Science.gov

Sample records for aerosol extinction spectrometer

  1. Light extinction by secondary organic aerosol: an intercomparison of three broadband cavity spectrometers

    NASA Astrophysics Data System (ADS)

    Varma, R. M.; Ball, S. M.; Brauers, T.; Dorn, H.-P.; Heitmann, U.; Jones, R. L.; Platt, U.; Pöhler, D.; Ruth, A. A.; Shillings, A. J. L.; Thieser, J.; Wahner, A.; Venables, D. S.

    2013-11-01

    Broadband optical cavity spectrometers are maturing as a technology for trace-gas detection, but only recently have they been used to retrieve the extinction coefficient of aerosols. Sensitive broadband extinction measurements allow explicit separation of gas and particle phase spectral contributions, as well as continuous spectral measurements of aerosol extinction in favourable cases. In this work, we report an intercomparison study of the aerosol extinction coefficients measured by three such instruments: a broadband cavity ring-down spectrometer (BBCRDS), a cavity-enhanced differential optical absorption spectrometer (CE-DOAS), and an incoherent broadband cavity-enhanced absorption spectrometer (IBBCEAS). Experiments were carried out in the SAPHIR atmospheric simulation chamber as part of the NO3Comp campaign to compare the measurement capabilities of NO3 and N2O5 instrumentation. Aerosol extinction coefficients between 655 and 690 nm are reported for secondary organic aerosols (SOA) formed by the NO3 oxidation of β-pinene under dry and humid conditions. Despite different measurement approaches and spectral analysis procedures, the three instruments retrieved aerosol extinction coefficients that were in close agreement. The refractive index of SOA formed from the β-pinene + NO3 reaction was 1.61, and was not measurably affected by the chamber humidity or by aging of the aerosol over several hours. This refractive index is significantly larger than SOA refractive indices observed in other studies of OH and ozone-initiated terpene oxidations, and may be caused by the large proportion of organic nitrates in the particle phase. In an experiment involving ammonium sulfate particles, the aerosol extinction coefficients as measured by IBBCEAS were found to be in reasonable agreement with those calculated using the Mie theory. The results of the study demonstrate the potential of broadband cavity spectrometers for determining the optical properties of aerosols.

  2. Light extinction by Secondary Organic Aerosol: an intercomparison of three broadband cavity spectrometers

    NASA Astrophysics Data System (ADS)

    Varma, R. M.; Ball, S. M.; Brauers, T.; Dorn, H.-P.; Heitmann, U.; Jones, R. L.; Platt, U.; Pöhler, D.; Ruth, A. A.; Shillings, A. J. L.; Thieser, J.; Wahner, A.; Venables, D. S.

    2013-07-01

    Broadband optical cavity spectrometers are maturing as a technology for trace gas detection, but only recently have they been used to retrieve the extinction coefficient of aerosols. Sensitive broadband extinction measurements allow explicit separation of gas and particle phase spectral contributions, as well as continuous spectral measurements of aerosol extinction in favourable cases. In this work, we report an intercomparison study of the aerosol extinction coefficients measured by three such instruments: a broadband cavity ring-down spectrometer (BBCRDS), a cavity-enhanced differential optical absorption spectrometer (CE-DOAS), and an incoherent broadband cavity-enhanced absorption spectrometer (IBBCEAS). Experiments were carried out in the SAPHIR atmospheric simulation chamber as part of the NO3Comp campaign to compare the measurement capabilities of NO3 and N2O5 instrumentation. Aerosol extinction coefficients between 655 and 690 nm are reported for secondary organic aerosols (SOA) formed by the NO3 oxidation of β-pinene under dry and humid conditions. Despite different measurement approaches and spectral analysis procedures, the three instruments retrieved aerosol extinction coefficients that were in close agreement. The refractive index of SOA formed from the β-pinene + NO3 reaction was 1.61, and was not measurably affected by the chamber humidity or by aging of the aerosol over several hours. This refractive index is significantly larger than SOA refractive indices observed in other studies of OH and ozone-initiated terpene oxidations, and may be caused by the large proportion of organic nitrates in the particle phase. In an experiment involving ammonium sulphate particles the aerosol extinction coefficients as measured by IBBCEAS were found to be in reasonable agreement with those calculated using Mie theory. The results of the study demonstrate the potential of broadband cavity spectrometers for determining the optical properties of aerosols.

  3. A broadband cavity-enhanced spectrometer for measuring the extinction of aerosols at blue and near-UV wavelengths

    NASA Astrophysics Data System (ADS)

    Venables, Dean; Fullam, Donovan; Hoa Le, Phuoc; Chen, Jun; Böge, Olaf; Herrmann, Hartmut

    2016-04-01

    We describe a new broadband cavity-enhanced absorption spectrometer for sensitive extinction measurements of aerosols. The instrument is distinguished by its broad and continuous spectral coverage from the near-UV to blue wavelengths (ca. 320 to 450 nm). The short wavelength region has been little explored compared to visible wavelengths, but is important because (1) brown carbon (BrC) absorbs strongly in this wavelength region, and (2) absorption of near-UV radiation in the atmosphere alters the photolysis rate of the key atmospheric species O3, NO2, and HONO, with implications for air quality and atmospheric oxidation capacity. The instrument performance and the effect of a switchable in-line filter are characterised. Early results using the instrument in the TROPOS atmospheric simulation chamber are presented. These experiments include studies of secondary organic aerosol formation (SOA), and biomass burning experiments of rice and wheat straw, followed by experiments simulating particle aging under daytime and nighttime conditions.

  4. Design Of A Novel Open-Path Aerosol Extinction Cavity Ringdown Spectrometer And Initial Data From Deployment At NOAA's Atmospheric Observatory

    NASA Astrophysics Data System (ADS)

    Gordon, T. D.; Wagner, N. L.; Richardson, M.; Law, D. C.; Wolfe, D. E.; Brock, C. A.; Erdesz, F.; Murphy, D. M.

    2014-12-01

    The ability to frame effective climate change policy depends strongly on reducing the uncertainty in aerosol radiative forcing, which is currently nearly as great as best estimates of its magnitude. Achieving this goal will require significant progress in measuring aerosol properties, including aerosol optical depth, single scattering albedo and the effect of relative humidity on these properties for both fine and coarse particles. However both ground- and space-based instruments fail or are highly biased in the presence of clouds, severely limiting quantitative estimates of the radiative effects of aerosols where they are advected over low-level clouds. Moreover, many in situ aerosol measurements exclude the coarse fraction, which can be very important in and downwind of desert regions. By measuring the decay rate of a pulsed laser in an optically resonant cavity, cavity ringdown spectrometers (CRDSs) have been employed successfully in measuring aerosol extinction for particles in relative humidities below 90%. At very high humidities (as found in and near clouds), however, existing CRDSs perform poorly, diverging significantly from theoretical extinction values as humidities approach 100%. The new open-path aerosol extinction CRDS described in this poster measures extinction as aerosol is drawn through the sample cavity directly without inlets or tubing for channeling the flow, which cause particle losses, condensation at high RH and other artifacts. This poster presents the key elements of the new open-path CRDS design as well as comparisons with an earlier generation closed-path CRDS and preliminary data obtained during a field study at the 300 meter tower at NOAA's Boulder Atmospheric Observatory (BAO) in Colorado.

  5. Aerosol mobility size spectrometer

    DOEpatents

    Wang, Jian; Kulkarni, Pramod

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  6. Aerosol extinction measurements with CO2-lidar

    NASA Technical Reports Server (NTRS)

    Hagard, Arne; Persson, Rolf

    1992-01-01

    With the aim to develop a model for infrared extinction due to aerosols in slant paths in the lower atmosphere we perform measurements with a CO2-lidar. Earlier measurements with a transmissometer along horizontal paths have been used to develop relations between aerosol extinction and meteorological parameters. With the lidar measurements we hope to develop corresponding relations for altitude profiles of the aerosol extinction in the infrared. An important application is prediction of detection range for infrared imaging systems.

  7. Optical extinction of highly porous aerosol following atmospheric freeze drying

    NASA Astrophysics Data System (ADS)

    Adler, Gabriela; Haspel, Carynelisa; Moise, Tamar; Rudich, Yinon

    2014-06-01

    Porous glassy particles are a potentially significant but unexplored component of atmospheric aerosol that can form by aerosol processing through the ice phase of high convective clouds. The optical properties of porous glassy aerosols formed from a freeze-dry cycle simulating freezing and sublimation of ice particles were measured using a cavity ring down aerosol spectrometer (CRD-AS) at 532 nm and 355 nm wavelength. The measured extinction efficiency was significantly reduced for porous organic and mixed organic-ammonium sulfate particles as compared to the extinction efficiency of the homogeneous aerosol of the same composition prior to the freeze-drying process. A number of theoretical approaches for modeling the optical extinction of porous aerosols were explored. These include effective medium approximations, extended effective medium approximations, multilayer concentric sphere models, Rayleigh-Debye-Gans theory, and the discrete dipole approximation. Though such approaches are commonly used to describe porous particles in astrophysical and atmospheric contexts, in the current study, these approaches predicted an even lower extinction than the measured one. Rather, the best representation of the measured extinction was obtained with an effective refractive index retrieved from a fit to Mie scattering theory assuming spherical particles with a fixed void content. The single-scattering albedo of the porous glassy aerosols was derived using this effective refractive index and was found to be lower than that of the corresponding homogeneous aerosol, indicating stronger relative absorption at the wavelengths measured. The reduced extinction and increased absorption may be of significance in assessing direct, indirect, and semidirect forcing in regions where porous aerosols are expected to be prevalent.

  8. Aerosol Extinction and Single Scattering Albedo Downwind of the Summer 2008 California Wildfires Measured With Photoacoustic Spectrometers and Sunphotometers From 355 nm to 1047 nm.

    NASA Astrophysics Data System (ADS)

    Arnott, W. P.; Gyawali, M. S.; Arnold, I. J.

    2008-12-01

    Hundreds of wildfires in Northern California were sparked by lightning during the summer of 2008, resulting in downwind smoke for much of June and July associated with the flaming and smoldering stages of the fires. These fires are consistent with a growing trend towards increasing biomass burning worldwide. Climate impacts from the smoke depend critically on the smoke amount and aerosol optical properties. We report comparison of aerosol optics measurements in Reno Nevada made during the very smoky summer month of July with the relatively clean, average month of August. Photoacoustic instruments equipped with integrating nephelometers were used to measure aerosol light scattering and absorption at wavelengths of 355 nm, 405 nm, 532 nm, 870 nm, and 1047 nm. Total aerosol optical depth was measured with a sun photometer operating at 430nm, 470nm, 530nm, 660nm, 870nm and 950nm. A spectrometer based sun photometer with an operating range from 390nm to 880 nm was also used for a few days as well. These measurements document the intensity of the smoke optical impacts downwind. They are processed further to reveal a strong variation of the aerosol light absorption on wavelength, indicating the presence of light absorbing organic material and perhaps wavelength dependent absorption caused by black carbon particles coated with organic and inorganic particulate matter. On the day with most smoke in Reno (July 10, 2008) Angstrom coefficients for absorption as high as 3.6 were found for wavelengths of 405 nm and 870 nm, with the corresponding single scattering albedo near 0.92 at 405 nm. Aerosol optical depths of 3.5 were found for 430 nm on July 10th from the sun photometer measurements. A roughly fourfold increase in aerosol optical quantities was observed between the months of July and August 2008, attesting to the large average effects of biomass aerosols from the California wildfires.

  9. Broadband measurements of aerosol extinction in the ultraviolet spectral region

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Flores, J. M.; Brock, C. A.; Brown, S. S.; Rudich, Y.

    2013-01-01

    Aerosols influence the Earth's radiative budget by scattering and absorbing incoming solar radiation. The optical properties of aerosols vary as a function of wavelength, but few measurements have reported the wavelength dependence of aerosol extinction cross-sections and complex refractive indices. We describe a new laboratory instrument to measure aerosol optical extinction as a function of wavelength, using cavity enhanced spectroscopy with a broadband light source. The instrument consists of two broadband channels which span the 360-390 and 385-420 nm spectral regions using two light emitting diodes (LED) and a grating spectrometer with charge-coupled device (CCD) detector. We determined aerosol extinction cross-sections and directly observed Mie scattering resonances for aerosols that are purely scattering (polystyrene latex spheres and ammonium sulfate), slightly absorbing (Suwannee River fulvic acid), and strongly absorbing (nigrosin dye). We describe an approach for retrieving refractive indices as a function of wavelength from the measured extinction cross-sections over the 360-420 nm wavelength region. The retrieved refractive indices for PSL and ammonium sulfate agree within uncertainty with literature values for this spectral region. The refractive index determined for nigrosin is 1.78 (±0.03) + 0.19 (±0.08) i at 360 nm and 1.53 (±0.03) + 0.21 (±0.05) i at 420 nm. The refractive index determined for Suwannee River fulvic acid is 1.71 (±0.02) + 0.07 (±0.06) i at 360 nm and 1.66 (±0.02) + 0.06 (±0.04) i at 420 nm. These laboratory results support the potential for a field instrument capable of determining ambient aerosol optical extinction, average aerosol extinction cross-section, and complex refractive index as a function of wavelength.

  10. Broadband measurements of aerosol extinction in the ultraviolet spectral region

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Flores, J. M.; Brock, C. A.; Brown, S. S.; Rudich, Y.

    2013-04-01

    Aerosols influence the Earth's radiative budget by scattering and absorbing incoming solar radiation. The optical properties of aerosols vary as a function of wavelength, but few measurements have reported the wavelength dependence of aerosol extinction cross sections and complex refractive indices. We describe a new laboratory instrument to measure aerosol optical extinction as a function of wavelength, using cavity enhanced spectroscopy with a broadband light source. The instrument consists of two broadband channels which span the 360-390 and 385-420 nm spectral regions using two light emitting diodes (LED) and a grating spectrometer with charge-coupled device (CCD) detector. We determined aerosol extinction cross sections and directly observed Mie scattering resonances for aerosols that are purely scattering (polystyrene latex spheres and ammonium sulfate), slightly absorbing (Suwannee River fulvic acid), and strongly absorbing (nigrosin dye). We describe an approach for retrieving refractive indices as a function of wavelength from the measured extinction cross sections over the 360-420 nm wavelength region. The retrieved refractive indices for PSL and ammonium sulfate agree within uncertainty with the literature values for this spectral region. The refractive index determined for nigrosin is 1.78 (± 0.03) + 0.19 (± 0.08)i at 360 nm and 1.63 (± 0.03) + 0.21 (± 0.05)i at 420 nm. The refractive index determined for Suwannee River fulvic acid is 1.71 (± 0.02) + 0.07 (± 0.06)i at 360 nm and 1.66 (± 0.02) + 0.06 (± 0.04)i at 420 nm. These laboratory results support the potential for a field instrument capable of determining ambient aerosol optical extinction, average aerosol extinction cross section, and complex refractive index as a function of wavelength.

  11. Wavelength dependence of aerosol extinction coefficient for stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Yue, Glenn K.

    1986-01-01

    A simple empirical formula for the wavelength dependence of the aerosol extinction coefficient is proposed. The relationship between the constants in the formula and the variable parameter in the aerosol size distribution is explicitly expressed. Good agreement is found between the extinction coefficients calculated from the proposed formula and that calculated from Mie theory. The proposed expression is shown to be better than the Angstroem formula commonly used by atmospheric scientists.

  12. In Situ Measurement of Aerosol Extinction

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W.; Castaneda, R.; Owano, T. G.; Bear, D.; Gore, Warren J. (Technical Monitor)

    2001-01-01

    Aerosols are important contributors to the radiative forcing in the atmosphere. Much of the uncertainty in our knowledge of climate forcing is due to uncertainties in the radiative forcing due to aerosols as illustrated in the IPCC reports of the last ten years. Improved measurement of aerosol optical properties, therefore, is critical to an improved understanding of atmospheric radiative forcing. Additionally, attempts to reconcile in situ and remote measurements of aerosol radiative properties have generally not been successful. This is due in part to the fact that it has been impossible to measure aerosol extinction in situ in the past. In this presentation we introduce a new instrument that employs the techniques used in cavity ringdown spectroscopy to measure the aerosol extinction and scattering coefficients in situ. A prototype instrument has been designed and tested in the lab and the field. It is capable of measuring aerosol extinction coefficient to 2x10(exp -6) per meter. This prototype instrument is described and results are presented.

  13. Humidity Dependent Extinction of Clay Aerosols

    NASA Astrophysics Data System (ADS)

    Greenslade, M. E.; Attwood, A. R.

    2010-12-01

    Aerosols play an important role in the Earth’s radiative balance by directly scattering and absorbing radiation. The magnitude of aerosol forcing can be altered by changes in relative humidity which cause aerosol size, shape and refractive index to vary. To quantify these effects, a custom cavity ring down instrument operated at 532 nm with two sample channels measures aerosols extinction under dry conditions and at elevated humidity. The optical growth, fRH(ext), is determined as a ratio of the extinction cross section at high relative humidity to that under dry conditions. Three key clay components of mineral dust and mixtures of clay components with ammonium sulfate are investigated using this method. Experimentally obtained optical growth is compared with physical growth factors from the literature and our work determined using several different techniques. Further, Mie theory calculations based on published optical constants are compared with experimental results. Differences between theory and experiment will be discussed.

  14. Mid-infrared extinction by sulfate aerosols from the Mt. Pinatubo eruption

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Yue, G. K.; Gunson, M. R.; Zander, R.; Abrams, M. C.

    1994-01-01

    Quantitative measurements of the wavelength dependence of aerosol extinction in the 750-3400/cm spectral region have been derived from 0.01/cm resolution stratospheric solar occultation spectra recorded by the ATMOS (Atmospheric Trace Molecule Spectroscopy) Fourier transform spectrometer about 9 1/2 months after the Mt Pinatubo volcanic eruption. Strong, broad aerosol features have been identified near 900, 1060, 1190, 1720, and 2900/cm below a tangent height of approximately 30 km. Aerosol extinction measurements derived from approximately 0.05/cm wide microwindows nearly free of telluric line absorption in the ATMOS spectra are compared with transmission calculations derived from aerosol size distribution profiles retrieved from correlative SAGE (Stratospheric Aerosol and Gas Experiment) II visible and near i.r. extinction measurements, seasonal and zonally averaged H2SO4 aerosol weight percentage profiles, and published sulfuric acid optical constants derived from room temperature laboratory measurements. The calculated shapes and positions of the aerosol features are generally consistent with the observations, thereby confirming that the aerosols are predominantly concentrated H2SO4-H2O droplets, but there are significant differences between the measured and calculated wavelength dependences of the aerosol extinction. We attribute these differences as primarily the result of errors in the calculated low temperature H2SO4-H2O optical constants. Errors in both the published room temperature optical constants and the limitations of the Lorentz-Lorenz relation are likely to be important.

  15. Characterization of a Photoacoustic Aerosol Absorption Spectrometer for Aircraft-based Measurements

    NASA Astrophysics Data System (ADS)

    Mason, B. J.; Wagner, N. L.; Richardson, M.; Brock, C. A.; Murphy, D. M.; Adler, G.

    2015-12-01

    Atmospheric aerosol directly impacts the Earth's climate through extinction of incoming and outgoing radiation. The optical extinction is due to both scattering and absorption. In situ measurements of aerosol extinction and scattering are well established and have uncertainties less than 5%. However measurements of aerosol absorption typically have uncertainties of 20-30%. Development and characterization of more accurate and precise instrumentation for measurement of aerosol absorption will enable a deeper understand of significance and spatial distribution of black and brown carbon aerosol, the effect of atmospheric processes on aerosol optical properties, and influence of aerosol optical properties on direct radiative forcing. Here, we present a detailed characterization of a photoacoustic aerosol absorption spectrometer designed for deployment aboard research aircraft. The spectrometer operates at three colors across the visible spectrum and is calibrated in the field using ozone. The field calibration is validated in the laboratory using synthetic aerosol and simultaneous measurements of extinction and scattering. In addition, the sensitivity of the instrument is characterized under conditions typically encountered during aircraft sampling e.g. as a function of changing pressure. We will apply this instrument characterization to ambient aerosol absorption data collected during the SENEX and SEAC4RS aircraft based field campaigns.

  16. Field Studies of Broadband Aerosol Optical Extinction in the Ultraviolet Spectral Region

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Attwood, A.; Brock, C. A.; Brown, S. S.

    2013-12-01

    Aerosols influence the Earth's radiative budget by scattering and absorbing incoming solar radiation. The optical properties of aerosols vary as a function of wavelength, but few measurements have reported the wavelength dependence of aerosol extinction cross sections and complex refractive indices. In the case of brown carbon, its wavelength-dependent absorption in the ultraviolet spectral region has been suggested as an important component of aerosol radiative forcing. We describe a new field instrument to measure aerosol optical extinction as a function of wavelength, using cavity enhanced spectroscopy with a broadband light source. The instrument consists of two broadband channels which span the 360-390 and 385-420 nm spectral regions using two light emitting diodes (LED) and a grating spectrometer with charge-coupled device (CCD) detector. We deployed this instrument during the Fire Lab at Missoula Experiment during Fall 2012 to measure biomass burning aerosol, and again during the Southern Oxidant and Aerosol Study in summer 2013 to measure organic aerosol in the Southeastern U.S. In both field experiments, we determined aerosol optical extinction as a function of wavelength and can interpret this together with size distribution and composition measurements to characterize the aerosol optical properties and radiative forcing.

  17. Comparison of LIDAR and Cavity Ring-Down Measurements of Aerosol Extinction and Study of Inferred Aerosol Gradients

    NASA Astrophysics Data System (ADS)

    Eberhard, W. L.; Massoli, P.; McCarty, B. J.; Machol, J. L.; Tucker, S. C.

    2007-12-01

    A LIDAR and a Cavity Ring-Down Aerosol Extinction Spectrometer (CRD) instrument simultaneously measured aerosol extinction at 355-nm wavelength from aboard the Research Vessel Ronald H. Brown during the Texas Air Quality Study II campaign. The CRD measured air sampled from the top of the common mast used by several in situ aerosol optical and chemical instruments. The LIDAR's scan sequence included near-horizontal stares (2° elevation angle) with pointing corrected for ship's roll. Aerosol extinction was retrieved using a variant of the slope method. The LIDAR therefore sampled air over a short vertical extent with midpoint higher above the surface than the CRD intake and at a horizontal distance of as much as a few kilometers. The CRD measured aerosol extinction at dry and at high (near-ambient) relative humidity (RH) levels, which were used to scale the measurements to ambient RH for the comparisons. Data from the two instruments for well-mixed conditions (supported by turbulence and atmospheric stability data) are compared to evaluate the degree of agreement between the two methods and reasons for differences. For instances of larger differences, the aerosol gradient below approximately 100 m altitude is inferred and examined in context of low-level meteorological parameters and LIDAR measurements at higher angles.

  18. Electrical aerosol spectrometer of Tartu University

    NASA Astrophysics Data System (ADS)

    Tammet, H.; Mirme, A.; Tamm, E.

    The electrical aerosol spectrometer (EAS) of the parallel measuring principle at Tartu University is an efficient instrument for rapid measurement of the unstable size spectrum of aerosol particles. The measuring range from 10 nm to 10 μm is achieved by simultaneously using a pair of differential mobility analyzers with two different particle chargers. The particle spectrum is calculated and measurement errors are estimated in real time by using a least-squares method. Experimental calibration ensures reliability of measurement. The instrument is well suited for continuous monitoring of atmospheric aerosol.

  19. Infrared Extinction Spectra of Mineral Dust Aerosol

    NASA Astrophysics Data System (ADS)

    Kleiber, P.; Laskina, O.; Alexander, J. M.; Young, M.; Grassian, V. H.

    2012-12-01

    Mineral dust aerosol affects the atmosphere by absorbing and scattering radiation and plays an important role in the Earth's radiative budget. The effect of atmospheric dust on climate is studied by various remote sensing techniques that use measurements from narrow band IR channels of satellites to determine key atmospheric properties. Therefore, it is essential to take radiative effects of mineral dust aerosol into account to correctly process remote sensing data. As aerosols are transported through the atmosphere they undergo aging and heterogeneous chemistry. This leads to changes in their optical properties and their effects on climate. In this study we carried out spectral simulations using both Mie theory and solutions derived in the Rayleigh regime for authentic dust samples and several processed components of mineral dust. Simulations of the extinction based on Mie theory shows that it does not accurately reproduce the peak position and band shape of the prominent IR resonance features. Errors in the simulated peak position and the line shape associated with Mie theory can adversely affect determination of mineral composition based on IR satellite data. Analytic solutions for various shapes derived from Rayleigh theory offer a better fit to the major band features of the spectra, therefore the accuracy of modeling atmospheric dust properties can be improved by using these analytic solutions. It is also important to take aging of mineral dust into account. We investigated the effect of chemical processing on the optical properties. It was shown that interactions of components of mineral dust (calcite, quartz and kaolinite) with humic and organic acids cause a shift of the IR resonance bands of these minerals. It may indicate changes in shape of the particles as well as changes in hygroscopicity and, as the result, the water content in these samples. Therefore, care should be taken when modeling optical properties of aged mineral dust.

  20. Multi-channel electric aerosol spectrometer

    NASA Astrophysics Data System (ADS)

    Mirme, A.; Noppel, M.; Peil, I.; Salm, J.; Tamm, E.; Tammet, H.

    Multi-channel electric mobility spectrometry is a most efficient technique for the rapid measurement of an unstable aerosol particle size spectrum. The measuring range of the spectrometer from 10 microns to 10 microns is achieved by applying diffusional and field charging mechanisms simultaneously. On-line data processing is carried out with a microcomputer. Experimental calibration ensures correctness of measurement.

  1. Inter-Comparison of ILAS-II Version 1.4 Aerosol Extinction Coefficient at 780 nm with SAGE II, SAGE III, and POAM III Aerosol Data

    NASA Technical Reports Server (NTRS)

    Saitoh, Naoko; Hayashida, S.; Sugita, T.; Nakajima, H.; Yokota, T.; Hayashi, M.; Shiraishi, K.; Kanzawa, H.; Ejiri, M. K.; Irie, H.; Tanaka, T.; Terao, Y.; Kobayashi, H.; Sasano, Y.; Bevilacqua, R.; Randall, C.; Thomason, L.; Taha, G.

    2006-01-01

    The Improved Limb Atmospheric Spectrometer (ILAS) II on board the Advanced Earth Observing Satellite (ADEOS) II observed stratospheric aerosol in visible/near-infrared/infrared spectra over high latitudes in the Northern and Southern Hemispheres. Observations were taken intermittently from January to March, and continuously from April through October, 2003. We assessed the data quality of ILAS-II version 1.4 aerosol extinction coefficients at 780 nm from comparisons with the Stratospheric Aerosol and Gas Experiment (SAGE) II, SAGE III, and the Polar Ozone and Aerosol Measurement (POAM) III aerosol data. At heights below 20 km in the Northern Hemisphere, aerosol extinction coefficients from ILAS-II agreed with those from SAGE II and SAGE III within 10%, and with those from POAM III within 15%. From 20 to 26 km, ILAS-II aerosol extinction coefficients were smaller than extinction coefficients from the other sensors; differences between ILAS-II and SAGE II ranged from 10% at 20 km to 34% at 26 km. ILAS-II aerosol extinction coefficients from 20 to 25 km in February over the Southern Hemisphere had a negative bias (12-66%) relative to SAGE II aerosol data. The bias increased with increasing altitude. Comparisons between ILAS-II and POAM III aerosol extinction coefficients from January to May in the Southern Hemisphere (defined as the non-Polar Stratospheric Cloud (PSC) season ) yielded qualitatively similar results. From June to October (defined as the PSC season ), aerosol extinction coefficients from ILAS-II were smaller than those from POAM III above 17 km, as in the case of the non-PSC season; however, ILAS-II and POAM III aerosol data were within 15% of each other from 12 to 17 km.

  2. Mount St. Helens related aerosol properties from solar extinction measurements

    SciTech Connect

    Michalsky, J.J.; Kleckner, E.W.; Stokes, G.M.

    1980-11-01

    The optical extinction due to the introduction of aerosols and aerosol-precursors into the troposphere and stratosphere during the major eruptive phase of Mount St. Helens, Washington, is quantified. The concentration is on the two-week period centered on the major eruption of 22 July 1980. (ACR)

  3. Contributions of dust and smoke to aerosol extinction coefficient

    NASA Astrophysics Data System (ADS)

    Kavouras, I. G.; Xu, J.; Etyemezian, V.; Dubois, D.; Green, M.; Pitchford, M.

    2006-12-01

    Estimating scattering and absorption of light by atmospheric particles is critical for evaluating effects on regional and global climate. The magnitude of the interaction between aerosol and light is strongly related to the aerosol chemical composition among other factors. Dust and smoke are major sources of atmospheric aerosol, especially in the western United States. The importance of those sources has increased in recent decades due to the extensive man-made disturbance of natural ecosystems and land management practices. The objectives of this study were to specifically estimate the impact of dust and smoke on aerosol extinction coefficient measured in the Class I areas of the western states and identify the major causes of dust and types of smoke by using: (i) positive matrix factorization (PMF) to apportion ambient aerosols by source type; (ii) air mass backward trajectory analyses; (iii) land use/soil properties and; (iv) wildlife/prescribed fire data. The study included sites from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network located in western United States. For days with the worst reconstructed light extinction when dust was the major component, contributions from transcontinental transport from Asia, windblown dust from local sources and regional transport from upwind sources were identified. Based on the analysis for days with smoke being the major component of aerosol visibility extinction, the contributions of the following types of fires were determined: (a) wildfires near the site ("hot" emissions); (b) wildfires upwind of the site (aged smoke); (c) agricultural burn emissions; (d) rangeland fires.

  4. Aerosol transport in the coastal environment and effects on extinction

    NASA Astrophysics Data System (ADS)

    Vignati, Elizabetta; de Leeuw, Gerrit; Berkowicz, Ruwim

    1998-11-01

    The aerosol in the coastal environment consists of a complicated mixture of anthropogenic and rural aerosol generated over land, and sea spray aerosol. Also, particles are generate dover sea by physical and chemical processes and the chemical composition may change due to condensation/evaporation of gaseous materials. The actual composition is a function of air mass history and fetch. At the land-sea transition the continental sources cease to exist, and thus the concentrations of land-based particles and gases will gradually decrease. At the same time, sea spray is generated due to the interaction between wind and waves in a developing wave field. A very intense source for sea spray aerosol is the surf zone. Consequently, the aerosol transported over sea in off-shore winds will abruptly charge at the land-sea transition and then gradually loose its continental character, while also the contribution of the surf-generated aerosol will decrease. The latter will be compensated, at least in part, by the production of sea spray aerosol. A Coastal Aerosol Transport model is being developed describing the evolution of the aerosol size distribution in an air column advected from the coast line over sea in off-shore winds. Both removal and production are taken into account. The result are applied to estimate the effect of the changing size distribution on the extinction coefficients. In this contribution, preliminary results are presented from a study of the effects of the surf-generated aerosol and the surface production.

  5. Recent Improvements to CALIOP Level 3 Aerosol Profile Product for Global 3-D Aerosol Extinction Characterization

    NASA Astrophysics Data System (ADS)

    Tackett, J. L.; Getzewich, B. J.; Winker, D. M.; Vaughan, M. A.

    2015-12-01

    With nine years of retrievals, the CALIOP level 3 aerosol profile product provides an unprecedented synopsis of aerosol extinction in three dimensions and the potential to quantify changes in aerosol distributions over time. The CALIOP level 3 aerosol profile product, initially released as a beta product in 2011, reports monthly averages of quality-screened aerosol extinction profiles on a uniform latitude/longitude grid for different cloud-cover scenarios, called "sky conditions". This presentation demonstrates improvements to the second version of the product which will be released in September 2015. The largest improvements are the new sky condition definitions which parse the atmosphere into "cloud-free" views accessible to passive remote sensors, "all-sky" views accessible to active remote sensors and "cloudy-sky" views for opaque and transparent clouds which were previously inaccessible to passive remote sensors. Taken together, the new sky conditions comprehensively summarize CALIOP aerosol extinction profiles for a broad range of scientific queries. In addition to dust-only extinction profiles, the new version will include polluted-dust and smoke-only extinction averages. A new method is adopted for averaging dust-only extinction profiles to reduce high biases which exist in the beta version of the level 3 aerosol profile product. This presentation justifies the new averaging methodology and demonstrates vertical profiles of dust and smoke extinction over Africa during the biomass burning season. Another crucial advancement demonstrated in this presentation is a new approach for computing monthly mean aerosol optical depth which removes low biases reported in the beta version - a scenario unique to lidar datasets.

  6. Improvement of Raman lidar algorithm for quantifying aerosol extinction

    NASA Technical Reports Server (NTRS)

    Russo, Felicita; Whiteman, David; Demoz, Belay; Hoff, Raymond

    2005-01-01

    Aerosols are particles of different composition and origin and influence the formation of clouds which are important in atmospheric radiative balance. At the present there is high uncertainty on the effect of aerosols on climate and this is mainly due to the fact that aerosol presence in the atmosphere can be highly variable in space and time. Monitoring of the aerosols in the atmosphere is necessary to better understanding many of these uncertainties. A lidar (an instrument that uses light to detect the extent of atmospheric aerosol loading) can be particularly useful to monitor aerosols in the atmosphere since it is capable to record the scattered intensity as a function of altitude from molecules and aerosols. One lidar method (the Raman lidar) makes use of the different wavelength changes that occur when light interacts with the varying chemistry and structure of atmospheric aerosols. One quantity that is indicative of aerosol presence is the aerosol extinction which quantifies the amount of attenuation (removal of photons), due to scattering, that light undergoes when propagating in the atmosphere. It can be directly measured with a Raman lidar using the wavelength dependence of the received signal. In order to calculate aerosol extinction from Raman scattering data it is necessary to evaluate the rate of change (derivative) of a Raman signal with respect to altitude. Since derivatives are defined for continuous functions, they cannot be performed directly on the experimental data which are not continuous. The most popular technique to find the functional behavior of experimental data is the least-square fit. This procedure allows finding a polynomial function which better approximate the experimental data. The typical approach in the lidar community is to make an a priori assumption about the functional behavior of the data in order to calculate the derivative. It has been shown in previous work that the use of the chi-square technique to determine the most

  7. Applications of Sunphotometry to Aerosol Extinction and Surface Anisotropy

    SciTech Connect

    Tsay, S.

    2002-09-30

    Support cost-sharing of a newly developed sunphotometer in field deployment for aerosol studies. This is a cost-sharing research to deploy a newly developed sun-sky-surface photometer for studying aerosol extinction and surface anisotropy at the ARM SGP, TWP, and NSA-AAO CART sites and in many field campaigns. Atmospheric aerosols affect the radiative energy balance of the Earth, both directly by perturbing the incoming/outgoing radiation fields and indirectly by influencing the properties/processes of clouds and reactive greenhouse gases. The surface bidirectional reflectance distribution function (BRDF) also plays a crucial role in the radiative energy balance, since the BRDF is required to determine (i) the spectral and spectrally-averaged surface albedo, and (ii) the top-of-the-atmosphere (TOA) angular distribution of radiance field. Therefore, the CART sites provide an excellent, albeit unique, opportunity to collect long-term climatic data in characterizing aerosol properties and various types of surface anisotropy.

  8. Applications of Sunphotometry to Aerosol Extinction and Surface Anisotropy

    NASA Technical Reports Server (NTRS)

    Tsay, S. C.; Holben, B. N.; Privette, J. L.

    2005-01-01

    Support cost-sharing of a newly developed sunphotometer in field deployment for aerosol studies. This is a cost-sharing research to deploy a newly developed sun-sky-surface photometer for studying aerosol extinction and surface anisotropy at the ARM SGP, TWP, and NSA-AAO CART sites and in many field campaigns. Atmospheric aerosols affect the radiative energy balance of the Earth, both directly by perturbing the incoming/outgoing radiation fields and indirectly by influencing the properties/processes of clouds and reactive greenhouse gases. The surface bidirectional reflectance distribution function (BRDF) also plays a crucial role in the radiative energy balance, since the BRDF is required to determine (1) the spectral and spectrally-averaged surface albedo, and (2) the top-of-the-atmosphere (TOA) angular distribution of radiance field. Therefore, the CART sites provide an excellent, albeit unique, opportunity to collect long-term climatic data in characterizing aerosol properties and various types of surface anisotropy.

  9. [Ultraviolet Mie lidar observations of aerosol extinction in a dust storm case over Macao].

    PubMed

    Liu, Qiao-jun; Cheng, A Y S; Zhu, Jian-hua; Fong, S K; Chang, S W; Tam, K S; Viseu, A

    2012-03-01

    Atmospheric aerosol over Macao was monitored by using a 355 nm Mie scattering lidar during the dust event on March 22nd, 2010. Vertical profiles of aerosol extinction coefficients were obtained and correlated with local PM10 concentration. The near-surface aerosol extinction coefficients have good agreement with PM10 concentration values. The aerosol extinction vertical profiles showed that there were distinct layers of dust aerosol concentration. The source and tracks of dust aerosol were analyzed by back-trajectory simulation. Observations showed that this lidar could run well even in dust storm episode, and it would help to further the study on aerosol properties over Macao. PMID:22582620

  10. Sun and aureole spectrometer for airborne measurements to derive aerosol optical properties.

    PubMed

    Asseng, Hagen; Ruhtz, Thomas; Fischer, Jürgen

    2004-04-01

    We have designed an airborne spectrometer system for the simultaneous measurement of the direct Sun irradiance and aureole radiance. The instrument is based on diffraction grating spectrometers with linear image sensors. It is robust, lightweight, compact, and reliable, characteristics that are important for airborne applications. The multispectral radiation measurements are used to derive optical properties of tropospheric aerosols. We extract the altitude dependence of the aerosol volume scattering function and of the aerosol optical depth by using flight patterns with descents and ascents ranging from the surface level to the top of the boundary layer. The extinction coefficient and the product of single scattering albedo and phase function of separate layers can be derived from the airborne measurements. PMID:15074425

  11. Infrared extinction spectra of some common liquid aerosols.

    PubMed

    Carlon, H R; Anderson, D H; Milham, M E; Tarnove, T L; Frickel, R H; Sindoni, I

    1977-06-01

    Infrared extinction spectra in the 3-5-microm and 7-13-microm atmospheric window regions have been obtained for smokes of petroleum oil, sulfuric acid, and phosphoric acid of varying droplet concentration and for water fogs. Spectra were also obtained at 0.36-2.35microm for petroleum oil and sulfuric acid smokes. Experimental results were compared, for sulfuric acid and water aerosols, to calculated values obtained from the Mie theory. Agreement was as good as +/-10%. When absorbing smoke droplets are small compared to wavelength, very useful approximations apply, and droplet clouds may be spectrally simulated by thin liquid films. In such cases, the imaginary component of refractive index may be approximated directly from aerosol spectra. At 12.5-microm wavelength, water fog extinction is nearly independent of droplet size distribution, suggesting a simple scheme for measurement of total liquid water content of an optical path. PMID:20168760

  12. Retrieval of Aerosol Properties from Multi-Spectral Extinction Measurements

    NASA Technical Reports Server (NTRS)

    Lacis, Andrew A.

    1999-01-01

    The direct-beam spectral extinction of solar radiation contains information on atmospheric composition in a form that is essentially free from the data analysis complexities that often arise from multiple scattering. Ground based Multi-Filter Shadowband Radiometer (MFRSR) measurements provide such information for the vertical atmospheric column path, while solar occultation measurements from a satellite platform provide horizontal slices through the atmosphere. We describe application of a Multi-Spectral Atmospheric Column Extinction (MACE) analysis technique used to analyze MFRSR data also to occultation measurements made by SAGE II. For analysis, we select the 1985 Nevado del Ruiz volcanic eruption period to retrieve atmospheric profiles of ozone and NO2, and changes in the stratospheric aerosol size and optical depth. The time evolution of volcanic aerosol serves as a passive tracer to study stratospheric dynamics, and changes in particle size put constraints on the sulfur chemistry modeling of volcanic aerosols. Paper presented at The '99 Kyoto Aerosol-Cloud Workshop, held Dec 1-3, 1999, Kyoto, Japan

  13. A wide spectral range photoacoustic aerosol absorption spectrometer.

    PubMed

    Haisch, C; Menzenbach, P; Bladt, H; Niessner, R

    2012-11-01

    A photoacoustic spectrometer for the measurement of aerosol absorption spectra, based on the excitation of a pulsed nanosecond optical parametrical oscillator (OPO), will be introduced. This spectrometer is working at ambient pressure and can be used to detect and characterize different classes of aerosols. The spectrometer features a spectral range of 410 to 2500 nm and a sensitivity of 2.5 × 10(-7) m(-1) at 550 nm. A full characterization of the system in the visible spectral range is demonstrated, and the potential of the system for near IR measurement is discussed. In the example of different kinds of soot particles, the performance of the spectrometer was assessed. As we demonstrate, it is possible to determine a specific optical absorption per particle by a combination of the new spectrometer with an aerosol particle counter. PMID:23035870

  14. Aerosol beam-focus laser-induced plasma spectrometer device

    DOEpatents

    Cheng, Meng-Dawn

    2002-01-01

    An apparatus for detecting elements in an aerosol includes an aerosol beam focuser for concentrating aerosol into an aerosol beam; a laser for directing a laser beam into the aerosol beam to form a plasma; a detection device that detects a wavelength of a light emission caused by the formation of the plasma. The detection device can be a spectrometer having at least one grating and a gated intensified charge-coupled device. The apparatus may also include a processor that correlates the wavelength of the light emission caused by the formation of the plasma with an identity of an element that corresponds to the wavelength. Furthermore, the apparatus can also include an aerosol generator for forming an aerosol beam from bulk materials. A method for detecting elements in an aerosol is also disclosed.

