Science.gov

Sample records for aerosol emission rates

  1. Carbonaceous aerosols of aviation and shipping emissions

    NASA Astrophysics Data System (ADS)

    Popovicheva, O. B.; Kireeva, E. D.; Timofeev, M. A.; Shonija, N. K.; Mogil'Nikov, V. P.

    2010-06-01

    This is a study of the physical and chemical properties of carbonaceous aerosols emitted by transport systems (namely, by aircraft gas turbine engines and large ship diesel engines) into the atmosphere. A comparative analysis of the morphology, size, elemental composition, and surface chemistry between aviation and diesel soot particles reveals the general and characteristic features of emissions from each source. The high pollution rate of diesel soot particles, considerable fraction of metal admixtures, and availability of char particles characterize the specific features of the formation of particles of this type. The main characteristics characterizing the interaction between aviation and shipping emission aerosols in the moist atmosphere (the composition of organic and water-soluble fractions at the surface) have been obtained. Due to high hygroscopicity, the microparticles can generate cloud condensation nuclei and initiate contrails and additional tropospheric cloudiness.

  2. Global Scale Attribution of Anthropogenic and Natural Dust Sources and their Emission Rates Based on MODIS Deep Blue Aerosol Products

    NASA Technical Reports Server (NTRS)

    Ginoux, Paul; Prospero, Joseph M.; Gill, Thomas E.; Hsu, N. Christina; Zhao, Ming

    2012-01-01

    Our understanding of the global dust cycle is limited by a dearth of information about dust sources, especially small-scale features which could account for a large fraction of global emissions. Here we present a global-scale high-resolution (0.1 deg) mapping of sources based on Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue estimates of dust optical depth in conjunction with other data sets including land use. We ascribe dust sources to natural and anthropogenic (primarily agricultural) origins, calculate their respective contributions to emissions, and extensively compare these products against literature. Natural dust sources globally account for 75% of emissions; anthropogenic sources account for 25%. North Africa accounts for 55% of global dust emissions with only 8% being anthropogenic, mostly from the Sahel. Elsewhere, anthropogenic dust emissions can be much higher (75% in Australia). Hydrologic dust sources (e.g., ephemeral water bodies) account for 31% worldwide; 15% of them are natural while 85% are anthropogenic. Globally, 20% of emissions are from vegetated surfaces, primarily desert shrublands and agricultural lands. Since anthropogenic dust sources are associated with land use and ephemeral water bodies, both in turn linked to the hydrological cycle, their emissions are affected by climate variability. Such changes in dust emissions can impact climate, air quality, and human health. Improved dust emission estimates will require a better mapping of threshold wind velocities, vegetation dynamics, and surface conditions (soil moisture and land use) especially in the sensitive regions identified here, as well as improved ability to address small-scale convective processes producing dust via cold pool (haboob) events frequent in monsoon regimes.

  3. Observed Barium Emission Rates

    NASA Technical Reports Server (NTRS)

    Stenbaek-Nielsen, H. C.; Wescott, E. M.; Hallinan, T. J.

    1993-01-01

    The barium releases from the CRRES satellite have provided an opportunity for verifying theoretically calculated barium ion and neutral emission rates. Spectra of the five Caribbean releases in the summer of 1991 were taken with a spectrograph on board a U.S. Air Force jet aircraft. Because the line of sight release densities are not known, only relative rates could be obtained. The observed relative rates agree well with the theoretically calculated rates and, together with other observations, confirm the earlier detailed theoretical emission rates. The calculated emission rates can thus with good accuracy be used with photometric observations. It has been postulated that charge exchange between neutral barium and oxygen ions represents a significant source for ionization. If so. it should be associated with emissions at 4957.15 A and 5013.00 A, but these emissions were not detected.

  4. Caribbean coral growth influenced by anthropogenic aerosol emissions

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Lester; Cox, Peter M.; Economou, Theo; Halloran, Paul R.; Mumby, Peter J.; Booth, Ben B. B.; Carilli, Jessica; Guzman, Hector M.

    2013-05-01

    Coral growth rates are highly dependent on environmental variables such as sea surface temperature and solar irradiance. Multi-decadal variability in coral growth rates has been documented throughout the Caribbean over the past 150-200 years, and linked to variations in Atlantic sea surface temperatures. Multi-decadal variability in sea surface temperatures in the North Atlantic, in turn, has been linked to volcanic and anthropogenic aerosol forcing. Here, we examine the drivers of changes in coral growth rates in the western Caribbean between 1880 and 2000, using previously published coral growth chronologies from two sites in the region, and a numerical model. Changes in coral growth rates over this period coincided with variations in sea surface temperature and incoming short-wave radiation. Our model simulations show that variations in the concentration of anthropogenic aerosols caused variations in sea surface temperature and incoming radiation in the second half of the twentieth century. Before this, variations in volcanic aerosols may have played a more important role. With the exception of extreme mass bleaching events, we suggest that neither climate change from greenhouse-gas emissions nor ocean acidification is necessarily the driver of multi-decadal variations in growth rates at some Caribbean locations. Rather, the cause may be regional climate change due to volcanic and anthropogenic aerosol emissions.

  5. Effect of tropospheric aerosols upon atmospheric infrared cooling rates

    NASA Technical Reports Server (NTRS)

    Harshvardhan, MR.; Cess, R. D.

    1978-01-01

    The effect of tropospheric aerosols on atmospheric infrared cooling rates is investigated by the use of recent models of infrared gaseous absorption. A radiative model of the atmosphere that incorporates dust as an absorber and scatterer of infrared radiation is constructed by employing the exponential kernel approximation to the radiative transfer equation. Scattering effects are represented in terms of a single scattering albedo and an asymmetry factor. The model is applied to estimate the effect of an aerosol layer made of spherical quartz particles on the infrared cooling rate. Calculations performed for a reference wavelength of 0.55 microns show an increased greenhouse effect, where the net upward flux at the surface is reduced by 10% owing to the strongly enhanced downward emission. There is a substantial increase in the cooling rate near the surface, but the mean cooling rate throughout the lower troposphere was only 10%.

  6. Marine aerosol formation from biogenic iodine emissions.

    PubMed

    O'Dowd, Colin D; Jimenez, Jose L; Bahreini, Roya; Flagan, Richard C; Seinfeld, John H; Hämeri, Kaarle; Pirjola, Liisa; Kulmala, Markku; Jennings, S Gerard; Hoffmann, Thorsten

    2002-06-01

    The formation of marine aerosols and cloud condensation nuclei--from which marine clouds originate--depends ultimately on the availability of new, nanometre-scale particles in the marine boundary layer. Because marine aerosols and clouds scatter incoming radiation and contribute a cooling effect to the Earth's radiation budget, new particle production is important in climate regulation. It has been suggested that sulphuric acid derived from the oxidation of dimethyl sulphide is responsible for the production of marine aerosols and cloud condensation nuclei. It was accordingly proposed that algae producing dimethyl sulphide play a role in climate regulation, but this has been difficult to prove and, consequently, the processes controlling marine particle formation remains largely undetermined. Here, using smog chamber experiments under coastal atmospheric conditions, we demonstrate that new particles can form from condensable iodine-containing vapours, which are the photolysis products of biogenic iodocarbons emitted from marine algae. Moreover, we illustrate, using aerosol formation models, that concentrations of condensable iodine-containing vapours over the open ocean are sufficient to influence marine particle formation. We suggest therefore that marine iodocarbon emissions have a potentially significant effect on global radiative forcing. PMID:12050661

  7. Atmospheric science: marine aerosols and iodine emissions.

    PubMed

    McFiggans, Gordon

    2005-02-10

    O'Dowd et al. describe the formation of marine aerosols from biogenic iodine and the growth of these aerosols into cloud-condensation nuclei (CCN). Based on chamber and modelling results, the authors suggest that biogenic organic iodine compounds emitted from macroalgae may be responsible for coastal particle bursts and that production of these compounds in the open ocean could increase CCN there too. It has since been shown that coastal particles are more likely to be produced from the photooxidation of molecular iodine. Moreover, I contend that open-ocean particle production and cloud enhancement do not result from emissions of organic iodine at atmospheric levels. For iodine particles to affect cloud properties over the remote ocean, an additional source of iodine is necessary as organic precursors cannot be responsible. PMID:15703706

  8. Can scooter emissions dominate urban organic aerosol?

    NASA Astrophysics Data System (ADS)

    El Haddad, Imad; Platt, Stephen; Huang, Ru-Jin; Zardini, Alessandro; Clairotte, Micheal; Pieber, Simone; Pfaffenberger, Lisa; Fuller, Steve; Hellebust, Stig; Temime-Roussel, Brice; Slowik, Jay; Chirico, Roberto; Kalberer, Markus; Marchand, Nicolas; Dommen, Josef; Astorga, Covadonga; Baltensperger, Urs; Prevot, Andre

    2014-05-01

    In urban areas, where the health impact of pollutants increases due to higher population density, traffic is a major source of ambient organic aerosol (OA). A significant fraction of OA from traffic is secondary, produced via the reaction of exhaust volatile organic compounds (VOCs) with atmospheric oxidants. Secondary OA (SOA) has not been systematically assessed for different vehicles and driving conditions and thus its relative importance compared to directly emitted, primary OA (POA) is unknown, hindering the design of effective vehicle emissions regulations. 2-stroke (2S) scooters are inexpensive and convenient and as such a popular means of transportation globally, particularly in Asia. European regulations for scooters are less stringent than for other vehicles and thus primary particulate emissions and SOA precursor VOCs from 2S engines are estimated to be much higher. Assessing the effects of scooters on public health requires consideration of both POA, and SOA production. Here, we quantify POA emission factors and potential SOA EFs from 2S scooters, and the effect of using aromatic free fuel instead of standard gasoline thereon. During the tests, Euro 1 and Euro 2 2S scooters were run in idle or simulated low power conditions. Emissions from a Euro 2 2S scooter were also sampled during regulatory driving cycles on a chassis dynamometer. Vehicle exhaust was introduced into smog chambers, where POA emission and SOA production were quantified using a high-resolution time-of-flight aerosol mass spectrometer. A high resolution proton transfer time-of-flight mass spectrometer was used to investigate volatile organic compounds and a suite of instruments was utilized to quantify CO, CO2, O3, NOX and total hydrocarbons. We show that the oxidation of VOCs in the exhaust emissions of 2S scooters produce significant SOA, exceeding by up to an order of magnitude POA emissions. By monitoring the decay of VOC precursors, we show that SOA formation from 2S scooter

  9. Have tropospheric aerosol emissions contributed to the recent climate hiatus?

    NASA Astrophysics Data System (ADS)

    Kühn, Thomas; Partanen, Antti-Ilari; Laakso, Anton; Lu, Zifeng; Bergman, Tommi; Mikkonen, Santtu; Kokkola, Harri; Korhonen, Hannele; Räisänen, Petri; Streets, David G.; Romakkaniemi, Sami; Laaksonen, Ari

    2014-05-01

    During the last 15 years global warming has slowed considerably, with the resulting plateau in global temperature records being dubbed the climate hiatus. Apart from variations in solar irradiance and ocean temperature, increased anthropogenic aerosol emissions in South and East Asia have been suggested as possible causes for this hiatus. While European and and North American aerosol emissions have constantly decreased since the 1980's, emissions in China and India have started increasing at the same time and, although total global aerosol emissions have decreased, aerosol effects on the global energy budget are expected to enhance towards the equator due to stronger irradiance there. In this study we used the aerosol-climate model ECHAM5-HAM2 to assess the effect that this re-distribution of anthropogenic aerosol emissions towards the equator may have on climate. To this end, we computed radiative forcing and equilibrium temperature response due to the change in global aerosol emissions (black carbon (BC), organic carbon and sulphur dioxide) between 1996 and 2010, keeping all other anthropogenic influences fixed. Surprisingly we found that the cooling due the increased aerosol emissions in China and India is almost negligible compared to the warming caused by the decreasing aerosol emissions in Europe and North America. The radiative flux perturbation (RFP; includes aerosol indirect effects) was 0.42 W/m2 and the change in global equilibrium 2 m temperature increased by 0.25 °C. The lack of cooling in China and India stems from a cancellation of sulfate cooling and BC warming, especially over China. There, the strong cloud cover leads to both attenuation of sulphate aerosol light scattering and saturation tendency of indirect aerosol effects on clouds. BC levels on the other hand increase also above the clouds (relative increase of BC levels is almost uniform with height), leading to warming through light absorption.

  10. Photochemical production of aerosols from real plant emissions

    NASA Astrophysics Data System (ADS)

    Mentel, Th. F.; Wildt, J.; Kiendler-Scharr, A.; Kleist, E.; Tillmann, R.; Dal Maso, M.; Fisseha, R.; Hohaus, Th.; Spahn, H.; Uerlings, R.; Wegener, R.; Griffiths, P. T.; Dinar, E.; Rudich, Y.; Wahner, A.

    2009-07-01

    Emission of biogenic volatile organic compounds (VOC) which on oxidation form secondary organic aerosols (SOA) can couple the vegetation with the atmosphere and climate. Particle formation from tree emissions was investigated in a new setup: a plant chamber coupled to a reaction chamber for oxidizing the plant emissions and for forming SOA. Emissions from the boreal tree species birch, pine, and spruce were studied. In addition, α-pinene was used as reference compound. Under the employed experimental conditions, OH radicals were essential for inducing new particle formation, although O3 (≤80 ppb) was always present and a fraction of the monoterpenes and the sesquiterpenes reacted with ozone before OH was generated. Formation rates of 3 nm particles were linearly related to the VOC carbon mixing ratios, as were the maximum observed volume and the condensational growth rates. For all trees, the threshold of new particle formation was lower than for α-pinene. It was lowest for birch which emitted the largest fraction of oxygenated VOC (OVOC), suggesting that OVOC may play a role in the nucleation process. Incremental mass yields were ≍5% for pine, spruce and α-pinene, and ≍10% for birch. α-Pinene was a good model compound to describe the yield and the growth of SOA particles from coniferous emissions. The mass fractional yields agreed well with observations for boreal forests. Despite the somewhat enhanced VOC and OH concentrations our results may be up-scaled to eco-system level. Using the mass fractional yields observed for the tree emissions and weighting them with the abundance of the respective trees in boreal forests SOA mass concentration calculations agree within 6% with field observations. For a future VOC increase of 50% we predict a particle mass increase due to SOA of 19% assuming today's mass contribution of pre-existing aerosol and oxidant levels.

  11. Photochemical production of aerosols from real plant emissions

    NASA Astrophysics Data System (ADS)

    Mentel, Th. F.; Wildt, J.; Kiendler-Scharr, A.; Kleist, E.; Tillmann, R.; Dal Maso, M.; Fisseha, R.; Hohaus, Th.; Spahn, H.; Uerlings, R.; Wegener, R.; Griffiths, P. T.; Dinar, E.; Rudich, Y.; Wahner, A.

    2009-01-01

    By emission of volatile organic compounds (VOC) which on oxidation form secondary organic aerosols (SOA) the vegetation is coupled to atmosphere and climate. New particle formation from tree emissions was investigated in a new setup: a plant chamber coupled to a reaction chamber for oxidizing the plant emissions and for forming SOA. The boreal tree species birch, pine, and spruce were studied and α-pinene was used as reference compound. Under the experimental conditions OH radicals were essential for inducing new particle formation, although O3 (≤80 ppb) was always present and a part of the monoterpenes and the sesquiterpenes reacted already with ozone before OH was generated. Formation rates of 3 nm particles were linearly related to the carbon mixing ratios of the VOC, as were the maximum observed volume and the condensational growth rates. The threshold of new particle formation was lower for the tree emissions than for α-pinene. It was lowest for birch with the largest fraction of oxygenated VOC (OVOC) suggesting that OVOC may play a pivotal role in new particle formation. Incremental mass yields were ≍5% for pine, spruce and α-pinene, and ≍10% for birch. α-Pinene was a good model compound to describe the yield and the growth of SOA particles from coniferous emissions. The mass fractional yields agreed well with observations for boreal forests. Despite our somewhat enhanced VOC and OH concentrations our results may thus be up-scaled to eco-system level. Using the mass fractional yields observed for the tree emissions and weighting them with the abundance of the respective trees in boreal forests we calculate SOA mass concentrations which agree within 6% with field observations. For a future VOC increase of 50% we predict a particle mass increase due to SOA of 19% assuming today's mass contribution of pre-existing aerosol.

  12. SEAC4RS Aerosol Radiative Effects and Heating Rates

    NASA Astrophysics Data System (ADS)

    Cochrane, S.; Schmidt, S.; Redemann, J.; Hair, J. W.; Ferrare, R. A.; Segal-Rosenhaimer, M.; LeBlanc, S. E.

    2015-12-01

    We will present (a) aerosol optical properties, (b) aerosol radiative forcing, (c) aerosol and gas absorption and heating rates, and (d) spectral surface albedo for cases from August 19th and 26th of the SEAC4RS mission. This analysis is based on irradiance data from the Solar Spectral Flux Radiometer (SSFR), spectral aerosol optical depth from the Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR), and extinction profiles from the DIAL/High Spectral Resolution Lidar (HSRL). We derive spectrally resolved values of single scattering albedo, asymmetry parameter, and surface albedo from the data, and determine profiles of absorption and heating rate segregated by absorber (aerosol and gas).

  13. Effects of aerosol emission pathways on future warming and human health

    NASA Astrophysics Data System (ADS)

    Partanen, Antti-Ilari; Matthews, Damon

    2016-04-01

    The peak global temperature is largely determined by cumulative emissions of long-lived greenhouse gases. However, anthropogenic emissions include also so-called short-lived climate forcers (SLCFs), which include aerosol particles and methane. Previous studies with simple models indicate that the timing of SLCF emission reductions has only a small effect on the rate of global warming and even less of an effect on global peak temperatures. However, these simple model analyses do not capture the spatial dynamics of aerosol-climate interactions, nor do they consider the additional effects of aerosol emissions on human health. There is therefore merit in assessing how the timing of aerosol emission reductions affects global temperature and premature mortality caused by elevated aerosol concentrations, using more comprehensive climate models. Here, we used an aerosol-climate model ECHAM-HAMMOZ to simulate the direct and indirect radiative forcing resulting from aerosol emissions. We simulated Representative Concentration Pathway (RCP) scenarios, and we also designed idealized low and high aerosol emission pathways based on RCP4.5 scenario (LOW and HIGH, respectively). From these simulations, we calculated the Effective Radiative Forcing (ERF) from aerosol emissions between 1850 and 2100, as well as aerosol concentrations used to estimate the premature mortality caused by particulate pollution. We then use the University of Victoria Earth System Climate Model to simulate the spatial and temporal pattern of climate response to these aerosol-forcing scenarios, in combination with prescribed emissions of both short and long-lived greenhouse gases according to the RCP4.5 scenario. In the RCP scenarios, global mean ERF declined during the 21st century from ‑1.3 W m‑2 to ‑0.4 W m‑2 (RCP8.5) and ‑0.2 W m‑2 (RCP2.6). In the sensitivity scenarios, the forcing at the end of the 21st century was ‑1.6 W m‑2 (HIGH) and practically zero (LOW). The difference in global

  14. Sulfate aerosol nucleation, primary emissions, and cloud radiative forcing in the aerosol- climate model ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    Kazil, J.; Quaas, J.; Kinne, S.; Rast, S.; Stier, P.; Feichter, J.

    2008-12-01

    Aerosol nucleation from the gas phase is a major source of aerosol particles in the Earth's atmosphere, contributing to the number of cloud condensation nuclei and consequently of cloud droplets. Nucleation can therefore act upon cloud radiative properties, cloud lifetimes, and precipitation rates via the first and second indirect aerosol effect. However, freshly nucleated particles measure a few nanometers in diameter, and need to grow to sizes of tens of nanometers in order to participate in atmospherically relevant processes. Depending on the availability of condensable molecules, this process may proceed on time scales between minutes to days. Concurrently, the aerosol particles that formed from the gas phase compete with aerosol particles emitted from the surface for condensable material. Therefore, cloud radiative properties, cloud lifetimes, and precipitation rates will depend to various degrees on aerosol nucleation rates and on the individual nucleation pathways. We have implemented a scheme describing the formation of new particles from the gas phase based on laboratory thermochemical data for neutral and charged nucleation of sulfuric acid and water into the aerosol-climate model ECHAM5-HAM. Here we discuss the role of new particle formation from the gas phase for cloud radiative properties and the contributions of the considered nucleation pathways as well as of particulate sulfate emissions. Our simulations show that sulfate aerosol nucleation plays an important role for cloud radiative forcing, in particular over the oceans and in the southern hemisphere. A comparison of the simulated cloud radiative forcing with satellite observations shows the best agreement when both neutral and charged nucleation proceed, with neutral nucleation playing a minor role in the current model version. In contrast, switching off nucleation leads to a systematic bias of the results away from the observations, indicating an important role of aerosol nucleation in the

  15. Global volcanic aerosol properties derived from emissions, 1990-2014, using CESM1(WACCM)

    NASA Astrophysics Data System (ADS)

    Mills, Michael J.; Schmidt, Anja; Easter, Richard; Solomon, Susan; Kinnison, Douglas E.; Ghan, Steven J.; Neely, Ryan R.; Marsh, Daniel R.; Conley, Andrew; Bardeen, Charles G.; Gettelman, Andrew

    2016-03-01

    Accurate representation of global stratospheric aerosols from volcanic and nonvolcanic sulfur emissions is key to understanding the cooling effects and ozone losses that may be linked to volcanic activity. Attribution of climate variability to volcanic activity is of particular interest in relation to the post-2000 slowing in the rate of global average temperature increases. We have compiled a database of volcanic SO2 emissions and plume altitudes for eruptions from 1990 to 2014 and developed a new prognostic capability for simulating stratospheric sulfate aerosols in the Community Earth System Model. We used these combined with other nonvolcanic emissions of sulfur sources to reconstruct global aerosol properties from 1990 to 2014. Our calculations show remarkable agreement with ground-based lidar observations of stratospheric aerosol optical depth (SAOD) and with in situ measurements of stratospheric aerosol surface area density (SAD). These properties are key parameters in calculating the radiative and chemical effects of stratospheric aerosols. Our SAOD calculations represent a clear improvement over available satellite-based analyses, which generally ignore aerosol extinction below 15 km, a region that can contain the vast majority of stratospheric aerosol extinction at middle and high latitudes. Our SAD calculations greatly improve on that provided for the Chemistry-Climate Model Initiative, which misses about 60% of the SAD measured in situ on average during both volcanically active and volcanically quiescent periods.

  16. Satellite Characterization of Fire Emissions of Aerosols and Gases Relevant to Air-Quality Modeling

    NASA Astrophysics Data System (ADS)

    Ichoku, C. M.; Ellison, L.; Yue, Y.; Wang, J.

    2015-12-01

    Because of the transient and widespread nature of wildfires and other types of open biomass burning, satellite remote sensing has become an indispensable technique for characterizing their smoke emissions for modeling applications, especially at regional to global scales. Fire radiative energy (FRE), whose instantaneous rate of release or fire radiative power (FRP) is measurable from space, has been found to be proportional to both the biomass consumption and emission of aerosol particulate matter. We have leveraged this relationship to generate a global, gridded smoke-aerosol emission coefficients (Ce) dataset based on FRP and aerosol optical thickness (AOT) measurements from the MODIS sensors aboard the Terra and Aqua satellites. Ce is a simple coefficient to convert FRE to smoke aerosol emissions, in the same manner as traditional emission factors are used to convert burned biomass to emissions. The first version of this Fire Energetics and Emissions Research (FEER.v1) global gridded Ce product at 1°x1° resolution is available at http://feer.gsfc.nasa.gov/. Based on published emission ratios, the FEER.v1 Ce product for total smoke aerosol has also been used to generate similar products for specific fire-emitted aerosols and gases, including those that are regulated as 'criteria pollutants' under the US Environmental Protection Agency's National Ambient Air Quality Standards (NAAQS), such as particulate matter (PM) and carbon monoxide (CO). These gridded Ce products were used in conjunction with satellite measurements of FRP to derive emissions of several smoke constituents, which were applied to WRF-Chem fully coupled meteorology-chemistry-aerosol model simulations, with promising results. In this presentation, we analyze WRF-Chem simulations of surface-level concentrations of various pollutants based on FEER.v1 emission products to illustrate their value for air-quality modeling, particularly in parts of Africa and southeast Asia where ground-based air

  17. Rethinking organic aerosols: semivolatile emissions and photochemical aging.

    PubMed

    Robinson, Allen L; Donahue, Neil M; Shrivastava, Manish K; Weitkamp, Emily A; Sage, Amy M; Grieshop, Andrew P; Lane, Timothy E; Pierce, Jeffrey R; Pandis, Spyros N

    2007-03-01

    Most primary organic-particulate emissions are semivolatile; thus, they partially evaporate with atmospheric dilution, creating substantial amounts of low-volatility gas-phase material. Laboratory experiments show that photo-oxidation of diesel emissions rapidly generates organic aerosol, greatly exceeding the contribution from known secondary organic-aerosol precursors. We attribute this unexplained secondary organic-aerosol production to the oxidation of low-volatility gas-phase species. Accounting for partitioning and photochemical processing of primary emissions creates a more regionally distributed aerosol and brings model predictions into better agreement with observations. Controlling organic particulate-matter concentrations will require substantial changes in the approaches that are currently used to measure and regulate emissions. PMID:17332409

  18. SOURCES OF ORGANIC AEROSOL: SEMIVOLATILE EMISSIONS AND PHOTOCHEMICAL AGING

    EPA Science Inventory

    The proposed research integrates emissions testing, smog chamber experiments, and regional chemical transport models (CTMs) to investigate the sources of organic aerosol in urban and regional environments.

  19. Global volcanic aerosol properties derived from emissions, 1990-2015, using CESM1(WACCM)

    NASA Astrophysics Data System (ADS)

    Mills, Michael; Schmidt, Anja; Easter, Richard; Solomon, Susan; Kinnison, Douglas; Ghan, Steven; Neely, Ryan; Marsh, Daniel; Conley, Andrew; Bardeen, Charles; Gettelman, Andrew

    2016-04-01

    Accurate representation of global stratospheric aerosols from volcanic and non-volcanic sulfur emissions is key to understanding the cooling effects and ozone-losses that may be linked to volcanic activity. Attribution of climate variability to volcanic activity is of particular interest in relation to the post-2000 slowing in the rate of global average temperature increases. We have compiled a database of volcanic SO2 emissions and plume altitudes for eruptions from 1990 to 2015, and developed a new prognostic capability for simulating stratospheric sulfate aerosols in the Community Earth System Model (CESM). We combined these with other non-volcanic emissions of sulfur sources to reconstruct global aerosol properties from 1990 to 2015. Our calculations show remarkable agreement with ground-based lidar observations of stratospheric aerosol optical depth (SAOD), and with in situ measurements of stratospheric aerosol surface area density (SAD). These properties are key parameters in calculating the radiative and chemical effects of stratospheric aerosols. Our SAOD calculations represent a clear improvement over available satellite-based analyses, which generally ignore aerosol extinction below 15 km, a region that can contain the vast majority of stratospheric aerosol extinction at mid- and high-latitudes. Our SAD calculations greatly improve on that provided for the Chemistry-Climate Model Initiative, which misses about 60% of the SAD measured in situ on average during both volcanically active and volcanically quiescent periods. The stark differences in SAOD and SAD compared to other data sets will have significant effects on calculations of the radiative forcing of climate and global stratospheric chemistry over the period 2005-2015. In light of these results, the impact of volcanic aerosols in reducing the rate of global average temperature increases since the year 2000 should be revisited. We have made our calculated aerosol properties from January 1990 to

  20. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products

    NASA Astrophysics Data System (ADS)

    Ginoux, Paul; Prospero, Joseph M.; Gill, Thomas E.; Hsu, N. Christina; Zhao, Ming

    2012-09-01

    Our understanding of the global dust cycle is limited by a dearth of information about dust sources, especially small-scale features which could account for a large fraction of global emissions. Here we present a global-scale high-resolution (0.1°) mapping of sources based on Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue estimates of dust optical depth in conjunction with other data sets including land use. We ascribe dust sources to natural and anthropogenic (primarily agricultural) origins, calculate their respective contributions to emissions, and extensively compare these products against literature. Natural dust sources globally account for 75% of emissions; anthropogenic sources account for 25%. North Africa accounts for 55% of global dust emissions with only 8% being anthropogenic, mostly from the Sahel. Elsewhere, anthropogenic dust emissions can be much higher (75% in Australia). Hydrologic dust sources (e.g., ephemeral water bodies) account for 31% worldwide; 15% of them are natural while 85% are anthropogenic. Globally, 20% of emissions are from vegetated surfaces, primarily desert shrublands and agricultural lands. Since anthropogenic dust sources are associated with land use and ephemeral water bodies, both in turn linked to the hydrological cycle, their emissions are affected by climate variability. Such changes in dust emissions can impact climate, air quality, and human health. Improved dust emission estimates will require a better mapping of threshold wind velocities, vegetation dynamics, and surface conditions (soil moisture and land use) especially in the sensitive regions identified here, as well as improved ability to address small-scale convective processes producing dust via cold pool (haboob) events frequent in monsoon regimes.

  1. Experimental Measurements of the Effects of Photo-chemical Oxidation on Aerosol Emissions in Aircraft Exhaust

    NASA Astrophysics Data System (ADS)

    Miracolo, M. A.; Presto, A. A.; Hennigan, C. J.; Nguyen, N.; Ranjan, M.; Reeder, A.; Lipsky, E.; Donahue, N. M.; Robinson, A. L.

    2009-12-01

    Many military and commercial airfields are located in non-attainment areas for particulate matter (PM2.5), but the contribution of emissions from in-use aircraft to local and regional PM2.5 concentrations is uncertain. In collaboration with the Pennsylvania Air National Guard 171st Air Refueling Wing, the Carnegie Mellon University (CMU) Mobile Laboratory was deployed to measure fresh and aged emissions from a CFM56-2B1 gas-turbine engine mounted on a KC-135 Stratotanker airframe. The CFM-56 family of engine powers many different types of military and civilian aircraft, including the Boeing 737 and several Airbus models. It is one of the most widely deployed models of engines in the world. The goal of this work was to measure the gas-particle partitioning of the fresh emissions at atmospherically relevant conditions and to investigate the effect of atmospheric oxidation on aerosol loadings as the emissions age. Emissions were sampled from an inlet installed one meter downstream of the engine exit plane and transferred into a portable smog chamber via a heated inlet line. Separate experiments were conducted at different engine loads ranging from ground idle to take-off rated thrust. During each experiment, some diluted exhaust was added to the chamber and the volatility of the fresh emissions was then characterized using a thermodenuder. After this characterization, the chamber was exposed to either ambient sunlight or UV lights to initiate photochemical oxidation, which produced secondary aerosol and ozone. A suite of gas and particle-phase instrumentation was used to characterize the evolution of the gas and particle-phase emissions, including an aerosol mass spectrometer (AMS) to measure particle size and composition distributions. Fresh emissions of fine particles varied with engine load with peak emission factors at low and high loads. At high engine loads, the fresh emissions were dominated by black carbon; at low loads volatile organic carbon emissions were

  2. Infrared emission by fine water aerosols and fogs.

    PubMed

    Carlon, H R

    1970-09-01

    Water aerosols, even when so finely divided as to be invisible, are capable of very strong absorption and emission in the infrared. This effect is pronounced in the 8-13-micro atmospheric window, owing to the 10(4) increase in the absorptivity of liquid water there over that for water vapor, and it contributes to the well known continuum in this spectral region. Water aerosol is found wherever suitable condensation nuclei exist and the relative humidity is above about 60%. Aerosol droplets increase in size and number with increasing relative humidity, affecting atmospheric radiance measurements accordingly. Trace quantities of aerosol can easily account for emission levels exceeding those of water vapor at 8-13 micro and are clearly indicated in cases where observed radiance levels cannot be accounted for by classical vapor band wing absorption theories. The aerosol emission mechanism is not associated with the formation or growth of the water droplets per se, but simply operates when droplets exist in the airborne state. Fog measurements are discussed and curves presented showing attenuation ratios between wavelengths in the visible and at 8-13 micro. Steam emission measurements leading to the formulation of an aerosol emission model are described briefly. PMID:20094188

  3. Future Projections of Aerosol Optical Depth, Radiative Forcing, and Climate Response Due to Declining Aerosol Emissions in the Representative Concentration Pathways

    NASA Astrophysics Data System (ADS)

    Westervelt, D. M.; Mauzerall, D. L.; Horowitz, L. W.; Naik, V.

    2014-12-01

    It is widely expected that global emissions of atmospheric aerosols and their precursors will decrease strongly throughout the remainder of the 21st century, due to emission reduction policies enacted based on human health concerns. However, the resulting decrease in atmospheric aerosol burden will have unintended climate consequences. Since aerosols generally exert a net cooling influence on the climate, their removal will lead to an unmasking of global warming as well as other changes to the climate system. Aerosol and precursor global emissions decrease by as much as 80% by the year 2100, according to projections in four Representative Concentration Pathway (RCP) scenarios. We use the Geophysical Fluid Dynamics Laboratory Climate Model version 3 (GFDL CM3) to simulate future climate over the 21st century with and without aerosol emission changes projected by the RCPs in order to isolate the radiative forcing and climate response due to the aerosol reductions. We find that up to 1 W m-2 of radiative forcing may be unmasked globally by 2100 due to reductions in aerosol and precursor emissions, leading to average global temperature increases up to 1 K and global precipitation rate increases up to 0.09 mm d-1 (3%). Regionally and locally, climate impacts are much larger, as RCP8.5 projects a 2.1 K warming over China, Japan, and Korea due to reduced aerosol emissions. Our results highlight the importance of crafting emissions control policies with both climate and air pollution benefits in mind. The expected unmasking of additional global warming from aerosol reductions highlights the importance of robust greenhouse gas mitigation policies and may require more aggressive policies than anticipated.

  4. Impacts of emission reductions on aerosol radiative effects

    NASA Astrophysics Data System (ADS)

    Pietikainen, J.-P.; Kupiainen, K.; Klimont, Z.; Makkonen, R.; Korhonen, H.; Karinkanta, R.; Hyvarinen, A.-P.; Karvosenoja, N.; Laaksonen, A.; Lihavainen, H.; Kerminen, V.-M.

    2015-05-01

    The global aerosol-climate model ECHAM-HAMMOZ was used to investigate changes in the aerosol burden and aerosol radiative effects in the coming decades. Four different emissions scenarios were applied for 2030 (two of them applied also for 2020) and the results were compared against the reference year 2005. Two of the scenarios are based on current legislation reductions: one shows the maximum potential of reductions that can be achieved by technical measures, and the other is targeted to short-lived climate forcers (SLCFs). We have analyzed the results in terms of global means and additionally focused on eight subregions. Based on our results, aerosol burdens show an overall decreasing trend as they basically follow the changes in primary and precursor emissions. However, in some locations, such as India, the burdens could increase significantly. The declining emissions have an impact on the clear-sky direct aerosol effect (DRE), i.e. the cooling effect. The DRE could decrease globally 0.06-0.4 W m-2 by 2030 with some regional increases, for example, over India (up to 0.84 W m-2). The global changes in the DRE depend on the scenario and are smallest in the targeted SLCF simulation. The aerosol indirect radiative effect could decline 0.25-0.82 W m-2 by 2030. This decrease takes place mostly over the oceans, whereas the DRE changes are greatest over the continents. Our results show that targeted emission reduction measures can be a much better choice for the climate than overall high reductions globally. Our simulations also suggest that more than half of the near-future forcing change is due to the radiative effects associated with aerosol-cloud interactions.

  5. The impact of residential combustion emission on Arctic aerosol concentrations

    NASA Astrophysics Data System (ADS)

    Eckhardt, Sabine; Stohl, Andreas; Olivie, Dirk J. L.; Grini, Alf

    2016-04-01

    Arctic haze is a seasonal phenomenon with high concentrations of accumulation-mode aerosols occurring in the Arctic in winter and early spring. It has been challenging to reproduced this cylce and concentration levels with atmospheric transport and climate models. However, simulations have been improving recently and it has been shown, that a better scavenging parametrization as well as more realistic emissions are important to obtain better results. In this study we focus on the emission from residential heating, which depend on air temperature, as heating demand is higher on cold days. Varying this emission shows a clear effect on modeled Arctic concentrations. Arctic-mean and annual-mean concentrations of black carbon from Arctic domestic combustion emissions due to heating requirements, are nearly 70% higher when accounting for diurnal emission variability relative to constant emissions (Stohl et al., 2013). Emissions are high when ambient temperatures are low and cold air is transported to the Arctic. In order to capture this systematic effect, we created an interactive emission module for NorESM, a climate model, using the heating degree-day concept. Domestic combustion emissions of BC and other species are scaled interactively with the modeled ambient air temperatures, while securing that levels of annual total emissions from emission scenarios are reproduced. We compare the modeled aerosol concentration in the Arctic to observations and show the level of improvements achieved by using varying emission.

  6. Use of MODIS-Derived Fire Radiative Energy to Estimate Smoke Aerosol Emissions over Different Ecosystems

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Kaufman, Yoram J.

    2003-01-01

    Biomass burning is the main source of smoke aerosols and certain trace gases in the atmosphere. However, estimates of the rates of biomass consumption and emission of aerosols and trace gases from fires have not attained adequate reliability thus far. Traditional methods for deriving emission rates employ the use of emission factors e(sub x), (in g of species x per kg of biomass burned), which are difficult to measure from satellites. In this era of environmental monitoring from space, fire characterization was not a major consideration in the design of the early satellite-borne remote sensing instruments, such as AVHRR. Therefore, although they are able to provide fire location information, they were not adequately sensitive to variations in fire strength or size, because their thermal bands used for fire detection saturated at the lower end of fire radiative temperature range. As such, hitherto, satellite-based emission estimates employ proxy techniques using satellite derived fire pixel counts (which do not express the fire strength or rate of biomass consumption) or burned areas (which can only be obtained after the fire is over). The MODIS sensor, recently launched into orbit aboard EOS Terra (1999) and Aqua (2002) satellites, have a much higher saturation level and can, not only detect the fire locations 4 times daily, but also measures the at-satellite fire radiative energy (which is a measure of the fire strength) based on its 4 micron channel temperature. Also, MODIS measures the optical thickness of smoke and other aerosols. Preliminary analysis shows appreciable correlation between the MODIS-derived rates of emission of fire radiative energy and smoke over different regions across the globe. These relationships hold great promise for deriving emission coefficients, which can be used for estimating smoke aerosol emissions from MODIS active fire products. This procedure has the potential to provide more accurate emission estimates in near real

  7. A simple parameterization of aerosol emissions in RAMS

    NASA Astrophysics Data System (ADS)

    Letcher, Theodore

    Throughout the past decade, a high degree of attention has been focused on determining the microphysical impact of anthropogenically enhanced concentrations of Cloud Condensation Nuclei (CCN) on orographic snowfall in the mountains of the western United States. This area has garnered a lot of attention due to the implications this effect may have on local water resource distribution within the Region. Recent advances in computing power and the development of highly advanced microphysical schemes within numerical models have provided an estimation of the sensitivity that orographic snowfall has to changes in atmospheric CCN concentrations. However, what is still lacking is a coupling between these advanced microphysical schemes and a real-world representation of CCN sources. Previously, an attempt to representation the heterogeneous evolution of aerosol was made by coupling three-dimensional aerosol output from the WRF Chemistry model to the Colorado State University (CSU) Regional Atmospheric Modeling System (RAMS) (Ward et al. 2011). The biggest problem associated with this scheme was the computational expense. In fact, the computational expense associated with this scheme was so high, that it was prohibitive for simulations with fine enough resolution to accurately represent microphysical processes. To improve upon this method, a new parameterization for aerosol emission was developed in such a way that it was fully contained within RAMS. Several assumptions went into generating a computationally efficient aerosol emissions parameterization in RAMS. The most notable assumption was the decision to neglect the chemical processes in formed in the formation of Secondary Aerosol (SA), and instead treat SA as primary aerosol via short-term WRF-CHEM simulations. While, SA makes up a substantial portion of the total aerosol burden (much of which is made up of organic material), the representation of this process is highly complex and highly expensive within a numerical

  8. Measurement of gas and aerosol agricultural emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies of air quality indicate that agricultural emissions may impact particulate mass concentrations through both primary and secondary processes. Agriculture impacts can include primary dust emission, on-facility combustion from vehicles or seasonal field burning, and gaseous emissions from waste...

  9. Primary aerosol emission trends for China, 1990-2005

    NASA Astrophysics Data System (ADS)

    Lei, Y.; Zhang, Q.; He, K. B.; Streets, D. G.

    2010-07-01

    An inventory of anthropogenic primary aerosol emissions in China was developed for 1990-2005 using a technology-based approach. Taking into account changes in the technology penetration within industry sectors and improvements in emission controls driven by stricter emission standards, a dynamic methodology was derived and implemented to estimate inter-annual emission factors. Emission factors of PM2.5 decreased by 7%-69% from 1990 to 2005 in different industry sectors of China, and emission factors of TSP decreased by 18%-80% as well. Emissions of PM2.5, PM10 and TSP presented similar trends: increased in the first six years of 1990s and decreased until 2000, then increased again in the following years. Emissions of TSP reached a historical high (35.5 Tg) in 1996, while the peak of PM10 (18.8 Tg) and PM2.5 (12.7 Tg) emissions occurred in 2005. Although various emission trends were identified across sectors, the cement industry and biofuel combustion in the residential sector were consistently the largest sources of PM2.5 emissions, accounting for 53%-62% of emission over the study period. The non-metallic mineral product industry, including the cement, lime and brick industries, accounted for 54%-63% of national TSP emissions. There were no significant trends of BC and OC emissions until 2000, but the increase after 2000 brought the historical high of BC (1.51 Tg) and OC (3.19 Tg) emissions in 2005. Although significant improvements in the estimation of primary aerosols are presented, there still exist large uncertainties. More accurate and detailed activity information and emission factors based on local tests are essential to further improve emission estimates, this especially being so for the brick and coke industries, as well as for coal-burning stoves and biofuel usage in the residential sector.

  10. "APEC Blue": Secondary Aerosol Reductions from Emission Controls in Beijing.

    PubMed

    Sun, Yele; Wang, Zifa; Wild, Oliver; Xu, Weiqi; Chen, Chen; Fu, Pingqing; Du, Wei; Zhou, Libo; Zhang, Qi; Han, Tingting; Wang, Qingqing; Pan, Xiaole; Zheng, Haitao; Li, Jie; Guo, Xiaofeng; Liu, Jianguo; Worsnop, Douglas R

    2016-01-01

    China implemented strict emission control measures in Beijing and surrounding regions to ensure good air quality during the 2014 Asia-Pacific Economic Cooperation (APEC) summit. We conducted synchronous aerosol particle measurements with two aerosol mass spectrometers at different heights on a meteorological tower in urban Beijing to investigate the variations in particulate composition, sources and size distributions in response to emission controls. Our results show consistently large reductions in secondary inorganic aerosol (SIA) of 61-67% and 51-57%, and in secondary organic aerosol (SOA) of 55% and 37%, at 260 m and ground level, respectively, during the APEC summit. These changes were mainly caused by large reductions in accumulation mode particles and by suppression of the growth of SIA and SOA by a factor of 2-3, which led to blue sky days during APEC commonly referred to as "APEC Blue". We propose a conceptual framework for the evolution of primary and secondary species and highlight the importance of regional atmospheric transport in the formation of severe pollution episodes in Beijing. Our results indicate that reducing the precursors of secondary aerosol over regional scales is crucial and effective in suppressing the formation of secondary particulates and mitigating PM pollution. PMID:26891104

  11. Impacts of emission reductions on aerosol radiative effects

    NASA Astrophysics Data System (ADS)

    Pietikäinen, J.-P.; Kupiainen, K.; Klimont, Z.; Makkonen, R.; Korhonen, H.; Karinkanta, R.; Hyvärinen, A.-P.; Karvosenoja, N.; Laaksonen, A.; Lihavainen, H.; Kerminen, V.-M.

    2014-12-01

    The global aerosol-climate model ECHAM-HAMMOZ is used to study the aerosol burden and forcing changes in the coming decades. Four different emissions scenarios are applied for 2030 (two of them applied also for 2020) and the results are compared against reference year 2005. Two of the scenarios are based on current legislation reductions, one shows the maximum potential of reductions that can be achieved by technical measures, and the last one is targeted to short-lived climate forcers (SLCFs). We have analysed the results in terms of global means and additionally focused on 8 sub-regions. Based on our results, aerosol burdens overall show decreasing trend, but in some locations, such as India, the burdens could increase significantly. This has impact on the direct aerosol effect (DRE), which could reduce globally 0.06-0.4 W m-2 by 2030, but can increase over India (up to 0.84 W m-2). The global values depend on the scenario and are lowest with the targeted SLCF simulation. The cloud radiative effect could decline 0.25-0.82 W m-2 by 2030 and occurs mostly over oceans, whereas the DRE effect is mostly over land. Our results show that targeted emission reduction measures can be a~much better choice for the climate than overall high reductions globally. Our simulations also suggest that more than half of the near-future forcing change is due to the radiative effects associated with aerosol-cloud interactions.

  12. Enhancement of aerosol responses to changes in emissions over East Asia by gas-oxidant-aerosol coupling and detailed aerosol processes

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Koike, M.

    2016-06-01

    We quantify the responses of aerosols to changes in emissions (sulfur dioxide, black carbon (BC), primary organic aerosol, nitrogen oxides (NOx), and volatile organic compounds) over East Asia by using simulations including gas-oxidant-aerosol coupling, organic aerosol (OA) formation, and BC aging processes. The responses of aerosols to NOx emissions are complex and are dramatically changed by simulating gas-phase chemistry and aerosol processes online. Reduction of NOx emissions by 50% causes a 30-40% reduction of oxidant (hydroxyl radical and ozone) concentrations and slows the formation of sulfate and OA by 20-30%. Because the response of OA to changes in NOx emissions is sensitive to the treatment of emission and oxidation of semivolatile and intermediate volatility organic compounds, reduction of the uncertainty in these processes is necessary to evaluate gas-oxidant-aerosol coupling accurately. Our simulations also show that the sensitivity of aerosols to changes in emissions is enhanced by 50-100% when OA formation and BC aging processes are resolved in the model. Sensitivity simulations show that the increase of NOx emissions from 1850 to 2000 explains 70% (40%) of the enhancement of aerosol mass concentrations (direct radiative effects) over East Asia during that period through enhancement of oxidant concentrations and that this estimation is sensitive to the representation of OA formation and BC aging processes. Our results demonstrate the importance of simultaneous simulation of gas-oxidant-aerosol coupling and detailed aerosol processes. The impact of NOx emissions on aerosol formation will be a key to formulating effective emission reduction strategies such as BC mitigation and aerosol reduction policies in East Asia.

  13. Particulate matter composition and emission rates from the disk incorporation of class B biosolids into soil

    NASA Astrophysics Data System (ADS)

    Paez-Rubio, Tania; Xin, Hua; Anderson, James; Peccia, Jordan

    Biosolids contain metal, synthetic organic compound, endotoxin, and pathogen concentrations that are greater than concentrations in the agricultural soils to which they are applied. Once applied, biosolids are incorporated into soils by disking and the aerosols produced during this process may pose an airborne toxicological and infectious health hazard to biosolids workers and nearby residents. Field studies at a Central Arizona biosolids land application site were conducted to characterize the physical, chemical, and biological content of the aerosols produced during biosolids disking and the content of bulk biosolids and soils from which the aerosols emanate. Arrayed samplers were used to estimate the vertical source aerosol concentration profile to enable plume height and associated source emission rate calculations. Source aerosol concentrations and calculated emission rates reveal that disking is a substantial source of biosolids-derived aerosols. The biosolids emission rate during disking ranged from 9.91 to 27.25 mg s -1 and was greater than previously measured emission rates produced during the spreading of dewatered biosolids or the spraying of liquid biosolids. Adding biosolids to dry soils increased the moisture content and reduced the total PM 10 emissions produced during disking by at least three times. The combination of bulk biosolids and aerosol measurements along with PM 10 concentrations provides a framework for estimating aerosol concentrations and emission rates by reconstruction. This framework serves to eliminate the difficulty and inherent limitations associated with monitoring low aerosol concentrations of toxic compounds and pathogens, and can promote an increased understanding of the associated biosolids aerosol health risks to workers and nearby residents.

  14. Climate impacts of changing aerosol emissions since 1996

    NASA Astrophysics Data System (ADS)

    Kühn, T.; Partanen, A.-I.; Laakso, A.; Lu, Z.; Bergman, T.; Mikkonen, S.; Kokkola, H.; Korhonen, H.; Räisänen, P.; Streets, D. G.; Romakkaniemi, S.; Laaksonen, A.

    2014-07-01

    Increases in Asian aerosol emissions have been suggested as one possible reason for the hiatus in global temperature increase during the past 15 years. We study the effect of sulphur and black carbon (BC) emission changes between 1996 and 2010 on the global energy balance. We find that the increased Asian emissions have had very little regional or global effects, while the emission reductions in Europe and the U.S. have caused a positive radiative forcing. In our simulations, the global-mean aerosol direct radiative effect changes by 0.06 W/m2 during 1996 to 2010, while the effective radiative forcing (ERF) is 0.42 W/m2. The rather large ERF arises mainly from changes in cloudiness, especially in Europe. In Asia, the BC warming due to sunlight absorption has largely offset the cooling caused by sulphate aerosols. Asian BC concentrations have increased by a nearly constant fraction at all altitudes, and thus, they warm the atmosphere also in cloudy conditions.

  15. Primary anthropogenic aerosol emission trends for China, 1990-2005

    NASA Astrophysics Data System (ADS)

    Lei, Y.; Zhang, Q.; He, K. B.; Streets, D. G.

    2011-02-01

    An inventory of anthropogenic primary aerosol emissions in China was developed for 1990-2005 using a technology-based approach. Taking into account changes in the technology penetration within industry sectors and improvements in emission controls driven by stricter emission standards, a dynamic methodology was derived and implemented to estimate inter-annual emission factors. Emission factors of PM2.5 decreased by 7%-69% from 1990 to 2005 in different industry sectors of China, and emission factors of TSP decreased by 18%-80% as well, with the measures of controlling PM emissions implemented. As a result, emissions of PM2.5 and TSP in 2005 were 11.0 Tg and 29.7 Tg, respectively, less than what they would have been without the adoption of these measures. Emissions of PM2.5, PM10 and TSP presented similar trends: they increased in the first six years of 1990s and decreased until 2000, then increased again in the following years. Emissions of TSP peaked (35.5 Tg) in 1996, while the peak of PM10 (18.8 Tg) and PM2.5 (12.7 Tg) emissions occurred in 2005. Although various emission trends were identified across sectors, the cement industry and biofuel combustion in the residential sector were consistently the largest sources of PM2.5 emissions, accounting for 53%-62% of emissions over the study period. The non-metallic mineral product industry, including the cement, lime and brick industries, accounted for 54%-63% of national TSP emissions. There were no significant trends of BC and OC emissions until 2000, but the increase after 2000 brought the peaks of BC (1.51 Tg) and OC (3.19 Tg) emissions in 2005. Although significant improvements in the estimation of primary aerosols are presented here, there still exist large uncertainties. More accurate and detailed activity information and emission factors based on local tests are essential to further improve emission estimates, this especially being so for the brick and coke industries, as well as for coal-burning stoves and

  16. 77 FR 14279 - National Volatile Organic Compound Emission Standards for Aerosol Coatings-Addition of Dimethyl...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ...The EPA is taking direct final action to amend the National Volatile Organic Compound Emission Standards for Aerosol Coatings final rule, which is a rule that establishes national reactivity-based emission standards for the aerosol coatings category (aerosol spray paints) under the Clean Air Act, published elsewhere in the Federal Register. This direct final action adds three compounds:......

  17. Impact of carbonaceous aerosol emissions on regional climate change

    NASA Astrophysics Data System (ADS)

    Roeckner, E.; Stier, P.; Feichter, J.; Kloster, S.; Esch, M.; Fischer-Bruns, I.

    2006-11-01

    The past and future evolution of atmospheric composition and climate has been simulated with a version of the Max Planck Institute Earth System Model (MPI-ESM). The system consists of the atmosphere, including a detailed representation of tropospheric aerosols, the land surface, and the ocean, including a model of the marine biogeochemistry which interacts with the atmosphere via the dust and sulfur cycles. In addition to the prescribed concentrations of carbon dioxide, ozone and other greenhouse gases, the model is driven by natural forcings (solar irradiance and volcanic aerosol), and by emissions of mineral dust, sea salt, sulfur, black carbon (BC) and particulate organic matter (POM). Transient climate simulations were performed for the twentieth century and extended into the twenty-first century, according to SRES scenario A1B, with two different assumptions on future emissions of carbonaceous aerosols (BC, POM). In the first experiment, BC and POM emissions decrease over Europe and China but increase at lower latitudes (central and South America, Africa, Middle East, India, Southeast Asia). In the second experiment, the BC and POM emissions are frozen at their levels of year 2000. According to these experiments the impact of projected changes in carbonaceaous aerosols on the global mean temperature is negligible, but significant changes are found at low latitudes. This includes a cooling of the surface, enhanced precipitation and runoff, and a wetter surface. These regional changes in surface climate are caused primarily by the atmospheric absorption of sunlight by increasing BC levels and, subsequently, by thermally driven circulations which favour the transport of moisture from the adjacent oceans. The vertical redistribution of solar energy is particularly large during the dry season in central Africa when the anomalous atmospheric heating of up to 60 W m-2 and a corresponding decrease in surface solar radiation leads to a marked surface cooling, reduced

  18. Modeling Secondary Organic Aerosol Formation From Emissions of Combustion Sources

    NASA Astrophysics Data System (ADS)

    Jathar, Shantanu Hemant

    Atmospheric aerosols exert a large influence on the Earth's climate and cause adverse public health effects, reduced visibility and material degradation. Secondary organic aerosol (SOA), defined as the aerosol mass arising from the oxidation products of gas-phase organic species, accounts for a significant fraction of the submicron atmospheric aerosol mass. Yet, there are large uncertainties surrounding the sources, atmospheric evolution and properties of SOA. This thesis combines laboratory experiments, extensive data analysis and global modeling to investigate the contribution of semi-volatile and intermediate volatility organic compounds (SVOC and IVOC) from combustion sources to SOA formation. The goals are to quantify the contribution of these emissions to ambient PM and to evaluate and improve models to simulate its formation. To create a database for model development and evaluation, a series of smog chamber experiments were conducted on evaporated fuel, which served as surrogates for real-world combustion emissions. Diesel formed the most SOA followed by conventional jet fuel / jet fuel derived from natural gas, gasoline and jet fuel derived from coal. The variability in SOA formation from actual combustion emissions can be partially explained by the composition of the fuel. Several models were developed and tested along with existing models using SOA data from smog chamber experiments conducted using evaporated fuel (this work, gasoline, fischertropschs, jet fuel, diesels) and published data on dilute combustion emissions (aircraft, on- and off-road gasoline, on- and off-road diesel, wood burning, biomass burning). For all of the SOA data, existing models under-predicted SOA formation if SVOC/IVOC were not included. For the evaporated fuel experiments, when SVOC/IVOC were included predictions using the existing SOA model were brought to within a factor of two of measurements with minor adjustments to model parameterizations. Further, a volatility

  19. Continuous emission monitoring of metal aerosol concentrations in atmospheric air

    NASA Astrophysics Data System (ADS)

    Gomes, Anne-Marie; Sarrette, Jean-Philippe; Madon, Lydie; Almi, Abdenbi

    1996-11-01

    Improvements of an apparatus for continuous emission monitoring (CEM) by inductively coupled plasma atomic emission spectrometry (ICP-AES) of metal aerosols in air are described. The method simultaneously offers low operating costs, large volume of tested air for valuable sampling and avoids supplementary contamination or keeping of the air pollutant concentrations. Questions related to detection and calibration are discussed. The detection limits (DL) obtained for the eight pollutants studied are lower than the recommended threshold limit values (TLV) and as satisfactory as the results obtained with other CEM methods involving air-argon plasmas.

  20. Iron isotopic fractionation in industrial emissions and urban aerosols.

    PubMed

    Flament, Pascal; Mattielli, Nadine; Aimoz, Laure; Choël, Marie; Deboudt, Karine; de Jong, Jeroen; Rimetz-Planchon, Juliette; Weis, Dominique

    2008-12-01

    A study on tropospheric aerosols involving Fe particles with an industrial origin is tackled here. Aerosols were collected at the largest exhausts of a major European steel metallurgy plant and around its near urban environment. A combination of bulk and individual particle analysis performed by SEM-EDX provides the chemical composition of Fe-bearing aerosols emitted within the factory process (hematite, magnetite and agglomerates of these oxides with sylvite (KCl), calcite (CaCO(3)) and graphite carbon). Fe isotopic compositions of those emissions fall within the range (0.08 per thousandaerosols presents, in addition to the industrial particle type, aluminosilicates and related natural particles (gypsum, quartz, calcite and reacted sea salt). The Fe isotopic composition (delta(56)Fe=0.14+/-0.11 per thousand) measured in the close urban environment of the steel metallurgy plant appears coherent with an external mixing of industrial and continental Fe-containing tropospheric aerosols, as evidenced by individual particle chemical analysis. Our isotopic data provide a first estimation of an anthropogenic source term as part of the study of photochemically promoted dissolution processes and related Fe fractionations in tropospheric aerosols. PMID:18851869

  1. Modeling of photolysis rates over Europe: impact on chemical gaseous species and aerosols

    NASA Astrophysics Data System (ADS)

    Real, E.; Sartelet, K.

    2011-02-01

    This paper evaluates the impact of photolysis rate calculation on simulated European air composition and air quality. In particular, the impact of the cloud parametrisation and the impact of aerosols on photolysis rates are analysed. Photolysis rates are simulated using the Fast-JX photolysis scheme and gas and aerosol concentrations over Europe are simulated with the regional chemistry-transport model Polair3D of the Polyphemus platform. The photolysis scheme is first used to update the clear-sky tabulation of photolysis rates used in the previous Polair3D version. Important differences in photolysis rates are simulated, mainly due to updated cross-sections and quantum yields in the Fast-JX scheme. In the previous Polair3D version, clouds were taken into account by multiplying the clear-sky photolysis rates by a correction factor. In the new version, clouds are taken into account more accurately by simulating them directly in the photolysis scheme. Differences in photolysis rates inside clouds can be large but outside clouds, and especially at the ground, differences are small. To take into account the impact of aerosols on photolysis rates, Polair3D and Fast-JX are coupled. Photolysis rates are updated every hour. Large impact on photolysis rates is observed at the ground, decreasing with altitude. The aerosol specie that impact the most photolysis rates is dust especially in south Europe. Strong impact is also observed over anthropogenic emission regions (Paris, The Po and the Ruhr Valley) where mainly nitrate and sulphate reduce the incoming radiation. Differences in photolysis rates lead to changes in gas concentrations, with the largest impact simulated on OH and NO concentrations. At the ground, monthly mean concentrations of both species are reduced over Europe by around 10 to 14% and their tropospheric burden by around 10%. The decrease in OH leads to an increase of the life-time of several species such as VOC. NO2 concentrations are not strongly impacted

  2. Aerosol observations and growth rates in the tropical tropopause layer

    NASA Astrophysics Data System (ADS)

    Waddicor, D. A.; Vaughan, G.; Choularton, T. W.; Bower, K. N.; Coe, H.; Gallagher, M.; Williams, P. I.; Flynn, M.; Volz-Thomas, A.; Pätz, W.; Isaac, P.; Hacker, J.; Arnold, F.; Schlager, H.; Whiteway, J. A.

    2012-01-01

    We present a case study of Aitken and accumulation mode aerosol observed downwind of the anvils of deep tropical thunderstorms. The measurements were made by condensation nuclei counters flown on the Egrett high-altitude aircraft from Darwin during the ACTIVE campaign, in monsoon conditions producing widespread convection over land and ocean. Maximum measured concentrations of aerosol in the size range 10-100 nm were 25 000 cm-3 STP. By calculating back-trajectories from the observations, and projecting on to infrared satellite images, the time since the air exited cloud was estimated. In this way a time scale of ~ 3-4 h was derived for the 10-100 nm aerosol concentration to reach its peak. We examine the hypothesis that the growth in aerosol concentrations can be explained by production of sulphuric acid from SO2 followed by particle nucleation and coagulation. Estimates of the sulphuric acid production rate show that the observations are only consistent with this hypothesis if the particles coagulate to sizes > 10 nm much more quickly than is suggested by current theory. Alternatively, other condensible gases (possibly organic) drive the growth of aerosol particles in the TTL.

  3. Secondary organic aerosol formation from gasoline vehicle emissions in a new mobile environmental reaction chamber

    NASA Astrophysics Data System (ADS)

    Platt, S. M.; El Haddad, I.; Zardini, A. A.; Clairotte, M.; Astorga, C.; Wolf, R.; Slowik, J. G.; Temime-Roussel, B.; Marchand, N.; Ježek, I.; Drinovec, L.; Močnik, G.; Möhler, O.; Richter, R.; Barmet, P.; Bianchi, F.; Baltensperger, U.; Prévôt, A. S. H.

    2012-10-01

    We present a new mobile environmental reaction chamber for the simulation of the atmospheric aging of aerosols from different emissions sources without limitation from the instruments or facilities available at any single site. The chamber can be mounted on a trailer for transport to host facilities or for mobile measurements. Photochemistry is simulated using a set of 40 UV lights (total power 4 KW). Characterisation of the emission spectrum of these lights shows that atmospheric photochemistry can be accurately simulated over a range of temperatures from -7-25 °C. A photolysis rate of NO2, JNO2, of (8.0 ± 0.7) × 10-3 molecules cm-3 s-1 was determined at 25 °C. Further, we present the first application of the mobile chamber and demonstrate its utility by quantifying primary organic aerosol (POA) emission and secondary organic aerosol (SOA) production from a Euro 5 light duty gasoline vehicle. Exhaust emissions were sampled during the New European Driving Cycle (NEDC), the standard driving cycle for European regulatory purposes, and injected into the chamber. The relative concentrations of oxides of nitrogen (NOx) and total hydrocarbon (THC) during the aging of emissions inside the chamber were controlled using an injection system developed as a part of the new mobile chamber set up. Total OA (POA + SOA) emission factors of (370 ± 18) × 10-3 g kg-1 fuel, or (14.6 ± 0.8) × 10-3 g km-1, after aging, were calculated from concentrations measured inside the smog chamber during two experiments. The average SOA/POA ratio for the two experiments was 15.1, a much larger increase than has previously been seen for diesel vehicles, where smog chamber studies have found SOA/POA ratios of 1.3-1.7. Due to this SOA formation, carbonaceous particulate matter (PM) emissions from a gasoline vehicle may approach those of a diesel vehicle of the same class. Furthermore, with the advent of emission controls requiring the use of diesel particle filters, gasoline vehicle emissions

  4. Study of application rates of aerosol and pump hair sprays. Final report, July 1986-November 1987

    SciTech Connect

    Boggs, R.R.; Belmont, B.

    1988-03-11

    Application rates of three hair spray dispensing systems, aerosol, pump, and Exxel packaging were determined through a six-week user panel of approximately 300 people. In addition, photochemically reactive organic compounds (PROC) application rates were determined through chemical analysis of the products. The user panel was stratified on the basis of sex, dispenser (pump/aerosol), and age (adult/teen). Weighted-application rates and weighted PROC application rates are included. A Mann-Whitney evaluation was made to evaluate differences between data sets. Product-usage data for both male and female adult groups support the conclusion that increased use of either pumps or Exxel packaging for hair spray would reduce PROC emissions in California. Data from adult groups also indicate that use of Exxel packaging in place of pumps would not reduce PROC. Consumer preference was also sampled. Adult pump users were not very willing to switch to aerosols, but on the order of half of aerosol users were willing to switch to pumps.

  5. Global top-down smoke aerosol emissions estimation using satellite fire radiative power measurements

    NASA Astrophysics Data System (ADS)

    Ichoku, C.; Ellison, L.

    2013-10-01

    Biomass burning occurs seasonally in most vegetated parts of the world, consuming large amounts of biomass fuel, generating intense heat energy, and emitting corresponding amounts of smoke plumes that comprise different species of aerosols and trace gases. Accurate estimates of these emissions are required as model inputs to evaluate and forecast smoke plume transport and impacts on air quality, human health, clouds, weather, radiation, and climate. Emissions estimates have long been based on bottom-up approaches that are not only complex, but also fraught with compounding uncertainties. Fortunately, a series of recent studies have revealed that both the rate of biomass consumption and the rate of emission of aerosol particulate matter (PM) by open biomass burning are directly proportional to the rate of release of fire radiative energy (FRE), which is fire radiative power (FRP) that is measurable from satellite. This direct relationship enables the determination of coefficients of emission (Ce), which can be used to convert FRP or FRE to smoke aerosol emissions in the same manner as emission factors (EFs) are used to convert burned biomass to emissions. We have leveraged this relationship to generate the first global 1° × 1° gridded Ce product for smoke aerosol or total particulate matter (TPM) emissions using coincident measurements of FRP and aerosol optical thickness (AOT) from the Moderate-resolution Imaging Spectro-radiometer (MODIS) sensors aboard the Terra and Aqua satellites. This new Fire Energetics and Emissions Research version 1.0 (FEER.v1) Ce product has now been released to the community and can be obtained from http://feer.gsfc.nasa.gov/, along with the corresponding 1-to-1 mapping of their quality assurance (QA) flags that will enable the Ce values to be filtered by quality for use in various applications. The regional averages of Ce values for different ecosystem types were found to be in

  6. Carbon and Aerosol Emissions from Biomass Fires in Mexico

    NASA Astrophysics Data System (ADS)

    Hao, W. M.; Flores Garnica, G.; Baker, S. P.; Urbanski, S. P.

    2009-12-01

    Biomass burning is an important source of many atmospheric greenhouse gases and photochemically reactive trace gases. There are limited data available on the spatial and temporal extent of biomass fires and associated trace gas and aerosol emissions in Mexico. Biomass burning is a unique source of these gases and aerosols, in comparison to industrial and biogenic sources, because the locations of fires vary considerably both daily and seasonally and depend on human activities and meteorological conditions. In Mexico, the fire season starts in January and about two-thirds of the fires occur in April and May. The amount of trace gases and aerosols emitted by fires spatially and temporally is a major uncertainty in quantifying the impact of fire emissions on regional atmospheric chemical composition. To quantify emissions, it is necessary to know the type of vegetation, the burned area, the amount of biomass burned, and the emission factor of each compound for each ecosystem. In this study biomass burning experiments were conducted in Mexico to measure trace gas emissions from 24 experimental fires and wildfires in semiarid, temperate, and tropical ecosystems from 2005 to 2007. A range of representative vegetation types were selected for ground-based experimental burns to characterize fire emissions from representative Mexico fuels. A third of the country was surveyed each year, beginning in the north. The fire experiments in the first year were conducted in Chihuahua, Nuevo Leon, and Tamaulipas states in pine forest, oak forest, grass, and chaparral. The second-year fire experiments were conducted on pine forest, oak forest, shrub, agricultural, grass, and herbaceous fuels in Jalisco, Puebla, and Oaxaca states in central Mexico. The third-year experiments were conducted in pine-oak forests of Chiapas, coastal grass, and low subtropical forest on the Yucatan peninsula. FASS (Fire Atmosphere Sampling System) towers were deployed for the experimental fires. Each FASS

  7. Contributions of the pollutant emission in South Korea to the aerosol concentrations and depositions in Asia

    NASA Astrophysics Data System (ADS)

    Park, Soon-Ung; Lee, In-Hye; Choe, Anna; Joo, Seung Jin

    2015-05-01

    The spatial distributions of annual mean concentrations and the annual total depositions of the Asian dust (AD) aerosol and the anthropogenic aerosol (AA) in 2010 are investigated with pollutant emissions over the whole model domain of Asia and without the pollutant emission from South Korea using the Aerosol Modeling System (AMS) that is modified from the Asian Dust Aerosol Model2 (ADAM2) and the Community Multi-Scale Air Quality (CMAQ) modeling System. The annual mean surface aerosol concentrations in Asia are found to affect a wide region as a complex mixture of AA and AD aerosols. However, the contribution of the pollutant emission from South Korea is found to be limited to the neighboring regions. The annual total aerosol deposition in Asia is 485.2 Tg. However, the contribution due to the pollutant emission from South Korea is about 1.9 Tg, suggesting of no significant contribution to the environment.

  8. Modeling of photolysis rates over Europe: impact on chemical gaseous species and aerosols

    NASA Astrophysics Data System (ADS)

    Real, E.; Sartelet, K.

    2010-07-01

    This paper evaluates the impact of photolysis rate calculation on European air composition and air quality monitoring. In particular, the impact of cloud parametrisation and the impact of aerosols on photolysis rates are analysed. Photolysis rates are simulated using the Fast-JX photolysis scheme and gas and aerosol concentrations over Europe are simulated with the regional model Polair3D of the Polyphemus platform. The photolysis scheme is first use to update the clear sky tabulation used in the previous Polair3D version. Important differences in photolysis rates are simulated, mainly due to updated cross-sections in the Fast-JX scheme. In the previous Polair3D version, clouds were taken into account by multiplying the clear-sky photolysis rates using a correction factor. In a second stage, the impact of clouds is taken into account more accurately by simulating them directly in the photolysis scheme. Differences in photolysis rates inside clouds are as high as differences between simulations with and without clouds. Outside clouds, the differences are small. The largest difference in gas concentrations is simulated for OH with a mean increase of its tropospheric burden of 4 to 5%. To take into account the impact of aerosols on photolysis rates, Polair3D and Fast-JX are coupled. Photolysis rates are updated every hour. Large impact on photolysis rates is observed at the ground, decreasing with altitude. The aerosol species that impact the most photolysis rates is dust especially in South Europe. Strong impact is also observed over anthropogenic emission regions (Paris, The Po and the Ruhr Valley) where mainly nitrate and sulphate reduced the incoming radiation. Differences in photolysis rates lead to changes in gas concentrations, with the largest impact simulated for OH and NO concentrations. At the ground, monthly mean concentrations of both species are reduced over Europe by around 10 to 14% and their tropospheric burden by around 10%. The decrease in OH leads

  9. Aerosol indirect effects from shipping emissions: sensitivity studies with the global aerosol-climate model ECHAM-HAM

    NASA Astrophysics Data System (ADS)

    Peters, K.; Stier, P.; Quaas, J.; Graßl, H.

    2012-07-01

    In this study, we employ the global aerosol-climate model ECHAM-HAM to globally assess aerosol indirect effects (AIEs) resulting from shipping emissions of aerosols and aerosol precursor gases. We implement shipping emissions of sulphur dioxide (SO2), black carbon (BC) and particulate organic matter (POM) for the year 2000 into the model and quantify the model's sensitivity towards uncertainties associated with the emission parameterisation as well as with the shipping emissions themselves. Sensitivity experiments are designed to investigate (i) the uncertainty in the size distribution of emitted particles, (ii) the uncertainty associated with the total amount of emissions, and (iii) the impact of reducing carbonaceous emissions from ships. We use the results from one sensitivity experiment for a detailed discussion of shipping-induced changes in the global aerosol system as well as the resulting impact on cloud properties. From all sensitivity experiments, we find AIEs from shipping emissions to range from -0.32 ± 0.01 W m-2 to -0.07 ± 0.01 W m-2 (global mean value and inter-annual variability as a standard deviation). The magnitude of the AIEs depends much more on the assumed emission size distribution and subsequent aerosol microphysical interactions than on the magnitude of the emissions themselves. It is important to note that although the strongest estimate of AIEs from shipping emissions in this study is relatively large, still much larger estimates have been reported in the literature before on the basis of modelling studies. We find that omitting just carbonaceous particle emissions from ships favours new particle formation in the boundary layer. These newly formed particles contribute just about as much to the CCN budget as the carbonaceous particles would, leaving the globally averaged AIEs nearly unaltered compared to a simulation including carbonaceous particle emissions from ships.

  10. Aerosol indirect effects from shipping emissions: sensitivity studies with the global aerosol-climate model ECHAM-HAM

    NASA Astrophysics Data System (ADS)

    Peters, K.; Stier, P.; Quaas, J.; Graßl, H.

    2012-03-01

    In this study, we employ the global aerosol-climate model ECHAM-HAM to globally assess aerosol indirect effects (AIEs) resulting from shipping emissions of aerosols and aerosol precursor gases. We implement shipping emissions of sulphur dioxide (SO2), black carbon (BC) and particulate organic matter (POM) for the year 2000 into the model and quantify the model's sensitivity towards uncertainties associated with the emission parameterisation as well as with the shipping emissions themselves. Sensitivity experiments are designed to investigate (i) the uncertainty in the size distribution of emitted particles, (ii) the uncertainty associated with the total amount of emissions, and (iii) the impact of reducing carbonaceous emissions from ships. We use the results from one sensitivity experiment for a detailed discussion of shipping-induced changes in the global aerosol system as well as the resulting impact on cloud properties. From all sensitivity experiments, we find AIEs from shipping emissions to range from -0.07 ± 0.01 W m-2 to -0.32 ± 0.01 W m-2 (global mean value and inter-annual variability as a standard deviation). The magnitude of the AIEs depends much more on the assumed emission size distribution and subsequent aerosol microphysical interactions than on the magnitude of the emissions themselves. It is important to note that although the strongest estimate of AIEs from shipping emissions in this study is relatively large, still much larger estimates have been reported in the literature before on the basis of modelling studies. We find that omitting just carbonaceous particle emissions from ships favours new particle formation in the boundary layer. These newly formed particles contribute just about as much to the CCN budget as the carbonaceous particles would, leaving the globally averaged AIEs nearly unaltered compared to a simulation including carbonaceous particle emissions from ships.

  11. Comparative mutagenicity assessment of aerosols in emissions from biofuel combustion

    NASA Astrophysics Data System (ADS)

    Mukherji, Suparna; Swain, Abhay Kumar; Venkataraman, Chandra

    This study was designed to determine the mutagenicity in extracts of aerosols generated from biofuel combustion in household cooking devices commonly used in India. Wood, dung cake and biofuel briquette were used as fuel in various stoves, including both traditional and improved stoves made of mud, fired clay and metal. The combustion aerosols of particle diameter less than 2.5 μm (PM2.5) were collected, and their organic extracts were tested for mutagenicity using the Ames Assay test with TA98 and TA100 strains of Salmonella typhimurium and studies were performed both with and without metabolic activation to account for direct and indirect acting mutagens. The measured mutagenicity emission factors, i.e., number of revertants per kg of fuel burnt, indicate that wood demonstrates significantly lower mutagenicity compared to dung cake and briquette. No significant stove effect was observed across all the fuels studied. The contribution of direct-acting mutagens was found to be greater than 70% in all cases. Such a high relative contribution of direct-acting mutagenicity has not been previously reported for biomass combustion aerosols.

  12. Marine Primary and Secondary Aerosol emissions related to seawater biogeochemistry

    NASA Astrophysics Data System (ADS)

    Sellegri, Karine; D'Anna, Barbara; Marchand, Nicolas; Charriere, Bruno; Sempere, Richard; Mas, Sebastien; Schwier, Allison; Rose, Clémence; Pey, Jorge; Langley Dewitt, Helen; Même, Aurélie; R'mili, Badr; George, Christian; Delmont, Anne

    2014-05-01

    Marine aerosol contributes significantly to the global aerosol load and consequently has an important impact on both the Earth's albedo and climate. Different factors influence the way they are produced from the sea water and transferred to the atmosphere. The sea state (whitecap coverage) and sea temperature influence the size and concentration of primarily produced particles but also biogeochemical characteristics of the sea water may influence both the physical and chemical fluxes. In order to study marine emissions, one approach is to use semicontrolled environments such as mesocosms. Within the SAM project (Sources of marine Aerosol in the Mediterranean), we characterize the primary Sea Salt Aerosol (SSA) and Secondary aerosol formation by nucleation during mesocosms experiments performed in May 2013 at the Oceanographic and Marine Station STARESO in western Corsica. We followed both water and air characteristics of three mesocosms containing an immerged part filled with 3,3 m3 of sea water and an emerged part filled with filtered natural air. Mesocosms were equipped with a pack of optical and physicochemical sensors and received different treatments: one of these mesocosms was left unchanged as control and the two others were enriched by addition of nitrates and phosphates respecting Redfield ratio (N:P = 16) in order to create different levels of phytoplanctonic activities. The set of sensors in each mesocosm was allowed to monitor the water temperature, conductivity, pH, incident light, fluorescence of chlorophyll a, and dissolved oxygen concentration. The mesocosms waters were daily sampled for chemical and biological (dissolved organic matter (i.e. DOC and CDOM), particulate matter and related polar compounds, transparent polysaccharides and nutrients concentration) and biological (chlorophyll a, virus, bacteria, phytoplankton and zooplankton concentrations) analyses. Secondary new particle formation was followed on-line in the emerged parts of the

  13. Impact of pollutant emission reductions on summertime aerosol feedbacks: A case study over the PO valley

    NASA Astrophysics Data System (ADS)

    Carnevale, C.; Finzi, G.; Pederzoli, A.; Turrini, E.; Volta, M.; Ferrari, F.; Gianfreda, R.; Maffeis, G.

