Science.gov

Sample records for aerosol emissions due

  1. Uncertainties in global aerosols and climate effects due to biofuel emissions

    NASA Astrophysics Data System (ADS)

    Kodros, J. K.; Scott, C. E.; Farina, S. C.; Lee, Y. H.; L'Orange, C.; Volckens, J.; Pierce, J. R.

    2015-08-01

    effects is unclear due to uncertainties in model inputs. This uncertainty limits our ability to introduce mitigation strategies aimed at reducing biofuel black carbon emissions in order to counter warming effects from greenhouse gases. To better understand the climate impact of particle emissions from biofuel combustion, we recommend field/laboratory measurements to narrow constraints on (1) emissions mass, (2) emission size distribution, (3) mixing state, and (4) ratio of black carbon to organic aerosol.

  2. Future Projections of Aerosol Optical Depth, Radiative Forcing, and Climate Response Due to Declining Aerosol Emissions in the Representative Concentration Pathways

    NASA Astrophysics Data System (ADS)

    Westervelt, D. M.; Mauzerall, D. L.; Horowitz, L. W.; Naik, V.

    2014-12-01

    It is widely expected that global emissions of atmospheric aerosols and their precursors will decrease strongly throughout the remainder of the 21st century, due to emission reduction policies enacted based on human health concerns. However, the resulting decrease in atmospheric aerosol burden will have unintended climate consequences. Since aerosols generally exert a net cooling influence on the climate, their removal will lead to an unmasking of global warming as well as other changes to the climate system. Aerosol and precursor global emissions decrease by as much as 80% by the year 2100, according to projections in four Representative Concentration Pathway (RCP) scenarios. We use the Geophysical Fluid Dynamics Laboratory Climate Model version 3 (GFDL CM3) to simulate future climate over the 21st century with and without aerosol emission changes projected by the RCPs in order to isolate the radiative forcing and climate response due to the aerosol reductions. We find that up to 1 W m-2 of radiative forcing may be unmasked globally by 2100 due to reductions in aerosol and precursor emissions, leading to average global temperature increases up to 1 K and global precipitation rate increases up to 0.09 mm d-1 (3%). Regionally and locally, climate impacts are much larger, as RCP8.5 projects a 2.1 K warming over China, Japan, and Korea due to reduced aerosol emissions. Our results highlight the importance of crafting emissions control policies with both climate and air pollution benefits in mind. The expected unmasking of additional global warming from aerosol reductions highlights the importance of robust greenhouse gas mitigation policies and may require more aggressive policies than anticipated.

  3. Small global effect on terrestrial net primary production due to increased fossil fuel aerosol emissions from East Asia since the turn of the century

    PubMed Central

    Rap, A.; Reddington, C. L.; Spracklen, D. V.; Gloor, M.; Buermann, W.

    2016-01-01

    Abstract The global terrestrial carbon sink has increased since the start of this century at a time of growing carbon emissions from fossil fuel burning. Here we test the hypothesis that increases in atmospheric aerosols from fossil fuel burning enhanced the diffuse light fraction and the efficiency of plant carbon uptake. Using a combination of models, we estimate that at global scale changes in light regimes from fossil fuel aerosol emissions had only a small negative effect on the increase in terrestrial net primary production over the period 1998–2010. Hereby, the substantial increases in fossil fuel aerosol emissions and plant carbon uptake over East Asia were effectively canceled by opposing trends across Europe and North America. This suggests that if the recent increase in the land carbon sink would be causally linked to fossil fuel emissions, it is unlikely via the effect of aerosols but due to other factors such as nitrogen deposition or nitrogen‐carbon interactions. PMID:27773953

  4. Inverse relationship between the degree of oxidation of OOA (oxygenated organic aerosol) and the oxidant OX (O3 +NO2) due to biogenic emissions

    NASA Astrophysics Data System (ADS)

    Canonaco, F.; Slowik, J. G.; Baltensperger, U.; Prévôt, A. S. H.

    2014-11-01

    Aerosol chemical speciation monitor (ACSM) measurements were performed in Zurich, Switzerland for 13 months (February 2011 through February 2012). Many previous studies using this or related instruments have utilized the fraction of organic mass measured at m/z 44 (f44), which is typically dominated by the CO2+ ion and related to oxygenation, as an indicator of atmospheric aging. The current study demonstrates that during summer afternoons, when photochemical processes are most vigorous as indicated by high oxidant OX (O3+NO2), f44 for ambient SOA is not higher but is rather similar or lower than on days with low OX. This is likely due to the formation of semi-volatile oxygenated aerosol produced from biogenic precursor gases, whose emissions increase with ambient temperature. An additional observation is that in winter often higher f44 values in SOA are reached compared to summer. A possible cause could be aqueous processes associated with enhanced relative humidities and cloud cover in winter. The main changes in f44 for the summer case are discussed in the f44f43 space frequently used to interpret ACSM and aerosol mass spectrometer (AMS) data. In addition, source apportionment analyses conducted on winter and summer data using positive matrix factorization (PMF) yield semi-volatile oxygenated organic aerosol (SV-OOA) factors that retain source-related chemical information. Winter SV-OOA is highly influenced by biomass burning, whereas summer SV-OOA is to a high degree produced from biogenic precursor gases.

  5. Relating aerosol absorption due to soot, organic carbon, and dust to emission sources determined from in-situ chemical measurements

    NASA Astrophysics Data System (ADS)

    Cazorla, A.; Bahadur, R.; Suski, K. J.; Cahill, J. F.; Chand, D.; Schmid, B.; Ramanathan, V.; Prather, K. A.

    2013-09-01

    Estimating the aerosol contribution to the global or regional radiative forcing can take advantage of the relationship between the spectral aerosol optical properties and the size and chemical composition of aerosol. Long term global optical measurements from observational networks or satellites can be used in such studies. Using in-situ chemical mixing state measurements can help us to constrain the limitations of such estimates. In this study, the Absorption Ångström Exponent (AAE) and the Scattering Ångström Exponent (SAE) derived from 10 operational AERONET sites in California are combined for deducing chemical speciation based on wavelength dependence of the optical properties. In addition, in-situ optical properties and single particle chemical composition measured during three aircraft field campaigns in California between 2010 and 2011 are combined in order to validate the methodology used for the estimates of aerosol chemistry using spectral optical properties. Results from this study indicate a dominance of mixed types in the classification leading to an underestimation of the primary sources, however secondary sources are better classified. The distinction between carbonaceous aerosols from fossil fuel and biomass burning origins is not clear, since their optical properties are similar. On the other hand, knowledge of the aerosol sources in California from chemical studies help to identify other misclassification such as the dust contribution.

  6. Future premature mortality due to O3, secondary inorganic aerosols and primary PM in Europe--sensitivity to changes in climate, anthropogenic emissions, population and building stock.

    PubMed

    Geels, Camilla; Andersson, Camilla; Hänninen, Otto; Lansø, Anne Sofie; Schwarze, Per E; Skjøth, Carsten Ambelas; Brandt, Jørgen

    2015-03-04

    Air pollution is an important environmental factor associated with health impacts in Europe and considerable resources are used to reduce exposure to air pollution through emission reductions. These reductions will have non-linear effects on exposure due, e.g., to interactions between climate and atmospheric chemistry. By using an integrated assessment model, we quantify the effect of changes in climate, emissions and population demography on exposure and health impacts in Europe. The sensitivity to the changes is assessed by investigating the differences between the decades 2000-2009, 2050-2059 and 2080-2089. We focus on the number of premature deaths related to atmospheric ozone, Secondary Inorganic Aerosols and primary PM. For the Nordic region we furthermore include a projection on how population exposure might develop due to changes in building stock with increased energy efficiency. Reductions in emissions cause a large significant decrease in mortality, while climate effects on chemistry and emissions only affects premature mortality by a few percent. Changes in population demography lead to a larger relative increase in chronic mortality than the relative increase in population. Finally, the projected changes in building stock and infiltration rates in the Nordic indicate that this factor may be very important for assessments of population exposure in the future.

  7. Small global effect on terrestrial net primary production due to increased fossil fuel aerosol emissions from East Asia during the last decade.

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Michael; Rap, Alex; Reddington, Carly; Spracklen, Dominick; Buermann, Wolfgang

    2016-04-01

    The global terrestrial carbon sink has increased since the start of this century at a time of rapidly growing carbon dioxide emissions from fossil fuel burning. Here we test the hypothesis that increases in atmospheric aerosols from fossil fuel burning have increased the diffuse fraction of incoming solar radiation and the efficiency of photosynthesis leading to increased plant carbon uptake. Using a combination of atmospheric and biospheric models, we find that changes in diffuse light associated with fossil fuel aerosol emission accounts for only 2.8% of the increase in global net primary production (1.221 PgC/yr) over the study period 1998 to 2007. This relatively small global signal is however a result of large regional compensations. Over East Asia, the strong increase in fossil fuel emissions contributed nearly 70% of the increased plant carbon uptake (21 TgC/yr), whereas the declining fossil fuel aerosol emissions in Europe and North America contributed negatively (-16% and -54%, respectively) to increased plant carbon uptake. At global scale, we also find the CO2 fertilization effect on photosynthesis to be the dominant driver of increased plant carbon uptake, in line with previous studies. These results suggest that further research into alternative mechanisms by which fossil fuel emissions could increase carbon uptake, such as nitrogen deposition and carbon-nitrogen interactions, is required to better understand a potential link between the recent changes in fossil fuel emissions and terrestrial carbon uptake.

  8. Aerosol emission in a road tunnel

    NASA Astrophysics Data System (ADS)

    Weingartner, E.; Keller, C.; Stahel, W. A.; Burtscher, H.; Baltensperger, U.

    Continuous measurements of aerosol emissions were performed within the scope of emission measurements in the Gubrist tunnel, a 3250 m long freeway tunnel near Zürich, Switzerland, from 20 September to 26 September 1993. The particles in the respirable size range ( d < 3 μm) were found to be mainly tail pipe emissions with very small amount of tire wear and road dust. The calculated PM 3 emission factor for diesel engines was about 310 mg km -1, where the main part (63%) of the diesel vehicles were heavy-duty vehicles. Thirty-one percent of the PM 3 emissions from diesel vehicles were black carbon and 0.86% particle bound PAR Due to the high fraction emitted by diesel engines the contribution of gasoline engines could not be evaluated by the statistical model. During their residence time in the tunnel the particles undergo significant changes, resulting in a more compact structure. It is concluded that this is mainly due to adsorption of volatile material from the gas phase to the particle surface.

  9. Can scooter emissions dominate urban organic aerosol?

    NASA Astrophysics Data System (ADS)

    El Haddad, Imad; Platt, Stephen; Huang, Ru-Jin; Zardini, Alessandro; Clairotte, Micheal; Pieber, Simone; Pfaffenberger, Lisa; Fuller, Steve; Hellebust, Stig; Temime-Roussel, Brice; Slowik, Jay; Chirico, Roberto; Kalberer, Markus; Marchand, Nicolas; Dommen, Josef; Astorga, Covadonga; Baltensperger, Urs; Prevot, Andre

    2014-05-01

    In urban areas, where the health impact of pollutants increases due to higher population density, traffic is a major source of ambient organic aerosol (OA). A significant fraction of OA from traffic is secondary, produced via the reaction of exhaust volatile organic compounds (VOCs) with atmospheric oxidants. Secondary OA (SOA) has not been systematically assessed for different vehicles and driving conditions and thus its relative importance compared to directly emitted, primary OA (POA) is unknown, hindering the design of effective vehicle emissions regulations. 2-stroke (2S) scooters are inexpensive and convenient and as such a popular means of transportation globally, particularly in Asia. European regulations for scooters are less stringent than for other vehicles and thus primary particulate emissions and SOA precursor VOCs from 2S engines are estimated to be much higher. Assessing the effects of scooters on public health requires consideration of both POA, and SOA production. Here, we quantify POA emission factors and potential SOA EFs from 2S scooters, and the effect of using aromatic free fuel instead of standard gasoline thereon. During the tests, Euro 1 and Euro 2 2S scooters were run in idle or simulated low power conditions. Emissions from a Euro 2 2S scooter were also sampled during regulatory driving cycles on a chassis dynamometer. Vehicle exhaust was introduced into smog chambers, where POA emission and SOA production were quantified using a high-resolution time-of-flight aerosol mass spectrometer. A high resolution proton transfer time-of-flight mass spectrometer was used to investigate volatile organic compounds and a suite of instruments was utilized to quantify CO, CO2, O3, NOX and total hydrocarbons. We show that the oxidation of VOCs in the exhaust emissions of 2S scooters produce significant SOA, exceeding by up to an order of magnitude POA emissions. By monitoring the decay of VOC precursors, we show that SOA formation from 2S scooter

  10. BrO loss due to secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Buxmann, Joelle; Bleicher, Sergej; Zetzsch, Cornelius; Held, Andreas; Sommariva, Roberto; von Glasow, Roland; Platt, Ulrich; Ofner, Johannes

    2013-04-01

    One major source of heterogeneous released reactive halogen species (RHS) is primary aerosol from sea-salt particles, ejected by sea spray. Photoactivated RHS emissions, such as atomic Br and BrO radicals, can play a key role in the destruction of atmospheric ozone, influencing HOx and NOx chemistry. Through aerosol interaction they show potential indirect effects on global climate. The formation of RHS can be significantly reduced in the presence of organic aerosols. Additionally, halogen species were found to change the aerosol size distribution, the presence of functional groups and the optical properties. Furthermore, they may form halogenated species in the condensed phase of the organic aerosol - although the inhibition of the formation of RHS has not been quantified before. The interaction of secondary organic aerosols (SOA) from predominantly aliphatic (α-pinene) or aromatic (catechol and guaiacol) precursors and heterogeneously released halogens was studied in smog-chamber experiments. BrO and OClO released from salt aerosols were detected by a White system in combination with Differential Optical Absorption Spectroscopy (DOAS). The size and number distribution of aerosols from salt droplets (~150nm-1000nm) and from SOA (~5nm-150nm) was quantified by a SMPS (Scanning Mobility Particle Sizer) to obtain typical surface areas of 103μm2/cm3 and 2 x 102μm2/cm3, respectively. In the absence of SOA a BrO production rate per salt aerosol surface area of 5.2 x 1011 molec/cm2s =8500 pmol/m2s has been measured. This confirms model assumptions for BrO formation over the Dead Sea, where the Br2 flux of 80-154 pmol/m2s and HOBr flux= 800 pmol/m2s was increased by a factor of 20-30 to explain high BrO mixing ratios. In the presence of SOA from α-pinene, catechol and guaiacol the formation rate was significantly reduced. In a first approximation, neglecting gas phase reactions, the BrO loss rate regarding the surface area of SOA was calculated to be 42 x 1011 molec

  11. The impact of residential combustion emission on Arctic aerosol concentrations

    NASA Astrophysics Data System (ADS)

    Eckhardt, Sabine; Stohl, Andreas; Olivie, Dirk J. L.; Grini, Alf

    2016-04-01

    Arctic haze is a seasonal phenomenon with high concentrations of accumulation-mode aerosols occurring in the Arctic in winter and early spring. It has been challenging to reproduced this cylce and concentration levels with atmospheric transport and climate models. However, simulations have been improving recently and it has been shown, that a better scavenging parametrization as well as more realistic emissions are important to obtain better results. In this study we focus on the emission from residential heating, which depend on air temperature, as heating demand is higher on cold days. Varying this emission shows a clear effect on modeled Arctic concentrations. Arctic-mean and annual-mean concentrations of black carbon from Arctic domestic combustion emissions due to heating requirements, are nearly 70% higher when accounting for diurnal emission variability relative to constant emissions (Stohl et al., 2013). Emissions are high when ambient temperatures are low and cold air is transported to the Arctic. In order to capture this systematic effect, we created an interactive emission module for NorESM, a climate model, using the heating degree-day concept. Domestic combustion emissions of BC and other species are scaled interactively with the modeled ambient air temperatures, while securing that levels of annual total emissions from emission scenarios are reproduced. We compare the modeled aerosol concentration in the Arctic to observations and show the level of improvements achieved by using varying emission.

  12. A simple parameterization of aerosol emissions in RAMS

    NASA Astrophysics Data System (ADS)

    Letcher, Theodore

    Throughout the past decade, a high degree of attention has been focused on determining the microphysical impact of anthropogenically enhanced concentrations of Cloud Condensation Nuclei (CCN) on orographic snowfall in the mountains of the western United States. This area has garnered a lot of attention due to the implications this effect may have on local water resource distribution within the Region. Recent advances in computing power and the development of highly advanced microphysical schemes within numerical models have provided an estimation of the sensitivity that orographic snowfall has to changes in atmospheric CCN concentrations. However, what is still lacking is a coupling between these advanced microphysical schemes and a real-world representation of CCN sources. Previously, an attempt to representation the heterogeneous evolution of aerosol was made by coupling three-dimensional aerosol output from the WRF Chemistry model to the Colorado State University (CSU) Regional Atmospheric Modeling System (RAMS) (Ward et al. 2011). The biggest problem associated with this scheme was the computational expense. In fact, the computational expense associated with this scheme was so high, that it was prohibitive for simulations with fine enough resolution to accurately represent microphysical processes. To improve upon this method, a new parameterization for aerosol emission was developed in such a way that it was fully contained within RAMS. Several assumptions went into generating a computationally efficient aerosol emissions parameterization in RAMS. The most notable assumption was the decision to neglect the chemical processes in formed in the formation of Secondary Aerosol (SA), and instead treat SA as primary aerosol via short-term WRF-CHEM simulations. While, SA makes up a substantial portion of the total aerosol burden (much of which is made up of organic material), the representation of this process is highly complex and highly expensive within a numerical

  13. Sensitivity of the climate response to regional aerosol emissions

    NASA Astrophysics Data System (ADS)

    Kasoar, Matthew; Voulgarakis, Apostolos; Shindell, Drew; Lamarque, Jean-Francois; Shawki, Dilshad

    2015-04-01

    Short-lived emissions like aerosols and their precursors have inhomogeneous distributions in the atmosphere. As a result, aerosol radiative forcing of the climate is highly uneven, and depends on both the location of emission as well as circulation patterns. Unlike well-mixed greenhouse gases such as CO2, the climate response to aerosol forcing may therefore be very dependent on the source region, and so understanding how the sensitivity of the climate varies with emission and forcing location has implications for the design of policy regarding short-lived climate forcers, as well as for understanding the coupling between radiative forcing and climate response. Using the UK Met Office's HadGEM3 composition-climate model, we have performed a series of experiments to investigate the climate response to aerosol species from different key anthropogenic emission regions, in particular East Asia, South Asia, the USA, and the whole northern mid-latitude band. Recent results from these simulations will be presented, focusing in particular on the patterns of climate forcing due to Asian anthropogenic emissions, and the resulting responses in surface temperature and precipitation. Large-scale circulation changes, driven by regional temperature gradients, are found to play an important role in explaining the observed climate responses, which can be substantial even in in parts of the world far from the location of the forcing. The correct magnitude of aerosol forcing remains, however, one of the greatest uncertainties in our current understanding of anthropogenic influences on climate. Aerosol radiative forcing varies considerably between different composition-climate models, and to explore the implications of this for climate responses we use the GISS Model-E2 and NCAR CESM1 models in addition to HadGEM3. These reveal a remarkable variation in the simulated climate response as a result of differences in the radiative forcing from identical perturbations to regional sulphate

  14. Marine aerosol formation from biogenic iodine emissions.

    PubMed

    O'Dowd, Colin D; Jimenez, Jose L; Bahreini, Roya; Flagan, Richard C; Seinfeld, John H; Hämeri, Kaarle; Pirjola, Liisa; Kulmala, Markku; Jennings, S Gerard; Hoffmann, Thorsten

    2002-06-01

    The formation of marine aerosols and cloud condensation nuclei--from which marine clouds originate--depends ultimately on the availability of new, nanometre-scale particles in the marine boundary layer. Because marine aerosols and clouds scatter incoming radiation and contribute a cooling effect to the Earth's radiation budget, new particle production is important in climate regulation. It has been suggested that sulphuric acid derived from the oxidation of dimethyl sulphide is responsible for the production of marine aerosols and cloud condensation nuclei. It was accordingly proposed that algae producing dimethyl sulphide play a role in climate regulation, but this has been difficult to prove and, consequently, the processes controlling marine particle formation remains largely undetermined. Here, using smog chamber experiments under coastal atmospheric conditions, we demonstrate that new particles can form from condensable iodine-containing vapours, which are the photolysis products of biogenic iodocarbons emitted from marine algae. Moreover, we illustrate, using aerosol formation models, that concentrations of condensable iodine-containing vapours over the open ocean are sufficient to influence marine particle formation. We suggest therefore that marine iodocarbon emissions have a potentially significant effect on global radiative forcing.

  15. Marine aerosol formation from biogenic iodine emissions.

    PubMed

    O'Dowd, Colin D; Jimenez, Jose L; Bahreini, Roya; Flagan, Richard C; Seinfeld, John H; Hämeri, Kaarle; Pirjola, Liisa; Kulmala, Markku; Jennings, S Gerard; Hoffmann, Thorsten

    2002-06-01

    The formation of marine aerosols and cloud condensation nuclei--from which marine clouds originate--depends ultimately on the availability of new, nanometre-scale particles in the marine boundary layer. Because marine aerosols and clouds scatter incoming radiation and contribute a cooling effect to the Earth's radiation budget, new particle production is important in climate regulation. It has been suggested that sulphuric acid derived from the oxidation of dimethyl sulphide is responsible for the production of marine aerosols and cloud condensation nuclei. It was accordingly proposed that algae producing dimethyl sulphide play a role in climate regulation, but this has been difficult to prove and, consequently, the processes controlling marine particle formation remains largely undetermined. Here, using smog chamber experiments under coastal atmospheric conditions, we demonstrate that new particles can form from condensable iodine-containing vapours, which are the photolysis products of biogenic iodocarbons emitted from marine algae. Moreover, we illustrate, using aerosol formation models, that concentrations of condensable iodine-containing vapours over the open ocean are sufficient to influence marine particle formation. We suggest therefore that marine iodocarbon emissions have a potentially significant effect on global radiative forcing. PMID:12050661

  16. Atmospheric science: marine aerosols and iodine emissions.

    PubMed

    McFiggans, Gordon

    2005-02-10

    O'Dowd et al. describe the formation of marine aerosols from biogenic iodine and the growth of these aerosols into cloud-condensation nuclei (CCN). Based on chamber and modelling results, the authors suggest that biogenic organic iodine compounds emitted from macroalgae may be responsible for coastal particle bursts and that production of these compounds in the open ocean could increase CCN there too. It has since been shown that coastal particles are more likely to be produced from the photooxidation of molecular iodine. Moreover, I contend that open-ocean particle production and cloud enhancement do not result from emissions of organic iodine at atmospheric levels. For iodine particles to affect cloud properties over the remote ocean, an additional source of iodine is necessary as organic precursors cannot be responsible.

  17. Atmospheric science: marine aerosols and iodine emissions.

    PubMed

    McFiggans, Gordon

    2005-02-10

    O'Dowd et al. describe the formation of marine aerosols from biogenic iodine and the growth of these aerosols into cloud-condensation nuclei (CCN). Based on chamber and modelling results, the authors suggest that biogenic organic iodine compounds emitted from macroalgae may be responsible for coastal particle bursts and that production of these compounds in the open ocean could increase CCN there too. It has since been shown that coastal particles are more likely to be produced from the photooxidation of molecular iodine. Moreover, I contend that open-ocean particle production and cloud enhancement do not result from emissions of organic iodine at atmospheric levels. For iodine particles to affect cloud properties over the remote ocean, an additional source of iodine is necessary as organic precursors cannot be responsible. PMID:15703706

  18. Response of aerosol composition to different emission scenarios in Beijing, China.

    PubMed

    Zhang, Yingjie; Sun, Yele; Du, Wei; Wang, Qingqing; Chen, Chen; Han, Tingting; Lin, Jian; Zhao, Jian; Xu, Weiqi; Gao, Jian; Li, Jie; Fu, Pingqing; Wang, Zifa; Han, Yongxiang

    2016-11-15

    Understanding the response of aerosol chemistry to different emission scenarios is of great importance for air pollution mitigating strategies in megacities. Here we investigate the variations in air pollutants under three different emission scenarios, i.e., heating season, spring festival holiday and non-heating season using aerosol composition and gaseous measurements from 2 February to 1 April 2015 along with source apportionment and FLEXPART analysis in Beijing. Our results showed substantially different aerosol composition among three emission scenarios that is primarily caused by different emission sources. All aerosol and gas species showed ubiquitously higher concentrations in heating season than non-heating season with the largest enhancement for fossil OA (FOA) and chloride. On average, the particulate matter (PM) level in winter heating season can be enhanced by 70% due to coal combustion emissions. In contrast, cooking aerosols and traffic related species showed significant reductions as a response of reduced anthropogenic activities during the spring festival holiday, sulfate and secondary organic aerosol (SOA) however even increased due to enhanced aqueous-phase production. Such compensating effects resulted in small changes in PM levels for haze episodes during the holiday period despite reduced anthropogenic emissions. Our results have significant implications that local emission controls during winter severe pollution episodes can reduce primary aerosols substantially, but the mitigating effects can be significantly suppressed by enhanced secondary formation under stagnant meteorological conditions. PMID:27425439

  19. Transient Climate Impacts for Scenarios of Aerosol Emissions from Asia: A Story of Coal versus Gas

    NASA Astrophysics Data System (ADS)

    Grandey, B. S.; Cheng, H.; Wang, C.

    2014-12-01

    Projections of anthropogenic aerosol emissions are uncertain. In Asia, it is possible that emissions may increase if business continues as usual, with economic growth driving an increase in coal burning. But it is also possible that emissions may decrease rapidly due to the widespread adoption of cleaner technology or a shift towards non-coal fuels, such as natural gas. In this study, the transient climate impacts of three aerosol emissions scenarios are investigated: an RCP4.5 (Representative Concentration Pathway 4.5) control; a scenario with reduced Asian anthropogenic aerosol emissions; and a scenario with enhanced Asian anthropogenic aerosol emissions. A coupled atmosphere-ocean configuration of CESM (Community Earth System Model), including CAM5 (Community Atmosphere Model version 5), is used. Enhanced Asian aerosol emissions are found to delay global mean warming by one decade at the end of the century. Aerosol-induced suppression of the East Asian and South Asian summer monsoon precipitation occurs. The enhanced Asian aerosol emissions also remotely impact precipitation in other parts of the world: over the Sahel, West African monsoon precipitation is suppressed; and over Australia, austral summer monsoon precipitation is enhanced. These remote impacts on precipitation are associated with a southward shift of the ITCZ. The aerosol-induced sea surface temperature (SST) response appears to play an important role in the precipitation changes over South Asia and Australia, but not over East Asia. These results indicate that energy production in Asia, through the consequent aerosol emissions and associated radiative effects, might significantly influence future climate both locally and globally.

  20. The impact of residential combustion emissions on atmospheric aerosol, human health and climate

    NASA Astrophysics Data System (ADS)

    Butt, E. W.; Rap, A.; Schmidt, A.; Reddington, C.; Scott, C.; Pringle, K.; Woodhouse, M.; Spracklen, D. V.

    2015-12-01

    Combustion of fuels in the residential sector for cooking and heating, results in the emission of aerosol and aerosol precursors that effect air quality, human health and climate. Residential emissions are dominated by the combustion of solid fuels which are the primary energy source for nearly half the world's population. Despite this importance, residential emissions are poorly quantified, as are their impacts on air quality and climate. We used a global aerosol microphysics model to simulate the impact of residential emissions on atmospheric aerosol in the year 2000, and evaluated simulated concentrations against surface observations of aerosol mass and number. Residential emissions make the largest contributions to surface particulate matter (PM2.5) concentrations in East Asia, South Asia and Eastern Europe, matching regions of greatest emissions. We used concentration response functions to estimate a global annual excess adult (> 30 years of age) premature mortality due to residential emissions of between 113, 300 and 827, 000 when uncertainties in both residential emissions and health effects of PM2.5 were accounted for. Premature mortality was greatest in Asia, with China and India accounting for 50% of simulated global excess mortality. Using an offline radiative transfer model, we show that residential emissions exerted a global annual mean direct radiative effect of between -66 mW m-2 and +21 mW m-2, accounting for uncertainties in emissions flux and assumed ratio of carbonaceous and sulphur emissions. Residential emissions exerted a negative global annual mean first aerosol indirect effect of between -52 mW m-2 and -16 mW m-2, which was found to be sensitive to the assumed size distribution of carbonaceous emissions. Our results demonstrate that reducing residential combustion emissions would have substantial benefits for human health through reductions in ambient PM2.5 concentrations.

  1. The impact of residential combustion emissions on atmospheric aerosol, human health and climate

    NASA Astrophysics Data System (ADS)

    Butt, E. W.; Rap, A.; Schmidt, A.; Scott, C. E.; Pringle, K. J.; Reddington, C. L.; Richards, N. A. D.; Woodhouse, M. T.; Ramirez-Villegas, J.; Yang, H.; Vakkari, V.; Stone, E. A.; Rupakheti, M.; Praveen, P. S.; van Zyl, P. G.; Beukes, J. P.; Josipovic, M.; Mitchell, E. J. S.; Sallu, S. M.; Forster, P. M.; Spracklen, D. V.

    2015-07-01

    Combustion of fuels in the residential sector for cooking and heating, results in the emission of aerosol and aerosol precursors impacting air quality, human health and climate. Residential emissions are dominated by the combustion of solid fuels. We use a global aerosol microphysics model to simulate the uncertainties in the impact of residential fuel combustion on atmospheric aerosol. The model underestimates black carbon (BC) and organic carbon (OC) mass concentrations observed over Asia, Eastern Europe and Africa, with better prediction when carbonaceous emissions from the residential sector are doubled. Observed seasonal variability of BC and OC concentrations are better simulated when residential emissions include a seasonal cycle. The largest contributions of residential emissions to annual surface mean particulate matter (PM2.5) concentrations are simulated for East Asia, South Asia and Eastern Europe. We use a concentration response function to estimate the health impact due to long-term exposure to ambient PM2.5 from residential emissions. We estimate global annual excess adult (> 30 years of age) premature mortality of 308 000 (113 300-497 000, 5th to 95th percentile uncertainty range) for monthly varying residential emissions and 517 000 (192 000-827 000) when residential carbonaceous emissions are doubled. Mortality due to residential emissions is greatest in Asia, with China and India accounting for 50 % of simulated global excess mortality. Using an offline radiative transfer model we estimate that residential emissions exert a global annual mean direct radiative effect of between -66 and +21 mW m-2, with sensitivity to the residential emission flux and the assumed ratio of BC, OC and SO2 emissions. Residential emissions exert a global annual mean first aerosol indirect effect of between -52 and -16 mW m-2, which is sensitive to the assumed size distribution of carbonaceous emissions. Overall, our results demonstrate that reducing residential

  2. Secondary organic aerosol formation from in-use motor vehicle emissions using a potential aerosol mass reactor.

    PubMed

    Tkacik, Daniel S; Lambe, Andrew T; Jathar, Shantanu; Li, Xiang; Presto, Albert A; Zhao, Yunliang; Blake, Donald; Meinardi, Simone; Jayne, John T; Croteau, Philip L; Robinson, Allen L

    2014-10-01

    Secondary organic aerosol (SOA) formation from in-use vehicle emissions was investigated using a potential aerosol mass (PAM) flow reactor deployed in a highway tunnel in Pittsburgh, Pennsylvania. Experiments consisted of passing exhaust-dominated tunnel air through a PAM reactor over integrated hydroxyl radical (OH) exposures ranging from ∼ 0.3 to 9.3 days of equivalent atmospheric oxidation. Experiments were performed during heavy traffic periods when the fleet was at least 80% light-duty gasoline vehicles on a fuel-consumption basis. The peak SOA production occurred after 2-3 days of equivalent atmospheric oxidation. Additional OH exposure decreased the SOA production presumably due to a shift from functionalization to fragmentation dominated reaction mechanisms. Photo-oxidation also produced substantial ammonium nitrate, often exceeding the mass of SOA. Analysis with an SOA model highlight that unspeciated organics (i.e., unresolved complex mixture) are a very important class of precursors and that multigenerational processing of both gases and particles is important at longer time scales. The chemical evolution of the organic aerosol inside the PAM reactor appears to be similar to that observed in the atmosphere. The mass spectrum of the unoxidized primary organic aerosol closely resembles ambient hydrocarbon-like organic aerosol (HOA). After aging the exhaust equivalent to a few hours of atmospheric oxidation, the organic aerosol most closely resembles semivolatile oxygenated organic aerosol (SV-OOA) and then low-volatility organic aerosol (LV-OOA) at higher OH exposures. Scaling the data suggests that mobile sources contribute ∼ 2.9 ± 1.6 Tg SOA yr(-1) in the United States, which is a factor of 6 greater than all mobile source particulate matter emissions reported by the National Emissions Inventory. This highlights the important contribution of SOA formation from vehicle exhaust to ambient particulate matter concentrations in urban areas.

  3. Radiative Forcing Due to Major Aerosol Emitting Sectors in China and India

    NASA Technical Reports Server (NTRS)

    Streets, David G.; Shindell, Drew Todd; Lu, Zifeng; Faluvegi, Greg

    2013-01-01

    Understanding the radiative forcing caused by anthropogenic aerosol sources is essential for making effective emission control decisions to mitigate climate change. We examined the net direct plus indirect radiative forcing caused by carbonaceous aerosol and sulfur emissions in key sectors of China and India using the GISS-E2 chemistry-climate model. Diesel trucks and buses (67 mW/ sq. m) and residential biofuel combustion (52 mW/ sq. m) in India have the largest global mean, annual average forcings due mainly to the direct and indirect effects of BC. Emissions from these two sectors in China have near-zero net global forcings. Coal-fired power plants in both countries exert a negative forcing of about -30 mW/ sq. m from production of sulfate. Aerosol forcings are largest locally, with direct forcings due to residential biofuel combustion of 580 mW/ sq. m over India and 416 mW/ sq. m over China, but they extend as far as North America, Europe, and the Arctic

  4. Ammonia emissions in Europe, part II: How ammonia emission abatement strategies affect secondary aerosols

    NASA Astrophysics Data System (ADS)

    Backes, Anna M.; Aulinger, Armin; Bieser, Johannes; Matthias, Volker; Quante, Markus

    2016-02-01

    In central Europe, ammonium sulphate and ammonium nitrate make up a large fraction of fine particles which pose a threat to human health. Most studies on air pollution through particulate matter investigate the influence of emission reductions of sulphur- and nitrogen oxides on aerosol concentration. Here, we focus on the influence of ammonia (NH3) emissions. Emission scenarios have been created on the basis of the improved ammonia emission parameterization implemented in the SMOKE for Europe and CMAQ model systems described in part I of this study. This includes emissions based on future European legislation (the National Emission Ceilings) as well as a dynamic evaluation of the influence of different agricultural sectors (e.g. animal husbandry) on particle formation. The study compares the concentrations of NH3, NH4+, NO3 -, sulphur compounds and the total concentration of particles in winter and summer for a political-, technical- and behavioural scenario. It was found that a reduction of ammonia emissions by 50% lead to a 24% reduction of the total PM2.5 concentrations in northwest Europe. The observed reduction was mainly driven by reduced formation of ammonium nitrate. Moreover, emission reductions during winter had a larger impact than during the rest of the year. This leads to the conclusion that a reduction of the ammonia emissions from the agricultural sector related to animal husbandry could be more efficient than the reduction from other sectors due to its larger share in winter ammonia emissions.

  5. Release of Free DNA by Membrane-Impaired Bacterial Aerosols Due to Aerosolization and Air Sampling

    PubMed Central

    Zhen, Huajun; Han, Taewon; Fennell, Donna E.

    2013-01-01

    We report here that stress experienced by bacteria due to aerosolization and air sampling can result in severe membrane impairment, leading to the release of DNA as free molecules. Escherichia coli and Bacillus atrophaeus bacteria were aerosolized and then either collected directly into liquid or collected using other collection media and then transferred into liquid. The amount of DNA released was quantified as the cell membrane damage index (ID), i.e., the number of 16S rRNA gene copies in the supernatant liquid relative to the total number in the bioaerosol sample. During aerosolization by a Collison nebulizer, the ID of E. coli and B. atrophaeus in the nebulizer suspension gradually increased during 60 min of continuous aerosolization. We found that the ID of bacteria during aerosolization was statistically significantly affected by the material of the Collison jar (glass > polycarbonate; P < 0.001) and by the bacterial species (E. coli > B. atrophaeus; P < 0.001). When E. coli was collected for 5 min by filtration, impaction, and impingement, its ID values were within the following ranges: 0.051 to 0.085, 0.16 to 0.37, and 0.068 to 0.23, respectively; when it was collected by electrostatic precipitation, the ID values (0.011 to 0.034) were significantly lower (P < 0.05) than those with other sampling methods. Air samples collected inside an equine facility for 2 h by filtration and impingement exhibited ID values in the range of 0.30 to 0.54. The data indicate that the amount of cell damage during bioaerosol sampling and the resulting release of DNA can be substantial and that this should be taken into account when analyzing bioaerosol samples. PMID:24096426

  6. Ground and Airborne Aerosol Composition Measurements of California Coastal Chaparral Smoke Emissions

    NASA Astrophysics Data System (ADS)

    Craven, J. S.; Sorooshian, A.; Hersey, S. P.; Metcalf, A. R.; Schilling-Fahnestock, K.; Newman, S.; Akagi, S. K.; Taylor, J.; McMeeking, G.; Coe, H.; Tang, P.; Cocker, D. R., III; Yokelson, R. J.; Flagan, R. C.; Seinfeld, J.

    2014-12-01

    Wildfire smoke has large local to global pollution impacts. We present aerosol composition data from two fires in southern California. We measured organic aerosol (OA) of nascent and aged (4 h) smoke from the Williams Fire during the 2009 airborne San Luis Obispo Biomass Burning Campaign (SLOBB). The net ΔOA/ΔCO2 decreased by ~20%; however, positive matrix factorization (PMF) analysis of the organic mass spectra supports two factors that enable the OA emissions to be separated into fresh and oxidized OA. The Δfresh BBOA/ΔCO2 had a steeper decline than the ΔOA/ΔCO2 consistent with outgassing of semi-voltile organic compounds (SVOCs) due to dilution, whereas the Δoxidized BBOA/ΔCO2 increased from its initial value, consist with formation of secondary organic aerosol (SOA). We compare these fresh and oxidized mass spectral signatures, along with chaparral smoke samples measured in the Missoula Fire Lab, to ground-based aerosol measurements made during the Station Fire that occurred one month earlier than the Williams Fire during the Pasadena Aerosol Characterization Observatory Campaign (PACO). Night and daytime aerosol smoke emissions were sampled for one week during the Station Fire. Daytime organic aerosol smoke emissions exhibited larger variability both in mass concentration and composition than nighttime smoke emissions. Both levoglucosan and potassium, known biomass burning tracers, were measured and had distinct time series, supporting diversity in the flaming vs. smoldering initial burning conditions. Similar to the Williams Fire, PMF of the Station Fire mass spectra also reveal two biomass burning factors, one that is less oxidized and correlates strongly with levoglucosan measurements and one that is heavily oxidized and correlates in time with the potassium signal. These two campaigns have allowed us to probe fresh and oxidized smoke in both night and daytime conditions, and PMF results have revealed that at least two emission factors are useful to

  7. An estimate of the emission rate of primary fine aerosols from urban vegetation

    SciTech Connect

    Hildemann, L.M.; Rogge, W.F.; Cass, G.R.

    1995-12-31

    Analyses of ambient organic aerosol samples have shown a distribution of higher molecular weight n-alkanes that is characteristic of vegetation waxes. This suggests that plant waxes and other vegetative detritus may contribute significantly to airborne concentrations of particulate matter. However, to date no estimate has been made of the relative strength of vegetation as a source of primary aerosol emissions. In the present study, the n-alkanes present in the fine atmospheric aerosol of Los Angeles are utilized to deduce an upperbound estimate of the amount of fine vegetative detritus aerosol present. First the major known sources of fine organic aerosol in the Los Angeles area are characterized for n-alkanes via GC/MS. Then air quality modeling procedures are utilized to predict the n-alkane concentrations present in Los Angeles ambient air due to these major sources. By comparing these model predictions to actual ambient samples, the n-alkane mass in the ambient air that is not, accounted for by the known major source emissions can be determined. From this data, it is estimated that, at most, 0.2-1.0 micrograms per cubic meter of the fine aerosol in Los Angeles air could originate from primary vegetative detritus emissions - this corresponds to 1-3% of the total fine aerosol mass present in this urban atmosphere. The air quality model is also used to provide a first, upperbound estimate of the source emission strength of primary fine particulate emissions from urban vegetation. It is estimated that the vegetation present in every square kilometer of land within the heavily urbanized region of Los Angeles emits, at most, 300-900 grams of fine particulate matter per day. This upperbound estimate corresponds to a source emission strength for fine urban vegetative detritus of 1-4 grams per day per metric ton of leaf mass in Los Angeles.

  8. Simulating the Contributions from Aircraft Emissions to Organic Aerosols Using the Volatility Basis Set

    NASA Astrophysics Data System (ADS)

    Woody, M. C.; Arunachalam, S.; Binkowski, F.; West, J.; Jathar, S.; Robinson, A. L.

    2012-12-01

    Regional air quality studies aimed at quantifying the impacts of aviation emissions to PM2.5 have generally predicted relatively low contributions from organic aerosols. However, recent sampling and smog chamber experiments have suggested that organic aerosols comprise a significant fraction of total PM2.5 formed from aircraft emissions. In this study, the results of aircraft-specific sampling and smog chamber experiments are incorporated into a regional chemical transport model with the volatility basis set and used to predict organic aerosol contributions from aircraft emissions. Contributions of aircraft emissions to primary organic aerosols (POA), secondary organic aerosols (SOA) formed from traditional precursors (e.g. aromatics and long-chain alkanes), and non-traditional SOA formed from unidentified precursors previously unaccounted for in air quality models are modeled using the volatility basis set approach in CMAQ v4.7.1. The model includes oxidation reactions of traditional SOA (both biogenic and anthropogenic) and non-traditional SOA precursors (specific to aircraft emissions) with OH to produce products of lower volatility. Non-traditional SOA yields and precursor emission estimates for idle and non-idle aircraft activities are based on sampling and smog chamber experiments. This model predicts the organic aerosol and total PM2.5 concentrations formed from aircraft emissions due to landing and takeoff activities at the Hartsfield-Jackson International Airport in Atlanta during January and July, 2002. Overall model results are compared against monitoring data in the region to determine the impacts of using the volatility basis set on CMAQ model performance.

  9. Interannual variability of tropospheric trace gases and aerosols: The role of biomass burning emissions

    NASA Astrophysics Data System (ADS)

    Voulgarakis, Apostolos; Marlier, Miriam E.; Faluvegi, Greg; Shindell, Drew T.; Tsigaridis, Kostas; Mangeon, Stéphane

    2015-07-01

    Fires are responsible for a range of gaseous and aerosol emissions. However, their influence on the interannual variability of atmospheric trace gases and aerosols has not been systematically investigated from a global perspective. We examine biomass burning emissions as a driver of interannual variability of large-scale abundances of short-lived constituents such as carbon monoxide (CO), hydroxyl radicals (OH), ozone, and aerosols using the Goddard Institute for Space Studies ModelE composition-climate model and a range of observations, with an emphasis on satellite information. Our model captures the observed variability of the constituents examined in most cases, but with substantial underestimates in boreal regions. The strongest interannual variability on a global scale is found for carbon monoxide (~10% for its global annual burden), while the lowest is found for tropospheric ozone (~1% for its global annual burden). Regionally, aerosol optical depth shows the largest variability which exceeds 50%. Areas of strong variability of both aerosols and CO include the tropical land regions (especially Equatorial Asia and South America) and northern high latitudes, while even regions in the northern midlatitudes experience substantial interannual variability of aerosols. Ozone variability peaks over equatorial Asia in boreal autumn, partly due to varying biomass burning emissions, and over the western and central Pacific in the rest of the year, mainly due to meteorological fluctuations. We find that biomass burning emissions are almost entirely responsible for global CO interannual variability, and similarly important for OH variability. The same is true for global and regional aerosol variability, especially when not taking into account dust and sea-salt particles. We show that important implications can arise from such interannual influences for regional climate and air quality.

  10. The impact of residential combustion emissions on atmospheric aerosol, human health, and climate

    NASA Astrophysics Data System (ADS)

    Butt, E. W.; Rap, A.; Schmidt, A.; Scott, C. E.; Pringle, K. J.; Reddington, C. L.; Richards, N. A. D.; Woodhouse, M. T.; Ramirez-Villegas, J.; Yang, H.; Vakkari, V.; Stone, E. A.; Rupakheti, M.; Praveen, P. S.; van Zyl, P. G.; Beukes, J. P.; Josipovic, M.; Mitchell, E. J. S.; Sallu, S. M.; Forster, P. M.; Spracklen, D. V.

    2016-01-01

    Combustion of fuels in the residential sector for cooking and heating results in the emission of aerosol and aerosol precursors impacting air quality, human health, and climate. Residential emissions are dominated by the combustion of solid fuels. We use a global aerosol microphysics model to simulate the impact of residential fuel combustion on atmospheric aerosol for the year 2000. The model underestimates black carbon (BC) and organic carbon (OC) mass concentrations observed over Asia, Eastern Europe, and Africa, with better prediction when carbonaceous emissions from the residential sector are doubled. Observed seasonal variability of BC and OC concentrations are better simulated when residential emissions include a seasonal cycle. The largest contributions of residential emissions to annual surface mean particulate matter (PM2.5) concentrations are simulated for East Asia, South Asia, and Eastern Europe. We use a concentration response function to estimate the human health impact due to long-term exposure to ambient PM2.5 from residential emissions. We estimate global annual excess adult (> 30 years of age) premature mortality (due to both cardiopulmonary disease and lung cancer) to be 308 000 (113 300-497 000, 5th to 95th percentile uncertainty range) for monthly varying residential emissions and 517 000 (192 000-827 000) when residential carbonaceous emissions are doubled. Mortality due to residential emissions is greatest in Asia, with China and India accounting for 50 % of simulated global excess mortality. Using an offline radiative transfer model we estimate that residential emissions exert a global annual mean direct radiative effect between -66 and +21 mW m-2, with sensitivity to the residential emission flux and the assumed ratio of BC, OC, and SO2 emissions. Residential emissions exert a global annual mean first aerosol indirect effect of between -52 and -16 mW m-2, which is sensitive to the assumed size distribution of carbonaceous emissions

  11. Characterization of selenium in ambient aerosols and primary emission sources.

    PubMed

    De Santiago, Arlette; Longo, Amelia F; Ingall, Ellery D; Diaz, Julia M; King, Laura E; Lai, Barry; Weber, Rodney J; Russell, Armistead G; Oakes, Michelle

    2014-08-19

    Atmospheric selenium (Se) in aerosols was investigated using X-ray absorption near-edge structure (XANES) spectroscopy and X-ray fluorescence (XRF) microscopy. These techniques were used to determine the oxidation state and elemental associations of Se in common primary emission sources and ambient aerosols collected from the greater Atlanta area. In the majority of ambient aerosol and primary emission source samples, the spectroscopic patterns as well as the absence of elemental correlations suggest Se is in an elemental, organic, or oxide form. XRF microscopy revealed numerous Se-rich particles, or hotspots, accounting on average for ∼16% of the total Se in ambient aerosols. Hotspots contained primarily Se(0)/Se(-II). However, larger, bulk spectroscopic characterizations revealed Se(IV) as the dominant oxidation state in ambient aerosol, followed by Se(0)/Se(-II) and Se(VI). Se(IV) was the only observed oxidation state in gasoline, diesel, and coal fly ash, while biomass burning contained a combination of Se(0)/Se(-II) and Se(IV). Although the majority of Se in aerosols was in the most toxic form, the Se concentration is well below the California Environmental Protection Agency chronic exposure limit (∼20000 ng/m(3)). PMID:25075640

  12. The evolution of biomass-burning aerosol size distributions due to coagulation: dependence on fire and meteorological details and parameterization

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kimiko M.; Laing, James R.; Stevens, Robin G.; Jaffe, Daniel A.; Pierce, Jeffrey R.

    2016-06-01

    Biomass-burning aerosols have a significant effect on global and regional aerosol climate forcings. To model the magnitude of these effects accurately requires knowledge of the size distribution of the emitted and evolving aerosol particles. Current biomass-burning inventories do not include size distributions, and global and regional models generally assume a fixed size distribution from all biomass-burning emissions. However, biomass-burning size distributions evolve in the plume due to coagulation and net organic aerosol (OA) evaporation or formation, and the plume processes occur on spacial scales smaller than global/regional-model grid boxes. The extent of this size-distribution evolution is dependent on a variety of factors relating to the emission source and atmospheric conditions. Therefore, accurately accounting for biomass-burning aerosol size in global models requires an effective aerosol size distribution that accounts for this sub-grid evolution and can be derived from available emission-inventory and meteorological parameters. In this paper, we perform a detailed investigation of the effects of coagulation on the aerosol size distribution in biomass-burning plumes. We compare the effect of coagulation to that of OA evaporation and formation. We develop coagulation-only parameterizations for effective biomass-burning size distributions using the SAM-TOMAS large-eddy simulation plume model. For the most-sophisticated parameterization, we use the Gaussian Emulation Machine for Sensitivity Analysis (GEM-SA) to build a parameterization of the aged size distribution based on the SAM-TOMAS output and seven inputs: emission median dry diameter, emission distribution modal width, mass emissions flux, fire area, mean boundary-layer wind speed, plume mixing depth, and time/distance since emission. This parameterization was tested against an independent set of SAM-TOMAS simulations and yields R2 values of 0.83 and 0.89 for Dpm and modal width, respectively. The

  13. Measurement of gas and aerosol agricultural emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies of air quality indicate that agricultural emissions may impact particulate mass concentrations through both primary and secondary processes. Agriculture impacts can include primary dust emission, on-facility combustion from vehicles or seasonal field burning, and gaseous emissions from waste...

  14. Aerosol emissions from prescribed fires in the United States: A synthesis of laboratory and aircraft measurements

    NASA Astrophysics Data System (ADS)

    May, A. A.; McMeeking, G. R.; Lee, T.; Taylor, J. W.; Craven, J. S.; Burling, I.; Sullivan, A. P.; Akagi, S.; Collett, J. L.; Flynn, M.; Coe, H.; Urbanski, S. P.; Seinfeld, J. H.; Yokelson, R. J.; Kreidenweis, S. M.

    2014-10-01

    Aerosol emissions from prescribed fires can affect air quality on regional scales. Accurate representation of these emissions in models requires information regarding the amount and composition of the emitted species. We measured a suite of submicron particulate matter species in young plumes emitted from prescribed fires (chaparral and montane ecosystems in California; coastal plain ecosystem in South Carolina) and from open burning of over 15 individual plant species in the laboratory. We report emission ratios and emission factors for refractory black carbon (rBC) and submicron nonrefractory aerosol and compare field and laboratory measurements to assess the representativeness of our laboratory-measured emissions. Laboratory measurements of organic aerosol (OA) emission factors for some fires were an order of magnitude higher than those derived from any of our aircraft observations; these are likely due to higher-fuel moisture contents, lower modified combustion efficiencies, and less dilution compared to field studies. Nonrefractory inorganic aerosol emissions depended more strongly on fuel type and fuel composition than on combustion conditions. Laboratory and field measurements for rBC were in good agreement when differences in modified combustion efficiency were considered; however, rBC emission factors measured both from aircraft and in the laboratory during the present study using the Single Particle Soot Photometer were generally higher than values previously reported in the literature, which have been based largely on filter measurements. Although natural variability may account for some of these differences, an increase in the BC emission factors incorporated within emission inventories may be required, pending additional field measurements for a wider variety of fires.

  15. "APEC Blue": Secondary Aerosol Reductions from Emission Controls in Beijing.

    PubMed

    Sun, Yele; Wang, Zifa; Wild, Oliver; Xu, Weiqi; Chen, Chen; Fu, Pingqing; Du, Wei; Zhou, Libo; Zhang, Qi; Han, Tingting; Wang, Qingqing; Pan, Xiaole; Zheng, Haitao; Li, Jie; Guo, Xiaofeng; Liu, Jianguo; Worsnop, Douglas R

    2016-01-01

    China implemented strict emission control measures in Beijing and surrounding regions to ensure good air quality during the 2014 Asia-Pacific Economic Cooperation (APEC) summit. We conducted synchronous aerosol particle measurements with two aerosol mass spectrometers at different heights on a meteorological tower in urban Beijing to investigate the variations in particulate composition, sources and size distributions in response to emission controls. Our results show consistently large reductions in secondary inorganic aerosol (SIA) of 61-67% and 51-57%, and in secondary organic aerosol (SOA) of 55% and 37%, at 260 m and ground level, respectively, during the APEC summit. These changes were mainly caused by large reductions in accumulation mode particles and by suppression of the growth of SIA and SOA by a factor of 2-3, which led to blue sky days during APEC commonly referred to as "APEC Blue". We propose a conceptual framework for the evolution of primary and secondary species and highlight the importance of regional atmospheric transport in the formation of severe pollution episodes in Beijing. Our results indicate that reducing the precursors of secondary aerosol over regional scales is crucial and effective in suppressing the formation of secondary particulates and mitigating PM pollution. PMID:26891104

  16. Enhancement of aerosol responses to changes in emissions over East Asia by gas-oxidant-aerosol coupling and detailed aerosol processes

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Koike, M.

    2016-06-01

    We quantify the responses of aerosols to changes in emissions (sulfur dioxide, black carbon (BC), primary organic aerosol, nitrogen oxides (NOx), and volatile organic compounds) over East Asia by using simulations including gas-oxidant-aerosol coupling, organic aerosol (OA) formation, and BC aging processes. The responses of aerosols to NOx emissions are complex and are dramatically changed by simulating gas-phase chemistry and aerosol processes online. Reduction of NOx emissions by 50% causes a 30-40% reduction of oxidant (hydroxyl radical and ozone) concentrations and slows the formation of sulfate and OA by 20-30%. Because the response of OA to changes in NOx emissions is sensitive to the treatment of emission and oxidation of semivolatile and intermediate volatility organic compounds, reduction of the uncertainty in these processes is necessary to evaluate gas-oxidant-aerosol coupling accurately. Our simulations also show that the sensitivity of aerosols to changes in emissions is enhanced by 50-100% when OA formation and BC aging processes are resolved in the model. Sensitivity simulations show that the increase of NOx emissions from 1850 to 2000 explains 70% (40%) of the enhancement of aerosol mass concentrations (direct radiative effects) over East Asia during that period through enhancement of oxidant concentrations and that this estimation is sensitive to the representation of OA formation and BC aging processes. Our results demonstrate the importance of simultaneous simulation of gas-oxidant-aerosol coupling and detailed aerosol processes. The impact of NOx emissions on aerosol formation will be a key to formulating effective emission reduction strategies such as BC mitigation and aerosol reduction policies in East Asia.

  17. Secondary aerosol formation from stress-induced biogenic emissions and possible climate feedbacks

    NASA Astrophysics Data System (ADS)

    Mentel, Th. F.; Kleist, E.; Andres, S.; Dal Maso, M.; Hohaus, T.; Kiendler-Scharr, A.; Rudich, Y.; Springer, M.; Tillmann, R.; Uerlings, R.; Wahner, A.; Wildt, J.

    2013-09-01

    Atmospheric aerosols impact climate by scattering and absorbing solar radiation and by acting as ice and cloud condensation nuclei. Biogenic secondary organic aerosols (BSOAs) comprise an important component of atmospheric aerosols. Biogenic volatile organic compounds (BVOCs) emitted by vegetation are the source of BSOAs. Pathogens and insect attacks, heat waves and droughts can induce stress to plants that may impact their BVOC emissions, and hence the yield and type of formed BSOAs, and possibly their climatic effects. This raises questions of whether stress-induced changes in BSOA formation may attenuate or amplify effects of climate change. In this study we assess the potential impact of stress-induced BVOC emissions on BSOA formation for tree species typical for mixed deciduous and Boreal Eurasian forests. We studied the photochemical BSOA formation for plants infested by aphids in a laboratory setup under well-controlled conditions and applied in addition heat and drought stress. The results indicate that stress conditions substantially modify BSOA formation and yield. Stress-induced emissions of sesquiterpenes, methyl salicylate, and C17-BVOCs increase BSOA yields. Mixtures including these compounds exhibit BSOA yields between 17 and 33%, significantly higher than mixtures containing mainly monoterpenes (4-6% yield). Green leaf volatiles suppress SOA formation, presumably by scavenging OH, similar to isoprene. By classifying emission types, stressors and BSOA formation potential, we discuss possible climatic feedbacks regarding aerosol effects. We conclude that stress situations for plants due to climate change should be considered in climate-vegetation feedback mechanisms.

  18. Impact on aerosol emissions in China and India on local and global climate

    NASA Astrophysics Data System (ADS)

    Kühn, Thomas; Partanen, Antti-Ilari; Henriksson, Svante V.; Bergman, Tommi; Laakso, Anton; Kokkola, Harri; Romakkaniemi, Sami; Laaksonen, Ari

    2013-04-01

    Existing surface temperature records show warming in the beginning of last century, followed by cooling starting from 1940 and again strong heating from 1975 until recent years. This behaviour has been attributed to increase in the greenhouse gas and aerosol emission as well as to natural variability of climate. Making a difference between these is crucial as climate predictions and international policy related to emission reductions are based on the models that are mainly evaluated against the historical temperature records. While in Europe and North America the aerosol emissions have decreased since the late 1970s, the emissions in China and India have started to increase dramatically at about the same time and have only recently started to stagnate due to new regulations in China. Here we use emission scenarios from the years 1996 through 2010 to assess the effect that these emissions have on local aerosol properties and climate as well as on the global climate. We use the aerosol-climate model ECHAM5-HAM [Roeckner2003, Roeckner2004] to simulate the local aerosol properties in China and India in the years 1996 through 2010, and their impact on local as well as global climate. For anthropogenic aerosol greenhouse gas emissions we use the ACCMIP-MACCity Aerocom emissions (Aerocom 2) [Lamarque2010] in combination with the emissions for China and India after Lu et. al [Lu2011] for the mentioned period of time. To assess the effect of anthropogenic aerosol emissions on earth's climate is assessed using the ECHAM-HAM model coupled to a mixed layer ocean on a T42L19 grid. The model is run with fixed yearly emissions for several emission scenarios (e.g. for the years 1996 and 2010), with data derived from 100-year averages. Additionally we run a number of transient simulations (i.e. with varying yearly emissions) from 1996 to 2010 in the attempt to extract a climate trend for the given period. References [Roeckner2003] Roeckner, E., Bäuml, R., Bonaventura, L., Brokopf

  19. Investigation of aviation emission impacts on global tropospheric chemistry and climate using a size-resolved aerosol-chemistry model

    NASA Astrophysics Data System (ADS)

    Kapadia, Zarashpe; Spracklen, Dominick; Arnold, Stephen; Borman, Duncan; Mann, Graham; Pringle, Kirsty; Monks, Sarah; Reddington, Carly; Rap, Alexandru; Scott, Catherine

    2014-05-01

    Aviation is responsible for 3% of global anthropogenic CO2 emissions, but 2-14% of anthropogenic induced climate warming due to contributions from short lived climate forcers. The global civil aviation fleet is projected to double by 2026 in relation to a 2006 baseline and so will play a substantial role in future climate change. Uncertainty in the net impact of aviation on climate is largely due to uncertainty in the impacts of aviation emissions on ozone and aerosol. To study the impact of aviation emissions we use the GLOMAP-mode global aerosol microphysics model coupled to the 3-D chemical transport model TOMCAT. GLOMAP-mode has been extended to include treatment of nitrate aerosol. We include a full suite of non-CO2 aviation emissions (including NOX, SO2, HCs, BC and OC) in the model. We combined the simulated changes in ozone and aerosol with a 3D radiative transfer model to quantify the radiative effect due to aviation non-CO2 emissions. We find that aviation emissions increase O3 concentrations by up to 5.3% in the upper troposphere (UT), broadly matching previous studies. Black carbon (BC) and organic carbon (OC) concentrations increase by 26.5% and 14.6% respectively in the UT, whereas nitrate aerosol is reduced in some regions due to co-emission of NOX and SO2 In the UT, aviation emissions increase both total aerosol number as well as the concentration of particles greater than 70 nm diameter (N70). Entrainment of these particles into the free troposphere results in aviation emissions also increasing N70 in the boundary layer, causing a cooling through the first aerosol indirect effect. We explore differences in these responses compared with those simulated when using the recommended aviation emissions from CMIP5 (5th Climate Model Intercomparison Project), which only include NOX and BC emissions. Our results suggest that aviation emissions of SO2 and HCs neglected by CMIP5 produce important effects on ozone, aerosol number, and N70. We suggest CMIP5

  20. Analysis of aerosol emission and hazard evaluation of electrical discharge machining (EDM) process.

    PubMed

    Jose, Mathew; Sivapirakasam, S P; Surianarayanan, M

    2010-01-01

    The safety and environmental aspects of a manufacturing process are important due to increased environmental regulations and life quality. In this paper, the concentration of aerosols in the breathing zone of the operator of Electrical Discharge Machining (EDM), a commonly used non traditional manufacturing process is presented. The pattern of aerosol emissions from this process with varying process parameters such as peak current, pulse duration, dielectric flushing pressure and the level of dielectric was evaluated. Further, the HAZOP technique was employed to identify the inherent safety aspects and fire risk of the EDM process under different working conditions. The analysis of aerosol exposure showed that the concentration of aerosol was increased with increase in the peak current, pulse duration and dielectric level and was decreased with increase in the flushing pressure. It was also found that at higher values of peak current (7A) and pulse duration (520 micros), the concentration of aerosols at breathing zone of the operator was above the permissible exposure limit value for respirable particulates (5 mg/m(3)). HAZOP study of the EDM process showed that this process is vulnerable to fire and explosion hazards. A detailed discussion on preventing the fire and explosion hazard is presented in this paper. The emission and risk of fire of the EDM process can be minimized by selecting proper process parameters and employing appropriate control strategy.

  1. A Study of Direct and Cloud-Mediated Radiative Forcing of Climate Due to Aerosols

    NASA Technical Reports Server (NTRS)

    Yu, Shao-Cai

    1999-01-01

    The Intergovernmental Panel on Climate Change (IPCC) has reported that in the southeastern US and eastern China, the general greenhouse warming due to anthropogenic gaseous emissions is dominated by the cooling effect of anthropogenic aerosols. To verify this model prediction in eastern China and southeastern US, we analyzed regional patterns of climate changes at 72 stations in eastern China during 1951- 94 (44 years), and at 52 stations in the southeastern US during 1949-94 (46 years) to detect the fingerprint of aerosol radiative forcing. It was found that the mean rates of change of annual mean daily, maximum, minimum temperatures and diurnal temperature range (DTR) in eastern China were 0.8, -0.2, 1.8, and -2.0 C/100 years respectively, while the mean rates of change of annual mean daily, maximum, minimum temperatures and DTR in the southeastern US were -0.2, -0.6, 0.2, and -0.8 C/100 years, respectively. This indicates that the high rate of increase in annual mean minimum temperature in eastern China results in a slightly warming trend of daily temperature, while the high rate of decrease in annual mean maximum temperature and low rate of increase in annual mean minimum temperature lead to the cooling trend of daily temperature in the southeastern US. We found that the warming from the longwave forcing due to both greenhouse gases and aerosols was completely counteracted by the shortwave aerosol forcing in the southeastern US in the past 46 years. A slightly overall warming trend in eastern China is evident; winters have become milder. This finding is explained by hypothesizing that increasing energy usage during the past 44 years has resulted in more coal and biomass burning, thus increasing the emission of absorbing soot and organic aerosols in eastern China. Such emissions, in addition to well-known Asia dust and greenhouse gases, may be responsible for the winter warming trend in eastern China that we have reported here. The sensitivity of aerosol

  2. Enhanced Volatile Organic Compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Kourtchev, Ivan; Giorio, Chiara; Manninen, Antti; Wilson, Eoin; Mahon, Brendan; Aalto, Juho; Kajos, Maija; Venables, Dean; Ruuskanen, Taina; Levula, Janne; Loponen, Matti; Connors, Sarah; Harris, Neil; Zhao, Defeng; Kiendler-Scharr, Astrid; Mentel, Thomas; Rudich, Yinon; Hallquist, Mattias; Doussin, Jean-Francois; Maenhaut, Willy; Bäck, Jaana; Petäjä, Tuukka; Wenger, John; Kulmala, Markku; Kalberer, Markus

    2016-10-01

    Secondary organic aerosol (SOA) accounts for a dominant fraction of the submicron atmospheric particle mass, but knowledge of the formation, composition and climate effects of SOA is incomplete and limits our understanding of overall aerosol effects in the atmosphere. Organic oligomers were discovered as dominant components in SOA over a decade ago in laboratory experiments and have since been proposed to play a dominant role in many aerosol processes. However, it remains unclear whether oligomers are relevant under ambient atmospheric conditions because they are often not clearly observed in field samples. Here we resolve this long-standing discrepancy by showing that elevated SOA mass is one of the key drivers of oligomer formation in the ambient atmosphere and laboratory experiments. We show for the first time that a specific organic compound class in aerosols, oligomers, is strongly correlated with cloud condensation nuclei (CCN) activities of SOA particles. These findings might have important implications for future climate scenarios where increased temperatures cause higher biogenic volatile organic compound (VOC) emissions, which in turn lead to higher SOA mass formation and significant changes in SOA composition. Such processes would need to be considered in climate models for a realistic representation of future aerosol-climate-biosphere feedbacks.

  3. Enhanced Volatile Organic Compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols

    PubMed Central

    Kourtchev, Ivan; Giorio, Chiara; Manninen, Antti; Wilson, Eoin; Mahon, Brendan; Aalto, Juho; Kajos, Maija; Venables, Dean; Ruuskanen, Taina; Levula, Janne; Loponen, Matti; Connors, Sarah; Harris, Neil; Zhao, Defeng; Kiendler-Scharr, Astrid; Mentel, Thomas; Rudich, Yinon; Hallquist, Mattias; Doussin, Jean-Francois; Maenhaut, Willy; Bäck, Jaana; Petäjä, Tuukka; Wenger, John; Kulmala, Markku; Kalberer, Markus

    2016-01-01

    Secondary organic aerosol (SOA) accounts for a dominant fraction of the submicron atmospheric particle mass, but knowledge of the formation, composition and climate effects of SOA is incomplete and limits our understanding of overall aerosol effects in the atmosphere. Organic oligomers were discovered as dominant components in SOA over a decade ago in laboratory experiments and have since been proposed to play a dominant role in many aerosol processes. However, it remains unclear whether oligomers are relevant under ambient atmospheric conditions because they are often not clearly observed in field samples. Here we resolve this long-standing discrepancy by showing that elevated SOA mass is one of the key drivers of oligomer formation in the ambient atmosphere and laboratory experiments. We show for the first time that a specific organic compound class in aerosols, oligomers, is strongly correlated with cloud condensation nuclei (CCN) activities of SOA particles. These findings might have important implications for future climate scenarios where increased temperatures cause higher biogenic volatile organic compound (VOC) emissions, which in turn lead to higher SOA mass formation and significant changes in SOA composition. Such processes would need to be considered in climate models for a realistic representation of future aerosol-climate-biosphere feedbacks. PMID:27733773

  4. Predicted modification of the O/C ratio of SOA due to cloud and aerosol processing

    NASA Astrophysics Data System (ADS)

    Carlton, A. G.; Ervens, B.

    2011-12-01

    The formation of secondary organic aerosol formation in cloud and aerosol water (aqSOA) has attracted great attention over the past years and many laboratory data are available to describe such processes in detail. While it has been recognized that aqSOA formation might significantly contribute to the total SOA budget in humid and cloudy regions, the modification of individual aerosol properties, such as oxygenation state (O/C ratio), size (distribution), and light-absorbing properties has not been explored by means of model studies. Precursors of aqSOA are more highly oxidized and water-soluble than those for traditional (gas)SOA and thus aqSOA products have also distinctly higher O/C ratio. Since aqSOA occurs in clouds and in aerosol water at elevated RH, aerosols modified by such processes exhibit a unique vertical profile as compared to gasSOA and add to the organic carbon budget aloft. In this process model study, we will show the extent to which the O/C ratio of aerosols is modified due to aqSOA formation in cloud and aerosol water. The O/C ratio can be considered as a proxy for other aerosol properties such as hygroscopicity (particle growth and CCN activity) and interactions with light (scattering/absorption) which affect the direct and indirect aerosol effects on radiation. Implications of aqSOA formation on these aerosol properties as a function of vertical profile will be discussed.

  5. Secondary organic aerosol formation from gasoline vehicle emissions in a new mobile environmental reaction chamber

    NASA Astrophysics Data System (ADS)

    Platt, S. M.; El Haddad, I.; Zardini, A. A.; Clairotte, M.; Astorga, C.; Wolf, R.; Slowik, J. G.; Temime-Roussel, B.; Marchand, N.; Ježek, I.; Drinovec, L.; Močnik, G.; Möhler, O.; Richter, R.; Barmet, P.; Bianchi, F.; Baltensperger, U.; Prévôt, A. S. H.

    2012-10-01

    We present a new mobile environmental reaction chamber for the simulation of the atmospheric aging of aerosols from different emissions sources without limitation from the instruments or facilities available at any single site. The chamber can be mounted on a trailer for transport to host facilities or for mobile measurements. Photochemistry is simulated using a set of 40 UV lights (total power 4 KW). Characterisation of the emission spectrum of these lights shows that atmospheric photochemistry can be accurately simulated over a range of temperatures from -7-25 °C. A photolysis rate of NO2, JNO2, of (8.0 ± 0.7) × 10-3 molecules cm-3 s-1 was determined at 25 °C. Further, we present the first application of the mobile chamber and demonstrate its utility by quantifying primary organic aerosol (POA) emission and secondary organic aerosol (SOA) production from a Euro 5 light duty gasoline vehicle. Exhaust emissions were sampled during the New European Driving Cycle (NEDC), the standard driving cycle for European regulatory purposes, and injected into the chamber. The relative concentrations of oxides of nitrogen (NOx) and total hydrocarbon (THC) during the aging of emissions inside the chamber were controlled using an injection system developed as a part of the new mobile chamber set up. Total OA (POA + SOA) emission factors of (370 ± 18) × 10-3 g kg-1 fuel, or (14.6 ± 0.8) × 10-3 g km-1, after aging, were calculated from concentrations measured inside the smog chamber during two experiments. The average SOA/POA ratio for the two experiments was 15.1, a much larger increase than has previously been seen for diesel vehicles, where smog chamber studies have found SOA/POA ratios of 1.3-1.7. Due to this SOA formation, carbonaceous particulate matter (PM) emissions from a gasoline vehicle may approach those of a diesel vehicle of the same class. Furthermore, with the advent of emission controls requiring the use of diesel particle filters, gasoline vehicle emissions

  6. Modeling Secondary Organic Aerosol Formation From Emissions of Combustion Sources

    NASA Astrophysics Data System (ADS)

    Jathar, Shantanu Hemant

    Atmospheric aerosols exert a large influence on the Earth's climate and cause adverse public health effects, reduced visibility and material degradation. Secondary organic aerosol (SOA), defined as the aerosol mass arising from the oxidation products of gas-phase organic species, accounts for a significant fraction of the submicron atmospheric aerosol mass. Yet, there are large uncertainties surrounding the sources, atmospheric evolution and properties of SOA. This thesis combines laboratory experiments, extensive data analysis and global modeling to investigate the contribution of semi-volatile and intermediate volatility organic compounds (SVOC and IVOC) from combustion sources to SOA formation. The goals are to quantify the contribution of these emissions to ambient PM and to evaluate and improve models to simulate its formation. To create a database for model development and evaluation, a series of smog chamber experiments were conducted on evaporated fuel, which served as surrogates for real-world combustion emissions. Diesel formed the most SOA followed by conventional jet fuel / jet fuel derived from natural gas, gasoline and jet fuel derived from coal. The variability in SOA formation from actual combustion emissions can be partially explained by the composition of the fuel. Several models were developed and tested along with existing models using SOA data from smog chamber experiments conducted using evaporated fuel (this work, gasoline, fischertropschs, jet fuel, diesels) and published data on dilute combustion emissions (aircraft, on- and off-road gasoline, on- and off-road diesel, wood burning, biomass burning). For all of the SOA data, existing models under-predicted SOA formation if SVOC/IVOC were not included. For the evaporated fuel experiments, when SVOC/IVOC were included predictions using the existing SOA model were brought to within a factor of two of measurements with minor adjustments to model parameterizations. Further, a volatility

  7. Secondary aerosol formation from stress-induced biogenic emissions and possible climate feedbacks

    NASA Astrophysics Data System (ADS)

    Mentel, Th. F.; Kleist, E.; Andres, S.; Maso, M. D.; Hohaus, T.; Kiendler-Scharr, A.; Rudich, Y.; Springer, M.; Tillmann, R.; Uerlings, R.; Wahner, A.; Wildt, J.

    2013-03-01

    Atmospheric aerosols impact climate by scattering and absorbing solar radiation and by acting as ice and cloud condensation nuclei. Secondary organic aerosols (SOA) comprise an important component of atmospheric aerosols. Biogenic volatile organic compounds (BVOC) emitted by vegetation are a major source of SOA. Pathogens and insect attacks, heat waves and droughts can induce stress to plants that may impact their BVOC emissions, and hence the yield and type of formed SOA, and possibly their climatic effects. This raises questions whether stress-induced changes in SOA formation may attenuate or amplify effects of climate change. In this study we assess the potential impact of stress-induced BVOC emissions on SOA formation for tree species typical for mixed deciduous and Boreal Eurasian forests. We studied the photochemical SOA formation for infested plants in a laboratory setup under well-controlled conditions and applied in addition heat and drought stress. The results indicate that stress conditions substantially modify SOA formation. While sesquiterpenes, methyl salicylate, and C17-BVOC increase SOA yield, green leaf volatiles suppress SOA formation. By classifying emission types, stressors and SOA formation potential, we propose possible climatic feedbacks regarding aerosol effects. We conclude that stress situations for plants due to climate change should be considered in climate-vegetation feedback mechanisms.

  8. Direct radiative feedback due to biogenic secondary organic aerosol estimated from boreal forest site observations

    NASA Astrophysics Data System (ADS)

    Lihavainen, H.; Asmi, E.; Aaltonen, V.; Makkonen, U.; Kerminen, V. M.

    2015-12-01

    Biogenic secondary organic aerosol (BSOA) originating from the emissions of volatile organic compounds from terrestrial vegetation constitutes an important part of the natural aerosol system. According to large-scale model simulations, the direct and indirect radiative effects of the BSOA are potentially large, yet poorly quantified. We used more than 5 years of continuous aerosol measurements to estimate the direct radiative feedback associated with the formation of biogenic secondary organic aerosol at a remote continental site at the edge of the boreal forest zone in Northern Finland. Our upper-limit estimate for this feedback during the summer period (ambient temperatures above 10 °C) was -97±66 mW m-2 K-1 (mean ± STD) when using measurements of the aerosol optical depth (fAOD) and -63±40 mW m-2 K-1 when using measurements of the "dry" aerosol scattering coefficient at the ground level (fσ). Here STD represents the variability in f caused by the observed variability in the quantities used to derive the value of f. Compared with our measurement site, the magnitude of this direct radiative feedback is expected to be larger in warmer continental regions with more abundant biogenic emissions, and even larger in regions where biogenic emissions are mixed with anthropogenic pollution.

  9. Cooling enhancement of aerosol particles due to surfactant precipitation.

    PubMed

    Beaver, Melinda R; Freedman, Miriam A; Hasenkopf, Christa A; Tolbert, Margaret A

    2010-07-01

    Light extinction by particles in Earth's atmosphere is strongly dependent on the particle size, chemical composition, and ability to take up water. In this work, we have measured the optical growth factors, fRH(ext)(RH, dry), for complex particles composed of an inorganic salt, sodium nitrate, and an anionic surfactant, sodium dodecyl sulfate. In contrast with previous studies using soluble and slightly soluble organic compounds, optical growth in excess to that expected based on the volume weighted water uptake of the individual components is observed. We explored the relationship between optical growth and concentration of surfactant by investigating the role of particle density, the effect of a surfactant monolayer, and increased light extinction by surfactant aggregates and precipitates. For our experimental conditions, it is likely that surfactant precipitates are responsible for the observed increase in light scattering. The contribution of surfactant precipitates to light scattering of aerosol particles has not been previously explored and has significant implications for characterizing the aerosol direct effect.

  10. Reductions in aircraft particulate emissions due to the use of Fischer-Tropsch fuels

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Timko, M. T.; Ziemba, L. D.; Bulzan, D.; Corporan, E.; Herndon, S. C.; Howard, R.; Miake-Lye, R.; Thornhill, K. L.; Winstead, E.; Wey, C.; Yu, Z.; Anderson, B. E.

    2013-06-01

    The use of alternative fuels for aviation is likely to increase due to concerns over fuel security, price stability and the sustainability of fuel sources. Concurrent reductions in particulate emissions from these alternative fuels are expected because of changes in fuel composition including reduced sulfur and aromatic content. The NASA Alternative Aviation Fuel Experiment (AAFEX) was conducted in January-February 2009 to investigate the effects of synthetic fuels on gas-phase and particulate emissions. Standard petroleum JP-8 fuel, pure synthetic fuels produced from natural gas and coal feedstocks using the Fischer-Tropsch (FT) process, and 50% blends of both fuels were tested in the CFM-56 engines on a DC-8 aircraft. To examine plume chemistry and particle evolution with time, samples were drawn from inlet probes positioned 1, 30, and 145 m downstream of the aircraft engines. No significant alteration to engine performance was measured when burning the alternative fuels. However, leaks in the aircraft fuel system were detected when operated with the pure FT fuels as a result of the absence of aromatic compounds in the fuel. Dramatic reductions in soot emissions were measured for both the pure FT fuels (reductions of 84% averaged over all powers) and blended fuels (64%) relative to the JP-8 baseline with the largest reductions at idle conditions. The alternative fuels also produced smaller soot (e.g. at 85% power, volume mean diameters were reduced from 78 nm for JP-8 to 51 nm for the FT fuel), which may reduce their ability to act as cloud condensation nuclei (CCN). The reductions in particulate emissions are expected for all alternative fuels with similar reductions in fuel sulfur and aromatic content regardless of the feedstock. As the plume cools downwind of the engine, nucleation-mode aerosols form. For the pure FT fuels, reductions (94% averaged over all powers) in downwind particle number emissions were similar to those measured at the exhaust plane (84

  11. Patterns in atmospheric carbonaceous aerosols in China: emission estimates and observed concentrations

    NASA Astrophysics Data System (ADS)

    Zhao, Y.

    2015-12-01

    To better understand the levels and trends of carbonaceous aerosol emissions and the resulting ambient concentrations in China, we update an emission inventory of anthropogenic organic carbon (OC) and elemental carbon (EC) and employ existing observational studies to analyze characteristics of these aerosols including temporal and spatial distributions, and the levels and shares of secondary organic carbon (SOC) in total OC. We further use ground observations to test the levels and inter-annual trends of the calculated national and provincial emissions of carbonaceous aerosols. The national OC emissions are estimated to have increased 29% from 2000 (2127 Gg) to 2012 (2749 Gg) and EC by 37% (from 1356 to 1857 Gg). Updated emission factors based on the most recent local field measurements, particularly for biofuel stoves, lead to considerably lower emissions of OC compared to previous inventories. Compiling observational data across the country, higher concentrations of OC and EC are found in northern and inland cities, while SOC/OC ratios are found in southern cities, due to the joint effects of primary emissions and meteorology. Higher OC/EC ratios are estimated at rural and remote sites compared to urban ones, attributed to more emissions of OC from biofuel use, more biogenic emissions of volatile organic compound (VOC) precursors to SOC, and/or transport of aged aerosols. For most sites, smaller SOC/OC is found for cold seasons, particularly at rural and remote sites, attributed partly to weaker atmospheric oxidation and SOC formation in winter. Enhanced SOC formation from oxidization and anthropogenic activities like biomass combustion is judged to have crucial effects on severe haze events characterized by high particle concentrations. Several observational studies indicate an increasing trend in ambient OC/EC (but not in OC or EC individually) from 2000 to 2010, confirming increased atmospheric oxidation of OC across the country. Combining the results of

  12. Carbon and Aerosol Emissions from Biomass Fires in Mexico

    NASA Astrophysics Data System (ADS)

    Hao, W. M.; Flores Garnica, G.; Baker, S. P.; Urbanski, S. P.

