the chemical composition of atmospheric aerosols, especially in remote atmosphere, is an important step to reduce the current uncertainty in their effect on the radiative forcing of the climate. In the present work, surface aerosols have been studied over the Southern Ocean and over Bharati, Indian Research Station at Larsemann Hills at the Antarctic coast during the summer season of 2009-2010. Aerosol samples were collected using optical particle counter (OPC) and high-volume air sampler. PM10 and PM2.5 aerosol samples were analyzed for various water-soluble and acid-soluble ionic constituents. The Hysplit model was used to compute the history of the air masses for their possible origin. Supplementary measurements of meteorological parameters were also used. The average mass concentration for PM10 over the Southern Ocean was found to be 13.4 μg m(3). Over coastal Antarctica, the mass of PM10 was 5.13 μg m(-3), whereas that of PM2.5 was 4.3 μg m(-3). Contribution of marine components, i.e., Na, Cl and Mg was dominant over the Southern Ocean (79 %) than over the coastal Antarctica where they were dominant in coarse mode (67 %) than in fine mode (53 %) aerosols. The NH4/nss-SO4 ratio of 1.12 in PM2.5 indicates that the NH4 and SO4 ions were in the form of NH4HSO4. Computation of enrichment factors indicate that elements of anthropogenic origin, e.g., Zn, Cu, Pb, etc., were highly enriched with respect to crustal composition.

  7. Long-term aerosol measurements in Gran Canaria, Canary Islands: Particle concentration, sources and elemental composition

    NASA Astrophysics Data System (ADS)

    Gelado-Caballero, MaríA. D.; López-GarcíA, Patricia; Prieto, Sandra; Patey, Matthew D.; Collado, Cayetano; HéRnáNdez-Brito, José J.

    2012-02-01

    There are very few sets of long-term measurements of aerosol concentrations over the North Atlantic Ocean, yet such data is invaluable in quantifying atmospheric dust inputs to this ocean region. We present an 8-year record of total suspended particles (TSP) collected at three stations on Gran Canaria Island, Spain (Taliarte at sea level, Tafira 269 m above sea level (a.s.l.) and Pico de la Gorra 1930 m a.s.l.). Using wet and dry deposition measurements, the mean dust flux was calculated at 42.3 mg m-2 d-1. Air mass back trajectories (HYSPLIT, NOAA) suggested that the Sahara desert is the major source of African dust (dominant during 32-50% of days), while the Sahel desert was the major source only 2-10% of the time (maximum in summer). Elemental composition ratios of African samples indicate that, despite the homogeneity of the dust in collected samples, some signatures of the bedrocks can still be detected. Differences were found for the Sahel, Central Sahara and North of Sahara regions in Ti/Al, Mg/Al and Ca/Al ratios, respectively. Elements often associated with pollution (Pb, Cd, Ni, Zn) appeared to share a common origin, while Cu may have a predominantly local source, as suggested by a decrease in the enrichment factor (EF) of Cu during dust events. The inter-annual variability of dust concentrations is investigated in this work. During winter, African dust concentration measurements at the Pico de la Gorra station were found to correlate with the North Atlantic Oscillation (NAO) index.

  8. New Approach for Near-Real-Time Measurement of Elemental Composition of Aerosol Using Laser-Induced Breakdown Spectroscopy

    PubMed Central

    Diwakar, Prasoon; Kulkarni, Pramod; Birch, M. Eileen

    2015-01-01

    A new approach has been developed for making near-real-time measurement of elemental composition of aerosols using plasma spectroscopy. The method allows preconcentration of miniscule particle mass (pg to ng) directly from the sampled aerosol stream through electrostatic deposition of charged particles (30–900 nm) onto a flat-tip microneedle electrode. The collected material is subsequently ablated from the electrode and monitored by laser-induced breakdown spectroscopy. Atomic emission spectra were collected using a broadband spectrometer with a wavelength range of 200–980 nm. A single-sensor delay time of 1.3 μs was used in the spectrometer for all elements to allow simultaneous measurement of multiple elements. The system was calibrated for various elements including Cd, Cr, Cu, Mn, Na, and Ti. The absolute mass detection limits for these elements were experimentally determined and found to be in the range of 0.018–5 ng. The electrostatic collection technique has many advantages over other substrate-based methods involving aerosol collection on a filter or its focused deposition using an aerodynamic lens. Because the particle mass is collected over a very small area that is smaller than the spatial extent of the laser-induced plasma, the entire mass is available for analysis. This considerably improves reliability of the calibration and enhances measurement accuracy and precision. Further, the aerosol collection technique involves very low pressure drop, thereby allowing higher sample flow rates with much smaller pumps—a desirable feature for portable instrumentation. Higher flow rates also make it feasible to measure trace element concentrations at part per trillion levels. Detection limits in the range of 18–670 ng m−3 can be achieved for most of the elements studied at a flow rate of 1.5 L min−1 with sampling times of 5 min. PMID:26692632

  9. Sources of aerosol as determined from elemental composition and size distributions in Beijing

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjie; Zhuang, Guoshun; Guo, Jinghua; Xu, Dongqun; Wang, Wei; Baumgardner, Darrel; Wu, Zhiyuan; Yang, Wen

    2010-02-01

    Samples of PM 2.5, PM 10, and TSP from 2001 to 2003 have been collected in Beijing during spring (low-dust), spring (high dust), summer and winter. The concentration of TSP, PM 10, and PM 2.5 was most abundant in spring with high dust followed by winter, spring with little dust and summer. The average mass ratios of PM > 10 , PM 2.5-10 and PM 2.5 to TSP show that the large coarse fraction (PM > 10 ) and the fine fraction (PM 2.5) contribute most in spring with high dust while PM 2.5, PM 2.5-10, and PM > 10 contributed similar fractions to TSP in summer and PM 2.5 in winter. Sixteen cascade impaction samples were collected for elemental analysis in 2000 and 2001 and 16 major components were analyzed by PIXE. Based on the characteristics of the size distribution, three different patterns are observed: coarse mode, fine mode and bimodal mode. Different groups showed different characteristics. Crustal elements showed stable size shapes between different seasons, however, pollution elements showed complex and more variations, and the size distribution showed tendency to vary between unimodal fine modes and bimodal modes. Additionally, the concentration of aerosols and the temporal variation of the elements varied significantly according to different meteorological conditions especially on haze-fog weather conditions. Different elements showed different size distributions on haze-fog weather, i.e. crustal elements of Al, Si, Ca showed similar variation with those average days, pollution elements of S, As, Zn showed significantly higher level than those average values but mixed elements of K, Mn, Cu, Pb showed not so higher than those pollution elements. The high S in haze-fog weather was most from water soluble sulfate parts, the bimodal modes of elements showed unimodal variation and the peak of accumulation modes showed tendency variation to the larger sizes in haze-fog weather. However, most crustal elements showed not much increase during haze-fog condition, which is

  10. Intercomparison of thermal-optical methods for the determination of organic and elemental carbon: influences of aerosol composition and implications.

    PubMed

    Cheng, Yuan; Duan, Feng-kui; He, Ke-bin; Zheng, Mei; Du, Zhen-yu; Ma, Yong-liang; Tan, Ji-hua

    2011-12-01

    An intercomparison of organic carbon (OC) and elemental carbon (EC) measurements was conducted based on ambient aerosol samples collected during four seasons in Beijing, China. Dependence of OC and EC values on the temperature protocol and the charring correction method is presented and influences of aerosol composition are investigated. EC was found to decrease with the peak inert mode temperature (T(peak)) such that EC determined by the IMPROVE (the Interagency Monitoring of Protected Visual Environments)-A protocol (T(peak) was 580 °C) was 2.85 ± 1.31 and 3.83 ± 2.58 times that measured by an alternative protocol with a T(peak) of 850 °C when using the transmittance and reflectance correction, respectively. It was also found that reflectance correction tends to classify more carbon as EC compared with transmittance; results from the IMPROVE-A protocol showed that the ratio of EC defined by reflectance correction (EC(R)) to that based on transmittance (EC(T)) averaged 1.50 ± 0.42. Moreover, it was demonstrated that emissions from biomass burning would increase the discrepancy between EC values determined by different temperature protocols. On the other hand, the discrepancy between EC(R) and EC(T) was strongly associated with secondary organic aerosol (SOA) which was shown to be an important source of the organics that pyrolyze during the inert mode of thermal-optical analysis. PMID:22044188

  11. Intercomparison of thermal-optical methods for the determination of organic and elemental carbon: influences of aerosol composition and implications.

    PubMed

    Cheng, Yuan; Duan, Feng-kui; He, Ke-bin; Zheng, Mei; Du, Zhen-yu; Ma, Yong-liang; Tan, Ji-hua

    2011-12-01

    An intercomparison of organic carbon (OC) and elemental carbon (EC) measurements was conducted based on ambient aerosol samples collected during four seasons in Beijing, China. Dependence of OC and EC values on the temperature protocol and the charring correction method is presented and influences of aerosol composition are investigated. EC was found to decrease with the peak inert mode temperature (T(peak)) such that EC determined by the IMPROVE (the Interagency Monitoring of Protected Visual Environments)-A protocol (T(peak) was 580 °C) was 2.85 ± 1.31 and 3.83 ± 2.58 times that measured by an alternative protocol with a T(peak) of 850 °C when using the transmittance and reflectance correction, respectively. It was also found that reflectance correction tends to classify more carbon as EC compared with transmittance; results from the IMPROVE-A protocol showed that the ratio of EC defined by reflectance correction (EC(R)) to that based on transmittance (EC(T)) averaged 1.50 ± 0.42. Moreover, it was demonstrated that emissions from biomass burning would increase the discrepancy between EC values determined by different temperature protocols. On the other hand, the discrepancy between EC(R) and EC(T) was strongly associated with secondary organic aerosol (SOA) which was shown to be an important source of the organics that pyrolyze during the inert mode of thermal-optical analysis.

  12. Elemental Composition Analysis to Investigate NOx Effects on Secondary Organic Aerosol from α-Pinene Using Ultrahigh Resolution Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Lim, H. J.; Park, J. H.; Babar, Z.

    2015-12-01

    Secondary organic aerosol (SOA) accounts for 20-70% of atmospheric fine aerosol. NOx plays crucial roles in SOA formation and consequently affects the composition and yield of SOA. SOA component speciation is incomplete due to its complex composition of polar oxygenated and multifunctional species. In this study, ultrahigh resolution mass spectrometry (UHR MS) was applied to improve the understanding of NOx effects on biogenic SOA formation by identifying the elemental composition of SOA. Additional research aim was to investigate oligomer components that are considered as a driving force for SOA formation and growth. In this study α-pinene SOA from photochemical reaction was examined. SOA formation was performed in the absence and presence of NOx at dry condition (<5% RH) of room temperature (~25oC) in ~8 m3 KNU smog chamber. SOA was collected on Teflon-coated glass fiber filter, which was extracted using acetonitrile and analyzed by ultrahigh resolution 15T FT-ICR MS. UHR MS data were interpreted in various ways including molecular formula, Kendrick diagram, van Krevelen diagram, and double bond equivalent values. Substantially large fractions of them are nitrogen containing species. Thousands of individual species of SOA were identified. For SOA in the absence of NOx. intensity normalized mean O/C, H/C, N/C, OM/OC ratios were 0.43, 1.52, 0.02, and 1.68, respectively. For SOA in the presence of NOx, those ratios were 0.52, 0.95, 0.08, and 1.48, respectively. 4 different oligomer formation mechanisms (addition, H abstraction, hydrolysis and de-hydrolysis reaction) were examined on the basis of SOA compositions. Detailed discussion will be presented on the molecular structure and building block of oligomers in SOA as well as the evolution of individual elemental composition by multi-generation reactions. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2011-01350000).

  13. Elemental composition of tropospheric aerosols in Hanoi, Vietnam and Nairobi, Kenya.

    PubMed

    Gatari, Michael; Wagner, Annemarie; Boman, Johan

    2005-04-01

    Air pollution problems in major cities within the developing countries need to be studied. There are scanty measurements from the developing countries on airborne particles despite their adverse implications to human health, visibility and climate. One of the major sources of anthropogenic air pollution is energy production. Energy demand is bound to increase as population increases, especially in major cities of the world. Fine particles, particles with aerodynamic diameter < or = 2.5 microm, are mainly anthropogenic and these particles were collected in the capital cities of Vietnam and Kenya. A cyclone airborne particle collector was used to sample in Hanoi during the months of May to October 2000 and a dichotomous virtual impactor in Nairobi in February 2000. The samples were analysed for elemental content by an energy dispersive X-ray fluorescence (EDXRF) spectrometer. S, Cl, K and Fe exceeded atmospheric concentrations of 100 ng m(-3) at both cities. Atmospheric elemental concentrations in both Hanoi and Nairobi were orders of magnitude higher than their respective rural towns. Traffic, biomass and waste burning emissions were implicated as the main sources of air pollution in Nairobi, while coal combustion and road transport were the major sources in Hanoi. Regional air pollution had a major impact over Hanoi, whereas an influence of that kind was not identified in Nairobi. Pb and other toxic elements had concentration levels below WHO guideline, however, the two cities are threatened by future high levels of air pollution due to the high rate of population growth. Long-term measurements are required in both areas to evaluate if the alarming situation is deteriorating.

  14. Trace elemental characteristics of aerosols emitted from municipal incinerators

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1978-01-01

    As part of a continuing investigation of high temperature combustion aerosols, elemental composition of size differentiated aerosols emitted from a local municipal incinerator was studied. Aerosols were aerodynamically separated into eight diameter groups ranging from 0.43 mm to 20 mm, collected, and analyzed by charged particle induced X-ray emission technique. On line data collection and reduction codes generated aerial densities for elements from Na to U with sensitivities in the ng/cu m range for most elements. From the total weights of aerosols collected per stage, their size distribution was determined to be bimodal, with one group centered at a diameter of 0.54 mm and the other at a diameter of 5.6 mm. Measured elemental concentrations in various size ranges indicate that K and S show a strong tendency to concentrate on aerosol surfaces. A weaker trend for surface preference was also observed for Mn and Ni, but other elements show no such trend.

  15. Element composition of insoluble fraction of aerosols in snow in the vicinity of oil chemistry refinery (Pavlodar City, Kazakhstan) and petrochemical plant (Tomsk City, Russia)

    NASA Astrophysics Data System (ADS)

    Talovskaya, Anna V.; Filimonenko, Ekaterina A.; Yazikov, Egor G.; Shakhova, Tatyana S.; Parygina, Irina A.

    2015-11-01

    Tomsk petrochemical plant (Russia) and Pavlodar oil chemistry refinery (Kazakhstan) are the sources of air contamination in Tomsk and Pavlodar respectively. Therefore, it is very important to study the level of air contamination with particulate matter as well as ultimate composition of these particles. Disposable solid particles fall out to the snow cover, so snow is an accumulator of the particles. The article deals with the study results of dust load and concentrations of Br, Sb, La, Ce, Sm and Nd in insoluble fraction of aerosols in snow in the vicinity of Pavlodar oil chemistry refinery and Tomsk petrochemical plant. The instrumental neutron activation analysis was used for the ultimate composition detection. Results were shown that the dust load in the vicinity of Tomsk petrochemical plant is higher than in Pavlodar. We have detected high concentrations of La, Br and Sm in insoluble fraction of aerosols in snow in the vicinity of Pavlodar refinery and high concentrations of Sb and Ce in Tomsk. Moreover, we have detected high Br concentration in insoluble fraction of aerosols in snow of the vicinity of both plants. Gas burning on the flares of these enterprises is likely a potential source of Br. La to light lanthanoids ratio have shown La is of anthropogenic origin. In addition, enrichment factor estimation reflects an anthropogenic origin of La, Sm, Br, Ce and Sb as well. These elements might be emitted from different production facilities of the plants.

  16. Subarctic atmospheric aerosol composition: 1. Ambient aerosol characterization

    SciTech Connect

    Friedman, Beth; Herich, Hanna; Kammermann, Lukas; Gross, Deborah S.; Ameth, Almut; Holst, Thomas; Lohmann, U.; Cziczo, Daniel J.

    2009-07-10

    Sub-Arctic aerosol was sampled during July 2007 at the Abisko Research Station Stordalen field site operated by the Royal Swedish Academy of Sciences. Located in northern Sweden at 68º latitude and 385 meters above sea level (msl), this site is classified as a semi-continuous permafrost mire. Number density, size distribution, cloud condensation nucleus properties, and chemical composition of the ambient aerosol were determined. Backtrajectories showed that three distinct airmasses were present over Stordalen during the sampling period. Aerosol properties changed and correlated with airmass origin to the south, northeast, or west. We observe that Arctic aerosol is not compositionally unlike that found in the free troposphere at mid-latitudes. Internal mixtures of sulfates and organics, many on insoluble biomass burning and/or elemental carbon cores, dominate the number density of particles from ~200 to 2000 nm aerodynamic diameter. Mineral dust which had taken up gas phase species was observed in all airmasses. Sea salt, and the extent to which it had lost volatile components, was the aerosol type that most varied with airmass.

  17. Elemental ratios and enrichment factors in aerosols from the US-GEOTRACES North Atlantic transects

    NASA Astrophysics Data System (ADS)

    Shelley, Rachel U.; Morton, Peter L.; Landing, William M.

    2015-06-01

    The North Atlantic receives the highest aerosol (dust) input of all the oceanic basins. Dust deposition provides essential bioactive elements, as well as pollution-derived elements, to the surface ocean. The arid regions of North Africa are the predominant source of dust to the North Atlantic Ocean. In this study, we describe the elemental composition (Li, Na, Mg, Al, P, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Cd, Sn, Sb, Cs, Ba, La, Ce, Nd, Pb, Th, U) of the bulk aerosol from samples collected during the US-GEOTRACES North Atlantic Zonal Transect (2010/11) in order to highlight the differences between a Saharan dust end-member and the reported elemental composition of the upper continental crust (UCC), and the implications this has for identifying trace element enrichment in aerosols across the North Atlantic basin. As aerosol titanium (Ti) is less soluble than aerosol aluminum (Al), it is a more conservative tracer for lithogenic aerosols and trace element-to-Ti ratios. However, the presence of Ti-rich fine aerosols can confound the interpretation of elemental enrichments, making Al a more robust tracer of aerosol lithogenic material in this region.

  18. Chemical composition and acidity of size-fractionated inorganic aerosols of 2013-14 winter haze in Shanghai and associated health risk of toxic elements

    NASA Astrophysics Data System (ADS)

    Behera, Sailesh N.; Cheng, Jinping; Huang, Xian; Zhu, Qiongyu; Liu, Ping; Balasubramanian, Rajasekhar

    2015-12-01

    The severe winter haze episode that occurred in Shanghai from December 2013 to January 2014, characterized by elevated levels of particulate matter (PM), received considerable international attention because of its impacts on public health and disruption of day-to-day activities. To examine the characteristics of PM during this haze episode and to assess the chemistry behind formation of secondary inorganic aerosols (SIA) and associated health impacts due to exposure of toxic elements, we characterized eight water soluble inorganic (WSI) ions and twenty four trace elements in twelve size-fractionated PM (10 nm-9.9 μm). The average mass concentrations of coarse (1.8 μm < Dp < 9.9 μm), fine (Dp < 2.5 μm), ultrafine (0.01 μm < Dp < 0.10 μm) and nano (0.01 μm < Dp < 0.056 μm) particles during hazy days were 2.8, 5.2, 5.3 and 5.1 times higher than those during non-hazy days, respectively. The in-situ pH (pHIS), as predicted by the Aerosol Inorganic Model (AIM-IV) in all sizes of PM, was observed to be lower during hazy days (average of -0.64) than that during non-hazy days (average of -0.29); there was an increased acidity in haze aerosols. Based on the measured concentrations of particulate-bound toxic elements, health risk assessment was conducted, which revealed that the excess lifetime carcinogenic risk to individuals exposed to fine particles under haze events increased significantly (P < 0.05) to 69 ± 18 × 10-6 compared to non-hazy days (34 ± 10 × 10-6). The qualitative source attribution analysis suggested that the occurrence of haze could be due to a combination of increased emissions of PM from multiple anthropogenic sources followed by its accumulation under unfavourable meteorological conditions with lower mixing heights and less wind speeds and the formation of secondary aerosols.

  19. Vesta's Elemental Composition

    NASA Technical Reports Server (NTRS)

    Prettyman, T. H.; Beck, A. W.; Feldman, W. C.; Lawrence, D. J.; McCoy, T. J.; McSween, H. Y.; Mittlefehldt, D. W.; Peplowski, P. N.; Raymond, C. A.; Reedy, R. C.; Russell, C. T.; Titus, T. N.; Toplis, M. J.; Yamashita, N.

    2014-01-01

    Many lines of evidence (e.g. common geochemistry, chronology, O-isotope trends, and the presence of different HED rock types in polymict breccias) indicate that the howardite, eucrite, and diogenite (HED) meteorites originated from a single parent body. Meteorite studies show that this protoplanet underwent igneous differentiation to form a metallic core, an ultramafic mantle, and a basaltic crust. A spectroscopic match between the HEDs and 4 Vesta along with a plausible mechanism for their transfer to Earth, perhaps as chips off V-type asteroids ejected from Vesta's southern impact basin, supports the consensus view that many of these achondritic meteorites are samples of Vesta's crust and upper mantle. The HED-Vesta connection was put to the test by the NASA Dawn mission, which spent a year in close proximity to Vesta. Measurements by Dawn's three instruments, redundant Framing Cameras (FC), a Visible-InfraRed (VIR) spectrometer, and a Gamma Ray and Neutron Detector (GRaND), along with radio science have strengthened the link. Gravity measurements by Dawn are consistent with a differentiated, silicate body, with a dense Fe-rich core. The range of pyroxene compositions determined by VIR overlaps that of the howardites. Elemental abundances determined by nuclear spectroscopy are also consistent with HED-compositions. Observations by GRaND provided a new view of Vesta inaccessible by telescopic observations. Here, we summarize the results of Dawn's geochemical investigation of Vesta and their implications.

  20. Comparison of abundances, compositions and sources of elements, inorganic ions and organic compounds in atmospheric aerosols from Xi'an and New Delhi, two megacities in China and India.

    PubMed

    Li, Jianjun; Wang, Gehui; Aggarwal, Shankar G; Huang, Yao; Ren, Yanqin; Zhou, Bianhong; Singh, Khem; Gupta, Prabhat K; Cao, Junji; Zhang, Rong

    2014-04-01

    Wintertime TSP samples collected in the two megacities of Xi'an, China and New Delhi, India were analyzed for elements, inorganic ions, carbonaceous species and organic compounds to investigate the differences in chemical compositions and sources of organic aerosols. The current work is the first time comparing the composition of urban organic aerosols from China and India and discussing their sources in a single study. Our results showed that the concentrations of Ca, Fe, Ti, inorganic ions, EC, PAHs and hopanes in Xi'an are 1.3-2.9 times of those in New Delhi, which is ascribed to the higher emissions of dust and coal burning in Xi'an. In contrast, Cl(-), levoglucosan, n-alkanes, fatty alcohols, fatty acids, phthalates and bisphenol A are 0.4-3.0 times higher in New Delhi than in Xi'an, which is attributed to strong emissions from biomass burning and solid waste incineration. PAHs are carcinogenic while phthalates and bisphenol A are endocrine disrupting. Thus, the significant difference in chemical compositions of the above TSP samples may suggest that residents in Xi'an and New Delhi are exposed to environmental hazards that pose different health risks. Lower mass ratios of octadecenoic acid/octadecanoic acid (C18:1/C18:0) and benzo(a)pyrene/benzo(e)pyrene (BaP/BeP) demonstrate that aerosol particles in New Delhi are photochemically more aged. Mass closure reconstructions of the wintertime TSP indicate that crustal material is the most abundant component of ambient particles in Xi'an and New Delhi, accounting for 52% and 48% of the particle masses, respectively, followed by organic matter (24% and 23% in Xi'an and New Delhi, respectively) and secondary inorganic ions (sulfate, nitrate plus ammonium, 16% and 12% in Xi'an and New Delhi, respectively). PMID:24496022

  1. The Role of Aerosol Composition in Arctic Cloud Formation

    NASA Astrophysics Data System (ADS)

    Brooks, S. D.; Hiranuma, N.; Moffet, R.; Laskin, A.; Gilles, M. K.; Glen, A.

    2010-12-01

    While it has been shown that aerosol size has a direct correlation with its ability to act as an ice nucleus, the role of the composition of freshly emitted and evolving aerosol in nucleation is poorly understood. Here we use combined measurements of ice nucleation and high resolution single particle composition to provide insight on the connection between aerosol composition in ice nucleation. These measurements were collected during the Indirect and Semidirect Aerosols Campaign (ISDAC) over Barrow, AK in the springtime of 2008. In-situ ice nucleation measurements were conducted using the Texas Continuous Flow Diffusion Chamber (CFDC). The composition of ambient particles as well as residuals of cloud droplets and ice crystals were studied on a particle by particle basis using computer controlled scanning electron microscopy with energy dispersive X-ray analysis (CCSEM/EDX) and scanning transmission X-Ray microscopy coupled with near edge X-ray absorption spectroscopy (STXM/NEXAFAS). Observed IN concentrations varied from frequent values of 0.01 per liter to more than 10 per liters, depending on conditions and the availability of ice-nucleating aerosols. Ice crystals residuals collected in a fully glaciated cloud demonstrate that both particle chemistry and size requirement must be met for a particle to be an efficient ice nucleus. According to the STXM/NEXAFAS spectral maps, ice crystals residuals are characterized by insoluble cores of either large brown or black carbon (BBC) or carbonates coated by water soluble organics. In contrast, in ambient air samples collected from a biomass burning plume, many organic particles were also observed, but these were smaller and did not have insoluble cores. In-situ ice nucleation measurements show that these biomass particles have inferior ice nuclei ability, relative to those collected in the glaciated cloud. Taken together our measurements suggest that two key elements, a critical size (provided by BBC and/or carbonate

  2. Quantification of aerosol chemical composition using continuous single particle measurements

    NASA Astrophysics Data System (ADS)

    Jeong, C.-H.; McGuire, M. L.; Godri, K. J.; Slowik, J. G.; Rehbein, P. J. G.; Evans, G. J.

    2011-01-01

    Mass concentrations of particulate matter (PM) chemical components were determined from data for 0.3 to 3.0 μm particles measured by an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) data at an urban and rural site. Hourly-averaged concentrations of nitrate, sulphate, ammonium, organic carbon, and elemental carbon, estimated based on scaled ATOFMS peak intensities of corresponding ion marker species, were compared with collocated chemical composition measurements by an Aerosol Mass Spectrometer (AMS), a Gas-Particle Ion Chromatograph (GPIC), and a Sunset Lab field OCEC analyzer. The highest correlation was found for nitrate, with correlation coefficients (Pearson r) of 0.89 and 0.85 at the urban and rural sites, respectively. ATOFMS mass calibration factors, determined for the urban site, were used to calculate mass concentrations of the major PM chemical components at the rural site. Mass reconstruction using this ATOFMS based composition data agreed very well with the total PM mass measured at the rural site. Size distributions of the ten main types of particles were resolved for the rural site and the mass composition of each particle type was determined in terms of sulphate, nitrate, ammonium, organic carbon and elemental carbon. This is the first study to estimate hourly mass concentrations of individual aerosol components and the mass composition of individual particle-types based on ATOFMS single particle measurements.

  3. COMPOSITE FUEL ELEMENT

    DOEpatents

    Hurford, W.J.; Gordon, R.B.; Johnson, W.A.

    1962-12-25

    A sandwich-type fuel element for a reactor is described. This fuel element has the shape of an elongated flat plate and includes a filler plate having a plurality of compartments therein in which the fuel material is located. The filler plate is clad on both sides with a thin cladding material which is secured to the filler plate only to completely enclose the fuel material in each compartment. (AEC)

  4. Comparative analysis of aerosols elemental distribution in some Romanian regions

    NASA Astrophysics Data System (ADS)

    Amemiya, Susumu; Masuda, Toshio; Popa-Simil, Liviu; Mateescu, Liviu

    1996-04-01

    The study's main aim is obtaining aerosols particulate elemental distribution and mapping it for some Romanian regions, in order to obtain preliminary information regarding the concentrations of aerosol particles and networking strategy versus local conditions. For this we used the mobile sampling strategy, but taking care on all local specific conditions and weather. In the summer of 1993, in July we took about 8 samples on a rather large territory of SE Romania which were analysed and mapped. The regions which showed an interesting behaviour or doubts such as Bucharest and Dobrogea were zoomed in near the same period of 1994, for comparing the new details with the global aspect previously obtained. An attempt was made to infer the minimum necessary number of stations in a future monitoring network. A mobile sampler was used, having tow polycarbonate filter posts of 8 and 0.4 μm. PIXE elemental analysis was performed on a 2.5 MV Van de Graaff accelerator, by using a proton beam. More than 15 elements were measured. Suggestive 2D and 3D representations were drawn, as well as histogram charts for the concentrations' distribution in the specific regions at the specified times. In spite of the poor samples from the qualitative point of view the experiment surprised us by the good coincidence (good agreement) with realities in terrain known by other means long time ago, and highlighted the power of PIXE methods in terms of money and time. Conclusions over the link between industry, traffic, vegetation, wether, surface waters, soil composition, power plant exhaust and so on, on the one hand, and surface concentration distribution, on the other, were drawn. But the method's weak points were also highlighted; these are weather dependencies (especially air masses movement and precipitation), local relief, microclimate and vegetation, and of course localisation of the sampling point versus the pollution sources and their regime. The paper contains a synthesis of the whole

  5. Identification of aerosol composition from multi-wavelength lidar measurements

    NASA Technical Reports Server (NTRS)

    Wood, S. A.

    1984-01-01

    This paper seeks to develop the potential of lidar for the identification of the chemical composition of atmospheric aerosols. Available numerical computations suggest that aerosols can be identified by the wavelength dependence of aerosol optical properties. Since lidar can derive the volume backscatter coefficient as a function of wavelength, a multi-wavelength lidar system may be able to provide valuable information on the composition of aerosols. This research theoretically investigates the volume backscatter coefficients for the aerosol classes, sea-salts, and sulfates, as a function of wavelength. The results show that these aerosol compositions can be characterized and identified by their backscatter wavelength dependence. A method to utilize multi-wavelength lidar measurements to discriminate between compositionally different thin aerosol layers is discussed.

  6. Measurement of elemental concentration of aerosols using spark emission spectroscopy†

    PubMed Central

    Diwakar, Prasoon K.

    2015-01-01

    A coaxial microelectrode system has been used to collect and analyse the elemental composition of aerosol particles in near real-time using spark emission spectroscopy. The technique involves focused electrostatic deposition of charged aerosol particles onto the flat tip of a microelectrode, followed by introduction of spark discharge. A pulsed spark discharge was generated across the electrodes with input energy ranging from 50 to 300 mJ per pulse, resulting in the formation of controlled pulsed plasma. The particulate matter on the cathode tip is ablated and atomized by the spark plasma, resulting in atomic emissions which are subsequently recorded using a broadband optical spectrometer for element identification and quantification. The plasma characteristics were found to be very consistent and reproducible even after several thousands of spark discharges using the same electrode system. The spark plasma was characterized by measuring the excitation temperature (~7000 to 10 000 K), electron density (~1016 cm−3), and evolution of spectral responses as a function of time. The system was calibrated using particles containing Pb, Si, Na and Cr. Absolute mass detection limits in the range 11 pg to 1.75 ng were obtained. Repeatability of spectral measurements varied from 2 to 15%. The technique offers key advantages over similar microplasma-based techniques such as laser-induced breakdown spectroscopy, as: (i) it does not require any laser beam optics and eliminates any need for beam alignment, (ii) pulse energy from dc power supply in SIBS system can be much higher compared to that from laser source of the same physical size, and (iii) it is quite conducive to compact, field-portable instrumentation. PMID:26491209

  7. Apparatus for rapid measurement of aerosol bulk chemical composition

    DOEpatents

    Lee, Yin-Nan E.; Weber, Rodney J.

    2003-01-01

    An apparatus and method for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution are provided. The apparatus includes a modified particle size magnifier for producing activated aerosol particles and a collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical methods. The method provided for on-line measurement of chemical composition of aerosol particles includes exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.

  8. Apparatus for rapid measurement of aerosol bulk chemical composition

    DOEpatents

    Lee, Yin-Nan E.; Weber, Rodney J.; Orsini, Douglas

    2006-04-18

    An apparatus for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution is provided. The apparatus includes an enhanced particle size magnifier for producing activated aerosol particles and an enhanced collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical means. Methods for on-line measurement of chemical composition of aerosol particles are also provided, the method including exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; and flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.

  9. Predicting the Mineral Composition of Dust Aerosols

    NASA Astrophysics Data System (ADS)

    Perlwitz, J. P.; Perez, C.; Miller, R. L.; Rodriguez, S.

    2012-12-01

    Models of the soil (''mineral'') dust aerosol cycle, embedded in climate and Earth system models, are essential tools for understanding the causal relationships and feedbacks between dust and climate. Many soil dust schemes in Earth system models use a simplified representation of soil dust aerosols, where the soil dust is distinguished by size bins or size distribution modes, with a globally uniform representation of the mineralogical composition of the particles. Although models with such a simplified assumption about the properties of soil dust particles have already significantly contributed to the understanding of the role of soil dust aerosols in climate, this is a limitation for a number of reasons: 1. The response of clouds and the large-scale circulation depends on the radiative properties like the single scattering albedo, which should vary with the mineral composition of the source region; 2. Chemical processes at the surface of the soil dust particles that form sulfate and nitrate coatings depend on the dust mineral composition; 3. The availability of soil dust minerals as cloud condensation nuclei depends on their hygroscopicity, which in turn depends on the mineral composition; 4. Fertilization of phytoplankton with soluble iron, a process that influences ocean carbon uptake, depends upon mineral types. We present a new version of the soil dust scheme in the NASA GISS Earth System ModelE, which takes into account the mineral composition of the soil dust particles. Soil dust aerosols are represented as a mixture of externally and internally mixed minerals, such as Illite, Kaolinite, Smectite, Calcite, Iron(hydr)oxide, Quartz, Feldspar, and Gypsum, as well as aggregates between Iron(hydr)oxide and each of the minerals. We test two approaches to constrain the mineral composition of the soil dust particles against data from measurements published in literature as well as measurements from Izaña (Tenerife). The comparison between modeled and measured data

  10. Chemical composition of Eastern Black Sea aerosol--preliminary results.

    PubMed

    Balcılar, Ilker; Zararsız, Abdullah; Kalaycı, Yakup; Doğan, Güray; Tuncel, Gürdal

    2014-08-01

    Trace element composition of atmospheric particles collected at a high altitude site on the Eastern Black Sea coast of Turkey was investigated to understand atmospheric transport of pollutants to this semi-closed basin. Aerosol samples were collected at a timber-storage area, which is operated by the General Directorate of Forestry. The site is situated at a rural area and is approximately 50 km to the Black Sea coast and 200 km to the Georgia border of Turkey. Coarse (PM2.5-10) and fine (PM2.5) aerosol samples were collected between 2011 and 2013 using a "stacked filter unit". Collected samples were shipped to the Middle East Technical University in Ankara, where Na, Mg, Al, Si, S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Ba, Pb were measured by Energy dispersive x-ray fluorescence technique (EDXRF). Comparison of measured concentrations of elements with corresponding data generated at other parts of Turkey demonstrated that concentrations of pollution derived elements are higher at Eastern Black Sea than their corresponding concentrations measured at other parts of Turkey, which is attributed to frequent transport of pollutants from north wind sector. Positive matric factorization revealed four factors including three anthropogenic and a crustal factor. Southeastern parts of Turkey, Georgia and Black Sea coast of Ukraine were identified as source regions affecting composition of particles at our site, using trajectory statistics, namely "potential source contribution function" (PSCF). PMID:24373640

  11. Chemistry and Composition of Atmospheric Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Kolb, Charles E.; Worsnop, Douglas R.

    2012-05-01

    For more than two decades a cadre of physical chemists has focused on understanding the formation processes, chemical composition, and chemical kinetics of atmospheric aerosol particles and droplets with diameters ranging from a few nanometers to ˜10,000 nm. They have adapted or invented a range of fundamental experimental and theoretical tools to investigate the thermochemistry, mass transport, and chemical kinetics of processes occurring at nanoscale gas-liquid and gas-solid interfaces for a wide range of nonideal, real-world substances. State-of-the-art laboratory methods devised to study molecular spectroscopy, chemical kinetics, and molecular dynamics also have been incorporated into field measurement instruments that are deployed routinely on research aircraft, ships, and mobile laboratories as well as at field sites from megacities to the most remote jungle, desert, and polar locations. These instruments can now provide real-time, size-resolved aerosol particle physical property and chemical composition data anywhere in Earth's troposphere and lower stratosphere.

  12. Novel Approach for Evaluating Secondary Organic Aerosol from Aromatic Hydrocarbons: Unified Method for Predicting Aerosol Composition and Formation.

    PubMed

    Li, Lijie; Tang, Ping; Nakao, Shunsuke; Kacarab, Mary; Cocker, David R

    2016-06-21

    Innovative secondary organic aerosol (SOA) composition analysis methods normalizing aerosol yield and chemical composition on an aromatic ring basis are developed and utilized to explore aerosol formation from oxidation of aromatic hydrocarbons. SOA yield and chemical composition are revisited using 15 years of University of California, Riverside/CE-CERT environmental chamber data on 17 aromatic hydrocarbons with HC:NO ranging from 11.1 to 171 ppbC:ppb. SOA yield is redefined in this work by normalizing the molecular weight of all aromatic precursors to the molecular weight of the aromatic ring [Formula: see text], where i is the aromatic hydrocarbon precursor. The yield normalization process demonstrates that the amount of aromatic rings present is a more significant driver of aerosol formation than the vapor pressure of the precursor aromatic. Yield normalization also provided a basis to evaluate isomer impacts on SOA formation. Further, SOA elemental composition is explored relative to the aromatic ring rather than on a classical mole basis. Generally, four oxygens per aromatic ring are observed in SOA, regardless of the alkyl substitutes attached to the ring. Besides the observed SOA oxygen to ring ratio (O/R ∼ 4), a hydrogen to ring ratio (H/R) of 6 + 2n is observed, where n is the number of nonaromatic carbons. Normalization of yield and composition to the aromatic ring clearly demonstrates the greater significance of aromatic ring carbons compared with alkyl carbon substituents in determining SOA formation and composition. PMID:27177154

  13. Mass size distributions of elemental aerosols in industrial area

    PubMed Central

    Moustafa, Mona; Mohamed, Amer; Ahmed, Abdel-Rahman; Nazmy, Hyam

    2014-01-01

    Outdoor aerosol particles were characterized in industrial area of Samalut city (El-minia/Egypt) using low pressure Berner cascade impactor as an aerosol sampler. The impactor operates at 1.7 m3/h flow rate. Seven elements were investigated including Ca, Ba, Fe, K, Cu, Mn and Pb using atomic absorption technique. The mean mass concentrations of the elements ranged from 0.42 ng/m3 (for Ba) to 89.62 ng/m3 (for Fe). The mass size distributions of the investigated elements were bi-modal log normal distribution corresponding to the accumulation and coarse modes. The enrichment factors of elements indicate that Ca, Ba, Fe, K, Cu and Mn are mainly emitted into the atmosphere from soil sources while Pb is mostly due to anthropogenic sources. PMID:26644919

  14. Total-Reflection X-ray fluorescence analysis of elements in size-fractionated particulate matter sampled on polycarbonate filters — Composition and sources of aerosol particles in Göteborg, Sweden

    NASA Astrophysics Data System (ADS)

    Wagner, Annemarie; Mages, Margarete

    2010-06-01

    This is the first study applying the technique of cold plasma ashing on polycarbonate filters as a preparative step for subsequent elemental analysis of aerosol particles by Total-Reflection X-ray fluorescence. The procedure has been validated by analyzing blanks of the filter material, chemicals used as additives as well as certified standard reference material. The results showed that cold plasma ashing is superior to conventional digestion methods with regard to the ease of sample preparation and contamination. A PIXE cascade impactor was used to collect size-fractionated aerosol particles in 9 size classes ranging from 16 to 0.06 µm aerodynamic diameter at an urban and a suburban site in Göteborg, Sweden. Filter segments loaded with the aerosol particles were cut out and fixed on Quartz carriers. After adding 10 ng of Ga as internal standard the samples were dried, digested by cold plasma ashing and analyzed by Total-Reflection X-ray fluorescence. The analysis of aerosol particles showed that elemental concentrations at both the urban and the suburban site in Göteborg were low compared to central Europe. More and concurrent sampling of size-fractionated particles is required to identify local sources of trace elements in the urban area of Göteborg.

  15. Preferential concentration of certain elements in smaller aerosols emitted from aircraft engines

    NASA Technical Reports Server (NTRS)

    Jolly, R. K.; Gupta, S. K.; Randers-Pehrson, G.; Buckle, D. C.; Thornton, W. B.; Aceto, H., Jr.; Singh, J. J.; Woods, D. C.

    1975-01-01

    Aerosols from aircraft engines were collected with an eight-stage cascade sampler for a period of 24 h. The aerosol samples from each stage were analyzed for their elemental composition using the proton-induced X-ray emission (PIXE) technique. Seventeen elements (Si, P, S, Cl, K, Ca, Ti, V, Fe, Ni, Cu, Zn, Br, Sr, Nb, Sn, and Pb) were positively identified and quantitated at each stage. Six elements (S, Ca, Fe, Zn, Sn, and Pb) showed a fractional concentration increase with decreasing aerosol size. Similar, but less well-defined, trends were also observed for V and Ni. Silicon and chlorine, on the other hand, showed an opposite trend. Neutron-activation analysis of bulk aerosol samples collected every 2 h over the same period showed a correlation between concentration of Si, Ca, V, Ti, Zn, Br, and Sn and the density of air traffic at the airport. Analysis of the aviation-fuel samples by PIXE indicates that major fractions of Pb, Sn, Br, Zn, Ni, Fe, V, Ca, and S observed in these aerosol studies come from the aircraft engine exhaust.

  16. Chemical composition and characteristics of ambient aerosols and rainwater residues during Indian summer monsoon: Insight from aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhishek; Gupta, Tarun; Tripathi, Sachchida N.

    2016-07-01

    Real time composition of non-refractory submicron aerosol (NR-PM1) is measured via Aerosol mass spectrometer (AMS) for the first time during Indian summer monsoon at Kanpur, a polluted urban location located at the heart of Indo Gangetic Plain (IGP). Submicron aerosols are found to be dominated by organics followed by nitrate. Source apportionment of organic aerosols (OA) via positive matrix factorization (PMF) revealed several types of secondary/oxidized and primary organic aerosols. On average, OA are completely dominated by oxidized OA with a very little contribution from biomass burning OA. During rain events, PM1 concentration is decreased almost by 60%, but its composition remains nearly the same. Oxidized OA showed slightly more decrease than primary OAs, probably due to their higher hygroscopicity. The presence of organo nitrates (ON) is also detected in ambient aerosols. Apart from real-time sampling, collected fog and rainwater samples were also analyzed via AMS in offline mode and in the ICP-OES (Inductively coupled plasma - Optical emission spectrometry) for elements. The presence of sea salt, organo nitrates and sulfates has been observed. Rainwater residues are also dominated by organics but their O/C ratios are 15-20% lower than the observed values for ambient OA. Alkali metals such as Ca, Na, K are found to be most abundant in the rainwater followed by Zn. Rainwater residues are also found to be much less oxidized than the aerosols present inside the fog water, indicating presence of less oxidized organics. These findings indicate that rain can act as an effective scavenger of different types of pollutants even for submicron particle range. Rainwater residues also contain organo sulfates which indicate that some portion of the dissolved aerosols has undergone aqueous processing, possibly inside the cloud. Highly oxidized and possibly hygroscopic OA during monsoon period compared to other seasons (winter, post monsoon), indicates that they can act

  17. Composition and formation of organic aerosol particles in the Amazon

    NASA Astrophysics Data System (ADS)

    Pöhlker, C.; Wiedemann, K.; Sinha, B.; Shiraiwa, M.; Gunthe, S. S.; Artaxo, P.; Gilles, M. K.; Kilcoyne, A. L. D.; Moffet, R. C.; Smith, M.; Weigand, M.; Martin, S. T.; Pöschl, U.; Andreae, M. O.

    2012-04-01

    We applied scanning transmission X-ray microscopy with near edge X-ray absorption fine structure (STXM-NEXAFS) analysis to investigate the morphology and chemical composition of aerosol samples from a pristine tropical environment, the Amazon Basin. The samples were collected in the Amazonian rainforest during the rainy season and can be regarded as a natural background aerosol. The samples were found to be dominated by secondary organic aerosol (SOA) particles in the fine and primary biological aerosol particles (PBAP) in the coarse mode. Lab-generated SOA-samples from isoprene and terpene oxidation as well as pure organic compounds from spray-drying of aqueous solution were measured as reference samples. The aim of this study was to investigate the microphysical and chemical properties of a tropical background aerosol in the submicron size range and its internal mixing state. The lab-generated SOA and pure organic compounds occurred as spherical and mostly homogenous droplet-like particles, whereas the Amazonian SOA particles comprised a mixture of homogeneous droplets and droplets having internal structures due to atmospheric aging. In spite of the similar morphological appearance, the Amazon samples showed considerable differences in elemental and functional group composition. According to their NEXAFS spectra, three chemically distinct types of organic material were found and could be assigned to the following three categories: (1) particles with a pronounced carboxylic acid (COOH) peak similar to those of laboratory-generated SOA particles from terpene oxidation; (2) particles with a strong hydroxy (COH) signal similar to pure carbohydrate particles; and (3) particles with spectra resembling a mixture of the first two classes. In addition to the dominant organic component, the NEXAFS spectra revealed clearly resolved potassium (K) signals for all analyzed particles. During the rainy season and in the absence of anthropogenic influence, active biota is

  18. Application of Synchrotron-XRF to Quantitative Elemental Aerosol Analysis

    NASA Astrophysics Data System (ADS)

    Cliff, S. S.; Perry, K. D.; Jimenez-Cruz, M. P.; Cahill, T. A.

    2001-12-01

    Recent advances in synchrotron x-ray fluorescence (s-XRF) analysis of atmospheric particulate matter have improved elemental sensitivity, quantification and time-resolution. Analysis of both filter and impactor based aerosol samples have yielded quantitative data for elements Na-U, if present, in ambient aerosols. The increased sensitivity allows higher time resolution through either smaller spatial analysis of time-resolved impactor samples or shorter sample time-integration using filter-based samplers. Of particular interest is the application of s-XRF to aerodynamically sized rotating substrate impactor samples. These samplers, 8- and 3-stage DRUM's, have the ability to aerodynamically size-classify particles in either 8 or 3 categories, respectively. In addition, the rotating substrate allows time-resolved analysis of samples with little or no loss in elemental sensitivity. The s-XRF analyses are performed on Beamline 10.3.1 at the Advanced Light Source-Lawrence Berkeley Laboratory (ALS-LBL). Beamline 10.3.1, originally designed for materials analysis, has been supplemented with aerosol analysis capability from several substrate options. Typical analysis involves Teflon filters or Mylar impaction substrates. The newly formed Participating Research Team (PRT) for beamline 10.3.1 encompasses both global climate and material science research. The s-XRF capabilities of beamline 10.3.1 are now available for PRT researchers and independent investigators through a proposal process to the ALS. The technology, application to aerosol research and monitoring, and availability of the facility to the aerosol research community will be presented.

  19. Composite oxygen ion transport element

    DOEpatents

    Chen, Jack C.; Besecker, Charles J.; Chen, Hancun; Robinson, Earil T.

    2007-06-12

    A composite oxygen ion transport element that has a layered structure formed by a dense layer to transport oxygen ions and electrons and a porous support layer to provide mechanical support. The dense layer can be formed of a mixture of a mixed conductor, an ionic conductor, and a metal. The porous support layer can be fabricated from an oxide dispersion strengthened metal, a metal-reinforced intermetallic alloy, a boron-doped Mo.sub.5Si.sub.3-based intermetallic alloy or combinations thereof. The support layer can be provided with a network of non-interconnected pores and each of said pores communicates between opposite surfaces of said support layer. Such a support layer can be advantageously employed to reduce diffusion resistance in any type of element, including those using a different material makeup than that outlined above.

  20. Atmospheric aerosols: A literature summary of their physical characteristics and chemical composition

    NASA Technical Reports Server (NTRS)

    Harris, F. S., Jr.

    1976-01-01

    This report contains a summary of 199 recent references on the characterization of atmospheric aerosols with respect to their composition, sources, size distribution, and time changes, and with particular reference to the chemical elements measured by modern techniques, especially activation analysis.

  1. Seasonal variability of crustal and marine trace elements in the aerosol at Neumayer station, Antarctica

    NASA Astrophysics Data System (ADS)

    Weller, Rolf; Wöltjen, Janina; Piel, Claudia; Resenberg, Rosa; Wagenbach, Dietmar; König-Langlo, Gert; Kriews, Michael

    2008-11-01

    Atmospheric trace element concentrations were measured from March 1999 to December 2003 at the Air Chemistry Observatory of the German Antarctic station Neumayer, by inductively coupled plasma-quadrupol mass spectrometry (ICP-QMS) and ion chromatography (IC). This continuous five-year long record derived from weekly aerosol sampling revealed a distinct seasonal summer maximum for elements linked with mineral dust entry (Al, La, Ce, Nd) and a winter maximum for the mostly sea salt derived elements Li, Na, K, Mg, Ca and Sr. The relative seasonal amplitude was around 1.7 and 1.4 for mineral dust (La) and sea salt aerosol (Na), respectively. On average, a significant deviation regarding mean ocean water composition was apparent for Li, Mg and Sr, which could hardly be explained by mirabilite precipitation on freshly formed sea ice. In addition, we observed all over the year, a not clarified high variability of element ratios Li/Na, K/Na, Mg/Na, Ca/Na and Sr/Na. We found an intriguing co-variation of Se concentrations with biogenic sulphur aerosols (methane sulphonate and non-sea salt sulphate), indicating a dominant marine biogenic source for this element, linked with the marine biogenic sulphur source.

  2. Aerosol Composition in the Los Angeles Basin Studied by High Resolution Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hayes, P. L.; Ortega, A. M.; Cubison, M.; Hu, W.; Toohey, D. W.; Flynn, J. H.; Grossberg, N.; Lefer, B. L.; Alvarez, S. L.; Rappenglueck, B.; Allan, J. D.; Taylor, J.; Holloway, J. S.; Gilman, J. B.; Kuster, W. C.; De Gouw, J. A.; Massoli, P.; Zhang, X.; Weber, R.; Zhao, Y.; Cliff, S. S.; Wexler, A. S.; Isaacman, G. A.; Worton, D. R.; Kreisberg, N. M.; Hering, S. V.; Goldstein, A. H.; Jimenez, J. L.

    2011-12-01

    Atmospheric aerosols impact climate and health, but their sources and composition are poorly understood. To address this knowledge gap, a high-resolution aerosol mass spectrometer (AMS) and complementary instrumentation were deployed during the 2010 CalNex campaign to characterize aerosol composition in the Los Angeles (LA) area. Total mass concentrations as well as the species concentrations measured by the AMS compare well with most other instruments. Nitrate dominates in the mornings, but its concentration is reduced in the afternoon when organic aerosols (OA) increase and dominate. The diurnal variations in concentrations are strongly influenced by emission transport from the source-rich western basin. The average OA to enhanced CO ratio increases with photochemical age from 25 to 80 μg m-3 ppm-1, which indicates significant secondary OA (SOA) production and that a large majority of OA is secondary in aged air. The ratio values are similar to those from Mexico City as well as New England and the Mid-Atlantic States. Positive matrix factorization (PMF) is used to assess the concentrations of different OA components. The major OA classes are oxygenated OA (OOA, a surrogate for total SOA), and hydrocarbon-like OA (HOA, a surrogate for primary combustion OA). Several subclasses of OA are identified as well including diesel-influenced HOA (DI-HOA) and non-diesel HOA. DI-HOA exhibits low concentrations on Sundays consistent with the well-known weekday/weekend effect in LA. PMF analysis finds that OOA is 67% of the total OA concentration. A strong correlation between OOA and Ox (O3 + NO2) concentrations is observed with a slope of 0.15 that suggests the production of fresh SOA in Pasadena. Plotting the OA elemental ratios in a Van Krevelen diagram (H:C vs. O:C) yields a slope of -0.6, which is less steep than that observed in Riverside during the SOAR-2005 campaign. The difference in slopes may be attributed to the highly oxidized HOA present in Pasadena that is

  3. Quantification of aerosol chemical composition using continuous single particle measurements

    NASA Astrophysics Data System (ADS)

    Jeong, C.-H.; McGuire, M. L.; Godri, K. J.; Slowik, J. G.; Rehbein, P. J. G.; Evans, G. J.

    2011-07-01

    Mass concentrations of sulphate, nitrate, ammonium, organic carbon (OC), elemental carbon (EC) were determined from real time single particle data in the size range 0.1-3.0 μm measured by an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) at urban and rural sites in Canada. To quantify chemical species within individual particles measured by an ATOFMS, ion peak intensity of m/z -97 for sulphate, -62 for nitrate, +18 for ammonium, +43 for OC, and +36 for EC were scaled using the number and size distribution data by an Aerodynamic Particle Sizer (APS) and a Fast Mobility Particle Sizer (FMPS). Hourly quantified chemical species from ATOFMS single-particle analysis were compared with collocated fine particulate matter (aerodynamic diameter < 2.5 μm, PM2.5) chemical composition measurements by an Aerosol Mass Spectrometer (AMS) at a rural site, a Gas-Particle Ion Chromatograph (GPIC) at an urban site, and a Sunset Lab field OCEC analyzer at both sites. The highest correlation was found for nitrate, with correlation coefficients (Pearson r) of 0.89 (ATOFMS vs. GPIC) and 0.85 (ATOFMS vs. AMS). ATOFMS mass calibration factors, determined for the urban site, were used to calculate mass concentrations of the major PM2.5 chemical components at the rural site near the US border in southern Ontario. Mass reconstruction using the ATOFMS mass calibration factors agreed very well with the PM2.5 mass concentrations measured by a Tapered Element Oscillating Microbalance (TEOM, r = 0.86) at the urban site and a light scattering monitor (DustTrak, r = 0.87) at the rural site. In the urban area nitrate was the largest contributor to PM2.5 mass in the winter, while organics and sulphate contributed ~64 % of the summer PM2.5 in the rural area, suggesting a strong influence of regional/trans-boundary pollution. The mass concentrations of five major species in ten size-resolved particle-types and aerosol acidity of each particle-type were determined for the rural site. On a mass basis

  4. Direct aerosol chemical composition measurements to evaluate the physicochemical differences between controlled sea spray aerosol generation schemes

    NASA Astrophysics Data System (ADS)

    Collins, D. B.; Zhao, D. F.; Ruppel, M. J.; Laskina, O.; Grandquist, J. R.; Modini, R. L.; Stokes, M. D.; Russell, L. M.; Bertram, T. H.; Grassian, V. H.; Deane, G. B.; Prather, K. A.

    2014-11-01

    Controlled laboratory studies of the physical and chemical properties of sea spray aerosol (SSA) must be under-pinned by a physically and chemically accurate representation of the bubble-mediated production of nascent SSA particles. Bubble bursting is sensitive to the physico-chemical properties of seawater. For a sample of seawater, any important differences in the SSA production mechanism are projected into the composition of the aerosol particles produced. Using direct chemical measurements of SSA at the single-particle level, this study presents an intercomparison of three laboratory-based, bubble-mediated SSA production schemes: gas forced through submerged sintered glass filters ("frits"), a pulsed plunging-waterfall apparatus, and breaking waves in a wave channel filled with natural seawater. The size-resolved chemical composition of SSA particles produced by breaking waves is more similar to particles produced by the plunging waterfall than those produced by sintered glass filters. Aerosol generated by disintegrating foam produced by sintered glass filters contained a larger fraction of organic-enriched particles and a different size-resolved elemental composition, especially in the 0.8-2 μm dry diameter range. Interestingly, chemical differences between the methods only emerged when the particles were chemically analyzed at the single-particle level as a function of size; averaging the elemental composition of all particles across all sizes masked the differences between the SSA samples. When dried, SSA generated by the sintered glass filters had the highest fraction of particles with spherical morphology compared to the more cubic structure expected for pure NaCl particles produced when the particle contains relatively little organic carbon. In addition to an intercomparison of three SSA production methods, the role of the episodic or "pulsed" nature of the waterfall method on SSA composition was under-taken. In organic-enriched seawater, the continuous

  5. Biogenic Contributions to Summertime Arctic Aerosol: Observations of Aerosol Composition from the Netcare 2014 Aircraft Campaign

    NASA Astrophysics Data System (ADS)

    Willis, M. D.; Burkart, J.; Koellner, F.; Schneider, J.; Bozem, H.; Hoor, P. M.; Brauner, R.; Herber, A. B.; Leaitch, W. R.; Abbatt, J.

    2014-12-01

    The Arctic is a complex and poorly studied aerosol environment, impacted by strong anthropogenic contributions during winter months and by regional sources in cleaner summer months. In order to gain a predictive understanding of the changing climate in this region, it is necessary to understand the balance between these two aerosol sources to clarify how aerosol might be altered by or contribute to climate change. We present results of vertically resolved, submicron aerosol composition from an Aerodyne high-resolution aerosol mass spectrometer (AMS) during the NETCARE 2014 Polar6 aircraft campaign. The campaign was based in the high Arctic, at Resolute, NU (74°N), allowing measurements from 60 to 2900 meters over ice, open water and near the ice-edge. Concurrent measurements aboard the Polar6 included ultrafine and accumulation mode particle number and size, cloud condensation nuclei concentrations, trace gas concentrations and single particle composition. Aerosol vertical profiles measured by the AMS can be broadly characterized into two regimes corresponding to different meteorological conditions: the first with very low aerosol loading (<0.1 μg/m3) at low altitudes compared to that aloft and high numbers of nucleation mode particles, and the second with higher concentrations at lower levels. This second regime was associated with low concentrations of nucleation mode particles, and higher observable levels of methane sulphonic acid (MSA) from AMS measurements at low altitudes. MSA, produced during the oxidation of dimethyl sulphide, is a marker for the contribution of ocean-derived biogenic sulphur to particulate sulphur and could be identified and quantified using the high-resolution AMS. MSA to sulphate ratios were observed to increase towards lower altitudes, suggesting a contribution to aerosol loading from the ocean. In addition, we present measurements of aerosol neutralization and the characteristics of organic aerosol that relate to the growth of

  6. Predicting the mineral composition of dust aerosols - Part 1: Representing key processes

    NASA Astrophysics Data System (ADS)

    Perlwitz, J. P.; Pérez García-Pando, C.; Miller, R. L.

    2015-02-01

    Soil dust aerosols created by wind erosion are typically assigned globally uniform physical and chemical properties within Earth system models, despite known regional variations in the mineral content of the parent soil. Mineral composition of the aerosol particles is important to their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, coating by heterogeneous uptake of sulfates and nitrates, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Here, aerosol mineral composition is derived by extending a method that provides the composition of a wet-sieved soil. The extension accounts for measurements showing significant differences between the mineral fractions of the wet-sieved soil and the resulting aerosol concentration. For example, some phyllosilicate aerosols are more prevalent at silt sizes, even though they are nearly absent in a soil whose aggregates are dispersed by wet sieving during analysis. We reconstruct the undispersed size distribution of the original soil that is subject to wind erosion. An empirical constraint upon the relative emission of clay and silt is applied that further differentiates the soil and aerosol mineral composition. In addition, a method is proposed for mixing minerals with small impurities composed of iron oxides. These mixtures are important for transporting iron far from the dust source, because pure iron oxides are more dense and vulnerable to gravitational removal than most minerals comprising dust aerosols. A limited comparison to measurements from North Africa shows that the extension brings the model into better agreement, consistent with a more extensive comparison to global observations as well as measurements of elemental composition downwind of the Sahara, as described in companion articles.

  7. Airborne Measurements of Coarse Mode Aerosol Composition and Abundance

    NASA Astrophysics Data System (ADS)

    Froyd, K. D.; Murphy, D. M.; Brock, C. A.; Ziemba, L. D.; Anderson, B. E.; Wilson, J. C.

    2015-12-01

    Coarse aerosol particles impact the earth's radiative balance by direct scattering and absorption of light and by promoting cloud formation. Modeling studies suggest that coarse mode mineral dust and sea salt aerosol are the dominant contributors to aerosol optical depth throughout much of the globe. Lab and field studies indicate that larger aerosol particles tend to be more efficient ice nuclei, and recent airborne measurements confirm the dominant role of mineral dust on cirrus cloud formation. However, our ability to simulate coarse mode particle abundance in large scale models is limited by a lack of validating measurements above the earth's surface. We present airborne measurements of coarse mode aerosol abundance and composition over several mid-latitude, sub-tropical, and tropical regions from the boundary layer to the stratosphere. In the free troposphere the coarse mode constitutes 10-50% of the total particulate mass over a wide range of environments. Above North America mineral dust typically dominates the coarse mode, but biomass burning particles and sea salt also contribute. In remote environments coarse mode aerosol mainly consists of internally mixed sulfate-organic particles. Both continental and marine convection can enhance coarse aerosol mass through direct lofting of primary particles and by secondary accumulation of aerosol material through cloud processing.

  8. Measurements of aerosol chemical composition in boreal forest summer conditions

    NASA Astrophysics Data System (ADS)

    ńijälä, M.; Junninen, H.; Ehn, M.; Petäjä, T.; Vogel, A.; Hoffmann, T.; Corrigan, A.; Russell, L.; Makkonen, U.; Virkkula, A.; Mäntykenttä, J.; Kulmala, M.; Worsnop, D.

    2012-04-01

    Boreal forests are an important biome, covering vast areas of the northern hemisphere and affecting the global climate change via various feedbacks [1]. Despite having relatively few anthropogenic primary aerosol sources, they always contain a non-negligible aerosol population [2]. This study describes aerosol chemical composition measurements using Aerodyne Aerosol Mass Spectrometer (C-ToF AMS, [3]), carried out at a boreal forest area in Hyytiälä, Southern Finland. The site, Helsinki University SMEAR II measurement station [4], is situated at a homogeneous Scots pine (Pinus sylvestris) forest stand. In addition to the station's permanent aerosol, gas phase and meteorological instruments, during the HUMPPA (Hyytiälä United Measurements of Photochemistry and Particles in Air) campaign in July 2010, a very comprehensive set of atmospheric chemistry measurement instrumentation was provided by the Max Planck Institute for chemistry, Johannes Gutenberg-University, University of California and the Finnish Meteorological institute. In this study aerosol chemical composition measurements from the campaign are presented. The dominant aerosol chemical species during the campaign were the organics, although periods with elevated amounts of particulate sulfates were also seen. The overall AMS measured particle mass concentrations varied from near zero to 27 μg/m observed during a forest fire smoke episode. The AMS measured aerosol mass loadings were found to agree well with DMPS derived mass concentrations (r2=0.998). The AMS data was also compared with three other aerosol instruments. The Marga instrument [5] was used to provide a quantitative semi-online measurement of inorganic chemical compounds in particle phase. Fourier Transform Infrared Spectroscopy (FTIR) analysis was performed on daily filter samples, enabling the identification and quantification of organic aerosol subspecies. Finally an Atmospheric Pressure Chemical Ionization Ion Trap Mass Spectrometer (APCI

  9. Time-resolved measurements of aerosol elemental concentrations in indoor working environments

    NASA Astrophysics Data System (ADS)

    Žitnik, M.; Kastelic, A.; Rupnik, Z.; Pelicon, P.; Vaupetič, P.; Bučar, K.; Novak, S.; Samardžija, Z.; Matsuyama, S.; Catella, G.; Ishii, K.

    2010-12-01

    We have measured the elemental concentrations in aerosols with a 2-h time resolution in two different types of working environment: a chemistry laboratory dealing with the processing of advanced nanoparticulate materials and a medium-sized machine workshop. Non-stop 10-day and 12-day samplings were performed at each location in order to determine the concentration trends during the non-working/working and weekday/weekend periods. Supplementary measurements of PM10 aerosols with a 2-day sample collection time were performed with a standard Gent PM10 sampler to compare the elemental concentrations with the time-averaged concentrations detected by the 2D step-sampler. The concentrations were determined a posteriori by analyzing the x-ray spectra of aerosol samples emitted after 3-MeV proton bombardment. The PM10 samples collected in the chemistry laboratory were additionally inspected by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) to determine the chemical compositions of the individual particles. In the workshop, a total PM10 mass sampling was performed simultaneously with a minute resolution to compare the signal with typical outdoor PM10 concentration levels. A factor analysis of the time-resolved dataset points to six and eight factors in the chemistry laboratory and the machine workshop, respectively. These factors describe most of the data variance, and their composition in terms of different elements can be related to specific indoor activities and conditions. We were able to demonstrate that the elemental concentration sampling with hourly resolution is an excellent tool for studying the indoor air pollution. While sampling the total PM10 mass concentration with a minute resolution may lack the potential to identify the emission sources in a "noisy" environment, the time averaging on a day time scale is too coarse to cope with the working dynamics, even if elemental sensitivity is an option.

  10. Predicting the mineral composition of dust aerosols - Part 1: Representing key processes

    NASA Astrophysics Data System (ADS)

    Perlwitz, J. P.; Pérez García-Pando, C.; Miller, R. L.

    2015-10-01

    Soil dust aerosols created by wind erosion are typically assigned globally uniform physical and chemical properties within Earth system models, despite known regional variations in the mineral content of the parent soil. Mineral composition of the aerosol particles is important to their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, heterogeneous formation of sulfates and nitrates, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Here, aerosol mineral composition is derived by extending a method that provides the composition of a wet-sieved soil. The extension accounts for measurements showing significant differences between the mineral fractions of the wet-sieved soil and the emitted aerosol concentration. For example, some phyllosilicate aerosols are more prevalent at silt sizes, even though they are nearly absent at these diameters in a soil whose aggregates are dispersed by wet sieving. We calculate the emitted mass of each mineral with respect to size by accounting for the disintegration of soil aggregates during wet sieving. These aggregates are emitted during mobilization and fragmentation of the original undispersed soil that is subject to wind erosion. The emitted aggregates are carried far downwind from their parent soil. The soil mineral fractions used to calculate the aggregates also include larger particles that are suspended only in the vicinity of the source. We calculate the emitted size distribution of these particles using a normalized distribution derived from aerosol measurements. In addition, a method is proposed for mixing minerals with small impurities composed of iron oxides. These mixtures are important for transporting iron far from the dust source, because pure iron oxides are more dense and vulnerable to gravitational removal than most minerals comprising dust aerosols. A limited comparison to

  11. Predicting the Mineral Composition of Dust Aerosols. Part 1; Representing Key Processes

    NASA Technical Reports Server (NTRS)

    Perlwitz, J. P.; Garcia-Pando, C. Perez; Miller, R. L.

    2015-01-01

    Soil dust aerosols created by wind erosion are typically assigned globally uniform physical and chemical properties within Earth system models, despite known regional variations in the mineral content of the parent soil. Mineral composition of the aerosol particles is important to their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, heterogeneous formation of sulfates and nitrates, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Here, aerosol mineral composition is derived by extending a method that provides the composition of a wet-sieved soil. The extension accounts for measurements showing significant differences between the mineral fractions of the wetsieved soil and the emitted aerosol concentration. For example, some phyllosilicate aerosols are more prevalent at silt sizes, even though they are nearly absent at these diameters in a soil whose aggregates are dispersed by wet sieving. We calculate the emitted mass of each mineral with respect to size by accounting for the disintegration of soil aggregates during wet sieving. These aggregates are emitted during mobilization and fragmentation of the original undispersed soil that is subject to wind erosion. The emitted aggregates are carried far downwind from their parent soil. The soil mineral fractions used to calculate the aggregates also include larger particles that are suspended only in the vicinity of the source. We calculate the emitted size distribution of these particles using a normalized distribution derived from aerosol measurements. In addition, a method is proposed for mixing minerals with small impurities composed of iron oxides. These mixtures are important for transporting iron far from the dust source, because pure iron oxides are more dense and vulnerable to gravitational removal than most minerals comprising dust aerosols. A limited comparison to

  12. Discrete-element modeling of particulate aerosol flows

    SciTech Connect

    Marshall, J.S.

    2009-03-20

    A multiple-time step computational approach is presented for efficient discrete-element modeling of aerosol flows containing adhesive solid particles. Adhesive aerosol particulates are found in numerous dust and smoke contamination problems, including smoke particle transport in the lungs, particle clogging of heat exchangers in construction vehicles, industrial nanoparticle transport and filtration systems, and dust fouling of electronic systems and MEMS components. Dust fouling of equipment is of particular concern for potential human occupation on dusty planets, such as Mars. The discrete-element method presented in this paper can be used for prediction of aggregate structure and breakup, for prediction of the effect of aggregate formation on the bulk fluid flow, and for prediction of the effects of small-scale flow features (e.g., due to surface roughness or MEMS patterning) on the aggregate formation. After presentation of the overall computational structure, the forces and torques acting on the particles resulting from fluid motion, particle-particle collision, and adhesion under van der Waals forces are reviewed. The effect of various parameters of normal collision and adhesion of two particles are examined in detail. The method is then used to examine aggregate formation and particle clogging in pipe and channel flow.

  13. Elemental analysis of aerosols in Tehran's atmosphere using PIXE and identification of pollution sources.

    PubMed

    Esmaili, N; Khashman, S; Lamehi-Rachti, M; Agha Aligol, D; Shokouhi, F; Oliaiy, P; Farmahini Farahani, M

    2014-11-01

    In this study, the proton-induced X-ray emission (PIXE) technique has been applied to measure the elemental composition and concentrations of particulate matter of 220 samples of aerosols in Tehran's atmosphere within a 450-day time interval starting from March 2009 and ending in June 2010, covering all four seasons. PIXE analysis shows the samples are comprised of various elements including Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, and Pb. Also, to obtain more information about the sources of pollution and to identify the major sources of urban particulate matter, principal component analysis (PCA) was used. Furthermore, micro-PIXE was performed to study individual aerosols in some samples. Results revealed that the concentration of elements originating from vehicle emissions increases three times in winter; whereas the concentration of elements with soil origin remains constant. Based on wind rose maps, it is inferred that the high concentrations of the elements Al, Si, K, Ca, Ti, Mn, and Fe are associated with natural dust brought by winds into Tehran from the west.

  14. Preliminary results of determination of chemical element concentrations in the aerosol of Venus clouds

    NASA Technical Reports Server (NTRS)

    Andreychikov, B. M.; Mukhin, L. M.; Korchuganov, B. N.; Akhmetshin, I. K.; Tokarev, Y. N.; Medvedev, A. V.; Goldfeld, M. N.; Faynboym, V. M.; Kalyuzhnyy, A. V.; Petryanov, I. V.

    1986-01-01

    An X-ray radiometeric experiment is described along with the results of measurements of the elemental composition of aerosols in Venusian clouds. A preliminary analysis of the data showed that sulfur is present in the range of heights 63 to 47 km with mean content of 5.8 mg/cu m and that chlorine is present in the height range 61 t0 52 km with a mean content of 4.1 mg/cu m. The results of measurements in the range 52 to 47 km may come to an agreement if phosphorus is present in the aerosol with a mean concentration of 7.7 mg/cu m.

  15. Compositional Analysis of Aerosols Using Calibration-Free Laser-Induced Breakdown Spectroscopy.

    PubMed

    Boudhib, Mohamed; Hermann, Jörg; Dutouquet, Christophe

    2016-04-01

    We demonstrate that the elemental composition of aerosols can be measured using laser-induced breakdown spectroscopy (LIBS) without any preliminary calibration with standard samples. Therefore, a nanosecond Nd:YAG laser beam was focused into a flux of helium charged with alumina aerosols of a few micrometers diameter. The emission spectrum of the laser-generated breakdown plasma was recorded with an echelle spectrometer coupled to a gated detector. The spectral features including emission from both the helium carrier gas and the Al2O3 aerosols were analyzed on the base of a partial local thermodynamic equilibrium. Thus, Boltzmann equilibrium distributions of population number densities were assumed for all plasma species except of helium atoms and ions. By analyzing spectra recorded for different delays between the laser pulse and the detector gate, it is shown that accurate composition measurements are only possible for delays ≤1 μs, when the electron density is large enough to ensure collisional equilibrium for the aerosol vapor species. The results are consistent with previous studies of calibration-free LIBS measurements of solid alumina and glass and promote compositional analysis of aerosols via laser-induced breakdown in helium.

  16. Compositional Analysis of Aerosols Using Calibration-Free Laser-Induced Breakdown Spectroscopy.

    PubMed

    Boudhib, Mohamed; Hermann, Jörg; Dutouquet, Christophe

    2016-04-01

    We demonstrate that the elemental composition of aerosols can be measured using laser-induced breakdown spectroscopy (LIBS) without any preliminary calibration with standard samples. Therefore, a nanosecond Nd:YAG laser beam was focused into a flux of helium charged with alumina aerosols of a few micrometers diameter. The emission spectrum of the laser-generated breakdown plasma was recorded with an echelle spectrometer coupled to a gated detector. The spectral features including emission from both the helium carrier gas and the Al2O3 aerosols were analyzed on the base of a partial local thermodynamic equilibrium. Thus, Boltzmann equilibrium distributions of population number densities were assumed for all plasma species except of helium atoms and ions. By analyzing spectra recorded for different delays between the laser pulse and the detector gate, it is shown that accurate composition measurements are only possible for delays ≤1 μs, when the electron density is large enough to ensure collisional equilibrium for the aerosol vapor species. The results are consistent with previous studies of calibration-free LIBS measurements of solid alumina and glass and promote compositional analysis of aerosols via laser-induced breakdown in helium. PMID:26974717

  17. Studies of Ambient and Chamber Aerosol Composition using the Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Craven, Jill Suzanne

    This thesis presents composition measurements for atmospherically relevant inorganic and organic aerosol from laboratory and ambient measurements using the Aerodyne aerosol mass spectrometer. Studies include the oxidation of dodecane in the Caltech environmental chambers, and several aircraft- and ground-based field studies, which include the quantification of wildfire emissions off the coast of California, and Los Angeles urban emissions. The oxidation of dodecane by OH under low NO conditions and the formation of secondary organic aerosol (SOA) was explored using a gas-phase chemical model, gas-phase CIMS measurements, and high molecular weight ion traces from particlephase HR-TOF-AMS mass spectra. The combination of these measurements support the hypothesis that particle-phase chemistry leading to peroxyhemiacetal formation is important. Positive matrix factorization (PMF) was applied to the AMS mass spectra which revealed three factors representing a combination of gas-particle partitioning, chemical conversion in the aerosol, and wall deposition. Airborne measurements of biomass burning emissions from a chaparral fire on the central Californian coast were carried out in November 2009. Physical and chemical changes were reported for smoke ages 0--4 h old. CO 2 normalized ammonium, nitrate, and sulfate increased, whereas the normalized OA decreased sharply in the first 1.5--2 h, and then slowly increased for the remaining 2 h (net decrease in normalized OA). Comparison to wildfire samples from the Yucatan revealed that factors such as relative humidity, incident UV radiation, age of smoke, and concentration of emissions are important for wildfire evolution. Ground-based aerosol composition is reported for Pasadena, CA during the sumix mer of 2009. The OA component, which dominated the submicron aerosol mass, was deconvolved into hydrocarbon-like organic aerosol (HOA), semi-volatile oxidized organic aerosol (SVOOA), and low-volatility oxidized organic aerosol

  18. Regional signatures in the organic composition of marine aerosol particles

    NASA Astrophysics Data System (ADS)

    Frossard, Amanda A.; Russell, Lynn M.; Keene, William C.; Kieber, David J.; Quinn, Patricia K.; Bates, Timothy S.

    2013-05-01

    Marine aerosol particles play an important role in the earth's radiative balance, yet the sources and composition of the organic fraction remain largely unconstrained. Recent measurements have been made in order to characterize the sources, composition, and concentration of aerosol particles in the marine boundary layer. The organic composition of submicron particles derived from multiple seawater regions have been measured using Fourier Transform Infrared (FTIR) spectroscopy. Cluster analysis of FTIR organic spectra suggest different spectral signatures based on collection location, seawater composition, and ambient conditions. Measurements including non-refractory aerosol composition from a high-resolution time of flight aerosol mass spectrometer (HR-ToF-AMS), seawater composition, and wind speed were used to interpret the cluster results, depending on the availability from each campaign. FTIR spectra of ambient particles are compared to FTIR spectra of primary marine particles generated from model ocean systems to infer the ambient particle production mechanisms and aging processes. Recent measurements used in the comparison include ambient and generated marine aerosol particles measured off the coast of California during CalNex in May and June 2010. Remote ambient marine aerosol particles were collected 100 miles off the coast of Monterey in the eastern Pacific during the EPEACE experiment in July 2011. Ambient and generated marine particles were measured in two different seawater types during WACS 2012 including colder, more productive water off the coast of the northeastern United States and warmer, oligotrophic water in the Sargasso Sea. These particles are also compared with those measured in the southeastern Pacific during VOCALS and the north Atlantic during ICEALOT.

  19. Solar Occultation Constellation for Retrieving Aerosols and Trace Element Species (SOCRATES): Proposed Mission Concept

    NASA Astrophysics Data System (ADS)

    Gordley, L. L.; Bailey, S. M.