  15. Simulation of improved daytime capabilities to retrieve aerosol extinction coefficient using Rotational Raman lidars

    NASA Astrophysics Data System (ADS)

    Madonna, Fabio; Amodeo, Aldo

    2015-04-01

    So far, most of the multi-wavelength Raman lidar observations of aerosols are performed at night, because Raman signals are weak compared to daylight background. Different techniques have been developed to improve Raman lidar daytime capabilities in the past years. Indeed, the retrieval of aerosol extinction during daytime is feasible through the detection of backscattered radiation due to the pure Rotational Raman Spectrum (PRRS) of molecular nitrogen or oxygen, much brighter than the vibration-rotation spectrum. The existing techniques for the measure of PRRS are based on small-bandwidth emitter and receiver systems and on a small receiver field of view to suppress the daylight background. They have been successfully tested and implemented in a few systems which are already in operational use within EARLINET (European Aerosol research Lidar NETwork). In this work, several different configurations used as receiver for a lidar system detecting the PRRS in daytime conditions are compared by means of numerical simulations. The configurations are mainly differentiated by the design of the spectral selection unit implemented in the receiver of each lidar system, based on a narrow-bandwidth filters, broad-band filters, grating spectrometers, and hybrid solutions. The research of configurations able to be more easily implemented on a large number of lidar systems within ACTRIS are explored. To show the performances of the investigated lidar configurations, a blind test has been carried out to get the simulated performances in the retrieval of the aerosol extinction profile during night-time and daytime starting from a known scenario. The atmospheric scenario used as the reference profile is represented by one of the night-time measurements with MUSA (MUlti-wavelength system for Aerosol) lidar at CNR-IMAA Atmospheric Observatory - CIAO (15.72E, 40.60N , 760 m a.s.l., Potenza, Italy). Though all the configuration considered in the blind test proved to be solid to

  16. Comparison of aerosol extinction profiles from lidar and SAGE II data at a tropical station

    NASA Technical Reports Server (NTRS)

    Parameswaran, K.; Rose, K. O.; Murthy, B. V. K.; Osborn, M. T.; Mcmaster, L. R.

    1991-01-01

    Aerosol extinction profiles obtained from lidar data at Trivandrum (8.6 deg N, 77 deg E) are compared with corresponding Stratospheric Aerosol and Gas Experiment II extinction profiles. The agreement between the two is found to be satisfactory. The extinction profiles obtained by both the experiments showed a prominent peak at 23-24 km altitude in the stratosphere. The study revealed large variability in upper tropospheric extinction with location (latitude).

  17. Importance of Raman Lidar Aerosol Extinction Measurements for Aerosol-Cloud Interaction Studies

    NASA Astrophysics Data System (ADS)

    Han, Zaw; Wu, Yonghua; Moshary, Fred; Gross, Barry; Gilerson, Alex

    2016-06-01

    Using a UV Raman Lidar for aerosol extinction, and combining Microwave Radiometer derived Liquid Water Path (LWP) with Multifilter Rotating Shadowband Radiometer derived Cloud Optical depth, to get cloud effective radius (Reff), we observe under certain specialized conditions, clear signatures of the Twomey Aerosol Indirect effect on cloud droplet properties which are consistent with the theoretical bounds. We also show that the measurement is very sensitive to how far the aerosol layer is from the cloud base and demonstrate that surface PM25 is far less useful. Measurements from both the DOE ARM site and new results at CCNY are presented.

  18. In situ measurements of light extinction of stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Metzig, Gunthard

    1991-01-01

    The extinction coefficient of ambient aerosol particles was measured using a multiple transverse cell (White Cell) with an effective path length of 100 m. Measurements were performed at seven fixed wavelengths in the visible region using a white light source and an interference filter set with 2 nm bandwidth and center wavelengths of 405.5, 450, 500, 550, 600, 650, and 692.5 nm. The total air flow in the system was 16.7 1/min; the volume of the chamber is close to 10 liters. It takes about one minute to fill the chamber with particles homogeneously, but it needs up to five minutes to get the chamber particle-free. Before measuring the aerosol, the transmission of the particle-free air is determined; then the aerosol passes through the chamber for a period of ten minutes; after this the transmission of particle-free ambient air is measured again for eight minutes. All times are subject to change. At present the measurements are done with a frequency of 1 Hz, but an increase of up to 30 Hz is possible. The lower detection limit of the used White Cell is 3.4 by 10(exp -06) per m. This is sufficient for measuring the extinction coefficient during most tropospheric and some stratospheric conditions. It will be necessary to increase the sensitivity by a factor of ten when measurements under the clearest stratospheric conditions take place.

  19. A comparative study of aerosol extinction measurements made by the SAM II and SAGE satellite experiments

    NASA Technical Reports Server (NTRS)

    Yue, G. K.; Mccormick, M. P.; Chu, W. P.

    1984-01-01

    SAM II and SAGE are two satellite experiments designed to measure stratospheric aerosol extinction using the technique of solar occultation or limb extinction. Although each sensor is mounted aboard a different satellite, there are occasions when their measurement locations are nearly coincident, thereby providing opportunities for a measurement comparison. In this paper, the aerosol extinction profiles and daily contour plots for some of these events in 1979 are reported. The comparisons shown in this paper demonstrate that SAM II and SAGE are producing similar aerosol extinction profiles within their measurement errors and that since SAM II has been previously validated, these results show the validity of the SAGE aerosol measurements.

  20. Miniature instruments for aerosol extinction at ambient conditions

    NASA Astrophysics Data System (ADS)

    Murphy, D. M.

    2015-12-01

    Aerosol extinction is a fundamental parameter for the direct forcing of climate, visibility, and comparisons to remote sensing. Bringing air into an instrument "box" almost always changes the relative humidity and loses some dust or other large particles. I will show two techniques for miniature instruments that measure extinction at ambient conditions. One is a miniature sun photometer for vertical profiles. In the last year it has successfully gathered data on test flights with excellent performance and signal to noise. The second instrument is a miniature cavity ring down instrument open to the air. In both cases, small instruments require decisions about just what is necessary for the measurement rather than just scaling down larger designs. I will explore the rationale for some of these design choices.

  1. Airborne Cavity Ring-Down Measurement of Aerosol Extinction and Scattering During the Aerosol IOP

    NASA Technical Reports Server (NTRS)

    Strawa, A. W.; Ricci, K.; Provencal, R.; Schmid, B.; Covert, D.; Elleman, R.; Arnott, P.

    2003-01-01

    Large uncertainties in the effects of aerosols on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This paper describes preliminary results from Cadenza, a new continuous wave cavity ring-down (CW-CRD) instrument designed to address these uncertainties. Cadenza measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. In the past year Cadenza was deployed in the Asian Dust Above Monterey (ADAM) and DOE Aerosol Intensive Operating Period (IOP) field projects. During these flights Cadenza produced measurements of aerosol extinction in the range from 0.2 to 300 Mm-1 with an estimated precision of 0.1 Min-1 for 1550 nm light and 0.2 Mm-1 for 675 nm light. Cadenza data from the ADAM and Aerosol IOP missions compared favorably with data from the other instruments aboard the CIRPAS Twin Otter aircraft and participating in those projects.= We present comparisons between the Cadenza measurements and those friom a TSI nephelometer, Particle Soot Absorption Photometer (PSAP), and the AATS 14 sun-photometer. Measurements of the optical properties of smoke and dust plumes sampled during these campaigns are presented and estimates of heating rates due to these plumes are made.

  2. Comparative studies of aerosol extinction measurements made by the SAM II and SAGE II satellite experiments

    NASA Technical Reports Server (NTRS)

    Yue, Glenn K.; Mccormick, M. P.; Chu, W. P.; Wang, P.; Osborn, M. T.

    1989-01-01

    Results from the Stratospheric Aerosol Measurement (SAM) II and Stratospheric Aerosol and Gas Experiment (SAGE) II are compared for measurement locations which are coincident in time and space. At 1.0 micron, the SAM II and SAGE II aerosol extinction profiles are similar within their measurement errors. In addition, sunrise and sunset aerosol extinction data at four different wavelengths are compared for occasions when the SAGE II and SAM II measurements are nearly coincident in space and about 12 hours apart.

  3. Photoacoustic determination of optical absorption to extinction ratio in aerosols.

    PubMed

    Roessler, D M; Faxvog, F R

    1980-02-15

    The photoacoustic technique has been used in conjunction with an optical transmission measurement to determine the fraction of light absorbed in cigarette and acetylene smoke aerosols. At 0.5145-microm wavelength,the absorption-to-extinction fraction is 0.01 +/- 0.003 for cigarette smoke and is in excellent agreement with predictions from Mie theory for smoke particles having a refractive index of 1.45-0.00133i and a median diameter in the 0.15-0.65-microm range. For acetylene smoke the absorbed fraction was 0.85 +/- 0.05. PMID:20216896

  4. AEROSOL CHARACTERIZATION WITH CENTRIFUCAL AEROSOL SPECTROMETERS: THEORY AND EXPERIMENT

    EPA Science Inventory

    A general mathematical model describing the motion of particles in aerosol centrifuges has been developed. t has been validated by comparisons of theoretically predicted calibration sites with experimental data from tests sizing aerosols in instruments of three different spiral d...

  5. Using Raman-lidar-based regularized microphysical retrievals and Aerosol Mass Spectrometer measurements for the characterization of biomass burning aerosols

    NASA Astrophysics Data System (ADS)

    Samaras, Stefanos; Nicolae, Doina; Böckmann, Christine; Vasilescu, Jeni; Binietoglou, Ioannis; Labzovskii, Lev; Toanca, Florica; Papayannis, Alexandros

    2015-10-01

    In this work we extract the microphysical properties of aerosols for a collection of measurement cases with low volume depolarization ratio originating from fire sources captured by the Raman lidar located at the National Institute of Optoelectronics (INOE) in Bucharest. Our algorithm was tested not only for pure smoke but also for mixed smoke and urban aerosols of variable age and growth. Applying a sensitivity analysis on initial parameter settings of our retrieval code was proved vital for producing semi-automatized retrievals with a hybrid regularization method developed at the Institute of Mathematics of Potsdam University. A direct quantitative comparison of the retrieved microphysical properties with measurements from a Compact Time of Flight Aerosol Mass Spectrometer (CToF-AMS) is used to validate our algorithm. Microphysical retrievals performed with sun photometer data are also used to explore our results. Focusing on the fine mode we observed remarkable similarities between the retrieved size distribution and the one measured by the AMS. More complicated atmospheric structures and the factor of absorption appear to depend more on particle radius being subject to variation. A good correlation was found between the aerosol effective radius and particle age, using the ratio of lidar ratios (LR: aerosol extinction to backscatter ratios) as an indicator for the latter. Finally, the dependence on relative humidity of aerosol effective radii measured on the ground and within the layers aloft show similar patterns.

  6. Comparison of aerosol extinction between lidar and SAGE II over Gadanki, a tropical station in India

    NASA Astrophysics Data System (ADS)

    Kulkarni, P.; Ramachandran, S.

    2015-03-01

    An extensive comparison of aerosol extinction has been performed using lidar and Stratospheric Aerosol and Gas Experiment (SAGE) II data over Gadanki (13.5° N, 79.2° E), a tropical station in India, following coincident criteria during volcanically quiescent conditions from 1998 to 2005. The aerosol extinctions derived from lidar are higher than SAGE II during all seasons in the upper troposphere (UT), while in the lower-stratosphere (LS) values are closer. The seasonal mean percent differences between lidar and SAGE II aerosol extinctions are > 100% in the UT and < 50% above 25 km. Different techniques (point and limb observations) played the major role in producing the observed differences. SAGE II aerosol extinction in the UT increases as the longitudinal coverage is increased as the spatial aerosol extent increases, while similar extinction values in LS confirm the zonal homogeneity of LS aerosols. The study strongly emphasized that the best meteorological parameters close to the lidar measurement site in terms of space and time and Ba (sr-1), the ratio between aerosol backscattering and extinction, are needed for the tropics for a more accurate derivation of aerosol extinction.

  7. A balloon-borne aerosol spectrometer for high altitude low aerosol concentration measurements

    SciTech Connect

    Brown, G.S. ); Weiss, R.E. )

    1990-08-01

    Funded by Air Force Wright Aeronautical Laboratory, a new balloon-borne high altitude aerosol spectrometer, for the measurement of cirrus cloud ice crystals, has been developed and successfully flown by Sandia National Laboratories and Radiance Research. This report (1) details the aerosol spectrometer design and construction, (2) discusses data transmission and decoding, (3) presents data collected on three Florida flights in tables and plots. 2 refs., 11 figs., 3 tabs.

  8. Retrieving Stratospheric Aerosol Extinction from SCIAMACHY Measurements in Limb Geometry

    NASA Astrophysics Data System (ADS)

    Dörner, Steffen; Penning de Vries, Marloes; Pukite, Janis; Beirle, Steffen; Wagner, Thomas

    2015-04-01

    Techniques for retrieving height resolved information on stratospheric aerosol improved significantly in the past decade with the availability of satellite measurements in limb geometry. Instruments like OMPS, OSIRIS and SCIAMACHY provide height resolved radiance spectra with global coverage. Long term data sets of stratospheric aerosol extinction profiles are important for a detailed investigation of spatial and temporal variation and formation processes (e.g. after volcanic eruptions or in polar stratospheric clouds). Resulting data sets contain vital information for climate models (radiative effect) or chemistry models (reaction surface for heterogeneous chemistry). This study focuses on the SCIAMACHY instrument which measured scattered sunlight in the ultra-violet, visible and near infra-red spectral range since the launch on EnviSat in 2002 until an instrumental error occurred in April 2012. SCIAMACHY's unique method of alternating measurements in limb and nadir geometry provides co-located profile and column information respectively that can be used to characterize plumes with small horizontal extents. The covered wavelength range potentially provides information on effective micro-physical properties of the aerosol particles. However, scattering on background aerosol constitutes only a small fraction of detected radiance and assumptions on particle characteristics (e.g. size distribution) have to be made which results in large uncertainties especially for wavelengths below 700nm and for measurements in backscatter geometry. Methods to reduce these uncertainties are investigated and applied to our newly developed retrieval algorithm. In addition, so called spatial straylight contamination of the measured signal was identified as a significant error source and an empirical correction scheme was developed. A large scale comparison study with SAGE II for the temporal overlap of both instruments (2002 to 2005) shows promising results.

  9. Extinction spectra of mineral dust aerosol components in an environmental aerosol chamber: IR resonance studies

    NASA Astrophysics Data System (ADS)

    Mogili, Praveen K.; Yang, K. H.; Young, Mark A.; Kleiber, Paul D.; Grassian, Vicki H.

    Mineral dust aerosol plays an important role in determining the physical and chemical equilibrium of the atmosphere. To better understand the impact that mineral dust aerosol may have on climate forcing and on remote sensing, we have initiated a study of the optical properties of important components of mineral dust aerosol including silicate clays (illite, kaolinite, and montmorillonite), quartz, anhydrite, and calcite. The extinction spectra are measured in an environmental simulation chamber over a broad wavelength range, which includes both the IR (650-5000 cm -1) and UV-vis (12,500-40,000 cm -1) spectral regions. In this paper, we focus on the IR region from 800 to 1500 cm -1, where many of these mineral dust constituents have characteristic vibrational resonance features. Experimental spectra are compared with Mie theory simulations based on published mineral optical constants. We find that Mie theory generally does a poor job in fitting the IR resonance peak positions and band profiles for nonspherical aerosols in the accumulation mode size range ( D˜0.1-2.5 μm). We explore particle shape effects on the IR resonance line profiles by considering analytic models for extinction of particles with characteristic shapes (i.e. disks, needles, and ellipsoids). Interestingly, Mie theory often appears to give more accurate results for the absorption line profiles of larger particles that fall in the coarse mode size range.

  10. Intercomparison of aerosol extinction profiles retrieved from MAX-DOAS measurements

    NASA Astrophysics Data System (ADS)

    Frieß, U.; Klein Baltink, H.; Beirle, S.; Clémer, K.; Hendrick, F.; Henzing, B.; Irie, H.; de Leeuw, G.; Li, A.; Moerman, M. M.; van Roozendael, M.; Shaiganfar, R.; Wagner, T.; Wang, Y.; Xie, P.; Yilmaz, S.; Zieger, P.

    2016-07-01

    A first direct intercomparison of aerosol vertical profiles from Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations, performed during the Cabauw Intercomparison Campaign of Nitrogen Dioxide measuring Instruments (CINDI) in summer 2009, is presented. Five out of 14 participants of the CINDI campaign reported aerosol extinction profiles and aerosol optical thickness (AOT) as deduced from observations of differential slant column densities of the oxygen collision complex (O4) at different elevation angles. Aerosol extinction vertical profiles and AOT are compared to backscatter profiles from a ceilometer instrument and to sun photometer measurements, respectively. Furthermore, the near-surface aerosol extinction coefficient is compared to in situ measurements of a humidity-controlled nephelometer and dry aerosol absorption measurements. The participants of this intercomparison exercise use different approaches for the retrieval of aerosol information, including the retrieval of the full vertical profile using optimal estimation and a parametrised approach with a prescribed profile shape. Despite these large conceptual differences, and also differences in the wavelength of the observed O4 absorption band, good agreement in terms of the vertical structure of aerosols within the boundary layer is achieved between the aerosol extinction profiles retrieved by the different groups and the backscatter profiles observed by the ceilometer instrument. AOTs from MAX-DOAS and sun photometer show a good correlation (R>0.8), but all participants systematically underestimate the AOT. Substantial differences between the near-surface aerosol extinction from MAX-DOAS and from the humidified nephelometer remain largely unresolved.

  11. Determination of aerosol extinction coefficient profiles from LIDAR data using the optical depth solution method

    NASA Astrophysics Data System (ADS)

    Aparna, John; Satheesh, S. K.; Mahadevan Pillai, V. P.

    2006-12-01

    The LIDAR equation contains four unknown variables in a two-component atmosphere where the effects caused by both molecules and aerosols have to be considered. The inversion of LIDAR returns to retrieve aerosol extinction profiles, thus, calls for some functional relationship to be assumed between these two. The Klett's method, assumes a functional relationship between the extinction and backscatter. In this paper, we apply a different technique, called the optical depth solution, where we made use of the total optical depth or transmittance of the atmosphere along the LIDAR-measurement range. This method provides a stable solution to the LIDAR equation. In this study, we apply this technique to the data obtained using a micro pulse LIDAR (MPL, model 1000, Science and Engineering Services Inc) to retrieve the vertical distribution of aerosol extinction coefficient. The LIDAR is equipped with Nd-YLF laser at an operating wavelength of 523.5 nm and the data were collected over Bangalore. The LIDAR data are analyzed to get to weighted extinction coefficient profiles or the weighted sum of aerosol and molecular extinction coefficient profiles. Simultaneous measurements of aerosol column optical depth (at 500 nm) using a Microtops sun photometer were used in the retrievals. The molecular extinction coefficient is determined assuming standard atmospheric conditions. The aerosol extinction coefficient profiles are determined by subtracting the molecular part from the weighted extinction coefficient profiles. The details of the method and the results obtained are presented.

  12. Can we predict aerosol extinction in a coastal environment?

    NASA Astrophysics Data System (ADS)

    Tsintikidis, Dimitri; Kichura, Dan; Hammel, Steve

    2007-09-01

    We have been engaged in a long-term test to determine the beam extinction effects of aerosols. During four test periods of one month duration each, we propagated a beam over a 7-km path near the ocean surface, and measured the received intensity in two near-infrared wavebands (1.061 μm and at 1.622 μm). In each test period, meteorological measurements were obtained from a meteorological buoy located at the mid-point of the propagation path. These meteorological data were used as input for the Advanced Navy Aerosol Model (ANAM). In this paper we will describe the comparison between the ANAM predictions and the measured transmission. We found that there are significant and sustained discrepancies between the ANAM model predictions and the optical transmission data. We will focus on two particular problems that have emerged from our comparison: first, the ANAM dependence on local wind speed can cause errors, and second, the local relative humidity is not optimally coupled in the ANAM. We will present the analysis we used to support these claims, and we will present recommendations for modifications to the model.

  13. Optical modeling of aerosol extinction for remote sensing in the marine environment

    NASA Astrophysics Data System (ADS)

    Kaloshin, G. A.

    2013-05-01

    A microphysical model is presented for the surface layer marine and coastal atmospheric aerosols that is based on long-term observations of size distributions for 0.01-100 μm particles in different geographic sites. The fundamental feature of the model is a parameterization of amplitudes and widths for aerosol modes of the aerosol size distribution function (ASDF) as functions of fetch and wind speed. The shape of the ASDF and its dependence on meteorological parameters, altitudes above sea level (H), fetch (X), wind speed (U) and relative humidity (RH) are investigated. The spectral profiles of the aerosol extinction coefficients calculated by MaexPro (Marine Aerosol Extinction Profiles) are in good agreement with observational data and the numerical results obtained from the Navy Aerosol Model (NAM) and the Advanced Navy Aerosol Model (ANAM). Moreover, MaexPro was found to be an accurate and reliable tool for investigation of the optical properties of atmospheric aerosols.

  14. Toward a Combined SAGE II-HALOE Aerosol Climatology: An Evaluation of HALOE Version 19 Stratospheric Aerosol Extinction Coefficient Observations

    NASA Technical Reports Server (NTRS)

    Thomason, L. W.

    2012-01-01

    Herein, the Halogen Occultation Experiment (HALOE) aerosol extinction coefficient data is evaluated in the low aerosol loading period after 1996 as the first necessary step in a process that will eventually allow the production of a combined HALOE/SAGE II (Stratospheric Aerosol and Gas Experiment) aerosol climatology of derived aerosol products including surface area density. Based on these analyses, it is demonstrated that HALOE's 3.46 microns is of good quality above 19 km and suitable for scientific applications above that altitude. However, it is increasingly suspect at lower altitudes and should not be used below 17 km under any circumstances after 1996. The 3.40 microns is biased by about 10% throughout the lower stratosphere due to the failure to clear NO2 but otherwise appears to be a high quality product down to 15 km. The 2.45 and 5.26 micron aerosol extinction coefficient measurements are clearly biased and should not be used for scientific applications after the most intense parts of the Pinatubo period. Many of the issues in the aerosol data appear to be related to either the failure to clear some interfering gas species or doing so poorly. For instance, it is clear that the 3.40micronaerosol extinction coefficient measurements can be improved through the inclusion of an NO2 correction and could, in fact, end up as the highest quality overall HALOE aerosol extinction coefficient measurement. It also appears that the 2.45 and 5.26 micron channels may be improved by updating the Upper Atmosphere Pilot Database which is used as a resource for the removal of gas species otherwise not available from direct HALOE measurements. Finally, a simple model to demonstrate the promise of mixed visible/infrared aerosol extinction coefficient ensembles for the retrieval of bulk aerosol properties demonstrates that a combined HALOE/SAGE II aerosol climatology is feasible and may represent a substantial improvement over independently derived data sets.

  15. Spectrally-resolved measurements of aerosol extinction at ultraviolet and visible wavelengths

    NASA Astrophysics Data System (ADS)

    Flores, M.; Washenfelder, R. A.; Brock, C. A.; Brown, S. S.; Rudich, Y.

    2012-12-01

    Aerosols play an important role in the Earth's radiative budget. Aerosol extinction includes both the scattering and absorption of light, and these vary with wavelength, aerosol diameter, and aerosol composition. Historically, aerosol absorption has been measured using filter-based or extraction methods that are prone to artifacts. There have been few investigations of ambient aerosol optical properties at the blue end of the visible spectrum and into the ultraviolet. Brown carbon is particularly important in this spectral region, because it both absorbs and scatters light, and encompasses a large and variable group of organic compounds from biomass burning and secondary organic aerosol. We have developed a laboratory instrument that combines new, high-power LED light sources with high-finesse optical cavities to achieve sensitive measurements of aerosol optical extinction. This instrument contains two broadband channels, with spectral coverage from 360 - 390 nm and 385 - 420 nm. Using this instrument, we report aerosol extinction in the ultraviolet and near-visible spectral region as a function of chemical composition and structure. We have measured the extinction cross-sections between 360 - 420 nm with 0.5 nm resolution using different sizes and concentrations of polystyrene latex spheres, ammonium sulfate, and Suwannee River fulvic acid. Fitting the real and imaginary part of the refractive index allows the absorption and scattering to be determined.

  16. Spectral Aerosol Extinction (SpEx): a new instrument for in situ ambient aerosol extinction measurements across the UV/visible wavelength range

    NASA Astrophysics Data System (ADS)

    Jordan, C. E.; Anderson, B. E.; Beyersdorf, A. J.; Corr, C. A.; Dibb, J. E.; Greenslade, M. E.; Martin, R. F.; Moore, R. H.; Scheuer, E.; Shook, M. A.; Thornhill, K. L.; Troop, D.; Winstead, E. L.; Ziemba, L. D.

    2015-06-01

    We introduce a new instrument for the measurement of in situ ambient aerosol extinction over the 300-700 nm wavelength range, the Spectral Aerosol Extinction (SpEx) instrument. This measurement capability is envisioned to complement existing in situ instrumentation, allowing for simultaneous measurement of the evolution of aerosol optical, chemical, and physical characteristics in the ambient environment. In this work, a detailed description of the instrument is provided along with characterization tests performed in the laboratory. Measured spectra of NO2 and polystyrene latex spheres (PSLs) agreed well with theoretical calculations. Good agreement was also found with simultaneous aerosol extinction measurements at 450, 530, and 630 nm using CAPS PMex instruments in a series of 22 tests including non-absorbing compounds, dusts, soot, and black and brown carbon analogs. SpEx can more accurately distinguish the presence of brown carbon from other absorbing aerosol due to its 300 nm lower wavelength limit compared to measurements limited to visible wavelengths. Extinction spectra obtained with SpEx contain more information than can be conveyed by a simple power law fit (typically represented by Ångström Exponents). Planned future improvements aim to lower detection limits and ruggedize the instrument for mobile operation.

  17. Raman Lidar Measurements of Aerosol Extinction and Backscattering. Report 1; Methods and Comparisons

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Melfi, S. H.; Whiteman, D. N.; Evans, K. D.; Leifer, R.

    1998-01-01

    This paper examines the aerosol backscattering and extinction profiles measured at night by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site in April 1994. These lidar data are used to derive aerosol profiles for altitudes between 0.0 1 5 and 5 km. Since this lidar detects Raman scattering from nitrogen and oxygen molecules as well as the elastic scattering from molecules and aerosols, it measures both aerosol backscattering and extinction simultaneously. The aerosol extinction/backscattering ratio varied between approximately 30 sr and 75 sr at 351 nm. Aerosol optical thicknesses derived by integrating the lidar profiles of aerosol extinction measured at night between 0. I and 5 km are found to be about 10-40% lower than those measured by a Sun photometer during the day. This difference is attributed to the contribution by stratospheric aerosols not included in the lidar estimates as well as to diurnal differences in aerosol properties and concentrations. Aerosol profiles close to the surface were acquired by pointing the lidar nearly horizontally. Measurements of aerosol scattering from a tower-mounted nephelometer are found to be 40% lower than lidar measurements of aerosol extinction over a wide range of relative humidities even after accounting for the difference in wavelengths. The reasons for this difference are not clear but may be due to the inability of the nephelometer to accurately measure scattering by large particles.

  18. Raman lidar measurements of aerosol extinction and backscattering: 1. Methods and comparisons

    NASA Astrophysics Data System (ADS)

    Ferrare, R. A.; Melfi, S. H.; Whiteman, D. N.; Evans, K. D.; Leifer, R.

    1998-08-01

    This paper examines the aerosol backscattering and extinction profiles measured at night by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site in April 1994. These lidar data are used to derive aerosol profiles for altitudes between 0.015 and 5 km. Since this lidar detects Raman scattering from nitrogen and oxygen molecules as well as the elastic scattering from molecules and aerosols, it measures both aerosol backscattering and extinction simultaneously. The aerosol extinction/backscattering ratio varied between approximately 30 sr and 75 sr at 351 nm. Aerosol optical thicknesses derived by integrating the lidar profiles of aerosol extinction measured at night between 0.1 and 5 km are found to be about 10-40% lower than those measured by a Sun photometer during the day. This difference is attributed to the contribution by stratospheric aerosols not included in the lidar estimates as well as to diurnal differences in aerosol properties and concentrations. Aerosol profiles close to the surface were acquired by pointing the lidar nearly horizontally. Measurements of aerosol scattering from a tower-mounted nephelometer are found to be 40% lower than lidar measurements of aerosol extinction over a wide range of relative humidities even after accounting for the difference in wavelengths. The reasons for this difference are not clear but may be due to the inability of the nephelometer to accurately measure scattering by large particles.

  19. Accuracy of near-surface aerosol extinction determined from columnar aerosol optical depth measurements in Reno, NV, USA

    NASA Astrophysics Data System (ADS)

    Loría-Salazar, S. Marcela; Arnott, W. Patrick; Moosmüller, Hans

    2014-10-01

    The aim of the present work is a detailed analysis of aerosol columnar optical depth as a tool to determine near-surface aerosol extinction in Reno, Nevada, USA, during the summer of 2012. Ground and columnar aerosol optical properties were obtained by use of in situ Photoacoustic and Integrated Nephelometer and Cimel CE-318 Sun photometer instruments, respectively. Both techniques showed that seasonal weather changes and fire plumes had enormous influence on local aerosol optics. The apparent optical height followed the shape but not magnitude of the development of the convective boundary layer when fire conditions were not present. Back trajectory analysis demonstrated that a local flow known as the Washoe Zephyr circulation often induced aerosol transport from Northern California over the Sierra Nevada Mountains that increased the aerosol optical depth at 500 nm during afternoons when compared with mornings. Aerosol fine mode fraction indicated that afternoon aerosols in June and July and fire plumes in August were dominated by submicron particles, suggesting upwind urban plume biogenically enhanced evolution toward substantial secondary aerosol formation. This fine particle optical depth was inferred to be beyond the surface, thereby complicating use of remote sensing measurements for near-ground aerosol extinction measurements. It is likely that coarse mode depletes fine mode aerosol near the surface by coagulation and condensation of precursor gases.

  20. The code MaexPro for calculation of aerosol extinction in the marine and coastal environment

    NASA Astrophysics Data System (ADS)

    Kaloshin, G. A.

    2010-04-01

    In the paper the description of the last version of code MaexPro (Marine aerosol extinction Profile) for calculation spectral and vertical profiles of aerosol extinction coefficient α(λ), aerosol sizes distribution, area distribution, volumes distribution, modes aerosol extinction spectra is submitted. Code MaexPro is a computer program under constant development to estimate of EO systems signal power at a location place in which a fetch is key entrance parameter. The program carries out calculation α(λ), as functions of atmospheric effects using standard meteorological parameters, aerosol microphysical structure, a spectral band and a height of the sensor location. Spectral behavior α(λ) can be submitted as graphically, and as tables. Commands overplot for superposition or change of figures; profiles extrapolation; a lens; all kinds of possible copying; the data presentation, convenient for an input in code MODTRAN, and etc. are stipulated. The code MaexPro is a completely mouse-driven PC Windows program with a user-friendly interface. Calculation time of spectral and vertical profiles of α(λ) depends on the necessary wave length resolution, radius of aerosol particles and the location place height, and does not exceed tens seconds for each new meteorological condition. Other calculations characteristics, such as aerosol sizes distribution, area distribution, volumes distribution, modes aerosol extinction spectra, are performed in a few seconds.

  1. Spectral aerosol extinction (SpEx): a new instrument for in situ ambient aerosol extinction measurements across the UV/visible wavelength range

    NASA Astrophysics Data System (ADS)

    Jordan, C. E.; Anderson, B. E.; Beyersdorf, A. J.; Corr, C. A.; Dibb, J. E.; Greenslade, M. E.; Martin, R. F.; Moore, R. H.; Scheuer, E.; Shook, M. A.; Thornhill, K. L.; Troop, D.; Winstead, E. L.; Ziemba, L. D.

    2015-11-01

    We introduce a new instrument for the measurement of in situ ambient aerosol extinction over the 300-700 nm wavelength range, the spectral aerosol extinction (SpEx) instrument. This measurement capability is envisioned to complement existing in situ instrumentation, allowing for simultaneous measurement of the evolution of aerosol optical, chemical, and physical characteristics in the ambient environment. In this work, a detailed description of the instrument is provided along with characterization tests performed in the laboratory. Measured spectra of NO2 and polystyrene latex spheres (PSLs) agreed well with theoretical calculations. Good agreement was also found with simultaneous aerosol extinction measurements at 450, 530, and 630 nm using CAPS PMex instruments in a series of 22 tests including nonabsorbing compounds, dusts, soot, and black and brown carbon analogs. SpEx measurements are expected to help identify the presence of ambient brown carbon due to its 300 nm lower wavelength limit compared to measurements limited to longer UV and visible wavelengths. Extinction spectra obtained with SpEx contain more information than can be conveyed by a simple power law fit (typically represented by Ångström exponents). Planned future improvements aim to lower detection limits and ruggedize the instrument for mobile operation.

  2. The CU Airborne MAX-DOAS instrument: vertical profiling of aerosol extinction and trace gases

    NASA Astrophysics Data System (ADS)

    Baidar, S.; Oetjen, H.; Coburn, S.; Dix, B.; Ortega, I.; Sinreich, R.; Volkamer, R.

    2013-03-01

    The University of Colorado Airborne Multi-Axis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument uses solar stray light to detect and quantify multiple trace gases, including nitrogen dioxide (NO2), glyoxal (CHOCHO), formaldehyde (HCHO), water vapor (H2O), nitrous acid (HONO), iodine monoxide (IO), bromine monoxide (BrO), and oxygen dimers (O4) at multiple wavelengths (absorption bands at 360, 477, 577, 632 nm) simultaneously in the open atmosphere. The instrument is unique as it (1) features a motion compensation system that decouples the telescope field of view from aircraft movements in real time (<0.35° accuracy), and (2) includes measurements of solar stray light photons from nadir, zenith, and multiple elevation angles forward and below the plane by the same spectrometer/detector system. Sets of solar stray light spectra collected from nadir to zenith scans provide some vertical profile information within 2 km above and below the aircraft altitude, and the vertical column density (VCD) below the aircraft is measured in nadir view. Maximum information about vertical profiles is derived simultaneously for trace gas concentrations and aerosol extinction coefficients over similar spatial scales and with a vertical resolution of typically 250 m during aircraft ascent/descent. The instrument is described, and data from flights over California during the CalNex (California Research at the Nexus of Air Quality and Climate Change) and CARES (Carbonaceous Aerosols and Radiative Effects Study) air quality field campaigns is presented. Horizontal distributions of NO2 VCD (below the aircraft) maps are sampled with typically 1 km resolution, and show good agreement with two ground-based MAX-DOAS instruments (slope = 0.95 ± 0.09, R2 = 0.86). As a case study vertical profiles of NO2, CHOCHO, HCHO, and H2O concentrations and aerosol extinction coefficients, ɛ, at 477 nm calculated from O4 measurements from a low approach at Brackett airfield inside the

  3. Aerosol extinction models based on measurements at two sites in Sweden.

    PubMed

    Kaurila, Timo; Hågård, Arne; Persson, Rolf

    2006-09-10

    Two aerosol extinction models have been developed using statistical analysis of long-term optical transmission measurements in Sweden performed at two locations from July 1977 to June 1982. The aerosol volume extinction coefficient for infrared (IR) radiation is calculated by the models with visibility, temperature, and air pressure as input parameters. As in the MODTRAN model, the IR extinction coefficient is proportional to the coefficient at 550 nm, which depends on the visibility. In the new models, the wavelength dependence of the extinction also depends on the visibility. The models predict significantly higher attenuation in the IR than does the Rural aerosol model from MODTRAN, which is commonly used. Comparison with the Maritime model shows that the new models predict lower extinction values in the 3-5 microm region and higher values in the 8-12 microm region. The uncertainties in terms of variance levels are calculated by the models. The properties of aerosols, and thereby the extinction coefficient, are partly correlated to local meteorological parameters, which enables the calculation of a mean predicted value. A substantial part of the variation is, however, caused by conditions in the source area and along the trajectory path of the aerosols. They are not correlated to the local meteorological parameters and therefore cause the variance in the models. PMID:16926909

  4. Retrieval of aerosol backscatter and extinction from airborne coherent Doppler wind lidar measurements

    NASA Astrophysics Data System (ADS)

    Chouza, F.; Reitebuch, O.; Groß, S.; Rahm, S.; Freudenthaler, V.; Toledano, C.; Weinzierl, B.

    2015-07-01

    A novel method for calibration and quantitative aerosol optical property retrieval from Doppler wind lidars (DWLs) is presented in this work. Due to the strong wavelength dependence of the atmospheric molecular backscatter and the low sensitivity of the coherent DWLs to spectrally broad signals, calibration methods for aerosol lidars cannot be applied to coherent DWLs usually operating at wavelengths between 1.5 and 2 μm. Instead, concurrent measurements of an airborne DWL at 2 μm and the POLIS ground-based aerosol lidar at 532 nm are used in this work, in combination with sun photometer measurements, for the calibration and retrieval of aerosol backscatter and extinction profiles at 532 nm. The proposed method was applied to measurements from the SALTRACE experiment in June-July 2013, which aimed at quantifying the aerosol transport and change in aerosol properties from the Sahara desert to the Caribbean. The retrieved backscatter and extinction coefficient profiles from the airborne DWL are within 20 % of POLIS aerosol lidar and CALIPSO satellite measurements. Thus the proposed method extends the capabilities of coherent DWLs to measure profiles of the horizontal and vertical wind towards aerosol backscatter and extinction profiles, which is of high benefit for aerosol transport studies.

  5. Spectral Aerosol Extinction (SpEx): A New Instrument for In situ Ambient Aerosol Extinction Measurements Across the UV/Visible Wavelength Range

    NASA Technical Reports Server (NTRS)

    Jordan, C. E.; Anderson, B. E.; Beyersdorf, A. J.; Corr, C. A.; Dibb, J. E.; Greenslade, M. E.; Martin, R. F.; Moore, R. H.; Scheuer, E.; Shook, M. A.; Thornhill, K. L.; Troop, D.; Winstead, Edward L.; Ziemba, L. D.

    2015-01-01

    We introduce a new instrument for the measurement of in situ ambient aerosol extinction over the 300-700 nm wavelength range, the Spectral Aerosol Extinction (SpEx) instrument. This measurement capability is envisioned to complement existing in situ instrumentation, allowing for simultaneous measurement of the evolution of aerosol optical, chemical, and physical characteristics in the ambient environment. In this work, a detailed description of the instrument is provided along with characterization tests performed in the laboratory. Measured spectra of NO2 and polystyrene latex spheres agreed well with theoretical calculations. Good agreement was also found with simultaneous aerosol extinction measurements at 450, 530, and 630 nm using CAPS PMex instruments in a series of 22 tests including non-absorbing compounds, dusts, soot, and black and brown carbon analogs. SpEx can more accurately distinguish the presence of brown carbon from other absorbing aerosol due to its 300 nm lower wavelength limit compared to measurements limited to visible wavelengths. In addition, the spectra obtained by SpEx carry more information than can be conveyed by a simple power law fit that is typically defined by the use of Angstrom Exponents. Future improvements aim at lowering detection limits and ruggedizing the instrument for mobile operation.