    2009-12-01

    Biomass burning is an important source of many atmospheric greenhouse gases and photochemically reactive trace gases. There are limited data available on the spatial and temporal extent of biomass fires and associated trace gas and aerosol emissions in Mexico. Biomass burning is a unique source of these gases and aerosols, in comparison to industrial and biogenic sources, because the locations of fires vary considerably both daily and seasonally and depend on human activities and meteorological conditions. In Mexico, the fire season starts in January and about two-thirds of the fires occur in April and May. The amount of trace gases and aerosols emitted by fires spatially and temporally is a major uncertainty in quantifying the impact of fire emissions on regional atmospheric chemical composition. To quantify emissions, it is necessary to know the type of vegetation, the burned area, the amount of biomass burned, and the emission factor of each compound for each ecosystem. In this study biomass burning experiments were conducted in Mexico to measure trace gas emissions from 24 experimental fires and wildfires in semiarid, temperate, and tropical ecosystems from 2005 to 2007. A range of representative vegetation types were selected for ground-based experimental burns to characterize fire emissions from representative Mexico fuels. A third of the country was surveyed each year, beginning in the north. The fire experiments in the first year were conducted in Chihuahua, Nuevo Leon, and Tamaulipas states in pine forest, oak forest, grass, and chaparral. The second-year fire experiments were conducted on pine forest, oak forest, shrub, agricultural, grass, and herbaceous fuels in Jalisco, Puebla, and Oaxaca states in central Mexico. The third-year experiments were conducted in pine-oak forests of Chiapas, coastal grass, and low subtropical forest on the Yucatan peninsula. FASS (Fire Atmosphere Sampling System) towers were deployed for the experimental fires. Each FASS

  13. Profile of heating rate due to aerosols using lidar and skyradiometer in SKYNET Hefei site

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Liu, D.; Xie, C.

    2015-12-01

    Atmospheric aerosols have a significant impact on climate due to their important role in modifying atmosphere energy budget. On global scale, the direct radiative forcing is estimated to be in the range of -0.9 to -0.1 Wm-2 for aerosols [1]. Yet, these estimates are subject to very large uncertainties because of uncertainties in spatial and temporal variations of aerosols. At local scales, as aerosol properties can vary spatially and temporally, radiative forcing due to aerosols can be also very different and it can exceed the global value by an order of magnitude. Hence, it is very important to investigate aerosol loading, properties, and radiative forcing due to them in detail on local regions of climate significance. Haze and dust events in Hefei, China are explored by Lidar and Skyradiometer. Aerosol optical properties including the AOD, SSA, AAE and size distribution are analysed by using the SKYRAD.PACK [2] and presented in this paper. Furthermore, the radiative forcing due to aerosols and the heating rate in the ATM are also calculated using SBDART model [3]. The results are shown that the vertical heating rate is tightly related to aerosol profile. References: 1. IPCC. 2007. Climate Change 2007: The Physical Science Basic. Contribution of Working Group I Contribution to the Intergovernmental Panel on Climate Change Fourth Assessment Report. Solomon S, Qing D H, Manning M, et al. eds., Cambridge University Press, Cambridge, United Kingdom and New York, N Y, USA. 2. Nakajima, T., G. Tonna, R. Rao, Y. Kaufman, and B. Holben, 1996: Use of sky brightness measurements from ground for remote sensing of particulate poly dispersions, Appl. Opt., 35, 2672-2686. 3. Ricchiazzi et al 1998. SBDART: a research and teaching software tool for plane-parallel radiative transfer in the Earth's atmosphere,Bulletin of the American Meteorological Society,79,2101-2114.

  14. Chemical composition of emissions from urban sources of fine organic aerosol

    SciTech Connect

    Hildemann, L.M.; Markowski, G.R.; Cass, G.R. )

    1991-04-01

    A dilution source sampling system was used to collect primary fine aerosol emissions from important sources of urban organic aerosol, including a boiler burning No. 2 fuel oil, a home fireplace, a fleet of catalyst-equipped and noncatalyst automobiles, heavy-duty diesel trucks, natural gas home appliances, and meat cooking operations. Alternative dilution sampling techniques were used to collect emissions from cigarette smoking and a roofing tar pot, and grab sample techniques were employed to characterize paved road dust, brake lining wear, and vegetative detritus. Organic aerosol constituted the majority of the fine aerosol mass emitted from many of the sources tested. Fine primary organic aerosol emissions within the heavily urbanized western portion of the Los Angeles Basin were determined to total 29.8 metric ton/day. Over 40% of these organic aerosol emissions are from anthropogenic pollution sources that are expected to emit contemporary (nonfossil) aerosol carbon, in good agreement with the available ambient monitoring data.

  15. Patterns in atmospheric carbonaceous aerosols in China: emission estimates and observed concentrations

    NASA Astrophysics Data System (ADS)

    Cui, H.; Mao, P.; Zhao, Y.; Nielsen, C. P.; Zhang, J.

    2015-08-01

    China is experiencing severe carbonaceous aerosol pollution driven mainly by large emissions resulting from intensive use of solid fuels. To gain a better understanding of the levels and trends of carbonaceous aerosol emissions and the resulting ambient concentrations at the national scale, we update an emission inventory of anthropogenic organic carbon (OC) and elemental carbon (EC) and employ existing observational studies to analyze characteristics of these aerosols including temporal, spatial, and size distributions, and the levels and shares of secondary organic carbon (SOC) in total OC. We further use ground observations to test the levels and inter-annual trends of the calculated national and provincial emissions of carbonaceous aerosols, and propose possible improvements in emission estimation for the future. The national OC emissions are estimated to have increased 29 % from 2000 (2127 Gg) to 2012 (2749 Gg) and EC by 37 % (from 1356 to 1857 Gg). The residential, industrial, and transportation sectors contributed an estimated 74-78, 17-21, and 4-6 % of the total emissions of OC, respectively, and 49-55, 30-34, and 14-18 % of EC. Updated emission factors (EFs) based on the most recent local field measurements, particularly for biofuel stoves, led to considerably lower emissions of OC compared to previous inventories. Compiling observational data across the country, higher concentrations of OC and EC are found in northern and inland cities, while higher OC / EC ratios are found in southern sites, due to the joint effects of primary emissions and meteorology. Higher OC / EC ratios are estimated at rural and remote sites compared to urban ones, attributed to more emissions of OC from biofuel use, more biogenic emissions of volatile organic compound (VOC) precursors to SOC, and/or transport of aged aerosols. For most sites, higher concentrations of OC, EC, and SOC are observed in colder seasons, while SOC / OC is reduced, particularly at rural and remote sites

  16. Airborne Measurements of Aerosol Emissions From the Alberta Oil Sands Complex

    NASA Astrophysics Data System (ADS)

    Howell, S. G.; Clarke, A. D.; McNaughton, C. S.; Freitag, S.

    2012-12-01

    The Alberta oil sands contain a vast reservoir of fossil hydrocarbons. The extremely viscous bitumen requires significant energy to extract and upgrade to make a fluid product suitable for pipelines and further refinement. The mining and upgrading process constitute a large industrial complex in an otherwise sparsely populated area of Canada. During the ARCTAS project in June/July 2008, while studying forest fire plumes, the NASA DC-8 and P-3B flew through the plume a total of 5 times. Once was a coordinated visit by both aircraft; the other 3 were fortuitous passes downwind. One study has been published about gas emissions from the complex. Here we concentrate on aerosol emissions and aging. As previously reported, there appear to be at least 2 types of plumes produced. One is an industrial-type plume with vast numbers of ultrafine particles, SO2, sulfate, black carbon (BC), CO, and NO2. The other, probably from the mining, has more organic aerosol and BC together with dust-like aerosols at 3 μm and a 1 μm mode of unknown origin. The DC-8 crossed the plume about 10 km downwind of the industrial site, giving time for the boundary layer to mix and enabling a very crude flux calculation suggesting that sulfate and organic aerosols were each produced at about 500 g/s (estimated errors are a factor of 2, chiefly due to concerns about vertical mixing). Since this was a single flight during a project dedicated to other purposes and operating conditions and weather may change fluxes considerably, this may not be a typical flux. As the plume progresses downwind, the ultrafine particles grow to sizes effective as cloud condensation nucei (CCN), SO2 is converted to sulfate, and organic aerosol is produced. During fair weather in the summer, as was the case during these flights, cloud convection pumps aerosol above the mixed layer. While the aerosol plume is difficult to detect from space, NO2 is measured by the OMI instrument an the Aura satellite and the oil sands plume

  17. Emissions of Black Carbon Aerosols from Alaskan Boreal Forest Wildfires

    NASA Astrophysics Data System (ADS)

    Mouteva, G.; Fahrni, S. M.; Rogers, B. M.; Wiggins, E. B.; Santos, G.; Czimczik, C. I.; Randerson, J. T.

    2014-12-01

    Boreal wildfires are a major source of carbonaceous aerosols. Emissions from wildfires in Alaska represent ~ 33% of all open biomass combustion emissions of black carbon (BC) in the United States. BC contributes to atmospheric warming and accelerates melting of ice and snow. With fire frequency and burned area projected to increase in boreal regions, BC has the potential to become an important positive feedback to climate change. Quantifying the emissions, constraining the sources and better understanding the transportation patterns of BC to the polar regions are therefore critical for constraining the strength of this feedback. We present results from direct measurements of BC from wildfires in Alaska during the summer of 2013 collected as a part of NASA's Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) campaign. Fine aerosol particulate matter (PM2.5) was collected at two locations: Caribou-Poker Creek Research Watershed and Delta Junction Agricultural and Forestry Experimental Site. Using a Sunset OCEC analyzer, we separated BC from organic carbon aerosols, measured concentrations and analyzed the radiocarbon (14C) content with accelerator mass spectrometry. We also analyzed the total carbon (C) and nitrogen (N) elemental and stable isotope composition of the bulk PM2.5 with EA-IRMS. We compared the temporal dynamics of BC concentrations and isotopic composition with active fire/thermal anomaly information from MODIS. Our results show that boreal forest fire emissions in interior Alaska increased BC concentrations by up to an order of magnitude above background levels. The mean Δ14C value of fire-emitted BC was 120‰ with a range of +99‰ to +149‰ after correcting for contributions from background BC. This range was in good agreement with measurements of the depth of burn in soil organic carbon layers from interior wildland fires, and Δ14C profiles. High fire periods also corresponded to elevated C:N ratios. The δ15N of the aerosols was

  18. Investigating the impacts of aviation NOX, SO2 and black carbon emissions on ozone, aerosol and climate.

    NASA Astrophysics Data System (ADS)

    Kapadia, Zarashpe; Borman, Duncan; Spracklen, Dominick; Arnold, Stephen; Mann, Graham; Williams, Paul

    2013-04-01

    Aviation is currently responsible for 3% of global anthropogenic CO2 emissions, but 2-14% of anthropogenic induced warming due to the co-emission of NOX, SO2 and black carbon and formation of contrails. The impact of aviation emissions on ozone and aerosol is uncertain with recent research demonstrating the need to include atmospheric nitrate chemistry. The inclusion of nitrate chemistry may lead to a 20% reduction in aviation induced ozone forcing estimates due to the competition for atmospheric oxidants such as OH . Compounding this, uncertainties relating to the effects of NOx on ozone and methane illustrate the need for refining the understanding of aviation induced impacts. Furthermore the role of aerosol microphysics in controlling the climate impacts of aviation has not yet been explored. Here we use the TOMCAT 3-D chemical transport model coupled to the GLOMAP-mode aerosol microphysics model to quantify the impacts of aviation NOX, SO2 and BC emissions on ozone, aerosol and climate. GLOMAP-mode treats size resolved aerosol using a two-moment modal approach. We evaluate the effects of nitrate processing on the diagnosed impacts of aviation emissions on atmospheric composition including the first assessment of the impact on the global concentrations of cloud condensation nuclei. We investigate interactions between gas-phase oxidant photochemistry and aerosol microphysics in regions influenced by aircraft emissions, using fully-coupled tropospheric chemistry and multi-component aerosol treatment (BC, sulphate, nitrate). Finally, we use a 3-D radiative transfer model to quantify the ozone and aerosol direct and indirect radiative effects of aviation emissions. The work presented here is part of a wider research project which will be the first study to combine aviation NOX, SO2 and black carbon emission in a global size-resolved model which considers atmospheric nitrate chemistry, which will aim to add to the science surrounding present day aviation impacts by

  19. Marine Primary and Secondary Aerosol emissions related to seawater biogeochemistry

    NASA Astrophysics Data System (ADS)

    Sellegri, Karine; D'Anna, Barbara; Marchand, Nicolas; Charriere, Bruno; Sempere, Richard; Mas, Sebastien; Schwier, Allison; Rose, Clémence; Pey, Jorge; Langley Dewitt, Helen; Même, Aurélie; R'mili, Badr; George, Christian; Delmont, Anne

    2014-05-01

    Marine aerosol contributes significantly to the global aerosol load and consequently has an important impact on both the Earth's albedo and climate. Different factors influence the way they are produced from the sea water and transferred to the atmosphere. The sea state (whitecap coverage) and sea temperature influence the size and concentration of primarily produced particles but also biogeochemical characteristics of the sea water may influence both the physical and chemical fluxes. In order to study marine emissions, one approach is to use semicontrolled environments such as mesocosms. Within the SAM project (Sources of marine Aerosol in the Mediterranean), we characterize the primary Sea Salt Aerosol (SSA) and Secondary aerosol formation by nucleation during mesocosms experiments performed in May 2013 at the Oceanographic and Marine Station STARESO in western Corsica. We followed both water and air characteristics of three mesocosms containing an immerged part filled with 3,3 m3 of sea water and an emerged part filled with filtered natural air. Mesocosms were equipped with a pack of optical and physicochemical sensors and received different treatments: one of these mesocosms was left unchanged as control and the two others were enriched by addition of nitrates and phosphates respecting Redfield ratio (N:P = 16) in order to create different levels of phytoplanctonic activities. The set of sensors in each mesocosm was allowed to monitor the water temperature, conductivity, pH, incident light, fluorescence of chlorophyll a, and dissolved oxygen concentration. The mesocosms waters were daily sampled for chemical and biological (dissolved organic matter (i.e. DOC and CDOM), particulate matter and related polar compounds, transparent polysaccharides and nutrients concentration) and biological (chlorophyll a, virus, bacteria, phytoplankton and zooplankton concentrations) analyses. Secondary new particle formation was followed on-line in the emerged parts of the

  20. Composition of Secondary Organic Aerosols Produced by Photo-Oxidation of Biomass Burning Emissions in a Smog Chamber

    NASA Astrophysics Data System (ADS)

    Desyaterik, Y.; Sullivan, A.; Hennigan, C. J.; Robinson, A. L.; Collett, J. L.

    2009-12-01

    Knowledge of the chemical composition of atmospheric organic aerosols (OA) is essential for accurate representation of OA in air quality and climate models. Both the sources of OA and their properties and effects remain poorly understood. In particular, we still know relatively little about the atmospheric formation of secondary organic aerosols (SOA). There is growing interest in the impact of biomass burning emissions on air quality, human health, and radiative forcing. Through a series of experiments, we are working to quantify changes in the chemical composition of wood smoke particles as a result of photochemical aging under well-controlled laboratory conditions. One specific objective of this study is to identify markers for biomass burning SOA and test whether these markers can be used in atmospheric samples to quantify SOA formation from aging of biomass burning emissions. We analyzed SOA generated in a smog chamber by photooxidation of smoke produced by burning oak wood. In order to initiate photochemistry, the chamber was irradiated with UV light. Aqueous extracts of collected aerosol samples were analyzed with Electrospray Ionization Time-of-Flight Mass Spectrometry. The high mass accuracy of these measurements reduces ambiguity in the assignment of elemental compositions for observed ions. Analysis has shown that primary oak smoke aerosol includes products of the thermal decomposition of cellulose (levoglucosan, cyclotene etc.) and lignin (guaiacol and syringol derivatives, mostly aldehydes and alcohols). After 2 hours of aging at typical summertime hydroxyl radical concentrations, the aerosol mass increased 2.5 fold due to the production of secondary organic aerosol. Mass spectra of the secondary organic aerosol formed are dominated by organic nitrates (nitrophenol, nitrocresol, nitrocatechol, and nitroguaiacol) and aromatic acids (benzoic acid, mono and di-hydroxybenzoic acid). Both nitrates and acids most likely are formed due to oxidation of the

  1. Emission of sunscreen salicylic esters from desert vegetation and their contribution to aerosol formation

    NASA Astrophysics Data System (ADS)

    Matsunaga, S. N.; Guenther, A. B.; Potosnak, M. J.; Apel, E. C.

    2008-12-01

    Biogenic volatile organic compounds (BVOC) produced by plants are known to have an important role in atmospheric chemistry. However, our knowledge of the range of BVOCs produced by different plant processes is still expanding, and there remain poorly understood categories of BVOCs. In this study, emissions of a novel class of BVOC emissions were investigated in a desert region. Our study considered 8 species of common desert plants: blackbrush (Coleogyne ramosissima), desert willow (Chilopsis linearis), mesquite (Prosopis glandulosa), mondel pine (Pinus eldarica), pinyon pine (Pinus monophylla), cottonwood (Populus deltoides), saguaro cactus (Carnegiea gigantea) and yucca (Yucca baccata). The measurements focused on BVOCs with relatively high molecular weight (>C15) and/or an oxygenated functional group. Significantly high emission rates of two salicylic esters were found for blackbrush, desert willow and mesquite with emission rates of 3.1, 1.0 and 4.8μgC dwg-1 h-1, respectively (dwg; dry weight of the leaves in gram). The salicylic esters were identified as 2-ethylhexenyl salicylate (2-EHS) and 3,3,5-trimethylcyclohexenyl salicylate (homosalate) and are known as effective ultraviolet (UV) absorbers. We propose that the plants derive a protective benefit against UV radiation from the salicylic esters and that the emission process is driven by the physical evaporation of the salicylic esters due to the high ambient temperatures. In addition, the salicylic esters are predicted to be an effective precursor of secondary organic aerosol (SOA) because they probably produce oxidation products that can condense onto the aerosol phase. We estimated the contribution of the sunscreen esters themselves and their oxidation products on the SOA formation for the Las Vegas area using a BVOC emission model. The contribution was estimated to reach 50% of the biogenic terpenoid emission in the landscapes dominated by desert willow and mesquite and 13% in the Las Vegas area. The

  2. Inorganic aerosols responses to emission changes in Yangtze River Delta, China

    SciTech Connect

    Dong, Xinyi; Li, Juan; Fu, Joshua S.; Gao, Yang; Huang, Kan; Zhuang, Guoshun

    2014-05-15

    China announced the Chinese National Ambient Air Quality standards (CH-NAAQS) on Feb. 29th, 2012, and PM2.5 is for the very first time included in the standards as a criteria pollutant. In order to probe into PM2.5 pollution over Yangtze River Delta, which is one of the major urban clusters hosting more than 80 million people in China, the integrated MM5/CMAQ modeling system is applied for a full year simulation to examine the PM2.5 concentration and seasonality, and also the inorganic aerosols responses to precursor emission changes. Both simulation and observation demonstrated that, inorganic aerosols have substantial contributions to PM2.5 over YRD, ranging from 37.1% in November to 52.8% in May. Nocturnal production of nitrate (NO3-) through heterogeneous hydrolysis of N2O5 was found significantly contribute to high NO3-concentration throughout the year. We also found that in winter NO3- was even increased under nitrogen oxides (NOx) emission reduction due to higher production of N2O5 from the excessive ozone (O3) introduced by attenuated titration, which further lead to increase of ammonium (NH4+) and sulfate (SO42-), while other seasons showed decrease response of NO3-. Sensitivity responses of NO3- under anthropogenic VOC emission reduction was examined and demonstrated that in urban areas over YRD, NO3- formation was actually VOC sensitive due to the O3-involved nighttime chemistry of N2O5, while a reduction of NOx emission may have counter-intuitive effect by increasing concentrations of inorganic aerosols.

  3. Model studies on the global impact of aviation emissions on aerosol and climate

    NASA Astrophysics Data System (ADS)

    Righi, M.; Hendricks, J.; Sausen, R.

    2015-12-01

    We use the EMAC global model with the aerosol module MADE to quantify the impact of aviation emissions on the global aerosol. We focus on the year 2000, prescribing the emissions according to the CMIP5 inventory, and on the year 2030, according to the four RCP scenarios. Various sensitivity experiments are performed to further quantify: (i) the uncertainty behind different assumptions on the size distribution of aviation-emitted particles; (ii) the effect of aviation fuel sulfur content on the simulated impacts; (iii) the linearity of the system's response to emission perturbation. The simulations show that the aviation impact on particle mass (black carbon and sulfate) is small, on the order of a few percent, whereas a large effect is found for particle number. In the northern mid-latitudes' upper troposphere (7-12 km), up to 30-40% of the modelled particle number concentration is attributable to aviation. Significant effects are also simulated at the ground, due to the emissions from landing and take-off cycles. The aviation induced perturbations to the particle number concentrations are very sensitive to the assumptions on the size distribution of emitted particles and on the fuel sulfur content. The simulated aviation-induced RF in the year 2000 is in the range of -69.5 to 2.4 mW/m2. The bulk of this RF is due to aerosol-cloud effects, in particular to the perturbation of low clouds. All RCP scenarios project an increase in the aviation impact in 2030, ranging between a factor of 2 to 4 with respect to 2000, albeit with large uncertainties.

  4. Inorganic aerosols responses to emission changes in Yangtze River Delta, China.

    PubMed

    Dong, Xinyi; Li, Juan; Fu, Joshua S; Gao, Yang; Huang, Kan; Zhuang, Guoshun

    2014-05-15

    The new Chinese National Ambient Air Quality standards (CH-NAAQS) published on Feb. 29th, 2012 listed PM2.5 as criteria pollutant for the very first time. In order to probe into PM2.5 pollution over Yangtze River Delta, the integrated MM5/CMAQ modeling system is applied for a full year simulation to examine the PM2.5 concentration and seasonality, and also the inorganic aerosols responses to precursor emission changes. Total PM2.5 concentration over YRD was found to have strong seasonal variation with higher values in winter months (up to 89.9 μg/m(3) in January) and lower values in summer months (down to 28.8 μg/m(3) in July). Inorganic aerosols were found to have substantial contribution to PM2.5 over YRD, ranging from 37.1% in November to 52.8% in May. Nocturnal production of nitrate (NO3(-)) through heterogeneous hydrolysis of N2O5 was found significantly contribute to high NO3(-) concentration throughout the year. In winter, NO3(-) was found to increase under nitrogen oxides (NOx) emission reduction due to higher production of N2O5 from the excessive ozone (O3) introduced by attenuated titration, which further lead to increase of ammonium (NH4(+)) and sulfate (SO4(2-)), while other seasons showed decrease response of NO3(-). Sensitivity responses of NO3(-) under anthropogenic VOC emission reduction was examined and demonstrated that in urban areas over YRD, NO3(-) formation was actually more sensitive to VOC than NOx due to the O3-involved nighttime chemistry of N2O5, while a reduction of NOx emission may have counter-intuitive effect by increasing concentrations of inorganic aerosols.

  5. Inorganic aerosols responses to emission changes in Yangtze River Delta, China.

    PubMed

    Dong, Xinyi; Li, Juan; Fu, Joshua S; Gao, Yang; Huang, Kan; Zhuang, Guoshun

    2014-05-15

    The new Chinese National Ambient Air Quality standards (CH-NAAQS) published on Feb. 29th, 2012 listed PM2.5 as criteria pollutant for the very first time. In order to probe into PM2.5 pollution over Yangtze River Delta, the integrated MM5/CMAQ modeling system is applied for a full year simulation to examine the PM2.5 concentration and seasonality, and also the inorganic aerosols responses to precursor emission changes. Total PM2.5 concentration over YRD was found to have strong seasonal variation with higher values in winter months (up to 89.9 μg/m(3) in January) and lower values in summer months (down to 28.8 μg/m(3) in July). Inorganic aerosols were found to have substantial contribution to PM2.5 over YRD, ranging from 37.1% in November to 52.8% in May. Nocturnal production of nitrate (NO3(-)) through heterogeneous hydrolysis of N2O5 was found significantly contribute to high NO3(-) concentration throughout the year. In winter, NO3(-) was found to increase under nitrogen oxides (NOx) emission reduction due to higher production of N2O5 from the excessive ozone (O3) introduced by attenuated titration, which further lead to increase of ammonium (NH4(+)) and sulfate (SO4(2-)), while other seasons showed decrease response of NO3(-). Sensitivity responses of NO3(-) under anthropogenic VOC emission reduction was examined and demonstrated that in urban areas over YRD, NO3(-) formation was actually more sensitive to VOC than NOx due to the O3-involved nighttime chemistry of N2O5, while a reduction of NOx emission may have counter-intuitive effect by increasing concentrations of inorganic aerosols. PMID:24631615

  6. Atmospheric Dispersion of Sodium Aerosol due to a Sodium Leak in a Fast Breeder Reactor Complex

    NASA Astrophysics Data System (ADS)

    Punitha, G.; Sudha, A. Jasmin; Kasinathan, N.; Rajan, M.

    Liquid sodium at high temperatures (470 K to 825 K) is used as the primary and secondary coolant in Liquid Metal cooled Fast Breeder Reactors (LMFBR). In the event of a postulated sodium leak in the Steam Generator Building (SGB) of a LMFBR, sodium readily combusts in the ambient air, especially at temperatures above 523 K. Intense sodium fire results and sodium oxide fumes are released as sodium aerosols. Sodium oxides are readily converted to sodium hydroxide in air due to the presence of moisture in it. Hence, sodium aerosols are invariably in the form of particulate sodium hydroxide. These aerosols damage not only the equipment and instruments due to their corrosive nature but also pose health hazard to humans. Hence, it is essential to estimate the concentration of sodium aerosols within the plant boundary for a sodium leak event. The Gaussian Plume Dispersion Model can obtain the atmospheric dispersion of sodium aerosols in an open terrain. However, this model does not give accurate results for dispersion in spaces close to the point of release and with buildings in between. The velocity field due to the wind is altered to a large extent by the intervening buildings and structures. Therefore, a detailed 3-D estimation of the velocity field and concentration has to be obtained through rigorous computational fluid dynamics (CFD) approach. PHOENICS code has been employed to determine concentration of sodium aerosols at various distances from the point of release. The dispersion studies have been carried out for the release of sodium aerosols at different elevations from the ground and for different wind directions.

  7. Aerosol Properties Changes of Northeast Asia due to a Severe Dust Storm in April 2014

    NASA Astrophysics Data System (ADS)

    Fang, Li; Wang, Shupeng; Yu, Tao; Gu, Xingfa; Zhang, Xingying; Wang, Weihe; Ren, Suling

    2016-04-01

    This study focuses on analyzing the aerosol properties changes due to the dust storm named as "China's Great Wall of Dust" oriented from Taklimakan desert in April, 2014. Dust identification IDDI (Infrared Difference Dust Index) images from FY-2E and true color composite images from FY-3C MERSI (Medium Resolution Spectral Imager) show the breakout and transport of the dust storm.From 4-day forward air mass trajectories, the dusty air masses were mostly transported within the lower boundary layer(<3km) over the Northwest China on April 23rd and April 24th, however they were progressively increasing in altitude to above 5km above the surface when they reached the central part of north China region (32°N-42°N; 105°E-123°E). 3-hourly data records at surface stations suggest that anticyclonic circulation occupying southern Xinjiang basin and cyclonic circulation maintaining in Mongolia formed the typical Synoptic condition which leaded to the strong dust storm. Aerosol Index (AI) results of TOU (Total Ozone Unit) aboard FY-3B are first developed and used in studying the affected areas due to the dust storm. The retrieved aerosol indexes show sensitivity to the dust particles. The dust affected areas agree with the synoptic meteorological condition analysis, which prove the synoptic meteorological condition is the main reason for the break out and transport of the dust storm. Anomalies of the average MODIS (Moderate Resolution Imaging Spectroradiometer) AOD (Aerosol Optical Depth) distributions over Northeast Asia during the dust storm to the average of that in April between 2010-2014 show high aerosol loading due to the dust storm. Compared with the 5-year average AOD in April, aerosol loading during this dust storm was much higher, with AOD values at 550nm up to 2.9 observed over the northwest China.The dust storm also brought different change in the aerosol microphysical properties between Beijing and Dalanzadgad. Aerosol Robotic Network (AERONET) retrievals

  8. Enhanced extinction of visible radiation due to hydrated aerosols in mist and fog

    NASA Astrophysics Data System (ADS)

    Elias, T.; Dupont, J.-C.; Hammer, E.; Hoyle, C. R.; Haeffelin, M.; Burnet, F.; Jolivet, D.

    2015-06-01

    the main formation process on Nha, but not on the contribution to fog extinction by aerosols. Indeed, in fogs formed by stratus lowering (STL), the mean Nha was 360 ± 140 cm-3, close to the value observed in mist, while in fogs formed by nocturnal radiative cooling (RAD) under cloud-free sky, the mean Nha was 600 ± 350 cm-3. But because visibility (extinction) in fog was also lower (larger) in RAD than in STL fogs, the contribution by aerosols to extinction depended little on the fog formation process. Similarly, the proportion of hydrated aerosols over all aerosols (dry and hydrated) did not depend on the fog formation process. Measurements showed that visibility in RAD fogs was smaller than in STL fogs due to three factors: (1) LWC was larger in RAD than in STL fogs, (2) droplets were smaller, (3) hydrated aerosols composing the accumulation mode were more numerous.

  9. Direct radiative feedback due to biogenic secondary organic aerosol estimated from boreal forest site observations

    NASA Astrophysics Data System (ADS)

    Lihavainen, Heikki; Asmi, Eija; Aaltonen, Veijo; Makkonen, Ulla; Kerminen, Veli-Matti

    2015-10-01

    We used more than five years of continuous aerosol measurements to estimate the direct radiative feedback parameter associated with the formation of biogenic secondary organic aerosol (BSOA) at a remote continental site at the edge of the boreal forest zone in Northern Finland. Our upper-limit estimate for this feedback parameter during the summer period (ambient temperatures above 10 °C) was -97 ± 66 mW m-2 K-1 (mean ± STD) when using measurements of the aerosol optical depth (fAOD) and -63 ± 40 mW m-2 K-1 when using measurements of the ‘dry’ aerosol scattering coefficient at the ground level (fσ). Here STD represents the variability in f caused by the observed variability in the quantities used to derive the value of f. Compared with our measurement site, the magnitude of the direct radiative feedback associated with BSOA is expected to be larger in warmer continental regions with more abundant biogenic emissions, and even larger in regions where biogenic emissions are mixed with anthropogenic pollution.

  10. Regional Influence of Aerosol Emissions from Wildfires Driven by Combustion Efficiency: Insights from the BBOP Campaign.

    PubMed

    Collier, Sonya; Zhou, Shan; Onasch, Timothy B; Jaffe, Daniel A; Kleinman, Lawrence; Sedlacek, Arthur J; Briggs, Nicole L; Hee, Jonathan; Fortner, Edward; Shilling, John E; Worsnop, Douglas; Yokelson, Robert J; Parworth, Caroline; Ge, Xinlei; Xu, Jianzhong; Butterfield, Zachary; Chand, Duli; Dubey, Manvendra K; Pekour, Mikhail S; Springston, Stephen; Zhang, Qi

    2016-08-16

    Wildfires are important contributors to atmospheric aerosols and a large source of emissions that impact regional air quality and global climate. In this study, the regional and nearfield influences of wildfire emissions on ambient aerosol concentration and chemical properties in the Pacific Northwest region of the United States were studied using real-time measurements from a fixed ground site located in Central Oregon at the Mt. Bachelor Observatory (∼2700 m a.s.l.) as well as near their sources using an aircraft. The regional characteristics of biomass burning aerosols were found to depend strongly on the modified combustion efficiency (MCE), an index of the combustion processes of a fire. Organic aerosol emissions had negative correlations with MCE, whereas the oxidation state of organic aerosol increased with MCE and plume aging. The relationships between the aerosol properties and MCE were consistent between fresh emissions (∼1 h old) and emissions sampled after atmospheric transport (6-45 h), suggesting that biomass burning organic aerosol concentration and chemical properties were strongly influenced by combustion processes at the source and conserved to a significant extent during regional transport. These results suggest that MCE can be a useful metric for describing aerosol properties of wildfire emissions and their impacts on regional air quality and global climate.

  11. Regional Influence of Aerosol Emissions from Wildfires Driven by Combustion Efficiency: Insights from the BBOP Campaign.

    PubMed

    Collier, Sonya; Zhou, Shan; Onasch, Timothy B; Jaffe, Daniel A; Kleinman, Lawrence; Sedlacek, Arthur J; Briggs, Nicole L; Hee, Jonathan; Fortner, Edward; Shilling, John E; Worsnop, Douglas; Yokelson, Robert J; Parworth, Caroline; Ge, Xinlei; Xu, Jianzhong; Butterfield, Zachary; Chand, Duli; Dubey, Manvendra K; Pekour, Mikhail S; Springston, Stephen; Zhang, Qi

    2016-08-16

    Wildfires are important contributors to atmospheric aerosols and a large source of emissions that impact regional air quality and global climate. In this study, the regional and nearfield influences of wildfire emissions on ambient aerosol concentration and chemical properties in the Pacific Northwest region of the United States were studied using real-time measurements from a fixed ground site located in Central Oregon at the Mt. Bachelor Observatory (∼2700 m a.s.l.) as well as near their sources using an aircraft. The regional characteristics of biomass burning aerosols were found to depend strongly on the modified combustion efficiency (MCE), an index of the combustion processes of a fire. Organic aerosol emissions had negative correlations with MCE, whereas the oxidation state of organic aerosol increased with MCE and plume aging. The relationships between the aerosol properties and MCE were consistent between fresh emissions (∼1 h old) and emissions sampled after atmospheric transport (6-45 h), suggesting that biomass burning organic aerosol concentration and chemical properties were strongly influenced by combustion processes at the source and conserved to a significant extent during regional transport. These results suggest that MCE can be a useful metric for describing aerosol properties of wildfire emissions and their impacts on regional air quality and global climate. PMID:27398804

  12. Measurement of elemental concentration of aerosols using spark emission spectroscopy†

    PubMed Central

    Diwakar, Prasoon K.

    2015-01-01

    A coaxial microelectrode system has been used to collect and analyse the elemental composition of aerosol particles in near real-time using spark emission spectroscopy. The technique involves focused electrostatic deposition of charged aerosol particles onto the flat tip of a microelectrode, followed by introduction of spark discharge. A pulsed spark discharge was generated across the electrodes with input energy ranging from 50 to 300 mJ per pulse, resulting in the formation of controlled pulsed plasma. The particulate matter on the cathode tip is ablated and atomized by the spark plasma, resulting in atomic emissions which are subsequently recorded using a broadband optical spectrometer for element identification and quantification. The plasma characteristics were found to be very consistent and reproducible even after several thousands of spark discharges using the same electrode system. The spark plasma was characterized by measuring the excitation temperature (~7000 to 10 000 K), electron density (~1016 cm−3), and evolution of spectral responses as a function of time. The system was calibrated using particles containing Pb, Si, Na and Cr. Absolute mass detection limits in the range 11 pg to 1.75 ng were obtained. Repeatability of spectral measurements varied from 2 to 15%. The technique offers key advantages over similar microplasma-based techniques such as laser-induced breakdown spectroscopy, as: (i) it does not require any laser beam optics and eliminates any need for beam alignment, (ii) pulse energy from dc power supply in SIBS system can be much higher compared to that from laser source of the same physical size, and (iii) it is quite conducive to compact, field-portable instrumentation. PMID:26491209

  13. Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996-2010

    NASA Astrophysics Data System (ADS)

    Lu, Z.; Zhang, Q.; Streets, D. G.

    2011-09-01

    China and India are the two largest anthropogenic aerosol generating countries in the world. In this study, we develop a new inventory of sulfur dioxide (SO2) and primary carbonaceous aerosol (i.e., black and organic carbon, BC and OC) emissions from these two countries for the period 1996-2010, using a technology-based methodology. Emissions from major anthropogenic sources and open biomass burning are included, and time-dependent trends in activity rates and emission factors are incorporated in the calculation. Year-specific monthly temporal distributions for major sectors and gridded emissions at a resolution of 0.1°×0.1° distributed by multiple year-by-year spatial proxies are also developed. In China, the interaction between economic development and environmental protection causes large temporal variations in the emission trends. From 1996 to 2000, emissions of all three species showed a decreasing trend (by 9 %-17 %) due to a slowdown in economic growth, a decline in coal use in non-power sectors, and the implementation of air pollution control measures. With the economic boom after 2000, emissions from China changed dramatically. BC and OC emissions increased by 46 % and 33 % to 1.85 Tg and 4.03 Tg in 2010. SO2 emissions first increased by 61 % to 34.0 Tg in 2006, and then decreased by 9.2 % to 30.8 Tg in 2010 due to the wide application of flue-gas desulfurization (FGD) equipment in power plants. Driven by the remarkable energy consumption growth and relatively lax emission controls, emissions from India increased by 70 %, 41 %, and 35 % to 8.81 Tg, 1.02 Tg, and 2.74 Tg in 2010 for SO2, BC, and OC, respectively. Monte Carlo simulations are used to quantify the emission uncertainties. The average 95 % confidence intervals (CIs) of SO2, BC, and OC emissions are estimated to be -16 %-17 %, -43 %-93 %, and -43 %-80 % for China, and -15 %-16 %, -41 %-87 %, and -44 %-92 % for India, respectively. Sulfur content, fuel use, and sulfur retention of hard coal and

  14. Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996-2010

    NASA Astrophysics Data System (ADS)

    Lu, Z.; Streets, D. G.

    2011-07-01

    China and India are the two largest anthropogenic aerosol generating countries in the world. In this study, we develop a new inventory of sulfur dioxide (SO2) and primary carbonaceous aerosol (i.e., black and organic carbon, BC and OC) emissions from these two countries for the period 1996-2010, using a technology-based methodology. Emissions from major anthropogenic sources and open biomass burning are included, and time-dependent trends in activity rates and emission factors are incorporated in the calculation. Year-specific monthly fractions for major sectors and gridded emissions at a resolution of 0.1° × 0.1° distributed by multiple year-by-year spatial proxies are also developed. In China, the interaction between economic development and environmental protection causes large temporal variations in the emission trends. From 1996 to 2000, emissions of all three species showed a decreasing trend (by 9 %-17 %) due to a slowdown in economic growth, a decline in coal use in non-power sectors, and the implementation of air pollution control measures. With the economic boom after 2000, emissions from China changed dramatically. BC and OC emissions increased by 46 % and 33 % to 1.85 Tg and 4.03 Tg in 2010. SO2 emissions first increased by 61 % to 34.0 Tg in 2006, and then decreased by 9.2 % to 30.8 Tg in 2010 due to the wide application of flue-gas desulfurization (FGD) equipment in power plants. Driven by the remarkable energy consumption growth and relatively lax emission controls, emissions from India increased by 70 %, 41 %, and 35 % to 8.81 Tg, 1.02 Tg, and 2.74 Tg in 2010 for SO2, BC, and OC, respectively. Monte Carlo simulations are used to quantify the emission uncertainties. The average 95 % confidence intervals (CIs) of SO2, BC, and OC emissions are estimated to be -16 %-17 %, -43 %-93 %, and -43 %-80 % for China, and -15 %-16 %, -41 %-87 %, and -44 %-92 % for India, respectively. Sulfur content, fuel use, and sulfur retention of hard coal and the actual

  15. Emissions of biogenic volatile organic compounds and subsequent formation of secondary organic aerosols in a Larix kaempferi forest

    NASA Astrophysics Data System (ADS)

    Mochizuki, T.; Miyazaki, Y.; Ono, K.; Wada, R.; Takahashi, Y.; Saigusa, N.; Kawamura, K.; Tani, A.

    2015-04-01

    We conducted simultaneous measurements of concentrations and above-canopy fluxes of isoprene and α-pinene, along with their oxidation products in aerosols in a Larix kaempferi (Japanese larch) forest in summer 2012. Vertical profiles of isoprene showed the maximum concentration near the forest floor with a peak around noon, whereas oxidation products of isoprene, i.e., methacrolein (MACR) and methyl vinyl ketone (MVK), showed higher concentrations near the canopy level of the forest. The vertical profile suggests large emissions of isoprene near the forest floor, likely due to Dryopteris crassirhizoma (a fern species), and the subsequent reaction within the canopy. The concentrations of α-pinene also showed highest values near the forest floor with maximums in the early morning and late afternoon. The vertical profiles of α-pinene suggest its large emissions from soil and litter in addition to emissions from L. kaempferi leaves at the forest site. Isoprene and its oxidation products in aerosols exhibited similar diurnal variations within the forest canopy, providing evidence for secondary organic aerosol (SOA) formation via oxidation of isoprene most likely emitted from the forest floor. Although high abundance of α-pinene was observed in the morning, its oxidation products in aerosols showed peaks in daytime, due to a time lag between the emission and atmospheric reactions of α-pinene to form SOA. Positive matrix factorization (PMF) analysis indicated that anthropogenic influence is the most important factor contributing to the elevated concentrations of molecular oxidation products of isoprene- (> 64%) and α-pinene-derived SOA (> 57%). The combination of the measured fluxes and vertical profiles of biogenic volatile organic compounds (BVOCs) suggests that the inflow of anthropogenic precursors/aerosols likely enhanced the formation of both isoprene- and α-pinene-SOA within the forest canopy even when the BVOC flux was relatively low. This study highlights

  16. The Effect of Changes in Polar Sea Ice on Emissions of Marine Aerosols

    NASA Astrophysics Data System (ADS)

    Matrai, P.; Gabric, A. J.

    2015-12-01

    Cloud radiative effects remain a major weakness in our understanding of the climate system and consequently in developing accurate climate projections. This is mainly true for Arctic low-level clouds in their key role of regulating surface energy fluxes which affect the freezing and melting of sea ice. The radiative properties of clouds are strongly dependent on the number concentration of airborne water-soluble particles, known as cloud condensation nuclei (CCN). In the Arctic, the aerosol-cloud-radiation relationship is more complex than elsewhere and the clouds constitute a warming factor for climate, rather than cooling, most of the year. This is due to the semi-permanent ice cover, which raises the albedo of the surface, and the clean Arctic air, which decreases the albedo of the clouds. There has been much discussion on the relative magnitude of the biogenic source of polar CCN: Primary organic marine aerosols and/or sulfate-containing aerosols, derived from marine emissions. Regional field measurements and pan- (Ant)Arctic model simulations don't necessarily agree. Arctic CCN are formed primarily by aggregates of marine organic material and may grow in mass by condensation. Southern Ocean aerosols may be dominated by sulfate particles and organic particles at lower and higher Antarctic latitudes, respectively. The interaction of polar marine microorganisms, seasonality, sea ice cover, presence or absence of sea spray, and atmospheric heterogeneous processes combine to control natural aerosol concentrations and mass, thus modulating the sensitivity of cloud properties, including their reflectivity and the resulting regional radiation budget. We discuss Arctic and Antarctic field and satellite observations and establish a strong and fundamental link between the biology at the ocean/sea ice interface, clouds and climate over polar regions.

  17. Dust aerosol emission over the Sahara during summertime from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations

    NASA Astrophysics Data System (ADS)

    Todd, Martin C.; Cavazos-Guerra, Carolina

    2016-03-01

    Dust aerosols are an important component of the climate system and a challenge to incorporate into weather and climate models. Information on the location and magnitude of dust emission remains a key information gap to inform model development. Inadequate surface observations ensure that satellite data remain the primary source of this information over extensive and remote desert regions. Here, we develop estimates of the relative magnitude of active dust emission over the Sahara desert based on data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). Utilising the unique vertical profile of aerosol characteristics provided by CALIOP our algorithm identifies emission from aerosol extinction and lidar backscatter in the near surface layers. From the long-term CALIOP archive of day and night-time orbits over 2006-13 we construct coarse resolution maps of a new dust emission index (DEI) for the Sahara desert during the peak summer dust season (June to September). The spatial structure of DEI indicates highest emission over a broad zone focused on the border regions of Southern Algeria, Northern Mali and northwest Niger, displaced substantially (∼7°) to the east of the mean maximum in satellite-derived aerosol optical depth. In this region night-time emission exceeds that during the day. The DEI maps substantially corroborate recently derived dust source frequency count maps based on back-tracking plumes in high temporal resolution SEVIRI imagery. As such, a convergence of evidence from multiple satellite data sources using independent methods provides an increasingly robust picture of Saharan dust emission sources. Various caveats are considered. As such, quantitative estimates of dust emission may require a synergistic combined multi-sensor analysis.

  18. Light absorption properties and radiative effects of primary organic aerosol emissions.

    PubMed

    Lu, Zifeng; Streets, David G; Winijkul, Ekbordin; Yan, Fang; Chen, Yanju; Bond, Tami C; Feng, Yan; Dubey, Manvendra K; Liu, Shang; Pinto, Joseph P; Carmichael, Gregory R

    2015-04-21

    Organic aerosols (OAs) in the atmosphere affect Earth's energy budget by not only scattering but also absorbing solar radiation due to the presence of the so-called "brown carbon" (BrC) component. However, the absorptivities of OAs are not represented or are poorly represented in current climate and chemical transport models. In this study, we provide a method to constrain the BrC absorptivity at the emission inventory level using recent laboratory and field observations. We review available measurements of the light-absorbing primary OA (POA), and quantify the wavelength-dependent imaginary refractive indices (kOA, the fundamental optical parameter determining the particle's absorptivity) and their uncertainties for the bulk POA emitted from biomass/biofuel, lignite, propane, and oil combustion sources. In particular, we parametrize the kOA of biomass/biofuel combustion sources as a function of the black carbon (BC)-to-OA ratio, indicating that the absorptive properties of POA depend strongly on burning conditions. The derived fuel-type-based kOA profiles are incorporated into a global carbonaceous aerosol emission inventory, and the integrated kOA values of sectoral and total POA emissions are presented. Results of a simple radiative transfer model show that the POA absorptivity warms the atmosphere significantly and leads to ∼27% reduction in the amount of the net global average POA cooling compared to results from the nonabsorbing assumption. PMID:25811601

  19. Light absorption properties and radiative effects of primary organic aerosol emissions.

    PubMed

    Lu, Zifeng; Streets, David G; Winijkul, Ekbordin; Yan, Fang; Chen, Yanju; Bond, Tami C; Feng, Yan; Dubey, Manvendra K; Liu, Shang; Pinto, Joseph P; Carmichael, Gregory R

    2015-04-21

    Organic aerosols (OAs) in the atmosphere affect Earth's energy budget by not only scattering but also absorbing solar radiation due to the presence of the so-called "brown carbon" (BrC) component. However, the absorptivities of OAs are not represented or are poorly represented in current climate and chemical transport models. In this study, we provide a method to constrain the BrC absorptivity at the emission inventory level using recent laboratory and field observations. We review available measurements of the light-absorbing primary OA (POA), and quantify the wavelength-dependent imaginary refractive indices (kOA, the fundamental optical parameter determining the particle's absorptivity) and their uncertainties for the bulk POA emitted from biomass/biofuel, lignite, propane, and oil combustion sources. In particular, we parametrize the kOA of biomass/biofuel combustion sources as a function of the black carbon (BC)-to-OA ratio, indicating that the absorptive properties of POA depend strongly on burning conditions. The derived fuel-type-based kOA profiles are incorporated into a global carbonaceous aerosol emission inventory, and the integrated kOA values of sectoral and total POA emissions are presented. Results of a simple radiative transfer model show that the POA absorptivity warms the atmosphere significantly and leads to ∼27% reduction in the amount of the net global average POA cooling compared to results from the nonabsorbing assumption.

  20. Measurement of the emission rate of an aerosol source--comparison of aerosol and gas transport coefficients.

    PubMed

    Bémer, D; Callé, S; Godinot, S; Régnier, R; Dessagne, J M

    2000-12-01

    A measuring method of the emission rate of an atmospheric pollutant source, based on the use of a tracer gas (helium) and developed in the case of a gaseous source, was tested for an aerosol source. The influence of both particle sedimentation and wall depositions was studied. The transport coefficients of the tracer gas and of alumina particles of various particle sizes (MMAD from 8 to 36 microns) were measured on a vertical axis close to the source, in a 71 m3 room swept by a piston flow. The measurements clearly demonstrated the predominant influence of sedimentation in the case of particles with aerodynamic diameters greater than 10 microns. Particle wall deposition was determined by measuring the gas and particle concentration decay in the ventilated room. To do this, a new tracing method using a fluorescent aerosol was developed. The measured aerosol deposition rates are much higher than those calculated from the formula of Corner for a cubical volume. Aerosol sedimentation and wall deposition are two phenomena limiting the use of a tracer gas to measure the aerosol emission rate. The chemical substances and materials used in work premises are likely to be released into the atmosphere and lead to the formation of pollutants. These emissions stem from either physical or chemical processes (evaporation of a solvent) or from mechanical processes (dispersion of oil droplets at the source of mists).

  1. [The research on remote sensing dust aerosol by using split window emissivity].

    PubMed

    Xu, Hui; Yu, Tao; Gu, Xing-Fa; Cheng, Tian-Hai; Xie, Dong-Hai; Liu, Qian

    2013-05-01

    Dust aerosol can cause the change in the land surface emissivity in split window by radiative forcing (RF). Firstly, the present paper explained from the microscopic point of view the extinction properties of dust aerosols in the 11 and 12 microm channels, and their influence on the land surface emissivity. Secondly, on April 29, 2011, in the northern region of Inner Mongolia a strong sandstorm outbroke, and based on the analysis of the changes in land surface emissivity, this paper proposed a dust identification method by using the variation of emissivity. At last, the dust identification result was evaluated by the dust monitoring product provided by the National Satellite Meteorological Center. The result shows that under the assumption that the 12 microm emissivity equals to 1, using 11 microm relative emissivity could identify dust cover region effectively, and the 11 microm relative emissivity to a certain extent represented the intensity information of dust aerosol.

  2. [The research on remote sensing dust aerosol by using split window emissivity].

    PubMed

    Xu, Hui; Yu, Tao; Gu, Xing-Fa; Cheng, Tian-Hai; Xie, Dong-Hai; Liu, Qian

    2013-05-01

    Dust aerosol can cause the change in the land surface emissivity in split window by radiative forcing (RF). Firstly, the present paper explained from the microscopic point of view the extinction properties of dust aerosols in the 11 and 12 microm channels, and their influence on the land surface emissivity. Secondly, on April 29, 2011, in the northern region of Inner Mongolia a strong sandstorm outbroke, and based on the analysis of the changes in land surface emissivity, this paper proposed a dust identification method by using the variation of emissivity. At last, the dust identification result was evaluated by the dust monitoring product provided by the National Satellite Meteorological Center. The result shows that under the assumption that the 12 microm emissivity equals to 1, using 11 microm relative emissivity could identify dust cover region effectively, and the 11 microm relative emissivity to a certain extent represented the intensity information of dust aerosol. PMID:23905316

  3. Potential sensitivity of photosynthesis and isoprene emission to direct radiative effects of atmospheric aerosol pollution

    NASA Astrophysics Data System (ADS)

    Strada, S.; Unger, N.

    2015-09-01

    A global Earth system model is applied to quantify the impacts of direct anthropogenic aerosol effective radiative forcing on gross primary productivity (GPP) and isoprene emission. The impacts of different pollution aerosol sources (all anthropogenic, biomass burning and non-biomass burning) are investigated by performing sensitivity experiments. On the global scale, our results show that land carbon fluxes (GPP and isoprene emission) are not sensitive to pollution aerosols, even under a global decline in surface solar radiation (direct + diffuse) by ~ 9 %. At the regional scale, plant productivity (GPP) and isoprene emission show a robust but opposite sensitivity to pollution aerosols, in regions where complex canopies dominate. In eastern North America and Europe, anthropogenic pollution aerosols (mainly from non-biomass burning sources) enhance GPP by +8-12 % on an annual average, with a stronger increase during the growing season (> 12 %). In the Amazon basin and central Africa, biomass burning aerosols increase GPP by +2-5 % on an annual average, with a peak in the Amazon basin during the dry-fire season (+5-8 %). In Europe and China, anthropogenic pollution aerosols drive a decrease in isoprene emission of -2 to -12 % on the annual average. Anthropogenic aerosols affect land carbon fluxes via different mechanisms and we suggest that the dominant mechanism varies across regions: (1) light scattering dominates in the eastern US; (2) cooling in the Amazon basin; and (3) reduction in direct radiation in Europe and China.

  4. Efficient formation of stratospheric aerosol for climate engineering by emission of condensible vapor from aircraft

    NASA Astrophysics Data System (ADS)

    Pierce, Jeffrey R.; Weisenstein, Debra K.; Heckendorn, Patricia; Peter, Thomas; Keith, David W.

    2010-09-01

    Recent analysis suggests that the effectiveness of stratospheric aerosol climate engineering through emission of non-condensable vapors such as SO2 is limited because the slow conversion to H2SO4 tends to produce aerosol particles that are too large; SO2 injection may be so inefficient that it is difficult to counteract the radiative forcing due to a CO2 doubling. Here we describe an alternate method in which aerosol is formed rapidly in the plume following injection of H2SO4, a condensable vapor, from an aircraft. This method gives better control of particle size and can produce larger radiative forcing with lower sulfur loadings than SO2 injection. Relative to SO2 injection, it may reduce some of the adverse effects of geoengineering such as radiative heating of the lower stratosphere. This method does not, however, alter the fact that such a geoengineered radiative forcing can, at best, only partially compensate for the climate changes produced by CO2.

  5. Efficient Formation of Stratospheric Aerosol for Climate Engineering by Emission of Condensible Vapor from Aircraft

    NASA Technical Reports Server (NTRS)

    Pierce, Jeffrey R.; Weisenstein, Debra K.; Heckendorn, Patricia; Peter. Thomas; Keith, David W.

    2010-01-01

    Recent analysis suggests that the effectiveness of stratospheric aerosol climate engineering through emission of non-condensable vapors such as SO2 is limited because the slow conversion to H2SO4 tends to produce aerosol particles that are too large; SO2 injection may be so inefficient that it is difficult to counteract the radiative forcing due to a CO2 doubling. Here we describe an alternate method in which aerosol is formed rapidly in the plume following injection of H2SO4, a condensable vapor, from an aircraft. This method gives better control of particle size and can produce larger radiative forcing with lower sulfur loadings than SO2 injection. Relative to SO2 injection, it may reduce some of the adverse effects of geoengineering such as radiative heating of the lower stratosphere. This method does not, however, alter the fact that such a geoengineered radiative forcing can, at best, only partially compensate for the climate changes produced by CO2.

  6. CARBON MONOXIDE EMISSIONS FROM ROAD DRIVING: EVIDENCE OF EMISSIONS DUE TO POWER ENRICHMENT

    EPA Science Inventory

    The paper examines one aspect of motor vehicle emissions behavior; i.e. emissions due to engine power enrichment, a factor not well represented in existing models. Database reflecting 46 instrumented vehicles was used to analyze the importance of enrichment emissions to overall v...

  7. Potential emission flux to aerosol pollutants over Bengal Gangetic plain through combined trajectory clustering and aerosol source fields analysis

    NASA Astrophysics Data System (ADS)

    Kumar, D. Bharath; Verma, S.

    2016-09-01

    A hybrid source-receptor analysis was carried out to evaluate the potential emission flux to winter monsoon (WinMon) aerosols over Bengal Gangetic plain urban (Kolkata, Kol) and semi-urban atmospheres (Kharagpur, Kgp). This was done through application of fuzzy c-mean clustering to back-trajectory data combined with emission flux and residence time weighted aerosols analysis. WinMon mean aerosol optical depth (AOD) and angstrom exponent (AE) at Kol (AOD: 0.77; AE: 1.17) were respectively slightly higher than and nearly equal to that at Kgp (AOD: 0.71; AE: 1.18). Out of six source region clusters over Indian subcontinent and two over Indian oceanic region, the cluster mean AOD was the highest when associated with the mean path of air mass originating from the Bay of Bengal and the Arabian sea clusters at Kol and that from the Indo-Gangetic plain (IGP) cluster at Kgp. Spatial distribution of weighted AOD fields showed the highest potential source of aerosols over the IGP, primarily over upper IGP (e.g. Punjab, Haryana), lower IGP (e.g. Uttarpradesh) and eastern region (e.g. west Bengal, Bihar, northeast India) clusters. The emission flux contribution potential (EFCP) of fossil fuel (FF) emissions at surface (SL) of Kol/Kgp, elevated layer (EL) of Kol, and of biomass burning (BB) emissions at SL of Kol were primarily from upper, lower, upper/lower IGP clusters respectively. The EFCP of FF/BB emissions at Kgp-EL/SL, and that of BB at EL of Kol/Kgp were mainly from eastern region and Africa (AFR) clusters respectively. Though the AFR cluster was constituted of significantly high emission flux source potential of dust emissions, the EFCP of dust from northwest India (NWI) was comparable to that from AFR at Kol SL/EL.

  8. Projected response of East Asian summer monsoon system to future reductions in emissions of anthropogenic aerosols and their precursors

    NASA Astrophysics Data System (ADS)

    Wang, Zhili; Zhang, Hua; Zhang, Xiaoye

    2016-09-01

    The response of the East Asian summer monsoon (EASM) system to reductions in emissions of anthropogenic aerosols and their precursors at the end of the twenty-first century projected by Representative Concentration Pathway 4.5 is studied using an aerosol-climate model with aerosol direct, semi-direct, and indirect effects included. Our results show that the global annual mean aerosol effective radiative forcing at the top of the atmosphere (TOA) is +1.45 W m-2 from 2000 to 2100. The summer mean net all-sky shortwave fluxes averaged over the East Asian monsoon region (EAMR) at the TOA and surface increased by +3.9 and +4.0 W m-2, respectively, due to the reductions of aerosols in 2100 relative to 2000. Changes in radiations affect local thermodynamic and dynamic processes and the hydrological cycle. The summer mean surface temperature and pressure averaged over the EAMR are shown to increase by 1.7 K and decreased by 0.3 hPa, respectively, due to the reduced aerosols. The magnitudes of these changes are larger over land than ocean, causing a marked increase in the contrast of land-sea surface temperature and pressure in the EAMR, thus strengthening the EASM. The summer mean southwest and south winds at 850 hPa are enhanced over eastern and southern China and the surrounding oceans, and the East Asian subtropical jet shifted northward due to the decreases of aerosols. These factors also indicate enhanced EASM circulation, which in turn causes a 10 % increase in summer mean precipitation averaged over the EAMR.

  9. Reductions in aircraft particulate emissions due to the use of Fischer-Tropsch fuels

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Timko, M. T.; Ziemba, L. D.; Bulzan, D.; Corporan, E.; Herndon, S. C.; Howard, R.; Miake-Lye, R.; Thornhill, K. L.; Winstead, E.; Wey, C.; Yu, Z.; Anderson, B. E.

    2014-01-01

    feedstock. As the plume cools downwind of the engine, nucleation-mode aerosols form. For the pure FT fuels, reductions (94% averaged over all powers) in downwind particle number emissions were similar to those measured at the exhaust plane (84%). However, the blended fuels had less of a reduction (reductions of 30-44%) than initially measured (64%). The likely explanation is that the reduced soot emissions in the blended fuel exhaust plume results in promotion of new particle formation microphysics, rather than coating on pre-existing soot particles, which is dominant in the JP-8 exhaust plume. Downwind particle volume emissions were reduced for both the pure (79 and 86% reductions) and blended FT fuels (36 and 46%) due to the large reductions in soot emissions. In addition, the alternative fuels had reduced particulate sulfate production (near zero for FT fuels) due to decreased fuel sulfur content. To study the formation of volatile aerosols (defined as any aerosol formed as the plume ages) in more detail, tests were performed at varying ambient temperatures (-4 to 20 °C). At idle, particle number and volume emissions were reduced linearly with increasing ambient temperature, with best fit slopes corresponding to -8 × 1014 particles (kg fuel)-1 °C-1 for particle number emissions and -10 mm3 (kg fuel)-1 °C-1 for particle volume emissions. The temperature dependency of aerosol formation can have large effects on local air quality surrounding airports in cold regions. Aircraft-produced aerosols in these regions will be much larger than levels expected based solely on measurements made directly at the engine exit plane. The majority (90% at idle) of the volatile aerosol mass formed as nucleation-mode aerosols, with a smaller fraction as a soot coating. Conversion efficiencies of up to 2.8% were measured for the partitioning of gas-phase precursors (unburned hydrocarbons and SO2) to form volatile aerosols. Highest conversion efficiencies were measured at 45% power.

  10. Satellite Characterization of Fire Emissions of Aerosols and Gases Relevant to Air-Quality Modeling

    NASA Astrophysics Data System (ADS)

    Ichoku, C. M.; Ellison, L.; Yue, Y.; Wang, J.

    2015-12-01

    Because of the transient and widespread nature of wildfires and other types of open biomass burning, satellite remote sensing has become an indispensable technique for characterizing their smoke emissions for modeling applications, especially at regional to global scales. Fire radiative energy (FRE), whose instantaneous rate of release or fire radiative power (FRP) is measurable from space, has been found to be proportional to both the biomass consumption and emission of aerosol particulate matter. We have leveraged this relationship to generate a global, gridded smoke-aerosol emission coefficients (Ce) dataset based on FRP and aerosol optical thickness (AOT) measurements from the MODIS sensors aboard the Terra and Aqua satellites. Ce is a simple coefficient to convert FRE to smoke aerosol emissions, in the same manner as traditional emission factors are used to convert burned biomass to emissions. The first version of this Fire Energetics and Emissions Research (FEER.v1) global gridded Ce product at 1°x1° resolution is available at http://feer.gsfc.nasa.gov/. Based on published emission ratios, the FEER.v1 Ce product for total smoke aerosol has also been used to generate similar products for specific fire-emitted aerosols and gases, including those that are regulated as 'criteria pollutants' under the US Environmental Protection Agency's National Ambient Air Quality Standards (NAAQS), such as particulate matter (PM) and carbon monoxide (CO). These gridded Ce products were used in conjunction with satellite measurements of FRP to derive emissions of several smoke constituents, which were applied to WRF-Chem fully coupled meteorology-chemistry-aerosol model simulations, with promising results. In this presentation, we analyze WRF-Chem simulations of surface-level concentrations of various pollutants based on FEER.v1 emission products to illustrate their value for air-quality modeling, particularly in parts of Africa and southeast Asia where ground-based air

  11. Secondary organic aerosol formation from road vehicle emissions

    NASA Astrophysics Data System (ADS)

    Pieber, Simone M.; Platt, Stephen M.; El Haddad, Imad; Zardini, Alessandro A.; Suarez-Bertoa, Ricardo; Slowik, Jay G.; Huang, Ru-Jin; Hellebust, Stig; Temime-Roussel, Brice; Marchand, Nicolas; Drinovec, Luca; Mocnik, Grisa; Baltensperger, Urs; Astorga, Covadogna; Prévôt, André S. H.

    2014-05-01

    Organic aerosol particles (OA) are a major fraction of the submicron particulate matter. OA consists of directly emitted primary (POA) and secondary OA (SOA). SOA is formed in-situ in the atmosphere via the reaction of volatile organic precursors. The partitioning of SOA species depends not only on the exposure to oxidants, but for instance also on temperature, relative humidity (RH), and the absorptive mass chemical composition (presence of inorganics) and concentration. Vehicle exhaust is a known source of POA and likely contributes to SOA formation in urban areas [1;2]. This has recently been estimated by (i) analyzing ambient data from urban areas combined with fuel consumption data [3], (ii) by examining the chemical composition of raw fuels [4], or (iii) smog chamber studies [5, 6]. Contradictory and thus somewhat controversial results in the relative quantity of SOA from diesel vs. gasoline vehicle exhaust were observed. In order to elucidate the impact of variable ambient conditions on the potential SOA formation of vehicle exhaust, and its relation to the emitted gas phase species, we studied SOA formed from the exhaust of passenger cars and trucks as a function of fuel and engine type (gasoline, diesel) at different temperatures (T 22 vs. -7oC) and RH (40 vs. 90%), as well as with different levels of inorganic salt concentrations. The exhaust was sampled at the tailpipe during regulatory driving cycles on chassis dynamometers, diluted (200 - 400x) and introduced into the PSI mobile smog chamber [6], where the emissions were subjected to simulated atmospheric ageing. Particle phase instruments (HR-ToF-AMS, aethalometers, CPC, SMPS) and gas phase instruments (PTR-TOF-MS, CO, CO2, CH4, THC, NH3 and other gases) were used online during the experiments. We found that gasoline emissions, because of cold starts, were generally larger than diesel, especially during cold temperatures driving cycles. Gasoline vehicles also showed the highest SOA formation

  12. Agglomeration due to Brownian motion of fractal-structured combustion aerosols

    SciTech Connect

    Kaplan, C.H.

    1987-01-01

    A dynamic Monte-Carlo type lattice model has been developed to simulate the agglomeration of non-spherical chain-line aggregate combustion aerosols due to Brownian motion. Simulations are carried out in the free molecular and continuum regimes, for both initial monodisperse and initial log-normally distributed aerosols, with and without source mechanisms. Preservation of the chain-like structure of the aggregate is accomplished throughout the simulation by describing the agglomerate as fractal, that is, scale-invariant, self-similar with a noninteger dimensionality. Simulation results indicate that cluster growth is more rapid in the free molecular regime than in the continuum. Aerosols and log-normal distributions retain their log-normal characteristics even after long coagulation times. The effect of the clusters' fractal dimension on the cluster growth rate is determined; the rate of agglomeration increases when the structure of the agglomerate is more fragmented (lower fractal dimension). An analytical solution to the coagulation equation is obtained for log-normal aerosols by calculating moments of the distribution and solving sets of moment equations to determine the size distribution parameters. Condition numbers are employed to determine which moments should be calculated to most accurately determine these parameters. Excellent agreement is obtained between the simulations and the solution to the moment equations. Experimental measurements of soot particle velocity in a premixed methane/air flame are made using laser Doppler velocimetry.

  13. Effects of aerosol emission pathways on future warming and human health

    NASA Astrophysics Data System (ADS)

    Partanen, Antti-Ilari; Matthews, Damon

    2016-04-01

    The peak global temperature is largely determined by cumulative emissions of long-lived greenhouse gases. However, anthropogenic emissions include also so-called short-lived climate forcers (SLCFs), which include aerosol particles and methane. Previous studies with simple models indicate that the timing of SLCF emission reductions has only a small effect on the rate of global warming and even less of an effect on global peak temperatures. However, these simple model analyses do not capture the spatial dynamics of aerosol-climate interactions, nor do they consider the additional effects of aerosol emissions on human health. There is therefore merit in assessing how the timing of aerosol emission reductions affects global temperature and premature mortality caused by elevated aerosol concentrations, using more comprehensive climate models. Here, we used an aerosol-climate model ECHAM-HAMMOZ to simulate the direct and indirect radiative forcing resulting from aerosol emissions. We simulated Representative Concentration Pathway (RCP) scenarios, and we also designed idealized low and high aerosol emission pathways based on RCP4.5 scenario (LOW and HIGH, respectively). From these simulations, we calculated the Effective Radiative Forcing (ERF) from aerosol emissions between 1850 and 2100, as well as aerosol concentrations used to estimate the premature mortality caused by particulate pollution. We then use the University of Victoria Earth System Climate Model to simulate the spatial and temporal pattern of climate response to these aerosol-forcing scenarios, in combination with prescribed emissions of both short and long-lived greenhouse gases according to the RCP4.5 scenario. In the RCP scenarios, global mean ERF declined during the 21st century from -1.3 W m-2 to -0.4 W m-2 (RCP8.5) and -0.2 W m-2 (RCP2.6). In the sensitivity scenarios, the forcing at the end of the 21st century was -1.6 W m-2 (HIGH) and practically zero (LOW). The difference in global mean temperature

  14. Unspeciated organic emissions from combustion sources and their influence on the secondary organic aerosol budget in the United States

    EPA Science Inventory

    Secondary organic aerosol (SOA) formed from the atmospheric oxidation of nonmethane organic gases (NMOG) is a major contributor to atmospheric aerosol mass. Emissions and smog chamber experiments were performed to investigate SOA formation from gasoline vehicles, diesel vehicles,...

  15. Variations in European ammonia emissions due to daily weather fluctuations and climate change

    NASA Astrophysics Data System (ADS)

    Ambelas Skjøth, C.; Geels, C.

    2012-04-01

    Ammonia plays an important role in atmospheric processes. It is the main alkaline component in the atmosphere and is highly reactive in forming either aerosols or by depositing fast to most surfaces including sensitive ecosystems. The geographical distribution of ammonia emission has been highly studied, while the temporal variations have been somewhat neglected. Climate and daily meteorology affects the temporal distribution and the amount of ammonia emissions. This forms an important feed-back mechanism e.g. by changing ammonia emissions thus affecting aerosol composition and the sensitive ecosystems through associated nitrogen depositions. This feed-back mechanism has so far been overlooked in climate change and earth system science studies. Here we assess annual variations in ammonia emissions in central and Northern Europe as well as emission changes due to projected temperature changes in the future. We use the dynamical ammonia emission model (Skjøth et al., 2011) within the DAMOS system (Geels et al., 2012) with focus on the period 2000-2100. The model use hourly meteorological data from the MM5 model and bias-corrected climate data from the ENSEMBLES project. The model reproduces hourly changes in ammonia emissions due to climate and is also capable of taking into account changes in production methods as well as policy measures. Here we study the effect of climate change on five main agricultural sources to ammonia: 1) heated stables, 2) open cattle barns, 3) storage facilities, 4) animal waste and mineral fertilizer 5) grazing animals. Climate change increase emissions due to increased temperatures. The expected increase in ammonia emissions is typically 20-40% for cattle barns, storage facilities and application of manure in form of animal waste. Heated stables (e.g. pigs and poultry) are only marginally affected by climatic changes as these sources typically are heated to maintain a constant temperature. The heated stables therefore have a more or less

  16. Carbonaceous aerosols over China--review of observations, emissions, and climate forcing.

    PubMed

    Wang, Linpeng; Zhou, Xuehua; Ma, Yujie; Cao, Zhaoyu; Wu, Ruidong; Wang, Wenxing

    2016-01-01

    Carbonaceous aerosols have been attracting attention due to the influence on visibility, air quality, and regional climate. Statistical analyses based on concentration levels, spatial-temporal variations, correlations, and organic carbon (OC) to element carbon (EC) ratios from published data of OC and EC in particulate matter (PM2.5 and PM10) were carried out in order to give a carbonaceous aerosol profile in China. The results showed maxima for OC of 29.5 ± 18.2 μg C m(-3) and for EC of 8.4 ± 6.3 μg C m(-3) in winter and minima for OC of 12.9 ± 7.7 μg C m(-3) in summer and for EC of 4.6 ± 2.8 μg C m(-3) in spring. In addition, OC and EC both had higher concentrations in urban than those in rural sites. Carbonaceous aerosol levels in China are about three to seven times higher compared to those in the USA and Europe. OC and EC occupied 20 ± 6 and 7 ± 3% of PM2.5 mass and 17 ± 7 and 5 ± 3% of PM10 mass, respectively, implying that carbonaceous aerosols are the main component of PM, especially OC. Secondary organic carbon (SOC) was a significant portion of PM and contributed 41 ± 26% to OC and 8 ± 6% to PM2.5 mass. The OC/EC ratio was 3.63 ± 1.73, which, along with the good correlation between OC and EC and the OC to EC slope of 2.29, signifies that coal combustion and/or vehicular exhaust is the dominated carbonaceous aerosol source in China. These provide a primary observation-based understanding of carbonaceous aerosol pollution in China and have a great significance in improving the emission inventory and climate forcing evaluation.

  17. Carbonaceous aerosols over China--review of observations, emissions, and climate forcing.

    PubMed

    Wang, Linpeng; Zhou, Xuehua; Ma, Yujie; Cao, Zhaoyu; Wu, Ruidong; Wang, Wenxing

    2016-01-01

    Carbonaceous aerosols have been attracting attention due to the influence on visibility, air quality, and regional climate. Statistical analyses based on concentration levels, spatial-temporal variations, correlations, and organic carbon (OC) to element carbon (EC) ratios from published data of OC and EC in particulate matter (PM2.5 and PM10) were carried out in order to give a carbonaceous aerosol profile in China. The results showed maxima for OC of 29.5 ± 18.2 μg C m(-3) and for EC of 8.4 ± 6.3 μg C m(-3) in winter and minima for OC of 12.9 ± 7.7 μg C m(-3) in summer and for EC of 4.6 ± 2.8 μg C m(-3) in spring. In addition, OC and EC both had higher concentrations in urban than those in rural sites. Carbonaceous aerosol levels in China are about three to seven times higher compared to those in the USA and Europe. OC and EC occupied 20 ± 6 and 7 ± 3% of PM2.5 mass and 17 ± 7 and 5 ± 3% of PM10 mass, respectively, implying that carbonaceous aerosols are the main component of PM, especially OC. Secondary organic carbon (SOC) was a significant portion of PM and contributed 41 ± 26% to OC and 8 ± 6% to PM2.5 mass. The OC/EC ratio was 3.63 ± 1.73, which, along with the good correlation between OC and EC and the OC to EC slope of 2.29, signifies that coal combustion and/or vehicular exhaust is the dominated carbonaceous aerosol source in China. These provide a primary observation-based understanding of carbonaceous aerosol pollution in China and have a great significance in improving the emission inventory and climate forcing evaluation. PMID:26385857

  18. Brown haze types due to aerosol pollution at Hefei in the summer and fall.

    PubMed

    Zhang, Xiaolin; Mao, Mao

    2015-01-01

    Brown haze episodes were evaluated at Hefei in the summer (June-August) and fall (September-November) seasons, and typical haze types were identified by air-mass back-trajectories and fire spot maps. Compared with clear weather conditions, larger median single scattering albedo values of 0.82 and 0.78 at 550 nm were obtained for the summer and fall haze episodes, respectively. Further, the observed lower scattering Angstrom exponents imply that more large particles than small particles dominated the haze plumes, which is in agreement with the profiles of size distribution. Particles during a haze episode in Hefei grow to a size such that the 0.10 limit for the backscattering ratio is reached, which may indicate that the aged aerosols promote the formation of haze episodes. Three typical haze types were identified: biomass burning, anthropogenic industrial and traffic emissions, and brown carbon. Less negative aerosol radiative forcing efficiencies of -12.7 and -10.9 W m(-2) in summer and fall were estimated, respectively, for haze impacted by biomass burning, which emphasizes an enhanced significance of biomass burning aerosols on climate forcing.

  19. Parameterization of the cloud-mediated radiative forcing of climate due to aerosols in the two-way coupled WRF-CMAQ over the continental United States

    NASA Astrophysics Data System (ADS)

    Yu, S.; Mathur, R.; Pleim, J.; Wong, D.; Carlton, A. G.; Roselle, S. J.; Rao, S.

    2010-12-01

    Atmospheric emissions resulting from consumption of fossil fuels by human activities contribute to global warming and degrade air quality. The IPCC (2007) concludes that the total direct aerosol radiative forcing is estimated to be -0.5 [±0.4] W m-2, with a medium-low level of scientific understanding, while the radiative forcing due to the cloud albedo effect (also referred to as first indirect), is estimated to be -0.7 [-1.1, +0.4] W m-2, with a low level of scientific understanding. For a given cloud liquid water content, an increase in the cloud droplet number concentration implies a decrease in the effective radius, thus increasing the cloud reflectivity; this is know as the first indirect aerosol effect. The second indirect aerosol effect is based on the idea that decreasing the mean droplet size in the presence of enhanced aerosols decreases the cloud precipitation efficiency, producing clouds with a larger liquid water content and longer lifetime. In this study, the indirect aerosol effect is estimated with the newly developed two-way coupled WRF-CMAQ over the continental United States. The cloud droplet number concentrations are diagnosed from the activation of CMAQ-predicted aerosol. The resulting cloud droplet number is used to calculate variations in droplet effective radius, which in turn allows us to estimate aerosol effects on cloud optical depth and microphysical processes using a two-moment treatment of cloud water (cloud water mass and cloud droplet number) to model effects on precipitation. With the satellite observation data such as CERES, MODIS and CALIPSO, we will evaluate the cloud properties such as cloud optical depth, cloud droplet effective radius, and liquid water content and indirect aerosol forcing in the newly-developed coupled WRF-CMAQ.

  20. Airborne Observations of Aerosol Emissions from F-16 Aircraft

    NASA Technical Reports Server (NTRS)

    Anderson, B. E.; Cofer, W. R.; McDougal, D. S.

    1999-01-01

    We presented results from the SASS Near-Field Interactions Flight (SNIF-III) Experiment which was conducted during May and June 1997 in collaboration with the Vermont and New Jersey Air National Guard Units. The project objectives were to quantify the fraction of fuel sulfur converted to S(VI) species by jet engines and to gain a better understanding of particle formation and growth processes within aircraft wakes. Size and volatility segregated aerosol measurements along with sulfur species measurements were recorded in the exhaust of F-16 aircraft equipped with F-100 engines burning fuels with a range of fuel S concentrations at different altitudes and engine power settings. A total of 10 missions were flown in which F-16 exhaust plumes were sampled by an instrumented T-39 Sabreliner aircraft. On six of the flights, measurements were obtained behind the same two aircraft, one burning standard JP-8 fuel and the other either approximately 28 ppm or 1100 ppm S fuel or an equal mixture of the two (approximately 560 ppm S). A pair of flights was conducted for each fuel mixture, one at 30,000 ft altitude and the other starting at 35,000 ft and climbing to higher altitudes if contrail conditions were not encountered at the initial flight level. In each flight, the F-16s were operated at two power settings, approx. 80% and full military power. Exhaust emissions were sampled behind both aircraft at each flight level, power setting, and fuel S concentration at an initial aircraft separation of 30 m, gradually widening to about 3 km. Analyses of the aerosol data in the cases where fuel S was varied suggest results were consistent with observations from project SUCCESS, i.e., a significant fraction of the fuel S was oxidized to form S(VI) species and volatile particle emission indices (EIs) in comparably aged plumes exhibited a nonlinear dependence upon the fuel S concentration. For the high sulfur fuel, volatile particle EIs in 10-second-old-plumes were 2 to 3 x 10 (exp 17

  1. Future Arctic temperature change resulting from a range of aerosol emissions scenarios

    NASA Astrophysics Data System (ADS)

    Wobus, Cameron; Flanner, Mark; Sarofim, Marcus C.; Moura, Maria Cecilia P.; Smith, Steven J.

    2016-06-01

    The Arctic temperature response to emissions of aerosols -- specifically black carbon (BC), organic carbon (OC), and sulfate -- depends on both the sector and the region where these emissions originate. Thus, the net Arctic temperature response to global aerosol emissions reductions will depend strongly on the blend of emissions sources being targeted. We use recently published equilibrium Arctic temperature response factors for BC, OC, and sulfate to estimate the range of present-day and future Arctic temperature changes from seven different aerosol emissions scenarios. Globally, Arctic temperature changes calculated from all of these emissions scenarios indicate that present-day emissions from the domestic and transportation sectors generate the majority of present-day Arctic warming from BC. However, in all of these scenarios, this warming is more than offset by cooling resulting from SO2 emissions from the energy sector. Thus, long-term climate mitigation strategies that are focused on reducing carbon dioxide (CO2) emissions from the energy sector could generate short-term, aerosol-induced Arctic warming. A properly phased approach that targets BC-rich emissions from the transportation sector as well as the domestic sectors in key regions -- while simultaneously working toward longer-term goals of CO2 mitigation -- could potentially avoid some amount of short-term Arctic warming.