    2015-12-01

    The goal of SOCRATES is to resolve the critical but underexplored role of the upper troposphere/lower stratosphere (UTLS) in climate change. The mission would provide the suite of measurements required to quantify UTLS transport pathways and their contribution to UTLS composition, and to evaluate the radiative forcing implications of changes in UTLS composition forced by expected changes in these pathways as the climate evolves. The discrimination and quantification of UTLS transport pathways requires simultaneous measurement of several key trace gases and aerosols with high precision, accuracy, and vertical resolution. Furthermore, aerosols and clouds, often present in the UTLS, complicate the measurement of trace gases. The SOCRATES sensor is a 23-channel Gas Filter Correlation Radiometer (GFCR), referred to as GLO (GFCR Limb solar Occultation), with heritage from HALOE on UARS, and SOFIE on AIM. GLO measures aerosol extinction from 0.45 to 3.88 μm, important radiatively active gases in the UTLS (H2O, O3, CH4, N2O), key tracers of UTLS transport (HCN, CO, HDO), gases important in stratospheric O3 chemistry (HCl and HF), and temperature from cloud top to 50 km at a vertical resolution of < 1 km. Improved pointing knowledge will provide dramatically better retrieval precision in the UTLS, even in the presence of aerosols, than possible with HALOE. In addition, the GLO form factor is only of order 10% of that of HALOE, and costs for a constellation of GLO sensors is within the cost cap of a NASA Earth Venture mission. The SOCRATES mission concept is a 6-element constellation of autonomous small satellites, each mated with a GLO sensor, and deployed from a single launch vehicle. The SOCRATES/GLO approach reaps the advantages of solar occultation: high precision and accuracy; robust calibration; and high vertical resolution, while mitigating the sparse coverage of a single solar occultation sensor. We present the SOCRATES science case, and key elements of the

  20. Ice Phase Transitions by Atmospheric Aerosol Particles of Varied Composition

    NASA Astrophysics Data System (ADS)

    DeMott, P. J.; Prenni, A. J.; Archuleta, C. A.; Kreidenweis, S. M.; Cziczo, D. J.; Murphy, D. M.; Thomson, D. S.

    2001-12-01

    This paper describes laboratory and field study measurements of water uptake and ice nucleation by surrogate and real atmospheric aerosol particles. Laboratory measurements of water uptake are made using a humidified tandem differential mobility analyzer (HTDMA) and a cloud condensation nucleus (CCN) instrument operating at 20 to 30 \\deg C. Measurements of ice nucleation are made using a continuous flow ice-thermal diffusion chamber (CFDC) operated to -60 \\deg C for relevance toward understanding cirrus cloud formation. Extending earlier laboratory studies of single composition aerosols, we are investigating water uptake and ice nucleation rates and mechanisms by mixed aerosols of various types, including sulfate-nitrate, sulfate-organic, mineral oxide-sulfate and black carbon-sulfate types. Methodologies will be described and results will be summarized. Field measurements are planned to study heterogeneous and homogeneous ice nucleation by free tropospheric aerosols at a high altitude laboratory. The field study will include measurements of the compositions of aerosols that activate ice formation by homogeneous and heterogeneous ice nucleation mechanisms. This aspect of the study will be facilitated by interfacing the CFDC to the PALMS (Particle Analysis by Laser Mass Spectrometry) instrument. This combined instrument system was tested in the laboratory to quantify sampling efficiencies and validate specificity for sampling ice nucleus aerosol particles. Initial field data, if available at conference time, will be compared and contrasted with the results obtained for laboratory surrogate particles.

  1. Lidar determination of the composition of atmosphere aerosols

    NASA Technical Reports Server (NTRS)

    Wright, M. L.

    1980-01-01

    Theoretical and experimental studies of the feasibility of using DIfferential SCatter (DISC) lidar to measure the composition of atmospheric aerosols are described. This technique involves multiwavelength measurements of the backscatter cross section of aerosols in the middle infrared, where a number of materials display strong restrahlen features that significantly modulate the backscatter spectrum. The theoretical work indicates that a number of materials of interest, including sulfuric acid, ammonium sulfate, and silicates, can be discriminated among with a CO2 lidar. An initial evaluation of this procedure was performed in which cirrus clouds and lower altitude tropospheric aerosols were developed. The observed ratio spectrum of the two types of aerosol displays structure that is in crude accord with theoretical expectations.

  2. Finite-Element Composite-Analysis Program

    NASA Technical Reports Server (NTRS)

    Bowles, David E.

    1990-01-01

    Finite Element Composite Analysis Program, FECAP, special-purpose finite-element program for analyzing behavior of composite material with microcomputer. Procedure leads to set of linear simultaneous equations relating unknown nodal displacement to applied loads. Written in HP BASIC 3.0.

  3. Predicting the Mineral and Chemical Composition of Dust Aerosols: Evaluation and Implications

    NASA Astrophysics Data System (ADS)

    Perlwitz, J. P.; Pérez García-Pando, C.; Miller, R. L.

    2014-12-01

    Soil dust aerosols in Earth system models are typically assumed to have globally uniform properties. However, important climate processes related to dust depend on the aerosol mineral and chemical composition, which varies regionally. Such processes include aerosol radiative forcing, transport of bioavailable iron that catalyzes marine photosynthesis, heterogeneous chemistry, ice nucleation, and cloud condensation.We have implemented a new version of the soil dust aerosol scheme in the NASA GISS Earth System ModelE that takes into account the mineral composition of the dust particles. Dust aerosols are represented as an external mixture of minerals such as illite, kaolinite, smectite, carbonates, quartz, feldspar and gypsum, as well as iron oxides and accretions of iron oxides with each of the these minerals.We present a new publically available compilation of measurements of mineral fractions derived from ca. 50 references from the literature. This compilation is used to evaluate our new model of mineral and elemental composition within ModelE. We discuss the challenges of comparing simulated mineral fractions to measurements, which often come from field campaigns and ship cruises of limited duration. Despite uncertainties of the measurements, we show the importance of estimating the undisturbed size distribution of the parent soil prior to wet sieving, along with the modification of this size distribution during emission. In particular, our new model reproduces measurements showing greater amount of aerosols at silt sizes (whose diameters exceed 2 μm) including significant amounts of clay mineral aerosols (like illite) at silt sizes. Our model also reduces the systematic overestimation of quartz, while allowing iron to be transported farther from its source as impurities than in its pure, crystalline form.

  4. The high field strength element budget of atmospheric aerosols (puy de Dôme, France)

    NASA Astrophysics Data System (ADS)

    Vlastelic, Ivan; Suchorski, Krzysztof; Sellegri, Karine; Colomb, Aurélie; Nauret, François; Bouvier, Laetitia; Piro, Jean-Luc

    2015-10-01

    High field strength elements (HFSE), including Zr, Hf, Nb, Ta and Ti have low solubility in aqueous fluids and partition into dense and resistant minerals. HFSE proved useful in studying terrestrial weathering and sediment transport, but little is known about their behavior during atmospheric processes, which play an important role in global sedimentary cycles. The atmospheric budget of HFSE is evaluated from the sequential dissolution of aerosol samples collected between 2011 and 2014 at puy de Dôme (1465 m elevation, French Massif Central). Aerosols were sampled during nighttime, while the site is generally located above the planetary boundary layer. Systematic, partial recovery of HFSE during gentle dissolution of aerosols indicates that resistant minerals are ubiquitous in air samples. Total dissolution of aerosols in pressure vessels reveals that Zr and Hf occur on average in sub-crustal abundance, which is consistent with the sampling site being dominantly influenced by oceanic air masses depleted in zircons. Conversely, zircon excess occasionally occurs in continental air masses, in particular those originating from northern Africa. Overall, the Hf/Nd ratio, a proxy for zircon fractionation, varies from 0.26 to 3.94 times the Upper Continental Crust (UCC) value, encompassing the range of worldwide loess. This wide compositional range is consistent with (1) the occurrence of coarse zircons (10-30 μm) in dust source, with possible local enrichments relative to bulk UCC in residual wind-winnowed soils, and (2) gravitational settling of coarse zircons during long-distance (>ca. 1000 km) transport. Niobium and Ta are systematically more abundant (by a mean factor of ∼3) in puy de Dôme aerosols than expected from average crustal or soil concentrations. The volume-weighted average Nb/Ta ratio of 15.5 ± 2.6 (1σ) is also higher than in bulk UCC (11.4-13.3). The positive Nb-Ta anomaly of free troposphere aerosols unlikely reflects a net Nb-Ta enrichment but

  5. Using Brittle Fragmentation Theory to represent Aerosol Mineral Composition

    NASA Astrophysics Data System (ADS)

    Pérez García-Pando, C.; Miller, R. L.; Perlwitz, J. P.

    2014-12-01

    Improved estimates of dust aerosol effects upon climate require the characterization of dust mineral and chemical composition. Regional variations in soil mineral composition lead to variations in dust aerosol composition. Yet, deriving aerosol mineral content also requires knowledge of the parent soil size distribution along with the fragmentation of soil particles and aggregates during the emission process. These processes modify the size distribution and mineral abundance of the emitted aerosols compared to the parent soil. An additional challenge for modeling is that global atlases of soil texture and composition are based on wet sieving, a technique that breaks the aggregates, particularly phyllosilicates, that are encountered in natural soils, drastically altering the original size distribution of the soil that is subject to wind erosion. We propose both a semi-empirical and theoretical method to constrain the size-resolved mineral composition of emitted dust aerosols based on global atlases of soil texture and composition. Our semi-empirical method re-aggregates clay phyllosilicate minerals into larger soil particle sizes and constrains the size distribution of each emitted mineral based on observed mineral distributions at the source. Our theoretical method extends Kok's brittle fragmentation theory to individual minerals. To this end we reconstruct the undisturbed size distribution for each mineral as a function of soil texture and soil type and calculate the emitted size distribution applying brittle fragmentation and assuming homogeneous fragmentation properties among the mineral aggregates. These approaches were tested within the NASA GISS Earth System ModelE. We discuss the improvements achieved and suggest future developments.

  6. The Hohenpeissenberg aerosol characterization experiment (HAZE2002): Aerosol composition derived from mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hock, N.; Berresheim, H.; Borrmann, S.; Poeschl, U.; Roempp, A.; Schneider, J.

    2003-04-01

    The HAZE Experiment was conducted between 17.05.2002 and 31.05.2002, at the meteorological observatory of the Deutsche Wetterdienst (DWD) at Hohenpeissenberg (47^o48'N,11^o02'E, 985m). The objective was to make essential progress in understanding of the physical and chemical properties of the atmospheric aerosol, in particular relating to the Gas-To-Particle-Conversion and the interaction with meteorological processes. The measurements included online mass spectrometric analysis using the Aerosol Mass Spectrometer (AMS), filter samples with GC analyses of organic compounds, particle size distribution (Electrical Low Pressure Impactor (ELPI), SMPS, OPC), as well as the total particle concentration (CPC). Additionally, several gas-phase substances were measured (e.g. Benzene, Acetone). The measurements obtained with the AMS show a strong variability of the aerosol composition. The non-refractory aerosol composition was dominated by nitrate, sulphate, and organics, whereas ammonium was surprisingly low. High number concentration of up to 14000 particles/cm^3 were observed. These particles mostly had diameters between 200 nm and 400 nm and were mainly composed of ammonium sulphate and ammonium nitrate. Various meteorological conditions allowed to study their influence on the aerosol. For example, on rainy days the concentrations of ammonium sulphate particles decreased, whereas the concentrations of ammonium nitrate particles increased.

  7. Aerosol composition and sources during the Chinese Spring Festival: fireworks, secondary aerosol, and holiday effects

    NASA Astrophysics Data System (ADS)

    Jiang, Q.; Sun, Y. L.; Wang, Z.; Yin, Y.

    2015-06-01

    Aerosol particles were characterized by an Aerodyne aerosol chemical speciation monitor along with various collocated instruments in Beijing, China, to investigate the role of fireworks (FW) and secondary aerosol in particulate pollution during the Chinese Spring Festival of 2013. Three FW events, exerting significant and short-term impacts on fine particles (PM2.5), were observed on the days of Lunar New Year, Lunar Fifth Day, and Lantern Festival. The FW were shown to have a large impact on non-refractory potassium, chloride, sulfate, and organics in submicron aerosol (PM1), of which FW organics appeared to be emitted mainly in secondary, with its mass spectrum resembling that of secondary organic aerosol (SOA). Pollution events (PEs) and clean periods (CPs) alternated routinely throughout the study. Secondary particulate matter (SPM = SOA + sulfate + nitrate + ammonium) dominated the total PM1 mass on average, accounting for 63-82% during nine PEs in this study. The elevated contributions of secondary species during PEs resulted in a higher mass extinction efficiency of PM1 (6.4 m2 g-1) than during CPs (4.4 m2 g-1). The Chinese Spring Festival also provides a unique opportunity to study the impact of reduced anthropogenic emissions on aerosol chemistry in the city. Primary species showed ubiquitous reductions during the holiday period with the largest reduction being in cooking organic aerosol (OA; 69%), in nitrogen monoxide (54%), and in coal combustion OA (28%). Secondary sulfate, however, remained only slightly changed, and the SOA and the total PM2.5 even slightly increased. Our results have significant implications for controlling local primary source emissions during PEs, e.g., cooking and traffic activities. Controlling these factors might have a limited effect on improving air quality in the megacity of Beijing, due to the dominance of SPM from regional transport in aerosol particle composition.

  8. Solar Occultation Constellation for Retrieving Aerosols and Trace Element Species (SOCRATES) Mission Concept

    NASA Astrophysics Data System (ADS)

    Bailey, S. M.; Bevilacqua, R. M.; Fish, C. S.; Gordley, L. L.; Fromm, M. D.

    2014-12-01

    The goal of SOCRATES is to quantify the critical role of the upper troposphere/lower stratosphere (UTLS) in the climate system. The mission would provide, for the first time, the suite of measurements required to quantify stratosphere/troposphere exchange (STE) pathways and their contribution to UTLS composition, and to evaluate the radiative forcing implications of potential changes in STE pathways with climate change. The discrimination and quantification of STE pathways requires simultaneous measurement of several key trace gases and aerosols with high precision, accuracy, and vertical resolution. Furthermore, aerosol and clouds, often present in the UTLS, complicate the measurement of trace gases. The SOCRATES sensor is a 23-channel Gas Filter Correlation Radiometer (GFCR), referred to as GLO (GFCR Limb solar Occultation), with heritage from HALOE on UARS, and SOFIE on AIM. GLO measures aerosol extinction from 0.45 to 3.88 μm, important radiatively active gases in the UTLS (H2O, O3, CH4, N2O), key tracers of STE (HCN, CO, HDO), gases important in stratospheric O3 chemistry (HCl and HF), and temperature from cloud top to 50 km at a vertical resolution of 1 km. Improved pointing knowledge will provide dramatically better retrieval precision in the UTLS, even in the presence of aerosols, than possible with HALOE. In addition, the GLO form factor is only a few percent of that of HALOE, and costs for a constellation of GLO sensors is within the cost cap of a NASA Venture mission. The SOCRATES mission concept is an 8-element constellation of autonomous CubeSats, each mated with a GLO sensor, deployed from a single launch vehicle. The SOCRATES/GLO approach reaps the advantages of solar occultation: high precision and accuracy; robust calibration; and high vertical resolution, while mitigating the sparse coverage of a single solar occultation sensor. We present the SOCRATES science case, and key elements of the SOCRATES mission and GLO instrument concepts.

  9. Aerosol composition and sources during the Chinese Spring Festival: fireworks, secondary aerosol, and holiday effects

    NASA Astrophysics Data System (ADS)

    Jiang, Q.; Sun, Y. L.; Wang, Z.; Yin, Y.

    2014-08-01

    Aerosol particles were characterized by an Aerodyne Aerosol Chemical Speciation Monitor (ACSM) along with various collocated instruments in Beijing, China to investigate the aerosol composition and sources during the Chinese Spring Festival, 2013. Three fireworks (FW) events exerting significant and short-term impacts on fine particles (PM2.5) were observed on the days of Lunar New Year, Lunar Fifth Day, and Lantern Festival. The FW showed major impacts on non-refractory potassium, chloride, sulfate, and organics in PM1, of which the FW organics appeared to be mainly secondary with its mass spectrum resembling to that of secondary organic aerosol (SOA). Pollution events (PEs) and clean periods (CPs) alternated routinely throughout the study. Secondary particulate matter (SPM = SOA + sulfate + nitrate + ammonium) dominated PM1 accounting for 63-82% during the nine PEs observed. The elevated contributions of secondary species during PEs resulted in a higher mass extinction efficiency of PM1 (6.4 m2 g-1) than that during CPs (4.4 m2 g-1). The Chinese Spring Festival also provides a unique opportunity to study the impacts of reduced anthropogenic emissions on aerosol chemistry in the city. The primary species showed ubiquitous reductions during the holiday period with the largest reduction for cooking OA (69%), nitrogen monoxide (54%), and coal combustion OA (28%). The secondary sulfate, however, remained minor change, and the SOA and the total PM2.5 even slightly increased. These results have significant implications that controlling local primary source emissions, e.g., cooking and traffic activities, might have limited effects on improving air quality during PEs when SPM that is formed over regional scales dominates aerosol particle composition.

  10. Complete Subsurface Elemental Composition Measurements with PING

    NASA Astrophysics Data System (ADS)

    Parsons, A. M.

    2012-06-01

    The Probing In situ with Neutrons and Gamma rays (PING) instrument will measure the complete bulk elemental composition of the subsurface of Mars down to ~ 1 m depth without the need for contacting the surface or extracting samples.

  11. A study on major inorganic ion composition of atmospheric aerosols.

    PubMed

    Salve, P R; Krupadam, R J; Wate, S R

    2007-04-01

    Atmospheric aerosol samples were collected from Akola and Buldana region covering around 40 sqkm area during October-November 2002 and were analyzed for ten major inorganic ions namely F-, Cl-, NO3-, SO4(2-), PO4(2-), Na+, K+, Ca2+, Mg2+ and NH4+ using ion chromatographic technique. The average mass of aerosols was found to be 225.81 microg/m3 with standard deviation of 31.29 and average total water soluble load of total cations and anions was found to be 4.32 microg/m3. The concentration of ions in samples showed a general pattern as SO4(2-) > NO3- > Cl- > PO4(2-) > F- for anions and Na+ > Ca2+ > NH4+ > Mg2+ > K+ for cations. The overall composition of the aerosols was taken into account to identify the sources. The trend showed higher concentration of sodium followed by calcium, sulfate, nitrate, phosphate and ammoinum and found to be influenced by terrestrial sources. The presence of SO4(2-) and NO3- in aerosols may be due to re-suspension of soil particles. Ca2+, Mg2+ and Cl- are to be derived from soil materials. The presence of NH4+ may be attributed to the reaction of NH3 vapors with acidic gases may react or condense on an acidic particle surface of anthropogenic origin. The atmospheric aerosol is slightly acidic due to neutralization of basicity by SO2 and NO(x).

  12. Aerosol chemical composition in cloud events by high resolution time-of-flight aerosol mass spectrometry.

    PubMed

    Hao, Liqing; Romakkaniemi, Sami; Kortelainen, Aki; Jaatinen, Antti; Portin, Harri; Miettinen, Pasi; Komppula, Mika; Leskinen, Ari; Virtanen, Annele; Smith, James N; Sueper, Donna; Worsnop, Douglas R; Lehtinen, Kari E J; Laaksonen, Ari

    2013-03-19

    This study presents results of direct observations of aerosol chemical composition in clouds. A high-resolution time-of-flight aerosol mass spectrometer was used to make measurements of cloud interstitial particles (INT) and mixed cloud interstitial and droplet residual particles (TOT). The differences between these two are the cloud droplet residuals (RES). Positive matrix factorization analysis of high-resolution mass spectral data sets and theoretical calculations were performed to yield distributions of chemical composition of the INT and RES particles. We observed that less oxidized hydrocarbon-like organic aerosols (HOA) were mainly distributed into the INT particles, whereas more oxidized low-volatile oxygenated OA (LVOOA) mainly in the RES particles. Nitrates existed as organic nitrate and in chemical form of NH(4)NO(3). Organic nitrates accounted for 45% of total nitrates in the INT particles, in clear contrast to 26% in the RES particles. Meanwhile, sulfates coexist in forms of acidic NH(4)HSO(4) and neutralized (NH(4))(2)SO(4). Acidic sulfate made up 64.8% of total sulfates in the INT particles, much higher than 10.7% in the RES particles. The results indicate a possible joint effect of activation ability of aerosol particles, cloud processing, and particle size effects on cloud formation.

  13. Isotopic compositions of the elements, 2001

    USGS Publications Warehouse

    Böhlke, J.K.; De Laeter, J. R.; De Bievre, P.; Hidaka, H.; Peiser, H.S.; Rosman, K.J.R.; Taylor, P.D.P.

    2005-01-01

    The Commission on Atomic Weights and Isotopic Abundances of the International Union of Pure and Applied Chemistry completed its last review of the isotopic compositions of the elements as determined by isotope-ratio mass spectrometry in 2001. That review involved a critical evaluation of the published literature, element by element, and forms the basis of the table of the isotopic compositions of the elements (TICE) presented here. For each element, TICE includes evaluated data from the "best measurement" of the isotope abundances in a single sample, along with a set of representative isotope abundances and uncertainties that accommodate known variations in normal terrestrial materials. The representative isotope abundances and uncertainties generally are consistent with the standard atomic weight of the element A r(E) and its uncertainty U[Ar(E)] recommended by CAWIA in 2001. ?? 2005 American Institute of Physics.

  14. Chemical Composition and Size Distributions of Coastal Aerosols Observed on the U.S. East Coast

    NASA Astrophysics Data System (ADS)

    Xia, L.; Song, F.; Jusino-Atresino, R.; Thuman, C.; Gao, Y.

    2008-12-01

    Aerosol input is an important source of certain limiting nutrients, such as iron, for phytoplankton growth in several large oceanic regions. As the efficiency of biological uptake of nutrients may depend on the aerosol properties, a better knowledge of aerosol properties is critically important. Characterizing aerosols over the coastal ocean needs special attention, because the properties of aerosols could be altered by many anthropogenic processes in this land-ocean transition zone before they are transported over the remote ocean. The goal of this experiment was to examine aerosol properties, in particular chemical composition, particle-size distributions and iron solubility, over the US Eastern Seaboard, an important boundary for the transport of continental substances from North America to the North Atlantic Ocean. Our field sampling site was located at Tuckerton (39°N, 74°W) on the southern New Jersey coast. Fourteen sets of High-Volume aerosol samples and three sets of size segregated aerosol samples by a 10-stage MOUDI impactor were collected during 2007 and 2008. The ICP-MS methodology was used to analyze aerosol samples for the concentrations of thirteen trace elements: Al, Fe, Mn, Sc, Cd, Pb, Sb, Ni, Co, Cr, Cu, Zn and V. The IC procedures were applied to determine five cations (sodium, ammonium, potassium, magnesium and calcium) and eleven anions (fluoride, acetate, propionate, formate, MSA, chloride, nitrate, succinate, malonate, sulfate and oxalate). The UV spectrometry was employed for the determination of iron solubility. Preliminary results suggest three major sources of aerosols: anthropogenic, crustal and marine. At this location, the concentrations of iron (II) ranged from 2.8 to 29ng m-3, accounting for ~20% of the total iron. The iron concentrations at this coastal site were substantially lower than those observed in Newark, an urban site in northern NJ. High concentrations of iron (II) were associated with both fine and coarse aerosol

  15. Direct aerosol chemical composition measurements to evaluate the physicochemical differences between controlled sea spray aerosol generation schemes

    NASA Astrophysics Data System (ADS)

    Collins, D. B.; Zhao, D. F.; Ruppel, M. J.; Laskina, O.; Grandquist, J. R.; Modini, R. L.; Stokes, M. D.; Russell, L. M.; Bertram, T. H.; Grassian, V. H.; Deane, G. B.; Prather, K. A.

    2014-07-01

    Controlled laboratory studies of the physical and chemical properties of sea spray aerosol (SSA) must be underpinned by a physically and chemically accurate representation of the bubble mediated production of nascent SSA particles. Since bubble bursting is sensitive to the physicochemical properties of seawater, any important differences in the SSA production mechanism are projected into SSA composition. Using direct chemical measurements of SSA at the single-particle level, this study presents an inter-comparison of three laboratory-based, bubble-mediated SSA production schemes: gas forced through submerged sintered glass filters ("frits"), a pulsed plunging waterfall apparatus, and breaking waves in a wave channel filled with natural seawater. The size-resolved chemical composition of SSA particles produced by breaking waves is more similar to particles produced by the plunging waterfall than sintered glass filters. Aerosol generated by disintegrating foam produced by sintered glass filters contained a larger fraction of organic enriched particles and a different size-resolved elemental composition, especially in the 0.8-2 μm size range. These particles, when dried, had more spherical morphologies compared to the more cubic structure expected for pure NaCl particles, which can be attributed to the presence of additional organic carbon. In addition to an inter-comparison of three SSA production methods, the role of the episodic or "pulsed" nature of the waterfall method utilized in this study on SSA composition was undertaken. In organic-enriched seawater, the continuous operation of the plunging waterfall mechanism resulted in the accumulation of surface foam and an over-expression of organic matter in SSA particles compared to pulsed plunging waterfall. Throughout this set of experiments, comparative differences in the SSA number size distribution were coincident with differences in aerosol composition, indicating that the production mechanism of SSA exerts

  16. Chemical composition of individual aerosol particles from working areas in a nickel refinery.

    PubMed

    Höflich, B L; Wentzel, M; Ortner, H M; Weinbruch, S; Skogstad, A; Hetland, S; Thomassen, Y; Chaschin, V P; Nieboer, E

    2000-06-01

    Individual aerosol particles (n = 1170) collected at work stations in a nickel refinery were analyzed by wavelength-dispersive electron-probe microanalysis. By placing arbitrary restrictions on the contents of sulfur and silicon, the particles could be divided into four main groups. Scanning electron images indicated that most of the particles examined were relatively small (< or = 2 microm, equivalent projected area diameter), and that their morphology suggested formation from a melt. There was an absence of well-defined phases and simple stoichiometries, indicating that exposures to pure substances such as nickel subsulfide or specific oxides appeared not to occur. Although the elemental composition of particles varied greatly, a rough association was evident with the known elemental content of the refinery intermediates. The implications of the findings for aerosol speciation measurements, toxicological studies and interpretation of adverse health effects are explored. PMID:11256701

  17. Composition and evolution of volcanic aerosol following three eruptions in 2008 - 2010

    NASA Astrophysics Data System (ADS)

    Andersson, S. M.; Martinsson, B. G.; Friberg, J.; Brenninkmeijer, C. A. M.; Hermann, M.; Heue, K. P.; van Velthoven, P. F. J.; Zahn, A.

    2012-04-01

    Measurements of atmospheric aerosols by the CARIBIC (Civil Aircraft for Regular Investigation of the atmosphere Based on an Instrument Container) platform following the Kasatochi (Alaska), Sarychev (Russia) and Eyjafjallajökull (Iceland) eruptions in the period 2008-2010 are presented. The CARIBIC platform operates on a Lufthansa passenger aircraft usually on monthly inter-continental flights, measuring the atmospheric composition in the UT/LS at 8-12 km altitude (Brenninkmeijer et al., 2007). After the eruption of Kasatochi, analyses of the stratospheric aerosol composition showed enhanced concentrations of sulfur and carbon for several months. On the other hand the ash component, clearly seen in a sample seven days after the eruption, was not detected a month later (Martinsson et al., 2009). To further investigate the composition of the volcanic aerosol three flights trough the volcanic plume of the Eyjafjallajökull eruption were carried out on April 20, May 16 and May 19, 2010. Aerosol sampling was performed by an impaction technique with a cut-off diameter of 2 μm (Nguyen et al., 2006). Collected samples were analyzed by quantitative multi-elemental analysis by PIXE (Particle-Induced X-ray Emission), to obtain concentrations of elements with atomic number larger than 13, and PESA (Particle Elastic Scattering Analysis) for concentrations of hydrogen, carbon, nitrogen and oxygen (Nguyen and Martinsson, 2007). Three samples taken during the special flights to study the Eyjafjallajökull eruption contained unusually high concentrations of elements pointing to crustal origin. The composition of these samples was compared to ash from a fall out sample (Sigmundsson et al., 2010). The ratio of detected elements to iron in both sample types showed good agreement for most of the elements for all three aerosol samples. Volcanically influenced aerosol following the eruptions of Sarychev and Kasatochi were identified by high concentrations of sulfur and by using air mass

  18. Characterization of aerosols and fibers emitted from composite materials combustion.

    PubMed

    Chivas-Joly, C; Gaie-Levrel, F; Motzkus, C; Ducourtieux, S; Delvallée, A; De Lagos, F; Nevé, S Le; Gutierrez, J; Lopez-Cuesta, J-M

    2016-01-15

    This work investigates the aerosols emitted during combustion of aircraft and naval structural composite materials (epoxy resin/carbon fibers and vinyl ester/glass fibers and carbon nanotubes). Combustion tests were performed at lab-scale using a modified cone calorimeter. The aerosols emitted have been characterized using various metrological devices devoted to the analysis of aerosols. The influence of the nature of polymer matrices, the incorporation of fibers and carbon nanotubes as well as glass reinforcements on the number concentration and the size distribution of airborne particles produced, was studied in the 5 nm-10 μm range. Incorporation of carbon fibers into epoxy resin significantly reduced the total particle number concentration. In addition, the interlaced orientation of carbon fibers limited the particles production compared to the composites with unidirectional one. The carbon nanotubes loading in vinyl ester resin composites influenced the total particles production during the flaming combustion with changes during kinetics emission. Predominant populations of airborne particles generated during combustion of all tested composites were characterized by a PN50 following by PN(100-500). PMID:26348148

  19. Composition and physical properties of the Asian Tropopause Aerosol Layer and the North American Tropospheric Aerosol Layer

    PubMed Central

    Yu, Pengfei; Toon, Owen B; Neely, Ryan R; Martinsson, Bengt G; Brenninkmeijer, Carl A M

    2015-01-01

    Recent studies revealed layers of enhanced aerosol scattering in the upper troposphere and lower stratosphere over Asia (Asian Tropopause Aerosol Layer (ATAL)) and North America (North American Tropospheric Aerosol Layer (NATAL)). We use a sectional aerosol model (Community Aerosol and Radiation Model for Atmospheres (CARMA)) coupled with the Community Earth System Model version 1 (CESM1) to explore the composition and optical properties of these aerosol layers. The observed aerosol extinction enhancement is reproduced by CESM1/CARMA. Both model and observations indicate a strong gradient of the sulfur-to-carbon ratio from Europe to the Asia on constant pressure surfaces. We found that the ATAL is mostly composed of sulfates, surface-emitted organics, and secondary organics; the NATAL is mostly composed of sulfates and secondary organics. The model also suggests that emission increases in Asia between 2000 and 2010 led to an increase of aerosol optical depth of the ATAL by 0.002 on average which is consistent with observations. Key Points The Asian Tropopause Aerosol Layer is composed of sulfate, primary organics, and secondary organics The North American Tropospheric Aerosol Layer is mostly composed of sulfate and secondary organics Aerosol Optical Depth of Asian Tropopause Aerosol Layer increases by 0.002 from 2000 to 2010 PMID:26709320

  20. Ion processing element with composite media

    DOEpatents

    Mann, Nick R.; Tranter, Troy J.; Todd, Terry A.; Sebesta, Ferdinand

    2003-02-04

    An ion processing element employing composite media disposed in a porous substrate, for facilitating removal of selected chemical species from a fluid stream. The ion processing element includes a porous fibrous glass substrate impregnated by composite media having one or more active components supported by a matrix material of polyacrylonitrile. The active components are effective in removing, by various mechanisms, one or more constituents from a fluid stream passing through the ion processing element. Due to the porosity and large surface area of both the composite medium and the substrate in which it is disposed, a high degree of contact is achieved between the active component and the fluid stream being processed. Further, the porosity of the matrix material and the substrate facilitates use of the ion processing element in high volume applications where it is desired to effectively process a high volume flows.

  1. Ion processing element with composite media

    DOEpatents

    Mann, Nick R.; Tranter, Troy J.; Todd, Terry A.; Sebesta, Ferdinand

    2009-03-24

    An ion processing element employing composite media disposed in a porous substrate, for facilitating removal of selected chemical species from a fluid stream. The ion processing element includes a porous fibrous glass substrate impregnated by composite media having one or more active components supported by a matrix material of polyacrylonitrile. The active components are effective in removing, by various mechanisms, one or more constituents from a fluid stream passing through the ion processing element. Due to the porosity and large surface area of both the composite medium and the substrate in which it is disposed, a high degree of contact is achieved between the active component and the fluid stream being processed. Further, the porosity of the matrix material and the substrate facilitates use of the ion processing element in high volume applications where it is desired to effectively process a high volume flows.

  2. Composition of the Martian aerosols through near-IR spectroscopy

    NASA Technical Reports Server (NTRS)

    Erard, Stephane; Cerroni, Priscilla; Coradini, Angioletta

    1993-01-01

    Near-infrared spectroscopy is a powerful technique to study the composition of planetary surfaces, as the main minerals exhibit absorption bands in this spectral range. It gave important information on the mineralogy and petrology of Mars in the past twenty years although in this case it is well known that a large fraction of light is scattered by the airborne particles before reaching the surface. The measured signal is thus the sum of two different contributions that should be studied separately: One from the surface and one from the aerosols that depends on their density, size distribution and composition. Data from the ISM imaging spectrometer are used here to derive the aerosols spectrum. They consist in sets of spectra (from 0.76 to 3.16 microns) of approximately 3000 pixels approximately 25x25 sq km in size. The resulting spectrum exhibits both water-ice and clay mineral features superimposed on a scattering continuum.

  3. PIXE investigation of aerosol composition over the Zambian Copperbelt

    NASA Astrophysics Data System (ADS)

    Meter, S. L.; Formenti, P.; Piketh, S. J.; Annegarn, H. J.; Kneen, M. A.

    1999-04-01

    Atmospheric sulphate aerosol concentrations are of interest in climate change studies because of their negative climate forcing potential. Quantification of their forcing strength requires the compilation of global sulphur emission inventories to determine the magnitude of regional sources. We report on measurements of the ambient aerosol concentrations in proximity to a copper refinery in the central African Copperbelt, along the border of Zambia and the Democratic Republic of the Congo. This region is historically regarded as one of the largest African sources of sulphate aerosols. Sulphate is produced by oxidation in the atmosphere of SO 2 emitted during the pyrometallurgical processing of Cu-Co sulphide ores. Since the last quantification of sulphur emissions (late 1960s), there has been large-scale reduction in copper production and more frequent use of the leaching technique with negligible sulphur emissions. Samples were collected over four weeks, November-December 1996, at Kitwe, Zambia. A low volume two-stage time-resolving aerosol sampler (streaker) was used. Coarse and fine mode aerosols were separated at >2.5 and >10 μmad. Hourly elemental concentrations were determined by 3.2 MeV PIXE, and routinely yielded Si, S, K, Ca, Ti, Mn, Fe, Cu and Zn, above detection limits. Si, K, Ca and Fe (major crustal components) dominated the coarse elemental mass. In the fine stage, S and Si accounted for up to 80% of the measured mass, and S alone up to 60%. Time series analysis allowed the division of sulphur and crustal elements (Si, K, Ca, Fe) between (i) background concentrations representative of synoptic scale air masses; and (ii) contributions from local sources, i.e., copper smelter and re-suspended soil dust. Short duration episodes of S concentrations, up to 26 μg/m 3, were found simultaneously with enhanced Cu, Fe and Zn. Contributions from individual pyrometallurgic processes and the cobalt slag dump could be distinguished from the elemental signatures

  4. Inference of stratospheric aerosol composition and size distribution from SAGE II satellite measurements

    NASA Technical Reports Server (NTRS)

    Wang, Pi-Huan; Mccormick, M. P.; Fuller, W. H.; Yue, G. K.; Swissler, T. J.; Osborn, M. T.

    1989-01-01

    A method for inferring stratospheric aerosol composition and size distribution from the water vapor concentration and aerosol extinction measurements obtained in the Stratospheric Aerosol and Gas Experiment (SAGE) II and the associated temperature from the NMC. The aerosols are assumed to be sulfuric acid-water droplets. A modified Levenberg-Marquardt algorithm is used to determine model size distribution parameters based on the SAGE II multiwavelength aerosol extinctions. It is found that the best aerosol size information is contained in the aerosol radius range between about 0.25 and 0.80 micron.

  5. Quantifying the Relationship between Organic Aerosol Composition and Hygroscopicity/CCN Activity

    SciTech Connect

    Ziemann, Paul J.; Kreidenweis, Sonia M.; Petters, Markus D.

    2013-06-30

    The overall objective for this project was to provide the data and underlying process level understanding necessary to facilitate the dynamic treatment of organic aerosol CCN activity in future climate models. The specific objectives were as follows: (1) employ novel approaches to link organic aerosol composition and CCN activity, (2) evaluate the effects of temperature and relative humidity on organic aerosol CCN activity, and (3) develop parameterizations to link organic aerosol composition and CCN activity.

  6. Chemical Composition of Atmospheric Aerosols Above a Pristine South East Asian Rainforest

    NASA Astrophysics Data System (ADS)

    Robinson, N. H.; Allan, J. D.; Williams, P. I.; Coe, H.; Hamilton, J.; Chen, Q.; Martin, S.; Trembath, J.

    2009-04-01

    The tropics emit a huge amount of volatile organic compounds (VOCs) into the Earth's atmosphere. The processes by which these gases are oxidised to form secondary organic aerosol (SOA) are currently not well understood or quantified. Intensive field measurements were carried out as part of the Oxidant and Particle Photochemical Processes (OP3) and the Aerosol Coupling in the Earth System (ACES) projects around pristine rainforest in Malaysian Borneo. This is the first campaign of its type in a South East Asian rainforest. We present detailed organic aerosol composition measurements made using an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) at Bukit Atur, a Global Atmosphere Watch site located in the Danum Valley Conservation Area. This is a state-of-the-art field deployable instrument that can provide real time composition, mass loading and aerodynamic particle sizing information. In addition, the mass spectral resolution is sufficient to perform an analysis of the elemental composition of the organic species present. Other tools such as positive matrix factorisation (PMF) have been used to help assess the relative source contributions to the organic aerosol. A suite of supporting aerosol and gas phase measurements were made, including size resolved number concentration measurements with Differential Mobility Particle Sizer (DMPS), as well as absorption measurements made with a Multi-Angle Absorption Photometer (MAAP). The ground site data are compared with Aerodyne Compact Time of Flight Aerosol Mass Spectrometer (C-ToF-AMS) measurements made on the UK Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft. Airborne measurements were made above pristine rainforest surrounding the Danum Valley site, as well as nearby oil palm agricultural sites and palm oil rendering plants. Airborne hygroscopicity was measured using a Droplet Measurement Technology Cloud Condensation Nuclei counter (DMT CCN counter) in

  7. Aerosol size distribution, composition, and CO2 backscatter

    NASA Astrophysics Data System (ADS)

    Clarke, Antony D.; Porter, John N.

    1991-03-01

    The aerosol size distribution, composition, and CO2 backscatter at 10.6 microns (beta-CO2) were measured continuosly at the Mauna Loa Observatory (Hawaii) during January-March and November-December, 1988 periods to compare the characteristics of periods associated with appreciable Asian dust transport to that site (January-March) with those of periods characterized by low-dust condition. The aerosol size distribution in the range 0.15 micron to 7.6 microns was measured at temperatures of 40, 150, and 340 C to differentiate between volatile and nonvolatile aerosols. Large ranges of variability was found in measurements of aerosol size distribution during both periods, but the average distributions were similar for both the high-dust and the low-dust periods. However, values for beta-CO2 were more elevated (by about six times) during periods associated with active Asian dust transport to the observatory site than during the low-dust periods.

  8. Highly time-resolved trace element concentrations in aerosols during the Megapoli Paris campaigns

    NASA Astrophysics Data System (ADS)

    Furger, Markus; Visser, Suzanne; Slowik, Jay G.; Crippa, Monica; Poulain, Laurent; Appel, Karen; Flechsig, Uwe; Prevot, Andre S. H.; Baltensperger, Urs

    2014-05-01

    Trace elements contribute typically only a few percent to the total mass of air pollutants, however, they can affect the environment in significant ways, especially those that are toxic. Furthermore, they are advantageous with respect to a refinement of source apportionment when measured with high time resolution and appropriate size segregation. This approach is especially advantageous in an urban environment with numerous time-variant emission sources distributed across a relatively narrow space, as is typically the setting of a megacity. Two 1-month long field campaigns took place in the framework of the Megapoli project in Paris, France, in the summer of 2009 and in the winter of 2010. Rotating drum impactors (RDI) were operated at two sites in each campaign, one urban, the other one suburban. The RDI segregated the aerosols into three size ranges (PM10-2.5, PM2.5-1 and PM1-0.1) and sampled with 2-hour time resolution. The samples were analyzed with synchrotron radiation induced X-ray fluorescence spectrometry (SR-XRF) at the synchrotron facilities of Paul Scherrer Institute (SLS) and Deutsches Elektronen-Synchrotron (HASYLAB), where a broad range of elements (Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Se, Sr, Zr, Cd, Sn, Sb, Ba, Pb) was analyzed for each size range. Time series of the analyzed elements for the different sites and campaigns were prepared to characterize the aerosol trace element composition and temporal behavior for the different weather situations and urban environments. They allow for the distinction of regional vs. local sources and transport, and provide a basis for source apportionment calculations. Local and regional contributions of traffic, including re-suspension, break wear and exhaust, wood burning, marine and other sources will be discussed. Indications of long-range transport from Polish coal emissions in the city center of Paris were also found.

  9. Atmospheric aerosol composition and source apportionments to aerosol in southern Taiwan

    NASA Astrophysics Data System (ADS)

    Tsai, Ying I.; Chen, Chien-Lung

    In this study, the chemical characteristics of winter aerosol at four sites in southern Taiwan were determined and the Gaussian Trajectory transfer coefficient model (GTx) was then used to identify the major air pollutant sources affecting the study sites. Aerosols were found to be acidic at all four sites. The most important constituents of the particulate matter (PM) by mass were SO 42-, organic carbon (OC), NO 3-, elemental carbon (EC) and NH 4+, with SO 42-, NO 3-, and NH 4+ together constituting 86.0-87.9% of the total PM 2.5 soluble inorganic salts and 68.9-78.3% of the total PM 2.5-10 soluble inorganic salts, showing that secondary photochemical solution components such as these were the major contributors to the aerosol water-soluble ions. The coastal site, Linyuan (LY), had the highest PM mass percentage of sea salts, higher in the coarse fraction, and higher sea salts during daytime than during nighttime, indicating that the prevailing daytime sea breeze brought with it more sea-salt aerosol. Other than sea salts, crustal matter, and EC in PM 2.5 at Jenwu (JW) and in PM 2.5-10 at LY, all aerosol components were higher during nighttime, due to relatively low nighttime mixing heights limiting vertical and horizontal dispersion. At JW, a site with heavy traffic loadings, the OC/EC ratio in the nighttime fine and coarse fractions of approximately 2.2 was higher than during daytime, indicating that in addition to primary organic aerosol (POA), secondary organic aerosol (SOA) also contributed to the nighttime PM 2.5. This was also true of the nighttime coarse fraction at LY. The GTx produced correlation coefficients ( r) for simulated and observed daily concentrations of PM 10 at the four sites (receptors) in the range 0.45-0.59 and biases from -6% to -20%. Source apportionment indicated that point sources were the largest PM 10 source at JW, LY and Daliao (DL), while at Meinung (MN), a suburban site with less local PM 10, SO x and NO x emissions, upwind

  10. Library Optimization in EDXRF Spectral Deconvolution for Multi-element Analysis of Ambient Aerosols

    EPA Science Inventory

    In multi-element analysis of atmospheric aerosols, attempts are made to fit overlapping elemental spectral lines for many elements that may be undetectable in samples due to low concentrations. Fitting with many library reference spectra has the unwanted effect of raising the an...

  11. Composition and Particle Size Retrievals for Homogeneous Binary Aerosols

    NASA Astrophysics Data System (ADS)

    Niedziela, R. F.; Argon, P.; Bejcek, L.

    2014-12-01

    Tropospheric aerosols have widely varying compositions, shapes, and sizes. The ability to measure these physical characteristics, coupled with knowledge about their optical properties, can provide insight as to how these particles might participate in atmospheric processes, including their interaction with light. Over the past several years, our laboratory has been involved in developing methods to determine basic physical properties of laboratory-generated particles based on the analysis of infrared extinction spectra of multi-component aerosols. Here we report the results of a complete study on the applicability of well-known refractive index mixing rules to homogeneous binary liquid organic aerosols in an effort to yield in situ measurements of particle size and composition. In particular, we present results for terpenoid (carvone/nopinone) and long-chain hydrocarbon (squalane/squalene) mixtures. The included image shows model carvone/nopinone extinction spectra that were computed using the Lorentz-Lorenz mixing rule on complex refractive index data for the pure components.

  12. Characterization of aerosol composition and sources in the greater Atlanta area by aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ng, N. L.; Xu, L.; Suresh, S.; Weber, R. J. J.; Baumann, K.; Edgerton, E. S.

    2014-12-01

    An important and uncertain aspect of biogenic secondary organic aerosol (SOA) formation is that it is often associated with anthropogenic pollution tracers. Prior studies in Atlanta suggested that 70-80% of the carbon in water-soluble organic carbon (WSOC) is modern, yet it is well-correlated with the anthropogenic CO. In this study, we deployed a High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and an Aerosol Chemical Speciation Monitor (ACSM) at multiple sites in different seasons (May 2012-February 2013) to characterize the sources and chemical composition of aerosols in the greater Atlanta area. This area in the SE US is ideal to investigate anthropogenic-biogenic interactions due to high natural and anthropogenic emissions. These extensive field studies are part of the Southeastern Center for Air Pollution and Epidemiology study (SCAPE). The HR-ToF-AMS is deployed at four sites (~ 3 weeks each) in rotation: Jefferson Street (urban), Yorkville (rural), roadside site (near Highway 75/85), and Georgia Tech site (campus), with the urban and rural sites being part of the SEARCH network. We obtained seven HR-ToF-AMS datasets in total. During the entire measurement period, the ACSM is stationary at the GIT site and samples continuously. We perform positive matrix factorization (PMF) analysis on the HR-ToF-AMS and ACSM data to deconvolve the OA into different components. While the diurnal cycle of the total OA is flat as what have been previously observed, the OA factors resolved by PMF analysis show distinctively different diurnal trends. We find that the "more-oxidized oxygenated OA" (MO-OOA) constitutes a major fraction of OA at all sites. In summer, OA is dominated by SOA, e.g., isoprene-OA and OOA with different degrees of oxidation. In contrary, biomass burning OA is more prominent in winter data. By comparing HR-ToF-AMS and ACSM data during the same sampling periods, we find that the aerosol time series are highly correlated, indicating the

  13. Size, composition, and mixing state of individual aerosol particles in a South China coastal city.

    PubMed

    Li, Weijun; Shao, Longyi; Wang, Zhishi; Shen, Rongrong; Yang, Shusheng; Tang, Uwa

    2010-01-01

    Aerosol samples were collected in summer in Macao, a coastal city of the Pearl River Delta Region in China. Morphology, size, elemental composition, and mixing state of individual aerosol particles were determined by scanning electron microscopy coupled energy dispersive X-ray (SEM/EDX) and transmission electron microscopy (TEM). Based on the morphologies of 5711 aerosol particles, they consist of soot (32%), mineral (17%), secondary (22%), and unknown fine particles (29%). The sizes of these particles were mostly distributed between 0.1 and 0.4 microm. Compositions of 202 mineral particles were obtained by SEM/EDX. Mineral particles were mainly classified into three types: Si-rich, Ca-rich, and Na-rich. The compositions of typical mineral particles can indicate their sources in sampling location. For example, mineral particles, collected along the main street, were associated with trace amounts of heavy metals, such as Zn, Ti, Mn, Ba, Pb, and As. TEM observations indicate that most Na-rich particles were aged sea salt particles (e.g., Na2SO4 and NaNO3) which formed through heterogeneous chemical reactions between sea salt and acidic gases. Additionally, aging time of soot was short in Macao due to high humidity, high temperature, and high levels of sunlight in Macao. Most of soot and fine mineral dust particles were internally mixed with secondary particles.

  14. Characterization of aerosol transport in a recoil transfer chamber for heavy element chemistry

    NASA Astrophysics Data System (ADS)

    Lopez Morales, Gabriel; Tereshatov, Evgeny; Folden, Charles

    2014-09-01

    Heavy elements (HE) are elements with Z >103 that can be synthesized via target material bombardment by accelerated charged particles. Production and investigation of properties of new elements result in understanding of upper limit of Periodic Table of Elements. Study of chemical behavior of HE is usually based on comparison with their light homologue properties. Such experiments require transportation of elements of interest from a target chamber to a radiochemical laboratory within several seconds. Aerosol transport is a widely known way to transfer non-volatile elements in on-line experiments. This particular project is devoted to design, characterization and optimization of aerosol transport for implementation in future experiments at Cyclotron Institute, Texas A&M University. Different types of aerosol generators and particle parameters such as: size distribution, concentration and charge have been considered. Results showing procedure development will be presented. *Funded by DOE and NSF-REU Program.

  15. Seasonal differences of urban organic aerosol composition - an ultra-high resolution mass spectrometry study

    NASA Astrophysics Data System (ADS)

    Rincon, A. G.; Calvo, A. I.; Dietzel, M.; Kalberer, M.

    2012-04-01

    The understanding of the chemical composition of atmospheric aerosols, their properties and reactivity are important for assessing aerosol effects upon both global climate change and human health. The composition of organic aerosols is poorly understood mainly due to their highly complex chemical composition with several thousand compounds. In the present study the water-soluble organic fraction of ambient particles collected at an urban site in Cambridge, UK, during different seasons were analysed with ultra-high resolution mass spectrometry. For several thousand peaks in the mass specta (between 3000-6000) an elemental composition could be assigned and summer samples generally contained more components than winter samples. Up to 80% of the peaks in the mass spectra contain nitrogen and/or sulphur functional groups and only about 20% of the compounds contain only C, H and O atoms. In summer the fraction of compounds with oxidized nitrogen and sulphur groups increases compared to winter indicating a photo-chemical formation route of these multifunctional compounds. In addition to oxidized nitrogen compounds a large number of highly unsaturated reduced nitrogen-containing compounds were detected, corresponding likely to cyclic amines. A significant number of oxidized PAHs have been detected in summer samples, which were not present in winter, indicating again photo-chemical aging processes. Both, amines and long-chain aliphatic acids (also frequently observed in these urban samples) are likely signatures of biomass burning and primary biological sources. Potential biomass burning markers are discussed. Particle-phase oligomerisation reactions have only been observed to a very limited degree. Compounds larger than m/z 350 almost exclusively contained N and/or S functional groups indicating that the high molecular weight compounds in these organic aerosol extracts might be mainly due to particle-phase heterogeneous reactions of organic compounds with inorganic

  16. Nuclear fuel elements having a composite cladding

    DOEpatents

    Gordon, Gerald M.; Cowan, II, Robert L.; Davies, John H.

    1983-09-20

    An improved nuclear fuel element is disclosed for use in the core of nuclear reactors. The improved nuclear fuel element has a composite cladding of an outer portion forming a substrate having on the inside surface a metal layer selected from the group consisting of copper, nickel, iron and alloys of the foregoing with a gap between the composite cladding and the core of nuclear fuel. The nuclear fuel element comprises a container of the elongated composite cladding, a central core of a body of nuclear fuel material disposed in and partially filling the container and forming an internal cavity in the container, an enclosure integrally secured and sealed at each end of said container and a nuclear fuel material retaining means positioned in the cavity. The metal layer of the composite cladding prevents perforations or failures in the cladding substrate from stress corrosion cracking or from fuel pellet-cladding interaction or both. The substrate of the composite cladding is selected from conventional cladding materials and preferably is a zirconium alloy.

  17. Wide-range particle characterization and elemental concentration in Beijing aerosol during the 2013 Spring Festival.

    PubMed

    Jing, Hui; Li, Yu-Feng; Zhao, Jiating; Li, Bai; Sun, Jialong; Chen, Rui; Gao, Yuxi; Chen, Chunying

    2014-09-01

    The number and mass concentration, size distribution, and the concentration of 16 elements were studied in aerosol samples during the Spring Festival celebrations in 2013 in Beijing, China. Both the number and mass concentration increased sharply in a wide range from 10 nm to 10 μm during the firecrackers and fireworks activities. The prominent increase of the number concentration was in 50 nm-500 nm with a peak of 1.7 × 10(5)/cm(3) at 150 nm, which is 8 times higher than that after 1.5 h. The highest mass concentration was in 320-560 nm, which is 4 times higher than the control. K, Mg, Sr, Ba and Pb increased sharply during the firework activities in PM10. Although the aerosol emission from firework activities is a short-term air quality degradation event, there may be a substantial hazard arising from the chemical composition of the emitted particles. PMID:24975025

  18. Wide-range particle characterization and elemental concentration in Beijing aerosol during the 2013 Spring Festival.

    PubMed

    Jing, Hui; Li, Yu-Feng; Zhao, Jiating; Li, Bai; Sun, Jialong; Chen, Rui; Gao, Yuxi; Chen, Chunying

    2014-09-01

    The number and mass concentration, size distribution, and the concentration of 16 elements were studied in aerosol samples during the Spring Festival celebrations in 2013 in Beijing, China. Both the number and mass concentration increased sharply in a wide range from 10 nm to 10 μm during the firecrackers and fireworks activities. The prominent increase of the number concentration was in 50 nm-500 nm with a peak of 1.7 × 10(5)/cm(3) at 150 nm, which is 8 times higher than that after 1.5 h. The highest mass concentration was in 320-560 nm, which is 4 times higher than the control. K, Mg, Sr, Ba and Pb increased sharply during the firework activities in PM10. Although the aerosol emission from firework activities is a short-term air quality degradation event, there may be a substantial hazard arising from the chemical composition of the emitted particles.

  19. Lead Isotopic Composition and Trace Metals in Aerosols for Source Apportionment

    NASA Astrophysics Data System (ADS)

    Chien, C. T.; Paytan, A.

    2014-12-01

    Transported thousands of miles away from their source, aerosols can be dispersed and deposition throughout the Earth's surface. Aerosols from natural and industrial sources have different characteristics and health impacts thus it is important to identify their sources. The lead isotopic composition and trace metals in aerosol samples collected in different regions and periods around the world can help us better understand spatial and seasonal variation of aerosol sources. Aerosol samples collected in California, Bermuda, China and the Red Sea have been analyzed. The trace metal and Pb isotopes in these samples provide information regarding the various sources of aerosols to these sites.

  20. Graphical techniques for interpreting the composition of individual aerosol particles

    NASA Astrophysics Data System (ADS)

    Yuan, Hui; Rahn, Kenneth A.; Zhuang, Guoshun

    A graphical technique that uses X- Y and ternary plots is presented for interpreting elemental data for individual aerosol particles. By revealing the multiple functional relationships between the elements, it offers more insight into the groups of particles and the transitions between them than traditional techniques such as factor analysis and cluster analysis alone are able to. For a sample of dust storm aerosol from Beijing in March 2002, X-Y plots revealed areas, lines, and "dots" that represented clays, smooth transitions to asymptotes of pure single-component minerals, and pure minor minerals or special particles, respectively. Ternary plots further revealed ratios of elements and potential minerals. Careful use of cluster analysis revealed subgroups of particles that were not separated by clear borders. The dust storm had three major components, clay/quartz (Al 2O 3, SiO 2, etc.), basic calcium (CaO, CaCO 3), and salts (sulfate, phosphate, chloride). Some sulfates, including CaSO 4 and (NH 4) xH 2-xSO 4, were mixed with the quartz and clay. A five-step sequence that combines graphics, basic statistics, cluster analysis, and SEM photography seems to extract the maximum information from suites of single particles.

  1. The size- and time-resolved composition of aerosols from a sub-Arctic boreal forest prescribed burn

    NASA Astrophysics Data System (ADS)

    Cahill, Catherine F.; Cahill, Thomas A.; Perry, Kevin D.

    Aerosols from wildfires are the primary aerosols in the Arctic atmosphere during the summer months. These aerosols occur in large, increasing quantities and impact the sensitive radiative balance in the Arctic. FROSTFIRE, a controlled burn in a Long-Term Ecological Research Area 50 km north of Fairbanks, Alaska, was designed to quantify the impacts of wildfire on sub-Arctic boreal forest ecosystems in permafrost regions. However, it provided a unique opportunity to examine smoke aerosols collected in the middle of a sub-Arctic boreal forest fire. A battery-powered eight-stage aerosol impactor (i.e. a Davis Rotating-drum Unit for Monitoring), mounted at the top of a 10 m meteorological tower in the burn zone, collected size- and time-resolved aerosol samples with 19.45 min resolution for 24 h during the burn. The samples underwent Proton Induced X-ray Emission (PIXE) and Proton Elastic Scattering Analysis (PESA) to determine the sizes and elemental compositions of the collected aerosols. Throughout the fire, the smoke reaching the sampler was strongly monodisperse with most of the aerosol mass in the optically active 0.56-1.15 μm in aerodynamic diameter size range. Fine organics comprised almost all of the mass in this optically active size range and the concentrations of the organics were high throughout the sampling period. However, unlike the fine organics, the potassium concentrations in the smoke decreased exponentially during the sampling period as the fire progressed from an active flaming to a smoldering behavior. The major findings from this field experiment are the dramatic differences in aerosol composition as a function of fire type (i.e. smoldering or active flaming) and that the largest emission of organics occurs during the smoldering phase, unaccompanied by the potassium emissions often used as a smoke tracer. These results agree with recent laboratory experiments.

  2. Impact of aerosol composition and foliage characteristics on forest canopy deposition rates: A laboratory study

    NASA Astrophysics Data System (ADS)

    Hornsby, K. E.; Pryor, S. C.

    2013-12-01

    Forests are a major sink for atmospheric aerosols. Hence it has been suggested that (i) increased tree planting in urban areas might lead to a reduction in aerosol particle concentrations and thus a reduction in respiratory conditions and heart complications, and (ii) forests may be responsible for removing a disproportionately large fraction of potentially climate-relevant fine and ultra-fine aerosol particles from the atmosphere. However, larger uncertainties remain with respect to controls on uptake rates for forests. E.g. the deposition flux partitioning between foliage and non-foliage elements, the influence of particle size and composition, the role of leaf surface morphology and stomatal aperture in surface uptake. Improved understanding of the relative importance of these factors and the variability across different tree species should help determine how much of a sink naturally occurring and planted forests can provide downstream of fine particle production. In this study, a sample of trees native to southern Indiana were exposed to ultra-fine aerosol particle populations in a 1.5 m x 1.5 m x 1.5 m Teflon chamber. Stable particle size distributions (PSD) with geometric mean diameters (GMD) ranging from 40 to 80 nm were generated from sodium chloride, ammonium nitrate, ammonium sulfate and sodium sulfite solutions using a TSI model 3940 Aerosol Generation System (AGS). The aerosol stream was diluted using scrubbed and dried zero air to allow a variation of total number concentration across two orders of magnitude. PSD in the chamber are continuously measured using a TSI Scanning Mobility Particle Spectrometer (SMPS) comprising an Electrostatic Classifier (EC model 3080) attached to a Long DMA (LDMA model 3081) and a TSI model 3025A Butanol Condensation Particle Counter (CPC) operated with both the internal diffusion loss and multiple charge corrections turned on. The composition of the chamber air was also monitored for carbon dioxide (CO2) and water vapor

  3. Composition of Secondary Organic Aerosols Produced by Photo-Oxidation of Biomass Burning Emissions in a Smog Chamber

    NASA Astrophysics Data System (ADS)

    Desyaterik, Y.; Sullivan, A.; Hennigan, C. J.; Robinson, A. L.; Collett, J. L.

    2009-12-01

    Knowledge of the chemical composition of atmospheric organic aerosols (OA) is essential for accurate representation of OA in air quality and climate models. Both the sources of OA and their properties and effects remain poorly understood. In particular, we still know relatively little about the atmospheric formation of secondary organic aerosols (SOA). There is growing interest in the impact of biomass burning emissions on air quality, human health, and radiative forcing. Through a series of experiments, we are working to quantify changes in the chemical composition of wood smoke particles as a result of photochemical aging under well-controlled laboratory conditions. One specific objective of this study is to identify markers for biomass burning SOA and test whether these markers can be used in atmospheric samples to quantify SOA formation from aging of biomass burning emissions. We analyzed SOA generated in a smog chamber by photooxidation of smoke produced by burning oak wood. In order to initiate photochemistry, the chamber was irradiated with UV light. Aqueous extracts of collected aerosol samples were analyzed with Electrospray Ionization Time-of-Flight Mass Spectrometry. The high mass accuracy of these measurements reduces ambiguity in the assignment of elemental compositions for observed ions. Analysis has shown that primary oak smoke aerosol includes products of the thermal decomposition of cellulose (levoglucosan, cyclotene etc.) and lignin (guaiacol and syringol derivatives, mostly aldehydes and alcohols). After 2 hours of aging at typical summertime hydroxyl radical concentrations, the aerosol mass increased 2.5 fold due to the production of secondary organic aerosol. Mass spectra of the secondary organic aerosol formed are dominated by organic nitrates (nitrophenol, nitrocresol, nitrocatechol, and nitroguaiacol) and aromatic acids (benzoic acid, mono and di-hydroxybenzoic acid). Both nitrates and acids most likely are formed due to oxidation of the

  4. Elemental composition of solar energetic particles

    NASA Technical Reports Server (NTRS)

    Cook, W. R.; Stone, E. C.; Vogt, R. E.

    1984-01-01

    The Low Energy Telescopes on the Voyager spacecraft have been used to measure the elemental composition (Z = 2-28) and energy spectra (5-15 MeV per nucleon) of solar energetic particles (SEPs) in seven large flare events. Four flare events were selected which have SEP abundance ratios approximately independent of energy per nucleon. For these selected flare events, SEP composition results may be described by an average composition plus a systematic flare-to-flare deviation about the average. The four-flare average SEP composition is systematically different from the solar composition determined by photospheric spectroscopy. These systematic composition differences are apparently not due to SEP propagation or acceleration effects. In contrast, the four-flare average SEP composition is in agreement with measured solar wind abundances and with a number of recent spectroscopic coronal abundance measurements. These findings suggest that SEPs originate in the corona, and that both SEPs and the solar wind sample a coronal composition which is significantly and persistently different from that measured for the photosphere.

  5. Retrieval of aerosol composition using ground-based remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Xie, Yisong; Li, Zhengqiang; Zhang, Ying; Li, Donghui; Li, Kaitao

    2016-04-01

    The chemical composition and mixing states of ambient aerosol are the main factors deciding aerosol microphysical and optical properties, and thus have significant impacts on regional or global climate change and air quality. Traditional approaches to detect atmospheric aerosol composition include sampling with laboratory analysis and in-situ measurements. They can accurately acquire aerosol components, however, the sampling or air exhausting could change the status of ambient aerosol or lead to some mass loss. Additionally, aerosol is usually sampled at the surface level so that it is difficult to detect the columnar aerosol properties. Remote sensing technology, however, can overcome these problems because it is able to detect aerosol information of entire atmosphere by optical and microphysical properties without destructing the natural status of ambient aerosol. This paper introduces a method to acquire aerosol composition by the remote sensing measurements of CIMEL CE318 ground-based sun-sky radiometer. A six component aerosol model is used in this study, including one strong absorbing component Black Carbon (BC), two partly absorbing components Brown Carbon (BrC) and Mineral Dust (MD), two scattering components Ammonia Sulfate-like (AS) and Sea Salt (SS), and Aerosol Water uptake (AW). Sensitivity analysis are performed to find the most sensitive parameters to each component and retrieval method for each component is accordingly developed. Different mixing models such as Maxwell-Garnett (MG), Bruggeman (BR) and Volume Average (VA) are also studied. The residual minimization method is used by comparing remote sensing measurements and simulation outputs to find the optimization of aerosol composition (including volume fraction and mass concentration of each component). This method is applied to measurements obtained from Beijing site under different weather conditions, including polluted haze, dust storm and clean days, to investigate the impacts of mixing

  6. Retrieval of aerosol composition using ground-based remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Xie, Y.; Li, Z.; Xu, H.; Chen, X.; Li, K.; Lv, Y.; Li, D.; Zhang, Y.

    2015-12-01

    The chemical composition and mixing status of ambient aerosol are the main factors deciding aerosol microphysical and optical properties, and thus have significant impacts on regional or global climate change and air quality. Traditional approaches to detect atmospheric aerosol composition include sampling with laboratory analysis and in-situ measurement. They can accurately acquire aerosol components, however, the sampling or air exhausting could change the status of aerosol or have some mass loss. Additionally, aerosol is usually sampled at the surface level so that it is difficult to detect the columnar aerosol properties. Remote sensing technology, however, can overcome these problems because it investigate aerosol information by optical and microphysical properties without destructing the natural status of ambient aerosol. This paper introduce a method to acquire aerosol composition by the remote sensing measurements of CIMEL CE318 ground-based sun-sky radiometer. A six component aerosol model is used in this study, including one strong absorbing component Black Carbon (BC), two partly absorbing components Brown Carbon (BrC) and Mineral Dust (MD), two scattering components Ammonia Sulfate-like (AS) and Sea Salt (SS), and Aerosol Water uptake (AW). Sensitivity analysis are performed to find the most sensitive parameters to each component and retrieval method for each component is accordingly developed. The residual minimization method is used by comparing remote sensing measurements and simulation outputs to find the optimization of aerosol composition (including volume fraction and mass concentration of each component). This method is applied to real measurements obtained from Beijing site under different weather conditions, including polluted haze, dust storm and clean days, to investigate the impacts of mixing states of aerosol particles on aerosol composition retrieval.

  7. Uptake of Elements From Aerosols by Humans ~ A Case Study From Delhi & Bangalore Cities

    NASA Astrophysics Data System (ADS)

    Anand, S.; Yadav, S.; Jain, V. K.

    2006-05-01

    Aerosol research has gained tremendous importance globally due to the cumulative effects of increasing industrialization and urbanization on aerosol production which can have an alarming impact on the climate of the planet as well as the health of its inhabitants. Therefore, there is an increasing need to study aerosols for all of their physicochemical and biological aspects on both local and global scales. World over extensive research has gone into studying the physical and the chemical aspects of aerosols. However, little information is yet available on the health impacts of aerosols particularly in the Asian context. Here we report uptake of various elements that are concentrated in aerosols by the human body in Delhi and Bangalore cities and their possible health effects. In many urban areas, for example in Delhi, inhalable fractions of aerosols are known to have high concentrations of elements such as Cu, Zn, Pb, Ba, Ni and Cr (Yadav and Rajamani 2004). Also aerosols in the North West part of India seem to be particularly enriched in these elements. If so, there is a high possibility of these elements getting into the human system either directly or indirectly through water and food. To determine the concentrations of these elements that are present in significant concentrations in the inhalable fractions of aerosols, human hair and blood samples are used as proxies. Both these regions have contrasting geographic and climatic conditions. Delhi (altitude : 213-305m above MSL) located on the fringes of the Thar desert which supplies considerable amount of dust, is semi-arid with annual rainfall of 60-80 cms & temperatures varying between 1° - 45°. Bangalore (altitude of 900m above MSL) receives a high annual rainfall of 80-100 cms and being located on the fringes of tropical forests of the Sahyadri Mountains (Western Ghats) receives little crustal contribution to the aerosols. Samples from least polluted mountainous areas of Himalayas (Gangothri) and Sahyadri

  8. Elemental characteristics of aerosols emitted from a coal-fired heating plant

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Khandelwal, G. S.

    1978-01-01

    Size differentiated aerosols were collected downstream from a heating plant fueled with eastern coal and analyzed using particle induced X-ray emission technique. Based on aerosol masses collected in various size ranges, the aerosol size distribution is determined to be trimodal, with the three peaks centered at 0.54 microns, 4.0 microns, and 11.0 microns, respectively. Of the various trace elements present in the aerosols, sulphur is the only element that shows very strong concentration in the smallest size group. Iron is strongly concentrated in the 4.0 micron group. Potassium, calcium, and titanium also exhibit stronger concentration in the 4.0 micron group than any other group. Other trace elements - vanadium, chromium, manganese, nickel, copper, and barium - are equally divided between the 0.54 microns and the 4.0 microns groups. Apparently, all of the trace elements - except S - enter aerosols during the initial formation and subsequent condensation phases in the combustion process. Excess concentration of sulphur in the 0.54 microns group can only be accounted for by recondensation of sulphur vapors on the combustion aerosols and gas-to-particle phase conversion of sulfate vapors at the stack top.

  9. An experimental method for quantitatively evaluating the elemental processes of indoor radioactive aerosol behavior.

    PubMed

    Yamazawa, H; Yamada, S; Xu, Y; Hirao, S; Moriizumi, J

    2015-11-01

    An experimental method for quantitatively evaluating the elemental processes governing the indoor behaviour of naturally occurring radioactive aerosols was proposed. This method utilises transient response of aerosol concentrations to an artificial change in aerosol removal rate by turning on and off an air purifier. It was shown that the indoor-outdoor exchange rate and the indoor deposition rate could be estimated by a continuous measurement of outdoor and indoor aerosol number concentration measurements and by the method proposed in this study. Although the scatter of the estimated parameters is relatively large, both the methods gave consistent results. It was also found that the size distribution of radioactive aerosol particles and hence activity median aerodynamic diameter remained not largely affected by the operation of the air purifier, implying the predominance of the exchange and deposition processes over other processes causing change in the size distribution such as the size growth by coagulation and the size dependence of deposition.

  10. Atmospheric aerosol compositions and sources at two national background sites in northern and southern China

    NASA Astrophysics Data System (ADS)

    Zhu, Qiao; He, Ling-Yan; Huang, Xiao-Feng; Cao, Li-Ming; Gong, Zhao-Heng; Wang, Chuan; Zhuang, Xin; Hu, Min

    2016-08-01

    Although China's severe air pollution has become a focus in the field of atmospheric chemistry and the mechanisms of urban air pollution there have been researched extensively, few field sampling campaigns have been conducted at remote background sites in China, where air pollution characteristics on a larger scale are highlighted. In this study, an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), together with an Aethalometer, was deployed at two of China's national background sites in northern (Lake Hongze site; 33.23° N, 118.33° E; altitude 21 m) and southern (Mount Wuzhi site; 18.84° N, 109.49° E; altitude 958 m) China in the spring seasons in 2011 and 2015, respectively, in order to characterize submicron aerosol composition and sources. The campaign-average PM1 concentration was 36.8 ± 19.8 µg m-3 at the northern China background (NCB) site, which was far higher than that at the southern China background (SCB) site (10.9 ± 7.8 µg m-3). Organic aerosol (OA) (27.2 %), nitrate (26.7 %), and sulfate (22.0 %) contributed the most to the PM1 mass at NCB, while OA (43.5 %) and sulfate (30.5 %) were the most abundant components of the PM1 mass at SCB, where nitrate only constituted a small fraction (4.7 %) and might have contained a significant amount of organic nitrates (5-11 %). The aerosol size distributions and organic aerosol elemental compositions all indicated very aged aerosol particles at both sites. The OA at SCB was more oxidized with a higher average oxygen to carbon (O / C) ratio (0.98) than that at NCB (0.67). Positive matrix factorization (PMF) analysis was used to classify OA into three components, including a hydrocarbon-like component (HOA, attributed to fossil fuel combustion) and two oxygenated components (OOA1 and OOA2, attributed to secondary organic aerosols from different source areas) at NCB. PMF analysis at SCB identified a semi-volatile oxygenated component (SV-OOA) and a low-volatility oxygenated

  11. Aerosol Optical Properties and Chemical Composition Measured on the Ronald H. Brown During ACE-Asia

    NASA Astrophysics Data System (ADS)

    Quinn, P. K.; Bates, T. S.; Miller, T. L.; Coffman, D.

    2001-12-01

    Measurements of aerosol chemical, physical, and optical properties were made onboard the NOAA R/V Ronald H. Brown during the ACE-Asia Intensive Field Program to characterize Asian aerosol as it was transported across the Pacific Ocean. The ship traveled across the Pacific from Hawaii to Japan and into the East China Sea and the Sea of Japan. Trajectories indicate that remote marine air masses were sampled on the transit to Japan. In the ACE-Asia study region air masses from Japan, China, Mongolia, and the Korea Peninsula were sampled. A variety of aerosol types were encountered including those of marine, volcanic, crustal, and industrial origin. Presented here, for the different air masses encountered, are aerosol optical properties (scattering and absorption coefficients, single scattering albedo, Angstrom Exponent, and aerosol optical depth) and chemical composition (major ions, total organic and black carbon, and trace elements). Scattering by submicron aerosol (55 % RH and 550 nm) was less than 20 1/Mm during the transit from Hawaii to Japan. In continental air masses, values ranged from 60 to 320 1/Mm with the highest submicron scattering coefficients occurring during prefrontal conditions with a low marine boundary layer height and trajectories from Japan. For the continental air masses, the ratio of scattering by submicron to sub-10 micron aerosol during polluted conditions averaged 0.8 and during a dust event 0.41. Aerosol optical depth (500 nm) ranged from 0.08 during the Pacific transit to 1.3 in the prefrontal conditions described above. Optical depths during dust events ranged from 0.2 to 0.6. Submicron non-sea salt (nss) sulfate concentrations ranged from 0.5 ug/m-3 during the Pacific transit to near 30 ug/m-3 during the prefrontal conditions described above. Black carbon to total carbon mass ratios in air masses from Asia averaged 0.18 with highest values (0.32) corresponding to trajectories crossing the Yangtze River valley.

  12. Aerosols near by a coal fired thermal power plant: chemical composition and toxic evaluation.

    PubMed

    Jayasekher, T

    2009-06-01

    Industrial processes discharge fine particulates containing organic as well as inorganic compounds into the atmosphere which are known to induce damage to cell and DNA, both in vitro and in vivo. Source and area specific studies with respect to the chemical composition, size and shape of the particles, and toxicity evaluations are very much limited. This study aims to investigate the trace elements associated with the aerosol particles distributed near to a coal burning thermal power plant and to evaluate their toxicity through Comet assay. PM(10) (particles determined by mass passing an inlet with a 50% cut-off efficiency having a 10-microm aerodynamic diameter) samples were collected using respirable dust samplers. Twelve elements (Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb, Se, Hg, and As) were analyzed using ICP-AES. Comet assay was done with the extracts of aerosols in phosphate buffered saline (PBS). Results show that Fe and Zn were found to be the predominant elements along with traces of other analyzed elements. Spherical shaped ultrafine particles of <1 microm aerodynamic diameter were detected through scanning electron microscope. PM(10) particles near to the coal burning power plant produced comets indicating their potential to induce DNA damage. DNA damage property is found to be depending upon the chemical characteristics of the components associated with the particles besides the physical properties such as size and shape.

  13. Major element composition of stratospheric micrometeorites

    NASA Astrophysics Data System (ADS)

    Schramm, L. S.; Brownlee, D. E.; Wheelock, M. M.

    1989-06-01

    Results are presented on an element-composition study conducted on 200 interplanetary dust particles (IDPs) collected with NASA's U2 and RB 47 aircraft at altitudes near 20 km. These IDPs could be classified into two major morphological types, i.e., the 'porous' and the 'smooth' particle types, which showed significant compositional differences. Namely, elemental abundances found in porous particles are closely matching those of the CI chondrites, while the smooth particle group displayed systematic Ca and Mg depletions and contained stoichiometric 'excess' oxygen, consistent with the presence of hydrous phases. This fact, together with the occurrence of carbonates, magnetite framboids, and layer silicates, provides evidence that at least a significant number of the smooth-type IDPs were processed by aqueous activity. It is hypothesized that extensive aqueous activity only occurs in asteroids (as opposed to comets) and that the smooth class of IDPs is of an asteroidal origin.

  14. Complete Subsurface Elemental Composition Measurements With PING

    NASA Technical Reports Server (NTRS)

    Parsons, A. M.

    2012-01-01

    The Probing In situ with Neutrons and Gamma rays (PING) instrument will measure the complete bulk elemental composition of the subsurface of Mars as well as any other solid planetary body. PING can thus be a highly effective tool for both detailed local geochemistry science investigations and precision measurements of Mars subsurface reSOurces in preparation for future human exploration. As such, PING is thus fully capable of meeting a majority of both ncar and far term elements in Challenge #1 presented for this conference. Measuring the ncar subsurface composition of Mars will enable many of the MEPAG science goals and will be key to filling an important Strategic Knowledge Gap with regard to In situ Resources Utilization (ISRU) needs for human exploration. [1, 2] PING will thus fill an important niche in the Mars Exploration Program.

  15. Regional source identification of atmospheric aerosols in Beijing based on sulfur isotopic compositions

    NASA Astrophysics Data System (ADS)

    Lianfang, Wei; Pingqing, Fu; Xiaokun, Han; Qingjun, Guo; Yele, Sun; Zifa, Wang

    2016-04-01

    65 daily PM2.5 (aerosol particle with aerodynamic diameter less than 2.5 μm) samples were collected from an urban site in Beijing in four months representing the four seasons between September 2013 and July 2014. Inorganic ions, organic/elemental carbon and stable sulfur isotopes of sulfate aerosols were analyzed systematically. The "fingerprint" characteristics of the stable sulfur isotopic composition, together with trajectory clustering modeled by HYSPLIT-4 and potential source contribution function (PSCF), were employed for identifying potential regional sources. Results obviously exhibited the distinctive seasonality for various aerosol speciation associated with PM2.5 in Beijing with sulfate, nitrate, ammonium, organic matter, and element carbon being the dominant species. Elevated chloride associated with higher concentration of organics were found in autumn and winter, due to enhanced coal combustion emissions. The δ34S values of Beijing aerosol samples ranged from 2.94‰ to 10.2‰ with an average value of 6.18±1.87‰ indicating that the major sulfur source is direct fossil fuel burning-related emissions. Owning to a temperature-dependent fractionation and elevated biogenic sources of isotopically light sulfur in summer, the δ34S values had significant seasonal variations with a winter maximum ( 8.6‰)and a summer minimum ( 5.0‰). The results of trajectory clustering and the PSCF method demonstrated that higher concentrations of sulfate with lower sulfur isotope ratios ( 4.83‰) were associated with air masses from the south, southeast or east, whereas lower sulfate concentrations with higher δ34S values ( 6.69‰) when the air masses were mainly from north or northwest. These results suggested two main different kinds of regional coal combustion sources contributed to the pollution in Beijing.