    2015-12-01

    the BC; they are less efficient in the MFR because of lower secondary aerosol concentrations (associated to the reduction of primary PM10 emissions by approximately 20%). Concerning NO2, some localized areas with high reductions in the BC are not visible in the MFR. This is consistent with the increase of T2, which leads to higher photolytic rates compared to the BC. Higher concentrations of NO2 in the MFR with respect to the BC lead to lower O3 concentrations (maximum O3 values drop from +6 ppb to +3 ppb).

  14. Emissions and Characteristics of Ice Nucleating Particles Associated with Laboratory Generated Nascent Sea Spray Aerosol

    NASA Astrophysics Data System (ADS)

    McCluskey, C. S.; Hill, T. C. J.; Beall, C.; Sultana, C. M.; Moore, K.; Cornwell, G.; Lee, C.; Al-Mashat, H.; Laskina, O.; Trueblood, J.; Grassian, V. H.; Prather, K. A.; Kreidenweis, S. M.; DeMott, P. J.

    2015-12-01

    Accurate emission rates and activity spectra of atmospheric ice nucleating particles (INPs) are required for proper representation of aerosol-cloud interactions in atmospheric modeling studies. However, few investigations have quantified or characterized oceanic INP emissions. In conjunction with the Center for Aerosol Impacts on the Climate and the Environment, we have directly measured changes in INP emissions and properties of INPs from nascent sea spray aerosol (SSA) through the evolution of phytoplankton blooms. Multiple offline and online instruments were used to monitor aerosol chemistry and size, and bulk water characteristics during two phytoplankton bloom experiments. Two methods were utilized to monitor the number concentrations of INPs from 0 to -34 °C: The online CSU continuous flow diffusion chamber (CFDC) and collections processed offline using the CSU ice spectrometer. Single particle analyses were performed on ice crystal residuals downstream of the CFDC, presumed to be INPs, via scanning transmission electron microscopy (STEM) and Raman microspectroscopy. Preliminary results indicate that laboratory-generated nascent SSA corresponds to number concentrations of INPs that are generally consistent with open ocean regions, based on current knowledge. STEM analyses revealed that the sizes of ice crystal residuals that were associated with nascent SSA ranged from 0.3 to 2.5 μm. Raman microspectroscopy analysis of 1 μm sized residuals found a variety of INP identities, including long chain organics, diatom fragments and polysaccharides. Our data suggest that biological processes play a significant role in ocean INP emissions by generating the species and compounds that were identified during these studies.

  15. Chamber bioaerosol study: human emissions of size-resolved fluorescent biological aerosol particles.

    PubMed

    Bhangar, S; Adams, R I; Pasut, W; Huffman, J A; Arens, E A; Taylor, J W; Bruns, T D; Nazaroff, W W

    2016-04-01

    Humans are a prominent source of airborne biological particles in occupied indoor spaces, but few studies have quantified human bioaerosol emissions. The chamber investigation reported here employs a fluorescence-based technique to evaluate bioaerosols with high temporal and particle size resolution. In a 75-m(3) chamber, occupant emission rates of coarse (2.5-10 μm) fluorescent biological aerosol particles (FBAPs) under seated, simulated office-work conditions averaged 0.9 ± 0.3 million particles per person-h. Walking was associated with a 5-6× increase in the emission rate. During both walking and sitting, 60-70% or more of emissions originated from the floor. The increase in emissions during walking (vs. while sitting) was mainly attributable to release of particles from the floor; the associated increased vigor of upper body movements also contributed. Clothing, or its frictional interaction with human skin, was demonstrated to be a source of coarse particles, and especially of the highly fluorescent fraction. Emission rates of FBAPs previously reported for lecture classes were well bounded by the experimental results obtained in this chamber study. In both settings, the size distribution of occupant FBAP emissions had a dominant mode in the 3-5 μm diameter range. PMID:25704637

  16. Can anthropogenic aerosol concentrations effect the snowfall rate?

    NASA Astrophysics Data System (ADS)

    Lohmann, U.; Zhang, J.; Pi, J.

    2003-04-01

    The mesoscale model GESIMA is used to simulate microphysical properties of Arctic clouds and their effect on radiation. Different case studies during the FIRE.ACE/SHEBA project show that GESIMA is able to simulate the cloud boundaries, ice and liquid water content and effective radii in good agreement with observations. For two different aerosol scenarios, the simulation results show that the anthropogenic aerosol can alter microphysical properties of Arctic clouds, and consequently modify surface precipitation. Borys et al. (2000) proposed that anthropogenically-induced decreases in cloud droplet size inhibit the riming process. On the contrary, we find that the accretion of snow crystals with cloud droplets is increased in the polluted cloud due to its higher cloud droplet number concentration. Instead the autoconversion rate of cloud droplets and accretion of drizzle by snow decreases caused by the shut-down of the collision-coalescence process in the polluted cloud. The amount of precipitation reaching the surface as snow depends crucially on the crystal shape. If aggregates are assumed, then a 10-fold increase in aerosol concentration leads to an increase in accumulated snow by 40% after 7 hours of simulation whereas the snow amount decreases by 30% when planar crystals are assumed because of the larger accretion efficiency of snow crystals with cloud droplets in case of aggregates. We will also perform climate model simulations to estimate the importance of this effect globally.

  17. Emission of sunscreen salicylic esters from desert vegetation and their contribution to aerosol formation

    NASA Astrophysics Data System (ADS)

    Matsunaga, S. N.; Guenther, A. B.; Potosnak, M. J.; Apel, E. C.

    2008-12-01

    Biogenic volatile organic compounds (BVOC) produced by plants are known to have an important role in atmospheric chemistry. However, our knowledge of the range of BVOCs produced by different plant processes is still expanding, and there remain poorly understood categories of BVOCs. In this study, emissions of a novel class of BVOC emissions were investigated in a desert region. Our study considered 8 species of common desert plants: blackbrush (Coleogyne ramosissima), desert willow (Chilopsis linearis), mesquite (Prosopis glandulosa), mondel pine (Pinus eldarica), pinyon pine (Pinus monophylla), cottonwood (Populus deltoides), saguaro cactus (Carnegiea gigantea) and yucca (Yucca baccata). The measurements focused on BVOCs with relatively high molecular weight (>C15) and/or an oxygenated functional group. Significantly high emission rates of two salicylic esters were found for blackbrush, desert willow and mesquite with emission rates of 3.1, 1.0 and 4.8μgC dwg-1 h-1, respectively (dwg; dry weight of the leaves in gram). The salicylic esters were identified as 2-ethylhexenyl salicylate (2-EHS) and 3,3,5-trimethylcyclohexenyl salicylate (homosalate) and are known as effective ultraviolet (UV) absorbers. We propose that the plants derive a protective benefit against UV radiation from the salicylic esters and that the emission process is driven by the physical evaporation of the salicylic esters due to the high ambient temperatures. In addition, the salicylic esters are predicted to be an effective precursor of secondary organic aerosol (SOA) because they probably produce oxidation products that can condense onto the aerosol phase. We estimated the contribution of the sunscreen esters themselves and their oxidation products on the SOA formation for the Las Vegas area using a BVOC emission model. The contribution was estimated to reach 50% of the biogenic terpenoid emission in the landscapes dominated by desert willow and mesquite and 13% in the Las Vegas area. The

  18. High emission rate of sulfuric acid from Bezymianny volcano, Kamchatka

    NASA Astrophysics Data System (ADS)

    Zelenski, Michael; Taran, Yuri; Galle, Bo

    2015-09-01

    High concentrations of primary sulfuric acid (H2SO4) in fumarolic gases and high emission rate of sulfuric acid aerosol in the plume were measured at Bezymianny volcano, an active dome-growing andesitic volcano in central Kamchatka. Using direct sampling, filter pack sampling, and differential optical absorption spectroscopy measurements, we estimated an average emission of H2SO4 at 243 ± 75 t/d in addition to an average SO2 emission of 212 ± 65 t/d. The fumarolic gases of Bezymianny correspond to arc gases released by several magma bodies at different stages of degassing and contain 25-92% of entrained air. H2SO4 accounts for 6-87 mol% of the total sulfur content, 42.8 mol% on average, and SO2 is the rest. The high H2SO4 in Bezymianny fumaroles can be explained by catalytic oxidation of SO2 inside the volcanic dome. Because sulfate aerosol is impossible to measure remotely, the total sulfur content in a plume containing significant H2SO4 may be seriously underestimated.

  19. Uncertainties in global aerosols and climate effects due to biofuel emissions

    NASA Astrophysics Data System (ADS)

    Kodros, J. K.; Scott, C. E.; Farina, S. C.; Lee, Y. H.; L'Orange, C.; Volckens, J.; Pierce, J. R.

    2015-08-01

    Aerosol emissions from biofuel combustion impact both health and climate; however, while reducing emissions through improvements to combustion technologies will improve health, the net effect on climate is largely unconstrained. In this study, we examine sensitivities in global aerosol concentration, direct radiative climate effect, and cloud-albedo aerosol indirect climate effect to uncertainties in biofuel emission factors, optical mixing state, and model nucleation and background secondary organic aerosol (SOA). We use the Goddard Earth Observing System global chemical-transport model (GEOS-Chem) with TwO Moment Aerosol Sectional (TOMAS) microphysics. The emission factors include amount, composition, size, and hygroscopicity, as well as optical mixing-state properties. We also evaluate emissions from domestic coal use, which is not biofuel but is also frequently emitted from homes. We estimate the direct radiative effect assuming different mixing states (homogeneous, core-shell, and external) with and without absorptive organic aerosol (brown carbon). We find the global-mean direct radiative effect of biofuel emissions ranges from -0.02 to +0.06 W m-2 across all simulation/mixing-state combinations with regional effects in source regions ranging from -0.2 to +0.8 W m-2. The global-mean cloud-albedo aerosol indirect effect (AIE) ranges from +0.01 to -0.02 W m-2 with regional effects in source regions ranging from -1.0 to -0.05 W m-2. The direct radiative effect is strongly dependent on uncertainties in emissions mass, composition, emissions aerosol size distributions, and assumed optical mixing state, while the indirect effect is dependent on the emissions mass, emissions aerosol size distribution, and the choice of model nucleation and secondary organic aerosol schemes. The sign and magnitude of these effects have a strong regional dependence. We conclude that the climate effects of biofuel aerosols are largely unconstrained, and the overall sign of the aerosol

  20. Ammonia emissions in Europe, part II: How ammonia emission abatement strategies affect secondary aerosols

    NASA Astrophysics Data System (ADS)

    Backes, Anna M.; Aulinger, Armin; Bieser, Johannes; Matthias, Volker; Quante, Markus

    2016-02-01

    In central Europe, ammonium sulphate and ammonium nitrate make up a large fraction of fine particles which pose a threat to human health. Most studies on air pollution through particulate matter investigate the influence of emission reductions of sulphur- and nitrogen oxides on aerosol concentration. Here, we focus on the influence of ammonia (NH3) emissions. Emission scenarios have been created on the basis of the improved ammonia emission parameterization implemented in the SMOKE for Europe and CMAQ model systems described in part I of this study. This includes emissions based on future European legislation (the National Emission Ceilings) as well as a dynamic evaluation of the influence of different agricultural sectors (e.g. animal husbandry) on particle formation. The study compares the concentrations of NH3, NH4+, NO3 -, sulphur compounds and the total concentration of particles in winter and summer for a political-, technical- and behavioural scenario. It was found that a reduction of ammonia emissions by 50% lead to a 24% reduction of the total PM2.5 concentrations in northwest Europe. The observed reduction was mainly driven by reduced formation of ammonium nitrate. Moreover, emission reductions during winter had a larger impact than during the rest of the year. This leads to the conclusion that a reduction of the ammonia emissions from the agricultural sector related to animal husbandry could be more efficient than the reduction from other sectors due to its larger share in winter ammonia emissions.

  1. Characterization of gaseous pollutant and particulate matter emission rates from a commercial broiler operation part I: Observed trends in emissions

    NASA Astrophysics Data System (ADS)

    Roumeliotis, Taylor S.; Dixon, Brad J.; Van Heyst, Bill J.

    2010-10-01

    This paper characterizes the emission rates of size fractionated particulate matter, inorganic aerosols, acid gases, ammonia and methane measured over four flocks at a commercial broiler chicken facility. Mean emission rates of each pollutant, along with sampling notes, were reported in this paper, the first in a series of two. Sampling notes were needed because inherent gaps in data may bias the mean emission rates. The mean emission rates of PM 10 and PM 2.5 were 5.0 and 0.78 g day -1 [Animal Unit, AU] -1, respectively, while inorganic aerosols mean emission rates ranged from 0.15 to 0.46 g day -1 AU -1 depending on the season. The average total acid gas emission rate was 0.43 g day -1 AU -1 with the greatest contribution from nitrous and nitric acids and little contribution from sulfuric acid (as SO 2). Ammonia emissions were seasonally dependent, with a mean emission rate of 66.0 g day -1 AU -1 in the cooler seasons and 94.5 g day -1 AU -1 during the warmer seasons. Methane emissions were relatively consistent with a mean emission rate of 208 g day -1 AU -1. The diurnal pattern in each pollutant's emission rate was relatively consistent after normalizing the hourly emissions according to each daily mean emission rate. Over the duration of a production cycle, all the measured pollutants' emissions increased proportionally to the total live mass of birds in the house, with the exception of ammonia. Interrelationships between pollutants provide evidence of mutually dependent release mechanisms, which suggests that it may be possible to fill data gaps with minimal data requirements. In the second paper (Roumeliotis, T.S., Dixon, B.J., Van Heyst, B.J. Characterization of gaseous pollutants and particulate matter emission rates from a commercial broiler operation part II: correlated emission rates. Atmospheric Environment, 2010.), regression correlations are developed to estimate daily mean emission rates for data gaps and, using the normalized hourly diurnal

  2. Characterization of gaseous pollutant and particulate matter emission rates from a commercial broiler operation part II: Correlated emission rates

    NASA Astrophysics Data System (ADS)

    Roumeliotis, Taylor S.; Dixon, Brad J.; Van Heyst, Bill J.

    2010-10-01

    Emission rates of ammonia, acid gases, inorganic aerosols, methane, and size fractionated particulate matter were measured from a commercial broiler facility. This paper discusses the statistically influential parameters on numerous pollutants' emission from a broiler chicken facility and generates emission correlations to fill data gaps and develop averaged emission factors. Live mass of the birds was commonly a significant variable to each pollutant's emission. Some variables significantly impacted the pollutants' emissions, such as litter moisture content, but were measured discretely and cannot be used for filling in data gaps. House parameter correlations were, therefore, developed using parameters measured at the facility, such as indoor temperature, relative humidity, and the live mass of the birds, and relied on the mutual behaviour of discretely measured explanatory parameters and continuously monitored confounding variables. The live mass and the difference in the indoor temperature and the house set-point temperature were the most significant variables in each pollutant's correlation. The correlations predicted each pollutants emission to within 20% (total mass basis) over most broiler production cycles. Their validation on independent datasets also successfully estimated the flocks' emissions to within 3%. Emission factors (EFs) were developed for methane, ammonia, and size fractionated particulate matter using measured data and correlated emissions to fill in data gaps. PM 10 (particulate matter ≤10 microns) EFs were estimated to be 4.6 and 5.9 g d -1 [Animal Unit, AU] -1 for five and six week production cycles, respectively. PM 2.5 (PM ≤ 2.5 microns) EFs were 0.8 and 1.4 g d -1 AU -1 for five and six week cycles, respectively. Ammonia and methane emission factors were estimated at 120.8 and 197.0 g d -1 AU -1, respectively for a five week production cycle.

  3. Regional Influence of Aerosol Emissions from Wildfires Driven by Combustion Efficiency: Insights from the BBOP Campaign.

    PubMed

    Collier, Sonya; Zhou, Shan; Onasch, Timothy B; Jaffe, Daniel A; Kleinman, Lawrence; Sedlacek, Arthur J; Briggs, Nicole L; Hee, Jonathan; Fortner, Edward; Shilling, John E; Worsnop, Douglas; Yokelson, Robert J; Parworth, Caroline; Ge, Xinlei; Xu, Jianzhong; Butterfield, Zachary; Chand, Duli; Dubey, Manvendra K; Pekour, Mikhail S; Springston, Stephen; Zhang, Qi

    2016-08-16

    Wildfires are important contributors to atmospheric aerosols and a large source of emissions that impact regional air quality and global climate. In this study, the regional and nearfield influences of wildfire emissions on ambient aerosol concentration and chemical properties in the Pacific Northwest region of the United States were studied using real-time measurements from a fixed ground site located in Central Oregon at the Mt. Bachelor Observatory (∼2700 m a.s.l.) as well as near their sources using an aircraft. The regional characteristics of biomass burning aerosols were found to depend strongly on the modified combustion efficiency (MCE), an index of the combustion processes of a fire. Organic aerosol emissions had negative correlations with MCE, whereas the oxidation state of organic aerosol increased with MCE and plume aging. The relationships between the aerosol properties and MCE were consistent between fresh emissions (∼1 h old) and emissions sampled after atmospheric transport (6-45 h), suggesting that biomass burning organic aerosol concentration and chemical properties were strongly influenced by combustion processes at the source and conserved to a significant extent during regional transport. These results suggest that MCE can be a useful metric for describing aerosol properties of wildfire emissions and their impacts on regional air quality and global climate. PMID:27398804

  4. Influence of Jet Fuel Composition on Aircraft Engine Emissions: A Synthesis of Aerosol Emissions Data from the NASA APEX, AAFEX, and ACCESS Missions

    NASA Astrophysics Data System (ADS)

    Moore, R.; Shook, M.; Beyersdorf, A. J.; Corr, C.; Herndon, S. C.; Knighton, W. B.; Miake-Lye, R. C.; Thornhill, K. L., II; Winstead, E.; Yu, Z.; Ziemba, L. D.; Anderson, B. E.

    2015-12-01

    We statistically analyze the impact of jet fuel properties on aerosols emitted by the NASA McDonnell Douglas DC-8 CFM56-2-C1 engines burning fifteen different aviation fuels. Data were collected for this single engine type during four different, comprehensive ground tests conducted over the past decade, which allow us to clearly link changes in aerosol emissions to fuel compositional changes. It is found that the volatile aerosol fraction dominates the number and volume emissions indices (EIs) over all engine powers, which are driven by changes in fuel aromatic and sulfur content. Meanwhile, the naphthalenic content of the fuel determines the magnitude of the non-volatile number and volume EI as well as the black carbon mass EI. Linear regression coefficients are reported for each aerosol EI in terms of these properties, engine fuel flow rate, and ambient temperature, and show that reducing both fuel sulfur content and napththalenes to near-zero levels would result in roughly a ten-fold decrease in aerosol number emitted per kg of fuel burn. This work informs future efforts to model aircraft emissions changes as the aviation fleet gradually begins to transition toward low-aromatic, low-sulfur alternative jet fuels from bio-based or Fischer-Tropsch production pathways.

  5. Uncertainties in global aerosols and climate effects due to biofuel emissions

    NASA Astrophysics Data System (ADS)

    Kodros, J. K.; Scott, C. E.; Farina, S. C.; Lee, Y. H.; L'Orange, C.; Volckens, J.; Pierce, J. R.

    2015-04-01

    Aerosol emissions from biofuel combustion impact both health and climate; however, while reducing emissions through improvements to combustion technologies will improve health, the net effect on climate is largely unconstrained. In this study, we examine sensitivities in global aerosol concentration, direct radiative climate effect, and cloud-albedo aerosol indirect climate effect to uncertainties in biofuel emission factors, optical mixing-state, and model nucleation and background SOA. We use the Goddard Earth Observing System global chemical-transport model (GEOS-Chem) with TwO Moment Aerosol Sectional (TOMAS) microphysics. The emission factors include: amount, composition, size and hygroscopicity, as well as optical mixing-state properties. We also evaluate emissions from domestic coal use, which is not biofuel but is also frequently emitted from homes. We estimate the direct radiative effect assuming different mixing states (internal, core-shell, and external) with and without absorptive organic aerosol (brown carbon). We find the global-mean direct radiative effect of biofuel emissions ranges from -0.02 to +0.06 W m-2 across all simulation/mixing state combinations with regional effects in source regions ranging from -0.2 to +1.2 W m-2. The global-mean cloud-albedo aerosol indirect effect ranges from +0.01 to -0.02 W m-2 with regional effects in source regions ranging from -1.0 to -0.05 W m-2. The direct radiative effect is strongly dependent on uncertainties in emissions mass, composition, emissions aerosol size distributions and assumed optical mixing state, while the indirect effect is dependent on the emissions mass, emissions aerosol size distribution and the choice of model nucleation and secondary organic aerosol schemes. The sign and magnitude of these effects have a strong regional dependence. We conclude that the climate effects of biofuel aerosols are largely unconstrained, and the overall sign of the aerosol effects is unclear due to uncertainties

  6. Time evolution and emission factors of aerosol particles from day and night time savannah fires

    NASA Astrophysics Data System (ADS)

    Vakkari, Ville; Beukes, Johan Paul; Tiitta, Petri; Venter, Andrew; Jaars, Kerneels; Josipovic, Miroslav; van Zyl, Pieter; Kulmala, Markku; Laakso, Lauri

    2013-04-01

    The largest uncertainties in the current global climate models originate from aerosol particle effects (IPCC, 2007) and at the same time aerosol particles also pose a threat to human health (Pope and Dockery, 2006). In southern Africa wild fires and prescribed burning are one of the most important sources of aerosol particles, especially during the dry season from June to September (e.g. Swap et al., 2003; Vakkari et al., 2012). The aerosol particle emissions from savannah fires in southern Africa have been studied in several intensive campaigns such as SAFARI 1992 and 2000 (Swap et al., 2003). However, all previous measurements have been carried out during the daytime, whereas most of the prescribed fires in southern Africa are lit up only after sunset. Furthermore, the previous campaigns followed the plume evolution for up to one hour after emission only. In this study, combining remote sensing fire observations to ground-based long-term measurements of aerosol particle and trace gas properties at the Welgegund measurement station (www.welgegund.org), we have been able to follow the time evolution of savannah fire plumes up to several hours in the atmosphere. For the first time the aerosol particle size distribution measurements in savannah fire plumes cover both day and night time plumes and also the ultrafine size range below 100 nm. During the period from May 20th 2010 to April 15th 2012 altogether 61 savannah fire plumes were observed at Welgegund. The evolution of the aerosol size distribution remained rapid for at least five hours after the fire: during this period the growth rate of the aerosol particle count mean diameter (size range 12 to 840 nm) was 24 nm h-1 for daytime plumes and 8 nm h-1 for night time plumes. The difference in the day and night time growth rate shows that photochemical reactions significantly increase the condensable vapour concentration in the plume. Furthermore, the condensable vapour concentration was found to affect both the

  7. Dust aerosol emission over the Sahara during summertime from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations

    NASA Astrophysics Data System (ADS)

    Todd, Martin C.; Cavazos-Guerra, Carolina

    2016-03-01

    Dust aerosols are an important component of the climate system and a challenge to incorporate into weather and climate models. Information on the location and magnitude of dust emission remains a key information gap to inform model development. Inadequate surface observations ensure that satellite data remain the primary source of this information over extensive and remote desert regions. Here, we develop estimates of the relative magnitude of active dust emission over the Sahara desert based on data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). Utilising the unique vertical profile of aerosol characteristics provided by CALIOP our algorithm identifies emission from aerosol extinction and lidar backscatter in the near surface layers. From the long-term CALIOP archive of day and night-time orbits over 2006-13 we construct coarse resolution maps of a new dust emission index (DEI) for the Sahara desert during the peak summer dust season (June to September). The spatial structure of DEI indicates highest emission over a broad zone focused on the border regions of Southern Algeria, Northern Mali and northwest Niger, displaced substantially (∼7°) to the east of the mean maximum in satellite-derived aerosol optical depth. In this region night-time emission exceeds that during the day. The DEI maps substantially corroborate recently derived dust source frequency count maps based on back-tracking plumes in high temporal resolution SEVIRI imagery. As such, a convergence of evidence from multiple satellite data sources using independent methods provides an increasingly robust picture of Saharan dust emission sources. Various caveats are considered. As such, quantitative estimates of dust emission may require a synergistic combined multi-sensor analysis.

  8. Predicting secondary organic aerosol formation rates in southeast Texas

    NASA Astrophysics Data System (ADS)

    Russell, Matthew; Allen, David T.

    2005-04-01

    Rates of secondary organic aerosol (SOA) formation, due to the reactions of aromatics and monoterpenes, were estimated for southeast Texas by incorporating a modified version of the Statewide Air Pollution Research Center's chemical mechanism (SAPRC99) into the Comprehensive Air Quality Model with extensions (CAMx version 3.10). The model included explicit representation of the reactions of five SOA precursors (α-pinene, β-pinene, sabinene, d-limonene, and Δ3-carene). Reactions of each SOA precursor with O3, OH radical, and NO3 radical were included. The model also included separate reactions for low- and high-SOA-yield aromatic groups with the OH radical. SOA yields in the mechanisms were estimated using compound-specific yield information (ΔSOA/ΔHC) derived from smog chamber experiments conducted by J. R. Odum and colleagues and R. J. Griffin and colleagues. The form of the SOA yield model was based on the work of J. R. Odum and colleagues and is a function of existing organic aerosol concentrations. Existing organic aerosol concentrations were estimated on the basis of ambient measurements of total organic carbon in southeast Texas. The reactions of monoterpenes (predominantly α-pinene and β-pinene) with ozone led to the most regional SOA formation, followed by monoterpenes with the nitrate radical. Aromatic-OH reactions led to less regional SOA formation compared to monoterpenes; however, this formation occurs close to the urban and industrial areas of Houston. In contrast, SOA formation due to the reactions of monoterpenes occurred in the forested areas north of the urban area. The results of this study are in qualitative agreement with estimates of SOA formation based on ambient data from the same time period.

  9. BEHAVIOR OF CONSTANT RATE AEROSOL REACTORS (JOURNAL VERSION)

    EPA Science Inventory

    An aerosol reactor is a gaseous system in which fine particles are formed by chemical reaction in either a batch or flow process. Such reactors are used to study the aerosol formation process, as in a smog reactor, or to generate a product such as a pigment or a catalytic aerosol...

  10. Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996-2010

    NASA Astrophysics Data System (ADS)

    Lu, Z.; Streets, D. G.

    2011-07-01

    China and India are the two largest anthropogenic aerosol generating countries in the world. In this study, we develop a new inventory of sulfur dioxide (SO2) and primary carbonaceous aerosol (i.e., black and organic carbon, BC and OC) emissions from these two countries for the period 1996-2010, using a technology-based methodology. Emissions from major anthropogenic sources and open biomass burning are included, and time-dependent trends in activity rates and emission factors are incorporated in the calculation. Year-specific monthly fractions for major sectors and gridded emissions at a resolution of 0.1° × 0.1° distributed by multiple year-by-year spatial proxies are also developed. In China, the interaction between economic development and environmental protection causes large temporal variations in the emission trends. From 1996 to 2000, emissions of all three species showed a decreasing trend (by 9 %-17 %) due to a slowdown in economic growth, a decline in coal use in non-power sectors, and the implementation of air pollution control measures. With the economic boom after 2000, emissions from China changed dramatically. BC and OC emissions increased by 46 % and 33 % to 1.85 Tg and 4.03 Tg in 2010. SO2 emissions first increased by 61 % to 34.0 Tg in 2006, and then decreased by 9.2 % to 30.8 Tg in 2010 due to the wide application of flue-gas desulfurization (FGD) equipment in power plants. Driven by the remarkable energy consumption growth and relatively lax emission controls, emissions from India increased by 70 %, 41 %, and 35 % to 8.81 Tg, 1.02 Tg, and 2.74 Tg in 2010 for SO2, BC, and OC, respectively. Monte Carlo simulations are used to quantify the emission uncertainties. The average 95 % confidence intervals (CIs) of SO2, BC, and OC emissions are estimated to be -16 %-17 %, -43 %-93 %, and -43 %-80 % for China, and -15 %-16 %, -41 %-87 %, and -44 %-92 % for India, respectively. Sulfur content, fuel use, and sulfur retention of hard coal and the actual

  11. Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996-2010

    NASA Astrophysics Data System (ADS)

    Lu, Z.; Zhang, Q.; Streets, D. G.

    2011-09-01

    China and India are the two largest anthropogenic aerosol generating countries in the world. In this study, we develop a new inventory of sulfur dioxide (SO2) and primary carbonaceous aerosol (i.e., black and organic carbon, BC and OC) emissions from these two countries for the period 1996-2010, using a technology-based methodology. Emissions from major anthropogenic sources and open biomass burning are included, and time-dependent trends in activity rates and emission factors are incorporated in the calculation. Year-specific monthly temporal distributions for major sectors and gridded emissions at a resolution of 0.1°×0.1° distributed by multiple year-by-year spatial proxies are also developed. In China, the interaction between economic development and environmental protection causes large temporal variations in the emission trends. From 1996 to 2000, emissions of all three species showed a decreasing trend (by 9 %-17 %) due to a slowdown in economic growth, a decline in coal use in non-power sectors, and the implementation of air pollution control measures. With the economic boom after 2000, emissions from China changed dramatically. BC and OC emissions increased by 46 % and 33 % to 1.85 Tg and 4.03 Tg in 2010. SO2 emissions first increased by 61 % to 34.0 Tg in 2006, and then decreased by 9.2 % to 30.8 Tg in 2010 due to the wide application of flue-gas desulfurization (FGD) equipment in power plants. Driven by the remarkable energy consumption growth and relatively lax emission controls, emissions from India increased by 70 %, 41 %, and 35 % to 8.81 Tg, 1.02 Tg, and 2.74 Tg in 2010 for SO2, BC, and OC, respectively. Monte Carlo simulations are used to quantify the emission uncertainties. The average 95 % confidence intervals (CIs) of SO2, BC, and OC emissions are estimated to be -16 %-17 %, -43 %-93 %, and -43 %-80 % for China, and -15 %-16 %, -41 %-87 %, and -44 %-92 % for India, respectively. Sulfur content, fuel use, and sulfur retention of hard coal and

  12. Impact of aerosol emission controls on future Arctic sea ice cover

    NASA Astrophysics Data System (ADS)

    Gagné, M.-È.; Gillett, N. P.; Fyfe, J. C.

    2015-10-01

    We examine the response of Arctic sea ice to projected aerosol and aerosol precursor emission changes under the Representative Concentration Pathway (RCP) scenarios in simulations of the Canadian Earth System Model. The overall decrease in aerosol loading causes a warming, largest over the Arctic, which leads to an annual mean reduction in sea ice extent of approximately 1 million km2 over the 21st century in all RCP scenarios. This accounts for approximately 25% of the simulated reduction in sea ice extent in RCP 4.5, and 40% of the reduction in RCP 2.5. In RCP 4.5, the Arctic ocean is projected to become ice-free during summertime in 2045, but it does not become ice-free until 2057 in simulations with aerosol precursor emissions held fixed at 2000 values. Thus, while reductions in aerosol emissions have significant health and environmental benefits, their substantial contribution to projected Arctic climate change should not be overlooked.

  13. [The research on remote sensing dust aerosol by using split window emissivity].

    PubMed

    Xu, Hui; Yu, Tao; Gu, Xing-Fa; Cheng, Tian-Hai; Xie, Dong-Hai; Liu, Qian

    2013-05-01

    Dust aerosol can cause the change in the land surface emissivity in split window by radiative forcing (RF). Firstly, the present paper explained from the microscopic point of view the extinction properties of dust aerosols in the 11 and 12 microm channels, and their influence on the land surface emissivity. Secondly, on April 29, 2011, in the northern region of Inner Mongolia a strong sandstorm outbroke, and based on the analysis of the changes in land surface emissivity, this paper proposed a dust identification method by using the variation of emissivity. At last, the dust identification result was evaluated by the dust monitoring product provided by the National Satellite Meteorological Center. The result shows that under the assumption that the 12 microm emissivity equals to 1, using 11 microm relative emissivity could identify dust cover region effectively, and the 11 microm relative emissivity to a certain extent represented the intensity information of dust aerosol. PMID:23905316

  14. Seasonal differences in aerosol abundance and radiative forcing in months of contrasting emissions and rainfall over northern South Asia

    NASA Astrophysics Data System (ADS)

    Sadavarte, P.; Venkataraman, C.; Cherian, R.; Patil, N.; Madhavan, B. L.; Gupta, T.; Kulkarni, S.; Carmichael, G. R.; Adhikary, B.

    2016-01-01

    A modeling framework was used to examine gaps in understanding of seasonal and spatial heterogeneity in aerosol abundance and radiative forcing over northern South Asia, whose glimpses are revealed in observational studies. Regionally representative emissions were used in chemical transport model simulations at a spatial resolution of 60 × 60 km2, in April, July and September, chosen as months of contrasting emissions and rainfall. Modeled aerosol abundance in northern South Asia was predominantly found to be dust and carbonaceous in April, dust and sulfate in July and sulfate and carbonaceous in September. Anthropogenic aerosols arose from energy-use emissions (from industrial sources, residential biofuel cooking, brick kilns) in all months, additionally from field burning in April, and incursion from East Asia in September. In April, carbonaceous aerosols were abundant from open burning of agricultural fields even at high altitude locations (Godavari), and of forests in the eastern Gangetic Plain (Kolkata). Direct radiative forcing and heating rate, calculated from OPAC-SBDART, using modeled aerosol fields, and corrected by MODIS AOD observations, showed regionally uniform atmospheric forcing in April, compared to that in other months, influenced by both dust and black carbon abundance. A strong spatial heterogeneity of radiative forcing and heating rate was found, with factor of 2.5-3.5 lower atmospheric forcing over the Tibet plateau than that over the Ganga Plain and Northwest in July and September. However, even over the remote Tibet plateau, there was significant anthropogenic contribution to atmospheric forcing and heating rate (45% in Apr, 75% in Sep). Wind fields showed black carbon transport from south Asia in April and east Asia in September. Further evaluation of the transport of dust and anthropogenic emissions from various source regions and their deposition in the Himalaya and Tibet, is important in understanding regional air quality and climate

  15. Potential sensitivity of photosynthesis and isoprene emission to direct radiative effects of atmospheric aerosol pollution

    NASA Astrophysics Data System (ADS)

    Strada, S.; Unger, N.

    2015-09-01

    A global Earth system model is applied to quantify the impacts of direct anthropogenic aerosol effective radiative forcing on gross primary productivity (GPP) and isoprene emission. The impacts of different pollution aerosol sources (all anthropogenic, biomass burning and non-biomass burning) are investigated by performing sensitivity experiments. On the global scale, our results show that land carbon fluxes (GPP and isoprene emission) are not sensitive to pollution aerosols, even under a global decline in surface solar radiation (direct + diffuse) by ~ 9 %. At the regional scale, plant productivity (GPP) and isoprene emission show a robust but opposite sensitivity to pollution aerosols, in regions where complex canopies dominate. In eastern North America and Europe, anthropogenic pollution aerosols (mainly from non-biomass burning sources) enhance GPP by +8-12 % on an annual average, with a stronger increase during the growing season (> 12 %). In the Amazon basin and central Africa, biomass burning aerosols increase GPP by +2-5 % on an annual average, with a peak in the Amazon basin during the dry-fire season (+5-8 %). In Europe and China, anthropogenic pollution aerosols drive a decrease in isoprene emission of -2 to -12 % on the annual average. Anthropogenic aerosols affect land carbon fluxes via different mechanisms and we suggest that the dominant mechanism varies across regions: (1) light scattering dominates in the eastern US; (2) cooling in the Amazon basin; and (3) reduction in direct radiation in Europe and China.

  16. The impact of residential combustion emissions on atmospheric aerosol, human health and climate

    NASA Astrophysics Data System (ADS)

    Butt, E. W.; Rap, A.; Schmidt, A.; Reddington, C.; Scott, C.; Pringle, K.; Woodhouse, M.; Spracklen, D. V.

    2015-12-01

    Combustion of fuels in the residential sector for cooking and heating, results in the emission of aerosol and aerosol precursors that effect air quality, human health and climate. Residential emissions are dominated by the combustion of solid fuels which are the primary energy source for nearly half the world's population. Despite this importance, residential emissions are poorly quantified, as are their impacts on air quality and climate. We used a global aerosol microphysics model to simulate the impact of residential emissions on atmospheric aerosol in the year 2000, and evaluated simulated concentrations against surface observations of aerosol mass and number. Residential emissions make the largest contributions to surface particulate matter (PM2.5) concentrations in East Asia, South Asia and Eastern Europe, matching regions of greatest emissions. We used concentration response functions to estimate a global annual excess adult (> 30 years of age) premature mortality due to residential emissions of between 113, 300 and 827, 000 when uncertainties in both residential emissions and health effects of PM2.5 were accounted for. Premature mortality was greatest in Asia, with China and India accounting for 50% of simulated global excess mortality. Using an offline radiative transfer model, we show that residential emissions exerted a global annual mean direct radiative effect of between -66 mW m-2 and +21 mW m-2, accounting for uncertainties in emissions flux and assumed ratio of carbonaceous and sulphur emissions. Residential emissions exerted a negative global annual mean first aerosol indirect effect of between -52 mW m-2 and -16 mW m-2, which was found to be sensitive to the assumed size distribution of carbonaceous emissions. Our results demonstrate that reducing residential combustion emissions would have substantial benefits for human health through reductions in ambient PM2.5 concentrations.

  17. Potential emission flux to aerosol pollutants over Bengal Gangetic plain through combined trajectory clustering and aerosol source fields analysis

    NASA Astrophysics Data System (ADS)

    Kumar, D. Bharath; Verma, S.

    2016-09-01

    A hybrid source-receptor analysis was carried out to evaluate the potential emission flux to winter monsoon (WinMon) aerosols over Bengal Gangetic plain urban (Kolkata, Kol) and semi-urban atmospheres (Kharagpur, Kgp). This was done through application of fuzzy c-mean clustering to back-trajectory data combined with emission flux and residence time weighted aerosols analysis. WinMon mean aerosol optical depth (AOD) and angstrom exponent (AE) at Kol (AOD: 0.77; AE: 1.17) were respectively slightly higher than and nearly equal to that at Kgp (AOD: 0.71; AE: 1.18). Out of six source region clusters over Indian subcontinent and two over Indian oceanic region, the cluster mean AOD was the highest when associated with the mean path of air mass originating from the Bay of Bengal and the Arabian sea clusters at Kol and that from the Indo-Gangetic plain (IGP) cluster at Kgp. Spatial distribution of weighted AOD fields showed the highest potential source of aerosols over the IGP, primarily over upper IGP (e.g. Punjab, Haryana), lower IGP (e.g. Uttarpradesh) and eastern region (e.g. west Bengal, Bihar, northeast India) clusters. The emission flux contribution potential (EFCP) of fossil fuel (FF) emissions at surface (SL) of Kol/Kgp, elevated layer (EL) of Kol, and of biomass burning (BB) emissions at SL of Kol were primarily from upper, lower, upper/lower IGP clusters respectively. The EFCP of FF/BB emissions at Kgp-EL/SL, and that of BB at EL of Kol/Kgp were mainly from eastern region and Africa (AFR) clusters respectively. Though the AFR cluster was constituted of significantly high emission flux source potential of dust emissions, the EFCP of dust from northwest India (NWI) was comparable to that from AFR at Kol SL/EL.

  18. Regional-scale simulations of fungal spore aerosols using an emission parameterization adapted to local measurements of fluorescent biological aerosol particles

    NASA Astrophysics Data System (ADS)

    Hummel, M.; Hoose, C.; Gallagher, M.; Healy, D. A.; Huffman, J. A.; O'Connor, D.; Pöschl, U.; Pöhlker, C.; Robinson, N. H.; Schnaiter, M.; Sodeau, J. R.; Stengel, M.; Toprak, E.; Vogel, H.

    2015-06-01

    Fungal spores as a prominent type of primary biological aerosol particles (PBAP) have been incorporated into the COSMO-ART (Consortium for Small-scale Modelling-Aerosols and Reactive Trace gases) regional atmospheric model. Two literature-based emission rates for fungal spores derived from fungal spore colony counts and chemical tracer measurements were used as a parameterization baseline for this study. A third, new emission parameterization for fluorescent biological aerosol particles (FBAP) was adapted to field measurements from four locations across Europe. FBAP concentrations can be regarded as a lower estimate of total PBAP concentrations. Size distributions of FBAP often show a distinct mode at approx. 3 μm, corresponding to a diameter range characteristic for many fungal spores. Previous studies for several locations have suggested that FBAP are in many cases dominated by fungal spores. Thus, we suggest that simulated FBAP and fungal spore concentrations obtained from the three different emission parameterizations can be compared to FBAP measurements. The comparison reveals that simulated fungal spore concentrations based on literature emission parameterizations are lower than measured FBAP concentrations. In agreement with the measurements, the model results show a diurnal cycle in simulated fungal spore concentrations, which may develop partially as a consequence of a varying boundary layer height between day and night. Temperature and specific humidity, together with leaf area index (LAI), were chosen to drive the new emission parameterization which is fitted to the FBAP observations. The new parameterization results in similar root mean square errors (RMSEs) and correlation coefficients compared to the FBAP observations as the previously existing fungal spore emission parameterizations, with some improvements in the bias. Using the new emission parameterization on a model domain covering western Europe, FBAP in the lowest model layer comprise a

  19. Cloud-Resolving Model Simulations of Aerosol-Cloud Interactions Triggered by Strong Aerosol Emissions in the Arctic

    NASA Astrophysics Data System (ADS)

    Wang, H.; Kravitz, B.; Rasch, P. J.; Morrison, H.; Solomon, A.

    2014-12-01

    Previous process-oriented modeling studies have highlighted the dependence of effectiveness of cloud brightening by aerosols on cloud regimes in warm marine boundary layer. Cloud microphysical processes in clouds that contain ice, and hence the mechanisms that drive aerosol-cloud interactions, are more complicated than in warm clouds. Interactions between ice particles and liquid drops add additional levels of complexity to aerosol effects. A cloud-resolving model is used to study aerosol-cloud interactions in the Arctic triggered by strong aerosol emissions, through either geoengineering injection or concentrated sources such as shipping and fires. An updated cloud microphysical scheme with prognostic aerosol and cloud particle numbers is employed. Model simulations are performed in pure super-cooled liquid and mixed-phase clouds, separately, with or without an injection of aerosols into either a clean or a more polluted Arctic boundary layer. Vertical mixing and cloud scavenging of particles injected from the surface is still quite efficient in the less turbulent cold environment. Overall, the injection of aerosols into the Arctic boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. The pure liquid clouds are more susceptible to the increase in aerosol number concentration than the mixed-phase clouds. Rain production processes are more effectively suppressed by aerosol injection, whereas ice precipitation (snow) is affected less; thus the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. Aerosol injection into a clean boundary layer results in a greater cloud albedo increase than injection into a polluted one, consistent with current knowledge about aerosol-cloud interactions. Unlike previous studies investigating warm clouds, the impact of dynamical feedback due to precipitation changes is small. According to these results, which are dependent upon the representation of ice nucleation

  20. Secondary organic aerosol formation from road vehicle emissions

    NASA Astrophysics Data System (ADS)

    Pieber, Simone M.; Platt, Stephen M.; El Haddad, Imad; Zardini, Alessandro A.; Suarez-Bertoa, Ricardo; Slowik, Jay G.; Huang, Ru-Jin; Hellebust, Stig; Temime-Roussel, Brice; Marchand, Nicolas; Drinovec, Luca; Mocnik, Grisa; Baltensperger, Urs; Astorga, Covadogna; Prévôt, André S. H.

    2014-05-01

    Organic aerosol particles (OA) are a major fraction of the submicron particulate matter. OA consists of directly emitted primary (POA) and secondary OA (SOA). SOA is formed in-situ in the atmosphere via the reaction of volatile organic precursors. The partitioning of SOA species depends not only on the exposure to oxidants, but for instance also on temperature, relative humidity (RH), and the absorptive mass chemical composition (presence of inorganics) and concentration. Vehicle exhaust is a known source of POA and likely contributes to SOA formation in urban areas [1;2]. This has recently been estimated by (i) analyzing ambient data from urban areas combined with fuel consumption data [3], (ii) by examining the chemical composition of raw fuels [4], or (iii) smog chamber studies [5, 6]. Contradictory and thus somewhat controversial results in the relative quantity of SOA from diesel vs. gasoline vehicle exhaust were observed. In order to elucidate the impact of variable ambient conditions on the potential SOA formation of vehicle exhaust, and its relation to the emitted gas phase species, we studied SOA formed from the exhaust of passenger cars and trucks as a function of fuel and engine type (gasoline, diesel) at different temperatures (T 22 vs. -7oC) and RH (40 vs. 90%), as well as with different levels of inorganic salt concentrations. The exhaust was sampled at the tailpipe during regulatory driving cycles on chassis dynamometers, diluted (200 - 400x) and introduced into the PSI mobile smog chamber [6], where the emissions were subjected to simulated atmospheric ageing. Particle phase instruments (HR-ToF-AMS, aethalometers, CPC, SMPS) and gas phase instruments (PTR-TOF-MS, CO, CO2, CH4, THC, NH3 and other gases) were used online during the experiments. We found that gasoline emissions, because of cold starts, were generally larger than diesel, especially during cold temperatures driving cycles. Gasoline vehicles also showed the highest SOA formation

  1. Lubricating oil dominates primary organic aerosol emissions from motor vehicles.

    PubMed

    Worton, David R; Isaacman, Gabriel; Gentner, Drew R; Dallmann, Timothy R; Chan, Arthur W H; Ruehl, Christopher; Kirchstetter, Thomas W; Wilson, Kevin R; Harley, Robert A; Goldstein, Allen H

    2014-04-01

    Motor vehicles are major sources of primary organic aerosol (POA), which is a mixture of a large number of organic compounds that have not been comprehensively characterized. In this work, we apply a recently developed gas chromatography mass spectrometry approach utilizing "soft" vacuum ultraviolet photoionization to achieve unprecedented chemical characterization of motor vehicle POA emissions in a roadway tunnel with a mass closure of >60%. The observed POA was characterized by number of carbon atoms (NC), number of double bond equivalents (NDBE) and degree of molecular branching. Vehicular POA was observed to predominantly contain cycloalkanes with one or more rings and one or more branched alkyl side chains (≥80%) with low abundances of n-alkanes and aromatics (<5%), similar to "fresh" lubricating oil. The gas chromatography retention time data indicates that the cycloalkane ring structures are most likely dominated by cyclohexane and cyclopentane rings and not larger cycloalkanes. High molecular weight combustion byproducts, that is, alkenes, oxygenates, and aromatics, were not present in significant amounts. The observed carbon number and chemical composition of motor vehicle POA was consistent with lubricating oil being the dominant source from both gasoline and diesel-powered vehicles, with an additional smaller contribution from unburned diesel fuel and a negligible contribution from unburned gasoline. PMID:24621254

  2. Unspeciated organic emissions from combustion sources and their influence on the secondary organic aerosol budget in the United States

    EPA Science Inventory

    Secondary organic aerosol (SOA) formed from the atmospheric oxidation of nonmethane organic gases (NMOG) is a major contributor to atmospheric aerosol mass. Emissions and smog chamber experiments were performed to investigate SOA formation from gasoline vehicles, diesel vehicles,...

  3. The impact of residential combustion emissions on atmospheric aerosol, human health and climate

    NASA Astrophysics Data System (ADS)

    Butt, E. W.; Rap, A.; Schmidt, A.; Scott, C. E.; Pringle, K. J.; Reddington, C. L.; Richards, N. A. D.; Woodhouse, M. T.; Ramirez-Villegas, J.; Yang, H.; Vakkari, V.; Stone, E. A.; Rupakheti, M.; Praveen, P. S.; van Zyl, P. G.; Beukes, J. P.; Josipovic, M.; Mitchell, E. J. S.; Sallu, S. M.; Forster, P. M.; Spracklen, D. V.

    2015-07-01

    Combustion of fuels in the residential sector for cooking and heating, results in the emission of aerosol and aerosol precursors impacting air quality, human health and climate. Residential emissions are dominated by the combustion of solid fuels. We use a global aerosol microphysics model to simulate the uncertainties in the impact of residential fuel combustion on atmospheric aerosol. The model underestimates black carbon (BC) and organic carbon (OC) mass concentrations observed over Asia, Eastern Europe and Africa, with better prediction when carbonaceous emissions from the residential sector are doubled. Observed seasonal variability of BC and OC concentrations are better simulated when residential emissions include a seasonal cycle. The largest contributions of residential emissions to annual surface mean particulate matter (PM2.5) concentrations are simulated for East Asia, South Asia and Eastern Europe. We use a concentration response function to estimate the health impact due to long-term exposure to ambient PM2.5 from residential emissions. We estimate global annual excess adult (> 30 years of age) premature mortality of 308 000 (113 300-497 000, 5th to 95th percentile uncertainty range) for monthly varying residential emissions and 517 000 (192 000-827 000) when residential carbonaceous emissions are doubled. Mortality due to residential emissions is greatest in Asia, with China and India accounting for 50 % of simulated global excess mortality. Using an offline radiative transfer model we estimate that residential emissions exert a global annual mean direct radiative effect of between -66 and +21 mW m-2, with sensitivity to the residential emission flux and the assumed ratio of BC, OC and SO2 emissions. Residential emissions exert a global annual mean first aerosol indirect effect of between -52 and -16 mW m-2, which is sensitive to the assumed size distribution of carbonaceous emissions. Overall, our results demonstrate that reducing residential

  4. Influence of room geometry and ventilation rate on airflow and aerosol dispersion: implications for worker protection.

    PubMed

    Whicker, Jeffrey J; Wasiolek, Piotr T; Tavani, Rebecca A

    2002-01-01

    Knowledge of dispersion rates and patterns of radioactive aerosols and gases through workrooms is critical for understanding human exposure and for developing strategies for worker protection. The dispersion within rooms can be influenced by complex interactions between numerous variables, but especially ventilation design and room furnishings. For this study, dependence of airflow and aerosol dispersion on workroom geometry (furnishings) and ventilation rate were studied in an experimental room that was designed to approximate a plutonium laboratory. Three different configurations of simulated gloveboxes and two ventilation rates (approximately 6 and 12 air exchanges per hour) were studied. A sonic anemometer was used to measure airflow parameters including all three components of air velocity vectors and turbulence intensity distributions at multiple locations and heights. Aerosol dispersion rates and patterns were measured by releasing aerosols multiple times from six different locations. Aerosol particle concentrations resolved in time and space were measured using 16 multiplexed laser particle counters. Comparisons were made of air velocities, turbulence, and aerosol transport across different ventilation rates and room configurations. A strong influence of ventilation rate on aerosol dispersion rates and air velocity was found, and changes in room geometry had significant effects on aerosol dispersion rates and patterns. These results are important with regards to constant evaluation of placement of air sampling equipment, benchmarking numerical models of room airflow, and design of ventilation and room layouts with consideration of worker safety. PMID:11768799

  5. Primary sulfate aerosol and associated emissions from Masaya Volcano, Nicaragua

    NASA Astrophysics Data System (ADS)

    Allen, A. G.; Oppenheimer, C.; Ferm, M.; Baxter, P. J.; Horrocks, L. A.; Galle, B.; McGonigle, A. J. S.; Duffell, H. J.

    2002-12-01

    Existing studies of the composition of volcanic plumes generally interpret the presence of sulfate aerosol as the result of comparatively slow oxidation of gaseous SO2. We report here new observations from Masaya Volcano, Nicaragua, which demonstrate that sulfate aerosol may also be emitted directly from volcanic vents. Simultaneous aerosol and gaseous S, Cl, and F compounds were collected at the rim of the passively degassing crater in May 2001. Mean concentrations of SO42-, Cl-, and F- within the plume were 83, 1.2, and 0.37 μg m-3, respectively (fine aerosol fraction <2.5 μm) and 16, 2.5, and 0.56 μg m-3, respectively (coarse aerosol fraction >2.5 μm). The aerosols were highly acidic, with estimated pH of <1.0 in the fine aerosols. Sulfate was present mainly in smaller particles, with the fine fraction accounting for ≈80% of the mass. The bulk of the sulfate was emitted directly from the magmatic vent. Acidity in the aerosols derived from the presence of sulfuric acid and, to a lesser extent, hydrofluoric acid, with [H+]/[SO42-] equivalent values of 0.5-0.8 and 0.3-3 for fine and coarse aerosols, respectively. Gas phase/aerosol phase mass ratios were, on average, 458 (S), 330 (F), and 186 (Cl), with ranges of 95-1178, 37-659, and 43-259, respectively. These observations of highly acidic aerosol emitted directly from crater vents have implications for plume chemistry and environmental and health impacts of volcanic degassing.

  6. Airborne Observations of Aerosol Emissions from F-16 Aircraft

    NASA Technical Reports Server (NTRS)

    Anderson, B. E.; Cofer, W. R.; McDougal, D. S.

    1999-01-01

    We presented results from the SASS Near-Field Interactions Flight (SNIF-III) Experiment which was conducted during May and June 1997 in collaboration with the Vermont and New Jersey Air National Guard Units. The project objectives were to quantify the fraction of fuel sulfur converted to S(VI) species by jet engines and to gain a better understanding of particle formation and growth processes within aircraft wakes. Size and volatility segregated aerosol measurements along with sulfur species measurements were recorded in the exhaust of F-16 aircraft equipped with F-100 engines burning fuels with a range of fuel S concentrations at different altitudes and engine power settings. A total of 10 missions were flown in which F-16 exhaust plumes were sampled by an instrumented T-39 Sabreliner aircraft. On six of the flights, measurements were obtained behind the same two aircraft, one burning standard JP-8 fuel and the other either approximately 28 ppm or 1100 ppm S fuel or an equal mixture of the two (approximately 560 ppm S). A pair of flights was conducted for each fuel mixture, one at 30,000 ft altitude and the other starting at 35,000 ft and climbing to higher altitudes if contrail conditions were not encountered at the initial flight level. In each flight, the F-16s were operated at two power settings, approx. 80% and full military power. Exhaust emissions were sampled behind both aircraft at each flight level, power setting, and fuel S concentration at an initial aircraft separation of 30 m, gradually widening to about 3 km. Analyses of the aerosol data in the cases where fuel S was varied suggest results were consistent with observations from project SUCCESS, i.e., a significant fraction of the fuel S was oxidized to form S(VI) species and volatile particle emission indices (EIs) in comparably aged plumes exhibited a nonlinear dependence upon the fuel S concentration. For the high sulfur fuel, volatile particle EIs in 10-second-old-plumes were 2 to 3 x 10 (exp 17

  7. Estimating trace gas and aerosol emissions over South America: Relationship between fire radiative energy released and aerosol optical depth observations

    NASA Astrophysics Data System (ADS)

    Pereira, Gabriel; Freitas, Saulo R.; Moraes, Elisabete Caria; Ferreira, Nelson Jesus; Shimabukuro, Yosio Edemir; Rao, Vadlamudi Brahmananda; Longo, Karla M.

    2009-12-01

    Contemporary human activities such as tropical deforestation, land clearing for agriculture, pest control and grassland management lead to biomass burning, which in turn leads to land-cover changes. However, biomass burning emissions are not correctly measured and the methods to assess these emissions form a part of current research area. The traditional methods for estimating aerosols and trace gases released into the atmosphere generally use emission factors associated with fuel loading and moisture characteristics and other parameters that are hard to estimate in near real-time applications. In this paper, fire radiative power (FRP) products were extracted from Moderate Resolution Imaging Spectroradiometer (MODIS) and from the Geostationary Operational Environmental Satellites (GOES) fire products and new South America generic biomes FRE-based smoke aerosol emission coefficients were derived and applied in 2002 South America fire season. The inventory estimated by MODIS and GOES FRP measurements were included in Coupled Aerosol-Tracer Transport model coupled to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS) and evaluated with ground truth collected in Large Scale Biosphere-Atmosphere Smoke, Aerosols, Clouds, rainfall, and Climate (SMOCC) and Radiation, Cloud, and Climate Interactions (RaCCI). Although the linear regression showed that GOES FRP overestimates MODIS FRP observations, the use of a common external parameter such as MODIS aerosol optical depth product could minimize the difference between sensors. The relationship between the PM 2.5μm (Particulate Matter with diameter less than 2.5 μm) and CO (Carbon Monoxide) model shows a good agreement with SMOCC/RaCCI data in the general pattern of temporal evolution. The results showed high correlations, with values between 0.80 and 0.95 (significant at 0.5 level by student t test), for the CATT-BRAMS simulations with PM 2.5μm and CO.

  8. Future Arctic temperature change resulting from a range of aerosol emissions scenarios

    NASA Astrophysics Data System (ADS)

    Wobus, Cameron; Flanner, Mark; Sarofim, Marcus C.; Moura, Maria Cecilia P.; Smith, Steven J.

    2016-06-01

    The Arctic temperature response to emissions of aerosols -- specifically black carbon (BC), organic carbon (OC), and sulfate -- depends on both the sector and the region where these emissions originate. Thus, the net Arctic temperature response to global aerosol emissions reductions will depend strongly on the blend of emissions sources being targeted. We use recently published equilibrium Arctic temperature response factors for BC, OC, and sulfate to estimate the range of present-day and future Arctic temperature changes from seven different aerosol emissions scenarios. Globally, Arctic temperature changes calculated from all of these emissions scenarios indicate that present-day emissions from the domestic and transportation sectors generate the majority of present-day Arctic warming from BC. However, in all of these scenarios, this warming is more than offset by cooling resulting from SO2 emissions from the energy sector. Thus, long-term climate mitigation strategies that are focused on reducing carbon dioxide (CO2) emissions from the energy sector could generate short-term, aerosol-induced Arctic warming. A properly phased approach that targets BC-rich emissions from the transportation sector as well as the domestic sectors in key regions -- while simultaneously working toward longer-term goals of CO2 mitigation -- could potentially avoid some amount of short-term Arctic warming.

  9. Emission of sunscreen salicylic esters from desert vegetation and their contribution to aerosol formation

    NASA Astrophysics Data System (ADS)

    Matsunaga, S. N.; Guenther, A. B.; Potosnak, M. J.; Apel, E. C.

    2008-07-01

    Biogenic volatile organic compounds (BVOC) produced by plants are known to have an important role in atmospheric chemistry. However, our knowledge of the range of BVOCs produced by different plant processes is still expanding, and there remain poorly understood categories of BVOCs. In this study, emissions of a novel class of BVOC emissions were investigated in a desert region. Our study considered 8 species of common desert plants: blackbrush (Coleogyne ramosissima), desert willow (Chilopsis linearis), mesquite (Prosopis glandulosa), mondel pine (Pinus eldarica), pinyon pine (Pinus monophylla), cottonwood (Populus deltoides), saguaro cactus (Carnegiea gigantea) and yucca (Yucca baccata). The measurements focused on BVOCs with relatively high molecular weight (>C15) and/or an oxygenated functional group. Significantly high emission rates of two salicylic esters were found for blackbrush, desert willow and mesquite with emission rates of 1.4, 2.1 and 0.46 μgC dwg-1 h-1, respectively. The salicylic esters were identified as 2-ethylhexenyl salicylate (2-EHS) and 3,3,5-trimethylcyclohexenyl salicylate (homosalate) and are known as effective ultraviolet (UV) absorbers. We propose that the plants derive a protective benefit against UV radiation from the salicylic esters and that the emission process is driven by the physical evaporation of the salicylic esters due to the high ambient temperatures. In addition, the salicylic esters are predicted to be an effective precursor of secondary organic aerosol (SOA) because of their low vapor pressure due to a high number of carbon atoms (15 or 16) and the presence of three oxygen atoms. We estimated the contribution of the sunscreen esters themselves and their oxidation products on the SOA formation for the Las Vegas region using a BVOC emission model. The contribution was estimated to reach 90% of the biogenic SOA in the landscapes dominated by desert willow and mesquite and 25% in Las Vegas area.

  10. Influence of realistic airflow rate on aerosol generation by nebulizers.

    PubMed

    Vecellio, Laurent; Kippax, Paul; Rouquette, Stephane; Diot, Patrice

    2009-04-17

    Mathematical models are available which predict aerosol deposition in the respiratory system assuming that the aerosol concentration and size are constant during inhalation. In this study, we constructed a sinusoidal breathing model to calculate the aerosol concentration produced by a nebulizer as a function of inhalation time. The laser diffraction technique (Spraytec, Malvern Instruments Ltd., Malvern, UK) was used to validate this model as it allows the aerosol concentration and particle size to be measured in real time. Each nebulizer was attached to a special glass measurement cell and a sine-wave pump. Two standard jet nebulizers (Mistyneb and Microneb), two breath-enhanced jet nebulizers (Pari LC+ and Atomisor NL9M) and three mesh nebulizers (Eflow, Aeroneb Go and Aeroneb Pro with Idehaler) were characterized. Results obtained were consistent in terms of curve profile between the proposed model and the laser diffraction measurements. The standard jet and mesh nebulizers produced significant variations in aerosol concentration during inhalation, whereas the breath-enhanced jet nebulizers produced a constant aerosol concentration. All of the nebulizers produced a relatively constant particle size distribution. Our findings confirm that the concentration observed during inhalation is often not constant over time. The laser diffraction method allows the concentration and size of particles for each unit volume of air inhaled to be measured and could therefore be used to predict the aerosol deposition pattern more precisely. PMID:19150494

  11. Potential sensitivity of photosynthesis and isoprene emission to direct radiative effects of atmospheric aerosol pollution

    NASA Astrophysics Data System (ADS)

    Strada, Susanna; Unger, Nadine

    2016-04-01

    A global Earth system model is applied to quantify the impacts of direct anthropogenic aerosol effective radiative forcing on gross primary productivity (GPP) and isoprene emission. The impacts of different pollution aerosol sources (anthropogenic, biomass burning, and non-biomass burning) are investigated by performing sensitivity experiments. The model framework includes all known light and meteorological responses of photosynthesis, but uses fixed canopy structures and phenology. On a global scale, our results show that global land carbon fluxes (GPP and isoprene emission) are not sensitive to pollution aerosols, even under a global decline in surface solar radiation (direct + diffuse) by ˜ 9 %. At a regional scale, GPP and isoprene emission show a robust but opposite sensitivity to pollution aerosols in regions where forested canopies dominate. In eastern North America and Eurasia, anthropogenic pollution aerosols (mainly from non-biomass burning sources) enhance GPP by +5-8 % on an annual average. In the northwestern Amazon Basin and central Africa, biomass burning aerosols increase GPP by +2-5 % on an annual average, with a peak in the northwestern Amazon Basin during the dry-fire season (+5-8 %). The prevailing mechanism varies across regions: light scattering dominates in eastern North America, while a reduction in direct radiation dominates in Europe and China. Aerosol-induced GPP productivity increases in the Amazon and central Africa include an additional positive feedback from reduced canopy temperatures in response to increases in canopy conductance. In Eurasia and northeastern China, anthropogenic pollution aerosols drive a decrease in isoprene emission of -2 to -12 % on an annual average. Future research needs to incorporate the indirect effects of aerosols and possible feedbacks from dynamic carbon allocation and phenology.

  12. The Use of Satellite-Measured Aerosol Optical Depth to Constrain Biomass Burning Emissions Source Strength in the GOCART Model

    NASA Astrophysics Data System (ADS)

    Petrenko, M. M.; Kahn, R. A.; Chin, M.; Kucsera, T.; Soja, A. J.; Harshvardhan, D.

    2012-12-01

    Simulations of biomass burning (BB) emissions in chemistry transport models strongly depend on the inventories that define emission source location and strength. We compare snapshots of aerosol optical depth (AOD) from Moderate Resolution Imaging Spectroradiometer (MODIS) for 124 fire events occurring between 2006 and 2007 with AOD simulate by the GOCART model in 13 runs using different BB emission options, exposing regional biases of each emission option. The BB emissions input into the Goddard Chemistry Aerosol Radiation and Transport (GOCART) include the widely used Global Fire Emission Database (GFED) monthly and daily versions, Fire Radiative Power (FRP)-based Quick Fire Emission Dataset QFED, and 11 calculated emissions from different combinations of burned area based on the MODIS products, effective fuel load, and species emission factors. MODIS AOD snapshots for 124 globally distributed fire events serve as instantaneous constraint to the strength of the BB sources in the model. Even though globally GOCART average fire AOD values compare best to MODIS-measured AOD when the daily GFED inventory is used as input to GOCART, the regional performance of each inventory is essential when evaluating BB emissions. Even though GFED-based emission options provide the lowest emissions in the tropics, GFED-based GOCART AOD compares best with MODIS AOD in tropical cases. Fire-counts-based emission options give the largest emission estimates in the boreal regions, and the model performs best at higher latitudes with these inputs when compared to MODIS. Comparison of total annual BB emissions by all inventories suggests that burned area estimates are usually the largest source of disagreement. It is also shown that the quantitative relationship between BB aerosol emission rate and model-simulated AOD is related to the horizontal plume dispersion, which can be approximated by the wind speed in the planetary boundary layer in most cases. Thus, given average wind speed of the

  13. Quantifying the effect of organic aerosol aging and intermediate-volatility emissions on regional-scale aerosol pollution in China

    NASA Astrophysics Data System (ADS)

    Zhao, Bin; Wang, Shuxiao; Donahue, Neil M.; Jathar, Shantanu H.; Huang, Xiaofeng; Wu, Wenjing; Hao, Jiming; Robinson, Allen L.

    2016-06-01

    Secondary organic aerosol (SOA) is one of the least understood constituents of fine particles; current widely-used models cannot predict its loadings or oxidation state. Recent laboratory experiments demonstrated the importance of several new processes, including aging of SOA from traditional precursors, aging of primary organic aerosol (POA), and photo-oxidation of intermediate volatility organic compounds (IVOCs). However, evaluating the effect of these processes in the real atmosphere is challenging. Most models used in previous studies are over-simplified and some key reaction trajectories are not captured, and model parameters are usually phenomenological and lack experimental constraints. Here we comprehensively assess the effect of organic aerosol (OA) aging and intermediate-volatility emissions on regional-scale OA pollution with a state-of-the-art model framework and experimentally constrained parameters. We find that OA aging and intermediate-volatility emissions together increase OA and SOA concentrations in Eastern China by about 40% and a factor of 10, respectively, thereby improving model-measurement agreement significantly. POA and IVOCs both constitute over 40% of OA concentrations, and IVOCs constitute over half of SOA concentrations; this differs significantly from previous apportionment of SOA sources. This study facilitates an improved estimate of aerosol-induced climate and health impacts, and implies a shift from current fine-particle control policies.

  14. Quantifying the effect of organic aerosol aging and intermediate-volatility emissions on regional-scale aerosol pollution in China.

    PubMed

    Zhao, Bin; Wang, Shuxiao; Donahue, Neil M; Jathar, Shantanu H; Huang, Xiaofeng; Wu, Wenjing; Hao, Jiming; Robinson, Allen L

    2016-01-01

    Secondary organic aerosol (SOA) is one of the least understood constituents of fine particles; current widely-used models cannot predict its loadings or oxidation state. Recent laboratory experiments demonstrated the importance of several new processes, including aging of SOA from traditional precursors, aging of primary organic aerosol (POA), and photo-oxidation of intermediate volatility organic compounds (IVOCs). However, evaluating the effect of these processes in the real atmosphere is challenging. Most models used in previous studies are over-simplified and some key reaction trajectories are not captured, and model parameters are usually phenomenological and lack experimental constraints. Here we comprehensively assess the effect of organic aerosol (OA) aging and intermediate-volatility emissions on regional-scale OA pollution with a state-of-the-art model framework and experimentally constrained parameters. We find that OA aging and intermediate-volatility emissions together increase OA and SOA concentrations in Eastern China by about 40% and a factor of 10, respectively, thereby improving model-measurement agreement significantly. POA and IVOCs both constitute over 40% of OA concentrations, and IVOCs constitute over half of SOA concentrations; this differs significantly from previous apportionment of SOA sources. This study facilitates an improved estimate of aerosol-induced climate and health impacts, and implies a shift from current fine-particle control policies. PMID:27350423

  15. Quantifying the effect of organic aerosol aging and intermediate-volatility emissions on regional-scale aerosol pollution in China

    PubMed Central

    Zhao, Bin; Wang, Shuxiao; Donahue, Neil M.; Jathar, Shantanu H.; Huang, Xiaofeng; Wu, Wenjing; Hao, Jiming; Robinson, Allen L.

    2016-01-01

    Secondary organic aerosol (SOA) is one of the least understood constituents of fine particles; current widely-used models cannot predict its loadings or oxidation state. Recent laboratory experiments demonstrated the importance of several new processes, including aging of SOA from traditional precursors, aging of primary organic aerosol (POA), and photo-oxidation of intermediate volatility organic compounds (IVOCs). However, evaluating the effect of these processes in the real atmosphere is challenging. Most models used in previous studies are over-simplified and some key reaction trajectories are not captured, and model parameters are usually phenomenological and lack experimental constraints. Here we comprehensively assess the effect of organic aerosol (OA) aging and intermediate-volatility emissions on regional-scale OA pollution with a state-of-the-art model framework and experimentally constrained parameters. We find that OA aging and intermediate-volatility emissions together increase OA and SOA concentrations in Eastern China by about 40% and a factor of 10, respectively, thereby improving model-measurement agreement significantly. POA and IVOCs both constitute over 40% of OA concentrations, and IVOCs constitute over half of SOA concentrations; this differs significantly from previous apportionment of SOA sources. This study facilitates an improved estimate of aerosol-induced climate and health impacts, and implies a shift from current fine-particle control policies. PMID:27350423

  16. Mixing state of aerosols over the Indo-Gangetic Plain: Radiative forcing and heating rate

    NASA Astrophysics Data System (ADS)

    Srivastava, R.; Ramachandran, S.

    2012-12-01

    ratio is calculated from the geometry of core-shell particles, which depends on the mass and density of the core and shell. The size distribution parameters and refractive indices of different aerosol species are taken from OPAC database [3]. Different fractions of black carbon, water soluble and mineral dust aerosols involved in core-shell mixing emerge as the most probable mixing states over the IGP. Aerosol forcing for external mixing shows higher deviations from those for probable mixing cases during winter and pre-monsoon. The heating rate over Kanpur and Gandhi College in the lower troposphere is similar during pre-monsoon (March-May) ( 0.75 K day^{-1}) and monsoon (June-September) ( 0.5 K day^{-1}), while differences occur in other seasons [4]. Aerosol heating rate profiles exhibit primary and secondary peaks over the IGP and exhibit seasonal variations. Details on the calculations of aerosol mixing states over IGP, the impact of aerosol mixing state on aerosol forcing and heating rate will be discussed. References: [1] Intergovernmental panel on climate change (2007), Solomon S. et al. (eds.), Cambridge Univ. Press, NewYork. [2] Holben B. N., et al. (2001), J. Geophys. Res., 106(D11), 12067-12097. [3] Hess M., P. Koepke, I. Schult (1998), Bull. Am. Meteorol. Soc., 79, 831-844. [4] Srivastava R., S. Ramachandran (2012), Q. J. R. Meteorol. Soc., 138, doi:10.1002/qj.1958.

  17. Emission Controls Versus Meteorological Conditions in Determining Aerosol Concentrations in Beijing during the 2008 Olympic Games

    SciTech Connect

    Gao, Yi; Liu, Xiaohong; Zhao, Chun; Zhang, Meigen

    2011-12-12

    A series of emission control measures were undertaken in Beijing and the adjacent provinces in China during the 2008 Beijing Olympic Games on August 8th-24th, 2008. This provides a unique opportunity for investigating the effectiveness of emission controls on air pollution in Beijing. We conducted a series of numerical experiments over East Asia for the period of July to September 2008 using a coupled meteorology-chemistry model (WRF-Chem). Model can generally reproduce the observed variation of aerosol concentrations. Consistent with observations, modeled concentrations of aerosol species (sulfate, nitrate, ammonium, black carbon, organic carbon, total particulate matter) in Beijing were decreased by 30-50% during the Olympic period compared to the other periods in July and August in 2008 and the same period in 2007. Model results indicate that emission controls were effective in reducing the aerosol concentrations by comparing simulations with and without emission controls. However, our analysis suggests that meteorological conditions (e.g., wind direction and precipitation) are at least as important as emission controls in producing the low aerosol concentrations appearing during the Olympic period. Transport from the regions surrounding Beijing determines the temporal variation of aerosol concentrations in Beijing. Based on the budget analysis, we suggest that emission control strategy should focus on the regional scale instead of the local scale to improve the air quality over Beijing.

  18. Emission controls versus meteorological conditions in determining aerosol concentrations in Beijing during the 2008 Olympic Games

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Liu, X.; Zhao, C.; Zhang, M.

    2011-12-01

    A series of emission control measures were undertaken in Beijing and the adjacent provinces in China during the 2008 Beijing Olympic Games on 8-24 August 2008. This provides a unique opportunity for investigating the effectiveness of emission controls on air pollution in Beijing. We conducted a series of numerical experiments over East Asia for the period of July to September 2008 using a coupled meteorology-chemistry model (WRF-Chem). Model can generally reproduce the observed variation of aerosol concentrations. Consistent with observations, modeled concentrations of aerosol species (sulfate, nitrate, ammonium, black carbon, organic carbon, total particulate matter) in Beijing were decreased by 30-50% during the Olympic period compared to the other periods in July and August in 2008 and the same period in 2007. Model results indicate that emission controls were effective in reducing the aerosol concentrations by comparing simulations with and without emission controls. In addition to emission controls, our analysis suggests that meteorological conditions (e.g. wind direction and precipitation) were also important in producing the low aerosol concentrations appearing during the Olympic period. Transport from the regions surrounding Beijing determined the daily variation of aerosol concentrations in Beijing. Based on the budget analysis, we suggest that to improve the air quality over Beijing, emission control strategy should focus on the regional scale instead of the local scale.

  19. Aerosol Precursor Emissions, Secondary Aerosol Production, and Climate-Forcing Gas Exchange in the Midwestern United States

    NASA Astrophysics Data System (ADS)

    Doskey, P. V.

    2009-12-01

    Aerosol precursors in the Midwest are generated from a myriad of sources including biogenic emissions of terpenes from the Ozarks region, anthropogenic emissions of volatile and semivolatile aliphatic and aromatic hydrocarbons from the St. Louis airshed, and agricultural emissions of ammonia (NH3), amines, and nitrogen oxides (NOx) from animal husbandry and cropping systems of the Midwest Corn Belt. The deciduous and coniferous forests of the Ozarks region are significant sources of isoprene, monoterpenes, and sesquiterpenes that are sensitive to rising CO2 levels and temperature and generate light-scattering, secondary organic aerosol (SOA). Application of nitrogen fertilizers stimulates emissions of ammonia (NH3), nitric oxide (NO), and nitrous oxide (N2O) from agricultural soils and crops. Nitric acid, generated through photooxidation of NO emissions from fossil fuel combustion in urban air and from soil emissions in agroecosystems, reacts rapidly with NH3 to generate light-scattering, secondary inorganic aerosol (SIA). The atmospheric lifetime of N2O is about 120 years, making the substance a potent greenhouse gas with a global warming potential of 290 for a time horizon of 20 years relative to CO2. Emissions of CO2, N2O, and SIA precursors from the Midwest Corn Belt and surrounding areas are likely to increase in the near future as pastureland and prairie is converted to grow corn and other biofuel crops to meet the demand for renewable fuels. Several large river systems transport nutrients from fertilized fields of the Midwest agroecosystem to the Gulf of Mexico where plankton growth is accelerated. Microbial decomposition of plankton detritus consumes oxygen and creates a hypoxic zone, which might be a significant source of N2O.The presentation will discuss gaps in our knowledge of the production of climate-forcing species in the Midwestern United States.

  20. Aerosol emissions from biochar-amended agricultural soils

    NASA Astrophysics Data System (ADS)

    Ravi, S.; Sharratt, B. S.; Li, J. J.; Olshvevski, S.; Meng, Z.; Zhang, J.