  2. Characterization of Primary Organic Aerosol Emissions from Meat Cooking, Trash Burning, and Combustion Engines with High-Resolution Aerosol Mass Spectrometry and Comparison with Ambient and Chamber Observations

    NASA Astrophysics Data System (ADS)

    Mohr, C.; Huffman, J. A.; Cubison, M. J.; Aiken, A. C.; Docherty, K. S.; Kimmel, J. R.; Ulbrich, I. M.; Hannigan, M.; Garcia, J.; Jimenez, J. L.

    2009-04-01

    Organic aerosol (OA) emissions from motor vehicles, meat-cooking and trash burning are analyzed here using a high-resolution aerosol mass spectrometer (AMS) and supporting instrumentation. A semi-quantitative comparison of emission factors highlights the potential importance of meat cooking as an OA source. GC-MS and AMS mass spectra are compared for the first time and show high similarity, but with more fragmentation in the AMS due to higher vaporization temperatures. High resolution data show that aerosols emitted by combustion engines and plastic burning are dominated by hydrocarbon-like organic compounds. Meat cooking and especially paper burning contain significant fractions of oxygenated organic compounds; however, their unit-resolution mass spectral signatures are very similar to mass spectral signatures from hydrocarbon-like OA or primary OA, and very different from the mass spectra of ambient secondary or oxygenated OA (OOA). Thus, primary OA from any of these sources is very unlikely to be a significant direct source of ambient OOA. There are significant differences in high-resolution tracer m/z's that may be useful for differentiating these sources from each other. Unlike in most ambient spectra, all of these sources have low total m/z 44 and this signal is not dominated by the CO2+ ion. All sources have high m/z 57, which is low during high OOA ambient periods. Spectra from paper burning are similar to some types of biomass burning OA, with elevated m/z 60. Meat cooking aerosols also have slightly elevated m/z 60, while motor vehicle emissions have very low signal at this m/z.

  3. Quantitative evaluation of emission controls on primary and secondary organic aerosol sources during Beijing 2008 Olympics

    NASA Astrophysics Data System (ADS)

    Guo, S.; Hu, M.; Guo, Q.; Zhang, X.; Schauer, J. J.; Zhang, R.

    2013-08-01

    To assess the primary and secondary sources of fine organic aerosols after the aggressive implementation of air pollution controls during the 2008 Beijing Olympic Games, 12 h PM2.5 values were measured at an urban site at Peking University (PKU) and an upwind rural site at Yufa during the CAREBEIJING-2008 (Campaigns of Air quality REsearch in BEIJING and surrounding region) summer field campaign. The average PM2.5 concentrations were 72.5 ± 43.6 μg m-3 and 64.3 ± 36.2 μg m-3 (average ± standard deviation, below as the same) at PKU and Yufa, respectively, showing the lowest concentrations in recent years. Combining the results from a CMB (chemical mass balance) model and secondary organic aerosol (SOA) tracer-yield model, five primary and four secondary fine organic aerosol sources were compared with the results from previous studies in Beijing. The relative contribution of mobile sources to PM2.5 concentrations was increased in 2008, with diesel engines contributing 16.2 ± 5.9% and 14.5 ± 4.1% and gasoline vehicles contributing 10.3 ± 8.7% and 7.9 ± 6.2% to organic carbon (OC) at PKU and Yufa, respectively. Due to the implementation of emission controls, the absolute OC concentrations from primary sources were reduced during the Olympics, and the contributions from secondary formation of OC represented a larger relative source of fine organic aerosols. Compared with the non-controlled period prior to the Olympics, primary vehicle contributions were reduced by 30% at the urban site and 24% at the rural site. The reductions in coal combustion contributions were 57% at PKU and 7% at Yufa. Our results demonstrate that the emission control measures implemented in 2008 significantly alleviated the primary organic particle pollution in and around Beijing. However, additional studies are needed to provide a more comprehensive assessment of the emission control effectiveness on SOA formation.

  4. Gas-particle partitioning of primary organic aerosol emissions: (1) Gasoline vehicle exhaust

    NASA Astrophysics Data System (ADS)

    May, Andrew A.; Presto, Albert A.; Hennigan, Christopher J.; Nguyen, Ngoc T.; Gordon, Timothy D.; Robinson, Allen L.

    2013-10-01

    The gas-particle partitioning of the primary organic aerosol (POA) emissions from fifty-one light-duty gasoline vehicles (model years 1987-2012) was investigated at the California Air Resources Board Haagen-Smit Laboratory. Each vehicle was operated over the cold-start unified cycle on a chassis dynamometer and its emissions were sampled using a constant volume sampler. Four independent yet complementary approaches were used to investigate POA gas-particle partitioning: sampling artifact correction of quartz filter data, dilution from the constant volume sampler into a portable environmental chamber, heating in a thermodenuder, and thermal desorption/gas chromatography/mass spectrometry analysis of quartz filter samples. This combination of techniques allowed gas-particle partitioning measurements to be made across a wide range of atmospherically relevant conditions - temperatures of 25-100 °C and organic aerosol concentrations of <1-600 μg m-3. The gas-particle partitioning of the POA emissions varied continuously over this entire range of conditions and essentially none of the POA should be considered non-volatile. Furthermore, for most vehicles, the low levels of dilution used in the constant volume sampler created particle mass concentrations that were greater than a factor of 10 or higher than typical ambient levels. This resulted in large and systematic partitioning biases in the POA emission factors compared to more dilute atmospheric conditions, as the POA emission rates may be over-estimated by nearly a factor of four due to gas-particle partitioning at higher particle mass concentrations. A volatility distribution was derived to quantitatively describe the measured gas-particle partitioning data using absorptive partitioning theory. Although the POA emission factors varied by more than two orders of magnitude across the test fleet, the vehicle-to-vehicle differences in gas-particle partitioning were modest. Therefore, a single volatility distribution

  5. Emission of sunscreen salicylic esters from desert vegetation and their contribution to aerosol formation

    NASA Astrophysics Data System (ADS)

    Matsunaga, S. N.; Guenther, A. B.; Potosnak, M. J.; Apel, E. C.

    2008-07-01

    Biogenic volatile organic compounds (BVOC) produced by plants are known to have an important role in atmospheric chemistry. However, our knowledge of the range of BVOCs produced by different plant processes is still expanding, and there remain poorly understood categories of BVOCs. In this study, emissions of a novel class of BVOC emissions were investigated in a desert region. Our study considered 8 species of common desert plants: blackbrush (Coleogyne ramosissima), desert willow (Chilopsis linearis), mesquite (Prosopis glandulosa), mondel pine (Pinus eldarica), pinyon pine (Pinus monophylla), cottonwood (Populus deltoides), saguaro cactus (Carnegiea gigantea) and yucca (Yucca baccata). The measurements focused on BVOCs with relatively high molecular weight (>C15) and/or an oxygenated functional group. Significantly high emission rates of two salicylic esters were found for blackbrush, desert willow and mesquite with emission rates of 1.4, 2.1 and 0.46 μgC dwg-1 h-1, respectively. The salicylic esters were identified as 2-ethylhexenyl salicylate (2-EHS) and 3,3,5-trimethylcyclohexenyl salicylate (homosalate) and are known as effective ultraviolet (UV) absorbers. We propose that the plants derive a protective benefit against UV radiation from the salicylic esters and that the emission process is driven by the physical evaporation of the salicylic esters due to the high ambient temperatures. In addition, the salicylic esters are predicted to be an effective precursor of secondary organic aerosol (SOA) because of their low vapor pressure due to a high number of carbon atoms (15 or 16) and the presence of three oxygen atoms. We estimated the contribution of the sunscreen esters themselves and their oxidation products on the SOA formation for the Las Vegas region using a BVOC emission model. The contribution was estimated to reach 90% of the biogenic SOA in the landscapes dominated by desert willow and mesquite and 25% in Las Vegas area.

  6. Growth of upper tropospheric aerosols due to uptake of HNO3

    NASA Astrophysics Data System (ADS)

    Romakkaniemi, S.; Kokkola, H.; Petzold, A.; Laaksonen, A.

    2004-01-01

    The effect of nitric acid on the equilibrium size distributions of upper tropospheric aerosols is calculated as a function of relative humidity. It is shown that HNO3 concentrations above a few tenths of a ppb can cause substantial increases in haze mode particle concentrations at relative humidities at about 60% and above. The effect can be strongly magnified when letovicite particles are present in addition to sulfuric acid aerosols. This is mainly due to the lowering of the deliquescence RH of letovicite in the presence of gaseous nitric acid at low temperatures. We have also compared equilibrium calculations of the HNO3 effect with observations of increased haze mode concentrations at relative humidities above 50% (Petzold et al., 2000). Nitric acid mixing ratios on the order of 0.5-2 ppb may explain the observed increase of haze mode particles at least partially.

  7. Global volcanic aerosol properties derived from emissions, 1990-2015, using CESM1(WACCM)

    NASA Astrophysics Data System (ADS)

    Mills, Michael; Schmidt, Anja; Easter, Richard; Solomon, Susan; Kinnison, Douglas; Ghan, Steven; Neely, Ryan; Marsh, Daniel; Conley, Andrew; Bardeen, Charles; Gettelman, Andrew

    2016-04-01

    Accurate representation of global stratospheric aerosols from volcanic and non-volcanic sulfur emissions is key to understanding the cooling effects and ozone-losses that may be linked to volcanic activity. Attribution of climate variability to volcanic activity is of particular interest in relation to the post-2000 slowing in the rate of global average temperature increases. We have compiled a database of volcanic SO2 emissions and plume altitudes for eruptions from 1990 to 2015, and developed a new prognostic capability for simulating stratospheric sulfate aerosols in the Community Earth System Model (CESM). We combined these with other non-volcanic emissions of sulfur sources to reconstruct global aerosol properties from 1990 to 2015. Our calculations show remarkable agreement with ground-based lidar observations of stratospheric aerosol optical depth (SAOD), and with in situ measurements of stratospheric aerosol surface area density (SAD). These properties are key parameters in calculating the radiative and chemical effects of stratospheric aerosols. Our SAOD calculations represent a clear improvement over available satellite-based analyses, which generally ignore aerosol extinction below 15 km, a region that can contain the vast majority of stratospheric aerosol extinction at mid- and high-latitudes. Our SAD calculations greatly improve on that provided for the Chemistry-Climate Model Initiative, which misses about 60% of the SAD measured in situ on average during both volcanically active and volcanically quiescent periods. The stark differences in SAOD and SAD compared to other data sets will have significant effects on calculations of the radiative forcing of climate and global stratospheric chemistry over the period 2005-2015. In light of these results, the impact of volcanic aerosols in reducing the rate of global average temperature increases since the year 2000 should be revisited. We have made our calculated aerosol properties from January 1990 to

  8. Simultaneous reductions in emissions of black carbon and co-emitted species will weaken the aerosol net cooling effect

    NASA Astrophysics Data System (ADS)

    Wang, Z. L.; Zhang, H.; Zhang, X. Y.

    2015-04-01

    Black carbon (BC), a distinct type of carbonaceous material formed from the incomplete combustion of fossil and biomass based fuels under certain conditions, can interact with solar radiation and clouds through its strong light-absorption ability, thereby warming the Earth's climate system. Some studies have even suggested that global warming could be slowed down in the short term by eliminating BC emission due to its short lifetime. In this study, we estimate the influence of removing some sources of BC and other co-emitted species on the aerosol radiative effect by using an aerosol-climate atmosphere-only model BCC_AGCM2.0.1_CUACE/Aero with prescribed sea surface temperature and sea ice cover, in combination with the aerosol emissions from the Representative Concentration Pathways (RCPs) scenarios. We find that the global annual mean aerosol net cooling effect at the top of the atmosphere (TOA) will be enhanced by 0.12 W m-2 compared with recent past year 2000 levels if the emissions of only BC are reduced to the level projected for 2100 based on the RCP2.6 scenario. This will be beneficial~for the mitigation of global warming. However, both aerosol negative direct and indirect radiative effects are weakened when BC and its co-emitted species (sulfur dioxide and organic carbon) are simultaneously reduced. Relative to year 2000 levels, the global annual mean aerosol net cooling effect at the TOA will be weakened by 1.7-2.0 W m-2 if the emissions of all these aerosols are decreased to the levels projected for 2100 in different ways based on the RCP2.6, RCP4.5, and RCP8.5 scenarios. Because there are no effective ways to remove the BC exclusively without influencing the other co-emitted components, our results therefore indicate that a reduction in BC emission can lead to an unexpected warming on the Earth's climate system in the future.

  9. Potential sensitivity of photosynthesis and isoprene emission to direct radiative effects of atmospheric aerosol pollution

    NASA Astrophysics Data System (ADS)

    Strada, Susanna; Unger, Nadine

    2016-04-01

    A global Earth system model is applied to quantify the impacts of direct anthropogenic aerosol effective radiative forcing on gross primary productivity (GPP) and isoprene emission. The impacts of different pollution aerosol sources (anthropogenic, biomass burning, and non-biomass burning) are investigated by performing sensitivity experiments. The model framework includes all known light and meteorological responses of photosynthesis, but uses fixed canopy structures and phenology. On a global scale, our results show that global land carbon fluxes (GPP and isoprene emission) are not sensitive to pollution aerosols, even under a global decline in surface solar radiation (direct + diffuse) by ˜ 9 %. At a regional scale, GPP and isoprene emission show a robust but opposite sensitivity to pollution aerosols in regions where forested canopies dominate. In eastern North America and Eurasia, anthropogenic pollution aerosols (mainly from non-biomass burning sources) enhance GPP by +5-8 % on an annual average. In the northwestern Amazon Basin and central Africa, biomass burning aerosols increase GPP by +2-5 % on an annual average, with a peak in the northwestern Amazon Basin during the dry-fire season (+5-8 %). The prevailing mechanism varies across regions: light scattering dominates in eastern North America, while a reduction in direct radiation dominates in Europe and China. Aerosol-induced GPP productivity increases in the Amazon and central Africa include an additional positive feedback from reduced canopy temperatures in response to increases in canopy conductance. In Eurasia and northeastern China, anthropogenic pollution aerosols drive a decrease in isoprene emission of -2 to -12 % on an annual average. Future research needs to incorporate the indirect effects of aerosols and possible feedbacks from dynamic carbon allocation and phenology.

  10. Quantifying the effect of organic aerosol aging and intermediate-volatility emissions on regional-scale aerosol pollution in China

    NASA Astrophysics Data System (ADS)

    Zhao, Bin; Wang, Shuxiao; Donahue, Neil M.; Jathar, Shantanu H.; Huang, Xiaofeng; Wu, Wenjing; Hao, Jiming; Robinson, Allen L.

    2016-06-01

    Secondary organic aerosol (SOA) is one of the least understood constituents of fine particles; current widely-used models cannot predict its loadings or oxidation state. Recent laboratory experiments demonstrated the importance of several new processes, including aging of SOA from traditional precursors, aging of primary organic aerosol (POA), and photo-oxidation of intermediate volatility organic compounds (IVOCs). However, evaluating the effect of these processes in the real atmosphere is challenging. Most models used in previous studies are over-simplified and some key reaction trajectories are not captured, and model parameters are usually phenomenological and lack experimental constraints. Here we comprehensively assess the effect of organic aerosol (OA) aging and intermediate-volatility emissions on regional-scale OA pollution with a state-of-the-art model framework and experimentally constrained parameters. We find that OA aging and intermediate-volatility emissions together increase OA and SOA concentrations in Eastern China by about 40% and a factor of 10, respectively, thereby improving model-measurement agreement significantly. POA and IVOCs both constitute over 40% of OA concentrations, and IVOCs constitute over half of SOA concentrations; this differs significantly from previous apportionment of SOA sources. This study facilitates an improved estimate of aerosol-induced climate and health impacts, and implies a shift from current fine-particle control policies.

  11. Quantifying the effect of organic aerosol aging and intermediate-volatility emissions on regional-scale aerosol pollution in China.

    PubMed

    Zhao, Bin; Wang, Shuxiao; Donahue, Neil M; Jathar, Shantanu H; Huang, Xiaofeng; Wu, Wenjing; Hao, Jiming; Robinson, Allen L

    2016-01-01

    Secondary organic aerosol (SOA) is one of the least understood constituents of fine particles; current widely-used models cannot predict its loadings or oxidation state. Recent laboratory experiments demonstrated the importance of several new processes, including aging of SOA from traditional precursors, aging of primary organic aerosol (POA), and photo-oxidation of intermediate volatility organic compounds (IVOCs). However, evaluating the effect of these processes in the real atmosphere is challenging. Most models used in previous studies are over-simplified and some key reaction trajectories are not captured, and model parameters are usually phenomenological and lack experimental constraints. Here we comprehensively assess the effect of organic aerosol (OA) aging and intermediate-volatility emissions on regional-scale OA pollution with a state-of-the-art model framework and experimentally constrained parameters. We find that OA aging and intermediate-volatility emissions together increase OA and SOA concentrations in Eastern China by about 40% and a factor of 10, respectively, thereby improving model-measurement agreement significantly. POA and IVOCs both constitute over 40% of OA concentrations, and IVOCs constitute over half of SOA concentrations; this differs significantly from previous apportionment of SOA sources. This study facilitates an improved estimate of aerosol-induced climate and health impacts, and implies a shift from current fine-particle control policies. PMID:27350423

  12. Quantifying the effect of organic aerosol aging and intermediate-volatility emissions on regional-scale aerosol pollution in China

    PubMed Central

    Zhao, Bin; Wang, Shuxiao; Donahue, Neil M.; Jathar, Shantanu H.; Huang, Xiaofeng; Wu, Wenjing; Hao, Jiming; Robinson, Allen L.

    2016-01-01

    Secondary organic aerosol (SOA) is one of the least understood constituents of fine particles; current widely-used models cannot predict its loadings or oxidation state. Recent laboratory experiments demonstrated the importance of several new processes, including aging of SOA from traditional precursors, aging of primary organic aerosol (POA), and photo-oxidation of intermediate volatility organic compounds (IVOCs). However, evaluating the effect of these processes in the real atmosphere is challenging. Most models used in previous studies are over-simplified and some key reaction trajectories are not captured, and model parameters are usually phenomenological and lack experimental constraints. Here we comprehensively assess the effect of organic aerosol (OA) aging and intermediate-volatility emissions on regional-scale OA pollution with a state-of-the-art model framework and experimentally constrained parameters. We find that OA aging and intermediate-volatility emissions together increase OA and SOA concentrations in Eastern China by about 40% and a factor of 10, respectively, thereby improving model-measurement agreement significantly. POA and IVOCs both constitute over 40% of OA concentrations, and IVOCs constitute over half of SOA concentrations; this differs significantly from previous apportionment of SOA sources. This study facilitates an improved estimate of aerosol-induced climate and health impacts, and implies a shift from current fine-particle control policies. PMID:27350423

  13. Emission Controls Versus Meteorological Conditions in Determining Aerosol Concentrations in Beijing during the 2008 Olympic Games

    SciTech Connect

    Gao, Yi; Liu, Xiaohong; Zhao, Chun; Zhang, Meigen

    2011-12-12

    A series of emission control measures were undertaken in Beijing and the adjacent provinces in China during the 2008 Beijing Olympic Games on August 8th-24th, 2008. This provides a unique opportunity for investigating the effectiveness of emission controls on air pollution in Beijing. We conducted a series of numerical experiments over East Asia for the period of July to September 2008 using a coupled meteorology-chemistry model (WRF-Chem). Model can generally reproduce the observed variation of aerosol concentrations. Consistent with observations, modeled concentrations of aerosol species (sulfate, nitrate, ammonium, black carbon, organic carbon, total particulate matter) in Beijing were decreased by 30-50% during the Olympic period compared to the other periods in July and August in 2008 and the same period in 2007. Model results indicate that emission controls were effective in reducing the aerosol concentrations by comparing simulations with and without emission controls. However, our analysis suggests that meteorological conditions (e.g., wind direction and precipitation) are at least as important as emission controls in producing the low aerosol concentrations appearing during the Olympic period. Transport from the regions surrounding Beijing determines the temporal variation of aerosol concentrations in Beijing. Based on the budget analysis, we suggest that emission control strategy should focus on the regional scale instead of the local scale to improve the air quality over Beijing.

  14. Chemical speciation of chlorine in atmospheric aerosol samples by high-resolution proton induced X-ray emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Kertész, Zsófia; Furu, Enikő; Kavčič, Matjaž

    2013-01-01

    Chlorine is a main elemental component of atmospheric particulate matter (APM). The knowledge of the chemical form of chlorine is of primary importance for source apportionment and for estimation of health effects of APM. In this work the applicability of high-resolution wavelength dispersive proton induced X-ray emission (PIXE) spectroscopy for chemical speciation of chlorine in fine fraction atmospheric aerosols is studied. A Johansson-type crystal spectrometer with energy resolution below the natural linewidth of Cl K lines was used to record the high-resolution Kα and Kβ proton induced spectra of several reference Cl compounds and two atmospheric aerosol samples, which were collected for conventional PIXE analysis. The Kα spectra which refers to the oxidation state, showed very minor differences due to the high electronegativity of Cl. However, the Kβ spectra exhibited pronounced chemical effects which were significant enough to perform chemical speciation. The major chlorine component in two fine fraction aerosol samples collected during a 2010 winter campaign in Budapest was clearly identified as NaCl by comparing the high-resolution Cl Kβ spectra from the aerosol samples with the corresponding reference spectra. This work demonstrates the feasibility of high-resolution PIXE method for chemical speciation of Cl in aerosols.

  15. Aerosol-CFD modelling of ultrafine and black carbon particle emission, dilution, and growth near roadways

    NASA Astrophysics Data System (ADS)

    Huang, L.; Gong, S. L.; Gordon, M.; Liggio, J.; Staebler, R. M.; Stroud, C. A.; Lu, G.; Mihele, C.; Brook, J. R.; Jia, C. Q.

    2014-05-01

    Many studies have shown that on-road vehicle emissions are the dominant source of ultrafine particles (UFP; diameter < 100 nm) in urban areas and near-roadway environments. In order to advance our knowledge on the complex interactions and competition among atmospheric dilution, dispersion and dynamics of UFPs, an aerosol dynamics-CFD coupled model is developed and validated against field measurements. A unique approach of applying periodic boundary conditions is proposed to model pollutant dispersion and dynamics in one unified domain from the tailpipe level to the ambient near-road environment. This approach significantly reduces the size of the computational domain, and therefore, allows fast simulation of multiple scenarios. The model is validated against measured turbulent kinetic energy (TKE) and pollution gradients near a major highway. Through a model sensitivity analysis, the relative importance of individual aerosol dynamical processes on the total particle number concentration (N) and particle number-size distribution (PSD) near a highway is investigated. The results demonstrate that (1) coagulation has a negligible effect on N and particle growth, (2) binary homogeneous nucleation (BHN) of H2SO4-H2O is likely responsible for elevated N closest to the road, (3) N and particle growth are very sensitive to the condensation of semi-volatile organics (SVOCs), particle dry deposition, and the interaction between these processes. The results also indicate that, without the proper treatment of atmospheric boundary layer (i.e. its wind profile and turbulence quantities), the nucleation rate would be underestimated by a factor of 5 in the vehicle wake region due to overestimated mixing. Therefore, introducing ABL conditions to activity-based emission models may potentially improve their performance in estimating UFP traffic emissions.

  16. Changes in future air quality, deposition, and aerosol-cloud interactions under future climate and emission scenarios

    NASA Astrophysics Data System (ADS)

    Glotfelty, Timothy; Zhang, Yang; Karamchandani, Prakash; Streets, David G.

    2016-08-01

    The prospect of global climate change will have wide scale impacts, such as ecological stress and human health hazards. One aspect of concern is future changes in air quality that will result from changes in both meteorological forcing and air pollutant emissions. In this study, the GU-WRF/Chem model is employed to simulate the impact of changing climate and emissions following the IPCC AR4 SRES A1B scenario. An average of 4 future years (2020, 2030, 2040, and 2050) is compared against an average of 2 current years (2001 and 2010). Under this scenario, by the Mid-21st century global air quality is projected to degrade with a global average increase of 2.5 ppb in the maximum 8-hr O3 level and of 0.3 μg m-3 in 24-hr average PM2.5. However, PM2.5 changes are more regional due to regional variations in primary aerosol emissions and emissions of gaseous precursor for secondary PM2.5. Increasing NOx emissions in this scenario combines with a wetter climate elevating levels of OH, HO2, H2O2, and the nitrate radical and increasing the atmosphere's near surface oxidation state. This differs from findings under the RCP scenarios that experience declines in OH from reduced NOx emissions, stratospheric recovery of O3, and increases in CH4 and VOCs. Increasing NOx and O3 levels enhances the nitrogen and O3 deposition, indicating potentially enhanced crop damage and ecosystem stress under this scenario. The enhanced global aerosol level results in enhancements in aerosol optical depth, cloud droplet number concentration, and cloud optical thickness. This leads to dimming at the Earth's surface with a global average reduction in shortwave radiation of 1.2 W m-2. This enhanced dimming leads to a more moderate warming trend and different trends in radiation than those found in NCAR's CCSM simulation, which does not include the advanced chemistry and aerosol treatment of GU-WRF/Chem and cannot simulate the impacts of changing climate and emissions with the same level of detailed

  17. Implications of the Temporal Resolution of Fire Emissions on Direct and Indirect Aerosol Effects

    NASA Astrophysics Data System (ADS)

    Darmenov, A.; Barahona, D.; Kim, K. M.; da Silva, A.; Colarco, P. R.; Govindaraju, R.

    2014-12-01

    Biomass burning is an important source of particulates and trace gases and a major element of the terrestrial carbon cycle. Well constrained emissions from open vegetation fires in both time and space are needed to model direct and indirect effect of biomass burning aerosols, homogeneous and heterogeneous chemistry in the atmosphere and perform credible integrated earth system analysis, climate and air pollution studies. However representing fires in regional and global numerical models is challenging because of the subgrid scales at which fire processes operate. An example of apparent discrepancy in scales is the use of monthly- or seasonal-mean fire emissions which given the stochastic nature of fires means that at certain spatial scales the temporal behavior of emissions becomes influenced by individual fire events and becomes more variable. The present study aims at investigating the impact of monthly-mean fire emissions on direct and indirect aerosol effects. Key element of our work is the use of fire radiative power (FRP) based emissions and a global fully interactive cloud-aerosol-radiation modeling system. We used the Goddard Earth Observing System Model, Version 5 (GEOS-5) with two moment cloud microphysics and explicit cloud droplet activation and ice nucleation. GEOS-5 is coupled with an online version of the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model. Biomass burning emissions used in this study are from the Quick Fire Emission Dataset (QFED) available daily at up to 0.1 degrees horizontal resolution. We performed experiments with daily-mean and monthly-mean QFED emissions at two degree horizontal resolutions and report differences in aerosol burden and radiative forcing, for example we found that regional differences of clear-sky aerosol direct radiative effect at the surface and at the top of the atmosphere in MAM and JJA can be as high as 4 Wm-2 and 3 Wm-2, respectively.

  18. Characterization of vehicle emissions in São Paulo and the impacts on atmospheric chemistry and secondary aerosol formation

    NASA Astrophysics Data System (ADS)

    Ferreira De Brito, J.; Godoy, M.; Godoy, J.; Varanda Rizzo, L.; Artaxo, P.

    2012-12-01

    Megacities emissions are increasingly becoming a global issue, where emissions from the transportation sector play an important role. São Paulo, located in Southeast of Brazil, is a megacity with a population of 18 million people, 7 million cars and large-scale industrial emissions. As a result of the vehicular and industrial emissions, the air quality in São Paulo is considered one of the worst worldwide. Despite the large impact on human health and atmospheric chemistry/dynamics, many uncertainties are found on gas- and particulate matter vehicular emission factors and their following atmospheric processes, e.g. secondary organic aerosol formation. Due to the uniqueness of the vehicular fuel in Brazil, largely based on ethanol use, such characterization currently holds further uncertainties. To improve the understanding of the role of this unique emission pattern, we are running a source apportionment study in São Paulo. One of the goals of this study is a quantitative aerosol source apportionment focused on vehicular emissions, including ethanol and gasohol (both fuels used by light-duty vehicles) and diesel (heavy-duty vehicles). Whereas the latter shows usually much higher emission factors compared with ethanol or gasohol, heavy-duty vehicles have increasingly limited access within the São Paulo city limits, thus increasing the importance of light duty vehicles on air quality degradation. This study comprises four sampling sites, where trace elements and organic aerosol are being measured for PM2.5 and PM10 along with real-time NOx, ozone, PM10 and CO measurements. Aerosol optical properties and size distribution are being measured on a rotation basis between sampling stations. Furthermore, a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS) and an Aerosol Chemical Speciation Monitor (ACSM) are used to real-time VOC analysis and aerosol composition, respectively. Results show aerosol number concentrations ranging between 10^4 and 3.10^4 cm-3, mostly

  19. Estimates of non-traditional secondary organic aerosols from aircraft SVOC and IVOC emissions using CMAQ

    NASA Astrophysics Data System (ADS)

    Woody, M. C.; West, J. J.; Jathar, S. H.; Robinson, A. L.; Arunachalam, S.

    2014-12-01

    Utilizing an aircraft-specific parameterization based on smog chamber data in the Community Multiscale Air Quality (CMAQ) model with the Volatility Basis Set (VBS), we estimated contributions of non-traditional secondary organic aerosols (NTSOA) for aircraft emissions during landing and takeoff (LTO) activities at the Hartsfield-Jackson Atlanta International Airport. NTSOA, formed from the oxidation of semi-volatile and intermediate volatility organic compounds (S/IVOCs), is a heretofore unaccounted component of fine particulate matter (PM2.5) in most air quality models. We expanded a prerelease version of CMAQ with VBS implemented for the Carbon Bond 2005 (CB05) chemical mechanism to use the Statewide Air Pollution Research Center 2007 (SAPRC-07) chemical mechanism, and added species representing aircraft S/IVOCs and corresponding NTSOA oxidation products. Results indicated the maximum monthly average NTSOA contributions occurred at the airport, and ranged from 2.4 ng m-3 (34% from idle and 66% from non-idle aircraft activities) in January to 9.1 ng m-3 (33 and 67%) in July. This represents 1.7% (of 140 ng m-3) in January and 7.4% in July (of 122 ng m-3) of aircraft-attributable PM2.5, compared to 41.0-42.0% from elemental carbon and 42.8-58.0% from inorganic aerosols. As a percentage of PM2.5, impacts were higher downwind of the airport, where NTSOA averaged 4.6-17.9% of aircraft-attributable PM2.5 and, considering alternative aging schemes, was high as 24.0% - thus indicating the increased contribution of aircraft-attributable SOA, as a component of PM2.5. However, NTSOA contributions were generally low compared to smog chamber results, particularly at idle, due to the considerably lower ambient organic aerosol concentrations in CMAQ, vs. those in the smog chamber experiments.

  20. Estimates of non-traditional secondary organic aerosols from aircraft SVOC and IVOC emissions using CMAQ

    NASA Astrophysics Data System (ADS)

    Woody, M. C.; West, J. J.; Jathar, S. H.; Robinson, A. L.; Arunachalam, S.

    2015-06-01

    Utilizing an aircraft-specific parameterization based on smog chamber data in the Community Multiscale Air Quality (CMAQ) model with the volatility basis set (VBS), we estimated contributions of non-traditional secondary organic aerosols (NTSOA) for aircraft emissions during landing and takeoff (LTO) activities at the Hartsfield-Jackson Atlanta International Airport. NTSOA, formed from the oxidation of semi-volatile and intermediate volatility organic compounds (S/IVOCs), is a heretofore unaccounted component of fine particulate matter (PM2.5) in most air quality models. We expanded a prerelease version of CMAQ with VBS implemented for the Carbon Bond 2005 (CB05) chemical mechanism to use the Statewide Air Pollution Research Center 2007 (SAPRC-07) chemical mechanism and added species representing aircraft S/IVOCs and corresponding NTSOA oxidation products. Results indicated that the maximum monthly average NTSOA contributions occurred at the airport and ranged from 2.4 ng m-3 (34 % from idle and 66 % from non-idle aircraft activities) in January to 9.1 ng m-3 (33 and 67 %) in July. This represents 1.7 % (of 140 ng m-3) in January and 7.4 % in July (of 122 ng m-3) of aircraft-attributable PM2.5 compared to 41.0-42.0 % from elemental carbon and 42.8-58.0 % from inorganic aerosols. As a percentage of PM2.5, impacts were higher downwind of the airport, where NTSOA averaged 4.6-17.9 % of aircraft-attributable PM2.5 and, considering alternative aging schemes, was as high as 24.0 % - thus indicating the increased contribution of aircraft-attributable SOA as a component of PM2.5. However, NTSOA contributions were generally low compared to smog chamber results, particularly at idle, due to the considerably lower ambient organic aerosol concentrations in CMAQ compared to those in the smog chamber experiments.

  1. Infrared limb emission measurements of aerosol in the troposphere and stratosphere

    NASA Astrophysics Data System (ADS)

    Griessbach, Sabine; Hoffmann, Lars; Spang, Reinhold; von Hobe, Marc; Müller, Rolf; Riese, Martin

    2016-09-01

    Altitude-resolved aerosol detection in the upper troposphere and lower stratosphere (UTLS) is a challenging task for remote sensing instruments. Infrared limb emission measurements provide vertically resolved global measurements at day- and nighttime in the UTLS. For high-spectral-resolution infrared limb instruments we present here a new method to detect aerosol and separate between ice and non-ice particles. The method is based on an improved aerosol-cloud index that identifies infrared limb emission spectra affected by non-ice aerosol or ice clouds. For the discrimination between non-ice aerosol and ice clouds we employed brightness temperature difference correlations. The discrimination thresholds for this method were derived from radiative transfer simulations (including scattering) and Michelson Interferometer for Passive Atmospheric Sounding (MIPAS)/Envisat measurements obtained in 2011. We demonstrate the value of this approach for observations of volcanic ash and sulfate aerosol originating from the Grímsvötn (Iceland, 64° N), Puyehue-Cordón Caulle (Chile, 40° S), and Nabro (Eritrea, 13° N) eruptions in May and June 2011 by comparing the MIPAS volcanic aerosol detections with Atmospheric Infrared Sounder (AIRS) volcanic ash and SO2 measurements.

  2. Fossil Fuel Combustion-Related Emissions Dominate Atmospheric Ammonia Sources during Severe Haze Episodes: Evidence from (15)N-Stable Isotope in Size-Resolved Aerosol Ammonium.

    PubMed

    Pan, Yuepeng; Tian, Shili; Liu, Dongwei; Fang, Yunting; Zhu, Xiaying; Zhang, Qiang; Zheng, Bo; Michalski, Greg; Wang, Yuesi

    2016-08-01

    The reduction of ammonia (NH3) emissions is urgently needed due to its role in aerosol nucleation and growth causing haze formation during its conversion into ammonium (NH4(+)). However, the relative contributions of individual NH3 sources are unclear, and debate remains over whether agricultural emissions dominate atmospheric NH3 in urban areas. Based on the chemical and isotopic measurements of size-resolved aerosols in urban Beijing, China, we find that the natural abundance of (15)N (expressed using δ(15)N values) of NH4(+) in fine particles varies with the development of haze episodes, ranging from -37.1‰ to -21.7‰ during clean/dusty days (relative humidity: ∼ 40%), to -13.1‰ to +5.8‰ during hazy days (relative humidity: 70-90%). After accounting for the isotope exchange between NH3 gas and aerosol NH4(+), the δ(15)N value of the initial NH3 during hazy days is found to be -14.5‰ to -1.6‰, which indicates fossil fuel-based emissions. These emissions contribute 90% of the total NH3 during hazy days in urban Beijing. This work demonstrates the analysis of δ(15)N values of aerosol NH4(+) to be a promising new tool for partitioning atmospheric NH3 sources, providing policy makers with insights into NH3 emissions and secondary aerosols for regulation in urban environments. PMID:27359161

  3. Fossil Fuel Combustion-Related Emissions Dominate Atmospheric Ammonia Sources during Severe Haze Episodes: Evidence from (15)N-Stable Isotope in Size-Resolved Aerosol Ammonium.

    PubMed

    Pan, Yuepeng; Tian, Shili; Liu, Dongwei; Fang, Yunting; Zhu, Xiaying; Zhang, Qiang; Zheng, Bo; Michalski, Greg; Wang, Yuesi

    2016-08-01

    The reduction of ammonia (NH3) emissions is urgently needed due to its role in aerosol nucleation and growth causing haze formation during its conversion into ammonium (NH4(+)). However, the relative contributions of individual NH3 sources are unclear, and debate remains over whether agricultural emissions dominate atmospheric NH3 in urban areas. Based on the chemical and isotopic measurements of size-resolved aerosols in urban Beijing, China, we find that the natural abundance of (15)N (expressed using δ(15)N values) of NH4(+) in fine particles varies with the development of haze episodes, ranging from -37.1‰ to -21.7‰ during clean/dusty days (relative humidity: ∼ 40%), to -13.1‰ to +5.8‰ during hazy days (relative humidity: 70-90%). After accounting for the isotope exchange between NH3 gas and aerosol NH4(+), the δ(15)N value of the initial NH3 during hazy days is found to be -14.5‰ to -1.6‰, which indicates fossil fuel-based emissions. These emissions contribute 90% of the total NH3 during hazy days in urban Beijing. This work demonstrates the analysis of δ(15)N values of aerosol NH4(+) to be a promising new tool for partitioning atmospheric NH3 sources, providing policy makers with insights into NH3 emissions and secondary aerosols for regulation in urban environments.

  4. The "Parade Blue": effects of short-term emission control on aerosol chemistry.

    PubMed

    Li, Haiyan; Zhang, Qiang; Duan, Fengkui; Zheng, Bo; He, Kebin

    2016-07-18

    The strict control on emissions implemented in Beijing, China, during the 2015 China Victory Day Parade (V-day Parade) to commemorate the 70(th) Anniversary of Victory in World War II, provided a good opportunity to investigate the relationship between emission sources and aerosol chemistry in a heavily polluted megacity. From August 11 to September 3, 2015, an Aerosol Chemical Speciation Monitor was deployed in urban Beijing, together with other collocated instruments, for the real-time measurement of submicron aerosol characteristics. The average PM1 mass concentration was 11.3 (±6.7) μg m(-3) during the V-day Parade, 63.5% lower than that before the V-day Parade. Differently to the relatively smaller decrease of organics (53%), secondary inorganic aerosols (sulfate, nitrate and ammonium) showed significant reductions of 65-78% during the V-day Parade. According to the positive matrix factorization results, primary organic aerosol (POA) from traffic and cooking emissions decreased by 41.5% during the parade, whereas secondary organic aerosol (SOA) presented a much greater reduction (59%). The net effectiveness of emission control measures was investigated further under comparable weather conditions before and during the parade. By excluding the effects of meteorological parameters, the total PM1 mass was reduced by 52-57% because of the emission controls. Although the mass concentrations of aerosol species were reduced substantially, the PM1 bulk composition was similar before and during the control period as a consequence of synergetic control of various precursors. The emission restrictions also suppressed the secondary formation processes of sulfate and nitrate, indicated by the substantially reduced SOR and NOR (molar ratios of sulfate or nitrate to the sums of the sulfate and SO2 or nitrate and NO2) during the event. The study also explored the influence of emission controls on the evolution of organic aerosol using the mass ratios of SOA/POA and oxygen

  5. Emissions of biogenic volatile organic compounds and subsequent formation of secondary organic aerosols in a Larix kaempferi forest

    NASA Astrophysics Data System (ADS)

    Mochizuki, T.; Miyazaki, Y.; Ono, K.; Wada, R.; Takahashi, Y.; Saigusa, N.; Kawamura, K.; Tani, A.

    2015-10-01

    We conducted simultaneous measurements of concentrations and above-canopy fluxes of isoprene and α-pinene, along with their oxidation products in aerosols in a Larix kaempferi (Japanese larch) forest in summer 2012. Vertical profiles of isoprene showed the maximum concentration near the forest floor with a peak around noon, whereas oxidation products of isoprene, i.e., methacrolein (MACR) and methyl vinyl ketone (MVK), showed higher concentrations near the canopy level of the forest. The vertical profile suggests large emissions of isoprene near the forest floor, likely due to Dryopteris crassirhizoma (a fern species), and the subsequent reaction within the canopy. The concentrations of α-pinene also showed highest values near the forest floor, with maximums in the early morning and late afternoon. The vertical profiles of α-pinene suggest its large emissions from soil and litter in addition to emissions from L. kaempferi leaves at the forest site. Isoprene and its oxidation products in aerosols exhibited similar diurnal variations within the forest canopy, providing evidence of secondary organic aerosol (SOA) formation via oxidation of isoprene most likely emitted from the forest floor. Although high abundance of α-pinene was observed in the morning, its oxidation products in aerosols showed peaks in daytime, due to a time lag between the emission and atmospheric reactions of α-pinene to form SOA. Positive matrix factorization (PMF) analysis indicated that anthropogenic influence is the most important factor contributing to the elevated concentrations of molecular oxidation products of isoprene- (> 64 %) and α-pinene-derived SOA (> 57 %). The combination of the measured fluxes and vertical profiles of biogenic volatile organic compounds (BVOCs) suggests that the inflow of anthropogenic precursors/aerosols likely enhanced the formation of both isoprene SOA and α-pinene SOA within the forest canopy even when the BVOC flux was relatively low. This study

  6. Emissions of Black Carbon, Organic, and Inorganic Aerosols From Biomass Burning in North America and Asia in 2008

    NASA Technical Reports Server (NTRS)

    Kondo, Y.; Matsui, H.; Moteki, N.; Sahu, L.; Takegawa, N.; Kajino, M.; Zhao, Y.; Cubison, M. J.; Jimenez, J. L.; Vay, S.; Diskin, G. S.; Anderson, B.; Wisthaler, A.; Mikoviny, T.; Fuelberg, H. E.; Blake, D. R.; Huey, G.; Weinheimer, A. J.; Knapp, D. J.; Brune, W. H.

    2011-01-01

    Reliable assessment of the impact of aerosols emitted from boreal forest fires on the Arctic climate necessitates improved understanding of emissions and the microphysical properties of carbonaceous (black carbon (BC) and organic aerosols (OA)) and inorganic aerosols. The size distributions of BC were measured by an SP2 based on the laser-induced incandescence technique on board the DC-8 aircraft during the NASA ARCTAS campaign. Aircraft sampling was made in fresh plumes strongly impacted by wildfires in North America (Canada and California) in summer 2008 and in those transported from Asia (Siberia in Russia and Kazakhstan) in spring 2008. We extracted biomass burning plumes using particle and tracer (CO, CH3CN, and CH2Cl2) data. OA constituted the dominant fraction of aerosols mass in the submicron range. The large majority of the emitted particles did not contain BC. We related the combustion phase of the fire as represented by the modified combustion efficiency (MCE) to the emission ratios between BC and other species. In particular, we derived the average emission ratios of BC/CO = 2.3 +/- 2.2 and 8.5 +/- 5.4 ng/cu m/ppbv for BB in North America and Asia, respectively. The difference in the BC/CO emission ratios is likely due to the difference in MCE. The count median diameters and geometric standard deviations of the lognormal size distribution of BC in the BB plumes were 136-141 nm and 1.32-1.36, respectively, and depended little on MCE. These BC particles were thickly coated, with shell/core ratios of 1.3-1.6. These parameters can be used directly for improving model estimates of the impact of BB in the Arctic.

  7. The effect of large anthropogenic particulate emissions on atmospheric aerosols, deposition and bioindicators in the eastern Gulf of Finland region.

    PubMed

    Jalkanen, L; Mäkinen, A; Häsänen, E; Juhanoja, J

    2000-10-30

    The effect of the emissions from large oil shale fuelled power plants and a cement factory in Estonia on the elemental concentration of atmospheric aerosols, deposition, elemental composition of mosses and ecological effects on mosses, lichens and pine trees in the eastern Gulf of Finland region has been studied. In addition to chemical analysis, fly ash, moss and aerosol samples were analysed by a scanning electron microscope with an energy dispersive X-ray spectrometer (SEM/EDS). The massive particulate calcium emissions, approximately 60 kton/year (1992), is clearly observed in the aerosols, deposition and mosses. The calcium deposition is largest next to the Russian border downwind from the power plants and in south-eastern part of Finland. This deposition has decreased due to the application of dust removal systems at the particulate emission sources. At the Virolahti EMEP station approximately 140 km north from the emission sources, elevated elemental atmospheric aerosol concentrations are observed for Al, Ca, Fe, K and Si and during episodes many trace elements, such as As, Br, Mo, Ni, Pb and V. The acidification of the soil is negligible because of the high content of basic cations in the deposition. Visible symptoms on pine trees are negligible. However, in moss samples close to the power plants, up to 25% of the leaf surface was covered by particles. Many epiphytic lichen species do not tolerate basic stemflow and on the other hand most species are also very sensitive for the SO2 content in air. Consequently a large lichen desert is found in an area of 2500 km2 in the vicinity of the power plants with only one out of the investigated 12 species growing.

  8. Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter.

    PubMed

    Sandradewi, Jisca; Prévôt, Andre S H; Szidat, Sönke; Perron, Nolwenn; Alfarra, M Rami; Lanz, Valentin A; Weingartner, Ernest; Baltensperger, Urs

    2008-05-01

    A source apportionment study was performed for particulate matter in the small village of Roveredo, Switzerland, where more than 70% of the households use wood burning for heating purposes. A two-lane trans-Alpine highway passes through the village and contributes to the total aerosol burden in the area. The village is located in a steep Alpine valley characterized by strong and persistent temperature inversions during winter, especially from December to February. During two winter and one early spring campaigns, a seven-wavelength aethalometer, high volume (HIVOL) samplers, an Aerodyne quadrupole aerosol mass spectrometer (AMS), an optical particle counter (OPC), and a Sunset Laboratory OCEC analyzer were deployed to study the contribution of wood burning and traffic aerosols to particulate matter. A linear regression model of the carbonaceous particulate mass in the submicrometer size range CM(PM1) as a function of aerosol light absorption properties measured by the aethalometer is introduced to estimate the particulate mass from wood burning and traffic (PM(wb), PM(traffic)). This model was calibrated with analyses from the 14C method using HIVOL filter measurements. These results indicate that light absorption exponents of 1.1 for traffic and 1.8-1.9 for wood burning calculated from the light absorption at 470 and 950 nanometers should be used to obtain agreement of the two methods regarding the relative wood burning and traffic emission contributions to CM(PM1) and also to black carbon. The resulting PM(wb) and PM(traffic) values explain 86% of the variance of the CM(PM1) and contribute, on average, 88 and 12% to CM(PM1), respectively. The black carbon is estimated to be 51% due to wood burning and 49% due to traffic emissions. The average organic carbon/total carbon (OC/TC) values were estimated to be 0.52 for traffic and 0.88 for wood burning particulate emissions.

  9. Secondary Organic Aerosol from On- and Off-Road Combustion Emissions: Scientific and Policy Perspectives

    NASA Astrophysics Data System (ADS)

    Gordon, Timothy D.

    Combustion emissions from on-road sources such as light duty gasoline vehicles (LDGV), medium duty diesel vehicles (MDDV) and heavy duty diesel vehicles (HDDV) as well as small off-road engines (SORE) such those used in lawn and garden equipment are a major source of fine particulate matter (PM) pollution in the ambient atmosphere. Existing regulations have restricted direct PM emissions, especially for on-road sources; however, recent studies suggest that organic PM formed from the photo-oxidation of gaseous precursor emissions—so-called secondary organic aerosol (SOA)—contributes at least as much to the overall PM burden as PM "emitted from the tailpipe." A major limitation of many of these studies is that they attempt to induce from the behavior of simple emission surrogates (e.g., vaporized whole fuel) the behavior of actual combustion emissions from real world sources. This research investigates combustion emissions directly. The primary gas- and particle-phase emissions, SOA production and SOA yields from a range of different on-road and off-road combustion sources were characterized. LDGV, MDDV and HDDV were driven on chassis dynamometers over realistic, urban driving cycles. Off-road sources, including 2- and 4-stroke lawn and garden equipment and a diesel transportation refrigeration unit were tested using engine dynamometers operated over certification cycles. For nearly all gasoline engines (LDGV and SOREs), photo-oxidizing dilute combustion emissions for 3 hours produced at least as much SOA as the directly emitted primary PM. SOA increased net PM production for LDGV by a factor of 1-10, depending on the vehicle emission standard. SOA yields were found to increase with newer vehicles, which have lower primary emissions. SOA for diesel vehicles, while still large on an absolute basis, was a smaller fraction of the primary PM emissions (between 10-30%), due to the very high elemental carbon (EC) emissions from vehicles without diesel particulate

  10. Emissions and Secondary Organic Aerosol Production from Semivolatile and Intermediate Volatility Organic Compounds

    NASA Astrophysics Data System (ADS)

    Robinson, A. L.; Presto, A. A.; Miracolo, M. A.; Donahue, N. M.; Kroll, J. H.; Worsnop, D. R.

    2008-12-01

    Organic aerosols are a highly-dynamic system dominated by both variable gas-particle partitioning and chemical evolution. Important classes of organics include semivolatile and intermediate volatility organic compounds (SVOC and IVOC, respectively). SVOCs are compounds that exist in both the gas and particle phases at typical atmospheric conditions while IVOC are low-volatility vapors that exist exclusively in the gas phase. Both classes have saturation concentrations that are orders of magnitude lower than volatile organic compounds (VOC) that are the traditional subjects of atmosphere chemistry, such as monoterpenes, alkyl benzenes, etc. The SVOC and IVOC are poorly represented for in current atmospheric chemistry models. Source testing indicates that SVOC and IVOC emissions from biomass combustion, diesel engines and other sources exceed the primary organic aerosol emissions; thus the oxidation of these vapors could serve as a significant source of organic aerosol in the atmosphere. The formation of secondary organic aerosol (SOA) from the reactions between OH radicals and SVOCs and IVOCs was investigated in the Carnegie Mellon University smog chamber. Experiments were conducted with n-alkanes and emission surrogates (diesel fuel and lubricating oil). SVOC oxidation produces oxidized organic aerosol but little new organic aerosol mass. This behavior can be explained by the coupled effects of partitioning and aging. Oxidation of SVOC vapors creates low volatility species that partition into the condensed phase; this oxidation also reduces the SVOC vapor concentration which, in turn, requires particle-phase SVOC to evaporate to maintain phase equilibrium. In contrast, oxidation of IVOC results in sustained production of SOA consistent with a reaction with relatively slow kinetics and high mass yield. Aerosol Mass Spectrometer data indicates that the SOA formed from IVOC has a mass spectrum that is quite similar to the oxygenated organic aerosol factor observed in

  11. Urban stress-induced biogenic VOC emissions impact secondary aerosol formation in Beijing

    NASA Astrophysics Data System (ADS)

    Ghirardo, A.; Xie, J.; Zheng, X.; Wang, Y.; Grote, R.; Block, K.; Wildt, J.; Mentel, T.; Kiendler-Scharr, A.; Hallquist, M.; Butterbach-Bahl, K.; Schnitzler, J.-P.

    2015-08-01

    Trees can significantly impact the urban air chemistry by the uptake and emission of reactive biogenic volatile organic compounds (BVOCs), which are involved in ozone and particle formation. Here we present the emission potentials of "constitutive" (cBVOCs) and "stress-induced" BVOCs (sBVOCs) from the dominant broadleaf woody plant species in the megacity of Beijing. Based on an inventory of BVOC emissions and the tree census, we assessed the potential impact of BVOCs on secondary particulate matter formation in 2005 and 2010, i.e., before and after realizing the large tree-planting program for the 2008 Olympic Games. We found that sBVOCs, such as fatty acid derivatives, benzenoids and sesquiterpenes, constituted a significant fraction (∼ 15 %) of the total annual BVOC emissions, and we estimated that the overall annual BVOC budget may have doubled from ∼ 3.6 × 109 g C year-1 in 2005 to ∼ 7.1 × 109 g C year-1 in 2010 due to the increase in urban greens, while at the same time, the emission of anthropogenic VOCs (AVOCs) could be lowered by 24 %. Based on our BVOC emission assessment, we estimated the biological impact on SOA mass formation in Beijing. Compared to AVOCs, the contribution of biogenic precursors (2-5 %) for secondary particulate matter in Beijing was low. However, sBVOCs can significantly contribute (∼ 40 %) to the formation of total secondary organic aerosol (SOA) from biogenic sources; apparently, their annual emission increased from 1.05 μg m-3 in 2005 to 2.05 μg m-3 in 2010. This study demonstrates that biogenic and, in particular, sBVOC emissions contribute to SOA formation in megacities. However, the main problems regarding air quality in Beijing still originate from anthropogenic activities. Nevertheless, the present survey suggests that in urban plantation programs, the selection of plant species with low cBVOC and sBVOC emission potentials have some possible beneficial effects on urban air quality.

  12. MODELING THE EFFECT OF CHLORINE EMISSIONS ON ATMOSPHERIC OZONE AND SECONDARY ORGANIC AEROSOL CONCENTRATIONS ACROSS THE UNITED STATES

    EPA Science Inventory

    This paper presents the modeled effects of natural and anthropogenic chlorine emissions on the atmospheric concentrations of ozone and secondary organic aerosol across the United States. The model calculations include anthropogenic molecular chlorine emissions, anthropogenic hypo...

  13. Climate and mortality changes due to reductions in household cooking emissions

    NASA Astrophysics Data System (ADS)

    Bergman, Tommi; Mielonen, Tero; Arola, Antti; Kokkola, Harri

    2016-04-01

    Household cooking is a significant cause for health and environmental problems in the developing countries. There are more than 3 billion people who use biomass for fuel in cooking stoves in their daily life. These cooking stoves use inadequate ventilation and expose especially women and children to indoor smoke. To reduce problems of the biomass burning, India launched an initiative to provide affordable and clean energy solutions for the poorest households by providing clean next-generation cooking stoves. The improved cooking stoves are expected to improve outdoor air quality and to reduce the climate-active pollutants, thus simultaneously slowing the climate change. Previous research has shown that the emissions of black carbon can be decreased substantially, as much as 90 % by applying better technology in cooking stoves. We have implemented reasonable (50% decrease) and best case (90% decrease) scenarios of the reductions in black and organic carbon due to improved cooking stoves in India into ECHAM-HAMMOZ aerosol-climate model. The global simulations of the scenarios will be used to study how the reductions of emissions in India affect the pollutant concentrations and radiation. The simulated reductions in particulate concentrations will also be used to estimate the decrease in mortality rates. Furthermore, we will study how the emission reductions would affect the global climate and mortality if a similar initiative would be applied in other developing countries.

  14. Lung physiology and aerosol deposition imaged with positron emission tomography.

    PubMed

    Venegas, Jose; Winkler, Tilo; Harris, R Scott

    2013-02-01

    Physiological conditions and pathophysiological changes in the lungs may affect many applications in aerosol medicine and pulmonary drug delivery. In the diseased lung, spatial heterogeneity in function and structure may cause substantial changes in aerosol transport and local deposition among different lung regions. Non-uniform aerosol deposition affects airway or tissue pharmacological dosing, which could reduce the therapeutic effectiveness of inhalation therapy. This review article presents examples of pulmonary imaging using PET and PET-CT in lung physiology with an emphasis on their implications for aerosol medicine. Measurements of regional ventilation, perfusion, and ventilation/perfusion ratio, by imaging local kinetics of intravenously injected Nitrogen-13 in saline solution, and of pulmonary inflammation, by assessing the regional uptake of the radiotracer (18)F-FDG, are presented. These examples demonstrate that it is possible to access both preexisting conditions, such as heterogeneity of ventilation, perfusion, and/or inflammatory stimuli, which may affect inhalation therapy, and the functional effects of inhaled medications or inflammatory agents on lung regional function. The imaging techniques described could be efficient tools to evaluate quantitatively and noninvasively these processes in vivo. Furthermore, it can be expected that imaging of respiratory structure and function will yield sensitive biomarkers of disease, which will help and speed drug discovery, and the evaluation of novel inhalation therapies.

  15. Urban emission hot spots as sources for remote aerosol deposition

    NASA Astrophysics Data System (ADS)

    Kunkel, D.; Lawrence, M. G.; Tost, H.; Kerkweg, A.; Jöckel, P.; Borrmann, S.

    2012-01-01

    Large point sources such as major population centers (MPCs) emit pollutants which can be deposited nearby or transported over long distances before deposition. We have used tracer simulations of aerosols emitted from MPCs worldwide to assess the fractions which are deposited at various distances away from their source location. Considering only source location, prevailing meteorology, and the aerosol size and solubility, we show that fine aerosol particles have a high potential to pollute remote regions. About half of the emitted mass of aerosol tracers with an ambient diameter ≤1.0 μm is typically deposited in regions more than 1000 km away from the source. Furthermore, using the Köppen-Geiger climate classification to categorize the sources into various climate classes we find substantial differences in the deposition potential between these classes. Tracers originating in arid regions show the largest remote deposition potentials, with values more than doubled compared to the smallest potentials from tracers in tropical regions. Seasonal changes in atmospheric conditions lead to variations in the remote deposition potentials. On average the remote deposition potentials in summer correspond to about 70-80% of the values in winter, with a large spread among the climate classes. For tracers from tropical regions the summer remote deposition values are only about 31% of the winter values, while they are about 95% for tracers from arid regions.

  16. Top-Down Smoke Aerosol Emission Estimation Using Satellite Fire Radiative Power Measurements

    NASA Astrophysics Data System (ADS)

    Ichoku, C. M.; Ellison, L.

    2013-05-01

    Biomass burning (BB) occurs seasonally in different vegetated parts of the world, devastating the landscapes, consuming large amounts of biomass fuel, generating intense heat energy, and emitting corresponding amounts of smoke plumes that comprise different species of aerosols and trace gases, many of which have adverse effects on human health, air quality, and environmental processes. Accurate estimates of these emissions are required as model inputs to evaluate and forecast smoke plume transport and impacts on air quality, human health, clouds, weather, radiation, and climate. Emissions estimates have long been based on bottom-up approaches that are not only complex, but also fraught with uncertainties. Fortunately, a series of recent studies have revealed that both the rate of biomass consumption and the rate of emission of aerosol particulate matter (PM) by open biomass burning are directly proportional to the fire radiative power (FRP) or rate of release of fire radiative energy (FRE) that is measurable from satellite. We have leveraged this relationship to generate a global gridded FRE-based emission coefficients (Ce) of particulate matter using measurements of FRP and aerosol optical depth (AOD) from the Moderate-resolution Imaging Spectro-radiometer (MODIS) twin sensors onboard the Terra and Aqua satellites. Ce is a simple coefficient to convert FRP (or FRE) to smoke aerosol emissions, in the same manner as emission factors are used to convert burned biomass to emissions. In this presentation, we will discuss the characteristics of the Ce product, including its uncertainties, strengths and limitations. We will also demonstrate the simplicity and utility of using the gridded Ce product and satellite measurements of FRP to derive emissions, and present some comparisons of these emission products against other emissions inventories.

  17. The impacts of optical properties on radiative forcing due to dust aerosol

    NASA Astrophysics Data System (ADS)

    Wang, H.; Shi, G. Y.; Li, S. Y.; Li, W.; Wang, B.; Huang, Y. B.

    2006-05-01

    There are large uncertainties in the quantitative assessment of radiative effects due to atmospheric dust aerosol. The optical properties contribute much to those uncertainties. The authors perform several sensitivity experiments to estimate the impacts of optical characteristics on regional radiative forcing in this paper. The experiments involve in refractive indices, single scattering albedo, asymmetry factor and optical depth. An updated dataset of refractive indices representing East Asian dust and the one recommended by the World Meteorology Organization (WMO) are contrastively analyzed and used. A radiative transfer code for solar and thermal infrared radiation with detailed aerosol parameterization is employed. The strongest emphasis is on the refractive indices since other optical parameters strongly depend on it, and the authors found a strong sensitivity of radiative forcing on refractive indices. Studies show stronger scattering, weaker absorption and forward scattering of the East Asian dust particles at solar wavelengths, which leads to higher negative forcing, lower positive forcing and bigger net forcing at the top of the atmosphere (TOA) than that of the WMO dust model. It is also found that the TOA forcings resulting from these two dust models have opposite signs in certain regions, which implies the importance of accurate measurements of optical properties in the quantitative estimation of radiative forcing.

  18. Growth of upper tropospheric aerosols due to uptake of HNO3

    NASA Astrophysics Data System (ADS)

    Romakkaniemi, S.; Kokkola, H.; Petzold, A.; Laaksonen, A.

    2004-03-01

    The effect of nitric acid on the equilibrium size distributions of upper tropospheric aerosols is calculated as a function of relative humidity. It is shown that HNO3 concentrations above a few tenths of a ppb can cause substantial increases in haze mode particle concentrations at relative humidities at about 60% and above. The effect can be strongly magnified when letovicite particles are present in addition to sulfuric acid aerosols. Letovicite particles are less acidic than the sulfuric acid particles and so more nitric acid can be absorbed. This effect can be seen even at RH below 50% due to the lowering of the deliquescence RH of letovicite in the presence of gaseous nitric acid at low temperatures. We have also compared equilibrium calculations of the HNO3 effect with observations of increased haze mode concentrations at relative humidities above 50% (Petzold et al., 2000). Nitric acid mixing ratios on the order of 0.5-2ppb may explain the observed increase of haze mode particles at least partially.

  19. Characterizing the impact of urban emissions on regional aerosol particles: airborne measurements during the MEGAPOLI experiment

    NASA Astrophysics Data System (ADS)

    Freney, E. J.; Sellegri, K.; Canonaco, F.; Colomb, A.; Borbon, A.; Michoud, V.; Doussin, J.-F.; Crumeyrolle, S.; Amarouche, N.; Pichon, J.-M.; Bourianne, T.; Gomes, L.; Prevot, A. S. H.; Beekmann, M.; Schwarzenböeck, A.

    2014-02-01

    The MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation) experiment took place in July 2009. The aim of this campaign was to study the aging and reactions of aerosol and gas-phase emissions in the city of Paris. Three ground-based measurement sites and several mobile platforms including instrument equipped vehicles and the ATR-42 aircraft were involved. We present here the variations in particle- and gas-phase species over the city of Paris, using a combination of high-time resolution measurements aboard the ATR-42 aircraft. Particle chemical composition was measured using a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS), giving detailed information on the non-refractory submicron aerosol species. The mass concentration of black carbon (BC), measured by a particle absorption soot photometer (PSAP), was used as a marker to identify the urban pollution plume boundaries. Aerosol mass concentrations and composition were affected by air-mass history, with air masses that spent longest time over land having highest fractions of organic aerosol and higher total mass concentrations. The Paris plume is mainly composed of organic aerosol (OA), BC, and nitrate aerosol, as well as high concentrations of anthropogenic gas-phase species such as toluene, benzene, and NOx. Using BC and CO as tracers for air-mass dilution, we observe the ratio of ΔOA / ΔBC and ΔOA / ΔCO increase with increasing photochemical age (-log(NOx / NOy)). Plotting the equivalent ratios of different organic aerosol species (LV-OOA, SV-OOA, and HOA) illustrate that the increase in OA is a result of secondary organic aerosol (SOA) formation. Within Paris the changes in the ΔOA / ΔCO are similar to those observed during other studies in London, Mexico City, and in New England, USA. Using the measured SOA volatile organic compounds (VOCs) species together with organic aerosol formation

  20. Biomass burning emissions over northern Australia constrained by aerosol measurements: I—Modelling the distribution of hourly emissions

    NASA Astrophysics Data System (ADS)

    Meyer, C. P. (Mick); Luhar, Ashok K.; Mitchell, Ross M.

    Emissions of aerosol from biomass burning in northern Australia are globally significant, yet existing estimates of their magnitude are essentially unconstrained by observation. This two-part series (see Part II by Luhar et al. [2008. Biomass burning emissions over northern Australia constrained by aerosol measurements: II—Model validation, and impacts on air quality and radiative forcing. Atmospheric Environment, submitted for publication] seeks to address this by first formulating a scheme to determine the emissions from the Top End region of the Northern Territory during the 2004 burning season at a high temporal and spatial resolution (1 h, 1 km). The emissions are then validated using a meteorological and transport model called TAPM coupled with a variety of field measurements. The high resolution not only enables validation against various meteorological and aerosol data sets, but also allows prediction of local air quality events. Essential inputs to the emission calculations are satellite-based measurements of fire scars, yielding burnt areas, and hotspots, providing timing information on daily basis. It is shown that hotspots without associated fire scars must be taken into account in order to produce credible aerosol fields. Prediction of emissions at hourly time resolution is enabled by assigning a diurnal variation based on a McArthur fire danger meter. The total carbon emission for the 2004 season is computed to be 67.6 Tg, in remarkable agreement with the bulk estimate of 64.3 Tg derived for the Australian National Greenhouse Gas Inventory, and comparable to the figure of 57.0 Tg determined from the Global Fire Emissions Database (GFEDv2). The total PM 2.5 (particulate matter with an aerodynamic diameter of 2.5 μm or less) emission is computed to be 0.67 Tg. The transport modelling shows that emissions leaving the study region are largely advected to the west over the Timor Sea towards the Indonesian archipelago from April to September, shifting to

  1. Development of a sampling method for carbonyl compounds released due to the use of electronic cigarettes and quantitation of their conversion from liquid to aerosol.

    PubMed

    Jo, Sang-Hee; Kim, Ki-Hyun

    2016-01-15

    In this study, an experimental method for the collection and analysis of carbonyl compounds (CCs) released due to the use of electronic cigarettes (e-cigarettes or ECs) was developed and validated through a series of laboratory experiments. As part of this work, the conversion of CCs from a refill solution (e-solution) to aerosol also was investigated based on mass change tracking (MCT) approach. Aerosol samples generated from an e-cigarette were collected manually using 2,4-dinitrophenylhydrazine (DNPH) cartridges at a constant sampling (puffing) velocity of 1 L min(-1) with the following puff conditions: puff duration (2s), interpuff interval (10s), and puff number (5, 10, and 15 times). The MCT approach allowed us to improve the sampling of CCs through critical evaluation of the puff conditions in relation to the consumed quantities of refill solution. The emission concentrations of CCs remained constant when e-cigarettes were sampled at or above 10 puff. Upon aerosolization, the concentrations of formaldehyde and acetaldehyde increased 6.23- and 58.4-fold, respectively, relative to their concentrations in e-solution. Furthermore, a number of CCs were found to be present in the aerosol samples which were not detected in the initial e-solution (e.g., acetone, butyraldehyde, and o-tolualdehyde).

  2. Irreversible climate change due to carbon dioxide emissions.

    PubMed

    Solomon, Susan; Plattner, Gian-Kasper; Knutti, Reto; Friedlingstein, Pierre

    2009-02-10

    The severity of damaging human-induced climate change depends not only on the magnitude of the change but also on the potential for irreversibility. This paper shows that the climate change that takes place due to increases in carbon dioxide concentration is largely irreversible for 1,000 years after emissions stop. Following cessation of emissions, removal of atmospheric carbon dioxide decreases radiative forcing, but is largely compensated by slower loss of heat to the ocean, so that atmospheric temperatures do not drop significantly for at least 1,000 years. Among illustrative irreversible impacts that should be expected if atmospheric carbon dioxide concentrations increase from current levels near 385 parts per million by volume (ppmv) to a peak of 450-600 ppmv over the coming century are irreversible dry-season rainfall reductions in several regions comparable to those of the "dust bowl" era and inexorable sea level rise. Thermal expansion of the warming ocean provides a conservative lower limit to irreversible global average sea level rise of at least 0.4-1.0 m if 21st century CO(2) concentrations exceed 600 ppmv and 0.6-1.9 m for peak CO(2) concentrations exceeding approximately 1,000 ppmv. Additional contributions from glaciers and ice sheet contributions to future sea level rise are uncertain but may equal or exceed several meters over the next millennium or longer.

  3. Irreversible climate change due to carbon dioxide emissions.

    PubMed

    Solomon, Susan; Plattner, Gian-Kasper; Knutti, Reto; Friedlingstein, Pierre

    2009-02-10

    The severity of damaging human-induced climate change depends not only on the magnitude of the change but also on the potential for irreversibility. This paper shows that the climate change that takes place due to increases in carbon dioxide concentration is largely irreversible for 1,000 years after emissions stop. Following cessation of emissions, removal of atmospheric carbon dioxide decreases radiative forcing, but is largely compensated by slower loss of heat to the ocean, so that atmospheric temperatures do not drop significantly for at least 1,000 years. Among illustrative irreversible impacts that should be expected if atmospheric carbon dioxide concentrations increase from current levels near 385 parts per million by volume (ppmv) to a peak of 450-600 ppmv over the coming century are irreversible dry-season rainfall reductions in several regions comparable to those of the "dust bowl" era and inexorable sea level rise. Thermal expansion of the warming ocean provides a conservative lower limit to irreversible global average sea level rise of at least 0.4-1.0 m if 21st century CO(2) concentrations exceed 600 ppmv and 0.6-1.9 m for peak CO(2) concentrations exceeding approximately 1,000 ppmv. Additional contributions from glaciers and ice sheet contributions to future sea level rise are uncertain but may equal or exceed several meters over the next millennium or longer. PMID:19179281

  4. A New Approach to Modeling Aerosol Effects on East Asian Climate: Parametric Uncertainties Associated with Emissions, Cloud Microphysics and their Interactions

    SciTech Connect

    Yan, Huiping; Qian, Yun; Zhao, Chun; Wang, Hailong; Wang, Minghuai; Yang, Ben; Liu, Xiaohong; Fu, Qiang

    2015-09-16

    In this study, we adopt a parametric sensitivity analysis framework that integrates the quasi-Monte Carlo parameter sampling approach and a surrogate model to examine aerosol effects on the East Asian Monsoon climate simulated in the Community Atmosphere Model (CAM5). A total number of 256 CAM5 simulations are conducted to quantify the model responses to the uncertain parameters associated with cloud microphysics parameterizations and aerosol (e.g., sulfate, black carbon (BC), and dust) emission factors and their interactions. Results show that the interaction terms among parameters are important for quantifying the sensitivity of fields of interest, especially precipitation, to the parameters. The relative importance of cloud-microphysics parameters and emission factors (strength) depends on evaluation metrics or the model fields we focused on, and the presence of uncertainty in cloud microphysics imposes an additional challenge in quantifying the impact of aerosols on cloud and climate. Due to their different optical and microphysical properties and spatial distributions, sulfate, BC, and dust aerosols have very different impacts on East Asian Monsoon through aerosol-cloud-radiation interactions. The climatic effects of aerosol do not always have a monotonic response to the change of emission factors. The spatial patterns of both sign and magnitude of aerosol-induced changes in radiative fluxes, cloud, and precipitation could be different, depending on the aerosol types, when parameters are sampled in different ranges of values. We also identify the different cloud microphysical parameters that show the most significant impact on climatic effect induced by sulfate, BC and dust, respectively, in East Asia.

  5. Quantitative evaluation of emission control of primary and secondary organic aerosol sources during Beijing 2008 Olympics

    NASA Astrophysics Data System (ADS)

    Guo, S.; Hu, M.; Guo, Q.; Zhang, X.; Schauer, J. J.; Zhang, R.

    2012-12-01

    To explore the primary and secondary sources of fine organic particles after the aggressive implementation of air pollution controls during 2008 Beijing Olympic Games, 12-h PM2.5 concentrations were measured at one urban and one upwind rural site during the CAREBeijing-2008 (Campaigns of Air quality REsearch in Beijing and surrounding region) summer field campaign. The PM2.5 concentrations were 72.5±43.6μg m3 and 64.3±36.2μg m-3 at the urban site and rural site, respectively, which were the lowest in recent years due to the implementation of drastic control measures and favorable weather conditions. Five primary and four secondary fine organic particle sources were quantified using a CMB (chemical mass balance) model and tracer-yield method. Compared with previous studies in Beijing, the contribution of vehicle emission increased, with diesel engines contributing 16.2±5.9% and 14.5±4.1% to the total organic carbon (OC) concentrations and gasoline vehicles accounting for 10.3±8.7% and 7.9±6.2% of the OC concentrations at two sites. Due to the implementation of emission control measures, the OC concentrations from important primary sources have been reduced, and secondary formation has become an important contributor to fine organic aerosols. Compared with the non-controlled period, primary vehicle contributions were reduced by 30% and 24% in the urban and regional area, and reductions in the contribution from coal combustion were 57% and 7%, respectively. These results demonstrate the emission control measures significantly alleviated the primary organic particle pollution in and around Beijing. However, the control effectiveness of secondary organic particles was not significant.

  6. Global climate impacts of country-level primary carbonaceous aerosol from solid-fuel cookstove emissions

    NASA Astrophysics Data System (ADS)

    Lacey, Forrest; Henze, Daven

    2015-11-01

    Cookstove use is globally one of the largest unregulated anthropogenic sources of primary carbonaceous aerosol. While reducing cookstove emissions through national-scale mitigation efforts has clear benefits for improving indoor and ambient air quality, and significant climate benefits from reduced green-house gas emissions, climate impacts associated with reductions to co-emitted black (BC) and organic carbonaceous aerosol are not well characterized. Here we attribute direct, indirect, semi-direct, and snow/ice albedo radiative forcing (RF) and associated global surface temperature changes to national-scale carbonaceous aerosol cookstove emissions. These results are made possible through the use of adjoint sensitivity modeling to relate direct RF and BC deposition to emissions. Semi- and indirect effects are included via global scaling factors, and bounds on these estimates are drawn from current literature ranges for aerosol RF along with a range of solid fuel emissions characterizations. Absolute regional temperature potentials are used to estimate global surface temperature changes. Bounds are placed on these estimates, drawing from current literature ranges for aerosol RF along with a range of solid fuel emissions characterizations. We estimate a range of 0.16 K warming to 0.28 K cooling with a central estimate of 0.06 K cooling from the removal of cookstove aerosol emissions. At the national emissions scale, countries’ impacts on global climate range from net warming (e.g., Mexico and Brazil) to net cooling, although the range of estimated impacts for all countries span zero given uncertainties in RF estimates and fuel characterization. We identify similarities and differences in the sets of countries with the highest emissions and largest cookstove temperature impacts (China, India, Nigeria, Pakistan, Bangladesh and Nepal), those with the largest temperature impact per carbon emitted (Kazakhstan, Estonia, and Mongolia), and those that would provide the

  7. Profile and Morphology of Fungal Aerosols Characterized by Field Emission Scanning Electron Microscopy (FESEM)

    PubMed Central

    Afanou, Komlavi Anani; Straumfors, Anne; Skogstad, Asbjørn; Skaar, Ida; Hjeljord, Linda; Skare, Øivind; Green, Brett James; Tronsmo, Arne; Eduard, Wijnand

    2016-01-01

    Fungal aerosols consist of spores and fragments with diverse array of morphologies; however, the size, shape, and origin of the constituents require further characterization. In this study, we characterize the profile of aerosols generated from Aspergillus fumigatus, A. versicolor, and Penicillium chrysogenum grown for 8 weeks on gypsum boards. Fungal particles were aerosolized at 12 and 20 L min−1 using the Fungal Spore Source Strength Tester (FSSST) and the Stami particle generator (SPG). Collected particles were analyzed with field emission scanning electron microscopy (FESEM). We observed spore particle fraction consisting of single spores and spore aggregates in four size categories, and a fragment fraction that contained submicronic fragments and three size categories of larger fragments. Single spores dominated the aerosols from A. fumigatus (median: 53%), while the submicronic fragment fraction was the highest in the aerosols collected from A. versicolor (median: 34%) and P. chrysogenum (median: 31%). Morphological characteristics showed near spherical particles that were only single spores, oblong particles that comprise some spore aggregates and fragments (<3.5 μm), and fiber-like particles that regroup chained spore aggregates and fragments (>3.5 μm). Further, the near spherical particles dominated the aerosols from A. fumigatus (median: 53%), while oblong particles were dominant in the aerosols from A. versicolor (68%) and P. chrysogenum (55%). Fiber-like particles represented 21% and 24% of the aerosols from A. versicolor and P. chrysogenum, respectively. This study shows that fungal particles of various size, shape, and origin are aerosolized, and supports the need to include a broader range of particle types in fungal exposure assessment. PMID:26855468

  8. Fast oxidation processes from emission to ambient air introduction of aerosol emitted by residential log wood stoves

    NASA Astrophysics Data System (ADS)

    Nalin, Federica; Golly, Benjamin; Besombes, Jean-Luc; Pelletier, Charles; Aujay-Plouzeau, Robin; Verlhac, Stéphane; Dermigny, Adrien; Fievet, Amandine; Karoski, Nicolas; Dubois, Pascal; Collet, Serge; Favez, Olivier; Albinet, Alexandre

    2016-10-01

    Little is known about the impact of post-combustion processes, condensation and dilution, on the aerosol concentration and chemical composition from residential wood combustion. The evolution of aerosol emitted by two different residential log wood stoves (old and modern technologies) from emission until it is introduced into ambient air was studied under controlled "real" conditions. The first objective of this research was to evaluate the emission factors (EF) of polycyclic aromatic hydrocarbons (PAH) and their nitrated and oxygenated derivatives from wood combustion. These toxic substances are poorly documented in the literature. A second objective was to evaluate the oxidation state of the wood combustion effluent by studying these primary/secondary compounds. EFs of Σ37PAHs and Σ27Oxy-PAHs were in the same range and similar to those reported in literature (4-240 mg kg-1). Σ31Nitro-PAH EFs were 2-4 orders of magnitude lower (3.10-2-8.10-2 mg kg-1) due to the low temperature and low emission of NO2 from wood combustion processes. An increase of equivalent EF of PAH derivatives was observed suggesting that the oxidation state of the wood combustion effluent from the emission point until its introduction in ambient air changed in a few seconds. These results were confirmed by the study of both, typical compounds of SOA formation from PAH oxidation and, PAH ratio-ratio plots commonly used for source evaluation.

  9. Use of MODIS-Derived Fire Radiative Energy to Estimate Smoke Aerosol Emissions over Different Ecosystems

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Kaufman, Yoram J.

    2003-01-01

    Biomass burning is the main source of smoke aerosols and certain trace gases in the atmosphere. However, estimates of the rates of biomass consumption and emission of aerosols and trace gases from fires have not attained adequate reliability thus far. Traditional methods for deriving emission rates employ the use of emission factors e(sub x), (in g of species x per kg of biomass burned), which are difficult to measure from satellites. In this era of environmental monitoring from space, fire characterization was not a major consideration in the design of the early satellite-borne remote sensing instruments, such as AVHRR. Therefore, although they are able to provide fire location information, they were not adequately sensitive to variations in fire strength or size, because their thermal bands used for fire detection saturated at the lower end of fire radiative temperature range. As such, hitherto, satellite-based emission estimates employ proxy techniques using satellite derived fire pixel counts (which do not express the fire strength or rate of biomass consumption) or burned areas (which can only be obtained after the fire is over). The MODIS sensor, recently launched into orbit aboard EOS Terra (1999) and Aqua (2002) satellites, have a much higher saturation level and can, not only detect the fire locations 4 times daily, but also measures the at-satellite fire radiative energy (which is a measure of the fire strength) based on its 4 micron channel temperature. Also, MODIS measures the optical thickness of smoke and other aerosols. Preliminary analysis shows appreciable correlation between the MODIS-derived rates of emission of fire radiative energy and smoke over different regions across the globe. These relationships hold great promise for deriving emission coefficients, which can be used for estimating smoke aerosol emissions from MODIS active fire products. This procedure has the potential to provide more accurate emission estimates in near real

  10. AGRICULTURAL AMMONIA EMISSIONS AND AMMONIUM CONCENTRATIONS ASSOCIATED WITH AEROSOLS AND PRECIPITATION IN THE SOUTHEAST UNITED STATES

    EPA Science Inventory

    Temporal and spatial variations in ammonia (NH3) emissions and ammonium (NH4+) concentrations associated with aerosols and volume-weighted NH4+ concentration in precipitation are investigated over the period 1990-1998 in the southeast United States (Alabama, Florida, Georgia, Ken...

  11. Updating sea spray aerosol emissions in the Community Multiscale Air Quality (CMAQ) model

    EPA Science Inventory

    Sea spray aerosols (SSA) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. In this study, the Community Multiscale Air Quality (CMAQ) model is updated to enhance fine mode SSA emissions,...