  16. On measurements of aerosol-gas composition of the atmosphere during two expeditions in 2013 along the Northern Sea Route

    NASA Astrophysics Data System (ADS)

    Sakerin, S. M.; Bobrikov, A. A.; Bukin, O. A.; Golobokova, L. P.; Pol'kin, Vas. V.; Pol'kin, Vik. V.; Shmirko, K. A.; Kabanov, D. M.; Khodzher, T. V.; Onischuk, N. A.; Pavlov, A. N.; Potemkin, V. L.; Radionov, V. F.

    2015-11-01

    We presented the results of expedition measurements of the set of physical-chemical characteristics of atmospheric aerosol in areas of the Arctic and Far East seas, performed onboard RV Akademik Fedorov (17 August-22 September 2013) and RV Professor Khljustin (24 July-7 September 2013). The specific features of spatial distribution and time variations of aerosol optical depth (AOD) of the atmosphere in the wavelength range of 0.34-2.14 μm and boundary layer height, aerosol and black carbon mass concentrations, and disperse and chemical composition of aerosol are discussed. Over the Arctic Ocean (on the route of RV Akademik Fedorov) there is a decrease in aerosol and black carbon concentrations in a northeastern direction: higher values were observed in the region of Spitsbergen and near the Kola Peninsula; and minimum values were observed at northern margins of the Laptev Sea. Average AOD (0.5 μm) values in this remote region were 0.03; the aerosol and black carbon mass concentrations were 875 and 22 ng m-3, respectively. The spatial distributions of most aerosol characteristics over Far East seas show their latitudinal decrease in the northern direction. On transit of RV Professor Khljustin from the Japan Sea to the Chukchi Sea, the aerosol number concentration decreased on average from 23.7 to 2.5 cm-3, the black carbon mass concentration decreased from 150 to 50 ng m-3, and AOD decreased from 0.19 to 0.03. We analyzed the variations in the boundary layer height, measured by ship-based lidar: the average value was 520 m, and the maximal value was 1200 m. In latitudinal distribution of the boundary layer height, there is a characteristic minimum at a latitude of ~ 55° N. For water basins of eight seas, we present the chemical compositions of the water-soluble aerosol fraction (ions, elements) and small gas-phase species, as well as estimates of their vertical fluxes. It is shown that substances are mainly (75-89 %) supplied from the atmosphere to the sea

  17. On measurements of aerosol-gas composition of the atmosphere during two expeditions in 2013 along Northern Sea Route

    NASA Astrophysics Data System (ADS)

    Sakerin, S. M.; Bobrikov, A. A.; Bukin, O. A.; Golobokova, L. P.; Pol'kin, Vas. V.; Pol'kin, Vik. V.; Shmirko, K. A.; Kabanov, D. M.; Khodzher, T. V.; Pavlov, A. N.; Potemkin, V. L.; Radionov, V. F.

    2015-06-01

    We presented the results of expedition measurements of the set of physical-chemical characteristics of atmospheric aerosol in water basins of Arctic and Far East seas, performed onboard RV Akademik Fedorov (17 August-22 September 2013) and RV Professor Khljustin (24 July-7 September 2013). The specific features of spatial distribution and time variations of aerosol optical depth (AOD) of the atmosphere in the wavelength range of 0.34-2.14 μm and boundary layer height, aerosol and black carbon mass concentrations, and disperse and chemical composition of aerosol are discussed. Over the Arctic Ocean (on the route of RV Akademik Fedorov) there is a decrease in aerosol and black carbon concentrations in northeastern direction: higher values were observed in the region of Spitsbergen and near the Kola Peninsula; and minimum values were observed at northern margins of the Laptev Sea. Average AOD (0.5 μm) values in this remote region were 0.03; the aerosol and black carbon mass concentrations were 875 and 22 ng m-3, respectively. The spatial distributions of most aerosol characteristics over Far East seas show their latitudinal decrease in the northern direction. On transit of RV Professor Khljustin from Japan to Chukchi Sea, the aerosol number concentration decreased, on the average, from 23.7 to 2.5 cm-3, the black carbon mass concentration decreased from 150 to 50 ng m-3, and AOD decreased from 0.19 to 0.03. We analyzed the variations in the boundary layer height, measured by ship-based lidar: the average value was 520 m, and the maximal value was 1200 m. In latitudinal distribution of the boundary layer height, there is a characteristic minimum at latitude of ∼ 55° N. For water basins of eight seas, we present the chemical compositions of water-soluble aerosol fraction (ions, elements) and small gaseous impurities, as well as estimates of their vertical fluxes. It is shown that substances are mainly (75-89 %) supplied from the atmosphere to the sea surface

  18. Size-Time-Composition Resolved Study of Aerosols Across El Paso, Texas in Fall 2008

    NASA Astrophysics Data System (ADS)

    Cahill, T. A.; Gill, T. E.; Pingitore, N. E.; Olvera, H. A.; Clague, J. W.; Barnes, D. E.; Perry, K. D.; Li, W.; Amaya, M. A.

    2009-12-01

    Systematic variations in the absolute amounts, size and composition of airborne particulate matter (PM) across the El Paso, Texas metropolitan area may differentially impact the respiratory status (e.g., asthma) and overall health of the local population. To understand these variations, we collected size-time resolved samples of PM with DRUM samplers during a one-month period in late autumn 2008 at three sites along a NW-SE (roughly upwind-downwind) transect across El Paso’s airshed. The DRUM sampler is a rotating-drum impactor separating and collecting aerosols on Mylar strips mounted on the drums, in 8 size stages from 10 μm to <0.1 μm. DRUM strips are analyzed with 3-hr time resolution by β-gauge for mass and by synchrotron X-ray fluorescence for elemental composition. We collected samples at Santa Teresa, New Mexico (a minimally developed area NW of El Paso, at the edge of a sparsely-inhabited expanse of the Chihuahuan Desert), at the edge of the University of Texas- El Paso (UTEP) campus (in the urban core of El Paso), and at Socorro, Texas (a suburban area in the valley of the Rio Grande, SE of the urban core). Results illustrate sharp excursions in mass and element concentrations in aerosol-laden periods lasting from several hours to several days, associated with stagnant air, inversions, smoke events, dust/high wind/frontal passage, and/or daily traffic patterns, punctuated by several periods of reduced aerosol levels after Pacific frontal passages. Mass and absorption data show an increasing influence of carbonaceous (absorbing) aerosols with decreasing particle size <~1 μm, and increasing influence of mineral (scattering) aerosols with increasing particle size >~1 μm. Calcium/silicon ratios were high (>1), especially in coarser stages and during high wind events, reflecting wind erosion of the Chihuahuan Desert’s calcareous soils. Concentrations of chlorine, silicon, calcium, coarse potassium, and lead increased during high wind events, while

  19. Geochemical and Isotopic Composition of Aerosols in Tucson

    NASA Astrophysics Data System (ADS)

    Riha, K. M.; Michalski, G. M.; Lohse, K. A.; Gallo, E. L.; Brooks, P. D.; Meixner, T.

    2010-12-01

    Atmospheric nitrogen input to soils and surfaces in arid environments is of growing concern due to increased urbanization. Atmospheric nitrogen can be deposited as wet (rain or snow) or dry (dust or aerosols) deposition, and can lead to water eutrophication, soil acidification, and groundwater contamination through leaching of excess nitrate. Urbanization increases imperviousness which increases the magnitude of runoff and subsequently enhances groundwater recharge in arid and semi-arid regions. Following a rain pulse, nitrate deposited on impervious surfaces during dry periods is mobilized into ephemeral channels, where it can potentially infiltrate and reach groundwater. Anthropogenic nitrate sources include fertilizer from agriculture practices or lawn application, septic systems, and animal waste disposal. One way to determine the sources of nitrogen input to these environments is through the use of multiple isotope analysis (δ15N, δ18O and Δ17O ). The δ15N of nitrate can be used to distinguish between sources and when used in conjunction with δ18O better separation can be obtained due to distinct signatures (i.e. fertilizer is unique from septic). It has been shown that atmospheric nitrate is anomalously enriched in 17O (denoted Δ17O) (Michalski et al., 2003), while nitrate produced from nitrification, denitrification and assimilation have a Δ17O = 0. Using the Δ17O measurement can therefore allow us to determine the proportion of atmospheric nitrate in a sample. The objective of this research is to characterize the δ15N and δ18O values of atmospheric nitrate in Tucson. During 2006, daily PM10 and PM2.5 aerosol filters were collected from The Pima County Department of Environmental Quality. Aerosols show a seasonal mass trend with increased mass in the winter relative to spring, summer and fall. Anion concentrations (Cl-, NO3-, and SO42-) analyzed by ion chromatography, show similar seasonal variation that was present in the aerosol mass. Multiple

  20. Aerosol Size Distribution, Composition, and Hygroscopicity Measurements During CSTRIPE Using an Aerosol Mass Spectrometer and a Dual Differential Mobility Analyzer

    NASA Astrophysics Data System (ADS)

    Bahreini, R.; Varutbangkul, V.; Conant, W. C.; Flagan, R. C.; Seinfeld, J. H.; Buzorius, G.; Jonsson, H. H.

    2003-12-01

    During July 2003, the CIRPAS Twin Otter aircraft was deployed in the CSTRIPE (Coastal STRatocumulus Imposed Perturbation Experiment) field experiment in order to quantify the effects of aerosols on the microphysics and dynamics of marine stratocumulus clouds. In order to characterize the effects of different aerosol types on stratocumulus clouds, various air masses were sampled, including local fire plumes, pollution over the San Joaquin valley, unperturbed marine stratocumulus clouds, and stratocumulus clouds perturbed by seeding flares. Some research flights were also dedicated to characterize the seeding flares in the clear sky. Measurements of aerosol mass distribution and composition, using an Aerodyne Aerosol Mass Spectrometer (AMS), and size distribution and hygroscopic behavior, using a Dual Differential Mobility Analyzer (Dual DMA) with one column at dry conditions and another at a relative humidity of approximately 70 percent, will be presented here. During a number of in-cloud sampling periods, the Counter-flow Virtual Impactor (CVI) was used to select and dry cloud droplets, which were then analyzed by the AMS and the Dual DMA. The AMS composition measurements showed that sulfate and organics comprised most of the mass of the non-refractory components of the aerosol. The DMA showed a mixture of unimodal and bimodal size distributions in most types of air masses. The air mass over the San Joaquin valley, however, showed strong evidence of freshly nucleated particles, with aerosol number concentrations often above 80,000 cm-3.

  1. The 2005 Study of Organic Aerosols at Riverside (SOAR-1): instrumental intercomparisons and fine particle composition

    NASA Astrophysics Data System (ADS)

    Docherty, K. S.; Aiken, A. C.; Huffman, J. A.; Ulbrich, I. M.; Decarlo, P. F.; Sueper, D.; Worsnop, D. R.; Snyder, D. C.; Grover, B. D.; Eatough, D. J.; Goldstein, A. H.; Ziemann, P. J.; Jimenez, J. L.

    2011-02-01

    Multiple state-of-the-art instruments sampled ambient aerosol in Riverside, California during the 2005 Study of Organic Aerosols at Riverside (SOAR) to investigate sources and chemical composition of fine particles (PMf) in the inland region of Southern California. This paper briefly summarizes the spatial, meteorological and gas-phase conditions during SOAR-1 (15 July-15 August) and provides detailed intercomparisons of complementary measurements and average PMf composition during this period. Daily meteorology and gas-phase species concentrations were highly repetitive with meteorological and gas-phase species concentrations displaying clear diurnal cycles and weekday/weekend contrast, with organic aerosol (OA) being the single largest component contributing approximately one-third of PMf mass. In contrast with historical characterizations of OA in the region, several independent source apportionment efforts attributed the vast majority (~80%) of OA mass during SOAR-1 to secondary organic aerosol (SOA). Given the collocation of complementary aerosol measurements combined with a dominance of SOA during SOAR-1, this paper presents new results on intercomparisons among several complementary measurements and on PMf composition during this period. Total non-refractory submicron (NR-PM1) measurements from a high-resolution aerosol mass spectrometer (HR-AMS) are compared with measurements by tapered element oscillating microbalances (TEOM) including a filter dynamics measurement system (TEOMFDMS). NR-PM1 is highly correlated with PM2.5 TEOMFDMS measurements and accounts for the bulk of PM2.5 mass with the remainder contributed primarily by refractory material. In contrast, measurements from a heated TEOM show substantial losses of semi-volatile material, including ammonium nitrate and semi-volatile organic material. Speciated HR-AMS measurements are also consistent and highly correlated with several complementary measurements, including those of a collocated compact AMS

  2. Cloud Nucleating Properties of Aerosols During TexAQS - GoMACCS 2006: Influence of Aerosol Sources, Composition, and Size

    NASA Astrophysics Data System (ADS)

    Quinn, P. K.; Bates, T. S.; Coffman, D. J.; Covert, D. S.; Onasch, T. B.; Alllan, J. D.; Worsnop, D.

    2006-12-01

    TexAQS - GoMACCS 2006 was conducted from July to September 2006 in the Gulf of Mexico and Houston Ship Channel to investigate sources and processing of gas and particulate phase species and to determine their impact on regional air quality and climate. As part of the experiment, the NOAA R.V. Ronald H. Brown transited from Charleston, S.C. to the study region. The ship was equipped with a full compliment of gas and aerosol instruments. To determine the cloud nucleating properties of aerosols, measurements were made of the aerosol number size distribution, aerosol chemical composition, and cloud condensation nuclei (CCN) concentration at five supersaturations. During the transit and over the course of the experiment, a wide range of aerosol sources and types was encountered. These included urban and industrial emissions from the S.E. U.S. as the ship left Charleston, a mixture of Saharan dust and marine aerosol during the transit around Florida and across the Gulf of Mexico, urban emissions from Houston, and emissions from the petrochemical industries, oil platforms, and marine vessels in the Gulf coast region. Highest activation ratios (ratio of CCN to total particle number concentration at 0.4 percent supersaturation) were measured in anthropogenic air masses when the aerosol was composed primarily of ammonium sulfate salts and in marine air masses with an aerosol composed of sulfate and sea salt. A strong gradient in activation ratio was measured as the ship moved from the Gulf of Mexico to the end of the Houston Ship Channel (values decreasing from about 0.8 to less than 0.1) and the aerosol changed from marine to industrial. The activation ratio under these different regimes in addition to downwind of marine vessels and oil platforms will be discussed in the context of the aerosol size distribution and chemical composition. The discussion of composition will include the organic mass fraction of the aerosol, the degree of oxidation of the organics, and the water

  3. [Chemical Composition of the Single Particle Aerosol in Winter in Nanning Using SPAMS].

    PubMed

    Liu, Hui-lin; Song, Hong-jun; Chen, Zhi-ming; Huang, Jiong-li; Yang, Jun-chao; Mao, Jing-ying; Li, Hong; Liang, Gui-yun; Mo, Zhao-yu

    2016-02-15

    Single Particle Aerosol Mass Spectrometry (SPAMS) was performed to characterize the PM2.5 in Nanning from 15 to 24 February 2015. The correlation (R2) between the PM2.5 number concentration and the mass concentration of PM2.5 obtained using SPAMS was 0.76. The particle number concentration could reflect the atmospheric pollution situation to some degree. The Art-2a classification method was used to classify the chemical composition of PM2.5. The results showed that the principal chemical constituents were elemental carbon, organic elements carbon hybrid particles, organic carbon, rich potassium particles, mineral substance, rich sodium particles, second inorganic particles, levoglucosan and other heavy metals. Among them, the composition of elemental carbon was the highest, followed by organic carbon and rich potassium particles. The particle size of 80% of PM2.5 was mainly concentrated in the range of 0.2 microm to 1.0 microm with a peak value occurring at 0. 62 microm. The particle size distribution characteristics of different chemical components were similar. The number concentration of the chemical components in PM2.5 had the same variation tread with the mass concentration of PM2.5 over time. To a certain extent, the change in chemical composition could reflect the instantaneous pollution source.

  4. [Chemical Composition of the Single Particle Aerosol in Winter in Nanning Using SPAMS].

    PubMed

    Liu, Hui-lin; Song, Hong-jun; Chen, Zhi-ming; Huang, Jiong-li; Yang, Jun-chao; Mao, Jing-ying; Li, Hong; Liang, Gui-yun; Mo, Zhao-yu

    2016-02-15

    Single Particle Aerosol Mass Spectrometry (SPAMS) was performed to characterize the PM2.5 in Nanning from 15 to 24 February 2015. The correlation (R2) between the PM2.5 number concentration and the mass concentration of PM2.5 obtained using SPAMS was 0.76. The particle number concentration could reflect the atmospheric pollution situation to some degree. The Art-2a classification method was used to classify the chemical composition of PM2.5. The results showed that the principal chemical constituents were elemental carbon, organic elements carbon hybrid particles, organic carbon, rich potassium particles, mineral substance, rich sodium particles, second inorganic particles, levoglucosan and other heavy metals. Among them, the composition of elemental carbon was the highest, followed by organic carbon and rich potassium particles. The particle size of 80% of PM2.5 was mainly concentrated in the range of 0.2 microm to 1.0 microm with a peak value occurring at 0. 62 microm. The particle size distribution characteristics of different chemical components were similar. The number concentration of the chemical components in PM2.5 had the same variation tread with the mass concentration of PM2.5 over time. To a certain extent, the change in chemical composition could reflect the instantaneous pollution source. PMID:27363128

  5. Solubility of aerosol trace elements: sources and deposition fluxes in the Canary Region

    NASA Astrophysics Data System (ADS)

    Gelado-Caballero, María Dolores; López-García, Patricia; Patey, Matthew; Prieto, Sandra; Collado, Cayetano; Santana, Desire; Hernández-Brito, Joaquín

    2013-04-01

    To date there have been no long-term aerosol studies in the Canary Basin, and current estimates of soluble fluxes of Al, Mn, Fe, P and N for the region are based on limited data available from several oceanographic research cruises which have crossed the region during large transects of the Atlantic Ocean. In this study, aerosol samples have been collected at two stations on the island of Gran Canaria regularly since 2006 (Taliarte, at sea level, and Pico de la Gorra, at 1930 m altitude). Samples have been analysed for total and soluble trace metals (Al, Mn, Fe, Co, Cu and Ti). The high temporal resolution of this dataset represents a valuable contribution to the understanding of aerosol deposition of trace metals to the region. Solubility measurements from acetate buffer leaching experiments showed the same tendency in the percentage of soluble metals in the samples: a higher percentage solubility of metals in anthropogenic aerosols and at low dust loading. Moreover, categorisation of aerosol samples with a continental African origin according to air-mass back-trajectories (North of Africa, Central and Western Sahara and Sahel) showed a decreasing tendency in the percentage of soluble Al and Fe to the south. In addition, factors that can affect the percentage solubility values for crustal elements and comparisons with different methods were studied. Freezing the samples stored affects the measurements of Al and Fe solubility. This last result is important for the design of future aerosol sampling programmes and aerosol solubility experiments. Flux estimates for aerosol-derived soluble metals reveal that phosphate is highly depleted relative to Fe and N when compared with Redfield values. It appears that aerosol deposition is an important source of N and trace metals (Fe, Co, Mn and Al) to the NE subtropical Atlantic Ocean. This work has been supported by the European Commission FEDER funds (PCT MAC 2007-2013, ESTRAMAR Mac/3/C177).

  6. Elemental compositions of two extrasolar rocky planetesimals

    SciTech Connect

    Xu, S.; Jura, M.; Klein, B.; Zuckerman, B.; Koester, D. E-mail: jura@astro.ucla.edu E-mail: ben@astro.ucla.edu

    2014-03-10

    We report Keck/HIRES and Hubble Space Telescope/COS spectroscopic studies of extrasolar rocky planetesimals accreted onto two hydrogen atmosphere white dwarfs, G29-38 and GD 133. In G29-38, eight elements are detected, including C, O, Mg, Si, Ca, Ti, Cr, and Fe while in GD 133, O, Si, Ca, and marginally Mg are seen. These two extrasolar planetesimals show a pattern of refractory enhancement and volatile depletion. For G29-38, the observed composition can be best interpreted as a blend of a chondritic object with some refractory-rich material, a result from post-nebular processing. Water is very depleted in the parent body accreted onto G29-38, based on the derived oxygen abundance. The inferred total mass accretion rate in GD 133 is the lowest of all known dusty white dwarfs, possibly due to non-steady state accretion. We continue to find that a variety of extrasolar planetesimals all resemble to zeroth order the elemental composition of bulk Earth.

  7. Combined effects of organic aerosol loading and fog processing on organic aerosols oxidation and composition

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhishek; Tripathi, Sachchida; Gupta, Tarun

    2016-04-01

    Fog is a natural meteorological phenomenon that occurs throughout the world, it contains substantial quantity of liquid water and generally seen as a natural cleansing agent but it also has the potential to form highly oxidized secondary organic aerosols (SOA) via aqueous processing of ambient aerosols. On the other hand higher organic aerosols (OA) loading tend to decrease the overall oxidation level (O/C) of the particle phase organics, due to enhanced partitioning of less oxidized organics from gas to particle phase. However, combined impact of these two parameters; aqueous oxidation and OA loading, on the overall oxidation ratio (O/C) of ambient OA has never been studied. To assess this, real time ambient sampling using HR-ToF-AMS was carried out at Kanpur, India from 15 December 2014 - 10 February 2015. In first 3 weeks of this campaign, very high OA loading is (134 ± 42 μg/m3) observed (termed as high loading or HL period) while loading is substantially reduced from 2nd January, 2016 (56 ± 20 μg/m3, termed as low loading or LL period) . However, both the loading period was affected by several fog episodes (10 in HL and 7 in LL), thus providing the opportunity of studying the combined effects of fog and OA loading on OA oxidation. It is found that O/C ratio is very strongly anti-correlated with OA loading in both the loading period, however, slope of this ant-correlation is much steep during HL period than in LL period. Source apportionment of OA revealed that there is drastic change in the types of OA from HL to LL period, clearly indicating difference in OA composition from HL to LL period. During foggy night continuous oxidation of OA is observed from early evening to early morning with 15-20% enhancement in O/C ratio, while the same is absent during non-foggy period, clearly indicating the efficient fog processing of ambient OA. It is also found that night time fog aqueous oxidation can be as effective as daytime photo chemistry in oxidation of OA. Fog

  8. VARIATION OF ELEMENT SPECIATION IN COAL COMBUSTION AEROSOLS WITH PARTICLE SIZE

    EPA Science Inventory

    The speciation of sulfur, iron and key trace elements (Cr, As, Se, Zn) in combustion ash aerosols has been examined as a function of size from experimental combustion units burning Utah and Illinois bituminous coals. Although predominantly present as sulfate, sulfur was also pre...

  9. Spectroscopic studies of the size and composition of single aerosol droplets

    NASA Astrophysics Data System (ADS)

    Reid, Jonathan P.; Meresman, Helena; Mitchem, Laura; Symes, Rachel

    The characterization of aerosol properties and processes, non-intrusively and directly, poses a severe analytical challenge. In order to understand the role of aerosols in often complex environments, it is necessary to probe the particles in situ and without perturbation. Sampling followed by end-of-line analysis can lead to perturbations in particle composition, morphology and size, particularly when analysing liquid aerosol droplets containing volatile components. Optical spectroscopy can provide a strategy for the direct assessment of particle size, composition and phase. We review here the application of linear and non-linear Raman spectroscopies in the characterization of liquid aerosol droplets. Spontaneous Raman scattering can allow the unambiguous identification of chemical components and the determination of droplet composition. Stimulated Raman spectroscopy can allow the determination of droplet size with nanometre accuracy and can allow the characterization of near-surface composition. When combined, the mixing state and homogeneity in droplet composition can be investigated. We highlight some applications of these spectroscopic techniques in studies of the kinetics of particle transformation, the equilibrium composition of aqueous aerosol droplets, and the coagulation and mixing state of organic and aqueous aerosol components. Specifically, we examine the heat and mass transfer accompanying the evaporation of volatile components from liquid droplets, the equilibrium size of aqueous/sodium chloride droplets with varying relative humidity, and the mixing of the immiscible decane and water components during droplet coagulation. We conclude by considering the potential of these techniques for improving our understanding of aerosol properties and processes.

  10. Regional PIXE facility at Chandigarh (India) and Trace Element Analysis of Aerosol and Bio-medical Samples

    NASA Astrophysics Data System (ADS)

    Govil, I. M.

    2009-03-01

    A regional Proton induced X-ray Emission (PIXE) facility is newly developed using 3 Mev Proton beam from Variable Energy Cyclotron, Panjab University, Chandigarh (India). A new target chamber has been designed to cater for Proton Induced Gamma Emission (PIGE) and Rutherford Back Scattering (RBS) along with PIXE measurements. The HPGe x-ray detector, the Ge (Li) gamma-ray detector and a silicon surface barrier (SSB) detector can be mounted simultaneously in the chamber for this purpose. A remotely controlled stepper motor is provided to move the target wheel holding 12/24 samples at a time. This facility is now routinely used for the detection of trace elements in the aerosol, medical and forensic science samples. The paper presents the analysis of Aerosol samples collected from highly polluted steel city of Mandi Govindgarh in Punjab state and relatively clean city of Jammu in Jammu & Kashmir region. The results from the analysis of these samples show some basic differences in the trace element profile of the two cities. The paper also describes the trace element analysis of fly ash in the vicinity of Ropar Thermal Power plant in Punjab. The scope of this study was to determine the concentration and composition of atmospheric particulate matter (PM) in the vicinity of coal-fired thermal power plants in India. The data taken for the Bio-medical samples are also discussed.

  11. Aerosol composition and variability in the Baltimore-Washington, DC region

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Ziemba, L. D.; Chen, G.; Corr, C. A.; Crawford, J. H.; Diskin, G. S.; Moore, R. H.; Thornhill, K. L.; Winstead, E. L.; Anderson, B. E.

    2015-08-01

    In order to utilize satellite-based aerosol measurements for the determination of air quality, the relationship between aerosol optical properties (wavelength-dependent, column-integrated extinction measured by satellites) and mass measurements of aerosol loading (PM2.5 used for air quality monitoring) must be understood. This connection varies with many factors including those specific to the aerosol type, such as composition, size and hygroscopicity, and to the surrounding atmosphere, such as temperature, relative humidity (RH) and altitude, all of which can vary spatially and temporally. During the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) project, extensive in-situ atmospheric profiling in the Baltimore, MD-Washington, DC region was performed during fourteen flights in July 2011. Identical flight plans and profile locations throughout the project provide meaningful statistics for determining the variability in and correlations between aerosol loading, composition, optical properties and meteorological conditions. Measured water-soluble aerosol mass was composed primarily of ammonium sulfate (campaign average of 32 %) and organics (57 %). A distinct difference in composition was observed with high-loading days having a proportionally larger percentage of ammonium sulfate (up to 49 %) due to transport from the Ohio River Valley. This composition shift caused a change in the aerosol water-uptake potential (hygroscopicity) such that higher relative contributions of ammonium sulfate increased the bulk aerosol hygroscopicity. These days also tended to have higher relative humidity causing an increase in the water content of the aerosol. Conversely, low aerosol loading days had lower ammonium sulfate and higher black carbon contributions causing lower single scattering albedos (SSAs). The average black carbon concentrations were 240 ng m-3 in the lowest 1 km decreasing to 35 ng m-3

  12. Organic composition of aerosols from controlled forest fires

    NASA Astrophysics Data System (ADS)

    Mirante, F.; Gonçalves, C.; Rocha, A. C.; Alves, C.; Evtyugina, M.; Nunes, T.; Pio, C.; Puxbaum, H.

    2009-04-01

    Controlled field fires were carried-out in May 2008 in the Gestosa area, in the upper zone of the Serra da Lousã mountain range in central Portugal. Particulate matter (PM2.5-10/PM2.5) in the smoke plume of these burnings has been sampled. A portion of the filters was analysed by a thermal-optical method to determine the elemental and organic carbon (EC and OC). The PM2.5 in the smoke plumes reached average levels up to 13,000 g.m-3. The total carbon in the coarse fraction concentration (PM2.5-10) was find to range between 49 and 331 µg.m-3. The elemental carbon represented less than 3% of the carbonaceous content in PM2.5-10 varying from 0.02 to 0.58 µg.m-3. The total carbon in the fine fraction (PM2.5) ranged between 295 and 6,126 µg.m-3. More than 95% of total carbon in PM2.5 is organic presenting concentrations between 0.42 and 0.94 µg.m-3. The particulate organic matter was then solvent extracted and fractionated by vacuum flash chromatography into 5 different classes of compounds whose structure were characterised by Gas Chromatography - Mass Spectrometry (GC-MS). The chromatographic results were dominated by odd -numbered alkanes and acids with and even number of carbon atoms. The organic speciation also enabled the quantification of specific molecular tracers (e.g. steradienes and amyryl-alkanoates) The carbon preference index (CPI) for higher plant waxes was 2.32 and is 12.19 for PM2.5 and PM2.5-10, respectively, indicating a major incorporation of recent biological components into aerosol samples. Sugar alcohols and anhydrosugars, which also represented a significant aerosol component, were analysed by HPLC with electrochemical (amperometric) detection. The Levoglucosan-to-mannosan ratio to this burnings carried out at shrub-dominated Mediterranean forest was 11.65, 6.09 for PM2.5-10 and PM10 respectively. This information could be conducive to source apportionment studies.

  13. Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications

    DOE PAGES

    Canagaratna, M. R.; Jimenez, J. L.; Kroll, J. H.; Chen, Q.; Kessler, S. H.; Massoli, P.; Hildebrandt Ruiz, L.; Fortner, E.; Williams, L. R.; Wilson, K. R.; et al

    2015-01-12

    Elemental compositions of organic aerosol (OA) particles provide useful constraints on OA sources, chemical evolution, and effects. The Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is widely used to measure OA elemental composition. This study evaluates AMS measurements of atomic oxygen-to-carbon (O : C), hydrogen-to-carbon (H : C), and organic mass-to-organic carbon (OM : OC) ratios, and of carbon oxidation state (OS C) for a vastly expanded laboratory data set of multifunctional oxidized OA standards. For the expanded standard data set, the method introduced by Aiken et al. (2008), which uses experimentally measured ion intensities at all ions to determinemore » elemental ratios (referred to here as "Aiken-Explicit"), reproduces known O : C and H : C ratio values within 20% (average absolute value of relative errors) and 12%, respectively. The more commonly used method, which uses empirically estimated H2O+ and CO+ ion intensities to avoid gas phase air interferences at these ions (referred to here as "Aiken-Ambient"), reproduces O : C and H : C of multifunctional oxidized species within 28 and 14% of known values. The values from the latter method are systematically biased low, however, with larger biases observed for alcohols and simple diacids. A detailed examination of the H2O+, CO+, and CO2+ fragments in the high-resolution mass spectra of the standard compounds indicates that the Aiken-Ambient method underestimates the CO+ and especially H2O+ produced from many oxidized species. Combined AMS–vacuum ultraviolet (VUV) ionization measurements indicate that these ions are produced by dehydration and decarboxylation on the AMS vaporizer (usually operated at 600 °C). Thermal decomposition is observed to be efficient at vaporizer temperatures down to 200 °C. These results are used together to develop an "Improved-Ambient" elemental analysis method for AMS spectra measured in air. The Improved-Ambient method uses specific ion

  14. Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications

    DOE PAGES

    Canagaratna, M. R.; Jimenez, J. L.; Kroll, J. H.; Chen, Q.; Kessler, S. H.; Massoli, P.; Hildebrandt Ruiz, L.; Fortner, E.; Williams, L. R.; Wilson, K. R.; et al

    2014-07-31

    Elemental compositions of organic aerosol (OA) particles provide useful constraints on OA sources, chemical evolution, and effects. The Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is widely used to measure OA elemental composition. This study evaluates AMS measurements of atomic oxygen-to-carbon (O : C), hydrogen-to-carbon (H : C), organic mass-to-organic carbon (OM : OC), and carbon oxidation state (OSC) for a vastly expanded laboratory dataset of multifunctional oxidized OA standards. For the expanded standard dataset, the "Aiken-Explicit" method (Aiken et al., 2008), which uses experimentally measured ion intensities at all ions to determine elemental ratios, reproduces known molecular O :more » C and H : C ratio values within 20% (average absolute value of relative errors) and 12% respectively. The more commonly used "Aiken-Ambient" method, which uses empirically estimated H2O+ and CO+ ion intensities to avoid gas phase air interferences at these ions, reproduces O : C and H : C of multifunctional oxidized species within 28% and 14% of known values. These values are systematically biased low, however, with larger biases observed for alcohols and simple diacids. A detailed examination of the H2O+, CO+, and CO2+ fragments in the high-resolution mass spectra of the standard compounds indicates that the Aiken-Ambient method underestimates the CO+ and H2O+ produced from many oxidized species. Combined AMS-vacuum ultraviolet (VUV) ionization measurements indicate that these ions are produced by dehydration and decarboxylation on the AMS vaporizer (usually operated at 600 °C). Thermal decomposition is observed to be efficient at vaporizer temperatures down to 200 °C. These results are used together to develop an "Improved-Ambient" elemental analysis method for AMS spectra measured in air. The Improved-Ambient method reduces the systematic biases and reproduces O : C (H : C) ratios of individual oxidized standards within 28% (13

  15. Ozone, Iodine, and MSA - Case studies in Antarctic aerosol composition from the 2ODIAC Campaign

    NASA Astrophysics Data System (ADS)

    Giordano, M.; Kalnajs, L.; Deshler, T.; Davis, S. M.; Johnson, A.; Slater, A. G.; Goetz, J. D.; Mukherjee, A. D.; DeCarlo, P. F.

    2015-12-01

    Aerosol generation and transport over the Polar Regions, and especially Antarctica, remains a source of uncertainty for geophysical scientists. A characterization of aerosol sources, production, and lifecycle processes in the Polar Regions is required to better understand the polar atmosphere. In an attempt to better characterize Antarctic aerosol and trace gas interactions, the Two-Season, Ozone Depletion and Interaction with Aerosols Campaign (2ODIAC) was launched over the Austral Spring/Summer of 2014 and Austral Winter of 2015. One highlight of the campaign is the first ever deployment of a high-resolution aerosol mass spectrometer to Antarctica. In conjunction with trace gas, meteorology, and aerosol sizing measurements, this presentation will focus on case studies from the campaign relevant to the atmospheric science community. Questions about the role of iodine, MSA, and ozone depletion events in regards to aerosol composition will be examined. Specific attention will be paid to aerosol compositional changes before, during, and after particle bursts especially where changes in aerosol sulfate oxidation occurred (SO2 -> SO4)

  16. Effects of aerosol sources and chemical compositions on cloud drop sizes and glaciation temperatures

    NASA Astrophysics Data System (ADS)

    Zipori, Assaf; Rosenfeld, Daniel; Tirosh, Ofir; Teutsch, Nadya; Erel, Yigal

    2015-09-01

    The effect of aerosols on cloud properties, such as its droplet sizes and its glaciation temperatures, depends on their compositions and concentrations. In order to examine these effects, we collected rain samples in northern Israel during five winters (2008-2011 and 2013) and determined their chemical composition, which was later used to identify the aerosols' sources. By combining the chemical data with satellite-retrieved cloud properties, we linked the aerosol types, sources, and concentrations with the cloud glaciation temperatures (Tg). The presence of dust increased Tg from -26°C to -12°C already at relatively low dust concentrations. This result is in agreement with the conventional wisdom that desert dust serves as good ice nuclei (INs). With higher dust concentrations, Tg saturated at -12°C, even though cloud droplet sizes decreased as a result of the cloud condensation nucleating (CCN) activity of the dust. Marine air masses also encouraged freezing, but in this case, freezing was enhanced by the larger cloud droplet sizes in the air masses (caused by low CCN concentrations) and not by IN concentrations or by aerosol type. An increased fraction of anthropogenic aerosols in marine air masses caused a decrease in Tg, indicating that these aerosols served as poor IN. Anthropogenic aerosols reduced cloud droplet sizes, which further decreased Tg. Our results could be useful in climate models for aerosol-cloud interactions, as we investigated the effects of aerosols of different sources on cloud properties. Such parameterization can simplify these models substantially.

  17. Volatility and composition of aerosols in tropical stratosphere and TTL over Biak, Indonesia

    NASA Astrophysics Data System (ADS)

    Hayashi, M.; Shibata, T.; Hara, K.; Hasebe, F.

    2014-12-01

    Number concentration and volatility of aerosols in the Tropical Tropopause Layer (TTL) over Biak (1.2 oS, 136.1 oE) were observed using balloon-borne dual optical particle counters (OPC) in January 2011, 2012, and 2013. One OPC observed number concentration of ambient aerosols and another OPC had an inlet with a thermo denuder, whose temperature were set at 100 to 300 oC, in order to observe volatility. The results suggest that major composition of aerosol change with altitude, from sulfate in upper troposphere to sulfuric acid in stratosphere through TTL region. The ratios of number concentrations of un-volatile aerosol, to those of ambient aerosol in sub-micrometer size range are few percent in stratosphere and several percent in TTL. In addition, un-volatile aerosol concentrations were similar to the concentration of ice particle in sub-visible cirrus.

  18. The formation of sulfate and elemental sulfur aerosols under varying laboratory conditions: implications for early earth.

    PubMed

    DeWitt, H Langley; Hasenkopf, Christa A; Trainer, Melissa G; Farmer, Delphine K; Jimenez, Jose L; McKay, Christopher P; Toon, Owen B; Tolbert, Margaret A

    2010-10-01

    The presence of sulfur mass-independent fractionation (S-MIF) in sediments more than 2.45 × 10(9) years old is thought to be evidence for an early anoxic atmosphere. Photolysis of sulfur dioxide (SO(2)) by UV light with λ < 220 nm has been shown in models and some initial laboratory studies to create a S-MIF; however, sulfur must leave the atmosphere in at least two chemically different forms to preserve any S-MIF signature. Two commonly cited examples of chemically different sulfur species that could have exited the atmosphere are elemental sulfur (S(8)) and sulfuric acid (H(2)SO(4)) aerosols. Here, we use real-time aerosol mass spectrometry to directly detect the sulfur-containing aerosols formed when SO(2) either photolyzes at wavelengths from 115 to 400 nm, to simulate the UV solar spectrum, or interacts with high-energy electrons, to simulate lightning. We found that sulfur-containing aerosols form under all laboratory conditions. Further, the addition of a reducing gas, in our experiments hydrogen (H(2)) or methane (CH(4)), increased the formation of S(8). With UV photolysis, formation of S(8) aerosols is highly dependent on the initial SO(2) pressure; and S(8) is only formed at a 2% SO(2) mixing ratio and greater in the absence of a reductant, and at a 0.2% SO(2) mixing ratio and greater in the presence of 1000 ppmv CH(4). We also found that organosulfur compounds are formed from the photolysis of CH(4) and moderate amounts of SO(2). The implications for sulfur aerosols on early Earth are discussed. Key Words: S-MIF-Archean atmosphere-Early Earth-Sulfur aerosols.

  19. Organic aerosol composition and sources in Pasadena, California, during the 2010 CalNex campaign

    NASA Astrophysics Data System (ADS)

    Hayes, P. L.; Ortega, A. M.; Cubison, M. J.; Froyd, K. D.; Zhao, Y.; Cliff, S. S.; Hu, W. W.; Toohey, D. W.; Flynn, J. H.; Lefer, B. L.; Grossberg, N.; Alvarez, S.; Rappenglück, B.; Taylor, J. W.; Allan, J. D.; Holloway, J. S.; Gilman, J. B.; Kuster, W. C.; Gouw, J. A.; Massoli, P.; Zhang, X.; Liu, J.; Weber, R. J.; Corrigan, A. L.; Russell, L. M.; Isaacman, G.; Worton, D. R.; Kreisberg, N. M.; Goldstein, A. H.; Thalman, R.; Waxman, E. M.; Volkamer, R.; Lin, Y. H.; Surratt, J. D.; Kleindienst, T. E.; Offenberg, J. H.; Dusanter, S.; Griffith, S.; Stevens, P. S.; Brioude, J.; Angevine, W. M.; Jimenez, J. L.

    2013-08-01

    Organic aerosols (OA) in Pasadena are characterized using multiple measurements from the California Research at the Nexus of Air Quality and Climate Change (CalNex) campaign. Five OA components are identified using positive matrix factorization including hydrocarbon-like OA (HOA) and two types of oxygenated OA (OOA). The Pasadena OA elemental composition when plotted as H : C versus O : C follows a line less steep than that observed for Riverside, CA. The OOA components from both locations follow a common line, however, indicating similar secondary organic aerosol (SOA) oxidation chemistry at the two sites such as fragmentation reactions leading to acid formation. In addition to the similar evolution of elemental composition, the dependence of SOA concentration on photochemical age displays quantitatively the same trends across several North American urban sites. First, the OA/ΔCO values for Pasadena increase with photochemical age exhibiting a slope identical to or slightly higher than those for Mexico City and the northeastern United States. Second, the ratios of OOA to odd-oxygen (a photochemical oxidation marker) for Pasadena, Mexico City, and Riverside are similar, suggesting a proportional relationship between SOA and odd-oxygen formation rates. Weekly cycles of the OA components are examined as well. HOA exhibits lower concentrations on Sundays versus weekdays, and the decrease in HOA matches that predicted for primary vehicle emissions using fuel sales data, traffic counts, and vehicle emission ratios. OOA does not display a weekly cycle—after accounting for differences in photochemical aging —which suggests the dominance of gasoline emissions in SOA formation under the assumption that most urban SOA precursors are from motor vehicles.

  20. Composition and major sources of organic compounds in urban aerosols

    NASA Astrophysics Data System (ADS)

    Bi, Xinhui; Simoneit, Bernd R. T.; Sheng, Guoying; Ma, Shexia; Fu, Jiamo

    Total suspended particles (TSP), collected during June 2002 to July 2003 in Guangzhou, a typical economically developed city in South China, were analyzed for the organic compound compositions using gas chromatography-mass spectrometry (GC/MS). Over 140 organic compounds were detected in the aerosols and grouped into different classes including n-alkanes, hopanoids, polycyclic aromatic hydrocarbons, alkanols, fatty acids, dicarboxylic acids excluding oxalic acid, polyols/polyacids, lignin products, phytosterols, phthalates and water-soluble sugars. The total amounts of the identified organic compounds including unresolved complex mixture (UCM) ranged from 3112 ng/m 3 in spring to 5116 ng/m 3 in winter, comprising on seasonal average 2.8% of TSP. Primary organic compounds peaked in winter although there are no heating systems burning fuels in Guangzhou. The highest saccharide levels occurred in fall due to agricultural activities. This study demonstrated that utilization of fossil fuels, biomass burning, soil resuspension and plastic/refuse burning are the major contributors to the identified organic compounds in the urban atmosphere of South China.

  1. The Composition of Droplet-Forming Aerosol as a Function of Supersaturation

    NASA Astrophysics Data System (ADS)

    Friedman, B.; Browne, E. C.; Ardon-Dryer, K.; Carrasquillo, A. J.; Daumit, K. E.; Boulanger, K.; Kroll, J. H.; Thornton, J. A.; Cziczo, D. J.

    2013-12-01

    Ambient aerosol measurements were conducted during February 2013 as part of the Department of Energy's Two Column Aerosol Project (TCAP). Located in North Truro, MA, the site provided access to a variety of air mass sources, including marine, continental, and aged urban outflow. A CCN closure study was conducted with measurements from a commercial Cloud Condensation Nuclei Counter (CCNC, Droplet Measurement Technologies) at a range of supersaturation conditions, as well as an Aerosol Mass Spectrometer (AMS, Aerodyne). Further measurements were conducted utilizing a Pumped Counterflow Virtual Impactor (PCVI) in order to separate the activated droplets, as a function of supersaturation, from un-activated aerosol at the output of the CCNC. Subsequent composition measurements of the droplet residuals were conducted with the AMS. High-resolution residual aerosol composition will be presented as a function of instrument supersaturation and air mass, and will be compared to the total ambient aerosol composition. Results indicate an enhancement of nitrate as well as compositional differences between the organic content of the un-activated aerosol and the droplet residuals. The advantages and disadvantages of the CCNC/PCVI/AMS instrumental setup will be discussed with a focus on how this new technique allows for an improvement in our understanding of warm cloud formation.

  2. Chemical composition of atmospheric aerosols between Moscow and Vladivostok

    NASA Astrophysics Data System (ADS)

    Kuokka, S.; Teinilä, K.; Saarnio, K.; Aurela, M.; Sillanpää, M.; Hillamo, R.; Kerminen, V.-M.; Vartiainen, E.; Kulmala, M.; Skorokhod, A. I.; Elansky, N. F.; Belikov, I. B.

    2007-05-01

    The TROICA-9 expedition (Trans-Siberian Observations Into the Chemistry of the Atmosphere) was carried out at the Trans-Siberian railway between Moscow and Vladivostok in October 2005. Measurements of aerosol physical and chemical properties were made from an observatory carriage connected to a passenger train. Black carbon (BC) concentrations in fine particles (PM2.5, aerodynamic diameter <2.5 μm) were measured with an aethalometer using a five-minute time resolution. Concentrations of inorganic ions and some organic compounds (Cl-, NO3-, SO42-, Na+, NH4+, K+, Ca2+, Mg2+, oxalate and methane sulphonate) were measured continuously by using an on-line system with a 15-min time resolution. In addition, particle volume size distributions were determined for particles in the diameter range 3-850 nm using a 10-min. time resolution. The continuous measurements were completed with 24-h. PM2.5 filter samples which were stored in a refrigerator and later analyzed in chemical laboratory. The analyses included mass concentrations of PM2.5, ions, monosaccharide anhydrides (levoglucosan, galactosan and mannosan) and trace elements (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sb, V and Zn). The mass concentrations of PM2.5 varied in the range of 4.3-34.8 μg m-3 with an average of 21.6 μg m-3. Fine particle mass consisted mainly of BC (average 27.6%), SO42- (13.0%), NH4+ (4.1%), and NO3- (1.4%). One of the major constituents was obviously also organic carbon which was not determined. The contribution of BC was high compared with other studies made in Europe and Asia. High concentrations of ions, BC and particle volume were observed between Moscow and roughly 4000 km east of it, as well as close to Vladivostok, primarily due to local anthropogenic sources. In the natural background area between 4000 and 7200 km distance from Moscow, observed concentrations were low, even though there were local particle sources, such as forest fires, that increased occasionally concentrations. The

  3. Identification of key aerosol populations through their size and composition resolved spectral scattering and absorption

    NASA Astrophysics Data System (ADS)

    Costabile, F.; Barnaba, F.; Angelini, F.; Gobbi, G. P.

    2013-03-01

    Characterizing chemical and physical aerosol properties is important to understand their sources, effects, and feedback mechanisms in the atmosphere. This study proposes a scheme to classify aerosol populations based on their spectral optical properties (absorption and scattering). The scheme is obtained thanks to the outstanding set of information on particle size and composition these properties contain. The spectral variability of the aerosol single scattering albedo (dSSA), and the extinction, scattering and absorption Angstrom exponents (EAE, SAE and AAE, respectively) were observed on the basis of two-year measurements of aerosol optical properties (scattering and absorption coefficients at blue, green and red wavelengths) performed in the suburbs of Rome (Italy). Optical measurements of various aerosol types were coupled to measurements of particle number size distributions and relevant optical properties simulations (Mie theory). These latter allowed the investigation of the role of the particle size and composition in the bulk aerosol properties observed. The combination of simulations and measurements suggested a general "paradigm" built on dSSA, SAE and AAE to optically classify aerosols. The paradigm proved suitable to identify the presence of key aerosol populations, including soot, biomass burning, organics, dust and marine particles. The work highlights that (i) aerosol populations show distinctive combinations of SAE and dSSA times AAE, these variables being linked by a linear inverse relation varying with varying SSA; (ii) fine particles show EAE > 1.5, whilst EAE < 2 is found for both coarse particles and ultrafine soot-rich aerosols; (iii) fine and coarse particles both show SSA > 0.8, whilst ultrafine urban Aitken mode and soot particles show SSA < 0.8. The proposed paradigm agrees with aerosol observations performed during past major field campaigns, this indicating that relations concerning the paradigm have a general validity.

  4. Aerosol measurements at a high-elevation site: composition, size, and cloud condensation nuclei activity

    SciTech Connect

    Friedman, Beth; Zelenyuk, Alla; Beranek, Josef; Kulkarni, Gourihar R.; Pekour, Mikhail S.; Hallar, Anna G.; McCubbin, Ian; Thornton, Joel A.; Cziczo, D. J.

    2013-12-09

    We present measurements of CCN concentrations and associated aerosol composition and size properties at a high-elevation research site in March 2011. CCN closure and aerosol hygroscopicity were assessed using simplified assumptions of bulk aerosol properties as well as a new method utilizing single particle composition and size to assess the importance of particle mixing state in CCN activation. Free troposphere analysis found no significant difference between the CCN activity of free tropospheric aerosol and boundary layer aerosol at this location. Closure results indicate that using only size and number information leads to adequate prediction, in the majority of cases within 50%, of CCN concentrations, while incorporating the hygroscopicity parameters of the individual aerosol components measured by single particle mass spectrometry adds to the agreement, in most cases within 20%, between predicted and measured CCN concentrations. For high-elevation continental sites, with largely aged aerosol and low amounts of local area emissions, a lack of chemical knowledge and hygroscopicity may not hinder models in predicting CCN concentrations. At sites influenced by fresh emissions or more heterogeneous particle types, single particle composition information may be more useful in predicting CCN concentrations and understanding the importance of particle mixing state on CCN activation.

  5. Time-resolved mass concentration, composition and sources of aerosol particles in a metropolitan underground railway station

    NASA Astrophysics Data System (ADS)

    Salma, Imre; Weidinger, Tamás; Maenhaut, Willy

    Aerosol samples were collected using a stacked filter unit (SFU) for PM10-2.0 and PM2.0 size fractions on the platform of a metropolitan underground railway station in downtown Budapest. Temporal variations in the PM10 mass concentration and wind speed and direction were determined with time resolutions of 30 and 4 s using a tapered-element oscillating microbalance (TEOM) and a wind monitor, respectively. Sample analysis involved gravimetry for particulate mass, and particle-induced X-ray emission spectrometry (PIXE) for elemental composition. Diurnal variation of the PM10 mass concentration exhibited two peaks, one at approximately 07:00 h and the other at approximately 17:00 h. The mean±SD PM10 mass concentration for working hours was 155±55 μg m -3. Iron, Mn, Ni, Cu, and Cr concentrations were higher than in outdoor air by factors between 5 and 20, showing substantial enrichment compared to both the average crustal rock composition and the average outdoor aerosol composition. Iron accounted for 40% and 46% of the PM10-2.0 and PM2.0 masses, respectively, and 72% of the PM10 mass was associated with the PM10-2.0 size fraction. The aerosol composition in the metro station (in particular the abundance of the metals mentioned above) is quite different from the average outdoor downtown composition. Mechanical wear and friction of electric conducting rails and bow sliding collectors, ordinary rails and wheels, as well as resuspension, were identified as the primary sources. Possible health implications based on comparison to various limit values and to data available for other underground railways are discussed.

  6. The Formation of Sulfate and Elemental Sulfur Aerosols Under Varying Laboratory Conditions: Implications for Early Earth

    NASA Technical Reports Server (NTRS)

    DeWitt, H. Langley; Hasenkopf, Christa A.; Trainer, Melissa G.; Farmer, Delphine K.; Jimenez, Jose L.; McKay, Christopher P.; Toon, Owen B.; Tolbert, Margaret A.

    2010-01-01

    The presence of sulfur mass-independent fractionation (S-MIF) in sediments more than 2.45 x 10(exp 9) years old is thought to be evidence for an early anoxic atmosphere. Photolysis of sulfur dioxide (SO2) by UV light with lambda < 220 nm has been shown in models and some initial laboratory studies to create a S-MIF; however, sulfur must leave the atmosphere in at least two chemically different forms to preserve any S-MIF signature. Two commonly cited examples of chemically different sulfur species that could have exited the atmosphere are elemental sulfur (S8) and sulfuric acid (H2S04) aerosols. Here, we use real-time aerosol mass spectrometry to directly detect the sulfur-containing aerosols formed when SO2 either photolyzes at wavelengths from 115 to 400 nm, to simulate the UV solar spectrum, or interacts with high-energy electrons, to simulate lightning. We found that sulfur-containing aerosols form under all laboratory conditions. Further, the addition of a reducing gas, in our experiments hydrogen (H2) or methane (CH4), increased the formation of S8. With UV photolysis, formation of S8 aerosols is highly dependent on the initial SO2 pressure; and S8 is only formed at a 2% SO2 mixing ratio and greater in the absence of a reductant, and at a 0.2% SO2 mixing ratio and greater in the presence of 1000 ppmv CH4. We also found that organosulfur compounds are formed from the photolysis of CH4 and moderate amounts of SO2, The implications for sulfur aerosols on early Earth are discussed.

  7. Aerosol light absorption, black carbon, and elemental carbon at the Fresno Supersite, California

    NASA Astrophysics Data System (ADS)

    Chow, Judith C.; Watson, John G.; Doraiswamy, Prakash; Chen, Lung-Wen Antony; Sodeman, David A.; Lowenthal, Douglas H.; Park, Kihong; Arnott, W. Patrick; Motallebi, Nehzat

    2009-08-01

    Particle light absorption ( bap), black carbon (BC), and elemental carbon (EC) measurements at the Fresno Supersite during the summer of 2005 were compared to examine the equivalency of current techniques, evaluate filter-based bap correction methods, and determine the EC mass absorption efficiency (σ ap) and the spectral dependence of bap. The photoacoustic analyzer (PA) was used as a benchmark for in-situ bap. Most bap measurement techniques were well correlated ( r ≥ 0.95). Unadjusted Aethalometer (AE) and Particle Soot Absorption Photometer (PSAP) bap were up to seven times higher than PA bap at similar wavelengths because of absorption enhancement by backscattering and multiple scattering. Applying published algorithms to correct for these effects reduced the differences to 24 and 17% for the AE and PSAP, respectively, at 532 nm. The Multi-Angle Absorption Photometer (MAAP), which accounts for backscattering effects, overestimated bap relative to the PA by 51%. BC concentrations determined by the AE, MAAP, and Sunset Laboratory semi-continuous carbon analyzer were also highly correlated ( r ≥ 0.93) but differed by up to 57%. EC measured with the IMPROVE/STN thermal/optical protocols, and the French two-step thermal protocol agreed to within 29%. Absorption efficiencies determined from PA bap and EC measured with different analytical protocols averaged 7.9 ± 1.5, 5.4 ± 1.1, and 2.8 ± 0.6 m 2/g at 532, 670, and 1047 nm, respectively. The Angström exponent (α) determined from adjusted AE and PA bap ranged from 1.19 to 1.46. The largest values of α occurred during the afternoon hours when the organic fraction of total carbon was highest. Significant biases associated with filter-based measurements of bap, BC, and EC are method-specific. Correcting for these biases must take into account differences in aerosol concentration, composition, and sources.

  8. Direct Observations of the Composition of Sub-20 Nanometer Ambient Aerosol

    NASA Astrophysics Data System (ADS)

    Moore, K. F.; Smith, J. N.; Eisele, F. L.; McMurry, P. H.

    2002-12-01

    Understanding new particle formation in the atmosphere depends upon many factors including detailed knowledge of their chemical composition. The chemical composition of sub-20 nanometer ambient aerosol particles, however, is typically inferred from observations of the aerosol behavior when subjected to varying conditions during sampling. Direct observations of aerosol chemical composition are usually limited to or dominated by larger particles of higher mass. Recently a new instrument has been developed - the Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS) - which can directly measure the chemical composition of sub-20 nanometer aerosol particles. Briefly, the front end of the TDCIMS functions as an electrostatic precipitator using a strong electric field to collect charged aerosol particles onto a sample wire. After volatilization by heating, the component species of the collected particles are subjected to chemical ionization prior to introduction into the mass spectrometer for analysis. Detection limits on the order of picograms permit sample collection periods as small as five minutes for ambient aerosol concentrations providing near "real-time" resolution. For selected periods from April through June 2002, we used the TDCIMS to measure the chemical composition of ambient aerosol for the first time. We investigated both the positive and negative ion spectrums produced by sub-20 nanometer ambient aerosol particles at the National Center for Atmospheric Research in Boulder, Colorado. Principal species identified include ammonium, sulfate and nitrate although additional peaks consistent with particle-phase origin were readily observed. Diurnal concentration profiles appear to be present and the relative proportion of sulfate and nitrate to each other can vary appreciably over several hours and between days. Validation of the TDCIMS' performance and the interpretation of its results will also be discussed.

  9. Monitoring and tracking the trans-Pacific transport of aerosols using multi-satellite aerosol optical depth composites

    NASA Astrophysics Data System (ADS)

    Naeger, Aaron R.; Gupta, Pawan; Zavodsky, Bradley T.; McGrath, Kevin M.

    2016-06-01

    The primary goal of this study was to generate a near-real time (NRT) aerosol optical depth (AOD) product capable of providing a comprehensive understanding of the aerosol spatial distribution over the Pacific Ocean, in order to better monitor and track the trans-Pacific transport of aerosols. Therefore, we developed a NRT product that takes advantage of observations from both low-earth orbiting and geostationary satellites. In particular, we utilize AOD products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) satellites. Then, we combine these AOD products with our own retrieval algorithms developed for the NOAA Geostationary Operational Environmental Satellite (GOES-15) and Japan Meteorological Agency (JMA) Multi-functional Transport Satellite (MTSAT-2) to generate a NRT daily AOD composite product. We present examples of the daily AOD composite product for a case study of trans-Pacific transport of Asian pollution and dust aerosols in mid-March 2014. Overall, the new product successfully tracks this aerosol plume during its trans-Pacific transport to the west coast of North America as the frequent geostationary observations lead to a greater coverage of cloud-free AOD retrievals equatorward of about 35° N, while the polar-orbiting satellites provide a greater coverage of AOD poleward of 35° N. However, we note several areas across the domain of interest from Asia to North America where the GOES-15 and MTSAT-2 retrieval algorithms can introduce significant uncertainties into the new product.

  10. Molecular composition of aged secondary organic aerosol generated from a mixture of biogenic volatile compounds using ultrahigh resolution mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kourtchev, I.; Doussin, J.-F.; Giorio, C.; Mahon, B.; Wilson, E. M.; Maurin, N.; Pangui, E.; Venables, D. S.; Wenger, J. C.; Kalberer, M.

    2015-02-01

    Field observations over the past decade indicate that a significant fraction of organic aerosol in remote areas may contain highly oxidised molecules. Aerosol processing or further oxidation (ageing) of organic aerosol has been suggested to be responsible for their formation through heterogeneous uptake of oxidants and multigenerational oxidation of vapours by OH radicals. In this study we investigated the influence of several ageing processes on the molecular composition of secondary organic aerosols (SOA) using direct infusion and liquid chromatography ultrahigh resolution mass spectrometry. SOA was formed in simulation chamber experiments from ozonolysis of a mixture of four biogenic volatile organic compounds (BVOC): α-pinene, β-pinene, Δ3-carene and isoprene. The SOA was subsequently aged under three different sets of conditions: in the dark in the presence of residual ozone, with UV irradiation and OH radicals, and using UV light only. Among all studied conditions, only OH radical-initiated ageing was found to influence the molecular composition of the aerosol and showed an increase in carbon oxidation state (OSC) and elemental O/C ratios of the SOA components. None of the ageing processes produced an observable effect on the oligomers formed from ozonolysis of the BVOC mixture, which were found to be equally abundant in both "fresh" and "aged" SOA. Additional experiments using α-pinene as the sole precursor demonstrated that oligomers are an important group of compounds in SOA produced from both ozonolysis and OH radical-initiated oxidation processes; however, a completely different set of oligomers is formed under these two oxidation regimes. SOA from the OH radical-initiated α-pinene oxidation had a significantly higher overall OSC and O/C compared to that from pure ozonolysis experiments confirming that the OH radical reaction is more likely to be responsible for the occurrence of highly oxidised species in ambient biogenic SOA.

  11. Organic Aerosol Composition Measurements at the DOE Atmospheric Radiation Measurement Sites

    NASA Astrophysics Data System (ADS)

    Parworth, C. L.; Zhang, Q.; Fast, J. D.; Shippert, T.; Sivaraman, C.; Mei, F.; Tilp, A.

    2012-12-01

    Organic aerosol (OA) makes up a large portion of aerosols in the atmosphere. A better understanding of the chemical composition of OA is needed to quantify the effects that aerosols have on radiation and clouds. OA is composed of thousands of species making its chemical and physical properties difficult to characterize. The complex composition of OA can be decomposed into several factors representative of distinct sources and evolution processes through the application of Positive Matrix Factorization (PMF) on ambient OA data acquired with aerosol mass spectrometers (AMS). Previous studies have shown that the OA factors thus determined can be particularly useful for closure studies on aerosol optical and cloud condensation properties. Three units of Aerosol Chemical Speciation Monitor (ACSM) were recently added to two long-term measurement sites (Tropical Western Pacific and Southern Great Plains) and a mobile facility supported by the DOE ARM program. An ACSM is a smaller version of an AMS that provides long term, continuous measurements of aerosols and requires low maintenance. In this presentation, we will report the development of methods that take measurements of total organic matter and mass spectral information from the ACSM and derive OA factors. We will describe how the OA factors are derived, the quality assurance (QA) procedures, and comparisons of side-by-side measurements from AMS and ACSM instruments. The code generated in this analysis will be run within the Data Management Facility of ARM and the new data product called the Organic Aerosol Composition (Oacomp) value-added product will be added to the ARM archive. We will also present data from over a year-long period from the SGP site, along with an analysis that explains the seasonal and multi-day variations in inorganic and organic aerosol components.

  12. Composition and Characteristics of Aerosols in the Southern High Plains of Texas (USA)

    SciTech Connect

    Gill, Thomas E.; Stout, John E.; Peinado, Porfirio

    2009-03-10

    Aerosol samples on polycarbonate filters were collected daily for several years in the Southern High Plains region of western Texas. Selected samples representing a variety of size modes, locations, and air quality conditions were analyzed by PIXE. Silicon and other crustal elements dominated during dust storms and in the coarse mode; sulfur dominated during anthropogenic pollution episodes and in the fine mode. A mixture of both aerosol types was present even during 'clear' conditions. The Al/Si ratio in dust events increases with wind speed. These data provide an initial assessment of aerosol chemistry in the West Texas plains.

  13. The impact of relative humidity on aerosol composition and evolution processes during wintertime in Beijing, China

    NASA Astrophysics Data System (ADS)

    Sun, Yele; Wang, Zifa; Fu, Pingqing; Jiang, Qi; Yang, Ting; Li, Jie; Ge, Xinlei

    2013-10-01

    Non-refractory submicron aerosol (NR-PM1) species measured by an Aerodyne Aerosol Chemical Speciation Monitor (ACSM) along with collocated gaseous species are used to investigate the impacts of relative humidity (RH) on aerosol composition and evolution processes during wintertime in Beijing, China. Aerosol species exhibit strong, yet different RH dependence between low and high RH levels. At low RH levels (<50%), all aerosol species increase linearly as a function of RH, among which organics present the largest mass increase rate at 11.4 μg m-3/10% RH. Because the particle liquid water predicted by E-AIM model is very low and the temperature is relatively constant, the enhancement of aerosol species is primarily due to the decrease of wind speed. While the rates of increase for most aerosol species are reduced at high RH levels (>50%), sulfate presents an even faster increasing rate, indicating the significant impact of liquid water on sulfate production. The RH dependence of organic aerosol (OA) components is also quite different. Among OA components, coal combustion OA (CCOA) presents the largest enhancement in both mass concentration and contribution as a function of RH. Our results elucidate the important roles of liquid water in aerosol processing at elevated RH levels, in particular affecting sulfate and CCOA via aqueous-phase reaction and gas-particle partitioning associated with water uptake, respectively. It is estimated that aqueous-phase processing can contribute more than 50% of secondary inorganic species production along with an increase of aerosol particle acidity during the fog periods. However, it appears not to significantly enhance secondary organic aerosol (SOA) formation and the oxidation degree of OA.

  14. Preliminary Results of Aerosol Chemical Composition Measurements in the Gulf of Maine with an Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Middlebrook, A. M.; Canagaratna, M. R.; Worsnop, D. R.

    2002-12-01

    The New England Air Quality Study is a multi-institutional research project to improve understanding of the atmospheric processes that control the production and distribution of air pollutants in the New England region. During July-August, 2002 a large, collaborative, intensive period of atmospheric measurement and model comparisons took place. As part of this study, an Aerosol Mass Spectrometer (AMS) was deployed aboard the NOAA ship RONALD H. BROWN in the Gulf of Maine. The AMS measures semi-volatile components of aerosol particles with aerodynamic diameters between roughly 40 and 1500 nm. During this study, the AMS collected 2-minute averaged particle mass spectra as well as speciated organic, sulfate, and nitrate size distributions. Sodium chloride, sodium sulfate, and sodium nitrate components of the aerosol, which are relatively non-volatile at the AMS heater temperature, were not detected with the AMS. A wide variety of air masses were sampled during the intensive period, including clean marine, clean continental, and polluted continental air masses. In general, the volatile particle composition was mostly organic and sulfate with lesser amounts of nitrate. Furthermore, particle mass loadings typically peaked around 400-600 nm in aerodynamic diameter. Several events with high aerosol organic, sulfate, and/or nitrate mass loadings were observed and the atmospheric processes that cause them will be discussed.

  15. Response of aerosol composition to different emission scenarios in Beijing, China.

    PubMed

    Zhang, Yingjie; Sun, Yele; Du, Wei; Wang, Qingqing; Chen, Chen; Han, Tingting; Lin, Jian; Zhao, Jian; Xu, Weiqi; Gao, Jian; Li, Jie; Fu, Pingqing; Wang, Zifa; Han, Yongxiang

    2016-11-15

    Understanding the response of aerosol chemistry to different emission scenarios is of great importance for air pollution mitigating strategies in megacities. Here we investigate the variations in air pollutants under three different emission scenarios, i.e., heating season, spring festival holiday and non-heating season using aerosol composition and gaseous measurements from 2 February to 1 April 2015 along with source apportionment and FLEXPART analysis in Beijing. Our results showed substantially different aerosol composition among three emission scenarios that is primarily caused by different emission sources. All aerosol and gas species showed ubiquitously higher concentrations in heating season than non-heating season with the largest enhancement for fossil OA (FOA) and chloride. On average, the particulate matter (PM) level in winter heating season can be enhanced by 70% due to coal combustion emissions. In contrast, cooking aerosols and traffic related species showed significant reductions as a response of reduced anthropogenic activities during the spring festival holiday, sulfate and secondary organic aerosol (SOA) however even increased due to enhanced aqueous-phase production. Such compensating effects resulted in small changes in PM levels for haze episodes during the holiday period despite reduced anthropogenic emissions. Our results have significant implications that local emission controls during winter severe pollution episodes can reduce primary aerosols substantially, but the mitigating effects can be significantly suppressed by enhanced secondary formation under stagnant meteorological conditions. PMID:27425439

  16. Aerosol Optical Properties Measured Onboard the Ronald H. Brown During ACE Asia as a Function of Aerosol Chemical Composition and Source Region

    NASA Technical Reports Server (NTRS)

    Quinn, P. K.; Coffman, D. J.; Bates, T. S.; Welton, E. J.; Covert, D. S.; Miller, T. L.; Johnson, J. E.; Maria, S.; Russell, L.; Arimoto, R.

    2004-01-01

    During the ACE Asia intensive field campaign conducted in the spring of 2001 aerosol properties were measured onboard the R/V Ronald H. Brown to study the effects of the Asian aerosol on atmospheric chemistry and climate in downwind regions. Aerosol properties measured in the marine boundary layer included chemical composition; number size distribution; and light scattering, hemispheric backscattering, and absorption coefficients. In addition, optical depth and vertical profiles of aerosol 180 deg backscatter were measured. Aerosol within the ACE Asia study region was found to be a complex mixture resulting from marine, pollution, volcanic, and dust sources. Presented here as a function of air mass source region are the mass fractions of the dominant aerosol chemical components, the fraction of the scattering measured at the surface due to each component, mass scattering efficiencies of the individual components, aerosol scattering and absorption coefficients, single scattering albedo, Angstrom exponents, optical depth, and vertical profiles of aerosol extinction. All results except aerosol optical depth and the vertical profiles of aerosol extinction are reported at a relative humidity of 55 +/- 5%. An over-determined data set was collected so that measured and calculated aerosol properties could be compared, internal consistency in the data set could be assessed, and sources of uncertainty could be identified. By taking into account non-sphericity of the dust aerosol, calculated and measured aerosol mass and scattering coefficients agreed within overall experimental uncertainties. Differences between measured and calculated aerosol absorption coefficients were not within reasonable uncertainty limits, however, and may indicate the inability of Mie theory and the assumption of internally mixed homogeneous spheres to predict absorption by the ACE Asia aerosol. Mass scattering efficiencies of non-sea salt sulfate aerosol, sea salt, submicron particulate organic

  17. A Shear Deformable Shell Element for Laminated Composites

    NASA Technical Reports Server (NTRS)

    Chao, W. C.; Reddy, J. N.

    1984-01-01

    A three-dimensional element based on the total Lagrangian description of the motion of a layered anisotropic composite medium is developed, validated, and used to analyze layered composite shells. The element contains the following features: geometric nonlinearity, dynamic (transient) behavior, and arbitrary lamination scheme and lamina properties. Numerical results of nonlinear bending, natural vibration, and transient response are presented to illustrate the capabilities of the element.

  18. Elemental composition of background soils from Arches National Park, Utah

    SciTech Connect

    Gladney, E.S.; Ferenbaugh, R.W. ); Belnap, J. )

    1993-05-01

    Background elemental data on soil composition at Arches National Park are reported. The enrichment factor analysis of the soil data from Arches National Park provides some interpretation of the current elemental status of soils at the park. These data provide a basis for determining changes in elemental enrichment status in the future.

  19. The impacts of aerosol loading, composition, and water uptake on aerosol extinction variability in the Baltimore-Washington, D.C. region

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Ziemba, L. D.; Chen, G.; Corr, C. A.; Crawford, J. H.; Diskin, G. S.; Moore, R. H.; Thornhill, K. L.; Winstead, E. L.; Anderson, B. E.

    2016-01-01

    In order to utilize satellite-based aerosol measurements for the determination of air quality, the relationship between aerosol optical properties (wavelength-dependent, column-integrated extinction measured by satellites) and mass measurements of aerosol loading (PM2.5 used for air quality monitoring) must be understood. This connection varies with many factors including those specific to the aerosol type - such as composition, size, and hygroscopicity - and to the surrounding atmosphere, such as temperature, relative humidity (RH), and altitude, all of which can vary spatially and temporally. During the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) project, extensive in situ atmospheric profiling in the Baltimore, MD-Washington, D.C. region was performed during 14 flights in July 2011. Identical flight plans and profile locations throughout the project provide meaningful statistics for determining the variability in and correlations between aerosol loading, composition, optical properties, and meteorological conditions. Measured water-soluble aerosol mass was composed primarily of ammonium sulfate (campaign average of 32 %) and organics (57 %). A distinct difference in composition was observed, with high-loading days having a proportionally larger percentage of sulfate due to transport from the Ohio River Valley. This composition shift caused a change in the aerosol water-uptake potential (hygroscopicity) such that higher relative contributions of inorganics increased the bulk aerosol hygroscopicity. These days also tended to have higher relative humidity, causing an increase in the water content of the aerosol. Conversely, low-aerosol-loading days had lower sulfate and higher black carbon contributions, causing lower single-scattering albedos (SSAs). The average black carbon concentrations were 240 ng m-3 in the lowest 1 km, decreasing to 35 ng m-3 in the free troposphere (above

  20. Finite element microscopic stress analysis of cracked composite systems

    NASA Technical Reports Server (NTRS)

    Ko, W. L.

    1978-01-01

    This paper considers the stress concentration problems of two types of cracked composite systems: (1) a composite system with a broken fiber (a penny-shaped crack problem), and (2) a composite system with a cracked matrix (an annular crack problem). The cracked composite systems are modeled with triangular and trapezoidal ring finite elements. Using NASTRAN (NASA Structural Analysis) finite element computer program, the stress and deformation fields in the cracked composite systems are calculated. The effect of fiber-matrix material combination on the stress concentrations and on the crack opening displacements is studied.

  1. A model for studying the composition and chemical effects of stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Tabazadeh, Azadeh; Turco, Richard P.; Jacobson, Mark Z.

    1994-01-01

    We developed polynomial expressions for the temperature dependence of the mean binary and water activity coefficients for H2SO4 and HNO3 solutions. These activities were used in an equilibrium model to predict the composition of stratospheric aerosols under a wide range of environmental conditions. For typical concentrations of H2O, H2SO4, HNO3, HCl, HBr, HF, and HOCl in the lower stratosphere, the aerosol composition is estimated as a function of the local temperature and the ambient relative humidity. For temperatures below 200 K, our results indicate that (1) HNO3 contributes a significant mass fraction to stratospheric aerosols, and (2) HCl solubility is considerably affected by HNO3 dissolution into sulfate aerosols. We also show that, in volcanically disturbed periods, changes in stratospheric aerosol composition can significantly alter the microphysics that leads to the formation of polar stratospheric clouds. The effects caused by HNO3 dissolution on the physical and chemical properties of stratospheric aerosols are discussed.

  2. Real-Time Characterization of Aerosol Particle Composition above the Urban Canopy in Beijing: Insights into the Interactions between the Atmospheric Boundary Layer and Aerosol Chemistry.

    PubMed

    Sun, Yele; Du, Wei; Wang, Qingqing; Zhang, Qi; Chen, Chen; Chen, Yong; Chen, Zhenyi; Fu, Pingqing; Wang, Zifa; Gao, Zhiqiu; Worsnop, Douglas R

    2015-10-01

    Despite extensive efforts into the characterization of air pollution during the past decade, real-time characterization of aerosol particle composition above the urban canopy in the megacity Beijing has never been performed to date. Here we conducted the first simultaneous real-time measurements of aerosol composition at two different heights at the same location in urban Beijing from December 19, 2013 to January 2, 2014. The nonrefractory submicron aerosol (NR-PM1) species were measured in situ by a high-resolution aerosol mass spectrometer at near-ground level and an aerosol chemical speciation monitor at 260 m on a 325 m meteorological tower in Beijing. Secondary aerosol showed similar temporal variations between ground level and 260 m, whereas much weaker correlations were found for the primary aerosol. The diurnal evolution of the ratios and correlations of aerosol species between 260 m and the ground level further illustrated a complex interaction between vertical mixing processes and local source emissions on aerosol chemistry in the atmospheric boundary layer. As a result, the aerosol compositions at the two heights were substantially different. Organic aerosol (OA), mainly composed of primary OA (62%), at the ground level showed a higher contribution to NR-PM1 (65%) than at 260 m (54%), whereas a higher concentration and contribution (15%) of nitrate was observed at 260 m, probably due to the favorable gas-particle partitioning under lower temperature conditions. In addition, two different boundary layer structures were observed, each interacting differently with the evolution processes of aerosol chemistry.

  3. Real-Time Characterization of Aerosol Particle Composition above the Urban Canopy in Beijing: Insights into the Interactions between the Atmospheric Boundary Layer and Aerosol Chemistry.

    PubMed

    Sun, Yele; Du, Wei; Wang, Qingqing; Zhang, Qi; Chen, Chen; Chen, Yong; Chen, Zhenyi; Fu, Pingqing; Wang, Zifa; Gao, Zhiqiu; Worsnop, Douglas R

    2015-10-01

    Despite extensive efforts into the characterization of air pollution during the past decade, real-time characterization of aerosol particle composition above the urban canopy in the megacity Beijing has never been performed to date. Here we conducted the first simultaneous real-time measurements of aerosol composition at two different heights at the same location in urban Beijing from December 19, 2013 to January 2, 2014. The nonrefractory submicron aerosol (NR-PM1) species were measured in situ by a high-resolution aerosol mass spectrometer at near-ground level and an aerosol chemical speciation monitor at 260 m on a 325 m meteorological tower in Beijing. Secondary aerosol showed similar temporal variations between ground level and 260 m, whereas much weaker correlations were found for the primary aerosol. The diurnal evolution of the ratios and correlations of aerosol species between 260 m and the ground level further illustrated a complex interaction between vertical mixing processes and local source emissions on aerosol chemistry in the atmospheric boundary layer. As a result, the aerosol compositions at the two heights were substantially different. Organic aerosol (OA), mainly composed of primary OA (62%), at the ground level showed a higher contribution to NR-PM1 (65%) than at 260 m (54%), whereas a higher concentration and contribution (15%) of nitrate was observed at 260 m, probably due to the favorable gas-particle partitioning under lower temperature conditions. In addition, two different boundary layer structures were observed, each interacting differently with the evolution processes of aerosol chemistry. PMID:26348650

  4. Molecular composition of biogenic secondary organic aerosols using ultrahigh resolution mass spectrometry: linking laboratory and field studies

    NASA Astrophysics Data System (ADS)

    Kourtchev, Ivan; Fuller, Stephen; Aalto, Juho; Healy, Robert; Alfara, Rami; Ruuskanen, Taina; Wenger, John; McFiggans, Gordon; Kulmala, Markku; Kalberer, Markus

    2013-04-01

    Biogenic volatile organic compounds (BVOCs) play an important role in atmospheric chemistry and give rise to secondary organic aerosols (SOA), which have effects on climate and human health. Laboratory chamber experiments have been performed during several decades in an attempt to mimic atmospheric SOA formation. However, it is still unclear how close the aerosol particles generated in laboratory experiments resemble atmospheric SOA with respect to their detailed chemical composition. To date, most laboratory experiments have been performed using a single organic precursor (e.g., alpha- or beta-pinene, isoprene) while in the atmosphere a wide range of precursors contribute to SOA, which results most likely in a more complex SOA composition compared to the one-precursor laboratory systems. The objective of this work is to compare laboratory generated SOA from oxidation of BVOCs mixtures and remote ambient samples using ultrahigh-resolution mass spectrometry (UHR-MS) that allows detection of hundreds of individual SOA constituents. We examined aerosol samples from a boreal forest site, Hyytiälä, Finland and determined that a dominant fraction of the detected compounds are reaction products of a multi-component mixture of BVOCs. In the subsequent smog chamber experiments, SOA was generated from the ozonolysis and OH initiated reactions with BVOC mixtures containing species (alpha- and beta-pinene, delta-3-carene, and isoprene) that are most abundant in Hyytiälä's environment. The laboratory experiments were performed at conditions (e.g., RH, aerosol seed, and VOC ratios) that would resemble those at the boreal sampling site during the summer period. The elemental composition of the complex mixtures from laboratory generated SOA samples were compared with field samples using statistical data analysis methods.