    2015-12-01

    Agricultural production is a major contributor to anthropogenic greenhouse gas emissions and associated global warming. In this regard, novel carbon sequestration strategies such as large-scale biochar application may provide sustainable pathways to increase the terrestrial storage of carbon in agricultural areas. Biochar has a long residence time in the soil and hence understanding the soil properties affected by biochar addition needs to be investigated to identify the tradeoffs and synergies of large-scale biochar application. Even though several studies have investigated the impacts of biochar application on a variety of soil properties, very few studies have investigated the impacts on soil erosion, in particular wind (aeolian) erosion and subsequent particulate emissions. Using a combination of wind tunnel studies and laboratory experiments, we investigated the dust emission potential of biochar-amended agricultural soils. We amended biochar (unsieved or sieved to appropriate particle size; application rates ranging from 1 - 5 % of the soil by weight) to three soil types (sand, sandy loam, and silt loam) and estimated the changes in threshold shear velocity for wind erosion and dust emission potential in comparison to control soils. Our experiments demonstrate that emissions of fine biochar particles may result from two mechanisms (a) very fine biochar particles (suspension size) that are entrained into the air stream when the wind velocity exceeds the threshold, and (b) production of fine biochar particles originating from the abrasion by quartz grains. The results indicate that biochar application significantly increased particulate emissions and more interestingly, the rate of increase was found to be higher in the intermediate range of biochar application. As fine biochar particles effectively adsorb/trap contaminants and pathogens from the soil, the preferential erosion of fine biochar particles by wind may lead to concentration of contaminants in the

  1. Organic molecular composition of marine aerosols over the Arctic Ocean in summer: contributions of primary emission and secondary aerosol formation

    NASA Astrophysics Data System (ADS)

    Fu, P. Q.; Kawamura, K.; Chen, J.; Charrière, B.; Sempéré, R.

    2013-02-01

    Organic molecular composition of marine aerosol samples collected during the MALINA cruise in the Arctic Ocean was investigated by gas chromatography/mass spectrometry. More than 110 individual organic compounds were determined in the samples and were grouped into different compound classes based on the functionality and sources. The concentrations of total quantified organics ranged from 7.3 to 185 ng m-3 (mean 47.6 ng m-3), accounting for 1.8-11.0% (4.8%) of organic carbon in the marine aerosols. Primary saccharides were found to be dominant organic compound class, followed by secondary organic aerosol (SOA) tracers formed from the oxidation of biogenic volatile organic compounds (VOCs) such as isoprene, α-pinene and β-caryophyllene. Mannitol, the specific tracer for airborne fungal spores, was detected as the most abundant organic species in the samples with a concentration range of 0.052-53.3 ng m-3 (9.2 ng m-3), followed by glucose, arabitol, and the isoprene oxidation products of 2-methyltetrols. Biomass burning tracers such as levoglucosan are evident in all samples with trace levels. On the basis of the tracer-based method for the estimation of fungal-spore OC and biogenic secondary organic carbon (SOC), we estimate that an average of 10.7% (up to 26.2%) of the OC in the marine aerosols was due to the contribution of fungal spores, followed by the contribution of isoprene SOC (mean 3.8%) and α-pinene SOC (2.9%). In contrast, only 0.19% of the OC was due to the photooxidation of β-caryophyllene. This study indicates that primary organic aerosols from biogenic emissions, both from long-range transport of mid-latitude aerosols and from sea-to-air emission of marine organics, as well as secondary organic aerosols formed from the photooxidation of biogenic VOCs are important factors controlling the organic chemical composition of marine aerosols in the Arctic Ocean.

  2. Organic molecular composition of marine aerosols over the Arctic Ocean in summer: contributions of primary emission and secondary aerosol formation

    NASA Astrophysics Data System (ADS)

    Fu, P. Q.; Kawamura, K.; Chen, J.; Charrière, B.; Sempéré, R.

    2012-08-01

    Organic molecular composition of marine aerosol samples collected during the MALINA cruise in the Arctic Ocean was investigated by gas chromatography/mass spectrometry. More than 110 individual organic compounds were determined in the samples and were grouped into different compound classes based on the functionality and sources. The concentrations of total quantified organics ranged from 7.3 to 185 ng m-3 (mean 47.6 ng m-3), accounting for 1.8-11.0% (4.8%) of organic carbon in the marine aerosols. Primary saccharides were found to be dominant organic compound class, followed by secondary organic aerosol (SOA) tracers formed from the oxidation of biogenic volatile organic compounds (VOCs) such as isoprene, α-pinene and β-caryophyllene. Mannitol, the specific tracer for airborne fungal spores, was detected as the most abundant organic species in the samples with a concentration range of 0.052-53.3 ng m-3 (9.2 ng m-3), followed by glucose, arabitol, and the isoprene oxidation products of 2-methyltetrols. Biomass burning tracers such as levoglucosan are evident in all samples with trace levels. On the basis of the tracer-based method for the estimation of fungal-spore OC and biogenic secondary organic carbon (SOC), we estimate that an average of 10.7% (up to 26.2%) of the OC in the marine aerosols was due to the contribution of fungal spores, followed by the contribution of isoprene SOC (mean 3.8%) and α-pinene SOC (2.9%). In contrast, only 0.19% of the OC was due to the photooxidation of β-caryophyllene. This study indicates that primary organic aerosols from biogenic emissions, both from long-range transport of mid-latitude aerosols and from sea-to-air emission of marine organics, as well as secondary organic aerosols formed from the photooxidation of biogenic VOCs are important factors controlling the organic chemical composition of marine aerosols in the Arctic Ocean.

  3. Is the aerosol emission detectable in the thermal infrared?

    NASA Astrophysics Data System (ADS)

    Hollweg, H.-D.; Bakan, S.; Taylor, J. P.

    2006-08-01

    The impact of aerosols on the thermal infrared radiation can be assessed by combining observations and radiative transfer calculations. Both have uncertainties, which are discussed in this paper. Observational uncertainties are obtained for two FTIR instruments operated side by side on the ground during the LACE 1998 field campaign. Radiative transfer uncertainties are assessed using a line-by-line model taking into account the uncertainties of the HITRAN 2004 spectroscopic database, uncertainties in the determination of the atmospheric profiles of water vapor and ozone, and differences in the treatment of the water vapor continuum absorption by the CKD 2.4.1 and MT_CKD 1.0 algorithms. The software package OPAC was used to describe the optical properties of aerosols for climate modeling. The corresponding radiative signature is a guideline to the assessment of the uncertainty ranges of observations and models. We found that the detection of aerosols depends strongly on the measurement accuracy of atmospheric profiles of water vapor and ozone and is easier for drier conditions. Within the atmospheric window, only the forcing of downward radiation at the surface by desert aerosol emerges clearly from the uncertainties of modeling and FTIR measurement. Urban and polluted continental aerosols are only partially detectable depending on the wave number and on the atmospheric water vapor amount. Simulations for the space-borne interferometer IASI show that only upward radiation above transported mineral dust aloft emerges out of the uncertainties. The detection of aerosols with weak radiative impact by FTIR instruments like ARIES and OASIS is made difficult by noise as demonstrated by the signal to noise ratio for clean continental aerosols. Altogether, the uncertainties found suggest that it is difficult to detect the optical depths of nonmineral and unpolluted aerosols.

  4. Aerosol-CFD modelling of ultrafine and black carbon particle emission, dilution, and growth near roadways

    NASA Astrophysics Data System (ADS)

    Huang, L.; Gong, S. L.; Gordon, M.; Liggio, J.; Staebler, R. M.; Stroud, C. A.; Lu, G.; Mihele, C.; Brook, J. R.; Jia, C. Q.

    2014-05-01

    Many studies have shown that on-road vehicle emissions are the dominant source of ultrafine particles (UFP; diameter < 100 nm) in urban areas and near-roadway environments. In order to advance our knowledge on the complex interactions and competition among atmospheric dilution, dispersion and dynamics of UFPs, an aerosol dynamics-CFD coupled model is developed and validated against field measurements. A unique approach of applying periodic boundary conditions is proposed to model pollutant dispersion and dynamics in one unified domain from the tailpipe level to the ambient near-road environment. This approach significantly reduces the size of the computational domain, and therefore, allows fast simulation of multiple scenarios. The model is validated against measured turbulent kinetic energy (TKE) and pollution gradients near a major highway. Through a model sensitivity analysis, the relative importance of individual aerosol dynamical processes on the total particle number concentration (N) and particle number-size distribution (PSD) near a highway is investigated. The results demonstrate that (1) coagulation has a negligible effect on N and particle growth, (2) binary homogeneous nucleation (BHN) of H2SO4-H2O is likely responsible for elevated N closest to the road, (3) N and particle growth are very sensitive to the condensation of semi-volatile organics (SVOCs), particle dry deposition, and the interaction between these processes. The results also indicate that, without the proper treatment of atmospheric boundary layer (i.e. its wind profile and turbulence quantities), the nucleation rate would be underestimated by a factor of 5 in the vehicle wake region due to overestimated mixing. Therefore, introducing ABL conditions to activity-based emission models may potentially improve their performance in estimating UFP traffic emissions.

  5. Impacts of controlling biomass burning emissions on wintertime carbonaceous aerosol in Europe

    NASA Astrophysics Data System (ADS)

    Fountoukis, C.; Butler, T.; Lawrence, M. G.; Denier van der Gon, H. A. C.; Visschedijk, A. J. H.; Charalampidis, P.; Pilinis, C.; Pandis, S. N.

    2014-04-01

    We use a 3-D regional chemical transport model, with the latest advancements in the organic aerosol (OA) treatment, and an updated emission inventory for wood combustion to study the organic aerosol change in response to the replacement of current residential wood combustion technologies with pellet stoves. Simulations show a large decrease of fine organic aerosol (more than 60%) in urban and suburban areas during winter and decreases of 30-50% in elemental carbon levels in large parts of Europe. There is also a considerable decrease (around 40%) of oxidized OA, mostly in rural and remote regions. Total PM2.5 mass is predicted to decrease by 15-40% on average during the winter in continental Europe. Accurate representation of the intermediate volatility precursors of organic aerosol in the emission inventory is crucial in assessing the efficiency of such abatement strategies.

  6. Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of organic carbon emissions

    PubMed Central

    Gentner, Drew R.; Isaacman, Gabriel; Worton, David R.; Chan, Arthur W. H.; Dallmann, Timothy R.; Davis, Laura; Liu, Shang; Day, Douglas A.; Russell, Lynn M.; Wilson, Kevin R.; Weber, Robin; Guha, Abhinav; Harley, Robert A.; Goldstein, Allen H.

    2012-01-01

    Emissions from gasoline and diesel vehicles are predominant anthropogenic sources of reactive gas-phase organic carbon and key precursors to secondary organic aerosol (SOA) in urban areas. Their relative importance for aerosol formation is a controversial issue with implications for air quality control policy and public health. We characterize the chemical composition, mass distribution, and organic aerosol formation potential of emissions from gasoline and diesel vehicles, and find diesel exhaust is seven times more efficient at forming aerosol than gasoline exhaust. However, both sources are important for air quality; depending on a region’s fuel use, diesel is responsible for 65% to 90% of vehicular-derived SOA, with substantial contributions from aromatic and aliphatic hydrocarbons. Including these insights on source characterization and SOA formation will improve regional pollution control policies, fuel regulations, and methodologies for future measurement, laboratory, and modeling studies. PMID:23091031

  7. Impact of anthropogenic emissions from major population centers on global and regional aerosol budgets

    NASA Astrophysics Data System (ADS)

    Kunkel, Daniel; Tost, Holger; Lawrence, Mark

    2013-04-01

    In urban areas, in particular in major population centers (MPCs), anthropogenic pollutants can dominate over natural emissions and cause severe air quality problems. We used emission annihilation scenario simulations in the atmospheric chemistry global circulation model EMAC to study the individual and cumulative impact of four major aerosol species from MPCs on the global and regional aerosol budgets. Black carbon, particulate organic matter, sulphur dioxide (SO2), and nitrogen oxides (NOx) were used to represent emissions of primary aerosols and of precursors gases for secondary aerosols sulphate and nitrate, respectively. Moreover, feedbacks resulting from changed emissions on other atmospheric constituents were assessed and the linearity in the burden changes due to the emission changes was discussed. Aerosol sulphate showed the strongest decrease in the global budget and also the most widespread changes in the tropospheric column density, whereas the smallest global decrease with only local changes was found for particulate organic matter. The maximum reduction was found around the emission sources and in downwind regions. The primary emitted aerosols showed almost no feedback on other species. In contrast, many gas-aerosol equilibria were affected when the SO2 and NOx emissions were reduced. In the case with the reduced MPC-NOx emissions, many species participating in the NOx-ozone (O3) chemistry showed a response in their concentrations. In particular, ozone changed differently in extra-tropical and tropical cities, which is in accordance with findings of Butler and Lawrence (2009). Moreover, the oxidation capacity of the atmosphere was changed. The hydroxyl radical concentration changed similarly to O3, which lead to an increase in the tropospheric carbon monoxide concentration and to locally greater SO2 concentrations. Changes in the emissions for black carbon, particulate organic matter, and SO2 resulted in almost linear responses of the corresponding

  8. The "Parade Blue": effects of short-term emission control on aerosol chemistry.

    PubMed

    Li, Haiyan; Zhang, Qiang; Duan, Fengkui; Zheng, Bo; He, Kebin

    2016-07-18

    The strict control on emissions implemented in Beijing, China, during the 2015 China Victory Day Parade (V-day Parade) to commemorate the 70(th) Anniversary of Victory in World War II, provided a good opportunity to investigate the relationship between emission sources and aerosol chemistry in a heavily polluted megacity. From August 11 to September 3, 2015, an Aerosol Chemical Speciation Monitor was deployed in urban Beijing, together with other collocated instruments, for the real-time measurement of submicron aerosol characteristics. The average PM1 mass concentration was 11.3 (±6.7) μg m(-3) during the V-day Parade, 63.5% lower than that before the V-day Parade. Differently to the relatively smaller decrease of organics (53%), secondary inorganic aerosols (sulfate, nitrate and ammonium) showed significant reductions of 65-78% during the V-day Parade. According to the positive matrix factorization results, primary organic aerosol (POA) from traffic and cooking emissions decreased by 41.5% during the parade, whereas secondary organic aerosol (SOA) presented a much greater reduction (59%). The net effectiveness of emission control measures was investigated further under comparable weather conditions before and during the parade. By excluding the effects of meteorological parameters, the total PM1 mass was reduced by 52-57% because of the emission controls. Although the mass concentrations of aerosol species were reduced substantially, the PM1 bulk composition was similar before and during the control period as a consequence of synergetic control of various precursors. The emission restrictions also suppressed the secondary formation processes of sulfate and nitrate, indicated by the substantially reduced SOR and NOR (molar ratios of sulfate or nitrate to the sums of the sulfate and SO2 or nitrate and NO2) during the event. The study also explored the influence of emission controls on the evolution of organic aerosol using the mass ratios of SOA/POA and oxygen

  9. Mechanistic understanding of aerosol emissions from a brazing operation.

    PubMed

    Zimmer, A T; Biswas, P

    2000-01-01

    Welding operations produce gaseous and aerosol by-products that can have adverse health effects. A laboratory furnace study was conducted to aid understanding of the chemical and aerosol behavior of a widely used, self-fluxing brazing alloy (89% Cu, 6% Ag, 5% P) that is also used with a supplemental fluxing compound to prevent oxidation at the molten metal surface. The results indicate that the aerosols generated by the alloy are transient (produced over a short duration of time) and are associated with mass transfer of phosphorus species from the molten metal surface to the surrounding gas. In contrast, when the alloy was used in conjunction with the supplemental fluxing compound, a relatively nontransient, submicron-size aerosol was generated that was several orders of magnitude higher in concentration. Thermodynamic equilibrium analysis suggests that fluoride (a major constituent in the fluxing compound) played a significant role in reacting with the brazing alloy metals to form gas phase metal fluoride compounds that had high vapor pressures when compared with their elemental or oxide forms. As these metal-fluoride vapors cooled, submicron-size particles were formed mainly through nucleation and condensation growth processes. In addition, the equilibrium results revealed the potential formation of severe pulmonary irritants (HF and BF3) from heating the supplemental fluxing compound. These results demonstrated the importance of fluxing compounds in the formation of brazing fumes, and suggest that fluxing compounds could be selected that serve their metallurgical intention and suppress the formation of aerosols. PMID:10885884

  10. Global Top-Down Smoke-Aerosol Emissions Estimation Using Satellite Fire Radiative Power Measurements

    NASA Technical Reports Server (NTRS)

    Ichoku, C.; Ellison, L.

    2014-01-01

    Fire emissions estimates have long been based on bottom-up approaches that are not only complex, but also fraught with compounding uncertainties. We present the development of a global gridded (1 deg ×1 deg) emission coefficients (Ce) product for smoke total particulate matter (TPM) based on a top-down approach using coincident measurements of fire radiative power (FRP) and aerosol optical thickness (AOT) from the Moderate-resolution Imaging Spectroradiometer (MODIS) sensors aboard the Terra and Aqua satellites. This new Fire Energetics and Emissions Research version 1.0 (FEER.v1) Ce product has now been released to the community and can be obtained from http://feer.gsfc. nasa.gov/, along with the corresponding 1-to-1 mapping of their quality assurance (QA) flags that will enable the Ce values to be filtered by quality for use in various applications. The regional averages of Ce values for different ecosystem types were found to be in the ranges of 16-21/gMJ-1 for savanna and grasslands, 15-32/gMJ-1 for tropical forest, 9-12/gMJ-1 for North American boreal forest, and 18- 26/MJ-1 for Russian boreal forest, croplands and natural vegetation. The FEER.v1 Ce product was multiplied by time-integrated FRP data to calculate regional smoke TPM emissions, which were compared with equivalent emissions products from three existing inventories. FEER.v1 showed higher and more reasonable smoke TPM estimates than two other emissions inventories that are based on bottom-up approaches and already reported in the literature to be too low, but portrayed an overall reasonable agreement with another top-down approach. This suggests that top-down approaches may hold better promise and need to be further developed to accelerate the reduction of uncertainty associated with fire emissions estimation in air-quality and climate research and applications. Results of the analysis of FEER.v1 data for 2004-2011 show that 65-85 Tg yr-1 of TPM is emitted globally from open biomass burning, with a

  11. Global top-down smoke-aerosol emissions estimation using satellite fire radiative power measurements

    NASA Astrophysics Data System (ADS)

    Ichoku, C.; Ellison, L.

    2014-07-01

    Fire emissions estimates have long been based on bottom-up approaches that are not only complex, but also fraught with compounding uncertainties. We present the development of a global gridded (1° × 1°) emission coefficients (Ce) product for smoke total particulate matter (TPM) based on a top-down approach using coincident measurements of fire radiative power (FRP) and aerosol optical thickness (AOT) from the Moderate-resolution Imaging Spectro-radiometer (MODIS) sensors aboard the Terra and Aqua satellites. This new Fire Energetics and Emissions Research version 1.0 (FEER.v1) Ce product has now been released to the community and can be obtained from http://feer.gsfc.nasa.gov/, along with the corresponding 1-to-1 mapping of their quality assurance (QA) flags that will enable the Ce values to be filtered by quality for use in various applications. The regional averages of Ce values for different ecosystem types were found to be in the ranges of 16-21 g MJ-1 for savanna and grasslands, 15-32 g MJ-1 for tropical forest, 9-12 g MJ-1 for North American boreal forest, and 18-26 g MJ-1 for Russian boreal forest, croplands and natural vegetation. The FEER.v1 Ce product was multiplied by time-integrated FRP data to calculate regional smoke TPM emissions, which were compared with equivalent emissions products from three existing inventories. FEER.v1 showed higher and more reasonable smoke TPM estimates than two other emissions inventories that are based on bottom-up approaches and already reported in the literature to be too low, but portrayed an overall reasonable agreement with another top-down approach. This suggests that top-down approaches may hold better promise and need to be further developed to accelerate the reduction of uncertainty associated with fire emissions estimation in air-quality and climate research and applications. Results of the analysis of FEER.v1 data for 2004-2011 show that 65-85 Tg yr-1 of

  12. Impact of aerosol vertical distribution on aerosol direct radiative effect and heating rate in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Pappas, Vasileios; Hatzianastassiou, Nikolaos; Matsoukas, Christos; Koras Carracca, Mario; Kinne, Stefan; Vardavas, Ilias

    2015-04-01

    It is now well-established that aerosols cause an overall cooling effect at the surface and a warming effect within the atmosphere. At the top of the atmosphere (TOA), both positive and negative forcing can be found, depending on a number of other factors, such as surface albedo and relative position of clouds and aerosols. Whilst aerosol surface cooling is important due to its relation with surface temperature and other bio-environmental reasons, atmospheric heating is of special interest as well having significant impacts on atmospheric dynamics, such as formation of clouds and subsequent precipitation. The actual position of aerosols and their altitude relative to clouds is of major importance as certain types of aerosol, such as black carbon (BC) above clouds can have a significant impact on planetary albedo. The vertical distribution of aerosols and clouds has recently drawn the attention of the aerosol community, because partially can account for the differences between simulated aerosol radiative forcing with various models, and therefore decrease the level of our uncertainty regarding aerosol forcing, which is one of our priorities set by IPCC. The vertical profiles of aerosol optical and physical properties have been studied by various research groups around the world, following different methodologies and using various indices in order to present the impact of aerosols on radiation on different altitudes above the surface. However, there is still variability between the published results as to the actual effect of aerosols on shortwave radiation and on heating rate within the atmosphere. This study uses vertical information on aerosols from the Max Planck Aerosol Climatology (MAC-v1) global dataset, which is a combination of model output with quality ground-based measurements, in order to provide useful insight into the vertical profile of atmospheric heating for the Mediterranean region. MAC-v1 and the science behind this aerosol dataset have already

  13. Primary carbonaceous aerosols and climate modeling: Classifications, global emission inventories, and observations

    NASA Astrophysics Data System (ADS)

    Sun, H.; Bond, T.

    2004-12-01

    Carbonaceous aerosols, including black carbon (BC) and organic carbon (OC), make up a large fraction of the atmospheric aerosols and affect the radiative balance of the earth either by directly scattering and absorbing solar radiation or through indirect influence on cloud optical properties and cloud lifetimes. The major sources of BC and OC emissions are from combustion processes, mainly.fossil-fuel burning, biofuels burning, and open biomass burning. OC is nearly always emitted with BC. Because different combustion practices contribute to the emission of BC and OC to the atmosphere, the magnitude and characteristics of carbonaceous aerosols vary between regions. Since OC mainly scatters light and BC absorbs it, it is possible that OC can oppose the warming effect of BC, so that the net climatic effect of carbonaceous aerosols is not known. There is presently disagreement on whether carbonaceous aerosols produce a net warming or cooling effect on climate. Some differences in model prediction may result from model differences, such as dynamics and treatment of cloud feedbacks. However, large differences also result from initial assumptions about the properties of BC and OC: optical properties, size distribution, and interaction with water. Although there are hundreds of different organic species in atmospheric aerosols, with widely varying properties, global climate models to date have treated organics as one ¡°compound.¡± In addition, emissions of OC are often derived by multiplying BC emissions by a constant factor, so that the balance between these different compounds is assumed. Addressing these critical model assumptions is a necessary step toward estimating the net climatic impact of carbonaceous aerosols, and different human activities. We aim to contribute to this effort by tabulating important climate-relevant properties of both emissions and ambient measurements. Since one single organic ¡°compound¡± is not sufficient to represent all the

  14. Studying biofuel aerosol evaporation rates with single particle manipulation

    NASA Astrophysics Data System (ADS)

    Corsetti, S.; Miles, R. E. H.; Reid, J. P.; Kiefer, J.; McGloin, D.

    2014-09-01

    The significant increase in the air pollution, and the impact on climate change due to the burning of fossil fuel has led to the research of alternative energies. Bio-ethanol obtained from a variety of feedstocks can provide a feasible solution. Mixing bio-ethanol with gasoline leads to a reduction in CO emission and in NOx emissions compared with the use of gasoline alone. However, adding ethanol leads to a change in the fuel evaporation. Here we present a preliminary investigation of evaporation times of single ethanol-gasoline droplets. In particular, we investigated the different evaporation rate of the droplets depending on the variation in the percentage of ethanol inside them. Two different techniques have been used to trap the droplets. One makes use of a 532nm optical tweezers set up, the other of an electrodynamics balance (EDB). The droplets decreasing size was measured using video analysis and elastic light scattering respectively. In the first case measurements were conducted at 293.15 K and ambient humidity. In the second case at 280.5 K and a controlled environment has been preserved by flowing nitrogen into the chamber. Binary phase droplets with a higher percentage of ethanol resulted in longer droplet lifetimes. Our work also highlights the advantages and disadvantages of each technique for such studies. In particular it is challenging to trap droplets with low ethanol content (such as pure gasoline) by the use of EDB. Conversely such droplets are trivial to trap using optical tweezers.

  15. MODELING THE EFFECT OF CHLORINE EMISSIONS ON ATMOSPHERIC OZONE AND SECONDARY ORGANIC AEROSOL CONCENTRATIONS ACROSS THE UNITED STATES

    EPA Science Inventory

    This paper presents the modeled effects of natural and anthropogenic chlorine emissions on the atmospheric concentrations of ozone and secondary organic aerosol across the United States. The model calculations include anthropogenic molecular chlorine emissions, anthropogenic hypo...

  16. Emission Rates in ASTRAL Argon Plasmas.

    NASA Astrophysics Data System (ADS)

    Kamar, Ola; Boivin, Robert; Loch, Stuart; Munoz, Jorge; Ballance, Connor

    2006-10-01

    Relative Emission rates measured in the ASTRAL (Auburn Steady sTate Research fAciLity) helicon plasma source are compared to theoretical predictions. A spectrometer which features a 0.33 m Criss-Cross Scanning monochromator and a CCD camera is used for this study. ASTRAL produces bright intense Ar plasmas with the following parameters: ne = 10^12 to 10^13 cm-3 and Te = 2 to 10 eV. A rf compensated Langmuir probe is used to measure Te and ne. In a first series of experiment Ar I, Ar II and Ar III transitions are monitored as a function of plasma density and this for constant electron temperature. In the second series of experiments, the same transitions are observed as a function of Te while ne is this time kept constant. Observations revealed that Te is by far the most significant parameter affecting the emission rate coefficients in the ASTRAL plasma. The spectroscopy measurements are compared with spectral modeling from the ADAS suite of codes. Our collisional-radiative formalism assumes that the excited levels are in quasi-static equilibrium with the ground and metastable populations. We use existing standard R-matrix electron-impact excitation data in our modeling, and assess this dataset against the results from a new R-matrix with pseudo-states calculation.

  17. Interannual variability of tropospheric trace gases and aerosols: The role of biomass burning emissions

    NASA Astrophysics Data System (ADS)

    Voulgarakis, Apostolos; Marlier, Miriam E.; Faluvegi, Greg; Shindell, Drew T.; Tsigaridis, Kostas; Mangeon, Stéphane

    2015-07-01

    Fires are responsible for a range of gaseous and aerosol emissions. However, their influence on the interannual variability of atmospheric trace gases and aerosols has not been systematically investigated from a global perspective. We examine biomass burning emissions as a driver of interannual variability of large-scale abundances of short-lived constituents such as carbon monoxide (CO), hydroxyl radicals (OH), ozone, and aerosols using the Goddard Institute for Space Studies ModelE composition-climate model and a range of observations, with an emphasis on satellite information. Our model captures the observed variability of the constituents examined in most cases, but with substantial underestimates in boreal regions. The strongest interannual variability on a global scale is found for carbon monoxide (~10% for its global annual burden), while the lowest is found for tropospheric ozone (~1% for its global annual burden). Regionally, aerosol optical depth shows the largest variability which exceeds 50%. Areas of strong variability of both aerosols and CO include the tropical land regions (especially Equatorial Asia and South America) and northern high latitudes, while even regions in the northern midlatitudes experience substantial interannual variability of aerosols. Ozone variability peaks over equatorial Asia in boreal autumn, partly due to varying biomass burning emissions, and over the western and central Pacific in the rest of the year, mainly due to meteorological fluctuations. We find that biomass burning emissions are almost entirely responsible for global CO interannual variability, and similarly important for OH variability. The same is true for global and regional aerosol variability, especially when not taking into account dust and sea-salt particles. We show that important implications can arise from such interannual influences for regional climate and air quality.

  18. The impact of residential combustion emissions on atmospheric aerosol, human health, and climate

    NASA Astrophysics Data System (ADS)

    Butt, E. W.; Rap, A.; Schmidt, A.; Scott, C. E.; Pringle, K. J.; Reddington, C. L.; Richards, N. A. D.; Woodhouse, M. T.; Ramirez-Villegas, J.; Yang, H.; Vakkari, V.; Stone, E. A.; Rupakheti, M.; Praveen, P. S.; van Zyl, P. G.; Beukes, J. P.; Josipovic, M.; Mitchell, E. J. S.; Sallu, S. M.; Forster, P. M.; Spracklen, D. V.

    2016-01-01

    Combustion of fuels in the residential sector for cooking and heating results in the emission of aerosol and aerosol precursors impacting air quality, human health, and climate. Residential emissions are dominated by the combustion of solid fuels. We use a global aerosol microphysics model to simulate the impact of residential fuel combustion on atmospheric aerosol for the year 2000. The model underestimates black carbon (BC) and organic carbon (OC) mass concentrations observed over Asia, Eastern Europe, and Africa, with better prediction when carbonaceous emissions from the residential sector are doubled. Observed seasonal variability of BC and OC concentrations are better simulated when residential emissions include a seasonal cycle. The largest contributions of residential emissions to annual surface mean particulate matter (PM2.5) concentrations are simulated for East Asia, South Asia, and Eastern Europe. We use a concentration response function to estimate the human health impact due to long-term exposure to ambient PM2.5 from residential emissions. We estimate global annual excess adult (> 30 years of age) premature mortality (due to both cardiopulmonary disease and lung cancer) to be 308 000 (113 300-497 000, 5th to 95th percentile uncertainty range) for monthly varying residential emissions and 517 000 (192 000-827 000) when residential carbonaceous emissions are doubled. Mortality due to residential emissions is greatest in Asia, with China and India accounting for 50 % of simulated global excess mortality. Using an offline radiative transfer model we estimate that residential emissions exert a global annual mean direct radiative effect between -66 and +21 mW m-2, with sensitivity to the residential emission flux and the assumed ratio of BC, OC, and SO2 emissions. Residential emissions exert a global annual mean first aerosol indirect effect of between -52 and -16 mW m-2, which is sensitive to the assumed size distribution of carbonaceous emissions

  19. Characterizing the impact of urban emissions on regional aerosol particles: airborne measurements during the MEGAPOLI experiment

    NASA Astrophysics Data System (ADS)

    Freney, E. J.; Sellegri, K.; Canonaco, F.; Colomb, A.; Borbon, A.; Michoud, V.; Doussin, J.-F.; Crumeyrolle, S.; Amarouche, N.; Pichon, J.-M.; Bourianne, T.; Gomes, L.; Prevot, A. S. H.; Beekmann, M.; Schwarzenböeck, A.

    2014-02-01

    The MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation) experiment took place in July 2009. The aim of this campaign was to study the aging and reactions of aerosol and gas-phase emissions in the city of Paris. Three ground-based measurement sites and several mobile platforms including instrument equipped vehicles and the ATR-42 aircraft were involved. We present here the variations in particle- and gas-phase species over the city of Paris, using a combination of high-time resolution measurements aboard the ATR-42 aircraft. Particle chemical composition was measured using a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS), giving detailed information on the non-refractory submicron aerosol species. The mass concentration of black carbon (BC), measured by a particle absorption soot photometer (PSAP), was used as a marker to identify the urban pollution plume boundaries. Aerosol mass concentrations and composition were affected by air-mass history, with air masses that spent longest time over land having highest fractions of organic aerosol and higher total mass concentrations. The Paris plume is mainly composed of organic aerosol (OA), BC, and nitrate aerosol, as well as high concentrations of anthropogenic gas-phase species such as toluene, benzene, and NOx. Using BC and CO as tracers for air-mass dilution, we observe the ratio of ΔOA / ΔBC and ΔOA / ΔCO increase with increasing photochemical age (-log(NOx / NOy)). Plotting the equivalent ratios of different organic aerosol species (LV-OOA, SV-OOA, and HOA) illustrate that the increase in OA is a result of secondary organic aerosol (SOA) formation. Within Paris the changes in the ΔOA / ΔCO are similar to those observed during other studies in London, Mexico City, and in New England, USA. Using the measured SOA volatile organic compounds (VOCs) species together with organic aerosol formation

  20. The sensitivity of global climate to the episodicity of fire aerosol emissions

    NASA Astrophysics Data System (ADS)

    Clark, Spencer K.; Ward, Daniel S.; Mahowald, Natalie M.

    2015-11-01

    Here we explore the sensitivity of the global radiative forcing and climate response to the episodicity of fire emissions. We compare the standard approach used in present day and future climate modeling studies, in which emissions are not episodic but smoothly interpolated between monthly mean values and that contrast to the response when fires are represented using a range of approximations of episodicity. The range includes cases with episodicity levels matching observed fire day and fire event counts, as well as cases with extreme episodicity. We compare the different emissions schemes in a set of Community Atmosphere Model (CAM5) simulations forced with reanalysis meteorology and a set of simulations with online dynamics designed to calculate aerosol indirect effect radiative forcings. We find that using climatologically observed fire frequency improves model estimates of cloud properties over the standard scheme, particularly in boreal regions, when both are compared to a simulation with meteorologically synchronized emissions. Using these emissions schemes leads to a range in global indirect effect radiative forcing of fire aerosols between -1.1 and -1.3 W m-2. In cases with extreme episodicity, we see increased transport of aerosols vertically, leading to longer lifetimes and less negative indirect effect radiative forcings. In general, the range in climate impacts that results from the different realistic fire emissions schemes is smaller than the uncertainty in climate impacts due to other aspects of modeling fire emissions.

  1. Profile and Morphology of Fungal Aerosols Characterized by Field Emission Scanning Electron Microscopy (FESEM)

    PubMed Central

    Afanou, Komlavi Anani; Straumfors, Anne; Skogstad, Asbjørn; Skaar, Ida; Hjeljord, Linda; Skare, Øivind; Green, Brett James; Tronsmo, Arne; Eduard, Wijnand

    2016-01-01

    Fungal aerosols consist of spores and fragments with diverse array of morphologies; however, the size, shape, and origin of the constituents require further characterization. In this study, we characterize the profile of aerosols generated from Aspergillus fumigatus, A. versicolor, and Penicillium chrysogenum grown for 8 weeks on gypsum boards. Fungal particles were aerosolized at 12 and 20 L min−1 using the Fungal Spore Source Strength Tester (FSSST) and the Stami particle generator (SPG). Collected particles were analyzed with field emission scanning electron microscopy (FESEM). We observed spore particle fraction consisting of single spores and spore aggregates in four size categories, and a fragment fraction that contained submicronic fragments and three size categories of larger fragments. Single spores dominated the aerosols from A. fumigatus (median: 53%), while the submicronic fragment fraction was the highest in the aerosols collected from A. versicolor (median: 34%) and P. chrysogenum (median: 31%). Morphological characteristics showed near spherical particles that were only single spores, oblong particles that comprise some spore aggregates and fragments (<3.5 μm), and fiber-like particles that regroup chained spore aggregates and fragments (>3.5 μm). Further, the near spherical particles dominated the aerosols from A. fumigatus (median: 53%), while oblong particles were dominant in the aerosols from A. versicolor (68%) and P. chrysogenum (55%). Fiber-like particles represented 21% and 24% of the aerosols from A. versicolor and P. chrysogenum, respectively. This study shows that fungal particles of various size, shape, and origin are aerosolized, and supports the need to include a broader range of particle types in fungal exposure assessment. PMID:26855468

  2. The global impact of the transport sectors on atmospheric aerosol: simulations for year 2000 emissions

    NASA Astrophysics Data System (ADS)

    Righi, M.; Hendricks, J.; Sausen, R.

    2013-05-01

    We use the EMAC-MADE global aerosol model to quantify the impact of transport emissions (land transport, shipping and aviation) on global aerosol. We consider a present-day (2000) scenario and the CMIP5 emission dataset developed in support of the IPCC Fifth Assessment Report. The model takes also into account particle number emissions, which are derived from mass emissions under different assumptions on the size distribution of particles emitted by the three transport sectors. Additional sensitivity experiments are performed to quantify the effects of the uncertainties behind such assumptions. The model simulations show that the impact of the transport sectors closely matches the emission patterns. Land transport is the most important source of black carbon pollution in USA, Europe and Arabian Peninsula. Shipping strongly contributes to aerosol sulfate concentrations along the most-traveled routes of the northern Atlantic and northern Pacific oceans, with a significant impact along the coastlines. The effect of aviation is mostly confined to the upper-troposphere (7-12 km), in the northern mid-latitudes, although significant effects are also simulated at the ground, due to the emissions from landing and take-off cycles. The transport-induced perturbations to particle number concentrations are very sensitive to the assumptions on the size distribution of emitted particles, with the largest uncertainties obtained for the land transport sector. The simulated climate impacts, due to aerosol direct and indirect effects, are strongest for the shipping sector, as a consequence of the large impact of sulfate aerosol on low marine clouds and their optical properties.

  3. Global climate impacts of country-level primary carbonaceous aerosol from solid-fuel cookstove emissions

    NASA Astrophysics Data System (ADS)

    Lacey, Forrest; Henze, Daven

    2015-11-01

    Cookstove use is globally one of the largest unregulated anthropogenic sources of primary carbonaceous aerosol. While reducing cookstove emissions through national-scale mitigation efforts has clear benefits for improving indoor and ambient air quality, and significant climate benefits from reduced green-house gas emissions, climate impacts associated with reductions to co-emitted black (BC) and organic carbonaceous aerosol are not well characterized. Here we attribute direct, indirect, semi-direct, and snow/ice albedo radiative forcing (RF) and associated global surface temperature changes to national-scale carbonaceous aerosol cookstove emissions. These results are made possible through the use of adjoint sensitivity modeling to relate direct RF and BC deposition to emissions. Semi- and indirect effects are included via global scaling factors, and bounds on these estimates are drawn from current literature ranges for aerosol RF along with a range of solid fuel emissions characterizations. Absolute regional temperature potentials are used to estimate global surface temperature changes. Bounds are placed on these estimates, drawing from current literature ranges for aerosol RF along with a range of solid fuel emissions characterizations. We estimate a range of 0.16 K warming to 0.28 K cooling with a central estimate of 0.06 K cooling from the removal of cookstove aerosol emissions. At the national emissions scale, countries’ impacts on global climate range from net warming (e.g., Mexico and Brazil) to net cooling, although the range of estimated impacts for all countries span zero given uncertainties in RF estimates and fuel characterization. We identify similarities and differences in the sets of countries with the highest emissions and largest cookstove temperature impacts (China, India, Nigeria, Pakistan, Bangladesh and Nepal), those with the largest temperature impact per carbon emitted (Kazakhstan, Estonia, and Mongolia), and those that would provide the

  4. Updating sea spray aerosol emissions in the Community Multiscale Air Quality (CMAQ) model

    EPA Science Inventory

    Sea spray aerosols (SSA) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. In this study, the Community Multiscale Air Quality (CMAQ) model is updated to enhance fine mode SSA emissions,...

  5. AGRICULTURAL AMMONIA EMISSIONS AND AMMONIUM CONCENTRATIONS ASSOCIATED WITH AEROSOLS AND PRECIPITATION IN THE SOUTHEAST UNITED STATES

    EPA Science Inventory

    Temporal and spatial variations in ammonia (NH3) emissions and ammonium (NH4+) concentrations associated with aerosols and volume-weighted NH4+ concentration in precipitation are investigated over the period 1990-1998 in the southeast United States (Alabama, Florida, Georgia, Ken...

  6. Secondary aerosol formation from stress-induced biogenic emissions and possible climate feedbacks

    NASA Astrophysics Data System (ADS)

    Mentel, Th. F.; Kleist, E.; Andres, S.; Dal Maso, M.; Hohaus, T.; Kiendler-Scharr, A.; Rudich, Y.; Springer, M.; Tillmann, R.; Uerlings, R.; Wahner, A.; Wildt, J.

    2013-09-01

    Atmospheric aerosols impact climate by scattering and absorbing solar radiation and by acting as ice and cloud condensation nuclei. Biogenic secondary organic aerosols (BSOAs) comprise an important component of atmospheric aerosols. Biogenic volatile organic compounds (BVOCs) emitted by vegetation are the source of BSOAs. Pathogens and insect attacks, heat waves and droughts can induce stress to plants that may impact their BVOC emissions, and hence the yield and type of formed BSOAs, and possibly their climatic effects. This raises questions of whether stress-induced changes in BSOA formation may attenuate or amplify effects of climate change. In this study we assess the potential impact of stress-induced BVOC emissions on BSOA formation for tree species typical for mixed deciduous and Boreal Eurasian forests. We studied the photochemical BSOA formation for plants infested by aphids in a laboratory setup under well-controlled conditions and applied in addition heat and drought stress. The results indicate that stress conditions substantially modify BSOA formation and yield. Stress-induced emissions of sesquiterpenes, methyl salicylate, and C17-BVOCs increase BSOA yields. Mixtures including these compounds exhibit BSOA yields between 17 and 33%, significantly higher than mixtures containing mainly monoterpenes (4-6% yield). Green leaf volatiles suppress SOA formation, presumably by scavenging OH, similar to isoprene. By classifying emission types, stressors and BSOA formation potential, we discuss possible climatic feedbacks regarding aerosol effects. We conclude that stress situations for plants due to climate change should be considered in climate-vegetation feedback mechanisms.

  7. Characterizing the impact of urban emissions on regional aerosol particles; airborne measurements during the MEGAPOLI experiment

    NASA Astrophysics Data System (ADS)

    Freney, E. J.; Sellegri, K.; Canonaco, F.; Colomb, A.; Borbon, A.; Michoud, V.; Doussin, J.-F.; Crumeyrolle, S.; Amarouch, N.; Pichon, J.-M.; Prévôt, A. S. H.; Beekmann, M.; Schwarzenböeck, A.

    2013-09-01

    The MEGAPOLI experiment took place in July 2009. The aim of this campaign was to study the aging and reactions of aerosol and gas-phase emissions in the city of Paris. Three ground-based measurement sites and several mobile platforms including instrument equipped vehicles and the ATR-42 aircraft were involved. We present here the variations in particle- and gas-phase species over the city of Paris using a combination of high-time resolution measurements aboard the ATR-42 aircraft. Particle chemical composition was measured using a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS) giving detailed information of the non-refractory submicron aerosol species. The mass concentration of BC, measured by a particle absorption soot photometer (PSAP), was used as a marker to identify the urban pollution plume boundaries. Aerosol mass concentrations and composition were affected by air-mass history, with air masses that spent longest time over land having highest fractions of organic aerosol and higher total mass concentrations. The Paris plume is mainly composed of organic aerosol (OA), black carbon and nitrate aerosol, as well as high concentrations of anthropogenic gas-phase species such as toluene, benzene, and NOx. Using BC and CO as tracers for air-mass dilution, we observe the ratio of ΔOA / ΔBC and ΔOA / ΔCO increase with increasing photochemical age (-log(NOx / NOy). Plotting the equivalent ratios for the Positive Matrix Factorization (PMF) resolved species (LV-OOA, SV-OOA, and HOA) illustrate that the increase in OA is a result of secondary organic aerosol (SOA). Within Paris the changes in the ΔOA / ΔCO are similar to those observed during other studies in Mexico city, Mexico and in New England, USA. Using the measured VOCs species together with recent organic aerosol formation yields we predicted ~ 50% of the measured organics. These airborne measurements during the MEGAPOLI experiment show that urban emissions contribute to the formation of OA

  8. Size-resolved emission rates of airborne bacteria and fungi in an occupied classroom

    PubMed Central

    Qian, J; Hospodsky, D; Yamamoto, N; Nazaroff, W W; Peccia, J

    2012-01-01

    The role of human occupancy as a source of indoor biological aerosols is poorly understood. Size-resolved concentrations of total and biological particles in indoor air were quantified in a classroom under occupied and vacant conditions. Per-occupant emission rates were estimated through a mass-balance modeling approach, and the microbial diversity of indoor and outdoor air during occupancy was determined via rDNA gene sequence analysis. Significant increases of total particle mass and bacterial genome concentrations were observed during the occupied period compared to the vacant case. These increases varied in magnitude with the particle size and ranged from 3 to 68 times for total mass, 12–2700 times for bacterial genomes, and 1.5–5.2 times for fungal genomes. Emission rates per person-hour because of occupancy were 31 mg, 37 × 106 genome copies, and 7.3 × 106 genome copies for total particle mass, bacteria, and fungi, respectively. Of the bacterial emissions, ∼18% are from taxa that are closely associated with the human skin microbiome. This analysis provides size-resolved, per person-hour emission rates for these biological particles and illustrates the extent to which being in an occupied room results in exposure to bacteria that are associated with previous or current human occupants. Practical Implications Presented here are the first size-resolved, per person emission rate estimates of bacterial and fungal genomes for a common occupied indoor space. The marked differences observed between total particle and bacterial size distributions suggest that size-dependent aerosol models that use total particles as a surrogate for microbial particles incorrectly assess the fate of and human exposure to airborne bacteria. The strong signal of human microbiota in airborne particulate matter in an occupied setting demonstrates that the aerosol route can be a source of exposure to microorganisms emitted from the skin, hair, nostrils, and mouths of other occupants

  9. Laboratory studies of oxidation of primary emissions: Oxidation of organic molecular markers and secondary organic aerosol production

    NASA Astrophysics Data System (ADS)

    Weitkamp, Emily A.

    Particulate matter (PM) is solid particles and liquid droplets of complex composition suspended in the atmosphere. In 1997, the National Ambient Air Quality Standards (NAAQS) for PM was modified to include new standards for fine particulate (particles smaller than 2.5mum, PM2.5) because of their association with adverse health effects, mortality and visibility reduction. Fine PM may also have large impacts on the global climate. Chemically, fine particulate is a complex mixture of organic and inorganic material, from both natural and anthropogenic sources. A large fraction of PM2.5 is organic. The first objective was to investigate heterogeneous oxidation of condensed-phase molecular markers for two major organic source categories, meat-cooking emissions and motor vehicle exhaust. Effective reaction rate constants of key molecular markers were measured over a range of atmospherically relevant experimental conditions, including a range of concentrations and relative humidities, and with SOA condensed on the particles. Aerosolized meat grease was reacted with ozone to investigate the oxidation of molecular markers for meat-cooking emissions. Aerosolized motor oil, which is chemically similar to vehicle exhaust aerosol and contains the molecular markers used in source apportionment, was reacted with the hydroxyl radical (OH) to investigate oxidation of motor vehicle molecular markers. All molecular markers of interest - oleic acid, palmitoleic acid, and cholesterol for meat-cooking emissions, and hopanes and steranes for vehicle exhaust - reacted at rates that are significant for time scales on the order of days assuming typical summertime oxidant concentrations. Experimental conditions influenced the reaction rate constants. For both systems, experiments conducted at high relative humidity (RH) had smaller reaction rate constants than those at low RH. SOA coating slowed the reaction rate constants for meat-cooking markers, but had no effect on the oxidation of

  10. Establishing Global Source-Receptor Relationships for Carbonaceous Aerosol to Characterize Sensitivity of its Climate Forcing to Emission Uncertainties

    NASA Astrophysics Data System (ADS)

    Wang, H.; Rasch, P. J.; Easter, R. C.; Singh, B.; Qian, Y.; Ma, P.; Zhang, R.

    2013-12-01

    Carbonaceous aerosol (CA) has been identified as an important but very uncertain forcing agent in the Earth's climate system. It has cascading radiative, microphysical and dynamical effects across the different scales in the atmosphere. Light-absorbing CA (e.g., black carbon (BC) and brown carbon) deposited on snow, sea ice and glaciers can accelerate their melting, which can induce more profound impact through positive feedback mechanisms, having important implications for climate change and fresh water availability at the global and regional scale. Many factors can affect the amount and impacts of CA in a specific region such as the Arctic, among which the global distribution of emissions is of primary importance. There are many uncertainties in global CA emissions, which are changing over time. To better understand the response of climate to these uncertainties and to potential future CA emission changes, it is useful to characterize the global source-receptor relationships and attribute CA loading and radiative forcing to various regional and sectoral CA sources. Observational evidence has clearly demonstrated the occurrence of intercontinental long-range transport of aerosols and to some extent the characteristic transport pathways. However, the observational approach alone cannot provide quantitative information on global source-receptor relationships. We have recently improved the treatment of aerosol transport and wet removal processes in the Community Atmosphere Model version 5 (CAM5) and introduced a brute-force aerosol source tagging technique in which aerosol particles emitted from many independent source regions and sectors are tagged and explicitly tracked. We run the CAM5 model in an 'offline' mode (i.e., driven by reanalysis data) so the transport processes are less likely to be subject to model biases in meteorology and circulation patterns. This modeling tool is used to quantify the characteristics (e.g., burden, surface deposition rate, lifetime

  11. The use of satellite-measured aerosol optical depth to constrain biomass burning emissions source strength in the global model GOCART

    NASA Astrophysics Data System (ADS)

    Petrenko, Mariya; Kahn, Ralph; Chin, Mian; Soja, Amber; Kucsera, Tom; Harshvardhan, null

    2012-09-01

    Simulations of biomass burning (BB) emissions in chemistry transport models strongly depend on the inventories that define emission source location and strength. We use 13 global biomass burning emission estimates, including the widely used Global Fire Emission Database (GFED) monthly and daily versions, Fire Radiative Power (FRP)-based Quick Fire Emission Data set QFED, and 11 calculated emissions from different combinations of burned area based on the Moderate Resolution Imaging Spectroradiometer (MODIS) products, effective fuel load, and species emission factors as alternative inputs to the global Goddard Chemistry Aerosol Radiation and Transport (GOCART) model. The resultant simulated aerosol optical depth (AOD) and its spatial distribution are compared to AOD snapshots measured by the MODIS instrument for 124 fire events occurring between 2006 and 2007. This comparison exposes the regional biases of each emission option. GOCART average fire AOD values compare best to MODIS-measured AOD when the daily GFED inventory is used as input to GOCART. Even though GFED-based emission options provide the lowest emissions in the tropics, GFED-based GOCART AOD compares best with MODIS AOD in tropical cases. Fire-counts-based emission options give the largest emission estimates in the boreal regions, and the model performs best at higher latitudes with these inputs when compared to MODIS. Comparison of total annual BB emissions by all inventories suggests that burned area estimates are usually the largest source of disagreement. It is also shown that the quantitative relationship between BB aerosol emission rate and model-simulated AOD is related to the horizontal plume dispersion, which can be approximated by the wind speed in the planetary boundary layer in most cases. Thus, given average wind speed of the smoke plume environment, MODIS-measured AOD can provide a constraint to the strength of BB sources at the level of individual plumes.

  12. Impact assessment of ammonia emissions on inorganic aerosols in East China using response surface modeling technique.

    PubMed

    Wang, Shuxiao; Xing, Jia; Jang, Carey; Zhu, Yun; Fu, Joshua S; Hao, Jiming

    2011-11-01

    Ammonia (NH(3)) is one important precursor of inorganic fine particles; however, knowledge of the impacts of NH(3) emissions on aerosol formation in China is very limited. In this study, we have developed China's NH(3) emission inventory for 2005 and applied the Response Surface Modeling (RSM) technique upon a widely used regional air quality model, the Community Multi-Scale Air Quality Model (CMAQ). The purpose was to analyze the impacts of NH(3) emissions on fine particles for January, April, July, and October over east China, especially those most developed regions including the North China Plain (NCP), Yangtze River delta (YRD), and the Pearl River delta (PRD). The results indicate that NH(3) emissions contribute to 8-11% of PM(2.5) concentrations in these three regions, comparable with the contributions of SO(2) (9-11%) and NO(x) (5-11%) emissions. However, NH(3), SO(2), and NO(x) emissions present significant nonlinear impacts; the PM(2.5) responses to their emissions increase when more control efforts are taken mainly because of the transition between NH(3)-rich and NH(3)-poor conditions. Nitrate aerosol (NO(3)(-)) concentration is more sensitive to NO(x) emissions in NCP and YRD because of the abundant NH(3) emissions in the two regions, but it is equally or even more sensitive to NH(3) emissions in the PRD. In high NO(3)(-) pollution areas such as NCP and YRD, NH(3) is sufficiently abundant to neutralize extra nitric acid produced by an additional 25% of NO(x) emissions. The 90% increase of NH(3) emissions during 1990-2005 resulted in about 50-60% increases of NO(3)(-) and SO(4)(2-) aerosol concentrations. If no control measures are taken for NH(3) emissions, NO(3)(-) will be further enhanced in the future. Control of NH(3) emissions in winter, spring, and fall will benefit PM(2.5) reduction for most regions. However, to improve regional air quality and avoid exacerbating the acidity of aerosols, a more effective pathway is to adopt a multipollutant

  13. Profile of heating rate due to aerosols using lidar and skyradiometer in SKYNET Hefei site

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Liu, D.; Xie, C.

    2015-12-01

    Atmospheric aerosols have a significant impact on climate due to their important role in modifying atmosphere energy budget. On global scale, the direct radiative forcing is estimated to be in the range of -0.9 to -0.1 Wm-2 for aerosols [1]. Yet, these estimates are subject to very large uncertainties because of uncertainties in spatial and temporal variations of aerosols. At local scales, as aerosol properties can vary spatially and temporally, radiative forcing due to aerosols can be also very different and it can exceed the global value by an order of magnitude. Hence, it is very important to investigate aerosol loading, properties, and radiative forcing due to them in detail on local regions of climate significance. Haze and dust events in Hefei, China are explored by Lidar and Skyradiometer. Aerosol optical properties including the AOD, SSA, AAE and size distribution are analysed by using the SKYRAD.PACK [2] and presented in this paper. Furthermore, the radiative forcing due to aerosols and the heating rate in the ATM are also calculated using SBDART model [3]. The results are shown that the vertical heating rate is tightly related to aerosol profile. References: 1. IPCC. 2007. Climate Change 2007: The Physical Science Basic. Contribution of Working Group I Contribution to the Intergovernmental Panel on Climate Change Fourth Assessment Report. Solomon S, Qing D H, Manning M, et al. eds., Cambridge University Press, Cambridge, United Kingdom and New York, N Y, USA. 2. Nakajima, T., G. Tonna, R. Rao, Y. Kaufman, and B. Holben, 1996: Use of sky brightness measurements from ground for remote sensing of particulate poly dispersions, Appl. Opt., 35, 2672-2686. 3. Ricchiazzi et al 1998. SBDART: a research and teaching software tool for plane-parallel radiative transfer in the Earth's atmosphere,Bulletin of the American Meteorological Society,79,2101-2114.

  14. Impacts of 20th century aerosol emissions on the South Asian monsoon in the CMIP5 models

    NASA Astrophysics Data System (ADS)

    Guo, L.; Turner, A. G.; Highwood, E. J.

    2014-12-01

    Comparison of single-forcing varieties of 20th century historical experiments in a subset of models from the Fifth Coupled Model Intercomparison Project (CMIP5) reveals that South Asian summer monsoon rainfall increases towards the present day in Greenhouse Gas (GHG)-only experiments with respect to pre-industrial levels, while it decreases in anthropogenic aerosol-only experiments. Comparison of these single-forcing experiments with the all-forcings historical experiment suggests aerosol emissions have dominated South Asian monsoon rainfall trends in recent decades, especially during the 1950s to 1970s. The variations in South Asian monsoon rainfall in these experiments follows approximately the time-evolution of inter-hemispheric temperature gradient over the same period, suggesting a contribution from the large-scale background state relating to the asymmetric distribution of aerosol emissions about the equator. By examining the twenty-five available all-forcings historical experiments, we show that models including aerosol indirect effects dominate the negative rainfall trend. Indeed, models including only the direct radiative effect of aerosol show an increase in monsoon rainfall, consistent with the dominance of increasing greenhouse gas emissions and planetary warming on monsoon rainfall in those models. For South Asia, reduced rainfall in the models with indirect effects is related to decreased evaporation at the land surface rather than from anomalies in horizontal moisture flux, suggesting the impact of indirect effects on local aerosol emissions. This is confirmed by examination of aerosol loading and cloud droplet number trends over the South Asia region. Thus while remote aerosols and their asymmetric distribution about the equator play a role in setting the inter-hemispheric temperature distribution on which the South Asian monsoon, as one of the global monsoons, operates, the addition of indirect aerosol effects acting on very local aerosol emissions

  15. Impacts of 20th century aerosol emissions on the South Asian monsoon in the CMIP5 models

    NASA Astrophysics Data System (ADS)

    Guo, L.; Turner, A. G.; Highwood, E. J.

    2015-06-01

    Comparison of single-forcing varieties of 20th century historical experiments in a subset of models from the Fifth Coupled Model Intercomparison Project (CMIP5) reveals that South Asian summer monsoon rainfall increases towards the present day in Greenhouse Gas (GHG)-only experiments with respect to pre-industrial levels, while it decreases in anthropogenic aerosol-only experiments. Comparison of these single-forcing experiments with the all-forcings historical experiment suggests aerosol emissions have dominated South Asian monsoon rainfall trends in recent decades, especially during the 1950s to 1970s. The variations in South Asian monsoon rainfall in these experiments follows approximately the time evolution of inter-hemispheric temperature gradient over the same period, suggesting a contribution from the large-scale background state relating to the asymmetric distribution of aerosol emissions about the equator. By examining the 24 available all-forcings historical experiments, we show that models including aerosol indirect effects dominate the negative rainfall trend. Indeed, models including only the direct radiative effect of aerosol show an increase in monsoon rainfall, consistent with the dominance of increasing greenhouse gas emissions and planetary warming on monsoon rainfall in those models. For South Asia, reduced rainfall in the models with indirect effects is related to decreased evaporation at the land surface rather than from anomalies in horizontal moisture flux, suggesting the impact of indirect effects on local aerosol emissions. This is confirmed by examination of aerosol loading and cloud droplet number trends over the South Asia region. Thus, while remote aerosols and their asymmetric distribution about the equator play a role in setting the inter-hemispheric temperature distribution on which the South Asian monsoon, as one of the global monsoons, operates, the addition of indirect aerosol effects acting on very local aerosol emissions also

  16. The rate of equilibration of viscous aerosol particles

    NASA Astrophysics Data System (ADS)

    O'Meara, Simon; Topping, David O.; McFiggans, Gordon

    2016-04-01

    The proximity of atmospheric aerosol particles to equilibrium with their surrounding condensable vapours can substantially impact their transformations, fate and impacts and is the subject of vibrant research activity. In this study we first compare equilibration timescales estimated by three different models for diffusion through aerosol particles to assess any sensitivity to choice of model framework. Equilibration times for diffusion coefficients with varying dependencies on composition are compared for the first time. We show that even under large changes in the saturation ratio of a semi-volatile component (es) of 1-90 % predicted equilibration timescales are in agreement, including when diffusion coefficients vary with composition. For condensing water and a diffusion coefficient dependent on composition, a plasticising effect is observed, leading to a decreased estimated equilibration time with increasing final es. Above 60 % final es maximum equilibration times of around 1 s are estimated for comparatively large particles (10 µm) containing a relatively low diffusivity component (1 × 10-25 m2 s-1 in pure form). This, as well as other results here, questions whether particle-phase diffusion through water-soluble particles can limit hygroscopic growth in the ambient atmosphere. In the second part of this study, we explore sensitivities associated with the use of particle radius measurements to infer diffusion coefficient dependencies on composition using a diffusion model. Given quantified similarities between models used in this study, our results confirm considerations that must be taken into account when designing such experiments. Although quantitative agreement of equilibration timescales between models is found, further work is necessary to determine their suitability for assessing atmospheric impacts, such as their inclusion in polydisperse aerosol simulations.

  17. “APEC Blue”: Secondary Aerosol Reductions from Emission Controls in Beijing

    PubMed Central

    Sun, Yele; Wang, Zifa; Wild, Oliver; Xu, Weiqi; Chen, Chen; Fu, Pingqing; Du, Wei; Zhou, Libo; Zhang, Qi; Han, Tingting; Wang, Qingqing; Pan, Xiaole; Zheng, Haitao; Li, Jie; Guo, Xiaofeng; Liu, Jianguo; Worsnop, Douglas R.

    2016-01-01

    China implemented strict emission control measures in Beijing and surrounding regions to ensure good air quality during the 2014 Asia-Pacific Economic Cooperation (APEC) summit. We conducted synchronous aerosol particle measurements with two aerosol mass spectrometers at different heights on a meteorological tower in urban Beijing to investigate the variations in particulate composition, sources and size distributions in response to emission controls. Our results show consistently large reductions in secondary inorganic aerosol (SIA) of 61–67% and 51–57%, and in secondary organic aerosol (SOA) of 55% and 37%, at 260 m and ground level, respectively, during the APEC summit. These changes were mainly caused by large reductions in accumulation mode particles and by suppression of the growth of SIA and SOA by a factor of 2–3, which led to blue sky days during APEC commonly referred to as “APEC Blue”. We propose a conceptual framework for the evolution of primary and secondary species and highlight the importance of regional atmospheric transport in the formation of severe pollution episodes in Beijing. Our results indicate that reducing the precursors of secondary aerosol over regional scales is crucial and effective in suppressing the formation of secondary particulates and mitigating PM pollution. PMID:26891104

  18. “APEC Blue”: Secondary Aerosol Reductions from Emission Controls in Beijing

    NASA Astrophysics Data System (ADS)

    Sun, Yele; Wang, Zifa; Wild, Oliver; Xu, Weiqi; Chen, Chen; Fu, Pingqing; Du, Wei; Zhou, Libo; Zhang, Qi; Han, Tingting; Wang, Qingqing; Pan, Xiaole; Zheng, Haitao; Li, Jie; Guo, Xiaofeng; Liu, Jianguo; Worsnop, Douglas R.

    2016-02-01

    China implemented strict emission control measures in Beijing and surrounding regions to ensure good air quality during the 2014 Asia-Pacific Economic Cooperation (APEC) summit. We conducted synchronous aerosol particle measurements with two aerosol mass spectrometers at different heights on a meteorological tower in urban Beijing to investigate the variations in particulate composition, sources and size distributions in response to emission controls. Our results show consistently large reductions in secondary inorganic aerosol (SIA) of 61-67% and 51-57%, and in secondary organic aerosol (SOA) of 55% and 37%, at 260 m and ground level, respectively, during the APEC summit. These changes were mainly caused by large reductions in accumulation mode particles and by suppression of the growth of SIA and SOA by a factor of 2-3, which led to blue sky days during APEC commonly referred to as “APEC Blue”. We propose a conceptual framework for the evolution of primary and secondary species and highlight the importance of regional atmospheric transport in the formation of severe pollution episodes in Beijing. Our results indicate that reducing the precursors of secondary aerosol over regional scales is crucial and effective in suppressing the formation of secondary particulates and mitigating PM pollution.

  19. The chemical and microphysical properties of secondary organic aerosols from Holm Oak emissions

    NASA Astrophysics Data System (ADS)

    Lang-Yona, N.; Rudich, Y.; Mentel, Th. F.; Buchholz, A.; Kiendler-Scharr, A.; Kleist, E.; Spindler, C.; Tillmann, R.; Wildt, J.

    2010-02-01

    The Mediterranean region is expected to experience substantial climatic change in the next 50 years. But, possible effects of climate change on biogenic volatile organic compound (VOC) emissions as well as on the formation of secondary organic aerosols (SOA) produced from these VOC are yet unexplored. To address such issues, the effects of temperature and light intensity on the VOC emissions of Mediterranean Holm Oak have been studied in the Jülich plant aerosol atmosphere chamber, as well as the optical and microphysical properties of the resulting SOA. Monoterpenes dominated the VOC emissions from Holm Oak (97.5%) and temperature increase enhanced the emission strength under variation of the emission pattern. The amount of SOA increased linearly with the emission strength with a fractional mass yield of 5.7±1%, independent of the detailed emission pattern. The particles were highly scattering with no absorption abilities. Their average hygroscopic growth factor was 1.13±0.03 at 90% RH with a critical diameter of droplet activation of 100±4 nm at a supersaturation of 0.4%. All microphysical properties did not depend on the detailed emission pattern, in accordance with an invariant O/C ratio (0.57(+0.03/-0.1)) of the SOA observed by high resolution aerosol mass spectrometry. The increase of Holm oak emissions with temperature (≈20% per degree) was stronger than e.g. for Boreal tree species (≈10% per degree). Increasing mean temperature in Mediterranean areas therefore may have a stronger impact on VOC emissions and SOA formation than in areas with Boreal forests.

  20. Bioaerosol emission rate and plume characteristics during land application of liquid class B biosolids.

    PubMed

    Tanner, Benjamin D; Brooks, John P; Haas, Charles N; Gerba, Charles P; Pepper, Ian L

    2005-03-15

    This study investigated bioaerosol emission rates and plume characteristics of bioaerosols generated during land application of liquid Class B biosolids. In addition, it compared the rate of aerosolization of coliphages and total coliform bacteria during land application of liquid Class B biosolids to the rate of aerosolization during land application of groundwater inoculated with similar concentrations of Escherichia coli and coliphage MS2. Air samples were taken immediately downwind of a spray applicator as it applied liquid (approximately 8% solids) biosolids to farmland near Tucson, Arizona. Air samples were also collected immediately downwind of groundwater seeded with MS2 and E. coli applied to land in an identical manner. Air samples, collected with liquid impingers, were taken in horizontal and vertical alignment with respect to the passing spray applicator. Vertical and horizontal sample arrays made it possible to calculate the flux of microorganisms through a virtual plane of air samplers, located 2 m downwind of the passing spray applicator. Neither coliphages nor coliform bacteria were detected in air downwind of spray application of liquid Class B biosolids. Based on limits of detection for the methodology, the rate of aerosolization during land application of liquid biosolids was calculated to be less than 33 plaque forming units (PFU) of coliphage and 10 colony forming units (CFU) of coliform bacteria per meter traveled by the spray applicator. The rate of aerosolization during land application of seeded groundwater was found to be, on average, 2.02 x 10(3) CFU E. coli and 3.86 x 10(3) PFU MS2 aerosolized per meter traveled by the spray applicator. This is greater aerosolization than was observed during land application of biosolids. Because concentrations of coliphages and coliforms were similar in the liquid biosolids and the seeded water, itwas concluded that some property of biosolids reduces aerosolization of microorganisms relative to

  1. The global impact of the transport sectors on atmospheric aerosol: simulations for year 2000 emissions

    NASA Astrophysics Data System (ADS)

    Righi, M.; Hendricks, J.; Sausen, R.

    2013-10-01

    We use the EMAC (ECHAM/MESSy Atmospheric Chemistry) global model with the aerosol module MADE (Modal Aerosol Dynamics model for Europe, adapted for global applications) to quantify the impact of transport emissions (land transport, shipping and aviation) on the global aerosol. We consider a present-day (2000) scenario according to the CMIP5 (Climate Model Intercomparison Project Phase 5) emission data set developed in support of the IPCC (Intergovernmental Panel on Climate Change) Fifth Assessment Report. The model takes into account particle mass and number emissions: The latter are derived from mass emissions under different assumptions on the size distribution of particles emitted by the three transport sectors. Additional sensitivity experiments are performed to quantify the effects of the uncertainties behind such assumptions. The model simulations show that the impact of the transport sectors closely matches the emission patterns. Land transport is the most important source of black carbon (BC) pollution in the USA, Europe and the Arabian Peninsula, contributing up to 60-70% of the total surface-level BC concentration in these regions. Shipping contributes about 40-60% of the total aerosol sulfate surface-level concentration along the most-traveled routes of the northern Atlantic and northern Pacific oceans, with a significant impact (~ 10-20%) along the coastlines. Aviation mostly affects aerosol number, contributing about 30-40% of the particle number concentration in the northern midlatitudes' upper troposphere (7-12 km), although significant effects are also simulated at the ground, due to the emissions from landing and take-off cycles. The transport-induced perturbations to the particle number concentrations are very sensitive to the assumptions on the size distribution of emitted particles, with the largest uncertainties (about one order of magnitude) obtained for the land transport sector. The simulated climate impacts, due to aerosol direct and

  2. Megacity emission plume characteristics in summer and winter investigated by mobile aerosol and trace gas measurements: the Paris metropolitan area

    NASA Astrophysics Data System (ADS)

    von der Weiden-Reinmüller, S.-L.; Drewnick, F.; Zhang, Q. J.; Freutel, F.; Beekmann, M.; Borrmann, S.

    2014-12-01

    emission plume. For in-depth analysis of transformation processes occurring in the advected plume, simultaneous measurements at a suburban measurement site and a stationary site outside the metropolitan area using the mobile laboratory have proven to be most useful. Organic aerosol oxidation was observed in summer, while in winter transformation processes seemed to occur at a slower rate.

  3. Trace gas emissions from biomass burning inferred from aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Paton-Walsh, Clare; Jones, Nicholas; Wilson, Stephen; Meier, Arndt; Deutscher, Nicholas; Griffith, David; Mitchell, Ross; Campbell, Susan

    2004-03-01

    We have observed strong correlations between simultaneous and co-located measurements of aerosol optical depth and column amounts of carbon monoxide, hydrogen cyanide, formaldehyde and ammonia in bushfire smoke plumes over SE Australia during the Austral summers of 2001/2002 and 2002/2003. We show how satellite-derived aerosol optical depth maps may be used in conjunction with these correlations to determine the total amounts of these gases present in a fire-affected region. This provides the basis of a method for estimating total emissions of trace gases from biomass burning episodes using visible radiances measured by satellites.

  4. Optical properties of aerosol emissions from biomass burning in the tropics, BASE-A

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.; Kaufman, Yoram J.; Setzer, Alberto W.; Tanre, Didre D.; Ward, Darold E.

    1991-01-01

    Ground-based and airborne measurements of biomass-burning smoke particle optical properties, obtained with a view to aerosol-absorption properties, are presented as a function of time and atmospheric height. The wavelength dependence of the optical thickness can be explained by a log-normal size distribution, with particles' effective radius varying between 0.1 and 0.2 microns. The strong correlation noted between aerosol particle profile and CO profile indicates that smoke particulates constitute a good tracer for emission trace gases from tropical biomass burning.

  5. Secondary aerosol formation from stress-induced biogenic emissions and possible climate feedbacks

    NASA Astrophysics Data System (ADS)

    Mentel, Th. F.; Kleist, E.; Andres, S.; Maso, M. D.; Hohaus, T.; Kiendler-Scharr, A.; Rudich, Y.; Springer, M.; Tillmann, R.; Uerlings, R.; Wahner, A.; Wildt, J.

    2013-03-01

    Atmospheric aerosols impact climate by scattering and absorbing solar radiation and by acting as ice and cloud condensation nuclei. Secondary organic aerosols (SOA) comprise an important component of atmospheric aerosols. Biogenic volatile organic compounds (BVOC) emitted by vegetation are a major source of SOA. Pathogens and insect attacks, heat waves and droughts can induce stress to plants that may impact their BVOC emissions, and hence the yield and type of formed SOA, and possibly their climatic effects. This raises questions whether stress-induced changes in SOA formation may attenuate or amplify effects of climate change. In this study we assess the potential impact of stress-induced BVOC emissions on SOA formation for tree species typical for mixed deciduous and Boreal Eurasian forests. We studied the photochemical SOA formation for infested plants in a laboratory setup under well-controlled conditions and applied in addition heat and drought stress. The results indicate that stress conditions substantially modify SOA formation. While sesquiterpenes, methyl salicylate, and C17-BVOC increase SOA yield, green leaf volatiles suppress SOA formation. By classifying emission types, stressors and SOA formation potential, we propose possible climatic feedbacks regarding aerosol effects. We conclude that stress situations for plants due to climate change should be considered in climate-vegetation feedback mechanisms.

  6. The chemical and microphysical properties of secondary organic aerosols from Holm Oak emissions

    NASA Astrophysics Data System (ADS)

    Lang-Yona, N.; Rudich, Y.; Mentel, Th. F.; Bohne, A.; Buchholz, A.; Kiendler-Scharr, A.; Kleist, E.; Spindler, C.; Tillmann, R.; Wildt, J.

    2010-08-01

    The Mediterranean region is expected to experience substantial climatic change in the next 50 years. But, possible effects of climate change on biogenic volatile organic compound (VOC) emissions as well as on the formation of secondary organic aerosols (SOA) produced from these VOC are yet unexplored. To address such issues, the effects of temperature on the VOC emissions of Mediterranean Holm Oak and small Mediterranean stand of Wild Pistacio, Aleppo Pine, and Palestine Oak have been studied in the Jülich plant aerosol atmosphere chamber. For Holm Oak the optical and microphysical properties of the resulting SOA were investigated. Monoterpenes dominated the VOC emissions from Holm Oak (97.5%) and Mediterranean stand (97%). Higher temperatures enhanced the overall VOC emission but with different ratios of the emitted species. The amount of SOA increased linearly with the emission strength with a fractional mass yield of 6.0±0.6%, independent of the detailed emission pattern. The investigated particles were highly scattering with no absorption abilities. Their average hygroscopic growth factor of 1.13±0.03 at 90% RH with a critical diameter of droplet activation was 100±4 nm at a supersaturation of 0.4%. All microphysical properties did not depend on the detailed emission pattern, in accordance with an invariant O/C ratio (0.57(+0.03/-0.1)) of the SOA observed by high resolution aerosol mass spectrometry. The increase of Holm oak emissions with temperature (≈20% per degree) was stronger than e.g. for Boreal tree species (≈10% per degree). The SOA yield for Mediterranean trees determined here is similar as for Boreal trees. Increasing mean temperature in Mediterranean areas could thus have a stronger impact on BVOC emissions and SOA formation than in areas with Boreal forests.

  7. Patterns in atmospheric carbonaceous aerosols in China: emission estimates and observed concentrations

    NASA Astrophysics Data System (ADS)

    Cui, H.; Mao, P.; Zhao, Y.; Nielsen, C. P.; Zhang, J.

    2015-03-01

    China is experiencing severe carbonaceous aerosol pollution driven mainly by large emissions resulting from intensive use of solid fuels. To gain a better understanding of the levels and trends of carbonaceous aerosol emissions and the resulting ambient concentrations at the national scale, we update an emission inventory of anthropogenic organic carbon (OC) and elemental carbon (EC) and employ existing observational studies to analyze characteristics of these aerosols including temporal, spatial, and size distributions, and the levels and shares of secondary organic carbon (SOC) in total OC. We further use ground observations to test the levels and inter-annual trends of the calculated national and provincial emissions of carbonaceous aerosols, and propose possible improvements in emission estimation for the future. The national OC emissions are estimated to have increased 29% from 2000 (2127 Gg) to 2012 (2749 Gg) and EC by 37% (from 1356 to 1857 Gg). The residential, industrial, and transportation sectors contributed an estimated 76 ± 2, 19 ± 2 and 5 ± 1% of the total emissions of OC, respectively, and 52 ± 3, 32 ± 2 and 16 ± 2% of EC. Updated emission factors based on the most recent local field measurements, particularly for biofuel stoves, lead to considerably lower emissions of OC compared to previous inventories. Compiling observational data across the country, higher concentrations of OC and EC are found in northern and inland cities, while larger OC/EC and SOC/OC ratios are found in southern cities, due to the joint effects of primary emissions and meteorology. Higher SOC/OC ratios are estimated at rural and remote sites compared to urban ones, attributed to more emissions of OC from biofuel use, more biogenic emissions of volatile organic compound (VOC) precursors to SOC, and/or transport of aged aerosols. For most sites, higher concentrations of OC, EC, and SOC are observed in colder seasons, while SOC/OC is reduced, particularly at rural and

  8. Patterns in atmospheric carbonaceous aerosols in China: emission estimates and observed concentrations

    NASA Astrophysics Data System (ADS)

    Cui, H.; Mao, P.; Zhao, Y.; Nielsen, C. P.; Zhang, J.