  6. Comprehensive Measurement of Atmospheric Aerosols with a Wide Range Aerosol Spectrometer

    NASA Astrophysics Data System (ADS)

    Keck, L.; Pesch, M.; Grimm, H.

    2011-07-01

    A wide range aerosol spectrometer (WRAS) was used for comprehensive long term measurements of aerosol size distributions. The system combines the results of an optical aerosol spectrometer with the results of a Scanning Mobility Particle Sizer (SMPS) to record essentially the full size range (5 nm - 32 μm) of atmospheric particles in 72 channels. Measurements were carried out over one year (2009) at the Global Atmospheric Watch (GAW)-Station Hohenpeißenberg, Bavaria. Total particle number concentrations obtained from the aerosol size distributions were compared to the total number concentrations measured by a Condensation Particle Counter (CPC). The comparison showed an excellent agreement of the data. The high time resolution of 5 minutes allows the combination of the measured size distributions with meteorological data and correlations to gaseous pollutants (CO, NOx and SO2). A good correlation of particle number and CO concentrations was found for long distance transported small particles, which were probably mainly soot particles. Correlations to NOx were observed for aerosols from local sources such as traffic emissions. The formation of secondary aerosols from gaseous precursors was also observed. Episodes of relatively high concentration of particles in the range of 2-3 μm were probably caused by pollen.

  7. Overview of submicron aerosol characterization in China using an Aerodyne high-resolution aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Huang, X.; He, L.; Gong, Z.; Hu, M.; Zhang, Y.

    2011-12-01

    China is one of the most rapidly developing countries in the world, but in the meantime it is suffering from severe air pollution due to heavy industrial/metropolitan emissions. Most previous aerosol studies in China were based on filter sampling followed by laboratory analysis, which provided datasets at a coarse time resolution like a day. The coarse time resolution of the aerosol datasets cannot match the actual faster variation of aerosol properties in the real atmosphere, which strongly favors highly time-resolved on-line measurement techniques. In recent years, our group deployed an Aerodyne high-resolution aerosol mass spectrometer (AMS) in different ambient atmospheres in China, including Beijing (urban), Shanghai (urban), Shenzhen (urban), Jiaxing (suburban), and Kaiping (rural). In this presentation, we will overview these on-line AMS measurement results to characterize the properties of submicron particles in China atmosphere, such as chemical composition, size distribution, diurnal variation, elemental composition, primary and secondary organic aerosol constitution, etc. The newly-developed AMS-PMF modeling techniques were utilized to quantitatively differentiate the contributions from fossil fuel combustion, cooking emissions, biomass burning, as well as secondary organic aerosol to ambient organic aerosol loadings in China. These AMS results have provided new outlook of the formation mechanisms of high aerosol pollution in China.

  8. Visible and infrared extinction of atmospheric aerosol in the marine and coastal environment.

    PubMed

    Kaloshin, Gennady A

    2011-05-10

    The microphysical model Marine Aerosol Extinction Profiles (MaexPro) for surface layer marine and coastal atmospheric aerosols, which is based on long-term observations of size distributions for 0.01-100 μm particles, is presented. The fundamental feature of the model is a parameterization of amplitudes and widths for aerosol modes of the aerosol size distribution function (ASDF) as functions of fetch and wind speed. The shape of the ASDF and its dependence on meteorological parameters, altitudes above the sea level (H), fetch (X), wind speed (U), and relative humidity is investigated. The model is primarily to characterize aerosols for the near-surface layer (within 25 m). The model is also applicable to higher altitudes within the atmospheric boundary layer, where the change in the vertical profile of aerosol is not very large. In this case, it is only valid for "clean" marine environments, in the absence of air pollution or any other major sources of continental aerosols, such desert dust or smoke from biomass burning. The spectral profiles of the aerosol extinction coefficients calculated by MaexPro are in good agreement with observational data and the numerical results obtained by the well-known Navy Aerosol Model and Advanced Navy Aerosol Model codes. Moreover, MaexPro was found to be an accurate and reliable instrument for investigation of the optical properties of atmospheric aerosols. PMID:21556113

  9. Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles

    NASA Technical Reports Server (NTRS)

    Burton, S. P.; Ferrare, R. A.; Kittaka, C.; Hostetler, C. A.; Hair, J. W.; Obland, M. D.; Rogers, R. R.; Cook, A. L.; Haper, D. B.

    2008-01-01

    Aerosol extinction profiles are derived from backscatter data by constraining the retrieval with column aerosol optical thickness (AOT), for example from coincident MODIS observations and without reliance on a priori assumptions about aerosol type or optical properties. The backscatter data were acquired with the NASA Langley High Spectral Resolution Lidar (HSRL). The HSRL also simultaneously measures extinction independently, thereby providing an ideal data set for evaluating the constrained retrieval of extinction from backscatter. We will show constrained extinction retrievals using various sources of column AOT, and examine comparisons with the HSRL extinction measurements and with a similar retrieval using data from the CALIOP lidar on the CALIPSO satellite.

  10. In Situ Aerosol Profile Measurements and Comparisons with SAGE 3 Aerosol Extinction and Surface Area Profiles at 68 deg North

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Under funding from this proposal three in situ profile measurements of stratospheric sulfate aerosol and ozone were completed from balloon-borne platforms. The measured quantities are aerosol size resolved number concentration and ozone. The one derived product is aerosol size distribution, from which aerosol moments, such as surface area, volume, and extinction can be calculated for comparison with SAGE III measurements and SAGE III derived products, such as surface area. The analysis of these profiles and comparison with SAGE III extinction measurements and SAGE III derived surface areas are provided in Yongxiao (2005), which comprised the research thesis component of Mr. Jian Yongxiao's M.S. degree in Atmospheric Science at the University of Wyoming. In addition analysis continues on using principal component analysis (PCA) to derive aerosol surface area from the 9 wavelength extinction measurements available from SAGE III. Ths paper will present PCA components to calculate surface area from SAGE III measurements and compare these derived surface areas with those available directly from in situ size distribution measurements, as well as surface areas which would be derived from PCA and Thomason's algorithm applied to the four wavelength SAGE II extinction measurements.

  11. AMS Measurements in National Parks of Aerosol Mass, Size and Composition, Comparison with Filter Samples and Correlation with Particle Hygroscopicity and Optical Extinction Properties

    NASA Astrophysics Data System (ADS)

    Alexander, M.; Taylor, N. F.; Collins, D. R.; Kumar, N.; Allen, J.; Newburn, M.; Lowenthal, D. H.; Zielinska, B.

    2011-12-01

    We report a comparison of results from aerosol studies at Great Smoky Mountain National Park (2006), Mt. Rainier National Park (2009) and Acadia National Park (2011), all class I visibility areas associated with IMPROVE (Interagency Monitoring of Protected Visual Environments) sites. This collaborative study was sponsored by the Electric Power Research Institute (EPRI) and was done with the cooperation of the National Park Service and the EPA. The atmospheric aerosol composition in these sites is influenced by a number of anthropogenic as well as biogenic sources, providing a rich environment for fundamental aerosol studies. The primary purpose of these studies was to add state-of-the-art aerosol instrumentation to the standard light extinction and aerosol measurements at the site, used to determine parameters for the IMPROVE light extinction reconstruction equation, adopted by the EPA to estimate light extinction from atmospheric aerosol concentrations and Rayleigh scattering. The combination of these diverse measurements also provides significant insight into fundamental aerosol properties such as aging and radiative forcing. New instrumentation included a quadrupole aerosol mass spectrometer (Aerodyne Q-AMS-Smoky Mountain Study), a high resolution aerosol time-of-flight mass spectrometer (Aerodyne HR-ToF-AMS - Mt. Rainier and Acadia studies) for real time measurements that directly address the relationship between sulfate, nitrate, and OC size and concentration, which is related to cloud and dry gas-to-particle conversion as air masses age during transport, the relationship between WSOC hygroscopic growth and oxygenated organic (OOA) composition, the OCM/OC ratio, and the chemical composition that determines the ambient hygroscopic state. The OCM/OC ratio and organic water uptake was addressed with high-volume and medium volume PM2.5 aerosol samples. Aerosols were collected daily on Teflon coated glass fiber filters (TGFF) in four high-volume PM2.5 samplers

  12. Detection, identification, and estimation of biological aerosols and vapors with a Fourier-transform infrared spectrometer

    NASA Astrophysics Data System (ADS)

    Ben-David, Avishai; Ren, Hsuan

    2003-08-01

    Two experiments were conducted with a Fourier-transform infrared (FTIR) spectrometer. The purpose of the first experiment was to detect and identify Bacillus subtilis subsp. niger (BG) bioaerosol spores and kaolin dust in an open-air release for which the thermal contrast between the aerosol temperature and background brightness temperature is small. The second experiment estimated the concentration of a small amount of triethyl phosphate (TEP) vapor in a closed chamber in which an external blackbody radiation source was used and where the thermal contrast was large. The deduced BG (TEP) extinction spectrum (identification) showed an excellent match to the library BG (TEP) extinction spectrum. Analysis of the time sequence of the measurements coincided well with the presence (detection) of the BG during the measurements, and the estimated concentration of time-dependent TEP vapor was excellent. The data were analyzed with hyperspectral detection, identification, and estimation algorithms. The algorithms were based on radiative transfer theory and statistical signal-processing methods. A subspace orthogonal projection operator was used to statistically subtract the large thermal background contribution to the measurements, and a robust maximum-likelihood solution was used to deduce the target (aerosol or vapor cloud) spectrum and estimate its mass-column concentration. A Gaussian-mixture probability model for the deduced mass-column concentration was computed with an expectation-maximization algorithm to produce the detection threshold, the probability of detection, and the probability of false alarm. The results of this study are encouraging, as they suggest for the first time to the authors' knowledge the feasibility of detecting biological aerosols with passive FTIR sensors.

  13. Detection, identification, and estimation of biological aerosols and vapors with a Fourier-transform infrared spectrometer.

    PubMed

    Ben-David, Avishai; Ren, Hsuan

    2003-08-20

    Two experiments were conducted with a Fourier-transform infrared (FTIR) spectrometer. The purpose of the first experiment was to detect and identify Bacillus subtilis subsp. niger (BG) bioaerosol spores and kaolin dust in an open-air release for which the thermal contrast between the aerosol temperature and background brightness temperature is small. The second experiment estimated the concentration of a small amount of triethyl phosphate (TEP) vapor in a closed chamber in which an external blackbody radiation source was used and where the thermal contrast was large. The deduced BG (TEP) extinction spectrum (identification) showed an excellent match to the library BG (TEP) extinction spectrum. Analysis of the time sequence of the measurements coincided well with the presence (detection) of the BG during the measurements, and the estimated concentration of time-dependent TEP vapor was excellent. The data were analyzed with hyperspectral detection, identification, and estimation algorithms. The algorithms were based on radiative transfer theory and statistical signal-processing methods. A subspace orthogonal projection operator was used to statistically subtract the large thermal background contribution to the measurements, and a robust maximum-likelihood solution was used to deduce the target (aerosol or vapor cloud) spectrum and estimate its mass-column concentration. A Gaussian-mixture probability model for the deduced mass-column concentration was computed with an expectation-maximization algorithm to produce the detection threshold, the probability of detection, and the probability of false alarm. The results of this study are encouraging, as they suggest for the first time to the authors' knowledge the feasibility of detecting biological aerosols with passive FTIR sensors. PMID:12952336

  14. SAGE I and SAM II measurements of 1 micron aerosol extinction in the free troposphere

    NASA Technical Reports Server (NTRS)

    Kent, G. S.; Farrukh, U. O.; Wang, P. H.; Deepak, A.

    1988-01-01

    The SAGE-I and SAM-II satellite sensors were designed to measure, with global coverage, the 1 micron extinction produced by the stratospheric aerosol. In the absence of high altitude clouds, similar measurements may be made for the free tropospheric aerosol. Median extinction values at middle and high latitudes in the Northern Hemisphere, for altitudes between 5 and 10 km, are found to be one-half to one order of magnitude greater than values at corresponding latitudes in the Southern Hemisphere. In addition, a seasonal increase by a factor of 1.5-2 was observed in both hemispheres, in 1979-80, in local spring and summer. Following major volcanic eruptions, a long-lived enhancement of the aerosol extinction is observed for altitudes above 5 km.

  15. Complex refractive indices of aerosols retrieved by continuous wave-cavity ring down aerosol spectrometer.

    PubMed

    Lang-Yona, N; Rudich, Y; Segre, E; Dinar, E; Abo-Riziq, A

    2009-03-01

    The major uncertainties associated with the direct impact of aerosols on climate call for fast and accurate characterization of their optical properties. Cavity ring down (CRD) spectroscopy provides highly sensitive measurement of aerosols' extinction coefficients from which the complex refractive index (RI) of the aerosol may be retrieved accurately for spherical particles of known size and number density, thus it is possible to calculate the single scattering albedo and other atmospherically relevant optical parameters. We present a CRD system employing continuous wave (CW) single mode laser. The single mode laser and the high repetition rate obtained significantly improve the sensitivity and reliability of the system, compared to a pulsed laser CRD setup. The detection limit of the CW-CRD system is between 6.67 x 10(-10) cm(-1) for an empty cavity and 3.63 x 10(-9) cm(-1) for 1000 particles per cm(3) inside the cavity, at a 400 Hz sampling and averaging of 2000 shots for one sample measurement taken in 5 s. For typical pulsed-CRD, the detection limit for an empty cavity is less than 3.8 x 10(-9) cm(-1) for 1000 shots averaged over 100 s at 10 Hz. The system was tested for stability, accuracy, and RI retrievals for scattering and absorbing laboratory-generated aerosols. Specifically, the retrieved extinction remains very stable for long measurement times (1 h) with an order of magnitude change in aerosol number concentration. In addition, the optical cross section (sigma(ext)) of a 400 nm polystyrene latex sphere (PSL) was determined within 2% error compared to the calculated value based on Mie theory. The complex RI of PSL, nigrosin, and ammonium sulfate (AS) aerosols were determined by measuring the extinction efficiency (Q(ext)) as a function of the size parameter ((piD)/lambda) and found to be in very good agreement with literature values. A mismatch in the retrieved RI of Suwannee River fulvic acid (SRFA) compared to a previous study was observed and is

  16. Enhanced extinction of visible radiation due to hydrated aerosols in mist and fog

    NASA Astrophysics Data System (ADS)

    Elias, T.; Dupont, J.-C.; Hammer, E.; Hoyle, C. R.; Haeffelin, M.; Burnet, F.; Jolivet, D.

    2015-06-01

    The study assesses the contribution of aerosols to the extinction of visible radiation in the mist-fog-mist cycle. Relative humidity is large in the mist-fog-mist cycle, and aerosols most efficient in interacting with visible radiation are hydrated and compose the accumulation mode. Measurements of the microphysical and optical properties of these hydrated aerosols with diameters larger than 0.4 μm were carried out near Paris, during November 2011, under ambient conditions. Eleven mist-fog-mist cycles were observed, with a cumulated fog duration of 96 h, and a cumulated mist-fog-mist cycle duration of 240 h. In mist, aerosols grew by taking up water at relative humidities larger than 93%, causing a visibility decrease below 5 km. While visibility decreased down from 5 to a few kilometres, the mean size of the hydrated aerosols increased, and their number concentration (Nha) increased from approximately 160 to approximately 600 cm-3. When fog formed, droplets became the strongest contributors to visible radiation extinction, and liquid water content (LWC) increased beyond 7 mg m-3. Hydrated aerosols of the accumulation mode co-existed with droplets, as interstitial non-activated aerosols. Their size continued to increase, and some aerosols achieved diameters larger than 2.5 μm. The mean transition diameter between the aerosol accumulation mode and the small droplet mode was 4.0 ± 1.1 μm. Nha also increased on average by 60 % after fog formation. Consequently, the mean contribution to extinction in fog was 20 ± 15% from hydrated aerosols smaller than 2.5 μm and 6 ± 7% from larger aerosols. The standard deviation was large because of the large variability of Nha in fog, which could be smaller than in mist or 3 times larger. The particle extinction coefficient in fog can be computed as the sum of a droplet component and an aerosol component, which can be approximated by 3.5 Nha (Nha in cm-3 and particle extinction coefficient in Mm-1. We observed an influence of

  17. Improved stratospheric aerosol extinction profiles from SCIAMACHY: validation and sample results

    NASA Astrophysics Data System (ADS)

    von Savigny, C.; Ernst, F.; Rozanov, A.; Hommel, R.; Eichmann, K.-U.; Rozanov, V.; Burrows, J. P.; Thomason, L. W.

    2015-12-01

    Stratospheric aerosol extinction profiles have been retrieved from SCIAMACHY/Envisat measurements of limb-scattered solar radiation. The retrieval is an improved version of an algorithm presented earlier. The retrieved aerosol extinction profiles are compared to co-located aerosol profile measurements from the SAGE II solar occultation instrument at a wavelength of 525 nm. Comparisons were carried out with two versions of the SAGE II data set (version 6.2 and the new version 7.0). In a global average sense the SCIAMACHY and the SAGE II version 7.0 extinction profiles agree to within about 10 % for altitudes above 15 km. Larger relative differences (up to 40 %) are observed at specific latitudes and altitudes. We also find differences between the two SAGE II data versions of up to 40 % for specific latitudes and altitudes, consistent with earlier reports. Sample results on the latitudinal and temporal variability of stratospheric aerosol extinction and optical depth during the SCIAMACHY mission period are presented. The results confirm earlier reports that a series of volcanic eruptions is responsible for the increase in stratospheric aerosol optical depth from 2002 to 2012. Above about an altitude of 28 km, volcanic eruptions are found to have negligible impact in the period 2002-2012.

  18. Improved stratospheric aerosol extinction profiles from SCIAMACHY: validation and sample results

    NASA Astrophysics Data System (ADS)

    von Savigny, C.; Ernst, F.; Rozanov, A.; Hommel, R.; Eichmann, K.-U.; Rozanov, V.; Burrows, J. P.; Thomason, L. W.

    2015-08-01

    Stratospheric aerosol extinction profiles have been retrieved from SCIAMACHY/Envisat measurements of limb-scattered solar radiation. The retrieval is an improved version of an algorithm presented earlier. The retrieved aerosol extinction profiles are compared to co-located aerosol profile measurements with the SAGE II solar occultation instrument at a wavelength of 525 nm. Comparisons were carried out with two versions of the SAGE II data set (version 6.2 and the new version 7.0). In a global average sense the SCIAMACHY and the SAGE II version 7.0 extinction profiles agree to within about 10 % for altitudes above 15 km. Larger relative differences (up to 40 %) are observed at specific latitudes and altitudes. We also find differences between the two SAGE II data versions of up to 40 % for specific latitudes and altitudes. Sample results on the latitudinal and temporal variability of stratospheric aerosol extinction and optical depth during the SCIAMACHY mission period are presented. The results indicate that a series of volcanic eruptions is responsible for the increase in stratospheric aerosol optical depth from 2002 to 2012. Above about 28 km altitude volcanic eruptions are found to have negligible impact in the period 2002 to 2012.

  19. Microphysical Modeling and POAM III Observations of Aerosol Extinction in the 1998-2003 Antarctic Stratosphere

    NASA Astrophysics Data System (ADS)

    Benson, C. M.; Drdla, K.; Nedoluha, G. E.; Shettle, E. P.; Alfred, J.; Hoppel, K. W.

    2005-12-01

    The Integrated Microphysics and Chemistry on Trajectories (IMPACT) model is used to study Polar stratospheric cloud formation and evolution in the Southern Polar vortex during the 1998-2003 winters. The model is applied to individual air parcels which are advected through the vortex on UKMO wind and temperature fields. The parcel temperature and pressure histories are used by IMPACT to calculate the formation and sedimentation of ice, NAT, SAT, and STS aerosols. Model results are validated by the Polar Ozone and Aerosol Measurement (POAM) III solar occultation instrument. Comparisons of POAM data to the model results help to constrain the microphysical parameters influencing aerosol formation and growth. Measurements of the water vapor mixing ratio are of limited use in clarifying the model microphysics; however, POAM measurements of aerosol extinction prove to be valuable in differentiating model runs. Specifically, the relationship of aerosol extinction to temperature arises from the different temperatures at which the various particle types form and grow. Comparisons of IMPACT calculations of this relationship to POAM measurements constrain the initial fraction of nuclei available for heterogeneous NAT freezing to 0.02% of all aerosols. Constraints are also placed on the ice accommodation coefficient and the NAT-ice lattice compatibility factor. However, these two parameters have similar effects on the extinction-temperature relationship, and thus a range of values are permissible for each.

  20. Measurements of Stratospheric Pinatubo Aerosol Extinction Profiles by a Raman Lidar

    NASA Technical Reports Server (NTRS)

    Abo, Makoto; Nagasawa, Chikao

    1992-01-01

    The Raman lidar has been used for remote measurements of water vapor, ozone and atmospheric temperature in the lower troposphere because the Raman cross section is three orders smaller than the Rayleigh cross section. We estimated the extinction coefficients of the Pinatubo volcanic aerosol in the stratosphere using a Raman lidar. If the precise aerosol extinction coefficients are derived, the backscatter coefficient of a Mie scattering lidar will be more accurately estimated. The Raman lidar has performed to measure density profiles of some species using Raman scattering. Here we used a frequency-doubled Nd:YAG laser for transmitter and received nitrogen vibrational Q-branch Raman scattering signal. Ansmann et al. (1990) derived tropospherical aerosol extinction profiles with a Raman lidar. We think that this method can apply to dense stratospheric aerosols such as Pinatubo volcanic aerosols. As dense aerosols are now accumulated in the stratosphere by Pinatubo volcanic eruption, the error of Ramen lidar signal regarding the fluctuation of air density can be ignored.

  1. Enhanced extinction of visible radiation due to hydrated aerosols in mist and fog

    NASA Astrophysics Data System (ADS)

    Elias, T.; Dupont, J.-C.; Hammer, E.; Hoyle, C. R.; Haeffelin, M.; Burnet, F.; Jolivet, D.

    2015-01-01

    The study assesses the contribution of aerosols to the extinction of visible radiation in the mist-fog-mist cycle. Measurements of the microphysical and optical properties of hydrated aerosols with diameters larger than 400 nm, composing the accumulation mode, which are the most efficient to interact with visible radiation, were carried out near Paris, during November 2011, in ambient conditions. Eleven mist-fog-mist cycles were observed, with cumulated fog duration of 95 h, and cumulated mist-fog-mist duration of 240 h. In mist, aerosols grew up by taking up water at relative humidities larger than 93%, causing a visibility decrease below 5 km. While visibility decreased down to few km, the mean size of the hydrated aerosols increased, and their number concentration (Nha) increased from approximately 160 to approximately 600 cm-3. When fog formed, droplets became the strongest contributors to visible radiation extinction, and liquid water content (LWC) increased beyond 7 mg m-3. Hydrated aerosols of the accumulation mode co-existed with droplets, as interstitial non-activated aerosols. Their size continued to increase, and a significant proportion of aerosols achieved diameters larger than 2.5 μm. The mean transition diameter between the accumulation mode and the small droplet mode was 4.0 ± 1.1 μm. Moreover Nha increased on average by 60% after fog formation. Consequently the mean aerosol contribution to extinction in fog was 20 ± 15% for diameter smaller than 2.5 μm and 6 ± 7% beyond. The standard deviation is large because of the large variability of Nha in fog, which could be smaller than in mist or three times larger. The particle extinction coefficient in fog can be computed as the sum of a droplet component and an aerosol component, which can be approximated by 3.5 Nha (Nha in cm-3 and particle extinction coefficient in Mm-1). We observed an influence of the main formation process on Nha, but not on the contribution to fog extinction by aerosols

  2. Light extinction by aerosols during summer air pollution

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Fraser, R. S.

    1983-01-01

    In order to utilize satellite measurements of optical thickness over land for estimating aerosol properties during air pollution episodes, the optical thickness was measured from the surface and investigated. Aerosol optical thicknesses have been derived from solar transmission measurements in eight spectral bands within the band lambda 440-870 nm during the summers of 1980 and 1981 near Washington, DC. The optical thicknesses for the eight bands are strongly correlated. It was found that first eigenvalue of the covariance matrix of all observations accounts for 99 percent of the trace of the matrix. Since the measured aerosol optical thickness was closely proportional to the wavelength raised to a power, the aerosol size distribution derived from it is proportional to the diameter (d) raised to a power for the range of diameters between 0.1 to 1.0 micron. This power is insensitive to the total optical thickness. Changes in the aerosol optical thickness depend on several aerosol parameters, but it is difficult to identify the dominant one. The effects of relative humidity and accumulation mode concentration on the optical thickness are analyzed theoretically, and compared with the measurements.

  3. 1984-1995 Evolution of Stratospheric Aerosol Size, Surface Area, and Volume Derived by Combining SAGE II and CLAES Extinction Measurements

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Bauman, Jill J.

    2000-01-01

    This SAGE II Science Team task focuses on the development of a multi-wavelength, multi- sensor Look-Up-Table (LUT) algorithm for retrieving information about stratospheric aerosols from global satellite-based observations of particulate extinction. The LUT algorithm combines the 4-wavelength SAGE II extinction measurements (0.385 <= lambda <= 1.02 microns) with the 7.96 micron and 12.82 micron extinction measurements from the Cryogenic Limb Array Etalon Spectrometer (CLAES) instrument, thus increasing the information content available from either sensor alone. The algorithm uses the SAGE II/CLAES composite spectra in month-latitude-altitude bins to retrieve values and uncertainties of particle effective radius R(sub eff), surface area S, volume V and size distribution width sigma(sub g).

  4. Simultaneous measurement of optical scattering and extinction on dispersed aerosol samples.

    PubMed

    Dial, Kathy D; Hiemstra, Scott; Thompson, Jonathan E

    2010-10-01

    Accurate and precise measurements of light scattering and extinction by atmospheric particulate matter aid understanding of tropospheric photochemistry and are required for estimates of the direct climate effects of aerosols. In this work, we report on a second generation instrument to simultaneously measure light scattering (b(scat)) and extinction (b(ext)) coefficient by dispersed aerosols. The ratio of scattering to extinction is known as the single scatter albedo (SSA); thus, the instrument is referred to as the albedometer. Extinction is measured with the well-established cavity ring-down (CRD) technique, and the scattering coefficient is determined through collection of light scattered from the CRD beam. The improved instrument allows reduction in sample volume to <1% of the original design, and a reduction in response time by a factor of >30. Through using a commercially available condensation particle counter (CPC), we have measured scattering (σ(scat)) and extinction (σ(ext)) cross sections for size-selected ammonium sulfate and nigrosin aerosols. In most cases, the measured scattering and extinction cross section were within 1 standard deviation of the accepted values generated from Mie theory suggesting accurate measurements are made. While measurement standard deviations for b(ext) and b(scat) were generally <1 Mm(-1) when the measurement cell was sealed or purged with filtered air, relative standard deviations >0.1 for these variables were observed when the particle number density was low. It is inferred that statistical fluctuations of the absolute number of particles within the probe beam leads to this effect. However, measured relative precision in albedo is always superior to that which would be mathematically propagated assuming independent measurements of b(scat) and b(ext). Thus, this report characterizes the measurement precision achieved, evaluates the potential for systematic error to be introduced through light absorption by gases

  5. Atmospheric pressure flow reactor / aerosol mass spectrometer studies of tropospheric aerosol nucleat and growth kinetics. Final report, June, 2001

    SciTech Connect

    Worsnop, Douglas R.

    2001-06-01

    The objective of this program was to determine the mechanisms and rates of growth and transformation and growth processes that control secondary aerosol particles in both the clear and polluted troposphere. The experimental plan coupled an aerosol mass spectrometer (AMS) with a chemical ionization mass spectrometer to provide simultaneous measurement of condensed and particle phases. The first task investigated the kinetics of tropospheric particle growth and transformation by measuring vapor accretion to particles (uptake coefficients, including mass accommodation coefficients and heterogeneous reaction rate coefficients). Other work initiated investigation of aerosol nucleation processes by monitoring the appearance of submicron particles with the AMS as a function of precursor gas concentrations. Three projects were investigated during the program: (1) Ozonolysis of oleic acid aerosols as model of chemical reactivity of secondary organic aerosol; (2) Activation of soot particles by measurement deliquescence in the presence of sulfuric acid and water vapor; (3) Controlled nucleation and growth of sulfuric acid aerosols.

  6. Influence of the aerosol solar extinction on photochemistry during the 2010 Russian wildfires episode

    NASA Astrophysics Data System (ADS)

    Péré, J. C.; Bessagnet, B.; Pont, V.; Mallet, M.; Minvielle, F.

    2015-10-01

    In this work, impact of aerosol solar extinction on the photochemistry over eastern Europe during the 2010 wildfires episode is discussed for the period from 5 to 12 August 2010, which coincides to the peak of fire activity. The methodology is based on an online coupling between the chemistry-transport model CHIMERE (extended by an aerosol optical module) and the radiative transfer code TUV. Results of simulations indicate an important influence of the aerosol solar extinction, in terms of intensity and spatial extent, with a reduction of the photolysis rates of NO2 and O3 up to 50 % (in daytime average) along the aerosol plume transport. At a regional scale, these changes in photolysis rates lead to a 3-15 % increase in the NO2 daytime concentration and to an ozone reduction near the surface of 1-12 %. The ozone reduction is shown to occur over the entire boundary layer, where aerosols are located. Also, the total aerosol mass concentration (PM10) is shown to be decreased by 1-2 %, on average during the studied period, caused by a reduced formation of secondary aerosols such as sulfates and secondary organics (4-10 %) when aerosol impact on photolysis rates is included. In terms of model performance, comparisons of simulations with air quality measurements at Moscow indicate that an explicit representation of aerosols interaction with photolysis rates tend to improve the estimation of the near-surface concentration of ozone and nitrogen dioxide as well as the formation of inorganic aerosol species such as ammonium, nitrates and sulfates.

  7. Radiative properties of the background aerosol: absorption component of extinction.

    PubMed

    Clarke, A D; Charlson, R J

    1985-07-19

    The light-scattering and light-absorption coefficients of the global background aerosol define its single-scatter albedo. Continuous, simultaneous measurements of these optical coefficients were made on a daily basis for the remote marine mid-troposphere; such measurements are essential for assessment of the effects of aerosol on atmospheric radiative transfer. Measurements of light-absorption coefficients made at the Mauna Loa Observatory in Hawaii were higher than expected, and the single-scatter albedo was lower than the value often used in radiative transfer models. Soot appears to be the most likely primary absorber, and hemispheric dispersal of this combustion-derived material is suggested. PMID:17759145

  8. Stratospheric Aerosol and Gas Experiment (SAGE) II and III Aerosol Extinction Measurements in the Arctic Middle and Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Treffeisen, R. E.; Thomason, L. W.; Strom, J.; Herber, A. B.; Burton, S. P.; Yamanouchi, T.

    2006-01-01

    In recent years, substantial effort has been expended toward understanding the impact of tropospheric aerosols on Arctic climate and chemistry. A significant part of this effort has been the collection and documentation of extensive aerosol physical and optical property data sets. However, the data sets present significant interpretive challenges because of the diverse nature of these measurements. Among the longest continuous records is that by the spaceborne Stratospheric Aerosol and Gas Experiment (SAGE) II. Although SAGE tropospheric measurements are restricted to the middle and upper troposphere, they may be able to provide significant insight into the nature and variability of tropospheric aerosol, particularly when combined with ground and airborne observations. This paper demonstrates the capacity of aerosol products from SAGE II and its follow-on experiment SAGE III to describe the temporal and vertical variations of Arctic aerosol characteristics. We find that the measurements from both instruments are consistent enough to be combined. Using this combined data set, we detect a clear annual cycle in the aerosol extinction for the middle and upper Arctic troposphere.

  9. Performance of a focused cavity aerosol spectrometer for measurements in the stratosphere of particle size in the 0.06-2.0-micrometer-diameter range

    NASA Technical Reports Server (NTRS)

    Jonsson, H. H.; Wilson, J. C.; Brock, C. A.; Knollenberg, R. G.; Newton, R.; Dye, J. E.; Baumgardner, D.; Borrmann, S.; Ferry, G. V.; Pueschel, R.

    1995-01-01

    A focused cavity aerosol spectrometer aboard a NASA ER-2 high-altitude aircraft provided high-resolution measurements of the size of the stratospheric particles in the 0.06-2.0-micrometer-diameter range in flights following the eruption of Mount Pinatubo in 1991. Effects of anisokinetic sampling and evaporation in the sampling system were accounted for by means adapted and specifically developed for this instrument. Calibrations with monodisperse aerosol particles provided the instrument's response matrix, which upon inversion during data reduction yielded the particle size distributions. The resultant dataset is internally consistent and generally shows agreement to within a factor of 2 with comparable measurements simultaneously obtained by a condensation nuclei counter, a forward-scattering spectrometer probe, and aerosol particle impactors, as well as with nearby extinction profiles obtained by satellite measurements and with lidar measurements of backscatter.

  10. Selection Algorithm for the CALIPSO Lidar Aerosol Extinction-to-Backscatter Ratio

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Winker, David M.; Vaughan, Mark A.

    2006-01-01

    The extinction-to-backscatter ratio (S(sub a)) is an important parameter used in the determination of the aerosol extinction and subsequently the optical depth from lidar backscatter measurements. We outline the algorithm used to determine Sa for the Cloud and Aerosol Lidar and Infrared Pathfinder Spaceborne Observations (CALIPSO) lidar. S(sub a) for the CALIPSO lidar will either be selected from a look-up table or calculated using the lidar measurements depending on the characteristics of aerosol layer. Whenever suitable lofted layers are encountered, S(sub a) is computed directly from the integrated backscatter and transmittance. In all other cases, the CALIPSO observables: the depolarization ratio, delta, the layer integrated attenuated backscatter, beta, and the mean layer total attenuated color ratio, gamma, together with the surface type, are used to aid in aerosol typing. Once the type is identified, a look-up-table developed primarily from worldwide observations, is used to determine the S(sub a) value. The CALIPSO aerosol models include desert dust, biomass burning, background, polluted continental, polluted dust, and marine aerosols.

  11. Ambient Aerosol in Southeast Asia: High Resolution Aerosol Mass Spectrometer Measurements Over Oil Palm (Elaeis guineensis)

    NASA Astrophysics Data System (ADS)

    Phillips, G.; Dimarco, C.; Misztal, P.; Nemitz, E.; Farmer, D.; Kimmel, J.; Jimenez, J.

    2008-12-01

    The emission of organic compounds in the troposphere is important factor in the formation of secondary organic aerosol (SOA). A very large proportion of organic material emitted globally is estimated to arise from biogenic sources, with almost half coming from tropical and sub-tropical forests. Preliminary analyses of leave cuvette emission studies suggest that oil palm (Elaeis guineensis) is a significantly larger source of isoprene than tropical forest. Much larger sources of isoprene over oil palm allied with a larger anthropogenic component of local emissions contrast greatly with the remote tropical forest environment and therefore the character of SOA formed may differ significantly. These issues, allied with the high price of palm oil on international markets leading to increased use of land for oil palm production, could give rise to rapidly changing chemical and aerosol regimes in the tropics. It is therefore important to understand the current emissions and composition of organic aerosol over all important land-uses in the tropical environment. This in turn will lead to a greater understanding of the present, and to an improvement in predictive capacity for the future system. To help address these issues, a high resolution time of flight aerosol mass spectrometer (HR-ToF-AMS) was deployed in the Sabahmas (PPB OIL) oil palm plantation near Lahad Datu, in Eastern Sabah, as part of the field component of the Aerosol Coupling in the Earth System (ACES) project, part of the UK NERC APPRAISE program. This project was allied closely with measurements made of similar chemical species and aerosol components at a forest site in the Danum Valley as part of the UK Oxidant and Particle Photochemical Processes above a Southeast Asian tropical rainforest (OP3) project. Measurements of submicron non- refractory aerosol composition are presented along with some preliminary analysis of chemically resolved aerosol fluxes made with a new eddy covariance system, based on the

  12. Mount St. Helens related aerosol properties from solar extinction measurements

    NASA Technical Reports Server (NTRS)

    Michalsky, J. J.; Kleckner, E. W.; Stokes, G. M.

    1982-01-01

    A network of solar radiometers, operated on the North American Continent for an average of 2 years before the first major eruption of Mount St. Helens, Washington, continues to collect direct solar data through the eruptive phase of this volcano. The radiometers collect spectral data through 12 interference filters spanning the sensitivity of the photodiode used as detector. The data are collected every 5 minutes in seven filters and every 15 minutes in five additional filters. A variant of the classical Langley method has been used to measure the optical depth of the aerosols as a function of wavelength. The network, which is the nearest station, is located some 180 kilometers east of the volcano, well within range of noticeable effects during much of the minor as well as major activity. The wavelength dependence of the aerosol-optical depth before and after the 22 July 1980 major eruption, which was well characterized because of favorable meteorological conditions is discussed.

  13. Using high time resolution aerosol and number size distribution measurements to estimate atmospheric extinction.

    PubMed

    Malm, William C; McMeeking, Gavin R; Kreidenweis, Sonia M; Levin, Ezra; Carrico, Christian M; Day, Derek E; Collett, Jeffrey L; Lee, Taehyoung; Sullivan, Amy P; Raja, Suresh

    2009-09-01

    Rocky Mountain National Park is experiencing reduced visibility and changes in ecosystem function due to increasing levels of oxidized and reduced nitrogen. The Rocky Mountain Atmospheric Nitrogen and Sulfur (RoMANS) study was initiated to better understand the origins of sulfur and nitrogen species as well as the complex chemistry occurring during transport from source to receptor. As part of the study, a monitoring program was initiated for two 1-month time periods--one during the spring and the other during late summer/fall. The monitoring program included intensive high time resolution concentration measurements of aerosol number size distribution, inorganic anions, and cations, and 24-hr time resolution of PM2.5 and PM10 mass, sulfate, nitrate, carbon, and soil-related elements concentrations. These data are combined to estimate high time resolution concentrations of PM2.5 and PM10 aerosol mass and fine mass species estimates of ammoniated sulfate, nitrate, and organic and elemental carbon. Hour-by-hour extinction budgets are calculated by using these species concentration estimates and measurements of size distribution and assuming internal and external particle mixtures. Summer extinction was on average about 3 times higher than spring extinction. During spring months, sulfates, nitrates, carbon mass, and PM10 - PM2.5 mass contributed approximately equal amounts of extinction, whereas during the summer months, carbonaceous material extinction was 2-3 times higher than other species. PMID:19785272

  14. Measurement of wavelength-dependent extinction to distinguish between absorbing and nonabsorbing aerosol particulates

    NASA Technical Reports Server (NTRS)

    Portscht, R.

    1977-01-01

    Measurements of spectral transmission factors in smoky optical transmission paths reveal a difference between wavelength exponents of the extinction cross section of high absorption capacity and those of low absorption capacity. A theoretical explanation of this behavior is presented. In certain cases, it is possible to obtain data on the absorption index of aerosol particles in the optical path by measuring the spectral decadic extinction coefficient at, at least, two wavelengths. In this manner it is possible, for instance, to distinguish smoke containing soot from water vapor.

  15. Laboratory and field measurements of organic aerosols with the photoionization aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Dreyfus, Matthew A.

    Analytical methods developed to sample and characterize ambient organic aerosols often face the trade-off between long sampling times and the loss of detailed information regarding specific chemical species present. The soft, universal ionization scheme of the Photoionization Aerosol Mass Spectrometer (PIAMS) allows for identification of various chemical compounds by a signature ion, often the molecular ion. The goal of this thesis work is to apply PIAMS to both laboratory and field experiments to answer questions regarding the formation, composition, and behavior of organic aerosols. To achieve this goal, a variety of hardware and software upgrades were administered to PIAMS to optimize the instrument. Data collection and processing software were either refined or built from the ground up to simplify difficult or monotonous tasks. Additional components were added to PIAMS with the intent to automate the instrument, enhance the results, and make the instrument more rugged and user-friendly. These changes, combined with the application of an external particle concentration system (mini-Versatile Aerosol Concentration Enrichment System, m-VACES), allowed PIAMS to be suitable for field measurements of organic aerosols. Two such field campaigns were completed, both at the State of Delaware Air Quality Monitoring Site in Wilmington, Delaware: a one week period in June, 2006, and an 18 day period in October and November of 2007. A sampling method developed was capable of collecting sufficient ambient organic aerosol and analyzing it with a time resolution of 3.5 minutes. Because of this method, short term concentration changes of individual species can be tracked. Combined with meteorological data, the behavior of these species can be analyzed as a function of time or wind direction. Many compounds are found at enhanced levels during the evening/night-time hours; potentially due to the combined effects of temperature inversion, and fresh emissions in a cooler environment

  16. Calibration correction of an active scattering spectrometer probe to account for refractive index of stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Overbeck, V. R.; Snetsinger, K. G.; Russell, P. B.; Ferry, G. V.