  5. Composite hydrogen separation element and module

    DOEpatents

    Edlund, David J.; Newbold, David D.; Frost, Chester B.

    1997-01-01

    There are disclosed improvements in multicomponent composite metal membranes useful for the separation of hydrogen, the improvements comprising the provision of at least one common-axis hole through all components of the composite membrane and the provision of a gas-tight seal around the periphery of the hole or holes through a coating metal layer of the membrane.

  6. Composite hydrogen separation element and module

    DOEpatents

    Edlund, D.J.; Newbold, D.D.; Frost, C.B.

    1997-07-08

    There are disclosed improvements in multicomponent composite metal membranes useful for the separation of hydrogen, the improvements comprising the provision of at least one common-axis hole through all components of the composite membrane and the provision of a gas-tight seal around the periphery of the hole or holes through a coating metal layer of the membrane. 11 figs.

  7. Aerosol Size and Chemical Composition in the Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Chang, R. Y. W.; Hayes, P. L.; Leaitch, W. R.; Croft, B.; O'Neill, N. T.; Fogal, P.; Drummond, J. R.; Sloan, J. J.

    2015-12-01

    Arctic aerosol have a strong annual cycle, with winter months dominated by long range transport from lower latitudes resulting in high mass loadings. Conversely, local emissions are more prominent in the summer months because of the decreased influence of transported aerosol, allowing us to regularly observe both transported and local aerosol. This study will present observations of aerosol chemical composition and particle number size distribution collected at the Polar Environment Artic Research Laboratory and the Alert Global Atmospheric Watch Observatory at Eureka (80N, 86W) and Alert (82N, 62W), Nunavut, respectively. Summer time observations of the number size distribution reveal a persistent mode of particles centered between 30-50 nm, with occasional bursts of smaller particles. The non-refractory aerosol chemical composition, measured by the Canadian Network for the Detection of Atmospheric Change quadrupole aerosol mass spectrometer, is primarily organic, with contributions from both aged and fresher organic aerosol. Factor analysis will be conducted to better understand these sources. The site at Eureka is more susceptible to long range transport since it is at the top of a mountain ridge (610 m above sea level) and will be compared to the site at Alert on an elevated plain (200 m above sea level). This will allow us to determine the relative contributions from processes and sources at the sites at different elevations. Comparisons with aerosol optical depth and GEOS-Chem model output will also be presented to put these surface measurements into context with the overlying and regional atmosphere. Results from this study contribute to our knowledge of aerosol in the high Arctic.

  8. Optical properties and chemical composition of aerosol particles at an urban location: An estimation of the aerosol mass scattering and absorption efficiencies

    NASA Astrophysics Data System (ADS)

    Titos, G.; Foyo-Moreno, I.; Lyamani, H.; Querol, X.; Alastuey, A.; Alados-Arboledas, L.

    2012-02-01

    We investigated aerosol optical properties, mass concentration and chemical composition over a 1 year period (from March 2006 to February 2007) at an urban site in Southern Spain (Granada, 37.18°N, 3.58°W, 680 m above sea level). Light-scattering and absorption measurements were performed using an integrating nephelometer and a MultiAngle Absorption Photometer (MAAP), respectively, with no aerosol size cut-off and without any conditioning of the sampled air. PM10 and PM1 (ambient air levels of atmospheric particulate matter finer than 10 and 1 microns) were collected with two high volume samplers, and the chemical composition was investigated for all samples. Relative humidity (RH) within the nephelometer was below 50% and the weighting of the filters was also at RH of 50%. PM10 and PM1 mass concentrations showed a mean value of 44 ± 19 μg/m3 and 15 ± 7 μg/m3, respectively. The mineral matter was the major constituent of the PM10-1 fraction (contributing more than 58%) whereas organic matter and elemental carbon (OM+EC) contributed the most to the PM1 fraction (around 43%). The absorption coefficient at 550 nm showed a mean value of 24 ± 9 Mm-1 and the scattering coefficient at 550 nm presented a mean value of 61 ± 25 Mm-1, typical of urban areas. Both the scattering and the absorption coefficients exhibited the highest values during winter and the lowest during summer, due to the increase in the anthropogenic contribution and the lower development of the convective mixing layer during winter. A very low mean value of the single scattering albedo of 0.71 ± 0.07 at 550 nm was calculated, suggesting that urban aerosols in this site contain a large fraction of absorbing material. Mass scattering and absorption efficiencies of PM10 particles exhibited larger values during winter and lower during summer, showing a similar trend to PM1 and opposite to PM10-1. This seasonality is therefore influenced by the variations on PM composition. In addition, the mass

  9. Laboratory analogues simulating Titan's atmospheric aerosols: Compared chemical compositions of grains and thin films

    NASA Astrophysics Data System (ADS)

    Carrasco, Nathalie; Jomard, François; Vigneron, Jackie; Etcheberry, Arnaud; Cernogora, Guy

    2016-09-01

    Two sorts of solid organic samples can be produced in laboratory experiments simulating Titan's atmospheric reactivity: grains in the volume and thin films on the reactor walls. We expect that grains are more representative of Titan's atmospheric aerosols, but films are used to provide optical indices for radiative models of Titan's atmosphere. The aim of the present study is to address if these two sorts of analogues are chemically equivalent or not, when produced in the same N2-CH4 plasma discharge. The chemical compositions of both these materials are measured by using elemental analysis, XPS analysis and Secondary Ion Mass Spectrometry. The main parameter probed is the CH4/N2 ratio to explore various possible chemical regimes. We find that films are homogeneous but significantly less rich in nitrogen and hydrogen than grains produced in the same experimental conditions. This surprising difference in their chemical compositions could be explained by the efficient etching occurring on the films, which stay in the discharge during the whole plasma duration, whereas the grains are ejected after a few minutes. The higher nitrogen content in the grains possibly involves a higher optical absorption than the one measured on the films, with a possible impact on Titan's radiative models.

  10. Aerosol assisted chemical vapour deposition of Cu-ZnO composite from single source precursors.

    PubMed

    Shahid, Muhammad; Mazhar, Muhammad; Hamid, Mazhar; O'Brien, Paul; Malik, Mohammad A; Helliwell, Madeleine; Raftery, James

    2009-07-28

    Two heterobimetallic precursors [Zn(TFA)3(micro-OH)Cu3(dmae)3Cl].THF (1) and [Zn(TFA)4Cu3(dmae)4] (2) [dmae=N,N-dimethylaminoethanolate and TFA=trifluoroacetate], have been synthesized and characterized by their melting points, elemental analysis, FT-IR spectroscopy, mass spectrometry, TGA and single crystal X-ray diffraction methods. Both complexes were used to deposit thin films of Cu-ZnO composite on glass substrates by aerosol assisted chemical vapor deposition (AACVD) method. The films were characterized by "scotch tape" test for adhesion, thickness measurement as a function of temperature, EDX for composition, SEM for surface morphology and XRD for crystalline phases. Thin film deposition studies at 250, 325, 400, 475 degrees C indicated the increase in thickness with temperature reaching a maximum at 400 degrees C and then decreasing. EDX and PXRD results showed the uniform distribution of cubic metallic copper and hexagonal zinc oxide phases which make them useful for nanocatalysis on structured surfaces. PMID:19587992

  11. Molecular composition of biogenic secondary organic aerosols using ultrahigh resolution mass spectrometry: comparing laboratory and field studies

    NASA Astrophysics Data System (ADS)

    Kourtchev, I.; Fuller, S. J.; Giorio, C.; Healy, R. M.; Wilson, E.; O'Connor, I. P.; Wenger, J. C.; McLeod, M.; Aalto, J.; Ruuskanen, T. M.; Maenhaut, W.; Jones, R.; Venables, D. S.; Sodeau, J. R.; Kulmala, M.; Kalberer, M.

    2013-11-01

    Numerous laboratory experiments have been performed in an attempt to mimic atmospheric secondary organic aerosol (SOA) formation. However, it is still unclear how close the aerosol particles generated in laboratory experiments resemble atmospheric SOA with respect to their detailed chemical composition. In this study, we generated SOA in a simulation chamber from the ozonolysis of α-pinene and a biogenic volatile organic compound (BVOC) mixture containing α- and β-pinene, Δ3-carene, and isoprene. The detailed molecular composition of laboratory-generated SOA was compared with that of background ambient aerosol collected at a boreal forest site (Hyytiälä, Finland) and an urban location (Cork, Ireland) using direct infusion nanoelectrospray ultrahigh resolution mass spectrometry. Kendrick Mass Defect and Van Krevelen approaches were used to identify and compare compound classes and distributions of the detected species. The laboratory-generated SOA contained a distinguishable group of dimers that was not observed in the ambient samples. The presence of dimers was found to be less pronounced in the SOA from the VOC mixtures when compared to the one component precursor system. The elemental composition of the compounds identified in the monomeric region from the ozonolysis of both α-pinene and VOC mixtures represented the ambient organic composition of particles collected at the boreal forest site reasonably well, with about 70% of common molecular formulae. In contrast, large differences were found between the laboratory-generated BVOC samples and the ambient urban sample. To our knowledge this is the first direct comparison of molecular composition of laboratory-generated SOA from BVOC mixtures and ambient samples.

  12. Characterization of aerosol composition, concentrations, and sources at Baengnyeong Island, Korea using an aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Lee, Taehyoung; Choi, Jinsoo; Lee, Gangwoong; Ahn, Junyoung; Park, Jin Soo; Atwood, Samuel A.; Schurman, Misha; Choi, Yongjoo; Chung, Yoomi; Collett, Jeffrey L.

    2015-11-01

    To improve understanding of the sources and chemical properties of particulate pollutants on the western side of the Korean Peninsula, an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) measured non-refractory fine (PM1) particles from May to November, 2011 at Baengnyeong Island, South Korea. Organic matter and sulfate were generally the most abundant species and exhibited maximum concentrations of 36 μg/m3 and 39 μg/m3, respectively. Nitrate concentrations peaked at 32 μg/m3 but were typically much lower than sulfate and organic matter concentrations. May, September, October, and November featured the highest monthly average concentrations, with lower concentrations typically observed from June through August. Potential source contribution function (PSCF) analysis and individual case studies revealed that transport from eastern China, an area with high SO2 emissions, was associated with high particulate sulfate concentrations at the measurement site. Observed sulfate aerosol sometimes was fully neutralized by ammonium but often was acidic; the average ammonium to sulfate molar ratio was 1.49. Measured species size distributions revealed a range of sulfate particle size distributions with modes between 100 and 600 nm. Organic aerosol source regions were widespread, including contributions from eastern China and South Korea. Positive matrix factorization (PMF) analysis indicated three "factors," or types of organic aerosol, comprising one primary, hydrocarbon-like organic aerosol (HOA) and two oxidized organic aerosol (OOA) components, including a more oxidized (MO-OOA) and a less oxidized (LO-OOA) oxidized organic aerosol. On average, HOA and OOA contributed 21% and 79% of the organic mass (OM), respectively, with the MO-OOA fraction nearly three times as abundant as the LO-OOA fraction. Biomass burning contributions to observed OM were low during the late spring/early summer agricultural burning season in eastern China, since

  13. Compositional variability of the aerosols collected on Kerkennah Islands (central Tunisia)

    NASA Astrophysics Data System (ADS)

    Trabelsi, A.; Masmoudi, M.; Quisefit, J. P.; Alfaro, S. C.

    2016-03-01

    The aim of the present study is to investigate the seasonal variability of the aerosol concentrations and origins in central Tunisia. Four field campaigns were carried out in 2010/2011 to collect air-suspended particles on the Kerkennah Islands. The elemental composition (Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Cu, Zn, Pb, Ni, V, and As) of the particles collected in summer (June and July), autumn (September and November), winter (February and March), and spring (April and May) is determined by X-ray fluorescence analysis. Examination of the enrichment factors (EF) of all elements indicate that Al, Fe, Si, Ca, Ti, Mn, and Cr are mainly derived from soil sources, whereas Na and Cl are mostly of marine origin. Other elements such as K and Mg or S and P have multiple origins (Marine/crustal and crustal/anthropogenic, respectively). Finally, V, Cu, Ni, As, and Pb appear to be produced by anthropogenic activities. Based on the inter-elemental correlations, the mass concentrations of mineral dust (MD), sea-salt (SS) and anthropogenic (non-crustal and non-marine) sulfates (NSS) are quantified. MD, SS and NSS display significant inter-seasonal differences: on the one hand, MD and SS are the highest in spring and the lowest in winter, probably because of the seasonal change in meteorological conditions. On the other hand, NSS and Cu concentrations are above their autumn and winter values in spring and summer, which suggests the existence of a common source of the combustion type for these two pollutants.

  14. Elemental Compositions of Over 80 Cell Phones

    NASA Astrophysics Data System (ADS)

    Christian, Beverley; Romanov, Alexandre; Romanova, Irina; Turbini, Laura J.

    2014-11-01

    Over the last few years, 85 cell phones have been disassembled, ground up, dissolved, and analyzed for elemental content, mainly for information about the metals present in the phones, but also for some metalloids and nonmetals. The following list of 38 elements were detected in some or all of the phones: Be, B, Mg, Al, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Y, Nb, Pd, Ag, In, Sn, Sb, Te, Ba, Ta, W, Pt, Au, Tl, Pb, Bi, Pr, Nd, Sm, Eu, Gd, Tb, Dy, and Er. Cadmium was never detected. This paper discusses the methods used for carrying out the analysis, proposes possible sources in the telephones for the elements of interest, the reasons for the interest in most of the elements, and method repeatability.

  15. Quantifying compositional impacts of ambient aerosol on cloud droplet formation

    NASA Astrophysics Data System (ADS)

    Lance, Sara

    It has been historically assumed that most of the uncertainty associated with the aerosol indirect effect on climate can be attributed to the unpredictability of updrafts. In Chapter 1, we analyze the sensitivity of cloud droplet number density, to realistic variations in aerosol chemical properties and to variable updraft velocities using a 1-dimensional cloud parcel model in three important environmental cases (continental, polluted and remote marine). The results suggest that aerosol chemical variability may be as important to the aerosol indirect effect as the effect of unresolved cloud dynamics, especially in polluted environments. We next used a continuous flow streamwise thermal gradient Cloud Condensation Nuclei counter (CCNc) to study the water-uptake properties of the ambient aerosol, by exposing an aerosol sample to a controlled water vapor supersaturation and counting the resulting number of droplets. In Chapter 2, we modeled and experimentally characterized the heat transfer properties and droplet growth within the CCNc. Chapter 3 describes results from the MIRAGE field campaign, in which the CCNc and a Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) were deployed at a ground-based site during March, 2006. Size-resolved CCN activation spectra and growth factor distributions of the ambient aerosol in Mexico City were obtained, and an analytical technique was developed to quantify a probability distribution of solute volume fractions for the CCN in addition to the aerosol mixing-state. The CCN were shown to be much less CCN active than ammonium sulfate, with water uptake properties more consistent with low molecular weight organic compounds. The pollution outflow from Mexico City was shown to have CCN with an even lower fraction of soluble material. "Chemical Closure" was attained for the CCN, by comparing the inferred solute volume fraction with that from direct chemical measurements. A clear diurnal pattern was observed for the CCN solute

  16. Correlation of composite material test results with finite element analysis

    NASA Astrophysics Data System (ADS)

    Guƫu, M.

    2016-08-01

    In this paper are presented some aspects regarding the method of simulation of composite materials testing with finite element analysis software. There were simulated tensile and shear tests of specimens manufactured from glass fiber reinforced polyester. For specimens manufacturing two types of fabrics were used: unidirectional and bidirectional. Experimentally determined elastic properties of composite material were used as input data. Modeling of composite architecture of the specimens was performed with ANSYS Composite PrepPost software. Finite element analysis stresses and strains on strain gauges bonding area were considered and compared with the real values in a diagram. After results comparison, potential causes of deviations were identified.

  17. Organic Composition and Morphology of Sea Spray Aerosols as a Function of Biological Life during IMPACTS

    NASA Astrophysics Data System (ADS)

    Pham, D.; Moffet, R.; Fraund, M. W.; O'Brien, R.; Laskina, O.; Prather, K. A.; Grassian, V. H.; Beall, C.; Wang, X.; Forestieri, S.; Cappa, C. D.

    2015-12-01

    Aerosols influence climate by directly reflecting or absorbing sunlight, or indirectly by affecting clouds. A major source of aerosols is from oceanic wave breaking. Due to their complexity, the effects of marine aerosol on climate are uncertain. To provide more detailed measurements of the chemical composition of marine aerosols, Scanning Transmission X-Ray Microscopy coupled with Near Edge X-Ray Absorption Fine Structure (SXTM-NEXAFS) was used to give spatially resolved molecular information for carbon and oxygen. Application of STXM/NEXAFS to particles collected during a mesocosm study using a unique wave channel facility to generate aerosols shows that the organic volume fraction of aerosols at the aerodynamic diameter size range of 0.18-0.32 μm are a direct function of the biological activity in the sea water. Aerosol organic volume fraction increased from 0.32 for particles generated from seawater containing low biolife to 0.49 and 0.40 for particles produced during phytoplankton blooms. However, the organic volume fraction of aerosols at the aerodynamic diameter size range of 0.56-1 μm did not change with biological activity. Measurements also show that different types of organics can concentrate into aerosols depending on the enzyme activity expressed at the time. Enhanced spectral signatures for aliphatic hydrocarbons were observed during the first phytoplankton bloom compared to a second phytoplankton bloom occurring directly thereafter. The decreased signature of aliphatic organics in the second phytoplankton bloom was correlated with increased lipase activity from heterobacteria. Organic aggregates having similar morphology also differ in composition from their carbon spectra from the two blooms. For July 17, organic aggregates were much richer in hydrocarbons, which showed a remarkably intense C-H absorbance and a broad C-C absorbance. Organic aggregates observed for July 26-27, did not have the C-H and C-C signatures, but contained more polar

  18. Characteristics and Composition of Atmospheric Aerosols in Phimai, Central Thailand During BASE-ASIA

    NASA Technical Reports Server (NTRS)

    Li, Can; Tsay, Si-Chee; Hsu, N. Christina; Kim, Jin Young; Howell, Steven G.; Huebert, Barry J.; Ji, Qiang; Jeong, Myeong-Jae; Wang, Sheng-Hsiang; Hansell, Richard A.; Bell, Shaun W.

    2012-01-01

    Popular summary: Atmospheric aerosols play an important role in the Earth's climate system, and can also have adverse effects on air quality and human health. The environmental impacts of aerosols, on the other hand, are highly regional, since their temporal/spatial distribution is inhomogeneous and highly depends on the regional emission sources. To better understand the effects of aerosols, intensive field experiments are necessary to characterize the chemical and physical properties on a region-by-region basis. From late February to early May in 2006, NASA/GSFC's SMARTLabs facility was deployed at a rural site in central Thailand, Southeast Asia, to conduct a field experiment dubbed BASE-ASIA (Biomass-burning Aerosols in South East-Asia: Smoke Impact Assessment). The group was joined by scientists from the University of Hawaii and other regional institutes. Comprehensive measurements were made during the experiment, including aerosol chemical composition, optical and microphysical properties, as well as surface energetics and local . meteorology. This study analyzes part of the data from the BASE-ASIA experiment. It was found that, even for the relatively remote rural site, the aerosol loading was still substantial. Besides agricultural burning in the area, industrial pollution near the Bangkok metropolitan area, about 200 km southeast of the site, and even long-range transport from China, also contribute to the area's aerosol loading. The results indicate that aerosol pollution has developed into a regional problem for northern Indochina, and may become more severe as the region's population and economy continue to grow. Abstract: Comprehensive measurements of atmospheric aerosols were made in Phimai, central Thailand (15.l83 N, 102.565 E, elevation: 206 m) during the BASE-ASIA field experiment from late February to early May in 2006. The observed aerosol loading was sizable for this rural site (mean aerosol scattering: 108 +/- 64 Mm(exp -1); absorption: 15

  19. Origin and impact of particle-to-particle variations in composition measurements with the nano-aerosol mass spectrometer.

    PubMed

    Klems, Joseph P; Johnston, Murray V

    2013-09-01

    In the nano-aerosol mass spectrometer, individual particles in the 10-30 nm size range are trapped and irradiated with a high pulse energy laser beam. The laser pulse generates a plasma that disintegrates the particle into atomic ions, from which the elemental composition is determined. Particle-to-particle variations among the mass spectra are shown to arise from plasma energetics: Low ionization energy species are enhanced in some spectra while high ionization energy species are enhanced in others. These variations also limit the accuracy and precision of elemental analysis, with higher deviations generally observed when low ionization energy species are dominant in the mass spectrum. For standard datasets generated from nominally identical particles, it is shown that that the error associated with composition measurement is random and that averaging the spectra from a few tens of particles is sufficient for measuring the mole fractions of common elements to within about 10% of the expected value. Averaging a greater number of particles offers limited improvement of the measurement precision but has the deleterious effect of degrading the measurement time-resolution, which is given by the time needed to obtain the required number of particle spectra for averaging. An internally mixed ambient particle dataset was found to give a similar result to the standard datasets, that is, the measured elemental composition converged to the average value after a few tens of particles were averaged.

  20. Use of multi-element tracers to source apportion mercury in south Florida aerosols

    NASA Astrophysics Data System (ADS)

    Graney, Joseph R.; Dvonch, J. Timothy; Keeler, Gerald J.

    The relative importance of local sources of mercury (Hg) in aerosols from urban areas in south Florida in relation to regional or global sources transported to the Everglades was investigated using a multi-element tracer approach. The sources of metals and Hg within aerosols were determined by integrating the collection of aerosols at seven locations with meteorology, source sampling, and statistical analysis. Sources include sea spray, soil dust from local carbonate bedrock and long range Saharan dust transport, regional scale transport of sulfate aerosols, and local point sources including oil-fired power plants, medical and waste incineration, and cement kilns. Using a principal components analysis-multiple linear regression (PCA-MLR) approach, 80% of the Hg in particulate form at the Thompson Park Everglades receptor site (THP) could be attributed to local sources. The key to the success of the source attribution at THP was collection of samples on a 12-h sampling basis in order to account for diurnal changes in meteorological conditions in south Florida associated with land-sea breeze development. Fifty-six±7% of the particulate Hg at THP was associated with elevated Zn concentrations which source sampling and surface meteorology indicate as emissions from municipal waste incineration located southeast of THP. Another 14±5% of the particulate Hg was associated with elevated Cu and Pb concentrations from sources SSE of THP. Eleven±1% of the particulate Hg originated from medical waste incineration sources and was associated with elevated levels of Cl and rapid SE to NW transport. Elevated concentrations of Si, Al, Fe, Mn, and K occurred on the same days at all sites, following passage of tropical storms over south Florida. PCA grouped these elements within a factor that is likely Saharan dust in origin, only 12±2% of the particulate Hg at THP could be attributed to this non-local source. Because the majority of the particulate Hg at THP can be attributed to

  1. High Sensitivity Subsurface Elemental Composition Measurements with PING

    NASA Astrophysics Data System (ADS)

    Parsons, A. M.; Bodnarik, J. G.; Evans, L. G.; McClanahan, T. P.; Namkung, M.; Nowicki, S. F.; Schweitzer, J. S.; Starr, R. D.; Trombka, J. I.

    2012-10-01

    The Probing In situ with Neutrons and Gamma rays (PING) instrument, with its PNG and gamma and neutron spectrometers, is a promising technology for measuring the bulk elemental composition of the subsurface of any rocky body in the solar system.

  2. Aerosol optical depth, aerosol composition and air pollution during summer and winter conditions in Budapest.

    PubMed

    Alföldy, B; Osán, J; Tóth, Z; Török, S; Harbusch, A; Jahn, C; Emeis, S; Schäfer, K

    2007-09-20

    The dependence of aerosol optical depth (AOD) on air particulate concentrations in the mixing layer height (MLH) was studied in Budapest in July 2003 and January 2004. During the campaigns gaseous (CO, SO(2), NO(x), O(3)), solid components (PM(2.5), PM(10)), as well as ionic species (ammonium, sulfate and nitrate) were measured at several urban and suburban sites. Additional data were collected from the Budapest air quality monitoring network. AOD was measured by a ground-based sun photometer. The mixing layer height and other common meteorological parameters were recorded. A linear relationship was found between the AOD and the columnar aerosol burden; the best linear fit (R(2)=0.96) was obtained for the secondary sulfate aerosol due to its mostly homogeneous spatial distribution and its optically active size range. The linear relationship is less pronounced for the PM(2.5) and PM(10) fractions since local emissions are very heterogeneous in time and space. The results indicate the importance of the mixing layer height in determining pollutant concentrations. During the winter campaign, when the boundary layer decreases to levels in between the altitudes of the sampling stations, measured concentrations showed significant differences due to different local sources and long-range transport. In the MLH time series unexpected nocturnal peaks were observed. The nocturnal increase of the MLH coincided with decreasing concentrations of all pollutants except for ozone; the ozone concentration increase indicates nocturnal vertical mixing between different air layers.

  3. Fluorescence properties of biochemicals in dry NaCl composite aerosol particles and in solutions

    NASA Astrophysics Data System (ADS)

    Putkiranta, M.; Manninen, A.; Rostedt, A.; Saarela, J.; Sorvajärvi, T.; Marjamäki, M.; Hernberg, R.; Keskinen, J.

    2010-06-01

    Several fluorophores, such as tryptophan, NADH, NADPH, and riboflavin are found in airborne micro-organisms. In this work, the fluorescence properties of these biochemicals were studied both in dry NaCl composite aerosol particles and in saline solutions by means of laser-induced fluorescence. Fluorescence spectra were measured from individual, airborne aerosol particles and from solutions in cuvette. The excitation wavelength was varied in steps from 210 nm to 419 nm and the fluorescence was detected within a wavelength band of 310-670 nm. For each sample, the measured fluorescence emission spectra were combined into fluorescence maps. The fluorescence maximum of riboflavin in a dry NaCl composite particle is 20 nm red-shifted compared with the solution, whereas the maxima are blue-shifted by about 25 nm for tryptophan and 15 nm for NADH and NADPH. The molecular fluorescence cross sections have significant differences between the aerosol particles and the solutions, except for tryptophan. For NADH and NADPH the cross sections are over 20 times larger in the aerosol particles than in the solutions probably as a result of partial quenching of fluorescence in solution caused by the collision or stacking with the adenine moiety. The fluorescence cross section of riboflavin is almost 60 times larger in the solution than in the dry NaCl composite aerosol. This is probably caused by the different microenvironment around the fluorophore molecule and by the concentration quenching in the particles where the fluorescing molecules are relatively close to each other.

  4. The composition and variability of atmospheric aerosol over Southeast Asia during 2008

    NASA Astrophysics Data System (ADS)

    Trivitayanurak, W.; Palmer, P. I.; Barkley, M. P.; Robinson, N. H.; Coe, H.; Oram, D. E.

    2012-01-01

    We use a nested version of the GEOS-Chem global 3-D chemistry transport model to better understand the composition and variation of aerosol over Borneo and the broader Southeast Asian region in conjunction with aircraft and satellite observations. Our focus on Southeast Asia reflects the importance of this region as a source of reactive organic gases and aerosols from natural forests, biomass burning, and food and fuel crops. We particularly focus on July 2008 when the UK BAe-146 research aircraft was deployed over northern Malaysian Borneo as part of the ACES/OP3 measurement campaign. During July 2008 we find using the model that Borneo (defined as Borneo Island and the surrounding Indonesian islands) was a net exporter of primary organic aerosol (42 kT) and black carbon aerosol (11 kT). We find only 13% of volatile organic compound oxidation products partition to secondary organic aerosol (SOA), with Borneo being a net exporter of SOA (15 kT). SOA represents approximately 19% of the total organic aerosol over the region. Sulphate is mainly from aqueous-phase oxidation (68%), with smaller contributions from gas-phase oxidation (15%) and advection into the regions (14%). We find that there is a large source of sea salt, as expected, but this largely deposits within the region; we find that dust aerosol plays only a relatively small role in the aerosol burden. In contrast to coincident surface measurements over Northern Borneo that find a pristine environment with evidence for substantial biogenic SOA formation we find that the free troposphere is influenced by biomass burning aerosol transported from the northwest of the Island and further afield. We find several transport events during July 2008 over Borneo associated with elevated aerosol concentrations, none of which coincide with the aircraft flights. We use MODIS aerosol optical depths (AOD) data and the model to put the July campaign into a longer temporal perspective. We find that Borneo is where the model

  5. Comparing Organic Aerosol Composition from Marine Biogenic Sources to Seawater and to Physical Sea Spray Models

    NASA Astrophysics Data System (ADS)

    Russell, L. M.; Frossard, A. A.; Sanchez, K.; Massoli, P.; Elliott, S.; Burrows, S. M.; Bates, T. S.; Quinn, P.

    2015-12-01

    In much of the marine atmosphere, organic components in aerosol particles have many sources other than sea spray that contribute organic constituents. For this reason, physical sea spray models provide an important technique for studying the organic composition of particles from marine biogenic sources. The organic composition of particles produced by two different physical sea spray models were measured in three open ocean seawater types: (i) Coastal California in the northeastern Pacific, which is influenced by wind-driven, large-scale upwelling leading to productive or eutrophic (nutrient-rich) seawater and high chl-a concentrations, (ii) George's Bank in the northwestern Atlantic, which is also influenced by nutrient upwelling and eutrophic seawater with phytoplankton productivity and high chl-a concentrations, and (iii) the Sargasso Sea in the subtropical western Atlantic, which is oligotrophic and nutrient-limited, reflected in low phytoplankton productivity and low chl-a concentrations. Fourier transform infrared spectroscopy provides information about the functional group composition that represents the marine organic fraction more completely than is possible with techniques that measure non-refractory mass (vaporizable at 650°C). After separating biogenic marine particles from those from other sources, the measured compositions of atmospheric marine aerosol particles from three ocean regions is 65±12% hydroxyl, 21±9% alkane, 6±6% amine, and 7±8% carboxylic acid functional groups. The organic composition of atmospheric primary marine (ocean-derived) aerosol particles is nearly identical to model generated primary marine aerosol particles from bubbled seawater. Variability in productive and non-productive seawater may be caused by the presence of surfactants that can stabilize the bubble film and lead to preferential drainage of the more soluble (lower alkane group fraction) organic components without substantial changes in overall group composition

  6. Composite hydrogen separation element and module

    DOEpatents

    Edlund, D.J.

    1996-03-12

    There are disclosed improvements in multicomponent composite metal membranes useful for the separation of hydrogen, the improvements comprising the provision of a flexible porous intermediate layer between a support layer and a nonporous hydrogen-permeable coating metal layer, and the provision of a textured coating metal layer. 15 figs.

  7. Retrieval of stratospheric aerosol size and composition information from solar infrared transmission spectra.

    PubMed

    Steele, Helen M; Eldering, Annmarie; Sen, Bhaswar; Toon, Geoffrey C; Mills, Franklin P; Kahn, Brian H

    2003-04-20

    Infrared transmission spectra were recorded by the Jet Propulsion Laboratory MkIV interferometer during flights aboard the NASA DC-8 aircraft as part of the Airborne Arctic Stratospheric Expedition II (AASE II) mission in the early months of 1992. In our research, we infer the properties of the stratospheric aerosols from these spectra. The instrument employs two different detectors, a HgCdTe photoconductor for 650-1850 cm(-1) and an InSb photodiode for 1850-5650 cm(-1), to simultaneously record the solar intensity throughout the mid-infrared. These spectra have been used to retrieve the concentrations of a large number of gases, including chlorofluorocarbons, NOy species, O3, and ozone-depleting gases. We demonstrate how the residual continua spectra, obtained after accounting for the absorbing gases, can be used to obtain information about the stratospheric aerosols. Infrared extinction spectra are calculated for a range of modeled aerosol size distributions and compositions with Mie theory and fitted to the measured residual spectra. By varying the size distribution parameters and sulfate weight percent, we obtain the microphysical properties of the aerosols that best fit the observations. The effective radius of the aerosols is found to be between 0.4 and 0.6 microm, consistent with that derived from a large number of instruments in this post-Pinatubo period. We demonstrate how different parts of the spectral range can be used to constrain the range of possible values of this size parameter and show how the broad spectral bandpass of the MkIV instrument presents a great advantage for retrieval ofboth aerosol size a nd composition over instruments with a more limited spectral range. The aerosol composition that provides the best fit to the measured spectra is a 70-75% sulfuric acid solution, in good agreement with that obtained from thermodynamic considerations.

  8. Long-range-transported Saharan dust in the Caribbean - an electron microscopy perspective of aerosol composition and modification

    NASA Astrophysics Data System (ADS)

    Kandler, Konrad; Hartmann, Markus; Ebert, Martin; Weinbruch, Stephan; Weinzierl, Bernadett; Walser, Adrian; Sauer, Daniel; Wadinga Fomba, Khanneh

    2015-04-01

    From June to July in 2013, the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) was performed in the Caribbean. Airborne aerosol sampling was performed onboard the DLR Falcon aircraft in altitudes between 300 m and 5500 m. Ground-based samples were collected at Ragged Point (Barbados, 13.165 °N, 59.432 °W) and at the Cape Verde Atmospheric Observatory (Sao Vicente, 16.864 °N, 24.868 °W). Different types of impactors and sedimentation samplers were used to collect particles between 0.1 µm and 4 µm (airborne) and between 0.1 µm and 100 µm (ground-based). Particles were analyzed by scanning electron microscopy with attached energy-dispersive X-ray analysis, yielding information on particle size, particle shape and chemical composition for elements heavier than nitrogen. A particle size correction was applied to the chemical data to yield better quantification. A total of approximately 100,000 particles were analyzed. For particles larger than 0.7 µm, the aerosol in the Caribbean during the campaign was a mixture of mineral dust, sea-salt at different aging states, and sulfate. Inside the Saharan dust plume - outside the marine boundary layer (MBL) - the aerosol is absolutely dominated by mineral dust. Inside the upper MBL, sea-salt exists as minor component in the aerosol for particles smaller than 2 µm in diameter, larger ones are practically dust only. When crossing the Soufriere Hills volcano plume with the aircraft, an extremely high abundance of small sulfate particles could be observed. At Ragged Point, in contrast to the airborne measurements, aerosol is frequently dominated by sea-salt particles. Dust relative abundance at Ragged Point has a maximum between 5 µm and 10 µm particles diameter; at larger sizes, sea-salt again prevails due to the sea-spray influence. A significant number of dust particles larger than 20 µm was encountered. The dust component in the Caribbean - airborne as well as ground

  9. Production Mechanism, Number Concentration, Size Distribution, Chemical Composition, and Optical Properties of Sea Spray Aerosols Workshop, Summer 2012

    SciTech Connect

    Meskhidze, Nicholas

    2013-10-21

    The objective of this workshop was to address the most urgent open science questions for improved quantification of sea spray aerosol-radiation-climate interactions. Sea spray emission and its influence on global climate remains one of the most uncertain components of the aerosol-radiation-climate problem, but has received less attention than other aerosol processes (e.g. production of terrestrial secondary organic aerosols). Thus, the special emphasis was placed on the production flux of sea spray aerosol particles, their number concentration and chemical composition and properties.

  10. Open-Section Composite Structural Elements

    NASA Technical Reports Server (NTRS)

    Loftin, T. A.; Smith, C. A.; Raheb, S. J.; Nowitzky, A. M.

    1991-01-01

    Report describes investigation of manufacture and mechanical properties of graphite-fiber/aluminum-matrix open-section structural elements; e.g., channels and angle bars. Conducted with view toward using such elements to build lightweight, thermally stable truss structures in outer space. Other applications transport to, and assembly at, remote or otherwise uninviting locations. Advantages include shapes permitting high packing density during shipment, convenient paths for routing tubes, hoses, and cables; accessibility of both inner and outer surfaces for repair; and ease of attachment of additional hardware. Easier and require less equipment to fabricate, and more amenable to automated fabrication and assembly at remote site. Disadvantages, not as resistant to some kinds of deformation under load.

  11. Aerosol accumulation intensity and composition variations under different weather conditions in urban environment

    NASA Astrophysics Data System (ADS)

    Steinberga, Iveta; Bikshe, Janis; Eindorfa, Aiva

    2014-05-01

    During the last decade aerosol (PM10, PM2.5) mass and composition measurements were done in different urban environments - parallel street canyons, industrial sites and at the background level in Riga, Latvia. Effect of meteorological parameters on the accumulation and ventilation intensity was investigated in order to understand microclimatological parameters affecting aerosol pollution level and chemical composition changes. In comparison to industrial sites (shipping activities, bulk cargo, oil and naphtha processing), urban street canyon aerosol mass concentration was significantly higher, for PM10 number of daily limit exceedances are higher by factor 3.4 - 3.9 in street canyons. Exceedances of PM2.5 annual limits were identified only in street canyons as well. Precipitation intensity, wind speed, days with mist highly correlates with aerosol concentration; in average during the year about 1 - 2 % presence of calm wind days, 20 - 30 days with mist facilitate accumulation of aerosols and mitigating growing of secondary aerosols. It has been assessed that about 25 % of daily exceedances in street canyons are connected with sea salt/street sanding factor. Strong dependency of wind speed and direction were identified in winter time - low winds (0.4 - 1.7 m/s) blowing from south, south-east (cross section of the street) contributing to PM10 concentrations over 100 - 150 ug/m3. Seasonal differences in aerosol concentrations were identified as a result of recombination of direct source impact, specific meteorological and synoptical conditions during the period from January until April when usually dominates extremely high aerosol concentrations. While aerosol mass concentration levels in monitoring sites significantly differs, concentrations of heavy metals (Pb, Ni, Cd, and As) are almost at the same level, even more - concentration of Cd for some years was higher in industrial area where main pollution is caused by oil processing and storage, heavy traffic

  12. A seasonal time history of the size resolved composition of fine aerosol in Manchester UK

    NASA Astrophysics Data System (ADS)

    Choularton, Thomas; Martin, Claire; Allan, James; Coe, Hugh; Bower, Keith; Gallagher, Martin

    2010-05-01

    Numerous studies have been conducted in urban centres now using sophisticated instruments that measure aerosol properties needed to determine their effects on human health, air quality and climate change) showing that a significant fraction of urban aerosols (mainly from automotive sources) are composed of organic compounds with implications for human health. In this project we have produced the first seasonal aerosol composition and emission database for the City of Manchester in the UK Several recent projects have been conducted by SEAES looking at fundamental properties of urban atmospheric aerosol to understand their influence on climate. This work is now expanding through collaboration with the School of Geography & Centre for Occupational & Environmental Health to investigate urban aerosol emission impacts on human health In this paper we present a compendium of data from field campaigns in Manchester city centre over the past decade. The data are from six different campaigns, between 2001 - 2007, each campaign was between 2 weeks and 2 months long predominantly from January and June periods . The data analysis includes air parcel trajectory examination and comparisons with external data, including PM10, CO and NOx data from AURN fixed monitoring sites Six Manchester fine aerosol datasets from the past decade have been quality controlled and analysed regarding averages of the size distributions of Organic, NO3, NH4 and SO4 mass loadings. It was found that: Organic material is the largest single component of the aerosol with primary aliphatic material dominating the smallest sizes, but with oxygenated secondary organic material being important in the accumulation mode. In the accumulation mode the organic material seems to be internally mixed with sulphate and nitrate. The accumulation mode particles were effective as cloud condensation nuclei. Seasonal effects surrounding atmospheric stability and photochemistry were found to play an important role in the

  13. Monte Carlo approach to identification of the composition of stratospheric aerosols from infrared solar occultation measurements.

    PubMed

    Zasetsky, Alexander Y; Sloan, James J

    2005-08-01

    We describe an inversion method for determining the composition, density, and size of stratospheric clouds and aerosols by satellite remote sensing. The method, which combines linear least-squares minimization and Monte Carlo techniques, is tested with pure synthetic IR spectra. The synthetic spectral data are constructed to mimic mid-IR spectra recorded by the Improved Limb Atmospheric Spectrometer (ILAS-I and ILAS-II) instruments, which operate in the solar occultation mode and record numerous polar stratospheric cloud events. The advantages and limitations of the proposed technique are discussed. In brief we find that stratospheric aerosol in the size range from 0.5 to 4.0 02114 microm can be retrieved to an accuracy of 30%. We also show that the chemical composition of common stratospheric aerosols can be determined, whereas identification of their phases from mid-IR satellite remote-sensing data alone appears to be questionable.

  14. Novel Approach for Evaluating Secondary Organic Aerosol from Aromatic Hydrocarbons: SOA Yield and Chemical Composition

    NASA Astrophysics Data System (ADS)

    Li, Lijie; Tang, Ping; Nakao, Shunsuke; Qi, Li; Kacarab, Mary; Cocker, David

    2016-04-01

    Aromatic hydrocarbons account for 20%-30% of urban atmospheric VOCs and are major contributors to anthropogenic secondary organic aerosol (SOA). However, prediction of SOA from aromatic hydrocarbons as a function of structure, NOx concentration, and OH radical levels remains elusive. Innovative SOA yield and chemical composition evaluation approaches are developed here to investigate SOA formation from aromatic hydrocarbons. SOA yield is redefined in this work by adjusting the molecular weight of all aromatic precursors to the molecular weight of benzene (Yield'= Yieldi×(MWi/MWBenzene); i: aromatic hydrocarbon precursor). Further, SOA elemental ratio is calculated on an aromatic ring basis rather than the classic mole basis. Unified and unique characteristics in SOA formed from aromatic hydrocarbons with different alkyl groups (varying in carbon number and location on aromatic ring) are explored by revisiting fifteen years of UC Riverside/CE-CERT environmental chamber data on 129 experiments from 17 aromatic precursors at urban region relevant low NOx conditions (HC:NO 11.1-171 ppbC:ppb). Traditionally, SOA mass yield of benzene is much greater than that of other aromatic species. However, when adjusting for molecular weight, a similar yield is found across the 17 different aromatic precursors. More importantly, four oxygens per aromatic ring are observed in the resulting SOA regardless of the alkyl substitutes attached to the ring, which majorly affect H/C ratio in SOA. Therefore, resulting SOA bulk composition from aromatic hydrocarbons can be predicted as C6+nH6+2nO4 (n: alkyl substitute carbon number). Further, the dominating role of the aromatic ring carbons is confirmed by studying the chemical composition of SOA formed from the photooxidation of an aromatic hydrocarbon with a 13C isotopically labeled alkyl carbon. Overall, this study unveils the similarity in SOA formation from aromatic hydrocarbons enhancing the understanding of SOA formation from

  15. Local and regional contributions to the atmospheric aerosol over Tel Aviv, Israel: a case study using elemental, ionic and organic tracers

    NASA Astrophysics Data System (ADS)

    Graham, Bim; Falkovich, Alla H.; Rudich, Yinon; Maenhaut, Willy; Guyon, Pascal; Andreae, Meinrat O.

    Changes in aerosol composition associated with a cold front passage were examined during a field experiment in Tel Aviv, Israel (2-15 Dec, 2000). In addition to monitoring aerosol scattering and optical thickness, aerosol samples were collected for detailed chemical analyses. Data were compared to simultaneous measurements made at Sde Boker, a semi-remote site in the Negev Desert, to help determine what changes were due to local pollution as opposed to regional phenomena. During the pre-frontal period (2-7 Dec) both sites were influenced by air masses containing a relatively high content of sulphate and dust, originating from neighbouring regions of the Middle East. A steady build-up of local pollution was then observed in Tel Aviv due to vehicular emissions/industrial activities, as indicated by increasing concentrations of black carbon, organic carbon, V, Cu, Ni, Zn, Br, Pb, NO 3- and PAHs. Identification of a number of organic biomass burning tracers (e.g., levoglucosan) indicates that smoke also contributed to the pollution build-up in Tel Aviv, while a range of sugars/sugar alcohols point to a microbial/bioaerosol component. Locally emitted pollutants tended to exhibit higher nighttime concentrations due to trapping of pollution under a nocturnal inversion. Fine aerosol iodine was the only element exhibiting higher daytime concentrations, hinting at a photochemical source. Post-frontal measurements (12-15 Dec) revealed a significant decrease in all pollutants due to dispersal of the haze by the cold front (8-9 Dec), with the air initially being dominated by marine aerosol. Concentrations of pollutants then began to increase, with backward trajectories indicating a possible contribution from Eastern Europe. Overall, the study identified a range of useful tracers for monitoring the contribution of different sources to the aerosol over Israel.

  16. Influence of aqueous chemistry on the chemical composition of fog water and interstitial aerosol in Fresno

    NASA Astrophysics Data System (ADS)

    Kim, Hwajin; Ge, Xinlei; Collier, Sonya; Xu, Jianzhong; Sun, Yele; Wang, Youliang; Herckes, Pierre; Zhang, Qi

    2015-04-01

    A measurement study was conducted in the Central Valley (Fresno) of California in January 2010, during which radiation fog events were frequently observed. Fog plays important roles in atmospheric chemistry by scavenging aerosol particles and trace gases and serving as a medium for various aqueous-phase reactions. Understanding the effects of fog on the microphysical and chemical processing of aerosol particles requires detailed information on their chemical composition. In this study, we characterized the chemical composition of fog water and interstitial aerosol particles to study the effects of fog processing on aerosol properties. Fog water samples were collected during the 2010 Fresno campaigns with a Caltech Active Strand Cloud water Collector (CASCC) while interstitial submicron aerosols were characterized in real time with an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and a scanning Mobility Particle Sizer (SMPS). The fog water samples were later analyzed using the HR-ToF-AMS, ion chromatography, and a total carbon analyzer. The chemical composition and characteristics of interstitial particles during the fog events were compared to those of dissolved inorganic and organic matter in fog waters. Compared to interstitial aerosols, fog water is composed of a higher fraction of ammonium nitrate and oxygenated organics, due to aqueous formation of secondary aerosol species as well as enhanced gas-to-particle partitioning of water soluble species under water rich conditions. Sulfate is formed most efficiently in fog water although its contribution to total dissolved mass is relatively low. The HR-ToF-AMS mass spectra of organic matter in fog water (FOM) are very similar to that of oxygenated organic aerosols (OOA) derived from positive matrix factorization (PMF) of the HR-ToF-AMS spectra of ambient aerosol (r2 = 0.96), but FOM appears to contain a large fraction of acidic functional groups than OOA. FOM is also enriched of

  17. Elemental composition of commercial sea cucumbers (holothurians).

    PubMed

    Wen, J; Hu, C

    2010-01-01

    Toxic and essential elements in 11 different sea cucumber species were determined and compared with daily intake recommendations and maximum allowed levels. The contents of macro-elements contents in dried sea cucumber samples were found to be 25,000-152,000 mg kg(-1) for Na, 4000-8600 mg kg(-1) for Mg, 1100-5200 mg kg(-1) for K, 15,000-68,000 mg kg(-1) and 36,300-251,000 mg kg(-1) for Cl. Trace element concentrations in dried sea cucumber samples were found to be 11-100 mg kg(-1) for Zn, 41-660 mg kg(-1) for Fe, 3-74 mg kg(-1) for Cu, 1.1-16 mg kg(-1) for Mn, 1.4-3.7 mg kg(-1) for Se, 1.1-9.6 mg kg(-1) for Cr, and 0.3-5.1 mg kg(-1) for Ni. All sea cucumber species were rich sources of Na, Cl, Mg, Ca, Fe, Cu, Se and Cr for human consumption. Regarding contaminants, As, Cd and Pb concentrations in dried sea cucumbers were in the ranges of 1.1-6.1, 0.03-0.06 and 0.11-0.69 mg kg(-1), respectively. Moreover, Hg values of 11 sea cucumbers were below the detection limit (0.01 mg kg(-1)).

  18. Elemental composition of the Martian crust.

    PubMed

    McSween, Harry Y; Taylor, G Jeffrey; Wyatt, Michael B

    2009-05-01

    The composition of Mars' crust records the planet's integrated geologic history and provides clues to its differentiation. Spacecraft and meteorite data now provide a global view of the chemistry of the igneous crust that can be used to assess this history. Surface rocks on Mars are dominantly tholeiitic basalts formed by extensive partial melting and are not highly weathered. Siliceous or calc-alkaline rocks produced by melting and/or fractional crystallization of hydrated, recycled mantle sources, and silica-poor rocks produced by limited melting of alkali-rich mantle sources, are uncommon or absent. Spacecraft data suggest that martian meteorites are not representative of older, more voluminous crust and prompt questions about their use in defining diagnostic geochemical characteristics and in constraining mantle compositional models for Mars. PMID:19423810

  19. Elemental composition of the Martian crust.

    PubMed

    McSween, Harry Y; Taylor, G Jeffrey; Wyatt, Michael B

    2009-05-01

    The composition of Mars' crust records the planet's integrated geologic history and provides clues to its differentiation. Spacecraft and meteorite data now provide a global view of the chemistry of the igneous crust that can be used to assess this history. Surface rocks on Mars are dominantly tholeiitic basalts formed by extensive partial melting and are not highly weathered. Siliceous or calc-alkaline rocks produced by melting and/or fractional crystallization of hydrated, recycled mantle sources, and silica-poor rocks produced by limited melting of alkali-rich mantle sources, are uncommon or absent. Spacecraft data suggest that martian meteorites are not representative of older, more voluminous crust and prompt questions about their use in defining diagnostic geochemical characteristics and in constraining mantle compositional models for Mars.

  20. Trace element pass-through for cellulose filters when used for aerosol collection

    NASA Astrophysics Data System (ADS)

    Dolske, Donald A.; Schneider, J.; Sievering, H.

    Filter papers and impaction substrates made of cellulose fibers, such as Whatman 41 and Misco P810/252, are of considerable utility in the collection of aerosol for subsequent trace elemental analysts. This experiment evaluated the performance of Misco P810/252 in collecting trace elements, relative to a co-located standard glass fiber filter hi-vol collection. Sampling was conducted in varying meteorological conditions, so that results might be expressed in terms of environmental variables such as temperature and relative humidity. The pass-through factors presented here were derived from a series of environmental samples collected over land and over water. Overall, the Misco impactor/filter failed to collect 38% of Pb and 32% of Zn.

  1. Composition and Characteristics of Aerosols in the Southern High Plains of Texas (USA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerosol samples on polycarbonate filters were collected daily for several years in the Southern High Plains region of western Texas. Selected samples representing a variety of size modes, locations, and air quality conditions were analyzed by PIXE. Silicon and other crustal elements dominated duri...

  2. All year round chemical composition of aerosol reaching the inner Antarctic Plateau (Dome C - East Antarctica)

    NASA Astrophysics Data System (ADS)

    Udisti, R.; Becagli, S.; Castellano, E.; Cerri, O.; Marino, F.; Morganti, A.; Nava, S.; Rugi, F.; Severi, M.; Traversi, R.

    2009-04-01

    Since 2005, continuous, all-year-round aerosol sampling was carried out at Dome C (Central East Antarctica, 3233 m a.s.l., about 1100 km far from the coast-line), in the framework of Station Concordia project. Size-segregated aerosol samples were collected in summer and winter period by using different low- and medium-volume systems, including pre-selected cut-off samplers (with PM10, PM2.5 and PM1 heads) and multi-stage (Andersen 8-stage and Dekati 4-stage) impactors. Sampling resolution and volume range from 1 day to 1 month and from 2.3 to 12 m3/h respectively. Aerosol study at Dome C aims to improve our knowledge on present day source intensity, transport efficiency and pathways (including stratosphere-to-troposphere interchanges) of particles reaching internal sites of Antarctica and to understand size- and chemical-fractionation effects occurring during the transport (by comparison with coastal aerosol composition). Besides, more information on atmosphere-snow interaction, including depositional and post depositional processes, as well as the effect of sublimation/condensation processes on snow surface, improves the reconstruction of past atmosphere composition from EPICA-DC deep ice core, drilled in the same site. Here we report some results of the chemical composition of the Antarctic background aerosol reaching Dome C, pointing out the seasonal pattern and the temporal trend of some ionic components used as tracers of sea spray, marine biogenic and crustal emissions. The atmospheric load in the summer is more than one order of magnitude lower than that measured in coastal sites and chemical composition is dominated by secondary aerosol, mainly originated by biological marine activity (S-cycle), and distributed in the finest aerosol fractions. H2SO4 from oxidation of biogenic DMS is the main component, while the contribution of HNO3 to the ionic budget is difficult to evaluate because of the re-emission into the atmosphere from the filter surface (acidic

  3. Density and elemental ratios of secondary organic aerosol: Application of a density prediction method

    NASA Astrophysics Data System (ADS)

    Nakao, Shunsuke; Tang, Ping; Tang, Xiaochen; Clark, Christopher H.; Qi, Li; Seo, Eric; Asa-Awuku, Akua; Cocker, David

    2013-04-01

    Organic material density is a fundamental parameter in aerosol science, yet direct measurement is not readily available. This study investigates density and elemental ratios of secondary organic aerosol (SOA) formed by the oxidation of 22 different volatile organic compounds with a wide range of molecular size (C5˜C15) in an environmental chamber. Reactants with a larger number of carbons yielded SOA with lower density (e.g., β-caryophyllene SOA: 1.22 g cm-3) compared with smaller ones (e.g., phenol SOA: 1.43 g cm-3) consistent with different extents of oxidation of the parent molecule. A recent study proposed a semi-empirical relationship between elemental ratios (O/C and H/C) and organic material density (Kuwata et al., 2012). The prediction method therein is evaluated against the large experimental data set of this study acquired in the UC Riverside/CE-CERT environmental chamber. The predicted particle densities agree with experimental measurements within 12% as stated by Kuwata et al. (2012) except for C6 compounds (benzene, phenol, and catechol). Therefore, the range of application has been further extended to include anthropogenic (aromatic) systems. The effects of nitrogen and sulfur on the density prediction remain unclear.

  4. Elemental composition and energy spectra of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.

    1988-01-01

    A brief review is presented of the major features of the elemental composition and energy spectra of galactic cosmic rays. The requirements for phenomenological models of cosmic ray composition and energy spectra are discussed, and possible improvements to an existing model are suggested.

  5. The size distribution of chemical elements of atmospheric aerosol at a semi-rural coastal site in Venice (Italy). The role of atmospheric circulation.

    PubMed

    Masiol, Mauro; Squizzato, Stefania; Ceccato, Daniele; Pavoni, Bruno

    2015-01-01

    The concentrations of selected elemental tracers were determined in the aerosol of a semi-rural coastal site near Venice (Italy). Size-segregated aerosol samples were collected using an 8-stage cascade impactor set at 15m above ground, during the cold season (late autumn and winter), when high levels of many pollutants are known to cause risks for human health. From the experimental data, information was extracted on potential pollutant sources by investigating the relationships between elements in the different size fractions. Moreover, an approach to highlight the importance of local atmospheric circulation and air mass origin in influencing the PM composition and fractional distribution is proposed. Anthropogenic elements are strongly inter-correlated in the submicrometric (<1 μm) (S, K, Mn, Cu, Fe and Zn) and intermediate mode (1-4 μm) (Mn, Cu, Zn, Ni) and their relationships highlight the presence of several sources (combustions, secondary aerosol, road traffic). In the intermediate mode, associations having geochemical significance exist between marine (Na, Cl and Mg) and crustal (Si, Mg, Ca, Al, Ti and K) elements. In the coarse mode (>4 μm) Fe and Zn are well correlated and are probably linked to tire and brake wear emissions. Regarding atmospheric circulation, results show increasing levels of elements related to pollution sources (S, K, Mn, Ni, Cu, Zn) when air masses come from Central and Eastern Europe direction and on the ground wind blows from NWN-N-NE (from mainland Venice). Low wind speed and high percentage of wind calm hours favor element accumulation in the submicrometric and intermediate modes. Furthermore, strong winds favor the formation of sea-spray and the increase of Si in the coarse mode due to the resuspension of sand fine particles. PMID:25063963

  6. The size distribution of chemical elements of atmospheric aerosol at a semi-rural coastal site in Venice (Italy). The role of atmospheric circulation.

    PubMed

    Masiol, Mauro; Squizzato, Stefania; Ceccato, Daniele; Pavoni, Bruno

    2015-01-01

    The concentrations of selected elemental tracers were determined in the aerosol of a semi-rural coastal site near Venice (Italy). Size-segregated aerosol samples were collected using an 8-stage cascade impactor set at 15m above ground, during the cold season (late autumn and winter), when high levels of many pollutants are known to cause risks for human health. From the experimental data, information was extracted on potential pollutant sources by investigating the relationships between elements in the different size fractions. Moreover, an approach to highlight the importance of local atmospheric circulation and air mass origin in influencing the PM composition and fractional distribution is proposed. Anthropogenic elements are strongly inter-correlated in the submicrometric (<1 μm) (S, K, Mn, Cu, Fe and Zn) and intermediate mode (1-4 μm) (Mn, Cu, Zn, Ni) and their relationships highlight the presence of several sources (combustions, secondary aerosol, road traffic). In the intermediate mode, associations having geochemical significance exist between marine (Na, Cl and Mg) and crustal (Si, Mg, Ca, Al, Ti and K) elements. In the coarse mode (>4 μm) Fe and Zn are well correlated and are probably linked to tire and brake wear emissions. Regarding atmospheric circulation, results show increasing levels of elements related to pollution sources (S, K, Mn, Ni, Cu, Zn) when air masses come from Central and Eastern Europe direction and on the ground wind blows from NWN-N-NE (from mainland Venice). Low wind speed and high percentage of wind calm hours favor element accumulation in the submicrometric and intermediate modes. Furthermore, strong winds favor the formation of sea-spray and the increase of Si in the coarse mode due to the resuspension of sand fine particles.

  7. Subsurface In situ elemental composition measurements with PING

    NASA Astrophysics Data System (ADS)

    Parsons, A.; McClanahan, T.; Bodnarik, J.; Evans, L.; Nowicki, S.; Schweitzer, J.; Starr, R.

    This paper describes the Probing In situ with Neutron and Gamma rays (PING) instrument, that can measure the subsurface elemental composition in situ for any rocky body in the solar system without the need for digging into the surface. PING consists of a Pulsed Neutron Generator (PNG), a gamma ray spectrometer and neutron detectors. Subsurface elements are stimulated by high-energy neutrons to emit gamma rays at characteristic energies. This paper will show how the detection of these gamma rays results in a measurement of elemental composition. Examples of the basalt to granite ratios for aluminum and silicon abundance are provided.

  8. Subsurface In Situ Elemental Composition Measurements with PING

    NASA Technical Reports Server (NTRS)

    Parsons, Ann; McClanahan, Timothy; Bodnarik, Julia; Evans, Larry; Nowicki, Suzanne; Schweitzer, Jeffrey; Starr, Richard

    2013-01-01

    This paper describes the Probing In situ with Neutron and Gamma rays (PING) instrument, that can measure the subsurface elemental composition in situ for any rocky body in the solar system without the need for digging into the surface. PING consists of a Pulsed Neutron Generator (PNG), a gamma ray spectrometer and neutron detectors. Subsurface elements are stimulated by high-energy neutrons to emit gamma rays at characteristic energies. This paper will show how the detection of these gamma rays results in a measurement of elemental composition. Examples of the basalt to granite ratios for aluminum and silicon abundance are provided.

  9. Growth of BaTiO3-PVDF composite thick films by using aerosol deposition

    NASA Astrophysics Data System (ADS)

    Cho, Sung Hwan; Yoon, Young Joon

    2016-01-01

    Barium titanate (BaTiO3)-polyvinylidene fluoride (PVDF) composite thick films were grown by using aerosol deposition at room temperature with BaTiO3 and PVDF powders. To produce a uniform composition in ceramic and polymer composite films, which show a substantial difference in specific gravity, we used PVDF-coated BaTiO3 powders as the starting materials. An examination of the microstructure confirmed that the BaTiO3 were well distributed in the PVDF matrix in the form of a 0 - 3 compound. The crystallite size in the BaTiO3-PVDF composite thick films was 5 ˜ 50 times higher than that in pure BaTiO3 thick films. PVDF plays a role in suppressing the fragmentation of BaTiO3 powder during the aerosol deposition process and in controlling the relative permittivity.

  10. Major element composition of Luna 20 glasses.

    NASA Technical Reports Server (NTRS)

    Warner, J.; Reid, A. M.; Ridley, W. I.; Brown, R. W.

    1972-01-01

    Ten per cent of the 50 to 150-micron size fraction of Luna 20 soil is glass. A random suite of 270 of these glasses has been analyzed by electron microprobe techniques. The major glass type forms a strong cluster around a mean value corresponding to Highland basalt (anorthositic gabbro) with 70% normative feldspar. Minor glass groups have the compositions of mare basalts and of low-K Fra Mauro type basalts. The glass data indicate that Highland basalt is the major rock type in the highlands north of Mare Fecunditatis.

  11. Tying Biological Activity to Changes in Sea Spray Aerosol Chemical Composition via Single Particle Analyses

    NASA Astrophysics Data System (ADS)

    Sultana, C. M.; Lee, C.; Collins, D. B.; Axson, J. L.; Laskina, O.; Grandquist, J. R.; Grassian, V. H.; Prather, K. A.

    2014-12-01

    In remote marine environments, sea spray aerosols (SSA) often represent the greatest aerosol burden, thus having significant impacts on direct radiative interactions and cloud processes. Previous studies have shown that SSA is a complex mixture of inorganic salts and an array of dissolved and particulate organic components. Enrichment of SSA organic content is often correlated to seawater chlorophyll concentrations, a measure of oceanic biological activity. As the physical and chemical properties of aerosols control their radiative effects, recent studies conducted by the Center for Aerosol Impacts on Climate and the Environment have endeavored to further elucidate the ties between marine biological activity and primary SSA chemical composition using highly time resolved single particle analyses. A series of experiments performed in the recently developed Marine Aerosol Reference Tank evaluated the effect of changing marine microbial populations on SSA chemical composition, which was monitored via an aerosol time-of-flight mass spectrometer and a variety of offline spectroscopic and microscopic techniques. Each experiment was initiated using unfiltered and untreated seawater, thus maintaining a high level of biogeochemical complexity. This study is the first of its kind to capture daily changes in the primary SSA mixing state over the growth and death of a natural phytoplankton bloom. Increases in organic aerosol types (0.4-3 μm), internally and externally mixed with sea salt, could not be correlated to chlorophyll concentrations. Maximum production of these populations occurred two to four days after the in vivo chlorophyll fluorescence peaked in intensity. This work is in contrast to the current paradigm of correlating SSA organic content to seawater chlorophyll concentration.

  12. Ground and Airborne Aerosol Composition Measurements of California Coastal Chaparral Smoke Emissions

    NASA Astrophysics Data System (ADS)

    Craven, J. S.; Sorooshian, A.; Hersey, S. P.; Metcalf, A. R.; Schilling-Fahnestock, K.; Newman, S.; Akagi, S. K.; Taylor, J.; McMeeking, G.; Coe, H.; Tang, P.; Cocker, D. R., III; Yokelson, R. J.; Flagan, R. C.; Seinfeld, J.

    2014-12-01

    Wildfire smoke has large local to global pollution impacts. We present aerosol composition data from two fires in southern California. We measured organic aerosol (OA) of nascent and aged (4 h) smoke from the Williams Fire during the 2009 airborne San Luis Obispo Biomass Burning Campaign (SLOBB). The net ΔOA/ΔCO2 decreased by ~20%; however, positive matrix factorization (PMF) analysis of the organic mass spectra supports two factors that enable the OA emissions to be separated into fresh and oxidized OA. The Δfresh BBOA/ΔCO2 had a steeper decline than the ΔOA/ΔCO2 consistent with outgassing of semi-voltile organic compounds (SVOCs) due to dilution, whereas the Δoxidized BBOA/ΔCO2 increased from its initial value, consist with formation of secondary organic aerosol (SOA). We compare these fresh and oxidized mass spectral signatures, along with chaparral smoke samples measured in the Missoula Fire Lab, to ground-based aerosol measurements made during the Station Fire that occurred one month earlier than the Williams Fire during the Pasadena Aerosol Characterization Observatory Campaign (PACO). Night and daytime aerosol smoke emissions were sampled for one week during the Station Fire. Daytime organic aerosol smoke emissions exhibited larger variability both in mass concentration and composition than nighttime smoke emissions. Both levoglucosan and potassium, known biomass burning tracers, were measured and had distinct time series, supporting diversity in the flaming vs. smoldering initial burning conditions. Similar to the Williams Fire, PMF of the Station Fire mass spectra also reveal two biomass burning factors, one that is less oxidized and correlates strongly with levoglucosan measurements and one that is heavily oxidized and correlates in time with the potassium signal. These two campaigns have allowed us to probe fresh and oxidized smoke in both night and daytime conditions, and PMF results have revealed that at least two emission factors are useful to

  13. A sea-state based source function for size and composition resolved marine aerosol

    SciTech Connect

    Long, Michael S; Keene, William C; Erickson III, David J

    2011-01-01

    A parameterization for the size- and composition-resolved production fluxes of nascent marine aerosol was developed from prior experimental observations and extrapolated to ambient conditions based on estimates of air entrainment by the breaking of wind-driven ocean waves. Production of particulate organic carbon (OC{sub aer}) was parameterized based on Langmuir equilibrium-type association of organic matter to bubble plumes in seawater and resulting aerosol as constrained by measurements of aerosol produced from productive and oligotrophic seawater. This novel approach is the first to parameterize size- and composition-resolved aerosol production based on explicit evaluation of wind-driven air entrainment/detrainment fluxes and chlorophyll-a as a proxy for surfactants in surface seawater. Production fluxes were simulated globally with an eight aerosol-size-bin version of the NCAR Community Atmosphere Model (CAM v3.5.07). Simulated production fluxes fell within the range of published estimates based on observationally constrained parameterizations. Because the parameterization does not consider contributions from spume drops, the simulated global mass flux (1.5 x 10{sup 3} Tg y{sup -1}) is near the lower end of published estimates. The simulated production of aerosol number (1.4 x 10{sup 6} m{sup -2} s{sup -1}) and OC{sub aer} (29 Tg C y{sup -1}) fall near the upper end of published estimates and suggest that primary marine aerosols may have greater influences on the physicochemical evolution of the troposphere, radiative transfer and climate, and associated feedbacks on the surface ocean than suggested by previous model studies.

  14. Visibility-reducing organic aerosols in the vicinity of Grand Canyon National Park: 2. Molecular composition

    SciTech Connect

    Mazurek, M.A.; Newman, L.; Daum, P.H.

    1995-12-31

    In this study we examine the molecular organic constituents (C8 to C40 lipid compounds) collected as aerosol from two sites located in Grand Canyon National Park during summer ambient conditions. Of special interest are molecular species which serve as tracers for possible sources of the observed aerosol organic matter. Ambient samples were collected from Hopi Point (rim site) and from Indian Gardens (in-canyon site) as fine (dp< 2.1 =B5m) and total particle samples. The samples were grouped into fine particle and total particle monthly composites to provide sufficient material for molecular marker analysis then analyzed by capillary gas chromatography/mass spectrometry (GUMS), The molecular constituents of each aerosol composite were screened for key tracer compounds using a computerized data reduction method that was based on molecular ion fragment identification. Comparisons were made to a reference database that included molecular information obtained from authentic sources of primary organic aerosol emissions. Emission sources studied included vehicular exhaust, as well as local sources at the Grand Canyon which included soil dust, wood smoke, and particles from vegetation indigenous to the two Grand Canyon sampling sites. Our results show that summertime ambient aerosols contain many organic molecular compounds which can be related directly to the local vegetation. Another major component found in all samples consists of highly oxidized organic species which are not emitted directly from local primary organic aerosol source types. These oxidized species are thought to be secondary organic aerosols that originate from photochemical transformations involving either locally emitted primary organic compounds or transported aged emissions from source regions upwind of the Grand Canyon.

  15. Relating hygroscopicity and composition of organic aerosol particulate matter

    SciTech Connect

    Duplissy, J.; DeCarlo, P. F.; Dommen, J.; Alfarra, M. R.; Metzger, A.; Barmpadimos, I.; Prevot, A. S. H.; Weingartner, E.; Tritscher, T.; Gysel, M.; Aiken, A. C.; Jimenez, J. L.; Canagaratna, M. R.; Worsnop, D. R.; Collins, D. R.; Tomlinson, J.; Baltensperger, U.

    2011-01-01

    A hygroscopicity tandem differential mobility analyzer (HTDMA) was used to measure the water uptake (hygroscopicity) of secondary organic aerosol (SOA) formed during the chemical and photochemical oxidation of several organic precursors in a smog chamber. Electron ionization mass spectra of the non-refractory submicron aerosol were simultaneously determined with an aerosol mass spectrometer (AMS), and correlations between the two different signals were investigated. SOA hygroscopicity was found to strongly correlate with the relative abundance of the ion signal m/z 44 expressed as a fraction of total organic signal (f44). m/z 44 is due mostly to the ion fragment CO2+ for all types of SOA systems studied, and has been previously shown to strongly correlate with organic O/C for ambient and chamber OA. The analysis was also performed on ambient OA from two field experiments at the remote site Jungfraujoch, and the megacity Mexico City, where similar results were found. A simple empirical linear relation between the hygroscopicity of OA at subsaturated RH, as given by the hygroscopic growth factor (GF) or "κorg" parameter, and f44 was determined and is given by κorg = 2.2 × f44 - 0.13. This approximation can be further verified and refined as the database for AMS and HTDMA measurements is constantly being expanded around the world. Finally, the use of this approximation could introduce an important simplification in the parameterization of hygroscopicity of OA in atmospheric models, since f44 is correlated with the photochemical age of an air mass.

  16. Activation of "synthetic ambient" aerosols - Relation to chemical composition of particles <100 nm

    NASA Astrophysics Data System (ADS)

    Burkart, J.; Hitzenberger, R.; Reischl, G.; Bauer, H.; Leder, K.; Puxbaum, H.

    2012-07-01

    Cloud condensation nuclei (CCN) are an important fraction of atmospheric aerosols because of their role in cloud formation. Experimental studies focus either on direct field measurements of complex ambient aerosols or laboratory investigations on well defined aerosols produced from single substances or substance mixtures. In this study, we focussed on the ultrafine aerosol because in terms of number concentration, the majority of the CCN are expected to have sizes in this range. A field study was performed from July 2007 to October 2008 to investigate the activation behaviour of the atmospheric aerosol in Vienna (Burkart et al., 2011). Filter samples of the aerosol <0.1 μm aerodynamic equivalent diameter were collected, elutriated and used to generate "synthetic ambient" aerosol in a nebulizer. Chemical analyses of the ultrafine water soluble material were also performed. The CCN properties of the "synthetic ambient" aerosol were obtained using the University of Vienna CCN counter (Giebl et al., 2002; Dusek et al., 2006b) at a nominal supersaturation (SS) of 0.5%. Activation diameters dact ranged from 54.5 nm to 66 nm, were larger than dact of typical single inorganic salts and showed no seasonal pattern in contrast to the fraction of water soluble organic carbon (WSOC), which ranged from 44% in spring to 15% in winter. The average hygroscopicity parameter κ (Petters and Kreidenweis, 2007) obtained from the activation curves ranged from 0.20 to 0.30 (average 0.24), which was significantly lower than κchem calculated from the chemical composition (0.43 ± 0.07).

  17. The Influence of Aerosol Composition on Photolysis Rates Based on Airborne Observations

    NASA Astrophysics Data System (ADS)

    Corr, C.; Barrick, J. D. W.; Beyersdorf, A. J.; Chen, G.; Crawford, J. H.; Jordan, C. E.; Moore, R.; Shook, M.; Thornhill, K. L., II; Winstead, E.; Ziemba, L. D.; Madronich, S.; Anderson, B. E.

    2015-12-01

    The potential variability in modeled photolysis rates introduced by aerosol optical properties measured at visible wavelengths is presented here. Aerosol scattering and absorption were measured aboard the NASA P-3B aircraft during the Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) using a TSI Nephelometer and a Radiance Research Particle Soot Absorption Photometer (PSAP), respectively. To isolate the effect of aerosols on photolysis rates, cloud-free case studies were identified using aircraft videos for the four DISCOVER-AQ deployments: Baltimore, MD-Washington, D.C. in July 2011, the California Central Valley in January/February 2013, Houston, TX in September 2013, and Denver, CO in July 2014. For these case studies, absorption measurements at 470 and 532 nm were extrapolated to the Nephelometer wavelengths (450 and 550nm) using the 470-532nm absorption Angstrom exponent (AAE470-532) to calculate aerosol extinction and SSAs at these wavelengths. Photolysis rates were modeled using the Tropospheric Ultraviolet model version 5.2 (TUV 5.2) for three scenarios: 1) an aerosol-free case, 2) using a spectrally-flat SSA at 550nm and 3) using a spectrally-dependent SSA derived from scattering and absorption measurements. Modeled photolysis rates were compared to those measured aboard the P-3B during DISCOVER-AQ. The relationship between airborne measurements of water soluble organic carbon (WSOC) made by a Particle-Into-Liquid-Sampler (PILS), AAE470-532 and model/measurement discrepancies were explored to assess the influence of aerosol composition on photolysis rates. Additional comparisons between photolysis rates modeled with vertically-resolved aerosol optical properties and those modeled using column-average values were performed to assess the influence of aerosol vertical distribution on photolysis rates.

  18. Effects of anthropogenic emissions on the molecular composition of urban organic aerosols: An ultrahigh resolution mass spectrometry study

    NASA Astrophysics Data System (ADS)

    Kourtchev, I.; O'Connor, I. P.; Giorio, C.; Fuller, S. J.; Kristensen, K.; Maenhaut, W.; Wenger, J. C.; Sodeau, J. R.; Glasius, M.; Kalberer, M.

    2014-06-01

    Identification of the organic composition of atmospheric aerosols is necessary to develop effective air pollution mitigation strategies. However, the majority of the organic aerosol mass is poorly characterized and its detailed analysis is a major analytical challenge. In this study, we applied state-of-the-art direct infusion nano-electrospray (nanoESI) ultrahigh resolution mass spectrometry (UHRMS) and liquid chromatography ESI Quadrupole Time-of-Flight (Q-TOF) MS for the analysis of the organic fraction of fine particulate matter (PM2.5) collected at an urban location in Cork, Ireland. Comprehensive mass spectral data evaluation methods (e.g., Kendrick Mass Defect and Van Krevelen) were used to identify compound classes and mass distributions of the detected species. Up to 850 elemental formulae were identified in negative mode nanoESI-UHR-MS. Nitrogen and/or sulphur containing organic species contributed up to 40% of the total identified formulae and exhibited strong diurnal variations suggesting the importance of night-time NO3 chemistry at the site. The presence of a large number of oxidised aromatic and nitroaromatic compounds in the samples indicated a strong anthropogenic influence, i.e., from traffic emissions and domestic solid fuel (DSF) burning. Most of the identified biogenic secondary organic aerosol (SOA) compounds are later-generation nitrogen- and sulphur-containing products, indicating that SOA composition is strongly affected by anthropogenic species such as NOx and SO2. Unsaturated and saturated C12-C20 fatty acids were found to be the most abundant homologs with a composition reflecting a primary marine origin. The results of this work demonstrate that the studied site is a very complex environment affected by a variety of anthropogenic activities and natural sources.

  19. Elemental composition of game meat from Austria.

    PubMed

    Ertl, Kathrin; Kitzer, Roland; Goessler, Walter

    2016-06-01

    Concentrations of 26 elements (B, Na, Mg, P, S, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Mo, Cd, Sb, Ba, Hg, Pb, U) in wild game meat from Austria were analysed using an inductively coupled plasma mass spectrometer. All investigated animals were culled during the hunting season 2012/2013, including 10 chamois (Rupicapra rupicapra), 9 hare (Lepus europaeus), 10 pheasant (Phasianus colchicus), 10 red deer (Cervus elaphus), 12 roe deer (Capreolus capreolus) and 10 wild boar (Sus scrofa). In 19 out of 61 meat samples lead concentrations were higher than 0.1 mg/kg, the maximum limit in meat as set by the European Commission (Regulation EC No 1881/2006), which is most likely caused by ammunition residues. Especially, pellet shot animals and chamois show a high risk for lead contamination. Despite ammunition residues all investigated muscle samples show no further health risk with respect to metal contamination. PMID:26886253

  20. Micromechanical modeling of laminated composites with interfaces and woven composites using the boundary element method

    SciTech Connect

    Goldberg, R.K.; Hopkins, D.A.

    1993-10-01

    The boundary element method is utilized to analyze the effects of fiber/matrix interfaces on the micromechanical behavior of laminated composites as well as the elastic behavior of woven composites. Effective composite properties are computed for laminated SiC/RBSN and SiC/Ti-15-3 composites, as well as a woven SiC/SiC composite. The properties calculated using the computerized tool BEST-CMS match the experimental results well.

  1. Micromechanical modeling of laminated composites with interfaces and woven composites using the boundary element method

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Hopkins, Dale A.