  12. Characterizing the impact of urban emissions on regional aerosol particles; airborne measurements during the MEGAPOLI experiment

    NASA Astrophysics Data System (ADS)

    Freney, E. J.; Sellegri, K.; Canonaco, F.; Colomb, A.; Borbon, A.; Michoud, V.; Doussin, J.-F.; Crumeyrolle, S.; Amarouch, N.; Pichon, J.-M.; Prévôt, A. S. H.; Beekmann, M.; Schwarzenböeck, A.

    2013-09-01

    The MEGAPOLI experiment took place in July 2009. The aim of this campaign was to study the aging and reactions of aerosol and gas-phase emissions in the city of Paris. Three ground-based measurement sites and several mobile platforms including instrument equipped vehicles and the ATR-42 aircraft were involved. We present here the variations in particle- and gas-phase species over the city of Paris using a combination of high-time resolution measurements aboard the ATR-42 aircraft. Particle chemical composition was measured using a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS) giving detailed information of the non-refractory submicron aerosol species. The mass concentration of BC, measured by a particle absorption soot photometer (PSAP), was used as a marker to identify the urban pollution plume boundaries. Aerosol mass concentrations and composition were affected by air-mass history, with air masses that spent longest time over land having highest fractions of organic aerosol and higher total mass concentrations. The Paris plume is mainly composed of organic aerosol (OA), black carbon and nitrate aerosol, as well as high concentrations of anthropogenic gas-phase species such as toluene, benzene, and NOx. Using BC and CO as tracers for air-mass dilution, we observe the ratio of ΔOA / ΔBC and ΔOA / ΔCO increase with increasing photochemical age (-log(NOx / NOy). Plotting the equivalent ratios for the Positive Matrix Factorization (PMF) resolved species (LV-OOA, SV-OOA, and HOA) illustrate that the increase in OA is a result of secondary organic aerosol (SOA). Within Paris the changes in the ΔOA / ΔCO are similar to those observed during other studies in Mexico city, Mexico and in New England, USA. Using the measured VOCs species together with recent organic aerosol formation yields we predicted ~ 50% of the measured organics. These airborne measurements during the MEGAPOLI experiment show that urban emissions contribute to the formation of OA

  13. Primary emissions and secondary organic aerosol formation from the exhaust of a flex-fuel (ethanol) vehicle

    NASA Astrophysics Data System (ADS)

    Suarez-Bertoa, R.; Zardini, A. A.; Platt, S. M.; Hellebust, S.; Pieber, S. M.; El Haddad, I.; Temime-Roussel, B.; Baltensperger, U.; Marchand, N.; Prévôt, A. S. H.; Astorga, C.

    2015-09-01

    Incentives to use biofuels may result in increasing vehicular emissions of compounds detrimental to air quality. Therefore, regulated and unregulated emissions from a Euro 5a flex-fuel vehicle, tested using E85 and E75 blends (gasoline containing 85% and 75% of ethanol (vol/vol), respectively), were investigated at 22 and -7 °C over the New European Driving Cycle, at the Vehicle Emission Laboratory at the European Commission Joint Research Centre Ispra, Italy. Vehicle exhaust was comprehensively analyzed at the tailpipe and in a dilution tunnel. A fraction of the exhaust was injected into a mobile smog chamber to study the photochemical aging of the mixture. We found that emissions from a flex-fuel vehicle, fueled by E85 and E75, led to secondary organic aerosol (SOA) formation, despite the low aromatic content of these fuel blends. Emissions of regulated and unregulated compounds, as well as emissions of black carbon (BC) and primary organic aerosol (POA) and SOA formation were higher at -7 °C. The flex-fuel unregulated emissions, mainly composed of ethanol and acetaldehyde, resulted in very high ozone formation potential and SOA, especially at low temperature (860 mg O3 km-1 and up to 38 mg C kg-1). After an OH exposure of 10 × 106 cm-3 h, SOA mass was, on average, 3 times larger than total primary particle mass emissions (BC + POA) with a high O:C ratio (up to 0.7 and 0.5 at 22 and -7 °C, respectively) typical of highly oxidized mixtures. Furthermore, high resolution organic mass spectra showed high 44/43 ratios (ratio of the ions m/z 44 and m/z 43) characteristic of low-volatility oxygenated organic aerosol. We also hypothesize that SOA formation from vehicular emissions could be due to oxidation products of ethanol and acetaldehyde, both short-chain oxygenated VOCs, e.g. methylglyoxal and acetic acid, and not only from aromatic compounds.

  14. “APEC Blue”: Secondary Aerosol Reductions from Emission Controls in Beijing

    NASA Astrophysics Data System (ADS)

    Sun, Yele; Wang, Zifa; Wild, Oliver; Xu, Weiqi; Chen, Chen; Fu, Pingqing; Du, Wei; Zhou, Libo; Zhang, Qi; Han, Tingting; Wang, Qingqing; Pan, Xiaole; Zheng, Haitao; Li, Jie; Guo, Xiaofeng; Liu, Jianguo; Worsnop, Douglas R.

    2016-02-01

    China implemented strict emission control measures in Beijing and surrounding regions to ensure good air quality during the 2014 Asia-Pacific Economic Cooperation (APEC) summit. We conducted synchronous aerosol particle measurements with two aerosol mass spectrometers at different heights on a meteorological tower in urban Beijing to investigate the variations in particulate composition, sources and size distributions in response to emission controls. Our results show consistently large reductions in secondary inorganic aerosol (SIA) of 61–67% and 51–57%, and in secondary organic aerosol (SOA) of 55% and 37%, at 260 m and ground level, respectively, during the APEC summit. These changes were mainly caused by large reductions in accumulation mode particles and by suppression of the growth of SIA and SOA by a factor of 2–3, which led to blue sky days during APEC commonly referred to as “APEC Blue”. We propose a conceptual framework for the evolution of primary and secondary species and highlight the importance of regional atmospheric transport in the formation of severe pollution episodes in Beijing. Our results indicate that reducing the precursors of secondary aerosol over regional scales is crucial and effective in suppressing the formation of secondary particulates and mitigating PM pollution.

  15. “APEC Blue”: Secondary Aerosol Reductions from Emission Controls in Beijing

    PubMed Central

    Sun, Yele; Wang, Zifa; Wild, Oliver; Xu, Weiqi; Chen, Chen; Fu, Pingqing; Du, Wei; Zhou, Libo; Zhang, Qi; Han, Tingting; Wang, Qingqing; Pan, Xiaole; Zheng, Haitao; Li, Jie; Guo, Xiaofeng; Liu, Jianguo; Worsnop, Douglas R.

    2016-01-01

    China implemented strict emission control measures in Beijing and surrounding regions to ensure good air quality during the 2014 Asia-Pacific Economic Cooperation (APEC) summit. We conducted synchronous aerosol particle measurements with two aerosol mass spectrometers at different heights on a meteorological tower in urban Beijing to investigate the variations in particulate composition, sources and size distributions in response to emission controls. Our results show consistently large reductions in secondary inorganic aerosol (SIA) of 61–67% and 51–57%, and in secondary organic aerosol (SOA) of 55% and 37%, at 260 m and ground level, respectively, during the APEC summit. These changes were mainly caused by large reductions in accumulation mode particles and by suppression of the growth of SIA and SOA by a factor of 2–3, which led to blue sky days during APEC commonly referred to as “APEC Blue”. We propose a conceptual framework for the evolution of primary and secondary species and highlight the importance of regional atmospheric transport in the formation of severe pollution episodes in Beijing. Our results indicate that reducing the precursors of secondary aerosol over regional scales is crucial and effective in suppressing the formation of secondary particulates and mitigating PM pollution. PMID:26891104

  16. Variation in biogenic volatile organic compound emission pattern of Fagus sylvatica L. due to aphid infection

    NASA Astrophysics Data System (ADS)

    Joó, É.; Van Langenhove, H.; Šimpraga, M.; Steppe, K.; Amelynck, C.; Schoon, N.; Müller, J.-F.; Dewulf, J.

    2010-01-01

    Volatile organic compounds (VOCs) have been the focus of interest to understand atmospheric processes and their consequences in formation of ozone or aerosol particles; therefore, VOCs contribute to climate change. In this study, biogenic VOCs (BVOCs) emitted from Fagus sylvatica L. trees were measured in a dynamic enclosure system. In total 18 compounds were identified: 11 monoterpenes (MT), an oxygenated MT, a homoterpene (C 14H 18), 3 sesquiterpenes (SQT), isoprene and methyl salicylate. The frequency distribution of the compounds was tested to determine a relation with the presence of the aphid Phyllaphis fagi L. It was found that linalool, (E)-β-ocimene, α-farnesene and a homoterpene identified as (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), were present in significantly more samples when infection was present on the trees. The observed emission spectrum from F. sylvatica L. shifted from MT to linalool, α-farnesene, (E)-β-ocimene and DMNT due to the aphid infection. Sabinene was quantitatively the most prevalent compound in both, non-infected and infected samples. In the presence of aphids α-farnesene and linalool became the second and third most important BVOC emitted. According to our investigation, the emission fingerprint is expected to be more complex than commonly presumed.

  17. The chemical and microphysical properties of secondary organic aerosols from Holm Oak emissions

    NASA Astrophysics Data System (ADS)

    Lang-Yona, N.; Rudich, Y.; Mentel, Th. F.; Buchholz, A.; Kiendler-Scharr, A.; Kleist, E.; Spindler, C.; Tillmann, R.; Wildt, J.

    2010-02-01

    The Mediterranean region is expected to experience substantial climatic change in the next 50 years. But, possible effects of climate change on biogenic volatile organic compound (VOC) emissions as well as on the formation of secondary organic aerosols (SOA) produced from these VOC are yet unexplored. To address such issues, the effects of temperature and light intensity on the VOC emissions of Mediterranean Holm Oak have been studied in the Jülich plant aerosol atmosphere chamber, as well as the optical and microphysical properties of the resulting SOA. Monoterpenes dominated the VOC emissions from Holm Oak (97.5%) and temperature increase enhanced the emission strength under variation of the emission pattern. The amount of SOA increased linearly with the emission strength with a fractional mass yield of 5.7±1%, independent of the detailed emission pattern. The particles were highly scattering with no absorption abilities. Their average hygroscopic growth factor was 1.13±0.03 at 90% RH with a critical diameter of droplet activation of 100±4 nm at a supersaturation of 0.4%. All microphysical properties did not depend on the detailed emission pattern, in accordance with an invariant O/C ratio (0.57(+0.03/-0.1)) of the SOA observed by high resolution aerosol mass spectrometry. The increase of Holm oak emissions with temperature (≈20% per degree) was stronger than e.g. for Boreal tree species (≈10% per degree). Increasing mean temperature in Mediterranean areas therefore may have a stronger impact on VOC emissions and SOA formation than in areas with Boreal forests.

  18. Stratospheric cooling and polar ozone loss due to H2 emissions of a global hydrogen economy

    NASA Astrophysics Data System (ADS)

    Feck, T.; Grooß, J.-U.; Riese, M.; Vogel, B.

    2009-04-01

    "Green" hydrogen is seen as a major element of the future energy supply to reduce greenhouse gas emissions substantially. However, due to the possible interactions of hydrogen (H2) with other atmospheric constituents there is a need to analyse the implications of additional atmospheric H2 that could result from hydrogen leakage of a global hydrogen infrastructure. Emissions of molecular H2 can occur along the whole hydrogen process chain which increase the tropospheric H2 burden. Across the tropical tropopause H2 reaches the stratosphere where it is oxidised and forms water vapour (H2O). This causes increased IR-emissions into space and hence a cooling of the stratosphere. Both effects, the increase of stratospheric H2O and the cooling, enhances the potential of chlorine activation on liquid sulfate aerosol and polar stratospheric clouds (PSCs), which increase polar ozone destruction. Hence a global hydrogen economy could provoke polar ozone loss and could lead to a substantial delay of the current projected recovery of the stratospheric ozone layer. Our investigations show that even if 90% of the current global fossil primary energy input could be replaced by hydrogen and approximately 9.5% of the product gas would leak to the atmosphere, the ozone loss would be increased between 15 to 26 Dobson Units (DU) if the stratospheric CFC loading would retain unchanged. A consistency check of the used approximation methods with the Chemical Lagrangian Model of the Stratosphere (CLaMS) shows that this additional ozone loss can probably be treated as an upper limit. Towards more realistic future H2 leakage rate assumptions (< 3%) the additional ozone loss would be rather small (? 10 DU). However, in all cases the full damage would only occur if stratospheric CFC-levels would retain unchanged. Due to the CFC-prohibition as a result of the Montreal Protocol the forecasts suggest a decline of the stratospheric CFC loading about 50% until 2050. In this case our calculations

  19. Megacity emission plume characteristics in summer and winter investigated by mobile aerosol and trace gas measurements: the Paris metropolitan area

    NASA Astrophysics Data System (ADS)

    von der Weiden-Reinmüller, S.-L.; Drewnick, F.; Zhang, Q. J.; Freutel, F.; Beekmann, M.; Borrmann, S.

    2014-12-01

    For the investigation of megacity emission plume characteristics mobile aerosol and trace gas measurements were carried out in the greater Paris region in July 2009 and January-February 2010 within the EU FP7 MEGAPOLI project (Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation). The deployed instruments measured physical and chemical properties of sub-micron aerosol particles, gas phase constituents of relevance for urban air pollution studies and meteorological parameters. The emission plume was identified based on fresh pollutant (e.g., particle-bound polycyclic aromatic hydrocarbons, black carbon, CO2 and NOx) concentration changes in combination with wind direction data. The classification into megacity influenced and background air masses allowed a characterization of the emission plume during summer and winter environmental conditions. On average, a clear increase of fresh pollutant concentrations in plume compared to background air masses was found for both seasons. For example, an average increase of 190% (+ 8.8 ng m-3) in summer and of 130% (+ 18.1 ng m-3) in winter was found for particle-bound polycyclic aromatic hydrocarbons in plume air masses. The aerosol particle size distribution in plume air masses was influenced by nucleation and growth due to coagulation and condensation in summer, while in winter only the latter process (i.e., particle growth) seemed to be initiated by urban pollution. The observed distribution of fresh pollutants in the emission plume - its cross sectional Gaussian-like profile and the exponential decrease of pollutant concentrations with increasing distance to the megacity - are in agreement with model results. Differences between model and measurements were found for plume center location, plume width and axial plume extent. In general, dilution was identified as the dominant process determining the axial variations within the Paris

  20. Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the southeast United States and co-benefit of SO2 emission controls

    NASA Astrophysics Data System (ADS)

    Marais, E. A.; Jacob, D. J.; Jimenez, J. L.; Campuzano-Jost, P.; Day, D. A.; Hu, W.; Krechmer, J.; Zhu, L.; Kim, P. S.; Miller, C. C.; Fisher, J. A.; Travis, K.; Yu, K.; Hanisco, T. F.; Wolfe, G. M.; Arkinson, H. L.; Pye, H. O. T.; Froyd, K. D.; Liao, J.; McNeill, V. F.

    2016-02-01

    Isoprene emitted by vegetation is an important precursor of secondary organic aerosol (SOA), but the mechanism and yields are uncertain. Aerosol is prevailingly aqueous under the humid conditions typical of isoprene-emitting regions. Here we develop an aqueous-phase mechanism for isoprene SOA formation coupled to a detailed gas-phase isoprene oxidation scheme. The mechanism is based on aerosol reactive uptake coefficients (γ) for water-soluble isoprene oxidation products, including sensitivity to aerosol acidity and nucleophile concentrations. We apply this mechanism to simulation of aircraft (SEAC4RS) and ground-based (SOAS) observations over the southeast US in summer 2013 using the GEOS-Chem chemical transport model. Emissions of nitrogen oxides (NOx ≡ NO + NO2) over the southeast US are such that the peroxy radicals produced from isoprene oxidation (ISOPO2) react significantly with both NO (high-NOx pathway) and HO2 (low-NOx pathway), leading to different suites of isoprene SOA precursors. We find a mean SOA mass yield of 3.3 % from isoprene oxidation, consistent with the observed relationship of total fine organic aerosol (OA) and formaldehyde (a product of isoprene oxidation). Isoprene SOA production is mainly contributed by two immediate gas-phase precursors, isoprene epoxydiols (IEPOX, 58 % of isoprene SOA) from the low-NOx pathway and glyoxal (28 %) from both low- and high-NOx pathways. This speciation is consistent with observations of IEPOX SOA from SOAS and SEAC4RS. Observations show a strong relationship between IEPOX SOA and sulfate aerosol that we explain as due to the effect of sulfate on aerosol acidity and volume. Isoprene SOA concentrations increase as NOx emissions decrease (favoring the low-NOx pathway for isoprene oxidation), but decrease more strongly as SO2 emissions decrease (due to the effect of sulfate on aerosol acidity and volume). The US Environmental Protection Agency (EPA) projects 2013-2025 decreases in anthropogenic emissions of

  1. Optical properties of aerosol emissions from biomass burning in the tropics, BASE-A

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.; Kaufman, Yoram J.; Setzer, Alberto W.; Tanre, Didre D.; Ward, Darold E.

    1991-01-01

    Ground-based and airborne measurements of biomass-burning smoke particle optical properties, obtained with a view to aerosol-absorption properties, are presented as a function of time and atmospheric height. The wavelength dependence of the optical thickness can be explained by a log-normal size distribution, with particles' effective radius varying between 0.1 and 0.2 microns. The strong correlation noted between aerosol particle profile and CO profile indicates that smoke particulates constitute a good tracer for emission trace gases from tropical biomass burning.

  2. Gas-particle partitioning of primary organic aerosol emissions: 3. Biomass burning

    NASA Astrophysics Data System (ADS)

    May, Andrew A.; Levin, Ezra J. T.; Hennigan, Christopher J.; Riipinen, Ilona; Lee, Taehyoung; Collett, Jeffrey L.; Jimenez, Jose L.; Kreidenweis, Sonia M.; Robinson, Allen L.

    2013-10-01

    organic aerosol concentrations depend in part on the gas-particle partitioning of primary organic aerosol (POA) emissions. Consequently, heating and dilution were used to investigate the volatility of biomass-burning smoke particles from combustion of common North American trees/shrubs/grasses during the third Fire Lab at Missoula Experiment. Fifty to eighty percent of the mass of biomass-burning POA evaporated when isothermally diluted from plume- (~1000 µg m-3) to ambient-like concentrations (~10 µg m-3), while roughly 80% of the POA evaporated upon heating to 100°C in a thermodenuder with a residence time of ~14 sec. Therefore, the majority of the POA emissions were semivolatile. Thermodenuder measurements performed at three different residence times indicated that there were not substantial mass transfer limitations to evaporation (i.e., the mass accommodation coefficient appears to be between 0.1 and 1). An evaporation kinetics model was used to derive volatility distributions and enthalpies of vaporization from the thermodenuder data. A single volatility distribution can be used to represent the measured gas-particle partitioning from the entire set of experiments, including different fuels, organic aerosol concentrations, and thermodenuder residence times. This distribution, derived from the thermodenuder measurements, also predicts the dilution-driven changes in gas-particle partitioning. This volatility distribution and associated emission factors for each fuel studied can be used to update emission inventories and to simulate the gas-particle partitioning of biomass-burning POA emissions in chemical transport models.

  3. The chemical and microphysical properties of secondary organic aerosols from Holm Oak emissions

    NASA Astrophysics Data System (ADS)

    Lang-Yona, N.; Rudich, Y.; Mentel, Th. F.; Bohne, A.; Buchholz, A.; Kiendler-Scharr, A.; Kleist, E.; Spindler, C.; Tillmann, R.; Wildt, J.

    2010-08-01

    The Mediterranean region is expected to experience substantial climatic change in the next 50 years. But, possible effects of climate change on biogenic volatile organic compound (VOC) emissions as well as on the formation of secondary organic aerosols (SOA) produced from these VOC are yet unexplored. To address such issues, the effects of temperature on the VOC emissions of Mediterranean Holm Oak and small Mediterranean stand of Wild Pistacio, Aleppo Pine, and Palestine Oak have been studied in the Jülich plant aerosol atmosphere chamber. For Holm Oak the optical and microphysical properties of the resulting SOA were investigated. Monoterpenes dominated the VOC emissions from Holm Oak (97.5%) and Mediterranean stand (97%). Higher temperatures enhanced the overall VOC emission but with different ratios of the emitted species. The amount of SOA increased linearly with the emission strength with a fractional mass yield of 6.0±0.6%, independent of the detailed emission pattern. The investigated particles were highly scattering with no absorption abilities. Their average hygroscopic growth factor of 1.13±0.03 at 90% RH with a critical diameter of droplet activation was 100±4 nm at a supersaturation of 0.4%. All microphysical properties did not depend on the detailed emission pattern, in accordance with an invariant O/C ratio (0.57(+0.03/-0.1)) of the SOA observed by high resolution aerosol mass spectrometry. The increase of Holm oak emissions with temperature (≈20% per degree) was stronger than e.g. for Boreal tree species (≈10% per degree). The SOA yield for Mediterranean trees determined here is similar as for Boreal trees. Increasing mean temperature in Mediterranean areas could thus have a stronger impact on BVOC emissions and SOA formation than in areas with Boreal forests.

  4. Airborne studies of emissions from savanna fires in southern Africa. 1. Aerosol emissions measured with a laser optical particle counter

    NASA Astrophysics Data System (ADS)

    Le Canut, P.; Andreae, M. O.; Harris, G. W.; Wienhold, F. G.; Zenker, T.

    1996-10-01

    During the SAFARI-92 experiment (Southern Africa Fire Atmosphere Research Initiative, September-October 1992), we flew an instrumented DC-3 aircraft through plumes from fires in various southern African savanna ecosystems. Some fires had been managed purposely for scientific study (e.g., those in Kruger National Park, South Africa), while the others were "fires of opportunity" which are abundant during the burning season in southern Africa. We obtained the aerosol (0.1-3.0 μm diameter) number and mass emission ratios relative to carbon monoxide and carbon dioxide from 21 individual fires. The average particle number emission ratio ΔN/ΔCO (Δ: concentrations in plume minus background concentrations) varied between 14 ± 2 cm-3 ppb-1 for grasslands and 23 ± 7 cm-3 ppb-1 for savannas. An exceptionally high value of 43 ± 4 cm-3 ppb-1 was measured for a sugarcane fire. Similarly, the mass emission ratio ΔM/ΔCO varied from 36 ± 6 ng m-3 ppb-1 to 83 ± 45 ng m-3 ppb-1, respectively, with again an exceptionally high value of 124 ± 14 ng m-3 ppb-1 for the sugarcane fire. The number and mass emission ratios relative to CO depended strongly upon the fire intensity. Whereas the emission ratios varied greatly from one fire to the other, the aerosol number and volume distributions as a function of particle size were very consistent. The average background aerosol size distribution was characterized by three mass modes (0.2-0.4 μm, ≈1.0 μm, and ≈2.0 μm diameter). On the other hand, the aerosol size distribution in the smoke plumes showed only two mass modes, one centered in the interval 0.2-0.3 μm and the other above 2 μm diameter. From our mean emission factor (4 ± 1 g kg-1 dm) we estimate that savanna fires release some 11-18 Tg aerosol particles in the size range 0.1-3.0 μm annually, a somewhat lower amount than emitted from tropical forest fires. Worldwide, savanna fires emit some 3-8 × 1027 particles (in the same size range) annually, which is expected

  5. Production-based emissions, consumption-based emissions and consumption-based health impacts of PM2.5 carbonaceous aerosols in Asia

    NASA Astrophysics Data System (ADS)

    Takahashi, Kei; Nansai, Keisuke; Tohno, Susumu; Nishizawa, Masato; Kurokawa, Jun-ichi; Ohara, Toshimasa

    2014-11-01

    This study determined the production-based emissions, the consumption-based emissions, and the consumption-based health impact of primary carbonaceous aerosols (black carbon: BC, organic carbon: OC) in nine countries and regions in Asia (Indonesia, Malaysia, the Philippines, Singapore, Thailand, China, Taiwan, South Korea, and Japan) in 2008. For the production-based emissions, sectoral emissions inventory of BC and OC for the year of 2008 based on the Asian international input-output tables (AIIOT) was compiled including direct emissions from households. Then, a multiregional environmental input-output analysis with the 2008 AIIOT which was originally developed by updating the table of 2000 was applied for calculating the consumption-based emissions for each country and region. For the production-based emissions, China had the highest BC and OC emissions of 4520 Gg-C in total, which accounted for 75% of the total emissions in the nine countries and regions. For consumption-based emissions, China was estimated to have had a total of 4849 Gg-C of BC and OC emissions, which accounted for 77% of the total emissions in the Asia studied. We also quantified how much countries and regions induced emissions in other countries and regions. Furthermore, taking account of the source-receptor relationships of BC and OC among the countries and regions, we converted their consumption-based emissions into the consumption-based health impact of each country and region. China showed the highest consumption-based health impact of BC and OC totaling 111 × 103 premature deaths, followed by Indonesia, Japan, Thailand and South Korea. China accounted for 87% of the sum total of the consumption-based health impacts of the countries/regions, indicating that China's contribution to consumption-based health impact in Asia was greater than its consumption-based emissions. By elucidating the health impacts that each country and region had on other countries and from which country the impacts

  6. Real-Time Observations of Secondary Aerosol Formation and Aging from Different Emission Sources and Environments

    NASA Astrophysics Data System (ADS)

    Ortega, A. M.; Palm, B. B.; Hayes, P. L.; Day, D. A.; Cubison, M.; Brune, W. H.; Hu, W.; Flynn, J. H.; Grossberg, N.; Lefer, B. L.; Rappenglueck, B.; Bon, D.; Graus, M.; Warneke, C.; Gilman, J.; Kuster, W.; De Gouw, J. A.; Jimenez, J. L.

    2013-12-01

    To investigate atmospheric processing of direct urban and wildfire emissions, we deployed a photochemical flow reactor (Potential Aerosol Mass, PAM) with submicron aerosol size and chemical composition measurements during FLAME-3, a biomass-burning study at USDA Fire Sciences Laboratory in Missoula, MT, and CalNex, a field study investigating the nexus of air quality and climate change at a receptor site in the LA-Basin at Pasadena, CA. The reactor produces OH concentrations up to 4 orders of magnitude higher than in ambient air, achieving equivalent aging of ~2 weeks in 5 minutes of processing. The OH exposure (OHexp) was stepped every 20 min in both field studies. Results show the value of this approach as a tool for in-situ evaluation of changes in OA concentration and composition due to photochemical processing. In FLAME-3, the average OA enhancement factor was 1.42 × 0.36 of the initial POA. Reactive VOCs, such as toluene, monoterpenes, and acetaldehyde, decreased with increased OHexp; however, formic acid, acetone, and some unidentified OVOCs increased after significant exposure. Net SOA formation in the photochemical reactor increased with OHexp, typically peaking around 3 days of equivalent atmospheric photochemical age (OHexp ~3.9e11 molecules cm-3 s), then leveling off at higher exposures. Unlike other studies, no decrease in OA is observed at high exposure, likely due to lower max OHexp in this study due to very high OH reactivity. The amount of additional OA mass added from aging is positively correlated with initial POA concentration, but not with the total VOC concentration or the concentration of known SOA precursors. The mass of SOA formed often exceeded the mass of the known VOC precursors, indicating the likely importance of primary semivolatile/intermediate volatility species, and possibly of unidentified VOCs as SOA precursors in biomass burning smoke. Results from CalNex show enhancement of OA and inorganic aerosol from gas-phase precursors

  7. Megacity emission plume characteristics in summer and winter investigated by mobile aerosol and trace gas measurements: the Paris metropolitan area

    NASA Astrophysics Data System (ADS)

    von der Weiden-Reinmüller, S.-L.; Drewnick, F.; Zhang, Q. J.; Freutel, F.; Beekmann, M.; Borrmann, S.

    2014-05-01

    For the investigation of megacity emission plume characteristics mobile aerosol and trace gas measurements were carried out in the greater Paris region in July 2009 and January/February 2010 within the EU FP7 MEGAPOLI project. The deployed instruments measured physical and chemical properties of sub-micron aerosol particles, gas phase constituents of relevance for urban air pollution studies and meteorological parameters. The emission plume was identified based on fresh pollutant (e.g. particle-bound polycyclic aromatic hydrocarbons, black carbon, CO2 and NOx) concentration changes in combination with wind direction data. The classification into megacity influenced and background air masses allowed a characterization of the emission plume during summer and winter environmental conditions. On average, a clear increase of fresh pollutant concentrations in plume compared to background air masses was found for both seasons. For example, an average increase of 190% (+8.8 ng m-3) in summer and of 130% (+18.1 ng m-3) in winter was found for particle-bound polycyclic aromatic hydrocarbons in plume air masses. The aerosol particle size distribution in plume air masses was influenced by nucleation and growth due to coagulation and condensation in summer, while in winter only the second process seemed to be initiated by urban pollution. The observed distribution of fresh pollutants in the emission plume - its cross sectional Gaussian-like profile and the exponential decrease of pollutant concentrations with increasing distance to the megacity - are in agreement with model results. Differences between model and measurements were found for plume center location, plume width and axial plume extent. In general, dilution was identified as the dominant process determining the axial variations within the Paris emission plume. For in-depth analysis of transformation processes occurring in the advected plume, simultaneous measurements at a suburban measurement site and a stationary

  8. Influences of emission sources and meteorology on aerosol chemistry in a polluted urban environment: results from DISCOVER-AQ California

    DOE PAGES

    Young, Dominique E.; Kim, Hwajin; Parworth, Caroline; Zhou, Shan; Zhang, Xiaolu; Cappa, Christopher D.; Seco, Roger; Kim, Saewung; Zhang, Qi

    2016-05-02

    The San Joaquin Valley (SJV) in California experiences persistent air-quality problems associated with elevated particulate matter (PM) concentrations due to anthropogenic emissions, topography, and meteorological conditions. Thus it is important to unravel the various sources and processes that affect the physicochemical properties of PM in order to better inform pollution abatement strategies and improve parameterizations in air-quality models. During January and February 2013, a ground supersite was installed at the Fresno–Garland California Air Resources Board (CARB) monitoring station, where comprehensive, real-time measurements of PM and trace gases were performed using instruments including an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) andmore » an Ionicon proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) as part of the NASA Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) campaign. The average submicron aerosol (PM1) concentration was 31.0 µg m−3 and the total mass was dominated by organic aerosols (OA, 55 %), followed by ammonium nitrate (35 %). High PM pollution events were commonly associated with elevated OA concentrations, mostly from primary sources. Organic aerosols had average atomic oxygen-to-carbon (O / C), hydrogen-to-carbon (H / C), and nitrogen-to-carbon (N / C) ratios of 0.42, 1.70, and 0.017, respectively. Six distinct sources of organic aerosol were identified from positive matrix factorization (PMF) analysis of the AMS data: hydrocarbon-like OA (HOA; 9 % of total OA, O / C  =  0.09) associated with local traffic, cooking OA (COA; 18 % of total OA, O / C  =  0.19) associated with food cooking activities, two biomass burning OA (BBOA1: 13 % of total OA, O / C  =  0.33; BBOA2: 20 % of total OA, O / C  =  0.60) most likely

  9. Influences of emission sources and meteorology on aerosol chemistry in a polluted urban environment: results from DISCOVER-AQ California

    NASA Astrophysics Data System (ADS)

    Young, D. E.; Kim, H.; Parworth, C.; Zhou, S.; Zhang, X.; Cappa, C. D.; Seco, R.; Kim, S.; Zhang, Q.

    2015-12-01

    The San Joaquin Valley (SJV) in California experiences persistent air quality problems associated with elevated particulate matter (PM) concentrations due to anthropogenic emissions, topography, and meteorological conditions. Thus it is important to unravel the various sources and processes that affect the physico-chemical properties of PM in order to better inform pollution abatement strategies and improve parameterizations in air quality models. Aerosol Mass Spectrometer (HR-ToF-AMS) and an Ionicon Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-TOF-MS) as part of the NASA Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) campaign. The average submicron aerosol (PM1) concentration was 31.0 μg m-3 and the total mass was dominated by organic aerosols (OA, 55 %), followed by ammonium nitrate (35 %). High PM pollution events were commonly associated with elevated OA concentrations, mostly from primary sources. Organic aerosols had average atomic oxygen-to-carbon (O / C), hydrogen-to-carbon (H / C), and nitrogen-to-carbon (N / C) ratios of 0.42, 1.70, and 0.017, respectively. Six distinct sources of organic aerosol were identified from positive matrix factorization (PMF) analysis of the AMS data: hydrocarbon-like OA (HOA; 9 % of total OA; O / C = 0.09) associated with local traffic, cooking OA (COA; 28 % of total OA; O / C = 0.19) associated with food cooking activities, two biomass burning OAs (BBOA1; 13 % of total OA; O / C = 0.33 and BBOA2; 20 % of total OA; O / C = 0.60) most likely associated with residential space heating from wood combustion, and semi

  10. Influences of emission sources and meteorology on aerosol chemistry in a polluted urban environment: results from DISCOVER-AQ California

    NASA Astrophysics Data System (ADS)

    Young, Dominique E.; Kim, Hwajin; Parworth, Caroline; Zhou, Shan; Zhang, Xiaolu; Cappa, Christopher D.; Seco, Roger; Kim, Saewung; Zhang, Qi

    2016-05-01

    The San Joaquin Valley (SJV) in California experiences persistent air-quality problems associated with elevated particulate matter (PM) concentrations due to anthropogenic emissions, topography, and meteorological conditions. Thus it is important to unravel the various sources and processes that affect the physicochemical properties of PM in order to better inform pollution abatement strategies and improve parameterizations in air-quality models. During January and February 2013, a ground supersite was installed at the Fresno-Garland California Air Resources Board (CARB) monitoring station, where comprehensive, real-time measurements of PM and trace gases were performed using instruments including an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and an Ionicon proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) as part of the NASA Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) campaign. The average submicron aerosol (PM1) concentration was 31.0 µg m-3 and the total mass was dominated by organic aerosols (OA, 55 %), followed by ammonium nitrate (35 %). High PM pollution events were commonly associated with elevated OA concentrations, mostly from primary sources. Organic aerosols had average atomic oxygen-to-carbon (O / C), hydrogen-to-carbon (H / C), and nitrogen-to-carbon (N / C) ratios of 0.42, 1.70, and 0.017, respectively. Six distinct sources of organic aerosol were identified from positive matrix factorization (PMF) analysis of the AMS data: hydrocarbon-like OA (HOA; 9 % of total OA, O / C = 0.09) associated with local traffic, cooking OA (COA; 18 % of total OA, O / C = 0.19) associated with food cooking activities, two biomass burning OA (BBOA1: 13 % of total OA, O / C = 0.33; BBOA2: 20 % of total OA, O / C = 0.60) most likely associated with residential space heating from wood combustion, and semivolatile oxygenated OA (SV

  11. Emissions of Methane and Other Hydrocarbons Due to Wellbore Leaks

    NASA Astrophysics Data System (ADS)

    Lyman, S. N.; Mansfield, M. L.

    2013-12-01

    The explosive growth of oil and gas production in the United States has focused public and regulatory attention on environmental impacts of hydrocarbon extraction, including air quality and climate impacts. However, EPA and others have acknowledged that current air emissions factors and inventories for many oil and gas-related source categories are inadequate or lacking entirely. One potentially important emissions source is leakage of natural gas from wellbores. This phenomenon has long been recognized to occur, but no attempt has been made to quantify emission rates of gas leaked from wellbores to the atmosphere. Soil gas measurements carried out by USGS over the last several years in Utah's oil and gas fields have shown that, while concentrations of methane in soils near many wells are low, soil gas near some wells can contain more than 10% methane, indicating that underground leakage is occurring. In summer 2013 we carried out a campaign to measure the emission rate of methane and other hydrocarbons from soils near wells in two oil and gas fields in Utah. We measured emissions from several locations on some well pads to determine the change in emission rate with distance from well heads, and we measured at non-well sites in the same fields to determine background emission rates. Methane emission rates at some wells exceeded 3 g m-2 h-1, while emission rates at other wells were similar to background levels, and a correlation was observed between soil gas methane concentrations and methane emission rates from the soil. We used these data to estimate total methane and hydrocarbon emission rates from these two fields.

  12. Cardiac and pulmonary oxidative stress in rats exposed to realistic emissions of source aerosols

    PubMed Central

    Lemos, Miriam; Diaz, Edgar A.; Gupta, Tarun; Kang, Choong-Min; Ruiz, Pablo; Coull, Brent A.; Godleski, John J.; Gonzalez-Flecha, Beatriz

    2013-01-01

    In vivo chemiluminescence (CL) is a measure of reactive oxygen species in tissues. CL was used to assess pulmonary and cardiac responses to inhaled aerosols derived from aged emissions of three coal-fired power plants in the USA. Sprague–Dawley rats were exposed to either filtered air or: (1) primary emissions (P); (2) ozone oxidized emissions (PO); (3) oxidized emissions + secondary organic aerosol (SOA) (POS); (4) neutralized oxidized emissions + SOA (PONS); and (5) control scenarios: oxidized emissions + SOA in the absence of primary particles (OS), oxidized emissions alone (O), and SOA alone (S). Immediately after 6 hours of exposure, CL in the lung and heart was measured. Tissues were also assayed for thiobarbituric acid reactive substances (TBARS). Exposure to P or PO aerosols led to no changes compared to filtered air in lung or heart CL at any individual plant or when all data were combined. POS caused significant increases in lung CL and TBARS at only one plant, and not in combined data from all plants; PONS resulted in increased lung CL only when data from all plants were combined. Heart CL was also significantly increased with exposure to POS only when data from all plants were combined. PONS increased heart CL significantly in one plant with TBARS accumulation, but not in combined data. Exposure to O, OS, and S had no CL effects. Univariate analyses of individual measured components of the exposure atmospheres did not identify any component associated with increased CL. These data suggest that coal-fired power plant emissions combined with other atmospheric constituents produce limited pulmonary and cardiac oxidative stress. PMID:21913821

  13. Optical Properties and Mixing State of Aerosols from Residential Wood Burning and Vehicle Emissions in Central and Southern California

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Cappa, C. D.; Collier, S.; Zhang, Q.; Williams, L. R.; Lee, A.; Abbatt, J.; Russell, L. M.; Liu, J.; Chen, C. L.; Betha, R.

    2015-12-01

    Light-absorbing materials such as black carbon (BC) and brown carbon (BrC) in atmospheric aerosols play important roles in regulating the earth's radiative budget and climate. However, the representations of BC and BrC in state-of-the-art climate models remain highly uncertain, in part due to the poor understanding of their microphysical and optical properties. Direct observations and characterizations of the mixing state and absorption enhancement of ambient aerosols could provide invaluable constraints for current model representations of aerosol radiative effects. Here, we will discuss results from measurements of aerosol light absorption and absorption enhancement (Eabs), using a thermodenuder-absorption method, made during two recent field studies in central and southern California. The winter study took place in Dec/Jan of 2014/2015 in Fresno, CA. This region is severely impacted by particulate matter from local and regional residential biomass burning. The summer study took place in July 2015 in Fontana, CA, a region ~80 km downwind of Los Angeles and strongly impacted by vehicular emissions, and thus provides a sharp contrast to the Fresno study. Eabs of BC particles due to the "lensing" effect from coatings to BC core and/or the presence of BrC will be quantified and compared between the two studies. Additionally, the chemical composition of bulk and the BC-containing particles are determined via a HR-ToF-AMS and a SP-AMS, respectively. Variations in the composition and mixing state of the ambient particles and how these affect the observed Eabs will be examined. The overall measurements suggest a relatively small role for lensing-induced absorption enhancements for ambient particles in these regions.

  14. Gas phase emissions from cooking processes and their secondary aerosol production potential

    NASA Astrophysics Data System (ADS)

    Klein, Felix; Platt, Stephen; Bruns, Emily; Termime-roussel, Brice; Detournay, Anais; Mohr, Claudia; Crippa, Monica; Slowik, Jay; Marchand, Nicolas; Baltensperger, Urs; Prevot, Andre; El Haddad, Imad

    2014-05-01

    Long before the industrial evolution and the era of fossil fuels, high concentrations of aerosol particles were alluded to in heavily populated areas, including ancient Rome and medieval London. Recent radiocarbon measurements (14C) conducted in modern megacities came as a surprise: carbonaceous aerosol (mainly organic aerosol, OA), a predominant fraction of particulate matter (PM), remains overwhelmingly non-fossil despite extensive fossil fuel combustion. Such particles are directly emitted (primary OA, POA) or formed in-situ in the atmosphere (secondary OA, SOA) via photochemical reactions of volatile organic compounds (VOCs). Urban levels of non-fossil OA greatly exceed the levels measured in pristine environments strongly impacted by biogenic emissions, suggesting a contribution from unidentified anthropogenic non-fossil sources to urban OA. Positive matrix factorization (PMF) techniques applied to ambient aerosol mass spectrometer (AMS, Aerodyne) data identify primary cooking emissions (COA) as one of the main sources of primary non-fossil OA in major cities like London (Allan et al., 2010), New York (Sun et al., 2011) and Beijing (Huang et al., 2010). Cooking processes can also emit VOCs that can act as SOA precursors, potentially explaining in part the high levels of oxygenated OA (OOA) identified by the AMS in urban areas. However, at present, the chemical nature of these VOCs and their secondary aerosol production potential (SAPP) remain virtually unknown. The approach adopted here involves laboratory quantification of PM and VOC emission factors from the main primary COA emitting processes and their SAPP. Primary emissions from deep-fat frying, vegetable boiling, vegetable frying and meat cooking for different oils, meats and vegetables were analysed under controlled conditions after ~100 times dilution. A high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a high resolution proton transfer time-of-flight mass spectrometer (PTR

  15. Sulfur-rich geothermal emissions elevate acid aerosol levels in metropolitan Taipei.

    PubMed

    Lin, Chih-Hung; Mao, I-Fang; Tsai, Pei-Hsien; Chuang, Hsin-Yi; Chen, Yi-Ju; Chen, Mei-Lien

    2010-08-01

    Several studies have demonstrated that millions of people globally are potentially exposed to volcanic gases. Hydrogen sulfide is a typical gas in volcanic and geothermal areas. The gas is toxic at high concentrations that predominantly affects the nervous, cardiovascular, and respiratory systems. The WHO air quality guideline for hydrogen sulfide is 150 microg m(-3) (105 ppb). The northwest part of Taipei is surrounded by sulfur-rich geothermal and hot springs. Active fumaroles and bubbling springs around the geothermal area emit acidic gases. In combination with automobile emissions, the pollution of acid aerosols is characteristic of the metropolis. This study considered sulfur-rich geothermal, suburban and downtown locations of this metropolis to evaluate geothermally emitted acid aerosol and H(2)S pollution. Acid aerosols were collected using a honeycomb denuder filter pack sampling system (HDS), and then analyzed by ion chromatography (IC). Results indicated that long-term geothermal emissions, automobile emissions and photochemical reactions have led to significant variations in air pollution among regions of metropolitan Taipei. The highest H(2)S concentration was 1705 ppb in the geothermal area with low traffic density and the mean concentration was 404.06 ppb, which was higher than WHO guideline and might cause eye irritation. The SO(2) concentrations were relatively low (mean concentration was 3.9 ppb) in this area. It may partially result from the chemical reduction reaction in the geothermal emission, which converted the SO(2) gas into SO(4)(2-) and H(2)S. Consequently, very high sulfate concentrations (mean concentration higher than 25.0 microg m(-3)) were also observed in the area. The geothermal areas also emitted relatively high levels of aerosol acidity, Cl(-), F(-), PO(4)(3-), and N-containing aerosols. As a result, concentrations of HNO(3), NO(2)(-), PO(4)(3-), and SO(4)(2-) in metropolitan Taipei are significantly higher than those in other

  16. Secondary organic aerosol formation from gasoline passenger vehicle emissions investigated in a smog chamber

    NASA Astrophysics Data System (ADS)

    Nordin, E. Z.; Eriksson, A. C.; Roldin, P.; Nilsson, P. T.; Carlsson, J. E.; Kajos, M. K.; Hellén, H.; Wittbom, C.; Rissler, J.; Löndahl, J.; Swietlicki, E.; Svenningsson, B.; Bohgard, M.; Kulmala, M.; Hallquist, M.; Pagels, J.

    2012-12-01

    Gasoline vehicles have elevated emissions of volatile organic compounds during cold starts and idling and have recently been pointed out as potentially the main source of anthropogenic secondary organic aerosol (SOA) in megacities. However, there is a lack of laboratory studies to systematically investigate SOA formation in real-world exhaust. In this study, SOA formation from pure aromatic precursors, idling and cold start gasoline exhaust from one Euro II, one Euro III and one Euro IV passenger vehicles were investigated using photo-oxidation experiments in a 6 m3 smog chamber. The experiments were carried out at atmospherically relevant organic aerosol mass concentrations. The characterization methods included a high resolution aerosol mass spectrometer and a proton transfer mass spectrometer. It was found that gasoline exhaust readily forms SOA with a signature aerosol mass spectrum similar to the oxidized organic aerosol that commonly dominates the organic aerosol mass spectra downwind urban areas. After 4 h aging the formed SOA was 1-2 orders of magnitude higher than the Primary OA emissions. The SOA mass spectrum from a relevant mixture of traditional light aromatic precursors gave f43 (mass fraction at m/z = 4 3) approximately two times higher than to the gasoline SOA. However O : C and H : C ratios were similar for the two cases. Classical C6-C9 light aromatic precursors were responsible for up to 60% of the formed SOA, which is significantly higher than for diesel exhaust. Important candidates for additional precursors are higher order aromatic compounds such as C10, C11 light aromatics, naphthalene and methyl-naphthalenes.

  17. Fourfold higher tundra volatile emissions due to arctic summer warming

    NASA Astrophysics Data System (ADS)

    Lindwall, Frida; Schollert, Michelle; Michelsen, Anders; Blok, Daan; Rinnan, Riikka

    2016-03-01

    Biogenic volatile organic compounds (BVOCs), which are mainly emitted by vegetation, may create either positive or negative climate forcing feedbacks. In the Subarctic, BVOC emissions are highly responsive to temperature, but the effects of climatic warming on BVOC emissions have not been assessed in more extreme arctic ecosystems. The Arctic undergoes rapid climate change, with air temperatures increasing at twice the rate of the global mean. Also, the amount of winter precipitation is projected to increase in large areas of the Arctic, and it is unknown how winter snow depth affects BVOC emissions during summer. Here we examine the responses of BVOC emissions to experimental summer warming and winter snow addition—each treatment alone and in combination—in an arctic heath during two growing seasons. We observed a 280% increase relative to ambient in BVOC emissions in response to a 4°C summer warming. Snow addition had minor effects on growing season BVOC emissions after one winter but decreased BVOC emissions after the second winter. We also examined differences between canopy and air temperatures and found that the tundra canopy surface was on average 7.7°C and maximum 21.6°C warmer than air. This large difference suggests that the tundra surface temperature is an important driver for emissions of BVOCs, which are temperature dependent. Our results demonstrate a strong response of BVOC emissions to increasing temperatures in the Arctic, suggesting that emission rates will increase with climate warming and thereby feed back to regional climate change.

  18. Direct observation of aqueous secondary organic aerosol from biomass-burning emissions

    PubMed Central

    Massoli, Paola; Paglione, Marco; Giulianelli, Lara; Carbone, Claudio; Rinaldi, Matteo; Decesari, Stefano; Sandrini, Silvia; Costabile, Francesca; Gobbi, Gian Paolo; Pietrogrande, Maria Chiara; Visentin, Marco; Scotto, Fabiana; Fuzzi, Sandro; Facchini, Maria Cristina

    2016-01-01

    The mechanisms leading to the formation of secondary organic aerosol (SOA) are an important subject of ongoing research for both air quality and climate. Recent laboratory experiments suggest that reactions taking place in the atmospheric liquid phase represent a potentially significant source of SOA mass. Here, we report direct ambient observations of SOA mass formation from processing of biomass-burning emissions in the aqueous phase. Aqueous SOA (aqSOA) formation is observed both in fog water and in wet aerosol. The aqSOA from biomass burning contributes to the “brown” carbon (BrC) budget and exhibits light absorption wavelength dependence close to the upper bound of the values observed in laboratory experiments for fresh and processed biomass-burning emissions. We estimate that the aqSOA from residential wood combustion can account for up to 0.1–0.5 Tg of organic aerosol (OA) per y in Europe, equivalent to 4–20% of the total OA emissions. Our findings highlight the importance of aqSOA from anthropogenic emissions on air quality and climate. PMID:27551086

  19. Direct observation of aqueous secondary organic aerosol from biomass-burning emissions.

    PubMed

    Gilardoni, Stefania; Massoli, Paola; Paglione, Marco; Giulianelli, Lara; Carbone, Claudio; Rinaldi, Matteo; Decesari, Stefano; Sandrini, Silvia; Costabile, Francesca; Gobbi, Gian Paolo; Pietrogrande, Maria Chiara; Visentin, Marco; Scotto, Fabiana; Fuzzi, Sandro; Facchini, Maria Cristina

    2016-09-01

    The mechanisms leading to the formation of secondary organic aerosol (SOA) are an important subject of ongoing research for both air quality and climate. Recent laboratory experiments suggest that reactions taking place in the atmospheric liquid phase represent a potentially significant source of SOA mass. Here, we report direct ambient observations of SOA mass formation from processing of biomass-burning emissions in the aqueous phase. Aqueous SOA (aqSOA) formation is observed both in fog water and in wet aerosol. The aqSOA from biomass burning contributes to the "brown" carbon (BrC) budget and exhibits light absorption wavelength dependence close to the upper bound of the values observed in laboratory experiments for fresh and processed biomass-burning emissions. We estimate that the aqSOA from residential wood combustion can account for up to 0.1-0.5 Tg of organic aerosol (OA) per y in Europe, equivalent to 4-20% of the total OA emissions. Our findings highlight the importance of aqSOA from anthropogenic emissions on air quality and climate. PMID:27551086

  20. Direct observation of aqueous secondary organic aerosol from biomass-burning emissions

    NASA Astrophysics Data System (ADS)

    Gilardoni, Stefania; Massoli, Paola; Paglione, Marco; Giulianelli, Lara; Carbone, Claudio; Rinaldi, Matteo; Decesari, Stefano; Sandrini, Silvia; Costabile, Francesca; Gobbi, Gian Paolo; Chiara Pietrogrande, Maria; Visentin, Marco; Scotto, Fabiana; Fuzzi, Sandro; Facchini, Maria Cristina

    2016-09-01

    The mechanisms leading to the formation of secondary organic aerosol (SOA) are an important subject of ongoing research for both air quality and climate. Recent laboratory experiments suggest that reactions taking place in the atmospheric liquid phase represent a potentially significant source of SOA mass. Here, we report direct ambient observations of SOA mass formation from processing of biomass-burning emissions in the aqueous phase. Aqueous SOA (aqSOA) formation is observed both in fog water and in wet aerosol. The aqSOA from biomass burning contributes to the “brown” carbon (BrC) budget and exhibits light absorption wavelength dependence close to the upper bound of the values observed in laboratory experiments for fresh and processed biomass-burning emissions. We estimate that the aqSOA from residential wood combustion can account for up to 0.1-0.5 Tg of organic aerosol (OA) per y in Europe, equivalent to 4-20% of the total OA emissions. Our findings highlight the importance of aqSOA from anthropogenic emissions on air quality and climate.

  1. Aerosol Direct, Indirect, Semidirect, and Surface Albedo Effects from Sector Contributions Based on the IPCC AR5 Emissions for Preindustrial and Present-day Conditions

    NASA Technical Reports Server (NTRS)

    Bauer, Susanne E.; Menon, Surabi

    2012-01-01

    The anthropogenic increase in aerosol concentrations since preindustrial times and its net cooling effect on the atmosphere is thought to mask some of the greenhouse gas-induced warming. Although the overall effect of aerosols on solar radiation and clouds is most certainly negative, some individual forcing agents and feedbacks have positive forcing effects. Recent studies have tried to identify some of those positive forcing agents and their individual emission sectors, with the hope that mitigation policies could be developed to target those emitters. Understanding the net effect of multisource emitting sectors and the involved cloud feedbacks is very challenging, and this paper will clarify forcing and feedback effects by separating direct, indirect, semidirect and surface albedo effects due to aerosols. To this end, we apply the Goddard Institute for Space Studies climate model including detailed aerosol microphysics to examine aerosol impacts on climate by isolating single emission sector contributions as given by the Coupled Model Intercomparison Project Phase 5 (CMIP5) emission data sets developed for Intergovernmental Panel on Climate Change (IPCC) AR5. For the modeled past 150 years, using the climate model and emissions from preindustrial times to present-day, the total global annual mean aerosol radiative forcing is -0.6 W/m(exp 2), with the largest contribution from the direct effect (-0.5 W/m(exp 2)). Aerosol-induced changes on cloud cover often depends on cloud type and geographical region. The indirect (includes only the cloud albedo effect with -0.17 W/m(exp 2)) and semidirect effects (-0.10 W/m(exp 2)) can be isolated on a regional scale, and they often have opposing forcing effects, leading to overall small forcing effects on a global scale. Although the surface albedo effects from aerosols are small (0.016 W/m(exp 2)), triggered feedbacks on top of the atmosphere (TOA) radiative forcing can be 10 times larger. Our results point out that each

  2. Soot aggregate restructuring due to coatings of secondary organic aerosol derived from aromatic precursors.

    PubMed

    Schnitzler, Elijah G; Dutt, Ashneil; Charbonneau, André M; Olfert, Jason S; Jäger, Wolfgang

    2014-12-16

    Restructuring of monodisperse soot aggregates due to coatings of secondary organic aerosol (SOA) derived from hydroxyl radical-initiated oxidation of toluene, p-xylene, ethylbenzene, and benzene was investigated in a series of photo-oxidation (smog) chamber experiments. Soot aggregates were generated by combustion of ethylene using a McKenna burner, treated by denuding, size-selected by a differential mobility analyzer, and injected into a smog chamber, where they were exposed to low vapor pressure products of aromatic hydrocarbon oxidation, which formed SOA coatings. Aggregate restructuring began once a threshold coating mass was reached, and the degree of the subsequent restructuring increased with mass growth factor. Although significantly compacted, fully processed aggregates were not spherical, with a mass-mobility exponent of 2.78, so additional SOA was required to fill indentations between collapsed branches of the restructured aggregates before the dynamic shape factor of coated particles approached 1. Trends in diameter growth factor, effective density, and dynamic shape factor with increasing mass growth factor indicate distinct stages in soot aggregate processing by SOA coatings. The final degree and coating mass dependence of soot restructuring were found to be the same for SOA coatings from all four aromatic precursors, indicating that the surface tensions of the SOA coatings are similar. PMID:25390075

  3. Soot aggregate restructuring due to coatings of secondary organic aerosol derived from aromatic precursors.

    PubMed

    Schnitzler, Elijah G; Dutt, Ashneil; Charbonneau, André M; Olfert, Jason S; Jäger, Wolfgang

    2014-12-16

    Restructuring of monodisperse soot aggregates due to coatings of secondary organic aerosol (SOA) derived from hydroxyl radical-initiated oxidation of toluene, p-xylene, ethylbenzene, and benzene was investigated in a series of photo-oxidation (smog) chamber experiments. Soot aggregates were generated by combustion of ethylene using a McKenna burner, treated by denuding, size-selected by a differential mobility analyzer, and injected into a smog chamber, where they were exposed to low vapor pressure products of aromatic hydrocarbon oxidation, which formed SOA coatings. Aggregate restructuring began once a threshold coating mass was reached, and the degree of the subsequent restructuring increased with mass growth factor. Although significantly compacted, fully processed aggregates were not spherical, with a mass-mobility exponent of 2.78, so additional SOA was required to fill indentations between collapsed branches of the restructured aggregates before the dynamic shape factor of coated particles approached 1. Trends in diameter growth factor, effective density, and dynamic shape factor with increasing mass growth factor indicate distinct stages in soot aggregate processing by SOA coatings. The final degree and coating mass dependence of soot restructuring were found to be the same for SOA coatings from all four aromatic precursors, indicating that the surface tensions of the SOA coatings are similar.

  4. Air emissions due to wind and solar power.

    PubMed

    Katzenstein, Warren; Apt, Jay

    2009-01-15

    Renewables portfolio standards (RPS) encourage large-scale deployment of wind and solar electric power. Their power output varies rapidly, even when several sites are added together. In many locations, natural gas generators are the lowest cost resource available to compensate for this variability, and must ramp up and down quickly to keep the grid stable, affecting their emissions of NOx and CO2. We model a wind or solar photovoltaic plus gas system using measured 1-min time-resolved emissions and heat rate data from two types of natural gas generators, and power data from four wind plants and one solar plant. Over a wide range of renewable penetration, we find CO2 emissions achieve approximately 80% of the emissions reductions expected if the power fluctuations caused no additional emissions. Using steam injection, gas generators achieve only 30-50% of expected NOx emissions reductions, and with dry control NOx emissions increase substantially. We quantify the interaction between state RPSs and NOx constraints, finding that states with substantial RPSs could see significant upward pressure on NOx permit prices, if the gas turbines we modeled are representative of the plants used to mitigate wind and solar power variability.

  5. Evidence for Natural Variability in Marine Stratocumulus Cloud Properties Due to Cloud-Aerosol

    NASA Technical Reports Server (NTRS)

    Albrecht, Bruce; Sharon, Tarah; Jonsson, Haf; Minnis, Patrick; Minnis, Patrick; Ayers, J. Kirk; Khaiyer, Mandana M.

    2004-01-01

    In this study, aircraft observations from the Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter are used to characterize the variability in drizzle, cloud, and aerosol properties associated with cloud rifts and the surrounding solid clouds observed off the coast of California. A flight made on 16 July 1999 provided measurements directly across an interface between solid and rift cloud conditions. Aircraft instrumentation allowed for measurements of aerosol, cloud droplet, and drizzle spectra. CCN concentrations were measured in addition to standard thermodynamic variables and the winds. A Forward Scatter Spectrometer Probe (FSSP) measured size distribution of cloud-sized droplets. A Cloud Imaging Probe (CIP) was used to measure distributions of drizzle-sized droplets. Aerosol distributions were obtained from a Cloud Aerosol Scatterprobe (CAS). The CAS probe measured aerosols, cloud droplets and drizzle-sized drops; for this study. The CAS probe was used to measure aerosols in the size range of 0.5 micron - 1 micron. Smaller aerosols were characterized using an Ultrafine Condensation Particle Counter (CPC) sensor. The CPC was used to measure particles with diameters greater than 0.003 micron. By subtracting different count concentrations measured with the CPC, this probe was capable of identifying ultrafine particles those falling in the size range of 3 nanometers - 7 nanometers that are believed to be associated with new particle production.

  6. Global top-down smoke aerosol emissions estimation using satellite fire radiative power measurements

    NASA Astrophysics Data System (ADS)

    Ichoku, C.; Ellison, L.

    2013-10-01

    Biomass burning occurs seasonally in most vegetated parts of the world, consuming large amounts of biomass fuel, generating intense heat energy, and emitting corresponding amounts of smoke plumes that comprise different species of aerosols and trace gases. Accurate estimates of these emissions are required as model inputs to evaluate and forecast smoke plume transport and impacts on air quality, human health, clouds, weather, radiation, and climate. Emissions estimates have long been based on bottom-up approaches that are not only complex, but also fraught with compounding uncertainties. Fortunately, a series of recent studies have revealed that both the rate of biomass consumption and the rate of emission of aerosol particulate matter (PM) by open biomass burning are directly proportional to the rate of release of fire radiative energy (FRE), which is fire radiative power (FRP) that is measurable from satellite. This direct relationship enables the determination of coefficients of emission (Ce), which can be used to convert FRP or FRE to smoke aerosol emissions in the same manner as emission factors (EFs) are used to convert burned biomass to emissions. We have leveraged this relationship to generate the first global 1° × 1° gridded Ce product for smoke aerosol or total particulate matter (TPM) emissions using coincident measurements of FRP and aerosol optical thickness (AOT) from the Moderate-resolution Imaging Spectro-radiometer (MODIS) sensors aboard the Terra and Aqua satellites. This new Fire Energetics and Emissions Research version 1.0 (FEER.v1) Ce product has now been released to the community and can be obtained from http://feer.gsfc.nasa.gov/, along with the corresponding 1-to-1 mapping of their quality assurance (QA) flags that will enable the Ce values to be filtered by quality for use in various applications. The regional averages of Ce values for different ecosystem types were found to be in

  7. Aerosol emissions and dimming/brightening in Europe: Sensitivity studies with ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    Folini, D.; Wild, M.

    2011-11-01

    Observational data indicate a decrease of surface solar radiation (SSR) in Europe from about 1950 to the mid-1980s, followed by a renewed increase. Changing aerosol emissions have been suggested as a likely cause for this observed dimming and brightening. To quantify this hypothesis, we performed ensembles of transient sensitivity experiments with the global climate model ECHAM5-HAM, which includes interactive treatment of aerosols. The simulations cover the period 1950-2005 and use transient aerosol emissions (National Institute of Environmental Science, Japan) and prescribed sea surface temperatures (SSTs) from the Hadley Centre. The simulated clear-sky dimming and brightening can be attributed to changing aerosol emissions from fossil fuel combustion. Ensemble means of modeled SSR trends are in agreement with observed values. Dimming ceases too early in the model, around 1970. Potential causes are discussed. Brightening sets in at about the right time. Regional differences of modeled SSR are substantial, with clear-sky dimming trends ranging from -6.1 (eastern Europe) to -0.4 W m-2 decade-1 (British Isles) and brightening trends ranging from +1.3 to +6.3 W m-2 decade-1 (Scandinavia and eastern Europe). All-sky conditions show similar trends in the ensemble mean, but the spread among ensemble members is considerable, emphasizing the importance of clouds. Surface temperatures are found to depend mostly on the prescribed SSTs, with an additional aerosol component in some regions like eastern Europe. For precipitation, internal variability is too large to allow for any firm conclusions.

  8. Simulating aerosols over Arabian Peninsula with CHIMERE: Sensitivity to soil, surface parameters and anthropogenic emission inventories

    NASA Astrophysics Data System (ADS)

    Beegum, S. Naseema; Gherboudj, Imen; Chaouch, Naira; Couvidat, Florian; Menut, Laurent; Ghedira, Hosni

    2016-03-01

    A three dimensional chemistry transport model, CHIMERE, was used to simulate the aerosol optical depths (AOD) over the Arabian Peninsula desert with an offline coupling of Weather Research and Forecasting (WRF) model. The simulations were undertaken with: (i) different horizontal and vertical configurations, (ii) new datasets derived for soil/surface properties, and (iii) EDGAR-HTAP anthropogenic emissions inventories. The model performance evaluations were assessed: (i) qualitatively using MODIS (Moderate-Resolution Imaging Spectroradiometer) deep blue (DB) AOD data for the two local dust events of August 6th and 23rd (2013), and (ii) quantitatively using AERONET (Aerosol Robotic Network) AOD observations, CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) aerosol extinction profiles, and AOD simulations from various forecast models. The model results were observed to be highly sensitive to erodibility and aerodynamic surface roughness length. The use of new datasets on soil erodibility, derived from the MODIS reflectance, and aerodynamic surface roughness length (z0), derived from the ERA-Interim datasets, significantly improved the simulation results. Simulations with the global EDGAR-HTAP anthropogenic emission inventories brought the simulated AOD values closer to the observations. Performance testing of the adapted model for the Arabian Peninsula domain with improved datasets showed good agreement between AERONET AOD measurements and CHIMERE simulations, where the correlation coefficient (R) is 0.6. Higher values of the correlation coefficients and slopes were observed for the dusty periods compared to the non-dusty periods.

  9. Atmospheric heating due to black carbon aerosol during the summer monsoon period over Ballia: A rural environment over Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Tiwari, S.; Dumka, U. C.; Hopke, P. K.; Tunved, P.; Srivastava, A. K.; Bisht, D. S.; Chakrabarty, R. K.

    2016-09-01

    Black carbon (BC) aerosols are one of the most uncertain drivers of global climate change. The prevailing view is that BC mass concentrations are low in rural areas where industrialization and vehicular emissions are at a minimum. As part of a national research program called the "Ganga Basin Ground Based Experiment-2014 under the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) Phase-III" of Ministry of Earth Sciences, Government of India, the continuous measurements of BC and particulate matter (PM) mass concentrations, were conducted in a rural environment in the highly-polluted Indo-Gangetic Plain region during 16th June to 15th August (monsoon period), 2014. The mean mass concentration of BC was 4.03 (± 0.85) μg m- 3 with a daily variability between 2.4 and 5.64 μg m- 3, however, the mean mass PM concentrations [near ultrafine (PM1.0), fine (PM2.5) and inhalable (PM10)] were 29.1(± 16.2), 34.7 (± 19.9) and 43.7 (± 28.3) μg m- 3, respectively. The contribution of BC in PM1.0 was approximately 13%, which is one of the highest being recorded. Diurnally, the BC mass concentrations were highest (mean: 5.89 μg m- 3) between 20:00 to 22:00 local time (LT) due to the burning of biofuels/biomass such as wood, dung, straw and crop residue mixed with dung by the local residents for cooking purposes. The atmospheric direct radiative forcing values due to the composite and BC aerosols were determined to be + 78.3, + 44.9, and + 45.0 W m- 2 and + 42.2, + 35.4 and + 34.3 W m- 2 during the months of June, July and August, respectively. The corresponding atmospheric heating rates (AHR) for composite and BC aerosols were 2.21, 1.26 and 1.26; and 1.19, 0.99 and 0.96 K day- 1 for the month of June, July and August, respectively, with a mean of 1.57 and 1.05 K day- 1 which was 33% lower AHR (BC) than for the composite particles during the study period. This high AHR underscores the importance of absorbing aerosols such as BC contributed by

  10. Aerosol emissions from biochar-amended agricultural soils

    NASA Astrophysics Data System (ADS)

    Ravi, S.; Sharratt, B. S.; Li, J. J.; Olshvevski, S.; Meng, Z.; Zhang, J.

    2015-12-01

    Agricultural production is a major contributor to anthropogenic greenhouse gas emissions and associated global warming. In this regard, novel carbon sequestration strategies such as large-scale biochar application may provide sustainable pathways to increase the terrestrial storage of carbon in agricultural areas. Biochar has a long residence time in the soil and hence understanding the soil properties affected by biochar addition needs to be investigated to identify the tradeoffs and synergies of large-scale biochar application. Even though several studies have investigated the impacts of biochar application on a variety of soil properties, very few studies have investigated the impacts on soil erosion, in particular wind (aeolian) erosion and subsequent particulate emissions. Using a combination of wind tunnel studies and laboratory experiments, we investigated the dust emission potential of biochar-amended agricultural soils. We amended biochar (unsieved or sieved to appropriate particle size; application rates ranging from 1 - 5 % of the soil by weight) to three soil types (sand, sandy loam, and silt loam) and estimated the changes in threshold shear velocity for wind erosion and dust emission potential in comparison to control soils. Our experiments demonstrate that emissions of fine biochar particles may result from two mechanisms (a) very fine biochar particles (suspension size) that are entrained into the air stream when the wind velocity exceeds the threshold, and (b) production of fine biochar particles originating from the abrasion by quartz grains. The results indicate that biochar application significantly increased particulate emissions and more interestingly, the rate of increase was found to be higher in the intermediate range of biochar application. As fine biochar particles effectively adsorb/trap contaminants and pathogens from the soil, the preferential erosion of fine biochar particles by wind may lead to concentration of contaminants in the

  11. Atmospheric aerosol monitoring and characterization: An emission control strategy to protect tropical forests

    NASA Astrophysics Data System (ADS)

    Mateus, V. L.; do Valles, T. V.; de Oliveira, T. B.; de Almeida, A. C.; Maia, L. F. P. G.; Saint'Pierre, T. D.; Gioda, A.

    2013-12-01

    Human activity represents one of the most harmful activities for biodiversity. Population growth has caused increasing interferences in natural areas suffering agriculture or urbanization. As a consequence, tropical forests are at risk, since they shelter more than half of the global biodiversity. In this context, protected areas are indeed important to preserve natural populations as well as threatened habitats. Aerosol samples were collected in two protected areas in Rio de Janeiro, Brazil, in order to quantify water-soluble species and evaluate anthropogenic influences considering secondary aerosol formation and organic compounds. Samplings were conducted at the National Park of Serra dos Orgãos (Parnaso) and the National Forest Mario Xavier (Flonamax) during 24 h every six days using a high-volume sampler from July 2010 to June 2012 (PM10) and from July 2011 to August 2012 (TSP), respectively. The aerosol mass was determined by Gravimetry. The water-soluble ionic composition (WSIC) was obtained by Ion Chromatography in order to determine the major anions (Br-, Cl-, F-, NO2-, NO3-, PO43-, SO42-) and cations (Li+, Ca2+, K+, Mg2+, Na+, NH4+); total water-soluble carbon (TWSC), water-soluble organic carbon (WSOC) were determined by a TOC analyzer and the elements were determined by Inductively Coupled Plasma Optical Emission Spectrometry. PM10 average concentrations ranged from 11.1 to 67.6 μg m-3 and TSP from 5.7 to 242.6 μg m-3. Regarding the ions, the highest cation concentration was measured for Na+ at both Parnaso and Flonamax sites, respectively, 2.9 and 6.1 μg m-3. Both sites are near to the coast, justifying these results. On the other hand, SO42- was the predominant anion measured at both sites with average concentrations ranged from 2.3 to 2.7 μg m-3. Around 50% of sulphate had a non-marine origin in the former site, while in the latter the percentage was of circa 40%. The correlation between NO3- and nss-SO42- was much stronger at Parnaso (r = 0

  12. Emissions and Characteristics of Ice Nucleating Particles Associated with Laboratory Generated Nascent Sea Spray Aerosol

    NASA Astrophysics Data System (ADS)

    McCluskey, C. S.; Hill, T. C. J.; Beall, C.; Sultana, C. M.; Moore, K.; Cornwell, G.; Lee, C.; Al-Mashat, H.; Laskina, O.; Trueblood, J.; Grassian, V. H.; Prather, K. A.; Kreidenweis, S. M.; DeMott, P. J.

    2015-12-01

    Accurate emission rates and activity spectra of atmospheric ice nucleating particles (INPs) are required for proper representation of aerosol-cloud interactions in atmospheric modeling studies. However, few investigations have quantified or characterized oceanic INP emissions. In conjunction with the Center for Aerosol Impacts on the Climate and the Environment, we have directly measured changes in INP emissions and properties of INPs from nascent sea spray aerosol (SSA) through the evolution of phytoplankton blooms. Multiple offline and online instruments were used to monitor aerosol chemistry and size, and bulk water characteristics during two phytoplankton bloom experiments. Two methods were utilized to monitor the number concentrations of INPs from 0 to -34 °C: The online CSU continuous flow diffusion chamber (CFDC) and collections processed offline using the CSU ice spectrometer. Single particle analyses were performed on ice crystal residuals downstream of the CFDC, presumed to be INPs, via scanning transmission electron microscopy (STEM) and Raman microspectroscopy. Preliminary results indicate that laboratory-generated nascent SSA corresponds to number concentrations of INPs that are generally consistent with open ocean regions, based on current knowledge. STEM analyses revealed that the sizes of ice crystal residuals that were associated with nascent SSA ranged from 0.3 to 2.5 μm. Raman microspectroscopy analysis of 1 μm sized residuals found a variety of INP identities, including long chain organics, diatom fragments and polysaccharides. Our data suggest that biological processes play a significant role in ocean INP emissions by generating the species and compounds that were identified during these studies.

  13. The Chemical and Microphysical Properties of Secondary Organic Aerosols from Holm Oak Emissions

    NASA Astrophysics Data System (ADS)

    Lang-Yona, Naama; Rudich, Yinon; Thomas, Mentel; Angela, Buchholz; Astrid, Kiendler-Scharr; Einhard, Kleist; Christian, Spindler; Ralf, Tillmann; Jürgen, Wildt

    2010-05-01

    Plant-emitted volatile organic compounds (VOC) undergo atmospheric oxidation, which leads to the formation of secondary organic aerosols (SOA). Large uncertainties exist about possible climatic effects on SOA formation from biogenic sources. Therefore it is important to investigate the impact of environmental conditions on the plants' emissions, on the formation of biogenic SOA, and on SOA properties in order to understand possible climatic impacts. The Mediterranean region is expected to experience substantial climatic change in the next 50 years and the possible effects on biogenic emissions are yet unexplored. To address such issues, the effects of temperature and light intensity on Mediterranean Holm Oak VOC emissions, as well as on microphysical properties and chemical composition of the resulting SOA have been studied in the Jülich plant aerosol atmosphere chamber. We studied SOA formation from Holm Oak under conditions possibly simulating future climate warming. Monoterpenes dominate the VOC emissions from Holm Oak (97.5%) and temperature increase enhanced the emission strength and changed the emission pattern. Enhanced emissions lead to linearly enhanced SOA formation with a fractional mass yield of SOA (5.7±1%) independent of the detailed emission pattern. The particles are highly scattering with no absorption abilities. Their average hygroscopic growth factor was 1.13±0.03 at 90% RH with a critical diameter of droplet activation was 100±4 nm at a supersaturation of 0.4%. All microphysical properties were not dependent on the detailed emission pattern, in accordance with an invariant O/C ratio (0.57(+0.03/-0.1)) of the SOA as derived from high resolution aerosol mass spectrometry. The temperature increase for the plants essentially led to stronger VOC emissions with the SOA mass being linearly related to the VOC concentrations. However, the increase of Holm oak emissions with temperature (≈ 20 % per degree) was stronger than for Boreal tree species

  14. Light Absorption Properties and Radiative Effects of Primary Organic Aerosol Emissions

    EPA Science Inventory

    Organic aerosols (OA) in the atmosphere affect Earth’s energy budget by not only scattering but also absorbing solar radiation due to the presence of the so-called “brown carbon” (BrC) component. However, the absorptivities of OA are not or poorly represented in current climate m...

  15. Updating sea spray aerosol emissions in the Community Multiscale Air Quality (CMAQ) model version 5.0.2

    NASA Astrophysics Data System (ADS)

    Gantt, B.; Kelly, J. T.; Bash, J. O.

    2015-11-01

    Sea spray aerosols (SSAs) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. Model evaluations of SSA emissions have mainly focused on the global scale, but regional-scale evaluations are also important due to the localized impact of SSAs on atmospheric chemistry near the coast. In this study, SSA emissions in the Community Multiscale Air Quality (CMAQ) model were updated to enhance the fine-mode size distribution, include sea surface temperature (SST) dependency, and reduce surf-enhanced emissions. Predictions from the updated CMAQ model and those of the previous release version, CMAQv5.0.2, were evaluated using several coastal and national observational data sets in the continental US. The updated emissions generally reduced model underestimates of sodium, chloride, and nitrate surface concentrations for coastal sites in the Bay Regional Atmospheric Chemistry Experiment (BRACE) near Tampa, Florida. Including SST dependency to the SSA emission parameterization led to increased sodium concentrations in the southeastern US and decreased concentrations along parts of the Pacific coast and northeastern US. The influence of sodium on the gas-particle partitioning of nitrate resulted in higher nitrate particle concentrations in many coastal urban areas due to increased condensation of nitric acid in the updated simulations, potentially affecting the predicted nitrogen deposition in sensitive ecosystems. Application of the updated SSA emissions to the California Research at the Nexus of Air Quality and Climate Change (CalNex) study period resulted in a modest improvement in the predicted surface concentration of sodium and nitrate at several central and southern California coastal sites. This update of SSA emissions enabled a more realistic simulation of the atmospheric chemistry in coastal environments where marine air mixes with urban pollution.

  16. Influences of natural emission sources (wildfires and Saharan dust) on the urban organic aerosol in Barcelona (Western Mediterranean Basis) during a PM event.

    PubMed

    van Drooge, Barend L; Lopez, Jordi F; Grimalt, Joan O

    2012-11-01

    The urban air quality in Barcelona in the Western Mediterranean Basin is characterized by overall high particulate matter (PM) concentrations, due to intensive local anthropogenic emissions and specific meteorological conditions. Moreover, on several days, especially in summer, natural PM sources, such as long-range transported Saharan dust from Northern Africa or wildfires on the Iberian Peninsula and around the Mediterranean Basin, may influence the levels and composition of the organic aerosol. In the second half of July 2009, daily collected PM(10) filter samples in an urban background site in Barcelona were analyzed on organic tracer compounds representing several emission sources. During this period, an important PM peak event was observed. Individual organic compound concentrations increased two to five times during this event. Although highest increase was observed for the organic tracer of biomass burning, the contribution to the organic aerosol was estimated to be around 6 %. Organic tracers that could be related to Saharan dust showed no correlation with the PM and OC levels, while this was the case for those related to fossil fuel combustion from traffic emissions. Moreover, a change in the meteorological conditions gave way to an overall increase of the urban background contamination. Long-range atmospheric transport of organic compounds from primary emissions sources (i.e., wildfires and Saharan dust) has a relatively moderate impact on the organic aerosol in an urban area where the local emissions are dominating.

  17. The spatial distribution of mineral dust and its shortwave radiative forcing over North Africa. Modeling sensitivities to dust emissions and aerosol size treatments

    SciTech Connect

    Zhao, Chun; Liu, Xiaohong; Leung, Lai-Yung R.; Johnson, Ben; McFarlane, Sally A.; Gustafson, William I.; Fast, Jerome D.; Easter, Richard C.

    2010-09-20

    A fully coupled meteorology-chemistry-aerosol model (WRF-Chem) with the implementation of two dust emission schemes (GOCART and DUSTRAN) into two aerosol models (MADE/SORGAM and MOSAIC) is applied over North Africa to investigate the modeling sensitivities to dust emissions and aerosol size treatments in simulating mineral dust and its shortwave (SW) radiative forcing. Model results of the spatial distribution of mineral dust and its radiative forcing are evaluated using measurements from the AMMA SOP0 campaign in January and February of 2006 over North Africa. Our study suggests that the size distribution of emitted dust can result in significant differences (up to 100%) in simulating mineral dust and its SW radiative forcing. With the same dust emission and dry deposition processes, two aerosol models, MADE/SORGAM and MOSAIC, can yield large difference in size distributions of dust particles due to their different aerosol size treatments using modal and sectional approaches respectively. However, the difference between the two aerosol models in simulating the mass concentrations and the SW radiative forcing of mineral dust is small (< 10%). The model simulations show that mineral dust increases AOD by a factor of 2, heats the lower atmosphere (1-3 km) with a maximum rate of 0.7±0.5 K day-1 below 1 km, and reduces the downwelling SW radiation by up to 25 W m-2 on 24-hour average at surface, highlighting the importance of including dust radiative impact in understanding the regional climate of North Africa. When compared to the available measurements, WRF-Chem simulations can generally capture the measured features of mineral dust and its radiative properties over North Africa, suggesting that the model can be used to perform more extensive simulations of regional climate over North Africa.

  18. The Use of Combined MODIS and MISR AOD to Constrain Biomass Burning Aerosol Emissions in the GOCART Model

    NASA Astrophysics Data System (ADS)

    Petrenko, M. M.; Kahn, R. A.; Chin, M.

    2013-05-01

    Aerosol models rely heavily on external emission inventories to simulate location and strength of biomass burning (BB) sources. These inventories, however, use different methods and assumptions to estimate aerosol emissions, and consequently their estimates differ, often by a factor of up to 8 globally and even more regionally. We have previously introduced a method of using snapshots of MODIS-measured aerosol optical depth (AOD) to constrain BB emissions in the GOCART model (M. M. Petrenko et al., 2012, JGR). This work builds up on the developed method and aims to (1) address some of the previously discussed method limitations, and (2) apply previously suggested corrections to the BB emissions used in the GOCART model. For example, we increased the number of studied smoke cases, and use MODIS AOD in combination with MISR AOD, which is expected to improve the satellite AOD we use as a reference. We apply previously developed quantitative relationship to correct the emission estimates and assess the performance of the corrected emissions in the model. We expect this method for correcting BB aerosol emissions to be useful to aerosol modelers as well as developers of emission inventories.

  19. Vegetation fires in the himalayan region - Aerosol load, black carbon emissions and smoke plume heights

    NASA Astrophysics Data System (ADS)

    Vadrevu, Krishna Prasad; Ellicott, Evan; Giglio, Louis; Badarinath, K. V. S.; Vermote, Eric; Justice, Chris; Lau, William K. M.