    2015-08-01

    China is experiencing severe carbonaceous aerosol pollution driven mainly by large emissions resulting from intensive use of solid fuels. To gain a better understanding of the levels and trends of carbonaceous aerosol emissions and the resulting ambient concentrations at the national scale, we update an emission inventory of anthropogenic organic carbon (OC) and elemental carbon (EC) and employ existing observational studies to analyze characteristics of these aerosols including temporal, spatial, and size distributions, and the levels and shares of secondary organic carbon (SOC) in total OC. We further use ground observations to test the levels and inter-annual trends of the calculated national and provincial emissions of carbonaceous aerosols, and propose possible improvements in emission estimation for the future. The national OC emissions are estimated to have increased 29 % from 2000 (2127 Gg) to 2012 (2749 Gg) and EC by 37 % (from 1356 to 1857 Gg). The residential, industrial, and transportation sectors contributed an estimated 74-78, 17-21, and 4-6 % of the total emissions of OC, respectively, and 49-55, 30-34, and 14-18 % of EC. Updated emission factors (EFs) based on the most recent local field measurements, particularly for biofuel stoves, led to considerably lower emissions of OC compared to previous inventories. Compiling observational data across the country, higher concentrations of OC and EC are found in northern and inland cities, while higher OC / EC ratios are found in southern sites, due to the joint effects of primary emissions and meteorology. Higher OC / EC ratios are estimated at rural and remote sites compared to urban ones, attributed to more emissions of OC from biofuel use, more biogenic emissions of volatile organic compound (VOC) precursors to SOC, and/or transport of aged aerosols. For most sites, higher concentrations of OC, EC, and SOC are observed in colder seasons, while SOC / OC is reduced, particularly at rural and remote sites

  9. Cardiac and pulmonary oxidative stress in rats exposed to realistic emissions of source aerosols

    PubMed Central

    Lemos, Miriam; Diaz, Edgar A.; Gupta, Tarun; Kang, Choong-Min; Ruiz, Pablo; Coull, Brent A.; Godleski, John J.; Gonzalez-Flecha, Beatriz

    2013-01-01

    In vivo chemiluminescence (CL) is a measure of reactive oxygen species in tissues. CL was used to assess pulmonary and cardiac responses to inhaled aerosols derived from aged emissions of three coal-fired power plants in the USA. Sprague–Dawley rats were exposed to either filtered air or: (1) primary emissions (P); (2) ozone oxidized emissions (PO); (3) oxidized emissions + secondary organic aerosol (SOA) (POS); (4) neutralized oxidized emissions + SOA (PONS); and (5) control scenarios: oxidized emissions + SOA in the absence of primary particles (OS), oxidized emissions alone (O), and SOA alone (S). Immediately after 6 hours of exposure, CL in the lung and heart was measured. Tissues were also assayed for thiobarbituric acid reactive substances (TBARS). Exposure to P or PO aerosols led to no changes compared to filtered air in lung or heart CL at any individual plant or when all data were combined. POS caused significant increases in lung CL and TBARS at only one plant, and not in combined data from all plants; PONS resulted in increased lung CL only when data from all plants were combined. Heart CL was also significantly increased with exposure to POS only when data from all plants were combined. PONS increased heart CL significantly in one plant with TBARS accumulation, but not in combined data. Exposure to O, OS, and S had no CL effects. Univariate analyses of individual measured components of the exposure atmospheres did not identify any component associated with increased CL. These data suggest that coal-fired power plant emissions combined with other atmospheric constituents produce limited pulmonary and cardiac oxidative stress. PMID:21913821

  10. Airborne Measurements of Aerosol Emissions From the Alberta Oil Sands Complex

    NASA Astrophysics Data System (ADS)

    Howell, S. G.; Clarke, A. D.; McNaughton, C. S.; Freitag, S.

    2012-12-01

    The Alberta oil sands contain a vast reservoir of fossil hydrocarbons. The extremely viscous bitumen requires significant energy to extract and upgrade to make a fluid product suitable for pipelines and further refinement. The mining and upgrading process constitute a large industrial complex in an otherwise sparsely populated area of Canada. During the ARCTAS project in June/July 2008, while studying forest fire plumes, the NASA DC-8 and P-3B flew through the plume a total of 5 times. Once was a coordinated visit by both aircraft; the other 3 were fortuitous passes downwind. One study has been published about gas emissions from the complex. Here we concentrate on aerosol emissions and aging. As previously reported, there appear to be at least 2 types of plumes produced. One is an industrial-type plume with vast numbers of ultrafine particles, SO2, sulfate, black carbon (BC), CO, and NO2. The other, probably from the mining, has more organic aerosol and BC together with dust-like aerosols at 3 μm and a 1 μm mode of unknown origin. The DC-8 crossed the plume about 10 km downwind of the industrial site, giving time for the boundary layer to mix and enabling a very crude flux calculation suggesting that sulfate and organic aerosols were each produced at about 500 g/s (estimated errors are a factor of 2, chiefly due to concerns about vertical mixing). Since this was a single flight during a project dedicated to other purposes and operating conditions and weather may change fluxes considerably, this may not be a typical flux. As the plume progresses downwind, the ultrafine particles grow to sizes effective as cloud condensation nucei (CCN), SO2 is converted to sulfate, and organic aerosol is produced. During fair weather in the summer, as was the case during these flights, cloud convection pumps aerosol above the mixed layer. While the aerosol plume is difficult to detect from space, NO2 is measured by the OMI instrument an the Aura satellite and the oil sands plume

  11. Gas phase emissions from cooking processes and their secondary aerosol production potential

    NASA Astrophysics Data System (ADS)

    Klein, Felix; Platt, Stephen; Bruns, Emily; Termime-roussel, Brice; Detournay, Anais; Mohr, Claudia; Crippa, Monica; Slowik, Jay; Marchand, Nicolas; Baltensperger, Urs; Prevot, Andre; El Haddad, Imad

    2014-05-01

    Long before the industrial evolution and the era of fossil fuels, high concentrations of aerosol particles were alluded to in heavily populated areas, including ancient Rome and medieval London. Recent radiocarbon measurements (14C) conducted in modern megacities came as a surprise: carbonaceous aerosol (mainly organic aerosol, OA), a predominant fraction of particulate matter (PM), remains overwhelmingly non-fossil despite extensive fossil fuel combustion. Such particles are directly emitted (primary OA, POA) or formed in-situ in the atmosphere (secondary OA, SOA) via photochemical reactions of volatile organic compounds (VOCs). Urban levels of non-fossil OA greatly exceed the levels measured in pristine environments strongly impacted by biogenic emissions, suggesting a contribution from unidentified anthropogenic non-fossil sources to urban OA. Positive matrix factorization (PMF) techniques applied to ambient aerosol mass spectrometer (AMS, Aerodyne) data identify primary cooking emissions (COA) as one of the main sources of primary non-fossil OA in major cities like London (Allan et al., 2010), New York (Sun et al., 2011) and Beijing (Huang et al., 2010). Cooking processes can also emit VOCs that can act as SOA precursors, potentially explaining in part the high levels of oxygenated OA (OOA) identified by the AMS in urban areas. However, at present, the chemical nature of these VOCs and their secondary aerosol production potential (SAPP) remain virtually unknown. The approach adopted here involves laboratory quantification of PM and VOC emission factors from the main primary COA emitting processes and their SAPP. Primary emissions from deep-fat frying, vegetable boiling, vegetable frying and meat cooking for different oils, meats and vegetables were analysed under controlled conditions after ~100 times dilution. A high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a high resolution proton transfer time-of-flight mass spectrometer (PTR

  12. The effect of future reduction in aerosol emissions on climate extremes in China

    NASA Astrophysics Data System (ADS)

    Wang, Zhili; Lin, Lei; Yang, Meilin; Xu, Yangyang

    2016-01-01

    This study investigates the effect of reduced aerosol emissions on projected temperature and precipitation extremes in China during 2031-2050 and 2081-2100 relative to present-day conditions using the daily data output from the Community Earth System Model ensemble simulations under the Representative Concentration Pathway (RCP) 8.5 with an applied aerosol reduction and RCP8.5 with fixed 2005 aerosol emissions (RCP8.5_FixA) scenarios. The reduced aerosol emissions of RCP8.5 magnify the warming effect due to greenhouse gases (GHG) and lead to significant increases in temperature extremes, such as the maximum of daily maximum temperature (TXx), minimum of daily minimum temperature (TNn), and tropical nights (TR), and precipitation extremes, such as the maximum 5-day precipitation amount, number of heavy precipitation days, and annual total precipitation from days ˃95th percentile, in China. The projected TXx, TNn, and TR averaged over China increase by 1.2 ± 0.2 °C (4.4 ± 0.2 °C), 1.3 ± 0.2 °C (4.8 ± 0.2 °C), and 8.2 ± 1.2 (30.9 ± 1.4) days, respectively, during 2031-2050 (2081-2100) under the RCP8.5_FixA scenario, whereas the corresponding values are 1.6 ± 0.1 °C (5.3 ± 0.2 °C), 1.8 ± 0.2 °C (5.6 ± 0.2 °C), and 11.9 ± 0.9 (38.4 ± 1.0) days under the RCP8.5 scenario. Nationally averaged increases in all of those extreme precipitation indices above due to the aerosol reduction account for more than 30 % of the extreme precipitation increases under the RCP8.5 scenario. Moreover, the aerosol reduction leads to decreases in frost days and consecutive dry days averaged over China. There are great regional differences in changes of climate extremes caused by the aerosol reduction. When normalized by global mean surface temperature changes, aerosols have larger effects on temperature and precipitation extremes over China than GHG.

  13. Experiments probing the influence of air exchange rates on secondary organic aerosols derived from indoor chemistry

    NASA Astrophysics Data System (ADS)

    Weschler, Charles J.; Shields, Helen C.

    Reactions between ozone and terpenes have been shown to increase the concentrations of submicron particles in indoor settings. The present study was designed to examine the influence of air exchange rates on the concentrations of these secondary organic aerosols as well as on the evolution of their particle size distributions. The experiments were performed in a manipulated office setting containing a constant source of d-limonene and an ozone generator that was remotely turned "on" or "off" at 6 h intervals. The particle number concentrations were monitored using an optical particle counter with eight-channels ranging from 0.1-0.2 to>2.0 μm diameter. The air exchange rates during the experiments were either high (working hours) or low (non-working hours) and ranged from 1.6 to>12 h -1, with intermediate exchange rates. Given the emission rates of ozone and d-limonene used in these studies, at an air exchange rate of 1.6 h -1 particle number concentration in the 0.1-0.2 μm size-range peaked 1.2 h after the ozone generator was switched on. In the ensuing 4.8 h particle counts increased in successive size-ranges up to the 0.5-0.7 μm diameter range. At higher air exchange rates, the resulting concentrations of total particles and particle mass (calculated from particle counts) were smaller, and at exchange rates exceeding 12 h -1, no excess particle formation was detectable with the instrument used in this study. Particle size evolved through accretion and, in some cases, coagulation. There was evidence for coagulation among particles in the smallest size-range at low air exchange rates (high particle concentrations) but no evidence of coagulation was apparent at higher air exchange rates (lower particle concentrations). At higher air exchange rates the particle count or size distributions were shifted towards smaller particle diameters and less time was required to achieve the maximum concentration in each of the size-ranges where discernable particle growth

  14. Megacity emission plume characteristics in summer and winter investigated by mobile aerosol and trace gas measurements: the Paris metropolitan area

    NASA Astrophysics Data System (ADS)

    von der Weiden-Reinmüller, S.-L.; Drewnick, F.; Zhang, Q. J.; Freutel, F.; Beekmann, M.; Borrmann, S.

    2014-05-01

    For the investigation of megacity emission plume characteristics mobile aerosol and trace gas measurements were carried out in the greater Paris region in July 2009 and January/February 2010 within the EU FP7 MEGAPOLI project. The deployed instruments measured physical and chemical properties of sub-micron aerosol particles, gas phase constituents of relevance for urban air pollution studies and meteorological parameters. The emission plume was identified based on fresh pollutant (e.g. particle-bound polycyclic aromatic hydrocarbons, black carbon, CO2 and NOx) concentration changes in combination with wind direction data. The classification into megacity influenced and background air masses allowed a characterization of the emission plume during summer and winter environmental conditions. On average, a clear increase of fresh pollutant concentrations in plume compared to background air masses was found for both seasons. For example, an average increase of 190% (+8.8 ng m-3) in summer and of 130% (+18.1 ng m-3) in winter was found for particle-bound polycyclic aromatic hydrocarbons in plume air masses. The aerosol particle size distribution in plume air masses was influenced by nucleation and growth due to coagulation and condensation in summer, while in winter only the second process seemed to be initiated by urban pollution. The observed distribution of fresh pollutants in the emission plume - its cross sectional Gaussian-like profile and the exponential decrease of pollutant concentrations with increasing distance to the megacity - are in agreement with model results. Differences between model and measurements were found for plume center location, plume width and axial plume extent. In general, dilution was identified as the dominant process determining the axial variations within the Paris emission plume. For in-depth analysis of transformation processes occurring in the advected plume, simultaneous measurements at a suburban measurement site and a stationary

  15. Emission factors of carbon monoxide and size-resolved aerosols from biofuel combustion.

    PubMed

    Venkataraman, C; Rao, G U

    2001-05-15

    This study reports emission factors of carbon monoxide and size-resolved aerosols from combustion of wood, dung cake, and biofuel briquette in traditional and improved stoves in India. Wood was the cleanest burning fuel, with higher emissions of CO from dung cake and particulate matter from both dung cake and briquette fuels. Combustion of dung cake, especially in an improved metal stove, resulted in extremely high pollutant emissions. Instead, biogas from anaerobic dung digestion should be promoted as a cooking fuel for public health protection. Pollutant emissions increased with increasing stove thermal efficiency, implying that thermal efficiency enhancement in the improved stoves was mainly from design features leading to increased heat transfer but not combustion efficiency. Compared to the traditional stove, the improved stoves resulted in the lower pollutant emissions on a kW h-1 basis from wood combustion but in similar emissions from briquette and dung cake. Stove designs are needed with good emissions performance across multiple fuels. Unimodal aerosol size distributions were measured from biofuel combustion with mass median aerodynamic diameters of 0.5-0.8 micron, about a factor of 10 larger than those from fossil fuel combustion (e.g. diesel), with potential implications for lung deposition and health risk. PMID:11393993

  16. Model study on the dependence of primary marine aerosol emission on the sea surface temperature

    NASA Astrophysics Data System (ADS)

    Barthel, S.; Tegen, I.; Wolke, R.; van Pinxteren, M.

    2014-01-01

    Primary marine aerosol composed of sea salt and organic material is an important contributor to the global aerosol load. By comparing measurements from two EMEP (co-operative programme for monitoring and evaluation of the long-range transmissions of air-pollutants in Europe) intensive campaigns in June 2006 and January 2007 with results from an atmospheric transport model this work shows that accounting for the influence of the sea surface temperature on the emission of primary marine aerosol improves the model results towards the measurements in both months. Different sea surface temperature dependencies were evaluated. Using correction functions based on Sofiev et al. (2011) and Jaeglé et al. (2011) improves the model results for coarse mode particles. In contrast, for the fine mode aerosols no best correction function could be found. The model captures the low sodium concentrations at the marine station Virolahti II (Finland), which is influenced by air masses from the low salinity Baltic Sea, as well as the higher concentrations at Cabauw (Netherlands) and Auchencorth Moss (Scotland). These results indicate a shift towards smaller sizes with lower salinity for the emission of dry sea salt aerosols. Organic material was simulated as part of primary marine aerosol assuming an internal mixture with sea salt. A comparison of the model results for primary organic carbon with measurements by a Berner-impactor at Sao Vincente (Cape Verde) indicated that the model underpredicted the observed organic carbon concentration. This leads to the conclusion that the formation of secondary organic material needs to be included in the model to improve the agreement with the measurements.

  17. Biomass burning emissions over northern Australia constrained by aerosol measurements: II—Model validation, and impacts on air quality and radiative forcing

    NASA Astrophysics Data System (ADS)

    Luhar, Ashok K.; Mitchell, Ross M.; (Mick) Meyer, C. P.; Qin, Yi; Campbell, Susan; Gras, John L.; Parry, David

    This two-part series investigates the emission and transport of biomass burning aerosol (or particulate matter) across the Top End of the Northern Territory of Australia. In Part I, Meyer et al. [2008. Biomass burning emissions over northern Australia constrained by aerosol measurements: I—Modelling the distribution of hourly emissions. Atmospheric Environment, in press, doi:10.1016/j.atmosenv.2007.10.089.] used a fuel load distribution coupled with a satellite-derived imagery of fire scars and hotspots and the diurnal variation of a fire danger index to estimate hourly emission rates of particulate matter with an aerodynamic diameter of 2.5 μm or less (PM 2.5) for the dry season April-November 2004 at a spatial resolution of 1 km×1 km. In the present paper, these emission rates are used in TAPM, a three-dimensional meteorological and air pollution model, and the modelled PM 2.5 concentrations and aerosol optical depths are compared with satellite and ground-based measurements. This exercise also seeks to fine-tune and validate the emission calculation methodology, a process through which it is found that cases with hotspots without any corresponding fire scars (e.g. in mountainous terrain), which were initially ignored, need to be included to improve the accuracy of model predictions. Overall, the model is able to describe the measurements satisfactorily, considering the issues associated with the model resolution, emission uncertainty, and modelled meteorology. The model hindcasts numerous exceedences of the advisory maximum PM 2.5 exposure limit across the study region, with large areas in excess of 30 exceedences during the study period. Estimated mean top of atmosphere direct radiative forcing due to aerosol shows a seasonal mean of -1.8 W m -2 with a region of strong enhancement over the western portion of the Top End.

  18. Direct observation of aqueous secondary organic aerosol from biomass-burning emissions.

    PubMed

    Gilardoni, Stefania; Massoli, Paola; Paglione, Marco; Giulianelli, Lara; Carbone, Claudio; Rinaldi, Matteo; Decesari, Stefano; Sandrini, Silvia; Costabile, Francesca; Gobbi, Gian Paolo; Pietrogrande, Maria Chiara; Visentin, Marco; Scotto, Fabiana; Fuzzi, Sandro; Facchini, Maria Cristina

    2016-09-01

    The mechanisms leading to the formation of secondary organic aerosol (SOA) are an important subject of ongoing research for both air quality and climate. Recent laboratory experiments suggest that reactions taking place in the atmospheric liquid phase represent a potentially significant source of SOA mass. Here, we report direct ambient observations of SOA mass formation from processing of biomass-burning emissions in the aqueous phase. Aqueous SOA (aqSOA) formation is observed both in fog water and in wet aerosol. The aqSOA from biomass burning contributes to the "brown" carbon (BrC) budget and exhibits light absorption wavelength dependence close to the upper bound of the values observed in laboratory experiments for fresh and processed biomass-burning emissions. We estimate that the aqSOA from residential wood combustion can account for up to 0.1-0.5 Tg of organic aerosol (OA) per y in Europe, equivalent to 4-20% of the total OA emissions. Our findings highlight the importance of aqSOA from anthropogenic emissions on air quality and climate. PMID:27551086

  19. Characterising Brazilian biomass burning emissions using WRF-Chem with MOSAIC sectional aerosol

    NASA Astrophysics Data System (ADS)

    Archer-Nicholls, S.; Lowe, D.; Darbyshire, E.; Morgan, W. T.; Bela, M. M.; Pereira, G.; Trembath, J.; Kaiser, J. W.; Longo, K. M.; Freitas, S. R.; Coe, H.; McFiggans, G.

    2015-03-01

    The South American Biomass Burning Analysis (SAMBBA) field campaign took detailed in situ flight measurements of aerosol during the 2012 dry season to characterise biomass burning aerosol and improve understanding of its impacts on weather and climate. Developments have been made to the Weather Research and Forecast model with chemistry (WRF-Chem) model to improve the representation of biomass burning aerosol in the region, by coupling a sectional aerosol scheme to the plume-rise parameterisation. Brazilian Biomass Burning Emissions Model (3BEM) fire emissions are used, prepared using PREP-CHEM-SRC, and mapped to CBM-Z and MOSAIC species. Model results have been evaluated against remote sensing products, AERONET sites, and four case studies of flight measurements from the SAMBBA campaign. WRF-Chem predicted layers of elevated aerosol loadings (5-20 μg sm-3) of particulate organic matter at high altitude (6-8 km) over tropical forest regions, while flight measurements showed a sharp decrease above 2-4 km altitude. This difference was attributed to the plume-rise parameterisation overestimating injection height. The 3BEM emissions product was modified using estimates of active fire size and burned area for the 2012 fire season, which reduced the fire size. The enhancement factor for fire emissions was increased from 1.3 to 5 to retain reasonable aerosol optical depths (AODs). The smaller fire size lowered the injection height of the emissions, but WRF-Chem still showed elevated aerosol loadings between 4-5 km altitude. Over eastern cerrado (savannah-like) regions, both modelled and measured aerosol loadings decreased above approximately 4 km altitude. Compared with MODIS satellite data and AERONET sites, WRF-Chem represented AOD magnitude well (between 0.3-1.5) over western tropical forest fire regions in the first half of the campaign, but tended to over-predict them in the second half, when precipitation was more significant. Over eastern cerrado regions, WRF

  20. Rate constant and secondary organic aerosol yields for the gas-phase reaction of hydroxyl radicals with syringol (2,6-dimethoxyphenol)

    NASA Astrophysics Data System (ADS)

    Lauraguais, Amélie; Coeur-Tourneur, Cécile; Cassez, Andy; Seydi, Abdoulaie

    2012-08-01

    Syringol (2,6-dimethoxyphenol) is a potential marker compound for wood smoke emissions in the atmosphere. To investigate the atmospheric reactivity of this compound, the rate constant for its reaction with hydroxyl radicals (OH) has been determined in a simulation chamber (8 m3) at 294 ± 2 K, atmospheric pressure and low relative humidity (2-4%) using the relative rate method. The syringol and reference compound concentrations were followed by GC/FID (Gas chromatography/Flame Ionization Detection). The determined rate constant (in units of cm3 molecule-1 s-1) is ksyringol = (9.66 ± 1.11) × 10-11. The calculated atmospheric lifetime for syringol is 1.8 h, indicating that it is too reactive to be used as a tracer for wood smoke emissions. Secondary Organic Aerosol (SOA) formation from the OH reaction with syringol was also investigated. The initial mixing ratios for syringol were in the range 495-3557 μg m-3. The aerosol production was monitored using a SMPS (Scanning Mobility Particle Sizer). The SOA yields (Y) were determined as the ratio of the suspended aerosol mass corrected for wall losses (M0) to the total reacted syringol concentration assuming a particle density of 1.4 g cm-3. The aerosol formation yield increases as the initial syringol concentration increases, and leads to aerosol yields ranging from 0.10 to 0.36. Y is a strong function of M0 and the organic aerosol formation can be expressed by a one-product gas/particle partitioning absorption model. To our knowledge, this work represents the first investigation of the rate constant and SOA formation for the reaction of syringol with OH radicals. The atmospheric implications of this reaction are also discussed.

  1. Aerosol emissions and dimming/brightening in Europe: Sensitivity studies with ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    Folini, D.; Wild, M.

    2011-11-01

    Observational data indicate a decrease of surface solar radiation (SSR) in Europe from about 1950 to the mid-1980s, followed by a renewed increase. Changing aerosol emissions have been suggested as a likely cause for this observed dimming and brightening. To quantify this hypothesis, we performed ensembles of transient sensitivity experiments with the global climate model ECHAM5-HAM, which includes interactive treatment of aerosols. The simulations cover the period 1950-2005 and use transient aerosol emissions (National Institute of Environmental Science, Japan) and prescribed sea surface temperatures (SSTs) from the Hadley Centre. The simulated clear-sky dimming and brightening can be attributed to changing aerosol emissions from fossil fuel combustion. Ensemble means of modeled SSR trends are in agreement with observed values. Dimming ceases too early in the model, around 1970. Potential causes are discussed. Brightening sets in at about the right time. Regional differences of modeled SSR are substantial, with clear-sky dimming trends ranging from -6.1 (eastern Europe) to -0.4 W m-2 decade-1 (British Isles) and brightening trends ranging from +1.3 to +6.3 W m-2 decade-1 (Scandinavia and eastern Europe). All-sky conditions show similar trends in the ensemble mean, but the spread among ensemble members is considerable, emphasizing the importance of clouds. Surface temperatures are found to depend mostly on the prescribed SSTs, with an additional aerosol component in some regions like eastern Europe. For precipitation, internal variability is too large to allow for any firm conclusions.

  2. SENSITIVITY OF ORGANIC AEROSOL CONCENTRATIONS AND FORCING TO ANTHROPOGENIC EMISSIONS

    EPA Science Inventory

    The resulting OA module that could be used in different CTMs together with the insights about the sensitivity of the biogenic (but also anthropogenic) SOA to changes in emissions of anthropogenic pollutants will be the major outcomes of the proposed study.

  3. Simulating aerosols over Arabian Peninsula with CHIMERE: Sensitivity to soil, surface parameters and anthropogenic emission inventories

    NASA Astrophysics Data System (ADS)

    Beegum, S. Naseema; Gherboudj, Imen; Chaouch, Naira; Couvidat, Florian; Menut, Laurent; Ghedira, Hosni

    2016-03-01

    A three dimensional chemistry transport model, CHIMERE, was used to simulate the aerosol optical depths (AOD) over the Arabian Peninsula desert with an offline coupling of Weather Research and Forecasting (WRF) model. The simulations were undertaken with: (i) different horizontal and vertical configurations, (ii) new datasets derived for soil/surface properties, and (iii) EDGAR-HTAP anthropogenic emissions inventories. The model performance evaluations were assessed: (i) qualitatively using MODIS (Moderate-Resolution Imaging Spectroradiometer) deep blue (DB) AOD data for the two local dust events of August 6th and 23rd (2013), and (ii) quantitatively using AERONET (Aerosol Robotic Network) AOD observations, CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) aerosol extinction profiles, and AOD simulations from various forecast models. The model results were observed to be highly sensitive to erodibility and aerodynamic surface roughness length. The use of new datasets on soil erodibility, derived from the MODIS reflectance, and aerodynamic surface roughness length (z0), derived from the ERA-Interim datasets, significantly improved the simulation results. Simulations with the global EDGAR-HTAP anthropogenic emission inventories brought the simulated AOD values closer to the observations. Performance testing of the adapted model for the Arabian Peninsula domain with improved datasets showed good agreement between AERONET AOD measurements and CHIMERE simulations, where the correlation coefficient (R) is 0.6. Higher values of the correlation coefficients and slopes were observed for the dusty periods compared to the non-dusty periods.

  4. Ice nucleation in the upper troposphere: Sensitivity to aerosol number density, temperature, and cooling rate

    SciTech Connect

    Jensen, E.J.; Toon, O.B.

    1994-09-01

    We have investigated the processes that control ice crystal nucleation in the upper troposphere using a numerical model. Nucleation of ice resulting from cooling was simulated for a range of aerosol number densities, initial temperatures, and cooling rates. In contrast to observations of stratus clouds, we find that the number of ice crystals that nucleate in cirrus is relatively insensitive to the number of aerosols present. The ice crystal size distribution at the end of the nucleation process is unaffected by the assumed initial aerosol number density. Essentially, nucleation continues until enough ice crystals are present such that their deposition growth rapidly depletes the vapor and shuts off any further nucleation. However, the number of ice crystals nucleated increases rapidly with decreasing initial temperature and increasing cooling rate. This temperature dependence alone could explain the large ice crystal number density observed in very cold tropical cirrus.

  5. Global scale emission and distribution of sea-spray aerosol: Sea-salt and organic enrichment

    NASA Astrophysics Data System (ADS)

    Vignati, E.; Facchini, M. C.; Rinaldi, M.; Scannell, C.; Ceburnis, D.; Sciare, J.; Kanakidou, M.; Myriokefalitakis, S.; Dentener, F.; O'Dowd, C. D.

    2010-02-01

    The chemical composition of marine aerosols as a function of their size is an important parameter for the evaluation of their impact on the global climate system. In this work we model fine particle organic matter emitted by sea spray processes and its influence on the aerosol chemical properties at the global scale using the off-line global Chemistry-Transport Model TM5. TM5 is coupled to a microphysical aerosol dynamics model providing size resolved information on particle masses and numbers. The mass of the emitted sea spray particles is partitioned between water insoluble organic matter (WIOM) and sea salt components in the accumulation mode using a function that relates the emitted organic fraction to the surface ocean chlorophyll- a concentrations. The global emission in the sub-micron size range of organic matter by sea spray process is 8.2 Tg yr -1, compared to 24 Tg fine yr -1 sea-salt emissions. When the marine sources are included, the concentrations of modelled primary particulate organic matter (POM) increase mainly over the oceans. The model predictions of WIOM and sea salt are evaluated against measurements carried out at Mace Head (Northern Hemisphere) and Amsterdam Island (Southern Hemisphere), showing that in clean marine conditions WIOM marine emissions contribute significantly to POM values.

  6. Updating Sea Spray Aerosol Emissions in the Community Multiscale Air Quality Model

    NASA Astrophysics Data System (ADS)

    Gantt, B.; Bash, J. O.; Kelly, J.

    2014-12-01

    Sea spray aerosols (SSA) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. In this study, the Community Multiscale Air Quality (CMAQ) model is updated to enhance fine mode SSA emissions, include sea surface temperature (SST) dependency, and revise surf zone emissions. Based on evaluation with several regional and national observational datasets in the continental U.S., the updated emissions generally improve surface concentrations predictions of primary aerosols composed of sea-salt and secondary aerosols affected by sea-salt chemistry in coastal and near-coastal sites. Specifically, the updated emissions lead to better predictions of the magnitude and coastal-to-inland gradient of sodium, chloride, and nitrate concentrations at Bay Regional Atmospheric Chemistry Experiment (BRACE) sites near Tampa, FL. Including SST-dependency to the SSA emission parameterization leads to increased sodium concentrations in the southeast U.S. and decreased concentrations along the Pacific coast and northeastern U.S., bringing predictions into closer agreement with observations at most Interagency Monitoring of Protected Visual Environments (IMPROVE) and Chemical Speciation Network (CSN) sites. Model comparison with California Research at the Nexus of Air Quality and Climate Change (CalNex) observations will also be discussed, with particular focus on the South Coast Air Basin where clean marine air mixes with anthropogenic pollution in a complex environment. These SSA emission updates enable more realistic simulation of chemical processes in coastal environments, both in clean marine air masses and mixtures of clean marine and polluted conditions.

  7. Passive flux sampler for measurement of formaldehyde emission rates

    NASA Astrophysics Data System (ADS)

    Shinohara, Naohide; Fujii, Minoru; Yamasaki, Akihiro; Yanagisawa, Yukio

    A new passive flux sampler (PFS) was developed to measure emission rates of formaldehyde and to determine emission sources in indoor environments. The sampler consisted of a glass Petri dish containing a 2,4-dinitrophenyl hydrazine (DNPH)-impregnated sheet. At the start of sampling, the PFS was placed with the open face of the dish on each of the indoor materials under investigation, such as flooring, walls, doors, closets, desks, beds, etc. Formaldehyde emitted from a source material diffused through the inside of the PFS and was adsorbed onto the DNPH sheet. The formaldehyde emission rates could be determined from the quantities adsorbed. The lower determination limits were 9.2 and 2.3 μg m -2 h -1 for 2- and 8-h sampling periods. The recovery rate and the precision of the PFS were 82.9% and 8.26%, respectively. The emission rates measured by PFS were in good agreement with the emission rates measured by the chamber method ( R2=0.963). This shows that it is possible to take measurements of the formaldehyde emission rates from sources in a room and to compare them. In addition, the sampler can be used to elucidate the emission characteristics of a source by carrying out emission measurements with different air-layer thicknesses inside the PFS and at different temperatures. The dependency of the emission rate on the thickness of the air layer inside the PFS indicated whether the internal mass transfer inside the source material or the diffusion in the gas-phase boundary layer controlled the formaldehyde emission rate from a material. In addition, as a pilot study, the formaldehyde emission rates were measured, and the largest emission source of formaldehyde could be identified from among several suspected materials in a model house by using the PFS.

  8. Vegetation fires in the himalayan region - Aerosol load, black carbon emissions and smoke plume heights

    NASA Astrophysics Data System (ADS)

    Vadrevu, Krishna Prasad; Ellicott, Evan; Giglio, Louis; Badarinath, K. V. S.; Vermote, Eric; Justice, Chris; Lau, William K. M.

    2012-02-01

    In this study, we investigate the potential of multi-satellite datasets for quantifying the biomass burning emissions from the Himalayan region. A variety of satellite products were used for characterizing fire events including active fire counts, burnt areas, aerosol optical depth (AOD) variations, aerosol index and smoke plume heights. Results from the MODerate-resolution Imaging Spectroradiometer (MODIS) fire product suggest March-June as the major fire season with the peak during the April. An average of 3908 fire counts per year were recorded with sixty four percent of the fires occurring in the low elevation areas in the Himalayan Region. We estimate average burnt areas of 1129 sq. km, with the black carbon emissions of 431 Mg, per year. The mean AOD (2005-2010) was 0.287 ± 0.105 (one sigma) with peak values in May. Correlation analysis between the fire counts and AOD resulted in a Pearson correlation coefficient of 0.553; the correlation between the FRP and AOD is relatively weaker ( r = 0.499). Planetary boundary layer height retrieved from the Modern Era Retrospective-Analysis For Research And Applications (MERRA) product suggests typical PBL height of 1000-1200 m during the April-May peak biomass burning season. Cloud-Aerosol Lidar Orthogonal Polarisation (CALIOP) retrievals show the extent of smoke plume heights beyond the planetary boundary layer during the peak biomass burning month of April. However, comparison of fires in the Himalayan region with other regions and comparisons to aerosol index data from the Ozone Monitoring Instrument (OMI) suggest smoke plumes reaching less than 3 km. Our results on fires and smoke plume height relationships provide valuable information for addressing aerosol transport in the region.

  9. Historical estimation of carbonaceous aerosol emissions from biomass open burning in China for the period 1990-2005.

    PubMed

    Qin, Y; Xie, S D

    2011-12-01

    Multi-year inventories of carbonaceous aerosol emissions from biomass open burning at a high spatial resolution of 0.5° × 0.5° have been constructed in China using GIS methodology for the period 1990-2005. Black carbon (BC) emissions have increased by 383.03% at an annual average rate of 25.54% from 14.05 Gg in 1990 to 67.87 Gg in 2005; while organic carbon (OC) emissions have increased by 365.43% from 57.37 Gg in 1990 to 267.00 Gg in 2005. Through the estimation period, OC/BC ratio for biomass burning was averagely 4.09, suggesting that it was not the preferred control source from a climatic perspective. Spatial distribution of BC and OC emissions were similar, mainly concentrated in three northeastern provinces, central provinces of Shandong, Jiangsu, Anhui and Henan, and southern provinces of Guangxi, Guangdong, Hunan and Sichuan basin, covering 24.89% of China's territory, but were responsible for 63.38% and 67.55% of national BC and OC emissions, respectively. PMID:21911273

  10. The spatial distribution of mineral dust and its shortwave radiative forcing over North Africa. Modeling sensitivities to dust emissions and aerosol size treatments

    SciTech Connect

    Zhao, Chun; Liu, Xiaohong; Leung, Lai-Yung R.; Johnson, Ben; McFarlane, Sally A.; Gustafson, William I.; Fast, Jerome D.; Easter, Richard C.

    2010-09-20

    A fully coupled meteorology-chemistry-aerosol model (WRF-Chem) with the implementation of two dust emission schemes (GOCART and DUSTRAN) into two aerosol models (MADE/SORGAM and MOSAIC) is applied over North Africa to investigate the modeling sensitivities to dust emissions and aerosol size treatments in simulating mineral dust and its shortwave (SW) radiative forcing. Model results of the spatial distribution of mineral dust and its radiative forcing are evaluated using measurements from the AMMA SOP0 campaign in January and February of 2006 over North Africa. Our study suggests that the size distribution of emitted dust can result in significant differences (up to 100%) in simulating mineral dust and its SW radiative forcing. With the same dust emission and dry deposition processes, two aerosol models, MADE/SORGAM and MOSAIC, can yield large difference in size distributions of dust particles due to their different aerosol size treatments using modal and sectional approaches respectively. However, the difference between the two aerosol models in simulating the mass concentrations and the SW radiative forcing of mineral dust is small (< 10%). The model simulations show that mineral dust increases AOD by a factor of 2, heats the lower atmosphere (1-3 km) with a maximum rate of 0.7±0.5 K day-1 below 1 km, and reduces the downwelling SW radiation by up to 25 W m-2 on 24-hour average at surface, highlighting the importance of including dust radiative impact in understanding the regional climate of North Africa. When compared to the available measurements, WRF-Chem simulations can generally capture the measured features of mineral dust and its radiative properties over North Africa, suggesting that the model can be used to perform more extensive simulations of regional climate over North Africa.

  11. Land cover maps, BVOC emissions, and SOA burden in a global aerosol-climate model

    NASA Astrophysics Data System (ADS)

    Stanelle, Tanja; Henrot, Alexandra; Bey, Isaelle

    2015-04-01

    It has been reported that different land cover representations influence the emission of biogenic volatile organic compounds (BVOC) (e.g. Guenther et al., 2006). But the land cover forcing used in model simulations is quite uncertain (e.g. Jung et al., 2006). As a consequence the simulated emission of BVOCs depends on the applied land cover map. To test the sensitivity of global and regional estimates of BVOC emissions on the applied land cover map we applied 3 different land cover maps into our global aerosol-climate model ECHAM6-HAM2.2. We found a high sensitivity for tropical regions. BVOCs are a very prominent precursor for the production of Secondary Organic Aerosols (SOA). Therefore the sensitivity of BVOC emissions on land cover maps impacts the SOA burden in the atmosphere. With our model system we are able to quantify that impact. References: Guenther et al. (2006), Estimates of global terrestrial isoprene emissions using MEGAN, Atmos. Chem. Phys., 6, 3181-3210, doi:10.5194/acp-6-3181-2006. Jung et al. (2006), Exploiting synergies of global land cover products for carbon cycle modeling, Rem. Sens. Environm., 101, 534-553, doi:10.1016/j.rse.2006.01.020.

  12. Top-Down Inversion of Aerosol Emissions through Adjoint Integration of Satellite Radiance and GEOS-Chem Chemical Transport Model

    NASA Astrophysics Data System (ADS)

    Xu, X.; Wang, J.; Henze, D. K.; Qu, W.; Kopacz, M.

    2012-12-01

    The knowledge of aerosol emissions from both natural and anthropogenic sources are needed to study the impacts of tropospheric aerosol on atmospheric composition, climate, and human health, but large uncertainties persist in quantifying the aerosol sources with the current bottom-up methods. This study presents a new top-down approach that spatially constrains the amount of aerosol emissions from satellite (MODIS) observed reflectance with the adjoint of a chemistry transport model (GEOS-Chem). We apply this technique with a one-month case study (April 2008) over the East Asia. The bottom-up estimated sulfate-nitrate-ammonium precursors, such as sulfur dioxide (SO2), ammonia (NH3), and nitrogen oxides (NOx), all from INTEX-B 2006 inventory, emissions of black carbon (BC), organic carbon (OC) from Bond-2007 inventory, and mineral dust simulated from DEAD dust mobilization scheme, are spatially optimized from the GEOS-Chem model and its adjoint constrained by the aerosol optical depth (AOD) that are derived from MODIS reflectance with the GEOS-Chem aerosol single scattering properties. The adjoint inverse modeling for the study period yields notable decreases in anthropogenic aerosol emissions over China: 436 Gg (33.5%) for SO2, 378 Gg (34.5%) for NH3, 319 (18.8%) for NOx, 10 Gg (9.1%) for BC, and 30 Gg (15.0%) for OC. The total amount of the mineral dust emission is reduced by 56.4% from the DEAD mobilization module which simulates dust production of 19020 Gg. Sub-regional adjustments are significant and directions of changes are spatially different. The model simulation with optimized aerosol emissions shows much better agreement with independent observations from sun-spectrophotometer observed AOD from AERONET, MISR (Multi-angle Imaging SpectroRadiometer) AOD, OMI (Ozone Monitoring Instrument) NO2 and SO2 columns, and surface aerosol concentrations measured over both anthropogenic pollution and dust source regions. Assuming the used bottom-up anthropogenic

  13. Aerosol observations and growth rates downwind of the anvil of a deep tropical thunderstorm

    NASA Astrophysics Data System (ADS)

    Waddicor, D. A.; Vaughan, G.; Choularton, T. W.; Bower, K. N.; Coe, H.; Gallagher, M.; Williams, P. I.; Flynn, M.; Volz-Thomas, A.; Pätz, H.-W.; Isaac, P.; Hacker, J.; Arnold, F.; Schlager, H.; Whiteway, J. A.

    2012-07-01

    We present a case study of Aitken and accumulation mode aerosol observed downwind of the anvil of a deep tropical thunderstorm. The measurements were made by condensation nuclei counters flown on the Egrett high-altitude aircraft from Darwin during the ACTIVE campaign, in monsoon conditions producing widespread convection over land and ocean. Maximum measured concentrations of aerosol with diameter greater than 10 nm were 25 000 cm-3 (STP). By calculating back-trajectories from the observations, and projecting onto infrared satellite images, the time since the air exited cloud was estimated. In this way a time scale of about 3 hours was derived for the Aitken aerosol concentration to reach its peak. We examine the hypothesis that the growth in aerosol concentrations can be explained by production of sulphuric acid from SO2 followed by particle nucleation and coagulation. Estimates of the sulphuric acid production rate show that the observations are only consistent with this hypothesis if the particles coagulate to sizes >10 nm much more quickly than is suggested by current theory. Alternatively, other condensible gases (possibly organic) drive the growth of aerosol particles in the TTL.

  14. Performance of High Flow Rate Personal Respirable Samplers When Challenged with Mineral Aerosols of Different Particle Size Distributions.

    PubMed

    Stacey, Peter; Thorpe, Andrew; Echt, Alan

    2016-05-01

    It is thought that the performance of respirable samplers may vary when exposed to dust aerosols with different particle sizes and wind speeds. This study investigated the performance of the GK 4.16 (RASCAL), GK 2.69, PPI 8, and FSP 10, high flow rate personal samplers when exposed to aerosols of mineral dust in a wind tunnel at two different wind speeds (1 and 2 m s(-1)) and orientations (towards and side-on to the source of emission). The mass median aerodynamic diameter of four aerosolized test dusts ranged from 8 to 25 µm with geometric standard deviations from 1.6 to 2 µm. The performance of each sampler type was compared with that of the SIMPEDS (Higgins-Dewell design) sampler. There was slight evidence to suggest that the performance of the FSP 10 is affected by the direction of the inlet relative to the air flow, although this was not significant when most respirable dust concentrations were compared, possibly due to the variability of paired dust concentration results. The GK 2.69, RASCAL, and PPI 8 samplers had similar performances, although the results when side-on to the emission source were generally slightly lower than the SIMPEDS. Despite slight differences between respirable dust concentrations the respirable crystalline silica values were not significantly different from the SIMPEDS. The GK family of cyclones obtained most precise results and more closely matched the SIMPEDS. A comparison with dust concentration results from previous calm air chamber studies (where wind speeds were < 0.4 m s(-1)) found that the relative performance between samplers was similar to those observed in this work indicating consistent performance relative to the SIMPEDS in both calm and moving air. PMID:26865560

  15. Performance of High Flow Rate Personal Respirable Samplers When Challenged with Mineral Aerosols of Different Particle Size Distributions

    PubMed Central

    Stacey, Peter; Thorpe, Andrew; Echt, Alan

    2016-01-01

    It is thought that the performance of respirable samplers may vary when exposed to dust aerosols with different particle sizes and wind speeds. This study investigated the performance of the GK 4.16 (RASCAL), GK 2.69, PPI 8, and FSP 10, high flow rate personal samplers when exposed to aerosols of mineral dust in a wind tunnel at two different wind speeds (1 and 2 m s−1) and orientations (towards and side-on to the source of emission). The mass median aerodynamic diameter of four aerosolized test dusts ranged from 8 to 25 µm with geometric standard deviations from 1.6 to 2 µm. The performance of each sampler type was compared with that of the SIMPEDS (Higgins–Dewell design) sampler. There was slight evidence to suggest that the performance of the FSP 10 is affected by the direction of the inlet relative to the air flow, although this was not significant when most respirable dust concentrations were compared, possibly due to the variability of paired dust concentration results. The GK 2.69, RASCAL, and PPI 8 samplers had similar performances, although the results when side-on to the emission source were generally slightly lower than the SIMPEDS. Despite slight differences between respirable dust concentrations the respirable crystalline silica values were not significantly different from the SIMPEDS. The GK family of cyclones obtained most precise results and more closely matched the SIMPEDS. A comparison with dust concentration results from previous calm air chamber studies (where wind speeds were < 0.4 m s−1) found that the relative performance between samplers was similar to those observed in this work indicating consistent performance relative to the SIMPEDS in both calm and moving air. PMID:26865560

  16. Simulation Chamber Investigations of Secondary Organic Aerosol Formation From Boreal Tree Emissions: Dependence on VOC Classes

    NASA Astrophysics Data System (ADS)

    Kiendler-Scharr, A.; Mentel, T. F.; Kleist, E.; Hohaus, T.; Mensah, A.; Spindler, C.; Tillmann, R.; Uerlings, R.; Dal Maso, M.; Rudich, Y.; Juergen, W.

    2008-12-01

    A considerable fraction of the organic aerosol component is of secondary origin, meaning it is formed through oxidation of volatile organic compounds (VOCs). Plant emissions, e.g. monoterpenes and sesquiterpenes, are a major source of VOCs in the troposphere. So far most laboratory and simulation chamber investigations on the potential to form secondary organic aerosols (SOA) from plant emissions focused on single VOCs such as a-pinene. In this study we investigated the formation and growth of SOA by ozonolysis and/or photo-oxidation of the VOCs emitted by several tree species such as spruce, pine and birch. The experiments were performed in the Plant chamber of the ICG-3 in Jülich under well defined conditions for the plant. VOC emissions were transferred to a reaction chamber which was operated as a continuously stirred tank reactor. SOA formation from the VOCs was initiated by an excess of ozone and OH radicals. The results are compared to a reference study with a-pinene as the only SOA precursor. Our results indicate that the general laboratory approach of studying the formation of SOA from single components can lead to a bias in both the mass yields and the mass spectral signatures observed. Plots of maximum SOA volumes versus the total amount of carbon fed into the reaction chamber led to approximately linear relationships. The intercepts of these plots were seen as threshold for SOA formation. It was observed that this threshold was lower for the mixture of VOCs emitted from spruce, pine, and birch than for a-pinene as single compound. We therefore conclude that the threshold for SOA formation from real plant mixtures may be much lower than the threshold obtained from laboratory experiments that were focussed on single VOCs. SOA formation from stress induced VOCs will be compared to non stress induced emissions. Possible feedbacks of climate change to VOC emissions and aerosol formation will be discussed based on our experimental observations.

  17. AUTOMOTIVE HYDROCARBON EMISSION PATTERNS AND THE MEASUREMENT OF NONMETHANE HYDROCARBON EMISSION RATES

    EPA Science Inventory

    The advent of emission control technology has resulted in significant changes in both the total mass and detailed patterns of hydrocarbons emitted from automobiles. Emission rates of 56 hydrocarbons from 22 motor vehicles, including catalyst and noncatalyst configurations, were d...

  18. Use of floating balls for reducing bacterial aerosol emissions from aeration in wastewater treatment processes.

    PubMed

    Hung, Hsueh Fen; Kuo, Yu Mei; Chien, Chih Ching; Chen, Chih Chieh

    2010-03-15

    The microorganism emissions from aeration in the wastewater treatment process may adversely affect air quality and human health. To control the liquid-to-air transport of microorganisms, commercially available balls were used and their control efficiencies were evaluated by a lab-scale aeration system. Escherichia coli as the test agent were aerosolized by the aeration system and size-fractionated E. coli-containing aerosol samples were collected by using an Andersen six-stage impactor with eosin methylene blue agar for subsequent culturing and enumeration of colonies. Aerosol samples were obtained without any control measure and with balls of four diameters (1.9, 2.9, 3.4 and 4.8 cm) in one, three and five layers covering the bubbling liquid surface. Experimental results showed that the control efficiencies of balls on bacterial aerosols varied from over 50% to nearly 100% under various control settings and substantially increased as the ball size decreased and the number of applied layers increased. PMID:19939557

  19. African aerosol and trace-gas emissions from the Central-African Bujumbura station.

    NASA Astrophysics Data System (ADS)

    Gielen, Clio; Van Roozendael, Michel; Hendrick, Francois; Pinardi, Gaia; De Smet, Isabelle; Fayt, Caroline; Hermans, Christian; Ndenzako, Eugene; Nzohabonayo, Pierre; Akimana, Rachel

    2015-04-01

    We present aerosol and trace-gas retrievals from the new Central-African measurement site of Bujumbura, where a new MAX-DOAS instrument and cimel sun photometer have been operational since late 2013. This is the first time that MAX-DOAS measurements are performed in Central Africa, which are critical to resolve the large uncertainties of satellite observations of trace gases and aerosols over this area. The Bujumbura region is a source of strong biogenic compounds and biomass burning products, and invaluable to study the export of African emissions to the Indian ocean. Using the bePRO radiative transfer tool, we retrieve aerosol optical depths (AODs) and vertical extinction profiles for aerosols and trace gases such as NO2 and HCHO. The AOD retrievals are compared to the co-located AERONET sun photometer measurements and further analysed to investigate seasonal and diurnal cycles in the observed variability or to detect biomass-burning events.For the trace gases NO2 and HCHO, the ground-based MAX-DOAS vertical columns and profiles are used for tropospheric trace-gas validation of the GOME-2 and OMI satellites. We further discuss the representativity of the site regarding satelitte comparisons and modelling efforts, given its specific orography.

  20. Calculated emission rates for barium releases in space

    NASA Technical Reports Server (NTRS)

    Stenbaek-Nielsen, H. C.

    1989-01-01

    The optical emissions from barium releases in space are caused by resonance and fluorescent scattering of sunlight. Emission rates for the dominant ion and neutral lines are calculated assuming the release to be optically thin and the barium to be in radiative equilibrium with the solar radiation. The solar spectrum has deep Fraunhofer absorption lines at the primary barium ion resonances. A velocity component toward or away from the sun will Doppler shift the emission lines relative to the absorption lines and the emission rates will increase many-fold over the rest value. The Doppler brightening is important in shaped charge or satellite releases where the barium is injected at high velocities. Emission rates as a function of velocity are calculated for the 4554, 4934, 5854, 6142 and 6497 A ion emission lines and the dominant neutral line at 5535 A. Results are presented for injection parallel to the ambient magnetic field, B, and for injection at an angle to B.

  1. Final Report, The Influence of Organic-Aerosol Emissions and Aging on Regional and Global Aerosol Size Distributions and the CCN Number Budget

    SciTech Connect

    Donahue, Neil M.

    2015-12-23

    We conducted laboratory experiments and analyzed data on aging of organic aerosol and analysis of field data on volatility and CCN activity. With supplemental ASR funding we participated in the FLAME-IV campaign in Missoula MT in the Fall of 2012, deploying a two-chamber photochemical aging system to enable experimental exploration of photochemical aging of biomass burning emissions. Results from that campaign will lead to numerous publications, including demonstration of photochemical production of Brown Carbon (BrC) from secondary organic aerosol associated with biomass burning emissions as well as extensive characterization of the effect of photochemical aging on the overall concentrations of biomass burning organic aerosol. Excluding publications arising from the FLAME-IV campaign, project research resulted in 8 papers: [11, 5, 3, 10, 12, 4, 8, 7], including on in Nature Geoscience addressing the role of organic compounds in nanoparticle growth [11

  2. Linearity between temperature peak and bioenergy CO2 emission rates

    NASA Astrophysics Data System (ADS)

    Cherubini, Francesco; Gasser, Thomas; Bright, Ryan M.; Ciais, Philippe; Strømman, Anders H.

    2014-11-01

    Many future energy and emission scenarios envisage an increase of bioenergy in the global primary energy mix. In most climate impact assessment models and policies, bioenergy systems are assumed to be carbon neutral, thus ignoring the time lag between CO2 emissions from biomass combustion and CO2 uptake by vegetation. Here, we show that the temperature peak caused by CO2 emissions from bioenergy is proportional to the maximum rate at which emissions occur and is almost insensitive to cumulative emissions. Whereas the carbon-climate response (CCR; ref. ) to fossil fuel emissions is approximately constant, the CCR to bioenergy emissions depends on time, biomass turnover times, and emission scenarios. The linearity between temperature peak and bioenergy CO2 emission rates resembles the characteristic of the temperature response to short-lived climate forcers. As for the latter, the timing of CO2 emissions from bioenergy matters. Under the international agreement to limit global warming to 2 °C by 2100, early emissions from bioenergy thus have smaller contributions on the targeted temperature than emissions postponed later into the future, especially when bioenergy is sourced from biomass with medium (50-60 years) or long turnover times (100 years).

  3. Mutagenicity assessment of aerosols in emissions from domestic combustion processes.

    PubMed

    Canha, Nuno; Lopes, Isabel; Vicente, Estela Domingos; Vicente, Ana M; Bandowe, Benjamin A Musa; Almeida, Susana Marta; Alves, Célia A

    2016-06-01

    Domestic biofuel combustion is one of the major sources of regional and local air pollution, mainly regarding particulate matter and organic compounds, during winter periods. Mutagenic and carcinogenic activity potentials of the ambient particulate matter have been associated with the fraction of polycyclic aromatic hydrocarbons (PAH) and their oxygenated (OPAH) and nitrogenated (NPAH) derivatives. This study aimed at assessing the mutagenicity potential of the fraction of this polycyclic aromatic compound in particles (PM10) from domestic combustion by using the Ames assays with Salmonella typhimurium TA98 and TA100. Seven biofuels, including four types of pellets and three agro-fuels (olive pit, almond shell and shell of pine nuts), were tested in an automatic pellet stove, and two types of wood (Pinus pinaster, maritime pine, and Eucalyptus globulus, eucalypt) were burned in a traditional wood stove. For this latter appliance, two combustion phases-devolatilisation and flaming/smouldering-were characterised separately. A direct-acting mutagenic effect for the devolatilisation phase of pine combustion and for both phases of eucalypt combustion was found. Almond shell revealed a weak direct-acting mutagenic effect, while one type of pellets, made of recycled wastes, and pine (devolatilisation) presented a cytotoxic effect towards strain TA100. Compared to the manually fired appliance, the automatic pellet stove promoted lower polyaromatic mutagenic emissions. For this device, only two of the studied biofuels presented a weak mutagenic or cytotoxic potential. PMID:26893179

  4. Investigation of aviation emission impacts on global tropospheric chemistry and climate using a size-resolved aerosol-chemistry model

    NASA Astrophysics Data System (ADS)

    Kapadia, Zarashpe; Spracklen, Dominick; Arnold, Stephen; Borman, Duncan; Mann, Graham; Pringle, Kirsty; Monks, Sarah; Reddington, Carly; Rap, Alexandru; Scott, Catherine

    2014-05-01

    Aviation is responsible for 3% of global anthropogenic CO2 emissions, but 2-14% of anthropogenic induced climate warming due to contributions from short lived climate forcers. The global civil aviation fleet is projected to double by 2026 in relation to a 2006 baseline and so will play a substantial role in future climate change. Uncertainty in the net impact of aviation on climate is largely due to uncertainty in the impacts of aviation emissions on ozone and aerosol. To study the impact of aviation emissions we use the GLOMAP-mode global aerosol microphysics model coupled to the 3-D chemical transport model TOMCAT. GLOMAP-mode has been extended to include treatment of nitrate aerosol. We include a full suite of non-CO2 aviation emissions (including NOX, SO2, HCs, BC and OC) in the model. We combined the simulated changes in ozone and aerosol with a 3D radiative transfer model to quantify the radiative effect due to aviation non-CO2 emissions. We find that aviation emissions increase O3 concentrations by up to 5.3% in the upper troposphere (UT), broadly matching previous studies. Black carbon (BC) and organic carbon (OC) concentrations increase by 26.5% and 14.6% respectively in the UT, whereas nitrate aerosol is reduced in some regions due to co-emission of NOX and SO2 In the UT, aviation emissions increase both total aerosol number as well as the concentration of particles greater than 70 nm diameter (N70). Entrainment of these particles into the free troposphere results in aviation emissions also increasing N70 in the boundary layer, causing a cooling through the first aerosol indirect effect. We explore differences in these responses compared with those simulated when using the recommended aviation emissions from CMIP5 (5th Climate Model Intercomparison Project), which only include NOX and BC emissions. Our results suggest that aviation emissions of SO2 and HCs neglected by CMIP5 produce important effects on ozone, aerosol number, and N70. We suggest CMIP5

  5. Excitation-emission spectra and fluorescence quantum yields for fresh and aged biogenic secondary organic aerosols

    SciTech Connect

    Lee, Hyun Ji; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey A.

    2013-05-10

    Certain biogenic secondary organic aerosols (SOA) become absorbent and fluorescent when exposed to reduced nitrogen compounds such as ammonia, amines and their salts. Fluorescent SOA may potentially be mistaken for biological particles by detection methods relying on fluorescence. This work quantifies the spectral distribution and effective quantum yields of fluorescence of SOA generated from two monoterpenes, limonene and a-pinene, and two different oxidants, ozone (O3) and hydroxyl radical (OH). The SOA was generated in a smog chamber, collected on substrates, and aged by exposure to ~100 ppb ammonia vapor in air saturated with water vapor. Absorption and excitation-emission matrix (EEM) spectra of aqueous extracts of aged and control SOA samples were measured, and the effective absorption coefficients and fluorescence quantum yields (~0.005 for 349 nm excitation) were determined from the data. The strongest fluorescence for the limonene-derived SOA was observed for excitation = 420+- 50 nm and emission = 475 +- 38 nm. The window of the strongest fluorescence shifted to excitation = 320 +- 25 nm and emission = 425 +- 38 nm for the a-pinene-derived SOA. Both regions overlap with the excitation-emission matrix (EEM) spectra of some of the fluorophores found in primary biological aerosols. Our study suggests that, despite the low quantum yield, the aged SOA particles should have sufficient fluorescence intensities to interfere with the fluorescence detection of common bioaerosols.

  6. Effect of tropospheric aerosols upon atmospheric infrared cooling rates

    NASA Technical Reports Server (NTRS)

    Harshvardhan, MR.; Cess, R. D.

    1978-01-01

    An investigation has been made of the impact of wind-blown dust particles upon local climate of arid regions. The case of Northwest India is specifically considered, where a dense layer of dust persists for several months during the summer. In order to examine the effect of this dust layer on the infrared radiative flux and cooling rates, a method is presented for calculating the IR flux within a dusty atmosphere which allows the use of gaseous band models and is applicable in the limit of small single scattering albedo and pronounced forward scattering. The participating components of the atmosphere are assumed to be water vapor and spherical quartz particles only. The atmospheric window is partially filled by including the water vapor continuum bands for which empirically obtained transmission functions have been used. It is shown that radically different conclusions may be drawn on dust effects if the continuum absorption is not considered. The radiative transfer model, when applied to a dusty atmosphere, indicates that there is a moderate enhancement in the atmospheric greenhouse and a 10% increase in the mean IR radiative cooling rate, relative to the dust free case, within the lower troposphere. These results have been compared with previous work by other authors in the context of the possibility of dust layers inhibiting local precipitation.

  7. Inorganic aerosols responses to emission changes in Yangtze River Delta, China

    SciTech Connect

    Dong, Xinyi; Li, Juan; Fu, Joshua S.; Gao, Yang; Huang, Kan; Zhuang, Guoshun

    2014-05-15

    China announced the Chinese National Ambient Air Quality standards (CH-NAAQS) on Feb. 29th, 2012, and PM2.5 is for the very first time included in the standards as a criteria pollutant. In order to probe into PM2.5 pollution over Yangtze River Delta, which is one of the major urban clusters hosting more than 80 million people in China, the integrated MM5/CMAQ modeling system is applied for a full year simulation to examine the PM2.5 concentration and seasonality, and also the inorganic aerosols responses to precursor emission changes. Both simulation and observation demonstrated that, inorganic aerosols have substantial contributions to PM2.5 over YRD, ranging from 37.1% in November to 52.8% in May. Nocturnal production of nitrate (NO3-) through heterogeneous hydrolysis of N2O5 was found significantly contribute to high NO3-concentration throughout the year. We also found that in winter NO3- was even increased under nitrogen oxides (NOx) emission reduction due to higher production of N2O5 from the excessive ozone (O3) introduced by attenuated titration, which further lead to increase of ammonium (NH4+) and sulfate (SO42-), while other seasons showed decrease response of NO3-. Sensitivity responses of NO3- under anthropogenic VOC emission reduction was examined and demonstrated that in urban areas over YRD, NO3- formation was actually VOC sensitive due to the O3-involved nighttime chemistry of N2O5, while a reduction of NOx emission may have counter-intuitive effect by increasing concentrations of inorganic aerosols.

  8. Inorganic aerosols responses to emission changes in Yangtze River Delta, China.

    PubMed

    Dong, Xinyi; Li, Juan; Fu, Joshua S; Gao, Yang; Huang, Kan; Zhuang, Guoshun

    2014-05-15

    The new Chinese National Ambient Air Quality standards (CH-NAAQS) published on Feb. 29th, 2012 listed PM2.5 as criteria pollutant for the very first time. In order to probe into PM2.5 pollution over Yangtze River Delta, the integrated MM5/CMAQ modeling system is applied for a full year simulation to examine the PM2.5 concentration and seasonality, and also the inorganic aerosols responses to precursor emission changes. Total PM2.5 concentration over YRD was found to have strong seasonal variation with higher values in winter months (up to 89.9 μg/m(3) in January) and lower values in summer months (down to 28.8 μg/m(3) in July). Inorganic aerosols were found to have substantial contribution to PM2.5 over YRD, ranging from 37.1% in November to 52.8% in May. Nocturnal production of nitrate (NO3(-)) through heterogeneous hydrolysis of N2O5 was found significantly contribute to high NO3(-) concentration throughout the year. In winter, NO3(-) was found to increase under nitrogen oxides (NOx) emission reduction due to higher production of N2O5 from the excessive ozone (O3) introduced by attenuated titration, which further lead to increase of ammonium (NH4(+)) and sulfate (SO4(2-)), while other seasons showed decrease response of NO3(-). Sensitivity responses of NO3(-) under anthropogenic VOC emission reduction was examined and demonstrated that in urban areas over YRD, NO3(-) formation was actually more sensitive to VOC than NOx due to the O3-involved nighttime chemistry of N2O5, while a reduction of NOx emission may have counter-intuitive effect by increasing concentrations of inorganic aerosols. PMID:24631615

  9. Monitoring of atmospheric aerosol emissions using a remotely piloted air vehicle (RPV)-Borne Sensor Suite

    SciTech Connect

    1996-05-01

    We have developed a small sensor system, the micro-atmospheric measurement system ({mu}-AMS), to monitor and track aerosol emissions. The system was developed to fly aboard a remotely piloted air vehicle, or other mobile platform, to provide real-time particle measurements in effluent plumes and to collect particles for chemical analysis. The {mu}-AMS instrument measures atmospheric parameters including particle mass concentration and size distribution, temperature, humidity, and airspeed, altitude and position (by GPS receiver) each second. The sensor data are stored onboard and are also down linked to a ground station in real time. The {mu}-AMS is battery powered, small (8 in. dia x 36 in.), and lightweight (15 pounds). Aerosol concentrations and size distributions from above ground explosive tests, airbone urban pollution, and traffic-produced particulates are presented.

  10. The Effect of Changes in Polar Sea Ice on Emissions of Marine Aerosols

    NASA Astrophysics Data System (ADS)

    Matrai, P.; Gabric, A. J.

    2015-12-01

    Cloud radiative effects remain a major weakness in our understanding of the climate system and consequently in developing accurate climate projections. This is mainly true for Arctic low-level clouds in their key role of regulating surface energy fluxes which affect the freezing and melting of sea ice. The radiative properties of clouds are strongly dependent on the number concentration of airborne water-soluble particles, known as cloud condensation nuclei (CCN). In the Arctic, the aerosol-cloud-radiation relationship is more complex than elsewhere and the clouds constitute a warming factor for climate, rather than cooling, most of the year. This is due to the semi-permanent ice cover, which raises the albedo of the surface, and the clean Arctic air, which decreases the albedo of the clouds. There has been much discussion on the relative magnitude of the biogenic source of polar CCN: Primary organic marine aerosols and/or sulfate-containing aerosols, derived from marine emissions. Regional field measurements and pan- (Ant)Arctic model simulations don't necessarily agree. Arctic CCN are formed primarily by aggregates of marine organic material and may grow in mass by condensation. Southern Ocean aerosols may be dominated by sulfate particles and organic particles at lower and higher Antarctic latitudes, respectively. The interaction of polar marine microorganisms, seasonality, sea ice cover, presence or absence of sea spray, and atmospheric heterogeneous processes combine to control natural aerosol concentrations and mass, thus modulating the sensitivity of cloud properties, including their reflectivity and the resulting regional radiation budget. We discuss Arctic and Antarctic field and satellite observations and establish a strong and fundamental link between the biology at the ocean/sea ice interface, clouds and climate over polar regions.

  11. Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States

    PubMed Central

    Xu, Lu; Guo, Hongyu; Boyd, Christopher M.; Klein, Mitchel; Bougiatioti, Aikaterini; Cerully, Kate M.; Hite, James R.; Kreisberg, Nathan M.; Knote, Christoph; Olson, Kevin; Koss, Abigail; Goldstein, Allen H.; Hering, Susanne V.; de Gouw, Joost; Baumann, Karsten; Lee, Shan-Hu; Nenes, Athanasios; Weber, Rodney J.; Ng, Nga Lee

    2015-01-01

    Secondary organic aerosol (SOA) constitutes a substantial fraction of fine particulate matter and has important impacts on climate and human health. The extent to which human activities alter SOA formation from biogenic emissions in the atmosphere is largely undetermined. Here, we present direct observational evidence on the magnitude of anthropogenic influence on biogenic SOA formation based on comprehensive ambient measurements in the southeastern United States (US). Multiple high-time-resolution mass spectrometry organic aerosol measurements were made during different seasons at various locations, including urban and rural sites in the greater Atlanta area and Centreville in rural Alabama. Our results provide a quantitative understanding of the roles of anthropogenic SO2 and NOx in ambient SOA formation. We show that isoprene-derived SOA is directly mediated by the abundance of sulfate, instead of the particle water content and/or particle acidity as suggested by prior laboratory studies. Anthropogenic NOx is shown to enhance nighttime SOA formation via nitrate radical oxidation of monoterpenes, resulting in the formation of condensable organic nitrates. Together, anthropogenic sulfate and NOx can mediate 43–70% of total measured organic aerosol (29–49% of submicron particulate matter, PM1) in the southeastern US during summer. These measurements imply that future reduction in SO2 and NOx emissions can considerably reduce the SOA burden in the southeastern US. Updating current modeling frameworks with these observational constraints will also lead to more accurate treatment of aerosol formation for regions with substantial anthropogenic−biogenic interactions and consequently improve air quality and climate simulations. PMID:25535345

  12. Molecular characterization of urban organic aerosol in tropical India: contributions of primary emissions and secondary photooxidation

    NASA Astrophysics Data System (ADS)

    Fu, P. Q.; Kawamura, K.; Pavuluri, C. M.; Swaminathan, T.; Chen, J.

    2010-03-01

    Organic molecular composition of PM10 samples, collected at Chennai in tropical India, was studied using capillary gas chromatography/mass spectrometry. Fourteen organic compound classes were detected in the aerosols, including aliphatic lipids, sugar compounds, lignin products, terpenoid biomarkers, sterols, aromatic acids, hydroxy-/polyacids, phthalate esters, hopanes, Polycyclic Aromatic Hydrocarbons (PAHs), and photooxidation products from biogenic Volatile Organic Compounds (VOCs). At daytime, phthalate esters were found to be the most abundant compound class; however, at nighttime, fatty acids were the dominant one. Di-(2-ethylhexyl) phthalate, C16 fatty acid, and levoglucosan were identified as the most abundant single compounds. The nighttime maxima of most organics in the aerosols indicate a land/sea breeze effect in tropical India, although some other factors such as local emissions and long-range transport may also influence the composition of organic aerosols. However, biogenic VOC oxidation products (e.g., 2-methyltetrols, pinic acid, 3-hydroxyglutaric acid and β-caryophyllinic acid) showed diurnal patterns with daytime maxima. Interestingly, terephthalic acid was maximized at nighttime, which is different from those of phthalic and isophthalic acids. A positive relation was found between 1,3,5-triphenylbenzene (a tracer for plastic burning) and terephthalic acid, suggesting that the field burning of municipal solid wastes including plastics is a significant source of terephthalic acid. Organic compounds were further categorized into several groups to clarify their sources. Fossil fuel combustion (24-43%) was recognized as the most significant source for the total identified compounds, followed by plastic emission (16-33%), secondary oxidation (8.6-23%), and microbial/marine sources (7.2-17%). In contrast, the contributions of terrestrial plant waxes (5.9-11%) and biomass burning (4.2-6.4%) were relatively small. This study demonstrates that, in

  13. Up/Down trend in the MODIS Aerosol Optical Depth and its relationship to the Sulfur Dioxide Emission Changes in China during 2000 and 2010

    NASA Astrophysics Data System (ADS)

    Itahashi, S.; Uno, I.; Yumimoto, K.; Irie, H.; Osada, K.; Ogata, K.; Fukushima, H.; Wang, Z.; Ohara, T.

    2011-08-01

    Anthropogenic SO2 emissions increased alongside economic development in China at a rate of 12.7 % yr-1 from 2000 to 2005. However, under new Chinese government policy, SO2 emissions declined by 3.9 % yr-1 between 2005 and 2009. Between 2000 and 2010, we found that the variability in the fine-mode (submicron) aerosol optical depth (AOD) over the oceans adjacent to East Asia increased by 4-8 % yr-1 to a peak around 2005-2006 and subsequently decreased by 4-7 % yr-1, based on observations by the Moderate Resolution Imaging Spectroradiometer (MODIS) on board NASA's Terra satellite and simulations by a chemical transport model. This trend is consistent with ground-based observations of the number-size distribution of aerosol particles at a mountainous background observation site in central Japan. These fluctuations in SO2 emission intensity and AOD are thought to reflect the widespread installation of fuel-gas desulfurization (FGD) devices in power plants in China because aerosol sulfate is a major determinant of the AOD in East Asia. Using a chemical transport model, we confirmed that the above-mentioned fluctuation in AOD is mainly caused by changes in SO2 emission rather than by varying meteorological conditions in East Asia. High correlation was also found between satellite-retrieved SO2 vertical column density and bottom-up SO2 emissions, both of which were also consistent with observed AOD trends. We proposed a simplified approach for evaluating changes in SO2 emissions in China, combining the use of modeled sensitivity coefficients that describe the variation of AOD with changes in SO2 emissions and satellite retrieval. Satellite measurements of the AOD above Sea of Japan marked the 4.1 % yr-1 declining between 2007 and 2010, and this correspond to the SO2 emissions from China decreased by ~9 % yr-1 between the same period.

  14. Estimate of biogenic VOC emissions in Japan and their effects on photochemical formation of ambient ozone and secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Chatani, Satoru; Matsunaga, Sou N.; Nakatsuka, Seiji

    2015-11-01

    A new gridded database has been developed to estimate the amount of isoprene, monoterpene, and sesquiterpene emitted from all the broadleaf and coniferous trees in Japan with the Model of Emissions of Gases and Aerosols from Nature (MEGAN). This database reflects the vegetation specific to Japan more accurately than existing ones. It estimates much lower isoprene emitted from other vegetation than trees, and higher sesquiterpene emissions mainly emitted from Cryptomeria japonica, which is the most abundant plant type in Japan. Changes in biogenic emissions result in the decrease in ambient ozone and increase in organic aerosol simulated by the air quality simulation over the Tokyo Metropolitan Area in Japan. Although newly estimated biogenic emissions contribute to a better model performance on overestimated ozone and underestimated organic aerosol, they are not a single solution to solve problems associated with the air quality simulation.

  15. Characterization of emissions from South Asian biofuels and application to source apportionment of carbonaceous aerosol in the Himalayas

    NASA Astrophysics Data System (ADS)

    Stone, Elizabeth A.; Schauer, James J.; Pradhan, Bidya Banmali; Dangol, Pradeep Man; Habib, Gazala; Venkataraman, Chandra; Ramanathan, V.

    2010-03-01

    This study focuses on improving source apportionment of carbonaceous aerosol in South Asia and consists of three parts: (1) development of novel molecular marker-based profiles for real-world biofuel combustion, (2) application of these profiles to a year-long data set, and (3) evaluation of profiles by an in-depth sensitivity analysis. Emissions profiles for biomass fuels were developed through source testing of a residential stove commonly used in South Asia. Wood fuels were combusted at high and low rates, which corresponded to source profiles high in organic carbon (OC) or high in elemental carbon (EC), respectively. Crop wastes common to the region, including rice straw, mustard stalk, jute stalk, soybean stalk, and animal residue burnings, were also characterized. Biofuel profiles were used in a source apportionment study of OC and EC in Godavari, Nepal. This site is located in the foothills of the Himalayas and was selected for its well-mixed and regionally impacted air masses. At Godavari, daily samples of fine particulate matter (PM2.5) were collected throughout the year of 2006, and the annual trends in particulate mass, OC, and EC followed the occurrence of a regional haze in South Asia. Maximum concentrations occurred during the dry winter season and minimum concentrations occurred during the summer monsoon season. Specific organic compounds unique to aerosol sources, molecular markers, were measured in monthly composite samples. These markers implicated motor vehicles, coal combustion, biomass burning, cow dung burning, vegetative detritus, and secondary organic aerosol as sources of carbonaceous aerosol. A molecular marker-based chemical mass balance (CMB) model provided a quantitative assessment of primary source contributions to carbonaceous aerosol. The new profiles were compared to widely used biomass burning profiles from the literature in a sensitivity analysis. This analysis indicated a high degree of stability in estimates of source

  16. Aerosol-computational fluid dynamics modeling of ultrafine and black carbon particle emission, dilution, and growth near roadways

    NASA Astrophysics Data System (ADS)

    Huang, L.; Gong, S. L.; Gordon, M.; Liggio, J.; Staebler, R.; Stroud, C. A.; Lu, G.; Mihele, C.; Brook, J. R.; Jia, C. Q.

    2014-12-01

    Many studies have shown that on-road vehicle emissions are the dominant source of ultrafine particles (UFPs; diameter < 100 nm) in urban areas and near-roadway environments. In order to advance our knowledge on the complex interactions and competition among atmospheric dilution, dispersion, and dynamics of UFPs, an aerosol dynamics-computational fluid dynamics (CFD) coupled model is developed and validated against field measurements. A unique approach of applying periodic boundary conditions is proposed to model pollutant dispersion and dynamics in one unified domain from the tailpipe level to the ambient near-road environment. This approach significantly reduces the size of the computational domain, and therefore allows fast simulation of multiple scenarios. The model is validated against measured turbulent kinetic energy (TKE) and horizontal gradient of pollution concentrations perpendicular to a major highway. Through a model sensitivity analysis, the relative importance of individual aerosol dynamical processes on the total particle number concentration (N) and particle number-size distribution (PSD) near a highway is investigated. The results demonstrate that (1) coagulation has a negligible effect on N and particle growth, (2) binary homogeneous nucleation (BHN) of H2SO4-H2O is likely responsible for elevated N closest to the road, and (3) N and particle growth are very sensitive to the condensation of semi-volatile organics (SVOCs), particle dry deposition, and the interaction between these processes. The results also indicate that, without the proper treatment of the atmospheric boundary layer (i.e., its wind profile and turbulence quantities), the nucleation rate would be underestimated by a factor of 5 in the vehicle wake region due to overestimated dilution. Therefore, introducing atmospheric boundary layer (ABL) conditions to activity-based emission models may potentially improve their performance in estimating UFP traffic emissions.

  17. 40 CFR 1036.530 - Calculating greenhouse gas emission rates.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... applicable duty cycle as specified in 40 CFR 1065.650. Do not apply infrequent regeneration adjustment... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Calculating greenhouse gas emission... Procedures § 1036.530 Calculating greenhouse gas emission rates. This section describes how to...

  18. 40 CFR 74.22 - Actual SO2 emissions rate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....6 for natural gas For other fuels, the combustion source must specify the SO2 emissions factor. (c... (CONTINUED) SULFUR DIOXIDE OPT-INS Allowance Calculations for Combustion Sources § 74.22 Actual SO2 emissions rate. (a) Data requirements. The designated representative of a combustion source shall submit...

  19. MICROBIAL VOLATILE ORGANIC COMPOUND EMISSION RATES AND EXPOSURE MODEL

    EPA Science Inventory

    This paper presents the results from a study that examined microbial volatile organic compound (MVOC) emissions from six fungi and one bacterial species (Streptomyces spp.) commonly found in indoor environments. Data are presented on peak emission rates from inoculated agar plate...