    1993-01-01

    The boundary element method is utilized to analyze the effects of fiber/matrix interfaces on the micromechanical behavior of laminated composites as well as the elastic behavior of woven composites. Effective composite properties are computed for laminated SiC/RBSN and SiC/Ti-15-3 composites, as well as a woven SiC/SiC composite. The properties calculated using the computerized tool BEST-CMS match the experimental results well.

  2. Chemical composition, sources, and processes of urban aerosols during summertime in Northwest China: insights from High Resolution Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Xu, J.; Zhang, Q.; Chen, M.; Ge, X.; Ren, J.; Qin, D.

    2014-06-01

    An aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed along with a Scanning Mobility Particle Sizer (SMPS) and a Multi Angle Absorption Photometers (MAAP) to measure the temporal variations of the mass loading, chemical composition, and size distribution of sub-micrometer particulate matter (PM1) in Lanzhou, northwest China, during 12 July-7 August 2012. The average PM1 mass concentration including non-refractory PM1 (NR-PM1) measured by HR-ToF-AMS and black carbon (BC) measured by MAAP during this study was 24.5 μg m-3 (ranging from 0.86 to 105μg m-3), with a mean composition consisting of 47% organics, 16% sulfate, 12% BC, 11% ammonium, 10% nitrate, and 4% chloride. The organics was consisted of 70% carbon, 21% oxygen, 8% hydrogen, and 1% nitrogen, with the average oxygen-to-carbon ratio (O / C) of 0.33 and organic mass-to-carbon ratio (OM / OC) of 1.58. Positive matrix factorization (PMF) of the high-resolution mass spectra of organic aerosols (OA) identified four distinct factors which represent, respectively, two primary OA (POA) emission sources (traffic and food cooking) and two secondary OA (SOA) types - a fresher, semi-volatile oxygenated OA (SV-OOA) and a more aged, low-volatility oxygenated OA (LV-OOA). Traffic-related hydrocarbon-like OA (HOA) and BC displayed distinct diurnal patterns both with peak at ~07:00-11:00 (BJT: UTC +8) corresponding to the morning rush hours, while cooking OA (COA) peaked during three meal periods. The diurnal profiles of sulfate and LV-OOA displayed a broad peak between ∼07:00-15:00, while those of nitrate, ammonium, and SV-OOA showed a narrower peak at ~08:00-13:00. The later morning and early afternoon peak in the diurnal profiles of secondary aerosol species was likely caused by mixing down of pollutants aloft, which were likely produced in the residual layer decoupled from the boundary layer during night time. The mass spectrum of SV-OOA also showed similarity with that of

  3. A novel approach to identifying the elemental composition of individual residue particles retained in single snow crystals.

    PubMed

    Ma, Chang-Jin; Hwang, Kyung-Chul; Kim, Ki-Hyun

    2013-01-01

    This study was carried out to describe the chemical characteristics of individual residual particles in hexagonal snow crystals, which can provide a clue to the aerosol removal mechanism during snowfall. In the present study, to collect snow crystal individually and to identify the elemental composition of individual residues retained in a hexagonal crystal, an orchestration of the replication technique and micro-particle induced X-ray emission (micro-PIXE) analysis was carried out. Information concerning the elemental compositions and their abundance in the snow crystals showed a severe crystal-to-crystal fluctuation. The residues retained in the hexagonal snow crystals were dominated primarily by mineral components, such as silica and calcium. Based on the elemental mask and the spectrum of micro-PIXE, it was possible to presume the chemical inner-structure as well as the elemental mixing state in and/or on the individual residues retained in single snow crystals.

  4. Exploration of the seasonal variation of organic aerosol composition using an explicit modeling approach

    NASA Astrophysics Data System (ADS)

    Ouzebidour, Farida; Camredon, Marie; Stéphanie La, Yuyi; Madronich, Sasha; Taylor, Julia Lee; Hodzic, Alma; Beekmann, Matthias; Siour, Guillaume; Aumont, Bernard

    2014-05-01

    Organic compounds account for a major fraction of fine aerosols in the atmosphere. This organic fraction is dominated by secondary organic aerosol (SOA). Processes leading to SOA formation are however still uncertain and SOA composition is far from being fully characterized. The goals of this study are to evaluate our current understanding of SOA formation and explore its composition. For this purpose, a box-model that describes explicitly processes involved in SOA formation has been developed. This model includes the emission of 183 gaseous and particulate organic compounds. The oxidation of these emitted organic compounds is described using the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A). Gas/particle partitioning has been implemented considering an ideal homogeneous condensed phase. The generated chemical scheme contains 500,000 species and the gas/particle partitioning is performed for 90,000 of them. Simulations have been performed for summer and winter scenarios representative of continental and urban conditions. NOx and ozone simulated concentrations reproduce the expected winter and summer diurnal evolutions. The predicted organic aerosol composition is a mixture of primary and secondary organic aerosols during the winter and is largely dominated by SOA during the summer.

  5. Finite element based micro-mechanics modeling of textile composites

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Griffin, O. H., Jr.

    1995-01-01

    Textile composites have the advantage over laminated composites of a significantly greater damage tolerance and resistance to delamination. Currently, a disadvantage of textile composites is the inability to examine the details of the internal response of these materials under load. Traditional approaches to the study fo textile based composite materials neglect many of the geometric details that affect the performance of the material. The present three dimensional analysis, based on the representative volume element (RVE) of a plain weave, allows prediction of the internal details of displacement, strain, stress, and failure quantities. Through this analysis, the effect of geometric and material parameters on the aforementioned quantities are studied.

  6. FECAP - FINITE ELEMENT COMPOSITE ANALYSIS PROGRAM FOR A MICROCOMPUTER

    NASA Technical Reports Server (NTRS)

    Bowles, D. E.

    1994-01-01

    Advanced composite materials have gained use in the aerospace industry over the last 20 years because of their high specific strength and stiffness, and low coefficient of thermal expansion. Design of composite structures requires the analysis of composite material behavior. The Finite Element Composite Analysis Program, FECAP, is a special purpose finite element analysis program for analyzing composite material behavior with a microcomputer. Composite materials, in regard to this program, are defined as the combination of at least two distinct materials to form one nonhomogeneous anisotropic material. FECAP assumes a state of generalized plane strain exists in a material consisting of two or more orthotropic phases, subjected to mechanical and/or thermal loading. The finite element formulation used in FECAP is displacement based and requires the minimization of the total potential energy for each element with respect to the unknown variables. This procedure leads to a set of linear simultaneous equations relating the unknown nodal displacements to the applied loads. The equations for each element are assembled into a global system, the boundary conditions are applied, and the system is solved for the nodal displacements. The analysis may be performed using either 4-mode linear or 8-mode quadratic isoparametric elements. Output includes the nodal displacements, and the element stresses and strains. FECAP was written for a Hewlett Packard HP9000 Series 200 Microcomputer with the HP Basic operating system. It was written in HP BASIC 3.0 and requires approximately 0.5 Mbytes of RAM in addition to what is required for the operating system. A math coprocessor card is highly recommended. FECAP was developed in 1988.

  7. Molecular composition of atmospheric aerosols from Halley Bay, Antarctica, using ultra-high resolution mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kourtchev, Ivan; Brough, Neil; Rincon, Angela; Jones, Anna; Kalberer, Markus

    2016-04-01

    Antarctica is one of the few pristine places to study natural processes of atmospheric aerosols and anthropogenic impacts on the clean remote atmosphere. Although stratospheric aerosol in Antarctica has now been explored in some detail because of the ozone depletion phenomenon, tropospheric aerosol particles in Antarctica remain very little studied. The main goal of this work is to identify in detail the organic chemical composition of aerosol from Halley Bay station, which is located on the Brunt Ice Shelf floating on the Weddell Sea in Antarctica. In this study we characterise the molecular composition of aerosols from three seasons (summer, autumn and winter in 2012) using ultra-high resolution mass spectrometry (UHRMS). The technique provides high accuracy and high mass resolving power that allows determining unambiguous number of organic compounds present in complex organic mixtures (Noziere et al., 2015). The molecular composition interpretation was facilitated using visualisation methods (e.g. double bond equivalent, Van Krevelen diagrams, Kendrick mass analysis, and carbon oxidation state), which allowed to identify patterns, such as differences between sampling times and atmospheric processes. The majority of the identified compounds were attributed to nitrogen and sulphur containing species which exhibited very strong seasonal trends. Relatively large fraction (up to 30% of the total number of molecules) of these species contained very low hydrogen to carbon ratios (below 1) indicating that the site is impacted by anthropogenic emissions. Influences of the meteorological parameters and air mass trajectories on the molecular composition are discussed. Nozière et al., The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges, Chem. Rev., 115, 3920-3983, 2015.

  8. Investigation of the detailed chemical composition of organic aerosol in a South East Asian Rainforest

    NASA Astrophysics Data System (ADS)

    Hamilton, Jacqueline; Ward, Martyn; Rami Alfarra, M.; Lewis, Alastair; McFiggans, Gordon; Robinson, Niall

    2010-05-01

    The formation of secondary organic aerosol (SOA) in tropical regions is a key uncertainty in quantifying the effect of man made emissions on the climate. Large quantities of volatile organic compounds are emitted from natural biogenic sources in the tropics, including isoprene, monoterpenes and sequiterpenes. There are very few studies of the detailed chemical composition of organic aerosols in tropical rainforest regions, but these would provide information on the importance of primary versus secondary organic aerosols, the key VOC precursors, oxidation state and volatility. Particle samples were collected in a tropical rainforest at Danum Valley in Borneo as part of the OP3 field campaign in 2008. Twenty four hour filter samples were collected at the Global Atmospheric Watch station at a height of around 10 m and shipped back to the laboratory (below -4 °C) for offline analysis. The OA composition was studied using multiple high resolution chromatographic techniques including comprehensive two dimensional gas chromatography coupled to time of flight mass spectrometry (GCXGC-TOFMS) and liquid chromatography coupled to ion trap mass spectrometry (LC-MSn). The composition was directly compared to chamber generated SOA (as part of the Aerosol Coupling in the Earths System , ACES, experiment) to determine SOA tracers. A biogenic SOA tracer MS fragmentation library was constructed and a number of SOA components from limonene, linalool and -pinene were identified in the rainforest OA. Very high resolution mass spectrometry (Fourier Transform Ion Cyclotron Resonance FTICR-MS) allowed the O:C and H:C ratios to be determined and these will be compared to those obtained by aerosol mass spectrometry (AMS). In addition, the OA composition from the rainforest will be compared to other locations.

  9. Simulation of aerosol chemical compositions in the Western Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Chrit, Mounir; Kata Sartelet, Karine; Sciare, Jean; Marchand, Nicolas; Pey, Jorge; Sellegri, Karine

    2016-04-01

    This work aims at evaluating the chemical transport model (CTM) Polair3d of the air-quality modelling platform Polyphemus during the ChArMex summer campaigns of 2013, using ground-based measurements performed at ERSA (Cape Corsica, France), and at determining the processes controlling organic aerosol concentrations at ERSA. Simulations are compared to measurements for concentrations of both organic and inorganic species, as well as the ratio of biogenic versus anthropogenic particles, and organic aerosol properties (oxidation state). For inorganics, the concentrations of sulphate, sodium, chloride, ammonium and nitrate are compared to measurements. Non-sea-salt sulphate and ammonium concentrations are well reproduced by the model. However, because of the geographic location of the measurement station at Cape Corsica which undergoes strong wind velocities and sea effects, sea-salt sulphate, sodium, chloride and nitrate concentrations are strongly influenced by the parameterizations used for sea-salt emissions. Different parameterizations are compared and a parameterization is chosen after comparison to sodium measurements. For organics, the concentrations are well modelled when compared to experimental values. Anthropogenic particles are influenced by emission of semi-volatile organic compounds (SVOC). Measurements allow us to refine the estimation of those emissions, which are currently missing in emission inventories. Although concentrations of biogenic particles are well simulated, the organic chemical compounds are not enough oxidised in the model. The observed oxidation state of organics shows that the oligomerisation of pinonaldehyde was over-estimated in Polyphemus. To improve the oxidation property of organics, the formation of extremely low volatile organic compounds from autoxidation of monoterpenes is added to Polyphemus, using recently published data from chamber experiments. These chemical compounds are highly oxygenated and are formed rapidly, as first

  10. The chemical composition of aerosols from Wildland fires: Current state of the science and possible new directions.

    EPA Science Inventory

    Wildland fire emits a substantial quantity of aerosol to the atmosphere. These aerosols typically comprise a complex mixture of organic matter and refractory elemental or black carbon with a relatively minor contribution of inorganic matter from soils and plant micronutrients. Id...

  11. Characteristics and composition of atmospheric aerosols in Phimai, central Thailand during BASE-ASIA

    NASA Astrophysics Data System (ADS)

    Li, Can; Tsay, Si-Chee; Hsu, N. Christina; Kim, Jin Young; Howell, Steven G.; Huebert, Barry J.; Ji, Qiang; Jeong, Myeong-Jae; Wang, Sheng-Hsiang; Hansell, Richard A.; Bell, Shaun W.

    2013-10-01

    Comprehensive measurements of atmospheric aerosols were made in Phimai, central Thailand (15.183°N, 102.565°E, elevation: 206 m) during the BASE-ASIA field experiment from late February to early May in 2006. The observed aerosol loading was sizable for this rural site (mean aerosol scattering: 108 ± 64 Mm-1; absorption: 15 ± 8 Mm-1; PM10 concentration: 33 ± 17 μg m-3), and dominated by submicron particles. Major aerosol compounds included carbonaceous (OC: 9.5 ± 3.6 μg m-3; EC: 2.0 ± 2.3 μg m-3) and secondary species (SO42-: 6.4 ± 3.7 μg m-3, NH4+: 2.2 ± 1.3 μg m-3). While the site was seldom under the direct influence of large forest fires to its north, agricultural fires were ubiquitous during the experiment, as suggested by the substantial concentration of K+ (0.56 ± 0.33 μg m-3). Besides biomass burning, aerosols in Phimai during the experiment were also strongly influenced by industrial and vehicular emissions from the Bangkok metropolitan region and long-range transport from southern China. High humidity played an important role in determining the aerosol composition and properties in the region. Sulfate was primarily formed via aqueous phase reactions, and hygroscopic growth could enhance the aerosol light scattering by up to 60%, at the typical morning RH level of 85%. The aerosol single scattering albedo demonstrated distinct diurnal variation, ranging from 0.86 ± 0.04 in the evening to 0.92 ± 0.02 in the morning. This experiment marks the first time such comprehensive characterization of aerosols was made for rural central Thailand. Our results indicate that aerosol pollution has developed into a regional problem for northern Indochina, and may become more severe as the region's population and economy continue to grow.

  12. CCN frequency distributions and aerosol chemical composition from long-term observations at European ACTRIS supersites

    NASA Astrophysics Data System (ADS)

    Decesari, Stefano; Rinaldi, Matteo; Schmale, Julia Yvonne; Gysel, Martin; Fröhlich, Roman; Poulain, Laurent; Henning, Silvia; Stratmann, Frank; Facchini, Maria Cristina

    2016-04-01

    Cloud droplet number concentration is regulated by the availability of aerosol acting as cloud condensation nuclei (CCN). Predicting the air concentrations of CCN involves knowledge of all physical and chemical processes that contribute to shape the particle size distribution and determine aerosol hygroscopicity. The relevance of specific atmospheric processes (e.g., nucleation, coagulation, condensation of secondary organic and inorganic aerosol, etc.) is time- and site-dependent, therefore the availability of long-term, time-resolved aerosol observations at locations representative of diverse environments is strategic for the validation of state-of-the-art chemical transport models suited to predict CCN concentrations. We focused on long-term (year-long) datasets of CCN and of aerosol composition data including black carbon, and inorganic as well as organic compounds from the Aerosol Chemical Speciation Monitor (ACSM) at selected ACTRIS supersites (http://www.actris.eu/). We discuss here the joint frequency distribution of CCN levels and of aerosol chemical components concentrations for two stations: an alpine site (Jungfraujoch, CH) and a central European rural site (Melpitz, DE). The CCN frequency distributions at Jungfraujoch are broad and generally correlated with the distributions of the concentrations of aerosol chemical components (e.g., high CCN concentrations are most frequently found for high organic matter or black carbon concentrations, and vice versa), which can be explained as an effect of the strong seasonality in the aerosol characteristics at the mountain site. The CCN frequency distributions in Melpitz show a much weaker overlap with the distributions of BC concentrations or other chemical compounds. However, especially at high CCN concentration levels, a statistical correlation with organic matter (OM) concentration can be observed. For instance, the number of CCN (with particle diameter between 20 and 250 nm) at a supersaturation of 0.7% is

  13. Insights into Submicron Aerosol Composition and Sources from the WINTER Aircraft Campaign Over the Eastern US.

    NASA Astrophysics Data System (ADS)

    Schroder, J. C.; Campuzano Jost, P.; Day, D. A.; Fibiger, D. L.; McDuffie, E. E.; Blake, N. J.; Hills, A. J.; Hornbrook, R. S.; Apel, E. C.; Weinheimer, A. J.; Campos, T. L.; Brown, S. S.; Jimenez, J. L.

    2015-12-01

    The WINTER aircraft campaign was a recent field experiment to probe the sources and evolution of gas pollutants and aerosols in Northeast US urban and industrial plumes during the winter. A highly customized Aerodyne aerosol mass spectrometer (AMS) was flown on the NCAR C-130 to characterize submicron aerosol composition and evolution. Thirteen research flights were conducted covering a wide range of conditions, including rural, urban, and marine environments during day and night. Organic aerosol (OA) was a large component of the submicron aerosol in the boundary layer. The fraction of OA (fOA) was smaller (35-40%) than in recent US summer campaigns (~60-70%). Biomass burning was observed to be an important source of OA in the boundary layer, which is consistent with recent wintertime studies that show a substantial contribution of residential wood burning to the OA loadings. OA oxygenation (O/C ratio) shows a broad distribution with a substantial fraction of smaller O/C ratios when compared to previous summertime campaigns. Since measurements were rarely made very close to primary sources (i.e. directly above urban areas), this is consistent with oxidative chemistry being slower during winter. SOA formation and aging in the NYC plume was observed during several flights and compared with summertime results from LA (CalNex) and Mexico City (MILAGRO). Additionally, an oxidation flow reactor (OFR) capable of oxidizing ambient air up to several equivalent days of oxidation was deployed for the first time in an aircraft platform. The aerosol outflow of the OFR was sampled with the AMS to provide real-time snapshots of the potential for aerosol formation and aging. For example, a case study of a flight through the Ohio River valley showed evidence of oxidation of SO2 to sulfate. The measured sulfate enhancements were in good agreement with our OFR chemical model. OFR results for SOA will be discussed.

  14. Enabling in-situ observation of organic aerosol speciated composition: Advances in TAG instrumentation (Invited)

    NASA Astrophysics Data System (ADS)

    Goldstein, A. H.; Worton, D. R.; Zhao, Y.; Kreisberg, N. M.; Teng, A. P.; Hering, S. V.; Gorecki, T.; Ranjan, M.; Hennigan, C. J.; Lambe, A.; Nguyen, N.; Donahue, N. M.; Robinson, A. L.; Jayne, J. T.; Williams, B. J.; Worsnop, D. R.

    2009-12-01

    The complex chemical composition of atmospheric aerosols, particularly the organic carbon portion, presents unique measurement challenges. We developed the Thermal Desorption Aerosol Gas chromatograph (TAG) system for hourly in-situ speciation of a wide range of primary and secondary organic compounds in aerosols. This instrument combines an impactor particle collector with thermal desorption followed by gas chromatography and mass spectrometric detection to provide separation, identification, and quantification of organic constituents at the molecular level. Observed compounds include alkanes, aldehydes, ketones, PAHs, monocarboxylic acids, and many more. The hourly time resolution measurements provided by TAG capture dynamic and frequent changes in aerosol composition that would not be resolved using traditional filter collection. TAG measurements also provide a much larger data set, facilitating the use of statistical approaches such as positive matrix factorization to identify source categories and their contributions to the total observed aerosol. Because TAG identifies organic compounds at the molecular level, it can build on the extensive work obtained by traditional GC/MS analysis of filter samples on source emission profiles and secondary organic aerosol formation. We report here continued developments in the capabilities of our TAG system. Most recently, we have incorporated a two-dimensional chromatography (GC×GC) capability into TAG, and now have that instrument operating with a time of flight (TOF) MS detector. Two-dimensional chromatography provides two types of compound separation, most typically by volatility and polarity. It uses two columns with different stationary phases connected in series separated by a modulator. The modulator periodically traps analytes eluting from the first column, and injects fractions of this effluent onto the second column in the form of narrow pulses providing additional separation for co-eluting peaks. The approach

  15. Nature, Origin, Potential Composition, and Climate Impact of the Asian Tropopause Aerosol Layer (ATAL)

    NASA Technical Reports Server (NTRS)

    Fairlie, T. D.; Vernier, J.-P.; Thomason, L. W.; Natarajan, M.; Bedka, K.; Wienhold, F.; Bian J.; Martinsson, B.

    2015-01-01

    Satellite observations from SAGE II and CALIPSO indicate that summertime aerosol extinction has more than doubled in the Asian Tropopause Aerosol Layer (ATAL) since the late 1990s. Here we show remote and in-situ observations, together with results from a chemical transport model (CTM), to explore the likely composition, origin, and radiative forcing of the ATAL. We show in-situ balloon measurements of aerosol backscatter, which support the high levels observed by CALIPSO since 2006. We also show in situ measurements from aircraft, which indicate a predominant carbonaceous contribution to the ATAL (Carbon/Sulfur ratios of 2- 10), which is supported by the CTM results. We show that the peak in ATAL aerosol lags by 1 month the peak in CO from MLS, associated with deep convection over Asia during the summer monsoon. This suggests that secondary formation and growth of aerosols in the upper troposphere on monthly timescales make a significant contribution to ATAL. Back trajectory calculations initialized from CALIPSO observations provide evidence that deep convection over India is a significant source for ATAL through the vertical transport of pollution to the upper troposphere.

  16. Aerosol characterization over the southeastern United States using high resolution aerosol mass spectrometry: spatial and seasonal variation of aerosol composition, sources, and organic nitrates

    NASA Astrophysics Data System (ADS)

    Xu, L.; Suresh, S.; Guo, H.; Weber, R. J.; Ng, N. L.

    2015-04-01

    We deployed a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and an Aerosol Chemical Speciation Monitor (ACSM) to characterize the chemical composition of submicron non-refractory particles (NR-PM1) in the southeastern US. Measurements were performed in both rural and urban sites in the greater Atlanta area, GA and Centreville, AL for approximately one year, as part of Southeastern Center of Air Pollution and Epidemiology study (SCAPE) and Southern Oxidant and Aerosol Study (SOAS). Organic aerosol (OA) accounts for more than half of NR1 mass concentration regardless of sampling sites and seasons. Positive matrix factorization (PMF) analysis of HR-ToF-AMS measurements identified various OA sources, depending on location and season. Hydrocarbon-like OA (HOA) and cooking OA (COA) have important but not dominant contributions to total OA in urban sites. Biomass burning OA (BBOA) concentration shows a distinct seasonal variation with a larger enhancement in winter than summer. We find a good correlation between BBOA and brown carbon, indicating biomass burning is an important source for brown carbon, although an additional, unidentified brown carbon source is likely present at the rural Yorkville site. Isoprene-derived OA (Isoprene-OA) is only deconvolved in warmer months and contributes 18-36% of total OA. The presence of Isoprene-OA factor in urban sites is more likely from local production in the presence of NOx than transport from rural sites. More-oxidized and less-oxidized oxygenated organic aerosol (MO-OOA and LO-OOA, respectively) are dominant fractions (47-79%) of OA in all sites. MO-OOA correlates well with ozone in summer, but not in winter, indicating MO-OOA sources may vary with seasons. LO-OOA, which reaches a daily maximum at night, correlates better with estimated nitrate functionality from organic nitrates than total nitrates. Based on the HR-ToF-AMS measurements, we estimate that the nitrate functionality from organic nitrates

  17. Finite element analysis of a composite wheelchair wheel design

    NASA Technical Reports Server (NTRS)

    Ortega, Rene

    1994-01-01

    The finite element analysis of a composite wheelchair wheel design is presented. The design is the result of a technology utilization request. The designer's intent is to soften the riding feeling by incorporating a mechanism attaching the wheel rim to the spokes that would allow considerable deflection upon compressive loads. A finite element analysis was conducted to verify proper structural function. Displacement and stress results are presented and conclusions are provided.

  18. Size-segregated compositional analysis of aerosol particles collected in the European Arctic during the ACCACIA campaign

    NASA Astrophysics Data System (ADS)

    Young, G.; Jones, H. M.; Darbyshire, E.; Baustian, K. J.; McQuaid, J. B.; Bower, K. N.; Connolly, P. J.; Gallagher, M. W.; Choularton, T. W.

    2016-03-01

    Single-particle compositional analysis of filter samples collected on board the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 aircraft is presented for six flights during the springtime Aerosol-Cloud Coupling and Climate Interactions in the Arctic (ACCACIA) campaign (March-April 2013). Scanning electron microscopy was utilised to derive size-segregated particle compositions and size distributions, and these were compared to corresponding data from wing-mounted optical particle counters. Reasonable agreement between the calculated number size distributions was found. Significant variability in composition was observed, with differing external and internal mixing identified, between air mass trajectory cases based on HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) analyses. Dominant particle classes were silicate-based dusts and sea salts, with particles notably rich in K and Ca detected in one case. Source regions varied from the Arctic Ocean and Greenland through to northern Russia and the European continent. Good agreement between the back trajectories was mirrored by comparable compositional trends between samples. Silicate dusts were identified in all cases, and the elemental composition of the dust was consistent for all samples except one. It is hypothesised that long-range, high-altitude transport was primarily responsible for this dust, with likely sources including the Asian arid regions.

  19. The chemical composition of fine ambient aerosol particles in the Beijing area

    NASA Astrophysics Data System (ADS)

    Nekat, Bettina; van Pinxteren, Dominik; Iinuma, Yoshiteru; Gnauk, Thomas; Müller, Konrad; Herrmann, Hartmut

    2010-05-01

    The strong economical growth in China during the last few decades led to heavy air pollution caused by significantly increased particle emissions. The aerosol particles affect not only the regional air quality and visibility, but can also influence cloud formation processes and the radiative balance of the atmosphere by their optical and microphysical properties. The ability to act as Cloud Condensation Nuclei (CCN) is related to microphysical properties like the hygroscopic growth or the cloud droplet activation. The chemical composition of CCN plays an important role on these properties and varies strongly with the particle size and the time of day. Hygroscopic or surface active substances can increase the hygroscopicity and lower the surface tension of the particle liquid phase, respectively. The presence of such compounds may result in faster cloud droplet activation by faster water uptake. The DFG project HaChi (Haze in China) aimed at studying physical and chemical parameters of urban aerosol particles in the Beijing area in order to associate the chemical composition of aerosol particles with their ability to act as CCN. To this end, two measurement campaigns were performed at the Wuqing National Ordinary Meteorological Observing Station, which is a background site near Beijing. The winter campaign was realized in March 2009 and the summer campaign took place from mid July 2009 to mid August 2009. Fine particles with an aerodynamic diameter smaller than or equal 1 μm were continuously sampled for 24h over the two campaigns using a DIGITEL high volume sampler (DHA-80). The present contribution presents and discusses the results of the chemical characterization of the DIGITEL filters samples. The filters were analyzed for the mass concentration, inorganic ions and carbon sum parameters like elemental (EC), organic (OC) and water soluble organic carbon (WSOC). The WSOC fraction was further characterized for hygroscopic substances like low molecular

  20. Finite Element Composite Analysis Program (FECAP) for a microcomputer

    NASA Technical Reports Server (NTRS)

    Bowles, David E.

    1988-01-01

    A special purpose finite element composite analysis program for analyzing composite material behavior with a microcomputer is described. The formulation assumes a state of generalized plane strain in a material consisting of two or more orthotropic phases. Loading can be mechanical and/or thermal. The theoretical background, computer implementation, and program users guide are described in detail. A sample program is solved showing the required user input and computer generated output.

  1. Compositional and phase relations among rare earth element minerals

    NASA Technical Reports Server (NTRS)

    Burt, D. M.

    1990-01-01

    This paper discusses the compositional and phase relationships among minerals in which rare earth elements (REE) occur as essential constituents (e.g., bastnaesite, monazite, xenotime, aeschynite, allanite). Particular consideration is given to the vector representation of complex coupled substitutions in selected REE-bearing minerals and to the REE partitioning between minerals as related to the acid-base tendencies and mineral stabilities. It is shown that the treatment of coupled substitutions as vector quantities facilitates graphical representation of mineral composition spaces.

  2. Mass spectrometric airborne measurements of submicron aerosol and cloud residual composition in tropic deep convection during ACRIDICON-CHUVA

    NASA Astrophysics Data System (ADS)

    Schulz, Christiane; Schneider, Johannes; Mertes, Stephan; Kästner, Udo; Weinzierl, Bernadett; Sauer, Daniel; Fütterer, Daniel; Walser, Adrian; Borrmann, Stephan

    2015-04-01

    Airborne measurements of submicron aerosol and cloud particles were conducted in the region of Manaus (Amazonas, Brazil) during the ACRIDICON-CHUVA campaign in September 2014. ACRIDICON-CHUVA aimed at the investigation of convective cloud systems in order to get a better understanding and quantification of aerosol-cloud-interactions and radiative effects of convective clouds. For that, data from airborne measurements within convective cloud systems are combined with satellite and ground-based data. We used a C-ToF-AMS (Compact-Time-of-Flight-Aerosol-Mass-Spectrometer) to obtain information on aerosol composition and vertical profiles of different aerosol species, like organics, sulphate, nitrate, ammonium and chloride. The instrument was operated behind two different inlets: The HASI (HALO Aerosol Submicrometer Inlet) samples aerosol particles, whereas the CVI (Counterflow Virtual Impactor) samples cloud droplets and ice particles during in-cloud measurements, such that cloud residual particles can be analyzed. Differences in aerosol composition inside and outside of clouds and cloud properties over forested or deforested region were investigated. Additionally, the in- and outflow of convective clouds was sampled on dedicated cloud missions in order to study the evolution of the clouds and the processing of aerosol particles. First results show high organic aerosol mass concentrations (typically 15 μg/m3 and during one flight up to 25 μg/m3). Although high amounts of organic aerosol in tropic air over rainforest regions were expected, such high mass concentrations were not anticipated. Next to that, high sulphate aerosol mass concentrations (about 4 μg/m3) were measured at low altitudes (up to 5 km). During some flights organic and nitrate aerosol was observed with higher mass concentrations at high altitudes (10-12 km) than at lower altitudes, indicating redistribution of boundary layer particles by convection. The cloud residuals measured during in

  3. Composite mobile genetic elements disseminating macrolide resistance in Streptococcus pneumoniae

    PubMed Central

    Chancey, Scott T.; Agrawal, Sonia; Schroeder, Max R.; Farley, Monica M.; Tettelin, Hervé; Stephens, David S.

    2015-01-01

    Macrolide resistance in Streptococcus pneumoniae emerged in the U.S. and globally during the early 1990's. The RNA methylase encoded by erm(B) and the macrolide efflux genes mef(E) and mel were identified as the resistance determining factors. These genes are disseminated in the pneumococcus on mobile, often chimeric elements consisting of multiple smaller elements. To better understand the variety of elements encoding macrolide resistance and how they have evolved in the pre- and post-conjugate vaccine eras, the genomes of 121 invasive and ten carriage isolates from Atlanta from 1994 to 2011 were analyzed for mobile elements involved in the dissemination of macrolide resistance. The isolates were selected to provide broad coverage of the genetic variability of antibiotic resistant pneumococci and included 100 invasive isolates resistant to macrolides. Tn916-like elements carrying mef(E) and mel on the Macrolide Genetic Assembly (Mega) and erm(B) on the erm(B) element and Tn917 were integrated into the pneumococcal chromosome backbone and into larger Tn5253-like composite elements. The results reported here include identification of novel insertion sites for Mega and characterization of the insertion sites of Tn916-like elements in the pneumococcal chromosome and in larger composite elements. The data indicate that integration of elements by conjugation was infrequent compared to recombination. Thus, it appears that conjugative mobile elements allow the pneumococcus to acquire DNA from distantly related bacteria, but once integrated into a pneumococcal genome, transformation and recombination is the primary mechanism for transmission of novel DNA throughout the pneumococcal population. PMID:25709602

  4. Daily variation of organic aerosol concentration and composition in Seoul, Korea during KORUS pre-campaign

    NASA Astrophysics Data System (ADS)

    Shin, H. J.; Lee, J.; Choi, A. Y.; Park, S. M.; Park, J. S.; Song, I. H.; Hong, Y. D.

    2015-12-01

    Daily variation of Organic Aerosol (OA) as well as organic tracer compounds have been observed in aerosol samples collected during KORUS-AQ (Korea-US Air Quality Study) pre-campaign (From May 18 to June 12) in Seoul, Korea. NR-PM1 bounded OA was measured by HR-TOF-AMS (Aerodyne) and the temporal variation, composition of OA by family group characterization, and oxidation state of OA was studied. And to distinguish the source characteristics (such as HOA, COA, NOA, SV-OOA, LV-OOA, etc…) of the organic, AMS-PMF model will be used.For the observation of organic tracer compounds, solvent extractable fractions were analyzed by GC-MS. More than 80 organic compounds were detected in the aerosol samples and grouped by source characterized classes, including vehicular emission tracers, biomass burning tracers, coal emission tracers, secondary organic aerosol (SOA) tracers. The main objective of this study is evaluation of the validity of OA fractionation based on the AMS measurement. So, we will compare daily variation of OA composition measured by AMS with daily variation of organic tracer compounds. Further, we will specify source characteristics estimated using AMS-PMF model by comparing the results of source apportionment of OA using PMF of organic tracer compounds.

  5. Inorganic trace element content of aerosols at puy de Dôme, France

    NASA Astrophysics Data System (ADS)

    Vlastelic, I.; Sellegri, K.; Colomb, A.; Suchroski, K.; Bouvier, L.; Nauret, F.

    2012-04-01

    The puy de Dôme research station is located at 1465 m above sea level in central France (45° 46' N, 2° 57' E, 1465 m a.s.l.). The station is surrounded by a protected area where agriculture and forests are predominant. The city of Clermont-Ferrand (150 000 inhabitants) is located 16 km east of the station. At the pdD site, the dominant westerly winds bring background or aged air masses. Despite its relatively low elevation, long-term records of gases and meteorological parameters indicate that in winter the site is mainly located in the free troposphere. Aerosol physical and chemical properties (particle size, black carbon mass), and gas-phase mixing ratios (SO2, CO, CO2, O3, NO, and NO2) are measured continuously throughout the year. Since October 2011, inorganic trace element content of aerosols is also monitored weekly. Precisely measured air volumes (typically from 15 to 20 m3) are filtered during two consecutive days and two consecutive nights on high purity teflon filters (47 mm diameter and 1.0 micrometer porosity). The Teflon filters are leached in savillex beakers using HNO3(0.4M) - HF (0.05M) and trace elements concentrations are analyzed by ICPMS (Agilent 7500, Laboratoire Magmas et Volcans). Preliminary data were analyzed in logarithmic plots sorting elements according to their decreasing abundance in the upper continental crust. A first group of elements (Al, Na, Fe, Mg, Ti, Mn, Ba, Sr, Zr, V, Cr, Rb, Li, Y, Ga, Co, Sc, Nb, Th, Hf, Cs, U, Be, Ta and Rare Earth Elements) shows a progressive decreasing trend, which suggests a crustal origin. A second group of elements (Zn, Ni, Cu, B, Pb, As, Sn, W, Ge, Mo, Tl, Sb, Bi, Se, Cd, In and Ag) shows strong positive anomalies that superimpose on the smooth trend. With the exception of Ni, all elements from this second group are volatile to some degree. The excess element concentration (i.e., unsupported by crustal input) decreases in the following order: Zn (7.75 ng/m3), B (1.2 ng/m3), Ni (0.44 ng/m3), Pb (0

  6. [Concentration distribution of metal elements in atmospheric aerosol under different weather conditions in Qingdao Coastal Region].

    PubMed

    Chen, Xiao-Jing; Qi, Jian-Hua; Liu, Ning; Zhang, Xiang-Yu; Shen, Heng-Qing; Liu, Ming-Xu

    2014-10-01

    To know the influence of different weather conditions on the concentration of metal elements in aerosols in the coastal region, total suspended particles (TSP) samples were collected from April to May 2012, and August 2012 to March 2013 in the Qingdao coastal region, and common trace metals were analyzed by using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) and Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES). The results showed that Al, Ca, Fe, Na, K and Mg were the dominant metal elements in TSP, and the sum of the six elements accounted for 94.2% of the sum of all metals. TSP and metal elements had significant monthly variations, Fe, Al, K, Ca, Mg, Zn, Ba, Mn, Ti, Sr and Li had the highest concentration in November and January, while Be, Sc, Co, Ni and Cr showed the highest value in January. Na had the highest concentration in August, November and February, and the lowest in December. Pb had the highest concentration in January and February, and the lowest in August and December. Enrichment factors indicated that Be, Co, Al, Ca, Fe, K, Mg, Mn, Sr and Ti were mainly affected by natural sources; Li, Cr, Ni, Zn, Ba and Na were affected by natural sources and part of anthropogenic sources; Pb was mainly from anthropogenic sources. Different weather conditions had great impact on TSP and metal elements concentrations, all the measured metals had the highest concentrations in smog except Ti. Compared with the sunny day, the concentration of atmospheric particulate Ti decreased, while the other elements increased by 1 to 4 times in smog. Li, Be, Cr, Ni, Al, Fe, Mg and Mn had little variation in concentration in foggy day, and the concentration of Pb and Na increased considerably. The concentration of Co, Ca and Ti reduced obviously in fog. Except for Cr, Co and Ti, the other elements increased by 1 to 3 times in haze. Most of the elements had the minimal enrichment factors in sunny day, while the other had the maximal enrichment factor in

  7. [Concentration distribution of metal elements in atmospheric aerosol under different weather conditions in Qingdao Coastal Region].

    PubMed

    Chen, Xiao-Jing; Qi, Jian-Hua; Liu, Ning; Zhang, Xiang-Yu; Shen, Heng-Qing; Liu, Ming-Xu

    2014-10-01

    To know the influence of different weather conditions on the concentration of metal elements in aerosols in the coastal region, total suspended particles (TSP) samples were collected from April to May 2012, and August 2012 to March 2013 in the Qingdao coastal region, and common trace metals were analyzed by using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) and Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES). The results showed that Al, Ca, Fe, Na, K and Mg were the dominant metal elements in TSP, and the sum of the six elements accounted for 94.2% of the sum of all metals. TSP and metal elements had significant monthly variations, Fe, Al, K, Ca, Mg, Zn, Ba, Mn, Ti, Sr and Li had the highest concentration in November and January, while Be, Sc, Co, Ni and Cr showed the highest value in January. Na had the highest concentration in August, November and February, and the lowest in December. Pb had the highest concentration in January and February, and the lowest in August and December. Enrichment factors indicated that Be, Co, Al, Ca, Fe, K, Mg, Mn, Sr and Ti were mainly affected by natural sources; Li, Cr, Ni, Zn, Ba and Na were affected by natural sources and part of anthropogenic sources; Pb was mainly from anthropogenic sources. Different weather conditions had great impact on TSP and metal elements concentrations, all the measured metals had the highest concentrations in smog except Ti. Compared with the sunny day, the concentration of atmospheric particulate Ti decreased, while the other elements increased by 1 to 4 times in smog. Li, Be, Cr, Ni, Al, Fe, Mg and Mn had little variation in concentration in foggy day, and the concentration of Pb and Na increased considerably. The concentration of Co, Ca and Ti reduced obviously in fog. Except for Cr, Co and Ti, the other elements increased by 1 to 3 times in haze. Most of the elements had the minimal enrichment factors in sunny day, while the other had the maximal enrichment factor in

  8. Effect of SO2 and Photolysis on Photooxidized Diesel Fuel Secondary Organic Aerosol Composition

    NASA Astrophysics Data System (ADS)

    MacMillan, A. C.; Blair, S. L.; Lin, P.; Laskin, A.; Laskin, J.; Nizkorodov, S.

    2014-12-01

    Diesel fuel (DSL) and sulfur dioxide (SO2) are important precursors to secondary organic aerosol (SOA) formation. DSL is often co-emitted with SO2 and NO2, thus it is important to understand the possible effects of SO2 on DSL SOA composition. Additionally, DSL SOA composition can be affected by photochemical aging processes such as photolysis. In this study, DSL SOA was first prepared under dry, high-NOx conditions with various concentrations of SO2 by photooxidation in a smog chamber. The SOA was then stripped of excess oxidants and gaseous organics with a denuder train and the resulting particles were photolyzed at various photolysis times in a quartz flow tube. The SOA composition, photochemical aging, properties, and mass concentration, before and after direct photolysis in the flow tube, were examined using several techniques. High-resolution mass spectrometry (HR-MS) was performed on DSL SOA samples to investigate the effect of SO2 on molecular level composition. SOA composition as a function of photolysis time was measured with an aerosol mass spectrometer (AMS). HR-MS results show that organosulfates are produced in DSL SOA. Both AMS and HR-MS results show that photolysis also has an effect on composition; though, this is more apparent in the HR-MS results than in the AMS results. In summary, both the presence of SO2 and solar radiation has an effect on DSL SOA composition.

  9. Molecular distributions and stable carbon isotopic compositions of dicarboxylic acids and related compounds in aerosols from Sapporo, Japan: Implications for photochemical aging during long-range atmospheric transport

    NASA Astrophysics Data System (ADS)

    Aggarwal, Shankar G.; Kawamura, Kimitaka

    2008-07-01

    Molecular and stable carbon isotopic (δ13C value) compositions of dicarboxylic acids, ketoacids, and dicarbonyls in aerosol samples (i.e., total suspended particles) collected in Sapporo, northern Japan during spring and summer were determined to better understand the photochemical aging of organic aerosols during long-range transport from East Asia and Siberia. Their molecular distributions were characterized by the predominance of oxalic acid (C2) followed by malonic (C3) or occasionally succinic (C4) acids. Concentrations of total diacids ranged from 106-787 ng m-3 with ketoacids (13-81 ng m-3) and dicarbonyls (2.6-28 ng m-3) being less abundant. Water-soluble organic carbon (WSOC) comprised 23-69% of aerosol organic carbon (OC). OC to elemental carbon (EC) ratios were high (3.6-19, mean: 8.7). The ratios of C3/C4 and WSOC/OC did not show significant diurnal changes, suggesting that the Sapporo aerosols were not seriously affected by local photochemical processes and instead they were already aged. δ13C values of the dominant diacids (C2 - C4) ranged from -14.0 to -25.3‰. Largest δ13C values (-14.0 to -22.4‰, mean: -18.8‰) were obtained for C2, whereas smallest values (-25.1 to -31.4‰, mean: -28.1‰) were for azelaic acid (C9). In general, δ13C values of C2 - C4 diacids became less negative with aerosol aging (i.e., WSOC/OC), presumably due to isotopic fractionation during photochemical degradation of diacids. By comparing the δ13C values of diacids in the Sapporo aerosols with different air mass source regions, we suggest that although initial δ13C values of diacids depend on their precursor sources, the enrichment in 13C can be ascribed to aerosol photochemical aging.

  10. Chemical composition and sources of ambient aerosol in an urban environment over Athens, Greece: Case study on the role of wintertime biomass burning

    NASA Astrophysics Data System (ADS)

    Theodosi, Christina

    2016-04-01

    This study examines the chemical composition of aerosols over the Greater Athens Area (GAA). To achieve this, particulate matter sampling has been conducted on a 6h-24h basis and more than 700 aerosol samples were collected at downtown Athens, in Thissio from January 2013 to December 2015. All samples, after mass quantification, were analyzed for major anions (Cl^-, Br^-, NO{_3^-}, SO{_4-2}, PO{_4-3}, C_2O{_4-2}), cations (NH{_4^+}, K^+, Na^+, Mg+2, Ca+2), trace elements (Al, As, Ca, Cd, Co, Cr, Cu, Fe, V, Zn, Mn, Ni, Pb, P, S, Sb), organic carbon (OC) and elemental carbon (EC). Aerosol chemical mass closure calculations indicated that carbonaceous aerosol constitutes a major component, along with nitrate and sulfate anions, dust, cations and EC. Moreover, during the winter periods of December 2012-January 2013 and December 2013-January 2014, air pollution due to excessive use of biomass for domestic heating has been reported as a major environmental problem in the area. To assess the importance of biomass burning as a source of air pollution over the GAA three main sugars specific biomass burning tracers (levoglucosan, mannosan and galactosan) and Polycyclic aromatic hydrocarbons (PAHs) were also analyzed during the winter period. Acknowledgments This work was supported by the State Scholarship Foundation ("IKY Fellowships of Excellence for Postgraduate Studies in Greece - Siemens Programme") in the framework of the Hellenic Republic-Siemens Settlement Agreement.

  11. Global/local finite element analysis for textile composites

    NASA Technical Reports Server (NTRS)

    Woo, Kyeongsik; Whitcomb, John

    1993-01-01

    Conventional analysis of textile composites is impractical because of the complex microstructure. Global/local methodology combined with special macro elements is proposed herein as a practical alternative. Initial tests showed dramatic reductions in the computational effort with only small loss in accuracy.

  12. Kendrick-analogous network visualisation of ion cyclotron resonance Fourier transform mass spectra: improved options for the assignment of elemental compositions and the classification of organic molecular complexity.

    PubMed

    Tziotis, D; Hertkorn, N; Schmitt-Kopplin, Ph

    2011-01-01

    Here, we propose a novel computational and visual approach for the analysis of high field Fourier transform ion cyclotron resonance mass spectra (FTICR/MS) based on successive and multiple atomic and Kendrick analogous mass difference analyses. Compositional networks based on elemental compositions and functional networks based on selected functional groups equivalents enable improved assignment options of elemental composition and classification of organic complexity with tunable validation windows. The approach is demonstrated through the analysis of a 12T FTICR mass spectrum of an intricate water soluble extract of a secondary organic aerosol with a previously established abundance in CHNOS molecules.

  13. Carbonaceous and inorganic composition in long-range transported aerosols over northern Japan: Implication for aging of water-soluble organic fraction

    NASA Astrophysics Data System (ADS)

    Aggarwal, Shankar Gopala; Kawamura, Kimitaka

    To better understand the influence of sources and atmospheric processing on aerosol chemical composition, we collected atmospheric particles in Sapporo, northern Japan during spring and early summer 2005 under the air mass transport conditions from Siberia, China and surrounding seas. The aerosols were analyzed for inorganic ions, organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and the major water-soluble organic compound classes (i.e., dicarboxylic acids and sugars). SO 42- is the most abundant inorganic constituent (average 44% of the identified inorganic ion mass) followed by NH 4+ (21%) and NO 3- (13%). Concentrations of OC, EC, and WSOC ranged from 2.0-16, 0.24-2.9, and 0.80-7.9 μg m -3 with a mean of 7.4, 1.0, and 3.1 μg m -3, respectively. High OC/EC ratios (range: 3.6-19, mean: 8.7) were obtained, however WSOC/OC ratios (0.23-0.69, 0.44) do not show any significant diurnal changes. These results suggest that the Sapporo aerosols were already aged, but were not seriously affected by local photochemical processes. Identified water-soluble organic compounds (diacids + sugars) account for <10% of WSOC. Based on some marker species and air mass back trajectory analyses, and using stable carbon isotopic compositions of shorter-chain diacids (i.e., C 2-C 4) as photochemical aging factor of organic aerosols, the present study suggests that a fraction of WSOC in OC is most likely influenced by aerosol aging, although the OC loading in aerosols may be more influenced by their sources and source regions.

  14. Higher order finite element analysis of thick composite laminates

    NASA Technical Reports Server (NTRS)

    Goering, J.; Kim, H. J.

    1992-01-01

    A higher order, sub-parametric, laminated, 3D solid finite element was used for the analysis of very thick laminated composite plates. The geometry of this element is defined by four nodes in the X-Y plane which define a prism of material through the thickness of the laminate. There are twenty-four degrees of freedom at each node; translations at the upper and lower surfaces of the laminate in each of the three coordinate directions, and the derivatives of these translations with respect to each coordinate. This choice of degrees of freedom leads to displacement and strain compatibility at the corners. Stacking sequence effects are accounted for by explicitly integrating the strain energy density through the thickness of the element. The laminated solid element was combined with a gap-contact element to analyze thick laminated composite lugs loaded through flexible pins. The resulting model accounts for pin bending effects that produce non-uniform bearing stresses through the thickness of the lug. A thick composite lug experimental test program was performed, and provided data that was used to validate the analytical model. Two lug geometries and three stacking sequences were tested.

  15. Impact of wildfires on size-resolved aerosol composition at a coastal California site

    NASA Astrophysics Data System (ADS)

    Maudlin, L. C.; Wang, Z.; Jonsson, H. H.; Sorooshian, A.

    2015-10-01

    Size-resolved aerosol composition measurements were conducted at a coastal site in central California during the Nucleation in California Experiment (NiCE) between July and August of 2013. The site is just east of ship and marine emission sources and is also influenced by continental pollution and wildfires, such as those near the California-Oregon border which occurred near the end of NiCE. Two micro-orifice uniform deposit impactors (MOUDIs) were used, and water-soluble and elemental compositions were measured. The five most abundant water-soluble species (in decreasing order) were chloride, sodium, non-sea salt (nss) sulfate, ammonium, and nitrate. During wildfire periods, nss K mass concentrations were not enhanced as strongly as other species in the sub-micrometer stages and even decreased in the super-micrometer stages; species other than nss K are more reliable tracers for biomass burning in this region. Chloride levels were reduced in the fire sets likely due to chloride depletion by inorganic and organic acids that exhibited elevated levels in transported plumes. During wildfire periods, the mass size distribution of most dicarboxylic acids changed from unimodal to bimodal with peaks in the 0.32 μm and 1.0-1.8 μm stages. Furthermore, sulfate's peak concentration shifted from the 0.32 μm to 0.56 μm stage, and nitrate also shifted to larger sizes (1.0 μm to 1.8-3.2 μm stages). Mass concentrations of numerous soil tracer species (e.g., Si, Fe) were strongly enhanced in samples influenced by wildfires, especially in the sub-micrometer range. Airborne cloud water data confirm that soil species were associated with fire plumes transported south along the coast. In the absence of biomass burning, cloud condensation nuclei (CCN) composition is dominated by nss sulfate and ammonium, and the water-soluble organic fraction is dominated by methanesulfonate, whereas for the samples influenced by wildfires, ammonium becomes the dominant overall species, and

  16. Modeling aerosol emissions from the combustion of composite materials

    NASA Technical Reports Server (NTRS)

    Roop, J. A.; Caldwell, D. J.; Kuhlmann, K. J.

    1994-01-01

    The use of advanced composite materials (ACM) in the B-2 bomber, composite armored vehicle, and F-22 advanced tactical fighter has rekindled interest concerning the health risk of burned or burning ACM. The objective of this work was to determine smoke production from burning ACM and its toxicity. A commercial version of the UPITT II combustion toxicity method developed at the University of Pittsburgh, and subsequently refined through a US Army-funded basic research project, was used to established controlled combustion conditions which were selected to evaluate real-world exposure scenarios. Production and yield of toxic species varied with the combustion conditions. Previous work with this method showed that the combustion conditions directly influenced the toxicity of the decomposition products from a variety of materials.

  17. Systematic Relationships Between Lidar Observables And Sizes And Mineral Composition Of Dust Aerosols

    NASA Astrophysics Data System (ADS)

    van Diedenhoven, B.; Perlwitz, J. P.; Fridlind, A. M.; Chowdhary, J.; Cairns, B.; Stangl, A. J.

    2015-12-01

    The physical and chemical properties of soil dust aerosol particles fundamentally affect their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, heterogeneous formation of sulfates and nitrates on the surface of dust particles, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Lidar measurements, such as extinction-to-backscatter, color and depolarization ratios, are frequently used to distinguish between aerosol types with different physical and chemical properties. The chemical composition of aerosol particles determines their complex refractive index, hence affecting their backscattering properties. Here we present a study on how dust aerosol backscattering and depolarization properties at wavelengths of 355, 532 and 1064 nm are related to size and complex refractive index, which varies with the mineral composition of the dust. Dust aerosols are represented by collections of spheroids with a range of prolate and oblate aspect ratios and their optical properties are obtained using T-matrix calculations. We find simple, systematic relationships between lidar observables and the dust size and complex refractive index that may aid the use of space-based or airborne lidars for direct retrieval of dust properties or for the evaluation of chemical transport models using forward simulated lidar variables. In addition, we present first results on the spatial variation of forward-simulated lidar variables based on a dust model that accounts for the atmospheric cycle of eight different mineral types plus internal mixtures of seven mineral types with iron oxides, which was recently implemented in the NASA GISS Earth System ModelE2.

  18. Impacts of aerosol-cloud interactions on past and future changes in tropospheric composition

    SciTech Connect

    Unger, N.; Menon, S.; Shindell, D. T.; Koch, D. M.

    2009-02-02

    The development of effective emissions control policies that are beneficial to both climate and air quality requires a detailed understanding of all the feedbacks in the atmospheric composition and climate system. We perform sensitivity studies with a global atmospheric composition-climate model to assess the impact of aerosols on tropospheric chemistry through their modification on clouds, aerosol-cloud interactions (ACI). The model includes coupling between both tropospheric gas-phase and aerosol chemistry and aerosols and liquid-phase clouds. We investigate past impacts from preindustrial (PI) to present day (PD) and future impacts from PD to 2050 (for the moderate IPCC A1B scenario) that embrace a wide spectrum of precursor emission changes and consequential ACI. The aerosol indirect effect (AIE) is estimated to be -2.0 Wm{sup -2} for PD-PI and -0.6 Wm{sup -2} for 2050-PD, at the high end of current estimates. Inclusion of ACI substantially impacts changes in global mean methane lifetime across both time periods, enhancing the past and future increases by 10% and 30%, respectively. In regions where pollution emissions increase, inclusion of ACI leads to 20% enhancements in in-cloud sulfate production and {approx}10% enhancements in sulfate wet deposition that is displaced away from the immediate source regions. The enhanced in-cloud sulfate formation leads to larger increases in surface sulfate across polluted regions ({approx}10-30%). Nitric acid wet deposition is dampened by 15-20% across the industrialized regions due to ACI allowing additional re-release of reactive nitrogen that contributes to 1-2 ppbv increases in surface ozone in outflow regions. Our model findings indicate that ACI must be considered in studies of methane trends and projections of future changes to particulate matter air quality.

  19. Systematic Relationships Between Lidar Observables and Sizes And Mineral Composition Of Dust Aerosols

    NASA Technical Reports Server (NTRS)

    Van Diedenhoven, Bastiaan; Stangl, Alexander; Perlwitz, Jan; Fridlind, Ann M.; Chowdhary, Jacek; Cairns, Brian

    2015-01-01

    The physical and chemical properties of soil dust aerosol particles fundamentally affect their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, heterogeneous formation of sulfates and nitrates on the surface of dust particles, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Lidar measurements, such as extinction-to-backscatter, color and depolarization ratios, are frequently used to distinguish between aerosol types with different physical and chemical properties. The chemical composition of aerosol particles determines their complex refractive index, hence affecting their backscattering properties. Here we present a study on how dust aerosol backscattering and depolarization properties at wavelengths of 355, 532 and 1064 nm are related to size and complex refractive index, which varies with the mineral composition of the dust. Dust aerosols are represented by collections of spheroids with a range of prolate and oblate aspect ratios and their optical properties are obtained using T-matrix calculations. We find simple, systematic relationships between lidar observables and the dust size and complex refractive index that may aid the use of space-based or airborne lidars for direct retrieval of dust properties or for the evaluation of chemical transport models using forward simulated lidar variables. In addition, we present first results on the spatial variation of forward-simulated lidar variables based on a dust model that accounts for the atmospheric cycle of eight different mineral types plus internal mixtures of seven mineral types with iron oxides, which was recently implemented in the NASA GISS Earth System ModelE2.

  20. Elucidating determinants of aerosol composition through particle-type-based receptor modeling

    NASA Astrophysics Data System (ADS)

    McGuire, M. L.; Jeong, C.-H.; Slowik, J. G.; Chang, R. Y.-W.; Corbin, J. C.; Lu, G.; Mihele, C.; Rehbein, P. J. G.; Sills, D. M. L.; Abbatt, J. P. D.; Brook, J. R.; Evans, G. J.

    2011-03-01

    An aerosol time-of-flight mass spectrometer (ATOFMS) was deployed at a semi-rural site in Southern Ontario to characterize the size and chemical composition of individual particles. Particle-type-based receptor modelling of these data was used to investigate the determinants of aerosol chemical composition in this region. Individual particles were classified into particle-types and positive matrix factorization (PMF) was applied to their temporal trends to separate and cross-apportion particle-types to factors. The extent of chemical processing for each factor was assessed by evaluating the internal and external mixing state of the characteristic particle-types. The nine factors identified helped to elucidate the coupled interactions of these determinants. Nitrate-laden dust was found to be the dominant type of locally emitted particles measured by ATOFMS. Several factors associated with aerosol transported to the site from intermediate local-to-regional distances were identified: the Organic factor was associated with a combustion source to the north-west; the ECOC Day factor was characterized by nearby local-to-regional carbonaceous emissions transported from the south-west during the daytime; and the Fireworks factor consisted of pyrotechnic particles from the Detroit region following holiday fireworks displays. Regional aerosol from farther emissions sources were reflected through three factors: two biomass burning factors and a highly chemically processed long range transport factor. The biomass burning factors were separated by PMF due to differences in chemical processing which were caused in part by the passage of two thunderstorm gust fronts with different air mass histories. The remaining two factors, ECOC Night and Nitrate Background, represented the night-time partitioning of nitrate to pre-existing particles of different origins. The distinct meteorological conditions observed during this month-long study in the summer of 2007 provided a unique range

  1. Elucidating determinants of aerosol composition through particle-type-based receptor modeling

    NASA Astrophysics Data System (ADS)

    McGuire, M. L.; Jeong, C.-H.; Slowik, J. G.; Chang, R. Y.-W.; Corbin, J. C.; Lu, G.; Mihele, C.; Rehbein, P. J. G.; Sills, D. M. L.; Abbatt, J. P. D.; Brook, J. R.; Evans, G. J.

    2011-08-01

    An aerosol time-of-flight mass spectrometer (ATOFMS) was deployed at a semi-rural site in southern Ontario to characterize the size and chemical composition of individual particles. Particle-type-based receptor modelling of these data was used to investigate the determinants of aerosol chemical composition in this region. Individual particles were classified into particle-types and positive matrix factorization (PMF) was applied to their temporal trends to separate and cross-apportion particle-types to factors. The extent of chemical processing for each factor was assessed by evaluating the internal and external mixing state of the characteristic particle-types. The nine factors identified helped to elucidate the coupled interactions of these determinants. Nitrate-laden dust was found to be the dominant type of locally emitted particles measured by ATOFMS. Several factors associated with aerosol transported to the site from intermediate local-to-regional distances were identified: the Organic factor was associated with a combustion source to the north-west; the ECOC Day factor was characterized by nearby local-to-regional carbonaceous emissions transported from the south-west during the daytime; and the Fireworks factor consisted of pyrotechnic particles from the Detroit region following holiday fireworks displays. Regional aerosol from farther emissions sources was reflected through three factors: two Biomass Burning factors and a highly chemically processed Long Range Transport factor. The Biomass Burning factors were separated by PMF due to differences in chemical processing which were in part elucidated by the passage of two thunderstorm gust fronts with different air mass histories. The remaining two factors, ECOC Night and Nitrate Background, represented the night-time partitioning of nitrate to pre-existing particles of different origins. The distinct meteorological conditions observed during this month-long study in the summer of 2007 provided a unique

  2. Design of engineered cementitious composites for ductile seismic resistant elements

    NASA Astrophysics Data System (ADS)

    Kanda, Tetsushi

    This dissertation focuses on designing Engineered Cementitious Composite (ECC) to achieve high performance seismic resistant elements. To attain this goal, three major tasks have been accomplished. Task 1 aims at achieving new ECCs involving low cost fiber, which often involve fiber rupture in crack bridging, thus named as "Fiber Rupture Type ECC". Achieving the new ECC requires a new practical and comprehensive composite design theory. For this theory, single fiber behavior was first investigated. Specifically, fiber rupture in composite and chemical bond in fiber/matrix interface were experimentally examined and mathematically modeled. Then this model for single fiber behavior was implemented into a proposed bridging law, a theoretical model for relationship between fiber bridging stress of composite and Crack Opening Displacement (COD). This new bridging law was finally employed to establish a new composite design theory. Task 2 was initiated to facilitate structural interpretation of ECC's material behavior investigated in Task 1. For this purpose, uniaxial tensile behavior, one of the most important ECC's properties, was theoretically characterized with stress-strain relation from micromechanics view point. As a result, a theory is proposed to express ECC's tensile stress-strain relation in terms of micromechanics parameters of composites, such as bond strengths. Task 3 primarily demonstrates an integrated design scheme for ductile seismic elements that covers from micromechanics in single fiber level to structural design tool, such as with non-linear FEM analysis. The significance of this design scheme is that the influences of ECC's microstructure on element's structural performance is quantitatively captured. This means that a powerful tool is obtained for tailoring constitutive micromechanics parameters in order to maximize structural performance of elements. While the tool is still preliminary, completing this tool in future studies will enable one to

  3. Semi-Continuous Measurements of Aerosol Chemical Composition During the Summer 2002 Yosemite National Park Special Study

    SciTech Connect

    Collette, J; Lee, T; Heath, J; Carrico, C; Herckes, P; Engling, G; McMeeking, G; Kreidenweis, S; Day, D; Malm, W; Cahill, T

    2003-02-16

    Semi-continuous measurements of fine particle composition were made over a period of several weeks in summer 2002 in Yosemite National Park, California. These included measurement of aerosol ionic composition (by PILS- Particle-Into-Liquid System) and aerosol carbon (by dual wavelength aethalometer and an R&P particulate carbon monitor). The data reveal that aerosol composition at the site is highly :variable in time, with a strong diurnal cycle. Interestingly, however, different diurnal cycles were sometimes observed for different chemical constituents of the particles. Organic carbon was observed to dominate fine particle mass, with some periods apparently associated with influx of smoke from wildfires in the western U.S. Measurements of fine particle carbon isotopes revealed the fraction of carbon from biogenic sources to range from approximately 73 to 95%. The ionic fraction of the aerosol was usually dominated by ammoniated sulfate. During most periods, PM{sub 2.5} nitrate was found primarily in sea salt particles from which chloride had been displaced. Strong variations in the extent of ammonia neutralization of sulfate were also observed. The ability to observe rapid changes in aerosol composition using these semi-continuous aerosol composition measurements is helpful for understanding the dynamic chemical composition of fine particles responsible for regional haze.

  4. Elemental composition at different points of the rainwater harvesting system.

    PubMed

    Morrow, A C; Dunstan, R H; Coombes, P J

    2010-09-15

    Entry of contaminants, such as metals and non-metals, into rainwater harvesting systems can occur directly from rainfall with contributions from collection surfaces, accumulated debris and leachate from storage systems, pipes and taps. Ten rainwater harvesting systems on the east coast of Australia were selected for sampling of roof runoff, storage systems and tap outlets to investigate the variations in rainwater composition as it moved throughout the system, and to identify potential points of contribution to elemental loads. A total of 26 elements were screened at each site. Iron was the only element which was present in significantly higher concentrations in roof runoff samples compared with tank tap samples (P<0.05). At one case study site, results suggested that piping and tap material can contribute to contaminant loads of harvested rainwater. Increased loads of copper were observed in hot tap samples supplied by the rainwater harvesting system via copper piping and a storage hot water system (P<0.05). Similarly, zinc, lead, arsenic, strontium and molybdenum were significantly elevated in samples collected from a polyvinyl chloride pipe sampling point that does not supply household uses, compared with corresponding roof runoff samples (P<0.05). Elemental composition was also found to vary significantly between the tank tap and an internal cold tap at one of the sites investigated, with several elements fluctuating significantly between the two outlets of interest at this site, including potassium, zinc, manganese, barium, copper, vanadium, chromium and arsenic. These results highlighted the variability in the elemental composition of collected rainwater between different study sites and between different sampling points. Atmospheric deposition was not a major contributor to the rainwater contaminant load at the sites tested. Piping materials, however, were shown to contribute significantly to the total elemental load at some locations.

  5. Measurements of the aerosol chemical composition and mixing state in the Po Valley using multiple spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Decesari, S.; Allan, J.; Plass-Duelmer, C.; Williams, B. J.; Paglione, M.; Facchini, M. C.; O'Dowd, C.; Harrison, R. M.; Gietl, J. K.; Coe, H.; Giulianelli, L.; Gobbi, G. P.; Lanconelli, C.; Carbone, C.; Worsnop, D.; Lambe, A. T.; Ahern, A. T.; Moretti, F.; Tagliavini, E.; Elste, T.; Gilde, S.; Zhang, Y.; Dall'Osto, M.

    2014-04-01

    The use of co-located multiple spectroscopic techniques can provide detailed information on the atmospheric processes regulating aerosol chemical composition and mixing state. So far, field campaigns heavily equipped with aerosol mass spectrometers have been carried out mainly in large conurbations and in areas directly affected by their outflow, whereas lesser efforts have been dedicated to continental areas characterized by a less dense urbanization. We present here the results obtained in San Pietro Capofiume, which is located in a sparsely inhabited sector of the Po Valley, Italy. The experiment was carried out in summer 2009 in the framework of the EUCAARI project ("European Integrated Project on Aerosol, Cloud Climate Aerosol Interaction"). For the first time in Europe, six state-of-the-art techniques were used in parallel: (1) on-line TSI aerosol time-of-flight mass spectrometer (ATOFMS), (2) on-line Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS), (3) soot particle aerosol mass spectrometer (SP-AMS), (4) on-line high resolution time-of-flight mass spectrometer-thermal desorption aerosol gas chromatograph (HR-ToFMS-TAG), (5) off-line twelve-hour resolution proton nuclear magnetic resonance (H-NMR) spectroscopy, and (6) chemical ionization mass spectrometry (CIMS) for the analysis of gas-phase precursors of secondary aerosol. Data from each aerosol spectroscopic method were analysed individually following ad-hoc tools (i.e. PMF for AMS, Art-2a for ATOFMS). The results obtained from each techniques are herein presented and compared. This allows us to clearly link the modifications in aerosol chemical composition to transitions in air mass origin and meteorological regimes. Under stagnant conditions, atmospheric stratification at night and early morning hours led to the accumulation of aerosols produced by anthropogenic sources distributed over the Po Valley plain. Such aerosols include primary components such as black carbon (BC

  6. Active and passive smoking - New insights on the molecular composition of different cigarette smoke aerosols by LDI-FTICRMS

    NASA Astrophysics Data System (ADS)

    Schramm, Sébastien; Carré, Vincent; Scheffler, Jean-Luc; Aubriet, Frédéric

    2014-08-01

    The aerosol generated when a cigarette is smoked is a significant indoor contaminant. Both smokers and non-smokers can be exposed to this class of pollutants. Nevertheless, they are not exposed to the same kind of smoke. The active smoker breathes in the mainstream smoke (MSS) during a puff, whereas the passive smoker inhales not only the smoke generated by the lit cigarette between two puffs (SSS) but also the smoke exhaled by active smokers (EXS). The aerosol fraction of EXS has until now been poorly documented; its composition is expected to be different from MSS. This study aims to investigate the complex composition of aerosol from EXS to better understand the difference in exposure between active and passive smokers. To address this, the in-situ laser desorption ionisation Fourier transform ion cyclotron mass spectrometry (LDI-FTICRMS) was used to characterise the aerosol composition of EXS from two different smokers. Results clearly indicated many similarities between EXS samples but also significant differences with MSS and SSS aerosol. The comparison of MSS and EXS aerosol allowed the chemicals retained by the active smoker's lungs to be identified, whereas the convolution of the EXS and SSS aerosol compositions were considered relevant to the exposition of a passive smoker. As a consequence, active smokers are thought to be mainly exposed to polar and poorly unsaturated oxygenated and nitrogenated organics, compared with poorly oxygenated but highly unsaturated compounds in passive smokers.

  7. Compositional and Optical Properties of Titan Haze Analogs Using Aerosol Mass Spectrometry, Photoacoustic Spectroscopy and Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ugelow, M.; Zarzana, K. J.; Tolbert, M. A.

    2015-12-01

    The organic haze that surrounds Saturn's moon Titan is formed through the photolysis and electron initiated dissociation of methane and nitrogen. The chemical pathways leading to haze formation and the resulting haze optical properties are still highly uncertain. Here we examine the compositional and optical properties of Titan haze aerosol analogs. By studying these properties together, the impact of haze on Titan's radiative balance can be better understood. The aerosol analogs studied are produced from different initial methane concentrations (0.1, 2 and 10% CH4) using spark discharge excitation. To determine the complex refractive index of the aerosol, we combine two spectroscopic techniques, one that measures absorption and one that measures extinction: photoacoustic spectroscopy coupled with cavity ring-down spectroscopy (PASCaRD). This technique provides the benefit of a high precision determination of the imaginary component of the refractive index (k), along with the highly sensitive determination of the real component of the refractive index (n). The refractive indices are retrieved at two wavelengths, 405 and 532 nm, using the PASCaRD system. To yield aerosol composition, quadrupole aerosol mass spectrometry is used. Compositional information is obtained from a technique that uses isotopically labeled and unlabeled methane gas. I will present preliminary data on the complex refractive indices of Titan aerosol analogs at both wavelengths, in conjunction with the aerosol composition as a percent by weight of carbon, nitrogen and hydrogen. The correlation of optical and chemical properties should be useful for remote sensing instruments probing Titan haze.

  8. Metals and Rare Earth Elements in polar aerosol as specific markers of natural and anthropogenic aerosol sources areas and atmospheric transport processes

    NASA Astrophysics Data System (ADS)

    Giardi, Fabio; Becagli, Silvia; Caiazzo, Laura; Cappelletti, David; Grotti, Marco; Malandrino, Mery; Salzano, Roberto; Severi, Mirko; Traversi, Rita; Udisti, Roberto

    2016-04-01

    Metals and Rare Earth Elements (REEs) in the aerosol have conservative properties from the formation to the deposition and can be useful to identify and quantify their natural and anthropic sources and to study the atmospheric transport processes. In spite of their importance relatively little is known about metals and especially REEs in the Artic atmosphere due to their low concentration in such environment. The present work reports the first attempt to determine and interpret the behaviour of metals and REEs in polar aerosol at high temporal resolution. Daily PM10 samples of arctic atmospheric particulate were collected on Teflon filters, during six spring-summer campaigns, since 2010, in the laboratory of Gruvebadet in Ny Ålesund (78°56' N, 11°56' E, Svalbard Islands, Norway). Chemical analyses were carried out through Inductively Coupled Plasma Mass Spectrometer provided with a desolvation nebulizer inlet system, allowing to reduce isobaric interferences and thus to quantify trace and ultra-trace metals in very low concentration in the Arctic aerosol samples. The results are useful in order to study sources areas, transport processes and depositional effects of natural and anthropic atmospheric particulate reaching the Arctic from southern industrialized areas; moreover, the observed seasonal trends give information about the different impact of natural and anthropic emissions driven by phenomena such as the Arctic Haze and the melting of the snow. In particular Rare Earth Elements (often in the ppt range) can be considered as soil's fingerprints of the particulate source areas and their determination, together with air-mass backtrajectory analysis, allow to identify dust source areas for the arctic mineral aerosol.

  9. Galerkin finite element scheme for magnetostrictive structures and composites

    NASA Astrophysics Data System (ADS)

    Kannan, Kidambi Srinivasan

    The ever increasing-role of magnetostrictives in actuation and sensing applications is an indication of their importance in the emerging field of smart structures technology. As newer, and more complex, applications are developed, there is a growing need for a reliable computational tool that can effectively address the magneto-mechanical interactions and other nonlinearities in these materials and in structures incorporating them. This thesis presents a continuum level quasi-static, three-dimensional finite element computational scheme for modeling the nonlinear behavior of bulk magnetostrictive materials and particulate magnetostrictive composites. Models for magnetostriction must deal with two sources of nonlinearities-nonlinear body forces/moments in equilibrium equations governing magneto-mechanical interactions in deformable and magnetized bodies; and nonlinear coupled magneto-mechanical constitutive models for the material of interest. In the present work, classical differential formulations for nonlinear magneto-mechanical interactions are recast in integral form using the weighted-residual method. A discretized finite element form is obtained by applying the Galerkin technique. The finite element formulation is based upon three dimensional eight-noded (isoparametric) brick element interpolation functions and magnetostatic infinite elements at the boundary. Two alternative possibilities are explored for establishing the nonlinear incremental constitutive model-characterization in terms of magnetic field or in terms of magnetization. The former methodology is the one most commonly used in the literature. In this work, a detailed comparative study of both methodologies is carried out. The computational scheme is validated, qualitatively and quantitatively, against experimental measurements published in the literature on structures incorporating the magnetostrictive material Terfenol-D. The influence of nonlinear body forces and body moments of magnetic origin

  10. Biomass burning aerosol over the Amazon during SAMBBA: impact of chemical composition on radiative properties

    NASA Astrophysics Data System (ADS)

    Morgan, William; Allan, James; Flynn, Michael; Darbyshire, Eoghan; Hodgson, Amy; Liu, Dantong; O'shea, Sebastian; Bauguitte, Stephane; Szpek, Kate; Langridge, Justin; Johnson, Ben; Haywood, Jim; Longo, Karla; Artaxo, Paulo; Coe, Hugh

    2014-05-01

    Biomass burning represents one of the largest sources of particulate matter to the atmosphere, resulting in a significant perturbation to the Earth's radiative balance coupled with serious impacts on public health. Globally, biomass burning aerosols are thought to exert a small warming effect but with the uncertainty being 4 times greater than the central estimate. On regional scales, the impact is substantially greater, particularly in areas such as the Amazon Basin where large, intense and frequent burning occurs on an annual basis for several months. Absorption by atmospheric aerosols is underestimated by models over South America, which points to significant uncertainties relating to Black Carbon (BC) aerosol properties. Initial results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft, are presented here. Aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) and a DMT Single Particle Soot Photometer (SP2). The physical, chemical and optical properties of the aerosols across the region will be characterized in order to establish the impact of biomass burning on regional air quality, weather and climate. The aircraft sampled a range of conditions including sampling of pristine Rainforest, fresh biomass burning plumes, regional haze and elevated biomass burning layers within the free troposphere. The aircraft sampled biomass burning aerosol across the southern Amazon in the states of Rondonia and Mato Grosso, as well as in a Cerrado (Savannah-like) region in Tocantins state. This presented a range of fire conditions, both in terms of their number, intensity, vegetation-type and their combustion efficiencies. Near-source sampling of fires in Rainforest environments suggested that smouldering combustion dominated, while flaming combustion dominated

  11. An Enriched Shell Element for Delamination Simulation in Composite Laminates

    NASA Technical Reports Server (NTRS)

    McElroy, Mark

    2015-01-01

    A formulation is presented for an enriched shell finite element capable of delamination simulation in composite laminates. The element uses an adaptive splitting approach for damage characterization that allows for straightforward low-fidelity model creation and a numerically efficient solution. The Floating Node Method is used in conjunction with the Virtual Crack Closure Technique to predict delamination growth and represent it discretely at an arbitrary ply interface. The enriched element is verified for Mode I delamination simulation using numerical benchmark data. After determining important mesh configuration guidelines for the vicinity of the delamination front in the model, a good correlation was found between the enriched shell element model results and the benchmark data set.

  12. Measurements of the aerosol chemical composition and mixing state in the Po Valley using multiple spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Decesari, S.; Allan, J.; Plass-Duelmer, C.; Williams, B. J.; Paglione, M.; Facchini, M. C.; O'Dowd, C.; Harrison, R. M.; Gietl, J. K.; Coe, H.; Giulianelli, L.; Gobbi, G. P.; Lanconelli, C.; Carbone, C.; Worsnop, D.; Lambe, A. T.; Ahern, A. T.; Moretti, F.; Tagliavini, E.; Elste, T.; Gilge, S.; Zhang, Y.; Dall'Osto, M.

    2014-11-01

    The use of co-located multiple spectroscopic techniques can provide detailed information on the atmospheric processes regulating aerosol chemical composition and mixing state. So far, field campaigns heavily equipped with aerosol mass spectrometers have been carried out mainly in large conurbations and in areas directly affected by their outflow, whereas lesser efforts have been dedicated to continental areas characterised by a less dense urbanisation. We present here the results obtained at a background site in the Po Valley, Italy, in summer 2009. For the first time in Europe, six state-of-the-art spectrometric techniques were used in parallel: aerosol time-of-flight mass spectrometer (ATOFMS), two aerosol mass spectrometers (high-resolution time-of-flight aerosol mass spectrometer - HR-ToF-AMS and soot particle aerosol mass spectrometer - SP-AMS), thermal desorption aerosol gas chromatography (TAG), chemical ionisation mass spectrometry (CIMS) and (offline) proton nuclear magnetic resonance (1H-NMR) spectroscopy. The results indicate that, under high-pressure conditions, atmospheric stratification at night and early morning hours led to the accumulation of aerosols produced by anthropogenic sources distributed over the Po Valley plain. Such aerosols include primary components such as black carbon (BC), secondary semivolatile compounds such as ammonium nitrate and amines and a class of monocarboxylic acids which correspond to the AMS cooking organic aerosol (COA) already identified in urban areas. In daytime, the entrainment of aged air masses in the mixing layer is responsible for the accumulation of low-volatility oxygenated organic aerosol (LV-OOA) and also for the recycling of non-volatile primary species such as black carbon. According to organic aerosol source apportionment, anthropogenic aerosols accumulating in the lower layers overnight accounted for 38% of organic aerosol mass on average, another 21% was accounted for by aerosols recirculated in

  13. Effect of Humidity on the Composition of Isoprene Photooxidation Secondary Organic Aerosol

    SciTech Connect

    Nguyen, Tran B.; Roach, Patrick J.; Laskin, Julia; Laskin, Alexander; Nizkorodov, Serguei

    2011-07-18

    The effect of relative humidity (RH) on the composition and concentrations of gas-phase products and secondary organic aerosol (SOA) generated from the photooxidation of isoprene under high-NOx conditions was investigated. The yields of most gas-phase products were the same regardless of initial water vapor concentration with exception of hydroxyacetone and glycolaldehyde, which were considerably affected by RH. A significant change was observed in the SOA composition, with many unique condensed-phase products formed under humid (90% RH) vs. dry (<2% RH) conditions, without any observable effect on the rate and extent of the SOA mass growth.