    2012-02-01

    In this study, we investigate the potential of multi-satellite datasets for quantifying the biomass burning emissions from the Himalayan region. A variety of satellite products were used for characterizing fire events including active fire counts, burnt areas, aerosol optical depth (AOD) variations, aerosol index and smoke plume heights. Results from the MODerate-resolution Imaging Spectroradiometer (MODIS) fire product suggest March-June as the major fire season with the peak during the April. An average of 3908 fire counts per year were recorded with sixty four percent of the fires occurring in the low elevation areas in the Himalayan Region. We estimate average burnt areas of 1129 sq. km, with the black carbon emissions of 431 Mg, per year. The mean AOD (2005-2010) was 0.287 ± 0.105 (one sigma) with peak values in May. Correlation analysis between the fire counts and AOD resulted in a Pearson correlation coefficient of 0.553; the correlation between the FRP and AOD is relatively weaker ( r = 0.499). Planetary boundary layer height retrieved from the Modern Era Retrospective-Analysis For Research And Applications (MERRA) product suggests typical PBL height of 1000-1200 m during the April-May peak biomass burning season. Cloud-Aerosol Lidar Orthogonal Polarisation (CALIOP) retrievals show the extent of smoke plume heights beyond the planetary boundary layer during the peak biomass burning month of April. However, comparison of fires in the Himalayan region with other regions and comparisons to aerosol index data from the Ozone Monitoring Instrument (OMI) suggest smoke plumes reaching less than 3 km. Our results on fires and smoke plume height relationships provide valuable information for addressing aerosol transport in the region.

  20. Enhanced extinction of visible radiation due to hydrated aerosols in mist and fog

    NASA Astrophysics Data System (ADS)

    Elias, T.; Dupont, J.-C.; Hammer, E.; Hoyle, C. R.; Haeffelin, M.; Burnet, F.; Jolivet, D.

    2015-01-01

    The study assesses the contribution of aerosols to the extinction of visible radiation in the mist-fog-mist cycle. Measurements of the microphysical and optical properties of hydrated aerosols with diameters larger than 400 nm, composing the accumulation mode, which are the most efficient to interact with visible radiation, were carried out near Paris, during November 2011, in ambient conditions. Eleven mist-fog-mist cycles were observed, with cumulated fog duration of 95 h, and cumulated mist-fog-mist duration of 240 h. In mist, aerosols grew up by taking up water at relative humidities larger than 93%, causing a visibility decrease below 5 km. While visibility decreased down to few km, the mean size of the hydrated aerosols increased, and their number concentration (Nha) increased from approximately 160 to approximately 600 cm-3. When fog formed, droplets became the strongest contributors to visible radiation extinction, and liquid water content (LWC) increased beyond 7 mg m-3. Hydrated aerosols of the accumulation mode co-existed with droplets, as interstitial non-activated aerosols. Their size continued to increase, and a significant proportion of aerosols achieved diameters larger than 2.5 μm. The mean transition diameter between the accumulation mode and the small droplet mode was 4.0 ± 1.1 μm. Moreover Nha increased on average by 60% after fog formation. Consequently the mean aerosol contribution to extinction in fog was 20 ± 15% for diameter smaller than 2.5 μm and 6 ± 7% beyond. The standard deviation is large because of the large variability of Nha in fog, which could be smaller than in mist or three times larger. The particle extinction coefficient in fog can be computed as the sum of a droplet component and an aerosol component, which can be approximated by 3.5 Nha (Nha in cm-3 and particle extinction coefficient in Mm-1). We observed an influence of the main formation process on Nha, but not on the contribution to fog extinction by aerosols

  1. Secondary organic aerosol formation from idling gasoline passenger vehicle emissions investigated in a smog chamber

    NASA Astrophysics Data System (ADS)

    Nordin, E. Z.; Eriksson, A. C.; Roldin, P.; Nilsson, P. T.; Carlsson, J. E.; Kajos, M. K.; Hellén, H.; Wittbom, C.; Rissler, J.; Löndahl, J.; Swietlicki, E.; Svenningsson, B.; Bohgard, M.; Kulmala, M.; Hallquist, M.; Pagels, J. H.

    2013-06-01

    Gasoline vehicles have recently been pointed out as potentially the main source of anthropogenic secondary organic aerosol (SOA) in megacities. However, there is a lack of laboratory studies to systematically investigate SOA formation in real-world exhaust. In this study, SOA formation from pure aromatic precursors, idling and cold start gasoline exhaust from three passenger vehicles (EURO2-EURO4) were investigated with photo-oxidation experiments in a 6 m3 smog chamber. The experiments were carried out down to atmospherically relevant organic aerosol mass concentrations. The characterization instruments included a high-resolution aerosol mass spectrometer and a proton transfer mass spectrometer. It was found that gasoline exhaust readily forms SOA with a signature aerosol mass spectrum similar to the oxidized organic aerosol that commonly dominates the organic aerosol mass spectra downwind of urban areas. After a cumulative OH exposure of ~5 × 106 cm-3 h, the formed SOA was 1-2 orders of magnitude higher than the primary OA emissions. The SOA mass spectrum from a relevant mixture of traditional light aromatic precursors gave f43 (mass fraction at m/z = 43), approximately two times higher than to the gasoline SOA. However O : C and H : C ratios were similar for the two cases. Classical C6-C9 light aromatic precursors were responsible for up to 60% of the formed SOA, which is significantly higher than for diesel exhaust. Important candidates for additional precursors are higher-order aromatic compounds such as C10 and C11 light aromatics, naphthalene and methyl-naphthalenes. We conclude that approaches using only light aromatic precursors give an incomplete picture of the magnitude of SOA formation and the SOA composition from gasoline exhaust.

  2. Land cover maps, BVOC emissions, and SOA burden in a global aerosol-climate model

    NASA Astrophysics Data System (ADS)

    Stanelle, Tanja; Henrot, Alexandra; Bey, Isaelle

    2015-04-01

    It has been reported that different land cover representations influence the emission of biogenic volatile organic compounds (BVOC) (e.g. Guenther et al., 2006). But the land cover forcing used in model simulations is quite uncertain (e.g. Jung et al., 2006). As a consequence the simulated emission of BVOCs depends on the applied land cover map. To test the sensitivity of global and regional estimates of BVOC emissions on the applied land cover map we applied 3 different land cover maps into our global aerosol-climate model ECHAM6-HAM2.2. We found a high sensitivity for tropical regions. BVOCs are a very prominent precursor for the production of Secondary Organic Aerosols (SOA). Therefore the sensitivity of BVOC emissions on land cover maps impacts the SOA burden in the atmosphere. With our model system we are able to quantify that impact. References: Guenther et al. (2006), Estimates of global terrestrial isoprene emissions using MEGAN, Atmos. Chem. Phys., 6, 3181-3210, doi:10.5194/acp-6-3181-2006. Jung et al. (2006), Exploiting synergies of global land cover products for carbon cycle modeling, Rem. Sens. Environm., 101, 534-553, doi:10.1016/j.rse.2006.01.020.

  3. Top-Down Inversion of Aerosol Emissions through Adjoint Integration of Satellite Radiance and GEOS-Chem Chemical Transport Model

    NASA Astrophysics Data System (ADS)

    Xu, X.; Wang, J.; Henze, D. K.; Qu, W.; Kopacz, M.

    2012-12-01

    The knowledge of aerosol emissions from both natural and anthropogenic sources are needed to study the impacts of tropospheric aerosol on atmospheric composition, climate, and human health, but large uncertainties persist in quantifying the aerosol sources with the current bottom-up methods. This study presents a new top-down approach that spatially constrains the amount of aerosol emissions from satellite (MODIS) observed reflectance with the adjoint of a chemistry transport model (GEOS-Chem). We apply this technique with a one-month case study (April 2008) over the East Asia. The bottom-up estimated sulfate-nitrate-ammonium precursors, such as sulfur dioxide (SO2), ammonia (NH3), and nitrogen oxides (NOx), all from INTEX-B 2006 inventory, emissions of black carbon (BC), organic carbon (OC) from Bond-2007 inventory, and mineral dust simulated from DEAD dust mobilization scheme, are spatially optimized from the GEOS-Chem model and its adjoint constrained by the aerosol optical depth (AOD) that are derived from MODIS reflectance with the GEOS-Chem aerosol single scattering properties. The adjoint inverse modeling for the study period yields notable decreases in anthropogenic aerosol emissions over China: 436 Gg (33.5%) for SO2, 378 Gg (34.5%) for NH3, 319 (18.8%) for NOx, 10 Gg (9.1%) for BC, and 30 Gg (15.0%) for OC. The total amount of the mineral dust emission is reduced by 56.4% from the DEAD mobilization module which simulates dust production of 19020 Gg. Sub-regional adjustments are significant and directions of changes are spatially different. The model simulation with optimized aerosol emissions shows much better agreement with independent observations from sun-spectrophotometer observed AOD from AERONET, MISR (Multi-angle Imaging SpectroRadiometer) AOD, OMI (Ozone Monitoring Instrument) NO2 and SO2 columns, and surface aerosol concentrations measured over both anthropogenic pollution and dust source regions. Assuming the used bottom-up anthropogenic

  4. Impact of the March 2009 dust event in Saudi Arabia on aerosol optical properties, meteorological parameters, sky temperature and emissivity

    NASA Astrophysics Data System (ADS)

    Maghrabi, A.; Alharbi, B.; Tapper, N.

    2011-04-01

    On 10th March 2009 a widespread and severe dust storm event that lasted several hours struck Riyadh, and represented one of the most intense dust storms experienced in Saudi Arabia in the last two decades. This short-lived storm caused widespread and heavy dust deposition, zero visibility and total airport shutdown, as well as extensive damage to buildings, vehicles, power poles and trees across the city of Riyadh. Changes in Meteorological parameters, aerosol optical depth (AOD), Angstrom exponent α, infrared (IR) sky temperature and atmospheric emissivity were investigated before, during, and after the storm. The analysis showed significant changes in all of the above parameters due to this event. Shortly after the storm arrived, air pressure rapidly increased by 4 hPa, temperature decreased by 6 °C, relative humidly increased from 10% to 30%, the wind direction became northerly and the wind speed increased to a maximum of 30 m s -1. AOD at 550 nm increased from 0.396 to 1.71. The Angstrom exponent α rapidly decreased from 0.192 to -0.078. The mean AOD at 550 nm on the day of the storm was 0.953 higher than during the previous clear day, while α was -0.049 in comparison with 0.323 during the previous day. Theoretical simulations using SMART software showed remarkable changes in both spectral and broadband solar radiation components. The global and direct radiation components decreased by 42% and 68%, respectively, and the diffuse components increased by 44% in comparison with the previous clear day. IR sky temperatures and sky emissivity increased by 24 °C and 0.3, respectively, 2 h after the arrival of the storm. The effect of aerosol loading by the storm on IR atmospheric emission was investigated using MODTRAN software. It was found that the effect of aerosols caused an increase of the atmospheric emission in the atmospheric window (8-14 μm) such that the window emissions resembled those of a blackbody and the atmospheric window was almost closed.

  5. Light absorbing organic aerosols (brown carbon) over the tropical Indian Ocean: impact of biomass burning emissions

    NASA Astrophysics Data System (ADS)

    Srinivas, Bikkina; Sarin, M. M.

    2013-12-01

    The first field measurements of light absorbing water-soluble organic carbon (WSOC), referred as brown carbon (BrC), have been made in the marine atmospheric boundary layer (MABL) during the continental outflow to the Bay of Bengal (BoB) and the Arabian Sea (ARS). The absorption signal measured at 365 nm in aqueous extracts of aerosols shows a systematic linear increase with WSOC concentration, suggesting a significant contribution from BrC to the absorption properties of organic aerosols. The mass absorption coefficient (babs) of BrC shows an inverse hyperbolic relation with wavelength (from ˜300 to 700 nm), providing an estimate of the Angstrom exponent (αP, range: 3-19 Av: 9 ± 3). The mass absorption efficiency of brown carbon (σabs-BrC) in the MABL varies from 0.17 to 0.72 m2 g-1 (Av: 0.45 ± 0.14 m2 g-1). The αP and σabs-BrC over the BoB are quite similar to that studied from a sampling site in the Indo-Gangetic Plain (IGP), suggesting the dominant impact of organic aerosols associated with the continental outflow. A comparison of the mass absorption efficiency of BrC and elemental carbon (EC) brings to focus the significant role of light absorbing organic aerosols (from biomass burning emissions) in atmospheric radiative forcing over oceanic regions located downwind of the pollution sources.

  6. Modeling and evaluation of the global sea-salt aerosol distribution: sensitivity to emission schemes and resolution effects at coastal/orographic sites

    NASA Astrophysics Data System (ADS)

    Spada, M.; Jorba, O.; Pérez García-Pando, C.; Janjic, Z.; Baldasano, J. M.

    2013-12-01

    One of the major sources of uncertainty in model estimates of the global sea-salt aerosol distribution is the emission parameterization. We evaluate a new sea-salt aerosol life cycle module coupled to the online multiscale chemical transport model NMMB/BSC-CTM. We compare 5 yr global simulations using five state-of-the-art sea-salt open-ocean emission schemes with monthly averaged coarse aerosol optical depth (AOD) from selected AERONET sun photometers, surface concentration measurements from the University of Miami's Ocean Aerosol Network, and measurements from two NOAA/PMEL cruises (AEROINDOEX and ACE1). Model results are highly sensitive to the introduction of sea-surface-temperature (SST)-dependent emissions and to the accounting of spume particles production. Emission ranges from 3888 Tg yr-1 to 8114 Tg yr-1, lifetime varies between 7.3 h and 11.3 h, and the average column mass load is between 5.0 Tg and 7.2 Tg. Coarse AOD is reproduced with an overall correlation of around 0.5 and with normalized biases ranging from +8.8% to +38.8%. Surface concentration is simulated with normalized biases ranging from -9.5% to +28% and the overall correlation is around 0.5. Our results indicate that SST-dependent emission schemes improve the overall model performance in reproducing surface concentrations. On the other hand, they lead to an overestimation of the coarse AOD at tropical latitudes, although it may be affected by uncertainties in the comparison due to the use of all-sky model AOD, the treatment of water uptake, deposition and optical properties in the model and/or an inaccurate size distribution at emission.

  7. Final Report, The Influence of Organic-Aerosol Emissions and Aging on Regional and Global Aerosol Size Distributions and the CCN Number Budget

    SciTech Connect

    Donahue, Neil M.

    2015-12-23

    We conducted laboratory experiments and analyzed data on aging of organic aerosol and analysis of field data on volatility and CCN activity. With supplemental ASR funding we participated in the FLAME-IV campaign in Missoula MT in the Fall of 2012, deploying a two-chamber photochemical aging system to enable experimental exploration of photochemical aging of biomass burning emissions. Results from that campaign will lead to numerous publications, including demonstration of photochemical production of Brown Carbon (BrC) from secondary organic aerosol associated with biomass burning emissions as well as extensive characterization of the effect of photochemical aging on the overall concentrations of biomass burning organic aerosol. Excluding publications arising from the FLAME-IV campaign, project research resulted in 8 papers: [11, 5, 3, 10, 12, 4, 8, 7], including on in Nature Geoscience addressing the role of organic compounds in nanoparticle growth [11

  8. Aerosol light-scattering enhancement due to water uptake during TCAP campaign

    NASA Astrophysics Data System (ADS)

    Titos, G.; Jefferson, A.; Sheridan, P. J.; Andrews, E.; Lyamani, H.; Alados-Arboledas, L.; Ogren, J. A.

    2014-02-01

    Aerosol optical properties were measured by the DOE/ARM (US Department of Energy Atmospheric Radiation Measurements) Program Mobile Facility in the framework of the Two-Column Aerosol Project (TCAP) deployed at Cape Cod, Massachusetts, for a~one year period (from summer 2012 to summer 2013). Measured optical properties included aerosol light-absorption coefficient (σap) at low relative humidity (RH) and aerosol light-scattering coefficient (σsp) at low and at RH values varying from 30 to 85%, approximately. Calculated variables included the single scattering albedo (SSA), the scattering Ångström exponent (SAE) and the scattering enhancement factor (f(RH)). Over the period of measurement, f(RH = 80%) had a mean value of 1.9 ± 0.3 and 1.8 ± 0.4 in the PM10 and PM1 fractions, respectively. Higher f(RH = 80%) values were observed for wind directions from 0-180° (marine sector) together with high SSA and low SAE values. The wind sector from 225 to 315° was identified as an anthropogenically-influenced sector, and it was characterized by smaller, darker and less hygroscopic aerosols. For the marine sector, f(RH = 80%) was 2.2 compared with a value of 1.8 obtained for the anthropogenically-influenced sector. The air-mass backward trajectory analysis agreed well with the wind sector analysis. It shows low cluster to cluster variability except for air-masses coming from the Atlantic Ocean that showed higher hygroscopicity. Knowledge of the effect of RH on aerosol optical properties is of great importance for climate forcing calculations and for comparison of in-situ measurements with satellite and remote sensing retrievals. In this sense, predictive capability of f(RH) for use in climate models would be enhanced if other aerosol parameters could be used as proxies to estimate hygroscopic growth. Toward this goal, we propose an exponential equation that successfully estimates aerosol hygroscopicity as a function of SSA at Cape Cod. Further work is needed to determine

  9. Aerosol light-scattering enhancement due to water uptake during the TCAP campaign

    NASA Astrophysics Data System (ADS)

    Titos, G.; Jefferson, A.; Sheridan, P. J.; Andrews, E.; Lyamani, H.; Alados-Arboledas, L.; Ogren, J. A.

    2014-07-01

    Aerosol optical properties were measured by the DOE/ARM (US Department of Energy Atmospheric Radiation Measurements) Program Mobile Facility during the Two-Column Aerosol Project (TCAP) campaign deployed at Cape Cod, Massachusetts, for a 1-year period (from summer 2012 to summer 2013). Measured optical properties included aerosol light-absorption coefficient (σap) at low relative humidity (RH) and aerosol light-scattering coefficient (σsp) at low and at RH values varying from 30 to 85%, approximately. Calculated variables included the single scattering albedo (SSA), the scattering Ångström exponent (SAE) and the scattering enhancement factor (f(RH)). Over the period of measurement, f(RH = 80%) had a mean value of 1.9 ± 0.3 and 1.8 ± 0.4 in the PM10 and PM1 fractions, respectively. Higher f(RH = 80%) values were observed for wind directions from 0 to 180° (marine sector) together with high SSA and low SAE values. The wind sector from 225 to 315° was identified as an anthropogenically influenced sector, and it was characterized by smaller, darker and less hygroscopic aerosols. For the marine sector, f(RH = 80%) was 2.2 compared with a value of 1.8 obtained for the anthropogenically influenced sector. The air-mass backward trajectory analysis agreed well with the wind sector analysis. It shows low cluster to cluster variability except for air masses coming from the Atlantic Ocean that showed higher hygroscopicity. Knowledge of the effect of RH on aerosol optical properties is of great importance for climate forcing calculations and for comparison of in situ measurements with satellite and remote sensing retrievals. In this sense, predictive capability of f(RH) for use in climate models would be enhanced if other aerosol parameters could be used as proxies to estimate hygroscopic growth. Toward this goal, we propose an exponential equation that successfully estimates aerosol hygroscopicity as a function of SSA at Cape Cod. Further work is needed to determine if

  10. Mutagenicity assessment of aerosols in emissions from domestic combustion processes.

    PubMed

    Canha, Nuno; Lopes, Isabel; Vicente, Estela Domingos; Vicente, Ana M; Bandowe, Benjamin A Musa; Almeida, Susana Marta; Alves, Célia A

    2016-06-01

    Domestic biofuel combustion is one of the major sources of regional and local air pollution, mainly regarding particulate matter and organic compounds, during winter periods. Mutagenic and carcinogenic activity potentials of the ambient particulate matter have been associated with the fraction of polycyclic aromatic hydrocarbons (PAH) and their oxygenated (OPAH) and nitrogenated (NPAH) derivatives. This study aimed at assessing the mutagenicity potential of the fraction of this polycyclic aromatic compound in particles (PM10) from domestic combustion by using the Ames assays with Salmonella typhimurium TA98 and TA100. Seven biofuels, including four types of pellets and three agro-fuels (olive pit, almond shell and shell of pine nuts), were tested in an automatic pellet stove, and two types of wood (Pinus pinaster, maritime pine, and Eucalyptus globulus, eucalypt) were burned in a traditional wood stove. For this latter appliance, two combustion phases-devolatilisation and flaming/smouldering-were characterised separately. A direct-acting mutagenic effect for the devolatilisation phase of pine combustion and for both phases of eucalypt combustion was found. Almond shell revealed a weak direct-acting mutagenic effect, while one type of pellets, made of recycled wastes, and pine (devolatilisation) presented a cytotoxic effect towards strain TA100. Compared to the manually fired appliance, the automatic pellet stove promoted lower polyaromatic mutagenic emissions. For this device, only two of the studied biofuels presented a weak mutagenic or cytotoxic potential. PMID:26893179

  11. Mutagenicity assessment of aerosols in emissions from domestic combustion processes.

    PubMed

    Canha, Nuno; Lopes, Isabel; Vicente, Estela Domingos; Vicente, Ana M; Bandowe, Benjamin A Musa; Almeida, Susana Marta; Alves, Célia A

    2016-06-01

    Domestic biofuel combustion is one of the major sources of regional and local air pollution, mainly regarding particulate matter and organic compounds, during winter periods. Mutagenic and carcinogenic activity potentials of the ambient particulate matter have been associated with the fraction of polycyclic aromatic hydrocarbons (PAH) and their oxygenated (OPAH) and nitrogenated (NPAH) derivatives. This study aimed at assessing the mutagenicity potential of the fraction of this polycyclic aromatic compound in particles (PM10) from domestic combustion by using the Ames assays with Salmonella typhimurium TA98 and TA100. Seven biofuels, including four types of pellets and three agro-fuels (olive pit, almond shell and shell of pine nuts), were tested in an automatic pellet stove, and two types of wood (Pinus pinaster, maritime pine, and Eucalyptus globulus, eucalypt) were burned in a traditional wood stove. For this latter appliance, two combustion phases-devolatilisation and flaming/smouldering-were characterised separately. A direct-acting mutagenic effect for the devolatilisation phase of pine combustion and for both phases of eucalypt combustion was found. Almond shell revealed a weak direct-acting mutagenic effect, while one type of pellets, made of recycled wastes, and pine (devolatilisation) presented a cytotoxic effect towards strain TA100. Compared to the manually fired appliance, the automatic pellet stove promoted lower polyaromatic mutagenic emissions. For this device, only two of the studied biofuels presented a weak mutagenic or cytotoxic potential.

  12. Arabian Sea tropical cyclones intensified by emissions of black carbon and other aerosols.

    PubMed

    Evan, Amato T; Kossin, James P; Chung, Chul Eddy; Ramanathan, V

    2011-11-02

    Throughout the year, average sea surface temperatures in the Arabian Sea are warm enough to support the development of tropical cyclones, but the atmospheric monsoon circulation and associated strong vertical wind shear limits cyclone development and intensification, only permitting a pre-monsoon and post-monsoon period for cyclogenesis. Thus a recent increase in the intensity of tropical cyclones over the northern Indian Ocean is thought to be related to the weakening of the climatological vertical wind shear. At the same time, anthropogenic emissions of aerosols have increased sixfold since the 1930s, leading to a weakening of the southwesterly lower-level and easterly upper-level winds that define the monsoonal circulation over the Arabian Sea. In principle, this aerosol-driven circulation modification could affect tropical cyclone intensity over the Arabian Sea, but so far no such linkage has been shown. Here we report an increase in the intensity of pre-monsoon Arabian Sea tropical cyclones during the period 1979-2010, and show that this change in storm strength is a consequence of a simultaneous upward trend in anthropogenic black carbon and sulphate emissions. We use a combination of observational, reanalysis and model data to demonstrate that the anomalous circulation, which is radiatively forced by these anthropogenic aerosols, reduces the basin-wide vertical wind shear, creating an environment more favourable for tropical cyclone intensification. Because most Arabian Sea tropical cyclones make landfall, our results suggest an additional impact on human health from regional air pollution.

  13. Excitation-emission spectra and fluorescence quantum yields for fresh and aged biogenic secondary organic aerosols

    SciTech Connect

    Lee, Hyun Ji; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey A.

    2013-05-10

    Certain biogenic secondary organic aerosols (SOA) become absorbent and fluorescent when exposed to reduced nitrogen compounds such as ammonia, amines and their salts. Fluorescent SOA may potentially be mistaken for biological particles by detection methods relying on fluorescence. This work quantifies the spectral distribution and effective quantum yields of fluorescence of SOA generated from two monoterpenes, limonene and a-pinene, and two different oxidants, ozone (O3) and hydroxyl radical (OH). The SOA was generated in a smog chamber, collected on substrates, and aged by exposure to ~100 ppb ammonia vapor in air saturated with water vapor. Absorption and excitation-emission matrix (EEM) spectra of aqueous extracts of aged and control SOA samples were measured, and the effective absorption coefficients and fluorescence quantum yields (~0.005 for 349 nm excitation) were determined from the data. The strongest fluorescence for the limonene-derived SOA was observed for excitation = 420+- 50 nm and emission = 475 +- 38 nm. The window of the strongest fluorescence shifted to excitation = 320 +- 25 nm and emission = 425 +- 38 nm for the a-pinene-derived SOA. Both regions overlap with the excitation-emission matrix (EEM) spectra of some of the fluorophores found in primary biological aerosols. Our study suggests that, despite the low quantum yield, the aged SOA particles should have sufficient fluorescence intensities to interfere with the fluorescence detection of common bioaerosols.

  14. Radiative Forcing Due to Enhancements in Tropospheric Ozone and Carbonaceous Aerosols Caused by Asian Fires During Spring 2008

    NASA Technical Reports Server (NTRS)

    Natarajan, Murali; Pierce, R. Bradley; Lenzen, Allen J.; Al-Saadi, Jassim A.; Soja, Amber J.; Charlock, Thomas P.; Rose, Fred G.; Winker, David M.; Worden, John R.

    2012-01-01

    Simulations of tropospheric ozone and carbonaceous aerosol distributions, conducted with the Real-time Air Quality Modeling System (RAQMS), are used to study the effects of major outbreaks of fires that occurred in three regions of Asia, namely Thailand, Kazakhstan, and Siberia, during spring 2008. RAQMS is a global scale meteorological and chemical modeling system. Results from these simulations, averaged over April 2008, indicate that tropospheric ozone column increases by more than 10 Dobson units (DU) near the Thailand region, and by lesser amounts in the other regions due to the fires. Widespread increases in the optical depths of organic and black carbon aerosols are also noted. We have used an off-line radiative transfer model to evaluate the direct radiative forcing due to the fire-induced changes in atmospheric composition. For clear sky, the monthly averaged radiative forcing at the top of the atmosphere (TOA) is mostly negative with peak values less than -12 W/sq m occurring near the fire regions. The negative forcing represents the increased outgoing shortwave radiation caused by scattering due to carbonaceous aerosols. At high latitudes, the radiative forcing is positive due to the presence of absorbing aerosols over regions of high surface albedo. Regions of positive forcing at TOA are more pronounced under total sky conditions. The monthly averaged radiative forcing at the surface is mostly negative, and peak values of less than -30 W/sq m occur near the fire regions. Persistently large negative forcing at the surface could alter the surface energy budget and potentially weaken the hydrological cycle.

  15. Combined trajectory clustering and aerosol fields analysis to evaluate the potential emission flux to aerosol pollutants in an urban and semi-urban atmospheres in eastern India

    NASA Astrophysics Data System (ADS)

    Kumar, B. D.; Verma, S.

    2015-12-01

    A hybrid source-receptor analysis was carried out to evaluate the potential emission flux to winter monsoon (WinMon) aerosols over eastern India urban (Kolkata, Kol) and semi-urban atmospheres (Kharagpur, Kgp). This was done through application of fuzzy c-mean clustering to back-trajectory data combined with emission flux and residence time weighted aerosols analysis. WinMon mean aerosol optical depth (AOD) and angstrom exponent (AE) at Kol were respectively slightly higher than and nearly equal to that at Kgp. Out of six source region clusters over Indian subcontinent and two over Indian oceanic region, the cluster mean AOD was the highest when associated with the mean path of air mass originating from the Bay of Bengal (BoB) and the Arabian sea (AS) clusters at Kol and that from the Indo-Gangetic plain (IGP)cluster at Kgp. Spatial distribution of weighted AOD fields showed the highest potential source of aerosols over the IGP, majorly over upper IGP (IGP-U), lower IGP (IGP-L) and eastern region (ER) clusters. The emission flux contribution potential (EFCP) of fossil fuel (FF) emissions at surface (SL) of Kol/Kgp , elevated layer (EL) of Kol, and of biomass burning (BB) emissions at SL of Kol were majorly from IGP-U, IGP-L and IGP-U/L clusters respectively. The EFCP of FF/BB emissions at Kgp-EL/SL, and that of BB at EL of Kol/Kgp were mainly from ER and Africa (AFR) clusters respectively. Though the AFR cluster was constituted of significantly high emission flux source potential of dust emissions, the EFCP of dust from NWI was comparable to that from AFR at Kol SL/EL.

  16. Time evolution and emission factors of aerosol particles from day and night time savannah fires

    NASA Astrophysics Data System (ADS)

    Vakkari, Ville; Beukes, Johan Paul; Tiitta, Petri; Venter, Andrew; Jaars, Kerneels; Josipovic, Miroslav; van Zyl, Pieter; Kulmala, Markku; Laakso, Lauri

    2013-04-01

    The largest uncertainties in the current global climate models originate from aerosol particle effects (IPCC, 2007) and at the same time aerosol particles also pose a threat to human health (Pope and Dockery, 2006). In southern Africa wild fires and prescribed burning are one of the most important sources of aerosol particles, especially during the dry season from June to September (e.g. Swap et al., 2003; Vakkari et al., 2012). The aerosol particle emissions from savannah fires in southern Africa have been studied in several intensive campaigns such as SAFARI 1992 and 2000 (Swap et al., 2003). However, all previous measurements have been carried out during the daytime, whereas most of the prescribed fires in southern Africa are lit up only after sunset. Furthermore, the previous campaigns followed the plume evolution for up to one hour after emission only. In this study, combining remote sensing fire observations to ground-based long-term measurements of aerosol particle and trace gas properties at the Welgegund measurement station (www.welgegund.org), we have been able to follow the time evolution of savannah fire plumes up to several hours in the atmosphere. For the first time the aerosol particle size distribution measurements in savannah fire plumes cover both day and night time plumes and also the ultrafine size range below 100 nm. During the period from May 20th 2010 to April 15th 2012 altogether 61 savannah fire plumes were observed at Welgegund. The evolution of the aerosol size distribution remained rapid for at least five hours after the fire: during this period the growth rate of the aerosol particle count mean diameter (size range 12 to 840 nm) was 24 nm h-1 for daytime plumes and 8 nm h-1 for night time plumes. The difference in the day and night time growth rate shows that photochemical reactions significantly increase the condensable vapour concentration in the plume. Furthermore, the condensable vapour concentration was found to affect both the

  17. Large Aerosol Radiative Forcing due to the 1997 Indonesian Forest Fire

    NASA Astrophysics Data System (ADS)

    Podgorny, I. A.; Li, F.; Ramanathan, V.

    2003-01-01

    During the last decade, the feedback between El Niño and biomass burning caused the Indonesia's forest fire aerosols to be the second most significant source of anthropogenic aerosol over the tropical Indian Ocean after the South Asian Haze. In this paper, the estimates of the radiative forcing during the 1997 Indonesia's forest fire have been obtained by integrating satellite derived aerosol optical depths and cloud cover with in-situ observations of single scattering albedo and a Monte-Carlo Aerosol-Cloud radiation model. The haze reduced the seasonal average solar radiation absorbed by the equatorial Indian ocean by as much as 30 to 60 W m-2 during September to November 1997, and increased the atmospheric solar heating by as much as 50% to 100% within the first 3 kilometers. The radiative forcing at the top of the atmosphere (TOA) was in the range of 5 to 15 W m-2 under cloudy skies. The significance of such large radiative flux changes to the tropical ocean-atmosphere heat budget and climate needs to be examined with climate models.

  18. Temperature dependence of bromine activation due to reaction with ozone in a proxy for organic aerosols

    NASA Astrophysics Data System (ADS)

    Edebeli, Jacinta; Ammann, Markus; Gilgen, Anina; Eichler, Anja; Schneebeli, Martin; Bartels-Rausch, Thorsten

    2016-04-01

    The discovery of boundary layer ozone depletion events in the Polar Regions [1] and in the mid-latitudes [2], two areas of very different temperature regimes, begs the question of temperature dependence of reactions responsible for these observations [3]. These ODEs have been attributed to ozone reacting with halides leading to reactive halogens (halogen activation) of which bromide is extensively studied, R1 - R3 [4, 5] (R1 is a multiphase reaction). O3 + Br-→ O2 + OBr- (R1) OBr- + H+ ↔ HOBr (R2) HOBr + H+ + Br-→ Br2 + H2O (R3) Despite extensive studies of ozone-bromide interactions, the temperature dependence of bromine activation is not clear [3]. This limits parameterization of the involved reactions and factors in atmospheric models [3, 6]. Viscosity changes in the matrix (such as organic aerosols) due to temperature have been shown to influence heterogeneous reaction rates and products beyond pure temperature effect [7]. With the application of coated wall flow-tubes, the aim of this study is therefore to investigate the temperature dependence of bromine activation by ozone interaction while attempting to characterize the contributions of the bulk and surface reactions to observed ozone uptake. Citric acid is used in this study as a hygroscopically characterized matrix whose viscosity changes with temperature and humidity. Here, we present reactive ozone uptake measured between 258 and 289 K. The data show high reproducibility. Comparison of measured uptake with modelled bulk uptake at different matrix compositions (and viscosities) indicate that bulk reactive uptake dominates, but there are other factors which still need further consideration in the model. References 1. Barrie, L.A., et al., Nature, 1988. 334: p. 138 - 141. 2. Hebestreit, K., et al., Science, 1999. 283: p. 55-57. 3. Simpson, W.R., et al., Atmospheric Chemistry and Physics, 2007. 7: p. 4375 - 4418. 4. Haag, R.W. and J. Hoigné, Environ Sci Technol, 1983. 17: p. 261-267. 5. Oum, K.W., et

  19. Temperature dependence of bromine activation due to reaction with ozone in a proxy for organic aerosols

    NASA Astrophysics Data System (ADS)

    Edebeli, Jacinta; Ammann, Markus; Gilgen, Anina; Eichler, Anja; Schneebeli, Martin; Bartels-Rausch, Thorsten

    2016-04-01

    The discovery of boundary layer ozone depletion events in the Polar Regions [1] and in the mid-latitudes [2], two areas of very different temperature regimes, begs the question of temperature dependence of reactions responsible for these observations [3]. These ODEs have been attributed to ozone reacting with halides leading to reactive halogens (halogen activation) of which bromide is extensively studied, R1 - R3 [4, 5] (R1 is a multiphase reaction). O3 + Br‑→ O2 + OBr‑ (R1) OBr‑ + H+ ↔ HOBr (R2) HOBr + H+ + Br‑→ Br2 + H2O (R3) Despite extensive studies of ozone-bromide interactions, the temperature dependence of bromine activation is not clear [3]. This limits parameterization of the involved reactions and factors in atmospheric models [3, 6]. Viscosity changes in the matrix (such as organic aerosols) due to temperature have been shown to influence heterogeneous reaction rates and products beyond pure temperature effect [7]. With the application of coated wall flow-tubes, the aim of this study is therefore to investigate the temperature dependence of bromine activation by ozone interaction while attempting to characterize the contributions of the bulk and surface reactions to observed ozone uptake. Citric acid is used in this study as a hygroscopically characterized matrix whose viscosity changes with temperature and humidity. Here, we present reactive ozone uptake measured between 258 and 289 K. The data show high reproducibility. Comparison of measured uptake with modelled bulk uptake at different matrix compositions (and viscosities) indicate that bulk reactive uptake dominates, but there are other factors which still need further consideration in the model. References 1. Barrie, L.A., et al., Nature, 1988. 334: p. 138 - 141. 2. Hebestreit, K., et al., Science, 1999. 283: p. 55-57. 3. Simpson, W.R., et al., Atmospheric Chemistry and Physics, 2007. 7: p. 4375 - 4418. 4. Haag, R.W. and J. Hoigné, Environ Sci Technol, 1983. 17: p. 261-267. 5. Oum

  20. Monitoring of atmospheric aerosol emissions using a remotely piloted air vehicle (RPV)-Borne Sensor Suite

    SciTech Connect

    1996-05-01

    We have developed a small sensor system, the micro-atmospheric measurement system ({mu}-AMS), to monitor and track aerosol emissions. The system was developed to fly aboard a remotely piloted air vehicle, or other mobile platform, to provide real-time particle measurements in effluent plumes and to collect particles for chemical analysis. The {mu}-AMS instrument measures atmospheric parameters including particle mass concentration and size distribution, temperature, humidity, and airspeed, altitude and position (by GPS receiver) each second. The sensor data are stored onboard and are also down linked to a ground station in real time. The {mu}-AMS is battery powered, small (8 in. dia x 36 in.), and lightweight (15 pounds). Aerosol concentrations and size distributions from above ground explosive tests, airbone urban pollution, and traffic-produced particulates are presented.

  1. Organic Aerosol Formation and Processing in the Los Angeles Basin: Role of Gasoline vs. Diesel Emissions

    NASA Astrophysics Data System (ADS)

    Bahreini, R.; Middlebrook, A. M.; De Gouw, J. A.; Warneke, C.; Trainer, M.; Brown, S. S.; Dube, B.; Holloway, J. S.; Perring, A. E.; Schwarz, J. P.; Spackman, J. R.; Stark, H.; Wagner, N.; Parrish, D. D.

    2011-12-01

    During the CalNex-2010 field project in May-June 2010, the NOAA WP-3D aircraft performed flights up- and down-wind of metropolitan, industrial, agricultural and animal feeding sites in central-southern California. Here airborne data on organic aerosol (OA) properties as measured by a compact time-of-flight aerosol mass spectrometer along with measurements of trace gases affecting secondary production of aerosols in the Los Angeles Basin are presented. The analysis presented indicates that the ratio of organic aerosol to carbon monoxide (OA/CO) is significantly higher than the previously observed ratios of primary OA/CO downwind of urban areas, indicating that even on short time scales of transport within the basin, there is significant production of secondary organic aerosol (SOA). The increase in the ratio of OA/CO is also accompanied by an increase in the fraction of oxygenated species of OA, providing evidence for production of more oxidized SOA as air masses are photochemically processed. Despite a smaller contribution from Diesel vehicles to traffic on weekends, analysis of the weekend vs. weekday data indicates that similar values of ΔOA/ΔCO are observed on the weekends compared to weekdays, for air masses with similar degrees of photochemical processing. This indicates that emissions of gas phase organic species from Diesel vehicles are not significant for OA production in the LA Basin. Our calculated steady-state concentrations of hydroxyl radical (OH) indicate that OH concentrations at mid-day are substantially higher on weekends compared to weekdays, indicating faster chemical processing of air masses during a fixed length of time on the weekends compared to weekdays.

  2. Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States

    PubMed Central

    Xu, Lu; Guo, Hongyu; Boyd, Christopher M.; Klein, Mitchel; Bougiatioti, Aikaterini; Cerully, Kate M.; Hite, James R.; Kreisberg, Nathan M.; Knote, Christoph; Olson, Kevin; Koss, Abigail; Goldstein, Allen H.; Hering, Susanne V.; de Gouw, Joost; Baumann, Karsten; Lee, Shan-Hu; Nenes, Athanasios; Weber, Rodney J.; Ng, Nga Lee

    2015-01-01

    Secondary organic aerosol (SOA) constitutes a substantial fraction of fine particulate matter and has important impacts on climate and human health. The extent to which human activities alter SOA formation from biogenic emissions in the atmosphere is largely undetermined. Here, we present direct observational evidence on the magnitude of anthropogenic influence on biogenic SOA formation based on comprehensive ambient measurements in the southeastern United States (US). Multiple high-time-resolution mass spectrometry organic aerosol measurements were made during different seasons at various locations, including urban and rural sites in the greater Atlanta area and Centreville in rural Alabama. Our results provide a quantitative understanding of the roles of anthropogenic SO2 and NOx in ambient SOA formation. We show that isoprene-derived SOA is directly mediated by the abundance of sulfate, instead of the particle water content and/or particle acidity as suggested by prior laboratory studies. Anthropogenic NOx is shown to enhance nighttime SOA formation via nitrate radical oxidation of monoterpenes, resulting in the formation of condensable organic nitrates. Together, anthropogenic sulfate and NOx can mediate 43–70% of total measured organic aerosol (29–49% of submicron particulate matter, PM1) in the southeastern US during summer. These measurements imply that future reduction in SO2 and NOx emissions can considerably reduce the SOA burden in the southeastern US. Updating current modeling frameworks with these observational constraints will also lead to more accurate treatment of aerosol formation for regions with substantial anthropogenic−biogenic interactions and consequently improve air quality and climate simulations. PMID:25535345

  3. Molecular characterization of urban organic aerosol in tropical India: contributions of primary emissions and secondary photooxidation

    NASA Astrophysics Data System (ADS)

    Fu, P. Q.; Kawamura, K.; Pavuluri, C. M.; Swaminathan, T.; Chen, J.

    2010-03-01

    Organic molecular composition of PM10 samples, collected at Chennai in tropical India, was studied using capillary gas chromatography/mass spectrometry. Fourteen organic compound classes were detected in the aerosols, including aliphatic lipids, sugar compounds, lignin products, terpenoid biomarkers, sterols, aromatic acids, hydroxy-/polyacids, phthalate esters, hopanes, Polycyclic Aromatic Hydrocarbons (PAHs), and photooxidation products from biogenic Volatile Organic Compounds (VOCs). At daytime, phthalate esters were found to be the most abundant compound class; however, at nighttime, fatty acids were the dominant one. Di-(2-ethylhexyl) phthalate, C16 fatty acid, and levoglucosan were identified as the most abundant single compounds. The nighttime maxima of most organics in the aerosols indicate a land/sea breeze effect in tropical India, although some other factors such as local emissions and long-range transport may also influence the composition of organic aerosols. However, biogenic VOC oxidation products (e.g., 2-methyltetrols, pinic acid, 3-hydroxyglutaric acid and β-caryophyllinic acid) showed diurnal patterns with daytime maxima. Interestingly, terephthalic acid was maximized at nighttime, which is different from those of phthalic and isophthalic acids. A positive relation was found between 1,3,5-triphenylbenzene (a tracer for plastic burning) and terephthalic acid, suggesting that the field burning of municipal solid wastes including plastics is a significant source of terephthalic acid. Organic compounds were further categorized into several groups to clarify their sources. Fossil fuel combustion (24-43%) was recognized as the most significant source for the total identified compounds, followed by plastic emission (16-33%), secondary oxidation (8.6-23%), and microbial/marine sources (7.2-17%). In contrast, the contributions of terrestrial plant waxes (5.9-11%) and biomass burning (4.2-6.4%) were relatively small. This study demonstrates that, in

  4. Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States.

    PubMed

    Xu, Lu; Guo, Hongyu; Boyd, Christopher M; Klein, Mitchel; Bougiatioti, Aikaterini; Cerully, Kate M; Hite, James R; Isaacman-VanWertz, Gabriel; Kreisberg, Nathan M; Knote, Christoph; Olson, Kevin; Koss, Abigail; Goldstein, Allen H; Hering, Susanne V; de Gouw, Joost; Baumann, Karsten; Lee, Shan-Hu; Nenes, Athanasios; Weber, Rodney J; Ng, Nga Lee

    2015-01-01

    Secondary organic aerosol (SOA) constitutes a substantial fraction of fine particulate matter and has important impacts on climate and human health. The extent to which human activities alter SOA formation from biogenic emissions in the atmosphere is largely undetermined. Here, we present direct observational evidence on the magnitude of anthropogenic influence on biogenic SOA formation based on comprehensive ambient measurements in the southeastern United States (US). Multiple high-time-resolution mass spectrometry organic aerosol measurements were made during different seasons at various locations, including urban and rural sites in the greater Atlanta area and Centreville in rural Alabama. Our results provide a quantitative understanding of the roles of anthropogenic SO2 and NOx in ambient SOA formation. We show that isoprene-derived SOA is directly mediated by the abundance of sulfate, instead of the particle water content and/or particle acidity as suggested by prior laboratory studies. Anthropogenic NOx is shown to enhance nighttime SOA formation via nitrate radical oxidation of monoterpenes, resulting in the formation of condensable organic nitrates. Together, anthropogenic sulfate and NOx can mediate 43-70% of total measured organic aerosol (29-49% of submicron particulate matter, PM1) in the southeastern US during summer. These measurements imply that future reduction in SO2 and NOx emissions can considerably reduce the SOA burden in the southeastern US. Updating current modeling frameworks with these observational constraints will also lead to more accurate treatment of aerosol formation for regions with substantial anthropogenic-biogenic interactions and consequently improve air quality and climate simulations. PMID:25535345

  5. Chamber bioaerosol study: human emissions of size-resolved fluorescent biological aerosol particles.

    PubMed

    Bhangar, S; Adams, R I; Pasut, W; Huffman, J A; Arens, E A; Taylor, J W; Bruns, T D; Nazaroff, W W

    2016-04-01

    Humans are a prominent source of airborne biological particles in occupied indoor spaces, but few studies have quantified human bioaerosol emissions. The chamber investigation reported here employs a fluorescence-based technique to evaluate bioaerosols with high temporal and particle size resolution. In a 75-m(3) chamber, occupant emission rates of coarse (2.5-10 μm) fluorescent biological aerosol particles (FBAPs) under seated, simulated office-work conditions averaged 0.9 ± 0.3 million particles per person-h. Walking was associated with a 5-6× increase in the emission rate. During both walking and sitting, 60-70% or more of emissions originated from the floor. The increase in emissions during walking (vs. while sitting) was mainly attributable to release of particles from the floor; the associated increased vigor of upper body movements also contributed. Clothing, or its frictional interaction with human skin, was demonstrated to be a source of coarse particles, and especially of the highly fluorescent fraction. Emission rates of FBAPs previously reported for lecture classes were well bounded by the experimental results obtained in this chamber study. In both settings, the size distribution of occupant FBAP emissions had a dominant mode in the 3-5 μm diameter range. PMID:25704637

  6. Acoustic emission classification for failure prediction due to mechanical fatigue

    NASA Astrophysics Data System (ADS)

    Emamian, Vahid; Kaveh, Mostafa; Tewfik, Ahmed H.

    2000-06-01

    Acoustic Emission signals (AE), generated by the formation and growth of micro-cracks in metal components, have the potential for use in mechanical fault detection in monitoring complex- shaped components in machinery including helicopters and aircraft. A major challenge for an AE-based fault detection algorithm is to distinguish crack-related AE signals from other interfering transient signals, such as fretting-related AE signals and electromagnetic transients. Although under a controlled laboratory environment we have fewer interference sources, there are other undesired sources which have to be considered. In this paper, we present some methods, which make their decision based on the features extracted from time-delay and joint time-frequency components by means of a Self- Organizing Map (SOM) neural network using experimental data collected in a laboratory by colleagues at the Georgia Institute of Technology.

  7. Third and higher harmonic plasma emission due to Raman scattering

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    1987-01-01

    The theory for third and higher harmonic plasma emission by the weak turbulence (or random phase) process L + T prime to T (where L denotes a Langmuir wave, and T and T prime denote transverse waves) is developed. Kinematic constraints on the characteristics and growth lengths of waves participating in the wave processes are identified. The cases of L waves produced either directly by a streaming instability, or by the decay L to L prime + S (S is an ion sound wave) of L waves generated by a streaming instability, are considered. Limits on the brightness temperature of the radiation are determined, and expressions for the growth rate and path-integrated wave temperatures are derived.

  8. Factors affecting non-tailpipe aerosol particle emissions from paved roads: On-road measurements in Stockholm, Sweden

    NASA Astrophysics Data System (ADS)

    Hussein, Tareq; Johansson, Christer; Karlsson, Hans; Hansson, Hans-Christen

    A large fraction of urban PM 10 concentrations is due to non-exhaust traffic emissions. In this paper, a mobile measurement system has been used to quantify the relative importance of road particle emission and suspension of accumulated dust versus direct pavement wear, tire type (studded, friction, and summer), pavement type, and vehicle speed. Measurements were performed during May-September on selected roads with different pavements and traffic conditions in the Stockholm region. The highest particle mass concentrations were always observed behind the studded tire and the lowest were behind the summer tire; studded-to-summer ratios were 4.4-17.3 and studded-to-friction ratios were 2.0-6.4. This indicates that studded tires lead to higher emissions than friction and summer tires regardless to the asphalt type. By comparing with measurements in a road simulator, it could be estimated that the pavement wear due to the friction tires was 0.018-0.068 of the suspension of accumulated road dust. Likewise for studded tires road-wear was estimated to be 1.2-4.8 the suspension of accumulated dust. This indicates that wear due to friction tires is very small compared to the suspension of accumulated dust and that suspension due to studded tires may sometimes be as large as the wear of the road. But this will vary depending on, e.g. the amount of dust accumulated on the roads. An important dependence on vehicle speed was also observed. During May, the particle mass concentrations behind the studded tire at vehicle speed 100 km h -1 were about 10 times higher than that at 20 km h -1. The speed dependence was not so pronounced in September, which could be due to less accumulated dust on the roads. The particle number size distribution of the emissions due to road wear by studded tire was characterized by a clear increase in number concentrations of the coarse fraction of aerosol particles, with a geometric mean diameter between 3 and 5 μm. The size distribution of the

  9. Estimate of biogenic VOC emissions in Japan and their effects on photochemical formation of ambient ozone and secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Chatani, Satoru; Matsunaga, Sou N.; Nakatsuka, Seiji

    2015-11-01

    A new gridded database has been developed to estimate the amount of isoprene, monoterpene, and sesquiterpene emitted from all the broadleaf and coniferous trees in Japan with the Model of Emissions of Gases and Aerosols from Nature (MEGAN). This database reflects the vegetation specific to Japan more accurately than existing ones. It estimates much lower isoprene emitted from other vegetation than trees, and higher sesquiterpene emissions mainly emitted from Cryptomeria japonica, which is the most abundant plant type in Japan. Changes in biogenic emissions result in the decrease in ambient ozone and increase in organic aerosol simulated by the air quality simulation over the Tokyo Metropolitan Area in Japan. Although newly estimated biogenic emissions contribute to a better model performance on overestimated ozone and underestimated organic aerosol, they are not a single solution to solve problems associated with the air quality simulation.

  10. Aerosol-computational fluid dynamics modeling of ultrafine and black carbon particle emission, dilution, and growth near roadways

    NASA Astrophysics Data System (ADS)

    Huang, L.; Gong, S. L.; Gordon, M.; Liggio, J.; Staebler, R.; Stroud, C. A.; Lu, G.; Mihele, C.; Brook, J. R.; Jia, C. Q.

    2014-12-01

    Many studies have shown that on-road vehicle emissions are the dominant source of ultrafine particles (UFPs; diameter < 100 nm) in urban areas and near-roadway environments. In order to advance our knowledge on the complex interactions and competition among atmospheric dilution, dispersion, and dynamics of UFPs, an aerosol dynamics-computational fluid dynamics (CFD) coupled model is developed and validated against field measurements. A unique approach of applying periodic boundary conditions is proposed to model pollutant dispersion and dynamics in one unified domain from the tailpipe level to the ambient near-road environment. This approach significantly reduces the size of the computational domain, and therefore allows fast simulation of multiple scenarios. The model is validated against measured turbulent kinetic energy (TKE) and horizontal gradient of pollution concentrations perpendicular to a major highway. Through a model sensitivity analysis, the relative importance of individual aerosol dynamical processes on the total particle number concentration (N) and particle number-size distribution (PSD) near a highway is investigated. The results demonstrate that (1) coagulation has a negligible effect on N and particle growth, (2) binary homogeneous nucleation (BHN) of H2SO4-H2O is likely responsible for elevated N closest to the road, and (3) N and particle growth are very sensitive to the condensation of semi-volatile organics (SVOCs), particle dry deposition, and the interaction between these processes. The results also indicate that, without the proper treatment of the atmospheric boundary layer (i.e., its wind profile and turbulence quantities), the nucleation rate would be underestimated by a factor of 5 in the vehicle wake region due to overestimated dilution. Therefore, introducing atmospheric boundary layer (ABL) conditions to activity-based emission models may potentially improve their performance in estimating UFP traffic emissions.

  11. Characterization of emissions from South Asian biofuels and application to source apportionment of carbonaceous aerosol in the Himalayas

    NASA Astrophysics Data System (ADS)

    Stone, Elizabeth A.; Schauer, James J.; Pradhan, Bidya Banmali; Dangol, Pradeep Man; Habib, Gazala; Venkataraman, Chandra; Ramanathan, V.

    2010-03-01

    This study focuses on improving source apportionment of carbonaceous aerosol in South Asia and consists of three parts: (1) development of novel molecular marker-based profiles for real-world biofuel combustion, (2) application of these profiles to a year-long data set, and (3) evaluation of profiles by an in-depth sensitivity analysis. Emissions profiles for biomass fuels were developed through source testing of a residential stove commonly used in South Asia. Wood fuels were combusted at high and low rates, which corresponded to source profiles high in organic carbon (OC) or high in elemental carbon (EC), respectively. Crop wastes common to the region, including rice straw, mustard stalk, jute stalk, soybean stalk, and animal residue burnings, were also characterized. Biofuel profiles were used in a source apportionment study of OC and EC in Godavari, Nepal. This site is located in the foothills of the Himalayas and was selected for its well-mixed and regionally impacted air masses. At Godavari, daily samples of fine particulate matter (PM2.5) were collected throughout the year of 2006, and the annual trends in particulate mass, OC, and EC followed the occurrence of a regional haze in South Asia. Maximum concentrations occurred during the dry winter season and minimum concentrations occurred during the summer monsoon season. Specific organic compounds unique to aerosol sources, molecular markers, were measured in monthly composite samples. These markers implicated motor vehicles, coal combustion, biomass burning, cow dung burning, vegetative detritus, and secondary organic aerosol as sources of carbonaceous aerosol. A molecular marker-based chemical mass balance (CMB) model provided a quantitative assessment of primary source contributions to carbonaceous aerosol. The new profiles were compared to widely used biomass burning profiles from the literature in a sensitivity analysis. This analysis indicated a high degree of stability in estimates of source

  12. Air pollution from gas flaring: new emission factor estimates and detection in a West African aerosol remote-sensing climatology

    NASA Astrophysics Data System (ADS)

    MacKenzie, Rob; Fawole, Olusegun Gabriel; Levine, James; Cai, Xiaoming

    2016-04-01

    Gas flaring, the disposal of gas through stacks in an open-air flame, is a common feature in the processing of crude oil, especially in oil-rich regions of the world. Gas flaring is a prominent source of volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAH), CO, CO2, nitrogen oxides (NOx), SO2 (in "sour" gas only), and soot (black carbon), as well as the release of locally significant amounts of heat. The rates of emission of these pollutants from gas flaring depend on a number of factors including, but not limited to, fuel composition and quantity, stack geometry, flame/combustion characteristics, and prevailing meteorological conditions. Here, we derive new estimated emission factors (EFs) for carbon-containing pollutants (excluding PAH). The air pollution dispersion model, ADMS5, is used to simulate the dispersion of the pollutants from flaring stacks in the Niger delta. A seasonal variation of the dispersion pattern of the pollutant within a year is studied in relation to the movements of the West Africa Monsoon (WAM) and other prevailing meteorological factors. Further, we have clustered AERONET aerosol signals using trajectory analysis to identify dominant aerosol sources at the Ilorin site in West Africa (4.34 oE, 8.32 oN). A 10-year trajectory-based analysis was undertaken (2005-2015, excluding 2010). Of particular interest are air masses that have passed through the gas flaring region in the Niger Delta area en-route the AERONET site. 7-day back trajectories were calculated using the UK Universities Global Atmospheric Modelling Programme (UGAMP) trajectory model which is driven by analyses from the European Centre for Medium-Range Weather Forecasts (ECMWF). From the back-trajectory calculations, dominant sources are identified, using literature classifications: desert dust (DD); Biomass burning (BB); and Urban-Industrial (UI). We use a combination of synoptic trajectories and aerosol optical properties to distinguish a fourth source

  13. Intense secondary aerosol formation due to strong atmospheric photochemical reactions in summer: observations at a rural site in eastern Yangtze River Delta of China.

    PubMed

    Wang, Dongfang; Zhou, Bin; Fu, Qingyan; Zhao, Qianbiao; Zhang, Qi; Chen, Jianmin; Yang, Xin; Duan, Yusen; Li, Juan

    2016-11-15

    High pollution episodes of PM2.5 and O3 were frequently observed at a rural site (N31.0935º, E120.978°) in eastern Yangtze River Delta (YRD) in summer. To study the impacts of photochemical reactions on secondary aerosol formation in this region, we performed real-time measurements of the mass concentration and composition of PM2.5, particle size distribution (13.6~736.5 nm), concentrations of gas pollutants including O3, SO2, NO2, CO, non-methane hydrocarbons (NMHC)), and nitrate radical in 2013. During the sampling period, the average concentration of PM2.5 was 76.1 (± 16.5) μg/m(3), in which secondary aerosol species including sulfate, nitrate, ammonium, and secondary organic aerosol (SOA) accounted for ~ 62%. Gas-phase oxidation of SO2 was mainly responsible for a fast increase of sulfate (at 1.70 μg/m(3)/h) in the morning. Photochemical production of nitric acid was intense during daytime, but particulate nitrate concentration was low in the afternoon due to high temperature. At night, nitrate was mainly formed through the hydrolysis of NO3 and/or N2O5. The correlations among NMHC, Ox (= O3 + NO2), and SOA suggested that a combination of high emission of hydrocarbons and active photochemical reactions led to the rapid formation of SOA. In addition, several new particle formation and fast growth events were observed despite high ambient aerosol loading. Since the onset of new particle events was accompanied by a rapid increase of H2SO4 and SOA, enhanced formation of sulfate and SOA driven by photochemical oxidation likely promoted the formation and growth of new particles. Together, our results demonstrated that strong atmospheric photochemical reactions enhanced secondary aerosols formation and led to the synchronous occurrence of high concentrations of PM2.5 and O3 in a regional scale. These findings are important for better understanding the air pollution in summer in YRD. PMID:27418517

  14. Toxicological evaluation of realistic emission source aerosols (TERESA)--power plant studies: assessment of breathing pattern.

    PubMed

    Diaz, Edgar A; Lemos, Miriam; Coull, Brent; Long, Mark S; Rohr, Annette C; Ruiz, Pablo; Gupta, Tarun; Kang, Choong-Min; Godleski, John J

    2011-08-01

    Our approach to study multi-pollutant aerosols isolates a single emissions source, evaluates the toxicity of primary and secondary particles derived from this source, and simulates chemical reactions that occur in the atmosphere after emission. Three U.S. coal-fired power plants utilizing different coals and with different emission controls were evaluated. Secondary organic aerosol (SOA) derived from α-pinene and/or ammonia was added in some experiments. Male Sprague-Dawley rats were exposed for 6 h to filtered air or different atmospheric mixtures. Scenarios studied at each plant included the following: primary particles (P); secondary (oxidized) particles (PO); oxidized particles + SOA (POS); and oxidized and neutralized particles + SOA (PONS); additional control scenarios were also studied. Continuous respiratory data were obtained during exposures using whole body plethysmography chambers. Of the 12 respiratory outcomes assessed, each had statistically significant changes at some plant and with some of the 4 scenarios. The most robust outcomes were found with exposure to the PO scenario (increased respiratory frequency with decreases in inspiratory and expiratory time); and the PONS scenario (decreased peak expiratory flow and expiratory flow at 50%). PONS findings were most strongly associated with ammonium, neutralized sulfate, and elemental carbon (EC) in univariate analyses, but only with EC in multivariate analyses. Control scenario O (oxidized without primary particles) had similar changes to PO. Adjusted R(2) analyses showed that scenario was a better predictor of respiratory responses than individual components, suggesting that the complex atmospheric mixture was responsible for respiratory effects.

  15. Excitation-emission spectra and fluorescence quantum yields for fresh and aged biogenic secondary organic aerosols.

    PubMed

    Lee, Hyun Ji Julie; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey A

    2013-06-01

    Certain biogenic secondary organic aerosols (SOA) become absorbent and fluorescent when exposed to reduced nitrogen compounds such as ammonia, amines, and their salts. Fluorescent SOA may potentially be mistaken for biological particles by detection methods relying on fluorescence. This work quantifies the spectral distribution and effective quantum yields of fluorescence of water-soluble SOA generated from two monoterpenes, limonene and α-pinene, and two different oxidants, ozone (O3) and hydroxyl radical (OH). The SOA was generated in a smog chamber, collected on substrates, and aged by exposure to ∼100 ppb ammonia in air saturated with water vapor. Absorption and excitation-emission matrix (EEM) spectra of aqueous extracts of aged and control SOA samples were measured, and the effective absorption coefficients and fluorescence quantum yields (∼0.005 for 349 nm excitation) were determined from the data. The strongest fluorescence for the limonene-derived SOA was observed for λexcitation = 420 ± 50 nm and λemission = 475 ± 38 nm. The window of the strongest fluorescence shifted to λexcitation = 320 ± 25 nm and λemission = 425 ± 38 nm for the α-pinene-derived SOA. Both regions overlap with the EEM spectra of some of the fluorophores found in primary biological aerosols. Despite the low quantum yield, the aged SOA particles may have sufficient fluorescence intensities to interfere with the fluorescence detection of common bioaerosols.

  16. The possible influence of volcanic emissions on atmospheric aerosols in the city of Colima, Mexico.

    PubMed

    Miranda, Javier; Zepeda, Francisco; Galindo, Ignacio

    2004-01-01

    An elemental composition study of atmospheric aerosols from the City of Colima, in the Western Coast of Mexico, is presented. Samples of PM(15)-PM(2.5) and PM(2.5) were collected with Stacked Filter Units (SFU) of the Davis design, in urban and rural sites, the latter located between the City of Colima and the Volcán de Colima, an active volcano. Elemental analyses were carried out using Particle Induced X-ray Emission (PIXE). The gravimetric mass concentrations for the fine fraction were slightly higher in the urban site, while the mean concentrations in the coarse fraction were equal within the uncertainties. High Cl contents were determined in the coarse fraction, a fact also observed in emissions from the Volcán de Colima by other authors. In addition to average elemental concentrations, cluster analysis based on elemental contents was performed, with wind speed and direction data, showing that there is an industrial contributor to aerosols North of the urban area. Moreover, a contribution from the volcanic emissions was identified from the grouping of S, Cl, Cu, and Zn, elements associated to particles emitted by the Volcán de Colima. PMID:14568726

  17. Polarization of thermal bremsstrahlung emission due to electron pressure anisotropy

    NASA Astrophysics Data System (ADS)

    Komarov, S. V.; Khabibullin, I. I.; Churazov, E. M.; Schekochihin, A. A.

    2016-09-01

    Astrophysical plasmas are typically magnetized, with the Larmor radii of the charged particles many orders of magnitude smaller than their collisional mean free paths. The fundamental properties of such plasmas, e.g. conduction and viscosity, may depend on the instabilities driven by the anisotropy of the particle distribution functions and operating at scales comparable to the Larmor scales. We discuss a possibility that the pressure anisotropy of thermal electrons could produce polarization of thermal bremsstrahlung emission. In particular, we consider coherent large-scale motions in galaxy clusters to estimate the level of anisotropy driven by stretching of the magnetic-field lines by plasma flow and by heat fluxes associated with thermal gradients. Our estimate of the degree of polarization is ˜0.1 per cent at energies ≳kT. While this value is too low for the forthcoming generation of X-ray polarimeters, it is potentially an important proxy for the processes taking place at extremely small scales, which are impossible to resolve spatially. The absence of the effect at the predicted level may set a lower limit on the electron collisionality in the ICM. At the same time, the small value of the effect implies that it does not preclude the use of clusters as (unpolarized) calibration sources for X-ray polarimeters at this level of accuracy.

  18. Characterization of primary organic aerosol emissions from meat cooking, trash burning, and motor vehicles with high-resolution aerosol mass spectrometry and comparison with ambient and chamber observations.

    PubMed

    Mohr, Claudia; Huffman, Alex; Cubison, Michael J; Aiken, Allison C; Docherty, Kenneth S; Kimmel, Joel R; Ulbrich, Ingrid M; Hannigan, Michael; Jimenez, Jose L

    2009-04-01

    Organic aerosol (OA) emissions from motor vehicles, meat-cooking and trash burning are analyzed here using a high-resolution aerosol mass spectrometer (AMS). High resolution data show that aerosols emitted by combustion engines and plastic burning are dominated by hydrocarbon-like organic compounds. Meat cooking and especially paper burning emissions contain significant fractions of oxygenated organic compounds; however, their unit-resolution mass spectral signatures are very similar to those from ambient hydrocarbon-like OA, and very different from the mass spectra of ambient secondary or oxygenated OA (OOA). Thus, primary OA from these sources is unlikelyto be a significant direct source of ambient OOA. There are significant differences in high-resolution tracer m/zs that may be useful for differentiating some of these sources. Unlike in most ambient spectra, all of these sources have low total m/z 44 and this signal is not dominated by the CO2+ ion. All sources have high m/z 57, which is low during high OOA ambient periods. Spectra from paper burning are similar to some types of biomass burning OA, with elevated m/z 60. Meat cooking aerosols also have slightly elevated m/z 60, whereas motor vehicle emissions have very low signal at this m/z.

  19. Quantification of free-base and protonated nicotine in electronic cigarette liquids and aerosol emissions

    PubMed Central

    El-Hellani, Ahmad; El-Hage, Rachel; Baalbaki, Rima; Talih, Soha; Shihadeh, Alan; Saliba, Najat

    2016-01-01

    Introduction Reliable characterization of the nicotine content and emissions from electronic cigarettes (ECIGs) is crucial for product regulation. Understanding nicotine delivery, and therefore efficacy and abuse potential, from ECIG products requires quantifying the total nicotine contained or emitted, as well as the partitioning between its free-base and protonated forms. To date, studies reporting nicotine content and emissions of ECIGs have not addressed whether the reported values correspond to the total nicotine or only one of its forms, making the reported results difficult to compare across studies, or to correlate against blood exposure measurements. In this study we investigate whether nicotine in ECIGs is indeed present in more than one form, whether measurements are affected by sampling media, and report a validated method for determining total, free-base (Nic) and protonated nicotine (NicH+) in ECIG liquids and aerosol emissions. Methods We developed an analytical method based on liquid-liquid extraction coupled with GC analysis to assess the respective amounts of Nic and NicH+. The method was first verified on pH-controlled solutions (5 < pH < 10) and then was applied to several ECIG liquids and aerosols generated using a smoking machine. Results The method showed high repeatability and efficiency, and the results were in agreement with theoretical predictions based on measured pH of the standard nicotine solutions. ECIG liquids and aerosols contained both Nic and NicH+, and their relative proportions varied widely. Free-base nicotine was found to account for 18-95% of the total nicotine depending on the product in question. Conclusions The wide variation in nicotine partitioning across products suggests that studies of nicotine delivery from ECIGs should account for this factor. A convenient method for analyzing nicotine fractions in electronic cigarettes has been demonstrated. PMID:26158618

  20. Monitoring and analysis of combustion aerosol emissions from fast moving diesel trains.

    PubMed

    Burchill, Michael J; Gramotnev, Dmitri K; Gramotnev, Galina; Davison, Brian M; Flegg, Mark B

    2011-02-01

    In this paper we report the results of the detailed monitoring and analysis of combustion emissions from fast moving diesel trains. A new highly efficient monitoring methodology is proposed based on the measurements of the total number concentration (TNC) of combustion aerosols at a fixed point (on a bridge overpassing the railway) inside the violently mixing zone created by a fast moving train. Applicability conditions for the proposed methodology are presented, discussed and linked to the formation of the stable and uniform mixing zone. In particular, it is demonstrated that if such a mixing zone is formed, the monitoring results are highly consistent, repeatable (with typically negligible statistical errors and dispersion), stable with respect to the external atmospheric turbulence and result in an unusual pattern of the aerosol evolution with two or three distinct TNC maximums. It is also shown that the stability and uniformity of the created mixing zone (as well as the repeatability of the monitoring results) increase with increasing length of the train (with an estimated critical train length of ~10 carriages, at the speed of ~150km/h). The analysis of the obtained evolutionary dependencies of aerosol TNC suggests that the major possible mechanisms responsible for the formation of the distinct concentration maximums are condensation (the second maximum) and thermal fragmentation of solid nanoparticle aggregates (third maximum). The obtained results and the new methodology will be important for monitoring and analysis of combustion emissions from fast moving trains, and for the determination of the impact of rail networks on the atmospheric environment and human exposure to combustion emissions.

  1. Evidence for heavy fuel oil combustion aerosols from chemical analyses at the island of Lampedusa: a possible large role of ships emissions in the Mediterranean

    NASA Astrophysics Data System (ADS)

    Becagli, S.; Sferlazzo, D. M.; Pace, G.; di Sarra, A.; Bommarito, C.; Calzolai, G.; Ghedini, C.; Lucarelli, F.; Meloni, D.; Monteleone, F.; Severi, M.; Traversi, R.; Udisti, R.

    2012-04-01

    Measurements of aerosol chemical composition made on the island of Lampedusa, south of the Sicily channel, during years 2004-2008, are used to identify the influence of heavy fuel oil (HFO) combustion emissions on aerosol particles in the Central Mediterranean. Aerosol samples influenced by HFO are characterized by elevated Ni and V soluble fraction (about 80% for aerosol from HFO combustion, versus about 40% for crustal particles), high V and Ni to Si ratios, and values of Vsol>6 ng m-3. Evidence of HFO combustion influence is found in 17% of the daily samples. Back trajectories analysis on the selected events show that air masses prevalently come from the Sicily channel region, where an intense ship traffic occurs. This behavior suggests that single fixed sources like refineries are not the main responsible for the elevated V and Ni events, which are probably mainly due to ships emissions. Vsol, Nisol, and non-sea salt SO42- (nssSO42-) show a marked seasonal behaviour, with an evident summer maximum. Such a pattern can be explained by several processes: (i) increased photochemical activity in summer, leading to a faster production of secondary aerosols, mainly nssSO42-, from the oxidation of SO2 (ii) stronger marine boundary layer (MBL) stability in summer, leading to higher concentration of emitted compounds in the lowest atmospheric layers. A very intense event in spring 2008 was studied in detail, also using size segregated chemical measurements. These data show that elements arising from heavy oil combustion (V, Ni, Al, Fe) are distributed in the sub-micrometric fraction of the aerosol, and the metals are present as free metals, carbonates, oxides hydrates or labile complex with organic ligands, so that they are dissolved in mild condition (HNO3, pH1.5). Data suggest a characteristic nssSO42-/V ratio in the range 200-400 for HFO combustion aerosols in summer at Lampedusa. By using the value of 200 a lower limit for the HFO contribution to total sulphates is

  2. Regional-scale simulations of fungal spore aerosols using an emission parameterization adapted to local measurements of fluorescent biological aerosol particles

    NASA Astrophysics Data System (ADS)

    Hummel, M.; Hoose, C.; Gallagher, M.; Healy, D. A.; Huffman, J. A.; O'Connor, D.; Pöschl, U.; Pöhlker, C.; Robinson, N. H.; Schnaiter, M.; Sodeau, J. R.; Toprak, E.; Vogel, H.

    2014-04-01

    Fungal spores as a prominent type of primary biological aerosol particles (PBAP) have been incorporated into the COSMO-ART regional atmospheric model, using and comparing three different emission parameterizations. Two literature-based emission rates derived from fungal spore colony counts and chemical tracer measurements were used as a parameterization baseline for this study. A third, new emission parameterization was adapted to field measurements of fluorescent biological aerosol particles (FBAP) from four locations across Northern Europe. FBAP concentrations can be regarded as a lower estimate of total PBAP concentrations. Size distributions of FBAP often show a distinct mode at approx. 3 μm, corresponding to a diameter range characteristic for many fungal spores. Previous studies have suggested the majority of FBAP in several locations are dominated by fungal spores. Thus, we suggest that simulated fungal spore concentrations obtained from the emission parameterizations can be compared to the sum of total FBAP concentrations. A comparison reveals that parameterized estimates of fungal spore concentrations based on literature numbers underestimate measured FBAP concentrations. In agreement with measurement data, the model results show a diurnal cycle in simulated fungal spore concentrations, which may develop partially as a consequence of a varying boundary layer height between day and night. Measured FBAP and simulated fungal spore concentrations also correlate similarly with simulated temperature and humidity. These meteorological variables, together with leaf area index, were chosen to drive the new emission parameterization discussed here. Using the new emission parameterization on a model domain covering Western Europe, fungal spores in the lowest model layer comprise a fraction of 15% of the total aerosol mass over land and reach average number concentrations of 26 L-1. The results confirm that fungal spores and biological particles may account for a

  3. Toxicological Evaluation of Realistic Emission Source Aerosols (TERESA): Introduction and overview

    PubMed Central

    Godleski, John J.; Rohr, Annette C.; Kang, Choong M.; Diaz, Edgar A.; Ruiz, Pablo A.; Koutrakis, Petros

    2013-01-01

    Determining the health impacts of sources and components of fine particulate matter (PM2.5) is an important scientific goal. PM2.5 is a complex mixture of inorganic and organic constituents that are likely to differ in their potential to cause adverse health outcomes. The Toxicological Evaluation of Realistic Emissions of Source Aerosols (TERESA) study focused on two PM sources—coal-fired power plants and mobile sources—and sought to investigate the toxicological effects of exposure to emissions from these sources. The set of papers published here document the power plant experiments. TERESA attempted to delineate health effects of primary particles, secondary (aged) particles, and mixtures of these with common atmospheric constituents. TERESA involved withdrawal of emissions from the stacks of three coal-fired power plants in the United States. The emissions were aged and atmospherically transformed in a mobile laboratory simulating downwind power plant plume processing. Toxicological evaluations were carried out in laboratory rats exposed to different emission scenarios with extensive exposure characterization. The approach employed in TERESA was ambitious and innovative. Technical challenges included the development of stack sampling technology that prevented condensation of water vapor from the power plant exhaust during sampling and transfer, while minimizing losses of primary particles; development and optimization of a photochemical chamber to provide an aged aerosol for animal exposures; development and evaluation of a denuder system to remove excess gaseous components; and development of a mobile toxicology laboratory. This paper provides an overview of the conceptual framework, design, and methods employed in the study. PMID:21639692

  4. Aerosol Radiative Forcing Estimates from South Asian Clay Brick Production Based on Direct Emission Measurements

    NASA Astrophysics Data System (ADS)

    Weyant, C.; Athalye, V.; Ragavan, S.; Rajarathnam, U.; Kr, B.; Lalchandani, D.; Maithel, S.; Malhotra, G.; Bhanware, P.; Thoa, V.; Phuong, N.; Baum, E.; Bond, T. C.

    2012-12-01

    About 150-200 billion clay bricks are produced in India every year. Most of these bricks are fired in small-scale traditional kilns that burn coal or biomass without pollution controls. Reddy and Venkataraman (2001) estimated that 8% of fossil fuel related PM2.5 emissions and 23% of black carbon emissions in India are released from brick production. Few direct emissions measurements have been done in this industry and black carbon emissions, in particular, have not been previously measured. In this study, 9 kilns representing five common brick kiln technologies were tested for aerosol properties and gaseous pollutant emissions, including optical scattering and absorption and thermal-optical OC/EC. Simple relationships are then used to estimate the radiative-forcing impact. Kiln design and fuel quality greatly affect the overall emission profiles and relative climate warming. Batch production kilns, such as the Downdraft kiln, produce the most PM2.5 (0.97 gPM2.5/fired brick) with an OC/EC fraction of 0.3. Vertical Shaft Brick kilns using internally mixed fuels produce the least PM (0.09 gPM2.5/kg fired brick) with the least EC (OC/EC = 16.5), but these kilns are expensive to implement and their use throughout Southern Asia is minimal. The most popular kiln in India, the Bull's Trench kiln, had fewer emissions per brick than the Downdraft kiln, but an even higher EC fraction (OC/EC = 0.05). The Zig-zag kiln is similar in structure to the Bull's Trench kiln, but the emission factors are significantly lower: 50% reduction for CO, 17% for PM2.5 and 60% for black carbon. This difference in emissions suggests that converting traditional Bull's Trench kilns into less polluting Zig-zag kilns would result in reduced atmospheric warming from brick production.

  5. Experiment to Characterize Aircraft Volatile Aerosol and Trace-Species Emissions (EXCAVATE)

    NASA Technical Reports Server (NTRS)

    Anderson, B. E.; Branham, H.-S.; Hudgins, C. H.; Plant, J. V.; Ballenthin, J. O.; Miller, T. M.; Viggiano, A. A.; Blake, D. R.; Boudries, H.; Canagaratna, M.

    2005-01-01

    The Experiment to Characterize Aircraft Volatile and Trace Species Emissions (EXCAVATE) was conducted at Langley Research Center (LaRC) in January 2002 and focused upon assaying the production of aerosols and aerosol precursors by a modern commercial aircraft, the Langley B757, during ground-based operation. Remaining uncertainty in the postcombustion fate of jet fuel sulfur contaminants, the need for data to test new theories of particle formation and growth within engine exhaust plumes, and the need for observations to develop air quality models for predicting pollution levels in airport terminal areas were the primary factors motivating the experiment. NASA's Atmospheric Effects of Aviation Project (AEAP) and the Ultra Effect Engine Technology (UEET) Program sponsored the experiment which had the specific objectives of determining ion densities; the fraction of fuel S converted from S(IV) to S(VI); the concentration and speciation of volatile aerosols and black carbon; and gas-phase concentrations of long-chain hydrocarbon and PAH species, all as functions of engine power, fuel composition, and plume age.

  6. Top-down constraints to aerosol emissions from open biomass burning: the role of gas-particle partitioning and secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Konovalov, Igor B.; Beekmann, Matthias; Berezin, Evgeny V.; Petetin, Hervé

    2014-05-01

    Open biomass burning (BB), including wildfires and controlled burns in agriculture and foresty, is known to provide an important contribution to organic aerosol (OA) and black carbon (BC) emissions on the global scale. However, quantitative estimates of BB aerosol emissions and their effects on climate and environment remain rather uncertain. A useful way to constrain the OA&BC emissions involves using atmospheric measurements in the framework of the inverse modeling approach. In such an approach, the relationship between the emissions and the measurements is simulated by a chemistry transport model; this means that top-down estimates may be sensitive to possible model uncertainties. As a result of assimilation of satellite measurements of aerosol optical depth, several recent studies (e.g. [1,2]) indicated that aerosol emissions provided by bottom-up emission inventories may be strongly underestimated relative to emissions of gaseous species (such as CO). Meanwhile, it was earlier shown (e.g. [3]) that the relationship between primary organic aerosol emissions and aerosol concentration in the atmosphere can be significantly affected by gas-particle partitioning and oxidation of lower-volatility organic emissions; these processes are usually not taken into account in typical chemistry transport models. The main goal of this study was to examine to what degree the discrepancy between the OA&BC/CO emission ratios predicted by the bottom-up inventories and derived from satellite observations can be associated with the mentioned processes and explained in the framework of the volatility basis set approach (VBS) [3] to OA modelling. To achieve this goal, a VBS scheme, which was recently implemented in the CHIMERE chemistry transport model (CTM), was first modified to account for OA emissions from biomass burning. An ensemble of simulations with the CHIMERE CTM was then performed for the case of the 2010 mega-fire event in European Russia [4]; each of the simulations

  7. Atmospheric emitted radiance interferometer (AERI): Status and the aerosol explanation for extra window region emissions

    SciTech Connect

    Revercomb, H.E.; Knuteson, R.O.; Best, F.A.; Dirkx, T.P.