    1990-01-01

    The use of the active scattering spectrometer probe (ASAS-X) to measure sulfuric acid aerosols on U-2 and ER-2 research aircraft has yielded results that are at times ambiguous due to the dependence of particles' optical signatures on refractive index as well as physical dimensions. The calibration correction of the ASAS-X optical spectrometer probe for stratospheric aerosol studies is validated through an independent and simultaneous sampling of the particles with impactors; sizing and counting of particles on SEM images yields total particle areas and volumes. Upon correction of calibration in light of these data, spectrometer results averaged over four size distributions are found to agree with similarly averaged impactor results to within a few percent: indicating that the optical properties or chemical composition of the sample aerosol must be known in order to achieve accurate optical aerosol spectrometer size analysis.

  17. Characterization of aerosol composition, concentrations, and sources at Baengnyeong Island, Korea using an aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Lee, Taehyoung; Choi, Jinsoo; Lee, Gangwoong; Ahn, Junyoung; Park, Jin Soo; Atwood, Samuel A.; Schurman, Misha; Choi, Yongjoo; Chung, Yoomi; Collett, Jeffrey L.

    2015-11-01

    To improve understanding of the sources and chemical properties of particulate pollutants on the western side of the Korean Peninsula, an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) measured non-refractory fine (PM1) particles from May to November, 2011 at Baengnyeong Island, South Korea. Organic matter and sulfate were generally the most abundant species and exhibited maximum concentrations of 36 μg/m3 and 39 μg/m3, respectively. Nitrate concentrations peaked at 32 μg/m3 but were typically much lower than sulfate and organic matter concentrations. May, September, October, and November featured the highest monthly average concentrations, with lower concentrations typically observed from June through August. Potential source contribution function (PSCF) analysis and individual case studies revealed that transport from eastern China, an area with high SO2 emissions, was associated with high particulate sulfate concentrations at the measurement site. Observed sulfate aerosol sometimes was fully neutralized by ammonium but often was acidic; the average ammonium to sulfate molar ratio was 1.49. Measured species size distributions revealed a range of sulfate particle size distributions with modes between 100 and 600 nm. Organic aerosol source regions were widespread, including contributions from eastern China and South Korea. Positive matrix factorization (PMF) analysis indicated three "factors," or types of organic aerosol, comprising one primary, hydrocarbon-like organic aerosol (HOA) and two oxidized organic aerosol (OOA) components, including a more oxidized (MO-OOA) and a less oxidized (LO-OOA) oxidized organic aerosol. On average, HOA and OOA contributed 21% and 79% of the organic mass (OM), respectively, with the MO-OOA fraction nearly three times as abundant as the LO-OOA fraction. Biomass burning contributions to observed OM were low during the late spring/early summer agricultural burning season in eastern China, since

  18. CART and GSFC raman lidar measurements of atmospheric aerosol backscattering and extinction profiles for EOS validation and ARM radiation studies

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Turner, D. D.; Melfi, S. H.; Whiteman, D. N.; Schwenner, G.; Evans, K. D.; Goldsmith, J. E. M.; Tooman, T.

    1998-01-01

    The aerosol retrieval algorithms used by the Moderate-Resolution Imaging Spectroradiometer (MODIS) and Multi-Angle Imaging SpectroRadiometer (MISR) sensors on the Earth Observing Satellite (EOS) AM-1 platform operate by comparing measured radiances with tabulated radiances that have been computed for specific aerosol models. These aerosol models are based almost entirely on surface and/or column averaged measurements and so may not accurately represent the ambient aerosol properties. Therefore, to validate these EOS algorithms and to determine the effects of aerosols on the clear-sky radiative flux, we have begun to evaluate the vertical variability of ambient aerosol properties using the aerosol backscattering and extinction profiles measured by the Cloud and Radiation Testbed (CART) and NASA Goddard Space Flight Center (GSFC) Raman Lidars. Using the procedures developed for the GSFC Scanning Raman Lidar (SRL), we have developed and have begun to implement algorithms for the CART Raman Lidar to routinely provide profiles of aerosol extinction and backscattering during both nighttime and ,daytime operations. Aerosol backscattering and extinction profiles are computed for both lidar systems using data acquired during the 1996 and 1997 Water Vapor Intensive Operating Periods (IOPs). By integrating these aerosol extinction profiles, we derive measurements of aerosol optical thickness and compare these with coincident sun photometer measurements. We also use these measurements to measure the aerosol extinction/backscatter ratio S(sub a) (i.e. 'lidar ratio'). Furthermore, we use the simultaneous water vapor measurements acquired by these Raman lidars to investigate the effects of water vapor on aerosol optical properties.

  19. Modified cavity attenuated phase shift (CAPS) method for airborne aerosol light extinction measurement

    NASA Astrophysics Data System (ADS)

    Perim de Faria, Julia; Bundke, Ulrich; Freedman, Andrew; Petzold, Andreas

    2015-04-01

    Monitoring the direct impact of aerosol particles on climate requires the consideration of at least two major factors: the aerosol single-scattering albedo, defined as the relation between the amount of energy scattered and extinguished by an ensemble of aerosol particles; and the aerosol optical depth, calculated from the integral of the particle extinction coefficient over the thickness of the measured aerosol layer. Remote sensing networks for measuring these aerosol parameters on a regular basis are well in place (e.g., AERONET, ACTRIS), whereas the regular in situ measurement of vertical profiles of atmospheric aerosol optical properties remains still an important challenge in quantifying climate change. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. Recently, a compact and robust family of optical instruments based on the cavity attenuated phase shift (CAPS) technique has become available for measuring aerosol light extinction. In particular, the CAPS PMex particle optical extinction monitor has demonstrated sensitivity of less than 2 Mm-1 in 1 second sampling period; with a 60 s averaging time, a detection limit of less than 0.3 Mm-1 can be achieved. While this technique was successfully deployed for ground-based atmospheric measurements under various conditions, its suitability for operation aboard aircraft in the free and upper free troposphere still has to be demonstrated. Here, we report on the modifications of a CAPS PMex instrument for measuring aerosol light extinction on aircraft, and subsequent laboratory tests for evaluating the modified instrument prototype: (1) In a

  20. Comparison of vertical aerosol extinction coefficients from in-situ and LIDAR measurements

    NASA Astrophysics Data System (ADS)

    Rosati, B.; Herrmann, E.; Bucci, S.; Fierli, F.; Cairo, F.; Gysel, M.; Tillmann, R.; Größ, J.; Gobbi, G. P.; Di Liberto, L.; Di Donfrancesco, G.; Wiedensohler, A.; Weingartner, E.; Virtanen, A.; Mentel, T. F.; Baltensperger, U.

    2015-07-01

    Vertical profiles of aerosol optical properties were explored in a case study near the San Pietro Capofiume (SPC) ground station during the PEGASOS Po Valley campaign in the summer of 2012. A Zeppelin NT airship was employed to investigate the effect of the dynamics of the planetary boundary layer at altitudes between ~ 50-800 m above ground. Determined properties included the aerosol size distribution, the hygroscopic growth factor, the effective index of refraction and the light absorption coefficient. The first three parameters were used to retrieve the light scattering coefficient. Simultaneously, direct measurements of both the scattering and absorption coefficient were carried out at the SPC ground station. Additionally, a LIDAR system provided aerosol extinction coefficients for a vertically resolved comparison between in-situ and remote sensing results. First, the airborne results at low altitudes were validated with the ground measurements. Agreement within approximately ±25 and ±20% was found for the dry scattering and absorption coefficient, respectively. The single scattering albedo, ranged between 0.83 to 0.95, indicating the importance of the absorbing particles in the Po Valley region. A clear layering of the atmosphere was observed during the beginning of the flight (until ~ 10 local time) before the mixed layer (ML) was fully developed. Highest extinction coefficients were found at low altitudes, in the new ML, while values in the residual layer, which could be probed at the beginning of the flight at elevated altitudes, were lower. At the end of the flight (after ~ 12 local time) the ML was fully developed, resulting in constant extinction coefficients at all altitudes measured on the Zeppelin NT. LIDAR results captured these dynamic features well and good agreement was found for the extinction coefficients compared to the in-situ results, using fixed LIDAR ratios (LR) between 30 and 70 sr for the altitudes probed with the Zeppelin. These LR are

  1. Effect of coagulation on extinction in an aerosol plume propagating in the atmosphere.

    PubMed

    Tsang, T H; Brock, J R

    1982-05-01

    Model studies based on the K-theory diffusion assumption have been carried out on aerosol plumes issuing from a crosswind line source in which advection, vertical diffusion, coagulation, sedimentation, and dry deposition are occurring. Procedures are described and a few typical results are presented. It is shown that in appropriate conditions coagulation can play an important role in altering extinction in the plume. An important coupling effect between coagulation and sedimentation/deposition has been demonstrated. In a coagulating plume it is found that total particle mass concentration cannot be inferred from measurements of extinction without a detailed consideration of the effects of coagulation. In realistic atmospheric simulations isopleths of extinction in the plume cross section show complex forms resulting from the wind gradient and its interactions with vertical diffusion and the coagulation and sedimentation/deposition processes. PMID:20389900

  2. TIME-OF-FLIGHT AEROSOL BEAM SPECTROMETER FOR PARTICLE SIZE MEASUREMENTS

    EPA Science Inventory

    A time-of-flight aerosol beam spectrometer (TOFABS) is described. The instrument has been designed and constructed to perform in situ real time measurements of the aerodynamic size of individual aerosol particles in the range 0.3 to 10 micrometers diameter. The measurement method...

  3. Use of Lidar Derived Optical Extinction and Backscattering Coefficients Near Cloud Base to Explore Aerosol-Cloud Interactions

    NASA Astrophysics Data System (ADS)

    Han, Zaw; Wu, Yonhgua; Gross, Barry; Moshary, Fred

    2016-06-01

    Combination of microwave radiometer (MWR) and mutlifilter rotating shadowband radiometer (MFRSR) measurement data together with SBDART radiative transfer model to compute cloud optical depth (COD) and cloud droplet effective radius (Reff). Quantify the first aerosol indirect effect using calculated Reff and aerosol extinction from Raman lidar measurement in urban coastal region. Illustrate comparison between ground-based and satellite retrievals. Demonstrate relationship between surface aerosol (PM2.5) loading and Reff. We also explain the sensitivity of aerosol-cloud-index (ACI) depend on the aerosol layer from cloud base height. Potential used of less noisy elastic backscattering to calculate the ACI instead of using Raman extinction. We also present comparison of elastic backscattering and Raman extinction correlation to Reff.

  4. SAGE III Aerosol Extinction Validation in the Arctic Winter: Comparisons with SAGE II and POAM III

    NASA Technical Reports Server (NTRS)

    Thomason, L. W.; Poole, L. R.; Randall, C. E.

    2007-01-01

    The use of SAGE III multiwavelength aerosol extinction coefficient measurements to infer PSC type is contingent on the robustness of both the extinction magnitude and its spectral variation. Past validation with SAGE II and other similar measurements has shown that the SAGE III extinction coefficient measurements are reliable though the comparisons have been greatly weighted toward measurements made at mid-latitudes. Some aerosol comparisons made in the Arctic winter as a part of SOLVE II suggested that SAGE III values, particularly at longer wavelengths, are too small with the implication that both the magnitude and the wavelength dependence are not reliable. Comparisons with POAM III have also suggested a similar discrepancy. Herein, we use SAGE II data as a common standard for comparison of SAGE III and POAM III measurements in the Arctic winters of 2002/2003 through 2004/2005. During the winter, SAGE II measurements are made infrequently at the same latitudes as these instruments. We have mitigated this problem through the use potential vorticity as a spatial coordinate and thus greatly increased the number of coincident events. We find that SAGE II and III extinction coefficient measurements show a high degree of compatibility at both 1020 nm and 450 nm except a 10-20% bias at both wavelengths. In addition, the 452 to 1020-nm extinction ratio shows a consistent bias of approx. 30% throughout the lower stratosphere. We also find that SAGE II and POAM III are on average consistent though the comparisons show a much higher variability and larger bias than SAGE II/III comparisons. In addition, we find that the two data sets are not well correlated below 18 km. Overall, we find both the extinction values and the spectral dependence from SAGE III are robust and we find no evidence of a significant defect within the Arctic vortex.

  5. Forecasting of aerosol extinction of the sea and coastal atmosphere surface layer

    NASA Astrophysics Data System (ADS)

    Kaloshin, G. A.

    2010-04-01

    The focus of our study is the extinction and optical effects due to aerosol in a specific coastal region. The aerosol microphysical model of the marine and coastal atmosphere surface layer is considered. The model is made on the basis of the long-term experimental data received at researches of aerosol sizes distribution function (dN/dr) in the band particles sizes in 0.01 - 100 μk. The model is developed by present time for the band of heights is 0 - 25 m. Bands of wind speed is 3 - 18 km/s, sizes fetch is up to 120 km, RH = 40 - 98 %. Key feature of model is parameterization of amplitude and width of the modes as functions of fetch and wind speed. In the paper the dN/dr behavior depending at change meteorological parameters, heights above sea level, fetch (X), wind speed (U) and RH is show. On the basis of the developed model with usage of Mie theory for spheres the description of last version of developed code MaexPro (Marine Aerosol Extinction Profiles) for spectral profiles of aerosol extinction coefficients α(λ) calculations in the wavelength band, equal λ = 0.2 - 12 μm is presented. The received results are compared models NAN and ANAM. Also α(λ) profiles for various wind modes (combinations X and U) calculated by MaexPro code are given. The calculated spectrums of α(λ) profiles are compared with experimental data of α(λ) received by a transmission method in various geographical areas.

  6. Aerosol Particle Size Retrievals from the Compact Reconnaissance Imaging Spectrometer for Mars

    NASA Astrophysics Data System (ADS)

    Guzewich, S.; Smith, M. D.; Wolff, M. J.

    2013-12-01

    During the extended mission of the Mars Reconnaisance Orbiter, the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) has made periodic limb-viewing geometry observations of the Martian atmosphere. Sufficient radiance is typically available to produce a vertical distribution of dust and water ice aerosols from the surface to approximately 50 km altitude. Radiative transfer modeling is conducted to achieve a best fit between the observed and modeled spectrum. The spherical geometry of the limb-viewing geometry is handled using a pseudo-spherical approximation that is computationally efficient and accurate to within a few percent of a Monte Carlo method for the geometries observed. Different particle sizes of dust and water ice have unique extinction coefficients across the visible and near-infrared portion of the spectrum observed by CRISM. We use a wide range of wavelengths across the CRISM spectrum to conduct the retrieval. Here we provide initial results on the retrieval of dust and water ice particle sizes over the duration of the CRISM limb-viewing observations.

  7. Airborne DOAS measurements in Arctic: vertical distributions of aerosol extinction coefficient and NO2 concentration

    NASA Astrophysics Data System (ADS)

    Merlaud, A.; van Roozendael, M.; Theys, N.; Fayt, C.; Hermans, C.; Quennehen, B.; Schwarzenboeck, A.; Ancellet, G.; Pommier, M.; Pelon, J.; Burkhart, J.; Stohl, A.; de Mazière, M.

    2011-05-01

    We report airborne differential optical absorption spectroscopy (DOAS) measurements of aerosol extinction and NO2 tropospheric profiles performed off the North coast of Norway in April 2008. The DOAS instrument was installed on the Safire ATR-42 aircraft during the POLARCAT-France spring campaign and recorded scattered light spectra in near-limb geometry using a scanning telescope. We use O4 slant column measurements to derive the aerosol extinction at 360 nm. Regularization is based on the maximum a posteriori solution, for which we compare a linear and a logarithmic approach. The latter inherently constrains the solution to positive values and yields aerosol extinction profiles more consistent with independently measured size distributions. Two soundings are presented, performed on 8 April 2008 above 71° N, 22° E and on 9 April 2008 above 70° N, 17.8° E. The first profile shows aerosol extinction and NO2 in the marine boundary layer with respective values of 0.04±0.005 km-1 and 1.9±0.3 × 109 molec cm-3. A second extinction layer of 0.01±0.003 km-1 is found at 4 km altitude. During the second sounding, clouds prevented us to retrieve profile parts under 3 km altitude but a layer with enhanced extinction (0.025±0.005 km-1) and NO2 (1.95±0.2 × 109 molec cm-3) is clearly detected at 4 km altitude. From CO and ozone in-situ measurements complemented by back-trajectories, we interpret the measurements in the free troposphere as, for the first sounding, a mix between stratospheric and polluted air from Northern Europe and for the second sounding, polluted air from Central Europe containing NO2. Considering the boundary layer measurements of the first flight, modeled source regions indicate closer sources, especially the Kola Peninsula smelters, which can explain the NO2 enhancement not correlated with a CO increase at the same altitude.

  8. Airborne DOAS measurements in Arctic: vertical distributions of aerosol extinction coefficient and NO2 concentration

    NASA Astrophysics Data System (ADS)

    Merlaud, A.; van Roozendael, M.; Theys, N.; Fayt, C.; Hermans, C.; Quennehen, B.; Schwarzenboeck, A.; Ancellet, G.; Pommier, M.; Pelon, J.; Burkhart, J.; Stohl, A.; de Mazière, M.

    2011-09-01

    We report on airborne Differential Optical Absorption Spectroscopy (DOAS) measurements of aerosol extinction and NO2 tropospheric profiles performed off the North coast of Norway in April 2008. The DOAS instrument was installed on the Safire ATR-42 aircraft during the POLARCAT-France spring campaign and recorded scattered light spectra in near-limb geometry using a scanning telescope. We use O4 slant column measurements to derive the aerosol extinction at 360 nm. Regularization is based on the maximum a posteriori solution, for which we compare a linear and a logarithmic approach. The latter inherently constrains the solution to positive values and yields aerosol extinction profiles more consistent with independently measured size distributions. We present results from two soundings performed on 8 April 2008 above 71° N, 22° E and on 9 April 2008 above 70° N, 17.8° E. The first profile shows aerosol extinction and NO2 in the marine boundary layer with respective values of 0.04 ± 0.005 km-1 and 1.9 ± 0.3 × 109 molec cm-3. A second extinction layer of 0.01 ± 0.003 km-1 is found at 4 km altitude where the NO2 concentration is 0.32 ± 0.2 × 109 molec cm-3. During the second sounding, clouds prevent retrieval of profile parts under 3 km altitude but a layer with enhanced extinction (0.025 ± 0.005 km-1) and NO2 (1.95 ± 0.2 × 109 molec cm-3) is clearly detected at 4 km altitude. From CO and ozone in-situ measurements complemented by back-trajectories, we interpret the measurements in the free troposphere as, for the first sounding, a mix between stratospheric and polluted air from Northern Europe and for the second sounding, polluted air from Central Europe containing NO2. Considering the boundary layer measurements of the first flight, modeled source regions indicate closer sources, especially the Kola Peninsula smelters, which can explain the NO2 enhancement not correlated with a CO increase at the same altitude.

  9. Aerosol Backscatter and Extinction Retrieval from Airborne Coherent Doppler Wind Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Chouza, F.; Reitebuch, O.; Groß, S.; Rahm, S.; Freudenthaler, V.; Toledano, C.; Weinzierl, B.

    2016-06-01

    A novel method for coherent Doppler wind lidars (DWLs) calibration is shown in this work. Concurrent measurements of a ground based aerosol lidar operating at 532 nm and an airborne DWL at 2 μm are used in combination with sun photometer measurements for the retrieval of backscatter and extinction profiles. The presented method was successfully applied to the measurements obtained during the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE: http://www.pa.op.dlr.de/saltrace), which aimed to characterize the Saharan dust long range transport between Africa and the Caribbean.

  10. Analysis of Antarctic stratospheric aerosol properties using SAGE II extinction measurements

    NASA Technical Reports Server (NTRS)

    Thomason, Larry W.; Poole, Lamont R.

    1992-01-01

    Multispectra aerosol extinction data for the fall and spring of 1987 measured by the SAGE II sensor are employed to determine the physical characteristics of aerosols within the springtime Antarctic polar vortex. Attention is given to the physical processes that give rise to the apparent springtime 'cleansing' of the Antarctic stratosphere. The inferred vertical and radial structure compare favorably with in situ measurements but yield a previously unavailable 2D structure to the distribution of aerosols within the polar vortex. The springtime 'cleansing' of the Antarctic stratosphere is found to be a result of both large-scale subsidence and the preferential removal of large particles by the nucleation and subsequent sedimentation of polar stratospheric clouds.

  11. The impacts of aerosol loading, composition, and water uptake on aerosol extinction variability in the Baltimore-Washington, D.C. region

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Ziemba, L. D.; Chen, G.; Corr, C. A.; Crawford, J. H.; Diskin, G. S.; Moore, R. H.; Thornhill, K. L.; Winstead, E. L.; Anderson, B. E.

    2016-01-01

    In order to utilize satellite-based aerosol measurements for the determination of air quality, the relationship between aerosol optical properties (wavelength-dependent, column-integrated extinction measured by satellites) and mass measurements of aerosol loading (PM2.5 used for air quality monitoring) must be understood. This connection varies with many factors including those specific to the aerosol type - such as composition, size, and hygroscopicity - and to the surrounding atmosphere, such as temperature, relative humidity (RH), and altitude, all of which can vary spatially and temporally. During the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) project, extensive in situ atmospheric profiling in the Baltimore, MD-Washington, D.C. region was performed during 14 flights in July 2011. Identical flight plans and profile locations throughout the project provide meaningful statistics for determining the variability in and correlations between aerosol loading, composition, optical properties, and meteorological conditions. Measured water-soluble aerosol mass was composed primarily of ammonium sulfate (campaign average of 32 %) and organics (57 %). A distinct difference in composition was observed, with high-loading days having a proportionally larger percentage of sulfate due to transport from the Ohio River Valley. This composition shift caused a change in the aerosol water-uptake potential (hygroscopicity) such that higher relative contributions of inorganics increased the bulk aerosol hygroscopicity. These days also tended to have higher relative humidity, causing an increase in the water content of the aerosol. Conversely, low-aerosol-loading days had lower sulfate and higher black carbon contributions, causing lower single-scattering albedos (SSAs). The average black carbon concentrations were 240 ng m-3 in the lowest 1 km, decreasing to 35 ng m-3 in the free troposphere (above

  12. Development of the code MaexPro for calculation atmospheric aerosol extinction in the marine and coastal surface layer

    NASA Astrophysics Data System (ADS)

    Kaloshin, Gennady A.; Shishkin, Sergey A.; Serov, Sergey A.

    2006-11-01

    In the paper the description of the last version of the code MaexPro (Marine aerosol extinction Profile) for calculation spectral and vertical profiles of aerosol extinction coefficient α( λ), aerosol sizes distribution, area distribution, volumes distribution, modes aerosol extinction spectra using standard meteorological parameters, aerosol microphysical structure, a spectral band and a height of the sensor location place is submitted. The code MaexPro is the computer program under constantly development to estimate of EO systems signal power at a location place in which a fetch is key entrance parameter. Spectral behavior α( λ) can be submitted as graphically, and as tables. Commands overplot for superposition or change of figures; profiles extrapolation; a lens; all kinds of possible copying; the data presentation, convenient for an input in code MODTRAN, and etc. are stipulated. The code MaexPro is a completely mouse-driven PC Windows program with a user-friendly interface. Calculation time of spectral and vertical profiles of α( λ) depends on the necessary wave length resolution, radius of aerosol particles and the location place height, and does not exceed tens seconds for each new meteorological condition. Other calculations characteristics, such as aerosol sizes distribution, area distribution, volumes distribution, modes aerosol extinction spectra, are performed in a few seconds.

  13. Statistical analysis of the spatial-temporal distribution of aerosol extinction retrieved by micro-pulse lidar in Kashgar, China.

    PubMed

    Zhu, Wenyue; Xu, Chidong; Qian, Xianmei; Wei, Heli

    2013-02-11

    The spatial-temporal distribution of dust aerosol is important in climate model and ecological environment. An observation experiment of the aerosol vertical distribution in the low troposphere was made using the micro-pulse lidar system from Sept. 2008 to Aug. 2009 at the oasis city Kashgar, China, which is near the major dust source area of the Taklimakan desert. The monthly averaged temporal variation of aerosol extinction profiles are given in the paper. The profile of aerosol extinction coefficient suggested that the dust aerosol could be vertically transported from the ground level to the higher altitude of above 5 km around the source region, and the temporal distribution showed that the dust aerosol layer of a few hundred meters thick appeared in the seasons of early spring and summer near the ground surface. PMID:23481711

  14. Relationships between Optical Extinction, Backscatter and Aerosol Surface and Volume in the Stratosphere following the Eruption of Mt. Pinatubo

    NASA Technical Reports Server (NTRS)

    Brock, Charles A.; Jonsson, Haflidi H.; Wilson, James C.; Dye, James E.; Baumgardner, Darrel; Borrmann, Stephan; Pitts, Mike C.; Osborn, Mary T.; DeCoursey, Robert J.; Woods, David C.

    1993-01-01

    The eruption of the Mt. Pinatubo volcano in the Philippines in June 1991 has resulted in increases in the surface and mass concentrations of aerosol particles in the lower stratosphere. Airborne measurements made at midlatitudes between 15 and 21 km from August 1991 to March 1992 show that, prior to December 1991, the Pinatubo aerosol cloud varied widely in microphysical properties such as size distribution, number, surface and volume concentrations and was also spatially variable. Aerosol surface area concentration was found to be highly correlated to extinction at visible and near-infrared wavelengths throughout the measurement period. Similarly, backscatter at common lidar wavelengths was a good predictor of aerosol volume concentrations. These results support the use of satellite extinction measurements to estimate aerosol surface and of lidar measurements to estimate aerosol volume or mass if temporal changes in the relationships between the variables are considered.

  15. Cavity Attenuated Phase Shift (CAPS) Method for Airborne Aerosol Light Extinction Measurement: Instrument Validation and First Results from Field Deployment

    NASA Astrophysics Data System (ADS)

    Petzold, A.; Perim de Faria, J.; Berg, M.; Bundke, U.; Freedman, A.

    2015-12-01

    Monitoring the direct impact of aerosol particles on climate requires the continuous measurement of aerosol optical parameters like the aerosol extinction coefficient on a regular basis. Remote sensing and ground-based networks are well in place (e.g., AERONET, ACTRIS), whereas the regular in situ measurement of vertical profiles of atmospheric aerosol optical properties remains still an important challenge in quantifying climate change. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. Recently, a compact and robust family of optical instruments based on the cavity attenuated phase shift (CAPS) technique has become available for measuring aerosol light extinction. While this technique was successfully deployed for ground-based atmospheric measurements under various conditions, its suitability for operation aboard aircraft in the free and upper free troposphere still has to be demonstrated. In this work, the modifications of a CAPS PMex instrument for measuring aerosol light extinction on aircraft, the results from subsequent laboratory tests for evaluating the modified instrument prototype, and first results from a field deployment aboard a research aircraft will be covered. In laboratory studies, the instrument showed excellent agreement (deviation < 5%) with theoretical values calculated from Rayleigh scattering cross-sections, when operated on pressurized air and CO2 at ambient and low pressure (~200 hPa). For monodisperse and polydisperse aerosols, reference aerosol extinction coefficients were calculated from measured size distributions and agreed with the CAPS PMex instrument

  16. Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles

    NASA Technical Reports Server (NTRS)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Kittaka, C.; Vaughn, M. A.; Remer, L. A.

    2010-01-01

    We derive aerosol extinction profiles from airborne and space-based lidar backscatter signals by constraining the retrieval with column aerosol optical thickness (AOT), with no need to rely on assumptions about aerosol type or lidar ratio. The backscatter data were acquired by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL) and by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. The HSRL also simultaneously measures aerosol extinction coefficients independently using the high spectral resolution lidar technique, thereby providing an ideal data set for evaluating the retrieval. We retrieve aerosol extinction profiles from both HSRL and CALIOP attenuated backscatter data constrained with HSRL, Moderate-Resolution Imaging Spectroradiometer (MODIS), and Multiangle Imaging Spectroradiometer column AOT. The resulting profiles are compared with the aerosol extinction measured by HSRL. Retrievals are limited to cases where the column aerosol thickness is greater than 0.2 over land and 0.15 over water. In the case of large AOT, the results using the Aqua MODIS constraint over water are poorer than Aqua MODIS over land or Terra MODIS. The poorer results relate to an apparent bias in Aqua MODIS AOT over water observed in August 2007. This apparent bias is still under investigation. Finally, aerosol extinction coefficients are derived from CALIPSO backscatter data using AOT from Aqua MODIS for 28 profiles over land and 9 over water. They agree with coincident measurements by the airborne HSRL to within +/-0.016/km +/- 20% for at least two-thirds of land points and within +/-0.028/km +/- 20% for at least two-thirds of ocean points.

  17. Analysis of DIAL/HSRL aerosol backscatter and extinction profiles during the SEAC4RS campaign with an aerosol assimilation system

    NASA Astrophysics Data System (ADS)

    Weaver, C. J.; da Silva, A. M., Jr.; Colarco, P. R.; Randles, C. A.

    2015-12-01

    We retrieve aerosol concentrations and optical information from vertical profiles of airborne 532 nm extinction and 532 and 1064 nm backscatter measurements made during the SEAC4RS summer 2013 campaign. The observations are from the High Spectral Resolution Lidar (HSRL) Airborne Differential Absorption Lidar (DIAL) on board the NASA DC-8. Instead of retrieving information about aerosol microphysical properties such as indexes of refraction, we seek information more directly applicable to an aerosol transport model - in our case the Goddard Chemistry Aerosol Radiation and Transport (GOCART) module used in the GEOS-5 Earth modeling system. A joint atmosphere/aerosol mini-reanalysis was performed for the SEAC4RS period using GEOS-5. The meteorological reanalysis followed the MERRA-2 atmospheric reanalysis protocol, and aerosol information from MODIS, MISR, and AERONET provided a constraint on the simulated aerosol optical depth (i.e., total column loading of aerosols). We focus on the simulated concentrations of 10 relevant aerosol species simulated by the GOCART module: dust, sulfate, and organic and black carbon. Our first retrieval algorithm starts with the SEAC4RS mini-reanalysis and adjusts the concentration of each GOCART aerosol species so that differences between the observed and simulated backscatter and extinction measurements are minimized. In this case, too often we are unable to simulate the observations by simple adjustment of the aerosol concentrations. A second retrieval approach adjusts both the aerosol concentrations and the optical parameters (i.e., assigned mass extinction efficiency) associated with each GOCART species. We present results from DC-8 flights over smoke from forest fires over the western US using both retrieval approaches. Finally, we compare our retrieved quantities with in-situ observations of aerosol absorption, scattering, and mass concentrations at flight altitude.

  18. An effective inversion algorithm for retrieving bimodal aerosol particle size distribution from spectral extinction data

    NASA Astrophysics Data System (ADS)

    He, Zhenzong; Qi, Hong; Yao, Yuchen; Ruan, Liming

    2014-12-01

    The Ant Colony Optimization algorithm based on the probability density function (PDF-ACO) is applied to estimate the bimodal aerosol particle size distribution (PSD). The direct problem is solved by the modified Anomalous Diffraction Approximation (ADA, as an approximation for optically large and soft spheres, i.e., χ≫1 and |m-1|≪1) and the Beer-Lambert law. First, a popular bimodal aerosol PSD and three other bimodal PSDs are retrieved in the dependent model by the multi-wavelength extinction technique. All the results reveal that the PDF-ACO algorithm can be used as an effective technique to investigate the bimodal PSD. Then, the Johnson's SB (J-SB) function and the modified beta (M-β) function are employed as the general distribution function to retrieve the bimodal PSDs under the independent model. Finally, the J-SB and M-β functions are applied to recover actual measurement aerosol PSDs over Beijing and Shanghai obtained from the aerosol robotic network (AERONET). The numerical simulation and experimental results demonstrate that these two general functions, especially the J-SB function, can be used as a versatile distribution function to retrieve the bimodal aerosol PSD when no priori information about the PSD is available.

  19. Aerosol extinction properties over coastal West Bengal Gangetic plain under inter-seasonal and sea breeze influenced transport processes

    NASA Astrophysics Data System (ADS)

    Verma, S.; Priyadharshini, B.; Pani, S. K.; Bharath Kumar, D.; Faruqi, A. R.; Bhanja, S. N.; Mandal, M.

    2016-01-01

    We analysed the atmospheric aerosol extinction properties under an influence of inter-seasonal and sea breeze (SB) transport processes over coastal West Bengal (WB) Gangetic plain (WBGP). The predominant frequency of airmass back trajectory path was through the Arabian Sea (AS) during southwest monsoon (SWmon) and that through the Indo-Gangetic plain (IGP) during transition to winter (Twin) season and the Bay of Bengal during transition to summer (Tsumm) season. Aerosol surface concentration (Sconc) and aerosol extinction exhibited heterogeneity in the seasonal variability over coastal WBGP with their highest seasonal mean being during winter and summer seasons respectively. Seasonal mean extinction was respectively 17% and 30% higher during winter and summer seasons than that during SWmon. While angstrom exponent (AE) was less than one during SWmon, Tsumm, and summer seasons, it was near to one during Twin and winter monsoon (Wmon), and was more than one during winter season. Relative contribution (%) of upper (at altitude above 1 km) aerosol layer (UAL) to aerosol extinction during summer was four times of that during winter. Seasonally distinct vertical distribution of aerosol extinction associated with meteorological and SB influenced transport and that due to influence of high rise open burning emissions was inferred. Possible aerosol subtypes extracted during days in Tsumm were inferred to be mostly constituted of dust and polluted dust during daytime, in addition to polluted continental and smoke in UAL during nighttime. In contrast to that at nearby urban location (Kolkata, KOL), intensity of updraft of airmass evaluated during evening/SB activity hour (1730 local time, (LT)) at study site (Kharagpur, KGP) was as high as 3.5 times the intensity during near to noon hour (1130 LT); this intensity was the highest along coast of westBengal-Orissa. Enhanced Sconc and relative contribution of UAL to aerosol extinction (58% compared to 36% only at nearby urban

  20. Modeling of growth and evaporation effects on the extinction of 1.0-micron solar radiation traversing stratospheric sulfuric acid aerosols

    NASA Technical Reports Server (NTRS)

    Yue, G. K.; Deepak, A.

    1981-01-01

    The effects of growth and evaporation of stratospheric sulfuric acid aerosols on the extinction of solar radiation traversing such an aerosol medium are reported for the case of 1.0-micron solar radiation. Modeling results show that aerosol extinction is not very sensitive to the change of ambient water vapor concentration, but is sensitive to ambient temperature changes, especially at low ambient temperatures and high ambient water vapor concentration. A clarification is given of the effects of initial aerosol size distribution and composition on the change of aerosol extinction due to growth and evaporation processes. It is shown that experiments designed to observe solar radiation extinction of aerosols may also be applied to the determination of observed changes in aerosol optical properties, environmental parameters, or the physical and optical characteristics of sulfate aerosols.

  1. Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients.

    PubMed

    Esselborn, Michael; Wirth, Martin; Fix, Andreas; Tesche, Matthias; Ehret, Gerhard

    2008-01-20

    An airborne high spectral resolution lidar (HSRL) based on an iodine absorption filter and a high-power frequency-doubled Nd:YAG laser has been developed to measure backscatter and extinction coefficients of aerosols and clouds. The instrument was operated aboard the Falcon 20 research aircraft of the German Aerospace Center (DLR) during the Saharan Mineral Dust Experiment in May-June 2006 to measure optical properties of Saharan dust. A detailed description of the lidar system, the analysis of its data products, and measurements of backscatter and extinction coefficients of Saharan dust are presented. The system errors are discussed and airborne HSRL results are compared to ground-based Raman lidar and sunphotometer measurements. PMID:18204721

  2. Relationships between optical extinction, backscatter and aerosol surface and volume in the stratosphere following the eruption of Mt. Pinatubo

    NASA Technical Reports Server (NTRS)

    Brock, Charles A.; Jonsson, Haflidi H.; Wilson, James C.; Dye, James E.; Baumgardner, Darrel; Borrmann, Stephan; Pitts, Mike C.; Osborn, Mary T.; Decoursey, Robert J.; Woods, David C.

    1993-01-01

    The eruption of the Mt. Pinatubo volcano in the Philippines in June 1991 has resulted in increases in the surface and mass concentrations of aerosol particles in the lower stratosphere. Airborne measurements made at midlatitudes between 15 and 21 km from August 1991 to March 1992 show that, prior to December 1991, the Pinatubo aerosol cloud varied widely in microphysical properties such as size distribution, number, surface and volume concentrations and was also spatially variable. Aerosol surface area concentration was found to be highly correlated to extinction at visible and near-infrared wavelenghts throughout the measurement period. Similarly, backscatter at common lidar wavelengths was a good predictor of aerosol volume concentrations. These results support the use of satellite extinction measurements to estimate aerosol volume or mass if temporal changes in the relationships between the variables are considered.

  3. Antarctic springtime measurements of ozone, nitrogen dioxide, and aerosol extinction by SAM II, SAGE, and SAGE II

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Larsen, J. C.

    1986-01-01

    Simultaneous vertical profiles of O3, NO2, and aerosol extinction obtained with the Stratospheric Aerosol Measurement II, Stratospheric Aerosol and Gas Experiment (SAGE), and SAGE II satellite instruments across the southern polar vortex show that significant differences exist at all altitudes. Both gaseous species display lower concentrations within the vortex over measurement altitudes ranging from the tropopause to 60 km and 20 to 40 km for O3 and NO2, respectively. Aerosol extinction above 15-18 km and total aerosol stratospheric column are also lower inside the vortex than outside. Total column amounts of O3 and NO2 are found to be strongly coupled to spatial location within the vortex, with minimum total values located around the vortex center. Vertical profiles selected to emphasize the observed difference across the circumpolar vortex are presented for October 13, 1981, and October 13, 1985, near 70 and 68 deg S latitude, respectively.

  4. Use of rotational Raman measurements in multiwavelength aerosol lidar for evaluation of particle backscattering and extinction

    NASA Astrophysics Data System (ADS)

    Veselovskii, I.; Whiteman, D. N.; Korenskiy, M.; Suvorina, A.; Pérez-Ramírez, D.

    2015-10-01

    Vibrational Raman scattering from nitrogen is commonly used in aerosol lidars for evaluation of particle backscattering (β) and extinction (α) coefficients. However, at mid-visible wavelengths, particularly in the daytime, previous measurements have possessed low signal-to-noise ratio. Also, vibrational scattering is characterized by a significant frequency shift of the Raman component, so for the calculation of α and β information about the extinction Ångström exponent is needed. Simulation results presented in this study demonstrate that ambiguity in the choice of Ångström exponent can be the a significant source of uncertainty in the calculation of backscattering coefficients when optically thick aerosol layers are considered. Both of these issues are addressed by the use of pure-rotational Raman (RR) scattering, which is characterized by a higher cross section compared to nitrogen vibrational scattering, and by a much smaller frequency shift, which essentially removes the sensitivity to changes in the Ångström exponent. We describe a practical implementation of rotational Raman measurements in an existing Mie-Raman lidar to obtain aerosol extinction and backscattering at 532 nm. A 2.3 nm width interference filter was used to select a spectral range characterized by low temperature sensitivity within the anti-Stokes branch of the RR spectrum. Simulations demonstrate that the temperature dependence of the scattering cross section does not exceed 1.5 % in the 230-300 K range, making correction for this dependence quite easy. With this upgrade, the NASA GSFC multiwavelength Raman lidar has demonstrated useful α532 measurements and was used for regular observations. Examples of lidar measurements and inversion of optical data to the particle microphysics are given.