  20. The possible influence of volcanic emissions on atmospheric aerosols in the city of Colima, Mexico.

    PubMed

    Miranda, Javier; Zepeda, Francisco; Galindo, Ignacio

    2004-01-01

    An elemental composition study of atmospheric aerosols from the City of Colima, in the Western Coast of Mexico, is presented. Samples of PM(15)-PM(2.5) and PM(2.5) were collected with Stacked Filter Units (SFU) of the Davis design, in urban and rural sites, the latter located between the City of Colima and the Volcán de Colima, an active volcano. Elemental analyses were carried out using Particle Induced X-ray Emission (PIXE). The gravimetric mass concentrations for the fine fraction were slightly higher in the urban site, while the mean concentrations in the coarse fraction were equal within the uncertainties. High Cl contents were determined in the coarse fraction, a fact also observed in emissions from the Volcán de Colima by other authors. In addition to average elemental concentrations, cluster analysis based on elemental contents was performed, with wind speed and direction data, showing that there is an industrial contributor to aerosols North of the urban area. Moreover, a contribution from the volcanic emissions was identified from the grouping of S, Cl, Cu, and Zn, elements associated to particles emitted by the Volcán de Colima. PMID:14568726

  1. Light absorption properties and radiative effects of primary organic aerosol emissions.

    PubMed

    Lu, Zifeng; Streets, David G; Winijkul, Ekbordin; Yan, Fang; Chen, Yanju; Bond, Tami C; Feng, Yan; Dubey, Manvendra K; Liu, Shang; Pinto, Joseph P; Carmichael, Gregory R

    2015-04-21

    Organic aerosols (OAs) in the atmosphere affect Earth's energy budget by not only scattering but also absorbing solar radiation due to the presence of the so-called "brown carbon" (BrC) component. However, the absorptivities of OAs are not represented or are poorly represented in current climate and chemical transport models. In this study, we provide a method to constrain the BrC absorptivity at the emission inventory level using recent laboratory and field observations. We review available measurements of the light-absorbing primary OA (POA), and quantify the wavelength-dependent imaginary refractive indices (kOA, the fundamental optical parameter determining the particle's absorptivity) and their uncertainties for the bulk POA emitted from biomass/biofuel, lignite, propane, and oil combustion sources. In particular, we parametrize the kOA of biomass/biofuel combustion sources as a function of the black carbon (BC)-to-OA ratio, indicating that the absorptive properties of POA depend strongly on burning conditions. The derived fuel-type-based kOA profiles are incorporated into a global carbonaceous aerosol emission inventory, and the integrated kOA values of sectoral and total POA emissions are presented. Results of a simple radiative transfer model show that the POA absorptivity warms the atmosphere significantly and leads to ∼27% reduction in the amount of the net global average POA cooling compared to results from the nonabsorbing assumption. PMID:25811601

  2. Methyl chavicol: characterization of its biogenic emission rate, abundance, and oxidation products in the atmosphere

    NASA Astrophysics Data System (ADS)

    Bouvier-Brown, N. C.; Goldstein, A. H.; Worton, D. R.; Matross, D. M.; Gilman, J. B.; Kuster, W. C.; Welsh-Bon, D.; Warneke, C.; de Gouw, J. A.; Cahill, T. M.; Holzinger, R.

    2009-03-01

    We report measurements of ambient atmospheric mixing ratios for methyl chavicol and determine its biogenic emission rate. Methyl chavicol, a biogenic oxygenated aromatic compound, is abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. Methyl chavicol was detected simultaneously by three in-situ instruments - a gas chromatograph with mass spectrometer detector (GC-MS), a proton transfer reaction mass spectrometer (PTR-MS), and a thermal desorption aerosol GC-MS (TAG) - and found to be abundant within and above Blodgett Forest. Methyl chavicol atmospheric mixing ratios are strongly correlated with 2-methyl-3-buten-2-ol (MBO), a light- and temperature-dependent biogenic emission from the ponderosa pine trees at Blodgett Forest. Scaling from this correlation, methyl chavicol emissions account for 4-68% of the carbon mass emitted as MBO in the daytime, depending on the season. From this relationship, we estimate a daytime basal emission rate of 0.72-10.2 μgCg-1 h-1, depending on needle age and seasonality. We also present the first observations of its oxidation products (4-methoxybenzaldehyde and 4-methyoxy benzene acetaldehyde) in the ambient atmosphere. Methyl chavicol is a major essential oil component of many plant species. This work suggests that methyl chavicol plays a significant role in the atmospheric chemistry of Blodgett Forest, and potentially other sites, and should be included explicitly in both biogenic volatile organic carbon emission and atmospheric chemistry models.

  3. Methyl Chavicol: Characterization of its Biogenic Emission Rate, Abundance, and Oxidation Products in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Bouvier-Brown, N. C.; Goldstein, A. H.; Worton, D. R.; Matross, D. M.; Gilman, J.; Kuster, W.; Degouw, J.; Cahill, T. M.; Holzinger, R.

    2008-12-01

    We report quantitative measurements of ambient atmospheric mixing ratios for methyl chavicol and determine its biogenic emission rate. Methyl chavicol, a biogenic oxygenated aromatic compound, is abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. Methyl chavicol was detected simultaneously by three in-situ instruments: gas chromatograph with mass spectrometer detector (GC-MS), proton transfer reaction mass spectrometer (PTR-MS), and thermal desorption aerosol GC-MS (TAG). Previously identified as a potential bark beetle disruptant, methyl chavicol atmospheric mixing ratios are strongly correlated with 2-methyl-3-buten-2-ol (MBO), a light and temperature dependent biogenic emission from the ponderosa pine trees at Blodgett Forest. Scaling from this correlation, methyl chavicol emissions account for 4-68 % of the carbon mass emitted as MBO in the daytime, depending on the season. From this relationship, we estimate a daytime basal emission rate of 0.72-10.2 μ gCg-1h-1, depending on needle age and seasonality. We also present the first observations of its oxidation products (4-methoxybenzaldehyde and 4-methyoxy benzene acetaldehyde) in the ambient atmosphere. Methyl chavicol is a major essential oil component of many species. We propose this newly- characterized biogenic compound should be included explicitly in both biogenic volatile organic carbon emission and atmospheric chemistry models.

  4. Air pollution from gas flaring: new emission factor estimates and detection in a West African aerosol remote-sensing climatology

    NASA Astrophysics Data System (ADS)

    MacKenzie, Rob; Fawole, Olusegun Gabriel; Levine, James; Cai, Xiaoming

    2016-04-01

    Gas flaring, the disposal of gas through stacks in an open-air flame, is a common feature in the processing of crude oil, especially in oil-rich regions of the world. Gas flaring is a prominent source of volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAH), CO, CO2, nitrogen oxides (NOx), SO2 (in "sour" gas only), and soot (black carbon), as well as the release of locally significant amounts of heat. The rates of emission of these pollutants from gas flaring depend on a number of factors including, but not limited to, fuel composition and quantity, stack geometry, flame/combustion characteristics, and prevailing meteorological conditions. Here, we derive new estimated emission factors (EFs) for carbon-containing pollutants (excluding PAH). The air pollution dispersion model, ADMS5, is used to simulate the dispersion of the pollutants from flaring stacks in the Niger delta. A seasonal variation of the dispersion pattern of the pollutant within a year is studied in relation to the movements of the West Africa Monsoon (WAM) and other prevailing meteorological factors. Further, we have clustered AERONET aerosol signals using trajectory analysis to identify dominant aerosol sources at the Ilorin site in West Africa (4.34 oE, 8.32 oN). A 10-year trajectory-based analysis was undertaken (2005-2015, excluding 2010). Of particular interest are air masses that have passed through the gas flaring region in the Niger Delta area en-route the AERONET site. 7-day back trajectories were calculated using the UK Universities Global Atmospheric Modelling Programme (UGAMP) trajectory model which is driven by analyses from the European Centre for Medium-Range Weather Forecasts (ECMWF). From the back-trajectory calculations, dominant sources are identified, using literature classifications: desert dust (DD); Biomass burning (BB); and Urban-Industrial (UI). We use a combination of synoptic trajectories and aerosol optical properties to distinguish a fourth source

  5. Towards Quantifying the Contribution of Ship Emissions to the Aerosol Environment in San Diego Using Multi-oxygen Isotopic Analysis of Aerosol Nitrate

    NASA Astrophysics Data System (ADS)

    Dominguez, G.; Jackson, T.; Nguyen, B.; Barnett, B.; Thiemens, M. H.

    2006-12-01

    The rise of global trade has also brought along an increase in the amount of ship traffic off the coast of Southern California. Ship emissions are currently poorly regulated, but the combustion of high-sulfur fuels by these ships is expected to contribute significant amounts of NOx, SOx, and PM into the atmosphere. The emissions from these ships are potentially very significant, yet measurements of ship plume aerosols are limited and their contributions to the ambient air quality of San Diego is unknown. The task of isolating the contribution of ocean vessels to San Diego's urban environment is complicated by the complexity of sources of the local urban environment of San Diego as well as Los Angeles. Here, we will present the results of a 1 year plus study whose principal goal is to quantify the contribution that ship plumes make to the particulate environment in San Diego. For over the past year, we have been collecting aerosol samples at Scripps Pier in La Jolla. Here we present the preliminary results of a yearlong study of the anionic concentrations as well as the oxygen isotope composition of aerosol nitrate. Samples were collected twice a week using a multistage (4 stages) aerosol collector. These samples were hydrated and their anionic (chlorine, nitrate, and sulfate) concentrations were determined using standard techniques. Meteorological back-trajectory analysis (Hysplit) was used to identify sampling days whose air masses were "oceanic". These days display elevated concentrations of anions when compared to pristine oceanic aerosols. Using standard techniques, we isolated the NO3 component of these aerosols and measured their oxygen isotopic compositions of these samples using Isotope Ratio Mass Spectrometry (IRMS). We find that aerosol masses which are likely impacted by ship emissions display a peculiar anti-correlation between the Δ17O (~eq δ17O - 0.52×δ18O) of nitrate in the fine (<1.5 micron) and coarse (>1.5 micron) aerosol sizes. The magnitude

  6. Characterization of primary organic aerosol emissions from meat cooking, trash burning, and motor vehicles with high-resolution aerosol mass spectrometry and comparison with ambient and chamber observations.

    PubMed

    Mohr, Claudia; Huffman, Alex; Cubison, Michael J; Aiken, Allison C; Docherty, Kenneth S; Kimmel, Joel R; Ulbrich, Ingrid M; Hannigan, Michael; Jimenez, Jose L

    2009-04-01

    Organic aerosol (OA) emissions from motor vehicles, meat-cooking and trash burning are analyzed here using a high-resolution aerosol mass spectrometer (AMS). High resolution data show that aerosols emitted by combustion engines and plastic burning are dominated by hydrocarbon-like organic compounds. Meat cooking and especially paper burning emissions contain significant fractions of oxygenated organic compounds; however, their unit-resolution mass spectral signatures are very similar to those from ambient hydrocarbon-like OA, and very different from the mass spectra of ambient secondary or oxygenated OA (OOA). Thus, primary OA from these sources is unlikelyto be a significant direct source of ambient OOA. There are significant differences in high-resolution tracer m/zs that may be useful for differentiating some of these sources. Unlike in most ambient spectra, all of these sources have low total m/z 44 and this signal is not dominated by the CO2+ ion. All sources have high m/z 57, which is low during high OOA ambient periods. Spectra from paper burning are similar to some types of biomass burning OA, with elevated m/z 60. Meat cooking aerosols also have slightly elevated m/z 60, whereas motor vehicle emissions have very low signal at this m/z. PMID:19452899

  7. EFFECTS OF VENTILATION RATES AND PRODUCT LOADING ON ORGANIC EMISSION RATES FROM PARTICLEBOARD

    EPA Science Inventory

    The paper discusses the effects of ventilation rates and product loading on organic emission rates from particleboard. Recently, investigators have confirmed the presence of varied and significant amounts of organic compounds in indoor environment, including compounds known or su...

  8. Oxidative Aging and Secondary Organic Aerosol Formation from Simulated Wildfire Emissions

    NASA Astrophysics Data System (ADS)

    Hennigan, C. J.; Miracolo, M. A.; Engelhart, G. J.; May, A. A.; Wold, C. E.; Hao, W. M.; Lee, T.; Sullivan, A. P.; Gilman, J. B.; Kuster, W. C.; de Gouw, J. A.; Collett, J. L.; Kreidenweis, S. M.; Robinson, A. L.

    2010-12-01

    Wildfires are a significant fraction of global biomass burning and a major source of trace gas and particle emissions in the atmosphere. Understanding the air quality and climate implications of wildfires is difficult since the emissions undergo complex transformations due to aging processes during transport away from the source. As part of the third Fire Lab at Missoula Experiment (FLAME III), we investigated the oxidative aging of smoke from combustion of 12 different types of vegetation commonly burned in North American wildfires. In these photochemical chamber experiments, we quantified the evolution of reactive trace gases and particles, with a focus on the chemistry contributing to changes in the organic aerosol (OA) concentration. Factors such as precursor VOC concentrations, oxidant exposure, and the role of NOx were considered. The results illustrate the complex and variable nature of biomass burning emissions, since none of these factors alone account for the wide range of OA enhancements that were observed. For example, in some experiments, a net decrease of up to 30% in the OA concentration was observed, while in others, the OA concentration increased by a factor of three over the course of aging due to secondary OA (SOA) production. Despite this variability, all experiments showed significant physical (e.g., changes in aerosol volatility) and chemical (e.g., changes in oxidation) transformations in the OA due to oxidation. Overall, the results demonstrate that traditional definitions of POA and SOA continue to blur in many systems, and that processes like partitioning and heterogeneous chemistry can have the most significant effect on the evolution of biomass burning aerosol.

  9. Sensitivity of aerosol properties to new particle formation mechanism and to primary emissions in a continental-scale chemical transport model

    SciTech Connect

    Chang,L.S.; Schwartz, S.E.; McGraw, R.; Lewis, E.R.

    2009-04-02

    Four theoretical formulations of new particle formation (NPF) and one empirical formulation are used to examine the sensitivity of observable aerosol properties to NPF formulation and to properties of emitted particles in a continental-scale model for the United States over a 1-month simulation (July 2004). For each formulation the dominant source of Aitken mode particles is NPF with only a minor contribution from primary emissions, whereas for the accumulation mode both emissions and transfer of particles from the Aitken mode are important. The dominant sink of Aitken mode number is coagulation, whereas the dominant sink of accumulation mode number is wet deposition (including cloud processing), with a minor contribution from coagulation. The aerosol mass concentration, which is primarily in the accumulation mode, is relatively insensitive to NPF formulation despite order-of-magnitude differences in the Aitken mode number concentration among the different parameterizations. The dominant sensitivity of accumulation mode number concentration is to the number of emitted particles (for constant mass emission rate). Comparison of modeled aerosol properties with aircraft measurements shows, as expected, better agreement in aerosol mass concentration than in aerosol number concentration for all NPF formulations considered. These comparisons yield instances of rather accurate simulations in the planetary boundary layer, with poor model performance in the free troposphere attributed mainly to lack of representation of biomass burning and/or to long-range transport of particles from outside the model domain. Agreement between model results and measurements is improved by using smaller grid cells (12 km versus 60 km).

  10. Determination of particle nucleation and growth rates from measured aerosol size distributions

    NASA Astrophysics Data System (ADS)

    Verheggen, B.; Mozurkewich, M.

    2003-04-01

    The effects of aerosols on atmospheric chemistry, health and climate are dependent on particle size and composition, and therefore on particle nucleation and growth. An analytical model has been developed to determine nucleation and growth rates from measurements of consecutive aerosol size distributions. The evolution of an aerosol population in time is described by the General Dynamic Equation (GDE). Wall loss, coagulation loss and coagulation production are determined, based on the measured aerosol size distributions. Taking their contributions into account, a non-linear regression analysis of the GDE is performed for each time interval to find the value of the growth rate, that gives best agreement between the measured and calculated change in the size distribution. Other parameters can also be verified and/or optimized by regression analysis. Knowing the growth rate as a function of time (and size) from the regression analysis, each measured cohort of particles is tracked backwards in time to their time of formation, where the radius of the critical cluster is assumed to be 0.5 nm. The number density of each cohort has decreased since their formation, due to wall losses and coagulation processes. Perturbation theory is used to approximate the contribution of within mode coagulation in decreasing the number density. Wall losses and coagulation scavenging are well characterized for each time interval. The integrated losses, from time of formation to time of measurement, are used to obtain the number of nucleated particles, and ultimately the -empirically determined- nucleation rate. The analysis is applied to measurements made in Calspan's 590 m3 smog chamber, following SO2 nucleation.

  11. Particulate PAH emissions from residential biomass combustion: time-resolved analysis with aerosol mass spectrometry.

    PubMed

    Eriksson, A C; Nordin, E Z; Nyström, R; Pettersson, E; Swietlicki, E; Bergvall, C; Westerholm, R; Boman, C; Pagels, J H

    2014-06-17

    Time-resolved emissions of particulate polycyclic aromatic hydrocarbons (PAHs) and total organic particulate matter (OA) from a wood log stove and an adjusted pellet stove were investigated with high-resolution time-of-flight aerosol mass spectrometry (AMS). The highest OA emissions were found during the addition of log wood on glowing embers, that is, slow burning pyrolysis conditions. These emissions contained about 1% PAHs (of OA). The highest PAH emissions were found during fast burning under hot air starved combustion conditions, in both stoves. In the latter case, PAHs contributed up to 40% of OA, likely due to thermal degradation of other condensable species. The distribution of PAHs was also shifted toward larger molecules in these emissions. AMS signals attributed to PAHs were found at molecular weights up to 600 Da. The vacuum aerodynamic size distribution was found to be bimodal with a smaller mode (Dva ∼ 200 nm) dominating under hot air starved combustion and a larger sized mode dominating under slow burning pyrolysis (Dva ∼ 600 nm). Simultaneous reduction of PAHs, OA and total particulate matter from residential biomass combustion may prove to be a challenge for environmental legislation efforts as these classes of emissions are elevated at different combustion conditions. PMID:24866381

  12. Can an influence of changing aerosol emissions be detected in the pattern of surface temperature change between 1970 and 2000?

    NASA Astrophysics Data System (ADS)

    Ekman, Annica; Anna, Lewinschal; Hamish, Struthers

    2013-04-01

    Since the 1970's, there has been a rapid change in the magnitude and spatial distribution of anthropogenic aerosol particle and precursor emissions in the world with a significant decrease over e.g. Europe and North America and a substantial increase over large parts of Asia. During the same time period, there has been a significant increase in global greenhouse gas concentrations. In the present study, the global climate model CAM-Oslo is used to examine if the shift in aerosol emissions between 1970 and present day results in a clear fingerprint in the modeled atmospheric circulation, precipitation and temperature change patterns. CAM-Oslo includes a comprehensive module of the atmospheric aerosol cycle as well as descriptions of the direct and indirect effects of aerosol particles on radiation, cloud reflectivity and precipitation. We also examine if the temperature response pattern differs when aerosol effects are considered separately or simultaneously with a change in greenhouse gas concentration. To evaluate the simulations, we make use of observations and re-analysis data of surface temperature, precipitation and 300 hPa geopotential. We investigate if the modeled results correspond better or worse with the observations when aerosol and greenhouse effects are included or excluded. For a few selected regions, we also examine more closely the underlying processes that determine the surface temperature anomaly pattern and if the importance of different processes change when greenhouse effects and aerosol effects are considered separately or simultaneously.

  13. Toxicological Evaluation of Realistic Emission Source Aerosols (TERESA): Introduction and overview

    PubMed Central

    Godleski, John J.; Rohr, Annette C.; Kang, Choong M.; Diaz, Edgar A.; Ruiz, Pablo A.; Koutrakis, Petros

    2013-01-01

    Determining the health impacts of sources and components of fine particulate matter (PM2.5) is an important scientific goal. PM2.5 is a complex mixture of inorganic and organic constituents that are likely to differ in their potential to cause adverse health outcomes. The Toxicological Evaluation of Realistic Emissions of Source Aerosols (TERESA) study focused on two PM sources—coal-fired power plants and mobile sources—and sought to investigate the toxicological effects of exposure to emissions from these sources. The set of papers published here document the power plant experiments. TERESA attempted to delineate health effects of primary particles, secondary (aged) particles, and mixtures of these with common atmospheric constituents. TERESA involved withdrawal of emissions from the stacks of three coal-fired power plants in the United States. The emissions were aged and atmospherically transformed in a mobile laboratory simulating downwind power plant plume processing. Toxicological evaluations were carried out in laboratory rats exposed to different emission scenarios with extensive exposure characterization. The approach employed in TERESA was ambitious and innovative. Technical challenges included the development of stack sampling technology that prevented condensation of water vapor from the power plant exhaust during sampling and transfer, while minimizing losses of primary particles; development and optimization of a photochemical chamber to provide an aged aerosol for animal exposures; development and evaluation of a denuder system to remove excess gaseous components; and development of a mobile toxicology laboratory. This paper provides an overview of the conceptual framework, design, and methods employed in the study. PMID:21639692

  14. Efficient Formation of Stratospheric Aerosol for Climate Engineering by Emission of Condensible Vapor from Aircraft

    NASA Technical Reports Server (NTRS)

    Pierce, Jeffrey R.; Weisenstein, Debra K.; Heckendorn, Patricia; Peter. Thomas; Keith, David W.

    2010-01-01

    Recent analysis suggests that the effectiveness of stratospheric aerosol climate engineering through emission of non-condensable vapors such as SO2 is limited because the slow conversion to H2SO4 tends to produce aerosol particles that are too large; SO2 injection may be so inefficient that it is difficult to counteract the radiative forcing due to a CO2 doubling. Here we describe an alternate method in which aerosol is formed rapidly in the plume following injection of H2SO4, a condensable vapor, from an aircraft. This method gives better control of particle size and can produce larger radiative forcing with lower sulfur loadings than SO2 injection. Relative to SO2 injection, it may reduce some of the adverse effects of geoengineering such as radiative heating of the lower stratosphere. This method does not, however, alter the fact that such a geoengineered radiative forcing can, at best, only partially compensate for the climate changes produced by CO2.

  15. Particle Induced X-Ray Emission Analysis of Atmospheric Aerosols Collected in Upstate New York

    NASA Astrophysics Data System (ADS)

    Gleason, Colin; Harrington, Charles; Schuff, Katie; Labrake, Scott; Vineyard, Michael

    2009-10-01

    Elemental analysis of atmospheric aerosols collected in the historic Stockade District of Schenectady, New York, was performed using particle induced X-ray emission (PIXE) spectroscopy. This is part of a systematic study in the Mohawk River Valley of upstate New York to identify the sources and understand the transport, transformation, and effects of airborne pollutants and the connection between aerosols, the deposition of pollution, and the uptake of pollutants by wildlife and vegetation. The atmospheric aerosols were collected with a nine-stage cascade impactor that allows for the analysis of the particulate matter as a function of particle size. The samples were bombarded with 2-MeV proton beams from the Union College Pelletron Accelerator and the energy spectra of the X-rays were measured with a silicon drift detector. The X-ray spectra were analyzed using GUPIX software to extract the elemental concentrations of the particulate matter. The sample collection and analysis will be described, and preliminary results will be presented.

  16. Experiment to Characterize Aircraft Volatile Aerosol and Trace-Species Emissions (EXCAVATE)

    NASA Technical Reports Server (NTRS)

    Anderson, B. E.; Branham, H.-S.; Hudgins, C. H.; Plant, J. V.; Ballenthin, J. O.; Miller, T. M.; Viggiano, A. A.; Blake, D. R.; Boudries, H.; Canagaratna, M.

    2005-01-01

    The Experiment to Characterize Aircraft Volatile and Trace Species Emissions (EXCAVATE) was conducted at Langley Research Center (LaRC) in January 2002 and focused upon assaying the production of aerosols and aerosol precursors by a modern commercial aircraft, the Langley B757, during ground-based operation. Remaining uncertainty in the postcombustion fate of jet fuel sulfur contaminants, the need for data to test new theories of particle formation and growth within engine exhaust plumes, and the need for observations to develop air quality models for predicting pollution levels in airport terminal areas were the primary factors motivating the experiment. NASA's Atmospheric Effects of Aviation Project (AEAP) and the Ultra Effect Engine Technology (UEET) Program sponsored the experiment which had the specific objectives of determining ion densities; the fraction of fuel S converted from S(IV) to S(VI); the concentration and speciation of volatile aerosols and black carbon; and gas-phase concentrations of long-chain hydrocarbon and PAH species, all as functions of engine power, fuel composition, and plume age.

  17. Investigating the impacts of aviation NOX, SO2 and black carbon emissions on ozone, aerosol and climate.

    NASA Astrophysics Data System (ADS)

    Kapadia, Zarashpe; Borman, Duncan; Spracklen, Dominick; Arnold, Stephen; Mann, Graham; Williams, Paul

    2013-04-01

    Aviation is currently responsible for 3% of global anthropogenic CO2 emissions, but 2-14% of anthropogenic induced warming due to the co-emission of NOX, SO2 and black carbon and formation of contrails. The impact of aviation emissions on ozone and aerosol is uncertain with recent research demonstrating the need to include atmospheric nitrate chemistry. The inclusion of nitrate chemistry may lead to a 20% reduction in aviation induced ozone forcing estimates due to the competition for atmospheric oxidants such as OH . Compounding this, uncertainties relating to the effects of NOx on ozone and methane illustrate the need for refining the understanding of aviation induced impacts. Furthermore the role of aerosol microphysics in controlling the climate impacts of aviation has not yet been explored. Here we use the TOMCAT 3-D chemical transport model coupled to the GLOMAP-mode aerosol microphysics model to quantify the impacts of aviation NOX, SO2 and BC emissions on ozone, aerosol and climate. GLOMAP-mode treats size resolved aerosol using a two-moment modal approach. We evaluate the effects of nitrate processing on the diagnosed impacts of aviation emissions on atmospheric composition including the first assessment of the impact on the global concentrations of cloud condensation nuclei. We investigate interactions between gas-phase oxidant photochemistry and aerosol microphysics in regions influenced by aircraft emissions, using fully-coupled tropospheric chemistry and multi-component aerosol treatment (BC, sulphate, nitrate). Finally, we use a 3-D radiative transfer model to quantify the ozone and aerosol direct and indirect radiative effects of aviation emissions. The work presented here is part of a wider research project which will be the first study to combine aviation NOX, SO2 and black carbon emission in a global size-resolved model which considers atmospheric nitrate chemistry, which will aim to add to the science surrounding present day aviation impacts by

  18. Aerosol Radiative Forcing Estimates from South Asian Clay Brick Production Based on Direct Emission Measurements

    NASA Astrophysics Data System (ADS)

    Weyant, C.; Athalye, V.; Ragavan, S.; Rajarathnam, U.; Kr, B.; Lalchandani, D.; Maithel, S.; Malhotra, G.; Bhanware, P.; Thoa, V.; Phuong, N.; Baum, E.; Bond, T. C.

    2012-12-01

    About 150-200 billion clay bricks are produced in India every year. Most of these bricks are fired in small-scale traditional kilns that burn coal or biomass without pollution controls. Reddy and Venkataraman (2001) estimated that 8% of fossil fuel related PM2.5 emissions and 23% of black carbon emissions in India are released from brick production. Few direct emissions measurements have been done in this industry and black carbon emissions, in particular, have not been previously measured. In this study, 9 kilns representing five common brick kiln technologies were tested for aerosol properties and gaseous pollutant emissions, including optical scattering and absorption and thermal-optical OC/EC. Simple relationships are then used to estimate the radiative-forcing impact. Kiln design and fuel quality greatly affect the overall emission profiles and relative climate warming. Batch production kilns, such as the Downdraft kiln, produce the most PM2.5 (0.97 gPM2.5/fired brick) with an OC/EC fraction of 0.3. Vertical Shaft Brick kilns using internally mixed fuels produce the least PM (0.09 gPM2.5/kg fired brick) with the least EC (OC/EC = 16.5), but these kilns are expensive to implement and their use throughout Southern Asia is minimal. The most popular kiln in India, the Bull's Trench kiln, had fewer emissions per brick than the Downdraft kiln, but an even higher EC fraction (OC/EC = 0.05). The Zig-zag kiln is similar in structure to the Bull's Trench kiln, but the emission factors are significantly lower: 50% reduction for CO, 17% for PM2.5 and 60% for black carbon. This difference in emissions suggests that converting traditional Bull's Trench kilns into less polluting Zig-zag kilns would result in reduced atmospheric warming from brick production.

  19. Impacts of 20th century aerosol emissions on the South Asian monsoon in the CMIP5 models

    NASA Astrophysics Data System (ADS)

    Turner, Andrew; Guo, Liang; Highwood, Eleanor

    2014-05-01

    Comparison of single-forcing varieties of 20th century historical experiments in a subset of models from the Fifth Coupled Model Intercomparison Project (CMIP5) reveals that South Asian summer monsoon rainfall increases towards the present day in GHG-only experiments with respect to pre-industrial levels, while it decreases in anthropogenic aerosol-only experiments. Comparison of these single-forcing runs with the all-forcings historical experiment suggests aerosol emissions have dominated South Asian monsoon rainfall trends in recent decades. By examining the 25 available all-forcings historical experiments, we show that models including aerosol indirect effects dominate this negative trend. Indeed, models including only the direct radiative effect of aerosol show an increase in monsoon rainfall, suggesting the dominance of increasing greenhouse gas emissions and planetary warming on monsoon rainfall in those models. The mechanism may be due to the indirect and direct effects acting in unison to suppress the monsoon, or to stronger local aerosol loading in the group of models containing indirect effects. The disparity between the two groups of models needs to be urgently investigated in the event that the suggested future decline in Asian anthropogenic aerosol emissions inherent to the representative concentration pathways (RCPs) used for future climate projection turns out to be optimistic.

  20. Results From Simulations of an Ensemble of Global Aerosol Models Using the Same Emission Data Within AeroCom

    NASA Astrophysics Data System (ADS)

    Textor, C.; Schulz, M.; Guibert, S.; Kinne, S.

    2005-12-01

    Atmospheric aerosols play a key role in many important environmental issues including stratospheric ozone depletion, smog, acid rain, and climate change. The AeroCom exercise aims to identify weak components in aerosol modeling and to decrease the uncertainty of aerosol radiative forcing. AeroCom is an open international initiative of scientists interested in the advancement of the understanding of the global aerosol and its impact on climate. A variety of observations and simulation results from 16 global aerosol models have been assembled in the frame of AeroCom. In this study, results from two series of experiments are presented. In a first experiment, each model was run with different emission data. In a second experiment, all models used the same emission data sets. These data include temporal and spatial (including injection height) information, and particle sizes. We examine the parameters and processes that determine the aerosol fields and life cycles, and discuss new radiative forcing estimates from the AeroCom exercise. The diversities among the models for sea salt, dust, black carbon, particulate organic matter, and sulfate are quantified. We can show that harmonizing the emissions has little effect on the diversity among models.

  1. Determination of PM10 emission rates from street sweepers.

    PubMed

    Fitz, D R; Bumiller, K

    2000-02-01

    The use of street sweepers to clean paved roads, particularly after high-wind events, has been proposed as a PM10 control method. Using an artificial tunnel, the emission rates for several street sweepers were quantified under actual operating conditions. The tunnel was a tent enclosure, 6.1 x 4.3 x 73 m, open on both ends. PM10 concentrations were measured at the inlet and outlet while a sweeper removed sand deposited along the length. Measurements were made using a specialized low-volume filter sampler and an integrating nephelometer. The volume of air passing through the tunnel was measured by releasing an inert tracer, sulfur hexafluoride, at the inlet and measuring its concentration at the outlet. A large difference in emission rates between vacuum-type sweepers was observed, with rates varying from 5 to 100 mg m-1 swept. For the cleanest sweepers, the background rates (collected by sweeping clean pavement) were about half of the total PM10 emission rate. These background emission rates likely were from diesel exhaust; background rates for the single gasoline-powered sweeper were below detection. Particle light scattering data confirmed the filter collection results. The artificial tunnel approach would be useful in measuring total emissions from other mobile and stationary sources. PMID:10680347

  2. Top-down constraints to aerosol emissions from open biomass burning: the role of gas-particle partitioning and secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Konovalov, Igor B.; Beekmann, Matthias; Berezin, Evgeny V.; Petetin, Hervé

    2014-05-01

    Open biomass burning (BB), including wildfires and controlled burns in agriculture and foresty, is known to provide an important contribution to organic aerosol (OA) and black carbon (BC) emissions on the global scale. However, quantitative estimates of BB aerosol emissions and their effects on climate and environment remain rather uncertain. A useful way to constrain the OA&BC emissions involves using atmospheric measurements in the framework of the inverse modeling approach. In such an approach, the relationship between the emissions and the measurements is simulated by a chemistry transport model; this means that top-down estimates may be sensitive to possible model uncertainties. As a result of assimilation of satellite measurements of aerosol optical depth, several recent studies (e.g. [1,2]) indicated that aerosol emissions provided by bottom-up emission inventories may be strongly underestimated relative to emissions of gaseous species (such as CO). Meanwhile, it was earlier shown (e.g. [3]) that the relationship between primary organic aerosol emissions and aerosol concentration in the atmosphere can be significantly affected by gas-particle partitioning and oxidation of lower-volatility organic emissions; these processes are usually not taken into account in typical chemistry transport models. The main goal of this study was to examine to what degree the discrepancy between the OA&BC/CO emission ratios predicted by the bottom-up inventories and derived from satellite observations can be associated with the mentioned processes and explained in the framework of the volatility basis set approach (VBS) [3] to OA modelling. To achieve this goal, a VBS scheme, which was recently implemented in the CHIMERE chemistry transport model (CTM), was first modified to account for OA emissions from biomass burning. An ensemble of simulations with the CHIMERE CTM was then performed for the case of the 2010 mega-fire event in European Russia [4]; each of the simulations

  3. Spectra and rates of bremsstrahlung neutrino emission in stars

    NASA Astrophysics Data System (ADS)

    Guo, Gang; Qian, Yong-Zhong

    2016-08-01

    We calculate the energy-differential rate for neutrino emission from electron-nucleus bremsstrahlung in stellar interiors taking into account the effects of electron screening and ionic correlations. We compare the energy-differential and the net rates, as well as the average ν¯e and ν¯x(x =μ ,τ ) energies, for this process with those for e± pair annihilation, plasmon decay, and photoneutrino emission over a wide range of temperature and density. We also compare our updated energy loss rates for the above thermal neutrino emission processes with the fitting formulas widely used in stellar evolution models and determine the temperature and density domain in which each process dominates. We discuss the implications of our results for detection of ν¯e from massive stars during their presupernova evolution and find that pair annihilation makes the predominant contribution to the signal from the thermal emission processes.

  4. Quantitative evaluation of emission controls on primary and secondary organic aerosol sources during Beijing 2008 Olympics

    NASA Astrophysics Data System (ADS)

    Guo, S.; Hu, M.; Guo, Q.; Zhang, X.; Schauer, J. J.; Zhang, R.

    2013-08-01

    To assess the primary and secondary sources of fine organic aerosols after the aggressive implementation of air pollution controls during the 2008 Beijing Olympic Games, 12 h PM2.5 values were measured at an urban site at Peking University (PKU) and an upwind rural site at Yufa during the CAREBEIJING-2008 (Campaigns of Air quality REsearch in BEIJING and surrounding region) summer field campaign. The average PM2.5 concentrations were 72.5 ± 43.6 μg m-3 and 64.3 ± 36.2 μg m-3 (average ± standard deviation, below as the same) at PKU and Yufa, respectively, showing the lowest concentrations in recent years. Combining the results from a CMB (chemical mass balance) model and secondary organic aerosol (SOA) tracer-yield model, five primary and four secondary fine organic aerosol sources were compared with the results from previous studies in Beijing. The relative contribution of mobile sources to PM2.5 concentrations was increased in 2008, with diesel engines contributing 16.2 ± 5.9% and 14.5 ± 4.1% and gasoline vehicles contributing 10.3 ± 8.7% and 7.9 ± 6.2% to organic carbon (OC) at PKU and Yufa, respectively. Due to the implementation of emission controls, the absolute OC concentrations from primary sources were reduced during the Olympics, and the contributions from secondary formation of OC represented a larger relative source of fine organic aerosols. Compared with the non-controlled period prior to the Olympics, primary vehicle contributions were reduced by 30% at the urban site and 24% at the rural site. The reductions in coal combustion contributions were 57% at PKU and 7% at Yufa. Our results demonstrate that the emission control measures implemented in 2008 significantly alleviated the primary organic particle pollution in and around Beijing. However, additional studies are needed to provide a more comprehensive assessment of the emission control effectiveness on SOA formation.

  5. Impact of aerosol composition and foliage characteristics on forest canopy deposition rates: A laboratory study

    NASA Astrophysics Data System (ADS)

    Hornsby, K. E.; Pryor, S. C.

    2013-12-01

    Forests are a major sink for atmospheric aerosols. Hence it has been suggested that (i) increased tree planting in urban areas might lead to a reduction in aerosol particle concentrations and thus a reduction in respiratory conditions and heart complications, and (ii) forests may be responsible for removing a disproportionately large fraction of potentially climate-relevant fine and ultra-fine aerosol particles from the atmosphere. However, larger uncertainties remain with respect to controls on uptake rates for forests. E.g. the deposition flux partitioning between foliage and non-foliage elements, the influence of particle size and composition, the role of leaf surface morphology and stomatal aperture in surface uptake. Improved understanding of the relative importance of these factors and the variability across different tree species should help determine how much of a sink naturally occurring and planted forests can provide downstream of fine particle production. In this study, a sample of trees native to southern Indiana were exposed to ultra-fine aerosol particle populations in a 1.5 m x 1.5 m x 1.5 m Teflon chamber. Stable particle size distributions (PSD) with geometric mean diameters (GMD) ranging from 40 to 80 nm were generated from sodium chloride, ammonium nitrate, ammonium sulfate and sodium sulfite solutions using a TSI model 3940 Aerosol Generation System (AGS). The aerosol stream was diluted using scrubbed and dried zero air to allow a variation of total number concentration across two orders of magnitude. PSD in the chamber are continuously measured using a TSI Scanning Mobility Particle Spectrometer (SMPS) comprising an Electrostatic Classifier (EC model 3080) attached to a Long DMA (LDMA model 3081) and a TSI model 3025A Butanol Condensation Particle Counter (CPC) operated with both the internal diffusion loss and multiple charge corrections turned on. The composition of the chamber air was also monitored for carbon dioxide (CO2) and water vapor

  6. Atmospheric emitted radiance interferometer (AERI): Status and the aerosol explanation for extra window region emissions

    SciTech Connect

    Revercomb, H.E.; Knuteson, R.O.; Best, F.A.; Dirkx, T.P.

    1996-04-01

    High spectral resolution observations of downwelling emission from 3 to 19 microns have been made by the Atmospheric Emitted Radiance Interferometer (AERI) Prototype at the Southern Great Plains (SGP) Cloud and Radiative Testbed (CART) site for over two years. The spectral data set from AERI provides a basis for improving clear sky radiative transfer; determining the radiative impact of clouds, including the derivation of cloud radiative properties; defining the influences of aerosols in the window regions; and retrieving boundary layer state properties, including temperature, water vapor, and other trace gases. The data stream of radiometrically and spectrally calibrated radiances is routinely provided by Pacific Northwest Laboratory (PNL) to those science teams requesting it, and further information on the instrument and data characteristics is available in the ARM Science Team proceedings for 1993 and 1994 and in several conference publications. This paper describes the AERI status, calibration, field experiment wit a new AERI-01 and schedule, window region emissions, and future AERI plans.

  7. Modelling African aerosol using updated fossil fuel and biofuel emission inventories for 2005 and 2030

    NASA Astrophysics Data System (ADS)

    Liousse, C.; Penner, J. E.; Assamoi, E.; Xu, L.; Criqui, P.; Mima, S.; Guillaume, B.; Rosset, R.

    2010-12-01

    A regional fossil fuel and biofuel emission inventory for particulates has been developed for Africa at a resolution of 0.25° x 0.25° for the year 2005. The original database of Junker and Liousse (2008) was used after modification for updated regional fuel consumption and emission factors. Consumption data were corrected after direct inquiries conducted in Africa, including a new emitter category (i.e. two-wheel vehicles including “zemidjans”) and a new activity sector (i.e. power plants) since both were not considered in the previous emission inventory. Emission factors were measured during the 2005 AMMA campaign (Assamoi and Liousse, 2010) and combustion chamber experiments. Two prospective inventories for 2030 are derived based on this new regional inventory and two energy consumption forecasts by the Prospective Outlook on Long-term Energy Systems (POLES) model (Criqui, 2001). The first is a reference scenario, where no emission controls beyond those achieved in 2003 are taken into account, and the second is for a "clean" scenario where possible and planned policies for emission control are assumed to be effective. BC and OCp emission budgets for these new inventories will be discussed and compared to the previous global dataset. These new inventories along with the most recent open biomass burning inventory (Liousse et al., 2010) have been tested in the ORISAM-TM5 global chemistry-climate model with a focus over Africa at a 1° x 1° resolution. Global simulations for BC and primary OC for the years 2005 and 2030 are carried out and the modelled particulate concentrations for 2005 are compared to available measurements in Africa. Finally, BC and OC radiative properties (aerosol optical depths and single scattering albedo) are calculated and the direct radiative forcing is estimated using an off line model (Wang and Penner, 2009). Results of sensitivity tests driven with different emission scenarios will be presented.

  8. The Use of Aerosol Optical Depth in Estimating Trace Gas Emissions from Biomass Burning Plumes

    NASA Astrophysics Data System (ADS)

    Jones, N.; Paton-Walsh, C.; Wilson, S.; Meier, A.; Deutscher, N.; Griffith, D.; Murcray, F.

    2003-12-01

    We have observed significant correlations between aerosol optical depth (AOD) at 500 nm and column amounts of a number of biomass burning indicators (carbon monoxide, hydrogen cyanide, formaldehyde and ammonia) in bushfire smoke plumes over SE Australia during the 2001/2002 and 2002/2003 fire seasons from remote sensing measurements. The Department of Chemistry, University of Wollongong, operates a high resolution Fourier Transform Spectrometer (FTS), in the city of Wollongong, approximately 80 km south of Sydney. During the recent bushfires we collected over 1500 solar FTIR spectra directly through the smoke over Wollongong. The total column amounts of the biomass burning indicators were calculated using the profile retrieval software package SFIT2. Using the same solar beam, a small grating spectrometer equipped with a 2048 pixel CCD detector array, was used to calculate simultaneous aerosol optical depths. This dataset is therefore unique in its temporal sampling, location to active fires, and range of simultaneously measured constituents. There are several important applications of the AOD to gas column correlation. The estimation of global emissions from biomass burning currently has very large associated uncertainties. The use of visible radiances measured by satellites, and hence AOD, could significantly reduce these uncertainties by giving a direct estimate of global emissions of gases from biomass burning through application of the AOD to gas correlation. On a more local level, satellite-derived aerosol optical depth maps could be inverted to infer approximate concentration levels of smoke-related pollutants at the ground and in the lower troposphere, and thus can be used to determine the nature of any significant health impacts.

  9. Composition of Secondary Organic Aerosols Produced by Photo-Oxidation of Biomass Burning Emissions in a Smog Chamber

    NASA Astrophysics Data System (ADS)

    Desyaterik, Y.; Sullivan, A.; Hennigan, C. J.; Robinson, A. L.; Collett, J. L.

    2009-12-01

    Knowledge of the chemical composition of atmospheric organic aerosols (OA) is essential for accurate representation of OA in air quality and climate models. Both the sources of OA and their properties and effects remain poorly understood. In particular, we still know relatively little about the atmospheric formation of secondary organic aerosols (SOA). There is growing interest in the impact of biomass burning emissions on air quality, human health, and radiative forcing. Through a series of experiments, we are working to quantify changes in the chemical composition of wood smoke particles as a result of photochemical aging under well-controlled laboratory conditions. One specific objective of this study is to identify markers for biomass burning SOA and test whether these markers can be used in atmospheric samples to quantify SOA formation from aging of biomass burning emissions. We analyzed SOA generated in a smog chamber by photooxidation of smoke produced by burning oak wood. In order to initiate photochemistry, the chamber was irradiated with UV light. Aqueous extracts of collected aerosol samples were analyzed with Electrospray Ionization Time-of-Flight Mass Spectrometry. The high mass accuracy of these measurements reduces ambiguity in the assignment of elemental compositions for observed ions. Analysis has shown that primary oak smoke aerosol includes products of the thermal decomposition of cellulose (levoglucosan, cyclotene etc.) and lignin (guaiacol and syringol derivatives, mostly aldehydes and alcohols). After 2 hours of aging at typical summertime hydroxyl radical concentrations, the aerosol mass increased 2.5 fold due to the production of secondary organic aerosol. Mass spectra of the secondary organic aerosol formed are dominated by organic nitrates (nitrophenol, nitrocresol, nitrocatechol, and nitroguaiacol) and aromatic acids (benzoic acid, mono and di-hydroxybenzoic acid). Both nitrates and acids most likely are formed due to oxidation of the

  10. Specification of Biogenic VOC Emission Data in the Coupled System of Regional Climate and Atmospheric Chemistry/Aerosols Model

    NASA Astrophysics Data System (ADS)

    Zemankova, K.; Huszar, P.

    2009-12-01

    Coupling of regional climate model RegCM (Pal et al., 2007) and atmospheric chemistry/aerosols model CAMx (Environ, 2006) is being developed at our department under the CECILIA project (EC 6th FP) with the aim to study climate forcing due to atmospheric chemistry/aerosols on regional scale. Regional climate model RegCM with the resolution of 10 km drives transport, chemistry and dry/wet deposition of the CAMx model being operated on the Central and Eastern European domain and consequently the radiative active agents from the CAMx model enter the radiative transfer schemes for the calculation of heating rate changes in the regional climate model. In order to increase the accuracy of land cover data in this model system, a new input dataset has been prepared and used for the calculation of emissions of volatile organic compounds (VOCs) from natural sources. This dataset is mainly based on the single tree species database from the european project of JRC in Ispra - Agriculture, Forestry, and Other Land Uses in Europe (AFOLU) which covers most of the model domain. For the locations where AFOLU data were not available, i.e. basically non-EU areas, the USGS Eurasia land cover database has been used. Both databases are available in 1 km resolution. Emission factors for new land cover categories were obtained either from the laboratory measurements or from the literature. The Guenther et al. (1995) model algorithm has been used for the calculation of biogenic VOC (BVOC) emission fluxes. Effects of new land cover and BVOC emission data on the CAMx model simulations of low level ozone in the year 2000 have been studied. Improvement of model results when compared with the measured data may be seen, especially in the simulation of extreme values such as ozone summer maxima. References: - ENVIRON Corp., 2006. CAMx User’s Guide, version 4.40 - Guenther A., Hewitt N., Erickson D., Fall R., Geron Ch., Graedel T., Harley P., Klinger L., Lerdau M., McKay W. A., Pierce T., Scholes

  11. Sensitivity of dust emissions to aerosol feedback and the impact of dust loading on climate forcing with varied resolutions using FIM-Chem

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Grell, Georg; Henze, Daven; Mckeen, Stuart; Sun, Shan; Li, Haiqin

    2016-04-01

    Meteorological conditions directly impact aerosol loading, especially dust emissions. Variations in dust emissions on the other hand, will also impact meteorology and climate through direct and indirect aerosol forcing. To study these impacts in more detail we use the global Flow-following finite-volume Icosahedra Model (FIM, http://fim.noaa.gov/), a new global weather prediction model currently under development in the Global Systems Division of NOAA/ESRL, as it is coupled online with the aerosol modules from the Goddard Gobal Ozone Chemistry Aerosol Radiation and Transport (GOCART) model (FIM-Chem). FIM-Chem includes direct and semi direct feedback, and uses the dust schemes of GOCART and the Air Force Weather Agency (AFWA). FIM-Chem is able to investigate the contribution of climate feedbacks to simulated hyperspectral data by considering a range of simulations with different dust emissions and different levels of aerosol feedbacks enabled at four different spatial resolutions. The emitted dust flux and total emissions are highly depending on the wind, soil moisture and model resolution. We compare the dust emissions by including and excluding the aerosol radiative feedback in the simulations to quantify the sensitivity of dust emissions to aerosol feedback. The results show that all aerosol-induced dust emissions increase about 10% globally, which is mainly dominated by the contributions of anthropogenic black carbon (EC) aerosol. While the dust-induced percentage changes of dust emissions are about -5.5%, that indicates reduction effect globally. Also, the simulations based on different resolutions of 240x240 km, 120x120 km, 60x60 km and 30x30 km are performed to test the impacts of model resolution on total dust emissions. By comparing the dust emission sensitivity to aerosol feedback and model resolution, we can estimate the uncertainty of model resolution versus aerosol feedback. We also conduct FIM-Chem simulations to investigate the sensitivity of dust

  12. An Overview of the DAURE Campaign: Aerosols Emissions and Evolution in the Western Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Pandolfi, Marco; Querol, Xavier; Alastuey, Andrés.; Jimenez, Jose L.

    2010-05-01

    DAURE (Determination of the sources of atmospheric Aerosols in Urban and Rural Environments in the western Mediterranean) is a multidisciplinary international measurement campaign mainly aimed at estimating the sources and origin of atmospheric fine aerosols in the Western Mediterranean Basin (WMB), with particular attention to the carbonaceous fraction. Main focuses of the campaign are the study of the origin of the intense pollution episodes frequently occurring at regional scale in summer and winter in the WMB (Perez et al., 2008) and the emission, formation, transport and transformation of aerosols during these polluted scenarios. The peculiar atmospheric dynamics in the WMB, regulated by complex climatic and orographic effects (Millán et al., 1997), together with the large pollutant emissions from densely populated areas, large industrial areas and ports located along the coastline, give rise to a complex phenomenology for aerosol formation and transformation. In this context, extremely high concentrations of fine particulate matter (mainly PM1, particulate matter with aerodynamic diameter < 1um) are usually registered at regional background stations, with levels even higher than those simultaneously registered at urban stations. DAURE brings together state-of-the-art measurements and modeling techniques from about 20 International and Spanish Institutions. The DAURE campaign took place during winter (February-March 2009) and summer (July 2009) at an urban site (Barcelona, 80 m a.s.l., NE Spain) and a regional background site (Montseny, 720 m a.s.l., NE Spain, a Supersite of the EUSAAR network). Widespread in situ aerosol sampling techniques (such as PM optical counters, PM samplers, MAAP, CPC, SMPS, Rotating Drum Impactor, among others) and remote sensing techniques (LIDAR, sunphotometer) have been applied together with state-of-the-art methods such as 14C (Szidat et al., 2006), Proton-Transfer Reaction Mass Spectrometry (PTRMS) for VOCs, and High

  13. Top-down constraints to aerosol emissions from open biomass burning: the role of gas-particle partitioning and secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Konovalov, Igor B.; Beekmann, Matthias; Berezin, Evgeny V.; Petetin, Hervé

    2014-05-01

    Open biomass burning (BB), including wildfires and controlled burns in agriculture and foresty, is known to provide an important contribution to organic aerosol (OA) and black carbon (BC) emissions on the global scale. However, quantitative estimates of BB aerosol emissions and their effects on climate and environment remain rather uncertain. A useful way to constrain the OA&BC emissions involves using atmospheric measurements in the framework of the inverse modeling approach. In such an approach, the relationship between the emissions and the measurements is simulated by a chemistry transport model; this means that top-down estimates may be sensitive to possible model uncertainties. As a result of assimilation of satellite measurements of aerosol optical depth, several recent studies (e.g. [1,2]) indicated that aerosol emissions provided by bottom-up emission inventories may be strongly underestimated relative to emissions of gaseous species (such as CO). Meanwhile, it was earlier shown (e.g. [3]) that the relationship between primary organic aerosol emissions and aerosol concentration in the atmosphere can be significantly affected by gas-particle partitioning and oxidation of lower-volatility organic emissions; these processes are usually not taken into account in typical chemistry transport models. The main goal of this study was to examine to what degree the discrepancy between the OA&BC/CO emission ratios predicted by the bottom-up inventories and derived from satellite observations can be associated with the mentioned processes and explained in the framework of the volatility basis set approach (VBS) [3] to OA modelling. To achieve this goal, a VBS scheme, which was recently implemented in the CHIMERE chemistry transport model (CTM), was first modified to account for OA emissions from biomass burning. An ensemble of simulations with the CHIMERE CTM was then performed for the case of the 2010 mega-fire event in European Russia [4]; each of the simulations

  14. Summer 2009 wildfires in Portugal: Emission of trace gases and aerosol composition

    NASA Astrophysics Data System (ADS)

    Alves, Célia; Vicente, Ana; Nunes, Teresa; Gonçalves, Cátia; Fernandes, Ana Patrícia; Mirante, Fátima; Tarelho, Luís; Sánchez de la Campa, Ana M.; Querol, Xavier; Caseiro, Alexandre; Monteiro, Cristina; Evtyugina, Margarita; Pio, Casimiro

    2011-01-01

    In summer 2009, emissions of trace gases and aerosols from several wildfires occurring in Portugal were sampled. A portable high-volume sampler was used to collect sequentially, on quartz fibre filters, coarse (PM 2.5-10) and fine (PM 2.5) smoke particles. Tedlar air sampling bags have been used for complementary chemical characterisation of the gaseous phase. The carbonaceous content (elemental and organic carbon, EC/OC) of particulate matter was analysed by a thermal-optical transmission technique. The levels of almost 50 elements were quantified by inductively coupled plasma-mass spectrometry. The water-soluble ions were obtained by ion chromatography. Emission factors of species that are favoured by the smouldering phase (e.g. CO) were above the values reported in the literature for biomass burning in other ecosystems. The CO emission factors were 231 ± 117 g kg -1 biomass (dry basis) burned. Emissions of compounds that are promoted in fresh plumes and during the flaming phase, such as CO 2, were generally lower than those proposed for savannah and tropical forest fires. The CO 2 emission factors ranged from about 1000 to 1700 g kg -1. Total hydrocarbons, PM 2.5, PM 10 and OC presented variable emissions, but in general substantially higher than values reported for wildfires in African and Amazonian biomes. The emission factors obtained in Portugal were as follows (in g kg -1 biomass, dry basis): 6-350 for total hydrocarbons, 0.5-42 for PM 2.5, 1-60 for PM 10, and 0.2-42 for OC (in PM 10). The organic carbon-to-elemental carbon ratios measured in the present study largely exceeded those obtained by other researchers. The aerosol mass was dominated by organic matter (OC/PM 2.5 = 50 ± 18%, OC/PM 2.5-10 = 36 ± 18%). The metal elements represented, on average, 1.23 and 0.91%, while the measured water-soluble ions accounted for 2.6 and 2.1% of the PM 2.5 and PM 2.5-10 mass, respectively. Carbonates accounted for 0.15-3.1% (average = 0.83%) of PM 2.5-10. The

  15. Organic aerosol emission ratios from the laboratory combustion of biomass fuels

    NASA Astrophysics Data System (ADS)

    Jolleys, Matthew D.; Coe, Hugh; McFiggans, Gordon; McMeeking, Gavin R.; Lee, Taehyoung; Kreidenweis, Sonia M.; Collett, Jeffrey L.; Sullivan, Amy P.

    2014-11-01

    Organic aerosol (OA) emission ratios (ER) have been characterized for 67 burns during the second Fire Laboratory at Missoula Experiment. These fires involved 19 different species representing 6 major fuels, each of which forms an important contribution to the U.S. biomass burning inventory. Average normalized ΔOA/ΔCO ratios show a high degree of variability, both between and within different fuel types and species, typically exceeding differen-ces between separate plumes in ambient measurements. This variability is strongly influenced by highly contrasting ΔOA levels between burns and the increased partitioning of semivolatile organic compounds to the particle phase at high ΔOA concentrations. No correlation across all fires was observed between ΔOA/ΔCO and modified combustion efficiency (MCE), which acts as an indicator of the proportional contributions of flaming and smoldering combustion phases throughout each burn. However, a negative correlation exists with MCE for some coniferous species, most notably Douglas fir, for which there is also an influence from fuel moisture content. Changes in fire efficiency were also shown to dramatically alter emissions for fires with very similar initial conditions. Although the relationship with MCE is variable between species, there is greater consistency with the level of oxygenation in OA. The ratio of the m/z 44 fragment to total OA mass concentration (f44) as measured by aerosol mass spectrometer provides an indication of oxygenation as influenced by combustion processes at source, with ΔOA/ΔCO decreasing with increasing f44 for all fuel types. Inconsistencies in the magnitude of the effects associated with each potential influence on ΔOA/ΔCO emphasize the lack of a single dominant control on fire emissions, and a dependency on both fuel properties and combustion conditions.

  16. Monoterpene emission rate measurements from a Monterey pine

    NASA Astrophysics Data System (ADS)

    Juuti, Soile; Arey, Janet; Atkinson, Roger

    1990-05-01

    The monoterpenes emitted from a Monterey pine (Pinus radiata) were investigated using a dynamic flow-through enclosure technique. The monoterpenes identified and quantified were α- and β-pinene, d-limonene + β-phellandrene, myrcene, camphene and Δ3-carene, with α- and β-pinene accounting for over 80% of the total monoterpene emissions. The monoterpene emission rate increased with temperature, in good agreement with previous data for other coniferous species. The absence of added CO2 to the synthetic air flow stream, exposure to elevated levels (300-500 ppb mixing ratio) of O3 for 3-4 hours, and increased air movement within the enclosure had no observable effect on the monoterpene emission rate at a given temperature. In contrast, "rough handling" of the pine during the sampling protocol resulted in increases in the monoterpene emission rate by factors of 10-50. These results will be useful to those designing enclosure sampling protocols for the determination of the emission rates of biogenic organic compounds from vegetation.

  17. Monoterpene emission rate measurements from a Monterey pine

    SciTech Connect

    Juuti, S. ); Arey, J.; Atkinson, R. )

    1990-05-20

    The monoterpenes emitted from a Monterey pine (pinus radiata) were investigated using a dynamic flow-through enclosure technique. The monoterpenes identified and quantified were {alpha}- and {beta}-pinene, d-limonene + {beta} phellandrene, myrcene, camphene and {Delta}{sup 3}-carene, with {alpha}- and {beta}-pinene accounting for over 80% of the total monoterpene emissions. The monoterpene emission rate increased with temperature, in good agreement with previous data for other coniferous species. The absence of added CO{sub 2} to the synthetic air flow stream, exposure to elevated levels (300-500 ppb mixing ratio) of O{sub 3} for 3-4 hours, and increased air movement within the enclosure, had no observable effect on the monoterpene emission rate at a given temperature. In contrast, rough handling of the pine during the sampling protocol resulted in increases in the monoterpene emission rate by factors of 10-50. These results will be useful to those designing enclosure sampling protocols for the determination of the emission rates of biogenic organic compounds from vegetation.

  18. Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory

    NASA Astrophysics Data System (ADS)

    McMeeking, Gavin R.; Kreidenweis, Sonia M.; Baker, Stephen; Carrico, Christian M.; Chow, Judith C.; Collett, Jeffrey L.; Hao, Wei Min; Holden, Amanda S.; Kirchstetter, Thomas W.; Malm, William C.; Moosmüller, Hans; Sullivan, Amy P.; Wold, Cyle E.

    2009-10-01

    We characterized the gas- and speciated aerosol-phase emissions from the open combustion of 33 different plant species during a series of 255 controlled laboratory burns during the Fire Laboratory at Missoula Experiments (FLAME). The plant species we tested were chosen to improve the existing database for U.S. domestic fuels: laboratory-based emission factors have not previously been reported for many commonly burned species that are frequently consumed by fires near populated regions and protected scenic areas. The plants we tested included the chaparral species chamise, manzanita, and ceanothus, and species common to the southeastern United States (common reed, hickory, kudzu, needlegrass rush, rhododendron, cord grass, sawgrass, titi, and wax myrtle). Fire-integrated emission factors for gas-phase CO2, CO, CH4, C2-4 hydrocarbons, NH3, SO2, NO, NO2, HNO3, and particle-phase organic carbon (OC), elemental carbon (EC), SO42-, NO3-, Cl-, Na+, K+, and NH4+ generally varied with both fuel type and with the fire-integrated modified combustion efficiency (MCE), a measure of the relative importance of flaming- and smoldering-phase combustion to the total emissions during the burn. Chaparral fuels tended to emit less particulate OC per unit mass of dry fuel than did other fuel types, whereas southeastern species had some of the largest observed emission factors for total fine particulate matter. Our measurements spanned a larger range of MCE than prior studies, and thus help to improve estimates of the variation of emissions with combustion conditions for individual fuels.

  19. ENVIRONMENTAL TOBACCO SMOKE: MUTAGENIC EMISSION RATES AND THEIR RELATIONSHIP TO OTHER EMISSION FACTORS

    EPA Science Inventory

    The objective of this study was to evaluate the emission rates and exposure concentrations of mutagens, nicotine, and particles from cigarettes. Studies were conducted under controlled laboratory and chamber conditions as well as in personal residences. The mutagenicity of enviro...

  20. Lower tropospheric aerosol loadings over South Africa: The relative contribution of aeolian dust, industrial emissions, and biomass burning

    NASA Astrophysics Data System (ADS)

    Piketh, S. J.; Annegarn, H. J.; Tyson, P. D.

    1999-01-01

    The southern African haze layer is a ubiquitous subcontinental-scale feature of the lower atmosphere that extends to a depth of ˜5 km(˜500 hPa level) on non rain days, particularly in winter. Aerosols derived from biomass burning are commonly thought to contribute substantially to the total background aerosol loading within the layer. It is shown that in both summer and winter this supposition is without foundation over South Africa. Summer and winter aerosol loadings are derived from gravimetric analysis of stacked filter units and from proton-induced X ray emission (PIXE) analysis of one to four hourly resolved streaker samples. From concentrations of eleven inorganic elements, apportionment into four primary sources, biomass burning particulates, aeolian dust, industrial sulphur aerosols, and marine aerosols, has been effected. It is shown that the background biomass burning component of the total aerosol loading over South Africa in general, and within the plume of material being recirculated over South Africa and from there exported from the subcontinent south of 22°S to the Indian Ocean in particular, is minimal in both summer and winter. Except over coastal and adjacent inland areas, marine aerosols likewise make up a small fraction of the total loading. This is particularly so over the inland plateau areas. Crustally-derived aeolian dust and industrially-produced sulphur aerosols are demonstrated to be the major summer and winter constituents of the haze layer over South Africa and the particulate material being transported to the Indian Ocean region. Sulphur is transported within the aerosol plume exiting southern Africa to the Indian Ocean as agglomerates on aeolian dust nuclei.

  1. Preliminary numerical study on the cumulus-stratus transition induced by the increase of formation rate of aerosols

    NASA Astrophysics Data System (ADS)

    Shima, Shin-ichiro; Hasegawa, Koichi; Kusano, Kanya

    2015-04-01

    The influence of aerosol-cloud interactions on the steady state of marine stratocumulus is investigated through a series of numerical simulations of an idealized meteorological system in which aerosols are formed constantly. We constructed the system by modifying the set-up based on the RICO composite case defined in van Zanten et al. (2011). The super-droplet method (SDM) (Shima, 2008; Shima et al., 2009) is used for the simulation of cloud microphysical processes. The SDM is a particle-based and probabilistic method, with which the time evolution of aerosol/cloud/precipitation particles are calculated in a unified and accurate manner. For the simulation of atmospheric fluid dynamical processes, the cloud resolving model CReSS (Tsuboki, 2008) is used, in which the quasi-compressible approximation and the sound mode splitting method are applied. The steady states of the system are compared changing the aerosol nucleation rate and the initial number density of aerosols. It is observed that the system gradually evolves to reach its final steady state in a few days, which is irrelevant to the initial number density of aerosols. A transition of the final steady state from cumuli to strati occurs when the aerosol formation rate is increased. Chemical reactions in the gas phase and the liquid phase are not yet incorporated in the model, and the numerical simulations are performed in two dimensions. For these limitations, the results obtained are still preliminary.

  2. Corrigendum to "Aerosol indirect effects from shipping emissions: sensitivity studies with the global aerosol-climate model ECHAM-HAM" published in Atmos. Chem. Phys., 12, 5985-6007, 2012

    NASA Astrophysics Data System (ADS)

    Peters, K.; Stier, P.; Quaas, J.; Graßl, H.

    2013-07-01

    An error in the calculation of the emitted number of primary sulfate particles for a given mass of emitted elementary sulfur has recently been identified in HAM, i.e. the aerosol module utilised in the ECHAM-HAM aerosol climate model. Correcting for this error substantially alters the estimates of top-of-atmosphere radiative forcing due to aerosol indirect effects from global shipping emissions (year 2000) as presented in Peters et al. (2012). Here, we shortly present these new results.

  3. Estimates of non-traditional secondary organic aerosols from aircraft SVOC and IVOC emissions using CMAQ

    NASA Astrophysics Data System (ADS)

    Woody, M. C.; West, J. J.; Jathar, S. H.; Robinson, A. L.; Arunachalam, S.

    2015-06-01

    Utilizing an aircraft-specific parameterization based on smog chamber data in the Community Multiscale Air Quality (CMAQ) model with the volatility basis set (VBS), we estimated contributions of non-traditional secondary organic aerosols (NTSOA) for aircraft emissions during landing and takeoff (LTO) activities at the Hartsfield-Jackson Atlanta International Airport. NTSOA, formed from the oxidation of semi-volatile and intermediate volatility organic compounds (S/IVOCs), is a heretofore unaccounted component of fine particulate matter (PM2.5) in most air quality models. We expanded a prerelease version of CMAQ with VBS implemented for the Carbon Bond 2005 (CB05) chemical mechanism to use the Statewide Air Pollution Research Center 2007 (SAPRC-07) chemical mechanism and added species representing aircraft S/IVOCs and corresponding NTSOA oxidation products. Results indicated that the maximum monthly average NTSOA contributions occurred at the airport and ranged from 2.4 ng m-3 (34 % from idle and 66 % from non-idle aircraft activities) in January to 9.1 ng m-3 (33 and 67 %) in July. This represents 1.7 % (of 140 ng m-3) in January and 7.4 % in July (of 122 ng m-3) of aircraft-attributable PM2.5 compared to 41.0-42.0 % from elemental carbon and 42.8-58.0 % from inorganic aerosols. As a percentage of PM2.5, impacts were higher downwind of the airport, where NTSOA averaged 4.6-17.9 % of aircraft-attributable PM2.5 and, considering alternative aging schemes, was as high as 24.0 % - thus indicating the increased contribution of aircraft-attributable SOA as a component of PM2.5. However, NTSOA contributions were generally low compared to smog chamber results, particularly at idle, due to the considerably lower ambient organic aerosol concentrations in CMAQ compared to those in the smog chamber experiments.

  4. CCN activation and hygroscopic growth measurements of secondary organic aerosols from tree emissions

    NASA Astrophysics Data System (ADS)

    Buchholz, Angela; Mentel, Thomas F.; Kiendler-Scharr, Astrid; Spindler, Christian; Tillmann, Ralf; Kleist, Einhard; Wildt, Juergen

    2010-05-01

    Plant emitted volatile organic compounds (VOCs) are a major precursor of secondary organic aerosols (SOA), an important constituent of atmospheric aerosols. We used the Juelich Plant Atmosphere Chamber (JPAC) at the Research Center Juelich to investigate the microphysical properties of aerosols. SOA particles were produced from the ozonolysis and reaction of OH radicals with the complex VOC mixture emitted from trees typical for the boreal forest. Hygroscopic growth factors (GF) were determined with a humidity tandem differential mobility analyzer (HTDMA) for different particle sizes at RH = 2 - 97%. Cloud condensation nuclei (CCN) activation was measured with a continuous flow CCN counter (DMT). Additionally, the chemical composition, size distribution and number concentration of the particles were measured. The gas phase was monitored with GC-MS and PTR-MS. Changing the emission pattern of the trees changed the measured GF and the diameter of the dry particles that were activated (Dcrit). However, below 80% RH the GF changes are within the range of the measurement error. The GF (RH = 95%) are between 1.11 and 1.19 and the Dcrit(SS = 0.4%) in a range of 93 - 100nm. Koehler theory was applied to achieve closure between CCN activation and GF measurements. The κ parameter according to Petters and Kreidenweis (2007) was calculated for all SS (κ(CCN)) and RH (κ(GF)). The κ(GF) decrease with increasing RH but levels off at RH > 95%. Assuming the surface tension of pure water, κ(GF, RH>95%) would be by a factor of 2 lower than κ(CCN). Closure between the HTDMA and CCN measurement requires the use of either a lower surface tension or a limited solubility of the organic material. Reference: Petters, M. D. and Kreidenweis, S. M. (2007). Atmos. Chem. Phys., 7, 1961-1971.

  5. Mass flow rate measurement in abrasive jets using acoustic emission

    NASA Astrophysics Data System (ADS)

    Ivantsiv, V.; Spelt, J. K.; Papini, M.

    2009-09-01

    The repeatability of abrasive jet machining operations is presently limited by fluctuations in the mass flow rate due to powder compaction, stratification and humidity effects. It was found that the abrasive mass flow rate for a typical abrasive jet micromachining setup could be determined by using data from the acoustic emission of the abrasive jet impacting a flat plate. Two methods for extracting the mass flow rate from the acoustic emission were developed and compared. In the first method, the number of particle impacts per unit time was determined by a direct count of peaks in the acoustic emission signal. The second method utilizes the power spectrum density of the acoustic emission in a specific frequency range. Both measures were found to correlate strongly with the mass flow rate measured by weighing samples of blasted powder for controlled time periods. It was found that the peak count method permits measurement of the average frequency of the impacts and the mass flow rate, but can only be applied to flow rates in which the impact frequency is approximately one order of magnitude less than the frequency of the target plate ringing. The power spectrum density method of signal processing is applicable to relatively fine powders and to flow rates at which the average impact frequency is of the same order of magnitude as that of the ringing due to the impact. The acoustic emission technique can be used to monitor particle flow variations over a wide range of time periods and provides a straightforward and accurate means of process control.

  6. Emissions of biogenic volatile organic compounds and subsequent formation of secondary organic aerosols in a Larix kaempferi forest

    NASA Astrophysics Data System (ADS)

    Mochizuki, T.; Miyazaki, Y.; Ono, K.; Wada, R.; Takahashi, Y.; Saigusa, N.; Kawamura, K.; Tani, A.

    2015-04-01

    We conducted simultaneous measurements of concentrations and above-canopy fluxes of isoprene and α-pinene, along with their oxidation products in aerosols in a Larix kaempferi (Japanese larch) forest in summer 2012. Vertical profiles of isoprene showed the maximum concentration near the forest floor with a peak around noon, whereas oxidation products of isoprene, i.e., methacrolein (MACR) and methyl vinyl ketone (MVK), showed higher concentrations near the canopy level of the forest. The vertical profile suggests large emissions of isoprene near the forest floor, likely due to Dryopteris crassirhizoma (a fern species), and the subsequent reaction within the canopy. The concentrations of α-pinene also showed highest values near the forest floor with maximums in the early morning and late afternoon. The vertical profiles of α-pinene suggest its large emissions from soil and litter in addition to emissions from L. kaempferi leaves at the forest site. Isoprene and its oxidation products in aerosols exhibited similar diurnal variations within the forest canopy, providing evidence for secondary organic aerosol (SOA) formation via oxidation of isoprene most likely emitted from the forest floor. Although high abundance of α-pinene was observed in the morning, its oxidation products in aerosols showed peaks in daytime, due to a time lag between the emission and atmospheric reactions of α-pinene to form SOA. Positive matrix factorization (PMF) analysis indicated that anthropogenic influence is the most important factor contributing to the elevated concentrations of molecular oxidation products of isoprene- (> 64%) and α-pinene-derived SOA (> 57%). The combination of the measured fluxes and vertical profiles of biogenic volatile organic compounds (BVOCs) suggests that the inflow of anthropogenic precursors/aerosols likely enhanced the formation of both isoprene- and α-pinene-SOA within the forest canopy even when the BVOC flux was relatively low. This study highlights

  7. Combining Multi-Sensor Measurements and Models to Constrain Time-Varying Aerosol Fire Emissions

    NASA Astrophysics Data System (ADS)

    Cohen, J. B.

    2013-12-01

    A significant portion of global Black Carbon (BC) and Organic Carbon (OC) aerosols are emitted into the atmosphere due to fires. However, due to their spatially and temporally heterogeneous nature, quantifying these emissions has proven to be difficult. Some of the problems stem from variability over multiple spatial and temporal scales: ranging from kilometers in size to thousands of kilometers in impact, and from month-to-month variations in the burning season to interannual variation in overall fire strength which follows such global phenomena as El-Nino. Yet, because of the unique absorbing properties that these aerosols have, they leave a distinct impact on the regional and global climate system, as well as the ability to intensely impact human health in downwind areas, proper quantification of the emissions is absolutely essential. To achieve such a critical understanding of their emissions in space and time, a start-of-the art modelling system of their chemical and physical processing, transport, and removal is implemented. This system is capable of effectively and uniquely simulating many impacts important in the atmosphere, including: enhanced absorption associated with internal mixing, mass and number conservation, the direct and semi-direct effects on atmospheric dynamics and circulation, and appropriate non-linear consideration of urban-scale chemical and physical processing. This modelling system has been used in connection with 3 separate sources of data, to achieve an end product that is heavily dependent on both. First of all, the model has been run in a data-assimilation mode to constrain the annual-average emissions of BC using the Kalman Filter technique. This global constraint, the first of its type, relies heavily on ground-based sensors from NASA as well as other organizations. Secondly, data of the decadal-scale variation in aerosol optical depth, surface reflectance, and radiative power have been obtained from the MODIS and MISR sensors

  8. Thermal Emission Spectrometer Results: Mars Atmospheric Thermal Structure and Aerosol Distribution

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Pearl, John C.; Conrath, Barney J.; Christensen, Philip R.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    Infrared spectra returned by the Thermal Emission Spectrometer (TES) are well suited for retrieval of the thermal structure and the distribution of aerosols in the Martian atmosphere. Combined nadir- and limb-viewing spectra allow global monitoring of the atmosphere up to 0.01 mbar (65 km). We report here on the atmospheric thermal structure and the distribution of aerosols as observed thus far during the mapping phase of the Mars Global Surveyor mission. Zonal and temporal mean cross sections are used to examine the seasonal evolution of atmospheric temperatures and zonal winds during a period extending from northern hemisphere mid-summer through vernal equinox (L(sub s) = 104-360 deg). Temperature maps at selected pressure levels provide a characterization of planetary-scale waves. Retrieved atmospheric infrared dust opacity maps show the formation and evolution of regional dust storms during southern hemisphere summer. Response of the atmospheric thermal structure to the changing dust loading is observed. Maps of water-ice clouds as viewed in the thermal infrared are presented along with seasonal trends of infrared water-ice opacity. Uses of these observations for diagnostic studies of the dynamics of the atmosphere are discussed.

  9. The FLAME Deluge: organic aerosol emission ratios from combustion chamber experiments

    NASA Astrophysics Data System (ADS)

    Jolleys, Matthew; Coe, Hugh; McFiggans, Gordon; McMeeking, Gavin; Lee, Taehyoung; Sullivan, Amy; Kreidenweis, Sonia; Collett, Jeff

    2014-05-01

    A high level of variability has been identified amongst organic aerosol (OA) emission ratios (ER) from biomass burning (BB) under ambient conditions. However, it is difficult to assess the influences of potential drivers for this variability, given the wide range of conditions associated with wildfire measurements. Chamber experiments performed under controlled conditions provide a means of examining the effects of different fuel types and combustion conditions on OA emissions from biomass fuels. ERs have been characterised for 67 burns during the second Fire Laboratory at Missoula Experiment (FLAME II), involving 19 different species from 6 fuel types widely consumed in BB events in the US each year. Average normalised dOA/dCO ratios show a high degree of variability, both between and within different fuel types and species, typically exceeding variability between separate plumes in ambient measurements. Relationships with source conditions were found to be complex, with little consistent influence from fuel properties and combustion conditions for the entire range of experiments. No strong correlation across all fires was observed between dOA/dCO and modified combustion efficiency (MCE), which is used as an indicator of the proportional contributions of flaming and smouldering combustion phases throughout each burn. However, a negative correlation exists between dOA/dCO and MCE for some coniferous species, most notably Douglas fir, for which there is also an apparent influence from fuel moisture content. Significant contrasts were also identified between combustion emissions from different fuel components of additional coniferous species. Changes in fire efficiency were also shown to dramatically alter emissions for fires with very similar initial conditions. Although the relationship with MCE is variable between species, there is greater consistency with the level of oxygenation in OA. The ratio of the m/z 44 fragment to total OA mass concentration (f44) as

  10. Updating sea spray aerosol emissions in the Community Multiscale Air Quality (CMAQ) model version 5.0.2

    EPA Science Inventory

    Sea spray aerosols (SSAs) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. Model evaluations of SSA emissions have mainly focused on the global scale, but regional-scale evaluations are...

  11. Metrics for linking emissions of gases and aerosols to global precipitation changes

    NASA Astrophysics Data System (ADS)

    Shine, K. P.; Allan, R. P.; Collins, W. J.; Fuglestvedt, J. S.