  14. Aerosol composition, chemistry, and source characterization during the 2008 VOCALS Experiment

    SciTech Connect

    Lee, Y.; Springston, S.; Jayne, J.; Wang, J.; Senum, G.; Hubbe, J.; Alexander, L.; Brioude, J.; Spak, S.; Mena-Carrasco, M.; Kleinman, L.; Daum, P.

    2010-03-15

    Chemical composition of fine aerosol particles over the northern Chilean coastal waters was determined onboard the U.S. DOE G-1 aircraft during the VOCALS (VAMOS Ocean-Cloud-Atmosphere-Land Study) field campaign between October 16 and November 15, 2008. SO42-, NO3-, NH4+, and total organics (Org) were determined using an Aerodyne Aerosol Mass Spectrometer, and SO42-, NO3-, NH4+, Na+, Cl-, CH3SO3-, Mg2+, Ca2+, and K+ were determined using a particle-into-liquid sampler-ion chromatography technique. The results show the marine boundary layer (MBL) aerosol mass was dominated by non- sea-salt SO42- followed by Na+, Cl-, Org, NO3-, and NH4+, in decreasing importance; CH3SO3-, Ca2+, and K+ rarely exceeded their respective limits of detection. The SO42- aerosols were strongly acidic as the equivalent NH4+ to SO42- ratio was only {approx}0.25 on average. NaCl particles, presumably of sea-salt origin, showed chloride deficits but retained Cl- typically more than half the equivalency of Na+, and are externally mixed with the acidic sulfate aerosols. Nitrate was observed only on sea-salt particles, consistent with adsorption of HNO3 on sea-salt aerosols, responsible for the Cl- deficit. Dust particles appeared to play a minor role, judging from the small volume differences between that derived from the observed mass concentrations and that calculated based on particle size distributions. Because SO42- concentrations were substantial ({approx}0.5 - {approx}3 {micro}g/m3) with a strong gradient (highest near the shore), and the ocean-emitted dimethylsulfide and its unique oxidation product, CH3SO3-, were very low (i.e., {le} 40 parts per trillion and <0.05 {micro}g/m3, respectively), the observed SO42- aerosols are believed to be primarily of terrestrial origin. Back trajectory calculations indicate sulfur emissions from smelters and power plants along coastal regions of Peru and Chile are the main sources of these SO4- aerosols. However, compared to observations, model

  15. Sea Spray Aerosol Structure and Composition Using Cryogenic Transmission Electron Microscopy

    PubMed Central

    2016-01-01

    The composition and surface properties of atmospheric aerosol particles largely control their impact on climate by affecting their ability to uptake water, react heterogeneously, and nucleate ice in clouds. However, in the vacuum of a conventional electron microscope, the native surface and internal structure often undergo physicochemical rearrangement resulting in surfaces that are quite different from their atmospheric configurations. Herein, we report the development of cryogenic transmission electron microscopy where laboratory generated sea spray aerosol particles are flash frozen in their native state with iterative and controlled thermal and/or pressure exposures and then probed by electron microscopy. This unique approach allows for the detection of not only mixed salts, but also soft materials including whole hydrated bacteria, diatoms, virus particles, marine vesicles, as well as gel networks within hydrated salt droplets—all of which will have distinct biological, chemical, and physical processes. We anticipate this method will open up a new avenue of analysis for aerosol particles, not only for ocean-derived aerosols, but for those produced from other sources where there is interest in the transfer of organic or biological species from the biosphere to the atmosphere. PMID:26878061

  16. Hygroscopic properties of the Paris urban aerosol in relation to its chemical composition

    NASA Astrophysics Data System (ADS)

    Kamilli, K. A.; Poulain, L.; Held, A.; Nowak, A.; Birmili, W.; Wiedensohler, A.

    2014-01-01

    Aerosol hygroscopic growth factors and chemical properties were measured as part of the MEGAPOLI "Megacities Plume Case Study" at the urban site Laboratoire d'Hygiène de la Ville de Paris (LHVP) in the city center of Paris from June to August 2009, and from January to February 2010. Descriptive hygroscopic growth factors (DGF) were derived in the diameter range from 25 to 350 nm at relative humidities of 30, 55, 75, and 90% by applying the summation method on humidified and dry aerosol size distributions measured simultaneously with a humidified differential mobility particle sizer (HDMPS) and a twin differential mobility particle sizer (TDMPS). For 90% relative humidity, the DGF varied from 1.06 to 1.46 in summer, and from 1.06 to 1.66 in winter. Temporal variations in the observed mean DGF could be well explained with a simple growth model based on the aerosol chemical composition measured by aerosol mass spectrometry (AMS) and black carbon photometry (MAAP). In particular, good agreement was observed when sulfate was the predominant inorganic factor. A clear overestimation of the predicted growth factor was found when the nitrate mass concentration exceeded values of 10 μg m-3, e.g., during winter.

  17. ZnS/diamond composite coatings for infrared transmission applications formed by the aerosol deposition method

    NASA Astrophysics Data System (ADS)

    Johnson, Scooter D.; Kub, Fritz J.; Eddy, Charles R.

    2013-06-01

    The deposition of nano-crystalline ZnS/diamond composite protective coatings on silicon, sapphire, and ZnS substrates, as a preliminary step to coating infrared transparent ZnS substrates from powder mixtures by the aerosol deposition method is presented. Advantages of the aerosol deposition method include the ability to form dense, nanocrystalline lms up to hundreds of microns thick at room temperature and at a high deposition rate on a variety of substrates. Deposition is achieved by creating a pressure gradient that accelerates micrometer- scale particles in an aerosol to high velocity. Upon impact with the target substrate the particles fracture and embed. Continued deposition forms the thick compacted lm. Deposition from an aerosolized mixture of ZnS and diamond powders onto all targets results in linear trend from apparent sputter erosion of the substrate at 100% diamond to formation of a lm with increasing fractions of ZnS. The crossover from abrasion to lm formation on sapphire occurs above about 50% ZnS and a mixture of 90% ZnS and 10% diamond forms a well-adhered lm of about 0.7 μm thickness at a rate of 0.14 μm/min. Resulting lms are characterized by scanning electron microscopy, pro lometry, infrared transmission spectroscopy, and x-ray photoemission spectroscopy. These initial lms mark progress toward the future goal of coating ZnS substrates for abrasion resistance.

  18. Hygroscopic properties of the Paris urban aerosol in relation to its chemical composition

    NASA Astrophysics Data System (ADS)

    Kamilli, K. A.; Poulain, L.; Held, A.; Nowak, A.; Birmili, W.; Wiedensohler, A.

    2013-05-01

    Aerosol hygroscopic growth factors and chemical properties were measured as part of the MEGAPOLI "Megacities Plume Case Study" at the urban site LHVP in the city center of Paris from June to August 2009, and from January to February 2010. Descriptive hygroscopic growth factors (DGF) were derived in the diameter range from 25 to 350 nm at relative humidities of 30, 55, 75, and 90% by applying the summation method on humidified and dry aerosol size distributions measured simultaneously with a humidified differential mobility particle sizer (HDMPS) and a twin differential mobility particle sizer (TDMPS). For 90% relative humidity, the DGF varied from 1.06 to 1.46 in summer, and from 1.06 to 1.66 in winter. Temporal variations in the observed mean DGF could be well explained with a simple growth model based on the aerosol chemical composition measured by aerosol mass spectrometry (AMS) and black carbon photometry (MAAP). In particular, good agreement was observed when sulfate was the predominant inorganic factor. A clear overestimation of the predicted growth factor was found when the nitrate mass concentration exceeded values of 10 μg m3, e.g. during winter.

  19. Functional Group Composition of Semivolatile Compounds Present in Submicron Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Ruggeri, G.; Modini, R. L.; Iannarelli, R.; Rossi, M. J.; Takahama, S.

    2014-12-01

    Semivolatile organic compounds can partition between gas and particle phase in atmospheric conditions and can be volatilized and lost when the aerosol sampling is performed onto PTFE filters (Eatough et al., 1993). In this work, semivolatile compounds are collected onto carbon impregnated glass fiber-cellulose filters placed in series after an activated carbon denuder and PTFE filter which collects submicron aerosol particles of low volatility (Subramanian et al., 2004). The semivolatile compounds accumulated on the cellulose-glass fiber filters are desorbed by vacuum and injected into a stainless steel chamber that enables cold-trapping. The vapors in this chamber are condensed onto a low-temperature silicon window, and the composition of deposited vapors are analysed by transmission-mode Fourier Transform Infrared (FTIR) spectroscopy (Delval and Rossi, 2004). Functional group composition of semivolatile compounds that can be desorbed from the aerosol phase and its relationship with the apparent low-volatile fraction composition will be presented. Eatough, D.J., Wadsworth, A., Eatough, D.A., Crawford, J.W., Hansen, L.D., Lewis, E.A., 1993. A multiple-system, multi-channel diffusion denuder sampler for the determination of fine-particulate organic material in the atmosphere. Atmospheric Environment. Part A. General Topics 27, 1213-1219. Subramanian, R., Khlystov, A.Y., Cabada, J.C., Robinson, A.L., 2004. Positive and negative artifacts in particulate organic carbon measurements with denuded and undenuded sampler configurations. Aerosol Science and Technology 38, 27-48. Delval, C., Rossi, M.J., 2004. The kinetics of condensation and evaporation of H2O from pure ice in the range 173-223 K: a quartz crystal microbalance study. Physical Chemistry Chemical Physics 6, 4665-4676.

  20. The Composition of Organic Aerosols in Southeast Asia During The 2006 Haze Episode

    NASA Astrophysics Data System (ADS)

    Jun, H.; Zielinska, B.; Balasubramanian, R.

    2007-12-01

    The regional smoke haze in Southeast Asia is a recurring air pollution problem. Uncontrolled forest fires from land-clearing activities in Sumatra and Borneo, and to a lesser extent Malaysia, have occurred almost every dry season since the late 1990s. The smoke haze that took place in October 2006 shrouded an estimated 215,000 square miles of land on Indonesia's islands of Sumatra and Borneo, and persisted for several weeks. Satellite pictures showed numerous hotspots in both Sumatra and Kalimantan. The prevailing, South-Southwesterly, winds blew smoke from land and forest fires in central and south Sumatra to Singapore, affecting the regional air quality significantly and reducing atmospheric visibility. During this haze episode, we carried out an intensive field study in Singapore to characterize the composition of organic aerosols, which usually account for a large fraction of airborne particulate matter (PM). A total of 17 PM samples were collected while the hazy atmospheric conditions persisted in Singapore, and subjected to accelerated solvent extraction with dichloromethane and acetone. The extracted compounds were grouped into three major fractions (n-alkanes, polycyclic aromatic hydrocarbons, and polar organic compounds). More than 180 particulate-bound organic compounds were determined using gas chromatography/mass spectrometry (GC-MS). In order to investigate the origin of organic species, the carbon preference indexes as well as diagnostic ratios were used. The compositional differences of organic aerosols between the haze- and non- haze periods will be presented. The atmospheric implications of the composition of organic aerosols of biomass burning origin will be discussed. Keywords: smoke haze, organic aerosols, n-alkanes, polycyclic aromatic hydrocarbons, polar organic compounds

  1. Aerosols

    Atmospheric Science Data Center

    2013-04-17

    ... air pollution is a complex mixture of particles of varying origins and compositions. Determining the type and abundance of tiny airborne ... Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82 degrees ...

  2. Salt in the Air during the Nitrogen, Aerosol Composition, and Halogens on a Tall Tower (NACHTT) Campaign

    NASA Astrophysics Data System (ADS)

    Pszenny, A.; Keene, W. C.; Sander, R.; Bearekman, R.; Deegan, B.; Maben, J. R.; Warrick-Wriston, C.; Young, A.

    2011-12-01

    Bulk and size-segregated aerosol samples were collected 22 m AGL at the Boulder Atmospheric Observatory (40°N, 105°W, 1563 m ASL) from 18 February to 13 March 2011. Total concentrations of Na, Mg, Al, Cl, V, Mn, Br and I in bulk samples were determined by neutron activation analysis. Ionic composition of all size-segregated and a subset of bulk samples was determined by ion chromatography of aqueous extracts. Mg, Al, V and Mn mass concentrations were highly correlated and present in ratios similar to those in Denver area surface soils. Na and Cl were less well correlated with these soil elements but, after correction for soil contributions, highly correlated with each other. Linear regression of non-soil Cl vs. non-soil Na yielded a slope of 1.69 ± 0.09 (95% C.I.; n = 173), a value between the mass ratios of sea salt (1.80) and halite (1.54). The median Na and Cl concentrations (6.8 and 6.6 nmol m-3 STP, respectively) were factors of 25 to 35 less than those typically measured in the marine boundary layer. Br and I were somewhat correlated and appeared to represent a third aerosol component. The average bulk Cl-:total Cl ratio was 0.99 ± 0.03 (n = 44) suggesting that essentially all aerosol chlorine was water-soluble. Na+ and Cl- mass distributions were bimodal with most of the masses (medians 75% and 78%, respectively, n = 45) in supermicrometer particles. Possible origins of the "salt" component will be discussed based on consideration of 5-day HYSPLIT back trajectories and other information on sampled air mass characteristics.

  3. Correlations in the chemical composition of rural background atmospheric aerosol in the UK determined in real time using time-of-flight mass spectrometry.

    PubMed

    Beddows, David C S; Donovan, Robert J; Harrison, Roy M; Heal, Mathew R; Kinnersley, Robert P; King, Martin D; Nicholson, David H; Thompson, Katherine C

    2004-02-01

    An aerosol time-of-flight mass spectrometer (ATOFMS) was used to determine, in real time, the size and chemical composition of individual particles in the atmosphere at the remote inland site of Eskdalemuir, Scotland. A total of 51,980 particles, in the size range 0.3-7.4 microm, were detected between the 25th and 30th June 2001. Rapid changes in the number density, size and chemical composition of the atmospheric aerosol were observed. These changes are attributed to two distinct types of air mass; a polluted air mass that had passed over the British mainland before reaching Eskdalemuir, interposed between two cleaner air masses that had arrived directly from the sea. Such changes in the background aerosol could clearly be very important to studies of urban aerosols and attempts at source apportionment. The results of an objective method of data analysis are presented. Correlations were sought between the occurrence of: lithium, potassium, rubidium, caesium, beryllium, strontium, barium, ammonium, amines, nitrate, nitrite, boron, mercury, sulfate, phosphate, fluorine, chlorine, bromine, iodine and carbon (both elemental and organic hydrocarbon) in both fine (d < 2.5 microm) and coarse (d > 2.5 microm) particle fractions. Several previously unreported correlations were observed, for instance between the elements lithium, beryllium and boron. The results suggest that about 2 in 3 of all fine particles (by number rather than by mass), and 1 in 2 of all coarse particles containing carbon, consisted of elemental carbon rather than organic hydrocarbon (although a bias in the sensitivity of the ATOFMS could have affected these numbers). The ratio of the number of coarse particles containing nitrate anions to the number of particles containing chloride anions exceeded unity when the air mass had travelled over the British mainland. The analysis also illustrates that an air mass of marine origin that had travelled slowly over agricultural land can accumulate amines and

  4. Importance of aerosol composition, mixing state, and morphology for heterogeneous ice nucleation: A combined field and laboratory approach

    SciTech Connect

    Baustian, Kelly J.; Cziczo, Daniel J.; Wise, M. A.; Pratt, Kerri; Kulkarni, Gourihar R.; Hallar, Anna G.; Tolbert, Margaret A.

    2012-03-30

    In this study chemical compositions of background aerosol and ice nuclei were examined through laboratory investigations using Raman spectroscopy and field measurements by single-particle mass spectrometry. Aerosol sampling took place at Storm Peak Laboratory in Steamboat Springs, Colorado (elevation of 3210 m). A cascade impactor was used to collect coarse-mode aerosol particles for laboratory analysis by Raman spectroscopy; the composition, mixing state, and heterogeneous ice nucleation activity of individual particles were examined. For in situ analysis of fine-mode aerosol, ice nucleation on ambient particles was observed using a compact ice nucleation chamber. Ice crystals were separated from unactivated aerosol using a pumped counterflow virtual impactor, and ice nuclei were analyzed using particle analysis by laser mass spectrometry. For both fine and coarse modes, the ice nucleating particle fractions were enriched in minerals and depleted in sulfates and nitrates, compared to the background aerosol sampled. The vast majority of particles in both the ambient and ice active aerosol fractions contained a detectable amount of organic material. Raman spectroscopy showed that organic material is sometimes present in the form of a coating on the surface of inorganic particles. We find that some organic-containing particles serve as efficient ice nuclei while others do not. For coarse-mode aerosol, organic particles were only observed to initiate ice formation when oxygen signatures were also present in their spectra.

  5. Importance of aerosol composition, mixing state, and morphology for heterogeneous ice nucleation: A combined field and laboratory approach

    NASA Astrophysics Data System (ADS)

    Baustian, Kelly J.; Cziczo, Daniel J.; Wise, Matthew E.; Pratt, Kerri A.; Kulkarni, Gourihar; Hallar, A. Gannet; Tolbert, Margaret A.

    2012-03-01

    In this study chemical compositions of background aerosol and ice nuclei were examined through laboratory investigations using Raman spectroscopy and field measurements by single-particle mass spectrometry. Aerosol sampling took place at Storm Peak Laboratory in Steamboat Springs, Colorado (elevation of 3210 m). A cascade impactor was used to collect coarse-mode aerosol particles for laboratory analysis by Raman spectroscopy; the composition, mixing state, and heterogeneous ice nucleation activity of individual particles were examined. For in situ analysis of fine-mode aerosol, ice nucleation on ambient particles was observed using a compact ice nucleation chamber. Ice crystals were separated from unactivated aerosol using a pumped counterflow virtual impactor, and ice nuclei were analyzed using particle analysis by laser mass spectrometry. For both fine and coarse modes, the ice nucleating particle fractions were enriched in minerals and depleted in sulfates and nitrates, compared to the background aerosol sampled. The vast majority of particles in both the ambient and ice active aerosol fractions contained a detectable amount of organic material. Raman spectroscopy showed that organic material is sometimes present in the form of a coating on the surface of inorganic particles. We find that some organic-containing particles serve as efficient ice nuclei while others do not. For coarse-mode aerosol, organic particles were only observed to initiate ice formation when oxygen signatures were also present in their spectra.

  6. Using microchip electrophoresis for real-time aerosol composition measurements: Field study results from San Gorgonio Wilderness, California

    NASA Astrophysics Data System (ADS)

    Evanoski-Cole, A. R.; Hecobian, A.; Lewis, G. S.; Hering, S. V.; Henry, C. S.; Collett, J. L.

    2012-12-01

    The detrimental impacts of atmospheric aerosol on human and ecosystem health, visibility and climate change have been studied extensively. However, the role of aerosol composition in these issues still needs further investigation due to the variability of aerosol particles over both time and space. The need for better temporal and spatial resolution of aerosol composition measurements is addressed in the development of a real-time instrument using microchip capillary electrophoresis. Termed Aerosol microChip Electrophoresis (ACE), this lab-on-a-chip instrument is inexpensive to manufacture, portable and provides sensitive real-time and semi-continuous aerosol composition measurements. A water condensation growth tube is used to enlarge water soluble aerosol particles with an aerodynamic diameter less than 2.5 μm. The aqueous sample is continuously collected by impaction into a sample reservoir on a custom designed microchip. A rapid separation of select aerosol components is achieved using microchip capillary electrophoresis coupled with conductivity detection. Here we present data from a recent field campaign in the San Gorgonio Wilderness in south western California. This unique high elevation wilderness site located to the east of the heavily populated cities of San Bernardino and Los Angeles provides a contrast of both clean background and aged urban aerosol as dictated by the meteorological conditions at the site. Ambient aerosol particles were continuously collected at a flow rate of 0.7 L/min into a liquid sample with a volume of 16.7 μL and then analyzed for sulfate, nitrate, chloride and oxalate every 48 seconds. When comparing the ambient concentrations with the meteorological conditions, the most notable trend was high nitrate and sulfate concentrations in ambient aerosol during upslope wind events, with values reaching as high as 34 and 5 μg/m3, respectively. Comparison aerosol composition measurements from filter samples and a particle

  7. Elemental composition of solar energetic particles in 1977 and 1978

    NASA Technical Reports Server (NTRS)

    Cook, W. R.; Stone, E. C.; Vogt, R. E.; Trainor, J. H.; Webber, W. R.

    1979-01-01

    The elemental composition of energetic nuclei from seven major solar flare events were measured wit the cosmic ray detector systems aboard the Voyager 1 and 2 spacecraft. The energetic nuclei abundances differ significantly from those of photospheric material. They are enhanced relative to the photonsphere by a factor which is the ratio of abundance of an energetic nuclei species (relative to oxygen) over the corresponding abundance of photospheric material. This factor is common to all events and has a nonmonochromatic characteristic dependence on nuclear charge. This factor is roughly ordered by first ionization potential into two groups of elements, metallics and volatiles.

  8. Organic composition and source apportionment of fine aerosol at Monterrey, Mexico, based on organic markers

    NASA Astrophysics Data System (ADS)

    Mancilla, Y.; Mendoza, A.; Fraser, M. P.; Herckes, P.

    2016-01-01

    attribution results obtained using the CMB (chemical mass balance) model indicate that emissions from motor vehicle exhausts are the most important, accounting for the 64 % of the PM2.5, followed by meat-cooking operations with 31 % The vegetative detritus and biomass burning had the smallest contribution (2.2 % of the PM2.5). To our knowledge, this is only the second study to explore the organic composition and source apportionment of fine organic aerosol based on molecular markers in Mexico and the first for the MMA. Particularly molecular marker were quantified by solvent extraction with dichloromethane, derivatization, and gas chromatography with mass spectrometry (GC/MS).

  9. Finite element analysis of the stiffness of fabric reinforced composites

    NASA Technical Reports Server (NTRS)

    Foye, R. L.

    1992-01-01

    The objective of this work is the prediction of all three dimensional elastic moduli of textile fabric reinforced composites. The analysis is general enough for use with complex reinforcing geometries and capable of subsequent improvements. It places no restrictions on fabric microgeometry except that the unit cell be determinate and rectangular. The unit cell is divided into rectangular subcells in which the reinforcing geometries are easier to define and analyze. The analysis, based on inhomogeneous finite elements, is applied to a variety of weave, braid, and knit reinforced composites. Some of these predictions are correlated to test data.

  10. Diagenetic changes in the elemental composition of unrecrystallized mollusk shells

    USGS Publications Warehouse

    Ragland, P.C.; Pilkey, O.H.; Blackwelder, B. W.

    1979-01-01

    The Mg, Sr, Mn, Fe, Na and K contents were determined for 230 apparently unrecrystallized mollusk shells (gastropods and bivalves) ranging in age from late Cretaceous to Holocene. Consistent differences between the Holocene and fossil shells with respect to concentrations of all these elements are attributed to postburial diagenetic changes. Fossil-Holocene shell comparisons are made on the intergeneric level, a more severe test of compositional differences than was previous work involved with few species. The observed differences re-emphasize the need for extreme caution in the use of the many geochemical tools which assume that no compositional changes have taken place prior to recrystallization of calcareous materials. ?? 1979.

  11. Formation and aging of secondary organic aerosol from toluene: changes in chemical composition, volatility, and hygroscopicity

    DOE PAGES

    Hildebrandt Ruiz, L.; Paciga, A. L.; Cerully, K. M.; Nenes, A.; Donahue, N. M.; Pandis, S. N.

    2015-07-24

    Secondary organic aerosol (SOA) is transformed after its initial formation, but this chemical aging of SOA is poorly understood. Experiments were conducted in the Carnegie Mellon environmental chamber to form secondary organic aerosol (SOA) from the photo-oxidation of toluene and other small aromatic volatile organic compounds (VOCs) in the presence of NOx under different oxidizing conditions. The effects of the oxidizing condition on organic aerosol (OA) composition, mass yield, volatility, and hygroscopicity were explored. Higher exposure to the hydroxyl radical resulted in different OA composition, average carbon oxidation state (OSc), and mass yield. The OA oxidation state generally increased duringmore » photo-oxidation, and the final OA OSc ranged from -0.29 to 0.16 in the performed experiments. The volatility of OA formed in these different experiments varied by as much as a factor of 30, demonstrating that the OA formed under different oxidizing conditions can have a significantly different saturation concentration. There was no clear correlation between hygroscopicity and oxidation state for this relatively hygroscopic SOA.« less

  12. Formation and aging of secondary organic aerosol from toluene: changes in chemical composition, volatility, and hygroscopicity

    NASA Astrophysics Data System (ADS)

    Hildebrandt Ruiz, L.; Paciga, A. L.; Cerully, K. M.; Nenes, A.; Donahue, N. M.; Pandis, S. N.

    2015-07-01

    Secondary organic aerosol (SOA) is transformed after its initial formation, but this chemical aging of SOA is poorly understood. Experiments were conducted in the Carnegie Mellon environmental chamber to form secondary organic aerosol (SOA) from the photo-oxidation of toluene and other small aromatic volatile organic compounds (VOCs) in the presence of NOx under different oxidizing conditions. The effects of the oxidizing condition on organic aerosol (OA) composition, mass yield, volatility, and hygroscopicity were explored. Higher exposure to the hydroxyl radical resulted in different OA composition, average carbon oxidation state (OSc), and mass yield. The OA oxidation state generally increased during photo-oxidation, and the final OA OSc ranged from -0.29 to 0.16 in the performed experiments. The volatility of OA formed in these different experiments varied by as much as a factor of 30, demonstrating that the OA formed under different oxidizing conditions can have a significantly different saturation concentration. There was no clear correlation between hygroscopicity and oxidation state for this relatively hygroscopic SOA.

  13. Changes in background aerosol composition in Finland during polluted and clean periods studied by TEM/EDX individual particle analysis

    NASA Astrophysics Data System (ADS)

    Niemi, J. V.; Saarikoski, S.; Tervahattu, H.; Mäkelä, T.; Hillamo, R.; Vehkamäki, H.; Sogacheva, L.; Kulmala, M.

    2006-11-01

    Aerosol samples were collected at a rural background site in southern Finland in May 2004 during pollution episode (PM1~16 µg m-3, backward air mass trajectories from south-east), intermediate period (PM1~5 µg m-3, backtrajectories from north-east) and clean period (PM1~2 µg m-3, backtrajectories from north-west/north). The elemental composition, morphology and mixing state of individual aerosol particles in three size fractions were studied using transmission electron microscopy (TEM) coupled with energy dispersive X-ray (EDX) microanalyses. The TEM/EDX results were complemented with the size-segregated bulk chemical measurements of selected ions and organic and elemental carbon. Many of the particles in PM0.2-1 and PM1-3.3 size fractions were strongly internally mixed with S, C and/or N. The major particle types in PM0.2-1 samples were 1) soot and 2) (ammonium)sulphates and their mixtures with variable amounts of C, K, soot and/or other inclusions. Number proportions of those two particle groups in PM0.2-1 samples were 0-12% and 83-97%, respectively. During the pollution episode, the proportion of Ca-rich particles was very high (26-48%) in the PM1-3.3 and PM3.3-11 samples, while the PM0.2-1 and PM1-3.3 samples contained elevated proportions of silicates (22-33%), metal oxides/hydroxides (1-9%) and tar balls (1-4%). These aerosols originated mainly from polluted areas of Eastern Europe, and some open biomass burning smoke was also brought by long-range transport. During the clean period, when air masses arrived from the Arctic Ocean, PM1-3.3 samples contained mainly sea salt particles (67-89%) with a variable rate of Cl substitution (mainly by NO3-). During the intermediate period, the PM1-3.3 sample contained porous (sponge-like) Na-rich particles (35%) with abundant S, K and O. They might originate from the burning of wood pulp wastes of paper industry. The proportion of biological particles and C-rich fragments (probably also biological origin) were highest

  14. An Investigation of Size-Dependent Concentration of Trace Elements in Aerosols Emitted from the Oil-Fired Heating Plants

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Sentell, R. J.; Khandelwal, G. S.

    1976-01-01

    Aerosols emitted from two oil-fired heating plants were aerodynamically separated into eight size groups and were analyzed using the photon-induced X-ray emission (PIXE) technique. It was found that Zn, Mo, Ag, and Pb, and (to a lesser extent) Cd, have a tendency to concentrate preferentially on the smaller aerosols. All of these elements, in certain chemical forms, are known to be toxic. Zinc and molybdenum, although present in low concentrations in the parent fuels, show the strongest tendencies to be concentrated in finer aerosols. Selenium, previously reported to show a very strong tendency to concentration in finer fly ash from coal-fired power plants shows little preference for surface residence. Vanadium, which occurs in significant concentration in the oil fuels for both plants, also shows little preference for surface concentration. Even though the absolute concentrations of the toxic elements involved are well below the safety levels established by the National Institute for Occupational Safety and Health (NIOSH), it would be advisable to raise the heights of the heating-plant exhaust chimneys well above the neighborhood buildings to insure more efficient aerosol dispersal.

  15. Guidelines for the aerosol climatic effects special study: An element of the NASA climate research program

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Research to help develop better understanding of the role of aerosols in the Earth's radiative balance is summarized. Natural volcanic injections of aerosols into the stratosphere to understand and model any resultant evidence of climate change are considered. The approach involves: (1) measurements from aircraft, balloon and ground based platforms which complement and enhance the aerosol information derived from satellite data; (2) development of instruments required for some of these measurements; (3) theoretical and laboratory work to aid in interpreting and utilizing space based and in situ data; and (4) preparation for and execution of concentrated observations of stratospheric aerosols following a future large volcanic eruption.

  16. All-year-round aerosol chemical composition at Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Udisti, Roberto; Becagli, Silvia; Frosini, Daniele; Galli, Gaia; Ghedini, Costanza; Rugi, Francesco; Severi, Mirko; Traversi, Rita

    2010-05-01

    Since 2005, continuous, all-year-round aerosol sampling was carried out at Dome C (Central East Antarctica, 3233 m a.s.l., about 1100 km far from the coastline), in the framework of "Station Concordia" project, an Italian PNRA - French IPEV joint program. Size-segregated aerosol samples were collected in summer and winter periods by using different low- and medium-volume systems, including pre-selected cut-off samplers (with PM10, PM2.5 and PM1 cut-off heads) and multi-stage (Andersen 8-stage and Dekati 4-stage) impactors. Sampling resolution and volumes ranged from 1 day to 1 month and from 2.3 to 12 m3/h, respectively. Aerosol study at Dome C is expected improving our knowledge on present-day source intensity, transport efficiency and pathways (including stratosphere-troposphere interchanges) of particles reaching internal sites of Antarctica. Besides, more detailed information on atmosphere-snow interactions, including depositional and post-depositional processes, as well as the effect of sublimation/condensation processes on snow surface, will be used for improving the reconstruction of past atmosphere composition from ice core chemical stratigraphies (EPICA Dome C ice core). Here we report major results from the chemical composition of the Antarctic background aerosol reaching Dome C, pointing out the seasonal pattern and the temporal trend of some ionic components used as tracers of sea spray, marine biogenic and crustal emissions. Oxidised sulfur compounds are assumed to affect the climate system by influencing the Earth's radiative budget, both directly (solar light scattering) and indirectly (acting as cloud condensation nuclei). Among these compounds, methanesulphonic acid (MSA) and H2SO4 (arising from the atmospheric oxidation of phytoplanktonic dimethylsulphide - DMS), are considered the best tracers of marine productivity. Their use as reliable markers of oceanic biogenic emissions is hindered by poorly known mechanisms (temperature and photochemistry

  17. Seasonality of new particle formation in Vienna, Austria - Influence of air mass origin and aerosol chemical composition

    NASA Astrophysics Data System (ADS)

    Wonaschütz, Anna; Demattio, Anselm; Wagner, Robert; Burkart, Julia; Zíková, Naděžda; Vodička, Petr; Ludwig, Wolfgang; Steiner, Gerhard; Schwarz, Jaroslav; Hitzenberger, Regina

    2015-10-01

    The impact of air mass origin and season on aerosol chemical composition and new particle formation and growth events (NPF events) in Vienna, Austria, is investigated using impactor samples from short-term campaigns and two long-term number size distribution datasets. The results suggest that air mass origin is most important for bulk PM concentrations, chemical composition of the coarse fraction (>1.5 μm) and the mass size distribution, and less important for chemical composition of the fine fraction (<1.5 μm). Continental air masses (crustal elements) were distinguished from air masses of marine origin (traces of sea salt). NPF events were most frequent in summer (22% of measurement days), and least frequent in winter (3% of measurement days). They were associated with above-average solar radiation and ozone concentrations, but were largely independent of PM2.5. Air mass origin was a secondary influence on NPF, largely through its association with meteorological conditions. Neither a strong dependence on the PM2.5 loading of the air masses, nor indications of a source area for NPF precursors outside the city were found.

  18. Improved inhomogeneous finite elements for fabric reinforced composite mechanics analysis

    NASA Technical Reports Server (NTRS)

    Foye, R. L.

    1992-01-01

    There is a need to do routine stress/failure analysis of fabric reinforced composite microstructures to provide additional confidence in critical applications and guide materials development. Conventional methods of 3-D stress analysis are time consuming to set up, run and interpret. A need exists for simpler methods of modeling these structures and analyzing the models. The principal difficulty is the discrete element mesh generation problem. Inhomogeneous finite elements are worth investigating for application to these problems because they eliminate the mesh generation problem. However, there are penalties associated with these elements. Their convergence rates can be slow compared to homogeneous elements. Also, there is no accepted method for obtaining detailed stresses in the constituent materials of each element. This paper shows that the convergence rate can be significantly improved by a simple device which substitutes homogeneous elements for the inhomogeneous ones. The device is shown to work well in simple one and two dimensional problems. However, demonstration of the application to more complex two and three dimensional problems remains to be done. Work is also progressing toward more realistic fabric microstructural geometries.

  19. Nonlinear probabilistic finite element models of laminated composite shells

    NASA Technical Reports Server (NTRS)

    Engelstad, S. P.; Reddy, J. N.

    1993-01-01

    A probabilistic finite element analysis procedure for laminated composite shells has been developed. A total Lagrangian finite element formulation, employing a degenerated 3-D laminated composite shell with the full Green-Lagrange strains and first-order shear deformable kinematics, forms the modeling foundation. The first-order second-moment technique for probabilistic finite element analysis of random fields is employed and results are presented in the form of mean and variance of the structural response. The effects of material nonlinearity are included through the use of a rate-independent anisotropic plasticity formulation with the macroscopic point of view. Both ply-level and micromechanics-level random variables can be selected, the latter by means of the Aboudi micromechanics model. A number of sample problems are solved to verify the accuracy of the procedures developed and to quantify the variability of certain material type/structure combinations. Experimental data is compared in many cases, and the Monte Carlo simulation method is used to check the probabilistic results. In general, the procedure is quite effective in modeling the mean and variance response of the linear and nonlinear behavior of laminated composite shells.

  20. The elemental and isotopic composition of galactic cosmic ray nuclei

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.

    1983-01-01

    A directly accessible sample of matter which originates outside the solar system is provided by galactic cosmic rays. The present investigation is primarily concerned with progress related to questions raised regarding the similarity or difference between solar system matter and matter coming from outside the solar system. The investigation takes into account U.S. contributions to this topic over the period from 1979 to 1982. The cosmic ray (CR) abundances of all the elements from H to Ni (atomic number Z=1 to 28) have now been measured. Cosmic ray source (CRS) and solar system (SS) elemental compositions are listed in a table, and the ratio of CRS to SS abundance for 21 elements is shown in a graph. There is now clear evidence from CR isotope studies that the nucleosynthesis of CRS material has differed from that of SS material.

  1. Trace element composition of Luna 24 Crisium VLT basalt

    NASA Technical Reports Server (NTRS)

    Haskin, L. A.

    1978-01-01

    The origins of the individual particles analyzed from the Luna 24 core and the information they provide on the trace-element composition of Mare Crisium basalt are considered. Previous analyses of several Luna 24 soil fragments are reviewed. It is concluded that: (1) the average trace-element concentrations for 12 VLT basalt fragments are the best available estimates for bulk samples of Crisium VLT basalt; (2) there is weak evidence that the average Crisium basalt might have a small positive Eu anomaly relative to chondritic matter; (3) the soils contain components from sources other than the Crisium VLT basalt; and (4) there is no convincing information in concentrations of rare-earth elements, Co, Sc, FeO, or Na2O among the analyzed fragments to indicate more than one parent basalt.

  2. Nonlinear finite element modeling of dental composite polymerization behavior

    NASA Astrophysics Data System (ADS)

    Laughlin, Gayle A.

    2003-07-01

    Polymerization shrinkage has been one of the primary shortcomings preventing the use of resin composites as a universal dental restorative material. This shrinkage of the bonded restoration causes residual stresses in the composite which in turn are transferred to the adhesive interface. The deleterious effects of this stress environment include compromise of the interface itself and the decrease in the mechanical properties of the cured composite. Novel materials which claim to produce less shrinkage have been presented as a new class of restorative materials that could reduce the effects of this problem. One difficulty in assessing the actual in vivo benefits of these new materials is the fact that there is currently no direct way to measure the stress environment at the composite/tooth clinical interface. Computer modeling using finite element analysis (FEA) could provide helpful information regarding the clinical stress performance of dental composites. The purpose of this study was to develop a model that accurately simulates the nonlinear polymerization behavior of light-cured dental composites using a commercial FEA program, which could be accessible for future research. Two phases were needed to accomplish this purpose. First, a data collection phase included volumetric shrinkage, shrinkage stress, tooth analog strain, and dynamic mechanical analysis experiments. Three composites, a standard methacrylate(Z250) and two experimental low stress epoxy-based composites (oxirane and silorane), were tested. The experimental results revealed an intriguing range of polymerization behavior exhibited by the three composites, indicating that the development of a low stress composite is possible. The information gathered from this phase supplied the necessary material input for the computer modeling, and provided empirical validation data for the model solutions. In the second modeling phase, an FEA approach based on a elastic/viscoplastic material model was used to

  3. Compositional data analysis for elemental data in forensic science.

    PubMed

    Campbell, Gareth P; Curran, James M; Miskelly, Gordon M; Coulson, Sally; Yaxley, Gregory M; Grunsky, Eric C; Cox, Simon C

    2009-07-01

    Discrimination of material based on elemental composition was achieved within a compositional data (CoDa) analysis framework in a form appropriate for use in forensic science. The methods were carried out on example data from New Zealand nephrite. We have achieved good separation of the in situ outcrops of nephrite from within a well-defined area. The most significant achievement of working within the CoDa analysis framework is that the implications of the constraints on the data are acknowledged and dealt with, not ignored. The full composition was reduced based on collinearity of elements, principal components analysis (PCA) and scalings from a backwards linear discriminant analysis (LDA). Thus, a descriptive subcomposition was used for the final discrimination, using LDA, and proved to be more successful than using the full composition. The classification based on the LDA model showed a mean error rate of 2.9% when validated using a 10 repeat, three-fold cross-validation. The methods presented lend objectivity to the process of interpretation, rather than relying on subjective pattern matching type approaches.

  4. Molecular composition of fresh and aged secondary organic aerosol from a mixture of biogenic volatile compounds: a high-resolution mass spectrometry study

    NASA Astrophysics Data System (ADS)

    Kourtchev, I.; Doussin, J.-F.; Giorio, C.; Mahon, B.; Wilson, E. M.; Maurin, N.; Pangui, E.; Venables, D. S.; Wenger, J. C.; Kalberer, M.

    2015-05-01

    Field observations over the past decade indicate that a significant fraction of organic aerosol in remote areas may contain highly oxidized molecules. Aerosol processing or further oxidation (aging) of organic aerosol has been suggested to be responsible for their formation through heterogeneous reaction with oxidants and multigenerational oxidation of vapours by OH radicals. In this study we investigated the influence of several aging processes on the molecular composition of secondary organic aerosols (SOA) using direct infusion and liquid chromatography high-resolution mass spectrometry. SOA was formed in simulation chamber experiments from ozonolysis of a mixture of four biogenic volatile organic compounds (BVOC): α-pinene, β-pinene, Δ3-carene and isoprene. The SOA was subsequently aged under three different sets of conditions: in the dark in the presence of residual ozone, with UV irradiation and OH radicals, and using UV light only. Among all studied conditions, only OH radical-initiated aging was found to influence the molecular composition of the aerosol and showed an increase in carbon oxidation state (OSC) and elemental O / C ratios of the SOA components. None of the aging processes produced an observable effect on the oligomers formed from ozonolysis of the BVOC mixture, which were found to be equally abundant in both "fresh" and "aged" SOA. Additional experiments using α-pinene as the sole precursor demonstrated that oligomers are an important group of compounds in SOA produced from both ozonolysis and OH radical-initiated oxidation processes; however, a completely different set of oligomers is formed under these two oxidation regimes. SOA from the OH-initiated oxidation of α-pinene had a significantly higher overall OSC and O / C compared to that from pure ozonolysis experiments confirming that the OH radical reaction is more likely to be responsible for the occurrence of highly oxidized species in ambient biogenic SOA.

  5. Linking variations in sea spray aerosol particle hygroscopicity to composition during two microcosm experiments

    NASA Astrophysics Data System (ADS)

    Forestieri, Sara D.; Cornwell, Gavin C.; Helgestad, Taylor M.; Moore, Kathryn A.; Lee, Christopher; Novak, Gordon A.; Sultana, Camille M.; Wang, Xiaofei; Bertram, Timothy H.; Prather, Kimberly A.; Cappa, Christopher D.

    2016-07-01

    The extent to which water uptake influences the light scattering ability of marine sea spray aerosol (SSA) particles depends critically on SSA chemical composition. The organic fraction of SSA can increase during phytoplankton blooms, decreasing the salt content and therefore the hygroscopicity of the particles. In this study, subsaturated hygroscopic growth factors at 85 % relative humidity (GF(85 %)) of predominately submicron SSA particles were quantified during two induced phytoplankton blooms in marine aerosol reference tanks (MARTs). One MART was illuminated with fluorescent lights and the other was illuminated with sunlight, referred to as the "indoor" and "outdoor" MARTs, respectively. Optically weighted GF(85 %) values for SSA particles were derived from measurements of light scattering and particle size distributions. The mean optically weighted SSA diameters were 530 and 570 nm for the indoor and outdoor MARTs, respectively. The GF(85 %) measurements were made concurrently with online particle composition measurements, including bulk composition (using an Aerodyne high-resolution aerosol mass spectrometer) and single particle (using an aerosol time-of-flight mass spectrometer) measurement, and a variety of water-composition measurements. During both microcosm experiments, the observed optically weighted GF(85 %) values were depressed substantially relative to pure inorganic sea salt by 5 to 15 %. There was also a time lag between GF(85 %) depression and the peak chlorophyll a (Chl a) concentrations by either 1 (indoor MART) or 3-to-6 (outdoor MART) days. The fraction of organic matter in the SSA particles generally increased after the Chl a peaked, also with a time lag, and ranged from about 0.25 to 0.5 by volume. The observed depression in the GF(85 %) values (relative to pure sea salt) is consistent with the large observed volume fractions of non-refractory organic matter (NR-OM) comprising the SSA. The GF(85 %) values exhibited a reasonable negative

  6. Trace elements and metal pollution in aerosols at an alpine site, New Zealand: Sources, concentrations and implications

    NASA Astrophysics Data System (ADS)

    Marx, Samuel K.; Lavin, Karen S.; Hageman, Kimberly J.; Kamber, Balz S.; O'Loingsigh, Tadhg; McTainsh, Grant H.

    2014-01-01

    Atmospheric aerosol samples were collected at a remote site in New Zealand's Southern Alps. Collected samples were found to be a mixture of New Zealand and Australian sourced sediment, using their trace element signatures. Aerosol concentrations and the relative contribution of different sources was found to be a function of specific air-mass trajectories influencing the study site, dust entrainment rates in source areas and rainfall. Results show that Australian dust is a major source of particulate matter in New Zealand, particularly in remote alpine locations; however, locally derived dust is also important. Metal pollutants, including Pb, Cu and Sn, were enriched in the samples by approximately 15 times and up to >100 times expected natural concentrations, confirming that metal pollution is a ubiquitous component of the atmosphere, even in relatively remote locations. Moreover, pollutants were highly enriched in otherwise clean air, i.e. during and following rainfall. Additionally, high concentrations of elements naturally enriched in sea water, e.g. Sr, Ba and Rb, were deposited alongside mineral dust, reflecting the oceanic origin of air influencing the site and the role of sea spray in contributing aerosol to the atmosphere. These elements experienced the greatest enrichment during rainfall, implying sea spray and pollution become relatively important during otherwise clean air conditions.

  7. Exposure and Emissions Monitoring during Carbon Nanofiber Production—Part I: Elemental Carbon and Iron–Soot Aerosols

    PubMed Central

    Birch, M. Eileen; Ku, Bon-Ki; Evans, Douglas E.; Ruda-Eberenz, Toni A.

    2015-01-01

    Production of carbon nanofibers and nanotubes (CNFs/CNTs) and their composite products is increasing globally. High volume production may increase the exposure risks for workers who handle these materials. Though health effects data for CNFs/CNTs are limited, some studies raise serious health concerns. Given the uncertainty about their potential hazards, there is an immediate need for toxicity data and field studies to assess exposure to CNFs/CNTs. An extensive study was conducted at a facility that manufactures and processes CNFs. Filter, sorbent, cascade impactor, bulk, and microscopy samples, combined with direct-reading instruments, provided complementary information on air contaminants. Samples were analyzed for organic carbon (OC) and elemental carbon (EC), metals, and polycyclic aromatic hydrocarbons (PAHs), with EC as a measure of CNFs. Transmission electron microscopy with energy-dispersive X-ray spectroscopy also was applied. Fine/ultrafine iron-rich soot, PAHs, and carbon monoxide were production byproducts. Direct-reading instrument results were reported previously [Evans DE et al. (Aerosol monitoring during carbon nanofiber production: mobile direct-reading sampling. Ann Occup Hyg 2010;54:514–31.)] Results for time-integrated samples are reported as companion papers in this Issue. OC and EC, metals, and microscopy results are reported here, in Part I, while results for PAHs are reported in Part II [Birch ME. (Exposure and Emissions Monitoring during Carbon Nanofiber Production—Part II: Polycyclic Aromatic Hydrocarbons. Ann. Occup. Hyg 2011; 55: 1037–47.)]. Respirable EC area concentrations inside the facility were about 6–68 times higher than outdoors, while personal breathing zone samples were up to 170 times higher. PMID:21965464

  8. Estimation of aerosol particle composition using ground-based sun-sky radiometer measurements at typical sites in China

    NASA Astrophysics Data System (ADS)

    Li, Z.; Gu, X.; Wang, L.; Li, D.; Xing, X.; Gai, J.; Wang, Q.; Li, K.; Li, L.; Zhang, Y.

    2011-12-01

    Atmospheric aerosol affects climate and environment through radiative and health effects determined by its physical and chemical properties. In this study, we modeled aerosol by an internal mixture of different components like water, sulfate and black carbon following Maxwell-Garnett effective medium approximation theory. In order to deal with complex aerosol mixing situation in China, we considered extra mineral dust component in case of large particles. Remote sensing data obtained from ground-based CE318 sun-sky radiometers in typical China sites are used to derive the aerosol mixture model. Measurements are firstly calibrated by using intercomparison and vicarious calibration methods and then retrieved by using AErosol RObotic NETwork (AERONET) inversion algorithm to obtain refractive indices of the mixture, which are then used to yield aerosol component fraction. Results at typical China regions like megacity, industrial, arid, oceanic and background sites show considerable difference between their aerosol particle compositions and agree with a priori information like regional aerosol sources and formation processes.

  9. X-Ray Microspectroscopic Investigations of Remote Aerosol Composition and Changes in Aerosol Microstructure and Phase State upon Hydration

    NASA Astrophysics Data System (ADS)

    Andreae, M. O.; Artaxo, P.; Bechtel, M.; Förster, J. D.; Kilcoyne, A. L. D.; Krüger, M. L.; Pöhlker, C.; Saturno, J.; Weigand, M.; Wiedemann, K. T.

    2014-12-01

    Atmospheric aerosols play a crucial role in the Earth's climate system and hydrological cycle by scattering and absorbing sunlight and affecting the formation and development of clouds and precipitation. Our research focuses on aerosols in remote regions, in order to characterize the properties and sources of natural aerosol particles and the extent of human perturbations of the aerosol burden. The phase and mixing state of atmospheric aerosols, and particularly their hygroscopic response to relative humidity (RH) variations, is a central determinant of their atmospheric life cycle and impacts. We present an investigation using X-ray microspectroscopy on submicrometer aerosols under variable RH conditions, showing in situ changes in morphology, microstructure, and phase state upon humidity cycling. We applied Scanning Transmission X-ray Microscopy with Near-Edge X-ray Absorption Fine Structure spectroscopy (STXM-NEXAFS) under variable RH conditions to standard aerosols for a validation of the experimental approach and to internally mixed aerosol particles from the Amazonian rain forest collected during periods with anthropogenic pollution. The measurements were conducted at X-ray microscopes at the synchrotron facilities Advanced Light Source (ALS) in Berkeley, USA, and BESSY II in Berlin, Germany. Upon hydration, we observed substantial and reproducible changes in microstructure of the Amazonian particles (internal mixture of secondary organic material, ammoniated sulfate, and soot), which appear as mainly driven by efflorescence and recrystallization of sulfate salts. Multiple solid and liquid phases were found to coexist, especially in intermediate humidity regimes (60-80% RH). This shows that X-ray microspectroscopy under variable RH is a valuable technique to analyze the hygroscopic response of individual ambient aerosol particles. Our initial results underline that RH changes can trigger strong particle restructuring, in agreement with previous studies on

  10. Saharan dust aerosol over the central Mediterranean Sea: optical columnar measurements vs. aerosol load, chemical composition and marker solubility at ground level

    NASA Astrophysics Data System (ADS)

    Marconi, M.; Sferlazzo, D. M.; Becagli, S.; Bommarito, C.; Calzolai, G.; Chiari, M.; di Sarra, A.; Ghedini, C.; Gómez-Amo, J. L.; Lucarelli, F.; Meloni, D.; Monteleone, F.; Nava, S.; Pace, G.; Piacentino, S.; Rugi, F.; Severi, M.; Traversi, R.; Udisti, R.

    2013-08-01

    average aerosol optical depth at 495.7 nm up to 0.28 in June-August). We found that 71.3% of the events identified from optical properties over the air column display a high dust content at the ground level. Conversely, the remaining 28.7% of cases present a negligible or small impact of dust on the surface aerosol composition due to the Saharan dust transport processes over the Mediterranean that frequently occur above the marine boundary layer especially in spring, summer and early autumn. The solubility of different elements presents a large variability. In general, the solubility is lower in Saharan dust samples than for non-Saharan dust events. The solubility also displays a marked dependency on size for Saharan dust samples. Crustal markers show two relative maxima in the size range 2.1-3.3 μm and 5.8-9 μm, generally characterized by low solubility. Optical particle counter measurements present similar values of median radii for the dust size distribution. Conversely, elements mainly due to anthropic sources display a maximum in the finest fraction, and a high solubility. For instance, Fe, K, and Co present a very low solubility in the coarse fraction (8% in the size range 2.1-3.3 μm for Fe), while the finest fraction is characterized by high solubility (69% in the size range 0.4-0.7 μm for Fe). A ionic balance analysis on multi-stage impactor samples shows that exchange reactions involving anthropic acids, and crustal matter may play a significant role in cases of mixing. These reactions may affect the solubility and bioavailability of the crustal elements.

  11. ACE-Asia: Size/Time/Compositionally Resolved Aerosols During ACE-Asia Using Continuously Sampling DRUM Technology and Synchrotron-XRF Analysis

    NASA Astrophysics Data System (ADS)

    Cahill, T. A.; Cliff, S. S.; Jimenez-Cruz, M.; Perry, K. D.

    2001-12-01

    The adaptation of focused beam technology to continuously sampling drum impactors (DRUMs) has allowed for an unprecedented number of size/time/compositional analyses of aerosols during the Spring, 2001 ACE-Asia study and a summer follow-on. While continuously sampling and sizing inertial drum impactors have been available for aerosol monitoring and research for the past 30 years, cost and sensitivity considerations have generally limited their use, even in research studies. These constraints have been greatly relaxed by our application of synchrotron X-ray fluorescence (S-XRF) analysis for elemental analysis of aerosols, both increasing sensitivity and decreasing cost. The intense polarized x-ray beams of the Lawrence Berkeley National Laboratory's Advanced Light Source (ALS) allows us to eliminate 99% of all the background normally present in x-ray analysis while matching the x-ray beam spot to the 0.2 mm "footprint" of our DRUM impactors. This combination allows non-destructive analyses of elements from sodium to uranium (with some minor elements masked by interferences) with a time resolution set during analysis, not during sampling. The DELTA Group and its many collaborators executed a 21 site network of continuously sampling 3 and 8 stage DRUM impactors for the 6 weeks of ACE-Asia. Fewer than 5% of the potential 80,000 samples were lost due to sampling problems. During S-XRF analysis, a nominal time resolution of 6 hrs was chosen, with 2 hrs available as needed during aerosol episodes. The 168 mm drum strips were mounted in frames and exposed to the "white" polarized x-ray beam of ALS Beam Line 10.3.1 for 30 seconds, yielding quantitative elemental determinations from sodium through molybdenum plus heavy elements, certified by 80 analytical standards and NIST SRMs. Minimum detectable limits ranged from 0.1 ng/m3 for sulfur to 0.005 ng/m3 for transition metals such as zinc, allowing scores of positive elemental determinations in each spectrum. During ACE

  12. Elemental composition of birdsfoot trefoil. [Lotus corniculatus L

    SciTech Connect

    Russelle, M.P.; McGraw, R.L.; Grava, J.; Beuselinck, P.R.

    1985-01-01

    Developmental and environmental effects on mineral nutrient concentration in birdsfoot trefoil (Lotus corniculatus L.) are not well documented. In this study, elemental composition of two birdsfoot trefoil stands were determined from a late vegetative stage through reproductive growth. Norcen birdsfoot trefoil was established on a Glyndon silt loam (coarse-silty, frigid Aeric Calciaquolis)( in Roseau County, in 1980, and Norcen and Leo birdsfoot trefoil were seeded on a Waukegan silt loam (fine-silty over sandy or sandy-skeletal, mixed, mesic Typic Hapludolls) near Rosemount, in 1981. Shoot and root samples were taken at approximately biweekly intervals in the year following establishment. Shoots were separated into stems, leaves, umbels, and seed. Environment influenced the concentration of most elements. This environmental effect was generally consistent among plant parts for C, Mg, S, Na, and Mn; i.e., all parts had lower elemental concentrations at Rosemount than at Roseau. The relationship between environments for P, K, Zn, and Cu concentrations varied with different plant parts; i.e., some plant components had element concentrations higher at the southern than northern location, whereas other components had element concentrations that showed the converse. Although most elements were less concentrated with advancing developmental stage, environment modified the rate and extent of change in concentration of every element in at least one plant part. Interactions of environment with development stage were not as evident for shoots as for the separate shoot components. Whereas other reports have often emphasized the large differences in nutrient concentrations among legume species, this data suggest that nutrient concentration may be as strongly influenced by environment as by species.

  13. The Composition of Individual Aerosol Particles over the North Slope of Alaska during ISDAC

    NASA Astrophysics Data System (ADS)

    Zelenyuk, A.; Imre, D.; Liu, P.; MacDonald, A.; Leaitch, R.

    2008-12-01

    During the month of April 2008 a single particle mass spectrometer, SPLAT II, was deployed on board the Canadian National Research Council Convair 580 aircraft for participation in the Indirect and Semi-Direct Aerosol Campaign (ISDAC). ISDAC's main scientific objective was to improve our understanding of the relationship between the properties of aerosol particles over the North Pole and their impact on the regional climate. During ISDAC SPLAT II participated in all 27 flights that lasted slightly over 100 hrs. It measured the size of more than 10 million particles and characterized the composition of over 3 million of them. When sampling in clear air SPLAT II measured a wide range of particle compositions, including sulfates mixed with organics, nitrates mixed with organic, processed and freshly emitted sea-salt, a few dust particles, and a significant number of biomass burning particles. Many of these particle types appeared in aerosol layers that had horizontal and vertical filamentous structures. Biomass burning particles, many of which were transported from Asia, were rather prevalent over the North Slope of Alaska during the campaign. Since one of the main goals of this campaign was to characterize cloud properties, large fraction of the data was collected through the CVI inlet. The ice-clouds sampled in ISDAC had typically very low ice crystal concentrations; correspondingly, when sampled through the CVI inlet the number of characterized particles drops precipitously. Despite the low number concentrations SPLAT was able to measure the size and composition of thousands of ice-nuclei. Since the CVI inlet transmits, in addition to ice crystals, liquid droplets, SPLAT was able to characterize a large number of particles that served as cloud condensation nuclei as well. We will present a preliminary analysis of the single particle data collected during this campaign.

  14. Elemental composition of solar energetic particles. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Cook, W. R., III

    1981-01-01

    The Low Energy Telescopes on the Voyager spacecraft are used to measure the elemental composition (2 or = Z or = 28) and energy spectra (5 to 15 MeV/nucleon) of solar energetic particles (SEPs) in seven large flare events. Four flare events are selected which have SEP abundance ratios approximately independent of energy/nucleon. The abundances for these events are compared from flare to flare and are compared to solar abundances from other sources: spectroscopy of the photosphere and corona, and solar wind measurements. The four flare average SEP composition is significantly different from the solar composition determined by photospheric spectroscopy. The average SEP composition is in agreement with solar wind abundance results and with a number of recent coronal abundance measurements. The evidence for a common depletion of oxygen in SEPs, the corona and the solar wind relative to the photosphere suggest that the SEPs originate in the corona and that both the SEPs and solar wind sample a coronal composition which is significantly and persistently different from that of the photosphere.

  15. Long-term measurement of aerosol chemical composition in Athens, Greece.

    NASA Astrophysics Data System (ADS)

    Paraskevopoulou, Despina; Liakakou, Eleni; Theodosi, Christina; Gerasopoulos, Evangelos; Mihalopoulos, Nikolaos

    2014-05-01

    The collection of our samples was conducted for a period of five years (2008 - 2013) in Athens, Greece. The site is situated at the premises of the National Observatory of Athens on Penteli Hill, northeast Athens suburbs, and is considered an urban background station. The aim of our study was a first long-term estimation of the chemical mass closure of aerosol. For the purposes of the study, we applied three filter samplers during the sampling period: two Partisol FRM Model 2000 air samplers (one of them collecting PM10 and the other PM2.5 fractions of aerosol) and one Dichotomous Partisol auto-sampler (with PM2.5 and PM2.5-10 inlet). Aerosols were collected on Whatman QM-A quartz fiber filters and the mass of the collected samples was estimated by weighing the pre-combusted filters before and after sampling, under controlled conditions, using a microbalance. All quartz filters were analysed for organic (OC) and elemental carbon (EC) by a thermal - optical transmission technique. The concentration of water soluble organic carbon (WSOC) was defined for each filter using a total organic carbon analyzer, while the content in main water soluble ions (Cl-, Br-, NO-3, SO4-2, PO4-3, C2O4-2, NH4+, K+, Na+, Mg+2, Ca+2) was determined by ion chromatography. Additionally the filters were analyzed for trace metals by inductively coupled plasma optical emission spectrometry (ICP-OES). Aerosol chemical mass closure calculations were conducted for the PM2.5 fraction. The area of Athens is characterized by aged aerosol that can originate from the marine boundary layer, the European mainland and occasionally from North African desert areas. The contribution of dust and particulate organic matter on PM levels was estimated taking into consideration the location of the sampling site, while identification and evaluation of sources was performed. Additionally, non-sea salt concentrations of the main ions were estimated to complete the chemical closure in the extended area. According to

  16. Hourly elemental concentrations in PM2.5 aerosols sampled simultaneously at urban background and road site

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Querol, X.; Amato, F.; Karanasiou, A.; Lucarelli, F.; Nava, S.; Calzolai, G.; Chiari, M.

    2012-08-01

    Hourly-resolved aerosol chemical speciation data can be a highly powerful tool to determine the source origin of atmospheric pollutants in urban Environments. Aerosol mass concentrations of seventeen elements (Na, Mg, Al, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Sr and Pb) were obtained by time (1 h) and size (PM2.5 particulate matter <2.5 μm) resolved Particle Induced X-ray Emission (PIXE) measurements. In the Marie Curie FP7-EU framework of SAPUSS (Solving Aerosol Problems by Using Synergistic Strategies), the unique approach used is the simultaneous PIXE measurements at two monitoring sites: urban background (UB) and a street canyon traffic road site (RS). Elements related to primary non exhaust traffic emission (Fe, Cu), dust resuspension (Ca) and anthropogenic Cl were found enhanced at the RS, whereas industrial related trace metals (Zn, Pb, Mn) were found at higher concentrations at the more ventilated UB site. When receptor modelling was performed with positive matrix factorization (PMF), nine different aerosol sources were identified at both sites: three types of regional aerosols (secondary sulphate (S) - 27%, biomass burning (K) - 5%, sea salt (Na-Mg) - 17%), three types of dust aerosols (soil dust (Al-Ti) - 17%, urban crustal dust (Ca) - 6%, and primary traffic non exhaust brake dust (Fe-Cu) - 7%), and three types industrial aerosol plumes-like events (shipping oil combustion (V-Ni) - 17%, industrial smelters (Zn-Mn) - 3%, and industrial combustion (Pb-Cl) - 5%). The validity of the PMF solution of the PIXE data is supported by strong correlations with external single particle mass spectrometry measurements. Beside apportioning the aerosol sources, some important air quality related conclusions can be drawn about the PM2.5 fraction simultaneously measured at the UB and RS sites: (1) the regional aerosol sources impact both monitoring sites at similar concentrations regardless their different ventilation conditions; (2) by contrast, local industrial

  17. COBRA: A Computational Brewing Application for Predicting the Molecular Composition of Organic Aerosols

    SciTech Connect

    Fooshee, David R.; Nguyen, Tran B.; Nizkorodov, Sergey A.; Laskin, Julia; Laskin, Alexander; Baldi, Pierre

    2012-05-08

    Atmospheric organic aerosols (OA) represent a significant fraction of airborne particulate matter and can impact climate, visibility, and human health. These mixtures are difficult to characterize experimentally due to the enormous complexity and dynamic nature of their chemical composition. We introduce a novel Computational Brewing Application (COBRA) and apply it to modeling oligomerization chemistry stemming from condensation and addition reactions of monomers pertinent to secondary organic aerosol (SOA) formed by photooxidation of isoprene. COBRA uses two lists as input: a list of chemical structures comprising the molecular starting pool, and a list of rules defining potential reactions between molecules. Reactions are performed iteratively, with products of all previous iterations serving as reactants for the next one. The simulation generated thousands of molecular structures in the mass range of 120-500 Da, and correctly predicted ~70% of the individual SOA constituents observed by high-resolution mass spectrometry (HR-MS). Selected predicted structures were confirmed with tandem mass spectrometry. Esterification and hemiacetal formation reactions were shown to play the most significant role in oligomer formation, whereas aldol condensation was shown to be insignificant. COBRA is not limited to atmospheric aerosol chemistry, but is broadly applicable to the prediction of reaction products in other complex mixtures for which reasonable reaction mechanisms and seed molecules can be supplied by experimental or theoretical methods.

  18. Absorption Coefficient, Molecular Composition, and Photodegradation of Different Types of Brown Carbon Aerosols

    NASA Astrophysics Data System (ADS)

    Lee, H. J.; Aiona, P. K.; Nizkorodov, S.; Laskin, J.; Laskin, A.

    2014-12-01

    Atmospheric aerosols that absorb solar radiation have a direct effect on climate. Brown carbon (BrC) represents the type of carbonaceous aerosols characterized by large absorption coefficients in the near-UV range of the spectrum. BrC can be either directly emitted into the atmosphere from combustion sources, or be formed in the atmosphere through multi-phase reactions, such as aging of secondary organic aerosols (SOA) mediated by ammonium sulfate (AS). Under the conditions of exposure to solar radiation, both primary and secondary BrC can potentially change their molecular composition and optical properties as a result of photodegradation of chromophoric compounds. This presentation will discuss the molecular level composition, the absorption and fluorescence spectra, and the mechanism of photodegradation among several representative types of BrC. The primary BrC samples include aerosol produced by smoldering wood combustion. The secondary BrC samples include AS aged products of chamber-generated SOA, products of reaction between methylglyoxal and AS, and SOA produced by the hogh-NOx photooxdiation of aromatic compounds, such as naphthalene. This presentation will also include preliminary data on the absorption and fluorescence spectra of photo-degraded bioaerosols. In all cases, absorption spectra of extracted bulk samples are measured during irradiation by a known flux of UV or visible light. The molecular level composition of the fresh and photobleached samples are characterized by high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). Photobleaching of BrC is found to occur over a range of atmospherically relevant time scales. In many cases, the molecular level composition of photobleached BrC exhibits only subtle changes suggesting that the optical and fluorescence properties of BrC are controlled by a few compounds present in low quantities. The observed fluorescence from non-biological BrC indicates potential issues in using fluorescence

  19. Elemental composition of arbuscular mycorrhizal fungi at high salinity.

    PubMed

    Hammer, Edith C; Nasr, Hafedh; Pallon, Jan; Olsson, Pål Axel; Wallander, Håkan

    2011-02-01

    We investigated the elemental composition of spores and hyphae of arbuscular mycorrhizal fungi (AMF) collected from two saline sites at the desert border in Tunisia, and of Glomus intraradices grown in vitro with or without addition of NaCl to the medium, by proton-induced X-ray emission. We compared the elemental composition of the field AMF to those of the soil and the associated plants. The spores and hyphae from the saline soils showed strongly elevated levels of Ca, Cl, Mg, Fe, Si, and K compared to their growth environment. In contrast, the spores of both the field-derived AMF and the in vitro grown G. intraradices contained lower or not elevated Na levels compared to their growth environment. This resulted in higher K:Na and Ca:Na ratios in spores than in soil, but lower than in the associated plants for the field AMF. The K:Na and Ca:Na ratios of G. intraradices grown in monoxenic cultures were also in the same range as those of the field AMF and did not change even when those ratios in the growth medium were lowered several orders of magnitude by adding NaCl. These results indicate that AMF can selectively take up elements such as K and Ca, which act as osmotic equivalents while they avoid uptake of toxic Na. This could make them important in the alleviation of salinity stress in their plant hosts.

  20. Finite-element impact response of debonded composite turbine blades

    NASA Astrophysics Data System (ADS)

    Dey, Sudip; Karmakar, Amit

    2014-02-01

    This paper investigates on the transient behavior of debonded composite pretwisted rotating shallow conical shells which could be idealized as turbine blades subjected to low velocity normal impact using finite-element method. Lagrange's equation of motion is used to derive the dynamic equilibrium equation and the moderate rotational speeds are considered neglecting the Coriolis effect. An eight-noded isoparametric plate bending element is employed in the finite element formulation incorporating rotary inertia and effects of transverse shear deformation based on Mindlin's theory. The modified Hertzian contact law which accounts for permanent indentation is utilized to compute the impact parameters. The time-dependent equations are solved by using Newmark's time integration scheme. Parametric studies are performed to investigate the effects of triggering parameters like angle of twist, rotational speed, laminate configuration and location of debonding considering low velocity normal impact at the center of eight-layered graphite-epoxy composite cantilevered conical shells with bending stiff ([0o2/{±} 30o]s), torsion stiff ([45°/-45°/-45°/45°]s) and cross-ply ([0°/90°/0°/90°]s) laminate configurations.

  1. Chemical composition and sources of coastal marine aerosol particles during the 2008 VOCALS-REx campaign

    SciTech Connect

    Lee, Y. -N.; Springston, S.; Jayne, J.; Wang, J.; Hubbe, J.; Senum, G.; Kleinman, L.; Daum, P. H.

    2014-01-01

    The chemical composition of aerosol particles (Dp ≤ 1.5 μm) was measured over the southeast Pacific Ocean during the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-Rex) between 16 October and 15 November 2008 using the US Department of Energy (DOE) G-1 aircraft. The objective of these flights was to gain an understanding of the sources and evolution of these aerosols, and of how they interact with the marine stratus cloud layer that prevails in this region of the globe. Our measurements showed that the marine boundary layer (MBL) aerosol mass was dominated by non-sea-salt SO42−, followed by Na+, Cl, Org (total organics), NH4+, and NO3, in decreasing order of importance; CH3SO3 (MSA), Ca2+, and K+ rarely exceeded their limits of detection. Aerosols were strongly acidic with a NH4+ to SO42− equivalents ratio typically < 0.3. Sea-salt aerosol (SSA) particles, represented by NaCl, exhibited Cl deficits caused by both HNO3 and H2SO4, but for the most part were externally mixed with particles, mainly SO42−. SSA contributed only a small fraction of the total accumulation mode particle number concentration. It was inferred that all aerosol species (except SSA) were of predominantly continental origin because of their strong land-to-sea concentration gradient. Comparison of relative changes in median values suggests that (1) an oceanic source of NH3 is present between 72° W and 76° W, (2) additional organic aerosols from biomass burns or biogenic precursors were emitted from coastal regions south of 31° S, with possible cloud processing, and (3) free tropospheric (FT) contributions to MBL gas and aerosol

  2. Real time infrared aerosol analyzer

    DOEpatents

    Johnson, Stanley A.; Reedy, Gerald T.; Kumar, Romesh

    1990-01-01

    Apparatus for analyzing aerosols in essentially real time includes a virtual impactor which separates coarse particles from fine and ultrafine particles in an aerosol sample. The coarse and ultrafine particles are captured in PTFE filters, and the fine particles impact onto an internal light reflection element. The composition and quantity of the particles on the PTFE filter and on the internal reflection element are measured by alternately passing infrared light through the filter and the internal light reflection element, and analyzing the light through infrared spectrophotometry to identify the particles in the sample.

  3. Fossil and Nonfossil Sources of Organic and Elemental Carbon Aerosols in the Outflow from Northeast China.

    PubMed

    Zhang, Yan-Lin; Kawamura, Kimitaka; Agrios, Konstantinos; Lee, Meehye; Salazar, Gary; Szidat, Sönke

    2016-06-21

    Source quantification of carbonaceous aerosols in the Chinese outflow regions still remains uncertain despite their high mass concentrations. Here, we unambiguously quantified fossil and nonfossil contributions to elemental carbon (EC) and organic carbon (OC) of total suspended particles (TSP) from a regional receptor site in the outflow of Northeast China using radiocarbon measurement. OC and EC concentrations were lower in summer, representing mainly marine air, than in other seasons, when air masses mostly traveled over continental regions in Mongolia and northeast China. The annual-mean contribution from fossil-fuel combustion to EC was 76 ± 11% (0.1-1.3 μg m(-3)). The remaining 24 ± 11% (0.03-0.42 μg m(-3)) was attributed to biomass burning, with slightly higher contribution in the cold period (∼31%) compared to the warm period (∼21%) because of enhanced emissions from regional biomass combustion sources in China. OC was generally dominated by nonfossil sources, with an annual average of 66 ± 11% (0.5-2.8 μg m(-3)), approximately half of which was apportioned to primary biomass-burning sources (34 ± 6%). In winter, OC almost equally originated from primary OC (POC) emissions and secondary OC (SOC) formation from fossil fuel and biomass-burning sources. In contrast, summertime OC was dominated by primary biogenic emissions as well as secondary production from biogenic and biomass-burning sources, but fossil-derived SOC was the smallest contributor. Distinction of POC and SOC was performed using primary POC-to-EC emission ratios separated for fossil and nonfossil emissions. PMID:27203471

  4. Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield

    DOE PAGES

    Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.; Brune, W. H.; Hunter, J. F.; Kroll, J. H.; Cummings, M. J.; Brogan, J. F.; Parmar, Y.; Worsnop, D. R.; et al

    2015-03-18

    We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 108 to 2.2 × 1010 molec cm-3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 106 to 2 × 107 molec cm-3 over exposure times of several hours. The OH concentration in themore » chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 1011 and 2 × 1011 molec cm-3 s, or about 1–2 days of equivalent atmospheric oxidation. This observation suggests that in the range of available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of

  5. Sources and composition of submicron organic mass in marine aerosol particles

    SciTech Connect

    Frossard, Amanda A.; Russell, Lynn M.; Burrows, Susannah M.; Elliott, Scott M.; Bates, Timothy S.; Quinn, Patricia K.

    2014-11-27

    Recent studies have proposed a variety of interpretations of the sources and composition of atmospheric marine aerosol particles (aMA) based on a range of physical and chemical measurements collected during open-ocean research cruises. To investigate the processes that affect marine organic particles, this study uses the characteristic functional group composition (from Fourier transform infrared (FTIR) spectroscopy) of aMAP from five ocean regions to show that: (i) The organic functional group composition of aMAP that can be identified as atmospheric primary marine (ocean-derived) aerosol (aPMA) is 65±12% hydroxyl, 21±9% alkane, 6±6% amine, and 7±8% carboxylic acid functional groups. Contributions from photochemical reactions add carboxylic acid groups (15%-25%), shipping effluent in seawater and ship emissions add additional alkane groups (up to 70%), and coastal emissions mix in alkane and carboxylic acid groups from coastal pollution sources. (ii) The organic composition of aPMA is nearly identical to model generated primary marine aerosol particles (gPMA) from bubbled seawater (55% hydroxyl, 32% alkane, and 13% amine functional groups), indicating that its overall functional group composition is the direct consequence of the organic constituents of the seawater source. (iii) While the seawater organic functional group composition was nearly invariant across all three ocean regions studied, the gPMA alkane group fraction increased with chlorophyll-a concentrations (r = 0.79). gPMA from productive seawater had a larger fraction of alkane functional groups (35%) compared to gPMA from non-productive seawater (16%), likely due to the presence of surfactants in productive seawater that stabilize the bubble film and lead to preferential drainage of the more soluble (lower alkane group fraction) organic components. gPMA has a hydroxyl group absorption peak location characteristic of monosaccharides and disaccharides, where the seawater OM hydroxyl group peak

  6. Sources and composition of submicron organic mass in marine aerosol particles

    DOE PAGES

    Frossard, Amanda A.; Russell, Lynn M.; Burrows, Susannah M.; Elliott, Scott M.; Bates, Timothy S.; Quinn, Patricia K.

    2014-11-27

    Recent studies have proposed a variety of interpretations of the sources and composition of atmospheric marine aerosol particles (aMA) based on a range of physical and chemical measurements collected during open-ocean research cruises. To investigate the processes that affect marine organic particles, this study uses the characteristic functional group composition (from Fourier transform infrared (FTIR) spectroscopy) of aMAP from five ocean regions to show that: (i) The organic functional group composition of aMAP that can be identified as atmospheric primary marine (ocean-derived) aerosol (aPMA) is 65±12% hydroxyl, 21±9% alkane, 6±6% amine, and 7±8% carboxylic acid functional groups. Contributions from photochemicalmore » reactions add carboxylic acid groups (15%-25%), shipping effluent in seawater and ship emissions add additional alkane groups (up to 70%), and coastal emissions mix in alkane and carboxylic acid groups from coastal pollution sources. (ii) The organic composition of aPMA is nearly identical to model generated primary marine aerosol particles (gPMA) from bubbled seawater (55% hydroxyl, 32% alkane, and 13% amine functional groups), indicating that its overall functional group composition is the direct consequence of the organic constituents of the seawater source. (iii) While the seawater organic functional group composition was nearly invariant across all three ocean regions studied, the gPMA alkane group fraction increased with chlorophyll-a concentrations (r = 0.79). gPMA from productive seawater had a larger fraction of alkane functional groups (35%) compared to gPMA from non-productive seawater (16%), likely due to the presence of surfactants in productive seawater that stabilize the bubble film and lead to preferential drainage of the more soluble (lower alkane group fraction) organic components. gPMA has a hydroxyl group absorption peak location characteristic of monosaccharides and disaccharides, where the seawater OM hydroxyl group

  7. Influence of Heterogeneous OH Oxidation on the Evaporation Behavior and Composition of a Model Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Kolesar, K. R.; Cappa, C. D.; Wilson, K. R.

    2011-12-01

    Heterogeneously oxidized squalane particles are used here as a model system to investigate the interplay between chemical composition and particle volatility. Reaction of squalane particles by OH radicals leads to the production of oxygenated products. Here we use the vacuum ultra-violet Aerosol Mass Spectrometer (VUV-AMS) at beamline 9.0.2 at the Advanced Light Source to monitor the evolution of specific oxidation products that result from increasing OH exposures, and how the composition changes as the oxidized particles evaporate. The soft ionization in the VUV-AMS allows us to uniquely track the parent squalane molecule and the various oxidation products over multiple generations of oxidation. Compositional changes of the oxidized particles resulting from evaporation have been measured in three sets of laboratory experiments. In the first set, a thermodenuder at varying temperatures was used to induce evaporation of particles at a fixed OH exposure. Second, the OH exposure was varied along with temperature to create a cross-sectional observation of particle composition at 50% mass fraction remaining for ten different oxidation levels. The combination of these two experiments provides information as to the compositional changes that occur during evaporation due to heating. In the third set of experiments, VUV-AMS spectra of oxidized squalane particles following dilution-induced evaporation were measured for comparison with the thermodenuder experiments. These experiments provide insights into the relationships between particle oxidation, composition and evaporation kinetics.