  5. Characterization of organic aerosols in Beijing using an aerodyne high-resolution aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Zhang, Junke; Wang, Yuesi; Huang, Xiaojuan; Liu, Zirui; Ji, Dongsheng; Sun, Yang

    2015-06-01

    Fine particle of organic aerosol (OA), mostly arising from pollution, are abundant in Beijing. To achieve a better understanding of the difference in OA in summer and autumn, a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, Aerodyne Research Inc., USA) was deployed in urban Beijing in August and October 2012. The mean OA mass concentration in autumn was 30±30 μg m-3, which was higher than in summer (13±6.9 μg m-3). The elemental analysis found that OA was more aged in summer (oxygen-to-carbon (O/C) ratios were 0.41 and 0.32 for summer and autumn, respectively). Positive matrix factorization (PMF) analysis identified three and five components in summer and autumn, respectively. In summer, an oxygenated OA (OOA), a cooking-emission-related OA (COA), and a hydrocarbon-like OA (HOA) were indentified. Meanwhile, the OOA was separated into LV-OOA (low-volatility OOA) and SV-OOA (semi-volatile OOA); and in autumn, a nitrogen-containing OA (NOA) was also found. The SOA (secondary OA) was always the most important OA component, accounting for 55% of the OA in the two seasons. Back trajectory clustering analysis found that the origin of the air masses was more complex in summer. Southerly air masses in both seasons were associated with the highest OA loading, while northerly air masses were associated with the lowest OA loading. A preliminary study of OA components, especially the POA (primary OA), in different periods found that the HOA and COA all decreased during the National Day holiday period, and HOA decreased at weekends compared with weekdays.

  6. Studying the vertical aerosol extinction coefficient by comparing in situ airborne data and elastic backscatter lidar

    NASA Astrophysics Data System (ADS)

    Rosati, Bernadette; Herrmann, Erik; Bucci, Silvia; Fierli, Federico; Cairo, Francesco; Gysel, Martin; Tillmann, Ralf; Größ, Johannes; Gobbi, Gian Paolo; Di Liberto, Luca; Di Donfrancesco, Guido; Wiedensohler, Alfred; Weingartner, Ernest; Virtanen, Annele; Mentel, Thomas F.; Baltensperger, Urs

    2016-04-01

    Vertical profiles of aerosol particle optical properties were explored in a case study near the San Pietro Capofiume (SPC) ground station during the PEGASOS Po Valley campaign in the summer of 2012. A Zeppelin NT airship was employed to investigate the effect of the dynamics of the planetary boundary layer at altitudes between ˜ 50 and 800 m above ground. Determined properties included the aerosol particle size distribution, the hygroscopic growth factor, the effective index of refraction and the light absorption coefficient. The first three parameters were used to retrieve the light scattering coefficient. Simultaneously, direct measurements of both the scattering and absorption coefficient were carried out at the SPC ground station. Additionally, a single wavelength polarization diversity elastic lidar system provided estimates of aerosol extinction coefficients using the Klett method to accomplish the inversion of the signal, for a vertically resolved comparison between in situ and remote-sensing results. Note, however, that the comparison was for the most part done in the altitude range where the overlap function is incomplete and accordingly uncertainties are larger. First, the airborne results at low altitudes were validated with the ground measurements. Agreement within approximately ±25 and ±20 % was found for the dry scattering and absorption coefficient, respectively. The single scattering albedo, ranged between 0.83 and 0.95, indicating the importance of the absorbing particles in the Po Valley region. A clear layering of the atmosphere was observed during the beginning of the flight (until ˜ 10:00 LT - local time) before the mixing layer (ML) was fully developed. Highest extinction coefficients were found at low altitudes, in the new ML, while values in the residual layer, which could be probed at the beginning of the flight at elevated altitudes, were lower. At the end of the flight (after ˜ 12:00 LT) the ML was fully developed, resulting in

  7. Optical and Physicochemical Properties of Brown Carbon Aerosol: Light Scattering, FTIR Extinction Spectroscopy, and Hygroscopic Growth.

    PubMed

    Tang, Mingjin; Alexander, Jennifer M; Kwon, Deokhyeon; Estillore, Armando D; Laskina, Olga; Young, Mark A; Kleiber, Paul D; Grassian, Vicki H

    2016-06-23

    A great deal of attention has been paid to brown carbon aerosol in the troposphere because it can both scatter and absorb solar radiation, thus affecting the Earth's climate. However, knowledge of the optical and chemical properties of brown carbon aerosol is still limited. In this study, we have investigated different aspects of the optical properties of brown carbon aerosol that have not been previously explored. These properties include extinction spectroscopy in the mid-infrared region and light scattering at two different visible wavelengths, 532 and 402 nm. A proxy for atmospheric brown carbon aerosol was formed from the aqueous reaction of ammonium sulfate with methylglyoxal. The different optical properties were measured as a function of reaction time for a period of up to 19 days. UV/vis absorption experiments of bulk solutions showed that the optical absorption of aqueous brown carbon solution significantly increases as a function of reaction time in the spectral range from 200 to 700 nm. The analysis of the light scattering data, however, showed no significant differences between ammonium sulfate and brown carbon aerosol particles in the measured scattering phase functions, linear polarization profiles, or the derived real parts of the refractive indices at either 532 or 402 nm, even for the longest reaction times with greatest visible extinction. The light scattering experiments are relatively insensitive to the imaginary part of the refractive index, and it was only possible to place an upper limit of k ≤ 0.01 on the imaginary index values. These results suggest that after the reaction with methylglyoxal the single scattering albedo of ammonium sulfate aerosol is significantly reduced but that the light scattering properties including the scattering asymmetry parameter, which is a measure of the relative amount of forward-to-backward scattering, remain essentially unchanged from that of unprocessed ammonium sulfate. The optical extinction properties

  8. How well can we Measure the Vertical Profile of Tropospheric Aerosol Extinction?

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Ferrare, R.; Flynn, C.; Elleman, R.; Covert, D.; Strawa, A.; Welton, E.; Turner, D.; Jonsson, H.; Redemann, J.

    2005-01-01

    The recent Department of Energy Atmospheric Radiation Measurement (ARM) Aerosol Intensive Operations Period (MOP, May 2003) yielded one of the best measurement sets obtained to-date to assess our ability to measure the vertical profile of ambient aerosol extinction sigma(sub ep)(lambda) in the lower troposphere. During one month, a heavily instrumented aircraft with well characterized aerosol sampling ability carrying well proven and new aerosol instrumentation, devoted most of the 60 available flight hours to flying vertical profiles over the heavily instrumented ARM Southern Great Plains (SGP) Climate Research Facility (CRF). This allowed us to compare vertical extinction profiles obtained from 6 different instuments: airborne Sun photometer (AATS-14), airborne nephelometer/absorption photometer, airborne cavity ring-down system, ground-based Raman lidar and 2 ground-based elastic backscatter lidars. We find the in-situ measured sigma(sub ep)(lambda) to be lower than the AATS-14 derived values. Bias differences are 0.002 - 0.004 K/m equivalent to 12-17% in the visible, or 45% in the near-infrared. On the other hand, we find that with respect to AATS-14, the lidar sigma(sub ep)(lambda) are higher. An unnoticed loss of sensitivity of the Raman lidar had occurred leading up to AIOP and we expect better agreement from the recently restored system looking at the collective results from 6 field campaigns conducted since 1996, airborne in situ measurements of sigma(sub ep)(lambda) tend to be biased slightly low (17% at visible wavelengths) when compared to airborne Sun photometer sigma(sub ep)(lambda). On the other hand, sigma(sub ep)(lambda) values derived from lidars tend to have no or positive biases. From the bias differences we conclude that the typical systematic error associated with measuring the tropospheric vertical profile of the ambient aerosol extinction with current state of-the art instrumentation is 15-20% at visible wavelengths and potentially larger in

  9. Statistical Characteristics of Aerosol Extinction Coefficient Profile in East Asia from CALIPSO

    NASA Astrophysics Data System (ADS)

    Sun, Xuejin; Zhou, Junhao; Zhou, Yongbo

    2016-06-01

    Aerosol extinction coefficient profile (ECP) is important in radiative transfer modeling, however, knowledge of ECP in some area has not been clearly recognized. To get a full understanding of statistical characteristics of ECP in three Asian regions: the Mongolian Plateau, the North China Plain and the Yellow Sea, CALIPSO aerosol product in 2012 is processed by conventional statistical methods. Orbit averaged ECP turns out to be mainly exponential and Gaussian patterns. Curve fitting shows that the two ECP patterns account for more than 50 percent of all the samples, especially in the Yellow Sea where the frequency of occurrence even reaches over 80 percent. Parameters determining fitting curves are provided consequently. To be specific, Gaussian pattern is the main ECP distribution in the Mongolian Plateau and the Yellow Sea, and exponential pattern predominates in the North China Plain. Besides, aerosol scale height reaches its maximum in summer and in the Mongolian Plateau. Meanwhile, the uplifting and deposition of dust during transportation are potentially explanations to the occurrence of Gaussian ECP. The results have certain representativeness, and contribute to reducing uncertainties of aerosol model in relevant researches.

  10. Chemical composition of aerosol particles and light extinction apportionment before and during the heating season in Beijing, China

    NASA Astrophysics Data System (ADS)

    Wang, Qingqing; Sun, Yele; Jiang, Qi; Du, Wei; Sun, Chengzhu; Fu, Pingqing; Wang, Zifa

    2015-12-01

    Despite extensive efforts into characterization of the sources and formation mechanisms of severe haze pollution in the megacity of Beijing, the response of aerosol composition and optical properties to coal combustion emissions in the heating season remain poorly understood. Here we conducted a 3 month real-time measurement of submicron aerosol (PM1) composition by an Aerosol Chemical Speciation Monitor and particle light extinction by a Cavity Attenuated Phase Shift extinction monitor in Beijing, China, from 1 October to 31 December 2012. The average (±σ) PM1 concentration was 82.4 (±73.1) µg/m3 during the heating period (HP, 15 November to 31 December), which was nearly 50% higher than that before HP (1 October to 14 November). While nitrate and secondary organic aerosol (SOA) showed relatively small changes, organics, sulfate, and chloride were observed to have significant increases during HP, indicating the dominant impacts of coal combustion sources on these three species. The relative humidity-dependent composition further illustrated an important role of aqueous-phase processing for the sulfate enhancement during HP. We also observed great increases of hydrocarbon-like OA (HOA) and coal combustion OA (CCOA) during HP, which was attributed to higher emissions at lower temperatures and coal combustion emissions, respectively. The relationship between light extinction and chemical composition was investigated using a multiple linear regression model. Our results showed that the largest contributors to particle extinction were ammonium nitrate (32%) and ammonium sulfate (28%) before and during HP, respectively. In addition, the contributions of SOA and primary OA to particle light extinction were quantified. The results showed that the OA extinction was mainly caused by SOA before HP and by SOA and CCOA during HP, yet with small contributions from HOA and cooking aerosol for the entire study period. Our results elucidate substantial changes of aerosol

  11. Infrared extinction spectra of mineral dust aerosol: Single components and complex mixtures

    NASA Astrophysics Data System (ADS)

    Laskina, Olga; Young, Mark A.; Kleiber, Paul D.; Grassian, Vicki H.

    2012-09-01

    Simultaneous Fourier transform infrared (FTIR) extinction spectra and aerosol size distributions have been measured for some components of mineral dust aerosol including feldspars (albite, oligoclase) and diatomaceous earth, as well as more complex authentic dust samples that include Iowa loess and Saharan sand. Spectral simulations for single-component samples, derived from Rayleigh-theory models for characteristic particle shapes, better reproduce the experimental spectra including the peak position and band shape compared to Mie theory. The mineralogy of the authentic dust samples was inferred using analysis of FTIR spectra. This approach allows for analysis of the mineralogy of complex multicomponent dust samples. Extinction spectra for the authentic dust samples were simulated from the derived sample mineralogy using published optical constant data for the individual mineral constituents and assuming an external mixture. Nonspherical particle shape effects were also included in the simulations and were shown to have a significant effect on the results. The results show that the position of the peak and the shape of the band of the IR characteristic features in the 800 to 1400 cm-1 spectral range are not well simulated by Mie theory. The resonance peaks are consistently shifted by more than +40 cm-1 relative to the experimental spectrum in the Mie simulation. Rayleigh model solutions for different particle shapes better predict the peak position and band shape of experimental spectra, even though the Rayleigh condition may not be strictly obeyed in these experiments.

  12. Aerosol optical depth over a remote semi-arid region of South Africa from spectral measurements of the daytime solar extinction and the nighttime stellar extinction

    NASA Astrophysics Data System (ADS)

    Formenti, P.; Winkler, H.; Fourie, P.; Piketh, S.; Makgopa, B.; Helas, G.; Andreae, M. O.

    Spectral daytime aerosol optical depths have been measured at Sutherland, South Africa (32°22'S, 20°48'E), from January 1998 to November 1999. Sutherland is located in the semi-arid Karoo desert, approximately 400-km northeast from Cape Town. The site, remote from major sources of aerosols, hosts the South African Astronomical Observatory (SAAO), where nighttime stellar extinction is being measured. The comparison of daytime and nighttime measurements for the years 1998-1999 makes it possible to validate the astronomical dataset of aerosol optical depth ( τa) dating back to 1991. The 1998 and 1999 annually averaged daytime τa at 500 nm are 0.04±0.04 and 0.06±0.06, respectively. Half-day averages vary between 0.03 and 0.44, with peak values in August-September. This pronounced seasonality is linked to the biomass-burning season in the Southern Hemisphere. Smoke haze layers transported to Sutherland originated primarily on the African landmass at latitudes between 10° and 20°S and passed over Namibia and Angola. On one occasion, aerosols from fires in Brazil transported across the Atlantic Ocean were likely detected. The haze layers reaching Sutherland are therefore at least 2-3 days old. The spectral dependence of the aerosol optical depth for the smoke layers supports the bimodality of the volume size distribution for biomass burning aerosols. The accumulation mode has a volume modal diameter of 0.32 μm, consistent with the hypothesis of aged haze. The stellar measurements (1991-2001) show that, due to the eruption of Mt. Pinatubo, the atmospheric extinction depth at 550 nm in the years 1991-1993 increased by 33% with respect to the average value (0.14±0.03) for the period 1994-2001. Outside the Pinatubo event, extinction is largest in the period 1997-1999.

  13. Aerosol extinction in a remote continental region of the Iberian Peninsula during summer

    NASA Astrophysics Data System (ADS)

    Elias, Thierry; Silva, Ana Maria; Belo, Nuno; Pereira, Sergio; Formenti, Paola; Helas, Günter; Wagner, Frank

    2006-07-01

    Summer in Évora (38°34'N, 7°54'W), Portugal, is described in terms of aerosol properties of extinction of the solar radiation. We create a data set composed of (1) cloud-screened half-day averaged values of aerosol optical thickness (AOT) measured at 7 wavelengths by both a CIMEL Sun/sky-photometer and a YES shadowband radiometer and (2) half day averaged values of aerosol scattering coefficient (ASC) measured at the surface level at two wavelengths by a TSI nephelometer. Spectral dependence of both AOT and ASC gives the column and the surface Ångström exponents, αC and αS, respectively. Measurements are acquired in both 2002 and 2003 summers. Back trajectories are computed. A statistical study of the data set provides thresholds in AOT and αC for a classification of the days. The classification is applied with success to the case study of the 2003 summer heat wave episode and is generalized to the whole data set. In 23% of the cases, the turbidity in Évora is very low, with AOT441 < 0.12 and AOT873 < 0.04. The air mass origin is the North Atlantic Ocean at 700 and 970 hPa. In 31% of the cases, the turbidity is high. Increase of AOT is due to forest fire emissions, originating in the Iberian Peninsula, with 0.30 < AOT441 < 1.10 and αC > 1.2, and to desert dust plumes transported from North Africa within 72 to 120 hours at 700 hPa, with 0.10 < AOT873 < 1.10 and 0.1 < αC < 1.0. The vertical profile is highly variable, and several cases of aerosol mixing in the column are identified. The duration of the aerosol episode during the 2003 summer heat wave is 16 days, which is exceptionally long.

  14. Antarctic measurements of ozone, water vapor, and aerosol extinction by Sage 2 in the spring of 1987

    NASA Technical Reports Server (NTRS)

    Larsen, J. C.; Mccormick, M. Patrick

    1988-01-01

    Recent measurements of ozone, water vapor, and aerosol extinction from the spring of 1987 are presented and compared to 1985 and 1986. The observed changes to variations in meteorological conditions in the vortex for these three years are noted. March ozone data at similar latitudes for these three years will be used to investigate coupling between severity of the springtime depletion and early fall values. Researchers also investigate correlations between the measured species of water vapor, ozone, and aerosols throughout the vortex region.

  15. Quantitative determination of carbonaceous particle mixing state in Paris using single particle mass spectrometer and aerosol mass spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Healy, R. M.; Sciare, J.; Poulain, L.; Crippa, M.; Wiedensohler, A.; Prévôt, A. S. H.; Baltensperger, U.; Sarda-Estève, R.; McGuire, M. L.; Jeong, C.-H.; McGillicuddy, E.; O'Connor, I. P.; Sodeau, J. R.; Evans, G. J.; Wenger, J. C.

    2013-04-01

    Single particle mixing state information can be a powerful tool for assessing the relative impact of local and regional sources of ambient particulate matter in urban environments. However, quantitative mixing state data are challenging to obtain using single particle mass spectrometers. In this study, the quantitative chemical composition of carbonaceous single particles has been estimated using an aerosol time-of-flight mass spectrometer (ATOFMS) as part of the MEGAPOLI 2010 winter campaign in Paris, France. Relative peak areas of marker ions for elemental carbon (EC), organic aerosol (OA), ammonium, nitrate, sulphate and potassium were compared with concurrent measurements from an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), a thermal/optical OCEC analyser and a particle into liquid sampler coupled with ion chromatography (PILS-IC). ATOFMS-derived mass concentrations reproduced the variability of these species well (R2 = 0.67-0.78), and ten discrete mixing states for carbonaceous particles were identified and quantified. Potassium content was used to identify particles associated with biomass combustion. The chemical mixing state of HR-ToF-AMS organic aerosol factors, resolved using positive matrix factorization, was also investigated through comparison with the ATOFMS dataset. The results indicate that hydrocarbon-like OA (HOA) detected in Paris is associated with two EC-rich mixing states which differ in their relative sulphate content, while fresh biomass burning OA (BBOA) is associated with two mixing states which differ significantly in their OA/EC ratios. Aged biomass burning OA (OOA2-BBOA) was found to be significantly internally mixed with nitrate, while secondary, oxidized OA (OOA) was associated with five particle mixing states, each exhibiting different relative secondary inorganic ion content. Externally mixed secondary organic aerosol was not observed. These findings demonstrate the heterogeneity of primary and

  16. Quantitative determination of carbonaceous particle mixing state in Paris using single-particle mass spectrometer and aerosol mass spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Healy, R. M.; Sciare, J.; Poulain, L.; Crippa, M.; Wiedensohler, A.; Prévôt, A. S. H.; Baltensperger, U.; Sarda-Estève, R.; McGuire, M. L.; Jeong, C.-H.; McGillicuddy, E.; O'Connor, I. P.; Sodeau, J. R.; Evans, G. J.; Wenger, J. C.

    2013-09-01

    Single-particle mixing state information can be a powerful tool for assessing the relative impact of local and regional sources of ambient particulate matter in urban environments. However, quantitative mixing state data are challenging to obtain using single-particle mass spectrometers. In this study, the quantitative chemical composition of carbonaceous single particles has been determined using an aerosol time-of-flight mass spectrometer (ATOFMS) as part of the MEGAPOLI 2010 winter campaign in Paris, France. Relative peak areas of marker ions for elemental carbon (EC), organic aerosol (OA), ammonium, nitrate, sulfate and potassium were compared with concurrent measurements from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), a thermal-optical OCEC analyser and a particle into liquid sampler coupled with ion chromatography (PILS-IC). ATOFMS-derived estimated mass concentrations reproduced the variability of these species well (R2 = 0.67-0.78), and 10 discrete mixing states for carbonaceous particles were identified and quantified. The chemical mixing state of HR-ToF-AMS organic aerosol factors, resolved using positive matrix factorisation, was also investigated through comparison with the ATOFMS dataset. The results indicate that hydrocarbon-like OA (HOA) detected in Paris is associated with two EC-rich mixing states which differ in their relative sulfate content, while fresh biomass burning OA (BBOA) is associated with two mixing states which differ significantly in their OA / EC ratios. Aged biomass burning OA (OOA2-BBOA) was found to be significantly internally mixed with nitrate, while secondary, oxidised OA (OOA) was associated with five particle mixing states, each exhibiting different relative secondary inorganic ion content. Externally mixed secondary organic aerosol was not observed. These findings demonstrate the range of primary and secondary organic aerosol mixing states in Paris. Examination of the temporal

  17. Characterization and source apportionment of aerosol light extinction with a coupled model of CMB-IMPROVE in Hangzhou, Yangtze River Delta of China

    NASA Astrophysics Data System (ADS)

    Wang, Jiao; Zhang, Yu-fen; Feng, Yin-chang; Zheng, Xian-jue; Jiao, Li; Hong, Sheng-mao; Shen, Jian-dong; Zhu, Tan; Ding, Jing; Zhang, Qi

    2016-09-01

    To investigate the characteristics and sources of aerosol light extinction in the Yangtze River Delta of China, a campaign was carried out in Hangzhou from December 2013 to November 2014. Hourly data for air pollutants including PM2.5, SO2, NO2, O3 and CO, and aerosol optical properties including aerosol scattering coefficient and aerosol absorbing coefficient was obtained in the environmental air quality automatic monitoring station. Meteorological parameters were measured synchronously in the automated meteorology monitoring station. Additionally, around seven sets of ambient PM2.5 samples per month were collected and analyzed during the campaign. The annual mean aerosol scattering coefficient, aerosol absorbing coefficient and aerosol single scattering albedo measured in this study was 514 ± 284 Mm- 1, 35 ± 20 Mm- 1 and 94% respectively. The aerosol extinction coefficient reconstructed using the modified IMPROVE (Interagency Monitoring of Protected Visual Environment) formula was compared to the measured extinction coefficient. Better correlations could be found between the measured and reconstructed extinction coefficient when RH was under 90%. A coupled model of CMB (chemical mass balance) and modified IMPROVE was used to apportion the sources of aerosol light extinction in Hangzhou. Vehicle exhaust, secondary nitrate and secondary sulfate were identified as the most significant sources for aerosol light extinction, accounted for 30.2%, 24.1% and 15.8% respectively.

  18. Extinction-to-Backscatter Ratios of Lofted Aerosol Layers Observed During the First Three Months of CALIPSO Measurements

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Vaughan, Mark A.; Liu, Zhaoyan; Hu, Yongxiang; Reagan, John A.; Winker, David M.

    2007-01-01

    Case studies from the first three months of the Cloud and Aerosol Lidar and Infrared Pathfinder Spaceborne Observations (CALIPSO) measurements of lofted aerosol layers are analyzed using transmittance [Young, 1995] and two-wavelength algorithms [Vaughan et al., 2004] to determine the aerosol extinction-to-backscatter ratios at 532 and 1064 nm. The transmittance method requires clear air below the layer so that the transmittance through the layer can be determined. Suitable scenes are selected from the browse images and clear air below features is identified by low 532 nm backscatter signal and confirmed by low depolarization and color ratios. The transmittance and two-wavelength techniques are applied to a number of lofted layers and the extinction-to-backscatter ratios are compared with values obtained from the CALIPSO aerosol models [Omar et al., 2004]. The results obtained from these studies are used to adjust the aerosol models and develop observations based extinction-to-backscatter ratio look-up tables and phase functions. Values obtained by these techniques are compared to Sa determinations using other independent methods with a goal of developing probability distribution functions of aerosol type-specific extinction to backscatter ratios. In particular, the results are compared to values determined directly by the High Spectral Resolution Lidar (HSRL) during the CALIPSO CloudSat Validation Experiments (CCVEX) and Sa determined by the application of the two-wavelength lidar Constrained Ratio Aerosol Model-fit (CRAM) retrieval approach [Cattrall et al., 2005; Reagan et al., 2004] to the HSRL data. The results are also compared to values derived using the empirical relationship between the multiple-scattering fraction and the linear depolarization ratio by using Monte Carlo simulations of water clouds [Hu et al., 2006].

  19. In situ vertical profiles of aerosol extinction, mass, and composition over the southeast United States during SENEX and SEAC4RS: observations of a modest aerosol enhancement aloft

    NASA Astrophysics Data System (ADS)

    Wagner, N. L.; Brock, C. A.; Angevine, W. M.; Beyersdorf, A.; Campuzano-Jost, P.; Day, D. A.; de Gouw, J. A.; Diskin, G. S.; Gordon, T. D.; Graus, M. G.; Huey, G.; Jimenez, J. L.; Lack, D. A.; Liao, J.; Liu, X.; Markovic, M. Z.; Middlebrook, A. M.; Mikoviny, T.; Peischl, J.; Perring, A. E.; Richardson, M. S.; Ryerson, T. B.; Schwarz, J. P.; Warneke, C.; Welti, A.; Wisthaler, A.; Ziemba, L. D.; Murphy, D. M.

    2015-02-01

    Vertical profiles of submicron aerosol over the southeastern United States (SEUS) during the summertime from in situ aircraft-based measurements were used to construct aggregate profiles of chemical, microphysical, and optical properties. Shallow cumulus convection was observed during many profiles. These conditions enhance vertical transport of trace gases and aerosol and create a cloudy transition layer on top of the sub-cloud mixed layer. The trace gas and aerosol concentrations in the transition layer were modeled as a mixture with contributions from the mixed layer below and the free troposphere above. The amount of vertical mixing, or entrainment of air from the free troposphere, was quantified using the observed mixing ratio of carbon monoxide (CO). Although the median aerosol mass, extinction, and volume decreased with altitude in the transition layer, they were ~10% larger than expected from vertical mixing alone. This enhancement was likely due to secondary aerosol formation in the transition layer. Although the transition layer enhancements of the particulate sulfate and organic aerosol (OA) were both similar in magnitude, only the enhancement of sulfate was statistically significant. The column integrated extinction, or aerosol optical depth (AOD), was calculated for each individual profile, and the transition layer enhancement of extinction typically contributed less than 10% to the total AOD. Our measurements and analysis were motivated by two recent studies that have hypothesized an enhanced layer of secondary organic aerosol (SOA) aloft to explain the summertime enhancement of AOD (2-3 times greater than winter) over the southeastern United States. In contrast to this hypothesis, the modest enhancement we observed in the transition layer was not dominated by OA and was not a large fraction of the summertime AOD.

  20. An Airborne A-Band Spectrometer for Remote Sensing Of Aerosol and Cloud Optical Properties

    NASA Technical Reports Server (NTRS)

    Pitts, Michael; Hostetler, Chris; Poole, Lamont; Holden, Carl; Rault, Didier

    2000-01-01

    Atmospheric remote sensing with the O2 A-band has a relatively long history, but most of these studies were attempting to estimate surface pressure or cloud-top pressure. Recent conceptual studies have demonstrated the potential of spaceborne high spectral resolution O2 A-band spectrometers for retrieval of aerosol and cloud optical properties. The physical rationale of this new approach is that information on the scattering properties of the atmosphere is embedded in the detailed line structure of the O2 A-band reflected radiance spectrum. The key to extracting this information is to measure the radiance spectrum at very high spectral resolution. Instrument performance requirement studies indicate that, in addition to high spectral resolution, the successful retrieval of aerosol and cloud properties from A-band radiance spectra will also require high radiometric accuracy, instrument stability, and high signal-to-noise measurements. To experimentally assess the capabilities of this promising new remote sensing application, the NASA Langley Research Center is developing an airborne high spectral resolution A-band spectrometer. The spectrometer uses a plane holographic grating with a folded Littrow geometry to achieve high spectral resolution (0.5 cm-1) and low stray light in a compact package. This instrument will be flown in a series of field campaigns beginning in 2001 to evaluate the overall feasibility of this new technique. Results from these campaigns should be particularly valuable for future spaceborne applications of A-band spectrometers for aerosol and cloud retrievals.

  1. Raman Lidar Measurements of Aerosol Extinction and Backscattering. Report 2; Derivation of Aerosol Real Refractive Index, Single-Scattering Albedo, and Humidification Factor using Raman Lidar and Aircraft Size Distribution

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Melfi, S. H.; Whiteman, D. N.; Evans, K. D.; Poellot, M.; Kaufman, Y. J.

    1998-01-01

    Aerosol backscattering and extinction profiles measured by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site during two nights in April 1994 are discussed. These profiles are shown to be consistent with the simultaneous aerosol size distribution measurements made by a PCASP (Passive Cavity Aerosol Spectrometer Probe) optical particle counter flown on the University of North Dakota Citation aircraft. We describe a technique which uses both lidar and PCASP measurements to derive the dependence of particle size on relative humidity, the aerosol real refractive index n, and estimate the effective single-scattering albedo Omega(sub 0). Values of n ranged between 1.4-1.5 (dry) and 1.37-1.47 (wet); Omega(sub 0) varied between 0.7 and 1.0. The single-scattering albedo derived from this technique is sensitive to the manner in which absorbing particles are represented in the aerosol mixture; representing the absorbing particles as an internal mixture rather than the external mixture assumed here results in generally higher values of Omega(sub 0). The lidar measurements indicate that the change in particle size with relative humidity as measured by the PCASP can be represented in the form discussed by Hattel with the exponent gamma = 0.3 + or - 0.05. The variations in aerosol optical and physical characteristics captured in the lidar and aircraft size distribution measurements are discussed in the context of the meteorological conditions observed during the experiment.

  2. On the accuracy of stratospheric aerosol extinction derived from in situ size distribution measurements and surface area density derived from remote SAGE II and HALOE extinction measurements

    NASA Astrophysics Data System (ADS)

    Kovilakam, Mahesh; Deshler, Terry

    2015-08-01

    In situ stratospheric aerosol measurements, from University of Wyoming optical particle counters (OPCs), are compared with Stratospheric Aerosol Gas Experiment (SAGE) II (versions 6.2 and 7.0) and Halogen Occultation Experiment (HALOE) satellite measurements to investigate differences between SAGE II/HALOE-measured extinction and derived surface area and OPC-derived extinction and surface area. Coincident OPC and SAGE II measurements are compared for a volcanic (1991-1996) and nonvolcanic (1997-2005) period. OPC calculated extinctions agree with SAGE II measurements, within instrumental uncertainty, during the volcanic period, but have been a factor of 2 low during the nonvolcanic period. Three systematic errors associated with the OPC measurements, anisokineticity, inlet particle evaporation, and counting efficiency, were investigated. An overestimation of the OPC counting efficiency is found to be the major source of systematic error. With this correction OPC calculated extinction increases by 15-30% (30-50%) for the volcanic (nonvolcanic) measurements. These changes significantly improve the comparison with SAGE II and HALOE extinctions in the nonvolcanic cases but slightly degrade the agreement in the volcanic period. These corrections have impacts on OPC-derived surface area density, exacerbating the poor agreement between OPC and SAGE II (version 6.2) surface areas. This disparity is reconciled with SAGE II version 7.0 surface areas. For both the volcanic and nonvolcanic cases these changes in OPC counting efficiency and in the operational SAGE II surface area algorithm leave the derived surface areas from both platforms in significantly better agreement and within the ± 40% precision of the OPC moment calculations.

  3. On the accuracy of stratospheric aerosol extinction derived from in situ size distribution measurements and surface area density derived from remote SAGE II and HALOE extinction measurements

    DOE PAGESBeta

    Kovilakam, Mahesh; Deshler, Terry

    2015-08-26

    In situ stratospheric aerosol measurements, from University of Wyoming optical particle counters (OPCs), are compared with Stratospheric Aerosol Gas Experiment (SAGE) II (versions 6.2 and 7.0) and Halogen Occultation Experiment (HALOE) satellite measurements to investigate differences between SAGE II/HALOE-measured extinction and derived surface area and OPC-derived extinction and surface area. Coincident OPC and SAGE II measurements are compared for a volcanic (1991-1996) and nonvolcanic (1997 2005) period. OPC calculated extinctions agree with SAGE II measurements, within instrumental uncertainty, during the volcanic period, but have been a factor of 2 low during the nonvolcanic period. Three systematic errors associated with themore » OPC measurements, anisokineticity, inlet particle evaporation, and counting efficiency, were investigated. An overestimation of the OPC counting efficiency is found to be the major source of systematic error. With this correction OPC calculated extinction increases by 15 30% (30 50%) for the volcanic (nonvolcanic) measurements. These changes significantly improve the comparison with SAGE II and HALOE extinctions in the nonvolcanic cases but slightly degrade the agreement in the volcanic period. These corrections have impacts on OPC-derived surface area density, exacerbating the poor agreement between OPC and SAGE II (version 6.2) surface areas. This disparity is reconciled with SAGE II version 7.0 surface areas. For both the volcanic and nonvolcanic cases these changes in OPC counting efficiency and in the operational SAGE II surface area algorithm leave the derived surface areas from both platforms in significantly better agreement and within the 40% precision of the OPC moment calculations.« less

  4. On the accuracy of stratospheric aerosol extinction derived from in situ size distribution measurements and surface area density derived from remote SAGE II and HALOE extinction measurements

    SciTech Connect

    Kovilakam, Mahesh; Deshler, Terry

    2015-08-26

    In situ stratospheric aerosol measurements, from University of Wyoming optical particle counters (OPCs), are compared with Stratospheric Aerosol Gas Experiment (SAGE) II (versions 6.2 and 7.0) and Halogen Occultation Experiment (HALOE) satellite measurements to investigate differences between SAGE II/HALOE-measured extinction and derived surface area and OPC-derived extinction and surface area. Coincident OPC and SAGE II measurements are compared for a volcanic (1991-1996) and nonvolcanic (1997 2005) period. OPC calculated extinctions agree with SAGE II measurements, within instrumental uncertainty, during the volcanic period, but have been a factor of 2 low during the nonvolcanic period. Three systematic errors associated with the OPC measurements, anisokineticity, inlet particle evaporation, and counting efficiency, were investigated. An overestimation of the OPC counting efficiency is found to be the major source of systematic error. With this correction OPC calculated extinction increases by 15 30% (30 50%) for the volcanic (nonvolcanic) measurements. These changes significantly improve the comparison with SAGE II and HALOE extinctions in the nonvolcanic cases but slightly degrade the agreement in the volcanic period. These corrections have impacts on OPC-derived surface area density, exacerbating the poor agreement between OPC and SAGE II (version 6.2) surface areas. This disparity is reconciled with SAGE II version 7.0 surface areas. For both the volcanic and nonvolcanic cases these changes in OPC counting efficiency and in the operational SAGE II surface area algorithm leave the derived surface areas from both platforms in significantly better agreement and within the 40% precision of the OPC moment calculations.

  5. Vertical profiles of atmospheric fluorescent aerosols observed by a mutil-channel lidar spectrometer system

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Huang, J.; Zhou, T.; Sugimoto, N.; Bi, J.

    2015-12-01

    Zhongwei Huang1*, Jianping Huang1, Tian Zhou1, Nobuo Sugimoto2, Jianrong Bi1 and Jinsen Shi11Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China. 2Atmospheric Environment Division, National Institutes for Environmental Studies, Tsukuba, Japan Email: huangzhongwei@lzu.edu.cn Abstract Atmospheric aerosols have a significant impact on regional and globe climate. The challenge in quantifying aerosol direct radiative forcing and aerosol-cloud interactions arises from large spatial and temporal heterogeneity of aerosol concentrations, compositions, sizes, shape and optical properties (IPCC, 2007). Lidar offers some remarkable advantages for determining the vertical structure of atmospheric aerosols and their related optical properties. To investigate the characterization of atmospheric aerosols (especially bioaerosols) with high spatial and temporal resolution, we developed a Raman/fluorescence/polarization lidar system employed a multi-channel spectrometer, with capabilities of providing measurements of Raman scattering and laser-induced fluorescence excitation at 355 nm from atmospheric aerosols. Meanwhile, the lidar system operated polarization measurements both at 355nm and 532nm wavelengths, aiming to obtain more information of aerosols. It employs a high power pulsed laser and a received telescope with 350mm diameter. The receiver could simultaneously detect a wide fluorescent spectrum about 178 nm with spectral resolution 5.7 nm, mainly including an F/3.7 Crossed Czerny-Turner spectrograph, a grating (1200 gr/mm) and a PMT array with 32 photocathode elements. Vertical structure of fluorescent aerosols in the atmosphere was observed by the developed lidar system at four sites across northwest China, during 2014 spring field observation that conducted by Lanzhou University. It has been proved that the developed lidar could detect the fluorescent aerosols with high temporal and

  6. Aerosol absorption measurement at SWIR with water vapor interference using a differential photoacoustic spectrometer.

    PubMed

    Zhu, Wenyue; Liu, Qiang; Wu, Yi

    2015-09-01

    Atmospheric aerosol plays an important role in atmospheric radiation balance through absorbing and scattering the solar radiation, which changes local weather and global climate. Accurate measurement is highly requested to estimate the radiative effects and climate effects of atmospheric aerosol. Photoacoustic spectroscopy (PAS) technique, which observes the aerosols on their natural suspended state and is insensitive to light scattering, is commonly recognized as one of the best candidates to measure the optical absorption coefficient (OAC) of aerosols. In the present work, a method of measuring aerosol OAC at the wavelength where could also be absorbed by water vapor was proposed and corresponding measurements of the absorption properties of the atmospheric aerosol at the short wave infrared (SWIR, 1342 nm) wavelength were carried out. The spectrometer was made up of two high performance homemade photoacoustic cells. To improve the sensitivity, several methods were presented to control the noise derived from gas flow and vibration from the sampling pump. Calibration of the OAC and properties of the system were also studied in detail. Using the established PAS instrument, measurement of the optical absorption properties of the atmospheric aerosol were carried out in laboratory and field environment. PMID:26368414

  7. A new high spectral resolution lidar technique for direct retrievals of cloud and aerosol extinction

    NASA Astrophysics Data System (ADS)

    Yorks, J. E.; McGill, M. J.; Hlavka, D. L.

    2014-12-01

    The Airborne Cloud-Aerosol Transport System (ACATS) is a Doppler lidar system and high spectral resolution lidar (HSRL) recently developed at NASA Goddard Space Flight Center (GSFC). ACATS passes the returned atmospheric backscatter through a single etalon and divides the transmitted signal into several channels (wavelength intervals), which are measured simultaneously and independently (Figure 1). Both the particulate and molecular scattered signal can be directly and unambiguously measured, allowing for direct retrievals of particle extinction. The broad Rayleigh-scattered spectrum is imaged as a nearly flat background, illustrated in Figure 1c. The integral of the particulate backscattered spectrum is analogous to the aerosol measurement from the typical absorption filter HSRL technique in that the molecular and particulate backscatter components can be separated (Figure 1c and 1d). The main difference between HSRL systems that use the iodine filter technique and the multichannel etalon technique used in the ACATS instrument is that the latter directly measures the spectral broadening of the particulate backscatter using the etalon to filter out all backscattered light with the exception of a narrow wavelength interval (1.5 picometers for ACATS) that contains the particulate spectrum (grey, Figure 1a). This study outlines the method and retrieval algorithms for ACATS data products, focusing on the HSRL derived cloud and aerosol properties. While previous ground-based multi-channel etalon systems have been built and operated for wind retrievals, there has been no airborne demonstration of the technique and the method has not been used to derive HSRL cloud and aerosol properties. ACATS has flown on the NASA ER-2 during flights over Alaska in July 2014 and as part of the Wallops Airborne Vegetation Experiment (WAVE) in September 2012. This study will focus on the HSRL aspect of the ACATS instrument, since the method and retrieval algorithms have direct application

  8. Modeling study on seasonal variation in aerosol extinction properties over China.

    PubMed

    Gao, Yi; Zhang, Meigen

    2014-01-01

    To investigate the seasonal variation of aerosol optical depth (AOD), extinction coefficient (EXT), single scattering albedo (SSA) and the decomposed impacts from sulfate (SO4(2-)) and black carbon (BC) over China, numerical experiments are conducted from November 2007 to December 2008 by using WRF-Chem. Comparison of model results with measurements shows that model can reproduce the spatial distribution and seasonal variation of AOD and SSA. Over south China, AOD is largest in spring (0.6-1.2) and lowest in summer (0.2-0.6). Over north, northeast and east China, AOD is highest in summer while lowest in winter. The high value of EXT under 850 hPa which is the reflection of low visibility ranges from 0.4-0.8 km(-1) and the high value area shifts to north during winter, spring and summer, then back to south in autumn. SSA is 0.92-0.94 in winter and 0.94-0.96 for the other three seasons because of highest BC concentration in winter over south China. Over east China, SSA is highest (0.92-0.96) in summer, and 0.88-0.92 during winter, spring and autumn as the concentration of scattering aerosol is highest while BC concentration is lowest in summer over this region. Over north China, SSA is highest (0.9-0.94) in summer and lowest (0.82-0.86) in winter due to the significant variation of aerosol concentration. The SO4(2-) induced EXT increases about 5%-55% and the impacts of BC on EXT is much smaller (2%-10%). The SO4(2-)-induced increase in SSA is 0.01-0.08 and the BC-induced SSA decreases 0.02-0.18. PMID:24649695

  9. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    DOE PAGESBeta

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.; Zhao, C.; Cadeddu, M.