    2015-08-01

    Recent advances in understanding have made it possible to relate global precipitation changes directly to emissions of particular gases and aerosols that influence climate. Using these advances, new indices are developed here called the Global Precipitation-change Potential for pulse (GPPP) and sustained (GPPS) emissions, which measure the precipitation change per unit mass of emissions. The GPP can be used as a metric to compare the effects of different emissions. This is akin to the global warming potential (GWP) and the global temperature-change potential (GTP) which are used to place emissions on a common scale. Hence the GPP provides an additional perspective of the relative or absolute effects of emissions. It is however recognised that precipitation changes are predicted to be highly variable in size and sign between different regions and this limits the usefulness of a purely global metric. The GPPP and GPPS formulation consists of two terms, one dependent on the surface temperature change and the other dependent on the atmospheric component of the radiative forcing. For some forcing agents, and notably for CO2, these two terms oppose each other - as the forcing and temperature perturbations have different timescales, even the sign of the absolute GPPP and GPPS varies with time, and the opposing terms can make values sensitive to uncertainties in input parameters. This makes the choice of CO2 as a reference gas problematic, especially for the GPPS at time horizons less than about 60 years. In addition, few studies have presented results for the surface/atmosphere partitioning of different forcings, leading to more uncertainty in quantifying the GPP than the GWP or GTP. Values of the GPPP and GPPS for five long- and short-lived forcing agents (CO2, CH4, N2O, sulphate and black carbon - BC) are presented, using illustrative values of required parameters. The resulting precipitation changes are given as the change at a specific time horizon (and hence they are

  12. Metrics for linking emissions of gases and aerosols to global precipitation changes

    NASA Astrophysics Data System (ADS)

    Shine, K. P.; Allan, R. P.; Collins, W. J.; Fuglestvedt, J. S.

    2015-04-01

    Recent advances in understanding have made it possible to relate global precipitation changes more directly to emissions of particular gases and aerosols that influence climate. Using these advances, a new index is developed here called the Global Precipitation-change Potential (GPP), which measures the precipitation change per unit mass of emissions. It is recognised that precipitation changes are predicted to be highly variable in size and sign between different regions, and ultimately climate change impacts will be more dependent on these regional changes. Nevertheless, the GPP presents a useful measure of the global-mean role of emissions of individual forcing agents. Results are presented for pulse (GPPP) and sustained (GPPS) emissions for selected long- and short-lived forcing agents (CO2, CH4, N2O, sulphate and black carbon - BC) using illustrative values of required parameters. The GPP can be used as a metric to compare the importance of emissions. This is akin to the global warming potential (GWP) and the global temperature-change potential (GTP) which are used to place emissions on a common scale. The GPP is further down the cause-effect chain from emissions to impacts than the GWP and GTP, and so provides an additional perspective. One key parameter needed for the GPP is the surface-atmosphere partitioning of radiative forcing. Few studies have presented results for this partitioning for different forcings, leading to more uncertainty in quantification of the GPP than the GWP or GTP. Using CO2 as references gas, the pulse and sustained GPP values for the non-CO2 species are larger than the corresponding GTP values, because the CO2 GPP is the sum of two quite strongly opposing terms. For BC emissions, the atmospheric forcing is sufficiently strong that the GPPS is opposite in sign to the GTPS. The choice of CO2 as a reference gas is problematic, especially for the GPPS at time horizons less than about 60 years, because the opposing terms make the CO2 GPPS

  13. Rep-rate explosive whisker emission cathode investigations

    NASA Astrophysics Data System (ADS)

    Litz, Marc S.; Golden, Jeffry

    1994-05-01

    An experiment is underway to study the performance of several materials as field-emission cathodes for low voltage (rate. This provides a high average power (50 kW) test bed for the study. A comparison is made of cathodes fabricated from velvet, carbon, diamond coatings, niobium wire nanocomposite, and poly-crystalline tungsten. Surface emission is monitored by an array of Faraday cups. The `turn-on' time, uniformity of emission, and gap closure time are measured as a function of the spatially averaged, macroscopic electric field at the cathode. The carbon fiber cathode produces the largest current density and has the lowest threshold voltage for emission.

  14. Urban stress-induced biogenic VOC emissions impact secondary aerosol formation in Beijing

    NASA Astrophysics Data System (ADS)

    Ghirardo, A.; Xie, J.; Zheng, X.; Wang, Y.; Grote, R.; Block, K.; Wildt, J.; Mentel, T.; Kiendler-Scharr, A.; Hallquist, M.; Butterbach-Bahl, K.; Schnitzler, J.-P.

    2015-08-01

    Trees can significantly impact the urban air chemistry by the uptake and emission of reactive biogenic volatile organic compounds (BVOCs), which are involved in ozone and particle formation. Here we present the emission potentials of "constitutive" (cBVOCs) and "stress-induced" BVOCs (sBVOCs) from the dominant broadleaf woody plant species in the megacity of Beijing. Based on an inventory of BVOC emissions and the tree census, we assessed the potential impact of BVOCs on secondary particulate matter formation in 2005 and 2010, i.e., before and after realizing the large tree-planting program for the 2008 Olympic Games. We found that sBVOCs, such as fatty acid derivatives, benzenoids and sesquiterpenes, constituted a significant fraction (∼ 15 %) of the total annual BVOC emissions, and we estimated that the overall annual BVOC budget may have doubled from ∼ 3.6 × 109 g C year-1 in 2005 to ∼ 7.1 × 109 g C year-1 in 2010 due to the increase in urban greens, while at the same time, the emission of anthropogenic VOCs (AVOCs) could be lowered by 24 %. Based on our BVOC emission assessment, we estimated the biological impact on SOA mass formation in Beijing. Compared to AVOCs, the contribution of biogenic precursors (2-5 %) for secondary particulate matter in Beijing was low. However, sBVOCs can significantly contribute (∼ 40 %) to the formation of total secondary organic aerosol (SOA) from biogenic sources; apparently, their annual emission increased from 1.05 μg m-3 in 2005 to 2.05 μg m-3 in 2010. This study demonstrates that biogenic and, in particular, sBVOC emissions contribute to SOA formation in megacities. However, the main problems regarding air quality in Beijing still originate from anthropogenic activities. Nevertheless, the present survey suggests that in urban plantation programs, the selection of plant species with low cBVOC and sBVOC emission potentials have some possible beneficial effects on urban air quality.

  15. Dilepton and photon emission rates from a hadronic gas. II

    SciTech Connect

    Steele, J.V.; Yamagishi, H.; Zahed, I.

    1997-11-01

    We extend our recent analysis of the dilepton and photon emission rates to the case of finite temperature and baryon density, within the context of a density expansion. To leading order, the effects of the baryon density are assessed using data (photon emission) or constraints from broken chiral symmetry (dilepton emission). Next-to-leading-order effects are worked out, and their contribution qualitatively assessed. The opening of the {pi}N cut causes the photon rate to saturate the upper limits for the photon yield from WA80 for a nucleon density that just reaches the lower limits of the low mass dileptons seen at CERES. {copyright} {ital 1997} {ital The American Physical Society}

  16. Large spontaneous emission rate enhancement in grating coupled hyperbolic metamaterials

    PubMed Central

    Sreekanth, Kandammathe Valiyaveedu; Krishna, Koduru Hari; De Luca, Antonio; Strangi, Giuseppe

    2014-01-01

    Hyperbolic metamaterial (HMM), a sub-wavelength periodic artificial structure with hyperbolic dispersion, can enhance the spontaneous emission of quantum emitters. Here, we demonstrate the large spontaneous emission rate enhancement of an organic dye placed in a grating coupled hyperbolic metamaterial (GCHMM). A two-dimensional (2D) silver diffraction grating coupled with an Ag/Al2O3 HMM shows 18-fold spontaneous emission decay rate enhancement of dye molecules with respect to the same HMM without grating. The experimental results are compared with analytical models and numerical simulations, which confirm that the observed enhancement of GCHMM is due to the outcoupling of non-radiative plasmonic modes as well as strong plasmon-exciton coupling in HMM via diffracting grating. PMID:25209102

  17. The Toxicological Evaluation of Realistic Emissions of Source Aerosols Study: Statistical Methods

    PubMed Central

    Coull, Brent A.; Wellenius, Gregory A.; Gonzalez-Flecha, Beatriz; Diaz, Edgar; Koutrakis, Petros; Godleski, John J.

    2013-01-01

    The Toxicological Evaluation of Realistic Emissions of Source Aerosols (TERESA) study involved withdrawal, aging, and atmospheric transformation of emissions of three coal-fired power plants. Toxicological evaluations were carried out in rats exposed to different emission scenarios with extensive exposure characterization. Data generated had multiple levels of resolution: exposure, scenario and constituent chemical composition. Here, we outline a multilayered approach to analyze the associations between exposure and health effects beginning with standard ANOVA models that treat exposure as a categorical variable. The model assessed differences in exposure effects across scenarios (by plant). To assess unadjusted associations between pollutant concentrations and health, univariate analyses were conducted using the difference between the response means under exposed and control conditions and a single constituent concentration as the predictor. Then, a novel multivariate analysis of exposure composition and health was used based on random forests, a recent extension of classification and regression trees that were applied to the outcome differences. For each exposure constituent, this approach yielded a nonparametric measure of the importance of that constituent in predicting differences in response on a given day, controlling for the other measured constituent concentrations in the model. Finally, an R2 analysis compared the relative importance of exposure scenario, plant, and constituent concentrations on each outcome. Peak expiratory flow is used to demonstrate how the multiple levels of the analysis complement each other to assess constituents most strongly associated with health effects. PMID:21913820

  18. Development of a United States - Mexico emissions inventory for the Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study

    SciTech Connect

    Hampden Kuhns; Eladio M. Knipping; Jeffrey M. Vukovich,

    2005-05-01

    The Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study investigated the sources of haze at Big Bend National Park in southwest Texas. The modeling domain includes most of the continental United States and Mexico. The BRAVO emissions inventory was constructed from the 1999 National Emission Inventory for the United States, modified to include finer-resolution data for Texas and 13 U.S. states in close proximity. The inventory includes emissions for CO, nitrogen oxides, sulfur dioxide, volatile organic compounds (VOCs), ammonia, particulate matter (PM) {lt}10 {mu}m in aerodynamic diameter, and PM {lt}2.5 {mu}m in aerodynamic diameter. The SMOKE modeling system was used to generate gridded emissions fields for use with the Regional Modeling System for Aerosols and Deposition (REMSAD) and the Community Multiscale Air Quality model modified with the Model of Aerosol Dynamics, Reaction, Ionization and Dissolution (CMAQ-MADRID). The compilation of the inventory, supporting model input data, and issues encountered during the development of the inventory are documented. A comparison of the BRAVO emissions inventory for Mexico with other emerging Mexican emission inventories illustrates their uncertainty. 65 refs., 4 figs., 9 tabs.

  19. Examining the Effects of Anthropogenic Emissions on Isoprene-Derived Secondary Organic Aerosol Formation During the 2013 Southern Oxidant and Aerosol Study (SOAS) at the Look Rock, Tennessee, Ground Site

    EPA Science Inventory

    A suite of offline and real-time gas- and particle-phase measurements was deployed atLook Rock, Tennessee (TN), during the 2013 Southern Oxidant and Aerosol Study (SOAS) to examine the effects of anthropogenic emissions on isoprene-derived secondary organic aerosol (SOA) formatio...

  20. Gas-particle partitioning of primary organic aerosol emissions: (2) diesel vehicles.

    PubMed

    May, Andrew A; Presto, Albert A; Hennigan, Christopher J; Nguyen, Ngoc T; Gordon, Timothy D; Robinson, Allen L

    2013-08-01

    Experiments were performed to investigate the gas-particle partitioning of primary organic aerosol (POA) emissions from two medium-duty (MDDV) and three heavy-duty (HDDV) diesel vehicles. Each test was conducted on a chassis dynamometer with the entire exhaust sampled into a constant volume sampler (CVS). The vehicles were operated over a range of driving cycles (transient, high-speed, creep/idle) on different ultralow sulfur diesel fuels with varying aromatic content. Four independent yet complementary approaches were used to investigate POA gas-particle partitioning: artifact correction of quartz filter samples, dilution from the CVS into a portable environmental chamber, heating in a thermodenuder, and thermal desorption/gas chromatography/mass spectrometry (TD-GC-MS) analysis of quartz filter samples. During tests of vehicles not equipped with diesel particulate filters (DPF), POA concentrations inside the CVS were a factor of 10 greater than ambient levels, which created large and systematic partitioning biases in the emissions data. For low-emitting DPF-equipped vehicles, as much as 90% of the POA collected on a quartz filter from the CVS were adsorbed vapors. Although the POA emission factors varied by more than an order of magnitude across the set of test vehicles, the measured gas-particle partitioning of all emissions can be predicted using a single volatility distribution derived from TD-GC-MS analysis of quartz filters. This distribution is designed to be applied directly to quartz filter data that are the basis for existing emissions inventories and chemical transport models that have implemented the volatility basis set approach. PMID:23786154

  1. Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory

    SciTech Connect

    McMeeking, Gavin R.; Kreidenweis, Sonia M.; Baker, Stephen; Carrico, Christian M.; Chow, Judith C.; Collett, Jr., Jeffrey L.; Hao, Wei Min; Holden, Amanda S.; Kirchstetter, Thomas W.; Malm, William C.; Moosmuller, Hans; Sullivan, Amy P.; Wold, Cyle E.

    2009-05-15

    We characterized the gas- and speciated aerosol-phase emissions from the open combustion of 33 different plant species during a series of 255 controlled laboratory burns during the Fire Laboratory at Missoula Experiments (FLAME). The plant species we tested were chosen to improve the existing database for U.S. domestic fuels: laboratory-based emission factors have not previously been reported for many commonly-burned species that are frequently consumed by fires near populated regions and protected scenic areas. The plants we tested included the chaparral species chamise, manzanita, and ceanothus, and species common to the southeastern US (common reed, hickory, kudzu, needlegrass rush, rhododendron, cord grass, sawgrass, titi, and wax myrtle). Fire-integrated emission factors for gas-phase CO{sub 2}, CO, CH{sub 4}, C{sub 2-4} hydrocarbons, NH{sub 3}, SO{sub 2}, NO, NO{sub 2}, HNO{sub 3} and particle-phase organic carbon (OC), elemental carbon (EC), SO{sub 4}{sup 2-}, NO{sub 3}{sup -}, Cl{sup -}, Na{sup +}, K{sup +}, and NH{sub 4}{sup +} generally varied with both fuel type and with the fire-integrated modified combustion efficiency (MCE), a measure of the relative importance of flaming- and smoldering-phase combustion to the total emissions during the burn. Chaparral fuels tended to emit less particulate OC per unit mass of dry fuel than did other fuel types, whereas southeastern species had some of the largest observed EF for total fine particulate matter. Our measurements often spanned a larger range of MCE than prior studies, and thus help to improve estimates for individual fuels of the variation of emissions with combustion conditions.

  2. EFFECT OF VENTILATION ON EMISSION RATES OF WOOD FINISHING MATERIALS

    EPA Science Inventory

    The paper gives results from EPA studies on the effect of ventilation (air changes per hour) and material loading on the emission rate for selected organics and total measured organics from three wood finishing materials (stain, polyurethane, and wax). The data are analyzed to sh...

  3. Secondary Organic Aerosol from On- and Off-Road Combustion Emissions: Scientific and Policy Perspectives

    NASA Astrophysics Data System (ADS)

    Gordon, Timothy D.

    Combustion emissions from on-road sources such as light duty gasoline vehicles (LDGV), medium duty diesel vehicles (MDDV) and heavy duty diesel vehicles (HDDV) as well as small off-road engines (SORE) such those used in lawn and garden equipment are a major source of fine particulate matter (PM) pollution in the ambient atmosphere. Existing regulations have restricted direct PM emissions, especially for on-road sources; however, recent studies suggest that organic PM formed from the photo-oxidation of gaseous precursor emissions—so-called secondary organic aerosol (SOA)—contributes at least as much to the overall PM burden as PM "emitted from the tailpipe." A major limitation of many of these studies is that they attempt to induce from the behavior of simple emission surrogates (e.g., vaporized whole fuel) the behavior of actual combustion emissions from real world sources. This research investigates combustion emissions directly. The primary gas- and particle-phase emissions, SOA production and SOA yields from a range of different on-road and off-road combustion sources were characterized. LDGV, MDDV and HDDV were driven on chassis dynamometers over realistic, urban driving cycles. Off-road sources, including 2- and 4-stroke lawn and garden equipment and a diesel transportation refrigeration unit were tested using engine dynamometers operated over certification cycles. For nearly all gasoline engines (LDGV and SOREs), photo-oxidizing dilute combustion emissions for 3 hours produced at least as much SOA as the directly emitted primary PM. SOA increased net PM production for LDGV by a factor of 1-10, depending on the vehicle emission standard. SOA yields were found to increase with newer vehicles, which have lower primary emissions. SOA for diesel vehicles, while still large on an absolute basis, was a smaller fraction of the primary PM emissions (between 10-30%), due to the very high elemental carbon (EC) emissions from vehicles without diesel particulate

  4. Toxicological Evaluation of Realistic Emission Source Aerosols (TERESA)-power plant studies: assessment of cellular responses

    PubMed Central

    Godleski, John J.; Diaz, Edgar A.; Lemos, Miriam; Long, Mark; Ruiz, Pablo; Gupta, Tarun; Kang, Choong-Min; Coull, Brent

    2013-01-01

    The Toxicological Evaluation of Realistic Emission Source Aerosols (TERESA) project assessed primary and secondary particulate by simulating the chemical reactions that a plume from a source might undergo during atmospheric transport and added other atmospheric constituents that might interact with it. Three coal-fired power plants with different coal and different emission controls were used. Male Sprague-Dawley rats were exposed for 6 h to either filtered air or aged aerosol from the power plant. Four exposure scenarios were studied: primary particles (P); primary + secondary (oxidized) particles (PO); primary + secondary (oxidized) particles + SOA (POS); and primary + secondary (oxidized) particles neutralized + SOA (PONS). Exposure concentrations varied by scenario to a maximum concentration of 257.1 ± 10.0 µg/m3. Twenty-four hours after exposure, pulmonary cellular responses were assessed by bronchoalveolar lavage (BAL), complete blood count (CBC), and histopathology. Exposure to the PONS and POS scenarios produced significant increases in BAL total cells and macrophage numbers at two plants. The PONS and P scenarios were associated with significant increases in BAL neutrophils and the presence of occasional neutrophils and increased macrophages in the airways and alveoli of exposed animals. Univariate analyses and random forest analyses showed that increases in total cell count and macrophage cell count were significantly associated with neutralized sulfate and several correlated measurements. Increases in neutrophils in BAL were associated with zinc. There were no significant differences in CBC parameters or blood vessel wall thickness by histopathology. The association between neutrophils increases and zinc raises the possibility that metals play a role in this response. PMID:21466245

  5. EVALUATION OF AEROSOL EMISSIONS DOWNSTREAM OF AN AMMONIA-BASED SO2 SCRUBBER

    SciTech Connect

    Dennis L. Laudal

    2002-04-01

    Depending on the size and type of boiler, the 1990 Clean Air Act Amendments required specific reductions in SO{sub 2} emissions from coal-fired electric utilities. To meet these requirements, SO{sub 2} reduction strategies have included installing scrubbing technology, switching to a more expensive low-sulfur coal, or purchasing SO{sub 2} allowances. It is expected that over the next 10 years there will be an increase in the price of low-sulfur coals, but that higher-sulfur coal costs will remain the same. Technologies must be strongly considered that allow the use of high-sulfur fuels while at the same time meeting current and future SO{sub 2} emission limits. One such technology is the ammonia based flue gas desulfurization (FGD) (NH{sub 3}-based FGD) system manufactured by Marsulex Environmental Technologies (MET). The MET scrubber is a patented NH{sub 3}-based FGD process that efficiently converts SO{sub 2} (>95%) into a fertilizer product, ammonium sulfate ([NH{sub 4}]{sub 2}SO{sub 4}). A point of concern for the MET technology, as well as other FGD systems, is the emission of sulfuric acid/SO{sub 3} aerosols that could result in increased opacity at the stack. This is a direct result of firing high-sulfur fuels that naturally generate more SO{sub 3} than do low-sulfur coals. SO{sub 3} is formed during the coal combustion process. SO{sub 3} is converted to gaseous H{sub 2}SO{sub 4} by homogeneous condensation, leading to a submicron acid fume that is very difficult to capture in a dry electrostatic precipitator (ESP). The condensed acid can also combine with the fly ash in the duct and scale the duct wall, potentially resulting in corrosion of both metallic and nonmetallic surfaces. Therefore, SO{sub 3} in flue gas can have a significant impact on the performance of coal-fired utility boilers, air heaters, and ESPs. In addition to corrosion problems, excess SO{sub 3} emissions can result in plume opacity problems. Thus the Energy & Environmental Research

  6. High rates of methane emissions from south taiga wetland ponds.

    NASA Astrophysics Data System (ADS)

    Glagolev, M.; Kleptsova, I.; Maksyutov, S.

    2012-04-01

    Since wetland ponds are often assumed to be insignificant sources of methane, there is a limited data about its fluxes. In this study, we found surprisingly high rates of methane emission at several shallow ponds in the south taiga zone of West Siberia. Wetland ponds within the Great Vasyugan Mire ridge-hollow-pool patterned bog system were investigated. 22 and 24 flux measurements from ponds and surrounded mires, respectively, were simultaneously made by a static chamber method in July, 2011. In contrast to previous measurements, fluxes were measured using the small boat with floated chamber to avoid disturbance to the water volume. Since the ebullition is most important emission pathway, minimization of physical disturbance provoking gas bubbling significantly increases the data accuracy. Air temperature varied from 15 to 22° C during the measurements, and pH at different pond depths - from 4.4 to 5. As it was found, background emission from surrounding ridges and hollows was 1.7/2.6/3.3 mgC·m-2·h1 (1st/2nd/3rd quartiles). These rates are in a perfect correspondence with the typical methane emission fluxes from other south taiga bogs. Methane emission from wetland ponds turned out to be by order of magnitude higher (9.3/11.3/15.6 mgC·m-2·h1). Comparing to other measurements in West Siberia, many times higher emissions (70.9/111.6/152.3 mgC·m-2·h1) were found in forest-steppe and subtaiga fen ponds. On the contrary, West Siberian tundra lakes emit methane insignificantly, with the flux rate close to surrounding wetlands (about 0.2-0.3 mgC·m-2·h1). Apparently, there is a naturally determined distribution of ponds with different flux rates over different West Siberia climate-vegetation zones. Further investigations aiming at revelation of the zones with different fluxes would be helpful for total flux revision purposes. With respect to other studies, high emission rates were already detected, for instance, in Baltic ponds (Dzyuban, 2002) and U.K. lakes

  7. Differences in physical chemistry and dissolution rate of solid particle aerosols from solution pressurised inhalers.

    PubMed

    Buttini, Francesca; Miozzi, Michele; Balducci, Anna Giulia; Royall, Paul G; Brambilla, Gaetano; Colombo, Paolo; Bettini, Ruggero; Forbes, Ben

    2014-04-25

    Solution composition alters the dynamics of beclomethasone diproprionate (BDP) particle formation from droplets emitted by pressurised metered dose inhalers (pMDIs). The hypothesis that differences in inhaler solutions result in different solid particle physical chemistry was tested using a suite of complementary calorimetric techniques. The atomisation of BDP-ethanol solutions from commercial HFA-pMDI produced aerodynamically-equivalent solid particle aerosols. However, differences in particle physico-chemistry (morphology and solvate/clathrate formation) were detected by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and supported by hot stage microscopy (HSM). Increasing the ethanol content of the formulation from 8 to 12% (w/w), which retards the evaporation of propellant and slows the increase in droplet surface viscosity, enhanced the likelihood of particles drying with a smooth surface. The dissolution rate of BDP from the 12% (w/w) ethanol formulation-derived particles (63% dissolved over 120 min) was reduced compared to the 8% (w/w) ethanol formulation-derived particles (86% dissolved over 120 min). The addition of 0.01% (w/w) formoterol fumarate or 1.3% (w/w) glycerol to the inhaler solution modified the particles and reduced the BDP dissolution rate further to 34% and 16% dissolved in 120 min, respectively. These data provide evidence that therapeutic aerosols from apparently similar inhaler products, including those with similar aerodynamic performance, may behave non-equivalently after deposition in the lungs. PMID:24491530

  8. Historical emissions of carbonaceous aerosols from biomass and fossil fuel burning for the period 1870-2000

    NASA Astrophysics Data System (ADS)

    Ito, Akinori; Penner, Joyce E.

    2005-06-01

    Historical changes of black carbon (BC) and particulate organic matter (POM) emissions from biomass burning (BB) and fossil fuel (FF) burning are estimated from 1870 to 2000. A bottom-up inventory for open vegetation (OV) burning is scaled by a top-down estimate for the year 2000. Monthly and interannual variations are derived over the time period from 1979 to 2000 based on the TOMS satellite aerosol index (AI) and this global map. Prior to 1979, emissions are scaled to a CH4 emissions inventory based on land-use change. Biofuel (BF) emissions from a recent inventory for developing countries are scaled forward and backward in time using population statistics and crop production statistics. In developed countries, wood consumption data together with emission factors for cooking and heating practices are used for biofuel estimates. For fossil fuel use, we use fuel consumption data and specific emission factors for different fuel use categories to develop an inventory over 1950-2000, and emissions are scaled to a CO2 inventory prior to that time. Technology changes for emissions from the diesel transport sector are included. During the last decade of this time period, the BC and POM emissions from biomass burning (i.e., OV + BF) contribute a significant amount to the primary sources of BC and POM and are larger than those from FF. Thus 59% of the NH BC emissions and 90% of the NH POM emissions are from BB in 2000. Fossil fuel consumption technologies are needed prior to 1990 in order to improve estimates of fossil fuel emissions during the twentieth century. These results suggest that the aerosol emissions from biomass burning need to be represented realistically in climate change assessments. The estimated emissions are available on a 1° × 1° grid for global climate modeling studies of climate changes.

  9. Methyl chavicol: characterization of its biogenic emission rate, abundance, and oxidation products in the atmosphere

    NASA Astrophysics Data System (ADS)

    Bouvier-Brown, N. C.; Goldstein, A. H.; Worton, D. R.; Matross, D. M.; Gilman, J. B.; Kuster, W. C.; Welsh-Bon, D.; Warneke, C.; de Gouw, J. A.; Cahill, T. M.; Holzinger, R.

    2008-11-01

    We report measurements of ambient atmospheric mixing ratios for methyl chavicol and determine its biogenic emission rate. Methyl chavicol, a biogenic oxygenated aromatic compound, is abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. Methyl chavicol was detected simultaneously by three in-situ instruments a gas chromatograph with mass spectrometer detector (GC-MS), a proton transfer reaction mass spectrometer (PTR-MS), and a thermal desorption aerosol GC-MS (TAG) and found to be abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. Methyl chavicol atmospheric mixing ratios are strongly correlated with 2-methyl-3-buten-2-ol (MBO), a light- and temperature-dependent biogenic emission from the ponderosa pine trees at Blodgett Forest. Scaling from this correlation, methyl chavicol emissions account for 4 68% of the carbon mass emitted as MBO in the daytime, depending on the season. From this relationship, we estimate a daytime basal emission rate of 0.72 10.2 μgCg-1h-1, depending on needle age and seasonality. We also present the first observations of its oxidation products (4-methoxybenzaldehyde and 4-methyoxy benzene acetaldehyde) in the ambient atmosphere. Methyl chavicol is a major essential oil component of many plant species. This work suggests that methyl chavicol plays a significant role in the atmospheric chemistry of Blodgett Forest, and potentially other sites, and should be included explicitly in both biogenic volatile organic carbon emission and atmospheric chemistry models.

  10. Dilepton and photon emission rates from a hadronic gas. III

    SciTech Connect

    Lee, C.; Zahed, I.; Yamagishi, H.

    1998-11-01

    We extend our early analyses of the dilepton and photon emission rates from a hadronic gas to account for strange mesons using a density expansion. The emission rates are reduced to vacuum correlation functions using three-flavor chiral reduction formulas, and the latter are assessed in terms of empirical data. Using a fire- ball, we compare our results to the low and intermediate mass dilepton data available from CERN. Our results suggest that a baryon free hadronic gas does not account for the excess of low mass dielectrons observed at CERES but does well in accounting for the intermediate dimuons at HELIOS. The same observations apply to the recent low and high p{sub t} dielectron rates from CERES. thinsp {copyright} {ital 1998} {ital The American Physical Society}

  11. Acoustic emission strand burning technique for motor burning rate prediction

    NASA Technical Reports Server (NTRS)

    Christensen, W. N.

    1978-01-01

    An acoustic emission (AE) method is being used to measure the burning rate of solid propellant strands. This method has a precision of 0.5% and excellent burning rate correlation with both subscale and large rocket motors. The AE procedure burns the sample under water and measures the burning rate from the acoustic output. The acoustic signal provides a continuous readout during testing, which allows complete data analysis rather than the start-stop clockwires used by the conventional method. The AE method helps eliminate such problems as inhibiting the sample, pressure increase and temperature rise, during testing.

  12. Characterizing the influence of anthropogenic emissions and transport variability on sulfate aerosol concentrations at Mauna Loa Observatory

    NASA Astrophysics Data System (ADS)

    Potter, Lauren E.

    Sulfate aerosol in the atmosphere has substantial impacts on human health and environmental quality. Most notably, atmospheric sulfate has the potential to modify the earth's climate system through both direct and indirect radiative forcing mechanisms (Meehl et al., 2007). Emissions of sulfur dioxide, the primary precursor of sulfate aerosol, are now globally dominated by anthropogenic sources as a result of widespread fossil fuel combustion. Economic development in Asian countries since 1990 has contributed considerably to atmospheric sulfur loading, particularly China, which currently emits approximately 1/3 of global anthropogenic SO2 (Klimont et al., 2013). Observational and modeling studies have confirmed that anthropogenic pollutants from Asian sources can be transported long distances with important implications for future air quality and global climate change. Located in the remote Pacific Ocean (19.54°N, 155.58°W) at an elevation of 3.4 kilometers above sea level, Mauna Loa Observatory (MLO) is an ideal measurement site for ground-based, free tropospheric observations and is well situated to experience influence from springtime Asian outflow. This study makes use of a 14-year data set of aerosol ionic composition, obtained at MLO by the University of Hawaii at Manoa. Daily filter samples of total aerosol concentrations were made during nighttime downslope (free-tropospheric) transport conditions, from 1995 to 2008, and were analyzed for aerosol-phase concentrations of the following species: nitrate (NO3-), sulfate (SO42-), methanesulfonate (MSA), chloride (Cl-), oxalate, sodium (Na+), ammonium (NH 4+), potassium (K+), magnesium (Mg 2+), and calcium (Ca2+). An understanding of the factors controlling seasonal and interannual variations in aerosol speciation and concentrations at this site is complicated by the relatively short lifetimes of aerosols, compared with greenhouse gases which have also been sampled over long time periods at MLO. Aerosol filter

  13. Sensitivity of nitrate aerosols to ammonia emissions and to nitrate chemistry: implications for present and future nitrate optical depth

    NASA Astrophysics Data System (ADS)

    Paulot, F.; Ginoux, P.; Cooke, W. F.; Donner, L. J.; Fan, S.; Lin, M.; Mao, J.; Naik, V.; Horowitz, L. W.

    2015-09-01

    We update and evaluate the treatment of nitrate aerosols in the Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric model (AM3). Accounting for the radiative effects of nitrate aerosols generally improves the simulated aerosol optical depth, although nitrate concentrations at the surface are biased high. This bias can be reduced by increasing the deposition of nitrate to account for the near-surface volatilization of ammonium nitrate or by neglecting the heterogeneous production of nitric acid to account for the inhibition of N2O5 reactive uptake at high nitrate concentrations. Globally, uncertainties in these processes can impact the simulated nitrate optical depth by up to 25 %, much more than the impact of uncertainties in the seasonality of ammonia emissions (6 %) or in the uptake of nitric acid on dust (13 %). Our best estimate for present-day fine nitrate optical depth at 550 nm is 0.006 (0.005-0.008). We only find a modest increase of nitrate optical depth (< 30 %) in response to the projected changes in the emissions of SO2 (-40 %) and ammonia (+38 %) from 2010 to 2050. Nitrate burden is projected to increase in the tropics and in the free troposphere, but to decrease at the surface in the midlatitudes because of lower nitric acid concentrations. Our results suggest that better constraints on the heterogeneous chemistry of nitric acid on dust, on tropical ammonia emissions, and on the transport of ammonia to the free troposphere are needed to improve projections of aerosol optical depth.

  14. Effect of measurement protocol on organic aerosol measurements of exhaust emissions from gasoline and diesel vehicles

    NASA Astrophysics Data System (ADS)

    Kim, Youngseob; Sartelet, Karine; Seigneur, Christian; Charron, Aurélie; Besombes, Jean-Luc; Jaffrezo, Jean-Luc; Marchand, Nicolas; Polo, Lucie

    2016-09-01

    Exhaust emissions of semi-volatile organic compounds (SVOC) from passenger vehicles are usually estimated only for the particle phase via the total particulate matter measurements. However, they also need to be estimated for the gas phase, as they are semi-volatile. To better estimate SVOC emission factors of passenger vehicles, a measurement campaign using a chassis dynamometer was conducted with different instruments: (1) a constant volume sampling (CVS) system in which emissions were diluted with filtered air and sampling was performed on filters and polyurethane foams (PUF) and (2) a Dekati Fine Particle Sampler (FPS) in which emissions were diluted with purified air and sampled with on-line instruments (PTR-ToF-MS, HR-ToF-AMS, MAAP, CPC). Significant differences in the concentrations of organic carbon (OC) measured by the instruments are observed. The differences can be explained by sampling artefacts, differences between (1) the time elapsed during sampling (in the case of filter and PUF sampling) and (2) the time elapsed from emission to measurement (in the case of on-line instruments), which vary from a few seconds to 15 min, and by the different dilution factors. To relate elapsed times and measured concentrations of OC, the condensation of SVOC between the gas and particle phases is simulated with a dynamic aerosol model. The simulation results allow us to understand the relation between elapsed times and concentrations in the gas and particle phases. They indicate that the characteristic times to reach thermodynamic equilibrium between gas and particle phases may be as long as 8 min. Therefore, if the elapsed time is less than this characteristic time to reach equilibrium, gas-phase SVOC are not at equilibrium with the particle phase and a larger fraction of emitted SVOC will be in the gas phase than estimated by equilibrium theory, leading to an underestimation of emitted OC if only the particle phase is considered or if the gas-phase SVOC are estimated

  15. Characterizing particulate matter emissions from vehicles: chassis-dynamometer tests using a High-Resolution Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Collier, S.; Zhang, Q.; Forestieri, S.; Kleeman, M.; Cappa, C. D.; Kuwayama, T.

    2012-12-01

    During September of 2011 a suite of real-time instruments was used to sample vehicle emissions at the California Air Resources Board Haagen-Schmidt facility in El Monte, CA. A representative fleet of 8 spark ignition gasoline vehicles, a diesel passenger vehicle, a gasoline direct-injection vehicle and an ultra-low emissions vehicle were tested on a chassis dynamometer. The emissions were sampled into the facility's standard CVS tunnel and diluted to atmospherically relevant levels (5-30 μg/m3) while controlling other factors such as relative humidity or background black carbon particulate loading concentrations. An Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-MS) was among the real-time instruments used and sampled vehicle emissions at 10 second time resolution in order to characterize the non-refractory organic and inorganic particulate matter (PM). PM composition and concentration were tracked throughout the cold start driving cycle which included periods of fast acceleration and high velocity cruise control, meant to recreate typical commuter driving behavior. Variations in inorganic and organic PM composition for a given vehicle throughout the driving cycle as well as for various vehicles with differing emissions loading were characterized. Differences in PM composition for a given vehicle whose emissions are being exposed to differing experimental conditions such as varying relative humidity will also be reported. In conjunction with measurements from a Multi Wavelength Photoacoustic Black Carbon Spectrometer (MWPA-BC) and real-time gas measurements from the CARB facility, we determine the real-time emission ratios of primary organic aerosols (POA) with respect to BC and common combustion gas phase pollutants and compared to different vehicle driving conditions. The results of these tests offer the vehicle emissions community a first time glimpse at the real-time behavior of vehicle PM emissions for a variety of conditions and

  16. Simultaneous reductions in emissions of black carbon and co-emitted species will weaken the aerosol net cooling effect

    NASA Astrophysics Data System (ADS)

    Wang, Z. L.; Zhang, H.; Zhang, X. Y.

    2015-04-01

    Black carbon (BC), a distinct type of carbonaceous material formed from the incomplete combustion of fossil and biomass based fuels under certain conditions, can interact with solar radiation and clouds through its strong light-absorption ability, thereby warming the Earth's climate system. Some studies have even suggested that global warming could be slowed down in the short term by eliminating BC emission due to its short lifetime. In this study, we estimate the influence of removing some sources of BC and other co-emitted species on the aerosol radiative effect by using an aerosol-climate atmosphere-only model BCC_AGCM2.0.1_CUACE/Aero with prescribed sea surface temperature and sea ice cover, in combination with the aerosol emissions from the Representative Concentration Pathways (RCPs) scenarios. We find that the global annual mean aerosol net cooling effect at the top of the atmosphere (TOA) will be enhanced by 0.12 W m-2 compared with recent past year 2000 levels if the emissions of only BC are reduced to the level projected for 2100 based on the RCP2.6 scenario. This will be beneficial~for the mitigation of global warming. However, both aerosol negative direct and indirect radiative effects are weakened when BC and its co-emitted species (sulfur dioxide and organic carbon) are simultaneously reduced. Relative to year 2000 levels, the global annual mean aerosol net cooling effect at the TOA will be weakened by 1.7-2.0 W m-2 if the emissions of all these aerosols are decreased to the levels projected for 2100 in different ways based on the RCP2.6, RCP4.5, and RCP8.5 scenarios. Because there are no effective ways to remove the BC exclusively without influencing the other co-emitted components, our results therefore indicate that a reduction in BC emission can lead to an unexpected warming on the Earth's climate system in the future.

  17. Evidence for ships emissions in the Central Mediterranean Sea from aerosol chemical analyses at the island of Lampedusa

    NASA Astrophysics Data System (ADS)

    Becagli, S.; Sferlazzo, D. M.; Pace, G.; di Sarra, A.; Bommarito, C.; Calzolai, G.; Ghedini, C.; Lucarelli, F.; Meloni, D.; Monteleone, F.; Severi, M.; Traversi, R.; Udisti, R.

    2011-11-01

    Measurements of aerosol chemical composition made on the island of Lampedusa, south of the Sicily channel, during years 2004-2008, are used to identify the influence of ship emissions on aerosol particles in the Central Mediterranean. Evidence of ship emissions influence is found in 17% of the daily samples. Aerosol samples influenced by ships are characterized by elevated Ni and V soluble fraction (about 80% for aerosol from ships, versus about 40 % for crustal particles), high V and Ni to Si ratios, and values of Vsol>6 ng m-3. Back trajectories analysis on the selected events show that air masses prevalently come from the Sicily channel, where an intense ship traffic occurs. Vsol, Nisol, and non-sea salt SO42- (nssSO42-) show a marked seasonal behaviour, with an evident summer maximum. Such a pattern can be explained by several processes: (i) increased photochemical activity in summer, leading to a faster production of secondary aerosols, mainly nssSO42-, from the oxidation of SO2 in the ship plume; (ii) stronger marine boundary layer (MBL) stability in summer, leading to higher concentration of emitted compounds in the lowest atmospheric layers; (iii) more frequent meteorological conditions leading to consecutive days with trajectories from the Sicily channel in summer. A very intense event in spring 2008 was studied in detail, also using size segregated chemical measurements. These data show that elements arising from heavy oil combustion (V, Ni, Al, Fe) are distributed in the sub-micrometric fraction of the aerosol, and the metals are present as free metals, carbonates, oxides hydrates or labile complex with organic ligands, so that they are dissolved in mild condition (HNO3, pH1.5). Data suggest a characteristic nssSO42-/V ratio in the range 200-400 for ship emission aerosols in summer at Lampedusa. By using the value of 200 a lower limit for the ship contribution to total sulphates is estimated. Ship emissions account, as a summer average, at least for 1

  18. Influence of flow rate on aerosol particle size distributions from pressurized and breath-actuated inhalers.

    PubMed

    Smith, K J; Chan, H K; Brown, K F

    1998-01-01

    Particle size distribution of delivered aerosols and the total mass of drug delivered from the inhaler are important determinants of pulmonary deposition and response to inhalation therapy. Inhalation flow rate may vary between patients and from dose to dose. The Andersen Sampler (AS) cascade impactor operated at flow rates of 30 and 55 L/min and the Marple-Miller Impactor (MMI) operated at flow rates of 30, 55, and 80 L/min were used in this study to investigate the influence of airflow rate on the particle size distributions of inhalation products. Total mass of drug delivered from the inhaler, fine particle mass, fine particle fraction, percentage of nonrespirable particles, and amount of formulation retained within the inhaler were determined by ultraviolet spectrophotometry for several commercial bronchodilator products purchased in the marketplace, including a pressurized metered-dose inhaler (pMDI), breath-actuated pressurized inhaler (BAMDI), and three dry powder inhalers (DPIs), two containing salbutamol sulphate and the other containing terbutaline sulphate. Varying the flow rate through the cascade impactor produced no significant change in performance of the pressurized inhalers. Increasing the flow rate produced a greater mass of drug delivered and an increase in respirable particle mass and fraction from all DPIs tested. PMID:10346666

  19. A pre-processor of trace gases and aerosols emission fields for regional and global atmospheric chemistry models

    NASA Astrophysics Data System (ADS)

    Freitas, S. R.; Longo, K. M.; Alonso, M. F.; Pirre, M.; Marecal, V.; Grell, G.; Stockler, R.; Mello, R. F.; Sánchez Gácita, M.

    2010-06-01

    The pre-processor PREP-CHEM-SRC presented in the paper is a comprehensive tool aiming at preparing emissions fields of trace gases and aerosols for use in regional or global transport models. The emissions considered are urban/industrial, biogenic, biomass burning, volcanic, biofuel use and burning from agricultural waste sources from most recent databases or from satellite fire detections for biomass burning. A plumerise model is used to derive the height of smoke emissions from satellite fire products. The pre-processor provides emission fields interpolated onto the transport model grid. Several map projections can be chosen. The way to include these emissions in transport models is also detailed. The pre-processor is coded using Fortran 90 and C and is driven by a namelist allowing the user to choose the type of emissions and the database.

  20. Plasmonic nanogaps for broadband and large spontaneous emission rate enhancement

    SciTech Connect

    Edwards, Anthony P.; Adawi, Ali M.

    2014-02-07

    We present the optical properties of a plasmonic nanogap formed between a silver metallic nanoparticle and an extended silver film that shows a strong enhancement in the spontaneous emission rate over the whole visible range. In particular, we use three-dimensional finite difference time domain calculations to study the spontaneous emission rate and the quantum efficiency of an emitting material placed within the gap region as a function of the geometrical parameters of the plasmonic nanogap. Our calculations reveal that the enhancements in the total decay rate can be divided into two regions as a function of wavelength; region I spans the wavelength range from 350 nm to 500 nm and peaks at approximately at 400 nm. Region II covers the spectral range between 500 nm and 1000 nm. The enhancements in total decay rate in region I are mainly dominated by Ohmic losses by the metal, while the enhancements in total decay rate in region II are mainly dominated by radiative decay rate enhancements. Furthermore, our calculations show over 100 times enhancement in the spontaneous emission rate in region II. We combine this with quantum efficiency enhancements of almost 30 times from materials with low intrinsic quantum efficiencies and only a small reduction in efficiency from those with high intrinsic quantum efficiencies. All results appear easily achievable using realistic geometrical parameters and simple synthesis techniques. These results are attributed to the strong field confinements in the nanogap region. The structures are of high interest for both the fundamental understanding of light mater interactions under extreme electromagnetic field confinements and also potential applications in quantum optics and Raman spectroscopy.

  1. Interannual variation in the fine-mode MODIS aerosol optical depth and its relationship to the changes in sulfur dioxide emissions in China between 2000 and 2010

    NASA Astrophysics Data System (ADS)

    Itahashi, S.; Uno, I.; Yumimoto, K.; Irie, H.; Osada, K.; Ogata, K.; Fukushima, H.; Wang, Z.; Ohara, T.

    2012-03-01

    Anthropogenic SO2 emissions increased alongside economic development in China at a rate of 12.7% yr-1 from 2000 to 2005. However, under new Chinese government policy, SO2 emissions declined by 3.9% yr-1 between 2005 and 2009. Between 2000 and 2010, we found that the variability in the fine-mode (submicron) aerosol optical depth (AOD) over the oceans adjacent to East Asia increased by 3-8% yr-1 to a peak around 2005-2006 and subsequently decreased by 2-7% yr-1, based on observations by the Moderate Resolution Imaging Spectroradiometer (MODIS) on board NASA's Terra satellite and simulations by a chemical transport model. This trend is consistent with ground-based observations of aerosol particles at a mountainous background observation site in central Japan. These fluctuations in SO2 emission intensity and fine-mode AOD are thought to reflect the widespread installation of fuel-gas desulfurization (FGD) devices in power plants in China, because aerosol sulfate is a major determinant of the fine-mode AOD in East Asia. Using a chemical transport model, we confirmed that the contribution of particulate sulfate to the fine-mode AOD is more than 70% of the annual mean and that the abovementioned fluctuation in fine-mode AOD is caused mainly by changes in SO2 emission rather than by other factors such as varying meteorological conditions in East Asia. A strong correlation was also found between satellite-retrieved SO2 vertical column density and bottom-up SO2 emissions, both of which were also consistent with observed fine-mode AOD trends. We propose a simplified approach for evaluating changes in SO2 emissions in China, combining the use of modeled sensitivity coefficients that describe the variation of fine-mode AOD with changes in SO2 emissions and satellite retrieval. Satellite measurements of fine-mode AOD above the Sea of Japan marked a 4.1% yr-1 decline between 2007 and 2010, which corresponded to the 9% yr-1 decline in SO2 emissions from China during the same

  2. Development of a United States-Mexico Emissions Inventory for the Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study.

    PubMed

    Kuhns, Hampden; Knipping, Eladio M; Vukovich, Jeffrey M

    2005-05-01

    The Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study was commissioned to investigate the sources of haze at Big Bend National Park in southwest Texas. The modeling domain of the BRAVO Study includes most of the continental United States and Mexico. The BRAVO emissions inventory was constructed from the 1999 National Emission Inventory for the United States, modified to include finer-resolution data for Texas and 13 U.S. states in close proximity. The first regional-scale Mexican emissions inventory designed for air-quality modeling applications was developed for 10 northern Mexican states, the Tula Industrial Park in the state of Hidalgo, and the Popocatépetl volcano in the state of Puebla. Emissions data were compiled from numerous sources, including the U.S. Environmental Protection Agency (EPA), the Texas Natural Resources Conservation Commission (now Texas Commission on Environmental Quality), the Eastern Research Group, the Minerals Management Service, the Instituto Nacional de Ecología, and the Instituto Nacional de Estadistica Geografía y Informática. The inventory includes emissions for CO, nitrogen oxides, sulfur dioxide, volatile organic compounds (VOCs), ammonia, particulate matter (PM) < 10 microm in aerodynamic diameter, and PM < 2.5 microm in aerodynamic diameter. Wind-blown dust and biomass burning were not included in the inventory, although high concentrations of dust and organic PM attributed to biomass burning have been observed at Big Bend National Park. The SMOKE modeling system was used to generate gridded emissions fields for use with the Regional Modeling System for Aerosols and Deposition (REMSAD) and the Community Multiscale Air Quality model modified with the Model of Aerosol Dynamics, Reaction, Ionization and Dissolution (CMAQ-MADRID). The compilation of the inventory, supporting model input data, and issues encountered during the development of the inventory are documented. A comparison of the BRAVO emissions

  3. Using Thermal-Optical Analysis to Examine the OC-EC Split that Characterizes Ambient and Source Emissions Aerosols

    NASA Astrophysics Data System (ADS)

    Khan, B.; Hays, M. D.; Geron, C.; Jetter, J.

    2010-12-01

    Thermal-optical analysis (TOA) is typically used to measure OC-EC (organic carbon-elemental carbon) ratio in atmospheric aerosols. The present study utilizes a single dual-optics carbon aerosol analyzer to examine the effects of temperature-programming and optics on the OC-EC ratios. The OC-EC ratios for a variety of atmospheric and source emissions aerosols were measured using a National Institute of Occupational Safety and Health method (NIOSH 5040), the Interagency Monitoring of Protected Visual Environments method (IMPROVE), and a modified NIOSH 5040 method (referred in this paper as NIST-EPA). Use of the dual-optics instrument allowed simultaneous monitoring of the reflectance (TOR) and transmission (TOT) during each thermal protocol. Results showed no statistical difference between NIST-EPA and NIOSH OC-EC ratios for residential cookstove emissions and for an urban aerosol collected in Nairobi, Kenya. However, the OC-EC ratios for diesel exhaust (NIST [TOT and TOR]) and for a denuded rural North Carolina forest aerosol (NIST [TOT]) were significantly greater than the corresponding NIOSH values. Significantly lower IMPROVE (TOT and TOR) OC-EC ratios, compared to NIST-EPA and NIOSH, may be ascribed to the lower temperature protocol of this method. The ratio of TOT-to-TOR for the OC-EC ratio ranged between 1.37 - 1.71 (residential cookstoves), 1.05 - 1.24 (diesel exhaust), 1.63 - 2.23 (rural), and 0.80 - 1.12 (urban) for the three methods. Aerosols containing components susceptible to charring (such as water soluble organic compounds typical of rural and cookstove aerosols) tend to show the higher OC-EC variability among the methods when compared to diesel-impacted aerosols, which showed little to no detectable pyrolyzed carbon (PyC). Different sample types, due to their various chemical compositions, behave differently under dissimilar thermal and optical conditions, such that the search for a “universal” thermal-optical method for all sample types remain

  4. Positron emission tomography (PET) for assessing aerosol deposition of orally inhaled drug products.

    PubMed

    Dolovich, Myrna B; Bailey, Dale L

    2012-12-01

    The topical distribution of inhaled therapies in the lung can be viewed using radionuclides and imaging. Positron emission tomography (PET) is a three-dimensional functional imaging technique providing quantitatively accurate localization of the quantity and distribution of an inhaled or injected PET radiotracer in the lung. A series of transaxial slices through the lungs are obtained, comparable to an X-ray computed tomography (CT) scan. Subsequent reformatting allows coronal and sagittal images of the distribution of radioactivity to be viewed. This article describes procedures for administering [(18)F]-fluorodeoxyglucose aerosol to human subjects for the purpose of determining dose and distribution following inhalation from an aerosol drug delivery device (ADDD). The advantages of using direct-labeled PET drugs in the ADDD are discussed with reference to the literature. The methods for designing the inhalation system, determining proper radiation shielding, calibration, and validation of administered radioactivity, scanner setup, and data handling procedures are described. Obtaining an X-ray CT or radionuclide transmission scan to provide accurate geometry of the lung and also correct for tissue attenuation of the PET radiotracer is discussed. Protocols for producing accurate images, including factors that need to be incorporated into the data calibration, are described, as well as a proposed standard method for partitioning the lung into regions of interest. Alternate methods are described for more detailed assessments. Radiation dosimetry/risk calculations for the procedures are appended, as well as a sample data collection form and spreadsheet for calculations. This article should provide guidance for those interested in using PET to determine quantity and distribution of inhaled therapeutics. PMID:23215847

  5. Characterization of vehicle emissions in São Paulo and the impacts on atmospheric chemistry and secondary aerosol formation

    NASA Astrophysics Data System (ADS)

    Ferreira De Brito, J.; Godoy, M.; Godoy, J.; Varanda Rizzo, L.; Artaxo, P.

    2012-12-01

    Megacities emissions are increasingly becoming a global issue, where emissions from the transportation sector play an important role. São Paulo, located in Southeast of Brazil, is a megacity with a population of 18 million people, 7 million cars and large-scale industrial emissions. As a result of the vehicular and industrial emissions, the air quality in São Paulo is considered one of the worst worldwide. Despite the large impact on human health and atmospheric chemistry/dynamics, many uncertainties are found on gas- and particulate matter vehicular emission factors and their following atmospheric processes, e.g. secondary organic aerosol formation. Due to the uniqueness of the vehicular fuel in Brazil, largely based on ethanol use, such characterization currently holds further uncertainties. To improve the understanding of the role of this unique emission pattern, we are running a source apportionment study in São Paulo. One of the goals of this study is a quantitative aerosol source apportionment focused on vehicular emissions, including ethanol and gasohol (both fuels used by light-duty vehicles) and diesel (heavy-duty vehicles). Whereas the latter shows usually much higher emission factors compared with ethanol or gasohol, heavy-duty vehicles have increasingly limited access within the São Paulo city limits, thus increasing the importance of light duty vehicles on air quality degradation. This study comprises four sampling sites, where trace elements and organic aerosol are being measured for PM2.5 and PM10 along with real-time NOx, ozone, PM10 and CO measurements. Aerosol optical properties and size distribution are being measured on a rotation basis between sampling stations. Furthermore, a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS) and an Aerosol Chemical Speciation Monitor (ACSM) are used to real-time VOC analysis and aerosol composition, respectively. Results show aerosol number concentrations ranging between 10^4 and 3.10^4 cm-3, mostly

  6. Changes in future air quality, deposition, and aerosol-cloud interactions under future climate and emission scenarios

    NASA Astrophysics Data System (ADS)

    Glotfelty, Timothy; Zhang, Yang; Karamchandani, Prakash; Streets, David G.

    2016-08-01

    The prospect of global climate change will have wide scale impacts, such as ecological stress and human health hazards. One aspect of concern is future changes in air quality that will result from changes in both meteorological forcing and air pollutant emissions. In this study, the GU-WRF/Chem model is employed to simulate the impact of changing climate and emissions following the IPCC AR4 SRES A1B scenario. An average of 4 future years (2020, 2030, 2040, and 2050) is compared against an average of 2 current years (2001 and 2010). Under this scenario, by the Mid-21st century global air quality is projected to degrade with a global average increase of 2.5 ppb in the maximum 8-hr O3 level and of 0.3 μg m-3 in 24-hr average PM2.5. However, PM2.5 changes are more regional due to regional variations in primary aerosol emissions and emissions of gaseous precursor for secondary PM2.5. Increasing NOx emissions in this scenario combines with a wetter climate elevating levels of OH, HO2, H2O2, and the nitrate radical and increasing the atmosphere's near surface oxidation state. This differs from findings under the RCP scenarios that experience declines in OH from reduced NOx emissions, stratospheric recovery of O3, and increases in CH4 and VOCs. Increasing NOx and O3 levels enhances the nitrogen and O3 deposition, indicating potentially enhanced crop damage and ecosystem stress under this scenario. The enhanced global aerosol level results in enhancements in aerosol optical depth, cloud droplet number concentration, and cloud optical thickness. This leads to dimming at the Earth's surface with a global average reduction in shortwave radiation of 1.2 W m-2. This enhanced dimming leads to a more moderate warming trend and different trends in radiation than those found in NCAR's CCSM simulation, which does not include the advanced chemistry and aerosol treatment of GU-WRF/Chem and cannot simulate the impacts of changing climate and emissions with the same level of detailed

  7. Quantitative evaluation of emission control of primary and secondary organic aerosol sources during Beijing 2008 Olympics

    NASA Astrophysics Data System (ADS)

    Guo, S.; Hu, M.; Guo, Q.; Zhang, X.; Schauer, J. J.; Zhang, R.

    2012-12-01

    To explore the primary and secondary sources of fine organic particles after the aggressive implementation of air pollution controls during 2008 Beijing Olympic Games, 12-h PM2.5 concentrations were measured at one urban and one upwind rural site during the CAREBeijing-2008 (Campaigns of Air quality REsearch in Beijing and surrounding region) summer field campaign. The PM2.5 concentrations were 72.5±43.6μg m3 and 64.3±36.2μg m-3 at the urban site and rural site, respectively, which were the lowest in recent years due to the implementation of drastic control measures and favorable weather conditions. Five primary and four secondary fine organic particle sources were quantified using a CMB (chemical mass balance) model and tracer-yield method. Compared with previous studies in Beijing, the contribution of vehicle emission increased, with diesel engines contributing 16.2±5.9% and 14.5±4.1% to the total organic carbon (OC) concentrations and gasoline vehicles accounting for 10.3±8.7% and 7.9±6.2% of the OC concentrations at two sites. Due to the implementation of emission control measures, the OC concentrations from important primary sources have been reduced, and secondary formation has become an important contributor to fine organic aerosols. Compared with the non-controlled period, primary vehicle contributions were reduced by 30% and 24% in the urban and regional area, and reductions in the contribution from coal combustion were 57% and 7%, respectively. These results demonstrate the emission control measures significantly alleviated the primary organic particle pollution in and around Beijing. However, the control effectiveness of secondary organic particles was not significant.

  8. Projected response of East Asian summer monsoon system to future reductions in emissions of anthropogenic aerosols and their precursors

    NASA Astrophysics Data System (ADS)

    Wang, Zhili; Zhang, Hua; Zhang, Xiaoye

    2015-12-01

    The response of the East Asian summer monsoon (EASM) system to reductions in emissions of anthropogenic aerosols and their precursors at the end of the twenty-first century projected by Representative Concentration Pathway 4.5 is studied using an aerosol-climate model with aerosol direct, semi-direct, and indirect effects included. Our results show that the global annual mean aerosol effective radiative forcing at the top of the atmosphere (TOA) is +1.45 W m-2 from 2000 to 2100. The summer mean net all-sky shortwave fluxes averaged over the East Asian monsoon region (EAMR) at the TOA and surface increased by +3.9 and +4.0 W m-2, respectively, due to the reductions of aerosols in 2100 relative to 2000. Changes in radiations affect local thermodynamic and dynamic processes and the hydrological cycle. The summer mean surface temperature and pressure averaged over the EAMR are shown to increase by 1.7 K and decreased by 0.3 hPa, respectively, due to the reduced aerosols. The magnitudes of these changes are larger over land than ocean, causing a marked increase in the contrast of land-sea surface temperature and pressure in the EAMR, thus strengthening the EASM. The summer mean southwest and south winds at 850 hPa are enhanced over eastern and southern China and the surrounding oceans, and the East Asian subtropical jet shifted northward due to the decreases of aerosols. These factors also indicate enhanced EASM circulation, which in turn causes a 10 % increase in summer mean precipitation averaged over the EAMR.

  9. Unspeciated Organic Emissions From Combustion Sources And Their Influence On The Secondary Organic Aerosol Budget In The United States

    NASA Astrophysics Data System (ADS)

    Jathar, S.; Gordon, T.; Hennigan, C. J.; Pye, H. O.; Donahue, N. M.; Adams, P. J.; Robinson, A. L.

    2012-12-01

    Combustion sources are a major source of organic emissions and therefore a potentially important source for secondary organic aerosol (SOA) formation in the atmosphere. Although speciated organic emissions from combustion sources are considered in models to form SOA, a large fraction of the organics are unspeciated. In this work, we analyze data from numerous smog chamber experiments, which photo-oxidized dilute emissions from different combustion sources (on-road gasoline vehicles, aircraft, on-road diesel vehicles, wood burning and open biomass burning), to determine the contribution that unspeciated emissions make to SOA formation. An SOA model based on speciated organics is able to explain, on average, 8-31% of the SOA measured in the experiments. We hypothesize that the remainder results from the gas-phase oxidation of unspeciated emissions, which account on average for 25-75% of the non-methane organic gas (NMOG) emissions. Using the SOA data, we develop, for the first time, source-specific parameterizations to model SOA from unspeciated emissions; all sources seem to have median SOA yields similar to large n-alkanes (C12+). To assess the influence of unspeciated emissions on SOA formation regionally, we use the parameterization to predict SOA production in the United States. Using emissions data collected during the smog chamber experiments and data available in literature, we build a gross inventory for unspeciated emissions in the United States. We discover that unspeciated organics might be included in the current generation of SOA models but misallocated in terms of its SOA potential. The top six combustion sources (on- and off-road gasoline, on- and off-road diesel, open biomass and wood burning) emit 2.61 Tg yr-1 of unspeciated emissions (20% of US anthropogenic VOC emissions from combustion sources) and are estimated to form a minimum of 0.68 Tg yr-1 of SOA; the estimate is a third of the biogenic SOA produced in the US. We predict that accounting for

  10. Sensitivity of nitrate aerosols to ammonia emissions and to nitrate chemistry: implications for present and future nitrate optical depth

    NASA Astrophysics Data System (ADS)

    Paulot, F.; Ginoux, P.; Cooke, W. F.; Donner, L. J.; Fan, S.; Lin, M.-Y.; Mao, J.; Naik, V.; Horowitz, L. W.

    2016-02-01

    We update and evaluate the treatment of nitrate aerosols in the Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric model (AM3). Accounting for the radiative effects of nitrate aerosols generally improves the simulated aerosol optical depth, although nitrate concentrations at the surface are biased high. This bias can be reduced by increasing the deposition of nitrate to account for the near-surface volatilization of ammonium nitrate or by neglecting the heterogeneous production of nitric acid to account for the inhibition of N2O5 reactive uptake at high nitrate concentrations. Globally, uncertainties in these processes can impact the simulated nitrate optical depth by up to 25 %, much more than the impact of uncertainties in the seasonality of ammonia emissions (6 %) or in the uptake of nitric acid on dust (13 %). Our best estimate for fine nitrate optical depth at 550 nm in 2010 is 0.006 (0.005-0.008). In wintertime, nitrate aerosols are simulated to account for over 30 % of the aerosol optical depth over western Europe and North America. Simulated nitrate optical depth increases by less than 30 % (0.0061-0.010) in response to projected changes in anthropogenic emissions from 2010 to 2050 (e.g., -40 % for SO2 and +38 % for ammonia). This increase is primarily driven by greater concentrations of nitrate in the free troposphere, while surface nitrate concentrations decrease in the midlatitudes following lower concentrations of nitric acid. With the projected increase of ammonia emissions, we show that better constraints on the vertical distribution of ammonia (e.g., convective transport and biomass burning injection) and on the sources and sinks of nitric acid (e.g., heterogeneous reaction on dust) are needed to improve estimates of future nitrate optical depth.

  11. Ar II Emission Processes and Emission Rate Coefficients in ASTRAL Helicon Plasmas

    NASA Astrophysics Data System (ADS)

    Boivin, R. F.; Gardner, A.; Kamar, O.; Kesterson, A.; Loch, S.; Munoz, J.; Ballance, C.

    2008-11-01

    Emission processes for Ar II line emission are described for low temperature plasmas (Te < 10 eV). It is found that Ar II emission results primarily from Ar ion ground state excitation rather than from any Ar neutral state. This suggests that Ar II emission results from stepping processes which includes ionization and then excitation of the neutral Ar atom filling the vacuum chamber. The Ar II emission rate coefficients are measured in the ASTRAL helicon plasma source using a 0.33 m monochromator and a CCD camera. ASTRAL produces Ar plasmas with the following parameters: ne = 1E11 -- 1E13 cm-3 and Te = 2 - 10 eV, B-field <= 1.3 kGauss, rf power <= 2 kWatt. RF compensated Langmuir probes are used to measure Te and ne. In this experiment, Ar II transitions are monitored as a function of Te while ne is kept constant. Experimental emission rates are obtained as a function of Te and compared to theoretical predictions. Theoretical predictions make use of the ADAS suite of codes as well as recent R-matrix electron-impact excitation calculations that includes pseudo-states contributions. Our collisional-radiative formalism assumes that the excited levels are in quasi-static equilibrium with the ground and metastable populations.

  12. An improvement on the dust emission scheme in the global aerosol-climate model ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    Cheng, T.; Peng, Y.; Feichter, J.; Tegen, I.

    2007-09-01

    Formulation of the dust emission scheme in the global aerosol-climate modeling system ECHAM5-HAM has been improved. Modifications on the surface aerodynamic roughness length, soil moisture and East-Asian soil properties are included in the parameterization, which result in a large impact on the threshold wind friction velocity for aeolian erosion and thus influence the simulated dust emission amount. The annual global mean of dust emission in the year 2000 is reduced by 76.5% and 2.2%, respectively, due to changes in the aerodynamic roughness length and the soil moisture. An inclusion of detailed East-Asian soil properties leads to an increase of 16.6% in the annual global mean of dust emission, which exhibits mainly in the arid and semi-arid areas of northern China and southern Mongolia. Reasonable values of annual global mean of dust emission, dust burden and total aerosol optical thickness can be obtained in the improved model. In addition, measurements of the surface dust concentrations are collected in dust source regions of East Asia, and verify a more realistic spatial distribution of dust emission in the improved model.

  13. Unspeciated organic emissions from combustion sources and their influence on the secondary organic aerosol budget in the United States.

    PubMed

    Jathar, Shantanu H; Gordon, Timothy D; Hennigan, Christopher J; Pye, Havala O T; Pouliot, George; Adams, Peter J; Donahue, Neil M; Robinson, Allen L

    2014-07-22

    Secondary organic aerosol (SOA) formed from the atmospheric oxidation of nonmethane organic gases (NMOG) is a major contributor to atmospheric aerosol mass. Emissions and smog chamber experiments were performed to investigate SOA formation from gasoline vehicles, diesel vehicles, and biomass burning. About 10-20% of NMOG emissions from these major combustion sources are not routinely speciated and therefore are currently misclassified in emission inventories and chemical transport models. The smog chamber data demonstrate that this misclassification biases model predictions of SOA production low because the unspeciated NMOG produce more SOA per unit mass than the speciated NMOG. We present new source-specific SOA yield parameterizations for these unspeciated emissions. These parameterizations and associated source profiles are designed for implementation in chemical transport models. Box model calculations using these new parameterizations predict that NMOG emissions from the top six combustion sources form 0.7 Tg y(-1) of first-generation SOA in the United States, almost 90% of which is from biomass burning and gasoline vehicles. About 85% of this SOA comes from unspeciated NMOG, demonstrating that chemical transport models need improved treatment of combustion emissions to accurately predict ambient SOA concentrations. PMID:25002466

  14. Unspeciated organic emissions from combustion sources and their influence on the secondary organic aerosol budget in the United States

    PubMed Central

    Jathar, Shantanu H.; Gordon, Timothy D.; Hennigan, Christopher J.; Pye, Havala O. T.; Pouliot, George; Adams, Peter J.; Donahue, Neil M.; Robinson, Allen L.

    2014-01-01

    Secondary organic aerosol (SOA) formed from the atmospheric oxidation of nonmethane organic gases (NMOG) is a major contributor to atmospheric aerosol mass. Emissions and smog chamber experiments were performed to investigate SOA formation from gasoline vehicles, diesel vehicles, and biomass burning. About 10–20% of NMOG emissions from these major combustion sources are not routinely speciated and therefore are currently misclassified in emission inventories and chemical transport models. The smog chamber data demonstrate that this misclassification biases model predictions of SOA production low because the unspeciated NMOG produce more SOA per unit mass than the speciated NMOG. We present new source-specific SOA yield parameterizations for these unspeciated emissions. These parameterizations and associated source profiles are designed for implementation in chemical transport models. Box model calculations using these new parameterizations predict that NMOG emissions from the top six combustion sources form 0.7 Tg y−1 of first-generation SOA in the United States, almost 90% of which is from biomass burning and gasoline vehicles. About 85% of this SOA comes from unspeciated NMOG, demonstrating that chemical transport models need improved treatment of combustion emissions to accurately predict ambient SOA concentrations. PMID:25002466

  15. Impact of Emissions and Long-Range Transport on Multi-Decadal Aerosol Trends: Implications for Air Quality and Climate

    NASA Technical Reports Server (NTRS)

    Chin, Mian

    2012-01-01

    We present a global model analysis of the impact of long-range transport and anthropogenic emissions on the aerosol trends in the major pollution regions in the northern hemisphere and in the Arctic in the past three decades. We will use the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model to analyze the multi-spatial and temporal scale data, including observations from Terra, Aqua, and CALIPSO satellites and from the long-term surface monitoring stations. We will analyze the source attribution (SA) and source-receptor (SR) relationships in North America, Europe, East Asia, South Asia, and the Arctic at the surface and free troposphere and establish the quantitative linkages between emissions from different source regions. We will discuss the implications for regional air quality and climate change.

  16. Atmospheric aerosol monitoring and characterization: An emission control strategy to protect tropical forests

    NASA Astrophysics Data System (ADS)

    Mateus, V. L.; do Valles, T. V.; de Oliveira, T. B.; de Almeida, A. C.; Maia, L. F. P. G.; Saint'Pierre, T. D.; Gioda, A.

    2013-12-01

    Human activity represents one of the most harmful activities for biodiversity. Population growth has caused increasing interferences in natural areas suffering agriculture or urbanization. As a consequence, tropical forests are at risk, since they shelter more than half of the global biodiversity. In this context, protected areas are indeed important to preserve natural populations as well as threatened habitats. Aerosol samples were collected in two protected areas in Rio de Janeiro, Brazil, in order to quantify water-soluble species and evaluate anthropogenic influences considering secondary aerosol formation and organic compounds. Samplings were conducted at the National Park of Serra dos Orgãos (Parnaso) and the National Forest Mario Xavier (Flonamax) during 24 h every six days using a high-volume sampler from July 2010 to June 2012 (PM10) and from July 2011 to August 2012 (TSP), respectively. The aerosol mass was determined by Gravimetry. The water-soluble ionic composition (WSIC) was obtained by Ion Chromatography in order to determine the major anions (Br-, Cl-, F-, NO2-, NO3-, PO43-, SO42-) and cations (Li+, Ca2+, K+, Mg2+, Na+, NH4+); total water-soluble carbon (TWSC), water-soluble organic carbon (WSOC) were determined by a TOC analyzer and the elements were determined by Inductively Coupled Plasma Optical Emission Spectrometry. PM10 average concentrations ranged from 11.1 to 67.6 μg m-3 and TSP from 5.7 to 242.6 μg m-3. Regarding the ions, the highest cation concentration was measured for Na+ at both Parnaso and Flonamax sites, respectively, 2.9 and 6.1 μg m-3. Both sites are near to the coast, justifying these results. On the other hand, SO42- was the predominant anion measured at both sites with average concentrations ranged from 2.3 to 2.7 μg m-3. Around 50% of sulphate had a non-marine origin in the former site, while in the latter the percentage was of circa 40%. The correlation between NO3- and nss-SO42- was much stronger at Parnaso (r = 0

  17. Vertical profiles of aerosol optical properties and the solar heating rate estimated by combining sky radiometer and lidar measurements

    NASA Astrophysics Data System (ADS)

    Kudo, Rei; Nishizawa, Tomoaki; Aoyagi, Toshinori

    2016-07-01

    The SKYLIDAR algorithm was developed to estimate vertical profiles of aerosol optical properties from sky radiometer (SKYNET) and lidar (AD-Net) measurements. The solar heating rate was also estimated from the SKYLIDAR retrievals. The algorithm consists of two retrieval steps: (1) columnar properties are retrieved from the sky radiometer measurements and the vertically mean depolarization ratio obtained from the lidar measurements and (2) vertical profiles are retrieved from the lidar measurements and the results of the first step. The derived parameters are the vertical profiles of the size distribution, refractive index (real and imaginary parts), extinction coefficient, single-scattering albedo, and asymmetry factor. Sensitivity tests were conducted by applying the SKYLIDAR algorithm to the simulated sky radiometer and lidar data for vertical profiles of three different aerosols, continental average, transported dust, and pollution aerosols. The vertical profiles of the size distribution, extinction coefficient, and asymmetry factor were well estimated in all cases. The vertical profiles of the refractive index and single-scattering albedo of transported dust, but not those of transported pollution aerosol, were well estimated. To demonstrate the performance and validity of the SKYLIDAR algorithm, we applied the SKYLIDAR algorithm to the actual measurements at Tsukuba, Japan. The detailed vertical structures of the aerosol optical properties and solar heating rate of transported dust and smoke were investigated. Examination of the relationship between the solar heating rate and the aerosol optical properties showed that the vertical profile of the asymmetry factor played an important role in creating vertical variation in the solar heating rate. We then compared the columnar optical properties retrieved with the SKYLIDAR algorithm to those produced with the more established scheme SKYRAD.PACK, and the surface solar irradiance calculated from the SKYLIDAR

  18. Lagrangian analysis of forest fire aerosol emissions from North America to Western Mediterranean basin during the CHARMEX 2013 summer campaign

    NASA Astrophysics Data System (ADS)

    Pelon, Jacques; Ancellet, Gérard; Chazette, Patrick; Totems, Julien; Sicard, Michael; Dulac, François; Di Ioro, Tatiana; Formenti, Paola; Mallet, Marc

    2015-04-01

    Several intense forest fires occurred in Canada and Alaska in the second half of June 2013, as identified from satellite observations. Main detected fire areas with large fire radiative power were identified close to the Hudson bay and in the Northwest Territories. Satellite observations show that a significant fraction of the aerosol produced by these fires was transported to western Europe when the CHARMEX-ADRIMED* field campaign took place. Lidar observations from space, aircraft and ground confirmed that the western Mediterranean area has been indeed impacted by these fires at various altitudes. A forward simulation of the Lagrangian plume dispersion model FLEXPART was conducted to quantify the spatial extent of the fire plume transport for 11 days. The FLEXPART model was initialized with aerosol mass corresponding to the main fire locations identified by MODIS. A main altitude of injection of 3 km as identified from the CALIPSO lidar observations over Canada close to the forest fires areas. Mapping the column integrated aerosol concentrations show that values exceeding 10 µg/m3 could be observed at almost all latitudes north of 55N, reaching much lower latitudes over Europe, down to the Western Mediterranean area 4-10 days after the emission from Canada. In the ADRIMED domain the plume was observed in a large altitude range (2.5 - 7.5 km) and indeed elevated aerosol load have been sensed by satellites as well as airborne and ground-based remote sensing instruments deployed during CHARMEX- ADRIMED on June 27th and 28th in Menorca, Cagliari and Lampedusa. As part of it Falcon 20 and ATR 42 observations allowed a detailed analysis of the biomass burning aerosol contribution superimposed on the aerosol background from Saharan dust emission. Results are presented and discussed. * ChArMEx (the Chemistry-Aerosol Mediterranean Experiment; http://charmex.lsce.ipsl.fr is supported by CNRS/INSU, ADEME, Météo-France and CEA in the framework of the multidisciplinary

  19. NATURAL VOLATILE ORGANIC COMPOUND EMISSION RATE ESTIMATES FOR U.S. WOODLAND LANDSCAPES

    EPA Science Inventory

    Volatile organic compound (VOC) emission rate factors are estimated for 49 tree genera based on a review of foliar emission rate measurements. oliar VOC emissions are grouped into three categories: isoprene, monoterpenes and other VOC'S. ypical emission rates at a leaf temperatur...

  20. Brown carbon aerosols from burning of boreal peatlands: microphysical properties, emission factors, and implications for direct radiative forcing

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Rajan K.; Gyawali, Madhu; Yatavelli, Reddy L. N.; Pandey, Apoorva; Watts, Adam C.; Knue, Joseph; Chen, Lung-Wen A.; Pattison, Robert R.; Tsibart, Anna; Samburova, Vera; Moosmüller, Hans

    2016-03-01

    The surface air warming over the Arctic has been almost twice as much as the global average in recent decades. In this region, unprecedented amounts of smoldering peat fires have been identified as a major emission source of climate-warming agents. While much is known about greenhouse gas emissions from these fires, there is a knowledge gap on the nature of particulate emissions and their potential role in atmospheric warming. Here, we show that aerosols emitted from burning of Alaskan and Siberian peatlands are predominantly brown carbon (BrC) - a class of visible light-absorbing organic carbon (OC) - with a negligible amount of black carbon content. The mean fuel-based emission factors for OC aerosols ranged from 3.8 to 16.6 g kg-1. Their mass absorption efficiencies were in the range of 0.2-0.8 m2 g-1 at 405 nm (violet) and dropped sharply to 0.03-0.07 m2 g-1 at 532 nm (green), characterized by a mean Ångström exponent of ≈ 9. Electron microscopy images of the particles revealed their morphologies to be either single sphere or agglomerated "tar balls". The shortwave top-of-atmosphere aerosol radiative forcing per unit optical depth under clear-sky conditions was estimated as a function of surface albedo. Only over bright surfaces with albedo greater than 0.6, such as snow cover and low-level clouds, the emitted aerosols could result in a net warming (positive forcing) of the atmosphere.

  1. Emissions of black carbon, organic, and inorganic aerosols from biomass burning in North America and Asia in 2008

    NASA Astrophysics Data System (ADS)

    Kondo, Y.; Matsui, H.; Moteki, N.; Sahu, L.; Takegawa, N.; Kajino, M.; Zhao, Y.; Cubison, M. J.; Jimenez, J. L.; Vay, S.; Diskin, G. S.; Anderson, B.; Wisthaler, A.; Mikoviny, T.; Fuelberg, H. E.; Blake, D. R.; Huey, G.; Weinheimer, A. J.; Knapp, D. J.; Brune, W. H.