    1996-04-01

    High spectral resolution observations of downwelling emission from 3 to 19 microns have been made by the Atmospheric Emitted Radiance Interferometer (AERI) Prototype at the Southern Great Plains (SGP) Cloud and Radiative Testbed (CART) site for over two years. The spectral data set from AERI provides a basis for improving clear sky radiative transfer; determining the radiative impact of clouds, including the derivation of cloud radiative properties; defining the influences of aerosols in the window regions; and retrieving boundary layer state properties, including temperature, water vapor, and other trace gases. The data stream of radiometrically and spectrally calibrated radiances is routinely provided by Pacific Northwest Laboratory (PNL) to those science teams requesting it, and further information on the instrument and data characteristics is available in the ARM Science Team proceedings for 1993 and 1994 and in several conference publications. This paper describes the AERI status, calibration, field experiment wit a new AERI-01 and schedule, window region emissions, and future AERI plans.

  8. Modelling African aerosol using updated fossil fuel and biofuel emission inventories for 2005 and 2030

    NASA Astrophysics Data System (ADS)

    Liousse, C.; Penner, J. E.; Assamoi, E.; Xu, L.; Criqui, P.; Mima, S.; Guillaume, B.; Rosset, R.

    2010-12-01

    A regional fossil fuel and biofuel emission inventory for particulates has been developed for Africa at a resolution of 0.25° x 0.25° for the year 2005. The original database of Junker and Liousse (2008) was used after modification for updated regional fuel consumption and emission factors. Consumption data were corrected after direct inquiries conducted in Africa, including a new emitter category (i.e. two-wheel vehicles including “zemidjans”) and a new activity sector (i.e. power plants) since both were not considered in the previous emission inventory. Emission factors were measured during the 2005 AMMA campaign (Assamoi and Liousse, 2010) and combustion chamber experiments. Two prospective inventories for 2030 are derived based on this new regional inventory and two energy consumption forecasts by the Prospective Outlook on Long-term Energy Systems (POLES) model (Criqui, 2001). The first is a reference scenario, where no emission controls beyond those achieved in 2003 are taken into account, and the second is for a "clean" scenario where possible and planned policies for emission control are assumed to be effective. BC and OCp emission budgets for these new inventories will be discussed and compared to the previous global dataset. These new inventories along with the most recent open biomass burning inventory (Liousse et al., 2010) have been tested in the ORISAM-TM5 global chemistry-climate model with a focus over Africa at a 1° x 1° resolution. Global simulations for BC and primary OC for the years 2005 and 2030 are carried out and the modelled particulate concentrations for 2005 are compared to available measurements in Africa. Finally, BC and OC radiative properties (aerosol optical depths and single scattering albedo) are calculated and the direct radiative forcing is estimated using an off line model (Wang and Penner, 2009). Results of sensitivity tests driven with different emission scenarios will be presented.

  9. Effect of bark beetle infestation on secondary organic aerosol precursor emissions.

    PubMed

    Amin, Hardik; Atkins, P Tyson; Russo, Rachel S; Brown, Aaron W; Sive, Barkley; Hallar, A Gannet; Huff Hartz, Kara E

    2012-06-01

    Bark beetles are a potentially destructive force in forest ecosystems; however, it is not known how insect attacks affect the atmosphere. The emissions of volatile organic compounds (VOCs) were sampled i.) from bark beetle infested and healthy lodgepole pine (Pinus contorta var. latifolia) trees and ii.) from sites with and without active mountain pine beetle infestation. The emissions from the trunk and the canopy were collected via sorbent traps. After collection, the sorbent traps were extracted with hexane, and the extracts were separated and detected using gas chromatography/mass spectroscopy. Canister samples were also collected and analyzed by a multicolumn gas chromatographic system. The samples from bark beetle infested lodgepole pine trees suggest a 5- to 20-fold enhancement in total VOCs emissions. Furthermore, increases in the β-phellandrene emissions correlated with bark beetle infestation. A shift in the type and the quantity of VOC emissions can be used to identify bark beetle infestation but, more importantly, can lead to increases in secondary organic aerosol from these forests as potent SOA precursors are produced. PMID:22545866

  10. Primary gas- and particle-phase emissions and secondary organic aerosol production from gasoline and diesel off-road engines.

    PubMed

    Gordon, Timothy D; Tkacik, Daniel S; Presto, Albert A; Zhang, Mang; Jathar, Shantanu H; Nguyen, Ngoc T; Massetti, John; Truong, Tin; Cicero-Fernandez, Pablo; Maddox, Christine; Rieger, Paul; Chattopadhyay, Sulekha; Maldonado, Hector; Maricq, M Matti; Robinson, Allen L

    2013-12-17

    Dilution and smog chamber experiments were performed to characterize the primary emissions and secondary organic aerosol (SOA) formation from gasoline and diesel small off-road engines (SOREs). These engines are high emitters of primary gas- and particle-phase pollutants relative to their fuel consumption. Two- and 4-stroke gasoline SOREs emit much more (up to 3 orders of magnitude more) nonmethane organic gases (NMOGs), primary PM and organic carbon than newer on-road gasoline vehicles (per kg of fuel burned). The primary emissions from a diesel transportation refrigeration unit were similar to those of older, uncontrolled diesel engines used in on-road vehicles (e.g., premodel year 2007 heavy-duty diesel trucks). Two-strokes emitted the largest fractional (and absolute) amount of SOA precursors compared to diesel and 4-stroke gasoline SOREs; however, 35-80% of the NMOG emissions from the engines could not be speciated using traditional gas chromatography or high-performance liquid chromatography. After 3 h of photo-oxidation in a smog chamber, dilute emissions from both 2- and 4-stroke gasoline SOREs produced large amounts of semivolatile SOA. The effective SOA yield (defined as the ratio of SOA mass to estimated mass of reacted precursors) was 2-4% for 2- and 4-stroke SOREs, which is comparable to yields from dilute exhaust from older passenger cars and unburned gasoline. This suggests that much of the SOA production was due to unburned fuel and/or lubrication oil. The total PM contribution of different mobile source categories to the ambient PM burden was calculated by combining primary emission, SOA production and fuel consumption data. Relative to their fuel consumption, SOREs are disproportionately high total PM sources; however, the vastly greater fuel consumption of on-road vehicles renders them (on-road vehicles) the dominant mobile source of ambient PM in the Los Angeles area.

  11. Primary marine aerosol emissions from the Mediterranean Sea during pre-bloom and oligotrophic conditions: correlations to seawater chlorophyll a from a mesocosm study

    NASA Astrophysics Data System (ADS)

    Schwier, A. N.; Rose, C.; Asmi, E.; Ebling, A. M.; Landing, W. M.; Marro, S.; Pedrotti, M.-L.; Sallon, A.; Iuculano, F.; Agusti, S.; Tsiola, A.; Pitta, P.; Louis, J.; Guieu, C.; Gazeau, F.; Sellegri, K.

    2014-10-01

    size distribution, organic content or the CCN activity of the generated primary aerosol. pCO2 perturbations had little effect on the physical or chemical parameters of the aerosol emissions, with larger effects observed due to the differences between a pre-bloom and oligotrophic environment.

  12. Primary marine aerosol emissions from the Mediterranean Sea during pre-bloom and oligotrophic conditions: correlations to seawater chlorophyll a from a mesocosm study

    NASA Astrophysics Data System (ADS)

    Schwier, A. N.; Rose, C.; Asmi, E.; Ebling, A. M.; Landing, W. M.; Marro, S.; Pedrotti, M.-L.; Sallon, A.; Iuculano, F.; Agusti, S.; Tsiola, A.; Pitta, P.; Louis, J.; Guieu, C.; Gazeau, F.; Sellegri, K.

    2015-07-01

    pre-bloom period. The enrichment of the seawater samples with microlayer samples did not have any effect on the size distribution, organic content or the CCN activity of the generated primary aerosol. Partial pressure of CO2, pCO2, perturbations had little effect on the physical or chemical parameters of the aerosol emissions, with larger effects observed due to the differences between a pre-bloom and oligotrophic environment.

  13. Properties of aerosols from sugar-cane burning emissions in Southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Lara, L. L.; Artaxo, P.; Martinelli, L. A.; Camargo, P. B.; Victoria, R. L.; Ferraz, E. S. B.

    The influences of biomass burning emissions in the composition of aerosol have been studied during 1 year around the city of Piracicaba (Southeastern Brazil). Inhalable particles, separated in PM 2.5 and coarse particulate mode (CPM, with size in the range (2.5< dp<10 μm)), were sampled from April 1997 to March 1998 and analyzed for BC, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Se, Br, Rb, Sr, Zr, Pb. The average concentrations of PM 2.5, CPM, BC and chemical elements were statistically higher in the dry season than in the wet season. The results of absolute principal component analysis showed four and three different sources for PM 2.5 and CPM, respectively. Sugar-cane burning is the main source of PM 2.5 representing 60% of PM 2.5, soil dust accounted for 14%, and industries and oil combustion contributed with 12% each one. Resuspended soil is the main source of CPM followed by industrial emissions and sugar-cane burning. The sampling and analytical procedures applied in this study showed that sugar-cane burning and agricultural practices are the main sources of inhalable particles, possibly altering the aerosol composition around the city of Piracicaba.

  14. Analysis of particulate emissions from tropical biomass burning using a global aerosol model and long-term surface observations

    NASA Astrophysics Data System (ADS)

    Reddington, Carly L.; Spracklen, Dominick V.; Artaxo, Paulo; Ridley, David A.; Rizzo, Luciana V.; Arana, Andrea

    2016-09-01

    We use the GLOMAP global aerosol model evaluated against observations of surface particulate matter (PM2.5) and aerosol optical depth (AOD) to better understand the impacts of biomass burning on tropical aerosol over the period 2003 to 2011. Previous studies report a large underestimation of AOD over regions impacted by tropical biomass burning, scaling particulate emissions from fire by up to a factor of 6 to enable the models to simulate observed AOD. To explore the uncertainty in emissions we use three satellite-derived fire emission datasets (GFED3, GFAS1 and FINN1). In these datasets the tropics account for 66-84 % of global particulate emissions from fire. With all emission datasets GLOMAP underestimates dry season PM2.5 concentrations in regions of high fire activity in South America and underestimates AOD over South America, Africa and Southeast Asia. When we assume an upper estimate of aerosol hygroscopicity, underestimation of AOD over tropical regions impacted by biomass burning is reduced relative to previous studies. Where coincident observations of surface PM2.5 and AOD are available we find a greater model underestimation of AOD than PM2.5, even when we assume an upper estimate of aerosol hygroscopicity. Increasing particulate emissions to improve simulation of AOD can therefore lead to overestimation of surface PM2.5 concentrations. We find that scaling FINN1 emissions by a factor of 1.5 prevents underestimation of AOD and surface PM2.5 in most tropical locations except Africa. GFAS1 requires emission scaling factor of 3.4 in most locations with the exception of equatorial Asia where a scaling factor of 1.5 is adequate. Scaling GFED3 emissions by a factor of 1.5 is sufficient in active deforestation regions of South America and equatorial Asia, but a larger scaling factor is required elsewhere. The model with GFED3 emissions poorly simulates observed seasonal variability in surface PM2.5 and AOD in regions where small fires dominate, providing

  15. Biophoton Emission Due to Drought Injury in Red Beans: Possibility of Early Detection of Drought Injury

    NASA Astrophysics Data System (ADS)

    Ohya, Tomoyuki; Yoshida, Satoshi; Kawabata, Ryuzou; Okabe, Hirotaka; Kai, Shoichi

    2002-07-01

    We study biophoton emission from red beans (Vigna angularis) during germination and seedling stages under drought stress. Strong photon emission is observed at the root apex when the beans are subjected to the dry condition. The spatial distribution of the emission is broader than that of emission due to the application of strong salt stress reported previously [T. Ohya et al.: Jpn. J. Appl. Phys. 39 (2000) 3696]. When they are rewatered, strong photon emission from them is again observed. As their drought damage is weaker, the intensity of the photon emission is weaker. Photon emission from damaged roots indicates their physiological response to external stress, that is, photon emission intensity measurement is useful for detecting physiological changes and evaluating the degrees of such changes before serious damage takes place without any invasion and destruction.

  16. A numerical determination of the evolution of cloud drop spectra due to condensation on natural aerosol particles

    NASA Technical Reports Server (NTRS)

    Lee, I. Y.; Haenel, G.; Pruppacher, H. R.

    1980-01-01

    The time variation in size of aerosol particles growing by condensation is studied numerically by means of an air parcel model which allows entrainment of air and aerosol particles. Particles of four types of aerosols typically occurring in atmospheric air masses were considered. The present model circumvents any assumption about the size distribution and chemical composition of the aerosol particles by basing the aerosol particle growth on actually observed size distributions and on observed amounts of water taken up under equilibrium by a deposit of the aerosol particles. Characteristic differences in the drop size distribution, liquid water content and supersaturation were found for the clouds which evolved from the four aerosol types considered.

  17. Regional-scale simulations of fungal spore aerosols using an emission parameterization adapted to local measurements of fluorescent biological aerosol particles

    NASA Astrophysics Data System (ADS)

    Hummel, M.; Hoose, C.; Gallagher, M.; Healy, D. A.; Huffman, J. A.; O'Connor, D.; Pöschl, U.; Pöhlker, C.; Robinson, N. H.; Schnaiter, M.; Sodeau, J. R.; Stengel, M.; Toprak, E.; Vogel, H.

    2015-06-01

    Fungal spores as a prominent type of primary biological aerosol particles (PBAP) have been incorporated into the COSMO-ART (Consortium for Small-scale Modelling-Aerosols and Reactive Trace gases) regional atmospheric model. Two literature-based emission rates for fungal spores derived from fungal spore colony counts and chemical tracer measurements were used as a parameterization baseline for this study. A third, new emission parameterization for fluorescent biological aerosol particles (FBAP) was adapted to field measurements from four locations across Europe. FBAP concentrations can be regarded as a lower estimate of total PBAP concentrations. Size distributions of FBAP often show a distinct mode at approx. 3 μm, corresponding to a diameter range characteristic for many fungal spores. Previous studies for several locations have suggested that FBAP are in many cases dominated by fungal spores. Thus, we suggest that simulated FBAP and fungal spore concentrations obtained from the three different emission parameterizations can be compared to FBAP measurements. The comparison reveals that simulated fungal spore concentrations based on literature emission parameterizations are lower than measured FBAP concentrations. In agreement with the measurements, the model results show a diurnal cycle in simulated fungal spore concentrations, which may develop partially as a consequence of a varying boundary layer height between day and night. Temperature and specific humidity, together with leaf area index (LAI), were chosen to drive the new emission parameterization which is fitted to the FBAP observations. The new parameterization results in similar root mean square errors (RMSEs) and correlation coefficients compared to the FBAP observations as the previously existing fungal spore emission parameterizations, with some improvements in the bias. Using the new emission parameterization on a model domain covering western Europe, FBAP in the lowest model layer comprise a

  18. An Overview of the DAURE Campaign: Aerosols Emissions and Evolution in the Western Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Pandolfi, Marco; Querol, Xavier; Alastuey, Andrés.; Jimenez, Jose L.

    2010-05-01

    DAURE (Determination of the sources of atmospheric Aerosols in Urban and Rural Environments in the western Mediterranean) is a multidisciplinary international measurement campaign mainly aimed at estimating the sources and origin of atmospheric fine aerosols in the Western Mediterranean Basin (WMB), with particular attention to the carbonaceous fraction. Main focuses of the campaign are the study of the origin of the intense pollution episodes frequently occurring at regional scale in summer and winter in the WMB (Perez et al., 2008) and the emission, formation, transport and transformation of aerosols during these polluted scenarios. The peculiar atmospheric dynamics in the WMB, regulated by complex climatic and orographic effects (Millán et al., 1997), together with the large pollutant emissions from densely populated areas, large industrial areas and ports located along the coastline, give rise to a complex phenomenology for aerosol formation and transformation. In this context, extremely high concentrations of fine particulate matter (mainly PM1, particulate matter with aerodynamic diameter < 1um) are usually registered at regional background stations, with levels even higher than those simultaneously registered at urban stations. DAURE brings together state-of-the-art measurements and modeling techniques from about 20 International and Spanish Institutions. The DAURE campaign took place during winter (February-March 2009) and summer (July 2009) at an urban site (Barcelona, 80 m a.s.l., NE Spain) and a regional background site (Montseny, 720 m a.s.l., NE Spain, a Supersite of the EUSAAR network). Widespread in situ aerosol sampling techniques (such as PM optical counters, PM samplers, MAAP, CPC, SMPS, Rotating Drum Impactor, among others) and remote sensing techniques (LIDAR, sunphotometer) have been applied together with state-of-the-art methods such as 14C (Szidat et al., 2006), Proton-Transfer Reaction Mass Spectrometry (PTRMS) for VOCs, and High

  19. Top-down constraints to aerosol emissions from open biomass burning: the role of gas-particle partitioning and secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Konovalov, Igor B.; Beekmann, Matthias; Berezin, Evgeny V.; Petetin, Hervé

    2014-05-01

    Open biomass burning (BB), including wildfires and controlled burns in agriculture and foresty, is known to provide an important contribution to organic aerosol (OA) and black carbon (BC) emissions on the global scale. However, quantitative estimates of BB aerosol emissions and their effects on climate and environment remain rather uncertain. A useful way to constrain the OA&BC emissions involves using atmospheric measurements in the framework of the inverse modeling approach. In such an approach, the relationship between the emissions and the measurements is simulated by a chemistry transport model; this means that top-down estimates may be sensitive to possible model uncertainties. As a result of assimilation of satellite measurements of aerosol optical depth, several recent studies (e.g. [1,2]) indicated that aerosol emissions provided by bottom-up emission inventories may be strongly underestimated relative to emissions of gaseous species (such as CO). Meanwhile, it was earlier shown (e.g. [3]) that the relationship between primary organic aerosol emissions and aerosol concentration in the atmosphere can be significantly affected by gas-particle partitioning and oxidation of lower-volatility organic emissions; these processes are usually not taken into account in typical chemistry transport models. The main goal of this study was to examine to what degree the discrepancy between the OA&BC/CO emission ratios predicted by the bottom-up inventories and derived from satellite observations can be associated with the mentioned processes and explained in the framework of the volatility basis set approach (VBS) [3] to OA modelling. To achieve this goal, a VBS scheme, which was recently implemented in the CHIMERE chemistry transport model (CTM), was first modified to account for OA emissions from biomass burning. An ensemble of simulations with the CHIMERE CTM was then performed for the case of the 2010 mega-fire event in European Russia [4]; each of the simulations

  20. Summer 2009 wildfires in Portugal: Emission of trace gases and aerosol composition

    NASA Astrophysics Data System (ADS)

    Alves, Célia; Vicente, Ana; Nunes, Teresa; Gonçalves, Cátia; Fernandes, Ana Patrícia; Mirante, Fátima; Tarelho, Luís; Sánchez de la Campa, Ana M.; Querol, Xavier; Caseiro, Alexandre; Monteiro, Cristina; Evtyugina, Margarita; Pio, Casimiro

    2011-01-01

    In summer 2009, emissions of trace gases and aerosols from several wildfires occurring in Portugal were sampled. A portable high-volume sampler was used to collect sequentially, on quartz fibre filters, coarse (PM 2.5-10) and fine (PM 2.5) smoke particles. Tedlar air sampling bags have been used for complementary chemical characterisation of the gaseous phase. The carbonaceous content (elemental and organic carbon, EC/OC) of particulate matter was analysed by a thermal-optical transmission technique. The levels of almost 50 elements were quantified by inductively coupled plasma-mass spectrometry. The water-soluble ions were obtained by ion chromatography. Emission factors of species that are favoured by the smouldering phase (e.g. CO) were above the values reported in the literature for biomass burning in other ecosystems. The CO emission factors were 231 ± 117 g kg -1 biomass (dry basis) burned. Emissions of compounds that are promoted in fresh plumes and during the flaming phase, such as CO 2, were generally lower than those proposed for savannah and tropical forest fires. The CO 2 emission factors ranged from about 1000 to 1700 g kg -1. Total hydrocarbons, PM 2.5, PM 10 and OC presented variable emissions, but in general substantially higher than values reported for wildfires in African and Amazonian biomes. The emission factors obtained in Portugal were as follows (in g kg -1 biomass, dry basis): 6-350 for total hydrocarbons, 0.5-42 for PM 2.5, 1-60 for PM 10, and 0.2-42 for OC (in PM 10). The organic carbon-to-elemental carbon ratios measured in the present study largely exceeded those obtained by other researchers. The aerosol mass was dominated by organic matter (OC/PM 2.5 = 50 ± 18%, OC/PM 2.5-10 = 36 ± 18%). The metal elements represented, on average, 1.23 and 0.91%, while the measured water-soluble ions accounted for 2.6 and 2.1% of the PM 2.5 and PM 2.5-10 mass, respectively. Carbonates accounted for 0.15-3.1% (average = 0.83%) of PM 2.5-10. The

  1. Agricultural ammonia emissions and ammonium concentrations associated with aerosols and precipitation in the southeast United States

    NASA Astrophysics Data System (ADS)

    Aneja, Viney P.; Nelson, Dena R.; Roelle, Paul A.; Walker, John T.; Battye, William

    2003-02-01

    Temporal and spatial variations in ammonia (NH3) emissions and ammonium (NH4+) concentrations associated with aerosols and volume-weighted NH4+ concentration in precipitation are investigated over the period 1990-1998 in the southeast United States (Alabama, Florida, Georgia, Kentucky, North Carolina, South Carolina, Mississippi, and Tennessee). These variations were analyzed using an NH3 emissions inventory developed for the southeast United States and ambient NH4+ data from the various Clean Air Status and Trends Network (CASTNet) and the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). Results show that natural log-transformed annual NH4+ concentration associated with aerosols increases with natural log-transformed annual NH3 emission density within the same county (R2 = 0.86, p < 0.0001, N = 12). Natural log-transformed annual volume-weighted average NH4+ concentration in precipitation shows only a very weak positive correlation with natural log-transformed annual NH3 emission densities within the corresponding county (R2 = 0.12, p = 0.04, N = 29). Analysis of NH4+ concentration associated with aerosols at CASTNet sites revealed that temperature, precipitation amount, and relative humidity are the most statistically significant (p < 0.05) parameters in predicting the weekly concentrations of NH4+ during the period 1990-1998. Wind speed and wind direction were also statistically significant (p < 0.05) at several CASTNet sites, but the results were less consistent. Investigation into wet NH4+ concentration in precipitation consistently yielded temperature as a statistically significant (p < 0.05) parameter at individual sites. Trends over the period 1990-1998 revealed a slight decrease in NH4+ concentration at CASTNet site SPD, Claiborne County, Tennessee (2.14-1.88 μg m-3), while positive trends in NH4+ concentration in precipitation were evident at NADP sites NC35, Sampson County, North Carolina (0.2-0.48 mg L-1) and KY35, Rowan

  2. Chemical characterization of emissions from vegetable oil processing and their contribution to aerosol mass using the organic molecular markers approach.

    PubMed

    Kavouras, I G; Stratigakis, N; Stephanou, E G

    2001-04-01

    The organic fraction of aerosol emitted from a vegetable oil processing plant was studied to investigate the contribution of emissions to ambient particles in the surrounding area. Solvent-soluble particulate organic compounds emitted from the plant accounted for 10% of total suspended particles. This percentage was lower in the receptor sites (less than 6% of total aerosol mass). Nonpolar, moderate polar, polar, and acidic compounds were detected in both emitted and ambient aerosol samples. The processing and combustion of olive pits yielded a source with strong biogenic characteristics, such as the high values of the carbon preference index (CPI) for all compound classes. Polycyclic aromatic hydrocarbons (PAHs) detected in emissions were associated with both olive pits and diesel combustion. The chromatographic profile of dimethylphenanthrenes (DMPs) was characteristic of olive pit combustion. Organic aerosols collected in two receptor sites provided a different pattern. The significant contribution of vehicular emissions was identified by CPI values (approximately 1) of n-alkanes and the presence of the unresolved complex mixture (UCM). In addition, PAH concentration diagnostic ratios indicated that emissions from catalyst and noncatalyst automobiles and heavy trucks were significant. The strong even-to-odd predominance of n-alkanols, n-alkanoic acids, and their salts indicated the contribution of a source with biogenic characteristics. However, the profile of DMPs at receptor sites was similar to that observed for diesel particulates. These differences indicated that the contribution of vegetable oil processing emissions to the atmosphere was negligible.

  3. Influence of Jet Fuel Composition on Aircraft Engine Emissions: A Synthesis of Aerosol Emissions Data from the NASA APEX, AAFEX, and ACCESS Missions

    NASA Astrophysics Data System (ADS)

    Moore, R.; Shook, M.; Beyersdorf, A. J.; Corr, C.; Herndon, S. C.; Knighton, W. B.; Miake-Lye, R. C.; Thornhill, K. L., II; Winstead, E.; Yu, Z.; Ziemba, L. D.; Anderson, B. E.

    2015-12-01

    We statistically analyze the impact of jet fuel properties on aerosols emitted by the NASA McDonnell Douglas DC-8 CFM56-2-C1 engines burning fifteen different aviation fuels. Data were collected for this single engine type during four different, comprehensive ground tests conducted over the past decade, which allow us to clearly link changes in aerosol emissions to fuel compositional changes. It is found that the volatile aerosol fraction dominates the number and volume emissions indices (EIs) over all engine powers, which are driven by changes in fuel aromatic and sulfur content. Meanwhile, the naphthalenic content of the fuel determines the magnitude of the non-volatile number and volume EI as well as the black carbon mass EI. Linear regression coefficients are reported for each aerosol EI in terms of these properties, engine fuel flow rate, and ambient temperature, and show that reducing both fuel sulfur content and napththalenes to near-zero levels would result in roughly a ten-fold decrease in aerosol number emitted per kg of fuel burn. This work informs future efforts to model aircraft emissions changes as the aviation fleet gradually begins to transition toward low-aromatic, low-sulfur alternative jet fuels from bio-based or Fischer-Tropsch production pathways.

  4. Secondary organic aerosol formation exceeds primary particulate matter emissions for light-duty gasoline vehicles

    NASA Astrophysics Data System (ADS)

    Gordon, T. D.; Presto, A. A.; May, A. A.; Nguyen, N. T.; Lipsky, E. M.; Donahue, N. M.; Gutierrez, A.; Zhang, M.; Maddox, C.; Rieger, P.; Chattopadhyay, S.; Maldonado, H.; Maricq, M. M.; Robinson, A. L.

    2013-09-01

    The effects of photochemical aging on emissions from 15 light-duty gasoline vehicles were investigated using a smog chamber to probe the critical link between the tailpipe and ambient atmosphere. The vehicles were recruited from the California in-use fleet; they represent a wide range of model years (1987 to 2011), vehicle types and emission control technologies. Each vehicle was tested on a chassis dynamometer using the unified cycle. Dilute emissions were sampled into a portable smog chamber and then photochemically aged under urban-like conditions. For every vehicle, substantial secondary organic aerosol (SOA) formation occurred during cold-start tests, with the emissions from some vehicles generating as much as 6 times the amount of SOA as primary particulate matter after three hours of oxidation inside the chamber at typical atmospheric oxidant levels. Therefore, the contribution of light duty gasoline vehicle exhaust to ambient PM levels is likely dominated by secondary PM production (SOA and nitrate). Emissions from hot-start tests formed about a factor of 3-7 less SOA than cold-start tests. Therefore, catalyst warm-up appears to be an important factor in controlling SOA precursor emissions. The mass of SOA generated by photo-oxidizing exhaust from newer (LEV1 and LEV2) vehicles was only modestly lower (38%) than that formed from exhaust emitted by older (pre-LEV) vehicles, despite much larger reductions in non-methane organic gas emissions. These data suggest that a complex and non-linear relationship exists between organic gas emissions and SOA formation, which is not surprising since SOA precursors are only one component of the exhaust. Except for the oldest (pre-LEV) vehicles, the SOA production could not be fully explained by the measured oxidation of speciated (traditional) SOA precursors. Over the time scale of these experiments, the mixture of organic vapors emitted by newer vehicles appear to be more efficient (higher yielding) in producing SOA than

  5. Secondary organic aerosol formation exceeds primary particulate matter emissions for light-duty gasoline vehicles

    NASA Astrophysics Data System (ADS)

    Gordon, T. D.; Presto, A. A.; May, A. A.; Nguyen, N. T.; Lipsky, E. M.; Donahue, N. M.; Gutierrez, A.; Zhang, M.; Maddox, C.; Rieger, P.; Chattopadhyay, S.; Maldonado, H.; Maricq, M. M.; Robinson, A. L.

    2014-05-01

    The effects of photochemical aging on emissions from 15 light-duty gasoline vehicles were investigated using a smog chamber to probe the critical link between the tailpipe and ambient atmosphere. The vehicles were recruited from the California in-use fleet; they represent a wide range of model years (1987 to 2011), vehicle types and emission control technologies. Each vehicle was tested on a chassis dynamometer using the unified cycle. Dilute emissions were sampled into a portable smog chamber and then photochemically aged under urban-like conditions. For every vehicle, substantial secondary organic aerosol (SOA) formation occurred during cold-start tests, with the emissions from some vehicles generating as much as 6 times the amount of SOA as primary particulate matter (PM) after 3 h of oxidation inside the chamber at typical atmospheric oxidant levels (and 5 times the amount of SOA as primary PM after 5 × 106 molecules cm-3 h of OH exposure). Therefore, the contribution of light-duty gasoline vehicle exhaust to ambient PM levels is likely dominated by secondary PM production (SOA and nitrate). Emissions from hot-start tests formed about a factor of 3-7 less SOA than cold-start tests. Therefore, catalyst warm-up appears to be an important factor in controlling SOA precursor emissions. The mass of SOA generated by photooxidizing exhaust from newer (LEV2) vehicles was a factor of 3 lower than that formed from exhaust emitted by older (pre-LEV) vehicles, despite much larger reductions (a factor of 11-15) in nonmethane organic gas emissions. These data suggest that a complex and nonlinear relationship exists between organic gas emissions and SOA formation, which is not surprising since SOA precursors are only one component of the exhaust. Except for the oldest (pre-LEV) vehicles, the SOA production could not be fully explained by the measured oxidation of speciated (traditional) SOA precursors. Over the timescale of these experiments, the mixture of organic vapors

  6. Organic aerosol emission ratios from the laboratory combustion of biomass fuels

    NASA Astrophysics Data System (ADS)

    Jolleys, Matthew D.; Coe, Hugh; McFiggans, Gordon; McMeeking, Gavin R.; Lee, Taehyoung; Kreidenweis, Sonia M.; Collett, Jeffrey L.; Sullivan, Amy P.

    2014-11-01

    Organic aerosol (OA) emission ratios (ER) have been characterized for 67 burns during the second Fire Laboratory at Missoula Experiment. These fires involved 19 different species representing 6 major fuels, each of which forms an important contribution to the U.S. biomass burning inventory. Average normalized ΔOA/ΔCO ratios show a high degree of variability, both between and within different fuel types and species, typically exceeding differen-ces between separate plumes in ambient measurements. This variability is strongly influenced by highly contrasting ΔOA levels between burns and the increased partitioning of semivolatile organic compounds to the particle phase at high ΔOA concentrations. No correlation across all fires was observed between ΔOA/ΔCO and modified combustion efficiency (MCE), which acts as an indicator of the proportional contributions of flaming and smoldering combustion phases throughout each burn. However, a negative correlation exists with MCE for some coniferous species, most notably Douglas fir, for which there is also an influence from fuel moisture content. Changes in fire efficiency were also shown to dramatically alter emissions for fires with very similar initial conditions. Although the relationship with MCE is variable between species, there is greater consistency with the level of oxygenation in OA. The ratio of the m/z 44 fragment to total OA mass concentration (f44) as measured by aerosol mass spectrometer provides an indication of oxygenation as influenced by combustion processes at source, with ΔOA/ΔCO decreasing with increasing f44 for all fuel types. Inconsistencies in the magnitude of the effects associated with each potential influence on ΔOA/ΔCO emphasize the lack of a single dominant control on fire emissions, and a dependency on both fuel properties and combustion conditions.

  7. Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory

    NASA Astrophysics Data System (ADS)

    McMeeking, Gavin R.; Kreidenweis, Sonia M.; Baker, Stephen; Carrico, Christian M.; Chow, Judith C.; Collett, Jeffrey L.; Hao, Wei Min; Holden, Amanda S.; Kirchstetter, Thomas W.; Malm, William C.; Moosmüller, Hans; Sullivan, Amy P.; Wold, Cyle E.

    2009-10-01

    We characterized the gas- and speciated aerosol-phase emissions from the open combustion of 33 different plant species during a series of 255 controlled laboratory burns during the Fire Laboratory at Missoula Experiments (FLAME). The plant species we tested were chosen to improve the existing database for U.S. domestic fuels: laboratory-based emission factors have not previously been reported for many commonly burned species that are frequently consumed by fires near populated regions and protected scenic areas. The plants we tested included the chaparral species chamise, manzanita, and ceanothus, and species common to the southeastern United States (common reed, hickory, kudzu, needlegrass rush, rhododendron, cord grass, sawgrass, titi, and wax myrtle). Fire-integrated emission factors for gas-phase CO2, CO, CH4, C2-4 hydrocarbons, NH3, SO2, NO, NO2, HNO3, and particle-phase organic carbon (OC), elemental carbon (EC), SO42-, NO3-, Cl-, Na+, K+, and NH4+ generally varied with both fuel type and with the fire-integrated modified combustion efficiency (MCE), a measure of the relative importance of flaming- and smoldering-phase combustion to the total emissions during the burn. Chaparral fuels tended to emit less particulate OC per unit mass of dry fuel than did other fuel types, whereas southeastern species had some of the largest observed emission factors for total fine particulate matter. Our measurements spanned a larger range of MCE than prior studies, and thus help to improve estimates of the variation of emissions with combustion conditions for individual fuels.

  8. Global top-down smoke-aerosol emissions estimation using satellite fire radiative power measurements

    NASA Astrophysics Data System (ADS)

    Ichoku, C.; Ellison, L.

    2014-07-01

    Fire emissions estimates have long been based on bottom-up approaches that are not only complex, but also fraught with compounding uncertainties. We present the development of a global gridded (1° × 1°) emission coefficients (Ce) product for smoke total particulate matter (TPM) based on a top-down approach using coincident measurements of fire radiative power (FRP) and aerosol optical thickness (AOT) from the Moderate-resolution Imaging Spectro-radiometer (MODIS) sensors aboard the Terra and Aqua satellites. This new Fire Energetics and Emissions Research version 1.0 (FEER.v1) Ce product has now been released to the community and can be obtained from http://feer.gsfc.nasa.gov/, along with the corresponding 1-to-1 mapping of their quality assurance (QA) flags that will enable the Ce values to be filtered by quality for use in various applications. The regional averages of Ce values for different ecosystem types were found to be in the ranges of 16-21 g MJ-1 for savanna and grasslands, 15-32 g MJ-1 for tropical forest, 9-12 g MJ-1 for North American boreal forest, and 18-26 g MJ-1 for Russian boreal forest, croplands and natural vegetation. The FEER.v1 Ce product was multiplied by time-integrated FRP data to calculate regional smoke TPM emissions, which were compared with equivalent emissions products from three existing inventories. FEER.v1 showed higher and more reasonable smoke TPM estimates than two other emissions inventories that are based on bottom-up approaches and already reported in the literature to be too low, but portrayed an overall reasonable agreement with another top-down approach. This suggests that top-down approaches may hold better promise and need to be further developed to accelerate the reduction of uncertainty associated with fire emissions estimation in air-quality and climate research and applications. Results of the analysis of FEER.v1 data for 2004-2011 show that 65-85 Tg yr-1 of

  9. Global Top-Down Smoke-Aerosol Emissions Estimation Using Satellite Fire Radiative Power Measurements

    NASA Technical Reports Server (NTRS)

    Ichoku, C.; Ellison, L.

    2014-01-01

    Fire emissions estimates have long been based on bottom-up approaches that are not only complex, but also fraught with compounding uncertainties. We present the development of a global gridded (1 deg ×1 deg) emission coefficients (Ce) product for smoke total particulate matter (TPM) based on a top-down approach using coincident measurements of fire radiative power (FRP) and aerosol optical thickness (AOT) from the Moderate-resolution Imaging Spectroradiometer (MODIS) sensors aboard the Terra and Aqua satellites. This new Fire Energetics and Emissions Research version 1.0 (FEER.v1) Ce product has now been released to the community and can be obtained from http://feer.gsfc. nasa.gov/, along with the corresponding 1-to-1 mapping of their quality assurance (QA) flags that will enable the Ce values to be filtered by quality for use in various applications. The regional averages of Ce values for different ecosystem types were found to be in the ranges of 16-21/gMJ-1 for savanna and grasslands, 15-32/gMJ-1 for tropical forest, 9-12/gMJ-1 for North American boreal forest, and 18- 26/MJ-1 for Russian boreal forest, croplands and natural vegetation. The FEER.v1 Ce product was multiplied by time-integrated FRP data to calculate regional smoke TPM emissions, which were compared with equivalent emissions products from three existing inventories. FEER.v1 showed higher and more reasonable smoke TPM estimates than two other emissions inventories that are based on bottom-up approaches and already reported in the literature to be too low, but portrayed an overall reasonable agreement with another top-down approach. This suggests that top-down approaches may hold better promise and need to be further developed to accelerate the reduction of uncertainty associated with fire emissions estimation in air-quality and climate research and applications. Results of the analysis of FEER.v1 data for 2004-2011 show that 65-85 Tg yr-1 of TPM is emitted globally from open biomass burning, with a

  10. Analysis of Venus Express optical extinction due to aerosols in the upper haze of Venus

    NASA Astrophysics Data System (ADS)

    Parkinson, Christopher; Bougher, Stephen; Mahieux, Arnaud; Tellmann, Silvia; Pätzold, Martin; Vandaele, Ann C.; Wilquet, Valérie; Schulte, Rick; Yung, Yuk; Gao, Peter; Bardeen, Charles

    Observations by the SPICAV/SOIR instruments aboard Venus Express (VEx) have revealed that the Upper Haze of Venus is populated by two particle modes, as reported by Wilquet et al. (J. Geophys. Res., 114, E00B42, 2009; Icarus 217, 2012). Gao et al. (In press, Icarus, 2013) posit that the large mode is made up of cloud particles that have diffused upwards from the cloud deck below, while the smaller mode is generated by the in situ nucleation of meteoric dust. They tested this hypothesis by using version 3.0 of the Community Aerosol and Radiation Model for Atmospheres, first developed by Turco et al. (J. Atmos. Sci., 36, 699-717, 1979) and upgraded to version 3.0 by Bardeen et al. (The CARMA 3.0 microphysics package in CESM, Whole Atmosphere Working Group Meeting, 2011). Using the meteoric dust production profile of Kalashnikova et al. (Geophys. Res. Lett., 27, 3293-3296, 2000), the sulfur/sulfate condensation nuclei production profile of Imamura and Hashimoto (J. Atmos. Sci., 58, 3597-3612, 2001), and sulfuric acid vapor production profile of Zhang et al. (Icarus, 217, 714-739, 2012), they numerically simulate a column of the Venus atmosphere from 40 to 100 km above the surface. Their aerosol number density results agree well with Pioneer Venus Orbiter (PVO) data from Knollenberg and Hunten (J. Geophys. Res., 85, 8039-8058, 1980), while their gas distribution results match that of Kolodner and Steffes below 55 km (Icarus, 132, 151-169, 1998). The resulting size distribution of cloud particles shows two distinct modes, qualitatively matching the observations of PVO. They also observe a third mode in their results with a size of a few microns at 48 km altitude, which appears to support the existence of the controversial third mode in the PVO data. This mode disappears if coagulation is not included in the simulation. The Upper Haze size distribution shows two lognormal-like distributions overlapping each other, possibly indicating the presence of the two distinct

  11. The FLAME Deluge: organic aerosol emission ratios from combustion chamber experiments

    NASA Astrophysics Data System (ADS)

    Jolleys, Matthew; Coe, Hugh; McFiggans, Gordon; McMeeking, Gavin; Lee, Taehyoung; Sullivan, Amy; Kreidenweis, Sonia; Collett, Jeff

    2014-05-01

    A high level of variability has been identified amongst organic aerosol (OA) emission ratios (ER) from biomass burning (BB) under ambient conditions. However, it is difficult to assess the influences of potential drivers for this variability, given the wide range of conditions associated with wildfire measurements. Chamber experiments performed under controlled conditions provide a means of examining the effects of different fuel types and combustion conditions on OA emissions from biomass fuels. ERs have been characterised for 67 burns during the second Fire Laboratory at Missoula Experiment (FLAME II), involving 19 different species from 6 fuel types widely consumed in BB events in the US each year. Average normalised dOA/dCO ratios show a high degree of variability, both between and within different fuel types and species, typically exceeding variability between separate plumes in ambient measurements. Relationships with source conditions were found to be complex, with little consistent influence from fuel properties and combustion conditions for the entire range of experiments. No strong correlation across all fires was observed between dOA/dCO and modified combustion efficiency (MCE), which is used as an indicator of the proportional contributions of flaming and smouldering combustion phases throughout each burn. However, a negative correlation exists between dOA/dCO and MCE for some coniferous species, most notably Douglas fir, for which there is also an apparent influence from fuel moisture content. Significant contrasts were also identified between combustion emissions from different fuel components of additional coniferous species. Changes in fire efficiency were also shown to dramatically alter emissions for fires with very similar initial conditions. Although the relationship with MCE is variable between species, there is greater consistency with the level of oxygenation in OA. The ratio of the m/z 44 fragment to total OA mass concentration (f44) as

  12. Updating sea spray aerosol emissions in the Community Multiscale Air Quality (CMAQ) model version 5.0.2

    EPA Science Inventory

    Sea spray aerosols (SSAs) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. Model evaluations of SSA emissions have mainly focused on the global scale, but regional-scale evaluations are...

  13. Thermal Emission Spectrometer Results: Mars Atmospheric Thermal Structure and Aerosol Distribution

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Pearl, John C.; Conrath, Barney J.; Christensen, Philip R.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    Infrared spectra returned by the Thermal Emission Spectrometer (TES) are well suited for retrieval of the thermal structure and the distribution of aerosols in the Martian atmosphere. Combined nadir- and limb-viewing spectra allow global monitoring of the atmosphere up to 0.01 mbar (65 km). We report here on the atmospheric thermal structure and the distribution of aerosols as observed thus far during the mapping phase of the Mars Global Surveyor mission. Zonal and temporal mean cross sections are used to examine the seasonal evolution of atmospheric temperatures and zonal winds during a period extending from northern hemisphere mid-summer through vernal equinox (L(sub s) = 104-360 deg). Temperature maps at selected pressure levels provide a characterization of planetary-scale waves. Retrieved atmospheric infrared dust opacity maps show the formation and evolution of regional dust storms during southern hemisphere summer. Response of the atmospheric thermal structure to the changing dust loading is observed. Maps of water-ice clouds as viewed in the thermal infrared are presented along with seasonal trends of infrared water-ice opacity. Uses of these observations for diagnostic studies of the dynamics of the atmosphere are discussed.

  14. Enhanced formation of secondary air pollutants and aggravation of urban smog due to crop residue burning emissions in North India

    NASA Astrophysics Data System (ADS)

    Sarkar, Chinmoy; Kumar, Vinod; Sinha, Vinayak

    2013-04-01

    Biomass burning causes intense perturbations to regional atmospheric chemistry and air quality and is a significant global source of reactive pollutants to the atmosphere (Andreae and Merlet, 2001). In November 2012, large areas in North India including New Delhi experienced several weeks of aggravated smog and poor air quality due to the impact of crop residue burning, which is a biannual post harvest activity that occurs during Oct-Nov and April-May every year in the agricultural belts of North western India. In-situ high temporal resolution (1 measurement every minute) measurements of a suite of volatile organic compounds measured using proton transfer reaction mass spectrometry (PTR-MS) such as acetonitrile (biomass burning tracer) and aromatic hydrocarbons were performed simultaneously with carbon monoxide, nitrogen oxides, ozone and aerosol mass concentrations (PM 2.5 and PM 10) at a suburban site (30.667°N, 76.729°E and 310 m asl), impacted by air masses that had passed over the burning fields less than 72 hours ago. By using data from the same season but before the post harvest crop residue burning activity had commenced, we were able to quantify enhancements in ambient levels of the measured species due to the crop residue burning activity. When air masses influenced by the fire emissions reached the measurement site, peak values of about 8 ppbV acetonitrile, 4 ppmV CO, 100 ppbV NOx , 30 ppbV toluene and 15 ppbV benzene were observed which represented a factor of 2-5 increase over their ambient levels in the non-fire influenced period. Emission ratios of aromatic hydrocarbons/CO also showed a marked increase. Non fire event (N.F. E.) influenced and fire event (F.E.) influenced air masses had the following emission ratio enhancements: benzene/CO (N.F.E = 3; F.E. = 5), toluene/CO (N.F.E = 4; F.E. = 8.7) and sum of C8 aromatics/CO (N.F.E = 4; F.E. = 7.3) and sum of C9 aromatics/CO (N.F.E = 2.6; F.E. = 3.4). The OH reactivity of air masses which has strong

  15. Numerical simulation of advection fog formation on multi-disperse aerosols due to combustion-related pollutants

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Liaw, G. S.

    1980-01-01

    The effects of multi-disperse distribution of the aerosol population are presented. Single component and multi-component aerosol species on the condensation/nucleation processes which affect the reduction in visibility are described. The aerosol population with a high particle concentration provided more favorable conditions for the formation of a denser fog than the aerosol population with a greater particle size distribution when the value of the mass concentration of the aerosols was kept constant. The results were used as numerical predictions of fog formation. Two dimensional observations in horizontal and vertical coordinates, together with time-dependent measurements were needed as initial values for the following physical parameters: (1)wind profiles; (2) temperature profiles; (3) humidity profiles; (4) mass concentration of aerosol particles; (5) particle size distribution of aerosols; and (6) chemical composition of aerosols. Formation and dissipation of advection fog, thus, can be forecasted numerically by introducing initial values obtained from the observations.

  16. Development of a United States - Mexico emissions inventory for the Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study

    SciTech Connect

    Hampden Kuhns; Eladio M. Knipping; Jeffrey M. Vukovich,

    2005-05-01

    The Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study investigated the sources of haze at Big Bend National Park in southwest Texas. The modeling domain includes most of the continental United States and Mexico. The BRAVO emissions inventory was constructed from the 1999 National Emission Inventory for the United States, modified to include finer-resolution data for Texas and 13 U.S. states in close proximity. The inventory includes emissions for CO, nitrogen oxides, sulfur dioxide, volatile organic compounds (VOCs), ammonia, particulate matter (PM) {lt}10 {mu}m in aerodynamic diameter, and PM {lt}2.5 {mu}m in aerodynamic diameter. The SMOKE modeling system was used to generate gridded emissions fields for use with the Regional Modeling System for Aerosols and Deposition (REMSAD) and the Community Multiscale Air Quality model modified with the Model of Aerosol Dynamics, Reaction, Ionization and Dissolution (CMAQ-MADRID). The compilation of the inventory, supporting model input data, and issues encountered during the development of the inventory are documented. A comparison of the BRAVO emissions inventory for Mexico with other emerging Mexican emission inventories illustrates their uncertainty. 65 refs., 4 figs., 9 tabs.

  17. The toxicological evaluation of realistic emissions of source aerosols study: statistical methods.

    PubMed

    Coull, Brent A; Wellenius, Gregory A; Gonzalez-Flecha, Beatriz; Diaz, Edgar; Koutrakis, Petros; Godleski, John J

    2011-08-01

    The Toxicological Evaluation of Realistic Emissions of Source Aerosols (TERESA) study involved withdrawal, aging, and atmospheric transformation of emissions of three coal-fired power plants. Toxicological evaluations were carried out in rats exposed to different emission scenarios with extensive exposure characterization. Data generated had multiple levels of resolution: exposure, scenario, and constituent chemical composition. Here, we outline a multilayered approach to analyze the associations between exposure and health effects beginning with standard ANOVA models that treat exposure as a categorical variable. The model assessed differences in exposure effects across scenarios (by plant). To assess unadjusted associations between pollutant concentrations and health, univariate analyses were conducted using the difference between the response means under exposed and control conditions and a single constituent concentration as the predictor. Then, a novel multivariate analysis of exposure composition and health was used based on Random Forests(™), a recent extension of classification and regression trees that were applied to the outcome differences. For each exposure constituent, this approach yielded a nonparametric measure of the importance of that constituent in predicting differences in response on a given day, controlling for the other measured constituent concentrations in the model. Finally, an R(2) analysis compared the relative importance of exposure scenario, plant, and constituent concentrations on each outcome. Peak expiratory flow (PEF) is used to demonstrate how the multiple levels of the analysis complement each other to assess constituents most strongly associated with health effects.

  18. Gas-particle partitioning of primary organic aerosol emissions: (2) diesel vehicles.

    PubMed

    May, Andrew A; Presto, Albert A; Hennigan, Christopher J; Nguyen, Ngoc T; Gordon, Timothy D; Robinson, Allen L

    2013-08-01

    Experiments were performed to investigate the gas-particle partitioning of primary organic aerosol (POA) emissions from two medium-duty (MDDV) and three heavy-duty (HDDV) diesel vehicles. Each test was conducted on a chassis dynamometer with the entire exhaust sampled into a constant volume sampler (CVS). The vehicles were operated over a range of driving cycles (transient, high-speed, creep/idle) on different ultralow sulfur diesel fuels with varying aromatic content. Four independent yet complementary approaches were used to investigate POA gas-particle partitioning: artifact correction of quartz filter samples, dilution from the CVS into a portable environmental chamber, heating in a thermodenuder, and thermal desorption/gas chromatography/mass spectrometry (TD-GC-MS) analysis of quartz filter samples. During tests of vehicles not equipped with diesel particulate filters (DPF), POA concentrations inside the CVS were a factor of 10 greater than ambient levels, which created large and systematic partitioning biases in the emissions data. For low-emitting DPF-equipped vehicles, as much as 90% of the POA collected on a quartz filter from the CVS were adsorbed vapors. Although the POA emission factors varied by more than an order of magnitude across the set of test vehicles, the measured gas-particle partitioning of all emissions can be predicted using a single volatility distribution derived from TD-GC-MS analysis of quartz filters. This distribution is designed to be applied directly to quartz filter data that are the basis for existing emissions inventories and chemical transport models that have implemented the volatility basis set approach.

  19. Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory

    SciTech Connect

    McMeeking, Gavin R.; Kreidenweis, Sonia M.; Baker, Stephen; Carrico, Christian M.; Chow, Judith C.; Collett, Jr., Jeffrey L.; Hao, Wei Min; Holden, Amanda S.; Kirchstetter, Thomas W.; Malm, William C.; Moosmuller, Hans; Sullivan, Amy P.; Wold, Cyle E.

    2009-05-15

    We characterized the gas- and speciated aerosol-phase emissions from the open combustion of 33 different plant species during a series of 255 controlled laboratory burns during the Fire Laboratory at Missoula Experiments (FLAME). The plant species we tested were chosen to improve the existing database for U.S. domestic fuels: laboratory-based emission factors have not previously been reported for many commonly-burned species that are frequently consumed by fires near populated regions and protected scenic areas. The plants we tested included the chaparral species chamise, manzanita, and ceanothus, and species common to the southeastern US (common reed, hickory, kudzu, needlegrass rush, rhododendron, cord grass, sawgrass, titi, and wax myrtle). Fire-integrated emission factors for gas-phase CO{sub 2}, CO, CH{sub 4}, C{sub 2-4} hydrocarbons, NH{sub 3}, SO{sub 2}, NO, NO{sub 2}, HNO{sub 3} and particle-phase organic carbon (OC), elemental carbon (EC), SO{sub 4}{sup 2-}, NO{sub 3}{sup -}, Cl{sup -}, Na{sup +}, K{sup +}, and NH{sub 4}{sup +} generally varied with both fuel type and with the fire-integrated modified combustion efficiency (MCE), a measure of the relative importance of flaming- and smoldering-phase combustion to the total emissions during the burn. Chaparral fuels tended to emit less particulate OC per unit mass of dry fuel than did other fuel types, whereas southeastern species had some of the largest observed EF for total fine particulate matter. Our measurements often spanned a larger range of MCE than prior studies, and thus help to improve estimates for individual fuels of the variation of emissions with combustion conditions.

  20. Examining the Effects of Anthropogenic Emissions on Isoprene-Derived Secondary Organic Aerosol Formation During the 2013 Southern Oxidant and Aerosol Study (SOAS) at the Look Rock, Tennessee, Ground Site

    EPA Science Inventory

    A suite of offline and real-time gas- and particle-phase measurements was deployed atLook Rock, Tennessee (TN), during the 2013 Southern Oxidant and Aerosol Study (SOAS) to examine the effects of anthropogenic emissions on isoprene-derived secondary organic aerosol (SOA) formatio...

  1. EVALUATION OF AEROSOL EMISSIONS DOWNSTREAM OF AN AMMONIA-BASED SO2 SCRUBBER

    SciTech Connect

    Dennis L. Laudal

    2002-04-01

    Depending on the size and type of boiler, the 1990 Clean Air Act Amendments required specific reductions in SO{sub 2} emissions from coal-fired electric utilities. To meet these requirements, SO{sub 2} reduction strategies have included installing scrubbing technology, switching to a more expensive low-sulfur coal, or purchasing SO{sub 2} allowances. It is expected that over the next 10 years there will be an increase in the price of low-sulfur coals, but that higher-sulfur coal costs will remain the same. Technologies must be strongly considered that allow the use of high-sulfur fuels while at the same time meeting current and future SO{sub 2} emission limits. One such technology is the ammonia based flue gas desulfurization (FGD) (NH{sub 3}-based FGD) system manufactured by Marsulex Environmental Technologies (MET). The MET scrubber is a patented NH{sub 3}-based FGD process that efficiently converts SO{sub 2} (>95%) into a fertilizer product, ammonium sulfate ([NH{sub 4}]{sub 2}SO{sub 4}). A point of concern for the MET technology, as well as other FGD systems, is the emission of sulfuric acid/SO{sub 3} aerosols that could result in increased opacity at the stack. This is a direct result of firing high-sulfur fuels that naturally generate more SO{sub 3} than do low-sulfur coals. SO{sub 3} is formed during the coal combustion process. SO{sub 3} is converted to gaseous H{sub 2}SO{sub 4} by homogeneous condensation, leading to a submicron acid fume that is very difficult to capture in a dry electrostatic precipitator (ESP). The condensed acid can also combine with the fly ash in the duct and scale the duct wall, potentially resulting in corrosion of both metallic and nonmetallic surfaces. Therefore, SO{sub 3} in flue gas can have a significant impact on the performance of coal-fired utility boilers, air heaters, and ESPs. In addition to corrosion problems, excess SO{sub 3} emissions can result in plume opacity problems. Thus the Energy & Environmental Research

  2. Toxicological Evaluation of Realistic Emission Source Aerosols (TERESA)-power plant studies: assessment of cellular responses

    PubMed Central

    Godleski, John J.; Diaz, Edgar A.; Lemos, Miriam; Long, Mark; Ruiz, Pablo; Gupta, Tarun; Kang, Choong-Min; Coull, Brent

    2013-01-01

    The Toxicological Evaluation of Realistic Emission Source Aerosols (TERESA) project assessed primary and secondary particulate by simulating the chemical reactions that a plume from a source might undergo during atmospheric transport and added other atmospheric constituents that might interact with it. Three coal-fired power plants with different coal and different emission controls were used. Male Sprague-Dawley rats were exposed for 6 h to either filtered air or aged aerosol from the power plant. Four exposure scenarios were studied: primary particles (P); primary + secondary (oxidized) particles (PO); primary + secondary (oxidized) particles + SOA (POS); and primary + secondary (oxidized) particles neutralized + SOA (PONS). Exposure concentrations varied by scenario to a maximum concentration of 257.1 ± 10.0 µg/m3. Twenty-four hours after exposure, pulmonary cellular responses were assessed by bronchoalveolar lavage (BAL), complete blood count (CBC), and histopathology. Exposure to the PONS and POS scenarios produced significant increases in BAL total cells and macrophage numbers at two plants. The PONS and P scenarios were associated with significant increases in BAL neutrophils and the presence of occasional neutrophils and increased macrophages in the airways and alveoli of exposed animals. Univariate analyses and random forest analyses showed that increases in total cell count and macrophage cell count were significantly associated with neutralized sulfate and several correlated measurements. Increases in neutrophils in BAL were associated with zinc. There were no significant differences in CBC parameters or blood vessel wall thickness by histopathology. The association between neutrophils increases and zinc raises the possibility that metals play a role in this response. PMID:21466245

  3. Modeling and evaluation of the global sea-salt aerosol distribution: sensitivity to emission schemes and resolution effects at coastal/orographic sites

    NASA Astrophysics Data System (ADS)

    Spada, M.; Jorba, O.; Perez, C.; Janjic, Z.; Baldasano, J. M.

    2013-05-01

    We investigate two of the major sources of uncertainty in the model estimation of the global distribution of sea-salt aerosol, i.e. the sensitivity to the emission parameterization and the influence of model resolution in coastal regions characterized by complex topography and/or steep orographic barriers where some observation sites are located. We evaluate a new sea-salt aerosol lifecycle module implemented within the online chemical transport model NMMB/BSC-CTM. Because of its multiscale core, the model is able to cover a wide range of scales. Global simulations using four state-of-the-art sea-salt emission schemes are evaluated against monthly-averaged aerosol optical depth (AOD) from selected AERONET Sun photometers, surface concentration measurements from the University of Miami's Ocean Aerosol Network and measurements from two NOAA/PMEL cruises (AEROINDOEX and ACE1). The model results are highly sensitive to the introduction of SST-dependent emissions and to the accounting of spume particles production. Depending on emission scheme, annual emissions range from 4312.9 Tg to 8979.7 Tg in the 2006. Sea-salt lifetime varies between 7.7 h and 12.0 h and the annual mean column mass load is between 5.9 Tg and 7.9 Tg. Observed coarse AOD monthly averages are reproduced with an overall correlation around 0.8 (a correlation of 0.6 is produced when applying the SST dependent scheme). Although monthly-averaged surface concentrations are overall in good agreement with the observations, there is a subset of coastal sites surrounded by complex topography where the global model overestimates by a factor of 2 or more. Using regional high-resolution simulations, we show that these large errors are mostly due to the global model's inability to capture local scale effects. In New Zeland, the increase in resolution produces a significant decrease of surface concentrations (up to 40%) - due to changes in the wind circulation and precipitation driven by the orographic barrier

  4. Characterizing the influence of anthropogenic emissions and transport variability on sulfate aerosol concentrations at Mauna Loa Observatory

    NASA Astrophysics Data System (ADS)

    Potter, Lauren E.

    Sulfate aerosol in the atmosphere has substantial impacts on human health and environmental quality. Most notably, atmospheric sulfate has the potential to modify the earth's climate system through both direct and indirect radiative forcing mechanisms (Meehl et al., 2007). Emissions of sulfur dioxide, the primary precursor of sulfate aerosol, are now globally dominated by anthropogenic sources as a result of widespread fossil fuel combustion. Economic development in Asian countries since 1990 has contributed considerably to atmospheric sulfur loading, particularly China, which currently emits approximately 1/3 of global anthropogenic SO2 (Klimont et al., 2013). Observational and modeling studies have confirmed that anthropogenic pollutants from Asian sources can be transported long distances with important implications for future air quality and global climate change. Located in the remote Pacific Ocean (19.54°N, 155.58°W) at an elevation of 3.4 kilometers above sea level, Mauna Loa Observatory (MLO) is an ideal measurement site for ground-based, free tropospheric observations and is well situated to experience influence from springtime Asian outflow. This study makes use of a 14-year data set of aerosol ionic composition, obtained at MLO by the University of Hawaii at Manoa. Daily filter samples of total aerosol concentrations were made during nighttime downslope (free-tropospheric) transport conditions, from 1995 to 2008, and were analyzed for aerosol-phase concentrations of the following species: nitrate (NO3-), sulfate (SO42-), methanesulfonate (MSA), chloride (Cl-), oxalate, sodium (Na+), ammonium (NH 4+), potassium (K+), magnesium (Mg 2+), and calcium (Ca2+). An understanding of the factors controlling seasonal and interannual variations in aerosol speciation and concentrations at this site is complicated by the relatively short lifetimes of aerosols, compared with greenhouse gases which have also been sampled over long time periods at MLO. Aerosol filter

  5. Effect of measurement protocol on organic aerosol measurements of exhaust emissions from gasoline and diesel vehicles

    NASA Astrophysics Data System (ADS)

    Kim, Youngseob; Sartelet, Karine; Seigneur, Christian; Charron, Aurélie; Besombes, Jean-Luc; Jaffrezo, Jean-Luc; Marchand, Nicolas; Polo, Lucie

    2016-09-01

    Exhaust emissions of semi-volatile organic compounds (SVOC) from passenger vehicles are usually estimated only for the particle phase via the total particulate matter measurements. However, they also need to be estimated for the gas phase, as they are semi-volatile. To better estimate SVOC emission factors of passenger vehicles, a measurement campaign using a chassis dynamometer was conducted with different instruments: (1) a constant volume sampling (CVS) system in which emissions were diluted with filtered air and sampling was performed on filters and polyurethane foams (PUF) and (2) a Dekati Fine Particle Sampler (FPS) in which emissions were diluted with purified air and sampled with on-line instruments (PTR-ToF-MS, HR-ToF-AMS, MAAP, CPC). Significant differences in the concentrations of organic carbon (OC) measured by the instruments are observed. The differences can be explained by sampling artefacts, differences between (1) the time elapsed during sampling (in the case of filter and PUF sampling) and (2) the time elapsed from emission to measurement (in the case of on-line instruments), which vary from a few seconds to 15 min, and by the different dilution factors. To relate elapsed times and measured concentrations of OC, the condensation of SVOC between the gas and particle phases is simulated with a dynamic aerosol model. The simulation results allow us to understand the relation between elapsed times and concentrations in the gas and particle phases. They indicate that the characteristic times to reach thermodynamic equilibrium between gas and particle phases may be as long as 8 min. Therefore, if the elapsed time is less than this characteristic time to reach equilibrium, gas-phase SVOC are not at equilibrium with the particle phase and a larger fraction of emitted SVOC will be in the gas phase than estimated by equilibrium theory, leading to an underestimation of emitted OC if only the particle phase is considered or if the gas-phase SVOC are estimated

  6. Characterizing particulate matter emissions from vehicles: chassis-dynamometer tests using a High-Resolution Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Collier, S.; Zhang, Q.; Forestieri, S.; Kleeman, M.; Cappa, C. D.; Kuwayama, T.

    2012-12-01

    During September of 2011 a suite of real-time instruments was used to sample vehicle emissions at the California Air Resources Board Haagen-Schmidt facility in El Monte, CA. A representative fleet of 8 spark ignition gasoline vehicles, a diesel passenger vehicle, a gasoline direct-injection vehicle and an ultra-low emissions vehicle were tested on a chassis dynamometer. The emissions were sampled into the facility's standard CVS tunnel and diluted to atmospherically relevant levels (5-30 μg/m3) while controlling other factors such as relative humidity or background black carbon particulate loading concentrations. An Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-MS) was among the real-time instruments used and sampled vehicle emissions at 10 second time resolution in order to characterize the non-refractory organic and inorganic particulate matter (PM). PM composition and concentration were tracked throughout the cold start driving cycle which included periods of fast acceleration and high velocity cruise control, meant to recreate typical commuter driving behavior. Variations in inorganic and organic PM composition for a given vehicle throughout the driving cycle as well as for various vehicles with differing emissions loading were characterized. Differences in PM composition for a given vehicle whose emissions are being exposed to differing experimental conditions such as varying relative humidity will also be reported. In conjunction with measurements from a Multi Wavelength Photoacoustic Black Carbon Spectrometer (MWPA-BC) and real-time gas measurements from the CARB facility, we determine the real-time emission ratios of primary organic aerosols (POA) with respect to BC and common combustion gas phase pollutants and compared to different vehicle driving conditions. The results of these tests offer the vehicle emissions community a first time glimpse at the real-time behavior of vehicle PM emissions for a variety of conditions and

  7. Tracing impacts of local and regional emission sources on the aerosols over Central Himalayan region during GVAX

    NASA Astrophysics Data System (ADS)

    Sahai, Shivraj; Sagar, Ram; Pant, P.; Krishna Moorthy, K.; Venkata Phanikumar, Devulapalli; Dumka, Umesh Chandra; Pant, Vimlesh; Singh, Narendra; Kotamarthi, V. R.; Naja, Manish; Satheesh, S. K.

    2012-07-01

    -range transport impact, available satellite products over the Indo-Gangetic Plain (IGP) of relevance to biomass burning (Carbon monoxide, Aerosol Optical Depth, Fire products, etc) have been exploited to relate to the observed aerosol physical properties during GVAX. The findings are expected to reveal the linkages between local and regional emission sources (biomass burning in particular) and atmospheric perturbations.

  8. Seasonal differences in aerosol abundance and radiative forcing in months of contrasting emissions and rainfall over northern South Asia

    NASA Astrophysics Data System (ADS)

    Sadavarte, P.; Venkataraman, C.; Cherian, R.; Patil, N.; Madhavan, B. L.; Gupta, T.; Kulkarni, S.; Carmichael, G. R.; Adhikary, B.

    2016-01-01

    A modeling framework was used to examine gaps in understanding of seasonal and spatial heterogeneity in aerosol abundance and radiative forcing over northern South Asia, whose glimpses are revealed in observational studies. Regionally representative emissions were used in chemical transport model simulations at a spatial resolution of 60 × 60 km2, in April, July and September, chosen as months of contrasting emissions and rainfall. Modeled aerosol abundance in northern South Asia was predominantly found to be dust and carbonaceous in April, dust and sulfate in July and sulfate and carbonaceous in September. Anthropogenic aerosols arose from energy-use emissions (from industrial sources, residential biofuel cooking, brick kilns) in all months, additionally from field burning in April, and incursion from East Asia in September. In April, carbonaceous aerosols were abundant from open burning of agricultural fields even at high altitude locations (Godavari), and of forests in the eastern Gangetic Plain (Kolkata). Direct radiative forcing and heating rate, calculated from OPAC-SBDART, using modeled aerosol fields, and corrected by MODIS AOD observations, showed regionally uniform atmospheric forcing in April, compared to that in other months, influenced by both dust and black carbon abundance. A strong spatial heterogeneity of radiative forcing and heating rate was found, with factor of 2.5-3.5 lower atmospheric forcing over the Tibet plateau than that over the Ganga Plain and Northwest in July and September. However, even over the remote Tibet plateau, there was significant anthropogenic contribution to atmospheric forcing and heating rate (45% in Apr, 75% in Sep). Wind fields showed black carbon transport from south Asia in April and east Asia in September. Further evaluation of the transport of dust and anthropogenic emissions from various source regions and their deposition in the Himalaya and Tibet, is important in understanding regional air quality and climate

  9. Evidence for ships emissions in the Central Mediterranean Sea from aerosol chemical analyses at the island of Lampedusa

    NASA Astrophysics Data System (ADS)

    Becagli, S.; Sferlazzo, D. M.; Pace, G.; di Sarra, A.; Bommarito, C.; Calzolai, G.; Ghedini, C.; Lucarelli, F.; Meloni, D.; Monteleone, F.; Severi, M.; Traversi, R.; Udisti, R.

    2011-11-01

    Measurements of aerosol chemical composition made on the island of Lampedusa, south of the Sicily channel, during years 2004-2008, are used to identify the influence of ship emissions on aerosol particles in the Central Mediterranean. Evidence of ship emissions influence is found in 17% of the daily samples. Aerosol samples influenced by ships are characterized by elevated Ni and V soluble fraction (about 80% for aerosol from ships, versus about 40 % for crustal particles), high V and Ni to Si ratios, and values of Vsol>6 ng m-3. Back trajectories analysis on the selected events show that air masses prevalently come from the Sicily channel, where an intense ship traffic occurs. Vsol, Nisol, and non-sea salt SO42- (nssSO42-) show a marked seasonal behaviour, with an evident summer maximum. Such a pattern can be explained by several processes: (i) increased photochemical activity in summer, leading to a faster production of secondary aerosols, mainly nssSO42-, from the oxidation of SO2 in the ship plume; (ii) stronger marine boundary layer (MBL) stability in summer, leading to higher concentration of emitted compounds in the lowest atmospheric layers; (iii) more frequent meteorological conditions leading to consecutive days with trajectories from the Sicily channel in summer. A very intense event in spring 2008 was studied in detail, also using size segregated chemical measurements. These data show that elements arising from heavy oil combustion (V, Ni, Al, Fe) are distributed in the sub-micrometric fraction of the aerosol, and the metals are present as free metals, carbonates, oxides hydrates or labile complex with organic ligands, so that they are dissolved in mild condition (HNO3, pH1.5). Data suggest a characteristic nssSO42-/V ratio in the range 200-400 for ship emission aerosols in summer at Lampedusa. By using the value of 200 a lower limit for the ship contribution to total sulphates is estimated. Ship emissions account, as a summer average, at least for 1

  10. CCN Activity of Organic Aerosols Observed Downwind of Urban Emissions during CARES

    SciTech Connect

    Mei, Fan; Setyan, Ari; Zhang, Qi; Wang, J. X.

    2013-12-17

    During the Carbonaceous Aerosols and Radiative Effects Study (CARES), activation fraction of size-resolved aerosol particles and aerosol chemical composition were characterized at the T1 site (~60 km downwind of Sacramento, California) from 10 June to 28 June 2010. The hygroscopicity of CCN-active particles (KCCN) with diameter from 100 to 170 nm, derived from the size-resolved activated fraction, varied from 0.10 to 0.21, with an average of 0.15, which was substantially lower than that proposed for continental sites in earlier studies. The low KCCN value was due to the high organic volume fraction, averaged over 80% at the T1 site. The derived KCCN exhibited little diurnal variation, consistent with the relatively constant organic volume fraction observed. At any time, over 90% of the size selected particles with diameter between 100 and 171nm were CCN active, suggesting most particles within this size range were aged background particles. Due to the large organic volume fraction, organic hygroscopicity (Korg) strongly impacted particle hygroscopicity and therefore calculated CCN concentration. For vast majority of the cases, an increase of Korg from 0.03 to 0.18, which are within the typical range, doubled the calculated CCN concentration. Organic hygroscopicity was derived from KCCN and aerosol chemical composition, and its variations with the fraction of total organic mass spectral signal at m/z 44 (f44) and O:C were compared to results from previous studies. Overall, the relationships between Korg and f44 are quite consistent for organic aerosol (OA) observed during field studies and those formed in smog chamber. Compared to the relationship between Korg and f44, the relationship between Korg and O:C exhibits more significant differences among different studies, suggesting korg may be better parameterized using f44. A

  11. An experimental study quantifying pulmonary ventilation on inhalation of aerosol under steady and episodic emission.

    PubMed

    Poon, Carmen K M; Lai, Alvin C K

    2011-09-15

    Estimating inhalation dose accurately under realistic conditions can enhance the accuracy of risk assessment. Conventional methods to quantify aerosol concentration that susceptible victims in contaminated environments are exposed to use real time particle counters to measure concentrations in environments without occupancy. Breathing-induced airflow interacts and influences concentration around nostrils or mouth and alter the ultimate exposure. This subject has not yet been systematically studied, particularly under transient emission. In this work, an experimental facility comprising two manikins was designed and fabricated. One of them mimicked realistic breathing, acting as a susceptible victim. Both steady and episodic emissions were generated in an air-conditioned environmental chamber in which two different ventilation schemes were tested. The scaled-dose of the victim under different expiratory velocities and pulmonary ventilation was measured. Inferring from results obtained from comprehensive tests, it can be concluded that breathing has very significant influence on the ultimate dose compared with that without breathing. Majority of results show that breathing reduces inhalation quantity and the reduction magnitude increases with breathing rate. This is attributed to the fact that the exhalation process plays a more significant role in reducing the dose level than the enhanced effect during inhalation period. The higher the breathing rate, the sharper the decline of the resultant concentration would be leading to lower dose. Nevertheless, under low pulmonary ventilation, results show that breathing increases dose marginally. Results also reveals that ventilation scheme also affects the exposure.

  12. Development of a United States-Mexico Emissions Inventory for the Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study.

    PubMed

    Kuhns, Hampden; Knipping, Eladio M; Vukovich, Jeffrey M

    2005-05-01

    The Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study was commissioned to investigate the sources of haze at Big Bend National Park in southwest Texas. The modeling domain of the BRAVO Study includes most of the continental United States and Mexico. The BRAVO emissions inventory was constructed from the 1999 National Emission Inventory for the United States, modified to include finer-resolution data for Texas and 13 U.S. states in close proximity. The first regional-scale Mexican emissions inventory designed for air-quality modeling applications was developed for 10 northern Mexican states, the Tula Industrial Park in the state of Hidalgo, and the Popocatépetl volcano in the state of Puebla. Emissions data were compiled from numerous sources, including the U.S. Environmental Protection Agency (EPA), the Texas Natural Resources Conservation Commission (now Texas Commission on Environmental Quality), the Eastern Research Group, the Minerals Management Service, the Instituto Nacional de Ecología, and the Instituto Nacional de Estadistica Geografía y Informática. The inventory includes emissions for CO, nitrogen oxides, sulfur dioxide, volatile organic compounds (VOCs), ammonia, particulate matter (PM) < 10 microm in aerodynamic diameter, and PM < 2.5 microm in aerodynamic diameter. Wind-blown dust and biomass burning were not included in the inventory, although high concentrations of dust and organic PM attributed to biomass burning have been observed at Big Bend National Park. The SMOKE modeling system was used to generate gridded emissions fields for use with the Regional Modeling System for Aerosols and Deposition (REMSAD) and the Community Multiscale Air Quality model modified with the Model of Aerosol Dynamics, Reaction, Ionization and Dissolution (CMAQ-MADRID). The compilation of the inventory, supporting model input data, and issues encountered during the development of the inventory are documented. A comparison of the BRAVO emissions

  13. Development of a United States-Mexico Emissions Inventory for the Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study.

    PubMed

    Kuhns, Hampden; Knipping, Eladio M; Vukovich, Jeffrey M

    2005-05-01

    The Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study was commissioned to investigate the sources of haze at Big Bend National Park in southwest Texas. The modeling domain of the BRAVO Study includes most of the continental United States and Mexico. The BRAVO emissions inventory was constructed from the 1999 National Emission Inventory for the United States, modified to include finer-resolution data for Texas and 13 U.S. states in close proximity. The first regional-scale Mexican emissions inventory designed for air-quality modeling applications was developed for 10 northern Mexican states, the Tula Industrial Park in the state of Hidalgo, and the Popocatépetl volcano in the state of Puebla. Emissions data were compiled from numerous sources, including the U.S. Environmental Protection Agency (EPA), the Texas Natural Resources Conservation Commission (now Texas Commission on Environmental Quality), the Eastern Research Group, the Minerals Management Service, the Instituto Nacional de Ecología, and the Instituto Nacional de Estadistica Geografía y Informática. The inventory includes emissions for CO, nitrogen oxides, sulfur dioxide, volatile organic compounds (VOCs), ammonia, particulate matter (PM) < 10 microm in aerodynamic diameter, and PM < 2.5 microm in aerodynamic diameter. Wind-blown dust and biomass burning were not included in the inventory, although high concentrations of dust and organic PM attributed to biomass burning have been observed at Big Bend National Park. The SMOKE modeling system was used to generate gridded emissions fields for use with the Regional Modeling System for Aerosols and Deposition (REMSAD) and the Community Multiscale Air Quality model modified with the Model of Aerosol Dynamics, Reaction, Ionization and Dissolution (CMAQ-MADRID). The compilation of the inventory, supporting model input data, and issues encountered during the development of the inventory are documented. A comparison of the BRAVO emissions

  14. Positron emission tomography (PET) for assessing aerosol deposition of orally inhaled drug products.

    PubMed

    Dolovich, Myrna B; Bailey, Dale L

    2012-12-01

    The topical distribution of inhaled therapies in the lung can be viewed using radionuclides and imaging. Positron emission tomography (PET) is a three-dimensional functional imaging technique providing quantitatively accurate localization of the quantity and distribution of an inhaled or injected PET radiotracer in the lung. A series of transaxial slices through the lungs are obtained, comparable to an X-ray computed tomography (CT) scan. Subsequent reformatting allows coronal and sagittal images of the distribution of radioactivity to be viewed. This article describes procedures for administering [(18)F]-fluorodeoxyglucose aerosol to human subjects for the purpose of determining dose and distribution following inhalation from an aerosol drug delivery device (ADDD). The advantages of using direct-labeled PET drugs in the ADDD are discussed with reference to the literature. The methods for designing the inhalation system, determining proper radiation shielding, calibration, and validation of administered radioactivity, scanner setup, and data handling procedures are described. Obtaining an X-ray CT or radionuclide transmission scan to provide accurate geometry of the lung and also correct for tissue attenuation of the PET radiotracer is discussed. Protocols for producing accurate images, including factors that need to be incorporated into the data calibration, are described, as well as a proposed standard method for partitioning the lung into regions of interest. Alternate methods are described for more detailed assessments. Radiation dosimetry/risk calculations for the procedures are appended, as well as a sample data collection form and spreadsheet for calculations. This article should provide guidance for those interested in using PET to determine quantity and distribution of inhaled therapeutics. PMID:23215847

  15. Global climate forcing of aerosols embodied in international trade

    NASA Astrophysics Data System (ADS)

    Lin, Jintai; Tong, Dan; Davis, Steven; Ni, Ruijing; Tan, Xiaoxiao; Pan, Da; Zhao, Hongyan; Lu, Zifeng; Streets, David; Feng, Tong; Zhang, Qiang; Yan, Yingying; Hu, Yongyun; Li, Jing; Liu, Zhu; Jiang, Xujia; Geng, Guannan; He, Kebin; Huang, Yi; Guan, Dabo

    2016-10-01

    International trade separates regions consuming goods and services from regions where goods and related aerosol pollution are produced. Yet the role of trade in aerosol climate forcing attributed to different regions has never been quantified. Here, we contrast the direct radiative forcing of aerosols related to regions' consumption of goods and services against the forcing due to emissions produced in each region. Aerosols assessed include black carbon, primary organic aerosol, and secondary inorganic aerosols, including sulfate, nitrate and ammonium. We find that global aerosol radiative forcing due to emissions produced in East Asia is much stronger than the forcing related to goods and services ultimately consumed in that region because of its large net export of emissions-intensive goods. The opposite is true for net importers such as Western Europe and North America: global radiative forcing related to consumption is much greater than the forcing due to emissions produced in these regions. Overall, trade is associated with a shift of radiative forcing from net importing to net exporting regions. Compared to greenhouse gases such as carbon dioxide, the short atmospheric lifetimes of aerosols cause large localized differences between consumption- and production-related radiative forcing. International efforts to reduce emissions in the exporting countries will help alleviate trade-related climate and health impacts of aerosols while lowering global emissions.

  16. Sensitivity of nitrate aerosols to ammonia emissions and to nitrate chemistry: implications for present and future nitrate optical depth

    NASA Astrophysics Data System (ADS)

    Paulot, F.; Ginoux, P.; Cooke, W. F.; Donner, L. J.; Fan, S.; Lin, M.-Y.; Mao, J.; Naik, V.; Horowitz, L. W.

    2016-02-01

    We update and evaluate the treatment of nitrate aerosols in the Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric model (AM3). Accounting for the radiative effects of nitrate aerosols generally improves the simulated aerosol optical depth, although nitrate concentrations at the surface are biased high. This bias can be reduced by increasing the deposition of nitrate to account for the near-surface volatilization of ammonium nitrate or by neglecting the heterogeneous production of nitric acid to account for the inhibition of N2O5 reactive uptake at high nitrate concentrations. Globally, uncertainties in these processes can impact the simulated nitrate optical depth by up to 25 %, much more than the impact of uncertainties in the seasonality of ammonia emissions (6 %) or in the uptake of nitric acid on dust (13 %). Our best estimate for fine nitrate optical depth at 550 nm in 2010 is 0.006 (0.005-0.008). In wintertime, nitrate aerosols are simulated to account for over 30 % of the aerosol optical depth over western Europe and North America. Simulated nitrate optical depth increases by less than 30 % (0.0061-0.010) in response to projected changes in anthropogenic emissions from 2010 to 2050 (e.g., -40 % for SO2 and +38 % for ammonia). This increase is primarily driven by greater concentrations of nitrate in the free troposphere, while surface nitrate concentrations decrease in the midlatitudes following lower concentrations of nitric acid. With the projected increase of ammonia emissions, we show that better constraints on the vertical distribution of ammonia (e.g., convective transport and biomass burning injection) and on the sources and sinks of nitric acid (e.g., heterogeneous reaction on dust) are needed to improve estimates of future nitrate optical depth.