    2016-01-18

    In this study, aerosol radiative effects and thermodynamic responses over South Asia are examined with the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of aerosol optical depths (AODs) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in northern India. The WRF-Chem model is found to heavily underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model's low bias is due to aerosol extinctions below ~2km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AOD andmore » extinction profiles averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to –0.7 K day−1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are

  10. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.; Zhao, C.; Cadeddu, M.

    2016-01-01

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of aerosol optical depths (AODs) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in northern India. The WRF-Chem model is found to heavily underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model's low bias is due to aerosol extinctions below ˜ 2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AOD and extinction profiles averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7 K day-1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to respond differently

  11. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    SciTech Connect

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.; Zhao, C.; Cadeddu, M.

    2015-06-19

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with a version of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of Aerosol Optical Depth (AOD) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in the northern India. The WRF-Chem model is found to underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model low-bias is due to aerosol extinctions below ~2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AOD and extinction profiles averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7 K day−1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to respond

  12. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    DOE PAGESBeta

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.; Zhao, C.; Cadeddu, M.

    2016-01-18

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of aerosol optical depths (AODs) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in northern India. The WRF-Chem model is found to heavily underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model's low bias is due to aerosol extinctions below  ∼  2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AOD and extinction profiles averaged over Southmore » Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to −0.7 K day−1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and

  13. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    DOE PAGESBeta

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.; Zhao, C.; Cadeddu, M.

    2015-06-19

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with a version of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of Aerosol Optical Depth (AOD) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in the northern India. The WRF-Chem model is found to underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model low-bias is due to aerosol extinctions below ~2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AODmore » and extinction profiles averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7 K day−1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to respond

  14. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    SciTech Connect

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.; Zhao, C.; Cadeddu, M.

    2016-01-01

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of aerosol optical depths (AODs) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in northern India. The WRF-Chem model is found to heavily underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model's low bias is due to aerosol extinctions below ~2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AOD and extinction profiles averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7 K day−1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to

  15. Preliminary Results of Aerosol Chemical Composition Measurements in the Gulf of Maine with an Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Middlebrook, A. M.; Canagaratna, M. R.; Worsnop, D. R.

    2002-12-01

    The New England Air Quality Study is a multi-institutional research project to improve understanding of the atmospheric processes that control the production and distribution of air pollutants in the New England region. During July-August, 2002 a large, collaborative, intensive period of atmospheric measurement and model comparisons took place. As part of this study, an Aerosol Mass Spectrometer (AMS) was deployed aboard the NOAA ship RONALD H. BROWN in the Gulf of Maine. The AMS measures semi-volatile components of aerosol particles with aerodynamic diameters between roughly 40 and 1500 nm. During this study, the AMS collected 2-minute averaged particle mass spectra as well as speciated organic, sulfate, and nitrate size distributions. Sodium chloride, sodium sulfate, and sodium nitrate components of the aerosol, which are relatively non-volatile at the AMS heater temperature, were not detected with the AMS. A wide variety of air masses were sampled during the intensive period, including clean marine, clean continental, and polluted continental air masses. In general, the volatile particle composition was mostly organic and sulfate with lesser amounts of nitrate. Furthermore, particle mass loadings typically peaked around 400-600 nm in aerodynamic diameter. Several events with high aerosol organic, sulfate, and/or nitrate mass loadings were observed and the atmospheric processes that cause them will be discussed.

  16. Dual-aureole and sun spectrometer system for airborne measurements of aerosol optical properties.

    PubMed

    Zieger, Paul; Ruhtz, Thomas; Preusker, Rene; Fischer, Jürgen

    2007-12-10

    We have designed an airborne spectrometer system for the simultaneous measurement of the direct sun irradiance and the aureole radiance in two different solid angles. The high-resolution spectral radiation measurements are used to derive vertical profiles of aerosol optical properties. Combined measurements in two solid angles provide better information about the aerosol type without additional and elaborate measuring geometries. It is even possible to discriminate between absorbing and nonabsorbing aerosol types. Furthermore, they allow to apply additional calibration methods and simplify the detection of contaminated data (e.g., by thin cirrus clouds). For the characterization of the detected aerosol type a new index is introduced that is the slope of the aerosol phase function in the forward scattering region. The instrumentation is a flexible modular setup, which has already been successfully applied in airborne and ground-based field campaigns. We describe the setup as well as the calibration of the instrument. In addition, example vertical profiles of aerosol optical properties--including the aureole measurements--are shown and discussed. PMID:18071387

  17. Characterization and source apportionment of submicron aerosol with aerosol mass spectrometer during the PRIDE-PRD 2006 campaign

    NASA Astrophysics Data System (ADS)

    Xiao, R.; Takegawa, N.; Zheng, M.; Kondo, Y.; Miyazaki, Y.; Miyakawa, T.; Hu, M.; Shao, M.; Zeng, L.; Gong, Y.; Lu, K.; Deng, Z.; Zhao, Y.; Zhang, Y. H.

    2011-01-01

    Size-resolved chemical compositions of non-refractory submicron aerosol were measured using an Aerodyne quadrupole aerosol mass spectrometer (Q-AMS) at the rural site Back Garden (BG), located ~50 km northwest of Guangzhou in July 2006. This paper characterized the submicron aerosol particles of regional air pollution in Pearl River Delta (PRD) in the Southern China. Organics and sulfate dominated the submicron aerosol compositions, with average mass concentrations of 11.8±8.4 μg m-3 and 13.5±8.7 μg m-3, respectively. Unlike other air masses, the air masses originated from Southeast-South and passing through the PRD urban areas exhibited distinct bimodal size distribution characteristics for both organics and sulfate: the first mode peaked at vacuum aerodynamic diameters (Dva)~200 nm and the second mode occurred at Dva from 300-700 nm. With the information from AMS, it was found from this study that the first mode of organics in PRD regional air masses was contributed by both secondary organic aerosol formation and combustion-related emissions, which is different from most findings in other urban areas (first mode of organics primarily from combustion-related emissions). The analysis of AMS mass spectra data by positive matrix factorization (PMF) model identified three sources of submicron organic aerosol including hydrocarbon-like organic aerosol (HOA), low volatility oxygenated organic aerosol (LV-OOA) and semi-volatile oxygenated organic aerosol (SV-OOA). The strong correlation between HOA and EC indicated primary combustion emissions as the major source of HOA while a close correlation between SV-OOA and semi-volatile secondary species nitrate as well as between LV-OOA and nonvolatile secondary species sulfate suggested secondary aerosol formation as the major source of SV-OOA and LV-OOA at the BG site. However, LV-OOA was more aged than SV-OOA as its spectra was highly correlated with the reference spectra of fulvic acid, an indicator of aged and

  18. Characterization and source apportionment of submicron aerosol with aerosol mass spectrometer during the PRIDE-PRD 2006 campaign

    NASA Astrophysics Data System (ADS)

    Xiao, R.; Takegawa, N.; Zheng, M.; Kondo, Y.; Miyazaki, Y.; Miyakawa, T.; Hu, M.; Shao, M.; Zeng, L.; Gong, Y.; Lu, K.; Deng, Z.; Zhao, Y.; Zhang, Y. H.

    2011-07-01

    Size-resolved chemical compositions of non-refractory submicron aerosol were measured using an Aerodyne quadrupole aerosol mass spectrometer (Q-AMS) at the rural site Back Garden (BG), located ~50 km northwest of Guangzhou in July 2006. This paper characterized the submicron aerosol particles of regional air pollution in Pearl River Delta (PRD) in the southern China. Organics and sulfate dominated the submicron aerosol compositions, with average mass concentrations of 11.8 ± 8.4 μg m-3 and 13.5 ± 8.7 μg m-3, respectively. Unlike other air masses, the air masses originated from Southeast-South and passing through the PRD urban areas exhibited distinct bimodal size distribution characteristics for both organics and sulfate: the first mode peaked at vacuum aerodynamic diameters (Dva) ∼200 nm and the second mode occurred at Dva from 300-700 nm. With the information from AMS, it was found from this study that the first mode of organics in PRD regional air masses was contributed by both secondary organic aerosol formation and combustion-related emissions, which is different from most findings in other urban areas (first mode of organics primarily from combustion-related emissions). The analysis of AMS mass spectra data by positive matrix factorization (PMF) model identified three sources of submicron organic aerosol including hydrocarbon-like organic aerosol (HOA), low volatility oxygenated organic aerosol (LV-OOA) and semi-volatile oxygenated organic aerosol (SV-OOA). The strong correlation between HOA and EC indicated primary combustion emissions as the major source of HOA while a close correlation between SV-OOA and semi-volatile secondary species nitrate as well as between LV-OOA and nonvolatile secondary species sulfate suggested secondary aerosol formation as the major source of SV-OOA and LV-OOA at the BG site. However, LV-OOA was more aged than SV-OOA as its spectra was highly correlated with the reference spectra of fulvic acid, an indicator of aged and

  19. A study on the aerosol extinction-to-backscatter ratio with combination of micro-pulse LIDAR and MODIS over Hong Kong

    NASA Astrophysics Data System (ADS)

    He, Q. S.; Li, C. C.; Mao, J. T.; Lau, A. K. H.; Li, P. R.

    2006-08-01

    The aerosol extinction-to-backscatter ratio is an important parameter for inverting LIDAR signals in the LIDAR equation. It is a complicated function of the aerosol microphysical characteristics. In this paper, a method to retrieve the column-averaged aerosol extinction-to-backscatter ratio by constraining the aerosol optical depths (AOD) from a Micro-pulse LIDAR (MPL) by the AOD measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS) is presented. Both measurements were taken on cloud free days between 1 May 2003 and 30 June 2004 over Hong Kong, a coastal city in south China. Simultaneous measurements of aerosol scattering coefficients with a forward scattering visibility sensor are compared with the LIDAR retrieval of aerosol extinction coefficients. The data are then analyzed to determine seasonal trends of the aetrosol extinction-to-backscatter ratio. In addition, the relationships between the extinction-to-backscatter ratio and wind conditions as well as other aerosol microphysical parameters are presented. The mean aerosol extinction-to-backscatter ratio for the whole period was found to be 29.1±5.8 sr, with a minimum of 18 sr in July 2003 and a maximum of 44 sr in March 2004. The ratio is lower in summer because of the dominance of oceanic aerosols in association with the prevailing southwesterly monsoon. In contrast, relatively larger ratios are noted in spring and winter because of the increased impact of local and regional industrial pollutants associated with the northerly monsoon. The extended LIDAR measurements over Hong Kong provide not only a more accurate retrieval of aerosol extinction coefficient profiles, but also significant substantial information for air pollution and climate studies in the region.

  20. Inversion of solar extinction data from the Apollo-Soyuz Test Project Stratospheric Aerosol Measurement (ASTP/SAM) experiment

    NASA Technical Reports Server (NTRS)

    Pepin, T. J.

    1977-01-01

    The inversion methods are reported that have been used to determine the vertical profile of the extinction coefficient due to the stratospheric aerosols from data measured during the ASTP/SAM solar occultation experiment. Inversion methods include the onion skin peel technique and methods of solving the Fredholm equation for the problem subject to smoothing constraints. The latter of these approaches involves a double inversion scheme. Comparisons are made between the inverted results from the SAM experiment and near simultaneous measurements made by lidar and balloon born dustsonde. The results are used to demonstrate the assumptions required to perform the inversions for aerosols.

  1. Evaluating Nighttime CALIOP 0.532 micron Aerosol Optical Depth and Extinction Coefficient Retrievals

    NASA Technical Reports Server (NTRS)

    Campbell, J. R.; Tackett, J. L.; Reid, J. S.; Zhang, J.; Curtis, C. A.; Hyer, E. J.; Sessions, W. R.; Westphal, D. L.; Prospero, J. M.; Welton, E. J.; Omar, A. H.; Vaughan, M. A.; Winker, D. M.

    2012-01-01

    NASA Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) Version 3.01 5-km nighttime 0.532 micron aerosol optical depth (AOD) datasets from 2007 are screened, averaged and evaluated at 1 deg X 1 deg resolution versus corresponding/co-incident 0.550 micron AOD derived using the US Navy Aerosol Analysis and Prediction System (NAAPS), featuring two-dimensional variational assimilation of quality-assured NASA Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging Spectroradiometer (MISR) AOD. In the absence of sunlight, since passive radiometric AOD retrievals rely overwhelmingly on scattered radiances, the model represents one of the few practical global estimates available from which to attempt such a validation. Daytime comparisons, though, provide useful context. Regional-mean CALIOP vertical profiles of night/day 0.532 micron extinction coefficient are compared with 0.523/0.532 micron ground-based lidar measurements to investigate representativeness and diurnal variability. In this analysis, mean nighttime CALIOP AOD are mostly lower than daytime (0.121 vs. 0.126 for all aggregated data points, and 0.099 vs. 0.102 when averaged globally per normalised 1 deg. X 1 deg. bin), though the relationship is reversed over land and coastal regions when the data are averaged per normalised bin (0.134/0.108 vs. 0140/0.112, respectively). Offsets assessed within single bins alone approach +/- 20 %. CALIOP AOD, both day and night, are higher than NAAPS over land (0.137 vs. 0.124) and equal over water (0.082 vs. 0.083) when averaged globally per normalised bin. However, for all data points inclusive, NAAPS exceeds CALIOP over land, coast and ocean, both day and night. Again, differences assessed within single bins approach 50% in extreme cases. Correlation between CALIOP and NAAPS AOD is comparable during both day and night. Higher correlation is found nearest the equator, both as a function of sample size and relative signal magnitudes inherent at

  2. In situ vertical profiles of aerosol extinction, mass, and composition over the southeast United States during SENEX and SEAC4RS: observations of a modest aerosol enhancement aloft

    NASA Astrophysics Data System (ADS)

    Wagner, N. L.; Brock, C. A.; Angevine, W. M.; Beyersdorf, A.; Campuzano-Jost, P.; Day, D.; de Gouw, J. A.; Diskin, G. S.; Gordon, T. D.; Graus, M. G.; Holloway, J. S.; Huey, G.; Jimenez, J. L.; Lack, D. A.; Liao, J.; Liu, X.; Markovic, M. Z.; Middlebrook, A. M.; Mikoviny, T.; Peischl, J.; Perring, A. E.; Richardson, M. S.; Ryerson, T. B.; Schwarz, J. P.; Warneke, C.; Welti, A.; Wisthaler, A.; Ziemba, L. D.; Murphy, D. M.

    2015-06-01

    Vertical profiles of submicron aerosol from in situ aircraft-based measurements were used to construct aggregate profiles of chemical, microphysical, and optical properties. These vertical profiles were collected over the southeastern United States (SEUS) during the summer of 2013 as part of two separate field studies: the Southeast Nexus (SENEX) study and the Study of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS). Shallow cumulus convection was observed during many profiles. These conditions enhance vertical transport of trace gases and aerosol and create a cloudy transition layer on top of the sub-cloud mixed layer. The trace gas and aerosol concentrations in the transition layer were modeled as a mixture with contributions from the mixed layer below and the free troposphere above. The amount of vertical mixing, or entrainment of air from the free troposphere, was quantified using the observed mixing ratio of carbon monoxide (CO). Although the median aerosol mass, extinction, and volume decreased with altitude in the transition layer, they were ~10 % larger than expected from vertical mixing alone. This enhancement was likely due to secondary aerosol formation in the transition layer. Although the transition layer enhancements of the particulate sulfate and organic aerosol (OA) were both similar in magnitude, only the enhancement of sulfate was statistically significant. The column integrated extinction, or aerosol optical depth (AOD), was calculated for each individual profile, and the transition layer enhancement of extinction typically contributed less than 10 % to the total AOD. Our measurements and analysis were motivated by two recent studies that have hypothesized an enhanced layer of secondary aerosol aloft to explain the summertime enhancement of AOD (2-3 times greater than winter) over the southeastern United States. The first study attributes the layer aloft to secondary organic aerosol (SOA) while

  3. Factor analysis of combined organic and inorganic aerosol mass spectra from high resolution aerosol mass spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Sun, Y. L.; Zhang, Q.; Schwab, J. J.; Yang, T.; Ng, N. L.; Demerjian, K. L.

    2012-09-01

    Positive matrix factorization (PMF) was applied to the merged high resolution mass spectra of organic and inorganic aerosols from aerosol mass spectrometer (AMS) measurements to investigate the sources and evolution processes of submicron aerosols in New York City in summer 2009. This new approach is able to study the distribution of organic and inorganic species in different types of aerosols, the acidity of organic aerosol (OA) factors, and the fragment ion patterns related to photochemical processing. In this study, PMF analysis of the unified AMS spectral matrix resolved 8 factors. The hydrocarbon-like OA (HOA) and cooking OA (COA) factors contain negligible amounts of inorganic species. The two factors that are primarily ammonium sulfate (SO4-OA) and ammonium nitrate (NO3-OA), respectively, are overall neutralized. Among all OA factors the organic fraction of SO4-OA shows the highest degree of oxidation (O/C = 0.69). Two semi-volatile oxygenated OA (OOA) factors, i.e., a less oxidized (LO-OOA) and a more oxidized (MO-OOA), were also identified. MO-OOA represents local photochemical products with a diurnal profile exhibiting a pronounced noon peak, consistent with those of formaldehyde (HCHO) and Ox(= O3 + NO2). The NO+/NO2+ ion ratio in MO-OOA is much higher than that in NO3-OA and in pure ammonium nitrate, indicating the formation of organic nitrates. The nitrogen-enriched OA (NOA) factor contains ~25% of acidic inorganic salts, suggesting the formation of secondary OA via acid-base reactions of amines. The size distributions of OA factors derived from the size-resolved mass spectra show distinct diurnal evolving behaviors but overall a progressing evolution from smaller to larger particle mode as the oxidation degree of OA increases. Our results demonstrate that PMF analysis of the unified aerosol mass spectral matrix which contains both inorganic and organic aerosol signals may enable the deconvolution of more OA factors and gain more insights into the

  4. Measurement of internal and external mixtures of test aerosols with a new Single Particle Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wonaschütz, Anna; Hitzenberger, Regina

    2015-04-01

    The mixing state of atmospheric aerosol particles is a very important property affecting processes such as CCN activation and scattering and absorption of light by the particles, but is challenging to determine. A new Single Particle Aerosol Mass Spectrometer (LAAPTOF, AeroMegt GmbH) was tested with regards to its capability of measuring internal and external mixture of aerosols using laboratory generated particles. To create the external mixture, solutions of three different salts in deionized water, and a suspension of carbon black (Cabot Corporation) in a mixture of isopropanol and water were nebulized and individually dried, before being passed into a small mixing chamber. To create the internal mixture, equal parts of each solution/suspension were mixed, fed into a single nebulizer, nebulized and dried. The LAAPTOF sampled from the mixing chamber and recorded mass spectra of individual particles. The analysis shows a heterogeneous ensemble of single particle spectra for the external mixture, and a homogeneous ensemble of spectra for the internal mixture. The ability of a fuzzy clustering algorithm to resolve the difference between the two mixing states was also tested.

  5. Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry.

    PubMed

    Farmer, D K; Matsunaga, A; Docherty, K S; Surratt, J D; Seinfeld, J H; Ziemann, P J; Jimenez, J L

    2010-04-13

    Organonitrates (ON) are important products of gas-phase oxidation of volatile organic compounds in the troposphere; some models predict, and laboratory studies show, the formation of large, multifunctional ON with vapor pressures low enough to partition to the particle phase. Organosulfates (OS) have also been recently detected in secondary organic aerosol. Despite their potential importance, ON and OS remain a nearly unexplored aspect of atmospheric chemistry because few studies have quantified particulate ON or OS in ambient air. We report the response of a high-resolution time-of-flight aerosol mass spectrometer (AMS) to aerosol ON and OS standards and mixtures. We quantify the potentially substantial underestimation of organic aerosol O/C, commonly used as a metric for aging, and N/C. Most of the ON-nitrogen appears as NO(x)+ ions in the AMS, which are typically dominated by inorganic nitrate. Minor organonitrogen ions are observed although their identity and intensity vary between standards. We evaluate the potential for using NO(x)+ fragment ratios, organonitrogen ions, HNO(3)+ ions, the ammonium balance of the nominally inorganic ions, and comparison to ion-chromatography instruments to constrain the concentrations of ON for ambient datasets, and apply these techniques to a field study in Riverside, CA. OS manifests as separate organic and sulfate components in the AMS with minimal organosulfur fragments and little difference in fragmentation from inorganic sulfate. The low thermal stability of ON and OS likely causes similar detection difficulties for other aerosol mass spectrometers using vaporization and/or ionization techniques with similar or larger energy, which has likely led to an underappreciation of these species. PMID:20194777

  6. Measuring black carbon spectral extinction in the visible and infrared

    NASA Astrophysics Data System (ADS)

    Smith, A. J. A.; Peters, D. M.; McPheat, R.; Lukanihins, S.; Grainger, R. G.

    2015-09-01

    This work presents measurements of the spectral extinction of black carbon aerosol from 400 nm to 15 μm. The aerosol was generated using a Miniature Combustion Aerosol Standard soot generator and then allowed to circulate in an aerosol cell where its extinction was measured using a grating spectrometer in the visible and a Fourier transform spectrometer in the infrared. Size distribution, number concentration, and mass extinction cross sections have also been obtained using single-particle aerosol samplers. A mean mass extinction cross section at 550 nm of 8.3 ± 1.6 m2 g-1 is found which, assuming a reasonable single scatter albedo of 0.2, corresponds to a mass absorption cross section of 6.6 ± 1.3 m2 g-1. This compares well with previously reported literature values. Computer analysis of electron microscope images of the particles provides independent confirmation of the size distribution as well as fractal parameters of the black carbon aerosol. The aerosol properties presented in this work are representative of very fresh, uncoated black carbon aerosol. After atmospheric processing of such aerosols (which could include mixing with other constituents and structural changes), different optical properties would be expected.

  7. Factor analysis of combined organic and inorganic aerosol mass spectra from high resolution aerosol mass spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Sun, Y. L.; Zhang, Q.; Schwab, J. J.; Yang, T.; Ng, N. L.; Demerjian, K. L.

    2012-05-01

    The high resolution mass spectra of organic and inorganic aerosols from aerosol mass spectrometer (AMS) measurements were first combined into positive matrix factorization (PMF) analysis to investigate the sources and evolution processes of atmospheric aerosols. The new approach is able to study the mixing of organic aerosols (OA) and inorganic species, the acidity of OA factors, and the fragment ion patterns related to photochemical processing. In this study, PMF analysis of the unified AMS spectral matrices resolved 8 factors for the submicron aerosols measured at Queens College in New York City in summer 2009. The hydrocarbon-like OA (HOA) and cooking OA (COA) contain very minor inorganic species, indicating the different sources and mixing characteristics between primary OA and secondary species. The two factors that are primarily ammonium sulfate (SO4-OA) and ammonium nitrate (NO3-OA), respectively, are overall neutralized, of which the OA in SO4-OA shows the highest oxidation state (O/C = 0.69) among OA factors. The semi-volatile oxygenated OA comprises two components, i.e., a less oxidized (LO-OOA) and a more oxidized (MO-OOA). The MO-OOA represents a local photochemical product with the diurnal profile exhibiting a pronounced noon peak, consistent with those of formaldehyde (HCHO) and Ox (= O3+NO2). The much higher NO+/NO2+ fragment ion ratio in MO-OOA than that from ammonium nitrate alone provides evidence for the formation of organic nitrates. The amine-related nitrogen-enriched OA (NOA) contains ~25% of acidic inorganic salts, elucidating the formation of secondary OA from amines in acidic environments. The size distributions derived from 3-dimensional size-resolved mass spectra show distinct diurnal evolving behaviors for different OA factors, but overall a progressing evolution from smaller to larger particle mode as a function of oxidation states. Our results demonstrate that PMF analysis by incorporating inorganic aerosols is of importance for

  8. Fast Airborne Aerosol Size and Chemistry Measurements with the High Resolution Aerosol Mass Spectrometer during the MILAGRO Campaign

    NASA Technical Reports Server (NTRS)

    DeCarlo, P. F.; Dunlea, E. J.; Kimmel, J. R.; Aiken, A. C.; Sueper, D.; Crounse, J.; Wennberg, P. O.; Emmons, L.; Shinozuka, Y.; Clarke, A.; Zhou, J.; Tomlinson, J.; Collins,D. R.; Knapp, D.; Weinheimer, A. J.; Montzka,D. D.; Campos,T.; Jimenez, J. L.

    2007-01-01

    The concentration, size, and composition of non-refractory submicron aerosol (NR-PM(sub l)) was measured over Mexico City and central Mexico with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) onboard the NSF/NCAR C-130 aircraft as part of the MILAGRO field campaign. This was the first aircraft deployment of the HR-ToF-AMS. During the campaign the instrument performed very well, and provided 12 s data. The aerosol mass from the AMS correlates strongly with other aerosol measurements on board the aircraft. Organic aerosol (OA) species dominate the NR-PM(sub l) mass. OA correlates strongly with CO and HCN indicating that pollution (mostly secondary OA, SOA) and biomass burning (BB) are the main OA sources. The OA to CO ratio indicates a typical value for aged air of around 80 microg/cubic m (STP) ppm(exp -1). This is within the range observed in outflow from the Northeastern US, which could be due to a compensating effect between higher BB but lower biogenic VOC emissions during this study. The O/C atomic ratio for OA is calculated from the HR mass spectra and shows a clear increase with photochemical age, as SOA forms rapidly and quickly overwhelms primary urban OA, consistent with Volkamer et al. (2006) and Kleinman et al. (2008). The stability of the OA/CO while O/C increases with photochemical age implies a net loss of carbon from the OA. BB OA is marked by signals at m/z 60 and 73, and also by a signal enhancement at large m/z indicative of larger molecules or more resistance to fragmentation. The main inorganic components show different spatial patterns and size distributions. Sulfate is regional in nature with clear volcanic and petrochemical/power plant sources, while the urban area is not a major regional source for this species. Nitrate is enhanced significantly in the urban area and immediate outflow, and is strongly correlated with CO indicating a strong urban source. The importance of nitrate decreases with distance from the city

  9. An Aerosol Extinction-to-Backscatter Ratio Database Derived from the NASA Micro-Pulse Lidar Network: Applications for Space-based Lidar Observations

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Campbell, James R.; Spinhime, James D.; Berkoff, Timothy A.; Holben, Brent; Tsay, Si-Chee; Bucholtz, Anthony

    2004-01-01

    Backscatter lidar signals are a function of both backscatter and extinction. Hence, these lidar observations alone cannot separate the two quantities. The aerosol extinction-to-backscatter ratio, S, is the key parameter required to accurately retrieve extinction and optical depth from backscatter lidar observations of aerosol layers. S is commonly defined as 4*pi divided by the product of the single scatter albedo and the phase function at 180-degree scattering angle. Values of S for different aerosol types are not well known, and are even more difficult to determine when aerosols become mixed. Here we present a new lidar-sunphotometer S database derived from Observations of the NASA Micro-Pulse Lidar Network (MPLNET). MPLNET is a growing worldwide network of eye-safe backscatter lidars co-located with sunphotometers in the NASA Aerosol Robotic Network (AERONET). Values of S for different aerosol species and geographic regions will be presented. A framework for constructing an S look-up table will be shown. Look-up tables of S are needed to calculate aerosol extinction and optical depth from space-based lidar observations in the absence of co-located AOD data. Applications for using the new S look-up table to reprocess aerosol products from NASA's Geoscience Laser Altimeter System (GLAS) will be discussed.

  10. Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS)

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Kaufman, Yoram J.; Menzel, W. Paul; Tanre, Didier D.

    1992-01-01

    The authors describe the status of MODIS-N and its companion instrument MODIS-T (tilt), a tiltable cross-track scanning spectrometer with 32 uniformly spaced channels between 0.410 and 0.875 micron. They review the various methods being developed for the remote sensing of atmospheric properties using MODIS, placing primary emphasis on the principal atmospheric applications of determining the optical, microphysical, and physical properties of clouds and aerosol particles from spectral reflection and thermal emission measurements. In addition to cloud and aerosol properties, MODIS-N will be used for determining the total precipitable water vapor and atmospheric stability. The physical principles behind the determination of each of these atmospheric products are described, together with an example of their application to aircraft and/or satellite measurements.

  11. Detection of cw-related species in complex aerosol particles deposited on surfaces with an ion trap-based aerosol mass spectrometer

    SciTech Connect

    Harris, William A; Reilly, Pete; Whitten, William B

    2007-01-01

    A new type of aerosol mass spectrometer was developed by minimal modification of an existing commercial ion trap to analyze the semivolatile components of aerosols in real time. An aerodynamic lens-based inlet system created a well-collimated particle beam that impacted into the heated ionization volume of the commercial ion trap mass spectrometer. The semivolatile components of the aerosols were thermally vaporized and ionized by electron impact or chemical ionization in the source. The nascent ions were extracted and injected into the ion trap for mass analysis. The utility of this instrument was demonstrated by identifying semivolatile analytes in complex aerosols. This study is part of an ongoing effort to develop methods for identifying chemical species related to CW agent exposure. Our efforts focused on detection of CW-related species doped on omnipresent aerosols such as house dust particles vacuumed from various surfaces found in any office building. The doped aerosols were sampled directly into the inlet of our mass spectrometer from the vacuumed particle stream. The semivolatile analytes were deposited on house dust and identified by positive ion chemical ionization mass spectrometry up to 2.5 h after deposition. Our results suggest that the observed semivolatile species may have been chemisorbed on some of the particle surfaces in submonolayer concentrations and may remain hours after deposition. This research suggests that identification of trace CW agent-related species should be feasible by this technique.

  12. Characterization of near-highway submicron aerosols in New York City with a high-resolution aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Sun, Y. L.; Zhang, Q.; Schwab, J. J.; Chen, W.-N.; Bae, M.-S.; Hung, H.-M.; Lin, Y.-C.; Ng, N. L.; Jayne, J.; Massoli, P.; Williams, L. R.; Demerjian, K. L.

    2012-02-01

    Knowledge of the variations of mass concentration, chemical composition and size distributions of submicron aerosols near roadways is of importance for reducing exposure assessment uncertainties in health effects studies. The goal of this study is to deploy and evaluate an Atmospheric Sciences Research Center-Mobile Laboratory (ASRC-ML), equipped with a suite of rapid response instruments for characterization of traffic plumes, adjacent to the Long Island Expressway (LIE) - a high-traffic highway in the New York City Metropolitan Area. In total, four measurement periods, two in the morning and two in the evening were conducted at a location approximately 30 m south of the LIE. The mass concentrations and size distributions of non-refractory submicron aerosol (NR-PM1) species were measured in situ at a time resolution of 1 min by an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer, along with rapid measurements (down to 1 Hz) of gaseous pollutants (e.g. HCHO, NO2, NO, O3, and CO2, etc.), black carbon (BC), and particle number concentrations and size distributions. Particulate organics varied dramatically during periods with high traffic influences from the nearby roadway. The variations were mainly observed in the hydrocarbon-like organic aerosol (HOA), a surrogate for primary OA from vehicle emissions. The inorganic species (sulfate, ammonium, and nitrate) and oxygenated OA (OOA) showed much smoother variations indicating minor impacts from traffic emissions. The concentration and chemical composition of NR-PM1 also varied differently on different days depending on meteorology, traffic intensity and vehicle types. Overall, organics dominated the traffic-related NR-PM1 composition (>60%) with HOA accounting for a major fraction of OA. The traffic-influenced organics showed two distinct modes in mass-weighted size distributions, peaking at ∼120 nm and 500 nm (vacuum aerodynamic diameter, Dva), respectively. OOA and inorganic species appear to be

  13. Laboratory investigation of photochemical oxidation of organic aerosol from wood fires Part 2: Analysis of aerosol mass spectrometer data

    NASA Astrophysics Data System (ADS)

    Grieshop, A. P.; Donahue, N. M.; Robinson, A. L.

    2008-09-01

    Experiments were conducted to investigate the effects of photo-oxidation on organic aerosol (OA) in dilute wood smoke by exposing emissions from soft- and hard-wood fires to UV light in a smog chamber. This paper focuses on changes in OA composition measured using a unit mass resolution quadrupole Aerosol Mass Spectrometer (AMS). The results highlight how photochemical processing can lead to considerable evolution of the mass, the volatility and the level of oxygenation of biomass-burning OA. Photochemical oxidation produced substantial new OA, more than doubling the primary contribution after a few hours of aging under typical summertime conditions. Aging decreased the OA volatility of the total OA as measured with a thermodenuder; it also made the OA progressively more oxygenated in every experiment. With explicit knowledge of the condensed-phase mass spectrum (MS) of the primary emissions from each fire, each MS can be decomposed into primary and residual spectra throughout the experiment. The residual spectra provide an estimate of the composition of the photochemically produced OA. These spectra are also very similar to those of the oxygenated OA that dominates ambient AMS datasets. In addition, aged wood smoke spectra are shown to be similar to those from OA created by photo-oxidized dilute diesel exhaust and aged biomass-burning OA measured in urban and remote locations. This demonstrates that the oxygenated OA observed in the atmosphere can be produced by photochemical aging of dilute emissions from combustion of fuels containing both modern and fossil carbon.

  14. Four-year long-path monitoring of ambient aerosol extinction at a central European urban site: dependence on relative humidity

    NASA Astrophysics Data System (ADS)

    Skupin, A.; Ansmann, A.; Engelmann, R.; Seifert, P.; Müller, T.

    2016-02-01

    The ambient aerosol particle extinction coefficient is measured with the Spectral Aerosol Extinction Monitoring System (SÆMS) along a 2.84 km horizontal path at 30-50 m height above ground in the urban environment of Leipzig (51.3° N, 12.4° E), Germany, since 2009. The dependence of the particle extinction coefficient (wavelength range from 300 to 1000 nm) on relative humidity up to almost 100 % was investigated. The main results are presented. For the wavelength of 550 nm, the mean extinction enhancement factor was found to be 1.75 ± 0.4 for an increase of relative humidity from 40 to 80 %. The respective 4-year mean extinction enhancement factor is 2.8 ± 0.6 for a relative-humidity increase from 40 to 95 %. A parameterization of the dependency of the urban particle extinction coefficient on relative humidity is presented. A mean hygroscopic exponent of 0.46 for the 2009-2012 period was determined. Based on a backward trajectory cluster analysis, the dependence of several aerosol optical properties for eight air flow regimes was investigated. Large differences were not found, indicating that local pollution sources widely control the aerosol conditions over the urban site. The comparison of the SÆMS extinction coefficient statistics with respective statistics from ambient AERONET sun photometer observations yields good agreement. Also, time series of the particle extinction coefficient computed from in situ-measured dry particle size distributions and humidity-corrected SÆMS extinction values (for 40 % relative humidity) were found in good overall consistency, which verifies the applicability of the developed humidity parameterization scheme. The analysis of the spectral dependence of particle extinction (Ångström exponent) revealed an increase of the 390-881 nm Ångström exponent from, on average, 0.3 (at 30 % relative humidity) to 1.3 (at 95 % relative humidity) for the 4-year period.

  15. In situ measurement of the infrared absorption and extinction of chemical and biologically derived aerosols using flow-through photoacoustics.

    PubMed

    Gurton, Kristan P; Dahmani, Rachid; Ligon, David; Bronk, Burt V

    2005-07-01

    In an effort to establish a more reliable set of optical cross sections for a variety of chemical and biological aerosol simulants, we have developed a flow-through photoacoustic system that is capable of measuring absolute, mass-normalized extinction and absorption cross sections. By employing a flow-through design we avoid issues associated with closed aerosol photoacoustic systems and improve sensitivity. Although the results shown here were obtained for the tunable CO2 laser waveband region, i.e., 9.20-10.80 microm, application to other wavelengths is easily achievable. The aerosols considered are categorized as biological, chemical, and inorganic in origin, i.e., Bacillus atrophaeus endospores, dimethicone silicone oil (SF-96 grade 50), and kaolin clay powder (alumina and silicate), respectively. Results compare well with spectral extinction measured previously by Fourier-transform infrared spectroscopy. Comparisons with Mie theory calculations based on previously published complex indices of refraction and measured size distributions are also presented. PMID:16004057

  16. Development of Soft Ionization for Particulate Organic Detection with the Aerodyne Aerosol Mass Spectrometer

    SciTech Connect

    Trimborn, A; Williams, L R; Jayne, J T; Worsnop, D R

    2008-06-19

    During this DOE SBIR Phase II project, we have successfully developed several soft ionization techniques, i.e., ionization schemes which involve less fragmentation of the ions, for use with the Aerodyne time-of-flight aerosol mass spectrometer (ToF-AMS). Vacuum ultraviolet single photon ionization was demonstrated in the laboratory and deployed in field campaigns. Vacuum ultraviolet single photon ionization allows better identification of organic species in aerosol particles as shown in laboratory experiments on single component particles, and in field measurements on complex multi-component particles. Dissociative electron attachment with lower energy electrons (less than 30 eV) was demonstrated in the measurement of particulate organics in chamber experiments in Switzerland, and is now a routine approach with AMS systems configured for bipolar, negative ion detection. This technique is particularly powerful for detection of acidic and other highly oxygenated secondary organic aerosol (SOA) chemical functionality. Low energy electron ionization (10 to 12 eV) is also a softer ionization approach routinely available to AMS users. Finally, Lithium ion attachment has been shown to be sensitive to more alkyl-like chemical functionality in SOA. Results from Mexico City are particularly exciting in observing changes in SOA molecular composition under different photochemical/meteorological conditions. More recent results detecting biomass burns at the Montana fire lab have demonstrated quantitative and selective detection of levoglucosan. These soft ionization techniques provide the ToF-AMS with better capability for identifying organic species in ambient atmospheric aerosol particles. This, in turn, will allow more detailed study of the sources, transformations and fate of organic-containing aerosol.

  17. A concept of an automated function control for ambient aerosol measurements using mobility particle size spectrometers

    NASA Astrophysics Data System (ADS)

    Schladitz, A.; Merkel, M.; Bastian, S.; Birmili, W.; Weinhold, K.; Löschau, G.; Wiedensohler, A.

    2013-12-01

    An automated function control unit was developed to regularly check the ambient particle number concentration derived from a mobility particle size spectrometer as well as its zero-point behaviour. The aim of the new feature is to conduct unattended quality control experiments under field conditions at remote air quality monitoring or research stations. The automated function control also has the advantage of being able to get a faster system stability response than the recommended on-site comparisons with reference instruments. The method is based on a comparison of the total particle number concentration measured by a mobility particle size spectrometer and a condensation particle counter removing the diffusive particles approximately smaller than 25 nm in diameter. In practice, the small particles are removed by a set of diffusion screens, as traditionally used in a diffusion battery. The other feature of the automated function control is to check the zero-point behaviour of the ambient aerosol passing through a high-efficiency particulate air (HEPA) filter. An exemplary one-year data set is presented for the measurement site Annaberg-Buchholz as part of the Saxon air quality monitoring network. The total particle number concentration derived from the mobility particle size spectrometer overestimates the particle number concentration by only 2% (grand average offset). Furthermore, tolerance criteria are presented to judge the performance of the mobility particle size spectrometer with respect to the particle number concentration. An upgrade of a mobility particle size spectrometer with an automated function control enhances the quality of long-term particle number size distribution measurements. Quality assured measurements are a precondition for intercomparison studies of different sites. Comparable measurements will improve cohort health and also climate-relevant research studies.

  18. Study of MPLNET-Derived Aerosol Climatology over Kanpur, India, and Validation of CALIPSO Level 2 Version 3 Backscatter and Extinction Products

    NASA Technical Reports Server (NTRS)

    Misra, Amit; Tripathi, S. N.; Kaul, D. S.; Welton, Ellsworth J.