    2011-04-01

    Reliable assessment of the impact of aerosols emitted from boreal forest fires on the Arctic climate necessitates improved understanding of emissions and the microphysical properties of carbonaceous (black carbon (BC) and organic aerosols (OA)) and inorganic aerosols. The size distributions of BC were measured by an SP2 based on the laser-induced incandescence technique on board the DC-8 aircraft during the NASA ARCTAS campaign. Aircraft sampling was made in fresh plumes strongly impacted by wildfires in North America (Canada and California) in summer 2008 and in those transported from Asia (Siberia in Russia and Kazakhstan) in spring 2008. We extracted biomass burning plumes using particle and tracer (CO, CH3CN, and CH2Cl2) data. OA constituted the dominant fraction of aerosols mass in the submicron range. The large majority of the emitted particles did not contain BC. We related the combustion phase of the fire as represented by the modified combustion efficiency (MCE) to the emission ratios between BC and other species. In particular, we derived the average emission ratios of BC/CO = 2.3 ± 2.2 and 8.5 ± 5.4 ng m-3/ppbv for BB in North America and Asia, respectively. The difference in the BC/CO emission ratios is likely due to the difference in MCE. The count median diameters and geometric standard deviations of the lognormal size distribution of BC in the BB plumes were 136-141 nm and 1.32-1.36, respectively, and depended little on MCE. These BC particles were thickly coated, with shell/core ratios of 1.3-1.6. These parameters can be used directly for improving model estimates of the impact of BB in the Arctic.

  2. Historical (1850-2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols:methodology and application

    SciTech Connect

    Lamarque, J. F.; Bond, Tami C.; Eyring, Veronika; Granier, Claire; Heil, Angelika; Klimont, Z.; Lee, David S.; Liousse, Catherine; Mieville, Aude; Owen, Bethan; Schultz, Martin; Shindell, Drew; Smith, Steven J.; Stehfest, Eike; van Aardenne, John; Cooper, Owen; Kainuma, M.; Mahowald, Natalie; McConnell, J.R.; Naik, Vaishali; Riahi, Keywan; Van Vuuren, Detlef

    2010-08-11

    We present and discuss a new dataset of gridded emissions covering the historical period (1850-2000) in decadal increments at a horizontal resolution of 0.5° in latitude and longitude. The primary purpose of this inventory is to provide consistent gridded emissions of reactive gases and aerosols for use in chemistry model simulations needed by climate models for the Climate Model Intercomparison Program #5 (CMIP5) in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment report. Our best estimate for the year 2000 inventory represents a combination of existing regional and global inventories to capture the best information available at this point; 40 regions and 12 sectors were used to combine the various sources. The historical reconstruction of each emitted compound, for each region and sector, was then forced to agree with our 2000 estimate, ensuring continuity between past and 2000 emissions. Application of these emissions into two chemistry-climate models is used to test their ability to capture long-term changes in atmospheric ozone, carbon monoxide and aerosols distributions. The simulated long-term change in the Northern mid-latitudes surface and mid-troposphere ozone is not quite as rapid as observed. However, stations outside this latitude band show much better agreement in both present-day and long-term trend. The model simulations consistently underestimate the carbon monoxide trend, while capturing the long-term trend at the Mace Head station. The simulated sulfate and black carbon deposition over Greenland is in very good agreement with the ice-core observations spanning the simulation period. Finally, aerosol optical depth and additional aerosol diagnostics are shown to be in good agreement with previously published estimates.

  3. The effect of large anthropogenic particulate emissions on atmospheric aerosols, deposition and bioindicators in the eastern Gulf of Finland region.

    PubMed

    Jalkanen, L; Mäkinen, A; Häsänen, E; Juhanoja, J

    2000-10-30

    The effect of the emissions from large oil shale fuelled power plants and a cement factory in Estonia on the elemental concentration of atmospheric aerosols, deposition, elemental composition of mosses and ecological effects on mosses, lichens and pine trees in the eastern Gulf of Finland region has been studied. In addition to chemical analysis, fly ash, moss and aerosol samples were analysed by a scanning electron microscope with an energy dispersive X-ray spectrometer (SEM/EDS). The massive particulate calcium emissions, approximately 60 kton/year (1992), is clearly observed in the aerosols, deposition and mosses. The calcium deposition is largest next to the Russian border downwind from the power plants and in south-eastern part of Finland. This deposition has decreased due to the application of dust removal systems at the particulate emission sources. At the Virolahti EMEP station approximately 140 km north from the emission sources, elevated elemental atmospheric aerosol concentrations are observed for Al, Ca, Fe, K and Si and during episodes many trace elements, such as As, Br, Mo, Ni, Pb and V. The acidification of the soil is negligible because of the high content of basic cations in the deposition. Visible symptoms on pine trees are negligible. However, in moss samples close to the power plants, up to 25% of the leaf surface was covered by particles. Many epiphytic lichen species do not tolerate basic stemflow and on the other hand most species are also very sensitive for the SO2 content in air. Consequently a large lichen desert is found in an area of 2500 km2 in the vicinity of the power plants with only one out of the investigated 12 species growing. PMID:11059848

  4. Emissions of Black Carbon, Organic, and Inorganic Aerosols From Biomass Burning in North America and Asia in 2008

    NASA Technical Reports Server (NTRS)

    Kondo, Y.; Matsui, H.; Moteki, N.; Sahu, L.; Takegawa, N.; Kajino, M.; Zhao, Y.; Cubison, M. J.; Jimenez, J. L.; Vay, S.; Diskin, G. S.; Anderson, B.; Wisthaler, A.; Mikoviny, T.; Fuelberg, H. E.; Blake, D. R.; Huey, G.; Weinheimer, A. J.; Knapp, D. J.; Brune, W. H.

    2011-01-01

    Reliable assessment of the impact of aerosols emitted from boreal forest fires on the Arctic climate necessitates improved understanding of emissions and the microphysical properties of carbonaceous (black carbon (BC) and organic aerosols (OA)) and inorganic aerosols. The size distributions of BC were measured by an SP2 based on the laser-induced incandescence technique on board the DC-8 aircraft during the NASA ARCTAS campaign. Aircraft sampling was made in fresh plumes strongly impacted by wildfires in North America (Canada and California) in summer 2008 and in those transported from Asia (Siberia in Russia and Kazakhstan) in spring 2008. We extracted biomass burning plumes using particle and tracer (CO, CH3CN, and CH2Cl2) data. OA constituted the dominant fraction of aerosols mass in the submicron range. The large majority of the emitted particles did not contain BC. We related the combustion phase of the fire as represented by the modified combustion efficiency (MCE) to the emission ratios between BC and other species. In particular, we derived the average emission ratios of BC/CO = 2.3 +/- 2.2 and 8.5 +/- 5.4 ng/cu m/ppbv for BB in North America and Asia, respectively. The difference in the BC/CO emission ratios is likely due to the difference in MCE. The count median diameters and geometric standard deviations of the lognormal size distribution of BC in the BB plumes were 136-141 nm and 1.32-1.36, respectively, and depended little on MCE. These BC particles were thickly coated, with shell/core ratios of 1.3-1.6. These parameters can be used directly for improving model estimates of the impact of BB in the Arctic.

  5. The impact of Mount Etna's sulphur emissions to the atmospheric composition, aerosol properties and radiative transfer in the central Mediterranean: 14 years of statistic analysis using observations and Lagrangian modelling

    NASA Astrophysics Data System (ADS)

    Sellitto, Pasquale; Zanetel, Claudia; di Sarra, Alcide; Salerno, Giuseppe; Tapparo, Andrea; Briole, Pierre; Legras, Bernard

    2016-04-01

    emission rates measured at Mount Etna with the FLAME network (a near-crater network of ground-based ultraviolet spectrophotometers, operated by the INGV - Istituto Nazionale di Geofisica e Vulcanologia). This statistical analysis has allowed, for the first time, the characterization of the impact of Mount Etna's sulphur emissions to the sulfur dioxide distributions and the aerosol microphysical/optical characterisation in the central Mediterranean. This impact is here presented and critically discussed. Finally, the radiative forcing of simulated Mount Etna's plumes is estimated for different optical properties and vertical distributions of the volcanic aerosols. We have found that the radiative forcing efficiency of Mount Etna's plumes can be as important as the efficiency related to the most frequent Saharan dust or pollution transport events, in the same area.

  6. Real-Time Observations of Secondary Aerosol Formation and Aging from Different Emission Sources and Environments

    NASA Astrophysics Data System (ADS)

    Ortega, A. M.; Palm, B. B.; Hayes, P. L.; Day, D. A.; Cubison, M.; Brune, W. H.; Hu, W.; Flynn, J. H.; Grossberg, N.; Lefer, B. L.; Rappenglueck, B.; Bon, D.; Graus, M.; Warneke, C.; Gilman, J.; Kuster, W.; De Gouw, J. A.; Jimenez, J. L.

    2013-12-01

    To investigate atmospheric processing of direct urban and wildfire emissions, we deployed a photochemical flow reactor (Potential Aerosol Mass, PAM) with submicron aerosol size and chemical composition measurements during FLAME-3, a biomass-burning study at USDA Fire Sciences Laboratory in Missoula, MT, and CalNex, a field study investigating the nexus of air quality and climate change at a receptor site in the LA-Basin at Pasadena, CA. The reactor produces OH concentrations up to 4 orders of magnitude higher than in ambient air, achieving equivalent aging of ~2 weeks in 5 minutes of processing. The OH exposure (OHexp) was stepped every 20 min in both field studies. Results show the value of this approach as a tool for in-situ evaluation of changes in OA concentration and composition due to photochemical processing. In FLAME-3, the average OA enhancement factor was 1.42 × 0.36 of the initial POA. Reactive VOCs, such as toluene, monoterpenes, and acetaldehyde, decreased with increased OHexp; however, formic acid, acetone, and some unidentified OVOCs increased after significant exposure. Net SOA formation in the photochemical reactor increased with OHexp, typically peaking around 3 days of equivalent atmospheric photochemical age (OHexp ~3.9e11 molecules cm-3 s), then leveling off at higher exposures. Unlike other studies, no decrease in OA is observed at high exposure, likely due to lower max OHexp in this study due to very high OH reactivity. The amount of additional OA mass added from aging is positively correlated with initial POA concentration, but not with the total VOC concentration or the concentration of known SOA precursors. The mass of SOA formed often exceeded the mass of the known VOC precursors, indicating the likely importance of primary semivolatile/intermediate volatility species, and possibly of unidentified VOCs as SOA precursors in biomass burning smoke. Results from CalNex show enhancement of OA and inorganic aerosol from gas-phase precursors

  7. Application of mobile aerosol and trace gas measurements for the investigation of megacity air pollution emissions: the Paris metropolitan area

    NASA Astrophysics Data System (ADS)

    von der Weiden-Reinmüller, S.-L.; Drewnick, F.; Crippa, M.; Prévôt, A. S. H.; Meleux, F.; Baltensperger, U.; Beekmann, M.; Borrmann, S.

    2014-01-01

    For the investigation of megacity emission development and the impact outside the source region, mobile aerosol and trace gas measurements were carried out in the Paris metropolitan area between 1 July and 31 July 2009 (summer conditions) and 15 January and 15 February 2010 (winter conditions) in the framework of the European Union FP7 MEGAPOLI project. Two mobile laboratories, MoLa and MOSQUITA, were deployed, and here an overview of these measurements and an investigation of the applicability of such measurements for the analysis of megacity emissions are presented. Both laboratories measured physical and chemical properties of fine and ultrafine aerosol particles as well as gas phase constituents of relevance for urban pollution scenarios. The applied measurement strategies include cross-section measurements for the investigation of plume structure and quasi-Lagrangian measurements axially along the flow of the city's pollution plume to study plume aging processes. Results of intercomparison measurements between the two mobile laboratories represent the adopted data quality assurance procedures. Most of the compared measurement devices show sufficient agreement for combined data analysis. For the removal of data contaminated by local pollution emissions a video tape analysis method was applied. Analysis tools like positive matrix factorization and peak integration by key analysis applied to high-resolution time-of-flight aerosol mass spectrometer data are used for in-depth data analysis of the organic particulate matter. Several examples, including a combination of MoLa and MOSQUITA measurements on a cross section through the Paris emission plume, are provided to demonstrate how such mobile measurements can be used to investigate the emissions of a megacity. A critical discussion of advantages and limitations of mobile measurements for the investigation of megacity emissions completes this work.

  8. Application of mobile aerosol and trace gas measurements for the investigation of megacity air pollution emissions: the Paris metropolitan area

    NASA Astrophysics Data System (ADS)

    von der Weiden-Reinmüller, S.-L.; Drewnick, F.; Crippa, M.; Prévôt, A. S. H.; Meleux, F.; Baltensperger, U.; Beekmann, M.; Borrmann, S.

    2013-08-01

    For the investigation of megacity emission development and impact outside the source region mobile aerosol and trace gas measurements were carried out in the Paris metropolitan area between 1 July and 31 July 2009 (summer conditions) and 15 January and 15 February 2010 (winter conditions) in the framework of the European Union FP7 MEGAPOLI project. Two mobile laboratories, MoLa and MOSQUITA, were deployed, and here an overview of these measurements and an investigation of the applicability of such measurements for the analysis of megacity emissions are presented. Both laboratories measured physical and chemical properties of fine and ultrafine aerosol particles as well as gas phase constituents of relevance for urban pollution scenarios. The applied measurement strategies include cross section measurements for the investigation of plume structure and quasi-Lagrangian measurements radially away from the city center to study plume aging processes. Results of intercomparison measurements between the two mobile laboratories represent the adopted data quality assurance procedures. Most of the compared measurement devices show sufficient agreement for combined data analysis. For the removal of data contaminated by local pollution emissions a video tape analysis method was applied. Analysis tools like positive matrix factorization and peak integration by key analysis applied to high-resolution time-of-flight aerosol mass spectrometer data are used for in-depth data analysis of the organic particulate matter. Several examples, including a combination of MoLa and MOSQUITA measurements on a cross section through the Paris emission plume are provided to demonstrate how such mobile measurements can be used to investigate the emissions of a megacity. A critical discussion of advantages and limitations of mobile measurements for the investigation of megacity emissions completes this work.

  9. Temporal variability of primary and secondary aerosols over northern India: Impact of biomass burning emissions

    NASA Astrophysics Data System (ADS)

    Rastogi, N.; Singh, A.; Sarin, M. M.; Singh, D.

    2016-01-01

    The ambient particulate matter injected from biomass burning emissions (BBEs) over northern India has been a subject of major debate in the context of regional air quality and atmospheric chemistry of several organic and inorganic constituents. This necessitates an observational approach over a large spatial and temporal scale. We present an extensive data set on PM2.5 samples (n = 147) collected for one full year from a sampling site (Patiala: 30.2°N, 76.3°E) in the source region of BBEs in northern India. During the sampling period from October 2011 to September 2012, PM2.5 mass concentration varied from ˜20 to 400 μg m-3. Among the major constituents, contribution of total carbonaceous aerosols (OC + EC) ranged from 8 to 60%. The average OC/EC and K+/EC ratio, varying from 3.2 to 12 and 0.26 to 0.80, respectively, emphasizes the dominance of BBEs over the annual seasonal cycle. The average secondary organic matter (SOM) accounts for ˜10-40% of PM2.5 mass in different seasons; whereas contribution of secondary inorganics was maximum (˜40%) during the winter. The pronounced temporal variability in SOM suggests its contribution from varying sources, their emission strength and process of secondary organic formation. Diurnal differences in the chemical constituents are attributable to regional meteorological factors and boundary layer dynamics. The emerging data set from this study is important to understand feedback mechanism from anthropogenic activities to the regional climate change scenario.

  10. Emissions of biogenic volatile organic compounds and subsequent formation of secondary organic aerosols in a Larix kaempferi forest

    NASA Astrophysics Data System (ADS)

    Mochizuki, T.; Miyazaki, Y.; Ono, K.; Wada, R.; Takahashi, Y.; Saigusa, N.; Kawamura, K.; Tani, A.

    2015-10-01

    We conducted simultaneous measurements of concentrations and above-canopy fluxes of isoprene and α-pinene, along with their oxidation products in aerosols in a Larix kaempferi (Japanese larch) forest in summer 2012. Vertical profiles of isoprene showed the maximum concentration near the forest floor with a peak around noon, whereas oxidation products of isoprene, i.e., methacrolein (MACR) and methyl vinyl ketone (MVK), showed higher concentrations near the canopy level of the forest. The vertical profile suggests large emissions of isoprene near the forest floor, likely due to Dryopteris crassirhizoma (a fern species), and the subsequent reaction within the canopy. The concentrations of α-pinene also showed highest values near the forest floor, with maximums in the early morning and late afternoon. The vertical profiles of α-pinene suggest its large emissions from soil and litter in addition to emissions from L. kaempferi leaves at the forest site. Isoprene and its oxidation products in aerosols exhibited similar diurnal variations within the forest canopy, providing evidence of secondary organic aerosol (SOA) formation via oxidation of isoprene most likely emitted from the forest floor. Although high abundance of α-pinene was observed in the morning, its oxidation products in aerosols showed peaks in daytime, due to a time lag between the emission and atmospheric reactions of α-pinene to form SOA. Positive matrix factorization (PMF) analysis indicated that anthropogenic influence is the most important factor contributing to the elevated concentrations of molecular oxidation products of isoprene- (> 64 %) and α-pinene-derived SOA (> 57 %). The combination of the measured fluxes and vertical profiles of biogenic volatile organic compounds (BVOCs) suggests that the inflow of anthropogenic precursors/aerosols likely enhanced the formation of both isoprene SOA and α-pinene SOA within the forest canopy even when the BVOC flux was relatively low. This study

  11. Functional group composition of organic aerosol from combustion emissions and secondary processes at two contrasted urban environments

    NASA Astrophysics Data System (ADS)

    El Haddad, Imad; Marchand, Nicolas; D'Anna, Barbara; Jaffrezo, Jean Luc; Wortham, Henri

    2013-08-01

    The quantification of major functional groups in atmospheric organic aerosol (OA) provides a constraint on the types of compounds emitted and formed in atmospheric conditions. This paper presents functional group composition of organic aerosol from two contrasted urban environments: Marseille during summer and Grenoble during winter. Functional groups were determined using a tandem mass spectrometry approach, enabling the quantification of carboxylic (RCOOH), carbonyl (RCOR‧), and nitro (RNO2) functional groups. Using a multiple regression analysis, absolute concentrations of functional groups were combined with those of organic carbon derived from different sources in order to infer the functional group contents of different organic aerosol fractions. These fractions include fossil fuel combustion emissions, biomass burning emissions and secondary organic aerosol (SOA). Results clearly highlight the differences between functional group fingerprints of primary and secondary OA fractions. OA emitted from primary sources is found to be moderately functionalized, as about 20 carbons per 1000 bear one of the functional groups determined here, whereas SOA is much more functionalized, as in average 94 carbons per 1000 bear a functional group under study. Aging processes appear to increase both RCOOH and RCOR‧ functional group contents by nearly one order of magnitude. Conversely, RNO2 content is found to decrease with photochemical processes. Finally, our results also suggest that other functional groups significantly contribute to biomass smoke and SOA. In particular, for SOA, the overall oxygen content, assessed using aerosol mass spectrometer measurements by an O:C ratio of 0.63, is significantly higher than the apparent O:C* ratio of 0.17 estimated based on functional groups measured here. A thorough examination of our data suggests that this remaining unexplained oxygen content can be most probably assigned to alcohol (ROH), organic peroxides (ROOH

  12. Software for emission rate modeling of accidental toxic releases

    SciTech Connect

    Kumar, A.; Vashisth, S.

    1999-08-01

    This book fulfills the need for Section 112(r) of the Clean Air Act Amendments of 1990. This software is based on the guidelines released by the USEPA. It includes manual and proprietary software on CDROM. Contents include release scenario description (two-phase and single-phase choked/unchoked gas release, two-phase pressurized and refrigerated liquid release, single-phase high and low volatility liquid release); emission rate model development for each release class; software design and software evaluation and application.

  13. Ice nucleating particles from biomass combustion: emission rates and the role of refractory black carbon

    NASA Astrophysics Data System (ADS)

    Levin, E. J.; McMeeking, G. R.; McCluskey, C. S.; Carrico, C. M.; Nakao, S.; Stockwell, C.; Yokelson, R. J.; Sullivan, R. C.; DeMott, P. J.; Kreidenweis, S. M.

    2015-12-01

    Ice nucleating particles (INPs) allow initial ice crystal formation in clouds at temperatures warmer than about -36 °C and are thus important for cloud and precipitation development. One potential source of INPs to the atmosphere is biomass combustion, such as wildfires, prescribed burning and agricultural burning, which emits large quantities of particulate matter into the atmosphere and is a major source of black carbon (BC) aerosol. To better understand and constrain INP emissions from biomass combustion, globally relevant fuels were used in a series of burns during a study called FLAME 4 at the USFS Fire Sciences Laboratory in Missoula, MT. Concentrations of immersion mode INPs were measured using a Colorado State University Continuous Flow Diffusion Chamber (CFDC). During the first part of the study, emissions were measured in real time as fires progressed from ignition to flaming and smoldering phases. INP emissions were observed predominately during periods of intensely flaming combustion. Roughly 75% of measured burns produced detectable INP concentrations and these had, on average, higher combustion efficiencies and higher BC emissions. During the second half of FLAME 4, we directly measured the contribution of refractory black carbon (rBC) to INP concentrations by selectively removing these particles via laser-induced incandescence (LII) using a Single Particle Soot Photometer (SP2; Droplet Measurement Technologies). The SP2 uses a 1064 nm Na:YAG laser to heat rBC aerosol to their vaporization temperatures, thus removing them from the sampled aerosol. By passing combustion aerosol through the SP2 with the laser on and off while measuring the remaining aerosol with the CFDC, we were able to determine the contribution of rBC to the INP population. Reductions in INPs of 0 - 70% were observed when removing rBC from the combustion aerosol, indicating the importance of rBC particles to INP concentrations for some burn scenarios.

  14. Large enhancement in the heterogeneous oxidation rate of organic aerosols by hydroxyl radicals in the presence of nitric oxide

    SciTech Connect

    Richards-Henderson, Nicole K.; Goldstein, Allen H.; Wilson, Kevin R.

    2015-10-27

    In this paper we report an unexpectedly large acceleration in the effective heterogeneous OH reaction rate in the presence of NO. This 10–50 fold acceleration originates from free radical chain reactions, propagated by alkoxy radicals that form inside the aerosol by the reaction of NO with peroxy radicals, which do not appear to produce chain terminating products (e.g., alkyl nitrates), unlike gas phase mechanisms. Lastly, a kinetic model, constrained by experiments, suggests that in polluted regions heterogeneous oxidation plays a much more prominent role in the daily chemical evolution of organic aerosol than previously believed.

  15. Emission sources and atmospheric processing of carbonaceous aerosols in India and China: Insights from dual carbon isotope techniques

    NASA Astrophysics Data System (ADS)

    Andersson, A.; Kirillova, E. N.; Bosch, C.; Suresh, T.; Lee, M.; Du, K.; Sheesley, R. J.; Budhavant, K.; Gustafsson, O. M.

    2013-12-01

    The large emissions of carbonaceous aerosols, e.g., black carbon (BC), in India and China have detrimental effects on both human health and the regional climate. However, mitigation efforts as well as accurate modeling of these effects are currently hampered by large uncertainties regarding the contributions from different emission sources, including both primary and secondary processes. Here, we present dual carbon isotope constraints on emissions sources and atmospheric processing from multiple sites capturing the outflow from India and China. Radiocarbon (14C) studies of elemental carbon (EC) - a tracer for BC - show larger relative fossil contributions than expected from bottom-up emission inventories, for both India (49+-5) and China (80 +-6%). Similarly to EC, radiocarbon constraints of water soluble organic carbon (WSOC) shows substantially larger relative fossil contributions in Chinese outflow (30-50%) as compared with India, but also compared to Europe and USA (10-20%). In contrast to the radiocarbon data, stable carbon (d13C) analysis of WSOC shows substantial variability for different sites capturing the Indian outflow. Strong enrichment of heavy isotopes in WSOC is coupled to expected transport time from sources, indicating the influence of photochemical aging during transport. Such trends in the d13C signature are not observed for the EC fraction. Taken together this work show that carbon isotope techniques provide firm constraints on emission sources of different fractions of carbonaceous aerosols, and may also offer insights into atmospheric processing of these constituents during air mass transport.

  16. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    SciTech Connect

    Annette C. Rohr; Petros Koutrakis; John Godleski

    2011-03-31

    Determining the health impacts of different sources and components of fine particulate matter (PM2.5) is an important scientific goal, because PM is a complex mixture of both inorganic and organic constituents that likely differ in their potential to cause adverse health outcomes. The TERESA (Toxicological Evaluation of Realistic Emissions of Source Aerosols) study focused on two PM sources - coal-fired power plants and mobile sources - and sought to investigate the toxicological effects of exposure to realistic emissions from these sources. The DOE-EPRI Cooperative Agreement covered the performance and analysis of field experiments at three power plants. The mobile source component consisted of experiments conducted at a traffic tunnel in Boston; these activities were funded through the Harvard-EPA Particulate Matter Research Center and will be reported separately in the peer-reviewed literature. TERESA attempted to delineate health effects of primary particles, secondary (aged) particles, and mixtures of these with common atmospheric constituents. The study involved withdrawal of emissions directly from power plant stacks, followed by aging and atmospheric transformation of emissions in a mobile laboratory in a manner that simulated downwind power plant plume processing. Secondary organic aerosol (SOA) derived from the biogenic volatile organic compound {alpha}-pinene was added in some experiments, and in others ammonia was added to neutralize strong acidity. Specifically, four scenarios were studied at each plant: primary particles (P); secondary (oxidized) particles (PO); oxidized particles + secondary organic aerosol (SOA) (POS); and oxidized and neutralized particles + SOA (PONS). Extensive exposure characterization was carried out, including gas-phase and particulate species. Male Sprague Dawley rats were exposed for 6 hours to filtered air or different atmospheric mixtures. Toxicological endpoints included (1) breathing pattern; (2) bronchoalveolar lavage

  17. Enhancement of marine cloud albedo via controlled sea spray injections: a global model study of the influence of emission rates, microphysics and transport

    NASA Astrophysics Data System (ADS)

    Korhonen, H.; Carslaw, K. S.; Romakkaniemi, S.

    2010-05-01

    Modification of cloud albedo by controlled emission of sea spray particles into the atmosphere has been suggested as a possible geoengineering option to slow global warming. Previous global studies have imposed changes in cloud drop concentration in low level clouds to explore the radiative and climatic effects. Here, we use a global aerosol transport model to quantify how an imposed flux of sea spray particles affects the natural aerosol processes, the particle size distribution, and concentrations of cloud drops. We assume that the proposed fleet of vessels emits sea spray particles with a wind speed-dependent flux into four regions of persistent stratocumulus cloud off the western coasts of continents. The model results show that fractional changes in cloud drop number concentration (CDNC) vary substantially between the four regions because of differences in wind speed (which affects the spray efficiency of the vessels), transport and particle deposition rates, and because of variations in aerosols from natural and anthropogenic sources. Using spray emission rates comparable to those implied by previous studies we find that the predicted CDNC changes are very small (maximum 20%) and in one of the four regions even negative. The weak or negative effect is because the added particles suppress the in-cloud supersaturation and prevent existing aerosol particles from forming cloud drops. A scenario with five times higher emissions (considerably higher than previously assumed) increases CDNC on average by 45-163%, but median concentrations are still below the 375 cm-3 assumed in previous studies. An inadvertent effect of the spray emissions is that sulphur dioxide concentrations are suppressed by 1-2% in the seeded regions and sulphuric acid vapour by 64-68% due to chemical reactions on the additional salt particles. The impact of this suppression on existing aerosol is negligible in the model, but should be investigated further in the real environment so that

  18. Enhancement of marine cloud albedo via controlled sea spray injections: a global model study of the influence of emission rates, microphysics and transport

    NASA Astrophysics Data System (ADS)

    Korhonen, H.; Carslaw, K. S.; Romakkaniemi, S.

    2010-01-01

    Modification of cloud albedo by controlled emission of sea spray particles into the atmosphere has been suggested as a possible geoengineering option to slow global warming. Previous global studies have imposed changes in cloud drop concentration in low level clouds to explore the radiative and climatic effects. Here, we use a global aerosol transport model to quantify how an imposed flux of sea spray particles affects the natural aerosol processes, the particle size distribution, and concentrations of cloud drops. We assume that the proposed fleet of vessels emits sea spray particles with a wind speed-dependent flux into four regions of persistent stratocumulus cloud off the western coasts of continents. The model results show that fractional changes in cloud drop number concentration (CDNC) vary substantially between the four regions because of differences in wind speed (which affects the spray efficiency of the vessels), transport and particle deposition rates, and because of variations in aerosols from natural and anthropogenic sources. Using spray emission rates comparable to those implied by previous studies we find that the predicted CDNC changes are very small (maximum 20%) and in one of the four regions even negative. The weak or negative effect is because the added particles suppress the in-cloud supersaturation and prevent existing aerosol particles from forming cloud drops. A scenario with five times higher emissions (considerably higher than previously assumed) increases CDNC on average by 45-163%, but median concentrations are still below the 375 cm-3 assumed in previous studies. An inadvertent effect of the spray emissions is that sulphur dioxide concentrations are suppressed by 1-2% in the seeded regions and sulphuric acid vapour by 64-68% due to chemical reactions on the additional salt particles. The impact of this suppression on existing aerosol is negligible in the model, but should be investigated further in the real environment so that

  19. Origin of surface and columnar Indian Ocean Experiment (INDOEX) aerosols using source- and region-tagged emissions transport in a general circulation model - article no. D24211

    SciTech Connect

    Verma, S.; Venkataraman, C.; Boucher, O.

    2008-12-15

    We study the relative influence of aerosols emitted from different sectors and geographical regions on aerosol loading in south Asia. Sectors contributing aerosol emissions include biofuel and fossil fuel combustion, open biomass burning, and natural sources. Geographical regions include India, southeast Asia, east Asia, Africa-west Asia, and the rest of the world. Simulations of the Indian Ocean Experiment (INDOEX), from January to March 1999, are made in the general circulation model of Laboratoire de Meteorologie Dynamique (LMD-ZT GCM) with emissions tagged by sector and geographical region. Anthropogenic emissions dominate (54-88%) the predicted aerosol optical depth (AOD) over all the receptor regions. Among the anthropogenic sectors, fossil fuel combustion has the largest overall influence on aerosol loading, primarily sulfate, with emissions from India (50-80%) and rest of the world significantly influencing surface concentrations and AOD. Biofuel combustion has a significant influence on both the surface and columnar black carbon (BC) in particular over the Indian subcontinent and Bay of Bengal with emissions largely from the Indian region (60-80%). Open biomass burning emissions influence organic matter (OM) significantly, and arise largely from Africa-west Asia. The emissions from Africa-west Asia affect the carbonaceous aerosols AOD in all receptor regions, with their largest influence (AOD-BC: 60%; and AOD-OM: 70%) over the Arabian Sea. Among Indian regions, the Indo-Gangetic Plain is the largest contributor to anthropogenic surface mass concentrations and AOD over the Bay of Bengal and India. Dust aerosols are contributed mainly through the long-range transport from Africa-west Asia over the receptor regions. Overall, the model estimates significant intercontinental incursion of aerosol, for example, BC, OM, and dust from Africa-west Asia and sulfate from distant regions (rest of the world) into the INDOEX domain.

  20. Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850-2000 - article no. GB2018

    SciTech Connect

    Bond, T.C.; Bhardwaj, E.; Dong, R.; Jogani, R.; Jung, S.K.; Roden, C.; Streets, D.G.; Trautmann, N.M.

    2007-05-15

    We present an emission inventory of primary black carbon (BC) and primary organic carbon (OC) aerosols from fossil fuel and biofuel combustion between 1850 and 2000. We reconstruct fossil fuel consumption and represent changes in technology on a national and sectoral basis. Our estimates rely on new estimates of biofuel consumption, and updated emission factors for old technologies. Emissions of black carbon increase almost linearly, totaling about 1000 Gg in 1850, 2200 Gg in 1900, 3000 Gg in 1950, and 4400 Gg in 2000. Primary organic carbon shows a similar pattern, with emissions of 4100 Gg, 5800 Gg, 6700 Gg, and 8700 Gg in 1850, 1900, 1950, and 2000, respectively. Biofuel is responsible for over half of BC emission until about 1890, and dominates energy-related primary OC emission throughout the entire period. Coal contributes the greatest fraction of BC emission between 1880 and 1975, and is overtaken by emissions from biofuel around 1975, and by diesel engines around 1990. Previous work suggests a rapid rise in BC emissions between 1950 and 2000. This work supports a more gradual increase between 1950 and 2000, similar to the increase between 1850 and 1925; implementation of clean technology is a primary reason.

  1. Aerosol particle and trace gas emissions from earthworks, road construction, and asphalt paving in Germany: Emission factors and influence on local air quality

    NASA Astrophysics Data System (ADS)

    Faber, Peter; Drewnick, Frank; Borrmann, Stephan

    2015-12-01

    Aerosol emissions from construction sites have a strong impact on local air quality. The chemical and physical characteristics of particles and trace gases emitted by earthworks (excavation and loading of soil as well as traffic on unpaved roads) and road works (asphalt sawing, smashing, soil compacting, asphalt paving) have therefore been addressed in this study by using a mobile set-up of numerous modern online aerosol and trace gas instruments including a high-resolution aerosol mass spectrometer. Fuel-based emission factors for several variables have been determined, showing that earthwork activities and compacting by use of a plate compactor revealed the highest median emission factors for PM10 (up to 54 g l-1). Construction activities were assigned to contribute about 17% (36 000 t a-1) to total PM10 emissions and 3% (13 500 t a-1) to total traffic-related NOx emissions in Germany. In particular, calculated PM10 emissions by earthworks are about 15 800 t a-1 corresponding to 44% of total PM10 emissions by construction activities in Germany. Mechanical processes such as asphalt sawing (PM1/PM10 = 18 ± 31%), soil compacting by a plate compactor (PM1/PM10 = 5 ± 6%) and earthworks (PM1/PM10 = 2 ± 5%) emit predominantly coarse mineral dust particles. Contrary to that, particle emissions by thermal construction processes (asphalt paving: PM1/PM10 = 62 ± 14%) and by the internal combustion engines of heavy machinery (e.g. road roller PM1/PM10 = 94 ± 9%) are mostly in the submicron range. These particles were mainly composed of organics containing non-polar saturated and unsaturated hydrocarbons (e.g. asphalting: O:C < 0.01, H:C = 2.01). Besides construction activities, mineral dust is also emitted over cleared land by wind-driven resuspension depending on wind speed. PM10 emissions by construction activities often result in local concentrations > 100 μg m-3 and can easily breach the European limit level of PM10. This study also shows that particulate mineral

  2. The impact of biogenic carbon emissions on aerosol absorption inMexico City

    SciTech Connect

    Marley, N; Gaffney, J; Tackett, M J; Sturchio, N; Hearty, L; Martinez, N; Hardy, K D; Machany-Rivera, A; Guilderson, T P; MacMillan, A; Steelman, K

    2009-02-24

    In order to determine the wavelength dependence of atmospheric aerosol absorption in the Mexico City area, the absorption angstrom exponents (AAEs) were calculated from aerosol absorption measurements at seven wavelengths obtained with a seven-channel aethalometer during two field campaigns, the Mexico City Metropolitan Area study in April 2003 (MCMA 2003) and the Megacity Initiative: Local and Global Research Observations in March 2006 (MILAGRO). The AAEs varied from 0.76 to 1.56 in 2003 and from 0.54 to 1.52 in 2006. The AAE values determined in the afternoon were consistently higher than the corresponding morning values, suggesting the photochemical formation of absorbing secondary organic aerosols (SOA) in the afternoon. The AAE values were compared to stable and radiocarbon isotopic measurements of aerosol samples collected at the same time to determine the sources of the aerosol carbon. The fraction of modern carbon (fM) in the aerosol samples, as determined from {sup 14}C analysis, showed that 70% of the carbonaceous aerosols in Mexico City were from modern sources, indicating a significant impact from biomass burning during both field campaigns. The {sup 13}C/{sup 12}C ratios of the aerosol samples illustrate the significant impact of Yucatan forest fires (C-3 plants) in 2003 and local grass fires (C-4 plants) at site T1 in 2006. A direct comparison of the fM values, stable carbon isotope ratios, and calculated aerosol AAEs suggested that the wavelength dependence of the aerosol absorption was controlled by the biogenically derived aerosol components.

  3. Effects of emission reductions on organic aerosol in the southeastern United States

    NASA Astrophysics Data System (ADS)

    Blanchard, C. L.; Hidy, G. M.; Shaw, S.; Baumann, K.; Edgerton, E. S.

    2016-01-01

    Long-term (1999 to 2013) data from the Southeastern Aerosol Research and Characterization (SEARCH) network are used to show that anthropogenic emission reductions led to important decreases in fine-particle organic aerosol (OA) concentrations in the southeastern US On average, 45 % (range 25 to 63 %) of the 1999 to 2013 mean organic carbon (OC) concentrations are attributed to combustion processes, including fossil fuel use and biomass burning, through associations of measured OC with combustion products such as elemental carbon (EC), carbon monoxide (CO), and nitrogen oxides (NOx). The 2013 mean combustion-derived OC concentrations were 0.5 to 1.4 µg m-3 at the five sites operating in that year. Mean annual combustion-derived OC concentrations declined from 3.8 ± 0.2 µg m-3 (68 % of total OC) to 1.4 ± 0.1 µg m-3 (60 % of total OC) between 1999 and 2013 at the urban Atlanta, Georgia, site (JST) and from 2.9 ± 0.4 µg m-3 (39 % of total OC) to 0.7 ± 0.1 µg m-3 (30 % of total OC) between 2001 and 2013 at the urban Birmingham, Alabama (BHM), site. The urban OC declines coincide with reductions of motor vehicle emissions between 2006 and 2010, which may have decreased mean OC concentrations at the urban SEARCH sites by > 2 µg m-3. BHM additionally exhibits a decline in OC associated with SO2 from 0.4 ± 0.04 µg m-3 in 2001 to 0.2 ± 0.03 µg m-3 in 2013, interpreted as the result of reduced emissions from industrial sources within the city. Analyses using non-soil potassium as a biomass burning tracer indicate that biomass burning OC occurs throughout the year at all sites. All eight SEARCH sites show an association of OC with sulfate (SO4) ranging from 0.3 to 1.0 µg m-3 on average, representing ˜ 25 % of the 1999 to 2013 mean OC concentrations. Because the mass of OC identified with SO4 averages 20 to 30 % of the SO4 concentrations, the mean SO4-associated OC declined by ˜ 0.5 to 1 µg m-3 as SO4 concentrations decreased throughout the SEARCH region. The

  4. Understanding sources and behavior of primary organic aerosol emissions in the atmosphere

    NASA Astrophysics Data System (ADS)

    Shrivastava, Manish

    Organic aerosol (OA) is a major contributor to fine particle concentrations throughout the atmosphere. OA may be directly emitted from various combustion and non-combustion sources (primary OA); and also formed in the atmosphere due to oxidation of gas-phase organics (secondary OA). The relative importance of primary and secondary OA is uncertain. Till date POA is modeled as non-volatile and non-reactive in the-state-of-the-art 3D-Chemical Transport models. However, recent studies have shown that POA is semivolatile in nature and varies in the atmosphere as a function of background OA, temperature and volatility of emissions. Also low volatility primary organic vapors can be oxidized to form secondary organic aerosol. These findings point to major limitations in process representation of primary emissions in models, which are reflected in the persistent discrepancies between model predictions and atmospheric observations. This dissertation developed parameters to represent gas-particle partitioning and aging of POA in air-quality models by fitting measured partitioning behavior of diesel and wood exhaust using dilution samplers. Using the lumped parameters derived from the fits, we investigated partitioning behavior of POA in the atmosphere. POA was found to semi-volatile in nature and evaporated in the atmosphere due to atmospheric dilution favoring partitioning to the gas phase. Since measurements are made at high concentrations compared to ambient conditions, POA emission factors are biased high. Measurements need to be made at atmospheric dilution conditions to reduce this bias. In addition, POA needs to be considered as semi-volatile in 3D-Chemical Transport models such as PMCAMx to simulate the whole range of atmospheric conditions. Using the state-of-the-art 3-D Chemical Transport Model PMCAMx, we evaluated the implications for partitioning and aging on urban and regional OA levels. The predictions of the revised modeling framework were evaluated against

  5. Intermediate Volatility Organic Compound Emissions from On-Road Diesel Vehicles: Chemical Composition, Emission Factors, and Estimated Secondary Organic Aerosol Production.

    PubMed

    Zhao, Yunliang; Nguyen, Ngoc T; Presto, Albert A; Hennigan, Christopher J; May, Andrew A; Robinson, Allen L

    2015-10-01

    Emissions of intermediate-volatility organic compounds (IVOCs) from five on-road diesel vehicles and one off-road diesel engine were characterized during dynamometer testing. The testing evaluated the effects of driving cycles, fuel composition and exhaust aftertreatment devices. On average, more than 90% of the IVOC emissions were not identified on a molecular basis, instead appearing as an unresolved complex mixture (UCM) during gas-chromatography mass-spectrometry analysis. Fuel-based emissions factors (EFs) of total IVOCs (speciated + unspeciated) depend strongly on aftertreatment technology and driving cycle. Total-IVOC emissions from vehicles equipped with catalyzed diesel particulate filters (DPF) are substantially lower (factor of 7 to 28, depending on driving cycle) than from vehicles without any exhaust aftertreatment. Total-IVOC emissions from creep and idle operations are substantially higher than emissions from high-speed operations. Although the magnitude of the total-IVOC emissions can vary widely, there is little variation in the IVOC composition across the set of tests. The new emissions data are combined with published yield data to investigate secondary organic aerosol (SOA) formation. SOA production from unspeciated IVOCs is estimated using surrogate compounds, which are assigned based on gas-chromatograph retention time and mass spectral signature of the IVOC UCM. IVOCs contribute the vast majority of the SOA formed from exhaust from on-road diesel vehicles. The estimated SOA production is greater than predictions by previous studies and substantially higher than primary organic aerosol. Catalyzed DPFs substantially reduce SOA formation potential of diesel exhaust, except at low speed operations. PMID:26322746

  6. Effective absorption cross sections and photolysis rates of anthropogenic and biogenic secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Romonosky, Dian E.; Ali, Nujhat N.; Saiduddin, Mariyah N.; Wu, Michael; Lee, Hyun Ji (Julie); Aiona, Paige K.; Nizkorodov, Sergey A.

    2016-04-01

    Mass absorption coefficient (MAC) values were measured for secondary organic aerosol (SOA) samples produced by flow tube ozonolysis and smog chamber photooxidation of a wide range of volatile organic compounds (VOC), specifically: α-pinene, β-pinene, β-myrcene, d-limonene, farnesene, guaiacol, imidazole, isoprene, linalool, ocimene, p-xylene, 1-methylpyrrole, and 2-methylpyrrole. Both low-NOx and high-NOx conditions were employed during the chamber photooxidation experiments. MAC values were converted into effective molecular absorption cross sections assuming an average molecular weight of 300 g/mol for SOA compounds. The upper limits for the effective photolysis rates of SOA compounds were calculated by assuming unity photolysis quantum yields and convoluting the absorption cross sections with a time-dependent solar spectral flux. A more realistic estimate for the photolysis rates relying on the quantum yield of acetone was also obtained. The results show that condensed-phase photolysis of SOA compounds can potentially occur with effective lifetimes ranging from minutes to days, suggesting that photolysis is an efficient and largely overlooked mechanism of SOA aging.

  7. A chamber study of the influence of boreal BVOC emissions and sulphuric acid on nanoparticle formation rates at ambient concentrations

    NASA Astrophysics Data System (ADS)

    Dal Maso, M.; Liao, L.; Wildt, J.; Kiendler-Scharr, A.; Kleist, E.; Tillmann, R.; Sipilä, M.; Hakala, J.; Lehtipalo, K.; Ehn, M.; Kerminen, V.-M.; Kulmala, M.; Worsnop, D.; Mentel, T.

    2014-12-01

    Aerosol formation from biogenic and anthropogenic precursor trace gases in continental background areas affects climate via altering the amount of available cloud condensation nuclei. Significant uncertainty still exists regarding the agents controlling the formation of aerosol nanoparticles. We have performed experiments in the Jülich Plant-Atmosphere Simulation Chamber with instrumentation for the detection of sulphuric acid and nanoparticles, and present the first simultaneous chamber observations of nanoparticles, sulphuric acid, and realistic levels and mixtures of biogenic volatile compounds (BVOC). We present direct laboratory observations of nanoparticle formation from sulphuric acid and realistic BVOC precursor vapor mixtures performed at atmospherically relevant concentration levels. We directly measured particle formation rates separately from particle growth rates. From this, we established that in our experiments, the formation rate was proportional to the product of sulphuric acid and biogenic VOC emission strength. The formation rates were consistent with a mechanism in which nucleating BVOC oxidation products are rapidly formed and activate with sulphuric acid. The growth rate of nanoparticles immediately after birth was best correlated with estimated products resulting from BVOC ozonolysis.

  8. A chamber study of the influence of boreal BVOC emissions and sulfuric acid on nanoparticle formation rates at ambient concentrations

    NASA Astrophysics Data System (ADS)

    Dal Maso, M.; Liao, L.; Wildt, J.; Kiendler-Scharr, A.; Kleist, E.; Tillmann, R.; Sipilä, M.; Hakala, J.; Lehtipalo, K.; Ehn, M.; Kerminen, V.-M.; Kulmala, M.; Worsnop, D.; Mentel, T.

    2016-02-01

    Aerosol formation from biogenic and anthropogenic precursor trace gases in continental background areas affects climate via altering the amount of available cloud condensation nuclei. Significant uncertainty still exists regarding the agents controlling the formation of aerosol nanoparticles. We have performed experiments in the Jülich plant-atmosphere simulation chamber with instrumentation for the detection of sulfuric acid and nanoparticles, and present the first simultaneous chamber observations of nanoparticles, sulfuric acid, and realistic levels and mixtures of biogenic volatile compounds (BVOCs). We present direct laboratory observations of nanoparticle formation from sulfuric acid and realistic BVOC precursor vapour mixtures performed at atmospherically relevant concentration levels. We directly measured particle formation rates separately from particle growth rates. From this, we established that in our experiments, the formation rate was proportional to the product of sulfuric acid and biogenic VOC emission strength. The formation rates were consistent with a mechanism in which nucleating BVOC oxidation products are rapidly formed and activate with sulfuric acid. The growth rate of nanoparticles immediately after birth was best correlated with estimated products resulting from BVOC ozonolysis.

  9. Spatial variations in immediate greenhouse gases and aerosol emissions and resulting radiative forcing from wildfires in interior Alaska

    NASA Astrophysics Data System (ADS)

    Huang, Shengli; Liu, Heping; Dahal, Devendra; Jin, Suming; Li, Shuang; Liu, Shuguang

    2016-02-01

    Boreal fires can cool the climate; however, this conclusion came from individual fires and may not represent the whole story. We hypothesize that the climatic impact of boreal fires depends on local landscape heterogeneity such as burn severity, prefire vegetation type, and soil properties. To test this hypothesis, spatially explicit emission of greenhouse gases (GHGs) and aerosols and their resulting radiative forcing are required as an important and necessary component towards a full assessment. In this study, we integrated remote sensing (Landsat and MODIS) and models (carbon consumption model, emission factors model, and radiative forcing model) to calculate the carbon consumption, GHGs and aerosol emissions, and their radiative forcing of 2001-2010 fires at 30 m resolution in the Yukon River Basin of Alaska. Total carbon consumption showed significant spatial variation, with a mean of 2,615 g C m-2 and a standard deviation of 2,589 g C m-2. The carbon consumption led to different amounts of GHGs and aerosol emissions, ranging from 593.26 Tg (CO2) to 0.16 Tg (N2O). When converted to equivalent CO2 based on global warming potential metric, the maximum 20 years equivalent CO2 was black carbon (713.77 Tg), and the lowest 20 years equivalent CO2 was organic carbon (-583.13 Tg). The resulting radiative forcing also showed significant spatial variation: CO2, CH4, and N2O can cause a 20-year mean radiative forcing of 7.41 W m-2 with a standard deviation of 2.87 W m-2. This emission forcing heterogeneity indicates that different boreal fires have different climatic impacts. When considering the spatial variation of other forcings, such as surface shortwave forcing, we may conclude that some boreal fires, especially boreal deciduous fires, can warm the climate.

  10. APPLICATION OF POLLUTION PREVENTION TECHNIQUES TO REDUCE INDOOR AIR EMISSIONS FROM AEROSOL CONSUMER PRODUCTS (PROJECT SUMMARY)

    EPA Science Inventory

    report gives results of research, undertaken to develop tools and meth-odologies to measure aerosol chemical and particle dispersion through space. Georgia Tech Research Institute re-searchers built an Aerosol Mass Spec-tral Interface (AMSI), which is interfaced with a mass spect...

  11. Micro-Raman Spectroscopy to Complement Proton-Induced X-Ray Emission in the Analysis of Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Safiq, Alexandrea; Ali, Salina; Nadarski, Benjamin; Smith, Jeremy; Yoskowitz, Josh; Labrake, Scott; Vineyard, Michael; Union College Team

    2013-10-01

    There is an active research program in the Union College Ion-Beam Analysis Laboratory on proton-induced X-ray emission (PIXE) analysis of atmospheric aerosols. PIXE is a powerful tool for the study of airborne pollution because it provides information on a broad range of elements simultaneously, has low detection limits, is nondestructive, does not require large samples, and the analysis can be performed in a short amount of time. However, PIXE provides only elemental information. We are investigating the use of Micro-Raman spectroscopy (MRS) to complement PIXE analysis of aerosol samples by providing chemical information. In MRS, laser light is inelastically scattered from a sample and the vibrational spectrum of the scattered light is used to identify molecules and their functional groups. We are focusing on aerosol samples collected in the Adirondack Mountains that have considerable concentrations of sulfur that may contribute to acid rain. The MRS spectra collected on aerosol samples are being compared with a library of standards to try to determine the molecular structures in which the sulfur is bound. We will describe the analysis and present preliminary results. Union College Undergraduate Research Program.

  12. Organic aerosol mass spectral signatures from wood-burning emissions: Influence of burning conditions and wood type

    NASA Astrophysics Data System (ADS)

    Weimer, S.; Alfarra, M. R.; Schreiber, D.; Mohr, M.; PréVôT, A. S. H.; Baltensperger, U.

    2008-05-01

    Wood-burning for domestic heating purposes is becoming more important owing to the increasing use of wood as a renewable fuel. Particle emissions from residential wood combustion contribute substantially to particulate matter during winter. An Aerodyne quadrupole aerosol mass spectrometer was used to study the variability of the mass spectra of organic aerosol particles emitted from the burning of different wood types as a function of burning conditions and burning technologies. Previously found wood-burning mass fragment markers in ambient air and for levoglucosan such as m/z 60, 73, and 29 were confirmed as a feature of wood-burning aerosol. They were enhanced during the flaming phase and reduced in the smoldering phase when burning was conducted in a small wood stove. The mass spectra during the smoldering phase were dominated by oxygenated species and exhibited a strong resemblance to the mass spectrum of fulvic acid which is used as a model compound for highly oxidized aerosol. A strong resemblance between the mass spectra of fulvic acid and organic particles emitted during wood-burning in an automatic furnace was found. In general, we found larger differences in the mass spectra between flaming and smoldering phases of one wood type than between different wood types within the same phase. Furthermore it was observed that during one experiment where white fir bark was burned the contribution of polycyclic aromatic hydrocarbons to the total organic matter was very high (˜30%) compared to other wood-burning experiments (0.4-2.2%).

  13. Emission and Photochemical Evolution of Low Vapor Pressure-Volatile Organic Compounds (LVP-VOCs): from Consumer Products to Secondary Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Li, L.; Kacarab, M.; Chen, C. L.; Price, D.; Carter, W. P. L.; Cocker, D. R., III

    2015-12-01

    Missing emission sources contribute to potential problems in air quality modeling and human health. Low Vapor Pressure-Volatile Organic Compounds (LVP-VOCs) are widely used in consumer products and currently receive VOC exemptions based on their vapor pressure. However, 58.5 TPD LVP-VOC is estimated to emit in 2020 from consumer products in California based on government and industry inventory data. This work investigates the emission and photochemical evolution of major LVP-VOCs in consumer products to demonstrate LVP-VOC impacts on criteria air pollutants. LVP-VOC emission potential is investigated by offline gravimetric and online headspace tracking pure compounds and consumer product mixtures under ambient relevant conditions. Only 3 of the 14 pure LVP-VOCs were found to be atmospherically unavailable. All target LVP-VOCs are observed to evaporate from tested consumer product mixtures. We found improved thermodynamic parameters to predict LVP-VOC evaporation rate. LVP-VOCs photochemical evolution and their impact on ozone and secondary organic aerosol (SOA) formation are evaluated by integrating SAPRC-11 modeling with laboratory studies in a 90 m3 dual environmental chamber at UC Riverside/CE-CERT. Simultaneous photooxidation experiments, with and without the LVP-VOC, are conducted in the presence of reactive organic gas (ROG) surrogate representing urban chemical smog. Further, LVP-VOC photochemical evolution pathway is investigated under various atmospheric activity (LVP + H2O2, LVP+NO or LVP+H2O2+NO) in the environmental chamber. Gas phase and particle phase mass spectrometers (SIFT-MS, Selected Ion Flow Tube-Mass Spectrum and HR-ToF-MS, High Resolution Time-of-Flight Aerosol mass Spectrometer) are applied to monitor the evolution of LVP-VOCs in the controlled atmosphere. The potential of LVP-VOC oxidation into ELVOC is also illustrated. We finally interpret the health risk and environmental concern related to LVP-VOC emission and photoxidation.

  14. Towards the regulation of aerosol emissions by their potential health impact: Assessing adverse effects of aerosols from wood combustion and ship diesel engine emissions by combining comprehensive data on the chemical composition and their toxicological effects on human lung cells

    NASA Astrophysics Data System (ADS)

    Zimmermann, R.; Streibel, T.; Dittmar, G.; Kanashova, T.; Buters, J.; Öder, S.; Paur, H. R.; Dilger, M.; Weiss, C.; Harndorf, H.; Stengel, B.; Hirvonen, M. R.; Jokiniemi, J.; Hiller, K.; Sapcariu, S.; Sippula, O.; Orasche, J.; Müller, L.; Rheda, A.; Passig, J.; Radischat, C.; Czech, H.; Tiita, P.; Jalava, P.; Kasurinen, S.; Schwemer, T.; Yli-Prilä, P.; Tissari, J.; Lamberg, H.; Schnelle-Kreis, J.

    2014-12-01

    Ship engine emissions are important regarding lung and cardiovascular diseases in coastal regions worldwide. Bio mass burning is made responsible for adverse health effects in many cities and rural regions. The Virtual Helmholtz Institute-HICE (www.hice-vi.eu) addresses chemical & physical properties and health effects of anthropogenic combustion emissions. Typical lung cell responses to combustion aerosols include inflammation and apoptosis, but a molecular link with the specific chemical composition in particular of ship emissions has not been established. Through an air-liquid interface exposure system (ALI), we exposed human lung cells at-site to exhaust fumes from a ship engine running on common heavy fuel oil (HFO) and cleaner-burning diesel fuel (DF) as well as to emissions of wood combustion compliances. A special field deployable ALI-exposition system and a mobile S2-biological laboratory were developed for this study. Human alveolar basal epithelial cells (A549 etc.) are ALI-exposed to fresh, diluted (1:40-1:100) combustion aerosols and subsequently were toxicologically and molecular-biologically characterized. Advanced chemical analyses of the exhaust aerosols were combined with transcriptional, proteomic and metabolomic profiling to characterise the cellular responses. The HFO ship emissions contained high concentrations of toxic compounds (transition metals, organic toxicants) and particle masses. The cellular responses included inflammation and oxidative stress. Surprisingly, the DF ship emissions, which predominantly contain rather "pure" carbonaceous soot and much less known toxicants, induced significantly broader biological effects, affecting essential cellular pathways (e.g., mitochondrial function and intracellular transport). Therefore the use of distillate fuels for shipping (this is the current emission reduction strategy of the IMO) appears insufficient for diminishing health effects. The study suggests rather reducing the particle emissions

  15. Primary emissions and secondary organic aerosol formation from the exhaust of a flex-fuel (ethanol) vehicle

    NASA Astrophysics Data System (ADS)

    Suarez-Bertoa, R.; Zardini, A. A.; Platt, S. M.; Hellebust, S.; Pieber, S. M.; El Haddad, I.; Temime-Roussel, B.; Baltensperger, U.; Marchand, N.; Prévôt, A. S. H.; Astorga, C.

    2015-09-01

    Incentives to use biofuels may result in increasing vehicular emissions of compounds detrimental to air quality. Therefore, regulated and unregulated emissions from a Euro 5a flex-fuel vehicle, tested using E85 and E75 blends (gasoline containing 85% and 75% of ethanol (vol/vol), respectively), were investigated at 22 and -7 °C over the New European Driving Cycle, at the Vehicle Emission Laboratory at the European Commission Joint Research Centre Ispra, Italy. Vehicle exhaust was comprehensively analyzed at the tailpipe and in a dilution tunnel. A fraction of the exhaust was injected into a mobile smog chamber to study the photochemical aging of the mixture. We found that emissions from a flex-fuel vehicle, fueled by E85 and E75, led to secondary organic aerosol (SOA) formation, despite the low aromatic content of these fuel blends. Emissions of regulated and unregulated compounds, as well as emissions of black carbon (BC) and primary organic aerosol (POA) and SOA formation were higher at -7 °C. The flex-fuel unregulated emissions, mainly composed of ethanol and acetaldehyde, resulted in very high ozone formation potential and SOA, especially at low temperature (860 mg O3 km-1 and up to 38 mg C kg-1). After an OH exposure of 10 × 106 cm-3 h, SOA mass was, on average, 3 times larger than total primary particle mass emissions (BC + POA) with a high O:C ratio (up to 0.7 and 0.5 at 22 and -7 °C, respectively) typical of highly oxidized mixtures. Furthermore, high resolution organic mass spectra showed high 44/43 ratios (ratio of the ions m/z 44 and m/z 43) characteristic of low-volatility oxygenated organic aerosol. We also hypothesize that SOA formation from vehicular emissions could be due to oxidation products of ethanol and acetaldehyde, both short-chain oxygenated VOCs, e.g. methylglyoxal and acetic acid, and not only from aromatic compounds.

  16. Effects of alkylate fuel on exhaust emissions and secondary aerosol formation of a 2-stroke and a 4-stroke scooter

    NASA Astrophysics Data System (ADS)

    Zardini, Alessandro A.; Platt, Stephen M.; Clairotte, Michael; El Haddad, Imad; Temime-Roussel, Brice; Marchand, Nicolas; Ježek, Irena; Drinovec, Luka; Močnik, Griša; Slowik, Jay G.; Manfredi, Urbano; Prévôt, André S. H.; Baltensperger, Urs; Astorga, Covadonga

    2014-09-01

    Regulated and unregulated emissions from a 2-stroke and a 4-stroke scooter were characterized during a legislative driving cycle in a certified laboratory. Scooter exhaust was analyzed at the tailpipe, in a dilution tunnel, and partly collected in a mobile smog chamber for photochemical ageing. We present evidence that the photochemically aged exhaust from a 2-stroke and a 4-stroke scooter produces considerable amounts of secondary organic aerosol: from 1.5 to 22.0 mg/km, and from 5.5 to 6.6 mg/km, respectively. Tests were repeated after replacing the standard petrol and synthetic lube oil with an alkylate fuel (with low content of aromatic compounds) and ultra-clean lube oil (low ash forming potential). We observed emission reduction (with some exceptions) for several gaseous and particulate phase species, in particular for carbon monoxide (from 8% up to 38% and from 31% to 50%, for the 2-stroke and the 4-stroke scooters, respectively), particulate mass (from 32% up to 75% for the 2-stroke scooter), aromatic compounds (89% and 97% for the 2-stroke and the 4-stroke scooter, respectively), and secondary organic aerosol (from 87% to 100% and 99% for the 2-stroke and the 4-stroke scooters, respectively). We attribute the organic aerosol reduction to the low content of aromatics in the alkylate fuel.

  17. A global emission inventory of carbonaceous aerosol from historic records of fossil fuel and biofuel consumption for the period 1860-1997

    NASA Astrophysics Data System (ADS)

    Junker, C.; Liousse, C.

    2008-03-01

    Country by country emission inventories for carbonaceous aerosol for the period 1860 to 1997 have been constructed on the basis of historic fuel production, use and trade data sets published by the United Nation's Statistical Division UNSTAT (1997), Etemad et al. (1991) and Mitchell (1992, 1993, 1995). The inventories use emission factors variable over time, which have been determined according to changes in technological development. The results indicate that the industrialisation period since 1860 was accompanied by a steady increase in black carbon (BC) and primary organic carbon (POC) emissions up to 1910. The calculations show a moderate decrease of carbonaceous aerosol emissions between 1920 and 1930, followed by an increase up to 1990, the year when emissions began to decrease again. Changes in BC and POC emissions prior to the year 1950 are essentially driven by the USA, Germany and the UK. The USSR, China and India become substantial contributors to carbonaceous aerosol emissions after 1950. Emission maps have been generated with a 1°×1° resolution based on the relative population density in each country. They will provide a helpful tool for assessing the effect of carbonaceous aerosol emissions on observed climate changes of the past.

  18. A global emission inventory of carbonaceous aerosol from historic records of fossil fuel and biofuel consumption for the period 1860-1997

    NASA Astrophysics Data System (ADS)

    Junker, C.; Liousse, C.

    2006-06-01

    Country by country emission inventories for carbonaceous aerosol for the period 1860 to 1997 have been constructed on the basis of historic fuel production, use and trade data sets published by the United Nation's Statistical Division UNSTAT (1997), Etemad et al. (1991) and Mitchell (1992, 1993, 1995). The inventories use emission factors variable over time, which have been determined according to changes in technological development. The results indicate that the industrialisation period since 1860 was accompanied by a steady increase in black carbon (BC) and organic carbon (OC) emissions up to 1910. The calculations show a moderate decrease of carbonaceous aerosol emissions between 1920 and 1930, followed by an increase up to 1990, the year when emissions began to decrease again. Changes in BC and OC emissions prior to the year 1950 are essentially driven by the USA, Germany and the UK. The USSR, China and India become substantial contributors to carbonaceous aerosol emissions after 1950. Emission maps have been generated with a 1°×1° resolution based on the relative population density in each country. They will provide a helpful tool for assessing the effect of carbonaceous aerosol emissions on observed climate changes of the past.

  19. Transition rates and transition rate diagrams in atomic emission spectroscopy: A review

    NASA Astrophysics Data System (ADS)

    Weiss, Zdeněk; Steers, Edward B. M.; Pickering, Juliet C.

    2015-08-01

    In low pressure plasmas with low electron densities, such as glow discharges, radiative de-excitation is a major de-excitation process of most excited states. Their relative de-excitation rates can be determined by emission spectroscopy, making it possible to study excitation processes in these discharges. This is in contrast to denser plasmas, in which such considerations are usually based on relative populations of excited states and concepts related to thermodynamic equilibrium. In the approach using reaction rates rather than populations, a convenient tool is the recently introduced formalism of transition rate diagrams. This formalism is reviewed, its relevance to different plasmas is discussed and some recent results on glow discharge excitation of manganese, copper and iron ions are presented. The prospects for the use of this formalism for the comparison of rate constants and cross sections for charge transfer reactions with argon ions of elements of interest in analytical glow discharge spectroscopy are discussed.

  20. The impact of bark beetle infestations on monoterpene emissions and secondary organic aerosol formation in western North America

    NASA Astrophysics Data System (ADS)

    Berg, A. R.; Heald, C. L.; Huff Hartz, K. E.; Hallar, A. G.; Meddens, A. J. H.; Hicke, J. A.; Lamarque, J.-F.; Tilmes, S.

    2013-03-01

    Over the last decade, extensive beetle outbreaks in western North America have destroyed over 100 000 km2 of forest throughout British Columbia and the western United States. Beetle infestations impact monoterpene emissions through both decreased emissions as trees are killed (mortality effect) and increased emissions in trees under attack (attack effect). We use 14 yr of beetle-induced tree mortality data together with beetle-induced monoterpene emission data in the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM) to investigate the impact of beetle-induced tree mortality and attack on monoterpene emissions and secondary organic aerosol (SOA) formation in western North America. Regionally, beetle infestations may have a significant impact on monoterpene emissions and SOA concentrations, with up to a 4-fold increase in monoterpene emissions and up to a 40% increase in SOA concentrations in some years (in a scenario where the attack effect is based on observed lodgepole pine response). Responses to beetle attack depend on the extent of previous mortality and the number of trees under attack in a given year, which can vary greatly over space and time. Simulated enhancements peak in 2004 (British Columbia) and 2008 (US). Responses to beetle attack are shown to be substantially larger (up to a 3-fold localized increase in summertime SOA concentrations) in a scenario based on bark-beetle attack in spruce trees. Placed in the context of observations from the IMPROVE network, the changes in SOA concentrations due to beetle attack are in most cases small compared to the large annual and interannual variability in total organic aerosol which is driven by wildfire activity in western North America. This indicates that most beetle-induced SOA changes are not likely detectable in current observation networks; however, these changes may impede efforts to achieve natural visibility conditions in the national parks and wilderness areas of the

  1. Secondary Organic Aerosol Formation from Ultra-Low Super Ultra-Low and Partial Zero Emission Vehicle Exhaust

    NASA Astrophysics Data System (ADS)

    Robinson, A. L.; Zhao, Y.; Lambe, A. T.; Saleh, R.; Saliba, G.; Maldonado, H.; Sardar, S.; Frodin, B.; Drozd, G.; Goldstein, A. H.; Kroll, J. H.; Cross, E. S.; Franklin, J. P.

    2015-12-01

    Secondary organic aerosol (SOA) is the dominant component of organic aerosol in many urban areas during the summertime. On-road light duty gasoline vehicles (LDGV) have been indicated as a major source of SOA precursors. Emissions of the SOA-forming non methane hydrocarbons (NMHCs) from on-road LDGV have been substantially reduced along with more stringent emission standards, leading to reduced potential for SOA formation. However, recent smog chamber measurements reported that the reductions in SOA formation were less than those in NMHC emissions, indicating that newer, low emitting vehicles may emit a more efficient of SOA precursors. Vehicles that meet the ultra-low, super ultra-low and partial zero emission standards have substantially lower NMHC emissions than vehicles tested in past studies. To better understand the effects of more stringent emission controls on the SOA formation, we conducted experiments 13 vehicles recruited from the Southern California vehicle fleet (five ultra-low emission vehicles, four super ultra-low emission vehicles and four partial zero emission vehicles) at the California Air Resources Board Haagen-Smit Laboratory. In addition, we investigated several vehicles compliant with older emission standards have also been investigated here to bridge the previous studies. Dilute vehicle exhaust were photo-oxidized in a smog chamber with the VOC-to-NOx ratio adjusted to simulate the photochemistry in urban air. Application of literature data from single-ring aromatic compounds cannot explain the observed SOA during chamber experiments. The average ratios between estimated and measured SOA for vehicles under different emission standards ranged from 0.04 to 0.71. Comprehensive measurements of SOA precursor emissions were made, including NMHCs, intermediate volatility and semi-volatile organic compounds. This study presents results of SOA production from these low emitting vehicles and compares the results with recently published data. This

  2. Future Premature Mortality Due to O3, Secondary Inorganic Aerosols and Primary PM in Europe — Sensitivity to Changes in Climate, Anthropogenic Emissions, Population and Building Stock

    PubMed Central

    Geels, Camilla; Andersson, Camilla; Hänninen, Otto; Lansø, Anne Sofie; Schwarze, Per E.; Ambelas Skjøth, Carsten; Brandt, Jørgen

    2015-01-01

    Air pollution is an important environmental factor associated with health impacts in Europe and considerable resources are used to reduce exposure to air pollution through emission reductions. These reductions will have non-linear effects on exposure due, e.g., to interactions between climate and atmospheric chemistry. By using an integrated assessment model, we quantify the effect of changes in climate, emissions and population demography on exposure and health impacts in Europe. The sensitivity to the changes is assessed by investigating the differences between the decades 2000–2009, 2050–2059 and 2080–2089. We focus on the number of premature deaths related to atmospheric ozone, Secondary Inorganic Aerosols and primary PM. For the Nordic region we furthermore include a projection on how population exposure might develop due to changes in building stock with increased energy efficiency. Reductions in emissions cause a large significant decrease in mortality, while climate effects on chemistry and emissions only affects premature mortality by a few percent. Changes in population demography lead to a larger relative increase in chronic mortality than the relative increase in population. Finally, the projected changes in building stock and infiltration rates in the Nordic indicate that this factor may be very important for assessments of population exposure in the future. PMID:25749320

  3. Future premature mortality due to O3, secondary inorganic aerosols and primary PM in Europe--sensitivity to changes in climate, anthropogenic emissions, population and building stock.

    PubMed

    Geels, Camilla; Andersson, Camilla; Hänninen, Otto; Lansø, Anne Sofie; Schwarze, Per E; Skjøth, Carsten Ambelas; Brandt, Jørgen

    2015-03-01

    Air pollution is an important environmental factor associated with health impacts in Europe and considerable resources are used to reduce exposure to air pollution through emission reductions. These reductions will have non-linear effects on exposure due, e.g., to interactions between climate and atmospheric chemistry. By using an integrated assessment model, we quantify the effect of changes in climate, emissions and population demography on exposure and health impacts in Europe. The sensitivity to the changes is assessed by investigating the differences between the decades 2000-2009, 2050-2059 and 2080-2089. We focus on the number of premature deaths related to atmospheric ozone, Secondary Inorganic Aerosols and primary PM. For the Nordic region we furthermore include a projection on how population exposure might develop due to changes in building stock with increased energy efficiency. Reductions in emissions cause a large significant decrease in mortality, while climate effects on chemistry and emissions only affects premature mortality by a few percent. Changes in population demography lead to a larger relative increase in chronic mortality than the relative increase in population. Finally, the projected changes in building stock and infiltration rates in the Nordic indicate that this factor may be very important for assessments of population exposure in the future. PMID:25749320

  4. Tunable Casimir-Polder Forces and Spontaneous Emission Rates

    NASA Astrophysics Data System (ADS)

    Rosa, Felipe; Kort-Kamp, Wilton; Pinheiro, Felipe; Cysne, Tarik; Oliver, Diego; Farina, Carlos

    2015-03-01

    We investigate the dispersive Casimir-Polder interaction between a Rubidium atom and a graphene sheet subjected to an external magnetic field B. We demonstrate that this concrete physical system allows for a high degree of control of dispersive interactions at micro and nanoscales. Indeed, we show that the application of an external magnetic field can induce a 80 % reduction of the Casimir-Polder energy relative to its value without the field. We also show that sharp discontinuities emerge in the Casimir-Polder interaction energy for certain values of the applied magnetic field at low temperatures. In addition, we also show that atomic spontaneous emission rates can be greatly modified by the action of the magnetic field, with an order of magnitude enhancement or suppression depending on the dipole's moment orientation.

  5. The ISA-MIP Historical Eruption SO2 Emissions Assessment (HErSEA): an intercomparison for interactive stratospheric aerosol models

    NASA Astrophysics Data System (ADS)

    Mann, Graham; Dhomse, Sandip; Sheng, Jianxiong; Mills, Mike

    2016-04-01

    Major historical volcanic eruptions have injected huge amounts of sulphur dioxide into the stratosphere with observations showing an enhancement of the stratospheric aerosol layer for several years (ASAP, 2006). Such long-lasting increases in stratospheric aerosol loading cool the Earth's surface by scattering incoming solar radiation and warm the stratosphere via absorption of near infra-red solar and long-wave terrestrial radiation with complex effects on climate (e.g. Robock, 2000). Two recent modelling studies of Mount Pinatubo (Dhomse et al., 2014; Sheng et al. 2015) have highlighted that observations suggest the sulphur loading of the volcanically enhanced stratospheric aerosol may have been considerably lower than suggested by measurements of the injected SO2. This poster describes a new model intercomparison activity "ISA-MIP" for interactive stratospheric aerosol models within the framework of the SPARC initiative on Stratospheric Sulphur and its Role in Climate (SSiRC). The new "Historical Eruption SO2 emissions Assessment" (HErSEA) will intercompare model simulations of the three largest volcanic perturbations to the stratosphere in the last 50 years, 1963 Mt Agung, 1982 El Chichon and 1991 Mt Pinatubo. The aim is to assess how effectively the emitted SO2 translates into perturbations to stratospheric aerosol properties and simulated radiative forcings in different composition-climate models with interactive stratospheric aerosol (ISA). Each modelling group will run a mini-ensemble of transient AMIP-type runs for the 3 eruptions with a control no-eruption run followed by upper and lower bound injection amount estimates and 3 different injection height settings for two shallow (e.g. 19-21km amd 23-25km) and one deep (e.g. 19-25km) injection. First order analysis will intercompare stratospheric aerosol metrics such as 2D-monthly AOD(550nm, 1020nm) and timeseries of tropical and NH/SH mid-visible extinction at three different models levels (15, 20 and 25km

  6. The impact of bark beetle infestation on monoterpene emissions and secondary organic aerosol formation in Western North America

    NASA Astrophysics Data System (ADS)

    Berg, A. R.; Heald, C. L.; Huff Hartz, K. E.; Hallar, A. G.; Meddens, A. J. H.; Hicke, J. A.; Lamarque, J.-F.; Tilmes, S.

    2012-11-01

    Over the last decade, extensive beetle outbreaks in Western North America have destroyed over 100 000 km2 of forest throughout British Columbia and the Western United States. Beetle infestations impact monoterpene emissions through both decreased emissions as trees are killed (mortality effect) and increased emissions in trees under attack (attack effect). We use 14 yr of beetle mortality data together with beetle-induced monoterpene concentration data in the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM) to investigate the impact of beetle mortality and attack on monoterpene emissions and secondary organic aerosol (SOA) formation in Western North America. Regionally, beetle infestations may have a significant impact on monoterpene emissions and SOA concentrations, with up to a 4-fold increase in monoterpene emissions and up to a 40% increase in SOA concentrations in some years (following a scenario where the attack effect is based on observed lodgepole pine response). Responses to beetle attack depend on the extent of previous mortality and the number of trees under attack in a given year, which can vary greatly over space and time. Simulated enhancements peak in 2004 (British Columbia) and 2008 (US). Responses to beetle attack are shown to be substantially larger (up to a 3-fold localized increase in SOA concentrations) when following a scenario based on bark-beetle attack in spruce trees. Placed in the context of observations from the IMPROVE network, the changes in SOA concentrations due to beetle attack are in most cases small compared to the large annual and interannual variability in total organic aerosol which is driven by wildfire activity in Western North America. This indicates that most beetle-induced SOA changes are not likely detectable in current observation networks; however these changes may impede efforts to achieve natural visibility conditions in the national parks and wilderness areas of the Western United

  7. Environmental tobacco smoke: mutagenic emission rates and their relationship to other emission factors

    SciTech Connect

    Lewtas, J.; Williams, K.; Lofroth, G.; Hammond, K.; Leaderer, B.

    1987-05-01

    The objective of this study was to evaluate the emission rates and exposure concentrations of mutagens, nicotine, and particles from cigarettes. Studies were conducted under controlled laboratory and chamber conditions as well as in personal residences. The mutagenicity of environmental tobacco smoke (ETS) was evaluated in three bioassays using two strains of Salmonella typhimurium. Strain TA98 was used in the standard plate-incorporation and microsuspension histidine reversion assays; and strain TM677 in a microsuspension forward mutation assay. The mutagenicity, expressed either per Ug particle or per Ug nicotine, appeared to be a relatively constant factor that did not vary significantly between various cigarette brands. These data are being used to model the emissions of mutagens to predict mutagenic exposure concentrations under various conditions.