  17. Stress-induced biogenic VOC emissions from typical European tree species, their impact on secondary organic aerosol formation and possible climate feedbacks

    NASA Astrophysics Data System (ADS)

    Kleist, E.; Mentel, T. F.; Andres, S.; Dal Maso, M.; Hohaus, T.; Kindler-Scharr, A.; Rudich, Y.; Springer, M.; Tillmann, R.; Uerlings, R.; Wahner, A.; Wildt, J.

    2011-12-01

    Biogenic volatile organic compounds (BVOC) are precursors of secondary organic aerosols (SOA), which can scatter and absorb radiation. BVOC therefore indirectly impact the Earth's climate. Earth's climate is projected to change, possibly putting and vegetation under stress due to intensive heat and drought periods. Such stress situations will alter BVOC emissions that may induce feedbacks between vegetation and climate change. The main aim of our study is to determine whether such effect exists. A first step was to determine the impacts of drought and heat on BVOC emissions and subsequent SOA formation. Experiments were performed in the Juelich plant atmosphere chamber. Pine and Spruce were taken as representatives for species exhibiting storage organs for monoterpenes (MT). Beech and Birch were used as species with MT emissions closely coupled to CO2 uptake. The plants were stored under well-defined conditions of temperature and light intensity. Heat stress was induced by increasing the chamber temperature; drought stress was induced by not irrigating the plants. A fraction of the air leaving the plant chamber was fed into a reaction chamber where SOA formation was induced by OH-initiated oxidation. During stress situations the plants' BVOC emissions changed significantly. As a general feature we found that combined heat and drought stress increased MT emissions from conifers but decreased MT emissions from the broadleaf species. The former was attributed to a heat-induced breakdown of storage organs. The latter was attributed to a general breakdown of biosynthetic activity. SOA formation potentials were changed together with the MT emissions. The decrease in SOA formation potential due to the decrease of MT emissions from broadleaf species was amplified by additional emissions of green leaf volatiles (GLV). Obviously, GLV can suppress SOA formation by suppressing OH concentrations. GLV were also emitted from the conifers under heat stress. However the

  18. Comparative Analysis of Urban Atmospheric Aerosol by Particle-Induced X-ray Emission (PIXE), Proton Elastic Scattering Analysis (PESA), and Aerosol Mass Spectrometry (AMS)

    SciTech Connect

    Johnson, Kirsten S; Laskin, Alexander; Jimenez, Jose L; Shutthanandan, V; Molina, Luisa T; Salcedo, D; Dzepina, K; Molina, Mario J

    2008-09-01

    A multifaceted approach to atmospheric aerosol analysis is often desirable in field studies where an understanding of technical comparability among different measurement techniques is essential. Herein we report quantitative intercomparisons of Particle-Induced X-ray Emission (PIXE) and Proton Elastic Scattering Analysis (PESA), performed off-line under vacuum, with analysis by Aerosol Mass Spectrometry (AMS) carried out in real-time during the MCMA-2003 Field Campaign in the Mexico City Metropolitan Area. Good agreement was observed for mass concentrations of PIXE-measured sulfur (assuming it was dominated by SO42-) and AMS-measured sulfate during the most of the campaign. PESA-measured hydrogen mass was separated into sulfate H and organic H mass fractions assuming the only major contributions were (NH4)2SO4 and organic compounds. Comparison of the organic H mass with AMS organic aerosol measurements indicates that about 75% of the mass of these species evaporated under vacuum. However ~25% of the organics does remain under vacuum, which is only possible with low vapor pressure compounds, and which supports the presence of high molecular weight and/or highly oxidized organics consistent with atmospheric aging. Approximately 10% of the chloride detected by AMS was measured by PIXE, possibly in the form of metal-chloride complexes, while the majority of Cl was likely present as more volatile species including NH4Cl. This is the first comparison of PIXE/PESA and AMS, and to our knowledge also the first report of PESA hydrogen measurements for urban organic aerosols.

  19. Emissions of organic aerosol mass, black carbon, particle number, and regulated and unregulated gases from scooters and light and heavy duty vehicles with different fuels

    NASA Astrophysics Data System (ADS)

    Chirico, R.; Clairotte, M.; Adam, T. W.; Giechaskiel, B.; Heringa, M. F.; Elsasser, M.; Martini, G.; Manfredi, U.; Streibel, T.; Sklorz, M.; Zimmermann, R.; DeCarlo, P. F.; Astorga, C.; Baltensperger, U.; Prevot, A. S. H.

    2014-06-01

    A sampling campaign with seven different types of vehicles was conducted in 2009 at the vehicle test facilities of the Joint Research Centre (JRC) in Ispra (Italy). The vehicles chosen were representative of some categories circulating in Europe and were fueled either with standard gasoline or diesel and some with blends of rapeseed methyl ester biodiesel. The aim of this work was to improve the knowledge about the emission factors of gas phase and particle-associated regulated and unregulated species from vehicle exhaust. Unregulated species such as black carbon (BC), primary organic aerosol (OA) content, particle number (PN), monocyclic and polycyclic aromatic hydrocarbons (PAHs) and a~selection of unregulated gaseous compounds, including nitrous acid (N2O), ammonia (NH3), hydrogen cyanide (HCN), formaldehyde (HCHO), acetaldehyde (CH3CHO), sulfur dioxide (SO2), and methane (CH4), were measured in real time with a suite of instruments including a high-resolution aerosol time-of-flight mass spectrometer, a resonance enhanced multi-photon ionization time-of-flight mass spectrometer, and a high resolution Fourier transform infrared spectrometer. Diesel vehicles, without particle filters, featured the highest values for particle number, followed by gasoline vehicles and scooters. The particles from diesel and gasoline vehicles were mostly made of BC with a low fraction of OA, while the particles from the scooters were mainly composed of OA. Scooters were characterized by super high emissions factors for OA, which were orders of magnitude higher than for the other vehicles. The heavy duty diesel vehicle (HDDV) featured the highest nitrogen oxides (NOx) emissions, while the scooters had the highest emissions for total hydrocarbons and aromatic compounds due to the unburned and partially burned gasoline and lubricant oil mixture. Generally, vehicles fuelled with biodiesel blends showed lower emission factors of OA and total aromatics than those from the standard fuels

  20. Unspeciated organic emissions from combustion sources and their influence on the secondary organic aerosol budget in the United States.

    PubMed

    Jathar, Shantanu H; Gordon, Timothy D; Hennigan, Christopher J; Pye, Havala O T; Pouliot, George; Adams, Peter J; Donahue, Neil M; Robinson, Allen L

    2014-07-22

    Secondary organic aerosol (SOA) formed from the atmospheric oxidation of nonmethane organic gases (NMOG) is a major contributor to atmospheric aerosol mass. Emissions and smog chamber experiments were performed to investigate SOA formation from gasoline vehicles, diesel vehicles, and biomass burning. About 10-20% of NMOG emissions from these major combustion sources are not routinely speciated and therefore are currently misclassified in emission inventories and chemical transport models. The smog chamber data demonstrate that this misclassification biases model predictions of SOA production low because the unspeciated NMOG produce more SOA per unit mass than the speciated NMOG. We present new source-specific SOA yield parameterizations for these unspeciated emissions. These parameterizations and associated source profiles are designed for implementation in chemical transport models. Box model calculations using these new parameterizations predict that NMOG emissions from the top six combustion sources form 0.7 Tg y(-1) of first-generation SOA in the United States, almost 90% of which is from biomass burning and gasoline vehicles. About 85% of this SOA comes from unspeciated NMOG, demonstrating that chemical transport models need improved treatment of combustion emissions to accurately predict ambient SOA concentrations.

  1. Damages and Expected Deaths Due to Excess NOx Emissions from 2009 to 2015 Volkswagen Diesel Vehicles.

    PubMed

    Holland, Stephen P; Mansur, Erin T; Muller, Nicholas Z; Yates, Andrew J

    2016-02-01

    We estimate the damages and expected deaths in the United States due to excess emissions of NOx from 2009 to 2015 Volkswagen diesel vehicles. Using data on vehicle registrations and a model of pollution transport and valuation, we estimate excess damages of $430 million and 46 excess expected deaths. Accounting for uncertainty about emissions gives a range for damages from $350 million to $500 million, and a range for excess expected deaths from 40 to 52. Our estimates incorporate significant local heterogeneity: for example, Minneapolis has the highest damages despite having fewer noncompliant vehicles than 13 other cities. Our estimated damages greatly exceed possible benefits from reduced CO2 emissions due to increased fuel economy. PMID:26720281

  2. Damages and Expected Deaths Due to Excess NOx Emissions from 2009 to 2015 Volkswagen Diesel Vehicles.

    PubMed

    Holland, Stephen P; Mansur, Erin T; Muller, Nicholas Z; Yates, Andrew J

    2016-02-01

    We estimate the damages and expected deaths in the United States due to excess emissions of NOx from 2009 to 2015 Volkswagen diesel vehicles. Using data on vehicle registrations and a model of pollution transport and valuation, we estimate excess damages of $430 million and 46 excess expected deaths. Accounting for uncertainty about emissions gives a range for damages from $350 million to $500 million, and a range for excess expected deaths from 40 to 52. Our estimates incorporate significant local heterogeneity: for example, Minneapolis has the highest damages despite having fewer noncompliant vehicles than 13 other cities. Our estimated damages greatly exceed possible benefits from reduced CO2 emissions due to increased fuel economy.

  3. Impact of Emissions and Long-Range Transport on Multi-Decadal Aerosol Trends: Implications for Air Quality and Climate

    NASA Technical Reports Server (NTRS)

    Chin, Mian

    2012-01-01

    We present a global model analysis of the impact of long-range transport and anthropogenic emissions on the aerosol trends in the major pollution regions in the northern hemisphere and in the Arctic in the past three decades. We will use the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model to analyze the multi-spatial and temporal scale data, including observations from Terra, Aqua, and CALIPSO satellites and from the long-term surface monitoring stations. We will analyze the source attribution (SA) and source-receptor (SR) relationships in North America, Europe, East Asia, South Asia, and the Arctic at the surface and free troposphere and establish the quantitative linkages between emissions from different source regions. We will discuss the implications for regional air quality and climate change.

  4. Sugars in Antarctic aerosol

    NASA Astrophysics Data System (ADS)

    Barbaro, Elena; Kirchgeorg, Torben; Zangrando, Roberta; Vecchiato, Marco; Piazza, Rossano; Barbante, Carlo; Gambaro, Andrea

    2015-10-01

    The processes and transformations occurring in the Antarctic aerosol during atmospheric transport were described using selected sugars as source tracers. Monosaccharides (arabinose, fructose, galactose, glucose, mannose, ribose, xylose), disaccharides (sucrose, lactose, maltose, lactulose), alcohol-sugars (erythritol, mannitol, ribitol, sorbitol, xylitol, maltitol, galactitol) and anhydrosugars (levoglucosan, mannosan and galactosan) were measured in the Antarctic aerosol collected during four different sampling campaigns. For quantification, a sensitive high-pressure anion exchange chromatography was coupled with a single quadrupole mass spectrometer. The method was validated, showing good accuracy and low method quantification limits. This study describes the first determination of sugars in the Antarctic aerosol. The total mean concentration of sugars in the aerosol collected at the "Mario Zucchelli" coastal station was 140 pg m-3; as for the aerosol collected over the Antarctic plateau during two consecutive sampling campaigns, the concentration amounted to 440 and 438 pg m-3. The study of particle-size distribution allowed us to identify the natural emission from spores or from sea-spray as the main sources of sugars in the coastal area. The enrichment of sugars in the fine fraction of the aerosol collected on the Antarctic plateau is due to the degradation of particles during long-range atmospheric transport. The composition of sugars in the coarse fraction was also investigated in the aerosol collected during the oceanographic cruise.

  5. Aerosol and trace gas vehicle emission factors measured in a tunnel using an Aerosol Mass Spectrometer and other on-line instrumentation

    NASA Astrophysics Data System (ADS)

    Chirico, Roberto; Prevot, Andre S. H.; DeCarlo, Peter F.; Heringa, Maarten F.; Richter, Rene; Weingartner, Ernest; Baltensperger, Urs

    2011-04-01

    In this study we present measurements of gas and aerosol phase composition for a mixed vehicle fleet in the Gubrist tunnel (Switzerland) in June 2008. PM 1 composition measurements were made with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (AMS) and a Multi Angle Absorption Photometer (MAAP). Gas-phase measurements of CO, CO 2, NO x and total hydrocarbons (THC) were performed with standard instrumentation. Weekdays had a characteristic diurnal pattern with 2 peaks in concentrations for all traffic related species corresponding to high vehicle density (˜300 ± 30 vehicles per 5 min) in the morning rush hour between 06:00 and 09:00 and in the afternoon rush hours from approximately 15:30 to 18:30. The emission factors (EF) of OA were heavily influenced by the OA mass loading. To exclude this partitioning effect, only organic aerosol mass concentrations from 60 μg m -3 to 90 μg m -3 were considered and for these conditions the EF(OA) value for HDV was 33.7 ± 2.3 mg km -1 for a temperature inside the tunnel of 20-25 °C. This value is not directly applicable to ambient conditions because it is derived from OA mass concentrations that are roughly a factor of 10 higher than typical ambient concentrations. An even higher EF(OA) HDV value of 47.4 ± 1.6 mg km -1 was obtained when the linear fit was applied to all data points including OA concentrations up to 120 μg m -3. Similar to the increasing EF, the OA/BC ratio in the tunnel was also affected by the organic loading and it increased by a factor of ˜3 over the OA range 10-120 μg m -3. This means that also the OA emission factors at ambient concentrations of around 5-10 μg m -3 would be 2-3 times lower than the emission factor given above. For OA concentrations lower than 40 μg m -3 the OA/BC mass ratio was below 1, while at an OA concentration of 100-120 μg m -3 the OA/BC ratio was ˜1.5. The AMS mass spectra (MS) acquired in the tunnel were highly correlated with the primary organic aerosol

  6. 40 CFR 86.166-12 - Method for calculating emissions due to air conditioning leakage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to air conditioning leakage. 86.166-12 Section 86.166-12 Protection of Environment ENVIRONMENTAL... for calculating emissions due to air conditioning leakage. This section describes procedures used to determine a refrigerant leakage rate in grams per year from vehicle-based air conditioning units....

  7. 40 CFR 86.166-12 - Method for calculating emissions due to air conditioning leakage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to air conditioning leakage. 86.166-12 Section 86.166-12 Protection of Environment ENVIRONMENTAL... for calculating emissions due to air conditioning leakage. This section describes procedures used to determine a refrigerant leakage rate in grams per year from vehicle-based air conditioning units....

  8. Historical (1850-2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols:methodology and application

    SciTech Connect

    Lamarque, J. F.; Bond, Tami C.; Eyring, Veronika; Granier, Claire; Heil, Angelika; Klimont, Z.; Lee, David S.; Liousse, Catherine; Mieville, Aude; Owen, Bethan; Schultz, Martin; Shindell, Drew; Smith, Steven J.; Stehfest, Eike; van Aardenne, John; Cooper, Owen; Kainuma, M.; Mahowald, Natalie; McConnell, J.R.; Naik, Vaishali; Riahi, Keywan; Van Vuuren, Detlef

    2010-08-11

    We present and discuss a new dataset of gridded emissions covering the historical period (1850-2000) in decadal increments at a horizontal resolution of 0.5° in latitude and longitude. The primary purpose of this inventory is to provide consistent gridded emissions of reactive gases and aerosols for use in chemistry model simulations needed by climate models for the Climate Model Intercomparison Program #5 (CMIP5) in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment report. Our best estimate for the year 2000 inventory represents a combination of existing regional and global inventories to capture the best information available at this point; 40 regions and 12 sectors were used to combine the various sources. The historical reconstruction of each emitted compound, for each region and sector, was then forced to agree with our 2000 estimate, ensuring continuity between past and 2000 emissions. Application of these emissions into two chemistry-climate models is used to test their ability to capture long-term changes in atmospheric ozone, carbon monoxide and aerosols distributions. The simulated long-term change in the Northern mid-latitudes surface and mid-troposphere ozone is not quite as rapid as observed. However, stations outside this latitude band show much better agreement in both present-day and long-term trend. The model simulations consistently underestimate the carbon monoxide trend, while capturing the long-term trend at the Mace Head station. The simulated sulfate and black carbon deposition over Greenland is in very good agreement with the ice-core observations spanning the simulation period. Finally, aerosol optical depth and additional aerosol diagnostics are shown to be in good agreement with previously published estimates.

  9. Brown carbon aerosols from burning of boreal peatlands: microphysical properties, emission factors, and implications for direct radiative forcing

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Rajan K.; Gyawali, Madhu; Yatavelli, Reddy L. N.; Pandey, Apoorva; Watts, Adam C.; Knue, Joseph; Chen, Lung-Wen A.; Pattison, Robert R.; Tsibart, Anna; Samburova, Vera; Moosmüller, Hans

    2016-03-01

    The surface air warming over the Arctic has been almost twice as much as the global average in recent decades. In this region, unprecedented amounts of smoldering peat fires have been identified as a major emission source of climate-warming agents. While much is known about greenhouse gas emissions from these fires, there is a knowledge gap on the nature of particulate emissions and their potential role in atmospheric warming. Here, we show that aerosols emitted from burning of Alaskan and Siberian peatlands are predominantly brown carbon (BrC) - a class of visible light-absorbing organic carbon (OC) - with a negligible amount of black carbon content. The mean fuel-based emission factors for OC aerosols ranged from 3.8 to 16.6 g kg-1. Their mass absorption efficiencies were in the range of 0.2-0.8 m2 g-1 at 405 nm (violet) and dropped sharply to 0.03-0.07 m2 g-1 at 532 nm (green), characterized by a mean Ångström exponent of ≈ 9. Electron microscopy images of the particles revealed their morphologies to be either single sphere or agglomerated "tar balls". The shortwave top-of-atmosphere aerosol radiative forcing per unit optical depth under clear-sky conditions was estimated as a function of surface albedo. Only over bright surfaces with albedo greater than 0.6, such as snow cover and low-level clouds, the emitted aerosols could result in a net warming (positive forcing) of the atmosphere.

  10. Secondary organic aerosol formation from photo-oxidation of unburned fuel: experimental results and implications for aerosol formation from combustion emissions.

    PubMed

    Jathar, Shantanu H; Miracolo, Marissa A; Tkacik, Daniel S; Donahue, Neil M; Adams, Peter J; Robinson, Allen L

    2013-11-19

    We conducted photo-oxidation experiments in a smog chamber to investigate secondary organic aerosol (SOA) formation from eleven different unburned fuels: commercial gasoline, three types of jet fuel, and seven different diesel fuels. The goals were to investigate the influence of fuel composition on SOA formation and to compare SOA production from unburned fuel to that from diluted exhaust. The trends in SOA production were largely consistent with differences in carbon number and molecular structure of the fuel, i.e., fuels with higher carbon numbers and/or more aromatics formed more SOA than fuels with lower carbon numbers and/or substituted alkanes. However, SOA production from different diesel fuels did not depend strongly on aromatic content, highlighting the important contribution of large alkanes to SOA formation from mixtures of high carbon number (lower volatility) precursors. In comparison to diesels, SOA production from higher volatility fuels such as gasoline appeared to be more sensitive to aromatic content. On the basis of a comparison of SOA mass yields (SOA mass formed per mass of fuel reacted) and SOA composition (as measured by an aerosol mass spectrometer) from unburned fuels and diluted exhaust, unburned fuels may be reasonable surrogates for emissions from uncontrolled engines but not for emissions from engines with after treatment devices such as catalytic converters. PMID:24144104

  11. Secondary organic aerosol formation from photo-oxidation of unburned fuel: experimental results and implications for aerosol formation from combustion emissions.

    PubMed

    Jathar, Shantanu H; Miracolo, Marissa A; Tkacik, Daniel S; Donahue, Neil M; Adams, Peter J; Robinson, Allen L

    2013-11-19

    We conducted photo-oxidation experiments in a smog chamber to investigate secondary organic aerosol (SOA) formation from eleven different unburned fuels: commercial gasoline, three types of jet fuel, and seven different diesel fuels. The goals were to investigate the influence of fuel composition on SOA formation and to compare SOA production from unburned fuel to that from diluted exhaust. The trends in SOA production were largely consistent with differences in carbon number and molecular structure of the fuel, i.e., fuels with higher carbon numbers and/or more aromatics formed more SOA than fuels with lower carbon numbers and/or substituted alkanes. However, SOA production from different diesel fuels did not depend strongly on aromatic content, highlighting the important contribution of large alkanes to SOA formation from mixtures of high carbon number (lower volatility) precursors. In comparison to diesels, SOA production from higher volatility fuels such as gasoline appeared to be more sensitive to aromatic content. On the basis of a comparison of SOA mass yields (SOA mass formed per mass of fuel reacted) and SOA composition (as measured by an aerosol mass spectrometer) from unburned fuels and diluted exhaust, unburned fuels may be reasonable surrogates for emissions from uncontrolled engines but not for emissions from engines with after treatment devices such as catalytic converters.

  12. Differences in the OC/EC Ratios that Characterize Ambient and Source Aerosols due to Thermal-Optical Analysis

    EPA Science Inventory

    Thermal-optical analysis (TOA) is typically used to measure the OC/EC (organic carbon/elemental carbon) and EC/TC (elemental carbon/total carbon) ratios in source and atmospheric aerosols. The present study utilizes a dual-optical carbon aerosol analyzer to examine the effects of...

  13. Aerosol emissions from forest and grassland burnings in the southern amazon basin and central Brazil

    NASA Astrophysics Data System (ADS)

    Leslie, Alistair C. D.

    1981-03-01

    Forest and grassland clearing by means of prescribed fires in tropical areas of the world may be responsible for large inputs of fine particulates to the global atmosphere besides being a major source of trace gases. The major continents on which extensive biomass burning takes place are Africa and South America. Such agricultural practices of burning have been employed throughout man's existence, but the importance and significance of such burning relative to anthropogenic industrial emissions to the atmosphere has not until extremely recently been seriously studied. In August-September 1979 project "Brushfire 1979" took place based in Brasília, Brazil. The Air Quality Division of the National Center for Atmospheric Research made ground level and aircraft measurements of trace gases (e.g. CO 2, CO, CH 4, N 2O, H 2, CH 3Cl, COS, NO, NO 2, O 3) and Florida State University sampled ground level aerosol emissions from grass and forest burnings. Aerosols were sampled using plastic 7-stage single orifice cascade impactors and FSU type linear and circular "streakers". Long term sampling was made of regional background for total particulates (<15 μmad) with 2 h resolution using streakers and with impactors for 24 h resolution of 7 particle size fractions (<0.25 to >8 μmad). Short term sampling within grass or forest fires was made using impactors incorporated into portable kits containing 4 miniature 12-18 V dc Brailsford pumps and a disposable dry cell power pack. Sampling times of 5-15 min were found optimal under these conditions. Grass fires were sampled in the savannah area northeast of Brasília and forest fires in the state of Mato Grosso on the southern edge of the dryland forest of the Amazon basin. Residual ash samples were collected. All of the samples were analyzed at Florida State University using PIXE for 15-20 elements including Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Pb and Sr. Computer reduction of the X-ray spectra was made

  14. Application of mobile aerosol and trace gas measurements for the investigation of megacity air pollution emissions: the Paris metropolitan area

    NASA Astrophysics Data System (ADS)

    von der Weiden-Reinmüller, S.-L.; Drewnick, F.; Crippa, M.; Prévôt, A. S. H.; Meleux, F.; Baltensperger, U.; Beekmann, M.; Borrmann, S.

    2014-01-01

    For the investigation of megacity emission development and the impact outside the source region, mobile aerosol and trace gas measurements were carried out in the Paris metropolitan area between 1 July and 31 July 2009 (summer conditions) and 15 January and 15 February 2010 (winter conditions) in the framework of the European Union FP7 MEGAPOLI project. Two mobile laboratories, MoLa and MOSQUITA, were deployed, and here an overview of these measurements and an investigation of the applicability of such measurements for the analysis of megacity emissions are presented. Both laboratories measured physical and chemical properties of fine and ultrafine aerosol particles as well as gas phase constituents of relevance for urban pollution scenarios. The applied measurement strategies include cross-section measurements for the investigation of plume structure and quasi-Lagrangian measurements axially along the flow of the city's pollution plume to study plume aging processes. Results of intercomparison measurements between the two mobile laboratories represent the adopted data quality assurance procedures. Most of the compared measurement devices show sufficient agreement for combined data analysis. For the removal of data contaminated by local pollution emissions a video tape analysis method was applied. Analysis tools like positive matrix factorization and peak integration by key analysis applied to high-resolution time-of-flight aerosol mass spectrometer data are used for in-depth data analysis of the organic particulate matter. Several examples, including a combination of MoLa and MOSQUITA measurements on a cross section through the Paris emission plume, are provided to demonstrate how such mobile measurements can be used to investigate the emissions of a megacity. A critical discussion of advantages and limitations of mobile measurements for the investigation of megacity emissions completes this work.

  15. Application of mobile aerosol and trace gas measurements for the investigation of megacity air pollution emissions: the Paris metropolitan area

    NASA Astrophysics Data System (ADS)

    von der Weiden-Reinmüller, S.-L.; Drewnick, F.; Crippa, M.; Prévôt, A. S. H.; Meleux, F.; Baltensperger, U.; Beekmann, M.; Borrmann, S.

    2013-08-01

    For the investigation of megacity emission development and impact outside the source region mobile aerosol and trace gas measurements were carried out in the Paris metropolitan area between 1 July and 31 July 2009 (summer conditions) and 15 January and 15 February 2010 (winter conditions) in the framework of the European Union FP7 MEGAPOLI project. Two mobile laboratories, MoLa and MOSQUITA, were deployed, and here an overview of these measurements and an investigation of the applicability of such measurements for the analysis of megacity emissions are presented. Both laboratories measured physical and chemical properties of fine and ultrafine aerosol particles as well as gas phase constituents of relevance for urban pollution scenarios. The applied measurement strategies include cross section measurements for the investigation of plume structure and quasi-Lagrangian measurements radially away from the city center to study plume aging processes. Results of intercomparison measurements between the two mobile laboratories represent the adopted data quality assurance procedures. Most of the compared measurement devices show sufficient agreement for combined data analysis. For the removal of data contaminated by local pollution emissions a video tape analysis method was applied. Analysis tools like positive matrix factorization and peak integration by key analysis applied to high-resolution time-of-flight aerosol mass spectrometer data are used for in-depth data analysis of the organic particulate matter. Several examples, including a combination of MoLa and MOSQUITA measurements on a cross section through the Paris emission plume are provided to demonstrate how such mobile measurements can be used to investigate the emissions of a megacity. A critical discussion of advantages and limitations of mobile measurements for the investigation of megacity emissions completes this work.

  16. Temporal variability of primary and secondary aerosols over northern India: Impact of biomass burning emissions

    NASA Astrophysics Data System (ADS)

    Rastogi, N.; Singh, A.; Sarin, M. M.; Singh, D.

    2016-01-01

    The ambient particulate matter injected from biomass burning emissions (BBEs) over northern India has been a subject of major debate in the context of regional air quality and atmospheric chemistry of several organic and inorganic constituents. This necessitates an observational approach over a large spatial and temporal scale. We present an extensive data set on PM2.5 samples (n = 147) collected for one full year from a sampling site (Patiala: 30.2°N, 76.3°E) in the source region of BBEs in northern India. During the sampling period from October 2011 to September 2012, PM2.5 mass concentration varied from ˜20 to 400 μg m-3. Among the major constituents, contribution of total carbonaceous aerosols (OC + EC) ranged from 8 to 60%. The average OC/EC and K+/EC ratio, varying from 3.2 to 12 and 0.26 to 0.80, respectively, emphasizes the dominance of BBEs over the annual seasonal cycle. The average secondary organic matter (SOM) accounts for ˜10-40% of PM2.5 mass in different seasons; whereas contribution of secondary inorganics was maximum (˜40%) during the winter. The pronounced temporal variability in SOM suggests its contribution from varying sources, their emission strength and process of secondary organic formation. Diurnal differences in the chemical constituents are attributable to regional meteorological factors and boundary layer dynamics. The emerging data set from this study is important to understand feedback mechanism from anthropogenic activities to the regional climate change scenario.

  17. Functional group composition of organic aerosol from combustion emissions and secondary processes at two contrasted urban environments

    NASA Astrophysics Data System (ADS)

    El Haddad, Imad; Marchand, Nicolas; D'Anna, Barbara; Jaffrezo, Jean Luc; Wortham, Henri

    2013-08-01

    The quantification of major functional groups in atmospheric organic aerosol (OA) provides a constraint on the types of compounds emitted and formed in atmospheric conditions. This paper presents functional group composition of organic aerosol from two contrasted urban environments: Marseille during summer and Grenoble during winter. Functional groups were determined using a tandem mass spectrometry approach, enabling the quantification of carboxylic (RCOOH), carbonyl (RCOR‧), and nitro (RNO2) functional groups. Using a multiple regression analysis, absolute concentrations of functional groups were combined with those of organic carbon derived from different sources in order to infer the functional group contents of different organic aerosol fractions. These fractions include fossil fuel combustion emissions, biomass burning emissions and secondary organic aerosol (SOA). Results clearly highlight the differences between functional group fingerprints of primary and secondary OA fractions. OA emitted from primary sources is found to be moderately functionalized, as about 20 carbons per 1000 bear one of the functional groups determined here, whereas SOA is much more functionalized, as in average 94 carbons per 1000 bear a functional group under study. Aging processes appear to increase both RCOOH and RCOR‧ functional group contents by nearly one order of magnitude. Conversely, RNO2 content is found to decrease with photochemical processes. Finally, our results also suggest that other functional groups significantly contribute to biomass smoke and SOA. In particular, for SOA, the overall oxygen content, assessed using aerosol mass spectrometer measurements by an O:C ratio of 0.63, is significantly higher than the apparent O:C* ratio of 0.17 estimated based on functional groups measured here. A thorough examination of our data suggests that this remaining unexplained oxygen content can be most probably assigned to alcohol (ROH), organic peroxides (ROOH

  18. Highly elevated emission of mercury vapor due to the spontaneous combustion of refuse in a landfill

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Sommar, Jonas; Li, Zhonggen; Feng, Xinbin; Lin, Che-Jen; Li, Guanghui

    2013-11-01

    Refuse disposal (e.g., landfilling and incineration) have been recognized as a significant anthropogenic source of mercury (Hg) emission globally. However, in-situ measurements of Hg emission from landfill or refuse dumping sites where fugitive spontaneous combustion occurs have not been reported. Gaseous elemental mercury (Hg0) concentration and emission flux were observed near spontaneous combustions of refuse at a landfill site in southwestern China. Ambient Hg0 concentrations above the refuse surface ranged from 42.7 ± 20.0 to 396.4 ± 114.2 ng m-3, up to 10 times enhancement due to the spontaneous burning. Using a box model with Hg0 data obtained from 2004 to 2013, we estimated that the Hg0 emission from refuse was amplified by 8-40 times due to spontaneous combustion. A micrometeorological flux measurement system based on relaxed eddy accumulation was configured downwind of the combustion sites to quantify the Hg0 emission. Extremely large turbulent deposition fluxes (up to -128.6 μg m-2 h-1, 20 min average) were detected during periods of high Hg0 concentration events over the measurement footprint. The effect of temperature, moisture and light on the air-surface exchange of Hg0 exchange was found to be masked by the overwhelming deposition of Hg0 from the enriched air from the refuse combustion plumes. This research reveals that mercury emission from the landfill refuse can be boosted by fugitive spontaneous combustion of refuse. The emission represents an anthropogenic source that has been overlooked in Hg inventory estimates.

  19. Constraining Predicted Secondary Organic Aerosol Formation and Processing Using Real-Time Observations of Aging Urban Emissions in an Oxidation Flow Reactor

    NASA Astrophysics Data System (ADS)

    Ortega, A. M.; Palm, B. B.; Hayes, P. L.; Day, D. A.; Cubison, M.; Brune, W. H.; Hu, W.; Graus, M.; Warneke, C.; Gilman, J.; De Gouw, J. A.; Jimenez, J. L.

    2014-12-01

    To investigate atmospheric processing of urban emissions, we deployed an oxidation flow reactor with measurements of size-resolved chemical composition of submicron aerosol during CalNex-LA, a field study investigating air quality and climate change at a receptor site in the Los Angeles Basin. The reactor produces OH concentrations up to 4 orders of magnitude higher than in ambient air, achieving equivalent atmospheric aging of hours to ~2 weeks in 5 minutes of processing. The OH exposure (OHexp) was stepped every 20 min to survey the effects of a range of oxidation exposures on gases and aerosols. This approach is a valuable tool for in-situ evaluation of changes in organic aerosol (OA) concentration and composition due to photochemical processing over a range of ambient atmospheric conditions and composition. Combined with collocated gas-phase measurements of volatile organic compounds, this novel approach enables the comparison of measured SOA to predicted SOA formation from a prescribed set of precursors. Results from CalNex-LA show enhancements of OA and inorganic aerosol from gas-phase precursors. The OA mass enhancement from aging was highest at night and correlated with trimethylbenzene, indicating the importance of relatively short-lived VOC (OH lifetime of ~12 hrs or less) as SOA precursors in the LA Basin. Maximum net SOA production is observed between 3-6 days of aging and decreases at higher exposures. Aging in the reactor shows similar behavior to atmospheric processing; the elemental composition of ambient and reactor measurements follow similar slopes when plotted in a Van Krevelen diagram. Additionally, for air processed in the reactor, oxygen-to-carbon ratios (O/C) of aerosol extended over a larger range compared to ambient aerosol observed in the LA Basin. While reactor aging always increases O/C, often beyond maximum observed ambient levels, a transition from net OA production to destruction occurs at intermediate OHexp, suggesting a transition

  20. Overview of the impact of wood burning emissions on carbonaceous aerosols and PM in large parts of the Alpine region

    NASA Astrophysics Data System (ADS)

    Herich, H.; Gianini, M. F. D.; Piot, C.; Močnik, G.; Jaffrezo, J.-L.; Besombes, J.-L.; Prévôt, A. S. H.; Hueglin, C.

    2014-06-01

    During the past years, actions implemented for the reduction of particulate matter emissions have in many European countries focused on road traffic emissions. Much less attention was paid to emissions from domestic wood combustion though the importance of residential wood burning as a source of atmospheric particulate matter (PM) in the Alpine region has been shown in many studies. Here we review the current knowledge about the contribution of wood burning emissions to ambient concentrations of elemental carbon (EC), organic carbon (OC) and PM in the Alpine region. The published results obtained by different approaches (e.g. macro-tracer method, multivariate receptor modeling, chemical mass balance modelling, and so-called Aethalometer modeling) are used in an ambient mono-tracer approach to estimate representative relationships between wood burning tracers (levoglucosan and mannosan) and EC, OC and PM from wood burning. The relationships found are applied to available ambient measurements of levoglucosan and mannosan at Alpine sites for estimation of the contributions of wood burning emissions to average levels of carbonaceous aerosols and PM at these sites. Our results imply that PM from wood burning alone adds often up to 50% and more of the EU daily limit value for PM10 in several alpine valleys during days in winter. Concentrations of carbonaceous aerosols in these valleys are often up to six times higher than in urban or rural sites at the foothills of the Alps.

  1. Origin of surface and columnar Indian Ocean Experiment (INDOEX) aerosols using source- and region-tagged emissions transport in a general circulation model - article no. D24211

    SciTech Connect

    Verma, S.; Venkataraman, C.; Boucher, O.

    2008-12-15

    We study the relative influence of aerosols emitted from different sectors and geographical regions on aerosol loading in south Asia. Sectors contributing aerosol emissions include biofuel and fossil fuel combustion, open biomass burning, and natural sources. Geographical regions include India, southeast Asia, east Asia, Africa-west Asia, and the rest of the world. Simulations of the Indian Ocean Experiment (INDOEX), from January to March 1999, are made in the general circulation model of Laboratoire de Meteorologie Dynamique (LMD-ZT GCM) with emissions tagged by sector and geographical region. Anthropogenic emissions dominate (54-88%) the predicted aerosol optical depth (AOD) over all the receptor regions. Among the anthropogenic sectors, fossil fuel combustion has the largest overall influence on aerosol loading, primarily sulfate, with emissions from India (50-80%) and rest of the world significantly influencing surface concentrations and AOD. Biofuel combustion has a significant influence on both the surface and columnar black carbon (BC) in particular over the Indian subcontinent and Bay of Bengal with emissions largely from the Indian region (60-80%). Open biomass burning emissions influence organic matter (OM) significantly, and arise largely from Africa-west Asia. The emissions from Africa-west Asia affect the carbonaceous aerosols AOD in all receptor regions, with their largest influence (AOD-BC: 60%; and AOD-OM: 70%) over the Arabian Sea. Among Indian regions, the Indo-Gangetic Plain is the largest contributor to anthropogenic surface mass concentrations and AOD over the Bay of Bengal and India. Dust aerosols are contributed mainly through the long-range transport from Africa-west Asia over the receptor regions. Overall, the model estimates significant intercontinental incursion of aerosol, for example, BC, OM, and dust from Africa-west Asia and sulfate from distant regions (rest of the world) into the INDOEX domain.

  2. Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850-2000 - article no. GB2018

    SciTech Connect

    Bond, T.C.; Bhardwaj, E.; Dong, R.; Jogani, R.; Jung, S.K.; Roden, C.; Streets, D.G.; Trautmann, N.M.

    2007-05-15

    We present an emission inventory of primary black carbon (BC) and primary organic carbon (OC) aerosols from fossil fuel and biofuel combustion between 1850 and 2000. We reconstruct fossil fuel consumption and represent changes in technology on a national and sectoral basis. Our estimates rely on new estimates of biofuel consumption, and updated emission factors for old technologies. Emissions of black carbon increase almost linearly, totaling about 1000 Gg in 1850, 2200 Gg in 1900, 3000 Gg in 1950, and 4400 Gg in 2000. Primary organic carbon shows a similar pattern, with emissions of 4100 Gg, 5800 Gg, 6700 Gg, and 8700 Gg in 1850, 1900, 1950, and 2000, respectively. Biofuel is responsible for over half of BC emission until about 1890, and dominates energy-related primary OC emission throughout the entire period. Coal contributes the greatest fraction of BC emission between 1880 and 1975, and is overtaken by emissions from biofuel around 1975, and by diesel engines around 1990. Previous work suggests a rapid rise in BC emissions between 1950 and 2000. This work supports a more gradual increase between 1950 and 2000, similar to the increase between 1850 and 1925; implementation of clean technology is a primary reason.

  3. Aerosol particle and trace gas emissions from earthworks, road construction, and asphalt paving in Germany: Emission factors and influence on local air quality

    NASA Astrophysics Data System (ADS)

    Faber, Peter; Drewnick, Frank; Borrmann, Stephan

    2015-12-01

    Aerosol emissions from construction sites have a strong impact on local air quality. The chemical and physical characteristics of particles and trace gases emitted by earthworks (excavation and loading of soil as well as traffic on unpaved roads) and road works (asphalt sawing, smashing, soil compacting, asphalt paving) have therefore been addressed in this study by using a mobile set-up of numerous modern online aerosol and trace gas instruments including a high-resolution aerosol mass spectrometer. Fuel-based emission factors for several variables have been determined, showing that earthwork activities and compacting by use of a plate compactor revealed the highest median emission factors for PM10 (up to 54 g l-1). Construction activities were assigned to contribute about 17% (36 000 t a-1) to total PM10 emissions and 3% (13 500 t a-1) to total traffic-related NOx emissions in Germany. In particular, calculated PM10 emissions by earthworks are about 15 800 t a-1 corresponding to 44% of total PM10 emissions by construction activities in Germany. Mechanical processes such as asphalt sawing (PM1/PM10 = 18 ± 31%), soil compacting by a plate compactor (PM1/PM10 = 5 ± 6%) and earthworks (PM1/PM10 = 2 ± 5%) emit predominantly coarse mineral dust particles. Contrary to that, particle emissions by thermal construction processes (asphalt paving: PM1/PM10 = 62 ± 14%) and by the internal combustion engines of heavy machinery (e.g. road roller PM1/PM10 = 94 ± 9%) are mostly in the submicron range. These particles were mainly composed of organics containing non-polar saturated and unsaturated hydrocarbons (e.g. asphalting: O:C < 0.01, H:C = 2.01). Besides construction activities, mineral dust is also emitted over cleared land by wind-driven resuspension depending on wind speed. PM10 emissions by construction activities often result in local concentrations > 100 μg m-3 and can easily breach the European limit level of PM10. This study also shows that particulate mineral

  4. Intermediate Volatility Organic Compound Emissions from On-Road Diesel Vehicles: Chemical Composition, Emission Factors, and Estimated Secondary Organic Aerosol Production.

    PubMed

    Zhao, Yunliang; Nguyen, Ngoc T; Presto, Albert A; Hennigan, Christopher J; May, Andrew A; Robinson, Allen L

    2015-10-01

    Emissions of intermediate-volatility organic compounds (IVOCs) from five on-road diesel vehicles and one off-road diesel engine were characterized during dynamometer testing. The testing evaluated the effects of driving cycles, fuel composition and exhaust aftertreatment devices. On average, more than 90% of the IVOC emissions were not identified on a molecular basis, instead appearing as an unresolved complex mixture (UCM) during gas-chromatography mass-spectrometry analysis. Fuel-based emissions factors (EFs) of total IVOCs (speciated + unspeciated) depend strongly on aftertreatment technology and driving cycle. Total-IVOC emissions from vehicles equipped with catalyzed diesel particulate filters (DPF) are substantially lower (factor of 7 to 28, depending on driving cycle) than from vehicles without any exhaust aftertreatment. Total-IVOC emissions from creep and idle operations are substantially higher than emissions from high-speed operations. Although the magnitude of the total-IVOC emissions can vary widely, there is little variation in the IVOC composition across the set of tests. The new emissions data are combined with published yield data to investigate secondary organic aerosol (SOA) formation. SOA production from unspeciated IVOCs is estimated using surrogate compounds, which are assigned based on gas-chromatograph retention time and mass spectral signature of the IVOC UCM. IVOCs contribute the vast majority of the SOA formed from exhaust from on-road diesel vehicles. The estimated SOA production is greater than predictions by previous studies and substantially higher than primary organic aerosol. Catalyzed DPFs substantially reduce SOA formation potential of diesel exhaust, except at low speed operations.

  5. Intermediate Volatility Organic Compound Emissions from On-Road Diesel Vehicles: Chemical Composition, Emission Factors, and Estimated Secondary Organic Aerosol Production.

    PubMed

    Zhao, Yunliang; Nguyen, Ngoc T; Presto, Albert A; Hennigan, Christopher J; May, Andrew A; Robinson, Allen L

    2015-10-01

    Emissions of intermediate-volatility organic compounds (IVOCs) from five on-road diesel vehicles and one off-road diesel engine were characterized during dynamometer testing. The testing evaluated the effects of driving cycles, fuel composition and exhaust aftertreatment devices. On average, more than 90% of the IVOC emissions were not identified on a molecular basis, instead appearing as an unresolved complex mixture (UCM) during gas-chromatography mass-spectrometry analysis. Fuel-based emissions factors (EFs) of total IVOCs (speciated + unspeciated) depend strongly on aftertreatment technology and driving cycle. Total-IVOC emissions from vehicles equipped with catalyzed diesel particulate filters (DPF) are substantially lower (factor of 7 to 28, depending on driving cycle) than from vehicles without any exhaust aftertreatment. Total-IVOC emissions from creep and idle operations are substantially higher than emissions from high-speed operations. Although the magnitude of the total-IVOC emissions can vary widely, there is little variation in the IVOC composition across the set of tests. The new emissions data are combined with published yield data to investigate secondary organic aerosol (SOA) formation. SOA production from unspeciated IVOCs is estimated using surrogate compounds, which are assigned based on gas-chromatograph retention time and mass spectral signature of the IVOC UCM. IVOCs contribute the vast majority of the SOA formed from exhaust from on-road diesel vehicles. The estimated SOA production is greater than predictions by previous studies and substantially higher than primary organic aerosol. Catalyzed DPFs substantially reduce SOA formation potential of diesel exhaust, except at low speed operations. PMID:26322746

  6. Effects of emission reductions on organic aerosol in the southeastern United States

    NASA Astrophysics Data System (ADS)

    Blanchard, C. L.; Hidy, G. M.; Shaw, S.; Baumann, K.; Edgerton, E. S.

    2016-01-01

    Long-term (1999 to 2013) data from the Southeastern Aerosol Research and Characterization (SEARCH) network are used to show that anthropogenic emission reductions led to important decreases in fine-particle organic aerosol (OA) concentrations in the southeastern US On average, 45 % (range 25 to 63 %) of the 1999 to 2013 mean organic carbon (OC) concentrations are attributed to combustion processes, including fossil fuel use and biomass burning, through associations of measured OC with combustion products such as elemental carbon (EC), carbon monoxide (CO), and nitrogen oxides (NOx). The 2013 mean combustion-derived OC concentrations were 0.5 to 1.4 µg m-3 at the five sites operating in that year. Mean annual combustion-derived OC concentrations declined from 3.8 ± 0.2 µg m-3 (68 % of total OC) to 1.4 ± 0.1 µg m-3 (60 % of total OC) between 1999 and 2013 at the urban Atlanta, Georgia, site (JST) and from 2.9 ± 0.4 µg m-3 (39 % of total OC) to 0.7 ± 0.1 µg m-3 (30 % of total OC) between 2001 and 2013 at the urban Birmingham, Alabama (BHM), site. The urban OC declines coincide with reductions of motor vehicle emissions between 2006 and 2010, which may have decreased mean OC concentrations at the urban SEARCH sites by > 2 µg m-3. BHM additionally exhibits a decline in OC associated with SO2 from 0.4 ± 0.04 µg m-3 in 2001 to 0.2 ± 0.03 µg m-3 in 2013, interpreted as the result of reduced emissions from industrial sources within the city. Analyses using non-soil potassium as a biomass burning tracer indicate that biomass burning OC occurs throughout the year at all sites. All eight SEARCH sites show an association of OC with sulfate (SO4) ranging from 0.3 to 1.0 µg m-3 on average, representing ˜ 25 % of the 1999 to 2013 mean OC concentrations. Because the mass of OC identified with SO4 averages 20 to 30 % of the SO4 concentrations, the mean SO4-associated OC declined by ˜ 0.5 to 1 µg m-3 as SO4 concentrations decreased throughout the SEARCH region. The

  7. Effects of emission reductions on organic aerosol in the southeastern United States

    NASA Astrophysics Data System (ADS)

    Blanchard, C. L.; Hidy, G. M.; Shaw, S.; Baumann, K.; Edgerton, E. S.

    2015-06-01

    Long-term (1999 to 2013) data from the Southeastern Aerosol Research and Characterization (SEARCH) network are used to characterize the effects of anthropogenic emission reductions on fine particle organic aerosol (OA) concentrations in the southeastern US. On average, 45 % (range 25 to 63 %) of the 1999 to 2013 mean organic carbon (OC) concentrations are attributed to combustion processes, including fossil-fuel use and biomass burning, through associations of measured OC with combustion products such as elemental carbon (EC), carbon monoxide (CO), and nitrogen oxides (NOx). The 2013 mean combustion-derived OC concentrations were 0.5 to 1.4 μg m-3 at the five sites operating in that year. Mean annual combustion-derived OC concentrations declined from 3.8 ± 0.2 μg m-3 (68 % of total OC) to 1.4 ± 0.1 μg m-3 (60 % of total OC) between 1999 and 2013 at the urban Atlanta, Georgia, site (JST) and from 2.9 ± 0.4 μg m-3 (39 % of total OC) to 0.7 ± 0.1 μg m-3 (30 % of total OC) between 2001 and 2013 at the urban Birmingham, Alabama, site (BHM). The urban OC declines coincide with reductions of motor-vehicle emissions between 2006 and 2010, which may have decreased mean OC concentrations at the urban SEARCH sites by > 2 μg m-3. BHM additionally exhibits a decline in OC associated with SO2 from 0.4 ± 0.04 μg m-3 in 2001 to 0.2 ± 0.03 μg m-3 in 2013, interpreted as the result of reduced emissions from industrial sources within the city. Analyses using non-soil potassium as a biomass-burning tracer indicate that biomass-burning OC occurs throughout the year at all sites. All eight SEARCH sites show an association of OC with sulfate (SO4) ranging from 0.3 to 1.0 μg m-3 on average, representing ~ 25 % of the 1999 to 2013 mean OC concentrations. Because the mass of OC associated with SO4 averages 20 to 30 % of the SO4 concentrations, the mean SO4-associated OC declined by ~ 0.5 to 1 μg m-3 as SO4 decreased throughout the SEARCH region. The 2013 mean SO4

  8. The impact of biogenic carbon emissions on aerosol absorption inMexico City

    SciTech Connect

    Marley, N; Gaffney, J; Tackett, M J; Sturchio, N; Hearty, L; Martinez, N; Hardy, K D; Machany-Rivera, A; Guilderson, T P; MacMillan, A; Steelman, K

    2009-02-24

    In order to determine the wavelength dependence of atmospheric aerosol absorption in the Mexico City area, the absorption angstrom exponents (AAEs) were calculated from aerosol absorption measurements at seven wavelengths obtained with a seven-channel aethalometer during two field campaigns, the Mexico City Metropolitan Area study in April 2003 (MCMA 2003) and the Megacity Initiative: Local and Global Research Observations in March 2006 (MILAGRO). The AAEs varied from 0.76 to 1.56 in 2003 and from 0.54 to 1.52 in 2006. The AAE values determined in the afternoon were consistently higher than the corresponding morning values, suggesting the photochemical formation of absorbing secondary organic aerosols (SOA) in the afternoon. The AAE values were compared to stable and radiocarbon isotopic measurements of aerosol samples collected at the same time to determine the sources of the aerosol carbon. The fraction of modern carbon (fM) in the aerosol samples, as determined from {sup 14}C analysis, showed that 70% of the carbonaceous aerosols in Mexico City were from modern sources, indicating a significant impact from biomass burning during both field campaigns. The {sup 13}C/{sup 12}C ratios of the aerosol samples illustrate the significant impact of Yucatan forest fires (C-3 plants) in 2003 and local grass fires (C-4 plants) at site T1 in 2006. A direct comparison of the fM values, stable carbon isotope ratios, and calculated aerosol AAEs suggested that the wavelength dependence of the aerosol absorption was controlled by the biogenically derived aerosol components.

  9. Characterization of particulate matter emissions from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Dallmann, T. R.; Onasch, T. B.; Kirchstetter, T. W.; Worton, D. R.; Fortner, E. C.; Herndon, S. C.; Wood, E. C.; Franklin, J. P.; Worsnop, D. R.; Goldstein, A. H.; Harley, R. A.

    2014-02-01

    Particulate matter (PM) emissions were measured in July 2010 from on-road motor vehicles driving through a highway tunnel in the San Francisco Bay area. A soot particle aerosol mass spectrometer (SP-AMS) was used to measure the chemical composition of PM emitted by gasoline and diesel vehicles at high time resolution. Organic aerosol (OA) and black carbon (BC) concentrations were measured during various time periods that had different levels of diesel influence, as well as directly in the exhaust plumes of individual heavy-duty (HD) diesel trucks. BC emission factor distributions for HD trucks were more skewed than OA distributions, with the highest 10% of trucks accounting for 56 and 42% of total measured BC and OA emissions, respectively. A comparison of measured OA and BC mass spectra across various sampling periods revealed a high degree of similarity in BC and OA emitted by gasoline and diesel engines. Cycloalkanes predominate in exhaust OA emissions relative to saturated alkanes (i.e., normal and iso-paraffins), suggesting that lubricating oil rather than fuel is the dominant source of primary organic aerosol (POA) emissions in diesel vehicle exhaust. This finding is supported by the detection of trace elements such as zinc and phosphorus in the exhaust plumes of individual trucks. Trace elements were emitted relative to total OA at levels that are consistent with typical weight fractions of commonly used additives present in lubricating oil. The presence of trace elements in vehicle exhaust raises the concern that ash deposits may accumulate over time in diesel particle filter systems, and may eventually lead to performance problems that require servicing.

  10. Spatial variations in immediate greenhouse gases and aerosol emissions and resulting radiative forcing from wildfires in interior Alaska

    NASA Astrophysics Data System (ADS)

    Huang, Shengli; Liu, Heping; Dahal, Devendra; Jin, Suming; Li, Shuang; Liu, Shuguang

    2016-02-01

    Boreal fires can cool the climate; however, this conclusion came from individual fires and may not represent the whole story. We hypothesize that the climatic impact of boreal fires depends on local landscape heterogeneity such as burn severity, prefire vegetation type, and soil properties. To test this hypothesis, spatially explicit emission of greenhouse gases (GHGs) and aerosols and their resulting radiative forcing are required as an important and necessary component towards a full assessment. In this study, we integrated remote sensing (Landsat and MODIS) and models (carbon consumption model, emission factors model, and radiative forcing model) to calculate the carbon consumption, GHGs and aerosol emissions, and their radiative forcing of 2001-2010 fires at 30 m resolution in the Yukon River Basin of Alaska. Total carbon consumption showed significant spatial variation, with a mean of 2,615 g C m-2 and a standard deviation of 2,589 g C m-2. The carbon consumption led to different amounts of GHGs and aerosol emissions, ranging from 593.26 Tg (CO2) to 0.16 Tg (N2O). When converted to equivalent CO2 based on global warming potential metric, the maximum 20 years equivalent CO2 was black carbon (713.77 Tg), and the lowest 20 years equivalent CO2 was organic carbon (-583.13 Tg). The resulting radiative forcing also showed significant spatial variation: CO2, CH4, and N2O can cause a 20-year mean radiative forcing of 7.41 W m-2 with a standard deviation of 2.87 W m-2. This emission forcing heterogeneity indicates that different boreal fires have different climatic impacts. When considering the spatial variation of other forcings, such as surface shortwave forcing, we may conclude that some boreal fires, especially boreal deciduous fires, can warm the climate.

  11. Characterization of particulate matter emissions from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Dallmann, T. R.; Onasch, T. B.; Kirchstetter, T. W.; Worton, D. R.; Fortner, E. C.; Herndon, S. C.; Wood, E. C.; Franklin, J. P.; Worsnop, D. R.; Goldstein, A. H.; Harley, R. A.

    2014-07-01

    Particulate matter (PM) emissions were measured in July 2010 from on-road motor vehicles driving through a highway tunnel in the San Francisco Bay area. A soot particle aerosol mass spectrometer (SP-AMS) was used to measure the chemical composition of PM emitted by gasoline and diesel vehicles at high time resolution. Organic aerosol (OA) and black carbon (BC) concentrations were measured during various time periods that had different levels of diesel influence, as well as directly in the exhaust plumes of individual heavy-duty (HD) diesel trucks. BC emission factor distributions for HD trucks were more skewed than OA distributions (N = 293), with the highest 10% of trucks accounting for 56 and 42% of total measured BC and OA emissions, respectively. OA mass spectra measured for HD truck exhaust plumes show cycloalkanes are predominate in exhaust OA emissions relative to saturated alkanes (i.e., normal and iso-paraffins), suggesting that lubricating oil rather than fuel is the dominant source of primary organic aerosol (POA) emissions in diesel vehicle exhaust. This finding is supported by the detection of trace elements such as zinc and phosphorus in the exhaust plumes of individual trucks. Trace elements were emitted relative to total OA at levels that are consistent with typical weight fractions of commonly used additives present in lubricating oil. A comparison of measured OA and BC mass spectra across various sampling periods revealed a high degree of similarity in OA and BC emitted by gasoline and diesel engines. This finding indicates a large fraction of OA in gasoline exhaust is lubricant-derived as well. The similarity in OA and BC mass spectra for gasoline and diesel engine exhaust is likely to confound ambient source apportionment efforts to determine contributions to air pollution from these two important sources.

  12. Optical extinction due to aerosols in the upper haze of Venus: Four years of SOIR/VEX observations from 2006 to 2010

    NASA Astrophysics Data System (ADS)

    Wilquet, Valérie; Drummond, Rachel; Mahieux, Arnaud; Robert, Séverine; Vandaele, Ann Carine; Bertaux, Jean-Loup

    2012-02-01

    The variability of the aerosol loading in the mesosphere of Venus is investigated from a large data set obtained with SOIR, a channel of the SPICAV instrument suite onboard Venus Express. Vertical profiles of the extinction due to light absorption by aerosols are retrieved from a spectral window around 3.0 μm recorded in many solar occultations (˜200) from September 2006 to September 2010. For this period, the continuum of light absorption is analyzed in terms of spatial and temporal variations of the upper haze of Venus. It is shown that there is a high short-term (a few Earth days) and a long-term (˜80 Earth days) variability of the extinction profiles within the data set. Latitudinal dependency of the aerosol loading is presented for the entire period considered and for shorter periods of time as well.

  13. Plutonium-aerosol emission rates and human pulmonary deposition calculations for Nuclear Site 201, Nevada Test Site

    SciTech Connect

    Shinn, J.H.; Homan, D.N.

    1982-06-21

    This study determined the plutonium-aerosol fluxes from the soil to quantify (1) the extent of potential human exposure by deep-lung retention of alpha-emitting particles; (2) the source term should there be any significant, long-term, transport of plutonium aerosols; and (3) the resuspension factor and rate so that, for the first time at any nuclear site, one may calculate how long it will take for wind erosion to carry away a significant amount of the contaminated soil. High-volume air samplers and cascade impactors were used to characterize the plutonium aerosols. Meteorological flux-profile methods were used to calculate dust and plutonium aerosol emission rates. A floorless wind tunnel (10-m long) was used to examine resuspension under steady-state, high wind speed. The resuspension factor was two orders of magnitude lower than the other comparable sites at NTS and elsewhere, and the average resuspension rate of 5.3 x 10/sup -8//d was also very low, so that the half-time for resuspension by wind erosion was about 36,000 y.

  14. A new description of Titan's aerosol optical properties from the analysis of VIMS Emission Phase Function observations

    NASA Astrophysics Data System (ADS)

    Rodriguez, Sebastien; Maltagliati, Luca; Sotin, Christophe; Rannou, Pascal; Bézard, Bruno; Cornet, Thomas

    2016-10-01

    The Huygens probe gave unprecedented information on the properties of Titan's aerosols (vertical distribution, opacity as a function of wavelength, phase function, single scattering albedo) by in-situ measurements (Tomasko et al. 2008). Being the only existing in-situ atmospheric probing for Titan, this aerosol model currently is the reference for many Titan studies (e.g. by being applied as physical input in radiative transfer models of the atmosphere). Recently a reanalysis of the DISR dataset, corroborated by data from the Downward-Looking Visible Spectrometer (DLVS), was carried out by the same group (Doose et al. 2016), leading to significant changes to the indications given by Tomasko et al. (2008).Here we present the analysis of the Emission Phase Function observation (EPF) performed by VIMS during the Cassini flyby T88 (November 2012). An EPF observes the same spot on the surface (and thus the same atmosphere) with the same emergence angle but with different incidence angles. In this way, our EPF allows, for the first time, to have direct information on the phase function of Titan's aerosols, as well as on other important physical parameters of the aerosols as the behavior of their extinction as a function of wavelength and the single scattering albedo (also as a function of wavelength) for the whole VIMS range (0.8-5.2 μm). The T88 EPF is composed of 25 VIMS datacubes spanning a scattering angle range approximately from 0°to 70°.We used the radiative transfer model described in Hirtzig et al. (2013) as baseline, updated with improved methane (+ related isotopes) spectroscopy. By changing the aerosol description in the model, we found the combination of aerosol optical parameters that fits best a constant aerosol column density over the whole set of the VIMS datacubes. We confirmed that the new results from Doose et al. (2016) do improve the fit for what concerns the vertical profile and the extinction as a function of wavelength. However, a different

  15. A new description of Titan's aerosol optical properties from the analysis of VIMS Emission Phase Function observations

    NASA Astrophysics Data System (ADS)

    Maltagliati, Luca; Rodriguez, Sebastien; Sotin, Christophe; Rannou, Pascal; Bezard, Bruno; Cornet, Thomas

    2016-06-01

    The Huygens probe gave unprecedented information on the properties of Titan's aerosols (vertical distribution, opacity as a function of wavelength, phase function, single scattering albedo) by in-situ measurements (Tomasko et al. 2008). Being the only existing in-situ atmospheric probing for Titan, this aerosol model currently is the reference for many Titan studies (e.g. by being applied as physical input in radiative transfer models of the atmosphere). Recently a reanalysis of the DISR dataset, corroborated by data from the Downward-Looking Visible Spectrometer (DLVS), was carried out by the same group (Doose et al. 2016), leading to significant changes to the indications given by Tomasko et al. (2008). Here we present the analysis of the Emission Phase Function observation (EPF) performed by VIMS during the Cassini flyby T88 (November 2012). An EPF observes the same spot on the surface (and thus the same atmosphere) with the same emergence angle but with different incidence angles. In this way, our EPF allows, for the first time, to have direct information on the phase function of Titan's aerosols, as well as on other important physical parameters of the aerosols as the behavior of their extinction as a function of wavelength and the single scattering albedo (also as a function of wavelength) for the whole VIMS range (0.8-5.2 µm). The T88 EPF is composed of 25 VIMS datacubes spanning a scattering angle range approximately from 0°to 70°. We used the radiative transfer model described in Hirtzig et al. (2013) as baseline, updated with improved methane (+ related isotopes) spectroscopy. By changing the aerosol description in the model, we found the combination of aerosol optical parameters that fits best a constant aerosol column density over the whole set of the VIMS datacubes. We confirmed that the new results from Doose et al. (2016) do improve the fit for what concerns the vertical profile and the extinction as a function of wavelength. However, a different

  16. The aerosol radiative effects of uncontrolled combustion of domestic waste

    NASA Astrophysics Data System (ADS)

    Kodros, John K.; Cucinotta, Rachel; Ridley, David A.; Wiedinmyer, Christine; Pierce, Jeffrey R.

    2016-06-01

    Open, uncontrolled combustion of domestic waste is a potentially significant source of aerosol; however, this aerosol source is not generally included in many global emissions inventories. To provide a first estimate of the aerosol radiative impacts from domestic-waste combustion, we incorporate the Wiedinmyer et al. (2014) emissions inventory into GEOS-Chem-TOMAS, a global chemical-transport model with online aerosol microphysics. We find domestic-waste combustion increases global-mean black carbon and organic aerosol concentrations by 8 and 6 %, respectively, and by greater than 40 % in some regions. Due to uncertainties regarding aerosol optical properties, we estimate the globally averaged aerosol direct radiative effect to range from -5 to -20 mW m-2; however, this range increases from -40 to +4 mW m-2 when we consider uncertainties in emission mass and size distribution. In some regions with significant waste combustion, such as India and China, the aerosol direct radiative effect may exceed -0.4 W m-2. Similarly, we estimate a cloud-albedo aerosol indirect effect of -13 mW m-2, with a range of -4 to -49 mW m-2 due to emission uncertainties. In the regions with significant waste combustion, the cloud-albedo aerosol indirect effect may exceed -0.4 W m-2.

  17. Towards the regulation of aerosol emissions by their potential health impact: Assessing adverse effects of aerosols from wood combustion and ship diesel engine emissions by combining comprehensive data on the chemical composition and their toxicological effects on human lung cells

    NASA Astrophysics Data System (ADS)

    Zimmermann, R.; Streibel, T.; Dittmar, G.; Kanashova, T.; Buters, J.; Öder, S.; Paur, H. R.; Dilger, M.; Weiss, C.; Harndorf, H.; Stengel, B.; Hirvonen, M. R.; Jokiniemi, J.; Hiller, K.; Sapcariu, S.; Sippula, O.; Orasche, J.; Müller, L.; Rheda, A.; Passig, J.; Radischat, C.; Czech, H.; Tiita, P.; Jalava, P.; Kasurinen, S.; Schwemer, T.; Yli-Prilä, P.; Tissari, J.; Lamberg, H.; Schnelle-Kreis, J.

    2014-12-01

    Ship engine emissions are important regarding lung and cardiovascular diseases in coastal regions worldwide. Bio mass burning is made responsible for adverse health effects in many cities and rural regions. The Virtual Helmholtz Institute-HICE (www.hice-vi.eu) addresses chemical & physical properties and health effects of anthropogenic combustion emissions. Typical lung cell responses to combustion aerosols include inflammation and apoptosis, but a molecular link with the specific chemical composition in particular of ship emissions has not been established. Through an air-liquid interface exposure system (ALI), we exposed human lung cells at-site to exhaust fumes from a ship engine running on common heavy fuel oil (HFO) and cleaner-burning diesel fuel (DF) as well as to emissions of wood combustion compliances. A special field deployable ALI-exposition system and a mobile S2-biological laboratory were developed for this study. Human alveolar basal epithelial cells (A549 etc.) are ALI-exposed to fresh, diluted (1:40-1:100) combustion aerosols and subsequently were toxicologically and molecular-biologically characterized. Advanced chemical analyses of the exhaust aerosols were combined with transcriptional, proteomic and metabolomic profiling to characterise the cellular responses. The HFO ship emissions contained high concentrations of toxic compounds (transition metals, organic toxicants) and particle masses. The cellular responses included inflammation and oxidative stress. Surprisingly, the DF ship emissions, which predominantly contain rather "pure" carbonaceous soot and much less known toxicants, induced significantly broader biological effects, affecting essential cellular pathways (e.g., mitochondrial function and intracellular transport). Therefore the use of distillate fuels for shipping (this is the current emission reduction strategy of the IMO) appears insufficient for diminishing health effects. The study suggests rather reducing the particle emissions

  18. Influences of upwind emission sources and atmospheric processing on aerosol chemistry and properties at a rural location in the Northeastern U.S.

    DOE PAGES

    Zhou, Shan; Collier, Sonya; Xu, Jianzhong; Mei, Fan; Wang, Jian; Lee, Yin -Nan; Sedlacek, III, Arthur J.; Springston, Stephen R.; Sun, Yele; Zhang, Qi

    2016-05-19

    Continuous real-time measurements of atmospheric aerosol with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer coupled with a fast temperature-stepping thermodenuder were carried out in summer 2011 at Brookhaven National Laboratory (BNL, 40.871°N, 72.89°W) during the Department of Energy Aerosol Life Cycle Intensive Operational Period campaign. BNL was frequently downwind of emissions from the New York metropolitan area and was exposed to various combinations of anthropogenic, biogenic, and marine emissions based on air mass history. The average concentration of submicrometer aerosol (PM1) during this study was 12.6 µg m–3 with 64% of the mass being organic. Organic aerosol (OA) at BNLmore » was found to be overwhelmingly secondary, consisting of (1) a fresher, semivolatile oxygenated organic aerosol (SV-OOA; oxygen-to-carbon ratio (O/C) = 0.54; 63% of OA mass) that was strongly influenced by transported urban plumes; (2) a regional, more aged, low-volatility OOA (LV-OOA; O/C = 0.97; 29% of OA mass) influenced by aqueous-phase processing; and (3) a nitrogen-enriched OA (NOA; nitrogen-to-carbon ratio (N/C) = 0.185; 8% of OA mass) likely composed of amine salts formed from acid-base reactions in industrial emissions. Urban emissions from the New York metropolitan areas to the W and SW in particular led to elevated PM1 mass concentration and altered aerosol composition at BNL. Transported urban plumes and local biogenic emissions likely interacted to enhance secondary organic aerosol production, primarily represented by SV-OOA. Lastly, these results suggest an important role that urban anthropogenic emissions play in affecting ambient PM concentration, composition, and physical-chemical properties at rural areas in the Northeast U.S.« less

  19. Errors in the determination of the solar constant by the Langley method due to the presence of volcanic aerosol

    SciTech Connect

    Schotland, R.M.; Hartman, J.E.

    1989-02-01

    The accuracy in the determination of the solar constant by means of the Langley method is strongly influenced by the spatial inhomogeneities of the atmospheric aerosol. Volcanos frequently inject aerosol into the upper troposphere and lower stratosphere. This paper evaluates the solar constant error that would occur if observations had been taken throughout the plume of El Chichon observed by NASA aircraft in the fall of 1982 and the spring of 1983. A lidar method is suggested to minimize this error. 15 refs.

  20. Energy conservation and CO2 emission reductions due to recycling in Brazil.

    PubMed

    Pimenteira, C A P; Pereira, A S; Oliveira, L B; Rosa, L P; Reis, M M; Henriques, R M

    2004-01-01

    The present paper aims to make the energy saving potential provided by waste recycling in Brazil evident by pointing out more specifically the benefits regarding climate change mitigation. In this case, based on the energy saved due to the recycling process of an exogenous amount of waste, we have built two scenarios in order to show the potential for indirectly avoiding CO2 emissions in the country as a result of the recycling process. According to the scenario, 1 Mt and 3.5 Mt of CO2, respectively, would be avoided per year due to solid waste recycling. The international context for greenhouse gas emissions reduction, such as the United Nations Framework Convention on Climate Change and its Kyoto Protocol has been taken into account.

  1. Effects of alkylate fuel on exhaust emissions and secondary aerosol formation of a 2-stroke and a 4-stroke scooter

    NASA Astrophysics Data System (ADS)

    Zardini, Alessandro A.; Platt, Stephen M.; Clairotte, Michael; El Haddad, Imad; Temime-Roussel, Brice; Marchand, Nicolas; Ježek, Irena; Drinovec, Luka; Močnik, Griša; Slowik, Jay G.; Manfredi, Urbano; Prévôt, André S. H.; Baltensperger, Urs; Astorga, Covadonga

    2014-09-01

    Regulated and unregulated emissions from a 2-stroke and a 4-stroke scooter were characterized during a legislative driving cycle in a certified laboratory. Scooter exhaust was analyzed at the tailpipe, in a dilution tunnel, and partly collected in a mobile smog chamber for photochemical ageing. We present evidence that the photochemically aged exhaust from a 2-stroke and a 4-stroke scooter produces considerable amounts of secondary organic aerosol: from 1.5 to 22.0 mg/km, and from 5.5 to 6.6 mg/km, respectively. Tests were repeated after replacing the standard petrol and synthetic lube oil with an alkylate fuel (with low content of aromatic compounds) and ultra-clean lube oil (low ash forming potential). We observed emission reduction (with some exceptions) for several gaseous and particulate phase species, in particular for carbon monoxide (from 8% up to 38% and from 31% to 50%, for the 2-stroke and the 4-stroke scooters, respectively), particulate mass (from 32% up to 75% for the 2-stroke scooter), aromatic compounds (89% and 97% for the 2-stroke and the 4-stroke scooter, respectively), and secondary organic aerosol (from 87% to 100% and 99% for the 2-stroke and the 4-stroke scooters, respectively). We attribute the organic aerosol reduction to the low content of aromatics in the alkylate fuel.

  2. Further evidence for charge transfer complexes in brown carbon aerosols from excitation-emission matrix fluorescence spectroscopy.

    PubMed

    Phillips, Sabrina M; Smith, Geoffrey D

    2015-05-14

    The light-absorbing fraction of organic molecules in ambient aerosols, known as "brown carbon," is an important yet poorly characterized component. Despite the fact that brown carbon could alter the radiative forcing of aerosols significantly, identification of specific chromophores has remained challenging. We recently demonstrated that charge transfer (CT) complexes formed in organic molecules could be responsible for a large fraction of absorption observed in water-extracted ambient particulate matter.1 In the present study, we use excitation-emission matrix fluorescence spectroscopy to further corroborate the importance of CT complexes in defining aerosol optical properties. Monotonically increasing and decreasing quantum yields, decreasing Stokes shifts, and red-shifting emission maxima are observed from ambient particulate matter collected in Athens, Georgia, strongly suggesting that a superposition of independent chromophores is not sufficient to explain brown carbon absorption and fluorescence. Instead, we show that a model in which such chromophores are energetically coupled to a dense manifold of CT complexes is consistent with all of the observations. Further, we suggest that a significant fraction of the observed fluorescence originates from CT complexes and that their contribution to brown carbon absorption is likely greater than we reported previously.

  3. A global emission inventory of carbonaceous aerosol from historic records of fossil fuel and biofuel consumption for the period 1860-1997

    NASA Astrophysics Data System (ADS)

    Junker, C.; Liousse, C.

    2006-06-01

    Country by country emission inventories for carbonaceous aerosol for the period 1860 to 1997 have been constructed on the basis of historic fuel production, use and trade data sets published by the United Nation's Statistical Division UNSTAT (1997), Etemad et al. (1991) and Mitchell (1992, 1993, 1995). The inventories use emission factors variable over time, which have been determined according to changes in technological development. The results indicate that the industrialisation period since 1860 was accompanied by a steady increase in black carbon (BC) and organic carbon (OC) emissions up to 1910. The calculations show a moderate decrease of carbonaceous aerosol emissions between 1920 and 1930, followed by an increase up to 1990, the year when emissions began to decrease again. Changes in BC and OC emissions prior to the year 1950 are essentially driven by the USA, Germany and the UK. The USSR, China and India become substantial contributors to carbonaceous aerosol emissions after 1950. Emission maps have been generated with a 1°×1° resolution based on the relative population density in each country. They will provide a helpful tool for assessing the effect of carbonaceous aerosol emissions on observed climate changes of the past.

  4. A global emission inventory of carbonaceous aerosol from historic records of fossil fuel and biofuel consumption for the period 1860-1997

    NASA Astrophysics Data System (ADS)

    Junker, C.; Liousse, C.

    2008-03-01

    Country by country emission inventories for carbonaceous aerosol for the period 1860 to 1997 have been constructed on the basis of historic fuel production, use and trade data sets published by the United Nation's Statistical Division UNSTAT (1997), Etemad et al. (1991) and Mitchell (1992, 1993, 1995). The inventories use emission factors variable over time, which have been determined according to changes in technological development. The results indicate that the industrialisation period since 1860 was accompanied by a steady increase in black carbon (BC) and primary organic carbon (POC) emissions up to 1910. The calculations show a moderate decrease of carbonaceous aerosol emissions between 1920 and 1930, followed by an increase up to 1990, the year when emissions began to decrease again. Changes in BC and POC emissions prior to the year 1950 are essentially driven by the USA, Germany and the UK. The USSR, China and India become substantial contributors to carbonaceous aerosol emissions after 1950. Emission maps have been generated with a 1°×1° resolution based on the relative population density in each country. They will provide a helpful tool for assessing the effect of carbonaceous aerosol emissions on observed climate changes of the past.

  5. Factors Affecting Aerosol Radiative Forcing

    NASA Astrophysics Data System (ADS)

    Wang, Jingxu; Lin, Jintai; Ni, Ruijing

    2016-04-01

    Rapid industrial and economic growth has meant a large amount of aerosols in the atmosphere with strong radiative forcing (RF) upon the climate system. Over parts of the globe, the negative forcing of aerosols has overcompensated for the positive forcing of greenhouse gases. Aerosol RF is determined by emissions and various chemical-transport-radiative processes in the atmosphere, a multi-factor problem whose individual contributors have not been well quantified. In this study, we analyze the major factors affecting RF of secondary inorganic aerosols (SIOAs, including sulfate, nitrate and ammonium), primary organic aerosol (POA), and black carbon (BC). We analyze the RF of aerosols produced by 11 major regions across the globe, including but not limited to East Asia, Southeast Asia, South Asia, North America, and Western Europe. Factors analyzed include population size, per capita gross domestic production (GDP), emission intensity (i.e., emissions per unit GDP), chemical efficiency (i.e., mass per unit emissions) and radiative efficiency (i.e., RF per unit mass). We find that among the 11 regions, East Asia produces the largest emissions and aerosol RF, due to relatively high emission intensity and a tremendous population size. South Asia produce the second largest RF of SIOA and BC and the highest RF of POA, in part due to its highest chemical efficiency among all regions. Although Southeast Asia also has large emissions, its aerosol RF is alleviated by its lowest chemical efficiency. The chemical efficiency and radiative efficiency of BC produced by the Middle East-North Africa are the highest across the regions, whereas its RF is lowered by a small per capita GDP. Both North America and Western Europe have low emission intensity, compensating for the effects on RF of large population sizes and per capita GDP. There has been a momentum to transfer industries to Southeast Asia and South Asia, and such transition is expected to continue in the coming years. The

  6. Secondary Organic Aerosol Formation from Ultra-Low Super Ultra-Low and Partial Zero Emission Vehicle Exhaust

    NASA Astrophysics Data System (ADS)

    Robinson, A. L.; Zhao, Y.; Lambe, A. T.; Saleh, R.; Saliba, G.; Maldonado, H.; Sardar, S.; Frodin, B.; Drozd, G.; Goldstein, A. H.; Kroll, J. H.; Cross, E. S.; Franklin, J. P.

    2015-12-01

    Secondary organic aerosol (SOA) is the dominant component of organic aerosol in many urban areas during the summertime. On-road light duty gasoline vehicles (LDGV) have been indicated as a major source of SOA precursors. Emissions of the SOA-forming non methane hydrocarbons (NMHCs) from on-road LDGV have been substantially reduced along with more stringent emission standards, leading to reduced potential for SOA formation. However, recent smog chamber measurements reported that the reductions in SOA formation were less than those in NMHC emissions, indicating that newer, low emitting vehicles may emit a more efficient of SOA precursors. Vehicles that meet the ultra-low, super ultra-low and partial zero emission standards have substantially lower NMHC emissions than vehicles tested in past studies. To better understand the effects of more stringent emission controls on the SOA formation, we conducted experiments 13 vehicles recruited from the Southern California vehicle fleet (five ultra-low emission vehicles, four super ultra-low emission vehicles and four partial zero emission vehicles) at the California Air Resources Board Haagen-Smit Laboratory. In addition, we investigated several vehicles compliant with older emission standards have also been investigated here to bridge the previous studies. Dilute vehicle exhaust were photo-oxidized in a smog chamber with the VOC-to-NOx ratio adjusted to simulate the photochemistry in urban air. Application of literature data from single-ring aromatic compounds cannot explain the observed SOA during chamber experiments. The average ratios between estimated and measured SOA for vehicles under different emission standards ranged from 0.04 to 0.71. Comprehensive measurements of SOA precursor emissions were made, including NMHCs, intermediate volatility and semi-volatile organic compounds. This study presents results of SOA production from these low emitting vehicles and compares the results with recently published data. This

  7. Quantifying Uncertainties in N2O Emission Due to N Fertilizer Application in Cultivated Areas

    PubMed Central

    Philibert, Aurore; Loyce, Chantal; Makowski, David

    2012-01-01

    Nitrous oxide (N2O) is a greenhouse gas with a global warming potential approximately 298 times greater than that of CO2. In 2006, the Intergovernmental Panel on Climate Change (IPCC) estimated N2O emission due to synthetic and organic nitrogen (N) fertilization at 1% of applied N. We investigated the uncertainty on this estimated value, by fitting 13 different models to a published dataset including 985 N2O measurements. These models were characterized by (i) the presence or absence of the explanatory variable “applied N”, (ii) the function relating N2O emission to applied N (exponential or linear function), (iii) fixed or random background (i.e. in the absence of N application) N2O emission and (iv) fixed or random applied N effect. We calculated ranges of uncertainty on N2O emissions from a subset of these models, and compared them with the uncertainty ranges currently used in the IPCC-Tier 1 method. The exponential models outperformed the linear models, and models including one or two random effects outperformed those including fixed effects only. The use of an exponential function rather than a linear function has an important practical consequence: the emission factor is not constant and increases as a function of applied N. Emission factors estimated using the exponential function were lower than 1% when the amount of N applied was below 160 kg N ha−1. Our uncertainty analysis shows that the uncertainty range currently used by the IPCC-Tier 1 method could be reduced. PMID:23226430

  8. Long-term trends in California mobile source emissions and ambient concentrations of black carbon and organic aerosol.