  8. Fabrication and characterization of aerosol-jet printed strain sensors for multifunctional composite structures

    NASA Astrophysics Data System (ADS)

    Zhao, Da; Liu, Tao; Zhang, Mei; Liang, Richard; Wang, Ben

    2012-11-01

    Traditional multifunctional composite structures are produced by embedding parasitic parts, such as foil sensors, optical fibers and bulky connectors. As a result, the mechanical properties of the composites, especially the interlaminar shear strength (ILSS), could be largely undermined. In the present study, we demonstrated an innovative aerosol-jet printing technology for printing electronics inside composite structures without degrading the mechanical properties. Using the maskless fine feature deposition (below 10 μm) characteristics of this printing technology and a pre-cure protocol, strain sensors were successfully printed onto carbon fiber prepregs to enable fabricating composites with intrinsic sensing capabilities. The degree of pre-cure of the carbon fiber prepreg on which strain sensors were printed was demonstrated to be critical. Without pre-curing, the printed strain sensors were unable to remain intact due to the resin flow during curing. The resin flow-induced sensor deformation can be overcome by introducing 10% degree of cure of the prepreg. In this condition, the fabricated composites with printed strain sensors showed almost no mechanical degradation (short beam shearing ILSS) as compared to the control samples. Also, the failure modes examined by optical microscopy showed no difference. The resistance change of the printed strain sensors in the composite structures were measured under a cyclic loading and proved to be a reliable mean strain gauge factor of 2.2 ± 0.06, which is comparable to commercial foil metal strain gauge.

  9. High loading of nanostructured ceramics in polymer composite thick films by aerosol deposition

    PubMed Central

    2012-01-01

    Low temperature fabrication of Al2O3-polyimide composite substrates was carried out by an aerosol deposition process using a mixture of Al2O3 and polyimide starting powders. The microstructures and dielectric properties of the composite thick films in relation to their Al2O3 contents were characterized by X-ray diffraction analysis. As a result, the crystallite size of α-Al2O3 calculated from Scherrer's formula was increased from 26 to 52 nm as the polyimide ratio in the starting powders increased from 4 to 12 vol.% due to the crushing of the Al2O3 powder being reduced by the shock-absorbing effect of the polyimide powder. The Al2O3-polyimide composite thick films showed a high loss tangent with a large frequency dependence when a mixed powder of 12 vol.% polyimide was used due to the nonuniform microstructure with a rough surface. The Al2O3-polyimide composite thick films showed uniform composite structures with a low loss tangent of less than 0.01 at 1 MHz and a high Al2O3 content of more than 75 vol.% when a mixed powder of 8 vol.% polyimide was used. Moreover, the Al2O3-polyimide composite thick films had extremely high Al2O3 contents of 95 vol.% and showed a dense microstructure close to that of the Al2O3 thick films when a mixed powder of 4 vol.% polyimide was used. PMID:22283973

  10. Aerosol composition, oxidation properties, and sources in Beijing: results from the 2014 Asia-Pacific Economic Cooperation summit study

    NASA Astrophysics Data System (ADS)

    Xu, W. Q.; Sun, Y. L.; Chen, C.; Du, W.; Han, T. T.; Wang, Q. Q.; Fu, P. Q.; Wang, Z. F.; Zhao, X. J.; Zhou, L. B.; Ji, D. S.; Wang, P. C.; Worsnop, D. R.

    2015-12-01

    The mitigation of air pollution in megacities remains a great challenge because of the complex sources and formation mechanisms of aerosol particles. The 2014 Asia-Pacific Economic Cooperation (APEC) summit in Beijing serves as a unique experiment to study the impacts of emission controls on aerosol composition, size distributions, and oxidation properties. Herein, a high-resolution time-of-flight aerosol mass spectrometer was deployed in urban Beijing for real-time measurements of size-resolved non-refractory submicron aerosol (NR-PM1) species from 14 October to 12 November 2014, along with a range of collocated measurements. The average (±σ) PM1 was 41.6 (±38.9) μg m-3 during APEC, which was decreased by 53 % compared with that before APEC. The aerosol composition showed substantial changes owing to emission controls during APEC. Secondary inorganic aerosol (SIA: sulfate + nitrate + ammonium) showed significant reductions of 62-69 %, whereas organics presented much smaller decreases (35 %). The results from the positive matrix factorization of organic aerosol (OA) indicated that highly oxidized secondary organic aerosol (SOA) showed decreases similar to those of SIA during APEC. However, primary organic aerosol (POA) from cooking, traffic, and biomass-burning sources were comparable to those before APEC, indicating the presence of strong local source emissions. The oxidation properties showed corresponding changes in response to OA composition. The average oxygen-to-carbon level during APEC was 0.36 (±0.10), which is lower than the 0.43 (±0.13) measured before APEC, demonstrating a decrease in the OA oxidation degree. The changes in size distributions of primary and secondary species varied during APEC. SIA and SOA showed significant reductions in large accumulation modes with peak diameters shifting from ~ 650 to 400 nm during APEC, whereas those of POA remained relatively unchanged. The changes in aerosol composition, size distributions, and oxidation

  11. Finite element analysis of carbon fiber composite adaptive mirrors

    NASA Astrophysics Data System (ADS)

    Kendrew, Sarah; Doel, Peter

    2004-10-01

    With the advent of the new generation of ground-based telescopes with primary sizes of 30-100 m, adaptive optics (AO) technology is in rapid development. One important area of research is that of integration of AO into the telescope's operation. A possible solution for this is the use of an adaptive secondary mirror. However, for a secondary of several meters in size, this presents many problems in choice of material, as well as design for the adaptive control. An active mirror prototype made out of a carbon fibre composite material (CFC) is under development at University College London in collaboration with QinetiQ and Cobham Composites. We present here results from finite element analysis of this mirror, as well as modelling results of an adaptive secondary mirror section as might be developed for the new class of telescopes. These results indicate that CFC could indeed present a viable alternative to more traditional deformable mirror materials.

  12. Finite element stress analysis of idealized composite damage zones

    NASA Technical Reports Server (NTRS)

    Obrien, D.; Herakovich, C. T.

    1978-01-01

    A quasi three dimensional finite element stress analysis of idealized damage zones in composite laminates is presented. The damage zones consist of a long centered groove or cutout extending one or two layers in depth from both top and bottom surfaces of a thin composite laminate. Elastic results are presented for compressive loading of four and eight layer laminates. It is shown that a boundary layer exists near the cutout edge similar to that previously shown to exist along free edges. The cutout is shown to produce significant interlaminar stresses in the interior of the laminate away from free cutout edges. The interlaminar stresses are also shown to contribute to failure which is defined using the Tsai-Wu failure criteria.

  13. Finite Element Modeling of Transient Thermography Inspection of Composite Materials

    NASA Technical Reports Server (NTRS)

    Chu, Tsuchin Philip

    1998-01-01

    Several finite element models of defects such as debond and void have been developed for composite panels subjected to transient thermography inspection. Since the exact nature of the heat generated from the flash lamps is unknown, direct comparison between FEA and experimental results is not possible. However, some similarity of the results has been observed. The shape of the time curve that simulates the heat flux from the flash lamps has minimal effect on the temperature profiles. Double the number of flash lamps could increase the contrast of thermal image and define the shape of defect better.

  14. Isotopic compositions of the elements 2013 (IUPAC Technical Report)

    USGS Publications Warehouse

    Meija, Juris; Coplen, Tyler B.; Berglund, Michael; Brand, Willi A.; De Bièvre, Paul; Gröning, Manfred; Holden, Norman E.; Irrgeher, Johanna; Loss, Robert D.; Walczyk, Thomas; Prohaska, Thomas

    2016-01-01

    The Commission on Isotopic Abundances and Atomic Weights (ciaaw.org) of the International Union of Pure and Applied Chemistry (iupac.org) has revised the Table of Isotopic Compositions of the Elements (TICE). The update involved a critical evaluation of the recent published literature. The new TICE 2013 includes evaluated data from the “best measurement” of the isotopic abundances in a single sample, along with a set of representative isotopic abundances and uncertainties that accommodate known variations in normal terrestrial materials.

  15. Finite Element Modeling of the Thermographic Inspection for Composite Materials

    NASA Technical Reports Server (NTRS)

    Bucinell, Ronald B.

    1996-01-01

    The performance of composite materials is dependent on the constituent materials selected, material structural geometry, and the fabrication process. Flaws can form in composite materials as a result of the fabrication process, handling in the manufacturing environment, and exposure in the service environment to anomalous activity. Often these flaws show no indication on the surface of the material while having the potential of substantially degrading the integrity of the composite structure. For this reason it is important to have available inspection techniques that can reliably detect sub-surface defects such as inter-ply disbonds, inter-ply cracks, porosity, and density changes caused by variations in fiber volume content. Many non-destructive evaluation techniques (NDE) are capable of detecting sub-surface flaws in composite materials. These include shearography, video image correlation, ultrasonic, acoustic emissions, and X-ray. The difficulty with most of these techniques is that they are time consuming and often difficult to apply to full scale structures. An NDE technique that appears to have the capability to quickly and easily detect flaws in composite structure is thermography. This technique uses heat to detect flaws. Heat is applied to the surface of a structure with the use of a heat lamp or heat gun. A thermographic camera is then pointed at the surface and records the surface temperature as the composite structure cools. Flaws in the material will cause the thermal-mechanical material response to change. Thus, the surface over an area where a flaw is present will cool differently than regions where flaws do not exist. This paper discusses the effort made to thermo-mechanically model the thermography process. First the material properties and physical parameters used in the model will be explained. This will be followed by a detailed discussion of the finite element model used. Finally, the result of the model will be summarized along with

  16. Evolution of biomass burning aerosol over the Amazon: airborne measurements of aerosol chemical composition, microphysical properties, mixing state and optical properties during SAMBBA

    NASA Astrophysics Data System (ADS)

    Morgan, W.; Allan, J. D.; Flynn, M.; Darbyshire, E.; Hodgson, A.; Liu, D.; O'Shea, S.; Bauguitte, S.; Szpek, K.; Johnson, B.; Haywood, J.; Longo, K.; Artaxo, P.; Coe, H.

    2013-12-01

    Biomass burning represents one of the largest sources of particulate matter to the atmosphere, resulting in a significant perturbation to the Earth's radiative balance coupled with serious impacts on public health. On regional scales, the impacts are substantial, particularly in areas such as the Amazon Basin where large, intense and frequent burning occurs on an annual basis for several months. Absorption by atmospheric aerosols is underestimated by models over South America, which points to significant uncertainties relating to Black Carbon (BC) aerosol properties. Initial results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft, are presented here. Aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) and a DMT Single Particle Soot Photometer (SP2). The physical, chemical and optical properties of the aerosols across the region will be characterized in order to establish the impact of biomass burning on regional air quality, weather and climate. The aircraft sampled a range of conditions including sampling of pristine Rainforest, fresh biomass burning plumes, regional haze and elevated biomass burning layers within the free troposphere. The aircraft sampled biomass burning aerosol across the southern Amazon in the states of Rondonia and Mato Grosso, as well as in a Cerrado (Savannah-like) region in Tocantins state. This presented a range of fire conditions, in terms of their number, intensity, vegetation-type and their combustion efficiencies. Near-source sampling of fires in Rainforest environments suggested that smouldering combustion dominated, while flaming combustion dominated in the Cerrado. This led to significant differences in aerosol chemical composition, particularly in terms of the BC content, with BC being enhanced in the Cerrado

  17. Size-specific composition of aerosols in the El Chichon volcanic cloud

    NASA Technical Reports Server (NTRS)

    Woods, D. C.; Chuan, R. L.

    1983-01-01

    A NASA U-2 research aircraft flew sampling missions in April, May, July, November, and December 1982 aimed at obtaining in situ data in the stratospheric cloud produced from the March-April 1982 El Chichon eruptions. Post flight analyses provided information on the aerosol composition and morphology. The particles ranged in size from smaller than 0.05 m to larger than 20 m diameter and were quite complex in composition. In the April, May, and July samples the aerosol mass was dominated by magmatic and lithic particles larger than about 3 m. The submicron particles consisted largely of sulfuric acid. Halite particles, believed to be related to a salt dome beneath El Chichon, were collected in the stratosphere in April and May. On the July 23 flight, copper-zinc oxide particles were collected. In July, November, and December, in addition to the volcanic ash and acid particles, carbon-rich particles smaller than about 0.1 m aerodynamic diameter were abundant.

  18. Aging of Secondary Organic Aerosol from β-Pinene: Changes in Chemical Composition, Density and Morphology

    NASA Astrophysics Data System (ADS)

    Sarrafzadeh, M.; Hastie, D. R.

    2013-12-01

    Biogenic volatile organic compounds (VOC) are emitted in large quantities into the atmosphere. These VOC, which includes β-pinene, can react to produce secondary organic aerosols (SOA), which contribute to a substantial fraction of ambient organic aerosols and are known to adversely affect visibility, climate and health. Despite this, the current knowledge regarding the SOA composition, their physical properties and the chemical aging processes they undergo in the atmosphere is limited. In this study, chemical aging of SOA generated from the photooxidation of β-pinene was investigated in the York University smog chamber. The formation and aging of both gas and particle phase products were analyzed using an atmospheric pressure chemical ionization triple quadrupole mass spectrometer. The density of secondary organic matter was also simultaneously measured over the course of the aging experiments, allowing us to improve our understanding in changes in particle composition that may occur. In addition, particle phase and shape was investigated for generated particles from β-pinene oxidation by scanning electron microscope (SEM). Results of this work, including particle density and morphology will be presented as well as comparisons of gas and particle phase products time profiles during aging.

  19. Influence of Aerosol Chemical Composition on Heterogeneous Ice Formation under Mid-Upper Troposphere Conditions

    NASA Astrophysics Data System (ADS)

    Kanji, Z. A.; Niemand, M.; Saathoff, H.; Möhler, O.; Chou, C.; Abbatt, J.; Stetzer, O.

    2011-12-01

    Aerosols are involved in cooling/warming the atmosphere directly via interaction with incoming solar radiation (aerosol direct effect), or via their ability to act as cloud condensation or ice nuclei (IN) and thus play a role in cloud formation (indirect effect). In particular, the physical properties of aerosols such as size and solubility and chemical composition can influence their behavior and fate in the atmosphere. Ice nucleation taking place via IN is termed as heterogeneous ice nucleation and can take place with via deposition (ice forming on IN directly from the vapor phase), condensation/immersion (freezing via formation of the liquid phase on IN) or condensation (IN colliding with supercooled liquid drops). This presentation shows how the chemical composition and surface area of various tropospherically relevant aerosols influence conditions of temperature (T) and relative humidity (RH) required for heterogeneous ice formation conditions in the mid-upper troposphere regime (253 - 220K)? Motivation for this comes first from, the importance of being able to predict ice formation accurately so as to understand the hydrological cycle since the ice is the primary initiator of precipitation forming clouds. Second, the tropospheric budget of water vapour, an especially active greenhouse gas is strongly influenced by ice nucleation and growth. Third, ice surfaces in the atmosphere act as heterogeneous surfaces for chemical reactions of trace gases (e.g., SO2, O3, NOx and therefore being able to accurately estimate ice formation rates and quantify ice surface concentrations will allow a more accurate calculation of trace gas budgets in the troposphere. Ice nucleation measurements were conducted using a self-developed continuous flow diffusion chamber and static chamber. A number of tropospherically relevant particulates with naturally-varying and laboratory-modified surface chemistry/structure were investigated for their ice formation efficiency based on highest

  20. Risk assessment of bioaccessible trace elements in smoke haze aerosols versus urban aerosols using simulated lung fluids

    NASA Astrophysics Data System (ADS)

    Huang, Xian; Betha, Raghu; Tan, Li Yun; Balasubramanian, Rajasekhar

    2016-01-01

    Smoke-haze episodes, caused by uncontrolled peat and forest fires, occur almost every year in the South-East Asian region with increased concentrations of PM2.5 (airborne particulate matter (PM) with diameter ≤ 2.5 μm). Particulate-bound trace elements (TrElems), especially carcinogenic and toxic elements, were measured during smoke haze as well as non-haze periods in 2014 as they are considered to be indicators of potential health effects. The bioaccessibilities of 13 TrElems were investigated using two types of simulated lung fluids (SLFs), Gamble's solution and artificial lysosomal fluid (ALF), instead of the commonly used leaching agent (water). The dissolution kinetics was also examined for these TrElems. Many TrElems showed higher solubility in SLFs, and were more soluble in ALF compared to the Gamble's solution. Cu, Mn and Cd were observed to be the most soluble trace elements in ALF, while in Gamble's solution the most soluble trace elements were Cu, Mn and Zn. The dissolution rates were highly variable among the elements. Health risk assessment was conducted based on the measured concentrations of TrElems and their corresponding toxicities for three possible scenarios involving interactions between carcinogenic and toxic TrElems and SLFs, using the United States Environmental Protection Agency (USEPA) human health risk assessment model. The cumulative cancer risks exceeded the acceptable level (1 in a million i.e. 1 × 10-6). However, the estimation of health quotient (HQ) indicated no significant chronic toxic health effects. The risk assessment results revealed that the assessment of bioaccessibility of particulate-bound TrElems using water as the leaching agent may underestimate the health risk.

  1. Chemical compositions of past soluble aerosols reconstructed from NEEM (Greenland) and Dome C (Antarctica) ice cores

    NASA Astrophysics Data System (ADS)

    Oyabu, Ikumi; Iizuka, Yoshinori; Fukui, Manabu; Fischer, Hubertus; Schüpbach, Simon; Gfeller, Gideon; Mulvaney, Robert; Hansson, Margareta

    2015-04-01

    Polar ice core preserve past atmospheric aerosols, which is a useful proxy for understanding the interaction between climate changes and atmospheric aerosols. One useful technique for reconstructing past soluble aerosols from ice core is the determination of dissolved ion species. However, since salts and acids melt into ions, chemical compositions of soluble aerosols in the ice cores have not been cleared. To clarify the temporal variations in the chemical compositions of past soluble aerosols, this study investigated chemical compositions of soluble particles preserved in the NEEM (Greenland) and Dome C (Antarctica) ice cores using new method 'ice-sublimation method'. The ice-sublimation method can extract soluble salts particles as a solid state without melting. The ice core samples are selected from the sections from the last termination (the Last Glacial Maximum (LGM) to Holocene) of Dome C (inland Antarctica) and NEEM ice cores. Using ice-sublimation method, soluble salts particles were extracted. Chemical components of extracted particles were analysed by scanning electron microscope and energy dispersive spectroscopy, and micro-Raman spectroscopy. The major components of soluble salts particles in the Dome C ice core are CaSO4, Na2SO4 and NaCl. The CaSO4 and NaCl fractions were high in the first half of the last termination, whereas the Na2SO4 fraction is high in the latter half of the last termination. The major components of soluble salts particles in the NEEM ice core are CaCO3, CaSO4, NaCl and Na2SO4. The fractions of CaCO3, CaSO4 and NaCl were high in LGM, whereas those of NaCl and Na2SO4 were high in Holocene. The changes in the salts compositions in Dome C ice core are mainly controlled by concentration of terrestrial material (Ca2+). In the first half of the last termination, most of the terrestrial material (CaCO3) reacted with H2SO4 but some of sea-salt (NaCl) was not reacted with H2SO4 due to high Ca2+ concentration. As a result, the CaSO4 and Na

  2. Long Fibre Composite Modelling Using Cohesive User's Element

    NASA Astrophysics Data System (ADS)

    Kozák, Vladislav; Chlup, Zdeněk

    2010-09-01

    The development glass matrix composites reinforced by unidirectional long ceramic fibre has resulted in a family of very perspective structural materials. The only disadvantage of such materials is relatively high brittleness at room temperature. The main micromechanisms acting as toughening mechanism are the pull out, crack bridging, matrix cracking. There are other mechanisms as crack deflection etc. but the primer mechanism is mentioned pull out which is governed by interface between fibre and matrix. The contribution shows a way how to predict and/or optimise mechanical behaviour of composite by application of cohesive zone method and write user's cohesive element into the FEM numerical package Abaqus. The presented results from numerical calculations are compared with experimental data. Crack extension is simulated by means of element extinction algorithms. The principal effort is concentrated on the application of the cohesive zone model with the special traction separation (bridging) law and on the cohesive zone modelling. Determination of micro-mechanical parameters is based on the combination of static tests, microscopic observations and numerical calibration procedures.

  3. Long Fibre Composite Modelling Using Cohesive User's Element

    SciTech Connect

    Kozak, Vladislav; Chlup, Zdenek

    2010-09-30

    The development glass matrix composites reinforced by unidirectional long ceramic fibre has resulted in a family of very perspective structural materials. The only disadvantage of such materials is relatively high brittleness at room temperature. The main micromechanisms acting as toughening mechanism are the pull out, crack bridging, matrix cracking. There are other mechanisms as crack deflection etc. but the primer mechanism is mentioned pull out which is governed by interface between fibre and matrix. The contribution shows a way how to predict and/or optimise mechanical behaviour of composite by application of cohesive zone method and write user's cohesive element into the FEM numerical package Abaqus. The presented results from numerical calculations are compared with experimental data. Crack extension is simulated by means of element extinction algorithms. The principal effort is concentrated on the application of the cohesive zone model with the special traction separation (bridging) law and on the cohesive zone modelling. Determination of micro-mechanical parameters is based on the combination of static tests, microscopic observations and numerical calibration procedures.

  4. Geometrically Nonlinear Finite Element Analysis of a Composite Space Reflector

    NASA Technical Reports Server (NTRS)

    Lee, Kee-Joo; Leet, Sung W.; Clark, Greg; Broduer, Steve (Technical Monitor)

    2001-01-01

    Lightweight aerospace structures, such as low areal density composite space reflectors, are highly flexible and may undergo large deflection under applied loading, especially during the launch phase. Accordingly, geometrically nonlinear analysis that takes into account the effect of finite rotation may be needed to determine the deformed shape for a clearance check and the stress and strain state to ensure structural integrity. In this study, deformation of the space reflector is determined under static conditions using a geometrically nonlinear solid shell finite element model. For the solid shell element formulation, the kinematics of deformation is described by six variables that are purely vector components. Because rotational angles are not used, this approach is free of the limitations of small angle increments. This also allows easy connections between substructures and large load increments with respect to the conventional shell formulation using rotational parameters. Geometrically nonlinear analyses were carried out for three cases of static point loads applied at selected points. A chart shows results for a case when the load is applied at the center point of the reflector dish. The computed results capture the nonlinear behavior of the composite reflector as the applied load increases. Also, they are in good agreement with the data obtained by experiments.

  5. Geometric Nonlinear Finite Element Analysis of Active Fibre Composite Bimorphs

    NASA Astrophysics Data System (ADS)

    Kernaghan, Robert

    Active fibre composite-actuated bimorphic actuators were studied in order to measure deflection performance. The deflection of the actuators was a function of the actuating electric potential applied to the active material as well as the magnitude of the axial preload applied to the bimorphic structure. This problem required the use of geometric nonlinear modeling techniques. Geometric nonlinear finite element analysis was undertaken to determine the deflection performance of Macro Fibre Composite (MFC)- and Hollow Active Fibre (HAFC)-actuated bimorphic structures. A physical prototype MFC-actuated bimorphic structure was manufactured in order to verify the results obtained by the finite element analysis. Theses analyses determined that the bimorphic actuators were capable of significant deflection. The analyses determined that the axial preload of the bimorphic actuators significantly amplified the deflection performance of the bimorphic actuators. The deflection performance of the bimorphic actuators suggest that they could be candidates to act as actuators for the morphing wing of a micro unmanned air vehicle.

  6. Dust in the Sky: Atmospheric Composition. Modeling of Aerosol Optical Thickness

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Ginoux, Paul; Kinne, Stefan; Torres, Omar; Holben, Brent; Duncan, Bryan; Martin, Randall; Logan, Jennifer; Higurashi, Akiko; Nakajima, Teruyuki

    2000-01-01

    Aerosol is any small particle of matter that rests suspended in the atmosphere. Natural sources, such as deserts, create some aerosols; consumption of fossil fuels and industrial activity create other aerosols. All the microscopic aerosol particles add up to a large amount of material floating in the atmosphere. You can see the particles in the haze that floats over polluted cities. Beyond this visible effect, aerosols can actually lower temperatures. They do this by blocking, or scattering, a portion of the sun's energy from reaching the surface. Because of this influence, scientists study the physical properties of atmospheric aerosols. Reliable numerical models for atmospheric aerosols play an important role in research.

  7. Aerosol composition and properties variation at the ground and over the column under different air masses advection in South Italy.

    PubMed

    Pavese, G; Lettino, A; Calvello, M; Esposito, F; Fiore, S

    2016-04-01

    Aerosol composition and properties variation under the advection of different air masses were investigated, as case studies, by contemporary measurements over the atmospheric column and at the ground in a semi-rural site in South Italy. The absence of local strong sources in this area allowed to characterize background aerosol and to compare particle mixing effects under various atmospheric circulation conditions. Aerosol optical depth (AOD) and Ǻngström parameters from radiometric measurements allowed the detection and identification of polluted, dust, and volcanic atmospheric conditions. AODs were the input for a suitable model to evaluate the columnar aerosol composition, according to six main atmospheric components (water-soluble, soot, sea salt accumulation, sea salt coarse, mineral dus,t and biological). Scanning electron microscope (SEM) analysis of particulate sampled with a 13-stage impactor at the ground showed not only fingerprints typical of the different air masses but also the effects of transport and aging on atmospheric particles, suggesting processes that changed their chemical and optical properties. Background columnar aerosol was characterized by 72% of water-soluble and soot, in agreement with ground-based findings that highlighted 60% of contribution from anthropogenic carbonate particles and soot. In general, a good agreement between ground-based and columnar results was observed. Under the advection of trans-boundary air masses, water-soluble and soot were always present in columnar aerosol, whereas, in variable percentages, sea salt and mineral particles characterized both dust and volcanic conditions. At the ground, sulfates characterized the amorphous matrix produced in finer stages by the evaporation of solutions of organic and inorganic aerosols. Sulfates were also one of the key players involved in heterogeneous chemical reactions, producing complex secondary aerosol, as such clay-sulfate internally mixed particle externally mixed

  8. Chemical composition of aerosol particles and light extinction apportionment before and during the heating season in Beijing, China

    NASA Astrophysics Data System (ADS)

    Wang, Qingqing; Sun, Yele; Jiang, Qi; Du, Wei; Sun, Chengzhu; Fu, Pingqing; Wang, Zifa

    2015-12-01

    Despite extensive efforts into characterization of the sources and formation mechanisms of severe haze pollution in the megacity of Beijing, the response of aerosol composition and optical properties to coal combustion emissions in the heating season remain poorly understood. Here we conducted a 3 month real-time measurement of submicron aerosol (PM1) composition by an Aerosol Chemical Speciation Monitor and particle light extinction by a Cavity Attenuated Phase Shift extinction monitor in Beijing, China, from 1 October to 31 December 2012. The average (±σ) PM1 concentration was 82.4 (±73.1) µg/m3 during the heating period (HP, 15 November to 31 December), which was nearly 50% higher than that before HP (1 October to 14 November). While nitrate and secondary organic aerosol (SOA) showed relatively small changes, organics, sulfate, and chloride were observed to have significant increases during HP, indicating the dominant impacts of coal combustion sources on these three species. The relative humidity-dependent composition further illustrated an important role of aqueous-phase processing for the sulfate enhancement during HP. We also observed great increases of hydrocarbon-like OA (HOA) and coal combustion OA (CCOA) during HP, which was attributed to higher emissions at lower temperatures and coal combustion emissions, respectively. The relationship between light extinction and chemical composition was investigated using a multiple linear regression model. Our results showed that the largest contributors to particle extinction were ammonium nitrate (32%) and ammonium sulfate (28%) before and during HP, respectively. In addition, the contributions of SOA and primary OA to particle light extinction were quantified. The results showed that the OA extinction was mainly caused by SOA before HP and by SOA and CCOA during HP, yet with small contributions from HOA and cooking aerosol for the entire study period. Our results elucidate substantial changes of aerosol

  9. Size-resolved aerosol composition at an urban and a rural site in the Po Valley in summertime: implications for secondary aerosol formation

    NASA Astrophysics Data System (ADS)

    Sandrini, Silvia; van Pinxteren, Dominik; Giulianelli, Lara; Herrmann, Hartmut; Poulain, Laurent; Facchini, Maria Cristina; Gilardoni, Stefania; Rinaldi, Matteo; Paglione, Marco; Turpin, Barbara J.; Pollini, Francesca; Bucci, Silvia; Zanca, Nicola; Decesari, Stefano

    2016-09-01

    The aerosol size-segregated chemical composition was analyzed at an urban (Bologna) and a rural (San Pietro Capofiume) site in the Po Valley, Italy, during June and July 2012, by ion-chromatography (major water-soluble ions and organic acids) and evolved gas analysis (total and water-soluble carbon), to investigate sources and mechanisms of secondary aerosol formation during the summer. A significant enhancement of secondary organic and inorganic aerosol mass was observed under anticyclonic conditions with recirculation of planetary boundary layer air but with substantial differences between the urban and the rural site. The data analysis, including a principal component analysis (PCA) on the size-resolved dataset of chemical concentrations, indicated that the photochemical oxidation of inorganic and organic gaseous precursors was an important mechanism of secondary aerosol formation at both sites. In addition, at the rural site a second formation process, explaining the largest fraction (22 %) of the total variance, was active at nighttime, especially under stagnant conditions. Nocturnal chemistry in the rural Po Valley was associated with the formation of ammonium nitrate in large accumulation-mode (0.42-1.2 µm) aerosols favored by local thermodynamic conditions (higher relative humidity and lower temperature compared to the urban site). Nocturnal concentrations of fine nitrate were, in fact, on average 5 times higher at the rural site than in Bologna. The water uptake by this highly hygroscopic compound under high RH conditions provided the medium for increased nocturnal aerosol uptake of water-soluble organic gases and possibly also for aqueous chemistry, as revealed by the shifting of peak concentrations of secondary compounds (water-soluble organic carbon (WSOC) and sulfate) toward the large accumulation mode (0.42-1.2 µm). Contrarily, the diurnal production of WSOC (proxy for secondary organic aerosol) by photochemistry was similar at the two sites but

  10. Characteristics of atmospheric organic and elemental carbon aerosols in urban Beijing, China

    NASA Astrophysics Data System (ADS)

    Ji, Dongsheng; Zhang, Junke; He, Jun; Wang, Xiaoju; Pang, Bo; Liu, Zirui; Wang, Lili; Wang, Yuesi

    2016-01-01

    Organic carbon (OC) and elemental carbon (EC) in PM2.5 were measured hourly with a semicontinuous thermal-optical analyzer in urban Beijing, China, from Mar 1, 2013 to Feb 28, 2014. The annual mean concentrations of OC and EC in Beijing were 14.0 ± 11.7 and 4.1 ± 3.2 μg/m3, respectively. The concentrations observed in this study were lower than those of other reports over the past ten years; however, the concentrations were higher than those reported from most of the megacities in North America and Europe. These findings suggest that OC and EC remained at high levels despite the implementation of strict control measures to improve air quality. The OC and EC concentrations exhibited strong seasonality, with high values in the autumn and winter but low values in the spring and summer in Beijing. The diurnal OC and EC cycles were characterized by higher values at night and in the morning because of primary emissions, accumulations and low boundary-layer heights. Due to increasing photochemical activity, a well-defined OC peak was observed at approximately noon. The OC and EC concentrations followed typical lognormal patterns in which more than 75% of the OC samples had concentrations between 0.9 and 18.0 μg/m3 and 75% of the EC samples had concentrations between 0.4 and 5.6 μg/m3. An EC tracer method and combined EC tracer and K+ mass balance methods were used to estimate the contributions from secondary formation and biomass burning, respectively. High secondary organic carbon (SOC) concentrations were found in the autumn and winter due to low temperatures, which are favorable for the absorption and condensation of semi-volatile organic compounds on existing particles. High correlations were found between the estimated SOC in PM2.5 and the observed OOA (oxidized organic aerosol) in PM1; thus, the method proved to be effective and reliable. The annual average OCBiomass burning (OCbb) contribution to the total OC concentration was 18.4%, suggesting that biomass

  11. Aerosol Types using Passive Remote Sensing: Global Distribution, Consistency Check, Total-Column Investigation and Translation into Composition Derived from Climate and Chemical Transport Model

    NASA Astrophysics Data System (ADS)

    Kacenelenbogen, M. S.; Dawson, K. W.; Johnson, M. S.; Burton, S. P.; Redemann, J.; Hasekamp, O. P.; Hair, J. W.; Ferrare, R. A.; Butler, C. F.; Holben, B. N.; Beyersdorf, A. J.; Ziemba, L. D.; Froyd, K. D.; Dibb, J. E.; Shingler, T.; Sorooshian, A.; Jimenez, J. L.; Campuzano Jost, P.; Jacob, D. J.

    2015-12-01

    To improve the predictions of aerosol composition in chemical transport models (CTMs) and global climate models (GCMs), we have developed an aerosol classification algorithm (called Specified Clustering and Mahalanobis Classification, SCMC) that assigns an aerosol type to multi-parameter retrievals by spaceborne, airborne or ground based passive remote sensing instruments [Russell et al., 2014]. The aerosol types identified by our scheme are pure dust, polluted dust, urban-industrial/developed economy, urban-industrial/developing economy, dark biomass smoke, light biomass smoke and pure marine. We apply the SCMC method to two different total-column datasets of aerosol optical properties: inversions from the ground-based AErosol RObotic NETwork (AERONET) and retrievals from the space-borne POLDER (Polarization and Directionality of Earth's Reflectances) instrument. The POLDER retrievals that we use differ from the standard POLDER retrievals [Deuzé et al., 2001] as they make full use of multi-angle, multispectral polarimetric data [Hasekamp et al., 2011]. We analyze agreement in the aerosol types inferred from both AERONET and POLDER globally. Then, we investigate how our total-column "effective" SCMC aerosol types relate to different aerosol types within the column (i.e. either a mixture of different types within one layer in the vertical or the stacking of different aerosol types within the vertical column). For that, we compare AERONET-SCMC aerosol types to collocated NASA LaRC HSRL vertically resolved aerosol types [Burton et al., 2012] during the SEAC4RS and DISCOVER-AQ airborne field experiments, mostly over Texas in Aug-Sept 2013. Finally, in order to evaluate the GEOS-Chem CTM aerosol types, we translate each of our SCMC aerosol type into a unique distribution of GEOS-Chem aerosol composition (e.g. biomass burning, dust, sulfate, sea salt). We bridge the gap between remote sensing and model-inferred aerosol types by using multiple years of collocated AERONET

  12. Physicochemical variations in atmospheric aerosols recorded at sea onboard the Atlantic-Mediterranean 2008 Scholar Ship cruise (Part II): Natural versus anthropogenic influences revealed by PM 10 trace element geochemistry

    NASA Astrophysics Data System (ADS)

    Moreno, Teresa; Pérez, Noemi; Querol, Xavier; Amato, Fulvio; Alastuey, Andrés; Bhatia, Ravinder; Spiro, Baruch; Hanvey, Melanie; Gibbons, Wes

    2010-07-01

    The geochemistry of PM 10 filter samples collected at sea during the Scholar Ship Atlantic-Mediterranean 2008 research cruise reveals a constantly changing compositional mix of pollutants into the marine atmosphere. Source apportionment modelling using Positive Matrix Factorization identifies North African desert dust, sea spray, secondary inorganic aerosols, metalliferous carbon, and V-Ni-bearing combustion particles as the main PM 10 factors/sources. The least contaminated samples show an upper continental crust composition (UCC)-normalised geochemistry influenced by seawater chemistry, with marked depletions in Rb, Th and the lighter lanthanoid elements, whereas the arrival of desert dust intrusions imposes a more upper crustal signature enriched in "geological" elements such as Si, Al, Ti, Rb, Li and Sc. Superimposed on these natural background aerosol loadings are anthropogenic metal aerosols (e.g. Cu, Zn, Pb, V, and Mn) which allow identification of pollution sources such as fossil fuel combustion, biomass burning, metalliferous industries, and urban-industrial ports. A particularly sensitive tracer is La/Ce, which rises in response to contamination from coastal FCC oil refineries. The Scholar Ship database allows us to recognise seaborne pollution sourced from NW Africa, the Cape Verde and Canary islands, and European cities and industrial complexes, plumes which in extreme cases can produce a downwind deterioration in marine air quality comparable to that seen in many cities, and can persist hundreds of kilometres from land.

  13. Influence of sugar cane burning on aerosol soluble ion composition in Southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Allen, A. G.; Cardoso, A. A.; da Rocha, G. O.

    2004-09-01

    Seasonal variability in the major soluble ion composition of atmospheric particulate matter in the principal sugar cane growing region of central São Paulo State indicates that pre-harvest burning of sugar cane plants is an important influence on the regional scale aerosol chemistry. Samples of particulate matter were collected between April 1999 and February 2001 in coarse (> 3.5 μm) and fine (< 3.5 μm) fractions, and analysed for HCOO-, CH3COO-, C2O42- , SO42-, NO3-, Cl-, Na+, K+, NH4+, Mg2+ and Ca2+. Results indicated that the principal sources of the aerosols investigated were local or regional in nature (scale of tens to a few hundreds of km), and that differences between air masses of varying origins were small. Fine particles were typically acidic, containing secondary nitrates, sulphates and organic species. Coarse fraction concentrations were mainly influenced by physical parameters (wind speed, movement of vehicles and surface condition) affecting rates of re-suspension, although secondary nitrate and sulphate were also present in the larger particles. Concentrations of all measured species except sodium and chloride were higher during the burning season. Although concentrations were lower than often found in polluted urban environments, the massive increases during much of the year, due to a single anthropogenic activity (sugar cane burning) are indicative of a very large perturbation of the lower troposphere in the region relative to the natural condition. These aerosols are suspected of promoting respiratory disease. They also represent an important mechanism for the tropospheric transport of species relevant to surface acidification (sulphates, nitrates, ammonium and organic acids) and soil nutrient status (potassium, nitrogen, ammonium, calcium), so their impact on fragile natural ecosystems (following deposition) needs to be considered.

  14. Molecular composition of organic aerosols in central Amazonia: an ultra-high-resolution mass spectrometry study

    NASA Astrophysics Data System (ADS)

    Kourtchev, Ivan; Godoi, Ricardo H. M.; Connors, Sarah; Levine, James G.; Archibald, Alex T.; Godoi, Ana F. L.; Paralovo, Sarah L.; Barbosa, Cybelli G. G.; Souza, Rodrigo A. F.; Manzi, Antonio O.; Seco, Roger; Sjostedt, Steve; Park, Jeong-Hoo; Guenther, Alex; Kim, Saewung; Smith, James; Martin, Scot T.; Kalberer, Markus

    2016-09-01

    The Amazon Basin plays key role in atmospheric chemistry, biodiversity and climate change. In this study we applied nanoelectrospray (nanoESI) ultra-high-resolution mass spectrometry (UHRMS) for the analysis of the organic fraction of PM2.5 aerosol samples collected during dry and wet seasons at a site in central Amazonia receiving background air masses, biomass burning and urban pollution. Comprehensive mass spectral data evaluation methods (e.g. Kendrick mass defect, Van Krevelen diagrams, carbon oxidation state and aromaticity equivalent) were used to identify compound classes and mass distributions of the detected species. Nitrogen- and/or sulfur-containing organic species contributed up to 60 % of the total identified number of formulae. A large number of molecular formulae in organic aerosol (OA) were attributed to later-generation nitrogen- and sulfur-containing oxidation products, suggesting that OA composition is affected by biomass burning and other, potentially anthropogenic, sources. Isoprene-derived organosulfate (IEPOX-OS) was found to be the most dominant ion in most of the analysed samples and strongly followed the concentration trends of the gas-phase anthropogenic tracers confirming its mixed anthropogenic-biogenic origin. The presence of oxidised aromatic and nitro-aromatic compounds in the samples suggested a strong influence from biomass burning especially during the dry period. Aerosol samples from the dry period and under enhanced biomass burning conditions contained a large number of molecules with high carbon oxidation state and an increased number of aromatic compounds compared to that from the wet period. The results of this work demonstrate that the studied site is influenced not only by biogenic emissions from the forest but also by biomass burning and potentially other anthropogenic emissions from the neighbouring urban environments.

  15. Optical phase curves as diagnostics for aerosol composition in exoplanetary atmospheres

    NASA Astrophysics Data System (ADS)

    Oreshenko, Maria; Heng, Kevin; Demory, Brice-Olivier

    2016-04-01

    Optical phase curves have become one of the common probes of exoplanetary atmospheres, but the information they encode has not been fully elucidated. Building on a diverse body of work, we upgrade the Flexible Modelling System to include scattering in the two-stream, dual-band approximation and generate plausible, three-dimensional structures of irradiated atmospheres to study the radiative effects of aerosols or condensates. In the optical, we treat the scattering of starlight using a generalization of Beer's law that allows for a finite Bond albedo to be prescribed. In the infrared, we implement the two-stream solutions and include scattering via an infrared scattering parameter. We present a suite of four-parameter general circulation models for Kepler-7b and demonstrate that its climatology is expected to be robust to variations in optical and infrared scattering. The westward and eastward shifts of the optical and infrared phase curves, respectively, are shown to be robust outcomes of the simulations. Assuming micron-sized particles and a simplified treatment of local brightness, we further show that the peak offset of the optical phase curve is sensitive to the composition of the aerosols or condensates. However, to within the measurement uncertainties, we cannot distinguish between aerosols made of silicates (enstatite or forsterite), iron, corundum or titanium oxide, based on a comparison to the measured peak offset (41° ± 12°) of the optical phase curve of Kepler-7b. Measuring high-precision optical phase curves will provide important constraints on the atmospheres of cloudy exoplanets and reduce degeneracies in interpreting their infrared spectra.

  16. Biomass burning influences on atmospheric composition: A case study to assess the impact of aerosol data assimilation

    NASA Astrophysics Data System (ADS)

    Keslake, Tim; Chipperfield, Martyn; Mann, Graham; Flemming, Johannes; Remy, Sam; Dhomse, Sandip; Morgan, Will

    2016-04-01

    The C-IFS (Composition Integrated Forecast System) developed under the MACC series of projects and to be continued under the Copernicus Atmospheric Monitoring System, provides global operational forecasts and re-analyses of atmospheric composition at high spatial resolution (T255, ~80km). Currently there are 2 aerosol schemes implemented within C-IFS, a mass-based scheme with externally mixed particle types and an aerosol microphysics scheme (GLOMAP-mode). The simpler mass-based scheme is the current operational system, also used in the existing system to assimilate satellite measurements of aerosol optical depth (AOD) for improved forecast capability. The microphysical GLOMAP scheme has now been implemented and evaluated in the latest C-IFS cycle alongside the mass-based scheme. The upgrade to the microphysical scheme provides for higher fidelity aerosol-radiation and aerosol-cloud interactions, accounting for global variations in size distribution and mixing state, and additional aerosol properties such as cloud condensation nuclei concentrations. The new scheme will also provide increased aerosol information when used as lateral boundary conditions for regional air quality models. Here we present a series of experiments highlighting the influence and accuracy of the two different aerosol schemes and the impact of MODIS AOD assimilation. In particular, we focus on the influence of biomass burning emissions on aerosol properties in the Amazon, comparing to ground-based and aircraft observations from the 2012 SAMBBA campaign. Biomass burning can affect regional air quality, human health, regional weather and the local energy budget. Tropical biomass burning generates particles primarily composed of particulate organic matter (POM) and black carbon (BC), the local ratio of these two different constituents often determining the properties and subsequent impacts of the aerosol particles. Therefore, the model's ability to capture the concentrations of these two

  17. Water uptake is independent of the inferred composition of secondary aerosols derived from multiple biogenic VOCs

    NASA Astrophysics Data System (ADS)

    Alfarra, M. R.; Good, N.; Wyche, K. P.; Hamilton, J. F.; Monks, P. S.; Lewis, A. C.; McFiggans, G.

    2013-12-01

    properties of SOA are compared to the averaged carbon oxidation state (OSC) determined using an offline method. These findings do not necessarily suggest that water uptake and chemical composition are not related. Instead, they suggest that either f44 and OSC do not represent the main dominant composition-related factors controlling water uptake of SOA particles, or they may emphasise the possible impact of semi-volatile compounds on limiting the ability of current state-of-the-art techniques to determine the chemical composition and water uptake properties of aerosol particles.

  18. Water uptake is independent of the inferred composition of secondary aerosols derived from multiple biogenic VOCs

    NASA Astrophysics Data System (ADS)

    Alfarra, M. R.; Good, N.; Wyche, K. P.; Hamilton, J. F.; Monks, P. S.; Lewis, A. C.; McFiggans, G. B.

    2013-04-01

    properties of SOA are compared to the averaged carbon oxidation state (OSC) determined using an off-line method. These findings do not necessarily suggest that water uptake and chemical composition are not related. Instead, they suggest that either f44 and OSC do not represent the main dominant composition-related factors controlling water uptake of SOA particles, or they emphasise the possible impact of semi-volatile compounds on limiting the ability of current state-of-the-art techniques to determine the chemical composition and water uptake properties of aerosol particles.

  19. Element free Galerkin formulation of composite beam with longitudinal slip

    SciTech Connect

    Ahmad, Dzulkarnain; Mokhtaram, Mokhtazul Haizad; Badli, Mohd Iqbal; Yassin, Airil Y. Mohd

    2015-05-15

    Behaviour between two materials in composite beam is assumed partially interact when longitudinal slip at its interfacial surfaces is considered. Commonly analysed by the mesh-based formulation, this study used meshless formulation known as Element Free Galerkin (EFG) method in the beam partial interaction analysis, numerically. As meshless formulation implies that the problem domain is discretised only by nodes, the EFG method is based on Moving Least Square (MLS) approach for shape functions formulation with its weak form is developed using variational method. The essential boundary conditions are enforced by Langrange multipliers. The proposed EFG formulation gives comparable results, after been verified by analytical solution, thus signify its application in partial interaction problems. Based on numerical test results, the Cubic Spline and Quartic Spline weight functions yield better accuracy for the EFG formulation, compares to other proposed weight functions.

  20. Aerosol composition, oxidative properties, and sources in Beijing: results from the 2014 Asia-Pacific Economic Cooperation Summit study

    NASA Astrophysics Data System (ADS)

    Xu, W. Q.; Sun, Y. L.; Chen, C.; Du, W.; Han, T. T.; Wang, Q. Q.; Fu, P. Q.; Wang, Z. F.; Zhao, X. J.; Zhou, L. B.; Ji, D. S.; Wang, P. C.; Worsnop, D. R.

    2015-08-01

    The mitigation of air pollution in megacities remains a great challenge because of the complex sources and formation mechanisms of aerosol particles. The 2014 Asia- Pacific Economic Cooperation (APEC) summit in Beijing serves as a unique experiment to study the impacts of emission controls on aerosol composition, size distributions, and oxidative properties. Herein, a high-resolution time-of-flight aerosol mass spectrometer was deployed in urban Beijing for real-time measurements of size-resolved non-refractory submicron aerosol (NR-PM1) species from 14 October to 12 November 2014, along with a range of collocated measurements. The average (±σ) PM1 was 41.6 (±38.9) μg m-3 during APEC, which was decreased by 53 % compared with that before APEC. The aerosol composition showed substantial changes owing to emission controls during APEC. Secondary inorganic aerosols (SIA = sulfate + nitrate + ammonium) showed significant reductions of 62-69 %, whereas organics presented much smaller decreases (35 %). The results from the positive matrix factorization of organic aerosols (OA) indicated that highly oxidized secondary OA (SOA) showed decreases similar to those of SIA during APEC. However, primary OA (POA) from cooking, traffic, and biomass burning sources were comparable to those before APEC, indicating the presence of strong local source emissions. The oxidation properties showed corresponding changes in response to OA composition. The average oxygen-to-carbon level during APEC was 0.36 (±0.10), which is lower than the 0.43 (±0.13) measured before APEC, demonstrating a decrease in the OA oxidation degree. The changes in size distributions of primary and secondary species varied during APEC. SIA and SOA showed significant reductions in large accumulation modes with peak diameters shifting from ~ 650 to 400 nm during APEC, whereas those of POA remained relatively unchanged. The changes in aerosol composition, size distributions, and oxidation degrees during the aging

  1. Integrating phase and composition of secondary organic aerosol from the ozonolysis of α-pinene

    PubMed Central

    Kidd, Carla; Perraud, Véronique; Wingen, Lisa M.; Finlayson-Pitts, Barbara J.

    2014-01-01

    Airborne particles are important for public health, visibility, and climate. Predicting their concentrations, effects, and responses to control strategies requires accurate models of their formation and growth in air. This is challenging, as a large fraction is formed by complex reactions of volatile organic compounds, generating secondary organic aerosol (SOA), which grows to sizes important for visibility, climate, and deposition in the lung. Growth of SOA is particularly sensitive to the phase/viscosity of the particles and remains poorly understood. We report studies using a custom-designed impactor with a germanium crystal as the impaction surface to study SOA formed from the ozonolysis of α-pinene at relative humidities (RHs) up to 87% at 297 ± 2 K (which corresponds to a maximum RH of 70–86% inside the impactor). The impaction patterns provide insight into changes in phase/viscosity as a function of RH. Attenuated total reflectance-Fourier transform infrared spectroscopy and aerosol mass spectrometry provide simultaneous information on composition changes with RH. The results show that as the RH at which the SOA is formed increases, there is a decrease in viscosity, accompanied by an increasing contribution from carboxylic acids and a decreasing contribution from higher molecular mass products. In contrast, SOA that is formed dry and subsequently humidified remains solid to high RH. The results of these studies have significant implications for modeling the growth, aging, and ultimately, lifetime of SOA in the atmosphere. PMID:24821796

  2. Identifying organic aerosol sources by comparing functional group composition in chamber and atmospheric particles.

    PubMed

    Russell, Lynn M; Bahadur, Ranjit; Ziemann, Paul J

    2011-03-01

    Measurements of submicron particles by Fourier transform infrared spectroscopy in 14 campaigns in North America, Asia, South America, and Europe were used to identify characteristic organic functional group compositions of fuel combustion, terrestrial vegetation, and ocean bubble bursting sources, each of which often accounts for more than a third of organic mass (OM), and some of which is secondary organic aerosol (SOA) from gas-phase precursors. The majority of the OM consists of alkane, carboxylic acid, hydroxyl, and carbonyl groups. The organic functional groups formed from combustion and vegetation emissions are similar to the secondary products identified in chamber studies. The near absence of carbonyl groups in the observed SOA associated with combustion is consistent with alkane rather than aromatic precursors, and the absence of organonitrate groups can be explained by their hydrolysis in humid ambient conditions. The remote forest observations have ratios of carboxylic acid, organic hydroxyl, and nonacid carbonyl groups similar to those observed for isoprene and monoterpene chamber studies, but in biogenic aerosols transported downwind of urban areas the formation of esters replaces the acid and hydroxyl groups and leaves only nonacid carbonyl groups. The carbonyl groups in SOA associated with vegetation emissions provides striking evidence for the mechanism of esterification as the pathway for possible oligomerization reactions in the atmosphere. Forest fires include biogenic emissions that produce SOA with organic components similar to isoprene and monoterpene chamber studies, also resulting in nonacid carbonyl groups in SOA.

  3. Size-time composition profile of aerosols using the drum sampler

    NASA Astrophysics Data System (ADS)

    Cahill, Thomas A.; Feeney, Patrick J.; Eldred, Robert A.

    1987-03-01

    Mie scattering theory imposes strict requirements for both size and compositional information on aerosols associated with visibility degradation. But, at the very clean National Park Service sites where we do such studies, episodes of degraded visibility may be infrequent and of short duration. To meet these needs, an 8 stage impactor of the Battelle/SFU design was mated to rotating drum impaction surfaces of the Lundgren design in a compact and rugged DRUM sampler of Davis design. This unit, three years in development, has been extensively tested using laboratory aerosols and field intercomparisons. The standard unit runs essentially unattended for 14 or 28 days. The samples are analyzed in 2 to 8 hour time segments. Analyses are done by carefully collimated (1 mm, 2 mm) proton beams in a tightly coupled PIXE system, yielding sensitivities of a few {solng}/{m 3}. Dramatic shifts in the size distribution of sulfur versus time have been observed, with direct influence on optical extinction. Further, primary smelter effluents have been clearly identified at Grand Canyon NP, but only in the < 0.15 μm size fraction. The DRUM sampler makes excellent use of PIXE capabilities, but can also be analyzed by lasers (Csoot) and β-gauging (mass).

  4. Identifying organic aerosol sources by comparing functional group composition in chamber and atmospheric particles

    PubMed Central

    Russell, Lynn M.; Bahadur, Ranjit; Ziemann, Paul J.

    2011-01-01

    Measurements of submicron particles by Fourier transform infrared spectroscopy in 14 campaigns in North America, Asia, South America, and Europe were used to identify characteristic organic functional group compositions of fuel combustion, terrestrial vegetation, and ocean bubble bursting sources, each of which often accounts for more than a third of organic mass (OM), and some of which is secondary organic aerosol (SOA) from gas-phase precursors. The majority of the OM consists of alkane, carboxylic acid, hydroxyl, and carbonyl groups. The organic functional groups formed from combustion and vegetation emissions are similar to the secondary products identified in chamber studies. The near absence of carbonyl groups in the observed SOA associated with combustion is consistent with alkane rather than aromatic precursors, and the absence of organonitrate groups can be explained by their hydrolysis in humid ambient conditions. The remote forest observations have ratios of carboxylic acid, organic hydroxyl, and nonacid carbonyl groups similar to those observed for isoprene and monoterpene chamber studies, but in biogenic aerosols transported downwind of urban areas the formation of esters replaces the acid and hydroxyl groups and leaves only nonacid carbonyl groups. The carbonyl groups in SOA associated with vegetation emissions provides striking evidence for the mechanism of esterification as the pathway for possible oligomerization reactions in the atmosphere. Forest fires include biogenic emissions that produce SOA with organic components similar to isoprene and monoterpene chamber studies, also resulting in nonacid carbonyl groups in SOA. PMID:21317360

  5. Intercomparison of elemental concentrations in total and size-fractionated aerosol samples collected during the mace head experiment, April 1991

    NASA Astrophysics Data System (ADS)

    François, Filip; Maenhaut, Willy; Colin, Jean-Louis; Losno, Remi; Schulz, Michael; Stahlschmidt, Thomas; Spokes, Lucinda; Jickells, Timothy

    During an intercomparison field experiment, organized at the Atlantic coast station of Mace Head, Ireland, in April 1991, aerosol samples were collected by four research groups. A variety of samplers was used, combining both high- and low-volume devices, with different types of collection substrates: Hi-Vol Whatman 41 filter holders, single Nuclepore filters and stacked filter units, as well as PIXE cascade impactors. The samples were analyzed by each participating group, using in-house analytical techniques and procedures. The intercomparison of the daily concentrations for 15 elements, measured by two or more participants, revealed a good agreement for the low-volume samplers for the majority of the elements, but also indicated some specific analytical problems, owing to the very low concentrations of the non-sea-salt elements at the sampling site. With the Hi-Vol Whatman 41 filter sampler, on the other hand, much higher results were obtained in particular for the sea-salt and crustal elements. The discrepancy was dependent upon the wind speed and was attributed to a higher collection efficiency of the Hi-Vol sampler for the very coarse particles, as compared to the low-volume devices under high wind speed conditions. The elemental mass size distribution, as derived from parallel cascade impactor samplings by two groups, showed discrepancies in the submicrometer aerosol fraction, which were tentatively attributed to differences in stage cut-off diameters and/or to bounce-off or splintering effects on the quartz impactor slides used by one of the groups. However, the atmospheric concentrations (sums over all stages) were rather similar in the parallel impactor samples and were only slightly lower than those derived from stacked filter unit samples taken in parallel.

  6. Stable carbon isotopic compositions of total carbon, dicarboxylic acids and glyoxylic acid in the tropical Indian aerosols: Implications for sources and photochemical processing of organic aerosols

    NASA Astrophysics Data System (ADS)

    Pavuluri, Chandra Mouli; Kawamura, Kimitaka; Swaminathan, T.; Tachibana, Eri

    2011-09-01

    The tropical Indian aerosols (PM10) collected on day- and nighttime bases in winter and summer, 2007 from Chennai (13.04°N; 80.17°E) were studied for stable carbon isotopic compositions (δ13C) of total carbon (TC), individual dicarboxylic acids (C2-C9) and glyoxylic acid (ωC2). δ13C values of TC ranged from -23.9‰ to -25.9‰ (-25.0 ± 0.6‰; n = 49). Oxalic (C2) (-17.1 ± 2.5‰), malonic (C3) (-20.8 ± 1.8‰), succinic (C4) (-22.5 ± 1.5‰) and adipic (C6) (-20.6 ± 4.1‰) acids and ωC2 acid (-22.4 ± 5.5‰) were found to be more enriched with 13C compared to TC. In contrast, suberic (C8) (-29.4 ± 1.8‰), phthalic (Ph) (-30.1 ± 3.5‰) and azelaic (C9) (-28.4 ± 5.8‰) acids showed smaller δ13C values than TC. Based on comparisons of δ13C values of TC in Chennai aerosols to those (-24.7 ± 2.2‰) found in unburned cow-dung samples collected from Chennai and isotopic signatures of the particles emitted from point sources, we found that biofuel/biomass burning are the major sources of carbonaceous aerosols in South and Southeast Asia. The decrease in δ13C values of C9 diacid by about 5‰ from winter to summer suggests that tropical plant emissions also significantly contribute to organic aerosol in this region. Significant increase in δ13C values from C4 to C2 diacids in Chennai aerosols could be attributed for their photochemical processing in the tropical atmosphere during long-range transport from source regions.

  7. Summer 2009 wildfires in Portugal: Emission of trace gases and aerosol composition

    NASA Astrophysics Data System (ADS)

    Alves, Célia; Vicente, Ana; Nunes, Teresa; Gonçalves, Cátia; Fernandes, Ana Patrícia; Mirante, Fátima; Tarelho, Luís; Sánchez de la Campa, Ana M.; Querol, Xavier; Caseiro, Alexandre; Monteiro, Cristina; Evtyugina, Margarita; Pio, Casimiro

    2011-01-01

    In summer 2009, emissions of trace gases and aerosols from several wildfires occurring in Portugal were sampled. A portable high-volume sampler was used to collect sequentially, on quartz fibre filters, coarse (PM 2.5-10) and fine (PM 2.5) smoke particles. Tedlar air sampling bags have been used for complementary chemical characterisation of the gaseous phase. The carbonaceous content (elemental and organic carbon, EC/OC) of particulate matter was analysed by a thermal-optical transmission technique. The levels of almost 50 elements were quantified by inductively coupled plasma-mass spectrometry. The water-soluble ions were obtained by ion chromatography. Emission factors of species that are favoured by the smouldering phase (e.g. CO) were above the values reported in the literature for biomass burning in other ecosystems. The CO emission factors were 231 ± 117 g kg -1 biomass (dry basis) burned. Emissions of compounds that are promoted in fresh plumes and during the flaming phase, such as CO 2, were generally lower than those proposed for savannah and tropical forest fires. The CO 2 emission factors ranged from about 1000 to 1700 g kg -1. Total hydrocarbons, PM 2.5, PM 10 and OC presented variable emissions, but in general substantially higher than values reported for wildfires in African and Amazonian biomes. The emission factors obtained in Portugal were as follows (in g kg -1 biomass, dry basis): 6-350 for total hydrocarbons, 0.5-42 for PM 2.5, 1-60 for PM 10, and 0.2-42 for OC (in PM 10). The organic carbon-to-elemental carbon ratios measured in the present study largely exceeded those obtained by other researchers. The aerosol mass was dominated by organic matter (OC/PM 2.5 = 50 ± 18%, OC/PM 2.5-10 = 36 ± 18%). The metal elements represented, on average, 1.23 and 0.91%, while the measured water-soluble ions accounted for 2.6 and 2.1% of the PM 2.5 and PM 2.5-10 mass, respectively. Carbonates accounted for 0.15-3.1% (average = 0.83%) of PM 2.5-10. The

  8. DAILY VARIATION IN ORGANIC COMPOSITION OF FINE PARTICULATE MATTER IN THE DETROIT EXPOSURE AND AEROSOL RESEARCH STUDY

    EPA Science Inventory

    Organic composition of fine particulate matter (PM2.5) was investigated as a part of the Detroit Exposure and Aerosol Research Study (DEARS). A high volume (113 liters/minute) sampler was used at the Allen Park community air monitoring station to collect PM2.5 for analysis by ga...

  9. Microbial Control of Sea Spray Aerosol Composition: A Tale of Two Blooms.

    PubMed

    Wang, Xiaofei; Sultana, Camille M; Trueblood, Jonathan; Hill, Thomas C J; Malfatti, Francesca; Lee, Christopher; Laskina, Olga; Moore, Kathryn A; Beall, Charlotte M; McCluskey, Christina S; Cornwell, Gavin C; Zhou, Yanyan; Cox, Joshua L; Pendergraft, Matthew A; Santander, Mitchell V; Bertram, Timothy H; Cappa, Christopher D; Azam, Farooq; DeMott, Paul J; Grassian, Vicki H; Prather, Kimberly A

    2015-06-24

    With the oceans covering 71% of the Earth, sea spray aerosol (SSA) particles profoundly impact climate through their ability to scatter solar radiation and serve as seeds for cloud formation. The climate properties can change when sea salt particles become mixed with insoluble organic material formed in ocean regions with phytoplankton blooms. Currently, the extent to which SSA chemical composition and climate properties are altered by biological processes in the ocean is uncertain. To better understand the factors controlling SSA composition, we carried out a mesocosm study in an isolated ocean-atmosphere facility containing 3,400 gallons of natural seawater. Over the course of the study, two successive phytoplankton blooms resulted in SSA with vastly different composition and properties. During the first bloom, aliphatic-rich organics were enhanced in submicron SSA and tracked the abundance of phytoplankton as indicated by chlorophyll-a concentrations. In contrast, the second bloom showed no enhancement of organic species in submicron particles. A concurrent increase in ice nucleating SSA particles was also observed only during the first bloom. Analysis of the temporal variability in the concentration of aliphatic-rich organic species, using a kinetic model, suggests that the observed enhancement in SSA organic content is set by a delicate balance between the rate of phytoplankton primary production of labile lipids and enzymatic induced degradation. This study establishes a mechanistic framework indicating that biological processes in the ocean and SSA chemical composition are coupled not simply by ocean chlorophyll-a concentrations, but are modulated by microbial degradation processes. This work provides unique insight into the biological, chemical, and physical processes that control SSA chemical composition, that when properly accounted for may explain the observed differences in SSA composition between field studies. PMID:27162962

  10. Asian industrial lead inputs to the North Pacific evidenced by lead concentrations and isotopic compositions in surface waters and aerosols.

    PubMed

    Gallon, Céline; Ranville, Mara A; Conaway, Christopher H; Landing, William M; Buck, Clifton S; Morton, Peter L; Flegal, A Russell

    2011-12-01

    Recent trends of atmospheric lead deposition to the North Pacific were investigated with analyses of lead in aerosols and surface waters collected on the fourth Intergovernmental Oceanographic Commission Contaminant Baseline Survey from May to June, 2002. Lead concentrations of the aerosols varied by 2 orders of magnitude (0.1-26.4 pmol/m(3)) due in part to variations in dust deposition during the cruise. The ranges in lead aerosol enrichment factors relative to iron (1-119) and aluminum (3-168) were similar, evidencing the transport of Asian industrial lead aerosols across the North Pacific. The oceanic deposition of some of those aerosols was substantiated by the gradient of lead concentrations of North Pacific waters, which varied 3-fold (32.7-103.5 pmol/kg), were highest along with the Asian margin of the basin, and decreased eastward. The hypothesized predominance of Asian industrial lead inputs to the North Pacific was further corroborated by the lead isotopic composition of ocean surface waters ((206)Pb/(207)Pb = 1.157-1.169; (208)Pb/(206)Pb = 2.093-2.118), which fell within the range of isotopic ratios reported in Asian aerosols that are primarily attributed to Chinese industrial lead emissions.

  11. Wintertime aerosol chemical composition, volatility, and spatial variability in the greater London area

    NASA Astrophysics Data System (ADS)

    Xu, L.; Williams, L. R.; Young, D. E.; Allan, J. D.; Coe, H.; Massoli, P.; Fortner, E.; Chhabra, P.; Herndon, S.; Brooks, W. A.; Jayne, J. T.; Worsnop, D. R.; Aiken, A. C.; Liu, S.; Gorkowski, K.; Dubey, M. K.; Fleming, Z. L.; Visser, S.; Prevot, A. S. H.; Ng, N. L.

    2015-08-01

    The composition of PM1 (particulate matter with diameter less than 1 μm) in the greater London area was characterized during the Clean Air for London (ClearfLo) project in winter 2012. Two High-Resolution Time-of-Flight Aerosol Mass Spectrometers (HR-ToF-AMS) were deployed at a rural site (Detling, Kent) and an urban site (North Kensington, London). The simultaneous and high-temporal resolution measurements at the two sites provide a unique opportunity to investigate the spatial distribution of PM1. We find that the organic aerosol (OA) concentration is comparable between the rural and urban sites, but the sources of OA are distinctly different. The concentration of solid fuel OA at the urban site is about twice as high as at the rural site, due to elevated domestic heating in the urban area. While the concentrations of oxygenated OA (OOA) are well-correlated between the two sites, the OOA concentration at the rural site is almost twice that of the urban site. At the rural site, more than 70 % of the carbon in OOA is estimated to be non-fossil, which suggests that OOA is likely related to aged biomass burning considering the small amount of biogenic SOA in winter. Thus, it is possible that the biomass burning OA contributes a larger fraction of ambient OA in wintertime than what previous field studies have suggested. A suite of instruments was deployed downstream of a thermal denuder (TD) to investigate the volatility of PM1 species at the rural Detling site. After heating at 250 °C in the TD, 40 % of the residual mass is OA, indicating the presence of non-volatile organics in the aerosol. Although the OA associated with refractory black carbon (rBC, measured by a soot-particle aerosol mass spectrometer) only accounts for < 10 % of the total OA (measured by a HR-ToF-AMS) at 250 °C, the two measurements are well-correlated, suggesting that the non-volatile organics have similar sources or have undergone similar chemical processing as rBC in the atmosphere

  12. Application of advanced material systems to composite frame elements

    NASA Technical Reports Server (NTRS)

    Llorente, Steven; Minguet, Pierre; Fay, Russell; Medwin, Steven

    1992-01-01

    A three phase program has been conducted to investigate DuPont's Long Discontinuous Fiber (LDF) composites. Additional tests were conducted to compare LDF composites against toughened thermosets and a baseline thermoset system. Results have shown that the LDF AS4/PEKK offers improved interlaminar (flange bending) strength with little reduction in mechanical properties due to the discontinuous nature of the fibers. In the third phase, a series of AS4/PEKK LDF C-section curved frames (representing a typical rotorcraft light frame) were designed, manufactured and tested. Specimen reconsolidation after 'stretch forming' and frame thickness were found to be key factors in this light frame's performance. A finite element model was constructed to correlate frame test results with expected strain levels determined from material property tests. Adequately reconsolidated frames performed well and failed at strain levels at or above baseline thermoset material test strains. Finally a cost study was conducted which has shown that the use of LDF for this frame would result in a significant cost savings, for moderate to large lot sizes compared with the hand lay-up of a thermoset frame.

  13. Three dimensional inelastic finite element analysis of laminated composites

    NASA Technical Reports Server (NTRS)

    Griffin, O. H., Jr.; Kamat, M. P.

    1980-01-01

    Formulations of the inelastic response of laminated composites to thermal and mechanical loading are used as the basis for development of the computer NALCOM (Nonlinear Analysis of Laminated Composites) computer program which uses a fully three dimensional isoparametric finite element with 24 nodes and 72 degrees of freedom. An incremental solution is performed with nonlinearities introduced as pseudoloads computed for initial strains. Equilibrium iteration may be performed at every step. Elastic and elastic-plastic response of boron/epoxy and graphite/epoxy graphite/epoxy and problems of curing 0/90 sub s Gr/Ep laminates with and without circular holes are analyzed. Mechanical loading of + or - 45sub s Gr/Ep laminates is modeled and symmetry conditions which exist in angle-ply laminates are discussed. Results are compared to experiments and other analytical models when possible. All models are seen to agree reasonably well with experimetnal results for off-axis tensile coupons. The laminate analyses show the three dimensional effects which are present near holes and free corners.

  14. A field measurement based scaling approach for quantification of major ions, organic carbon, and elemental carbon using a single particle aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Zhou, Yang; Huang, X. H. Hilda; Griffith, Stephen M.; Li, Mei; Li, Lei; Zhou, Zhen; Wu, Cheng; Meng, Junwang; Chan, Chak K.; Louie, Peter K. K.; Yu, Jian Zhen

    2016-10-01

    Single Particle Aerosol Mass Spectrometers (SPAMS) have been increasingly deployed for aerosol studies in Asia. To date, SPAMS is most often used to provide unscaled information for both the size and chemical composition of individual particles. The instrument's lack of accuracy is primarily due to only a fraction of particles being detected after collection, and the instrumental sensitivity is un-calibrated for various chemical species in mixed ambient aerosols. During a campaign from January to April 2013 at a coastal site in Hong Kong, the particle number information and ion intensity of major PM2.5 components collected by SPAMS were scaled by comparing with collocated bulk PM2.5 measurements of hourly or higher resolution. The bulk measurements include PM2.5 mass by a SHARP 5030 Monitor, major ions by a Monitor for Aerosols & Gases in ambient Air (MARGA), and organic carbon (OC) and elemental carbon (EC) by a Sunset OCEC analyzer. During the data processing, both transmission efficiency (scaled with the Scanning Mobility Particle Sizer) and hit efficiency conversion were considered, and component ion intensities quantified as peak area (PA) and relative peak area (RPA) were analyzed to track the performance. The comparison between the scaled particle mass assuming a particle density of 1.9 g cm-3 from SPAMS and PM2.5 concentration showed good correlation (R2 = 0.81) with a slope of 0.814 ± 0.004. Regression analysis results suggest an improved scaling performance using RPA compared with PA for most of the major PM2.5 components, including sulfate, nitrate, potassium, ammonium, OC and EC. Thus, we recommend preferentially scaling these species using the RPA. For periods of high K+ concentrations (>1.5 μg m-3), under-estimation of K+ by SPAMS was observed due to exceeding the dynamic range of the acquisition board. When only applying the hit efficiency correction, data for sulfate, nitrate, ammonium, potassium and OC were in reasonably good correlation (R2 = 0

  15. Sources of atmospheric aerosol from long-term measurements (5 years) of chemical composition in Athens, Greece.

    PubMed

    Paraskevopoulou, D; Liakakou, E; Gerasopoulos, E; Mihalopoulos, N

    2015-09-15

    To identify the sources of aerosols in Greater Athens Area (GAA), a total of 1510 daily samples of fine (PM 2.5) and coarse (PM 10-2,5) aerosols were collected at a suburban site (Penteli), during a five year period (May 2008-April 2013) corresponding to the period before and during the financial crisis. In addition, aerosol sampling was also conducted in parallel at an urban site (Thissio), during specific, short-term campaigns during all seasons. In all these samples mass and chemical composition measurements were performed, the latest only at the fine fraction. Particulate organic matter (POM) and ionic masses (IM) are the main contributors of aerosol mass, equally contributing by accounting for about 24% of the fine aerosol mass. In the IM, nss-SO4(-2) is the prevailing specie followed by NO3(-) and NH4(+) and shows a decreasing trend during the 2008-2013 period similar to that observed for PM masses. The contribution of water in fine aerosol is equally significant (21 ± 2%), while during dust transport, the contribution of dust increases from 7 ± 2% to 31 ± 9%. Source apportionment (PCA and PMF) and mass closure exercises identified the presence of six sources of fine aerosols: secondary photochemistry, primary combustion, soil, biomass burning, sea salt and traffic. Finally, from winter 2012 to winter 2013 the contribution of POM to the urban aerosol mass is increased by almost 30%, reflecting the impact of wood combustion (dominant fuel for domestic heating) to air quality in Athens, which massively started in winter 2013.

  16. Sources of atmospheric aerosol from long-term measurements (5 years) of chemical composition in Athens, Greece.

    PubMed

    Paraskevopoulou, D; Liakakou, E; Gerasopoulos, E; Mihalopoulos, N

    2015-09-15

    To identify the sources of aerosols in Greater Athens Area (GAA), a total of 1510 daily samples of fine (PM 2.5) and coarse (PM 10-2,5) aerosols were collected at a suburban site (Penteli), during a five year period (May 2008-April 2013) corresponding to the period before and during the financial crisis. In addition, aerosol sampling was also conducted in parallel at an urban site (Thissio), during specific, short-term campaigns during all seasons. In all these samples mass and chemical composition measurements were performed, the latest only at the fine fraction. Particulate organic matter (POM) and ionic masses (IM) are the main contributors of aerosol mass, equally contributing by accounting for about 24% of the fine aerosol mass. In the IM, nss-SO4(-2) is the prevailing specie followed by NO3(-) and NH4(+) and shows a decreasing trend during the 2008-2013 period similar to that observed for PM masses. The contribution of water in fine aerosol is equally significant (21 ± 2%), while during dust transport, the contribution of dust increases from 7 ± 2% to 31 ± 9%. Source apportionment (PCA and PMF) and mass closure exercises identified the presence of six sources of fine aerosols: secondary photochemistry, primary combustion, soil, biomass burning, sea salt and traffic. Finally, from winter 2012 to winter 2013 the contribution of POM to the urban aerosol mass is increased by almost 30%, reflecting the impact of wood combustion (dominant fuel for domestic heating) to air quality in Athens, which massively started in winter 2013. PMID:25958364

  17. Fuel composition and secondary organic aerosol formation: gas-turbine exhaust and alternative aviation fuels.

    PubMed

    Miracolo, Marissa A; Drozd, Greg T; Jathar, Shantanu H; Presto, Albert A; Lipsky, Eric M; Corporan, Edwin; Robinson, Allen L

    2012-08-01

    A series of smog chamber experiments were performed to investigate the effects of fuel composition on secondary particulate matter (PM) formation from dilute exhaust from a T63 gas-turbine engine. Tests were performed at idle and cruise loads with the engine fueled on conventional military jet fuel (JP-8), Fischer-Tropsch synthetic jet fuel (FT), and a 50/50 blend of the two fuels. Emissions were sampled into a portable smog chamber and exposed to sunlight or artificial UV light to initiate photo-oxidation. Similar to previous studies, neat FT fuel and a 50/50 FT/JP-8 blend reduced the primary particulate matter emissions compared to neat JP-8. After only one hour of photo-oxidation at typical atmospheric OH levels, the secondary PM production in dilute exhaust exceeded primary PM emissions, except when operating the engine at high load on FT fuel. Therefore, accounting for secondary PM production should be considered when assessing the contribution of gas-turbine engine emissions to ambient PM levels. FT fuel substantially reduced secondary PM formation in dilute exhaust compared to neat JP-8 at both idle and cruise loads. At idle load, the secondary PM formation was reduced by a factor of 20 with the use of neat FT fuel, and a factor of 2 with the use of the blend fuel. At cruise load, the use of FT fuel resulted in no measured formation of secondary PM. In every experiment, the secondary PM was dominated by organics with minor contributions from sulfate when the engine was operated on JP-8 fuel. At both loads, FT fuel produces less secondary organic aerosol than JP-8 because of differences in the composition of the fuels and the resultant emissions. This work indicates that fuel reformulation may be a viable strategy to reduce the contribution of emissions from combustion systems to secondary organic aerosol production and ultimately ambient PM levels. PMID:22732009

  18. Fuel composition and secondary organic aerosol formation: gas-turbine exhaust and alternative aviation fuels.

    PubMed

    Miracolo, Marissa A; Drozd, Greg T; Jathar, Shantanu H; Presto, Albert A; Lipsky, Eric M; Corporan, Edwin; Robinson, Allen L

    2012-08-01

    A series of smog chamber experiments were performed to investigate the effects of fuel composition on secondary particulate matter (PM) formation from dilute exhaust from a T63 gas-turbine engine. Tests were performed at idle and cruise loads with the engine fueled on conventional military jet fuel (JP-8), Fischer-Tropsch synthetic jet fuel (FT), and a 50/50 blend of the two fuels. Emissions were sampled into a portable smog chamber and exposed to sunlight or artificial UV light to initiate photo-oxidation. Similar to previous studies, neat FT fuel and a 50/50 FT/JP-8 blend reduced the primary particulate matter emissions compared to neat JP-8. After only one hour of photo-oxidation at typical atmospheric OH levels, the secondary PM production in dilute exhaust exceeded primary PM emissions, except when operating the engine at high load on FT fuel. Therefore, accounting for secondary PM production should be considered when assessing the contribution of gas-turbine engine emissions to ambient PM levels. FT fuel substantially reduced secondary PM formation in dilute exhaust compared to neat JP-8 at both idle and cruise loads. At idle load, the secondary PM formation was reduced by a factor of 20 with the use of neat FT fuel, and a factor of 2 with the use of the blend fuel. At cruise load, the use of FT fuel resulted in no measured formation of secondary PM. In every experiment, the secondary PM was dominated by organics with minor contributions from sulfate when the engine was operated on JP-8 fuel. At both loads, FT fuel produces less secondary organic aerosol than JP-8 because of differences in the composition of the fuels and the resultant emissions. This work indicates that fuel reformulation may be a viable strategy to reduce the contribution of emissions from combustion systems to secondary organic aerosol production and ultimately ambient PM levels.