    2012-01-01

    The level 2 aerosol backscatter and extinction profiles from the NASA Micropulse Lidar Network (MPLNET) at Kanpur, India, have been studied from May 2009 to September 2010. Monthly averaged extinction profiles from MPLNET shows high extinction values near the surface during October March. Higher extinction values at altitudes of 24 km are observed from April to June, a period marked by frequent dust episodes. Version 3 level 2 Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol profile products have been compared with corresponding data from MPLNET over Kanpur for the above-mentioned period. Out of the available backscatter profiles, the16 profiles used in this study have time differences less than 3 h and distances less than 130 km. Among these profiles, four cases show good comparison above 400 m with R2 greater than 0.7. Comparison with AERONET data shows that the aerosol type is properly identified by the CALIOP algorithm. Cloud contamination is a possible source of error in the remaining cases of poor comparison. Another source of error is the improper backscatter-to-extinction ratio, which further affects the accuracy of extinction coefficient retrieval.

  19. Verification and application of the extended spectral deconvolution algorithm (SDA+) methodology to estimate aerosol fine and coarse mode extinction coefficients in the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Kaku, K. C.; Reid, J. S.; O'Neill, N. T.; Quinn, P. K.; Coffman, D. J.; Eck, T. F.

    2014-10-01

    The spectral deconvolution algorithm (SDA) and SDA+ (extended SDA) methodologies can be employed to separate the fine and coarse mode extinction coefficients from measured total aerosol extinction coefficients, but their common use is currently limited to AERONET (AErosol RObotic NETwork) aerosol optical depth (AOD). Here we provide the verification of the SDA+ methodology on a non-AERONET aerosol product, by applying it to fine and coarse mode nephelometer and particle soot absorption photometer (PSAP) data sets collected in the marine boundary layer. Using data sets collected on research vessels by NOAA-PMEL(National Oceanic and Atmospheric Administration - Pacific Marine Environmental Laboratory), we demonstrate that with accurate input, SDA+ is able to predict the fine and coarse mode scattering and extinction coefficient partition in global data sets representing a range of aerosol regimes. However, in low-extinction regimes commonly found in the clean marine boundary layer, SDA+ output accuracy is sensitive to instrumental calibration errors. This work was extended to the calculation of coarse and fine mode scattering coefficients with similar success. This effort not only verifies the application of the SDA+ method to in situ data, but by inference verifies the method as a whole for a host of applications, including AERONET. Study results open the door to much more extensive use of nephelometers and PSAPs, with the ability to calculate fine and coarse mode scattering and extinction coefficients in field campaigns that do not have the resources to explicitly measure these values.

  20. On the Interpretation of Oxygenated Organic Aerosols (and their Subtypes) Arising from Factor Analysis of Aerosol Mass Spectrometer Data

    NASA Astrophysics Data System (ADS)

    Jimenez, J. L.; Zhang, Q.; Canagaratna, M. R.; Ulbrich, I. M.; Ng, N. L.; Aiken, A. C.; Decarlo, P. F.; Kroll, J.; Mohr, C.; Allan, J. D.; Worsnop, D. R.

    2008-12-01

    Zhang et al. (ES&T 2005; ACP 2005) first performed factor analysis (FA) of Aerodyne Aerosol Mass Spectrometer (AMS) complete organic aerosol (OA) mass spectra. This study showed that an oxygenated organic aerosol (OOA) factor accounted for 2/3 of the OA mass at an urban site in Pittsburgh and strongly linked OOA to secondary organic aerosols (SOA). Many subsequent studies and the application of more powerful solution algorithms such as Positive Matrix Factorization (PMF) to the same FA problem have demonstrated the importance of OOA at most locations (e.g. Volkamer et al., GRL, 2006; Zhang et al., GRL, 2007; Lanz et al., ACP, 2007 and ES&T, 2008; Ulbrich et al., ACPD, 2008). Multiple studies have also identified several subtypes of OOA (e.g. OOA-1 and OOA-2). This type of analysis offers new insights because it provides some chemical resolution on the total OA mass with high time and size resolution, and bypasses the limitations of techniques that only analyze tracers and which may favor more reduced species. However the chemical resolution is limited and careful interpretation of the FA output is required, including the use of database spectra, time series of external tracers, tracer ratios, back-trajectory analyses, size- distribution analyses, etc. This presentation will address the interpretation of total OOA and its subfactors across a large range of locations in urban, suburban, rural, remote, and forested areas, and will compare with the results of other source apportionment techniques. Based on data from multiple datasets we conclude that (1) anthropogenic SOA in and downwind of urban areas is an important source of OOA; (2) motor vehicles, meat cooking, and trash burning are unlikely to be sources of primary OOA; (3) SOA from biogenic and biomass burning precursors are also clear sources of OOA; (4) primary biomass burning OA (P-BBOA) typically shows significant differences with ambient OOA factors; (5) heterogeneous oxidation of urban POA may give rise to

  1. Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data

    NASA Astrophysics Data System (ADS)

    Mohr, C.; Decarlo, P. F.; Heringa, M. F.; Chirico, R.; Slowik, J. G.; Richter, R.; Reche, C.; Alastuey, A.; Querol, X.; Seco, R.; Peñuelas, J.; Jiménez, J. L.; Crippa, M.; Zimmermann, R.; Baltensperger, U.; Prévôt, A. S. H.

    2011-10-01

    PM1 (particulate matter with an aerodynamic diameter <1 μm) non-refractory components and black carbon were measured continuously together with additional parameters at an urban background site in Barcelona, Spain, during March 2009 (campaign DAURE, Determination of the sources of atmospheric Aerosols in Urban and Rural Environments in the western Mediterranean). Positive matrix factorization (PMF) was conducted on the organic aerosol (OA) data matrix measured by an aerosol mass spectrometer, on both unit mass (UMR) and high resolution (HR) data. Five factors or sources could be identified: LV-OOA (low-volatility oxygenated OA), related to regional, aged secondary OA; SV-OOA (semi-volatile oxygenated OA), a fresher oxygenated OA; HOA (hydrocarbon-like OA, related to traffic emissions); BBOA (biomass burning OA) from domestic heating or agricultural biomass burning activities; and COA (cooking OA). LV-OOA contributed 28% to OA, SV-OOA 27%, COA 17%, HOA 16%, and BBOA 11%. The COA HR spectrum contained substantial signal from oxygenated ions (O/C: 0.21) whereas the HR HOA spectrum had almost exclusively contributions from chemically reduced ions (O/C: 0.03). If we assume that the carbon in HOA is fossil while that in COA and BBOA is modern, primary OA in Barcelona contains a surprisingly high fraction (59%) of non-fossil carbon. This paper presents a method for estimating cooking organic aerosol in ambient datasets based on the fractions of organic mass fragments at m/z 55 and 57: their data points fall into a V-shape in a scatter plot, with strongly influenced HOA data aligned to the right arm and strongly influenced COA data points aligned to the left arm. HR data show that this differentiation is mainly driven by the oxygen-containing ions C3H3O+ and C3H5O+, even though their contributions to m/z 55 and 57 are low compared to the reduced ions C4H7+ and C4H9+. A simple estimation method based on the organic mass fragments at m/z 55, 57, and 44 is developed here and

  2. Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data

    NASA Astrophysics Data System (ADS)

    Mohr, C.; Decarlo, P. F.; Heringa, M. F.; Chirico, R.; Slowik, J. G.; Richter, R.; Reche, C.; Alastuey, A.; Querol, X.; Seco, R.; Peñuelas, J.; Jiménez, J. L.; Crippa, M.; Zimmermann, R.; Baltensperger, U.; Prévôt, A. S. H.

    2012-02-01

    PM1 (particulate matter with an aerodynamic diameter <1 μm) non-refractory components and black carbon were measured continuously together with additional air quality and atmospheric parameters at an urban background site in Barcelona, Spain, during March 2009 (campaign DAURE, Determination of the sources of atmospheric Aerosols in Urban and Rural Environments in the western Mediterranean). Positive matrix factorization (PMF) was conducted on the organic aerosol (OA) data matrix measured by an aerosol mass spectrometer, on both unit mass (UMR) and high resolution (HR) data. Five factors or sources could be identified: LV-OOA (low-volatility oxygenated OA), related to regional, aged secondary OA; SV-OOA (semi-volatile oxygenated OA), a fresher oxygenated OA; HOA (hydrocarbon-like OA, related to traffic emissions); BBOA (biomass burning OA) from domestic heating or agricultural biomass burning activities; and COA (cooking OA). LV-OOA contributed 28% to OA, SV-OOA 27%, COA 17%, HOA 16%, and BBOA 11%. The COA HR spectrum contained substantial signal from oxygenated ions (O:C: 0.21) whereas the HR HOA spectrum had almost exclusively contributions from chemically reduced ions (O:C: 0.03). If we assume that the carbon in HOA is fossil while that in COA and BBOA is modern, primary OA in Barcelona contains a surprisingly high fraction (59%) of non-fossil carbon. This paper presents a method for estimating cooking organic aerosol in ambient datasets based on the fractions of organic mass fragments at m/z 55 and 57: their data points fall into a V-shape in a scatter plot, with strongly influenced HOA data aligned to the right arm and strongly influenced COA data points aligned to the left arm. HR data show that this differentiation is mainly driven by the oxygen-containing ions C3H3O+ and C3H5O+, even though their contributions to m/z 55 and 57 are low compared to the reduced ions C4H7+ and C4H9+. A simple estimation method based on the markers m/z 55, 57, and 44 is

  3. Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480 nm.

    PubMed

    Zhao, Weixiong; Dong, Meili; Chen, Weidong; Gu, Xuejun; Hu, Changjin; Gao, Xiaoming; Huang, Wei; Zhang, Weijun

    2013-02-19

    Despite the significant progress in the measurements of aerosol extinction and absorption using spectroscopy approaches such as cavity ring-down spectroscopy (CRDS) and photoacoustic spectroscopy (PAS), the widely used single-wavelength instruments may suffer from the interferences of gases absorption present in the real environment. A second instrument for simultaneous measurement of absorbing gases is required to characterize the effect of light extinction resulted from gases absorption. We present in this paper the development of a blue light-emitting diode (LED)-based incoherent broad-band cavity-enhanced spectroscopy (IBBCEAS) approach for broad-band measurements of wavelength-resolved aerosol extinction over the spectral range of 445-480 nm. This method also allows for simultaneous measurement of trace gases absorption present in the air sample using the same instrument. On the basis of the measured wavelength-dependent aerosol extinction cross section, the real part of the refractive index (RI) can be directly retrieved in a case where the RI does not vary strongly with the wavelength over the relevant spectral region. Laboratory-generated monodispersed aerosols, polystyrene latex spheres (PSL) and ammonium sulfate (AS), were employed for validation of the RI determination by IBBCEAS measurements. On the basis of a Mie scattering model, the real parts of the aerosol RI were retrieved from the measured wavelength-resolved extinction cross sections for both aerosol samples, which are in good agreement with the reported values. The developed IBBCEAS instrument was deployed for simultaneous measurements of aerosol extinction coefficient and NO(2) concentration in ambient air in a suburban site during two representative days. PMID:23320530

  4. Effect of Vaporizer Temperature on Ambient Non-Refractory Submicron Aerosol Composition and Mass Spectra Measured by the Aerosol Mass Spectrometer

    EPA Science Inventory

    Aerodyne Aerosol Mass Spectrometers (AMS) are routinely operated with a constant vaporizer temperature (Tvap) of 600oC in order to facilitate quantitative detection of non-refractory submicron (NR-PM1) species. By analogy with other thermal desorption instrument...

  5. How Well do State-of-the-Art Techniques Measuring the Vertical Profile of Tropospheric Aerosol Extinction Compare?

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Ferrare, R.; Flynn, C.; Elleman, R.; Covert, D.; Strawa, A.; Welton, E.; Turner, D.; Jonsson, H.; Redemann, J.; Eilers, J.; Ricci, K.; Hallar, A. G.; Clayton, M.; Michalsky, J.; Smirnov, A.; Holben, B.; Barnard, J.

    2006-01-01

    The recent Department of Energy Atmospheric Radiation Measurement (ARM) Aerosol Intensive Operations Period (AIOP, May 2003) yielded one of the best measurement sets obtained to date to assess our ability to measure the vertical profile of ambient aerosol extinction sigma(ep)(lambda) in the lower troposphere. During one month, a heavily instrumented aircraft with well-characterized aerosol sampling ability carrying well-proven and new aerosol instrumentation devoted most of the 60 available flight hours to flying vertical profiles over the heavily instrumented ARM Southern Great Plains (SGP) Climate Research Facility (CRF). This allowed us to compare vertical extinction profiles obtained from six different instruments: airborne Sun photometer (AATS-14), airborne nephelometer/absorption photometer, airborne cavity ring-down system, groundbased Raman lidar, and two ground-based elastic backscatter lidars. We find the in situ measured sigma(ep)(lambda) to be lower than the AATS-14 derived values. Bias differences are 0.002-0.004 Km!1 equivalent to 13-17% in the visible, or 45% in the near-infrared. On the other hand, we find that with respect to AATS-14, the lidar sigma(ep)(lambda) are higher: Bias differences are 0.004 Km(-1) (13%) and 0.007 Km(-1) (24%) for the two elastic backscatter lidars (MPLNET and MPLARM, lambda = 523 nm) and 0.029 Km(-1) (54%) for the Raman lidar (lambda = 355 nm). An unnoticed loss of sensitivity of the Raman lidar had occurred leading up to AIOP, and we expect better agreement from the recently restored system. Looking at the collective results from six field campaigns conducted since 1996, airborne in situ measurements of sigma(ep)(lambda) tend to be biased slightly low (17% at visible wavelengths) when compared to airborne Sun photometer sigma(ep)(lambda). On the other hand, sigma(ep)(lambda) values derived from lidars tend to have no or positive biases. From the bias differences we conclude that the typical systematic error associated

  6. A study on aerosol extinction-to-backscatter ratio with combination of micro-pulse lidar and MODIS over Hong Kong

    NASA Astrophysics Data System (ADS)

    He, Q. S.; Li, C. C.; Mao, J. T.; Lau, A. K. H.

    2006-04-01

    The aerosol extinction-to-backscatter ratio is an important parameter for inverting LIDAR signals in the LIDAR equation. It is also a complicated function of aerosol microphysical characteristics depending on geographical and meteorological conditions. In this paper, a method to retrieve the column-averaged aerosol extinction-to-backscatter ratio by constraining the aerosol optical depths (AOD) recorded by the Moderate Resolution Imaging Spectroradiometer (MODIS) to the ones measured by a Micro-pulse LIDAR (MPL) is presented. Both measurements were taken between 1 May 2003 and 30 June 2004 over Hong Kong, a coastal city in south China. Simultaneous scattering coefficients measured by a forward scattering visibility sensor are compared with the LIDAR retrieval. The data are then analyzed in terms of monthly and seasonal trends. In addition, the relationships between the extinction-to-backscatter ratio and wind conditions as well as other aerosol microphysical parameters are also presented. The mean aerosol extinction-to-backscatter ratio for the whole period is found to be 28.9±6.1 sr, with the minimum of 12 sr in August 2003 and the maximum of 44 sr in March 2004. The ratio is lower in the summer because of the dominance of oceanic aerosols in association with the prevailing southwesterly monsoon. In contrast, relatively larger ratios are noted in spring and winter because of the increased impact of local and regional industrial pollutants associated with the northerly monsoon. The extended LIDAR measurements over Hong Kong provide not only a more accurate retrieval of aerosol extinction coefficient profiles, but also significant information for air pollution and climate studies in the region.

  7. A smog chamber study coupling a photoionization aerosol electron/ion spectrometer to VUV synchrotron radiation: organic and inorganic-organic mixed aerosol analysis

    NASA Astrophysics Data System (ADS)

    Baeza-Romero, María Teresa; Gaie-Levrel, Francois; Mahjoub, Ahmed; López-Arza, Vicente; Garcia, Gustavo A.; Nahon, Laurent

    2016-07-01

    A reaction chamber was coupled to a photoionization aerosol time-of-flight mass spectrometer based on an electron/ion coincidence scheme and applied for on-line analysis of organic and inorganic-organic mixed aerosols using synchrotron tunable vacuum ultraviolet (VUV) photons as the ionization source. In this proof of principle study, both aerosol and gas phase were detected simultaneously but could be differentiated. Present results and perspectives for improvement for this set-up are shown in the study of ozonolysis ([O3] = 0.13-3 ppm) of α-pinene (2-3 ppm), and the uptake of glyoxal upon ammonium sulphate. In this work the ozone concentration was monitored in real time, together with the particle size distributions and chemical composition, the latter taking advantage of the coincidence spectrometer and the tuneability of the synchrotron radiation as a soft VUV ionization source.

  8. Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer.

    PubMed

    DeCarlo, Peter F; Kimmel, Joel R; Trimborn, Achim; Northway, Megan J; Jayne, John T; Aiken, Allison C; Gonin, Marc; Fuhrer, Katrin; Horvath, Thomas; Docherty, Kenneth S; Worsnop, Doug R; Jimenez, Jose L

    2006-12-15

    The development of a new high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is reported. The high-resolution capabilities of this instrument allow the direct separation of most ions from inorganic and organic species at the same nominal m/z, the quantification of several types of organic fragments (CxHy, CxHyOz, CxHyNp, CxHyOzNp), and the direct identification of organic nitrogen and organosulfur content. This real-time instrument is field-deployable, and its high time resolution (0.5 Hz has been demonstrated) makes it well-suited for studies in which time resolution is critical, such as aircraft studies. The instrument has two ion optical modes: a single-reflection configuration offers higher sensitivity and lower resolving power (up to approximately 2100 at m/z 200), and a two-reflectron configuration yields higher resolving power (up to approximately 4300 at m/z 200) with lower sensitivity. The instrument also allows the determination of the size distributions of all ions. One-minute detection limits for submicrometer aerosol are <0.04 microg m(-3) for all species in the high-sensitivity mode and <0.4 microg m(-3) in the high-resolution mode. Examples of ambient aerosol data are presented from the SOAR-1 study in Riverside, CA, in which the spectra of ambient organic species are dominated by CxHy and CxHyOz fragments, and different organic and inorganic fragments at the same nominal m/z show different size distributions. Data are also presented from the MIRAGE C-130 aircraft study near Mexico City, showing high correlation with independent measurements of surrogate aerosol mass concentration. PMID:17165817

  9. Demonstration of a VUV lamp photoionization source for improvedorganic speciation in an aerosol mass spectrometer

    SciTech Connect

    Northway, M.J.; Jayne, J.T.; Toohey, D.W.; Canagaratna, M.R.; Trimborn, A.; Akiyama, K-I.; Shimono, A.; Jimenez, J.L.; DeCarlo, P.F.; Wilson, K.R.; Worsnop, D.R.

    2007-10-03

    In recent years, the Aerodyne AerosolMass Spectrometer(AMS) has become a widely used tool for determining aerosol sizedistributions and chemical composition for non-refractory inorganic andorganic aerosol. The current version of the AMS uses a combination offlash thermal vaporization and 70 eV electron impact (EI) ionization.However, EI causes extensive fragmentation and mass spectra of organicaerosols are difficult to deconvolute because they are composites of theoverlapping fragmentation patterns of all species present. Previous AMSstudies have been limited to classifying organics in broad categoriessuch as oxidized and hydrocarbon-like." In this manuscript we present newefforts to gain more information about organic aerosol composition byemploying the softer technique of vacuum ultraviolet (VUV) ionization ina Time-of-Flight AMS (ToF-AMS). In our novel design a VUV lamp is placedin direct proximity of the ionization region of the AMS, with only awindow separating the lamp and the ionizer. This design allows foralternation of photoionization and electron impact ionization within thesame instrument on the timescale of minutes. Thus, the EI-basedquantification capability of the AMS is retained while improved spectralinterpretation is made possible by combined analysis of the complementaryVUV and EI ionization spectra. Photoionization and electron impactionization spectra are compared for a number of compounds including oleicacid, long chain hydrocarbons, and cigarette smoke. In general, the VUVspectra contain much less fragmentation than the EI spectra and for manycompounds the parent ion is the dominant ion in the VUV spectrum. As anexample of the usefulness of the integration of PI within the fullcapability of the ToF-AMS, size distributions and size-segregated massspectra are examined for the cigarette smoke analysis. As a finalevaluation of the new VUV module, spectra for oleic acid are compared tosimilar experiments conducted using the tunable VUV radiation

  10. In situ vertical profiles of aerosol extinction, mass, and composition over the SEUS during the SENEX and SEAC4RS studies

    NASA Astrophysics Data System (ADS)

    Wagner, N. L.; Brock, C. A.; Day, D. A.; Diskin, G. S.; Gordon, T. D.; Graus, M.; Holloway, J. S.; Huey, L. G.; Jimenez, J. L.; Lack, D.; Liao, J.; Liu, X.; Markovic, M. Z.; Middlebrook, A. M.; Perring, A. E.; Richardson, M.; Schwarz, J. P.; Warneke, C.; Welti, A.; Wisthaler, A.; Ziemba, L. D.; Murphy, D. M.; Campuzano Jost, P.

    2014-12-01

    Shallow cumulus convection enhances vertical transport of trace gases and aerosol and creates a cloudy transition layer on top of the sub-cloud mixed layer. Two recent studies have proposed that an elevated layer of enhanced organic aerosol over the southeastern United States (SEUS) could explain the discrepancy in the summertime enhancement of aerosol optical depth (AOD) and summertime enhancement of surface measurements of aerosol mass. We investigate the vertical profile of aerosol over the SEUS during the summertime using in situ aircraft-based measurements of aerosol from the SENEX and SEAC4RS studies. During shallow cumulus convection over the SEUS, we found that aerosol and trace gas concentration in the transition layer are diluted by cleaner air from the free troposphere, and the absolute aerosol loading decreases with altitude in the transition layer. However, after normalizing the vertical profiles to the CO boundary layer enhancement to correct for the dilution, the aerosol mass, volume, and extinction relative to the boundary layer CO enhancement is ~20% greater in the transition layer than in the mixed layer. The enhancement of aerosol loading suggests production of aerosol mass in the transition layer, although biomass burning could also be the source of the enhancement. The median composition of the aerosol in the mixed layer is ~70% organics and ~18% sulfate, while it is 65% organics and 23% sulfate in the transition layer. The composition of the aerosol enhancement in the transition layer is roughly equal parts sulfate and organics by mass. The enhancement of aerosol extinction in the transition layer is not sufficient to explain the summertime enhancement of AOD over SEUS.

  11. A concept of an automated function control for ambient aerosol measurements using mobility particle size spectrometers

    NASA Astrophysics Data System (ADS)

    Bastian, S.; Löschau, G.; Wiedensohler, A.

    2014-04-01

    An automated function control unit was developed to regularly check the ambient particle number concentration derived from a mobility particle size spectrometer as well as its zero-point behaviour. The function control allows unattended quality assurance experiments at remote air quality monitoring or research stations under field conditions. The automated function control also has the advantage of being able to get a faster system stability response than the recommended on-site comparisons with reference instruments. The method is based on a comparison of the total particle number concentration measured by a mobility particle size spectrometer and a condensation particle counter while removing diffusive particles smaller than 20 nm in diameter. In practice, the small particles are removed by a set of diffusion screens, as traditionally used in a diffusion battery. Another feature of the automated function control is to check the zero-point behaviour of the ambient aerosol passing through a high-efficiency particulate air (HEPA) filter. The performance of the function control is illustrated with the aid of a 1-year data set recorded at Annaberg-Buchholz, a station in the Saxon air quality monitoring network. During the period of concern, the total particle number concentration derived from the mobility particle size spectrometer slightly overestimated the particle number concentration recorded by the condensation particle counter by 2 % (grand average). Based on our first year of experience with the function control, we developed tolerance criteria that allow a performance evaluation of a tested mobility particle size spectrometer with respect to the total particle number concentration. We conclude that the automated function control enhances the quality and reliability of unattended long-term particle number size distribution measurements. This will have beneficial effects for intercomparison studies involving different measurement sites, and help provide a higher

  12. An Accuracy Assessment of the CALIOP/CALIPSO Version 2/Version 3 Daytime Aerosol Extinction Product Based on a Detailed Multi-Sensor, Multi-Platform Case Study

    NASA Technical Reports Server (NTRS)

    Kacenelenbogen, M.; Vaughan, M. A.; Redemann, J.; Hoff, R. M.; Rogers, R. R.; Ferrare, R. A.; Russell, P. B.; Hostetler, C. A.; Hair, J. W.; Holben, B. N.

    2011-01-01

    The Cloud Aerosol LIdar with Orthogonal Polarization (CALIOP), on board the CALIPSO platform, has measured profiles of total attenuated backscatter coefficient (level 1 products) since June 2006. CALIOP s level 2 products, such as the aerosol backscatter and extinction coefficient profiles, are retrieved using a complex succession of automated algorithms. The goal of this study is to help identify potential shortcomings in the CALIOP version 2 level 2 aerosol extinction product and to illustrate some of the motivation for the changes that have been introduced in the next version of CALIOP data (version 3, released in June 2010). To help illustrate the potential factors contributing to the uncertainty of the CALIOP aerosol extinction retrieval, we focus on a one-day, multi-instrument, multiplatform comparison study during the CALIPSO and Twilight Zone (CATZ) validation campaign on 4 August 2007. On that day, we observe a consistency in the Aerosol Optical Depth (AOD) values recorded by four different instruments (i.e. spaceborne MODerate Imaging Spectroradiometer, MODIS: 0.67 and POLarization and Directionality of Earth s Reflectances, POLDER: 0.58, airborne High Spectral Resolution Lidar, HSRL: 0.52 and ground-based AErosol RObotic NETwork, AERONET: 0.48 to 0.73) while CALIOP AOD is a factor of two lower (0.32 at 532 nm). This case study illustrates the following potential sources of uncertainty in the CALIOP AOD: (i) CALIOP s low signal-to-noise ratio (SNR) leading to the misclassification and/or lack of aerosol layer identification, especially close to the Earth s surface; (ii) the cloud contamination of CALIOP version 2 aerosol backscatter and extinction profiles; (iii) potentially erroneous assumptions of the aerosol extinction-to-backscatter ratio (Sa) used in CALIOP s extinction retrievals; and (iv) calibration coefficient biases in the CALIOP daytime attenuated backscatter coefficient profiles. The use of version 3 CALIOP extinction retrieval for our case

  13. Laboratory investigation of photochemical oxidation of organic aerosol from wood fires 2: analysis of aerosol mass spectrometer data

    NASA Astrophysics Data System (ADS)

    Grieshop, A. P.; Donahue, N. M.; Robinson, A. L.

    2009-03-01

    Experiments were conducted to investigate the effects of photo-oxidation on organic aerosol (OA) in dilute wood smoke by exposing emissions from soft- and hard-wood fires to UV light in a smog chamber. This paper focuses on changes in OA composition measured using a unit-mass-resolution quadrupole Aerosol Mass Spectrometer (AMS). The results highlight how photochemical processing can lead to considerable evolution of the mass, volatility and level of oxygenation of biomass-burning OA. Photochemical oxidation produced substantial new OA, more than doubling the OA mass after a few hours of aging under typical summertime conditions. Aging also decreased the volatility of the OA and made it progressively more oxygenated. The results also illustrate strengths of, and challenges with, using AMS data for source apportionment analysis. For example, the mass spectra of fresh and aged BBOA are distinct from fresh motor-vehicle emissions. The mass spectra of the secondary OA produced from aging wood smoke are very similar to those of the oxygenated OA (OOA) that dominates ambient AMS datasets, further reinforcing the connection between OOA and OA formed from photo-chemistry. In addition, aged wood smoke spectra are similar to those from OA created by photo-oxidizing dilute diesel exhaust. This demonstrates that the OOA observed in the atmosphere can be produced by photochemical aging of dilute emissions from different types of combustion systems operating on fuels with modern or fossil carbon. Since OOA is frequently the dominant component of ambient OA, the similarity of spectra of aged emissions from different sources represents an important challenge for AMS-based source apportionment studies.

  14. Characterization of aerosol-containing chemical simulant clouds using a sensitive, thermal infrared imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Hall, Jeffrey L.; D'Amico, Francis M.; Kolodzey, Steven J.; Qian, Jun; Polak, Mark L.; Westerberg, Karl; Chang, Clement S.

    2011-05-01

    A sensitive, ground-based thermal imaging spectrometer was deployed at the Army's Dugway Proving Ground to remotely monitor explosively released chemical-warfare-agent-simulant clouds from stand-off ranges of a few kilometers. The sensor has 128 spectral bands covering the 7.6 to 13.5 micron region. The measured cloud spectra clearly showed scattering of high-elevation-angle sky radiance by liquid aerosols or dust in the clouds: we present arguments that show why the scattering is most likely due to dust. This observation has significant implications for early detection of dust-laden chemical clouds. On one hand, detection algorithms must properly account for the scattered radiation component, which would include out-of-scene radiation components as well as a dust signature; on the other hand, this scattering gives rise to an enhanced "delta-T" for detection by a ground-based sensor.

  15. Phase function, backscatter, extinction, and absorption for standard radiation atmosphere and El Chichon aerosol models at visible and near-infrared wavelengths

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Suttles, J. T.; Lecroy, S. R.

    1985-01-01

    Tabular values of phase function, Legendre polynominal coefficients, 180 deg backscatter, and extinction cross section are given for eight wavelengths in the atmospheric windows between 0.4 and 2.2 microns. Also included are single scattering albedo, asymmetry factor, and refractive indices. These values are based on Mie theory calculations for the standard rediation atmospheres (continental, maritime, urban, unperturbed stratospheric, volcanic, upper atmospheric, soot, oceanic, dust, and water-soluble) assest measured volcanic aerosols at several time intervals following the El Chichon eruption. Comparisons of extinction to 180 deg backscatter for different aerosol models are presented and related to lidar data.

  16. EXTINCTION STUDIES OF PROPANE/AIR COUNTERFLOW DIFFUSION FLAMES: THE EFFECTIVENESS OF AEROSOLS

    EPA Science Inventory

    The fire suppression effectiveness of solid aerosols as suitable halon replacements has examined. Experiments were performed in a counterflow diffusion burner, consisting of two 1 cm i.d. tubes separated by 1 cm. Aerosols were delivered to propane/air flames in the air flow. Both...

  17. Thermal Emission Spectrometer Results: Mars Atmospheric Thermal Structure and Aerosol Distribution

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Pearl, John C.; Conrath, Barney J.; Christensen, Philip R.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    Infrared spectra returned by the Thermal Emission Spectrometer (TES) are well suited for retrieval of the thermal structure and the distribution of aerosols in the Martian atmosphere. Combined nadir- and limb-viewing spectra allow global monitoring of the atmosphere up to 0.01 mbar (65 km). We report here on the atmospheric thermal structure and the distribution of aerosols as observed thus far during the mapping phase of the Mars Global Surveyor mission. Zonal and temporal mean cross sections are used to examine the seasonal evolution of atmospheric temperatures and zonal winds during a period extending from northern hemisphere mid-summer through vernal equinox (L(sub s) = 104-360 deg). Temperature maps at selected pressure levels provide a characterization of planetary-scale waves. Retrieved atmospheric infrared dust opacity maps show the formation and evolution of regional dust storms during southern hemisphere summer. Response of the atmospheric thermal structure to the changing dust loading is observed. Maps of water-ice clouds as viewed in the thermal infrared are presented along with seasonal trends of infrared water-ice opacity. Uses of these observations for diagnostic studies of the dynamics of the atmosphere are discussed.

  18. Laboratory Testing and Calibration of the Nuclei-Mode Aerosol Size Spectrometer

    NASA Technical Reports Server (NTRS)

    Brock, Charles A.

    1999-01-01

    This grant was awarded to complete testing and calibration of a new instrument, the nuclei-mode aerosol size spectrometer (N-MASS), following its use in the WB-57F Aerosol Measurement (WAM) campaign in early 1998. The N-MASS measures the size distribution of particles in the 4-60 nm diameter range with 1-Hz response at typical free tropospheric conditions. Specific tasks to have been completed under the auspices of this award were: 1) to experimentally determine the instrumental sampling efficiency; 2) to determine the effects of varying temperatures and flows on N-MASS performance; and 3) to calibrate the N-MASS at typical flight conditions as operated in WAM. The work outlined above has been completed, and a journal manuscript based on this work and that describes the performance of the N-MASS is in preparation. Following a brief description of the principles of operation of the instrument, the major findings of this study are described.

  19. Comparison of one-parameter and two-parameter models of aerosol extinction for experimental data of the arid zone of Kazakhstan

    NASA Astrophysics Data System (ADS)

    Shchelkanov, N. N.

    2015-11-01

    Comparison of four aerosol models is carried out: two one-parameter models for a ground layer of the arid zone of Kazakhstan, two-parameter model for horizontal paths and two-parameter model for horizontal and slant paths. It is shown that the models obtained using the new methods for construction of linear regression and separation of the components allow physically correct retrieval of not only the values of the aerosol extinction coefficients, but also their root mean square deviations.

  20. In-Situ Microphysical Measurements In Rocket Plumes With The Cloud And Aerosol Spectrometer (CAS)

    NASA Astrophysics Data System (ADS)

    Kok, G.; Baumgardner, D.; Avallone, L.; Kalnajs, L.; Herman, R.; Ross, M.; Thompson, T.; Toohey, D.

    2005-12-01

    High resolution, single particle measurements have been made in rocket plumes using an optical particle spectrometer that measures diameters from 0.5 to 44 um. The Cloud and Aerosol Spectrometer (CAS) measures the light scattered in two directions from individual particles that pass through a focused, 680 nm laser beam and we derive the diameter, shape and composition from this information. The CAS was mounted on the NASA WB57-F aircraft as part of the Plume Ultrafast Measurements Acquisition (PUMA) project, an experiment funded by NSF and NASA to study the chemistry and microphysics of rocket plumes. Measurements were first made in a plume generated by an Atlas IIAS rocket in May, 2004 and again in July, 2005 in the plume formed from the exhaust of the solid state boosters used to launch the space shuttle Discovery into orbit. The microstructure of the two plumes and the characteristics of their particles were distinctly different. The two cases had similar maximum concentrations of 300 cm-3, but the space shuttle particles were on average larger and a greater percentage of them were irregular in shape. An analysis of the distance between particles suggests clustering because of the non-Poisson shape of the frequency distribution of inter-arrival times.

  1. Calibrations and Comparisons of Aerosol Spectrometers linking Ground and Airborne Measurements

    NASA Astrophysics Data System (ADS)

    Williamson, C.; Brock, C. A.; Erdesz, F.

    2015-12-01

    The nucleation-mode aerosol size spectrometer (NMASS), a fast-time response instrument measuring aerosol size distributions between 5 and 60nm, is to sample in the boundary layer and free troposphere on NASA's Atmospheric Tomography mission (ATom), providing contiguous data with global coverage in all four seasons. In preparation for this the NMASS is calibrated for the expected flight conditions and compatibility studies are made with ground-based instrumentation. The NMASS is comprised of 5 parallel condensation particle counters (CPCs) using perfluoro-tributylamine as a working fluid. Understanding the variation of CPC counting efficiencies with respect to the chemical composition of the sample is important for accurate data analysis and can be used to give indirect information about sample chemical composition. This variation is strongly dependent on the working fluid. The absolute responses and associated variations of the NMASS to ammonium sulfate and limonene ozonolysis products, compounds pertinent to the composition of particles nucleated in the free troposphere and boundary later, are compared to those of butanol, diethylene-glycol and water based CPCs, which are more commonly used in ground-based measurements. While fast time-response is key to measuring aerosol size distributions on flights, high size-resolution is often prioritized for ground-based measurements, and so a scanning mobility particle sizer (SMPS) is commonly used. Inter-comparison between NMASS and SMPS data is non-trivial because of the different working principles and resolutions of the instruments and yet it is vital, for example, for understanding the sources of particles observed during flights and the global relevance of phenomena observed from field stations and in chambers. We report compatibility studies on inversions of data from the SMPS and NMASS, evaluating temporal and spatial resolution and sources of uncertainty.

  2. Total Ozone Mapping Spectrometer (TOMS) observations of increases in Asian aerosol in winter from 1979 to 2000

    SciTech Connect

    Massie, Steven T.; Torres, O.; Smith, Steven J.

    2004-12-01

    Emission inventories indicate that the largest increases in SO{sub 2} emissions have occurred in Asia during the last 20 years. By inference, largest increases in aerosol, produced primarily by the conversion of SO{sub 2} to sulfate, should have occurred in Asia during the same time period. Decadal changes in regional aerosol optical depths are calculated by analyzing Total Ozone Mapping Spectrometer (TOMS) vertical aerosol optical depths (converted to 550 nm) from 1979 to 2000 on a 1{sup o} by 1{sup o} global grid. The anthropogenic component of the TOMS aerosol record is maximized by examining the seasonal cycles of desert dust and Boreal fire smoke, and identifying the months of the year for which the desert dust and Boreal fire smoke are least conspicuous. Gobi and Taklimakan desert dust in Asia is prevalent in the TOMS record during spring, and eastern Siberian smoke from Boreal forest fires is prevalent during summer. Aerosol trends are calculated on a regional basis during winter (November-February) to maximize the anthropogenic component of the aerosol record. Large increases in aerosol optical depths between 1979 and 2000 are present over the China coastal plain and the Ganges river basin in India. Aerosol increased by 17% per decade during winter over the China coastal plain, while SO{sub 2} emissions over the same geographical region increased by 33% per decade.

  3. Combined Laboratory and Modeling Study of the IR Extinction and Visible Light Scattering Properties of Mineral Dust Aerosol

    NASA Astrophysics Data System (ADS)

    Alexander, J. M.; Laskina, O.; Meland, B. S.; Parker, A.; Grassian, V. H.; Young, M. A.; Kleiber, P.

    2011-12-01

    Mineral dust aerosol plays a significant role in the Earth's climate system through the scattering and absorption of both incoming solar radiation in the UV-Visible range and outgoing IR terrestrial radiation. Atmospheric dust particles also serve as sites for cloud nucleation indirectly affecting albedo, and as reactive surfaces for heterogeneous chemistry. Correctly modeling the direct and indirect effects of dust requires accurate information about dust loading, dust composition, size, and shape (CSS) distributions, and aerosol optical (scattering and absorption) properties. The optical properties, however, are strongly dependent on both particle shape and composition, and mineral dust aerosol samples are often complex, inhomogeneous mixtures of particles that may be highly irregular in shape. In this work IR extinction and visible light scattering and polarization profiles are measured for a series of authentic and model dust mixtures including samples of Iowa loess, Arizona road dust, and diatomaceous earth. Laboratory measurements also include particle CSS distributions determined through real-time particle sizing, and various ex situ characterization methods. The experimental data are compared with T-Matrix model simulations based on the measured particle size distributions. Different methods used to infer particle shape and composition distributions are explored and evaluated.

  4. A study of aerosol optical properties using a lightweight optical particle spectrometer and sun photometer from an unmanned aerial system

    NASA Astrophysics Data System (ADS)

    Telg, H.; Murphy, D. M.; Bates, T. S.; Johnson, J. E.; Gao, R. S.

    2015-12-01

    A miniaturized printed optical particle spectrometer (POPS) and sun photometer (miniSASP) have been developed recently for unmanned aerial systems (UAS) and balloon applications. Here we present the first scientific data recorded by the POPS and miniSASP from a Manta UAS during a field campaign on Svalbard, Norway, in April 2015. As part of a payload composed of five different aerosol instruments (absorption photometer, condensation particle counter, filter sampler, miniSASP and POPS) we collected particle size distributions, the optical depth (OD) and the sky brightness from 0 to 3000 m altitude. The complementary measurement approaches of the miniSASP and POPS allow us to calculate aerosol optical properties such as the aerosol optical depth and the angstrom exponent or the asymmetry parameter independently. We discuss deviation between results with respect to aerosol properties, e.g. hygroscopicity and absorption, as well as instrumental limitations.

  5. Comparison of Aerosol Backscatter and Extinction Profiles Based on the Earlinet Database and the Single Calculus Chain for Thessaloniki Greece (2001-2014)

    NASA Astrophysics Data System (ADS)

    Voudouri, K.; Siomos, N.; Giannakaki, E.; Amiridis, V.; d'Amico, G.; Balis, D. S.

    2016-06-01

    Aerosol backscatter and extinction coefficient profiles derived by the Single Calculus Chain (SCC) algorithm, which was developed within the European Aerosol Research Lidar Network (EARLINET) are compared with profiles derived by the operational inversion algorithm of Thessaloniki. Measurements performed during the period 2001-2014, that have already been uploaded in the EARLINET database, are considered in this study. The objective of this study is to verify, for the case of Thessaloniki, the consistency of the climatology of the aerosol profiles based on SCC and the EARLINET database data respectively. In this paper we show example comparisons for each lidar product submitted in the official database.

  6. Imaginary refractive-index effects on desert-aerosol extinction versus backscatter relationships at 351 nm: numerical computations and comparison with Raman lidar measurements.