    PubMed

    McDonald, Brian C; Goldstein, Allen H; Harley, Robert A

    2015-04-21

    A fuel-based approach is used to assess long-term trends (1970-2010) in mobile source emissions of black carbon (BC) and organic aerosol (OA, including both primary emissions and secondary formation). The main focus of this analysis is the Los Angeles Basin, where a long record of measurements is available to infer trends in ambient concentrations of BC and organic carbon (OC), with OC used here as a proxy for OA. Mobile source emissions and ambient concentrations have decreased similarly, reflecting the importance of on- and off-road engines as sources of BC and OA in urban areas. In 1970, the on-road sector accounted for ∼90% of total mobile source emissions of BC and OA (primary + secondary). Over time, as on-road engine emissions have been controlled, the relative importance of off-road sources has grown. By 2010, off-road engines were estimated to account for 37 ± 20% and 45 ± 16% of total mobile source contributions to BC and OA, respectively, in the Los Angeles area. This study highlights both the success of efforts to control on-road emission sources, and the importance of considering off-road engine and other VOC source contributions when assessing long-term emission and ambient air quality trends. PMID:25793355

  9. Sesquiterpene emissions from loblolly pine and their potential contribution to biogenic aerosol formation in the Southeastern US

    NASA Astrophysics Data System (ADS)

    Helmig, Detlev; Ortega, John; Guenther, Alex; Herrick, Jeffrey D.; Geron, Chris

    Sesquiterpene (SQT) and montoterpene (MT) emissions from loblolly pine ( Pinus taeda L.) were studied by branch enclosure experiments at Duke Forest in Chapel Hill, NC. Four SQT ( β-caryophyllene, α-bergamotene, α-humulene, β-farnesene), five MT ( α-pinene, β-pinene, β-myrcene, β-phellandrene, limonene), and the oxygenated MT linalool were identified. Emission rates of both compound classes increased exponentially with temperature, albeit SQT temperature coefficients (0.12-0.18 K -1) were higher than for MT (0.068-0.15 K -1), resulting in an increased contribution of SQT to the overall biogenic volatile organic compound (BVOC) flux during warm temperature conditions. The highly correlated variables of light and temperature conditions preclude a rigorous characterization of their individual roles in driving these emissions. However, the observations indicate that there may be both temperature-only and temperature/light-dependent components contributing to SQT emission variations. When normalized to 30 °C using the best-fit temperature algorithm, total SQT basal emission rate was 450 ng g -1 h -1. The potential contribution of SQT from all pine trees (based on the loblolly pine emission factors) to secondary, biogenic organic aerosol in 12 southeastern US states was estimated to be 7×10 6 kg for the month of September which constitutes an appreciable portion of the overall PM 2.5 emission budget.

  10. Long-term trends in California mobile source emissions and ambient concentrations of black carbon and organic aerosol.

    PubMed

    McDonald, Brian C; Goldstein, Allen H; Harley, Robert A

    2015-04-21

    A fuel-based approach is used to assess long-term trends (1970-2010) in mobile source emissions of black carbon (BC) and organic aerosol (OA, including both primary emissions and secondary formation). The main focus of this analysis is the Los Angeles Basin, where a long record of measurements is available to infer trends in ambient concentrations of BC and organic carbon (OC), with OC used here as a proxy for OA. Mobile source emissions and ambient concentrations have decreased similarly, reflecting the importance of on- and off-road engines as sources of BC and OA in urban areas. In 1970, the on-road sector accounted for ∼90% of total mobile source emissions of BC and OA (primary + secondary). Over time, as on-road engine emissions have been controlled, the relative importance of off-road sources has grown. By 2010, off-road engines were estimated to account for 37 ± 20% and 45 ± 16% of total mobile source contributions to BC and OA, respectively, in the Los Angeles area. This study highlights both the success of efforts to control on-road emission sources, and the importance of considering off-road engine and other VOC source contributions when assessing long-term emission and ambient air quality trends.

  11. The ISA-MIP Historical Eruption SO2 Emissions Assessment (HErSEA): an intercomparison for interactive stratospheric aerosol models

    NASA Astrophysics Data System (ADS)

    Mann, Graham; Dhomse, Sandip; Sheng, Jianxiong; Mills, Mike

    2016-04-01

    Major historical volcanic eruptions have injected huge amounts of sulphur dioxide into the stratosphere with observations showing an enhancement of the stratospheric aerosol layer for several years (ASAP, 2006). Such long-lasting increases in stratospheric aerosol loading cool the Earth's surface by scattering incoming solar radiation and warm the stratosphere via absorption of near infra-red solar and long-wave terrestrial radiation with complex effects on climate (e.g. Robock, 2000). Two recent modelling studies of Mount Pinatubo (Dhomse et al., 2014; Sheng et al. 2015) have highlighted that observations suggest the sulphur loading of the volcanically enhanced stratospheric aerosol may have been considerably lower than suggested by measurements of the injected SO2. This poster describes a new model intercomparison activity "ISA-MIP" for interactive stratospheric aerosol models within the framework of the SPARC initiative on Stratospheric Sulphur and its Role in Climate (SSiRC). The new "Historical Eruption SO2 emissions Assessment" (HErSEA) will intercompare model simulations of the three largest volcanic perturbations to the stratosphere in the last 50 years, 1963 Mt Agung, 1982 El Chichon and 1991 Mt Pinatubo. The aim is to assess how effectively the emitted SO2 translates into perturbations to stratospheric aerosol properties and simulated radiative forcings in different composition-climate models with interactive stratospheric aerosol (ISA). Each modelling group will run a mini-ensemble of transient AMIP-type runs for the 3 eruptions with a control no-eruption run followed by upper and lower bound injection amount estimates and 3 different injection height settings for two shallow (e.g. 19-21km amd 23-25km) and one deep (e.g. 19-25km) injection. First order analysis will intercompare stratospheric aerosol metrics such as 2D-monthly AOD(550nm, 1020nm) and timeseries of tropical and NH/SH mid-visible extinction at three different models levels (15, 20 and 25km

  12. Variability of the stratospheric aerosol layer due to volcanic eruptions in the last decade: Odin-OSIRIS measurements

    NASA Astrophysics Data System (ADS)

    Bourassa, A. E.; Degenstein, D. A.

    2011-12-01

    Recently reported measurements show that an increasing trend in the stratospheric aerosol layer during the last decade can be attributed in a large part to a series of relatively minor lower stratospheric volcanic eruptions. The limb scatter measurements of the stratospheric aerosol extinction coefficient made by the OSIRIS instrument on the Odin satellite show evidence of several eruptions, both tropical and at high latitude, which have a significant impact on the stratospheric aerosol layer. The extent and duration of the stratospheric impact of these eruptions is explored in this work. The measurements, which have daily, nearly global coverage, show that these minor eruptions, particularly those in the tropics, have increased the magnitude of stratospheric aerosol optical depth by more than 5% per year at mid-latitudes. Additionally, the measurements show that a measureable increase in aerosol optical depth is observed in the tropics in the months following the eruption of two high latitude eruptions, namely Kasatochi Volcano in 2008 and Sarychev Peak in 2009.

  13. The economics and ethics of aerosol geoengineering strategies

    NASA Astrophysics Data System (ADS)

    Goes, Marlos; Keller, Klaus; Tuana, Nancy

    2010-05-01

    Anthropogenic greenhouse gas emissions are changing the Earth's climate and impose substantial risks for current and future generations. What are scientifically sound, economically viable, and ethically defendable strategies to manage these climate risks? Ratified international agreements call for a reduction of greenhouse gas emissions to avoid dangerous anthropogenic interference with the climate system. Recent proposals, however, call for a different approach: geoengineering climate by injecting aerosol precursors into the stratosphere. Published economic studies typically neglect the risks of aerosol geoengineering due to (i) a potential failure to sustain the aerosol forcing and (ii) due to potential negative impacts associated with aerosol forcings. Here we use a simple integrated assessment model of climate change to analyze potential economic impacts of aerosol geoengineering strategies over a wide range of uncertain parameters such as climate sensitivity, the economic damages due to climate change, and the economic damages due to aerosol geoengineering forcings. The simplicity of the model provides the advantages of parsimony and transparency, but it also imposes considerable caveats. For example, the analysis is based on a globally aggregated model and is hence silent on intragenerational distribution of costs and benefits. In addition, the analysis neglects the effects of future learning and is based on a simple representation of climate change impacts. We use this integrated assessment model to show three main points. First, substituting aerosol geoengineering for the reduction of greenhouse gas emissions can fail the test of economic efficiency. One key to this finding is that a failure to sustain the aerosol forcing can lead to sizeable and abrupt climatic changes. The monetary damages due to such a discontinuous aerosol geoengineering can dominate the cost-benefit analysis because the monetary damages of climate change are expected to increase with

  14. Toxicological Evaluation of Realistic Emission Source Aerosols (TERESA)—Power plant studies: assessment of breathing pattern

    PubMed Central

    Diaz, Edgar A.; Lemos, Miriam; Coull, Brent; Long, Mark S.; Rohr, Annette C.; Ruiz, Pablo; Gupta, Tarun; Kang, Choong-Min; Godleski, John J.

    2013-01-01

    Our approach to study multi-pollutant aerosols isolates a single emissions source, evaluates the toxicity of primary and secondary particles derived from this source, and simulates chemical reactions that occur in the atmosphere after emission. Three U.S. coal-fired power plants utilizing different coals and with different emission controls were evaluated. Secondary organic aerosol (SOA) derived from α-pinene and/or ammonia was added in some experiments. Male Sprague-Dawley rats were exposed for 6 h to filtered air or different atmospheric mixtures. Scenarios studied at each plant included the following: primary particles (P); secondary (oxidized) particles (PO); oxidized particles + SOA (POS); and oxidized and neutralized particles + SOA (PONS); additional control scenarios were also studied. Continuous respiratory data were obtained during exposures using whole body plethysmography chambers. Of the 12 respiratory outcomes assessed, each had statistically significant changes at some plant and with some of the 4 scenarios. The most robust outcomes were found with exposure to the PO scenario (increased respiratory frequency with decreases in inspiratory and expiratory time); and the PONS scenario (decreased peak expiratory flow and expiratory flow at 50%). PONS findings were most strongly associated with ammonium, neutralized sulfate, and elemental carbon (EC) in univariate analyses, but only with EC in multivariate analyses. Control scenario O (oxidized without primary particles) had similar changes to PO. Adjusted R2 analyses showed that scenario was a better predictor of respiratory responses than individual components, suggesting that the complex atmospheric mixture was responsible for respiratory effects. PMID:21639693

  15. Compilation of a Global Emission Inventory from 1980 to 2000 for Global Model Simulations of the Long-term Trend of Tropospheric Aerosols

    NASA Technical Reports Server (NTRS)

    Diehl, Thomas L.; Chin, Mian; Bond, Tami C.; Carn, SImon A.; Duncan, Bryan N.; Krotkov, Nickolay A.; Streets, David G.

    2006-01-01

    The approach to create a comprehensive emission inventory for the time period 1980 to 2000 is described in this paper. We have recently compiled an emission database, which we will use for a 21 year simulation of tropospheric aerosols with the GOCART model. Particular attention was paid to the time-dependent SO2, black carbon and organic carbon aerosol emissions. For the emission of SO2 from sporadically erupting volcanoes, we assembled emission data from the Global Volcanism Program of the Smithsonian Institution, using the VEI to derive the volcanic cloud height and the SO2 amount, and amended this dataset by the SO2 emission data from the TOMS instrument when available. 3-dimensional aircraft emission data was obtained for a number of years from the AEAP project, converted from burned fuel to SO2 and interpolated to each year, taking the sparsity of the flight patterns into account. Other anthropogenic SO2 emissions are based on gridded emissions from the EDGAR 2000 database (excluding sources from aircraft, biomass burning and international ship traffic), which were scaled to individual years with country/regional based emission inventories. Gridded SO2 emissions from international ship traffic for 2000 and the scaling factors for other years are from [Eyring et al., 2005]. We used gridded anthropogenic black and organic carbon emissions for 1996 [Bond et al., 2005], again excluding aircraft, biomass burning and ship sources. These emissions were scaled with regional based emission inventories from 1980 to 2000 to derive gridded emissions for each year. The biomass burning emissions are based on a climatology, which is scaled with regional scaling factors derived from the TOMS aerosol index and the AVHRR/ASTR fire counts to each year [Duncan et al., 2003]. Details on the integration of the information from the various sources will be provided and the distribution patterns and total emissions in the final product will be discussed.

  16. Compilation of a Global Emission Inventory from 1980 to 2000 for Global Model Simulations of the Long-term Trend of Tropospheric Aerosols

    NASA Technical Reports Server (NTRS)

    Diehl, T. L.; Mian, Chin; Bond, T. C.; Carn, S. A.; Duncan, B. N.; Krotkov, N. A.; Streets, D. G.

    2007-01-01

    The approach to create a comprehensive emission inventory for the time period 1980 to 2000 is described in this paper. We have recently compiled an emission database, which we will use for a 21 year simulation of tropospheric aerosols with the GOCART model. Particular attention was paid to the time-dependent SO2, black carbon and organic carbon aerosol emissions. For the emission of SO2 from sporadically erupting volcanoes, we assembled emission data from the Global Volcanism Program of the Smithsonian Institution, using the VEI to derive the volcanic cloud height and the SO2 amount, and amended this dataset by the SO2 emission data from the TOMS instrument when available. 3-dimensional aircraft emission data was obtained for a number of years from the AEAP project, converted from burned fuel to SO2 and interpolated to each year, taking the sparsity of the flight patterns into account. Other anthopogenic SO2 emissions are based on gridded emissions from the EDGAR 2000 database (excluding sources from aircraft, biomass burning and international ship traffic), which were scaled to individual years with country/regional based emission inventories. Gridded SO2 emissions from international ship traffic for 2000 and the scaling factors for other years are from [Eyring et al., 2005]. We used gridded anthropogenic black and organic carbon emissions for 1996 [Bond et al., 2005], again excluding aircraft, biomass burning and ship sources. These emissions were scaled with regional based emission inventories from 1980 to 2000 to derive gridded emissions for each year. The biomass burning emissions are based on a climatology, which is scaled with regional scaling factors derived from the TOMS aerosol index and the AVHRR/ATSR fire counts to each year [Duncan et al., 2003]. Details on the integration of the information from the various sources will be provided and the distribution patterns and total emissions in the final product will be discussed.

  17. Laboratory studies of oxidation of primary emissions: Oxidation of organic molecular markers and secondary organic aerosol production

    NASA Astrophysics Data System (ADS)

    Weitkamp, Emily A.

    Particulate matter (PM) is solid particles and liquid droplets of complex composition suspended in the atmosphere. In 1997, the National Ambient Air Quality Standards (NAAQS) for PM was modified to include new standards for fine particulate (particles smaller than 2.5mum, PM2.5) because of their association with adverse health effects, mortality and visibility reduction. Fine PM may also have large impacts on the global climate. Chemically, fine particulate is a complex mixture of organic and inorganic material, from both natural and anthropogenic sources. A large fraction of PM2.5 is organic. The first objective was to investigate heterogeneous oxidation of condensed-phase molecular markers for two major organic source categories, meat-cooking emissions and motor vehicle exhaust. Effective reaction rate constants of key molecular markers were measured over a range of atmospherically relevant experimental conditions, including a range of concentrations and relative humidities, and with SOA condensed on the particles. Aerosolized meat grease was reacted with ozone to investigate the oxidation of molecular markers for meat-cooking emissions. Aerosolized motor oil, which is chemically similar to vehicle exhaust aerosol and contains the molecular markers used in source apportionment, was reacted with the hydroxyl radical (OH) to investigate oxidation of motor vehicle molecular markers. All molecular markers of interest - oleic acid, palmitoleic acid, and cholesterol for meat-cooking emissions, and hopanes and steranes for vehicle exhaust - reacted at rates that are significant for time scales on the order of days assuming typical summertime oxidant concentrations. Experimental conditions influenced the reaction rate constants. For both systems, experiments conducted at high relative humidity (RH) had smaller reaction rate constants than those at low RH. SOA coating slowed the reaction rate constants for meat-cooking markers, but had no effect on the oxidation of

  18. Aerosol size distribution and radiative forcing response to anthropogenically driven historical changes in biogenic secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    D'Andrea, S. D.; Acosta Navarro, J. C.; Farina, S. C.; Scott, C. E.; Rap, A.; Farmer, D. K.; Spracklen, D. V.; Riipinen, I.; Pierce, J. R.

    2015-03-01

    Emissions of biogenic volatile organic compounds (BVOCs) have changed in the past millennium due to changes in land use, temperature, and CO2 concentrations. Recent reconstructions of BVOC emissions have predicted that global isoprene emissions have decreased, while monoterpene and sesquiterpene emissions have increased; however, all three show regional variability due to competition between the various influencing factors. In this work, we use two modeled estimates of BVOC emissions from the years 1000 to 2000 to test the effect of anthropogenic changes to BVOC emissions on secondary organic aerosol (SOA) formation, global aerosol size distributions, and radiative effects using the GEOS-Chem-TOMAS (Goddard Earth Observing System; TwO-Moment Aerosol Sectional) global aerosol microphysics model. With anthropogenic emissions (e.g., SO2, NOx, primary aerosols) turned off and BVOC emissions changed from year 1000 to year 2000 values, decreases in the number concentration of particles of size Dp > 80 nm (N80) of > 25% in year 2000 relative to year 1000 were predicted in regions with extensive land-use changes since year 1000 which led to regional increases in the combined aerosol radiative effect (direct and indirect) of > 0.5 W m-2 in these regions. We test the sensitivity of our results to BVOC emissions inventory, SOA yields, and the presence of anthropogenic emissions; however, the qualitative response of the model to historic BVOC changes remains the same in all cases. Accounting for these uncertainties, we estimate millennial changes in BVOC emissions cause a global mean direct effect of between +0.022 and +0.163 W m-2 and the global mean cloud-albedo aerosol indirect effect of between -0.008 and -0.056 W m-2. This change in aerosols, and the associated radiative forcing, could be a largely overlooked and important anthropogenic aerosol effect on regional climates.

  19. Primary to secondary organic aerosol: evolution of organic emissions from mobile combustion sources

    NASA Astrophysics Data System (ADS)

    Presto, A. A.; Gordon, T. D.; Robinson, A. L.

    2013-09-01

    A series of smog chamber experiments were conducted to investigate the transformation of primary organic aerosol (POA) and formation of secondary organic aerosol (SOA) during the photo-oxidation of dilute gasoline and diesel motor vehicle exhaust. In half of the experiments POA was present in the chamber at the onset of photo-oxidation. In these experiments positive matrix factorization (PMF) was used to determine separate POA and SOA factors from aerosol mass spectrometer data. A two-factor solution, with one POA factor and one SOA factor, was sufficient to describe the organic aerosol in all but one experiment. In the other half of the experiments, POA was not present at the onset of photo-oxidation; these experiments are considered "pure SOA" experiments. The POA mass spectrum was similar to the mass spectra of the hydrocarbon-like organic aerosol factor determined from ambient datasets with one exception, a diesel vehicle equipped with a diesel oxidation catalyst. The SOA in all experiments had a constant composition over the course of photo-oxidation, and did not appear to age with continued oxidation. The SOA mass spectra for the various gasoline and diesel vehicles were similar to each other, but markedly different than ambient oxidized organic aerosol factors. Van Krevelen analysis of the POA and SOA factors for gasoline and diesel experiments reveal slopes of -0.68 and -0.43, respectively. This suggests that the oxidation chemistry in these experiments is a combination of carboxylic acid and alcohol/peroxide formation, consistent with ambient oxidation chemistry. These experiments also provide insight to the mixing behavior of the POA and SOA. Analysis of the time series of the POA factor concentration and a basis-set model both indicate that for all but one of the vehicles tested here, the POA and SOA seem to mix and form a single organic aerosol phase.

  20. Lead isotopes in trade wind aerosols at Barbados: the influence of European emissions over the North Atlantic

    SciTech Connect

    Hamelin, B.; Grousset, F.E.; Biscaye, P.E.; Zindler, A. ); Prospero, J.M. )

    1989-11-15

    Previous studies have shown that Pb can be used as a transient tracer in the atmosphere and the ocean because of strong time-variability of industrial inputs and because Pb isotopic composition can be used to identify contribution from different sources. We present Pb isotopic measurements on aerosols collected from the North Atlantic Ocean in the trade wind belt. Aerosols sampled at Barbados during the 1969--1985 period have a Pb isotopic compositions different from that observed by previous investigators in Bermuda corals and Sargasso Sea waters. Barbados aerosols appear to contain significant amounts of relatively unradiogenic industrial and automotive Pb that is derived from Europe and carried to Barbados by the trade winds. In contrast, Bermuda corals and Sargasso sea waters are influenced mainly by U.S.-derived emissions, which contain more radiogenic Pb originating from Missouri-type ores. This difference generates a strong latitudinal Europe-U.S.A. isotopic gradient, thus allowing study of trans-Atlantic atmospheric transport and ocean mixing processes. {copyright} American Geophysical Union 1989

  1. Lead isotopes in trade wind aerosols at Barbados - The influence of European emissions over the North Atlantic

    NASA Technical Reports Server (NTRS)

    Hamelin, B.; Grousset, F. E.; Biscaye, P. E.; Zindler, A.; Prospero, J. M.

    1989-01-01

    Previous studies have shown that Pb can be used as a transient tracer in the atmosphere and the ocean because of strong time-variability of industrial inputs and because Pb isotopic composition can be used to identify contributions from different sources. Pb isotopic measurements on aerosols collected from the North Atlantic Ocean in the trade wind belt are presented. Aerosols sampled at Barbados during the 1969-1985 period have a Pb isotopic composition different from that observed by previous investigators in Bermuda corals and Sargasso Sea waters. Barbados aerosols appear to contain significant amounts of relatively unradiogenic industrial and automotive Pb that is derived from Europe and carried to Barbados by the trade winds. In contrast, Bermuda corals and Sargasso sea waters are influenced mainly by U.S.-derived emissions, which contain more radiogenic Pb originating from Missouri-type ores. This difference generates a strong latitudinal Europe-U.S.A. isotopic gradient, thus allowing study of trans-Atlantic atmospheric transport and ocean mixing processes.

  2. A simple method to compute the change in earth-atmosphere radiative balance due to a stratospheric aerosol layer

    NASA Technical Reports Server (NTRS)

    Lenoble, J.; Tanre, D.; Deschamps, P. Y.; Herman, M.

    1982-01-01

    A computer code was developed in terms of a three-layer model for the earth-atmosphere system, using a two-stream approximation for the troposphere and stratosphere. The analysis was limited to variable atmosphere loading by solar radiation over an unperturbed section of the atmosphere. The scattering atmosphere above a Lambertian ground layer was considered in order to derive the planar albedo and the spherical albedo. Attention was given to the influence of the aerosol optical thickness in the stratosphere, the single scattering albedo and asymmetry factor, and the sublayer albedo. Calculations were performed of the zonal albedo and the planetary radiation balance, taking into account a stratospheric aerosol layer containing H2SO4 droplets and volcanic ash. The resulting ground temperature disturbance was computed using a Budyko (1969) climate model. Local decreases in the albedo in the summer were observed in high latitudes, implying a heating effect of the aerosol. An accompanying energy loss of 23-27 W/sq m was projected, which translates to surface temperature decreases of either 1.1 and 0.45 C, respectively, for background and volcanic aerosols.

  3. Spectra Aerosol Light Scattering and Absorption for Laboratory and Urban Aerosol

    NASA Astrophysics Data System (ADS)

    Gyawali, Madhu S.

    a shell-core model, we verified, for the first time, that AEA can be as high as 1.6 even for non-absorbing coating on BC, suggesting that the organic coating need not be intrinsically brown to observe effects commonly attributed to BrC absorption. Additionally, for laboratory generated incense burning aerosols, AEA varied as lambda -4.5for wavelengths ranging from 355 to 1047 nm. In contrast, the wood smoke aerosols during winter had a much weaker wavelength dependence (lambda-1.1), comparable to that of traffic emission aerosols. During these observations, the multispectral SSA decreased with the wavelength for traffic-related emissions, yet it increased for biomass and incense burning aerosol. The strong spectral dependence was due to the enhanced light absorption by BrC at UV and blue wavelengths. In all cases, results of this analysis suggested that inefficient smoldering combustion processes can emit predominantly BrC, in comparison to high-temperature and flaming burning processes. During the CARES field campaign, aerosols were dominated by biogenic emissions. Aerosol light absorption was modestly enhanced (lambda -1.6) at shorter wavelengths (355, 375, 405, and 532 nm) compared to 870 and 1047 nm, likely due to the spectral dependence of coating on BC. The secondary organic aerosol (SOA) mass concentration steadily increased in the latter half of the campaign, with strong 355 nm aerosol light scattering. Overall, results of this field campaign showed that the biogenic SOA was not BrC, i.e. it didn't have intrinsic characteristics near UV absorption. These results should be further tested and analyzed to assess the full implications of BrC aerosol light absorption.

  4. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    SciTech Connect

    Annette Rohr

    2006-03-01

    TERESA (Toxicological Evaluation of Realistic Emissions of Source Aerosols) involves exposing laboratory rats to realistic coal-fired power plant and mobile source emissions to help determine the relative toxicity of these PM sources. There are three coal-fired power plants in the TERESA program; this report describes the results of fieldwork conducted at the first plant, located in the Upper Midwest. The project was technically challenging by virtue of its novel design and requirement for the development of new techniques. By examining aged, atmospherically transformed aerosol derived from power plant stack emissions, we were able to evaluate the toxicity of PM derived from coal combustion in a manner that more accurately reflects the exposure of concern than existing methodologies. TERESA also involves assessment of actual plant emissions in a field setting--an important strength since it reduces the question of representativeness of emissions. A sampling system was developed and assembled to draw emissions from the stack; stack sampling conducted according to standard EPA protocol suggested that the sampled emissions are representative of those exiting the stack into the atmosphere. Two mobile laboratories were then outfitted for the study: (1) a chemical laboratory in which the atmospheric aging was conducted and which housed the bulk of the analytical equipment; and (2) a toxicological laboratory, which contained animal caging and the exposure apparatus. Animal exposures were carried out from May-November 2004 to a number of simulated atmospheric scenarios. Toxicological endpoints included (1) pulmonary function and breathing pattern; (2) bronchoalveolar lavage fluid cytological and biochemical analyses; (3) blood cytological analyses; (4) in vivo oxidative stress in heart and lung tissue; and (5) heart and lung histopathology. Results indicated no differences between exposed and control animals in any of the endpoints examined. Exposure concentrations for the

  5. The use of satellite-measured aerosol optical depth to constrain biomass burning emissions source strength in a global model GOCART

    NASA Astrophysics Data System (ADS)

    Petrenko, Mariya

    Biomass burning (BB) is one of the major contributors to emissions of carbonaceous atmospheric aerosol. Optically and chemically potent BB particles play important roles in atmospheric processes through their impact on air quality, visibility, human health, and as one of the factors affecting global climate through direct and indirect radiative effects. As chemistry transport models are among the major tools for studying earth and atmospheric processes, it is important to represent BB processes as accurately as possible. Simulations of BB emissions in aerosol models strongly depend on the inventories that define emission source locations and strength. In this work, we use 13 global biomass burning emission estimates, including widely used Global Fire Emission Database (GFED) monthly and daily versions, Fire Radiative Power (FRP)-based Quick Fire Emission Dataset QFED, and several combinations of fuel consumption estimates, aerosol emission factors and Moderate Resolution Imaging Spectroradiometer (MODIS)-based burned area products as alternative inputs to the global Goddard Chemistry Aerosol Radiation and Transport (GOCART) model. The resultant simulated aerosol optical depth (AOD) and its spatial distributions are compared to AOD snapshots measured by the MODIS instrument for 124 fire events occurring between 2006 and 2007. BB aerosol emission estimates by all 13 emission options are compared on a global scale and implications of regional differences are discussed. Performance of all emission options, with the exception of FRP-based QFED, when used as a source of BB emissions in the GOCART model, were assessed on a regional basis, showing where and to what degree the different options overestimate, underestimate and provide good agreement with the observation. QFED developers use MODIS AOD as one of the parameters to calibrate their product during its production, so comparison of QFED-based GOCART-simulated AOD with MODIS measurements was not performed. It is also

  6. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions

    NASA Astrophysics Data System (ADS)

    Guenther, A. B.; Jiang, X.; Heald, C. L.; Sakulyanontvittaya, T.; Duhl, T.; Emmons, L. K.; Wang, X.

    2012-11-01

    The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1) is a modeling framework for estimating fluxes of biogenic compounds between terrestrial ecosystems and the atmosphere using simple mechanistic algorithms to account for the major known processes controlling biogenic emissions. It is available as an offline code and has also been coupled into land surface and atmospheric chemistry models. MEGAN2.1 is an update from the previous versions including MEGAN2.0, which was described for isoprene emissions by Guenther et al. (2006) and MEGAN2.02, which was described for monoterpene and sesquiterpene emissions by Sakulyanontvittaya et al. (2008). Isoprene comprises about half of the total global biogenic volatile organic compound (BVOC) emission of 1 Pg (1000 Tg or 1015 g) estimated using MEGAN2.1. Methanol, ethanol, acetaldehyde, acetone, α-pinene, β-pinene, t-β-ocimene, limonene, ethene, and propene together contribute another 30% of the MEGAN2.1 estimated emission. An additional 20 compounds (mostly terpenoids) are associated with the MEGAN2.1 estimates of another 17% of the total emission with the remaining 3% distributed among >100 compounds. Emissions of 41 monoterpenes and 32 sesquiterpenes together comprise about 15% and 3%, respectively, of the estimated total global BVOC emission. Tropical trees cover about 18% of the global land surface and are estimated to be responsible for ~80% of terpenoid emissions and ~50% of other VOC emissions. Other trees cover about the same area but are estimated to contribute only about 10% of total emissions. The magnitude of the emissions estimated with MEGAN2.1 are within the range of estimates reported using other approaches and much of the differences between reported values can be attributed to land cover and meteorological driving variables. The offline version of MEGAN2.1 source code and driving variables is available from

  7. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions

    NASA Astrophysics Data System (ADS)

    Guenther, A. B.; Jiang, X.; Heald, C. L.; Sakulyanontvittaya, T.; Duhl, T.; Emmons, L. K.; Wang, X.

    2012-06-01

    The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1) is a modeling framework for estimating fluxes of 147 biogenic compounds between terrestrial ecosystems and the atmosphere using simple mechanistic algorithms to account for the major known processes controlling biogenic emissions. It is available as an offline code and has also been coupled into land surface models and atmospheric chemistry models. MEGAN2.1 is an update from the previous versions including MEGAN2.0 for isoprene emissions and MEGAN2.04, which estimates emissions of 138 compounds. Isoprene comprises about half of the estimated total global biogenic volatile organic compound (BVOC) emission of 1 Pg (1000 Tg or 1015 g). Another 10 compounds including methanol, ethanol, acetaldehyde, acetone, α-pinene, β-pinene, t-β-ocimene, limonene, ethene, and propene together contribute another 30% of the estimated emission. An additional 20 compounds (mostly terpenoids) are associated with another 17% of the total emission with the remaining 3% distributed among 125 compounds. Emissions of 41 monoterpenes and 32 sesquiterpenes together comprise about 15% and 3%, respectively, of the total global BVOC emission. Tropical trees cover about 18% of the global land surface and are estimated to be responsible for 60% of terpenoid emissions and 48% of other VOC emissions. Other trees cover about the same area but are estimated to contribute only about 10% of total emissions. The magnitude of the emissions estimated with MEGAN2.1 are within the range of estimates reported using other approaches and much of the differences between reported values can be attributed to landcover and meteorological driving variables. The offline version of MEGAN2.1 source code and driving variables is available from http://acd.ucar.edu/~guenther/MEGAN/MEGAN.htm and the version integrated into the Community Land Model version 4 (CLM4) can

  8. Spatial variations in immediate greenhouse gases and aerosol emissions and resulting radiative forcing from wildfires in interior Alaska

    USGS Publications Warehouse

    Huang, Shengli; Liu, Heping; Dahal, Devendra; Jin, Suming; Li, Shuang; Liu, Shu-Guang

    2016-01-01

    Boreal fires can cool the climate; however, this conclusion came from individual fires and may not represent the whole story. We hypothesize that the climatic impact of boreal fires depends on local landscape heterogeneity such as burn severity, prefire vegetation type, and soil properties. To test this hypothesis, spatially explicit emission of greenhouse gases (GHGs) and aerosols and their resulting radiative forcing are required as an important and necessary component towards a full assessment. In this study, we integrated remote sensing (Landsat and MODIS) and models (carbon consumption model, emission factors model, and radiative forcing model) to calculate the carbon consumption, GHGs and aerosol emissions, and their radiative forcing of 2001–2010 fires at 30 m resolution in the Yukon River Basin of Alaska. Total carbon consumption showed significant spatial variation, with a mean of 2,615 g C m−2 and a standard deviation of 2,589 g C m−2. The carbon consumption led to different amounts of GHGs and aerosol emissions, ranging from 593.26 Tg (CO2) to 0.16 Tg (N2O). When converted to equivalent CO2 based on global warming potential metric, the maximum 20 years equivalent CO2 was black carbon (713.77 Tg), and the lowest 20 years equivalent CO2 was organic carbon (−583.13 Tg). The resulting radiative forcing also showed significant spatial variation: CO2, CH4, and N2O can cause a 20-year mean radiative forcing of 7.41 W m−2 with a standard deviation of 2.87 W m−2. This emission forcing heterogeneity indicates that different boreal fires have different climatic impacts. When considering the spatial variation of other forcings, such as surface shortwave forcing, we may conclude that some boreal fires, especially boreal deciduous fires, can warm the climate.

  9. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    SciTech Connect

    Annette Rohr

    2005-03-31

    This report documents progress made on the subject project during the period of September 1, 2004 through February 28, 2005. The TERESA Study is designed to investigate the role played by specific emissions sources and components in the induction of adverse health effects by examining the relative toxicity of coal combustion and mobile source (gasoline and/or diesel engine) emissions and their oxidative products. The study involves on-site sampling, dilution, and aging of coal combustion emissions at three coal-fired power plants, as well as mobile source emissions, followed by animal exposures incorporating a number of toxicological endpoints. The DOE-EPRI Cooperative Agreement (henceforth referred to as ''the Agreement'') for which this technical progress report has been prepared covers the performance and analysis of field experiments at the first TERESA plant, located in the Upper Midwest and henceforth referred to as Plant 0, and at two additional coal-fired power plants (Plants 1 and 2) utilizing different coal types and with different plant configurations. During this reporting period, all fieldwork at Plant 0 was completed. Stack sampling was conducted in October to determine if there were significant differences between the in-stack PM concentrations and the diluted concentrations used for the animal exposures. Results indicated no significant differences and therefore confidence that the revised stack sampling methodology described in the previous semiannual report is appropriate for use in the Project. Animal exposures to three atmospheric scenarios were carried out. From October 4-7, we conducted exposures to oxidized emissions with the addition of secondary organic aerosol (SOA). Later in October, exposures to the most complex scenario (oxidized, neutralized emissions plus SOA) were repeated to ensure comparability with the results of the June/July exposures where a different stack sampling setup was employed. In November, exposures to oxidized

  10. Impact of wildfire emissions on trace gas and aerosol concentration measured at the Zotino Tall Tower Observatory (ZOTTO) in Central Siberia

    NASA Astrophysics Data System (ADS)

    Panov, A.; Chi, X.; Winderlich, J.; Birmili, W.; Lavrič, J. V.; Andreae, M. O.

    2012-04-01

    Boreal wildfires are large sources of reactive trace gases and aerosols to the atmosphere, accounting for 20% of carbon emissions from global biomass burning. Siberian wildfires are a major extratropical source of carbon monoxide (CO), as well as a significant source of black carbon, smoke aerosols, and other climate-relevant atmospheric gas/particle species. Smoke particles released by Siberian wildfires could be tracked thousands of kilometers downwind in the entire Northern Hemisphere, perturbing regional to global radiation budgets by influencing light scattering and cloud microphysical processes. The boreal regions of the Northern Hemisphere are expected to experience the largest temperature increases, which will likely increase the severity and frequency of fires. Consequently, long-term continuous trace gas and aerosol measurements in central Siberia are vital for assessing the atmospheric impact of Siberian boreal fires on regional to global air quality and climate. Since 2006, the Zotino Tall Tower Facility (ZOTTO; www.zottoproject.org), a unique international research platform for large-scale climatic observations, is operational about 20 km west of the Yenisei river (60.8°N; 89.35°E). A 300 m-tall tower allows regular probing of the mixed part of the boundary layer, which is only moderately influenced by diurnal variations of local surface fluxes and thus, in comparison with surface layer, representative for a larger region. Our investigation of the wildfires' impact on surface air composition in Central Siberia is based on four years of CO/CO2/CH4 and aerosol particle mass data measured at 300 m a.g.l.. Episodes of atmospheric transport from wildfires upwind of the measurements site are identified based on ensembles of HYSPLIT backward trajectories and MODIS active fire products. The emission factors are calculated using the Carbon Mass Balance method. In an effort to simplify combustion to its most fundamental principles, the combustion efficiency

  11. Toxicity of atmospheric aerosols on marine phytoplankton

    USGS Publications Warehouse

    Paytan, A.; Mackey, K.R.M.; Chen, Y.; Lima, I.D.; Doney, S.C.; Mahowald, N.; Labiosa, R.; Post, A.F.

    2009-01-01

    Atmospheric aerosol deposition is an important source of nutrients and trace metals to the open ocean that can enhance ocean productivity and carbon sequestration and thus influence atmospheric carbon dioxide concentrations and climate. Using aerosol samples from different back trajectories in incubation experiments with natural communities, we demonstrate that the response of phytoplankton growth to aerosol additions depends on specific components in aerosols and differs across phytoplankton species. Aerosol additions enhanced growth by releasing nitrogen and phosphorus, but not all aerosols stimulated growth. Toxic effects were observed with some aerosols, where the toxicity affected picoeukaryotes and Synechococcus but not Prochlorococcus.We suggest that the toxicity could be due to high copper concentrations in these aerosols and support this by laboratory copper toxicity tests preformed with Synechococcus cultures. However, it is possible that other elements present in the aerosols or unknown synergistic effects between these elements could have also contributed to the toxic effect. Anthropogenic emissions are increasing atmospheric copper deposition sharply, and based on coupled atmosphere-ocean calculations, we show that this deposition can potentially alter patterns of marine primary production and community structure in high aerosol, low chlorophyll areas, particularly in the Bay of Bengal and downwind of South and East Asia.

  12. Dimethyl Sulfide Emissions from Dairies and Agriculture as a Potential Contributor to Sulfate Aerosols in the California Central Valley

    NASA Astrophysics Data System (ADS)

    Lebel, E.; Marrero, J. E.; Bertram, T. H.; Blake, D. R.

    2014-12-01

    Whole air samples have been collected throughout Southern California during the previous five years of the NASA Student Airborne Research Program (SARP). During a flight over the Salton Sea in 2014, higher concentrations of dimethyl sulfide (DMS), a known marine emitted gas, were observed over neighboring agricultural land than over the sea itself. A comparison of DMS to methyl iodide, another known marine emitted gas, showed minimal correlation, revealing that DMS was being emitted from local sources. Ground samples at the Salton Sea verified that the DMS was not transported from the Pacific Ocean. Previous SARP studies have shown that DMS is emitted from dairies. The enhancements in ethanol (another dairy tracer) and DMS in several airborne samples collected south of the Salton Sea suggest dairy emissions of the observed DMS. DMS is a compound of interest because its oxidation can form cloud condensation nuclei. Based on data from all six SARP flights between 2009-2014, we propose that dairy and farming emissions of DMS in the San Joaquin Valley may be impacting aerosol loading in this region. A simple model that takes into account the particulate matter mass loadings was used to calculate the percent contribution of DMS to aerosol formation for the San Joaquin Valley.

  13. Changes in inorganic fine particulate matter sensitivities to precursors due to large-scale US emissions reductions.

    PubMed

    Holt, Jareth; Selin, Noelle E; Solomon, Susan

    2015-04-21

    We examined the impact of large US emissions changes, similar to those estimated to have occurred between 2005 and 2012 (high and low emissions cases, respectively), on inorganic PM2.5 sensitivities to further NOx, SO2, and NH3 emissions reductions using the chemical transport model GEOS-Chem. Sensitivities to SO2 emissions are larger year-round and across the US in the low emissions case than the high emissions case due to more aqueous-phase SO2 oxidation. Sensitivities to winter NOx emissions are larger in the low emissions case, more than 2× those of the high emissions case in parts of the northern Midwest. Sensitivities to NH3 emissions are smaller (∼40%) in the low emissions case, year-round, and across the US. Differences in NOx and NH3 sensitivities indicate an altered atmospheric acidity. Larger sensitivities to SO2 and NOx in the low emissions case imply that reducing these emissions may improve air quality more now than they would have in 2005; conversely, NH3 reductions may not improve air quality as much as previously assumed.

  14. The European aerosol budget in 2006

    NASA Astrophysics Data System (ADS)

    Aan de Brugh, J. M. J.; Schaap, M.; Vignati, E.; Dentener, F.; Kahnert, M.; Sofiev, M.; Huijnen, V.; Krol, M. C.

    2011-02-01

    This paper presents the aerosol budget over Europe in 2006 calculated with the global transport model TM5 coupled to the size-resolved aerosol module M7. Comparison with ground observations indicates that the model reproduces the observed concentrations quite well with an expected slight underestimation of PM10 due to missing emissions (e.g. resuspension). We model that a little less than half of the anthropogenic aerosols emitted in Europe are exported and the rest is removed by deposition. The anthropogenic aerosols are removed mostly by rain (95%) and only 5% is removed by dry deposition. For the larger natural aerosols, especially sea salt, a larger fraction is removed by dry processes (sea salt: 70%, mineral dust: 35%). We model transport of aerosols in the jet stream in the higher atmosphere and an import of Sahara dust from the south at high altitudes. Comparison with optical measurements shows that the model reproduces the Ångström parameter very well, which indicates a correct simulation of the aerosol size distribution. However, we underestimate the aerosol optical depth. Because the surface concentrations are close to the observations, the shortage of aerosol in the model is probably at higher altitudes. We show that the discrepancies are mainly caused by an overestimation of wet-removal rates. To match the observations, the wet-removal rates have to be scaled down by a factor of about 5. In that case the modelled ground-level concentrations of sulphate and sea salt increase by 50% (which deteriorates the match), while other components stay roughly the same. Finally, it is shown that in particular events, improved fire emission estimates may significantly improve the ability of the model to simulate the aerosol optical depth. We stress that discrepancies in aerosol models can be adequately analysed if all models would provide (regional) aerosol budgets, as presented in the current study.

  15. The European aerosol budget in 2006

    NASA Astrophysics Data System (ADS)

    Aan de Brugh, J. M. J.; Schaap, M.; Vignati, E.; Dentener, F.; Kahnert, M.; Sofiev, M.; Huijnen, V.; Krol, M. C.

    2010-09-01

    This paper presents the aerosol budget over Europe in 2006 calculated with the global transport model TM5 coupled to the size-resolved aerosol module M7. Comparison with ground observations indicates that the model reproduces the observed concentrations quite well with an expected slight underestimation of PM10 due to missing emissions (e.g. resuspension). We observe that a little less than half of the anthropogenic aerosols emitted in Europe are exported and the rest is removed by deposition. The anthropogenic aerosols are removed mostly by rain (95%) and only 5% is removed by dry deposition. For the larger natural aerosols, especially sea salt, a larger fraction is removed by dry processes (sea salt: 70%, mineral dust: 35%). We observe transport of aerosols in the jet stream in the higher atmosphere and an import of Sahara dust from the south at high altitudes. Comparison with optical measurements shows that the model reproduces the Ångström parameter very well, which indicates a correct simulation of the aerosol size distribution. However, we observe an underestimation of the aerosol optical depth. Because the surface concentrations are close to the observations, the shortage of aerosol in the model is probably at higher altitudes. We show that the discrepancies are mainly caused by an overestimation of wet-removal rates. To match the observations, the wet-removal rates have to be scaled down by a factor of about 5. In that case the modelled ground-level concentrations of sulphate and sea salt increase by 50% (which deteriorates the match), while other components stay roughly the same. Finally, it is shown that in particular events, improved fire emission estimates may significantly improve the ability of the model to simulate the aerosol optical depth. We stress that discrepancies in aerosol models can be adequately analysed if all models would provide (regional) aerosol budgets, as presented in the current study.

  16. Radio-wave emission due to hypervelocity impacts and its correlation with optical observations

    NASA Astrophysics Data System (ADS)

    Takano, T.; Maki, K.; Yamori, A.

    This paper describes the most interesting phenomena of radio-wave emission due to hypervelocity impacts. A projectile of polycarbonate with 1.1 g weight was accelerated by a rail gun to 3.8 km/sec, and hit two targets which are a 2 mm thick aluminum plate upstream and a 45 mm diameter aluminum column downstream, respectively. The projectile first breaks wires to give a triggering signal to a data recorder, then penetrates the aluminum plate, and finally hit the column, The emitted radio-waves propagate through the chamber window, and are received by antennas at each frequency band. The receivers in 22 GHz- and 2 GHz-bands consist of a low noise amplifier, a mixer, a local oscillator and an IF amplifier , respectively. The receiver in 1 MHz-band is a simple RF amplifier. The outputs of all receivers are fed to a data recorder which is actually a high-speed digital oscilloscope with a large amount of memory. The radio-waves were successfully recorded in 22 GHz-band with 500 MHz bandwidth, in 2 GHz-band with 300 MHz bandwidth, and in 1MHz-band. The waveforms in 22 GHz- and 2 GHz-bands coincide well each other, and are composed of two groups of sharp impulses with a separation of about 20 micro seconds. The width of an impulse is less than 2 n sec. which is the resolution limit of the data recorder. We carried out optical observations using an ultra-high speed camera simultaneously through another window of the chamber. The time interval between scenes is 2 micro sec. We can see a faint light of the projectile before the first impact to the plate, and then a brilliant gas exploding backward from the plate and forward to the column. After hitting the column target, the brilliant gas flows to the chamber wall and is reflected back to make a mixture with dark gas in the chamber. Excellent correlation between radio-wave emission and the observed optical phenomena was obtained in the experiment. It is easily conceived that the radio-waves consist of quite a wide frequency

  17. Characterization of Speciated Aerosol Direct Radiative Forcing Over California

    SciTech Connect

    Zhao, Chun; Leung, Lai-Yung R.; Easter, Richard C.; Hand, Jenny; Avise, J.

    2013-03-16

    A fully coupled meteorology-chemistry model (WRF-Chem) with added capability of diagnosing the spatial and seasonal distribution of radiative forcings for individual aerosol species over California is used to characterize the radiative forcing of speciated aerosols in California. Model simulations for the year of 2005 are evaluated with various observations including meteorological data from California Irrigation Management Information System (CIMIS), aerosol mass concentrations from US EPA Chemical Speciation Network (CSN) and Interagency Monitoring of Protected Visual Environments (IMPROVE), and aerosol optical depth from AErosol RObotic NETwork (AERONET) and satellites. The model well captures the observed seasonal meteorological conditions over California. Overall, the simulation is able to reproduce the observed spatial and seasonal distribution of mass concentration of total PM2.5 and the relative contribution from individual aerosol species, except the model significantly underestimates the surface concentrations of organic matter (OM) and elemental carbon (EC), potentially due to uncertainty in the anthropogenic emissions of OM and EC and the outdated secondary organic aerosol mechanism used in the model. A sensitivity simulation with anthropogenic EC emission doubled significantly reduces the model low bias of EC. The simulation reveals high anthropogenic aerosol loading over the Central Valley and the Los Angeles metropolitan regions and high natural aerosol (dust) loading over southeastern California. The seasonality of aerosol surface concentration is mainly determined by vertical turbulent mixing, ventilation, and photochemical activity, with distinct characteristics for individual aerosol species and between urban and rural areas. The simulations show that anthropogenic aerosols dominate the aerosol optical depth (AOD). The ratio of AOD to AAOD (aerosol absorption optical depth) shows distinct seasonality with a winter maximum and a summer minimum

  18. Hysteresis and mode transitions in plasma sheath collapse due to secondary electron emission

    NASA Astrophysics Data System (ADS)

    Langendorf, Samuel; Walker, Mitchell

    2016-03-01

    In this experiment, hysteresis is observed in the floating potential of wall material samples immersed in a low-temperature plasma as the energy of a prevalent non-thermal electron population is varied from 30-180 eV. It is indicated that the hysteresis is due to secondary electron emission from the wall material surface. Measurements are performed in a filament discharge in argon gas pressure 10 - 4 Torr of order 10 7 cm - 3 plasma number density. The primary ionizing electrons from the discharge filament make up 1%-10% of the overall plasma number density, depending on discharge voltage. Immersed LaB6-coated steel and roughened boron nitride (BN) wall material samples are mounted on the face of a radiative heater, and the wall temperature is controlled from 50-400 °C such that thermionic emission from the LaB6-coated sample is not significant. The energy of the primary plasma electrons from the discharge filament is varied and the floating potentials of the material samples are monitored. The floating potentials are observed to transition to a "collapsed" state as the primary electron energy is increased above 110 and 130 eV for the LaB6 and rough BN, respectively. As primary electron energy is subsequently decreased, the floating potentials do not "un-collapse" until lower energies of 80 and 100 eV, respectively. The hysteresis behavior agrees with a kinetic model. The results may help explain observations of global hysteresis and mode transitions in bounded plasma devices with dielectric walls, significant secondary electron emission, and departures of electron energy distribution function from a thermal Maxwellian.

  19. Radiative Effects of Aerosol in the Marine Environment: Tales from the Two-Column Aerosol Project

    NASA Astrophysics Data System (ADS)

    Berg, L. K.; Fast, J. D.; Barnard, J.; Chand, D.; Chapman, E. G.; Comstock, J. M.; Ferrare, R. A.; Flynn, C. J.; Hair, J. W.; Hostetler, C. A.; Hubbe, J.; Johnson, R.; Kassianov, E.; Kluzek, C.; Laskin, A.; Lee, Y.; Mei, F.; Michalsky, J. J.; Redemann, J.; Rogers, R. R.; Russell, P. B.; Sedlacek, A. J.; Schmid, B.; Shilling, J. E.; Shinozuka, Y.; Springston, S. R.; Tomlinson, J. M.; Wilson, J. M.; Zelenyuk, A.; Berkowitz, C. M.

    2013-12-01

    There is still uncertainty associated with the direct radiative forcing by atmospheric aerosol and its representation in atmospheric models. This is particularly true in marine environments near the coast where the aerosol loading is a function of both naturally occurring and anthropogenic aerosol. These regions are also subject to variable synoptic and thermally driven flows (land-sea breezes) that transport aerosol between the continental and marine environments. The situation is made more complicated due to seasonal changes in aerosol emissions. Given these differences in emissions, we expect significant differences in the aerosol intensive and extensive properties between summer and winter and data is needed to evaluate models over the wide range of conditions. To address this issue, the recently completed Two Column Aerosol Project (TCAP) was designed to measure the key aerosol parameters in two atmospheric columns, one located over Cape Cod, Massachusetts and another approximately 200 km from the coast over the Atlantic Ocean. Measurements included aerosol size distribution, chemical composition, optical properties and vertical distribution. Several aspects make TCAP unique, including the year-long deployment of a suite of surface-based instruments by the US Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility and two aircraft intensive operations periods supported by the ARM Airborne Facility, one conducted in July 2012 and a second in February 2013. The presentation will include a discussion of the impact of the aerosol optical properties and their uncertainty on simulations of the radiation budget within the TCAP domain in the context of both single column and regional scale models. Data from TCAP will be used to highlight a number of important factors, including diurnal variation in aerosol optical depth measured at the surface site, systematic changes in aerosol optical properties (including scattering, absorption, and

  20. Modulation of aerosol radiative forcing due to mixing state in clear and cloudy-sky: A case study from Delhi National Capital Region, India

    NASA Astrophysics Data System (ADS)

    Srivastava, Parul; Dey, Sagnik; Srivastava, Atul K.; Singh, Sachchidanand; Tiwari, Suresh; Agarwal, Poornima

    2016-04-01

    Aerosol properties change with the change in mixing state of aerosols and therefore it is a source of uncertainty in estimated aerosol radiative forcing (ARF) from observations or by models assuming a specific mixing state. The problem is important in the Indo-Gangetic Basin, Northern India, where various aerosol types mix and show strong seasonal variations. Quantifying the modulation of ARF by mixing state is hindered by lack of knowledge about proper aerosol composition. Hence, first a detailed chemical composition analysis of aerosols for Delhi National capital region (NCR) is carried out. Aerosol composition is arranged quantitatively into five major aerosol types - accumulation dust, coarse dust, water soluble (WS), water insoluble (WINS), and black carbon (BC) (directly measured by Athelometer). Eight different mixing cases - external mixing, internal mixing, and six combinations of core- shell mixing (BC over dust, WS over dust, WS over BC, BC over WS, WS over WINS, and BC over WINS; each of the combinations externally mixed with other species) have been considered. The spectral aerosol optical properties - extinction coefficient, single scattering albedo (SSA) and asymmetry parameter (g) for each of the mixing cases are calculated and finally 'clear-sky' and 'cloudy-sky' ARF at the top-of-the-atmosphere (TOA) and surface are estimated using a radiative transfer model. Comparison of surface-reaching flux for each of the cases with MERRA downward shortwave surface flux reveals the most likely mixing state. 'BC-WINS+WS+Dust' show least deviation relative to MERRA during the pre-monsoon (MAMJ) and monsoon (JAS) seasons and hence is the most probable mixing states. During the winter season (DJF), 'BC-Dust+WS+WINS' case shows the closest match with MERRA, while external mixing is the most probable mixing state in the post-monsoon season (ON). Lowest values for both TOA and surface 'clear-sky' ARF is observed for 'BC-WINS+WS+ Dust' mixing case. TOA ARF is 0.28±2

  1. Stratospheric aerosol, climatology derived from satellite solar occultation and infrared emission measurements

    NASA Astrophysics Data System (ADS)

    Bauman, Jill J.

    A global climatology has been produced on the stratospheric aerosol that spans nearly 15 years, from December 1984 to August 1999. The climatology includes values and uncertainties of measured extinction and optical depth from 0.385 μm to 12.82 μm, as well as retrieved particle effective radius Reff, distribution width σg, surface area S and volume V. As a basis for aerosol retrievals, a multi-wavelength Look-Up- Table (LUT) algorithm has been developed that uses a combination of 4wavelength Stratospheric Aerosol and Gas Experiment (SAGE) II extinction spectra (0.385-1.02 gym) and the Cryogenic Limb Array Etalon Spectrometer (CLASS) 7.96 and 12.82 gm extinction measurements. The LUT matches SAGE II/CLASS extinction ratios to pre- computed ratios that are based on a range of unimodal lognormal size distributions. By varying the distribution width, the uncertainties in measured extinction are propagated to corresponding uncertainties in Reff, S and V. The LUT includes an altitude- and time-dependent procedure to estimate and remove bias introduced by assuming a unimodal functional form. Bias correction reduces uncertainty in Reff, S and V by approximately 7%, 5% and 1%, respectively. This suggests that aerosol volume, and to a lesser extent surface area, are not as sensitive to a priori assumptions about distribution shape as retrievals of Reff. Aerosol retrievals show notable increases after most major volcanic eruptions, with increases in Reff lagging increases in other parameters. Post-volcanic increases in σg, indicative of broader size distributions, are consistent with sudden increases in both small and large particle sizes. After Pinatubo, retrieved Reff and σg took nearly 5 years to return to pre-eruption values, while slightly shorter recovery times are obtained for S and V. Seasonal variations in S and V are observed at high latitudes (with high values occurring in winter), but are less obvious in Reff. Latitudinal banding is often noted in retrievals

  2. Estimating Indirect Emissions from Land Use Change Due to Biofuels (Invited)

    NASA Astrophysics Data System (ADS)

    Reilly, J. M.

    2010-12-01

    Interest in biofuels as an alternative fuel has led to the realization that they may not be a viable low greenhouse gas alternative, even if process emissions are low, because expansions of land area in biomass crops may lead to forest destruction and hence carbon emissions.(1,2)If the concern was only direct land use effects—changes in carbon stocks on land directly used for biomass—direct measurement would be an option. However, agricultural economists recognize that if biofuels are produced from crops grown on existing cropland the crops previously grown there will likely be replaced by production elsewhere. Given international markets in agricultural products a diversion of land or part of the corn crop in the US for biofuels would result in higher market prices for corn and other crops, and thus spur land conversion almost anywhere around the world. There have now been a number of estimates of the potential land use emissions, and those estimates vary widely and are sensitive to key parameters of both the economic models used in the analysis and the representation of biophysical processes.(3,4,5)Among the important parameters are those that describe the willingness to convert unmanaged land, the ability to intensify production on existing land, the productivity of new land coming to production compared to existing cropland, demand elasticities for agricultural products, and the representation of carbon and nitrogen cycles and storage.(6,7) 1. J. Fargione, J. et al., Science 319, 1235 (2008). 2. T. Searchinger, T et al., Science 319, 1238 (2008) 3. J.M. Melillo, Science, 326: 1397-1399 (2009) 4. M. Wise et al., Science 324, 1183 (2009). 5. W. E. Tyner, et al., Land Use Changes and Consequent CO2 Emissions due to US Corn Ethanol Production: A Comprehensive Analysis, Department of Agricultural Economics, Purdue University (July 2010). 6. T. W. Hertel, The Global Supply and Demand for Agricultural Land in 2050: A Perfect Storm in the Making? AAEA Presidential

  3. Evidence of aqueous secondary organic aerosol formation from biogenic emissions in the North American Sonoran Desert

    PubMed Central

    Youn, Jong-Sang; Wang, Zhen; Wonaschütz, Anna; Arellano, Avelino; Betterton, Eric A.; Sorooshian, Armin

    2013-01-01

    This study examines the role of aqueous secondary organic aerosol formation in the North American Sonoran Desert as a result of intense solar radiation, enhanced moisture, and biogenic volatile organic compounds (BVOCs). The ratio of water-soluble organic carbon (WSOC) to organic carbon (OC) nearly doubles during the monsoon season relative to other seasons of the year. When normalized by mixing height, the WSOC enhancement during monsoon months relative to preceding dry months (May–June) exceeds that of sulfate by nearly a factor of 10. WSOC:OC and WSOC are most strongly correlated with moisture parameters, temperature, and concentrations of O3 and BVOCs. No positive relationship was identified between WSOC or WSOC:OC and anthropogenic tracers such as CO over a full year. This study points at the need for further work to understand the effect of BVOCs and moisture in altering aerosol properties in understudied desert regions. PMID:24115805

  4. Aerosol-fluorescence spectrum analyzer: real-time measurement of emission spectra of airborne biological particles

    NASA Astrophysics Data System (ADS)

    Hill, Steven C.; Pinnick, Ronald G.; Nachman, Paul; Chen, Gang; Chang, Richard K.; Mayo, Michael W.; Fernandez, Gilbert L.

    1995-10-01

    We have assembled an aerosol-fluorescence spectrum analyzer (AFS), which can measure the fluorescence spectra and elastic scattering of airborne particles as they flow through a laser beam. The aerosols traverse a scattering cell where they are illuminated with intense (50 kW/cm 2) light inside the cavity of an argon-ion laser operating at 488 nm. This AFS can obtain fluorescence spectra of individual dye-doped polystyrene microspheres as small as 0.5 mu m in diameter. The spectra obtained from microspheres doped with pink and green-yellow dyes are clearly different. We have also detected the fluorescence spectra of airborne particles (although not single particles) made from various

  5. Two Hundred Fifty Years of Aerosols and Climate: The End of the Age of Aerosols

    SciTech Connect

    Smith, Steven J.; Bond, Tami C.

    2014-01-20

    Carbonaceous and sulfur aerosols have a substantial global and regional influence on climate in addition to their impact on health and ecosystems. The magnitude of this influence has changed substantially over the past and is expected to continue to change into the future. An integrated picture of the changing climatic influence of black carbon, organic carbon and sulfate over the period 1850 through 2100, focusing on uncertainty, is presented using updated historical inventories and a coordinated set of emission projections. While aerosols have had a substantial impact on climate over the past century, by the end of the 21st century aerosols will likely be only a minor contributor to radiative forcing due to increases in greenhouse gas forcing and a global decrease in pollutant emissions. This outcome is even more certain under a successful implementation of a policy to limit greenhouse gas emissions as low-carbon energy technologies that do not emit appreciable aerosol or SO2 are deployed.

  6. Effects of anthropogenic emissions on the molecular composition of urban organic aerosols: An ultrahigh resolution mass spectrometry study

    NASA Astrophysics Data System (ADS)

    Kourtchev, I.; O'Connor, I. P.; Giorio, C.; Fuller, S. J.; Kristensen, K.; Maenhaut, W.; Wenger, J. C.; Sodeau, J. R.; Glasius, M.; Kalberer, M.

    2014-06-01

    Identification of the organic composition of atmospheric aerosols is necessary to develop effective air pollution mitigation strategies. However, the majority of the organic aerosol mass is poorly characterized and its detailed analysis is a major analytical challenge. In this study, we applied state-of-the-art direct infusion nano-electrospray (nanoESI) ultrahigh resolution mass spectrometry (UHRMS) and liquid chromatography ESI Quadrupole Time-of-Flight (Q-TOF) MS for the analysis of the organic fraction of fine particulate matter (PM2.5) collected at an urban location in Cork, Ireland. Comprehensive mass spectral data evaluation methods (e.g., Kendrick Mass Defect and Van Krevelen) were used to identify compound classes and mass distributions of the detected species. Up to 850 elemental formulae were identified in negative mode nanoESI-UHR-MS. Nitrogen and/or sulphur containing organic species contributed up to 40% of the total identified formulae and exhibited strong diurnal variations suggesting the importance of night-time NO3 chemistry at the site. The presence of a large number of oxidised aromatic and nitroaromatic compounds in the samples indicated a strong anthropogenic influence, i.e., from traffic emissions and domestic solid fuel (DSF) burning. Most of the identified biogenic secondary organic aerosol (SOA) compounds are later-generation nitrogen- and sulphur-containing products, indicating that SOA composition is strongly affected by anthropogenic species such as NOx and SO2. Unsaturated and saturated C12-C20 fatty acids were found to be the most abundant homologs with a composition reflecting a primary marine origin. The results of this work demonstrate that the studied site is a very complex environment affected by a variety of anthropogenic activities and natural sources.

  7. Air Force F-16 Aircraft Engine Aerosol Emissions Under Cruise Altitude Conditions

    NASA Technical Reports Server (NTRS)

    Anderson, Bruce E.; Cofer, W. Randy, III; McDougal, David S.

    1999-01-01

    Selected results from the June 1997 Third Subsonic Assessment Near-Field Interactions Flight (SNIF-III) Experiment are documented. The primary objectives of the SNIF-III experiment were to determine the partitioning and abundance of sulfur species and to examine the formation and growth of aerosol particles in the exhaust of F-16 aircraft as a function of atmospheric and aircraft operating conditions and fuel sulfur concentration. This information is, in turn, being used to address questions regarding the fate of aircraft fuel sulfur impurities and to evaluate the potential of their oxidation products to perturb aerosol concentrations and surface areas in the upper troposphere. SNIF-III included participation of the Vermont and New Jersey Air National Guard F-16's as source aircraft and the Wallops Flight Facility T-39 Sabreliner as the sampling platform. F-16's were chosen as a source aircraft because they are powered by the modern F-100 Series 220 engine which is projected to be representative of future commercial aircraft engine technology. The T-39 instrument suite included sensors for measuring volatile and non-volatile condensation nuclei (CN), aerosol size distributions over the range from 0.1 to 3.0 (micro)m, 3-D winds, temperature, dewpoint, carbon dioxide (CO2), sulfur dioxide (SO2), sulfuric acid (H2SO4), and nitric acid (HNO3).

  8. Towards a Global Aerosol Climatology: Preliminary Trends in Tropospheric Aerosol Amounts and Corresponding Impact on Radiative Forcing between 1950 and 1990

    NASA Technical Reports Server (NTRS)

    Tegen, Ina; Koch, Dorothy; Lacis, Andrew A.; Sato, Makiko

    1999-01-01

    A global aerosol climatology is needed in the study of decadal temperature change due to natural and anthropogenic forcing of global climate change. A preliminary aerosol climatology has been developed from global transport models for a mixture of sulfate and carbonaceous aerosols from fossil fuel burning, including also contributions from other major aerosol types such as soil dust and sea salt. The aerosol distributions change for the period of 1950 to 1990 due to changes in emissions of SO2 and carbon particles from fossil fuel burning. The optical thickness of fossil fuel derived aerosols increased by nearly a factor of 3 during this period, with particularly strong increase in eastern Asia over the whole time period. In countries where environmental laws came into effect since the early 1980s (e.g. US and western Europe), emissions and consequently aerosol optical thicknesses did not increase considerably after 1980, resulting in a shift in the global distribution pattern over this period. In addition to the optical thickness, aerosol single scattering albedos may have changed during this period due to different trends in absorbing black carbon and reflecting sulfate aerosols. However, due to the uncertainties in the emission trends, this change cannot be determined with any confidence. Radiative forcing of this aerosol distribution is calculated for several scenarios, resulting in a wide range of uncertainties for top-of-atmosphere (TOA) forcings. Uncertainties in the contribution of the strongly absorbing black carbon aerosol leads to a range in TOA forcings of ca. -0.5 to + 0.1 Wm (exp. -2), while the change in aerosol distributions between 1950 to 1990 leads to a change of -0.1 to -0.3 Wm (exp. -2), for fossil fuel derived aerosol with a "moderate" contribution of black carbon aerosol.

  9. The impact of anthropogenic emissions on the otherwise pristine Amazonian rainforest: Insights on aerosol dynamics as observed during GoAmazon2014/5

    NASA Astrophysics Data System (ADS)

    Carbone, S.; Ferreira De Brito, J.; Cirino, G. G.; Rizzo, L. V.; Holanda, B. A.; Barbosa, H. M.; Ditas, F.; Pöhlker, C.; Chi, X.; Krüger, M. L.; Moran, D.; Saturno, J.; Andreae, M. O.; de Sá, S. S.; Liu, Y.; Martin, S. T.; Souza, R. A. F. D.; Wang, J.; Palm, B. B.; Jimenez, J. L.; Artaxo, P.

    2015-12-01

    The Amazon Basin during the wet season has one of the lowest aerosol concentrations worldwide, with air masses with negligible human impact covering thousands of kilometers of pristine forest. The natural environment is strongly modified near urbanized areas, in particular Manaus, a city of nearly two million people. This unique location provides the ideal laboratory to study isolated urban emissions as well the pristine environment by perturbing it in a relatively known fashion. The GoAmazon2014/5 experiment was designed with these questions in mind, combining remote sensing, in situ, and airborne measurements. This manuscript describes the measurements taken at the T0 site, upwind of Manaus, (the Amazonian Tall Tower Observatory, ATTO site), at the T2 site, near Manaus, frequently impacted by relatively fresh emissions from the city and at T3, 60 km downwind of Manaus. This work relates the aerosol dynamics of the mixture of anthropogenic emissions from Manaus and the biogenic air masses, and how it evolves from T2 to T3 under different atmospheric conditions. Focus is on the aerosol size distribution, supported by aerosol mass spectrometry and gas-phase composition, in particular at the T2 site. At T0, the aerosol number concentration has been observed to increase from an average of 380 cm-3 to 1750 cm-3 from the wet to the dry season. The mean geometric diameter increased as well, from 95 nm to 145 nm. Interestingly, at the T2 site no significant difference was observed in number concentration between wet and dry seasons (approximately 4300 cm-3) with an average diameter of 60 nm during the former and 97 nm in the latter. Such measurements provide a unique dataset to understand the aerosol life cycle and the impact of urban emissions in the heart of the Amazon Forest.

  10. A HTAP Multi-Model Assessment of the Influence of Regional Anthropogenic Emission Reductions on Aerosol Direct Radiative Forcing and the Role of Intercontinental Transport

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Chin, Mian; West, J. Jason; Atherton, Cynthia S.; Bellouin, Nicolas; Bergmann, Dan; Bey, Isabelle; Bian, Huisheng; Diehl, Thomas; Forberth, Gerd; Hess, Peter; Schulz, Michael; Shindell, Drew; Takemura, Toshihiko; Tan, Qian

    2012-01-01

    In this study, we assess changes of aerosol optical depth (AOD) and direct radiative forcing (DRF) in response to the reduction of anthropogenic emissions in four major pollution regions in the northern hemisphere by using results from 10 global chemical transport models in the framework of the Hemispheric Transport of Air Pollution (HTAP). The multi-model results show that on average, a 20% reduction of anthropogenic emissions in North America, Europe, East Asia and South Asia lowers the global mean AOD and DRF by about 9%, 4%, and 10% for sulfate, organic matter, and black carbon aerosol, respectively. The impacts of the regional emission reductions on AOD and DRF extend well beyond the source regions because of intercontinental transport. On an annual basis, intercontinental transport accounts for 10-30% of the overall AOD and DRF in a receptor region, with domestic emissions accounting for the remainder, depending on regions and species. While South Asia is most influenced by import of sulfate aerosol from Europe, North America is most influenced by import of black carbon from East Asia. Results show a large spread among models, highlighting the need to improve aerosol processes in models and evaluate and constrain models with observations.

  11. Historical gaseous and primary aerosol emissions in the United States from 1990 to 2010

    NASA Astrophysics Data System (ADS)

    Xing, J.; Pleim, J.; Mathur, R.; Pouliot, G.; Hogrefe, C.; Gan, C.-M.; Wei, C.

    2013-08-01

    An accurate description of emissions is crucial for model simulations to reproduce and interpret observed phenomena over extended time periods. In this study, we used an approach based on activity data to develop a consistent series of spatially resolved emissions in the United States from 1990 to 2010. The state-level anthropogenic emissions of SO2, NOx, CO, NMVOC (non-methane volatile organic compounds), NH3, PM10 and PM2.5 for a total of 49 sectors were estimated based on several long-term databases containing information about activities and emission controls. Activity data for energy-related stationary sources were derived from the State Energy Data System. Corresponding emission factors reflecting implemented emission controls were calculated back from the National Emissions Inventory (NEI) for seven years (i.e., 1990, 1995, 1996, 1999, 2001, 2002 and 2005), and constrained by the AP-42 (US EPA's Compilation of Air Pollutant Emissions Factors) dataset. Activity data for mobile sources including different types of highway vehicles and non-highway equipment were obtained from highway statistics reported by the Federal Highway Administration. The trends in emission factors for highway mobile source were informed by the 2011 National Transportation Statistics. Emissions for all non-energy-related sources were either scaled by the growth ratio of activity indicators or adjusted based on the NEI trends report. Because of the strengthened control efforts, particularly for the power sector and mobile sources, emissions of all pollutants except NH3 were reduced by half over the last two decades. The emission trends developed in this study are comparable with the NEI trend report and EDGAR (Emissions Database for Global Atmospheric Research) data, but better constrained by trends in activity data. Reductions in SO2, NOx, CO and EC (speciation of PM2.5 by SMOKE, Sparse Matrix Operator Kernel Emissions) emissions agree well with the observed changes in ambient SO2, NO2

  12. Characterization of submicron particles influenced by mixed biogenic and anthropogenic emissions using high-resolution aerosol mass spectrometry: results from CARES

    SciTech Connect

    Setyan, Ari; Zhang, Qi; Merkel, M.; Knighton, Walter B.; Sun, Y.; Song, Chen; Shilling, John E.; Onasch, Timothy B.; Herndon, Scott C.; Worsnop, Douglas R.; Fast, Jerome D.; Zaveri, Rahul A.; Berg, Larry K.; Wiedensohler, A.; Flowers, B. A.; Dubey, Manvendra K.; Subramanian, R.

    2012-09-11

    The Carbonaceous Aerosols and Radiative Effects Study (CARES) took place in the Sacramento Valley of California in summer 2010. We present results obtained at Cool, CA, the T1 site of the project ({approx}40 km downwind of urban emissions from Sacramento), where we deployed an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) in parallel with complementary instrumentation to characterize the sources and processes of submicron particles (PM1). Cool is located at the foothill of the Sierra Nevada Mountains, where intense biogenic emissions are periodically mixed with urban outflow transported by daytime southwesterly winds from the Sacramento metropolitan area. The particle mass loading was low (3.0 {micro}gm{sup -3} on average) and dominated by organics (80% of the PM1 mass) followed by sulfate (9.9 %). Organics and sulfate appeared to be externally mixed, as suggested by their different time series (r2 = 0.13) and size distributions. Sulfate showed a bimodal distribution with a droplet mode peaking at {approx}400nm in vacuum aerodynamic diameter (Dva), and a condensation mode at {approx}150 nm, while organics generally displayed a broad distribution in 60-600nm (Dva). New particle formation and growth events were observed almost every day, emphasizing the roles of organics and sulfate in new particle growth, especially that of organics. The organic aerosol (OA) had a nominal formula of C{sub 1}H{sub 1.38}N{sub 0.004}O{sub 0.44}, thus an average organic mass-to-carbon (OM/OC) ratio of 1.70. Two different oxygenated OA (OOA, 90% of total OA mass) and a hydrocarbon-like OA (HOA, 10 %) were identified by Positive matrix factorization (PMF) of the high resolution mass spectra. The more oxidized MO-OOA (O/C = 0.54) corresponded to secondary OA (SOA) primarily influenced by biogenic emissions, while the less oxidized LO-OOA (O/C = 0.42) corresponded to SOA associated with urban transport. The HOA factor corresponded to primary emissions mainly

  13. Historical gaseous and primary aerosol emissions in the United States from 1990-2010

    NASA Astrophysics Data System (ADS)

    Xing, J.; Pleim, J.; Mathur, R.; Pouliot, G.; Hogrefe, C.; Gan, C.-M.; Wei, C.

    2012-11-01

    An accurate description of emissions is crucial for model simulations to reproduce and interpret observed phenomena over extended time periods. In this study, we used an approach based on activity data to develop a consistent series of spatially resolved emissions in the United States from 1990 to 2010. The state-level anthropogenic emissions of SO2, NOx, CO, NMVOC, NH3, PM10 and PM2.5 for a total of 49 sectors were estimated based on several long-term databases containing information about activities and emission controls. Activity data for energy-related stationary sources were derived from the State Energy Data System. Corresponding emission factors reflecting implemented emission controls were calculated back from the National Emission Inventory (NEI) for seven years (i.e. 1990, 1995, 1996, 1999, 2001, 2002 and 2005), and constrained by the AP-42 (US EPA's Compilation of Air Pollutant Emissions Factors) dataset. Activity data for mobile sources including different types of highway vehicles and non-highway equipments were obtained from highway statistics reported by the Federal Highway Administration. The trends in emission factors for highway mobile source were informed by the 2011 National Transportation Statistics. Emissions for all non-energy related sources were either scaled by the growth ratio of activity indicators or adjusted based on the NEI trends report. Because of the strengthened control efforts, particularly for the power sector and mobile sources, emissions of all pollutants except NH3 were reduced by half over the last two decades. The emission trends developed in this study are comparable with the NEI trend report and EDGAR (Emissions Database for Global Atmospheric Research) data, but better constrained by trends in activity data. Reductions in SO2 and NOx emissions agree well with the observed changes in ambient SO2 and NO2 concentrations, suggesting that the various controls on SO2 and NOx emissions implemented over the last two decades are

  14. Reduction of CO2 Emissions Due to Wind Energy - Methods and Issues in Estimating Operational Emission Reductions

    SciTech Connect

    Holttinen, Hannele; Kiviluoma, Juha; McCann, John; Clancy, Matthew; Millgan, Michael; Pineda, Ivan; Eriksen, Peter Borre; Orths, Antje; Wolfgang, Ove

    2015-10-05

    This paper presents ways of estimating CO2 reductions of wind power using different methodologies. Estimates based on historical data have more pitfalls in methodology than estimates based on dispatch simulations. Taking into account exchange of electricity with neighboring regions is challenging for all methods. Results for CO2 emission reductions are shown from several countries. Wind power will reduce emissions for about 0.3-0.4 MtCO2/MWh when replacing mainly gas and up to 0.7 MtCO2/MWh when replacing mainly coal powered generation. The paper focuses on CO2 emissions from power system operation phase, but long term impacts are shortly discussed.

  15. Fractional iron solubility of aerosol particles enhanced by biomass burning and ship emission in Shanghai, East China.

    PubMed

    Fu, H B; Shang, G F; Lin, J; Hu, Y J; Hu, Q Q; Guo, L; Zhang, Y C; Chen, J M

    2014-05-15

    In terms of understanding Fe mobilization from aerosol particles in East China, the PM2.5 particles were collected in spring at Shanghai. Combined with the backtrajectory analysis, the PM2.5/PM10 and Ca/Al ratios, a serious dust-storm episode (DSE) during the sampling was identified. The single-particle analysis showed that the major iron-bearing class is the aluminosilicate dust during DSE, while the Fe-bearing aerosols are dominated by coal fly ash, followed by a minority of iron oxides during the non-dust storm days (NDS). Chemical analyses of samples showed that the fractional Fe solubility (%FeS) is much higher during NDS than that during DSE, and a strong inverse relationship of R(2)=0.967 between %FeS and total atmospheric iron loading were found, suggested that total Fe (FeT) is not controlling soluble Fe (FeS) during the sampling. Furthermore, no relationship between FeS and any of acidic species was established, suggesting that acidic process on aerosol surfaces are not involved in the trend of iron solubility. It was thus proposed that the source-dependent composition of aerosol particles is a primary determinant for %FeS. Specially, the Al/Fe ratio is poorly correlated (R(2)=0.113) with %FeS, while the apparent relationship between %FeS and the calculated KBB(+)/Fe ratio (R(2)=0.888) and the V/Fe ratio (R(2)=0.736) were observed, reflecting that %FeS could be controlled by both biomass burning and oil ash from ship emission, rather than mineral particles and coal fly ash, although the latter two are the main contributors to the atmospheric Fe loading during the sampling. Such information can be useful improving our understanding on iron solubility on East China, which may further correlate with iron bioavailability to the ocean, as well as human health effects associated with exposure to fine Fe-rich particles in densely populated metropolis in China. PMID:24607631

  16. Fractional iron solubility of aerosol particles enhanced by biomass burning and ship emission in Shanghai, East China.

    PubMed

    Fu, H B; Shang, G F; Lin, J; Hu, Y J; Hu, Q Q; Guo, L; Zhang, Y C; Chen, J M

    2014-05-15

    In terms of understanding Fe mobilization from aerosol particles in East China, the PM2.5 particles were collected in spring at Shanghai. Combined with the backtrajectory analysis, the PM2.5/PM10 and Ca/Al ratios, a serious dust-storm episode (DSE) during the sampling was identified. The single-particle analysis showed that the major iron-bearing class is the aluminosilicate dust during DSE, while the Fe-bearing aerosols are dominated by coal fly ash, followed by a minority of iron oxides during the non-dust storm days (NDS). Chemical analyses of samples showed that the fractional Fe solubility (%FeS) is much higher during NDS than that during DSE, and a strong inverse relationship of R(2)=0.967 between %FeS and total atmospheric iron loading were found, suggested that total Fe (FeT) is not controlling soluble Fe (FeS) during the sampling. Furthermore, no relationship between FeS and any of acidic species was established, suggesting that acidic process on aerosol surfaces are not involved in the trend of iron solubility. It was thus proposed that the source-dependent composition of aerosol particles is a primary determinant for %FeS. Specially, the Al/Fe ratio is poorly correlated (R(2)=0.113) with %FeS, while the apparent relationship between %FeS and the calculated KBB(+)/Fe ratio (R(2)=0.888) and the V/Fe ratio (R(2)=0.736) were observed, reflecting that %FeS could be controlled by both biomass burning and oil ash from ship emission, rather than mineral particles and coal fly ash, although the latter two are the main contributors to the atmospheric Fe loading during the sampling. Such information can be useful improving our understanding on iron solubility on East China, which may further correlate with iron bioavailability to the ocean, as well as human health effects associated with exposure to fine Fe-rich particles in densely populated metropolis in China.