  19. Morphological and elemental properties of urban aerosols among PM events and different traffic systems.

    PubMed

    Maskey, Shila; Chae, Hoseung; Lee, Kwangyul; Dan, Nguyen Phuoc; Khoi, Tran Tien; Park, Kihong

    2016-11-01

    Morphology and elemental composition of individual fine ambient particles varied among types of PM events and between two different urban environments having different major transportation systems (gasoline/diesel vehicles versus motorcycles). Carbonaceous particles were the most dominant in PM events, whereas S-rich particles were the highest in non-events at urban Gwangju in Korea. The aged soot, semi-volatile organic (SVO), and non-volatile organic (NVO) particles were more abundant in the polluted-long range transport (LTP) event than those in the dust-LTP event and non-event. In the dust-LTP event, the aged mineral dust particles outnumbered the fresh ones, suggesting the mineral dust particles were aged during their long-range transport. At HoChiMinh (HCM) in Vietnam, the fraction of carbonaceous particles was much higher than Gwangju (66% versus 30%) possibly due to more abundant two-stroke motor vehicles at HCM. Of the carbonaceous particles, combustion soot (19%) was the highest, followed by NVO (18%), SVO (17%), and biological particles (11%) at HCM, whereas SVO (11%) and NVO (10%) particles were the highest, followed by combustion soot particles (8%) at Gwangju. The higher fraction of mineral dust particles was also observed at HCM, indicating the sampling site was influenced by dust from unpaved roads and construction sites. PMID:27262278

  20. Marine biogeochemical influence on primary sea spray aerosol composition in the Southern Ocean: predictions from a mechanistic model

    NASA Astrophysics Data System (ADS)

    McCoy, D.; Burrows, S. M.; Elliott, S.; Frossard, A. A.; Russell, L. M.; Liu, X.; Ogunro, O. O.; Easter, R. C.; Rasch, P. J.

    2014-12-01

    Remote marine clouds, such as those over the Southern Ocean, are particularly sensitive to variations in the concentration and chemical composition of aerosols that serve as cloud condensation nuclei (CCN). Observational evidence indicates that the organic content of fine marine aerosol is greatly increased during the biologically active season near strong phytoplankton blooms in certain locations, while being nearly constant in other locations. We have recently developed a novel modeling framework that mechanistically links the organic fraction of submicron sea spray to ocean biogeochemistry (Burrows et al., in discussion, ACPD, 2014; Elliott et al., ERL, 2014). Because of its combination of large phytoplankton blooms and high wind speeds, the Southern Ocean is an ideal location for testing our understanding of the processes driving the enrichment of organics in sea spray aerosol. Comparison of the simulated OM fraction with satellite observations shows that OM fraction is a statistically significant predictor of cloud droplet number concentration over the Southern Ocean. This presentation will focus on predictions from our modeling framework for the Southern Ocean, specifically, the predicted geographic gradients and seasonal cycles in the aerosol organic matter and its functional group composition. The timing and location of a Southern Ocean field campaign will determine its utility in observing the effects of highly localized and seasonal phytoplankton blooms on aerosol composition and clouds. Reference cited: Burrows, S. M., Ogunro, O., Frossard, A. A., Russell, L. M., Rasch, P. J., and Elliott, S.: A physically-based framework for modelling the organic fractionation of sea spray aerosol from bubble film Langmuir equilibria, Atmos. Chem. Phys. Discuss., 14, 5375-5443, doi:10.5194/acpd-14-5375-2014, 2014. Elliott, S., Burrows, S. M., Deal, C., Liu, X., Long, M., Ogunro, O., Russell, L. M., and Wingenter O.. "Prospects for simulating macromolecular surfactant

  1. Comparison of Methods for Predicting the Compositional Dependence of the Density and Refractive Index of Organic-Aqueous Aerosols.

    PubMed

    Cai, Chen; Miles, Rachael E H; Cotterell, Michael I; Marsh, Aleksandra; Rovelli, Grazia; Rickards, Andrew M J; Zhang, Yun-Hong; Reid, Jonathan P

    2016-08-25

    Representing the physicochemical properties of aerosol particles of complex composition is of crucial importance for understanding and predicting aerosol thermodynamic, kinetic, and optical properties and processes and for interpreting and comparing analysis methods. Here, we consider the representations of the density and refractive index of aqueous-organic aerosol with a particular focus on the dependence of these properties on relative humidity and water content, including an examination of the properties of solution aerosol droplets existing at supersaturated solute concentrations. Using bulk phase measurements of density and refractive index for typical organic aerosol components, we provide robust approaches for the estimation of these properties for aerosol at any intermediate composition between pure water and pure solute. Approximately 70 compounds are considered, including mono-, di- and tricarboxylic acids, alcohols, diols, nitriles, sulfoxides, amides, ethers, sugars, amino acids, aminium sulfates, and polyols. We conclude that the molar refraction mixing rule should be used to predict the refractive index of the solution using a density treatment that assumes ideal mixing or, preferably, a polynomial dependence on the square root of the mass fraction of solute, depending on the solubility limit of the organic component. Although the uncertainties in the density and refractive index predictions depend on the range of subsaturated compositional data available for each compound, typical errors for estimating the solution density and refractive index are less than ±0.1% and ±0.05%, respectively. Owing to the direct connection between molar refraction and the molecular polarizability, along with the availability of group contribution models for predicting molecular polarizability for organic species, our rigorous testing of the molar refraction mixing rule provides a route to predicting refractive indices for aqueous solutions containing organic molecules

  2. Comparison of Methods for Predicting the Compositional Dependence of the Density and Refractive Index of Organic-Aqueous Aerosols.

    PubMed

    Cai, Chen; Miles, Rachael E H; Cotterell, Michael I; Marsh, Aleksandra; Rovelli, Grazia; Rickards, Andrew M J; Zhang, Yun-Hong; Reid, Jonathan P

    2016-08-25

    Representing the physicochemical properties of aerosol particles of complex composition is of crucial importance for understanding and predicting aerosol thermodynamic, kinetic, and optical properties and processes and for interpreting and comparing analysis methods. Here, we consider the representations of the density and refractive index of aqueous-organic aerosol with a particular focus on the dependence of these properties on relative humidity and water content, including an examination of the properties of solution aerosol droplets existing at supersaturated solute concentrations. Using bulk phase measurements of density and refractive index for typical organic aerosol components, we provide robust approaches for the estimation of these properties for aerosol at any intermediate composition between pure water and pure solute. Approximately 70 compounds are considered, including mono-, di- and tricarboxylic acids, alcohols, diols, nitriles, sulfoxides, amides, ethers, sugars, amino acids, aminium sulfates, and polyols. We conclude that the molar refraction mixing rule should be used to predict the refractive index of the solution using a density treatment that assumes ideal mixing or, preferably, a polynomial dependence on the square root of the mass fraction of solute, depending on the solubility limit of the organic component. Although the uncertainties in the density and refractive index predictions depend on the range of subsaturated compositional data available for each compound, typical errors for estimating the solution density and refractive index are less than ±0.1% and ±0.05%, respectively. Owing to the direct connection between molar refraction and the molecular polarizability, along with the availability of group contribution models for predicting molecular polarizability for organic species, our rigorous testing of the molar refraction mixing rule provides a route to predicting refractive indices for aqueous solutions containing organic molecules

  3. Diurnal variations of organic molecular tracers and stable carbon isotopic compositions in atmospheric aerosols over Mt. Tai in North China Plain: an influence of biomass burning

    NASA Astrophysics Data System (ADS)

    Fu, P. Q.; Kawamura, K.; Chen, J.; Li, J.; Sun, Y. L.; Liu, Y.; Tachibana, E.; Aggarwal, S. G.; Okuzawa, K.; Tanimoto, H.; Kanaya, Y.; Wang, Z. F.

    2012-04-01

    Organic tracer compounds of tropospheric aerosols, as well as organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and stable carbon isotope ratios (δ13C) of total carbon (TC) have been investigated for aerosol samples collected during early and late periods of Mount Tai eXperiment 2006 (MTX2006) field campaign in North China Plain. Total solvent extracts were investigated by gas chromatography/mass spectrometry. More than 130 organic compounds were detected in the aerosol samples. They were grouped into twelve organic compound classes, including biomass burning tracers, biogenic primary sugars, biogenic secondary organic aerosol (SOA) tracers, and anthropogenic tracers such as phthalates, hopanes and polycyclic aromatic hydrocarbons (PAHs). In early June when the field burning activities of wheat straws in North China Plain were very active, the total identified organics (2090 ± 1170 ng m-3) were double those in late June (926 ± 574 ng m-3). All the compound classes were more abundant in early June than in late June, except phthalate esters, which were higher in late June. Levoglucosan (88-1210 ng m-3, 403 ng m-3) was found as the most abundant single compound in early June, while diisobutyl phthalate was the predominant species in late June. During the biomass-burning period in early June, the diurnal trends of most of the primary and secondary organic aerosol tracers were characterized by the concentration peaks observed at mid-night or in early morning, while in late June most of the organic species peaked in late afternoon. This suggests that smoke plumes from biomass burning can uplift the aerosol particulate matter to a certain altitude and then transported to and encountered the summit of Mt. Tai during nighttime. On the basis of the tracer-based method for the estimation of biomass-burning OC, fungal-spore OC and biogenic secondary organic carbon (SOC), we estimate that an average of 24% (up to 64%) of the OC in the Mt. Tai

  4. The chemical composition of organic nitrogen in marine rainwater and aerosols

    NASA Astrophysics Data System (ADS)

    Altieri, K. E.; Hastings, M. G.; Peters, A.; Sigman, D. M.

    2010-12-01

    The current state of knowledge on organic nitrogen in the atmosphere is very limited. Atmospheric water soluble organic nitrogen (WSON) is a subset of the complex water soluble organic matter measured in atmospheric aerosols and rainwater; as such, it impacts cloud condensation processes and aerosol chemical and optical properties. In marine and continental atmospheric deposition, the organic N fraction can be 20-80% of total N potentially influencing receiving ecosystems. Therefore, atmospheric WSON plays an important role in both atmospheric chemistry and the global biogeochemical N cycle. However, the sources (i.e., anthropogenic vs. terrestrial vs. marine), composition (e.g., reduced or oxidized N), potential connections to inorganic N (NO3- and NH4+), and spatio-temporal variability of atmospheric WSON are largely unknown. Samples were collected on or near the island of Bermuda (32.27°N, 64.87°W), which is located in the western North Atlantic and experiences seasonal changes in transport that allow for study of both anthropogenically and primarily marine influenced air masses. Rainwater samples (n=7) and aqueous extracted aerosol samples (n=4) were analyzed by positive ion ultra-high resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) to characterize the chemical composition of the water soluble organic N on a per compound level. We found ~ 800 N containing compounds in 8 compound classes. The CHON+ compound class contained the largest number of N compounds (~ 460). Compared to continental rainwater [Altieri et al., ES&T, 2009], the CHON+ compounds in the marine samples are as dominant in number, yet have less regular patterns and lower O:C ratios for comparable N:C ratios. In fact, average O:C ratios of all N containing compound classes were lower in the marine samples than in continental rainwater samples. No organosulfates or nitrooxy-organosulfates were detected in the marine samples, both of

  5. Evaluation of anthropogenic influence on thermodynamics, gas and aerosol composition of city air

    NASA Astrophysics Data System (ADS)

    Uzhegova, Nina; Belan, Boris; Antokhin, Pavel; Zhidovkhin, Evgenii; Ivlev, Georgii; Kozlov, Artem; Fofonov, Aleksandr

    2010-05-01

    In the last 40-50 years there is a global tendency of urbanisation, which is a consequence of most countries' economical development. Concurrently, the issue of environment's ecological state has become critical. Urban air pollution is among the most important ecological problems nowadays. World Health Organization (WHO) points out certain "classical" polluting agents: carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO2), sulphur dioxide (SO2), troposphere ozone (O3) (studied here), as well as lead, carbon dioxide (CO2), aldehydes, soot, benzpyrene and dredges (including dust, haze and smoke) [1]. An evaluation of antropogenic component's weight in the thermodynamical conditions and gas and aerosol composition of a city's atmosphere (by the example of Tomsk) is given in this paper. Tomsk is located at the South of West Siberia and is the administrative center of Tomsk region. The city's area is equal to 294,6 km2. Its population is 512.6 thousands of people. The overall number of registered motor vehicles in the city in 2008 was 131 700. That is, every fourth city inhabitant has a personal car. From 2002 to 2008 the number of motor vehicles in Tomsk has increased by 25 thousands units [2]. This increase consists mostly of passenger cars. There is also a positive trend in fuel consumtion by the city's industries and motor vehicles - from 2004 to 2007 it has increased by 10%. Such a quick rate of transport quantity's increase in the city provides reason to suggest an unfavorable ecological situation in Tomsk. For this study we have used the AKV-2 mobile station designed by the SB RAS Institute of Atmospheric Optics. The station's equipment provides the following measurements [3]: air temperature and humidity; aerosol disperse composition in 15 channels with a particle size range of 0.3-20 µm by use of the Grimm-1.108 aerosol spectrometer; NO, NO2, O3, SO2, CO, CO2 concentration. This paper describes a single experiment conducted in Tomsk. Date of

  6. Morphology and Elemental Composition of Recent and Fossil Cyanobacteria

    NASA Technical Reports Server (NTRS)

    SaintAmand, Ann; Hoover, Richard B.; Jerman, Gregory; Rozanov, Alexei Yu.

    2005-01-01

    Cyanobacteria (cyanophyta, cyanoprokaryota, and blue-green algae) are an ancient, diverse and abundant group of photosynthetic oxygenic microorganisms. Together with other bacteria and archaea, the cyanobacteria have been the dominant life forms on Earth for over 3.5 billion years. Cyanobacteria occur in some of our planets most extreme environments - hot springs and geysers, hypersaline and alkaline lakes, hot and cold deserts, and the polar ice caps. They occur in a wide variety of morphologies. Unlike archaea and other bacteria, which are typically classified in pure culture by their physiological, biochemical and phylogenetic properties, the cyanobacteria have historically been classified based upon their size and morphological characteristics. These include the presence or absence of heterocysts, sheath, uniseriate or multiseriate trichomes, true or false branching, arrangement of thylakoids, reproduction by akinetes, binary fission, hormogonia, fragmentation, presence/absence of motility etc. Their antiquity, distribution, structural and chemical differentiation, diversity, morphological complexity and large size compared to most other bacteria, makes the cyanobacteria ideal candidates for morphological biomarkers in returned Astromaterials. We have obtained optical (nomarski and phase contrast)/fluorescent (blue and green excitation) microscopy images using an Olympus BX60 compound microscope and Field Emission Scanning Electron Microscopy images and EDAX elemental compositions of living and fossil cyanobacteria. The S-4000 Hitachi Field Emission Scanning Electron Microscope (FESEM) has been used to investigate microfossils in freshly fractured interior surfaces of terrestrial rocks and the cells, hormogonia, sheaths and trichomes of recent filamentous cyanobacteria. We present Fluorescent and FESEM Secondary and Backscattered Electron images and associated EDAX elemental analyses of recent and fossil cyanobacteria, concentrating on representatives of the

  7. Synthesis of Spherical Carbon Nitride-Based Polymer Composites by Continuous Aerosol-Photopolymerization with Efficient Light Harvesting.

    PubMed

    Poostforooshan, Jalal; Badiei, Alireza; Kolahdouz, Mohammadreza; Weber, Alfred P

    2016-08-24

    Here we report a novel, facile, and sustainable approach for the preparation of spherical submicrometer carbon nitride-based polymer composites by a continuous aerosol-photopolymerization process. In this regard, spherical mesoporous carbon nitride (SMCN) nanoparticles were initially prepared via a nanocasting approach using spray-drying synthesized spherical mesoporous silica (SMS) nanoparticles as hard templates. In addition to experimental characterization, the effect of porosity on the light absorption enhancement and consequently the generation rate of electron-hole pairs inside the SMCN was simulated using a three-dimensional finite difference time-domain (FDTD) method. To produce the carbon nitride-based polymer composite, SMCN nanoparticles exhibit excellent performance in photopolymerization of butyl acrylate (PBuA) monomer in the presence of n-methyldiethanolamine (MDEA) as a co-initiator in a continuous aerosol-based process. In this one-pot synthesis, SMCN nanoparticles act not only as photoinitiators but at the same time as fillers and templates. The average aerosol residence time in the photoreactor is about 90 s. The presented aerosol-photopolymerization process avoids the need for solvent and surfactant, operates at room temperature, and, more importantly, is suitable to produce the spherical composite with hydrophobic polymers. Furthermore, we simulated the condition of SMCN nanoparticles during illumination in the gas phase process, which can freely rotate. The results demonstrated that the hole (h(+)) density is almost equally distributed in the whole part of the SMCN nanoparticles due to their rotation, leading to efficient light harvesting and more homogeneous photoreaction. The combination of the outstanding features of environmentally friendly SMCN, photopolymerization, and aerosol processing might open new avenues, especially in green chemistry, to produce novel polymer composites with multifunctional properties. PMID:27483090

  8. Synthesis of Spherical Carbon Nitride-Based Polymer Composites by Continuous Aerosol-Photopolymerization with Efficient Light Harvesting.

    PubMed

    Poostforooshan, Jalal; Badiei, Alireza; Kolahdouz, Mohammadreza; Weber, Alfred P

    2016-08-24

    Here we report a novel, facile, and sustainable approach for the preparation of spherical submicrometer carbon nitride-based polymer composites by a continuous aerosol-photopolymerization process. In this regard, spherical mesoporous carbon nitride (SMCN) nanoparticles were initially prepared via a nanocasting approach using spray-drying synthesized spherical mesoporous silica (SMS) nanoparticles as hard templates. In addition to experimental characterization, the effect of porosity on the light absorption enhancement and consequently the generation rate of electron-hole pairs inside the SMCN was simulated using a three-dimensional finite difference time-domain (FDTD) method. To produce the carbon nitride-based polymer composite, SMCN nanoparticles exhibit excellent performance in photopolymerization of butyl acrylate (PBuA) monomer in the presence of n-methyldiethanolamine (MDEA) as a co-initiator in a continuous aerosol-based process. In this one-pot synthesis, SMCN nanoparticles act not only as photoinitiators but at the same time as fillers and templates. The average aerosol residence time in the photoreactor is about 90 s. The presented aerosol-photopolymerization process avoids the need for solvent and surfactant, operates at room temperature, and, more importantly, is suitable to produce the spherical composite with hydrophobic polymers. Furthermore, we simulated the condition of SMCN nanoparticles during illumination in the gas phase process, which can freely rotate. The results demonstrated that the hole (h(+)) density is almost equally distributed in the whole part of the SMCN nanoparticles due to their rotation, leading to efficient light harvesting and more homogeneous photoreaction. The combination of the outstanding features of environmentally friendly SMCN, photopolymerization, and aerosol processing might open new avenues, especially in green chemistry, to produce novel polymer composites with multifunctional properties.

  9. Elemental composition of extant microbialites: mineral and microbial carbon

    NASA Astrophysics Data System (ADS)

    Valdespino-Castillo, P. M.; Falcón, L. I.; Holman, H. Y. N.; Merino-Ibarra, M.; García-Guzmán, M.; López-Gómez, L. M. D. R.; Martínez, J.; Alcantara-Hernandez, R. J.; Beltran, Y.; Centeno, C.; Cerqueda-Garcia, D.; Pi-Puig, T.; Castillo, F. S.

    2015-12-01

    Microbialites are the modern analogues of ancient microbial consortia. Their existence extends from the Archaean (~3500 mya) until present and their lithified structure evidences the capacity of microbial communities to mediate mineral precipitation. Living microbialites are a useful study model to test the mechanisms involved in carbonates and other minerals precipitation. Here, we studied the chemical composition, the biomass and the microbial structure of extant microbialites. All of these were found in Mexico, in water systems of different and characteristic ionic firms. An elemental analysis (C:N) of microbial biomass was performed and total P was determined. To explore the chemical composition of microbialites as a whole, X-ray diffraction analyses were performed over dry microbialites. While overall inorganic carbon content (carbonates) represented >70% of the living layer, a protocol of inorganic carbon elimination was performed for each sample resulting in organic matter contents between 8 and 16% among microbialites. Stoichiometric ratios of C:N:P in microbialite biomass were different among samples, and the possibility of P limitation was suggested mainly for karstic microbialites, N limitation was suggested for all samples and, more intensively, for soda system microbialites. A differential capacity for biomass allocation among microbialites was observed. Microbialites showed, along the biogeographic gradient, a diverse arrangement of microbial assemblages within the mineral matrix. While environmental factors such as pH and nitrate concentration were the factors that defined the general structure and diversity of these assemblages, we intend to test if the abundance of major ions and trace metals are also defining microbialite characteristics (such as microbial structure and biomass). This work contributes to define a baseline of the chemical nature of extant microbial consortia actively participating in mineral precipitation processes.

  10. Investigation of the time evolved spatial distribution of urban PM2.5 concentrations and aerosol composition during episodic high PM events in Yuma, AZ

    NASA Astrophysics Data System (ADS)

    Holmes, Heather A.; Pardyjak, Eric R.; Tyler, Bonnie J.; Peterson, Richard E.

    An interdisciplinary field study designed to investigate the spatial and temporal variability of atmospheric aerosols during high particulate matter ( PM) events along the US-Mexico border near Yuma, AZ was run during the week of March 18, 2007. The experiments were designed to quantify chemical composition and physical phenomena governing the transport of aerosols generated from episodic high PM events. The field study included two micrometeorological monitoring sites; one rural and one urban, equipped with sonic anemometers, continuous particulate concentration monitors and ambient aerosol collection equipment. In addition to the two main monitoring sites, five additional locations were equipped with optical particle counters to allow for the investigation of the spatial and temporal distribution of PM2.5 in the urban environment. In this paper, the meteorological and turbulence parameters governing the distribution and concentration of PM2.5 in the urban environment for two high-wind erosion events and one burning event are compared. The interaction between local atmospheric conditions and the particulate distribution is investigated. Results indicate that a single point measurement in the urban area of Yuma may not be sufficient for determining the ambient PM concentrations that the local population experiences; all three high PM events indicated PM2.5 varied considerably with maximum urban concentrations 5-10 times greater than the measured minima. A comparison of inorganic and carbonaceous content of the aerosols for the three high PM events is presented. The comparison shows an increase in silicon during crustal dust events and an increase in elemental and organic carbon during the burn event. Additional surface chemistry analysis, using time-of-flight secondary ion mass spectrometry (ToF-SIMS), for aerosols collected at the urban and rural sites during the burn event are discussed. The surface chemistry analysis provides positive ion mass spectra of organic

  11. Chemical composition, sources, and aging process of submicron aerosols in Beijing: Contrast between summer and winter

    NASA Astrophysics Data System (ADS)

    Hu, Weiwei; Hu, Min; Hu, Wei; Jimenez, Jose L.; Yuan, Bin; Chen, Wentai; Wang, Ming; Wu, Yusheng; Chen, Chen; Wang, Zhibin; Peng, Jianfei; Zeng, Limin; Shao, Min

    2016-02-01

    To investigate the seasonal characteristics of submicron aerosol (PM1) in Beijing urban areas, a high-resolution time-of-flight aerosol-mass-spectrometer (HR-ToF-AMS) was utilized at an urban site in summer (August to September 2011) and winter (November to December 2010), coupled with multiple state of the art online instruments. The average mass concentrations of PM1 (60-84 µg m-3) and its chemical compositions in different campaigns of Beijing were relatively consistent in recent years. In summer, the daily variations of PM1 mass concentrations were stable and repeatable. Eighty-two percent of the PM1 mass concentration on average was composed of secondary species, where 62% is secondary inorganic aerosol and 20% secondary organic aerosol (SOA). In winter, PM1 mass concentrations changed dramatically because of the different meteorological conditions. The high average fraction (58%) of primary species in PM1 including primary organic aerosol (POA), black carbon, and chloride indicates primary emissions usually played a more important role in the winter. However, aqueous chemistry resulting in efficient secondary formation during occasional periods with high relative humidity may also contribute substantially to haze in winter. Results of past OA source apportionment studies in Beijing show 45-67% of OA in summer and 22-50% of OA in winter can be composed of SOA. Based on the source apportionment results, we found 45% POA in winter and 61% POA in summer are from nonfossil sources, contributed by cooking OA in both seasons and biomass burning OA (BBOA) in winter. Cooking OA, accounting for 13-24% of OA, is an important nonfossil carbon source in all years of Beijing and should not be neglected. The fossil sources of POA include hydrocarbon-like OA from vehicle emissions in both seasons and coal combustion OA (CCOA) in winter. The CCOA and BBOA were the two main contributors (57% of OA) for the highest OA concentrations (>100 µg m-3) in winter. The POA

  12. Secondary Organic Aerosol Formation from the Photooxidation of Complex Hydrocarbon Mixtures: Composition, effect of SO2, and Relevance to Ambient Aerosol

    NASA Astrophysics Data System (ADS)

    Surratt, J. D.; Gao, S.; Knipping, E.; Edgerton, E.; Shahgoli, M.; Seinfeld, J. H.; Edney, E.; Kleindiesnt, T.; Lewandowski, M.; Offenberg, J.; Jaoui, M.

    2005-12-01

    Secondary organic aerosol (SOA) formation from single hydrocarbon precursors is commonly studied in smog chamber experiments to obtain SOA yield and organic composition data. However, very few complex air mixture experiments have been conducted to simulate possible conditions in ambient atmospheres. A six-phase experiment involving various combinations of alpha-pinene, toluene, isoprene, and SO2 were irradiated in the EPA's dynamic smog chamber at the National Exposure Research Laboratory in Raleigh, NC. Glass fiber filters and impactor plates were collected for each phase of the experiment to identify and quantify the nature of the SOA composition. The following suite of analytical techniques analyzed the resultant polar organic compounds and the high molecular weight species: liquid chromatography-electrospray ionization (ESI)-mass spectrometry, gas chromatography-mass spectrometry, ESI-ion trap mass spectrometry, matrix assisted laser desorption (MALDI)-time of flight mass spectrometry, and high-resolution mass spectrometry. When SO2 is present in the chamber, increases in the gravimetric aerosol mass concentration and in the abundance of polar organic compounds are observed, likely suggesting an acid catalysis effect stemming from the conversion of SO2 to H2SO4 that condenses onto aerosol formed. The addition of isoprene to a alpha-pinene/toluene mixture is found to lower the amount of aerosol produced and is also found to lower the abundance of organic compounds identified by the various analytical techniques. Lastly, many of the polar organic compounds identified and quantified here are also seen in the Southeastern Aerosol Research and Characterization (SEARCH) network during the summer of 2004. In particular, a sulfur and nitrogen containing organic species (MW = 295 gmol) is found to be the most abundant polar organic species identified in this field study (~28 % on average of the total identified organic mass). This species is also detected in the chamber

  13. The 'North American shale composite' - Its compilation, major and trace element characteristics

    NASA Technical Reports Server (NTRS)

    Gromet, L. P.; Dymek, R. F.; Haskin, L. A.; Korotev, R. L.

    1984-01-01

    North American shale composite (NASC) major element composition and compilation are presented, together with rare earth element (REE) redeterminations obtained by high precision analytical methods. The major element composition of the NASC compares closely with other average shale compositions, and significant portions of the REE and some other trace elements are contained in minor phases. The uneven REE distribution in NASC powder appears to yield the heterogeneity in analyzed aliquants. REE distributions of detrital sediments may to some extent be dependent on their minor mineral assemblages and the sedimentological factors controlling these assemblages.

  14. Chemical composition of emissions from urban sources of fine organic aerosol

    SciTech Connect

    Hildemann, L.M.; Markowski, G.R.; Cass, G.R. )

    1991-04-01

    A dilution source sampling system was used to collect primary fine aerosol emissions from important sources of urban organic aerosol, including a boiler burning No. 2 fuel oil, a home fireplace, a fleet of catalyst-equipped and noncatalyst automobiles, heavy-duty diesel trucks, natural gas home appliances, and meat cooking operations. Alternative dilution sampling techniques were used to collect emissions from cigarette smoking and a roofing tar pot, and grab sample techniques were employed to characterize paved road dust, brake lining wear, and vegetative detritus. Organic aerosol constituted the majority of the fine aerosol mass emitted from many of the sources tested. Fine primary organic aerosol emissions within the heavily urbanized western portion of the Los Angeles Basin were determined to total 29.8 metric ton/day. Over 40% of these organic aerosol emissions are from anthropogenic pollution sources that are expected to emit contemporary (nonfossil) aerosol carbon, in good agreement with the available ambient monitoring data.

  15. Latitudinal Variation of Chemical Composition in Marine Aerosol Over the Central North Pacific in the Summer

    NASA Astrophysics Data System (ADS)

    Uematsu, M.; Narita, Y.; Mano, Y.; Iguchi, H.; Yoshida, K.; Iwamoto, Y.; Miura, K.

    2006-12-01

    Aeolian dust and gaseous and particulate pollutants from the Asian continent are transported eastward over the North Pacific. These natural and anthropogenic materials in the atmosphere can influence regional and global climate by altering the Earth's radiative balance. From the view of biogeochemical cycles, the atmospheric deposition of aerosols containing iron and other essential trace elements may contribute in sustaining primary productivity of phytoplankton, food web structure and chemical properties of marine atmosphere in the central North Pacific region. During the South-North cross-section cruise from 8 August to 21 September 2005, we conducted atmospheric sampling of aerosol and gaseous components on board R/V Hakuho Maru. Results from 10S to 53N along 160E revealed high nitrate concentration in the high latitude zone corresponded with back-air trajectories to subarctic North Pacific from the Asian continent during the summer. The atmospheric supply of nitrogen compounds may affect the primary production of stratified surface layer in the region. Non-sea-salt sulfate concentration was also high over the subarctic region, and downwind of the Hawaii islands. Volcanic and anthropogenic sulfur are suspected to be the sources of nss-sulfate. However, as an indicator of marine biogenic sulfate, methane sulfonic acid (MSA) is also correlated well with the concentration peaks of nss-sulfate both the vicinity of Hawaii islands and subarctic region. We will attempt to separate nss-sulfate into two fractions, marine biogenic and anthropogenic by using the relation between trace metals and sulfate over the source regions.

  16. Automated Measurements of Ambient Aerosol Chemical Composition and its Dry and Wet Size Distributions at Pittsburgh Supersite

    NASA Astrophysics Data System (ADS)

    Khlystov, A. Y.; Stanier, C.; Chun, W.; Vayenas, D.; Mandiro, M.; Pandis, S. N.

    2001-12-01

    Ambient aerosol particles change size with changes in ambient relative humidity. The magnitude of the size change depends on the hygroscopic properties of the particles, which is determined by their chemical composition. Hygroscopic properties of particles influence many environmentally important aerosol qualities, such as light scattering and partitioning between the gas and particle phases of semivolitile compounds. Studying the hygroscopic growth of ambient particles is thus of paramount importance. The highroscopic growth of ambient particles and their chemical composition are measured continuously within the Pittsburgh Air Quality Study (EPA supersite program). The hygroscopic size changes are measured using an automated system built for this study. The system consists of two Scanning Mobility Particle Sizers (SMPS, TSI Inc.) and an Aerodynamic Particle Sizer (APS, TSI Inc.). The three instruments measure aerosol size distribution between 5 nanometers and 10 micrometers in diameter. The inlets of the instruments and the sheath air lines of the SMPS systems are equipped with computer controlled valves that direct air through Nafion dryers (PermaPure Inc.) or bypass them. The Nafion dryers are drying the air stream below 40% RH at which point ambient particles are expected to lose most or all water and thus be virtually dry. To avoid changes in relative humidity and evaporation of volatile particles due to temperature differences the system is kept at ambient temperature. The system measures alternatively dry (below 40% RH) and wet (actual ambient RH) aerosol size distributions every 6 minutes. The hygroscopic growth observed with the size-spectrometer system is compared with theoretic predictions based on the chemical composition of aerosol particles. A modified semi-continuous Steam-Jet Aerosol Collector provides the total available budget (particles and gas) of water-soluble species, which is used as an input to the thermodynamic model. The model calculates

  17. Black-carbon-surface oxidation and organic composition of beech-wood soot aerosols

    NASA Astrophysics Data System (ADS)

    Corbin, J. C.; Lohmann, U.; Sierau, B.; Keller, A.; Burtscher, H.; Mensah, A. A.

    2015-03-01

    Soot particles are the most strongly light-absorbing particles commonly found in the atmosphere. They are major contributors to the radiative budget of the Earth and to the toxicity of atmospheric pollution. Atmospheric aging of soot may change its health- and climate-relevant properties by oxidizing the primary black carbon (BC) or organic particulate matter (OM) which, together with ash, comprise soot. This atmospheric aging, which entails the condensation of secondary particulate matter as well as the oxidation of the primary OM and BC emissions, is currently poorly understood. In this study, atmospheric aging of wood-stove soot aerosols was simulated in a continuous-flow reactor. The composition of fresh and aged soot particles was measured in real time by a dual-vaporizer aerosol-particle mass spectrometer (SP-AMS). The SP-AMS provided information on the OM, BC, and surface composition of the soot. The OM appeared to be generated largely by cellulose and/or hemicellulose pyrolysis, and was only present in large amounts when new wood was added to the stove. BC signals otherwise dominated the mass spectrum. These signals consisted of ions related to refractory BC (rBC, C+1-5), oxygenated surface groups (CO+1-2), potassium (K+) and water (H+2O and related fragments). The C+4 : C+3 ratio, but not the C+1 : C+3 ratio, was consistent with the BC-structure trends of Corbin et al. (2015c). The CO+1-2 signals likely originated from BC surface groups: upon aging, both CO+ and CO+2 increased relative to C+1-3 while CO+2 simultaneously increased relative to CO+. Factor analysis (PMF) of SP-AMS and AMS data, using a new error model to account for peak-integration uncertainties, indicated that the surface composition of the BC was approximately constant across all stages of combustion for both fresh and aged samples. These results represent the first time-resolved measurements of in-situ BC-surface aging and suggest that the surface of beech-wood BC may be modelled as a

  18. Chemical Composition, Seasonal Variation and Size distribution of Atmospheric Aerosols at an Alpine Site in Guanzhong Plain, China

    NASA Astrophysics Data System (ADS)

    Li, J.

    2015-12-01

    PM10 and size-segregated aerosol samples were collected at Mt. Hua (2065 a.s.m) in central China, and determined for carbonaceous fraction, ions and organic composition. The concentration of most chemical compositions in summer are lower than those in winter, due to decreased emissions of biomass and coal burning for house heating. High temperature and relative humidity (RH) conditions are favorable for secondary aerosol formation, resulting in higher concentrations of SO42- and NH4+ in summer. Non-dehydrated sugars are increased in summer because of the enhanced metabolism. Carbon preference index results indicate that n-alkanes at Mt. Hua are derived mostly by plant wax. Low Benzo(a)pyrene/Benzo(a)pyrene ratios indicate that mountain aerosols are more aged. Concentrations of biogenic (BSOA, the isoprene/pinene/caryophyllene oxidation products) and anthropogenic (ASOA, mainly aromatic acids) SOA positively correlated with temperature . However, a decreasing trend of BSOA concentration with an increase in RH was observed during the sampling period, although a clear trend between ASOA and RH was not found. Based on the AIM Model calculation, we found that during the sampling period an increase in RH resulted in a decrease in the aerosol acidity and thus reduced the effect of acid-catalysis on BSOA formation. Size distributions of K+ and NH4+ present as an accumulation mode, in contrast to Ca2+ and Mg2+, which are mainly existed in coarse particles. SO42- and NO3- show a bimodal pattern. Dehydrated sugars, fossil fuel derived n-alkanes and PAHs presented unimode size distribution, whereas non-dehydrated sugars and plant wax derived n-alkanes showed bimodal pattern. Most of the determined BSOA are formed in the aerosol phase and enriched in the fine mode except for cis-pinonic acid, which is formed in the gas phase and subsequently partitioned into aerosol phase and thus presents a bimodal pattern with a major peak in the coarse mode.

  19. Predicting the mineral composition of dust aerosols - Part 2: Model evaluation and identification of key processes with observations

    NASA Astrophysics Data System (ADS)

    Perlwitz, J. P.; Pérez García-Pando, C.; Miller, R. L.

    2015-10-01

    A global compilation of nearly sixty measurement studies is used to evaluate two methods of simulating the mineral composition of dust aerosols in an Earth system model. Both methods are based upon a Mean Mineralogical Table (MMT) that relates the soil mineral fractions to a global atlas of arid soil type. The Soil Mineral Fraction (SMF) method assumes that the aerosol mineral fractions match the fractions of the soil. The MMT is based upon soil measurements after wet sieving, a process that destroys aggregates of soil particles that would have been emitted from the original, undisturbed soil. The second method approximately reconstructs the emitted aggregates. This model is referred to as the Aerosol Mineral Fraction (AMF) method because the mineral fractions of the aerosols differ from those of the wet-sieved parent soil, partly due to reaggregation. The AMF method remedies some of the deficiencies of the SMF method in comparison to observations. Only the AMF method exhibits phyllosilicate mass at silt sizes, where they are abundant according to observations. In addition, the AMF quartz fraction of silt particles is in better agreement with measured values, in contrast to the overestimated SMF fraction. Measurements at distinct clay and silt particle sizes are shown to be more useful for evaluation of the models, in contrast to the sum over all particles sizes that is susceptible to compensating errors, as illustrated by the SMF experiment. Model errors suggest that allocation of the emitted silt fraction of each mineral into the corresponding transported size categories is an important remaining source of uncertainty. Evaluation of both models and the MMT is hindered by the limited number of size-resolved measurements of mineral content that sparsely sample aerosols from the major dust sources. The importance of climate processes dependent upon aerosol mineral composition shows the need for global and routine mineral measurements.

  20. Pattern of aerosol mass loading and chemical composition over the atmospheric environment of an urban coastal station

    NASA Astrophysics Data System (ADS)

    Bindu, G.; Nair, Prabha R.; Aryasree, S.; Hegde, Prashant; Jacob, Salu

    2016-02-01

    Aerosol sampling was carried out at four locations in and around Cochin (9°58‧ N, 76°17‧ E), an urban area, located on the southwest coast of India. The gravimetric estimates of aerosol mass loading showed wide range from 78 μg m-3 to >450 μg m-3, occasionally reaching values >500 μg m-3, associated with regional source characteristics. Most of the values were above the air quality standard. Both boundary layer and synoptic scale airflow pattern play role in the temporal features in aerosol mass loading and chemical composition. Chemical analysis of the aerosol samples were done for anionic species viz; F-, Cl-, Br-, NO2-,   NO3-,   PO43-,   SO42- and metallic/cationic species viz; Na, Ca, K, Mg, NH4+, Fe, Al, Cu, Mg, Pb, etc using Ion Chromatography, Atomic Absorption Spectroscopy (AAS) and Inductively Coupled Plasma- Atomic Emission Spectroscopy (ICP-AES). At all the locations, extremely high mass concentration of SO42- was observed with the mean value of 13±6.4 μg m-3 indicating the strong anthropogenic influence. Statistical analysis of the chemical composition data was carried out and the principal factors presented. Seasonal variation of these chemical species along with their percentage contributions and regional variations were also examined. Increase in level of Na in aerosol samples indicated the influence of monsoonal activity. Most of the species showed mass concentrations well above those measured over another coastal site Thiruvananthapuram (8°29‧ N, 76°57‧ E) situated ~220 km south of Cochin revealing the highly localized aerosol features.

  1. Predicting the Mineral Composition of Dust Aerosols. Part 2; Model Evaluation and Identification of Key Processes with Observations

    NASA Technical Reports Server (NTRS)

    Perlwitz, J. P.; Garcia-Pando, C. Perez; Miller, R. L.

    2015-01-01

    A global compilation of nearly sixty measurement studies is used to evaluate two methods of simulating the mineral composition of dust aerosols in an Earth system model. Both methods are based upon a Mean Mineralogical Table (MMT) that relates the soil mineral fractions to a global atlas of arid soil type. The Soil Mineral Fraction (SMF) method assumes that the aerosol mineral fractions match the fractions of the soil. The MMT is based upon soil measurements after wet sieving, a process that destroys aggregates of soil particles that would have been emitted from the original, undisturbed soil. The second method approximately reconstructs the emitted aggregates. This model is referred to as the Aerosol Mineral Fraction (AMF) method because the mineral fractions of the aerosols differ from those of the wet-sieved parent soil, partly due to reaggregation. The AMF method remedies some of the deficiencies of the SMF method in comparison to observations. Only the AMF method exhibits phyllosilicate mass at silt sizes, where they are abundant according to observations. In addition, the AMF quartz fraction of silt particles is in better agreement with measured values, in contrast to the overestimated SMF fraction. Measurements at distinct clay and silt particle sizes are shown to be more useful for evaluation of the models, in contrast to the sum over all particles sizes that is susceptible to compensating errors, as illustrated by the SMF experiment. Model errors suggest that allocation of the emitted silt fraction of each mineral into the corresponding transported size categories is an important remaining source of uncertainty. Evaluation of both models and the MMT is hindered by the limited number of size-resolved measurements of mineral content that sparsely sample aerosols from the major dust sources. The importance of climate processes dependent upon aerosol mineral composition shows the need for global and routine mineral measurements.

  2. Chemical composition, sources and evolution processes of aerosol at an urban site in Yangtze River Delta, China during wintertime

    NASA Astrophysics Data System (ADS)

    Zhang, Yunjiang; Tang, Lili; Yu, Hongxia; Wang, Zhuang; Sun, Yele; Qin, Wei; Chen, Wentai; Chen, Changhong; Ding, Aijun; Wu, Jing; Ge, Shun; Chen, Cheng; Zhou, Hong-cang

    2015-12-01

    To investigate the composition, sources and evolution processes of submicron aerosol during wintertime, a field experiment was conducted during December 1-31, 2013 in urban Nanjing, a megacity in Yangtze River Delta of China. Non-refractory submicron aerosol (NR-PM1) species were measured with an Aerodyne Aerosol Chemical Speciation Monitor. NR-PM1 is dominated by secondary inorganic aerosol (55%) and organic aerosol (OA, 42%) during haze periods. Six OA components were identified by positive matrix factorization of the OA mass spectra. The hydrocarbon-like OA and cooking-related OA represent the local traffic and cooking sources, respectively. A highly oxidized factor related to biomass burning OA accounted for 15% of the total OA mass during haze periods. Three types of oxygenated OA (OOA), i.e., a less-oxidized OOA (LO-OOA), a more-oxidized OOA (MO-OOA), and a low-volatility OOA (LV-OOA), were identified. LO-OOA is likely associated with fresh urban secondary OA. MO-OOA likely represents photochemical products showing a similar diurnal cycle to nitrate with a pronounced noon peak. LV-OOA appears to be a more oxidized factor with a pronounced noon peak. The OA composition is dominated by secondary species, especially during haze events. LO-OOA, MO-OOA and LV-OOA on average account for 11%, (18%), 24% (21%) and 23% (18%) of the total OA mass for the haze (clean) periods respectively. Analysis of meteorological influence suggested that regional transport from the northern and southeastern areas of the city is responsible for large secondary and low-volatility aerosol formation.

  3. Predicting the mineral composition of dust aerosols - Part 2: Model evaluation and identification of key processes with observations

    NASA Astrophysics Data System (ADS)

    Perlwitz, J. P.; Pérez García-Pando, C.; Miller, R. L.

    2015-02-01

    A global compilation from nearly sixty measurement studies is used to evaluate two methods of simulating the mineral composition of dust aerosols in an Earth system model. Both methods are based upon a Mean Mineralogical Table (MMT) that relates the soil mineral fractions to a global atlas of arid soil type. The Soil Mineral Fraction (SMF) method assumes that the aerosol mineral fractions match those of the soil. The MMT is based upon soil measurements after wet sieving, where soil aggregates are broken into smaller particles. The second method approximately reconstructs the aggregates and size distribution of the original soil that is subject to wind erosion. This model is referred to as the Aerosol Mineral Fraction (AMF) method because the mineral fractions of the aerosols differ from those of the wet-sieved parent soil, partly due to reaggregation. The AMF method remedies some of the deficiencies of the SMF method in comparison to observation. Only the AMF method restores phyllosilicate mass to silt sizes, where they are abundant according to observations. In addition, the AMF quartz fraction of silt particles is in closer agreement with measured values, in contrast to the overestimated SMF fraction. Measurements at separate clay and silt particle sizes are shown to be more useful for evaluation of the models, compared to the sum over all particles sizes that is susceptible to compensating errors in the SMF experiment. Model errors suggest that apportionment of the emitted silt fraction of each mineral into the corresponding transported size categories is an important remaining uncertainty. Substantial uncertainty remains in evaluating both models and the MMT due to the limited number of size-resolved measurements of mineral content that sparsely sample aerosols from the major dust sources. The importance of climate processes dependent upon aerosol mineral composition shows the need for global and routine mineral measurements.

  4. Aerosol-assisted chemical vapor deposition (AACVD) of binary alloy films: Studies of film composition

    SciTech Connect

    Xu, C.; Hampden-Smith, M.J.; Kodas, T.T.

    1995-08-01

    The chemical vapor deposition (CVD) of Cu-Ag and Cu-Pd alloys using aerosol precursor delivery over a range of preheating temperatures, 70 {approximately} 80 C and substrate temperatures, 250 {approximately} 300 C is described. The precursors used include Cu(hfac){sub 2}, (hfac)Ag(SEt{sub 2}) and Pd(hfac){sub 2} dissolved in toluene and 10% H{sub 2} in Ar as carrier gas. The films were characterized by SEM, EDS and X-ray diffraction (XRD). The X-ray diffraction results showed the Cu/Ag films were composed of {alpha}- and {beta}-phases of Cu-Ag alloys, the Cu/Pd films were Cu-Pd and Pd-Ag alloy, solid solutions, under these conditions. Compositional variation studies in Cu-Pd and Pd-Ag alloy systems were also conducted by mixing Cu(hfac){sub 2}/Pd(hfac){sub 2} and (hfac) Ag(SEt{sub 2})/Pd(hfac){sub 2} in toluene solution in different ratios. The films were characterized by X-ray diffraction and the results showed the composition of films was affected by the solution stoichiometry.

  5. Finite element code development for modeling detonation of HMX composites

    NASA Astrophysics Data System (ADS)

    Duran, Adam; Sundararaghavan, Veera

    2015-06-01

    In this talk, we present a hydrodynamics code for modeling shock and detonation waves in HMX. A stable efficient solution strategy based on a Taylor-Galerkin finite element (FE) discretization was developed to solve the reactive Euler equations. In our code, well calibrated equations of state for the solid unreacted material and gaseous reaction products have been implemented, along with a chemical reaction scheme and a mixing rule to define the properties of partially reacted states. A linear Gruneisen equation of state was employed for the unreacted HMX calibrated from experiments. The JWL form was used to model the EOS of gaseous reaction products. It is assumed that the unreacted explosive and reaction products are in both pressure and temperature equilibrium. The overall specific volume and internal energy was computed using the rule of mixtures. Arrhenius kinetics scheme was integrated to model the chemical reactions. A locally controlled dissipation was introduced that induces a non-oscillatory stabilized scheme for the shock front. The FE model was validated using analytical solutions for sod shock and ZND strong detonation models and then used to perform 2D and 3D shock simulations. We will present benchmark problems for geometries in which a single HMX crystal is subjected to a shock condition. Our current progress towards developing microstructural models of HMX/binder composite will also be discussed.

  6. Composition of Stratospheric Aerosol Particles collected during the SOLVE campaign 2000

    NASA Astrophysics Data System (ADS)

    Schütze, Katharina; Nathalie, Benker; Martin, Ebert; Ralf, Weigel; Wilson James, C.; Stephan, Borrmann; Stephan, Weinbruch

    2016-04-01

    Stratospheric Aerosol particles were collected during the SAGE III Ozone loss and validation Experiment (SOLVE) in January-March 2000 in Kiruna/ Sweden onboard the scientific ER-2 aircraft with the Multi-Sample Aerosol Collection System. The particles are deposited on Cu transmission electron microscopy (TEM) grids. Particles of six samples from different flights (including one PSC sample) were analyzed by TEM and Energy Dispersive X-ray detection (EDX) regarding their size, chemical composition and morphology. Most particles are sulfates (formed from droplets of sulfuric acid) which are not resistant to the electron beam. In addition, refractory particles in the size range of 100-500 nm are found. They are either embedded in the sulfates or occur as single particles. The refractory particles are mainly carbonaceous showing only C and O as major peaks in their X-ray spectra. Some particles contain minor amounts of Si and Fe. Both, the O/C (median from 0.10-0.40), as well as Si/C (median from 0.05-0.32) ratios are increasing with time, from the middle of January to the end of February. The largest Fe/C ratio (median: 0.37) is found in a sample of the end of January. Based on the nanostructure and the absence of potassium as a tracer, biomass burning can be excluded as a source. Soot from diesel engines as well as from aircrafts show a nanostructure which is not found in the refractory particles. Due to the fact that large volcanic eruptions, which introduced material directly into the stratosphere, were missing since the eruption of Mt. Pinatubo in 1991, they are a very unlikely source of the refractory particles. The most likely source of the refractory particles is thus extraterrestrial material.

  7. Polycyclic aromatic hydrocarbon and elemental carbon size distributions in Los Angeles aerosol: Source resolution and deposition velocities

    SciTech Connect

    Venkataraman, C.

    1992-01-01

    Particulate PAH size distributions for several species were measured, for the first time, at three ambient sites in Los Angeles. PAH size distributions in automobile exhaust were also measured by sampling aerosol in two traffic tunnels. A low flow impactor was used to minimize sampling losses in combination with a high resolution analysis method based on HPLC and fluorescence detection. Elemental carbon size distributions were measured using a thermal evolution method and flame ionization detection. Differences in ambient concentrations and size distributions are explained in terms of location within the basin, seasonal variations and differences in species reactivity and volatility. Differences between tunnel and ambient size distributions are explained in terms of gas to particle conversion. A particle morphology study confirmed that the structure of primary particles (0.05-0.5 [mu]m) is similar to soot agglomerates while the accumulation mode particles (0.5-1 [mu]m) are coated with a film of liquid aerosol. PAH profiles were estimated for the automobile source from the traffic tunnel measurements. These were used along with a characteristic PAH profile for meat cooking to apportion ambient aerosol PAH concentrations at Pico Rivera and Upland. Model estimates show that the Pico Rivera site is dominated by auto emissions which account for over 90% of all PAH (exception chrysene, 75%) and CO concentrations measured at the site. 61% of the EC concentration was explained by the model and attributed to auto emissions. In contrast, meat cooking operations contributed significantly (20 to 80%) to the concentrations of 2-4 ring PAH measured at Upland. The 5-ring and larger PAH were attributed to auto emissions at this site as well.

  8. Regional atmospheric aerosol composition and sources in the eastern Transvaal, South Africa, and impact of biomass burning

    NASA Astrophysics Data System (ADS)

    Maenhaut, Willy; Salma, Imre; Cafmeyer, Jan; Annegarn, Harold J.; Andreae, Meinrat O.

    1996-10-01

    As part of the Southern Africa Fire-Atmosphere Research Initiative (SAFARI-92), size-fractionated aerosol samples were collected during September-October 1992 at three fixed ground-based sites in the eastern Transvaal, i.e., at two sites within the Kruger National Park (KNP) and at a third site on the Transvaal highveld (about 150 km WSW of the KNP sites), and near a number of prescribed fires in the KNP. The collection devices consisted of stacked filter units, which separate the aerosol into a coarse (2-10 μm equivalent aerodynamic diameter (EAD)) and a fine (<2 μm EAD) size fraction, and of eight-stage cascade impactors, which provide more detailed size fractionation. The samples were analyzed for particulate mass (PM), black carbon (BC), and up to 47 elements. The prescribed fires gave rise to high levels of airborne soil dust, but several species (elements) were particularly enriched in the pyrogenic emissions. This was the case for BC, P, K, Ca, Mn, Zn, Sr, and I in the coarse fraction, and for BC, the halogens (Cl, Br, I), K, Cu, Zn, Rb, Sb, Cs, and Pb (and in the flaming phase also Na and S) in the fine fraction. The aerosol concentrations, compositions, and time trends at the two KNP sites were quite similar, suggesting that regionally representative samples were collected. Receptor modeling calculations, using both absolute principal component analysis and chemical mass balance, indicated that the KNP coarse PM was essentially attributable to mineral dust and sea salt, with average relative apportionments of 75% and 25%, respectively. At the highveld site, mineral dust and sea salt contributed in a 99-to-1 ratio to the coarse PM. In the fine size fraction at all three fixed sites, four components were identified, i.e., mineral dust, sea salt, biomass burning products, and sulfate. The pyrogenic component was the dominant contributor to the atmospheric concentrations of BC, K, Zn, and I, a major source for PM, Cl, Cu, Br, and Cs, but only a minor source

  9. Organic aerosols and inorganic species from post-harvest agricultural-waste burning emissions over northern India: impact on mass absorption efficiency of elemental carbon.

    PubMed

    Rajput, Prashant; Sarin, M M; Sharma, Deepti; Singh, Darshan

    2014-01-01

    Atmospheric PM2.5 (particulate matter with aerodynamic diameter of ≤ 2.5 μm), collected from a source region [Patiala: 30.2 °N; 76.3 °E; 250 m above mean sea level] of emissions from post-harvest agricultural-waste (paddy-residue) burning in the Indo-Gangetic Plain (IGP), North India, has been studied for its chemical composition and impact on regional atmospheric radiative forcing. On average, organic aerosol mass accounts for 63% of PM2.5, whereas the contribution of elemental carbon (EC) is ∼3.5%. Sulphate, nitrate and ammonium contribute up to ∼85% of the total water-soluble inorganic species (WSIS), which constitutes ∼23% of PM2.5. The potassium-to-organic carbon ratio from paddy-residue burning emissions (KBB(+)/OC: 0.05 ± 0.01) is quite similar to that reported from Amazonian and Savanna forest-fires; whereas non-sea-salt-sulphate-to-OC ratio (nss-SO4(2-)/OC: 0.21) and nss-SO4(2-)/EC ratio of 2.6 are significantly higher (by factor of 5 to 8). The mass absorption efficiency of EC (3.8 ± 1.3 m(2) g(-1)) shows significant decrease with a parallel increase in the concentrations of organic aerosols and scattering species (sulphate and nitrate). A cross plot of OC/EC and nss-SO4(2-)/EC ratios show distinct differences for post-harvest burning emissions from paddy-residue as compared to those from fossil-fuel combustion sources in south-east Asia.

  10. Quality assurance and quality control for thermal/optical analysis of aerosol samples for organic and elemental carbon.

    PubMed

    Chow, Judith C; Watson, John G; Robles, Jerome; Wang, Xiaoliang; Chen, L-W Antony; Trimble, Dana L; Kohl, Steven D; Tropp, Richard J; Fung, Kochy K

    2011-12-01

    Accurate, precise, and valid organic and elemental carbon (OC and EC, respectively) measurements require more effort than the routine analysis of ambient aerosol and source samples. This paper documents the quality assurance (QA) and quality control (QC) procedures that should be implemented to ensure consistency of OC and EC measurements. Prior to field sampling, the appropriate filter substrate must be selected and tested for sampling effectiveness. Unexposed filters are pre-fired to remove contaminants and acceptance tested. After sampling, filters must be stored in the laboratory in clean, labeled containers under refrigeration (<4 °C) to minimize loss of semi-volatile OC. QA activities include participation in laboratory accreditation programs, external system audits, and interlaboratory comparisons. For thermal/optical carbon analyses, periodic QC tests include calibration of the flame ionization detector with different types of carbon standards, thermogram inspection, replicate analyses, quantification of trace oxygen concentrations (<100 ppmv) in the helium atmosphere, and calibration of the sample temperature sensor. These established QA/QC procedures are applicable to aerosol sampling and analysis for carbon and other chemical components. PMID:21626190

  11. Wintertime aerosol chemical composition and source apportionment of the organic fraction in the metropolitan area of Paris

    NASA Astrophysics Data System (ADS)

    Crippa, M.; DeCarlo, P. F.; Slowik, J. G.; Mohr, C.; Heringa, M. F.; Chirico, R.; Poulain, L.; Freutel, F.; Sciare, J.; Cozic, J.; Di Marco, C. F.; Elsasser, M.; Nicolas, J. B.; Marchand, N.; Abidi, E.; Wiedensohler, A.; Drewnick, F.; Schneider, J.; Borrmann, S.; Nemitz, E.; Zimmermann, R.; Jaffrezo, J.-L.; Prévôt, A. S. H.; Baltensperger, U.

    2013-01-01

    The effect of a post-industrial megacity on local and regional air quality was assessed via a month-long field measurement campaign in the Paris metropolitan area during winter 2010. Here we present source apportionment results from three aerosol mass spectrometers and two aethalometers deployed at three measurement stations within the Paris region. Submicron aerosol composition is dominated by the organic fraction (30-36%) and nitrate (28-29%), with lower contributions from sulfate (14-16%), ammonium (12-14%) and black carbon (7-13%). Organic source apportionment was performed using positive matrix factorization, resulting in a set of organic factors corresponding both to primary emission sources and secondary production. The dominant primary sources are traffic (11-15% of organic mass), biomass burning (13-15%) and cooking (up to 35% during meal hours). Secondary organic aerosol contributes more than 50% to the total organic mass and includes a highly oxidized factor from indeterminate and/or diverse sources and a less oxidized factor related to wood burning emissions. Black carbon was apportioned to traffic and wood burning sources using a model based on wavelength-dependent light absorption of these two combustion sources. The time series of organic and black carbon factors from related sources were strongly correlated. The similarities in aerosol composition, total mass and temporal variation between the three sites suggest that particulate pollution in Paris is dominated by regional factors, and that the emissions from Paris itself have a relatively low impact on its surroundings.

  12. Diurnal variations of organic molecular tracers and stable carbon isotopic composition in atmospheric aerosols over Mt. Tai in the North China Plain: an influence of biomass burning

    NASA Astrophysics Data System (ADS)

    Fu, P. Q.; Kawamura, K.; Chen, J.; Li, J.; Sun, Y. L.; Liu, Y.; Tachibana, E.; Aggarwal, S. G.; Okuzawa, K.; Tanimoto, H.; Kanaya, Y.; Wang, Z. F.

    2012-09-01

    Organic tracer compounds, as well as organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and stable carbon isotope ratios (δ13C) of total carbon (TC) have been investigated in aerosol samples collected during early and late periods of the Mount Tai eXperiment 2006 (MTX2006) field campaign in the North China Plain. Total solvent-extractable fractions were investigated by gas chromatography/mass spectrometry. More than 130 organic compounds were detected in the aerosol samples. They were grouped into twelve organic compound classes, including biomass burning tracers, biogenic primary sugars, biogenic secondary organic aerosol (SOA) tracers, and anthropogenic tracers such as phthalates, hopanes and polycyclic aromatic hydrocarbons (PAHs). In early June when the field burning activities of wheat straws in the North China Plain were very active, the total identified organics (2090 ± 1170 ng m-3) were double those in late June (926 ± 574 ng m-3). All the compound classes were more abundant in early June than in late June, except phthalate esters, which were higher in late June. Levoglucosan (88-1210 ng m-3, mean 403 ng m-3) was found as the most abundant single compound in early June, while diisobutyl phthalate was the predominant species in late June. During the biomass-burning period in early June, the diurnal trends of most of the primary and secondary organic aerosol tracers were characterized by the concentration peaks observed at mid-night or in early morning, while in late June most of the organic species peaked in late afternoon. This suggests that smoke plumes from biomass burning can uplift the aerosol particulate matter to a certain altitude, which could be further transported to and encountered the summit of Mt. Tai during nighttime. On the basis of the tracer-based method for the estimation of biomass-burning OC, fungal-spore OC and biogenic secondary organic carbon (SOC), we estimate that an average of 24% (up to 64%) of the

  13. The effect of local sources on particle size and chemical composition and their role in aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Portin, H.; Leskinen, A.; Hao, L.; Kortelainen, A.; Miettinen, P.; Jaatinen, A.; Laaksonen, A.; Lehtinen, K. E. J.; Romakkaniemi, S.; Komppula, M.

    2013-12-01

    The effects of local pollutant sources and particle chemical composition on aerosol-cloud interactions were investigated by measuring cloud interstitial and total aerosol size distributions, particle chemical composition and hygroscopic growth factors and cloud droplet size distributions on an observation tower, with a special focus on comparing clean air masses with those affected by local sources. The polluted air masses contained more particles than the clean air masses in all size classes, excluding the accumulation mode. This was caused by cloud processing, which was also observed for the polluted air but to a lesser extent. Some, mostly minor, differences in the particle chemical composition between the air masses were observed. The average size and number concentration of activating particles were quite similar for both air masses, producing average droplet populations with only minor distinctions. As a case study, a long cloud event was analyzed in detail regarding emissions from local sources, including a paper mill and a heating plant. Clear differences in the total and accumulation mode particle concentrations, particle hygroscopicity and chemical composition during the cloud event were observed. Particularly, larger particles, higher hygroscopicities and elevated amounts of inorganic constituents, especially SO4, were linked with the pollutant plumes. In the air masses affected by traffic and domestic wood combustion, a bimodal particle hygroscopicity distribution was observed, indicating externally mixed aerosol. The variable conditions during the event had a clear impact on cloud droplet formation.

  14. Feasibility of the detection of trace elements in particulate matter using online High-Resolution Aerosol Mass Spectrometry

    SciTech Connect

    Salcedo, D.; Laskin, Alexander; Shutthanandan, V.; Jimenez, Jose L.

    2012-08-10

    The feasibility of using an online thermal-desorption electron-ionization high-resolution aerosol mass spectrometer (AMS) for the detection of particulate trace elements was investigated analyzing data from Mexico City obtained during the MILAGRO 2006 field campaign, where relatively high concentrations of trace elements have been reported. This potential application is of interest due to the real-time data provided by the AMS, its high sensitivity and time resolution, and the widespread availability and use of this instrument. High resolution mass spectral analysis, isotopic ratios, and ratios of different ions containing the same elements are used to constrain the chemical identity of the measured ions. The detection of Cu, Zn, As, Se, Sn, and Sb is reported. There was no convincing evidence for the detection of other trace elements commonly reported in PM. The elements detected tend to be those with lower melting and boiling points, as expected given the use of a vaporizer at 600oC in this instrument. Operation of the AMS vaporizer at higher temperatures is likely to improve trace element detection. The detection limit is estimated at approximately 0.3 ng m-3 for 5-min of data averaging. Concentration time series obtained from the AMS data were compared to concentration records determined from offline analysis of particle samples from the same times and locations by ICP (PM2.5) and PIXE (PM1.1 and PM0.3). The degree of correlation and agreement between the three instruments (AMS, ICP, and PIXE) varied depending on the element. The AMS shows promise for real-time detection of some trace elements, although additional work including laboratory calibrations with different chemical forms of these elements are needed to further develop this technique and to understand the differences with the ambient data from the other techniques. The trace elements peaked in the morning as expected for primary sources, and the many detected plumes suggest the presence of multiple

  15. [Specific parameters for the calculation of dose after aerosol inhalation of transuranium elements].

    PubMed

    Ramounet-Le Gall, B; Fritsch, P; Abram, M C; Rateau, G; Grillon, G; Guillet, K; Baude, S; Bérard, P; Ansoborlo, E; Delforge, J

    2002-07-01

    A review on specific parameter measurements to calculate doses per unit of incorporation according to recommendations of the International Commission of Radiological Protection has been performed for inhaled actinide oxides. Alpha activity distribution of the particles can be obtained by autoradiography analysis using aerosol sampling filters at the work places. This allows us to characterize granulometric parameters of "pure" actinide oxides, but complementary analysis by scanning electron microscopy is needed for complex aerosols. Dissolution parameters with their standard deviation are obtained after rat inhalation exposure, taking into account both mechanical lung clearance and actinide transfer to the blood estimated from bone retention. In vitro experiments suggest that the slow dissolution rate might decrease as a function of time following exposure. Dose calculation software packages have been developed to take into account granulometry and dissolution parameters as well as specific physiological parameters of exposed individuals. In the case of poorly soluble actinide oxides, granulometry and physiology appear as the main parameters controlling dose value, whereas dissolution only alters dose distribution. Validation of these software packages are in progress.

  16. Predicting ambient aerosol Thermal Optical Reflectance (TOR) measurements from infrared spectra: elemental carbon

    NASA Astrophysics Data System (ADS)

    Dillner, A. M.; Takahama, S.

    2015-06-01

    Elemental carbon (EC) is an important constituent of atmospheric particulate matter because it absorbs solar radiation influencing climate and visibility and it adversely affects human health. The EC measured by thermal methods such as Thermal-Optical Reflectance (TOR) is operationally defined as the carbon that volatilizes from quartz filter samples at elevated temperatures in the presence of oxygen. Here, methods are presented to accurately predict TOR EC using Fourier Transform Infrared (FT-IR) absorbance spectra from atmospheric particulate matter collected on polytetrafluoroethylene (PTFE or Teflon) filters. This method is similar to the procedure tested and developed for OC in prior work (Dillner and Takahama, 2015). Transmittance FT-IR analysis is rapid, inexpensive, and non-destructive to the PTFE filter samples which are routinely collected for mass and elemental analysis in monitoring networks. FT-IR absorbance spectra are obtained from 794 filter samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to collocated TOR EC measurements. The FTIR spectra are divided into calibration and test sets. Two calibrations are developed, one which is developed from uniform distribution of samples across the EC mass range (Uniform EC) and one developed from a~uniform distribution of low EC mass samples (EC < 2.4 μg, Low Uniform EC). A hybrid approach which applies the low EC calibration to low EC samples and the Uniform EC calibration to all other samples is used to produces predictions for low EC samples that have mean error on par with parallel TOR EC samples in the same mass range and an estimate of the minimum detection limit (MDL) that is on par with TOR EC MDL. For all samples, this hybrid approach leads to precise and accurate TOR EC predictions by FT-IR as indicated by high coefficient of variation (R2; 0.96), no

  17. Predicting ambient aerosol thermal-optical reflectance measurements from infrared spectra: elemental carbon

    NASA Astrophysics Data System (ADS)

    Dillner, A. M.; Takahama, S.

    2015-10-01

    Elemental carbon (EC) is an important constituent of atmospheric particulate matter because it absorbs solar radiation influencing climate and visibility and it adversely affects human health. The EC measured by thermal methods such as thermal-optical reflectance (TOR) is operationally defined as the carbon that volatilizes from quartz filter samples at elevated temperatures in the presence of oxygen. Here, methods are presented to accurately predict TOR EC using Fourier transform infrared (FT-IR) absorbance spectra from atmospheric particulate matter collected on polytetrafluoroethylene (PTFE or Teflon) filters. This method is similar to the procedure developed for OC in prior work (Dillner and Takahama, 2015). Transmittance FT-IR analysis is rapid, inexpensive and nondestructive to the PTFE filter samples which are routinely collected for mass and elemental analysis in monitoring networks. FT-IR absorbance spectra are obtained from 794 filter samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to collocated TOR EC measurements. The FT-IR spectra are divided into calibration and test sets. Two calibrations are developed: one developed from uniform distribution of samples across the EC mass range (Uniform EC) and one developed from a uniform distribution of Low EC mass samples (EC < 2.4 μg, Low Uniform EC). A hybrid approach which applies the Low EC calibration to Low EC samples and the Uniform EC calibration to all other samples is used to produce predictions for Low EC samples that have mean error on par with parallel TOR EC samples in the same mass range and an estimate of the minimum detection limit (MDL) that is on par with TOR EC MDL. For all samples, this hybrid approach leads to precise and accurate TOR EC predictions by FT-IR as indicated by high coefficient of determination (R2; 0.96), no bias (0.00 μg m-3, a

  18. Chemical composition of size-segregated aerosols in Lhasa city, Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wan, Xin; Kang, Shichang; Xin, Jinyuan; Liu, Bin; Wen, Tianxue; Wang, Pengling; Wang, Yuesi; Cong, Zhiyuan

    2016-06-01

    To reveal the chemical characteristics of size-segregated aerosols in the high-altitude city of Tibetan Plateau, eight-size aerosol samples were collected in Lhasa from March 2013 to February 2014. The annual mean of online PM2.5 was 25.0 ± 16.0 μg m- 3, which was much lower than Asian cities but similar with some European cities. The annual mean concentrations of organic carbon (OC, 7.92 μg m- 3 in PM2.1 and 12.66 μg m- 3 in PM9.0) and elemental carbon (EC, 1.00 μg m- 3 in PM2.1 and 1.21 μg m- 3 in PM9.0) in Lhasa aerosols were considerably lower than those heavily polluted cities such as Beijing and Xi'an, China and Kathmandu, Nepal. Sulfate, NO3-, NH4+ and Ca2 + were 0.75 ± 0.31, 0.82 ± 0.35, 0.38 ± 0.34 and 0.57 ± 0.29 μg m- 3 in fine particles while in coarse particles they were 0.57 ± 0.37, 0.73 ± 0.23, 0.07 ± 0.03 and 2.52 ± 1.37 μg m- 3, respectively. Secondary water-soluble ions composed 35.8% of the total ionic components in fine particles according to the established electroneutrality, while in coarse particles they took up only 9.3%. Ca2 + (40.6%) was the major component of the coarse particles. For seasonality, the concentrations of OC, EC, SO42 -, NH4+, K+, Ca2 +, Mg2 +, Cl- and Na+ presented higher values during late autumn and winter but were relatively lower in spring and summer. Nevertheless, NO3- was considerably higher in summer and autumn, presumably due to increased tourist-vehicle emissions. During winter and spring, [Ca2 +]/[NO3-+ SO42 -] ratios in coarse particles showed higher values of 7.31 and 6.17, respectively, emphasizing the dust influence. [NO3-]/[SO42 -] ratios in fine particles during spring, summer and autumn exceeding 1 indicated that the currently predominant vehicle exhaust makes a greater contribution to the aerosols. While more stationary sources such as coal and biomass burning existed in winter since the [NO3-]/[SO42 -] ratio was less than 1. Different sources and formation processes lead to a bimodal size

  19. Comparison of cloud residual and background aerosol particle composition during the hill cap cloud experiment HCCT 2010 in Central Germany

    NASA Astrophysics Data System (ADS)

    Roth, A.; Mertes, S.; van Pinxteren, D.; Klimach, T.; Herrmann, H.; Schneider, J.; Borrmann, S.

    2013-12-01

    Physical and chemical characterization of cloud residual and background aerosol particles as well as aerosol-cloud interactions were investigated during the Hill Cap Cloud Thuringia (HCCT) experiment in September and October 2010 on the mountain site Schmücke (938m a.s.l.) in Germany. Background aerosol particles were sampled by an interstitial inlet whereas cloud droplets from orographic clouds were collected by a counter flow virtual impactor (CVI). Chemical composition analysis and sizing of the particles was done by single particle mass spectrometry using the bipolar Aircraft-based Laser Ablation Aerosol Mass Spectrometer (ALABAMA, particle diameter range 150 nm - 900 nm; Brands et al., 2011) and by two Aerodyne Aerosol Mass Spectrometers (C-ToF, HR-ToF). Supplementary, the particle size distribution was measured with an optical particle counter (OPC, size range 0.25 μm - 32 μm). During the field campaign about 21000 positive and negative single particle mass spectra could be obtained from cloud residual particles and about 239000 from background aerosol particles. The data were clustered by means of the fuzzy c-means algorithm. The resulting clusters consisting of mass spectra with similar fragmentation patterns were, dependent on presence and combination of peaks, assigned to certain particle types. For both sampled particle types a large portion is internally mixed with nitrate and/or sulfate. This might be an explanation, why a comparison of the composition shows a higher fraction of soot particles and amine-containing particles among cloud residuals. Furthermore cloud residuals show a decreased fraction of particles being internally mixed only with nitrate (10%) compared to background aerosol particles (19%) of the same air masses, whereas the fraction of particles containing both nitrate and sulfate increases from 39% to 63% indicating cloud processing by uptake and oxidation of SO2 (Harris et al, 2013). Brands, M., Kamphus, M., Böttger, T., Schneider

  20. Black carbon surface oxidation and organic composition of beech-wood soot aerosols

    NASA Astrophysics Data System (ADS)

    Corbin, J. C.; Lohmann, U.; Sierau, B.; Keller, A.; Burtscher, H.; Mensah, A. A.

    2015-10-01

    Soot particles are the most strongly light-absorbing particles commonly found in the atmosphere. They are major contributors to the radiative budget of the Earth and to the toxicity of atmospheric pollution. Atmospheric aging of soot may change its health- and climate-relevant properties by oxidizing the primary black carbon (BC) or organic particulate matter (OM) which, together with ash, comprise soot. This atmospheric aging, which entails the condensation of secondary particulate matter as well as the oxidation of the primary OM and BC emissions, is currently poorly understood. In this study, atmospheric aging of wood-stove soot aerosols was simulated in a continuous-flow reactor. The composition of fresh and aged soot particles was measured in real time by a dual-vaporizer aerosol-particle mass spectrometer (SP-AMS). The dual-vaporizer SP-AMS provided information on the OM and BC components of the soot as well as on refractory components internally mixed with BC. By switching the SP-AMS laser vaporizer off and using only the AMS thermal vaporizer (at 600 °C), information on the OM component only was obtained. In both modes, OM appeared to be generated largely by cellulose and/or hemicellulose pyrolysis and was only present in large amounts when new wood was added to the stove. In SP-AMS mode, BC signals otherwise dominated the mass spectrum. These signals consisted of ions related to refractory BC (rBC, C1-5+), oxygenated carbonaceous ions (CO1-2+), potassium (K+), and water (H2O+ and related fragments). The C4+ : C3+ ratio, but not the C1+ : C3+ ratio, was consistent with the BC-structure trends of Corbin et al. (2015c). The CO1-2+ signals likely originated from BC surface groups: upon aging, both CO+ and CO2+ increased relative to C1-3+ while CO2+ simultaneously increased relative to CO+. Factor analysis (positive matrix factorization) of SP-AMS and AMS data, using a modified error model to address peak-integration uncertainties, indicated that the surface

  1. Wintertime aerosol chemical composition, volatility, and spatial variability in the greater London area

    DOE PAGES

    Xu, L.; Williams, L. R.; Young, D. E.; Allan, J. D.; Coe, H.; Massoli, P.; Fortner, E.; Chhabra, P.; Herndon, S.; Brooks, W. A.; et al

    2016-02-02

    The composition of PM1 (particulate matter with diameter less than 1 µm) in the greater London area was characterized during the Clean Air for London (ClearfLo) project in winter 2012. Two high-resolution time-of-flight aerosol mass spectrometers (HR-ToF-AMS) were deployed at a rural site (Detling, Kent) and an urban site (North Kensington, London). The simultaneous and high-temporal resolution measurements at the two sites provide a unique opportunity to investigate the spatial distribution of PM1. We find that the organic aerosol (OA) concentration is comparable between the rural and urban sites, but the contribution from different sources is distinctly different between the two sites.more » The concentration of solid fuel OA at the urban site is about twice as high as at the rural site, due to elevated domestic heating in the urban area. While the concentrations of oxygenated OA (OOA) are well-correlated between the two sites, the OOA concentration at the rural site is almost twice that of the urban site. At the rural site, more than 70 % of the carbon in OOA is estimated to be non-fossil, which suggests that OOA is likely related to aged biomass burning considering the small amount of biogenic SOA in winter. Thus, it is possible that the biomass burning OA contributes a larger fraction of ambient OA in wintertime than what previous field studies have suggested. A suite of instruments was deployed downstream of a thermal denuder (TD) to investigate the volatility of PM1 species at the rural Detling site. After heating at 250 °C in the TD, 40 % of the residual mass is OA, indicating the presence of non-volatile organics in the aerosol. Although the OA associated with refractory black carbon (rBC; measured by a soot-particle aerosol mass spectrometer) only accounts for < 10 % of the total OA (measured by a HR-ToF-AMS) at 250 °C, the two measurements are well-correlated, suggesting that the non-volatile organics have similar sources or have

  2. Wintertime aerosol chemical composition, volatility, and spatial variability in the greater London area

    NASA Astrophysics Data System (ADS)

    Xu, L.; Williams, L. R.; Young, D. E.; Allan, J. D.; Coe, H.; Massoli, P.; Fortner, E.; Chhabra, P.; Herndon, S.; Brooks, W. A.; Jayne, J. T.; Worsnop, D. R.; Aiken, A. C.; Liu, S.; Gorkowski, K.; Dubey, M. K.; Fleming, Z. L.; Visser, S.; Prévôt, A. S. H.; Ng, N. L.

    2016-02-01

    The composition of PM1 (particulate matter with diameter less than 1 µm) in the greater London area was characterized during the Clean Air for London (ClearfLo) project in winter 2012. Two high-resolution time-of-flight aerosol mass spectrometers (HR-ToF-AMS) were deployed at a rural site (Detling, Kent) and an urban site (North Kensington, London). The simultaneous and high-temporal resolution measurements at the two sites provide a unique opportunity to investigate the spatial distribution of PM1. We find that the organic aerosol (OA) concentration is comparable between the rural and urban sites, but the contribution from different sources is distinctly different between the two sites. The concentration of solid fuel OA at the urban site is about twice as high as at the rural site, due to elevated domestic heating in the urban area. While the concentrations of oxygenated OA (OOA) are well-correlated between the two sites, the OOA concentration at the rural site is almost twice that of the urban site. At the rural site, more than 70 % of the carbon in OOA is estimated to be non-fossil, which suggests that OOA is likely related to aged biomass burning considering the small amount of biogenic SOA in winter. Thus, it is possible that the biomass burning OA contributes a larger fraction of ambient OA in wintertime than what previous field studies have suggested. A suite of instruments was deployed downstream of a thermal denuder (TD) to investigate the volatility of PM1 species at the rural Detling site. After heating at 250 °C in the TD, 40 % of the residual mass is OA, indicating the presence of non-volatile organics in the aeroso