  8. Influences of emission sources and meteorology on aerosol chemistry in a polluted urban environment: results from DISCOVER-AQ California

    DOE PAGESBeta

    Young, Dominique E.; Kim, Hwajin; Parworth, Caroline; Zhou, Shan; Zhang, Xiaolu; Cappa, Christopher D.; Seco, Roger; Kim, Saewung; Zhang, Qi

    2016-05-02

    The San Joaquin Valley (SJV) in California experiences persistent air-quality problems associated with elevated particulate matter (PM) concentrations due to anthropogenic emissions, topography, and meteorological conditions. Thus it is important to unravel the various sources and processes that affect the physicochemical properties of PM in order to better inform pollution abatement strategies and improve parameterizations in air-quality models. During January and February 2013, a ground supersite was installed at the Fresno–Garland California Air Resources Board (CARB) monitoring station, where comprehensive, real-time measurements of PM and trace gases were performed using instruments including an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) andmore » an Ionicon proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) as part of the NASA Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) campaign. The average submicron aerosol (PM1) concentration was 31.0 µg m−3 and the total mass was dominated by organic aerosols (OA, 55 %), followed by ammonium nitrate (35 %). High PM pollution events were commonly associated with elevated OA concentrations, mostly from primary sources. Organic aerosols had average atomic oxygen-to-carbon (O / C), hydrogen-to-carbon (H / C), and nitrogen-to-carbon (N / C) ratios of 0.42, 1.70, and 0.017, respectively. Six distinct sources of organic aerosol were identified from positive matrix factorization (PMF) analysis of the AMS data: hydrocarbon-like OA (HOA; 9 % of total OA, O / C  =  0.09) associated with local traffic, cooking OA (COA; 18 % of total OA, O / C  =  0.19) associated with food cooking activities, two biomass burning OA (BBOA1: 13 % of total OA, O / C  =  0.33; BBOA2: 20 % of total OA, O / C  =  0.60) most likely

  9. Influences of emission sources and meteorology on aerosol chemistry in a polluted urban environment: Results from DISCOVER-AQ California

    DOE PAGESBeta

    Young, Dominique E.; Kim, Hwajin; Parworth, Caroline; Zhou, Shan; Zhang, Xiaolu; Cappa, Christopher D.; Seco, Roger; Kim, Saewung; Zhang, Qi

    2016-05-02

    The San Joaquin Valley (SJV) in California experiences persistent air-quality problems associated with elevated particulate matter (PM) concentrations due to anthropogenic emissions, topography, and meteorological conditions. Thus it is important to unravel the various sources and processes that affect the physicochemical properties of PM in order to better inform pollution abatement strategies and improve parameterizations in air-quality models. During January and February 2013, a ground supersite was installed at the Fresno–Garland California Air Resources Board (CARB) monitoring station, where comprehensive, real-time measurements of PM and trace gases were performed using instruments including an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) andmore » an Ionicon proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) as part of the NASA Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) campaign. The average submicron aerosol (PM1) concentration was 31.0 µg m–3 and the total mass was dominated by organic aerosols (OA, 55 %), followed by ammonium nitrate (35 %). High PM pollution events were commonly associated with elevated OA concentrations, mostly from primary sources. Organic aerosols had average atomic oxygen-to-carbon (O/C), hydrogen-to-carbon (H/C), and nitrogen-to-carbon (N/C) ratios of 0.42, 1.70, and 0.017, respectively. Six distinct sources of organic aerosol were identified from positive matrix factorization (PMF) analysis of the AMS data: hydrocarbon-like OA (HOA; 9 % of total OA, O/C = 0.09) associated with local traffic, cooking OA (COA; 18 % of total OA, O/C = 0.19) associated with food cooking activities, two biomass burning OA (BBOA1: 13 % of total OA, O/C = 0.33; BBOA2: 20 % of total OA, O/C = 0.60) most likely associated with residential space heating from wood combustion, and semivolatile oxygenated OA (SV

  10. Influences of emission sources and meteorology on aerosol chemistry in a polluted urban environment: results from DISCOVER-AQ California

    NASA Astrophysics Data System (ADS)

    Young, Dominique E.; Kim, Hwajin; Parworth, Caroline; Zhou, Shan; Zhang, Xiaolu; Cappa, Christopher D.; Seco, Roger; Kim, Saewung; Zhang, Qi

    2016-05-01

    The San Joaquin Valley (SJV) in California experiences persistent air-quality problems associated with elevated particulate matter (PM) concentrations due to anthropogenic emissions, topography, and meteorological conditions. Thus it is important to unravel the various sources and processes that affect the physicochemical properties of PM in order to better inform pollution abatement strategies and improve parameterizations in air-quality models. During January and February 2013, a ground supersite was installed at the Fresno-Garland California Air Resources Board (CARB) monitoring station, where comprehensive, real-time measurements of PM and trace gases were performed using instruments including an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and an Ionicon proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) as part of the NASA Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) campaign. The average submicron aerosol (PM1) concentration was 31.0 µg m-3 and the total mass was dominated by organic aerosols (OA, 55 %), followed by ammonium nitrate (35 %). High PM pollution events were commonly associated with elevated OA concentrations, mostly from primary sources. Organic aerosols had average atomic oxygen-to-carbon (O / C), hydrogen-to-carbon (H / C), and nitrogen-to-carbon (N / C) ratios of 0.42, 1.70, and 0.017, respectively. Six distinct sources of organic aerosol were identified from positive matrix factorization (PMF) analysis of the AMS data: hydrocarbon-like OA (HOA; 9 % of total OA, O / C = 0.09) associated with local traffic, cooking OA (COA; 18 % of total OA, O / C = 0.19) associated with food cooking activities, two biomass burning OA (BBOA1: 13 % of total OA, O / C = 0.33; BBOA2: 20 % of total OA, O / C = 0.60) most likely associated with residential space heating from wood combustion, and semivolatile oxygenated OA (SV

  11. Influences of emission sources and meteorology on aerosol chemistry in a polluted urban environment: results from DISCOVER-AQ California

    NASA Astrophysics Data System (ADS)

    Young, D. E.; Kim, H.; Parworth, C.; Zhou, S.; Zhang, X.; Cappa, C. D.; Seco, R.; Kim, S.; Zhang, Q.

    2015-12-01

    The San Joaquin Valley (SJV) in California experiences persistent air quality problems associated with elevated particulate matter (PM) concentrations due to anthropogenic emissions, topography, and meteorological conditions. Thus it is important to unravel the various sources and processes that affect the physico-chemical properties of PM in order to better inform pollution abatement strategies and improve parameterizations in air quality models. Aerosol Mass Spectrometer (HR-ToF-AMS) and an Ionicon Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-TOF-MS) as part of the NASA Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) campaign. The average submicron aerosol (PM1) concentration was 31.0 μg m-3 and the total mass was dominated by organic aerosols (OA, 55 %), followed by ammonium nitrate (35 %). High PM pollution events were commonly associated with elevated OA concentrations, mostly from primary sources. Organic aerosols had average atomic oxygen-to-carbon (O / C), hydrogen-to-carbon (H / C), and nitrogen-to-carbon (N / C) ratios of 0.42, 1.70, and 0.017, respectively. Six distinct sources of organic aerosol were identified from positive matrix factorization (PMF) analysis of the AMS data: hydrocarbon-like OA (HOA; 9 % of total OA; O / C = 0.09) associated with local traffic, cooking OA (COA; 28 % of total OA; O / C = 0.19) associated with food cooking activities, two biomass burning OAs (BBOA1; 13 % of total OA; O / C = 0.33 and BBOA2; 20 % of total OA; O / C = 0.60) most likely associated with residential space heating from wood combustion, and semi

  12. Influences of emission sources and meteorology on aerosol chemistry in a polluted urban environment: results from DISCOVER-AQ California

    SciTech Connect

    Young, Dominique E.; Kim, Hwajin; Parworth, Caroline; Zhou, Shan; Zhang, Xiaolu; Cappa, Christopher D.; Seco, Roger; Kim, Saewung; Zhang, Qi

    2016-01-01

    The San Joaquin Valley (SJV) in California experiences persistent air-quality problems associated with elevated particulate matter (PM) concentrations due to anthropogenic emissions, topography, and meteorological conditions. Thus it is important to unravel the various sources and processes that affect the physicochemical properties of PM in order to better inform pollution abatement strategies and improve parameterizations in air-quality models.

    During January and February 2013, a ground supersite was installed at the Fresno–Garland California Air Resources Board (CARB) monitoring station, where comprehensive, real-time measurements of PM and trace gases were performed using instruments including an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and an Ionicon proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) as part of the NASA Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) campaign. The average submicron aerosol (PM1) concentration was 31.0 µg m−3 and the total mass was dominated by organic aerosols (OA, 55 %), followed by ammonium nitrate (35 %). High PM pollution events were commonly associated with elevated OA concentrations, mostly from primary sources. Organic aerosols had average atomic oxygen-to-carbon (O / C), hydrogen-to-carbon (H / C), and nitrogen-to-carbon (N / C) ratios of 0.42, 1.70, and 0.017, respectively. Six distinct sources of organic aerosol were identified from positive matrix factorization (PMF) analysis of the AMS data: hydrocarbon-like OA (HOA; 9 % of total OA, O / C  =  0.09) associated with local traffic, cooking OA (COA; 18 % of total OA, O / C  =  0.19) associated with food cooking activities, two biomass burning OA (BBOA1: 13 % of total OA, O / C  =  0.33; BBOA2: 20 % of total OA, O

  13. Cooperative Emission of Dye Molecules at High Dephasing Rates

    NASA Astrophysics Data System (ADS)

    Klochkov, V. P.; Verkhovskiĭ, E. B.

    2000-05-01

    The dependence of the emission of a concentrated (˜1019 cm-3 solution of Rhodamine C on the power density Φ of exciting laser radiation was studied. The emission intensity for the power density of exciting radiation above ˜1025 cm-2 s-1 was found to have a nearly quadratic dependence on the power density Φ, and this emission was interpreted as the cooperative spontaneous emission of a Dicke type. For Φ≲1025 cm-2 s-1, the emission intensity increased with increasing Φ according to the exponential law. This emission was interpreted as the amplified spontaneous emission. The spectra of cooperative emission depended on the pump radiation power only weakly. The absence of lasing in dye solutions at high concentrations, which is a well-known phenomenon, was shown to be caused by the development of the cooperative spontaneous emission and not by the concentration quenching, and the former process is more rapid than the latter.

  14. Toxicological Evaluation of Realistic Emission Source Aerosols (TERESA)—Power plant studies: assessment of breathing pattern

    PubMed Central

    Diaz, Edgar A.; Lemos, Miriam; Coull, Brent; Long, Mark S.; Rohr, Annette C.; Ruiz, Pablo; Gupta, Tarun; Kang, Choong-Min; Godleski, John J.

    2013-01-01

    Our approach to study multi-pollutant aerosols isolates a single emissions source, evaluates the toxicity of primary and secondary particles derived from this source, and simulates chemical reactions that occur in the atmosphere after emission. Three U.S. coal-fired power plants utilizing different coals and with different emission controls were evaluated. Secondary organic aerosol (SOA) derived from α-pinene and/or ammonia was added in some experiments. Male Sprague-Dawley rats were exposed for 6 h to filtered air or different atmospheric mixtures. Scenarios studied at each plant included the following: primary particles (P); secondary (oxidized) particles (PO); oxidized particles + SOA (POS); and oxidized and neutralized particles + SOA (PONS); additional control scenarios were also studied. Continuous respiratory data were obtained during exposures using whole body plethysmography chambers. Of the 12 respiratory outcomes assessed, each had statistically significant changes at some plant and with some of the 4 scenarios. The most robust outcomes were found with exposure to the PO scenario (increased respiratory frequency with decreases in inspiratory and expiratory time); and the PONS scenario (decreased peak expiratory flow and expiratory flow at 50%). PONS findings were most strongly associated with ammonium, neutralized sulfate, and elemental carbon (EC) in univariate analyses, but only with EC in multivariate analyses. Control scenario O (oxidized without primary particles) had similar changes to PO. Adjusted R2 analyses showed that scenario was a better predictor of respiratory responses than individual components, suggesting that the complex atmospheric mixture was responsible for respiratory effects. PMID:21639693

  15. Fossil Fuel Combustion-Related Emissions Dominate Atmospheric Ammonia Sources during Severe Haze Episodes: Evidence from (15)N-Stable Isotope in Size-Resolved Aerosol Ammonium.

    PubMed

    Pan, Yuepeng; Tian, Shili; Liu, Dongwei; Fang, Yunting; Zhu, Xiaying; Zhang, Qiang; Zheng, Bo; Michalski, Greg; Wang, Yuesi

    2016-08-01

    The reduction of ammonia (NH3) emissions is urgently needed due to its role in aerosol nucleation and growth causing haze formation during its conversion into ammonium (NH4(+)). However, the relative contributions of individual NH3 sources are unclear, and debate remains over whether agricultural emissions dominate atmospheric NH3 in urban areas. Based on the chemical and isotopic measurements of size-resolved aerosols in urban Beijing, China, we find that the natural abundance of (15)N (expressed using δ(15)N values) of NH4(+) in fine particles varies with the development of haze episodes, ranging from -37.1‰ to -21.7‰ during clean/dusty days (relative humidity: ∼ 40%), to -13.1‰ to +5.8‰ during hazy days (relative humidity: 70-90%). After accounting for the isotope exchange between NH3 gas and aerosol NH4(+), the δ(15)N value of the initial NH3 during hazy days is found to be -14.5‰ to -1.6‰, which indicates fossil fuel-based emissions. These emissions contribute 90% of the total NH3 during hazy days in urban Beijing. This work demonstrates the analysis of δ(15)N values of aerosol NH4(+) to be a promising new tool for partitioning atmospheric NH3 sources, providing policy makers with insights into NH3 emissions and secondary aerosols for regulation in urban environments. PMID:27359161

  16. Compilation of a Global Emission Inventory from 1980 to 2000 for Global Model Simulations of the Long-term Trend of Tropospheric Aerosols

    NASA Technical Reports Server (NTRS)

    Diehl, T. L.; Mian, Chin; Bond, T. C.; Carn, S. A.; Duncan, B. N.; Krotkov, N. A.; Streets, D. G.

    2007-01-01

    The approach to create a comprehensive emission inventory for the time period 1980 to 2000 is described in this paper. We have recently compiled an emission database, which we will use for a 21 year simulation of tropospheric aerosols with the GOCART model. Particular attention was paid to the time-dependent SO2, black carbon and organic carbon aerosol emissions. For the emission of SO2 from sporadically erupting volcanoes, we assembled emission data from the Global Volcanism Program of the Smithsonian Institution, using the VEI to derive the volcanic cloud height and the SO2 amount, and amended this dataset by the SO2 emission data from the TOMS instrument when available. 3-dimensional aircraft emission data was obtained for a number of years from the AEAP project, converted from burned fuel to SO2 and interpolated to each year, taking the sparsity of the flight patterns into account. Other anthopogenic SO2 emissions are based on gridded emissions from the EDGAR 2000 database (excluding sources from aircraft, biomass burning and international ship traffic), which were scaled to individual years with country/regional based emission inventories. Gridded SO2 emissions from international ship traffic for 2000 and the scaling factors for other years are from [Eyring et al., 2005]. We used gridded anthropogenic black and organic carbon emissions for 1996 [Bond et al., 2005], again excluding aircraft, biomass burning and ship sources. These emissions were scaled with regional based emission inventories from 1980 to 2000 to derive gridded emissions for each year. The biomass burning emissions are based on a climatology, which is scaled with regional scaling factors derived from the TOMS aerosol index and the AVHRR/ATSR fire counts to each year [Duncan et al., 2003]. Details on the integration of the information from the various sources will be provided and the distribution patterns and total emissions in the final product will be discussed.

  17. Compilation of a Global Emission Inventory from 1980 to 2000 for Global Model Simulations of the Long-term Trend of Tropospheric Aerosols

    NASA Technical Reports Server (NTRS)

    Diehl, Thomas L.; Chin, Mian; Bond, Tami C.; Carn, SImon A.; Duncan, Bryan N.; Krotkov, Nickolay A.; Streets, David G.

    2006-01-01

    The approach to create a comprehensive emission inventory for the time period 1980 to 2000 is described in this paper. We have recently compiled an emission database, which we will use for a 21 year simulation of tropospheric aerosols with the GOCART model. Particular attention was paid to the time-dependent SO2, black carbon and organic carbon aerosol emissions. For the emission of SO2 from sporadically erupting volcanoes, we assembled emission data from the Global Volcanism Program of the Smithsonian Institution, using the VEI to derive the volcanic cloud height and the SO2 amount, and amended this dataset by the SO2 emission data from the TOMS instrument when available. 3-dimensional aircraft emission data was obtained for a number of years from the AEAP project, converted from burned fuel to SO2 and interpolated to each year, taking the sparsity of the flight patterns into account. Other anthropogenic SO2 emissions are based on gridded emissions from the EDGAR 2000 database (excluding sources from aircraft, biomass burning and international ship traffic), which were scaled to individual years with country/regional based emission inventories. Gridded SO2 emissions from international ship traffic for 2000 and the scaling factors for other years are from [Eyring et al., 2005]. We used gridded anthropogenic black and organic carbon emissions for 1996 [Bond et al., 2005], again excluding aircraft, biomass burning and ship sources. These emissions were scaled with regional based emission inventories from 1980 to 2000 to derive gridded emissions for each year. The biomass burning emissions are based on a climatology, which is scaled with regional scaling factors derived from the TOMS aerosol index and the AVHRR/ASTR fire counts to each year [Duncan et al., 2003]. Details on the integration of the information from the various sources will be provided and the distribution patterns and total emissions in the final product will be discussed.

  18. Production-based emissions, consumption-based emissions and consumption-based health impacts of PM2.5 carbonaceous aerosols in Asia

    NASA Astrophysics Data System (ADS)

    Takahashi, Kei; Nansai, Keisuke; Tohno, Susumu; Nishizawa, Masato; Kurokawa, Jun-ichi; Ohara, Toshimasa

    2014-11-01

    This study determined the production-based emissions, the consumption-based emissions, and the consumption-based health impact of primary carbonaceous aerosols (black carbon: BC, organic carbon: OC) in nine countries and regions in Asia (Indonesia, Malaysia, the Philippines, Singapore, Thailand, China, Taiwan, South Korea, and Japan) in 2008. For the production-based emissions, sectoral emissions inventory of BC and OC for the year of 2008 based on the Asian international input-output tables (AIIOT) was compiled including direct emissions from households. Then, a multiregional environmental input-output analysis with the 2008 AIIOT which was originally developed by updating the table of 2000 was applied for calculating the consumption-based emissions for each country and region. For the production-based emissions, China had the highest BC and OC emissions of 4520 Gg-C in total, which accounted for 75% of the total emissions in the nine countries and regions. For consumption-based emissions, China was estimated to have had a total of 4849 Gg-C of BC and OC emissions, which accounted for 77% of the total emissions in the Asia studied. We also quantified how much countries and regions induced emissions in other countries and regions. Furthermore, taking account of the source-receptor relationships of BC and OC among the countries and regions, we converted their consumption-based emissions into the consumption-based health impact of each country and region. China showed the highest consumption-based health impact of BC and OC totaling 111 × 103 premature deaths, followed by Indonesia, Japan, Thailand and South Korea. China accounted for 87% of the sum total of the consumption-based health impacts of the countries/regions, indicating that China's contribution to consumption-based health impact in Asia was greater than its consumption-based emissions. By elucidating the health impacts that each country and region had on other countries and from which country the impacts

  19. Primary to secondary organic aerosol: evolution of organic emissions from mobile combustion sources

    NASA Astrophysics Data System (ADS)

    Presto, A. A.; Gordon, T. D.; Robinson, A. L.

    2013-09-01

    A series of smog chamber experiments were conducted to investigate the transformation of primary organic aerosol (POA) and formation of secondary organic aerosol (SOA) during the photo-oxidation of dilute gasoline and diesel motor vehicle exhaust. In half of the experiments POA was present in the chamber at the onset of photo-oxidation. In these experiments positive matrix factorization (PMF) was used to determine separate POA and SOA factors from aerosol mass spectrometer data. A two-factor solution, with one POA factor and one SOA factor, was sufficient to describe the organic aerosol in all but one experiment. In the other half of the experiments, POA was not present at the onset of photo-oxidation; these experiments are considered "pure SOA" experiments. The POA mass spectrum was similar to the mass spectra of the hydrocarbon-like organic aerosol factor determined from ambient datasets with one exception, a diesel vehicle equipped with a diesel oxidation catalyst. The SOA in all experiments had a constant composition over the course of photo-oxidation, and did not appear to age with continued oxidation. The SOA mass spectra for the various gasoline and diesel vehicles were similar to each other, but markedly different than ambient oxidized organic aerosol factors. Van Krevelen analysis of the POA and SOA factors for gasoline and diesel experiments reveal slopes of -0.68 and -0.43, respectively. This suggests that the oxidation chemistry in these experiments is a combination of carboxylic acid and alcohol/peroxide formation, consistent with ambient oxidation chemistry. These experiments also provide insight to the mixing behavior of the POA and SOA. Analysis of the time series of the POA factor concentration and a basis-set model both indicate that for all but one of the vehicles tested here, the POA and SOA seem to mix and form a single organic aerosol phase.

  20. The influence of semi-volatile and reactive primary emissions on the abundance and properties of global organic aerosol

    NASA Astrophysics Data System (ADS)

    Jathar, S. H.; Farina, S. C.; Robinson, A. L.; Adams, P. J.

    2012-04-01

    Semi-volatile and reactive primary organic aerosols are modeled on a global scale using the GISS GCM II' "unified" climate model. We employ the volatility basis set framework to simulate emissions, chemical reactions and phase partitioning of primary and secondary organic aerosol (POA and SOA). The model also incorporates the emissions and reactions of intermediate volatility organic compounds (IVOCs) as a source of organic aerosol (OA), one that has been missing in most prior work. Model predictions are evaluated against a broad set of observational constraints including mass concentrations, degree of oxygenation, volatility and isotopic composition. A traditional model that treats POA as non-volatile and non-reactive is also compared to the same set of observations to highlight the progress made in this effort. The revised model predicts a global dominance of SOA and brings the POA/SOA split into better agreement with ambient measurements. This change is due to traditionally defined POA evaporating and the evaporated vapors oxidizing to form non-traditional SOA. IVOCs (traditionally not included in chemical transport models) oxidize to form condensable products that account for a third of total OA, suggesting that global models have been missing a large source of OA. Predictions of the revised model for the SOA fraction at 17 different locations compared much better to observations than predictions from the traditional model. Model-predicted volatility is compared with thermodenuder data collected at three different field campaigns: FAME-2008, MILAGRO-2006 and SOAR-2005. The revised model predicts the OA volatility much more closely than the traditional model. When compared against monthly averaged OA mass concentrations measured by the IMPROVE network, predictions of both the revised and traditional model lie within a factor of two in summer and mostly within a factor of five during winter. A sensitivity analysis indicates that the winter comparison can be

  1. Lead isotopes in trade wind aerosols at Barbados: the influence of European emissions over the North Atlantic

    SciTech Connect

    Hamelin, B.; Grousset, F.E.; Biscaye, P.E.; Zindler, A. ); Prospero, J.M. )

    1989-11-15

    Previous studies have shown that Pb can be used as a transient tracer in the atmosphere and the ocean because of strong time-variability of industrial inputs and because Pb isotopic composition can be used to identify contribution from different sources. We present Pb isotopic measurements on aerosols collected from the North Atlantic Ocean in the trade wind belt. Aerosols sampled at Barbados during the 1969--1985 period have a Pb isotopic compositions different from that observed by previous investigators in Bermuda corals and Sargasso Sea waters. Barbados aerosols appear to contain significant amounts of relatively unradiogenic industrial and automotive Pb that is derived from Europe and carried to Barbados by the trade winds. In contrast, Bermuda corals and Sargasso sea waters are influenced mainly by U.S.-derived emissions, which contain more radiogenic Pb originating from Missouri-type ores. This difference generates a strong latitudinal Europe-U.S.A. isotopic gradient, thus allowing study of trans-Atlantic atmospheric transport and ocean mixing processes. {copyright} American Geophysical Union 1989

  2. Lead isotopes in trade wind aerosols at Barbados - The influence of European emissions over the North Atlantic

    NASA Technical Reports Server (NTRS)

    Hamelin, B.; Grousset, F. E.; Biscaye, P. E.; Zindler, A.; Prospero, J. M.

    1989-01-01

    Previous studies have shown that Pb can be used as a transient tracer in the atmosphere and the ocean because of strong time-variability of industrial inputs and because Pb isotopic composition can be used to identify contributions from different sources. Pb isotopic measurements on aerosols collected from the North Atlantic Ocean in the trade wind belt are presented. Aerosols sampled at Barbados during the 1969-1985 period have a Pb isotopic composition different from that observed by previous investigators in Bermuda corals and Sargasso Sea waters. Barbados aerosols appear to contain significant amounts of relatively unradiogenic industrial and automotive Pb that is derived from Europe and carried to Barbados by the trade winds. In contrast, Bermuda corals and Sargasso sea waters are influenced mainly by U.S.-derived emissions, which contain more radiogenic Pb originating from Missouri-type ores. This difference generates a strong latitudinal Europe-U.S.A. isotopic gradient, thus allowing study of trans-Atlantic atmospheric transport and ocean mixing processes.

  3. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    SciTech Connect

    Annette Rohr

    2006-03-01

    TERESA (Toxicological Evaluation of Realistic Emissions of Source Aerosols) involves exposing laboratory rats to realistic coal-fired power plant and mobile source emissions to help determine the relative toxicity of these PM sources. There are three coal-fired power plants in the TERESA program; this report describes the results of fieldwork conducted at the first plant, located in the Upper Midwest. The project was technically challenging by virtue of its novel design and requirement for the development of new techniques. By examining aged, atmospherically transformed aerosol derived from power plant stack emissions, we were able to evaluate the toxicity of PM derived from coal combustion in a manner that more accurately reflects the exposure of concern than existing methodologies. TERESA also involves assessment of actual plant emissions in a field setting--an important strength since it reduces the question of representativeness of emissions. A sampling system was developed and assembled to draw emissions from the stack; stack sampling conducted according to standard EPA protocol suggested that the sampled emissions are representative of those exiting the stack into the atmosphere. Two mobile laboratories were then outfitted for the study: (1) a chemical laboratory in which the atmospheric aging was conducted and which housed the bulk of the analytical equipment; and (2) a toxicological laboratory, which contained animal caging and the exposure apparatus. Animal exposures were carried out from May-November 2004 to a number of simulated atmospheric scenarios. Toxicological endpoints included (1) pulmonary function and breathing pattern; (2) bronchoalveolar lavage fluid cytological and biochemical analyses; (3) blood cytological analyses; (4) in vivo oxidative stress in heart and lung tissue; and (5) heart and lung histopathology. Results indicated no differences between exposed and control animals in any of the endpoints examined. Exposure concentrations for the

  4. 40 CFR 75.83 - Calculation of Hg mass emissions and heat input rate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Calculation of Hg mass emissions and... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Hg Mass Emission Provisions § 75.83 Calculation of Hg mass emissions and heat input rate. The owner or operator shall calculate Hg mass...

  5. Optical Properties and Mixing State of Aerosols from Residential Wood Burning and Vehicle Emissions in Central and Southern California

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Cappa, C. D.; Collier, S.; Zhang, Q.; Williams, L. R.; Lee, A.; Abbatt, J.; Russell, L. M.; Liu, J.; Chen, C. L.; Betha, R.

    2015-12-01

    Light-absorbing materials such as black carbon (BC) and brown carbon (BrC) in atmospheric aerosols play important roles in regulating the earth's radiative budget and climate. However, the representations of BC and BrC in state-of-the-art climate models remain highly uncertain, in part due to the poor understanding of their microphysical and optical properties. Direct observations and characterizations of the mixing state and absorption enhancement of ambient aerosols could provide invaluable constraints for current model representations of aerosol radiative effects. Here, we will discuss results from measurements of aerosol light absorption and absorption enhancement (Eabs), using a thermodenuder-absorption method, made during two recent field studies in central and southern California. The winter study took place in Dec/Jan of 2014/2015 in Fresno, CA. This region is severely impacted by particulate matter from local and regional residential biomass burning. The summer study took place in July 2015 in Fontana, CA, a region ~80 km downwind of Los Angeles and strongly impacted by vehicular emissions, and thus provides a sharp contrast to the Fresno study. Eabs of BC particles due to the "lensing" effect from coatings to BC core and/or the presence of BrC will be quantified and compared between the two studies. Additionally, the chemical composition of bulk and the BC-containing particles are determined via a HR-ToF-AMS and a SP-AMS, respectively. Variations in the composition and mixing state of the ambient particles and how these affect the observed Eabs will be examined. The overall measurements suggest a relatively small role for lensing-induced absorption enhancements for ambient particles in these regions.

  6. Simulating contemporary and preindustrial atmospheric chemistry and aerosol radiative forcing in the Southeast Pacific (Invited)

    NASA Astrophysics Data System (ADS)

    Spak, S.; Mena-Carrasco, M.; Carmichael, G. R.

    2010-12-01

    Accurately quantifying the aerosol burden and resultant radiative impacts over the Southeast Pacific presents a critical challenge in constraining the region's upper ocean heat budget and sea surface temperatures. Recent observations and preliminary modeling studies have found consistent aerosol transport above the region's extensive stratoculumus, indicating the need to consider aerosol composition and direct radiative effects in addition to indirect effects on clouds. We simulate regional chemical transport of aerosols and trace gases during VOCALS REx, identifying contributions from coastal anthropogenic emissions, biogenic emissions, biomass burning, and long-range transport to aerosol mass and composition. We evaluate a new emissions inventory through comparison with in-situ observations. Spatial and temporal variability in transport from these varied emissions sources provide insights into land-ocean-atmosphere coupling. We will compare aerosol radiative forcing under present day and preindustrial emissions rates.

  7. Estimating Landscape Fire Particulate Matter (PM) Emissions over Southern Africa using MSG-SEVIRI Fire Radiative Power (FRP) and MODIS Aerosol Optical Thickness Observations

    NASA Astrophysics Data System (ADS)

    Mota, Bernardo; Wooster, Martin J.

    2016-04-01

    The approach to estimating landscape fire fuel consumption based on the remotely sensed fire radiative power (FRP) thermal energy release rate, as opposed to burned area, is now relatively widely used in studies of fire emissions, including operationally within the Copernicus Atmosphere Monitoring Service (CAMS). Nevertheless, there are still limitations to the approach, including uncertainties associated with using only the few daily overpasses typically provided by polar orbiting satellite systems, the conversion between FRP and smoke emissions, and the increased likelihood that the more frequent data from geostationary systems fails to detect the (probably highly numerous) smaller (i.e. low FRP) component of a regions fire regime. In this study, we address these limitations to directly estimate fire emissions of Particular Matter (PM; or smoke aerosols) by presenting an approach combining the "bottom-up" FRP observations available every 15 minutes across Africa from the Meteosat Spinning Enhanced Visible and Infrared Imager (SEVIRI) Fire Radiative Product (FRP) processed at the EUMETSAT LSA SAF, and the "top-down" aerosol optical thickness (AOT) measures of the fire plumes themselves as measured by the Moderate-resolution Imaging Spectro-radiometer (MODIS) sensors aboard the Terra (MOD04_L2) and Aqua (MYD04_L2) satellites. We determine PM emission coefficients that relate directly to FRP measures by combining these two datasets, and the use of the almost continuous geostationary FRP observations allows us to do this without recourse to (uncertain) data on wind speed at the (unknown) height of the matching plume. We also develop compensation factors to address the detection limitations of small/low intensity (low FRP) fires, and remove the need to estimate fuel consumption by going directly from FRP to PM emissions. We derive the smoke PM emissions coefficients per land cover class by comparing the total fire radiative energy (FRE) released from individual fires

  8. COMBINING RATE-BASED AND CAP-AND-TRADE EMISSIONS POLICIES. (R828628)

    EPA Science Inventory

    Rate-based emissions policies (like tradable performance standards, TPS) fix average emissions intensity, while cap-and-trade (CAT) policies fix total emissions. This paper shows that unfettered trade between rate-based and cap-and-trade programs always raises combined emissio...

  9. 40 CFR 75.12 - Specific provisions for monitoring NOX emission rate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Specific provisions for monitoring NOX emission rate. 75.12 Section 75.12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Monitoring Provisions § 75.12 Specific provisions for monitoring NOX emission rate....

  10. 40 CFR 75.12 - Specific provisions for monitoring NOX emission rate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... provisions for monitoring NOX emission rate. (a) Coal-fired units, gas-fired nonpeaking units or oil-fired... for a NOX continuous emission monitoring system (CEMS) for each affected coal-fired unit, gas-fired... moisture content is needed to properly calculate the NOX emission rate in lb/mmBtu, e.g., if the...

  11. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions

    NASA Astrophysics Data System (ADS)

    Guenther, A. B.; Jiang, X.; Heald, C. L.; Sakulyanontvittaya, T.; Duhl, T.; Emmons, L. K.; Wang, X.

    2012-06-01

    The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1) is a modeling framework for estimating fluxes of 147 biogenic compounds between terrestrial ecosystems and the atmosphere using simple mechanistic algorithms to account for the major known processes controlling biogenic emissions. It is available as an offline code and has also been coupled into land surface models and atmospheric chemistry models. MEGAN2.1 is an update from the previous versions including MEGAN2.0 for isoprene emissions and MEGAN2.04, which estimates emissions of 138 compounds. Isoprene comprises about half of the estimated total global biogenic volatile organic compound (BVOC) emission of 1 Pg (1000 Tg or 1015 g). Another 10 compounds including methanol, ethanol, acetaldehyde, acetone, α-pinene, β-pinene, t-β-ocimene, limonene, ethene, and propene together contribute another 30% of the estimated emission. An additional 20 compounds (mostly terpenoids) are associated with another 17% of the total emission with the remaining 3% distributed among 125 compounds. Emissions of 41 monoterpenes and 32 sesquiterpenes together comprise about 15% and 3%, respectively, of the total global BVOC emission. Tropical trees cover about 18% of the global land surface and are estimated to be responsible for 60% of terpenoid emissions and 48% of other VOC emissions. Other trees cover about the same area but are estimated to contribute only about 10% of total emissions. The magnitude of the emissions estimated with MEGAN2.1 are within the range of estimates reported using other approaches and much of the differences between reported values can be attributed to landcover and meteorological driving variables. The offline version of MEGAN2.1 source code and driving variables is available from http://acd.ucar.edu/~guenther/MEGAN/MEGAN.htm and the version integrated into the Community Land Model version 4 (CLM4) can

  12. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions

    NASA Astrophysics Data System (ADS)

    Guenther, A. B.; Jiang, X.; Heald, C. L.; Sakulyanontvittaya, T.; Duhl, T.; Emmons, L. K.; Wang, X.

    2012-11-01

    The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1) is a modeling framework for estimating fluxes of biogenic compounds between terrestrial ecosystems and the atmosphere using simple mechanistic algorithms to account for the major known processes controlling biogenic emissions. It is available as an offline code and has also been coupled into land surface and atmospheric chemistry models. MEGAN2.1 is an update from the previous versions including MEGAN2.0, which was described for isoprene emissions by Guenther et al. (2006) and MEGAN2.02, which was described for monoterpene and sesquiterpene emissions by Sakulyanontvittaya et al. (2008). Isoprene comprises about half of the total global biogenic volatile organic compound (BVOC) emission of 1 Pg (1000 Tg or 1015 g) estimated using MEGAN2.1. Methanol, ethanol, acetaldehyde, acetone, α-pinene, β-pinene, t-β-ocimene, limonene, ethene, and propene together contribute another 30% of the MEGAN2.1 estimated emission. An additional 20 compounds (mostly terpenoids) are associated with the MEGAN2.1 estimates of another 17% of the total emission with the remaining 3% distributed among >100 compounds. Emissions of 41 monoterpenes and 32 sesquiterpenes together comprise about 15% and 3%, respectively, of the estimated total global BVOC emission. Tropical trees cover about 18% of the global land surface and are estimated to be responsible for ~80% of terpenoid emissions and ~50% of other VOC emissions. Other trees cover about the same area but are estimated to contribute only about 10% of total emissions. The magnitude of the emissions estimated with MEGAN2.1 are within the range of estimates reported using other approaches and much of the differences between reported values can be attributed to land cover and meteorological driving variables. The offline version of MEGAN2.1 source code and driving variables is available from

  13. Dust from southern Africa: rates of emission and biogeochemical properties

    NASA Astrophysics Data System (ADS)

    Bhattachan, A.; D'Odorico, P.; Zobeck, T. M.; Okin, G. S.; Dintwe, K.

    2012-12-01

    The stabilized linear dunefields in the southern Kalahari show signs of reactivation due to reduced vegetation cover owing to drought and/or overgrazing. It has been demonstrated with a laboratory dust generator that the southern Kalahari soils are good emitters of dust and that large-scale dune reactivation can potentially make the region an important dust source in the relatively low-dust Southern Hemisphere. We show that emergence of the southern Kalahari as a new dust source may affect ocean biogeochemistry as the soils are rich in soluble iron and the dust from the southern Kalahari commonly reaches the Southern Ocean. We investigate the biogeochemical properties of the fine fraction of soil from the Kalahari dunes and compare them to those of currently active dust sources such as the Makgadikgadi and the Etosha pans as well as other smaller pans in the region. Using field measurements of sediment fluxes and satellite images, we calculate the rates of dust emission from the southern Kalahari under different land cover scenarios. To assess the reversibility of dune reactivation in the southern Kalahari, we investigate the resilience of dunefield vegetation by looking at changes in soil nutrients, fine soil fractions, and seed bank in areas affected by intense denudation.

  14. Spatial variations in immediate greenhouse gases and aerosol emissions and resulting radiative forcing from wildfires in interior Alaska

    USGS Publications Warehouse

    Huang, Shengli; Liu, Heping; Dahal, Devendra; Jin, Suming; Li, Shuang; Liu, Shu-Guang

    2016-01-01

    Boreal fires can cool the climate; however, this conclusion came from individual fires and may not represent the whole story. We hypothesize that the climatic impact of boreal fires depends on local landscape heterogeneity such as burn severity, prefire vegetation type, and soil properties. To test this hypothesis, spatially explicit emission of greenhouse gases (GHGs) and aerosols and their resulting radiative forcing are required as an important and necessary component towards a full assessment. In this study, we integrated remote sensing (Landsat and MODIS) and models (carbon consumption model, emission factors model, and radiative forcing model) to calculate the carbon consumption, GHGs and aerosol emissions, and their radiative forcing of 2001–2010 fires at 30 m resolution in the Yukon River Basin of Alaska. Total carbon consumption showed significant spatial variation, with a mean of 2,615 g C m−2 and a standard deviation of 2,589 g C m−2. The carbon consumption led to different amounts of GHGs and aerosol emissions, ranging from 593.26 Tg (CO2) to 0.16 Tg (N2O). When converted to equivalent CO2 based on global warming potential metric, the maximum 20 years equivalent CO2 was black carbon (713.77 Tg), and the lowest 20 years equivalent CO2 was organic carbon (−583.13 Tg). The resulting radiative forcing also showed significant spatial variation: CO2, CH4, and N2O can cause a 20-year mean radiative forcing of 7.41 W m−2 with a standard deviation of 2.87 W m−2. This emission forcing heterogeneity indicates that different boreal fires have different climatic impacts. When considering the spatial variation of other forcings, such as surface shortwave forcing, we may conclude that some boreal fires, especially boreal deciduous fires, can warm the climate.

  15. Impact of the March 2009 dust event in Saudi Arabia on aerosol optical properties, meteorological parameters, sky temperature and emissivity

    NASA Astrophysics Data System (ADS)

    Maghrabi, A.; Alharbi, B.; Tapper, N.

    2011-04-01

    On 10th March 2009 a widespread and severe dust storm event that lasted several hours struck Riyadh, and represented one of the most intense dust storms experienced in Saudi Arabia in the last two decades. This short-lived storm caused widespread and heavy dust deposition, zero visibility and total airport shutdown, as well as extensive damage to buildings, vehicles, power poles and trees across the city of Riyadh. Changes in Meteorological parameters, aerosol optical depth (AOD), Angstrom exponent α, infrared (IR) sky temperature and atmospheric emissivity were investigated before, during, and after the storm. The analysis showed significant changes in all of the above parameters due to this event. Shortly after the storm arrived, air pressure rapidly increased by 4 hPa, temperature decreased by 6 °C, relative humidly increased from 10% to 30%, the wind direction became northerly and the wind speed increased to a maximum of 30 m s -1. AOD at 550 nm increased from 0.396 to 1.71. The Angstrom exponent α rapidly decreased from 0.192 to -0.078. The mean AOD at 550 nm on the day of the storm was 0.953 higher than during the previous clear day, while α was -0.049 in comparison with 0.323 during the previous day. Theoretical simulations using SMART software showed remarkable changes in both spectral and broadband solar radiation components. The global and direct radiation components decreased by 42% and 68%, respectively, and the diffuse components increased by 44% in comparison with the previous clear day. IR sky temperatures and sky emissivity increased by 24 °C and 0.3, respectively, 2 h after the arrival of the storm. The effect of aerosol loading by the storm on IR atmospheric emission was investigated using MODTRAN software. It was found that the effect of aerosols caused an increase of the atmospheric emission in the atmospheric window (8-14 μm) such that the window emissions resembled those of a blackbody and the atmospheric window was almost closed.

  16. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    SciTech Connect

    Annette Rohr

    2005-03-31

    This report documents progress made on the subject project during the period of September 1, 2004 through February 28, 2005. The TERESA Study is designed to investigate the role played by specific emissions sources and components in the induction of adverse health effects by examining the relative toxicity of coal combustion and mobile source (gasoline and/or diesel engine) emissions and their oxidative products. The study involves on-site sampling, dilution, and aging of coal combustion emissions at three coal-fired power plants, as well as mobile source emissions, followed by animal exposures incorporating a number of toxicological endpoints. The DOE-EPRI Cooperative Agreement (henceforth referred to as ''the Agreement'') for which this technical progress report has been prepared covers the performance and analysis of field experiments at the first TERESA plant, located in the Upper Midwest and henceforth referred to as Plant 0, and at two additional coal-fired power plants (Plants 1 and 2) utilizing different coal types and with different plant configurations. During this reporting period, all fieldwork at Plant 0 was completed. Stack sampling was conducted in October to determine if there were significant differences between the in-stack PM concentrations and the diluted concentrations used for the animal exposures. Results indicated no significant differences and therefore confidence that the revised stack sampling methodology described in the previous semiannual report is appropriate for use in the Project. Animal exposures to three atmospheric scenarios were carried out. From October 4-7, we conducted exposures to oxidized emissions with the addition of secondary organic aerosol (SOA). Later in October, exposures to the most complex scenario (oxidized, neutralized emissions plus SOA) were repeated to ensure comparability with the results of the June/July exposures where a different stack sampling setup was employed. In November, exposures to oxidized

  17. Emissions of biogenic volatile organic compounds and subsequent photochemical production of secondary organic aerosol in mesocosm studies of temperate and tropical plant species

    NASA Astrophysics Data System (ADS)

    Wyche, K. P.; Ryan, A. C.; Hewitt, C. N.; Alfarra, M. R.; McFiggans, G.; Carr, T.; Monks, P. S.; Smallbone, K. L.; Capes, G.; Hamilton, J. F.; Pugh, T. A. M.; MacKenzie, A. R.

    2014-12-01

    Silver birch (Betula pendula) and three Southeast Asian tropical plant species (Ficus cyathistipula, Ficus benjamina and Caryota millis) from the pantropical fig and palm genera were grown in a purpose-built and environment-controlled whole-tree chamber. The volatile organic compounds emitted from these trees were characterised and fed into a linked photochemical reaction chamber where they underwent photo-oxidation under a range of controlled conditions (relative humidity or RH ~65-89%, volatile organic compound-to-NOx or VOC / NOx ~3-9 and NOx ~2 ppbV). Both the gas phase and the aerosol phase of the reaction chamber were monitored in detail using a comprehensive suite of on-line and off-line chemical and physical measurement techniques. Silver birch was found to be a high monoterpene and sesquiterpene but low isoprene emitter, and its emissions were observed to produce measurable amounts of secondary organic aerosol (SOA) via both nucleation and condensation onto pre-existing seed aerosol (YSOA 26-39%). In contrast, all three tropical species were found to be high isoprene emitters with trace emissions of monoterpenes and sesquiterpenes. In tropical plant experiments without seed aerosol there was no measurable SOA nucleation, but aerosol mass was shown to increase when seed aerosol was present. Although principally isoprene emitting, the aerosol mass produced from tropical fig was mostly consistent (i.e. in 78 out of 120 aerosol mass calculations using plausible parameter sets of various precursor specific yields) with condensation of photo-oxidation products of the minor volatile organic compounds (VOCs) co-emitted; no significant aerosol yield from condensation of isoprene oxidation products was required in the interpretations of the experimental results. This finding is in line with previous reports of organic aerosol loadings consistent with production from minor biogenic VOCs co-emitted with isoprene in principally isoprene-emitting landscapes in Southeast

  18. Criteria for significance of simultaneous presence of both condensible vapors and aerosol particles on mass transfer (deposition) rates

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.

    1986-01-01

    The simultaneous presence of aerosol particles and condensible vapors in a saturated boundary layer which may affect deposition rates to subcooled surfaces because of vapor-particle interactions is discussed. Scavenging of condensible vapors by aerosol particles may lead to increased particle size and decreased vapor mass fraction, which alters both vapor and particle deposition rates. Particles, if sufficiently concentrated, may also coagulate. Criteria are provided to assess the significance of such phenomena when particles are already present in the mainstream and are not created inside the boundary layer via homogeneous nucleation. It is determined that there is direct proportionality with: (1) the mass concentration of both condensible vapors and aerosol particles; and (2) the square of the boundary layer thickness to particle diameter ratio (delta d sub p) square. Inverse proportionality was found for mainstream to surface temperature difference if thermophoresis dominates particle transport. It is concluded that the square of the boundary layer thickness to particle diameter ratio is the most critical factor to consider in deciding when to neglect vapor-particle interactions.

  19. An improvement on the dust emission scheme in the global aerosol-climate model ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    Cheng, T.; Peng, Y.; Feichter, J.; Tegen, I.

    2008-02-01

    Formulation of the dust emission scheme in the global aerosol-climate modeling system ECHAM5-HAM has been improved. Modifications on the surface aerodynamic roughness length, soil moisture and East-Asian soil properties are included in the parameterization, which result in a large impact on the threshold wind friction velocity for aeolian erosion and thus influence the simulated dust emission amount. The annual global mean of dust emission in the year 2000 is reduced by 76.5% and 2.2%, respectively, due to changes in the aerodynamic roughness length and the soil moisture. An inclusion of detailed East-Asian soil properties leads to an increase of 16.6% in the annual global mean of dust emission, which exhibits mainly in the arid and semi-arid areas of northern China and southern Mongolia. Measurements of the surface dust concentrations are collected in remote marine sites globally and in dust source regions of East Asia. The averaged relative differences between model results and measurements are reduced from 17% to 12% in global remote marine sites and from 69% to 30% in East Asia, by including the improvements. Comparisons between model results and available measurements verify a more realistic dust distribution with the improved emission scheme.

  20. A New Approach to Modeling Aerosol Effects on East Asian Climate: Parametric Uncertainties Associated with Emissions, Cloud Microphysics and their Interactions

    SciTech Connect

    Yan, Huiping; Qian, Yun; Zhao, Chun; Wang, Hailong; Wang, Minghuai; Yang, Ben; Liu, Xiaohong; Fu, Qiang

    2015-09-16

    In this study, we adopt a parametric sensitivity analysis framework that integrates the quasi-Monte Carlo parameter sampling approach and a surrogate model to examine aerosol effects on the East Asian Monsoon climate simulated in the Community Atmosphere Model (CAM5). A total number of 256 CAM5 simulations are conducted to quantify the model responses to the uncertain parameters associated with cloud microphysics parameterizations and aerosol (e.g., sulfate, black carbon (BC), and dust) emission factors and their interactions. Results show that the interaction terms among parameters are important for quantifying the sensitivity of fields of interest, especially precipitation, to the parameters. The relative importance of cloud-microphysics parameters and emission factors (strength) depends on evaluation metrics or the model fields we focused on, and the presence of uncertainty in cloud microphysics imposes an additional challenge in quantifying the impact of aerosols on cloud and climate. Due to their different optical and microphysical properties and spatial distributions, sulfate, BC, and dust aerosols have very different impacts on East Asian Monsoon through aerosol-cloud-radiation interactions. The climatic effects of aerosol do not always have a monotonic response to the change of emission factors. The spatial patterns of both sign and magnitude of aerosol-induced changes in radiative fluxes, cloud, and precipitation could be different, depending on the aerosol types, when parameters are sampled in different ranges of values. We also identify the different cloud microphysical parameters that show the most significant impact on climatic effect induced by sulfate, BC and dust, respectively, in East Asia.

  1. VOLATILE ORGANIC COMPOUND EMISSION RATES FROM MIXED DECIDUOUS AND CONIFEROUS FORESTS IN NORTHERN WISCONSIN, USA

    EPA Science Inventory

    Biogenic emissions of volatile organic compounds (VOC) from forests play an important role in regulating the atmospheric trace gas composition including global tropospheric ozone concentrations. However, more information is needed on VOC emission rates from different forest regio...

  2. 77 FR 14324 - National Volatile Organic Compound Emission Standards for Aerosol Coatings-Addition of Dimethyl...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... (65 FR 67249, November 9, 2000). This action adds compounds to Table 2A of the aerosol coatings rule... 12866 (58 FR 51735 October 4, 1993) and is, therefore, not subject to review under the Executive Orders 12866 and 13563 (76 FR 3821, January 21, 2011). B. Paperwork Reduction Act This action does not...

  3. CONTRIBUTION OF WOODSMOKE AND MOTOR VEHICLE EMISSIONS TO AMBIENT AEROSOL MUTAGENICITY (JOURNAL VERSION)

    EPA Science Inventory

    Mutagenicity is frequently considered as a screening test for the carcinogenicity of compounds to which humans are exposed. Past estimates of the mutagenicity of ambient aerosol have depended on measurements of the mutagenic potency (refertants/microg) of the extractable organic ...

  4. Light Absorption Properties and Radiative Effects of Primary Organic Aerosol Emissions

    EPA Science Inventory

    Organic aerosols (OA) in the atmosphere affect Earth’s energy budget by not only scattering but also absorbing solar radiation due to the presence of the so-called “brown carbon” (BrC) component. However, the absorptivities of OA are not or poorly represented in current climate m...

  5. Primary to secondary organic aerosol: evolution of organic emissions from mobile combustion sources

    NASA Astrophysics Data System (ADS)

    Presto, A. A.; Gordon, T. D.; Robinson, A. L.

    2014-05-01

    A series of smog chamber experiments were conducted to investigate the transformation of primary organic aerosol (POA) and formation of secondary organic aerosol (SOA) during the photooxidation of dilute exhaust from a fleet of gasoline and diesel motor vehicles and two gas-turbine engines. In experiments where POA was present in the chamber at the onset of photooxidation, positive matrix factorization (PMF) was used to determine separate POA and SOA factors from aerosol mass spectrometer data. A 2-factor solution, with one POA factor and one SOA factor, was sufficient to describe the organic aerosol for gasoline vehicles, diesel vehicles, and one of the gas-turbine engines. Experiments with the second gas-turbine engine required a 3-factor PMF solution with a POA factor and two SOA factors. Results from the PMF analysis were compared to the residual method for determining SOA and POA mass concentrations. The residual method apportioned a larger fraction of the organic aerosol mass as POA because it assumes that all mass at m / z 57 is associated with POA. The POA mass spectrum for the gasoline and diesel vehicles exhibited high abundances of the CnH2n+1 series of ions (m / z 43, 57, etc.) and was similar to the mass spectra of the hydrocarbon-like organic aerosol factor determined from ambient data sets with one exception, a diesel vehicle equipped with a diesel oxidation catalyst. POA mass spectra for the gas-turbine engines are enriched in the CnH2n-1 series of ions (m / z 41, 55, etc.), consistent with the composition of the lubricating oil used in these engines. The SOA formed from the three sources exhibits high abundances of m / z 44 and 43, indicative of mild oxidation. The SOA mass spectra are consistent with less-oxidized ambient SV-OOA (semivolatile oxygenated organic aerosols) and fall within the triangular region of f44 versus f43 defined by ambient measurements. However there is poor absolute agreement between the experimentally derived SOA mass

  6. Updating sea spray aerosol emissions in the Community Multiscale Air Quality (CMAQ) model version 5.0.2

    NASA Astrophysics Data System (ADS)

    Gantt, B.; Kelly, J. T.; Bash, J. O.

    2015-11-01

    Sea spray aerosols (SSAs) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. Model evaluations of SSA emissions have mainly focused on the global scale, but regional-scale evaluations are also important due to the localized impact of SSAs on atmospheric chemistry near the coast. In this study, SSA emissions in the Community Multiscale Air Quality (CMAQ) model were updated to enhance the fine-mode size distribution, include sea surface temperature (SST) dependency, and reduce surf-enhanced emissions. Predictions from the updated CMAQ model and those of the previous release version, CMAQv5.0.2, were evaluated using several coastal and national observational data sets in the continental US. The updated emissions generally reduced model underestimates of sodium, chloride, and nitrate surface concentrations for coastal sites in the Bay Regional Atmospheric Chemistry Experiment (BRACE) near Tampa, Florida. Including SST dependency to the SSA emission parameterization led to increased sodium concentrations in the southeastern US and decreased concentrations along parts of the Pacific coast and northeastern US. The influence of sodium on the gas-particle partitioning of nitrate resulted in higher nitrate particle concentrations in many coastal urban areas due to increased condensation of nitric acid in the updated simulations, potentially affecting the predicted nitrogen deposition in sensitive ecosystems. Application of the updated SSA emissions to the California Research at the Nexus of Air Quality and Climate Change (CalNex) study period resulted in a modest improvement in the predicted surface concentration of sodium and nitrate at several central and southern California coastal sites. This update of SSA emissions enabled a more realistic simulation of the atmospheric chemistry in coastal environments where marine air mixes with urban pollution.

  7. Potential impact of combined NO[sub x] and SO[sub x] emissions from future high speed civil transport aircraft on stratospheric aerosols and ozone

    SciTech Connect

    Bekki, S.; Pyle, J.A.

    1993-02-01

    A two-dimensional sulfate aerosol model is used to assess the impact of combined NO[sub x] and SO[sub x] emissions from future High Speed Civil Transports on stratospheric aerosols and ozone. The model predicts that SO[sub x] emitted by this fleet of supersonics may double the aerosol surface area and the number of optically active particles below 20 km in the northern lower stratosphere. When the heterogeneous conversion of N[sub 2]O[sub 5] to HNO[sub 3] on sulfate aerosols is taken into account, the predicted ozone changes due to future HSCTs emissions are smaller than those calculated when SO[sub x] and the subsequent increase in aerosol loading are neglected. It is worth noting that the doubling of the aerosol surface area may lead not only to a reduction in predicted ozone sensitivity to NO[sub x], but also to an enhancement in ozone sensitivity to chlorine in the lower stratosphere. 23 refs., 3 figs.

  8. Setting maximum emission rates from ozone emitting consumer appliances in the United States and Canada

    NASA Astrophysics Data System (ADS)

    Morrison, Glenn; Shaughnessy, Richard; Shu, Shi

    2011-02-01

    A Monte Carlo analysis of indoor ozone levels in four cities was applied to provide guidance to regulatory agencies on setting maximum ozone emission rates from consumer appliances. Measured distributions of air exchange rates, ozone decay rates and outdoor ozone levels at monitoring stations were combined with a steady-state indoor air quality model resulting in emission rate distributions (mg h -1) as a function of % of building hours protected from exceeding a target maximum indoor concentration of 20 ppb. Whole-year, summer and winter results for Elizabeth, NJ, Houston, TX, Windsor, ON, and Los Angeles, CA exhibited strong regional differences, primarily due to differences in air exchange rates. Infiltration of ambient ozone at higher average air exchange rates significantly reduces allowable emission rates, even though air exchange also dilutes emissions from appliances. For Houston, TX and Windsor, ON, which have lower average residential air exchange rates, emission rates ranged from -1.1 to 2.3 mg h -1 for scenarios that protect 80% or more of building hours from experiencing ozone concentrations greater than 20 ppb in summer. For Los Angeles, CA and Elizabeth, NJ, with higher air exchange rates, only negative emission rates were allowable to provide the same level of protection. For the 80th percentile residence, we estimate that an 8-h average limit concentration of 20 ppb would be exceeded, even in the absence of an indoor ozone source, 40 or more days per year in any of the cities analyzed. The negative emission rates emerging from the analysis suggest that only a zero-emission rate standard is prudent for Los Angeles, Elizabeth, NJ and other regions with higher summertime air exchange rates. For regions such as Houston with lower summertime air exchange rates, the higher emission rates would likely increase occupant exposure to the undesirable products of ozone reactions, thus reinforcing the need for zero-emission rate standard.

  9. Emissions of biogenic volatile organic compounds and subsequent photochemical production of secondary organic aerosol in mesocosm studies of temperate and tropical plant species

    NASA Astrophysics Data System (ADS)

    Wyche, K. P.; Ryan, A. C.; Hewitt, C. N.; Alfarra, M. R.; McFiggans, G.; Carr, T.; Monks, P. S.; Smallbone, K. L.; Capes, G.; Hamilton, J. F.; Pugh, T. A. M.; MacKenzie, A. R.

    2014-06-01

    Silver birch (Betula pendula) and three Southeast Asian tropical plant species (Ficus cyathistipula, Ficus benjamina and Caryota millis) from the pantropical fig and palm genera were grown in a purpose-built and environment-controlled whole-tree chamber. The volatile organic compounds emitted from these trees were characterised and fed into a linked photochemical reaction chamber where they underwent photooxidation under a range of controlled conditions (RH ∼65-89%, VOC/NOx ∼3-9 and NOx ∼2 ppbV). Both the gas phase and the aerosol phase of the reaction chamber were monitored in detail using a comprehensive suite of on-line and off-line, chemical and physical measurement techniques. Silver birch was found to be a high monoterpene and sesquiterpene, but low isoprene emitter, and its emissions were observed to produce measureable amounts of SOA via both nucleation and condensation onto pre-existing seed aerosol (YSOA 26-39%). In contrast, all three tropical species were found to be high isoprene emitters with trace emissions of monoterpenes and sesquiterpenes. In tropical plant experiments without seed aerosol there was no measurable SOA nucleation, but aerosol mass was shown to increase when seed aerosol was present. Although principally isoprene emitting, the aerosol mass produced from tropical fig was mostly consistent (i.e., in 78 out of 120 aerosol mass calculations using plausible parameter sets of various precursor specific yields) with condensation of photooxidation products of the minor VOCs co-emitted; no significant aerosol yield from condensation of isoprene oxidation products was required in the interpretations of the experimental results. This finding is in line with previous reports of organic aerosol loadings consistent with production from minor biogenic VOCs co-emitted with isoprene in principally-isoprene emitting landscapes in Southeast Asia. Moreover, in general the amount of aerosol mass produced from the emissions of the principally

  10. Comparison of CALPUFF and ISCST3 models for predicting downwind odor and source emission rates

    NASA Astrophysics Data System (ADS)

    Wang, Lingjuan; Parker, David B.; Parnell, Calvin B.; Lacey, Ronald E.; Shaw, Bryan W.

    CALPUFF model and ISCST3 Gaussian dispersion models were evaluated for predicting downwind odor concentrations and back-calculating area source odor emission rates. The comparison between the predicted and field-sampled downwind concentrations indicates that the CALPUFF model could fairly well predict average downwind odor concentrations. However, ISCST3 tended to under predict downwind odor concentrations as compared to the measured concentrations. Both the CALPUFF and ISCST3 models failed to predict peak odor concentrations using the constant average emission rate. Odor emission rates obtained by back-calculating fluxes using CALPUFF and ISC models with the same field measurements of downwind odor concentrations are significantly different. It indicates that back-calculated emission rates are model specific. The modeled emission rates tended to be higher than flux chamber source sampling results. The flux chamber protocol may under-estimate odor emission rates.

  11. Sensitivity studies of the effect of increased aerosol concentrations and snow crystal shape on the snowfall rate in the Arctic

    NASA Astrophysics Data System (ADS)

    Lohmann, U.; Zhang, J.; Pi, J.

    2003-06-01

    The mesoscale model GESIMA is used to simulate microphysical properties of Arctic clouds and their effect on radiation. Different case studies during the FIRE ACE/SHEBA project show that GESIMA is able to simulate the cloud boundaries, ice and liquid water content, and effective radii in good agreement with observations. For two different aerosol scenarios, the simulation results show that the anthropogenic aerosol can alter microphysical properties of Arctic clouds, and consequently modify surface precipitation. [2000] proposed that anthropogenically induced decreases in cloud droplet size inhibit the riming process. On the contrary, we find that the accretion of snow crystals with cloud droplets is increased in the polluted cloud owing to its higher cloud droplet number concentration. Instead, the autoconversion rate of cloud droplets and accretion of drizzle by snow decreases caused by the shutdown of the collision-coalescence process in the polluted cloud. The amount of precipitation reaching the surface as snow depends crucially on the crystal shape. If aggregates are assumed, then a tenfold increase in aerosol concentration leads to an increase in accumulated snow by 40% after 7 hours of simulation whereas the snow amount decreases by 30% when planar crystals are assumed because of the larger accretion efficiency of snow crystals with cloud droplets in case of aggregates.

  12. Impact of Stronger Production and Loss Rates of Secondary Organic Aerosols on their Global Distribution and Budget

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Kasibhatla, P. S.; Cappa, C. D.; Madronich, S.; Jo, D. S.; Park, R.; Jimenez, J. L.

    2015-12-01

    Organic aerosols are observed to be the major constituents of submicron particles worldwide, and yet their atmospheric lifecycle including formation, ageing, and removal processes is poorly understood. Recent laboratory and ambient measurements suggest that both production yields and removal rates of chemically produced secondary organic aerosols (SOA) are much stronger and more diverse than currently assumed in chemistry-climate models (which typically consider wet deposition as the major loss process). In this study, we re-assess the global SOA distribution and budget with newly proposed SOA production and loss processes derived from these recent measurements, as well as from theoretical calculations. We evaluate and discuss the relative importance of removal pathways for organic vapors and particles (e.g. dry and wet deposition, photo-dissociation, evaporation, and heterogeneous surface reactions), and their effect on the SOA vertical distribution and budget using the GEOS-Chem global chemistry-transport model. We compare simulated SOA from various model configurations against ground, aircraft and satellite measurements to assess the extent to which these new developments in our understanding of SOA formation and removal processes are consistent with observed characteristics of the SOA distribution. Our results show strong changes in predicted vertical profiles of organic aerosols with higher SOA concentrations in the boundary layer and lower concentrations in the upper troposphere, which appear to be in a better agreement with aircraft measurements.

  13. NATURAL HYDROCARBON EMISSION RATE MEASUREMENTS FROM SELECTED FOREST SITES

    EPA Science Inventory

    The report presents results from studies of biogenic hydrocarbon emissions conducted in Lancaster, Pennsylvania during 1979 and Seattle, Washington during 1980. The principal objective of the studies was to compare a branch enclosure method with a micrometeorological gradient tec...

  14. Aerosol-fluorescence spectrum analyzer: real-time measurement of emission spectra of airborne biological particles

    NASA Astrophysics Data System (ADS)

    Hill, Steven C.; Pinnick, Ronald G.; Nachman, Paul; Chen, Gang; Chang, Richard K.; Mayo, Michael W.; Fernandez, Gilbert L.

    1995-10-01

    We have assembled an aerosol-fluorescence spectrum analyzer (AFS), which can measure the fluorescence spectra and elastic scattering of airborne particles as they flow through a laser beam. The aerosols traverse a scattering cell where they are illuminated with intense (50 kW/cm 2) light inside the cavity of an argon-ion laser operating at 488 nm. This AFS can obtain fluorescence spectra of individual dye-doped polystyrene microspheres as small as 0.5 mu m in diameter. The spectra obtained from microspheres doped with pink and green-yellow dyes are clearly different. We have also detected the fluorescence spectra of airborne particles (although not single particles) made from various

  15. Aerosol emissions near a coal gasification plant in the Kosovo region, Yugoslavia

    NASA Astrophysics Data System (ADS)

    Boueres, Luis Carlos S.; Patterson, Ronald K.

    1981-03-01

    Ambient aerosol samples from the region of Kosovo, Yugoslavia, were collected and analyzed for their elemental composition in order to determine the effect on ambient air quality of Lurgi coal gasification carried out there using low BTU lignite. Low-volume aerosol samples were used to collect air particulate matter during May of 1979. These samplers were deployed at five sites near the Kosovo industrial complex which is comprised of coal gasifier, a coal-fired power plant and a fertilizer plant which uses the waste products from the gasifier and power plant. A total of 126 impactor sets and 10 week-long "streaker" filters were analyzed by PIXE at FSU for 16-18 elements providing a data base of approximately 16 000 elemental concentrations. Preliminary results are reported here with emphasis on the following elements: Si, S, Ca, Fe, Zn and Pb.

  16. Evidence of aqueous secondary organic aerosol formation from biogenic emissions in the North American Sonoran Desert

    PubMed Central

    Youn, Jong-Sang; Wang, Zhen; Wonaschütz, Anna; Arellano, Avelino; Betterton, Eric A.; Sorooshian, Armin

    2013-01-01

    This study examines the role of aqueous secondary organic aerosol formation in the North American Sonoran Desert as a result of intense solar radiation, enhanced moisture, and biogenic volatile organic compounds (BVOCs). The ratio of water-soluble organic carbon (WSOC) to organic carbon (OC) nearly doubles during the monsoon season relative to other seasons of the year. When normalized by mixing height, the WSOC enhancement during monsoon months relative to preceding dry months (May–June) exceeds that of sulfate by nearly a factor of 10. WSOC:OC and WSOC are most strongly correlated with moisture parameters, temperature, and concentrations of O3 and BVOCs. No positive relationship was identified between WSOC or WSOC:OC and anthropogenic tracers such as CO over a full year. This study points at the need for further work to understand the effect of BVOCs and moisture in altering aerosol properties in understudied desert regions. PMID:24115805

  17. Revisiting methods to predict the rate of equilibration of viscous aerosol particles

    NASA Astrophysics Data System (ADS)

    O'Meara, Simon; Topping, David; McFiggans, Gordon

    2016-04-01

    Recent attention on aerosol particle phase state has motivated questions about methods to model diffusion through them. At the single particle level, some methods have already been used to: prescribe general equilibration timescales; infer relative importance of processes in SOA formation; derive diffusion coefficients in mixtures and even assess effects on cloud dynamics. Modelling diffusion is a well-established discipline. It is important to assess models that attempt to predict or infer the effects of diffusion limitations in order to report findings with confidence. In this study, we compare equilibration timescales estimated by three different models. Particles were subject to varying saturation ratio changes of a semi-volatile component in the gas phase, with the diffusion coefficient both dependent and independent of composition. We show that introducing a composition dependant diffusion coefficient significantly alters the perceived importance of kinetic mass transfer limitations in viscous aerosol, relative to a constant diffusion coefficient. In a fickian framework, simplified approximations to the partial differential form of Ficks second law can be used for all studied scenarios, although computational expense of previously available models may be an important factor to consider. We demonstrate the ability to capture the behaviour of simulations with compositional dependant diffusion coefficients in a box model framework, enabling potential effects on the microphysics of aerosol populations to be assessed.

  18. Air Force F-16 Aircraft Engine Aerosol Emissions Under Cruise Altitude Conditions

    NASA Technical Reports Server (NTRS)

    Anderson, Bruce E.; Cofer, W. Randy, III; McDougal, David S.

    1999-01-01

    Selected results from the June 1997 Third Subsonic Assessment Near-Field Interactions Flight (SNIF-III) Experiment are documented. The primary objectives of the SNIF-III experiment were to determine the partitioning and abundance of sulfur species and to examine the formation and growth of aerosol particles in the exhaust of F-16 aircraft as a function of atmospheric and aircraft operating conditions and fuel sulfur concentration. This information is, in turn, being used to address questions regarding the fate of aircraft fuel sulfur impurities and to evaluate the potential of their oxidation products to perturb aerosol concentrations and surface areas in the upper troposphere. SNIF-III included participation of the Vermont and New Jersey Air National Guard F-16's as source aircraft and the Wallops Flight Facility T-39 Sabreliner as the sampling platform. F-16's were chosen as a source aircraft because they are powered by the modern F-100 Series 220 engine which is projected to be representative of future commercial aircraft engine technology. The T-39 instrument suite included sensors for measuring volatile and non-volatile condensation nuclei (CN), aerosol size distributions over the range from 0.1 to 3.0 (micro)m, 3-D winds, temperature, dewpoint, carbon dioxide (CO2), sulfur dioxide (SO2), sulfuric acid (H2SO4), and nitric acid (HNO3).

  19. Effects of anthropogenic emissions on the molecular composition of urban organic aerosols: An ultrahigh resolution mass spectrometry study

    NASA Astrophysics Data System (ADS)

    Kourtchev, I.; O'Connor, I. P.; Giorio, C.; Fuller, S. J.; Kristensen, K.; Maenhaut, W.; Wenger, J. C.; Sodeau, J. R.; Glasius, M.; Kalberer, M.

    2014-06-01

    Identification of the organic composition of atmospheric aerosols is necessary to develop effective air pollution mitigation strategies. However, the majority of the organic aerosol mass is poorly characterized and its detailed analysis is a major analytical challenge. In this study, we applied state-of-the-art direct infusion nano-electrospray (nanoESI) ultrahigh resolution mass spectrometry (UHRMS) and liquid chromatography ESI Quadrupole Time-of-Flight (Q-TOF) MS for the analysis of the organic fraction of fine particulate matter (PM2.5) collected at an urban location in Cork, Ireland. Comprehensive mass spectral data evaluation methods (e.g., Kendrick Mass Defect and Van Krevelen) were used to identify compound classes and mass distributions of the detected species. Up to 850 elemental formulae were identified in negative mode nanoESI-UHR-MS. Nitrogen and/or sulphur containing organic species contributed up to 40% of the total identified formulae and exhibited strong diurnal variations suggesting the importance of night-time NO3 chemistry at the site. The presence of a large number of oxidised aromatic and nitroaromatic compounds in the samples indicated a strong anthropogenic influence, i.e., from traffic emissions and domestic solid fuel (DSF) burning. Most of the identified biogenic secondary organic aerosol (SOA) compounds are later-generation nitrogen- and sulphur-containing products, indicating that SOA composition is strongly affected by anthropogenic species such as NOx and SO2. Unsaturated and saturated C12-C20 fatty acids were found to be the most abundant homologs with a composition reflecting a primary marine origin. The results of this work demonstrate that the studied site is a very complex environment affected by a variety of anthropogenic activities and natural sources.

  20. Aerosol Direct, Indirect, Semidirect, and Surface Albedo Effects from Sector Contributions Based on the IPCC AR5 Emissions for Preindustrial and Present-day Conditions

    NASA Technical Reports Server (NTRS)

    Bauer, Susanne E.; Menon, Surabi

    2012-01-01

    The anthropogenic increase in aerosol concentrations since preindustrial times and its net cooling effect on the atmosphere is thought to mask some of the greenhouse gas-induced warming. Although the overall effect of aerosols on solar radiation and clouds is most certainly negative, some individual forcing agents and feedbacks have positive forcing effects. Recent studies have tried to identify some of those positive forcing agents and their individual emission sectors, with the hope that mitigation policies could be developed to target those emitters. Understanding the net effect of multisource emitting sectors and the involved cloud feedbacks is very challenging, and this paper will clarify forcing and feedback effects by separating direct, indirect, semidirect and surface albedo effects due to aerosols. To this end, we apply the Goddard Institute for Space Studies climate model including detailed aerosol microphysics to examine aerosol impacts on climate by isolating single emission sector contributions as given by the Coupled Model Intercomparison Project Phase 5 (CMIP5) emission data sets developed for Intergovernmental Panel on Climate Change (IPCC) AR5. For the modeled past 150 years, using the climate model and emissions from preindustrial times to present-day, the total global annual mean aerosol radiative forcing is -0.6 W/m(exp 2), with the largest contribution from the direct effect (-0.5 W/m(exp 2)). Aerosol-induced changes on cloud cover often depends on cloud type and geographical region. The indirect (includes only the cloud albedo effect with -0.17 W/m(exp 2)) and semidirect effects (-0.10 W/m(exp 2)) can be isolated on a regional scale, and they often have opposing forcing effects, leading to overall small forcing effects on a global scale. Although the surface albedo effects from aerosols are small (0.016 W/m(exp 2)), triggered feedbacks on top of the atmosphere (TOA) radiative forcing can be 10 times larger. Our results point out that each

  1. Aerosol direct, indirect, semidirect, and surface albedo effects from sector contributions based on the IPCC AR5 emissions for preindustrial and present-day conditions

    NASA Astrophysics Data System (ADS)

    Bauer, Susanne E.; Menon, Surabi

    2012-01-01

    The anthropogenic increase in aerosol concentrations since preindustrial times and its net cooling effect on the atmosphere is thought to mask some of the greenhouse gas-induced warming. Although the overall effect of aerosols on solar radiation and clouds is most certainly negative, some individual forcing agents and feedbacks have positive forcing effects. Recent studies have tried to identify some of those positive forcing agents and their individual emission sectors, with the hope that mitigation policies could be developed to target those emitters. Understanding the net effect of multisource emitting sectors and the involved cloud feedbacks is very challenging, and this paper will clarify forcing and feedback effects by separating direct, indirect, semidirect and surface albedo effects due to aerosols. To this end, we apply the Goddard Institute for Space Studies climate model including detailed aerosol microphysics to examine aerosol impacts on climate by isolating single emission sector contributions as given by the Coupled Model Intercomparison Project Phase 5 (CMIP5) emission data sets developed for Intergovernmental Panel on Climate Change (IPCC) AR5. For the modeled past 150 years, using the climate model and emissions from preindustrial times to present-day, the total global annual mean aerosol radiative forcing is -0.6 W/m2, with the largest contribution from the direct effect (-0.5 W/m2). Aerosol-induced changes on cloud cover often depends on cloud type and geographical region. The indirect (includes only the cloud albedo effect with -0.17 W/m2) and semidirect effects (-0.10 W/m2) can be isolated on a regional scale, and they often have opposing forcing effects, leading to overall small forcing effects on a global scale. Although the surface albedo effects from aerosols are small (0.016 W/m2), triggered feedbacks on top of the atmosphere (TOA) radiative forcing can be 10 times larger. Our results point out that each emission sector has varying

  2. Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the southeast United States and co-benefit of SO2 emission controls

    NASA Astrophysics Data System (ADS)

    Marais, E. A.; Jacob, D. J.; Jimenez, J. L.; Campuzano-Jost, P.; Day, D. A.; Hu, W.; Krechmer, J.; Zhu, L.; Kim, P. S.; Miller, C. C.; Fisher, J. A.; Travis, K.; Yu, K.; Hanisco, T. F.; Wolfe, G. M.; Arkinson, H. L.; Pye, H. O. T.; Froyd, K. D.; Liao, J.; McNeill, V. F.

    2016-02-01

    Isoprene emitted by vegetation is an important precursor of secondary organic aerosol (SOA), but the mechanism and yields are uncertain. Aerosol is prevailingly aqueous under the humid conditions typical of isoprene-emitting regions. Here we develop an aqueous-phase mechanism for isoprene SOA formation coupled to a detailed gas-phase isoprene oxidation scheme. The mechanism is based on aerosol reactive uptake coefficients (γ) for water-soluble isoprene oxidation products, including sensitivity to aerosol acidity and nucleophile concentrations. We apply this mechanism to simulation of aircraft (SEAC4RS) and ground-based (SOAS) observations over the southeast US in summer 2013 using the GEOS-Chem chemical transport model. Emissions of nitrogen oxides (NOx ≡ NO + NO2) over the southeast US are such that the peroxy radicals produced from isoprene oxidation (ISOPO2) react significantly with both NO (high-NOx pathway) and HO2 (low-NOx pathway), leading to different suites of isoprene SOA precursors. We find a mean SOA mass yield of 3.3 % from isoprene oxidation, consistent with the observed relationship of total fine organic aerosol (OA) and formaldehyde (a product of isoprene oxidation). Isoprene SOA production is mainly contributed by two immediate gas-phase precursors, isoprene epoxydiols (IEPOX, 58 % of isoprene SOA) from the low-NOx pathway and glyoxal (28 %) from both low- and high-NOx pathways. This speciation is consistent with observations of IEPOX SOA from SOAS and SEAC4RS. Observations show a strong relationship between IEPOX SOA and sulfate aerosol that we explain as due to the effect of sulfate on aerosol acidity and volume. Isoprene SOA concentrations increase as NOx emissions decrease (favoring the low-NOx pathway for isoprene oxidation), but decrease more strongly as SO2 emissions decrease (due to the effect of sulfate on aerosol acidity and volume). The US Environmental Protection Agency (EPA) projects 2013-2025 decreases in anthropogenic emissions of

  3. The impact of anthropogenic emissions on the otherwise pristine Amazonian rainforest: Insights on aerosol dynamics as observed during GoAmazon2014/5

    NASA Astrophysics Data System (ADS)

    Carbone, S.; Ferreira De Brito, J.; Cirino, G. G.; Rizzo, L. V.; Holanda, B. A.; Barbosa, H. M.; Ditas, F.; Pöhlker, C.; Chi, X.; Krüger, M. L.; Moran, D.; Saturno, J.; Andreae, M. O.; de Sá, S. S.; Liu, Y.; Martin, S. T.; Souza, R. A. F. D.; Wang, J.; Palm, B. B.; Jimenez, J. L.; Artaxo, P.

    2015-12-01

    The Amazon Basin during the wet season has one of the lowest aerosol concentrations worldwide, with air masses with negligible human impact covering thousands of kilometers of pristine forest. The natura