    PubMed

    Perrone, Maria Rita; Barnaba, Francesca; De Tomasi, Ferdinando; Gobbi, Gian Paolo; Tafuro, Anna Maria

    2004-10-10

    A numerical model is used to investigate the dependence at 351 nm of desert-aerosol extinction and backscatter coefficients on particle imaginary refractive index (mi). Three ranges (-0.005 < or = mi < or = -0.001, -0.01 < or = mi < or = -0.001, and -0.02 < or = mi < or = -0.001) are considered, showing that backscatter coefficients are reduced as /mi/ increases, whereas extinction coefficients are weakly dependent on mi. Numerical results are compared with extinction and backscatter coefficients retrieved by elastic Raman lidar measurements performed during Saharan dust storms over the Mediterranean Sea. The comparison indicates that a range of -0.01 to -0.001 can be representative of Saharan dust aerosols and that the nonsphericity of mineral particles must be considered. PMID:15508611

  7. Validation of aerosol extinction and water vapor profiles from routine Atmospheric Radiation Measurement Climate Research Facility measurements

    SciTech Connect

    Schmid, Beat; Flynn, Connor J.; Newsom, Rob K.; Turner, David D.; Ferrare, Richard; Clayton, Marian F.; Ogren, John A.; Russell, P. B.; Gore, W.; Dominguez, Roseanne

    2009-11-26

    The accuracy with which vertical profiles of aerosol extinction σep(λ) can be retrieved from ARM Climate Research Facility (ACRF) routine measurements was assessed using data from two airborne field campaigns, the ARM Aerosol Intensive Operation Period (AIOP, May 2003), and the Aerosol Lidar Validation Experiment (ALIVE, September 2005). This assessment pertains to the aerosol at its ambient concentration and thermodynamic state (i.e. σep(λ) either free of or corrected for sampling artifacts) and includes the following ACRF routine methods: Raman Lidar, Micro Pulse Lidar (MPL) and in-situ aerosol profiles (IAP) with a small aircraft. Profiles of aerosol optical depth τp(λ), from which the profiles of σep(λ)are derived through vertical differentiation, were measured by the NASA Ames Airborne Tracking 14-channel Sunphotometer (AATS-14); these data were used as truth in this evaluation. The ACRF IAP σep(550 nm) were lower by 16% (during AIOP) and higher by 10% (during ALIVE) when compared to AATS-14. The ACRF MPL σep(523 nm) were higher by 24% (AIOP) and 19%-21% (ALIVE) compared to AATS-14 but the correlation improved significantly during ALIVE. In the AIOP a second MPL operated by NASA showed a smaller positive bias (13%) with respect to AATS-14. The ACRF Raman Lidar σep(355 nm) were higher by 54% (AIOP) and higher by 6% (ALIVE) compared to AATS-14. The large bias in AIOP stemmed from a gradual loss of the sensitivity of the Raman Lidar starting about the end of 2001 going unnoticed until after AIOP. A major refurbishment and upgrade of the instrument and improvements to a data-processing algorithm led to the significant improvement and very small bias in ALIVE. Finally we find that during ALIVE the Raman Lidar water vapor densities ρw are higher by 8% when compared to AATS-14, whereas comparisons between AATS-14 and in-situ measured ρw aboard two different aircraft showed small negative biases (0 to

  8. Implementation of Rotational Raman Channel in Multiwavelength Aerosol Lidar to Improve Measurements of Particle Extinction and Backscattering at 532 NM

    NASA Astrophysics Data System (ADS)

    Veselovskii, Igor; Whiteman, David N.; Korenskiy, Michael; Suvorina, A.; Perez-Ramirez, Daniel

    2016-06-01

    We describe a practical implementation of rotational Raman (RR) measurements in an existing Mie-Raman lidar to obtain measurements of aerosol extinction and backscattering at 532 nm. A 2.3 nm width interference filter was used to select a spectral range characterized by low temperature sensitivity within the anti-Stokes branch of the RR spectrum. Simulations demonstrate that the temperature dependence of the scattering cross section does not exceed 1.0% in the 230-300K range making accurate correction for this dependence quite easy. With this upgrade, the NASA/GSFC multiwavelength Raman lidar has demonstrated useful α532 measurements and was used for regular observations. Examples of lidar measurements and inversion of optical data to the particle microphysics will be given in presentation.

  9. Altitude Differentiated Aerosol Extinction Over Tenerife (North Atlantic Coast) During ACE-2 by Means of Ground and Airborne Photometry and Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Formenti, P.; Elias, T.; Welton, J.; Diaz, J. P.; Exposito, F.; Schmid, B.; Powell, D.; Holben, B. N.; Smirnov, A.; Andreae, M. O.; Devaux, C.; Voss, K.; Lelieveld, J.; Livingston, J. M.; Russell, P. B.; Durkee, P. A.

    2000-01-01

    Retrievals of spectral aerosol optical depths (tau(sub a)) by means of sun photometers have been undertaken in Tenerife (28 deg 16' N, 16 deg 36' W) during ACE-2 (June-July 1997). Five ground-based sites were located at four different altitudes in the marine boundary layer and in the free troposphere, from 0 to 3570 m asl. The goal of the investigation was to provide estimates of the vertical aerosol extinction over the island, both under clean and turbid conditions. Inversion of spectral tau(sub a) allowed to retrieve size distributions, from which the single scattering albedo omega(sub 0) and the asymmetry factor g could be estimated as a function of altitude. These parameters were combined to calculate aerosol forcing in the column. Emphasis is put on episodes of increased turbidity, which were observed at different locations simultaneously, and attributed to outbreaks of mineral dust from North Africa. Differentiation of tau(sub a) as a function of altitude provided the vertical profile of the extinction coefficient sigma(sub e). For dust outbreaks, aerosol extinction is concentrated in two distinct layers above and below the strong subsidence inversion around 1200 m asl. Vertical profiles of tau(sub a) and sigma(sub e) are shown for July 8. In some occasions, vertical profiles are compared to LIDAR observations, performed both at sea level and in the low free troposphere, and to airborne measurements of aerosol optical depths.

  10. Remote sensing of cloud, aerosol and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS)

    NASA Technical Reports Server (NTRS)

    King, M. D.

    1992-01-01

    The Moderate Resolution Imaging Spectrometer (MODIS) is an Earth-viewing sensor being developed as a facility instrument for the Earth Observing System (EOS) to be launched in the late 1990s. MODIS consists of two separate instruments that scan a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, Sun-synchronous, platform at an altitude of 705 km. Of primary interest for studies of atmospheric physics is the MODIS-N (nadir) instrument which will provide images in 36 spectral bands between 0.415 and 14.235 micrometers with spatial resoulutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). These bands have been carefully selected to enable advanced studies of land, ocean and atmosperhic processes. The intent of this lecture is to describe the current status of MODIS-N and its companion instrument MODIS-T (tilt), a tiltable cross-track scanning radiometer with 32 uniformly spaced channels between 0.410 and 0.875 micrometers, and to describe the physical principles behind the development of MODIS for the remote sensing of atmospheric properties. Primary emphasis will be placed on the main atmospheric applications of determining the optical, microphysical and physical properties of clouds and aerosol particles form spectral-reflection and thermal-emission measurements. In addition to cloud and aerosol properties, MODIS-N will be utilized for the determination of the total precipitable water vapor over land and atmospheric stability. The physical principles behind the determination of each of these atmospheric products will be described herein.

  11. Fullerene Soot in Eastern China Air: Results from Soot Particle-Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, J.; Ge, X.; Chen, M.; Zhang, Q.; Yu, H.; Sun, Y.; Worsnop, D. R.; Collier, S.

    2015-12-01

    In this work, we present for the first time, the observation and quantification of fullerenes in ambient airborne particulate using an Aerodyne Soot Particle - Aerosol Mass Spectrometer (SP-AMS) deployed during 2015 winter in suburban Nanjing, a megacity in eastern China. The laser desorption and electron impact ionization techniques employed by the SP-AMS allow us to differentiate various fullerenes from other aerosol components. Mass spectrum of the identified fullerene soot is consisted by a series of high molecular weight carbon clusters (up to m/z of 2000 in this study), almost identical to the spectral features of commercially available fullerene soot, both with C70 and C60 clusters as the first and second most abundant species. This type of soot was observed throughout the entire study period, with an average mass loading of 0.18 μg/m3, accounting for 6.4% of the black carbon mass, 1.2% of the total organic mass. Temporal variation and diurnal pattern of fullerene soot are overall similar to those of black carbon, but are clearly different in some periods. Combining the positive matrix factorization, back-trajectory and analyses of the meteorological parameters, we identified the petrochemical industrial plants situating upwind from the sampling site, as the major source of fullerene soot. In this regard, our findings imply the ubiquitous presence of fullerene soot in ambient air of industry-influenced area, especially the oil and gas production regions. This study also offers new insights into the characterization of fullerenes from other environmental samples via the advanced SP-AMS technique.

  12. Optical extinction due to aerosols in the upper haze of Venus: Four years of SOIR/VEX observations from 2006 to 2010

    NASA Astrophysics Data System (ADS)

    Wilquet, Valérie; Drummond, Rachel; Mahieux, Arnaud; Robert, Séverine; Vandaele, Ann Carine; Bertaux, Jean-Loup

    2012-02-01

    The variability of the aerosol loading in the mesosphere of Venus is investigated from a large data set obtained with SOIR, a channel of the SPICAV instrument suite onboard Venus Express. Vertical profiles of the extinction due to light absorption by aerosols are retrieved from a spectral window around 3.0 μm recorded in many solar occultations (˜200) from September 2006 to September 2010. For this period, the continuum of light absorption is analyzed in terms of spatial and temporal variations of the upper haze of Venus. It is shown that there is a high short-term (a few Earth days) and a long-term (˜80 Earth days) variability of the extinction profiles within the data set. Latitudinal dependency of the aerosol loading is presented for the entire period considered and for shorter periods of time as well.

  13. Hygroscopic properties and extinction of aerosol particles at ambient relative humidity in South-Eastern China

    NASA Astrophysics Data System (ADS)

    Eichler, H.; Cheng, Y. F.; Birmili, W.; Nowak, A.; Wiedensohler, A.; Brüggemann, E.; Gnauk, T.; Herrmann, H.; Althausen, D.; Ansmann, A.; Engelmann, R.; Tesche, M.; Wendisch, M.; Zhang, Y. H.; Hu, M.; Liu, S.; Zeng, L. M.

    During the "Program of Regional Integrated Experiments of Air Quality over Pearl River Delta 2004 (PRIDE-PRD2004)" hygroscopic properties of particles in the diameter range 22 nm to 10μm were determined. For that purpose, a Humidifying Differential Mobility Particle Sizer (H-DMPS) and a Micro-Orifice Uniform Deposition Impactor (MOUDI) were operated. The derived size-dependent particle hygroscopic growth factors were interpolated to ambient relative humidity (RH) and used to calculate the particle number size distributions (PNSDs) at ambient conditions. A comparison between the modeled particle extinction coefficients (σ) and those observed with a Raman lidar was made. It is shown that the particle extinction coefficient ( σext) at ambient RH can be properly estimated with Mie-model calculations based on the in situ physico-chemical measurements of dry and humidified PNSD and chemical composition.

  14. Aerosol extinction and absorption in Evora, Portugal, during the European 2003 summer heat wave

    NASA Astrophysics Data System (ADS)

    Elias, Thierry G.; Silva, Ana M.; Figueira, Maria J.; Belo, Nuno; Pereira, Sergio; Formenti, Paola; Helas, Gunter

    2004-11-01

    Aerosol optical properties are retrieved from measurements acquired during the 2003 summer at the new AERONET station of Evora, Portugal, with a sun/sky photometer, a fluxmeter and a nephelometer. Aerosol optical thickness (aot) derived at several wavelengths shows that an exceptionally long turbid event occurred in July-August. Desert dust particles transported from North Africa increased aot at 873 nm (aot873) to the value of 0.27 with an Ångstrom exponent αC=0.5. Emissions from forest fires in The Iberic peninsula affected Evora since the end of the dust episode, with aot441 reaching 0.81 and aC=1.8. The aerosol scattering coefficient measured at surface level shows that desert dust does not reach the surface level at Evora while the forest fire emissions were uniformly distributed over the atmospheric column. Sky-radiance and flux measurements agree in retrieval of the aerosol single scattering albedo (assa) at several wavelengths. A large absorption rate is found with a high spectral dependence for desert dust particles (assa441=0.86 and ass873=0.93) and with a flat spectral dependence during the forest fires emission episode (assa441=0.88 and assa873=0.87). All measurements as well as back-trajectory calculations indicate mixture of particles during the desert dust.

  15. A study on the temporal and spatial variability of absorbing aerosols using Total Ozone Mapping Spectrometer and Ozone Monitoring Instrument Aerosol Index data

    NASA Astrophysics Data System (ADS)

    Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.

    2009-05-01

    Absorbing aerosols, especially mineral dust and black carbon, play key roles in climate change by absorbing solar radiation, heating the atmosphere, and contributing to global warming. In this paper, we first examine the consistency of the Aerosol Index (AI) product as measured by the Total Ozone Mapping Spectrometer (TOMS) and Ozone Monitoring Instrument (OMI) instruments and then analyze these AI data sets to investigate the temporal and spatial variability of UV absorbing aerosols. In contrast to the trend in aerosol optical depth found in the advanced very high-resolution radiometer data, no obvious long-term trend in absorbing aerosols is observed from the time series of AI records. The comparison between the mean annual cycle in the two data sets shows that the cycles agree very well both globally and regionally, indicating a consistency between the AI products from TOMS and OMI. Varimax rotated Empirical Orthogonal Function (EOF) analysis of detrended, deseasonalized AI data proves to be successful in isolating major dust and biomass burning source regions, as well as dust transport. Finally, we find that large, individual events, such as the Kuwait oil fire and Australian smoke plum, are isolated in individual higher-order principal components.

  16. Field test of a new instrument to measure UV/Vis (300-700 nm) ambient aerosol extinction spectra in Colorado during DISCOVER-AQ

    NASA Astrophysics Data System (ADS)

    Jordan, C. E.; Anderson, B. E.; Beyersdorf, A. J.; Dibb, J. E.; Greenslade, M. E.; Martin, R.; Scheuer, E. M.; Shook, M.; Thornhill, K. L., II; Troop, D.; Winstead, E.; Ziemba, L. D.

    2014-12-01

    An optical instrument has been developed to investigate aerosol extinction spectra in the ambient atmosphere. Based on a White-type cell design and using a differential optical approach, aerosol extinction spectra over the 300-700 nm ultraviolet and visible (UV/Vis) wavelength range are obtained. Laboratory tests conducted at NASA Langley Research Center (NASA LaRC) in March 2014 showed good agreement with Cavity Attenuated Phase Shift (CAPS PMex, Aerodyne Research) extinction measurements (at 450, 530, and 630 nm) for a variety of aerosols, e.g., scatterers such as polystyrene latex spheres and ammonium sulfate; absorbers such as dust (including pigmented minerals), smoke (generated in a miniCAST burning propane) and laboratory smoke analogs (e.g., fullerene soot and aquadag). The instrument was field tested in Colorado in July and August 2014 aboard the NASA mobile laboratory at various ground sites during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) field campaign. A description of the instrument, results from the laboratory tests, and summer field data will be presented. The instrument provides a new tool for probing in situ aerosol optical properties that may help inform remote sensing approaches well into the UV range.

  17. The mathematical principles and design of the NAIS - a spectrometer for the measurement of cluster ion and nanometer aerosol size distributions

    NASA Astrophysics Data System (ADS)

    Mirme, S.; Mirme, A.

    2011-12-01

    The paper describes the Nanometer aerosol and Air Ion Spectrometer (NAIS) - a multi-channel aerosol instrument capable of measuring the distribution of ions (charged particles and cluster ions) of both polarities in the electric mobility range from 3.2 to 0.0013 cm2 V-1 s-1 and the distribution of aerosol particles in the size range from 2.0 to 40 nm. We introduce the principles of design, data processing and spectrum deconvolution of the instrument.

  18. Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer

    NASA Astrophysics Data System (ADS)

    Wolff, M. J.; Smith, M. D.; Clancy, R. T.; Arvidson, R.; Kahre, M.; Seelos, F.; Murchie, S.; Savijärvi, H.

    2009-06-01

    Observations by the Compact Reconnaissance Imaging Spectrometer (CRISM) onboard the Mars Reconnaissance Orbiter (MRO) over the range 440-2920 nm of the very dusty Martian atmosphere of the 2007 planet-encircling dust event are combined with those made by both Mars Exploration Rovers (MERs) to better characterize the single scattering albedo (ω 0) of Martian dust aerosols. Using the diagnostic geometry of the CRISM emission phase function (EPF) sequences and the “ground truth” connection provided at both MER locations allows one to more effectively isolate the single scattering albedo (ω 0). This approach eliminates a significant portion of the type of uncertainty involved in many of the earlier radiative transfer analyses. Furthermore, the use of a “first principles” or microphysical representation of the aerosol scattering properties offers a direct path to produce a set of complex refractive indices (m = n + ik) that are consistent with the retrieved ω 0 values. We consider a family of effective particle radii: 1.2, 1.4, 1.6, and 1.8 μm. The resulting set of model data comparisons, ω 0, and m are presented along with an assessment of potential sources of error and uncertainty. We discuss our results within the context of previous work, including the apparent dichotomy of the literature values: “dark” (solar band ω 0 = 0.89-0.90) and “bright” (solar band ω 0 = 0.92-0.94). Previous work suggests that a mean radius of 1.8 μm is representative for the conditions sampled by the CRISM observations. Using the m for this case and a smaller effective particle radius more appropriate for diffuse dust conditions (1.4 μm), we examine EPF-derived optical depths relative to the MER 880 nm optical depths. Finally, we explore the potential impact of the resulting brighter solar band ω 0 of 0.94 to atmospheric temperatures in the planetary boundary layer.

  19. Characterizing the Vertical Profile of Aerosol Particle Extinction and Linear Depolarization over Southeast Asia and the Maritime Continent: The 2007-2009 View from CALIOP

    NASA Technical Reports Server (NTRS)

    Campbell, James R.; Reid, Jeffrey S.; Westphal, Douglas L.; Zhang, Jianglong; Tackett, Jason L.; Chew, Boon Ning; Welton, Ellsworth J.; Shimizu, Atsushi; Sugimoto, Nobuo; Aoki, Kazuma; Winker, David M.

    2012-01-01

    Vertical profiles of 0.532 µm aerosol particle extinction coefficient and linear volume depolarization ratio are described for Southeast Asia and the Maritime Continent. Quality-screened and cloud-cleared Version 3.01 Level 2 NASA Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) 5-km Aerosol Profile datasets are analyzed from 2007 to 2009. Numerical simulations from the U.S. Naval Aerosol Analysis and Predictive System (NAAPS), featuring two-dimensional variational assimilation of NASA Moderate Resolution Imaging Spectroradiometer and Multi-angle Imaging Spectro- Radiometer quality-assured datasets, combined with regional ground-based lidar measurements, are considered for assessing CALIOP retrieval performance, identifying bias, and evaluating regional representativeness. CALIOP retrievals of aerosol particle extinction coefficient and aerosol optical depth (AOD) are high over land and low over open waters relative to NAAPS (0.412/0.312 over land for all data points inclusive, 0.310/0.235 when the per bin average is used and each is treated as single data points; 0.102/0.151 and 0.086/0.124, respectively, over ocean). Regional means, however, are very similar (0.180/0.193 for all data points and 0.155/0.159 when averaged per normalized bin), as the two factors offset one another. The land/ocean offset is investigated, and discrepancies attributed to interpretation of particle composition and a-priori assignment of the extinction-to-backscatter ratio ("lidar ratio") necessary for retrieving the extinction coefficient from CALIOP signals. Over land, NAAPS indicates more dust present than CALIOP algorithms are identifying, indicating a likely assignment of a higher lidar ratio representative of more absorptive particles. NAAPS resolvesmore smoke overwater than identified with CALIOP, indicating likely usage of a lidar ratio characteristic of less absorptive particles to be applied that biases low AOD there. Over open waters except within the Bay of Bengal

  20. Peak fitting and integration uncertainties for the Aerodyne Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Corbin, J. C.; Othman, A.; Haskins, J. D.; Allan, J. D.; Sierau, B.; Worsnop, D. R.; Lohmann, U.; Mensah, A. A.

    2015-04-01

    The errors inherent in the fitting and integration of the pseudo-Gaussian ion peaks in Aerodyne High-Resolution Aerosol Mass Spectrometers (HR-AMS's) have not been previously addressed as a source of imprecision for these instruments. This manuscript evaluates the significance of these uncertainties and proposes a method for their estimation in routine data analysis. Peak-fitting uncertainties, the most complex source of integration uncertainties, are found to be dominated by errors in m/z calibration. These calibration errors comprise significant amounts of both imprecision and bias, and vary in magnitude from ion to ion. The magnitude of these m/z calibration errors is estimated for an exemplary data set, and used to construct a Monte Carlo model which reproduced well the observed trends in fits to the real data. The empirically-constrained model is used to show that the imprecision in the fitted height of isolated peaks scales linearly with the peak height (i.e., as n1), thus contributing a constant-relative-imprecision term to the overall uncertainty. This constant relative imprecision term dominates the Poisson counting imprecision term (which scales as n0.5) at high signals. The previous HR-AMS uncertainty model therefore underestimates the overall fitting imprecision. The constant relative imprecision in fitted peak height for isolated peaks in the exemplary data set was estimated as ~4% and the overall peak-integration imprecision was approximately 5%. We illustrate the importance of this constant relative imprecision term by performing Positive Matrix Factorization (PMF) on a~synthetic HR-AMS data set with and without its inclusion. Finally, the ability of an empirically-constrained Monte Carlo approach to estimate the fitting imprecision for an arbitrary number of known overlapping peaks is demonstrated. Software is available upon request to estimate these error terms in new data sets.

  1. Multi-wavelength measurements of aerosol optical absorption coefficients using a photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Huang, Hong-Hua; Wang, Yao; Wang, Gui-Shi; Cao, Zhen-Song; Liu, Kun; Chen, Wei-Dong; Gao, Xiao-Ming

    2014-06-01

    The atmospheric aerosol absorption capacity is a critical parameter determining its direct and indirect effects on climate. Accurate measurement is highly desired for the study of the radiative budget of the Earth. A multi-wavelength (405 nm, 532 nm, 780 nm) aerosol absorption meter based on photoacoustic spectroscopy (PAS) invovling a single cylindrical acoustic resonator is developed for measuring the aerosol optical absorption coefficients (OACs). A sensitivity of 1.3 Mm-1 (at 532 nm) is demonstrated. The aerosol absorption meter is successfully tested through measuring the OACs of atmospheric nigrosin and ambient aerosols in the suburbs of Hefei city. The absorption cross section and absorption Ångström exponent (AAE) for ambient aerosol are determined for characterizing the component of the ambient aerosol.

  2. Use of In Situ Cloud Condensation Nuclei, Extinction, and Aerosol Size Distribution Measurements to Test a Method for Retrieving Cloud Condensation Nuclei Profiles From Surface Measurements

    NASA Technical Reports Server (NTRS)

    Ghan, Stephen J.; Rissman, Tracey A.; Ellman, Robert; Ferrare, Richard A.; Turner, David; Flynn, Connor; Wang, Jian; Ogren, John; Hudson, James; Jonsson, Haflidi H.; VanReken, Timothy; Flagan, Richard C.; Seinfeld, John H.

    2006-01-01

    If the aerosol composition and size distribution below cloud are uniform, the vertical profile of cloud condensation nuclei (CCN) concentration can be retrieved entirely from surface measurements of CCN concentration and particle humidification function and surface-based retrievals of relative humidity and aerosol extinction or backscatter. This provides the potential for long-term measurements of CCN concentrations near cloud base. We have used a combination of aircraft, surface in situ, and surface remote sensing measurements to test various aspects of the retrieval scheme. Our analysis leads us to the following conclusions. The retrieval works better for supersaturations of 0.1% than for 1% because CCN concentrations at 0.1% are controlled by the same particles that control extinction and backscatter. If in situ measurements of extinction are used, the retrieval explains a majority of the CCN variance at high supersaturation for at least two and perhaps five of the eight flights examined. The retrieval of the vertical profile of the humidification factor is not the major limitation of the CCN retrieval scheme. Vertical structure in the aerosol size distribution and composition is the dominant source of error in the CCN retrieval, but this vertical structure is difficult to measure from remote sensing at visible wavelengths.

  3. Aureole lidar: instrument design, data analysis, and comparison with aircraft spectrometer measurements.

    PubMed

    Hooper, W P

    1993-07-20

    A lidar system is developed to map extinction under the flight path of a P-3 aircraft. With a modified Cassegrainian telescope, signals from both wide and narrow fields of view are detected. The wide field-of-view detector senses the aureole signal generated by sea surface reflection and aerosol forward scattering. The narrow field-of-view detector senses the backscattering profile and the direct reflection off the sea surface. Optical depth and extinction profiles are derived from these signals. In comparisons made beween in situ aerosol-size spectrometer and lidar measurements, lidar profiles are smaller in magnitude but similar in shape to the spectrometer profiles. PMID:20830043

  4. Analysis of Venus Express optical extinction due to aerosols in the upper haze of Venus

    NASA Astrophysics Data System (ADS)

    Parkinson, Christopher; Bougher, Stephen; Mahieux, Arnaud; Tellmann, Silvia; Pätzold, Martin; Vandaele, Ann C.; Wilquet, Valérie; Schulte, Rick; Yung, Yuk; Gao, Peter; Bardeen, Charles

    Observations by the SPICAV/SOIR instruments aboard Venus Express (VEx) have revealed that the Upper Haze of Venus is populated by two particle modes, as reported by Wilquet et al. (J. Geophys. Res., 114, E00B42, 2009; Icarus 217, 2012). Gao et al. (In press, Icarus, 2013) posit that the large mode is made up of cloud particles that have diffused upwards from the cloud deck below, while the smaller mode is generated by the in situ nucleation of meteoric dust. They tested this hypothesis by using version 3.0 of the Community Aerosol and Radiation Model for Atmospheres, first developed by Turco et al. (J. Atmos. Sci., 36, 699-717, 1979) and upgraded to version 3.0 by Bardeen et al. (The CARMA 3.0 microphysics package in CESM, Whole Atmosphere Working Group Meeting, 2011). Using the meteoric dust production profile of Kalashnikova et al. (Geophys. Res. Lett., 27, 3293-3296, 2000), the sulfur/sulfate condensation nuclei production profile of Imamura and Hashimoto (J. Atmos. Sci., 58, 3597-3612, 2001), and sulfuric acid vapor production profile of Zhang et al. (Icarus, 217, 714-739, 2012), they numerically simulate a column of the Venus atmosphere from 40 to 100 km above the surface. Their aerosol number density results agree well with Pioneer Venus Orbiter (PVO) data from Knollenberg and Hunten (J. Geophys. Res., 85, 8039-8058, 1980), while their gas distribution results match that of Kolodner and Steffes below 55 km (Icarus, 132, 151-169, 1998). The resulting size distribution of cloud particles shows two distinct modes, qualitatively matching the observations of PVO. They also observe a third mode in their results with a size of a few microns at 48 km altitude, which appears to support the existence of the controversial third mode in the PVO data. This mode disappears if coagulation is not included in the simulation. The Upper Haze size distribution shows two lognormal-like distributions overlapping each other, possibly indicating the presence of the two distinct

  5. Airborne Aerosol Closure Studies During PRIDE

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Livingston, John M.; Russell, Philip B.; Schmid, Beat; Reid, Jeff

    2000-01-01

    The Puerto Rico Dust Experiment (PRIDE) was conducted during June/July of 2000 to study the properties of Saharan dust aerosols transported across the Atlantic Ocean to the Caribbean Islands. During PRIDE, the NASA Ames Research Center six-channel (380 - 1020 nm) airborne autotracking sunphotometer (AATS-6) was operated aboard a Piper Navajo airplane alongside a suite of in situ aerosol instruments. The in situ aerosol instrumentation relevant to this paper included a Forward Scattering Spectrometer Probe (FSSP-100) and a Passive Cavity Aerosol Spectrometer Probe (PCASP), covering the radius range of approx. 0.05 to 10 microns. The simultaneous and collocated measurement of multi-spectral aerosol optical depth and in situ particle size distribution data permits a variety of closure studies. For example, vertical profiles of aerosol optical depth obtained during local aircraft ascents and descents can be differentiated with respect to altitude and compared to extinction profiles calculated using the in situ particle size distribution data (and reasonable estimates of the aerosol index of refraction). Additionally, aerosol extinction (optical depth) spectra can be inverted to retrieve estimates of the particle size distributions, which can be compared directly to the in situ size distributions. In this paper we will report on such closure studies using data from a select number of vertical profiles at Cabras Island, Puerto Rico, including measurements in distinct Saharan Dust Layers. Preliminary results show good agreement to within 30% between mid-visible aerosol extinction derived from the AATS-6 optical depth profiles and extinction profiles forward calculated using 60s-average in situ particle size distributions and standard Saharan dust aerosol refractive indices published in the literature. In agreement with tendencies observed in previous studies, our initial results show an underestimate of aerosol extinction calculated based on the in situ size distributions

  6. SAGE II aerosol validation - Selected altitude measurements, including particle micromeasurements

    NASA Technical Reports Server (NTRS)

    Oberbeck, Verne R.; Russell, Philip B.; Pueschel, Rudolf F.; Snetsinger, Kenneth G.; Ferry, Guy V.; Livingston, John M.; Rosen, James N.; Osborn, Mary T.; Kritz, Mark A.

    1989-01-01

    The validity of particulate extinction coefficients derived from limb path solar radiance measurements obtained during the Stratospheric Aerosol and Gas Experiment (SAGE) II is tested. The SAGE II measurements are compared with correlative aerosol measurements taken during January 1985, August 1985, and July 1986 with impactors, laser spectrometers, and filter samplers on a U-2 aircraft, an upward pointing lidar on a P-3 aircraft, and balloon-borne optical particle counters. The data for July 29, 1986 are discussed in detail. The aerosol measurements taken on this day at an altitude of 20.5 km produce particulate extinction values which validate the SAGE II values for similar wavelengths.

  7. ARM - Midlatitude Continental Convective Clouds - Ultra High Sensitivity Aerosol Spectrometer(tomlinson-uhsas)

    DOE Data Explorer

    Tomlinson, Jason; Jensen, Mike

    2012-02-28

    Ultra High Sensitivity Aerosol Spectrometer (UHSASA) A major component of the Mid-latitude Continental Convective Clouds Experiment (MC3E) field campaign was the deployment of an enhanced radiosonde array designed to capture the vertical profile of atmospheric state variables (pressure, temperature, humidity wind speed and wind direction) for the purpose of deriving the large-scale forcing for use in modeling studies. The radiosonde array included six sites (enhanced Central Facility [CF-1] plus five new sites) launching radiosondes at 3-6 hour sampling intervals. The network will cover an area of approximately (300)2 km2 with five outer sounding launch sites and one central launch location. The five outer sounding launch sites are: S01 Pratt, KS [ 37.7oN, 98.75oW]; S02 Chanute, KS [37.674, 95.488]; S03 Vici, Oklahoma [36.071, -99.204]; S04 Morris, Oklahoma [35.687, -95.856]; and S05 Purcell, Oklahoma [34.985, -97.522]. Soundings from the SGP Central Facility during MC3E can be retrieved from the regular ARM archive. During routine MC3E operations 4 radiosondes were launched from each of these sites (approx. 0130, 0730, 1330 and 1930 UTC). On days that were forecast to be convective up to four additional launches were launched at each site (approx. 0430, 1030, 1630, 2230 UTC). There were a total of approximately 14 of these high frequency launch days over the course of the experiment. These files contain brightness temperatures observed at Purcell during MC3E. The measurements were made with a 5 channel (22.235, 23.035, 23.835, 26.235, 30.000GHz) microwave radiometer at one minute intervals. The results have been separated into daily files and the day of observations is indicated in the file name. All observations were zenith pointing. Included in the files are the time variables base_time and time_offset. These follow the ARM time conventions. Base_time is the number seconds since January 1, 1970 at 00:00:00 for the first data point of the file and time_offset is

  8. Aerosol Optical Extinction during the Front Range Air Pollution and Photochemistry Experiment (FRAPPE) 2014 Summertime Field Campaign, Colorado U.S.A.

    NASA Astrophysics Data System (ADS)

    Dingle, J. H.; Vu, K. K. T.; Bahreini, R.; Apel, E. C.; Campos, T. L.; Cantrell, C. A.; Cohen, R. C.; Ebben, C. J.; Flocke, F. M.; Fried, A.; Herndon, S. C.; Hills, A. J.; Hornbrook, R. S.; Huey, L. G.; Kaser, L.; Mauldin, L.; Montzka, D. D.; Nowak, J. B.; Richter, D.; Roscioli, J. R.; Shertz, S.; Stell, M. H.; Tanner, D.; Tyndall, G. S.; Walega, J.; Weibring, P.; Weinheimer, A. J.

    2015-12-01

    Aerosol optical extinction (βext) was measured in the Colorado Front Range Denver Metropolitan Area as part of the summertime air quality airborne field campaign to characterize the influence of sources, photochemical processing, and transport of pollution on local air quality. An Aerodyne Cavity Attenuated Phase Shift particle light extinction monitor (CAPS-PMex) was deployed to measure dry βext at λ=632 nm at 1 Hz. Data from a suite of gas-phase instrumentation were used to interpret the βext under various categories of aged air masses and sources. Extinction enhancement ratios of Δβext/ΔCO were evaluated under 3 differently aged air mass categories (fresh, intermediately aged, and aged) to investigate impacts of photochemistry on βext. Δβext/ΔCO was significantly increased in heavily aged air masses compared to fresh air masses (0.17 Mm-1/ppbv and 0.094 Mm-1/ppbv respectively). The resulting increase in Δβext/ΔCO under heavily aged air masses was represented by secondary organic aerosols (SOA) formation. Aerosol composition and sources from urban, natural oil and gas wells (OG), and agriculture and livestock operations were also evaluated for their impacts on βext. Linear regression fits to βext vs. organic aerosol mass showed higher correlation coefficients under the urban and OG plumes (r=0.55 and r=0.71 respectively) and weakest under agricultural and livestock plumes (r=0.28). The correlation between βext and nitrate aerosol mass however was best under the agriculture and livestock plumes (r=0.81), followed by OG plumes (r=0.74), suggesting co-location of aerosol nitrate precursor sources with OG emissions. Finally, non-refractory mass extinction efficiency (MEE) was analyzed. MEE was observed to be 1.37 g/m2 and 1.30 g/m2 in OG and urban+OG plumes, respectively.

  9. Analysis of Venus Express optical extinction due to aerosols in the upper haze of Venus

    NASA Astrophysics Data System (ADS)

    Parkinson, C. D.; Bougher, S. W.; Schulte, R.; Gao, P.; Yung, Y. L.; Vandaele, A.; Wilquet, V.; Mahieux, A.; Tellmann, S.

    2013-12-01

    Observations by the SPICAV/SOIR instruments aboard the Venus Express (VEx) spacecraft have revealed that the upper haze (UH) of Venus, between 70 and 90 km, is variable on the order of days to weeks and that it is populated by two particle modes. Gao et al. (submitted, Icarus, 2013) posit that one mode is made up of cloud particles that have diffused upwards from the main sulfuric acid cloud deck below, while the other mode is generated in situ by nucleation of sulfuric acid droplets on meteoric dust. They also propose that the observed variability in the UH is caused in part by vertical transient winds. They test this hypothesis by simulating a column of the Venus atmosphere from 40 to 100 km above the surface using a model based upon the Community Aerosol and Radiation Model for Atmospheres (CARMA). In this work, we significantly extend the analysis using the new more detailed SOIR/VeRa VEx temperature profiles which better constrain the observed strong CO2 15-micron cooling emission and 4.3-μm near-IR heating in Venus' atmosphere (and consistent with Venus Thermospheric General Circulation Model (VTGCM) simulations of Brecht et al. (2011)). We discuss our new results in context of the recent VEx observations (Wilquet et al., Icarus 217, 2012) with an intercomparison with the PVO data. We will also discuss similarities and differences arising from the PVO and VEx epochs where they exist. Additionally we report on our efforts self-consistently applying the VTGCM to constrain the degree to which effects due to vertical transient wind simulations can establish variability timescales and number density profiles that match VEx observations.

  10. The real part of the refractive indices and effective densities for chemically segregated ambient aerosols in Guangzhou measured by a single-particle aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Zhang, Guohua; Bi, Xinhui; Qiu, Ning; Han, Bingxue; Lin, Qinhao; Peng, Long; Chen, Duohong; Wang, Xinming; Peng, Ping'an; Sheng, Guoying; Zhou, Zhen

    2016-03-01

    Knowledge on the microphysical properties of atmospheric aerosols is essential to better evaluate their radiative forcing. This paper presents an estimate of the real part of the refractive indices (n) and effective densities (ρeff) of chemically segregated atmospheric aerosols in Guangzhou, China. Vacuum aerodynamic diameter, chemical compositions, and light-scattering intensities of individual particles were simultaneously measured by a single-particle aerosol mass spectrometer (SPAMS) during the fall of 2012. On the basis of Mie theory, n at a wavelength of 532 nm and ρeff were estimated for 17 particle types in four categories: organics (OC), elemental carbon (EC), internally mixed EC and OC (ECOC), and Metal-rich. The results indicate the presence of spherical or nearly spherical shapes for the majority of particle types, whose partial scattering cross-section versus sizes were well fitted to Mie theoretical modeling results. While sharing n in a narrow range (1.47-1.53), majority of particle types exhibited a wide range of ρeff (0.87-1.51 g cm-3). The OC group is associated with the lowest ρeff (0.87-1.07 g cm-3), and the Metal-rich group with the highest ones (1.29-1.51 g cm-3). It is noteworthy that a specific EC type exhibits a complex scattering curve versus size due to the presence of both compact and irregularly shaped particles. Overall, the results on the detailed relationship between physical and chemical properties benefits future research on the impact of aerosols on visibility and climate.

  11. Retrieving aerosol optical depth and type in the boundary layer over land and ocean from simultaneous GOME spectrometer and ATSR-2 radiometer measurements, 1, Method description

    NASA Astrophysics Data System (ADS)

    Holzer-Popp, T.; Schroedter, M.; Gesell, G.

    2002-11-01

    A new aerosol retrieval method called Synergetic Aerosol Retrieval (SYNAER), using simultaneous measurements of the radiometer Along Track Scanning Radiometer (ATSR-2) and the spectrometer Global Ozone Monitoring Experiment (GOME) in the visible and near-infrared spectra, was developed. Both instruments are flown onboard the European Remote Sensing (ERS-2) satellite. SYNAER delivers boundary layer aerosol optical thickness (BLAOT) and aerosol type both over land and over ocean, the latter as BLAOT percentage of six representative components from the Optical Parameters of Aerosols and Clouds (OPAC) data set. The high spatial resolution of ATSR-2 permits accurate cloud detection. It allows BLAOT calculation over automatically selected dark pixels and surface albedo correction for a set of boundary layer aerosol mixtures. After spatial integration and colocation to GOME pixels, these parameters are used to simulate GOME spectra for the same set of aerosol mixtures. A least squares fit of these spectra to the measured and cloud-corrected GOME spectrum chooses the aerosol mixture. First validation studies are presented in part 2 of this paper [, 2002]. The method will be used for the future sensor pairs Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY)/Advanced ATSR (AATSR) on Envisat and GOME-2/Advanced Very High Resolution Radiometer (AVHRR) on METOP. Thus, SYNAER holds the potential to extract a long-term climatological data set.

  12. The mathematical principles and design of the NAIS - a spectrometer for the measurement of cluster ion and nanometer aerosol size distributions

    NASA Astrophysics Data System (ADS)

    Mirme, S.; Mirme, A.

    2013-04-01

    The paper describes the Neutral cluster and Air Ion Spectrometer (NAIS) - a multichannel aerosol instrument capable of measuring the distribution of ions (charged particles and cluster ions) of both polarities in the electric mobility range from 3.2 to 0.0013 cm2 V-1 s-1 and the distribution of aerosol particles in the size range from 2.0 to 40 nm. We introduce the principles of design, data processing and spectrum deconvolution of the instrument.

  13. Characterizing particulate matter emissions from vehicles: chassis-dynamometer tests using a High-Resolution Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Collier, S.; Zhang, Q.; Forestieri, S.; Kleeman, M.; Cappa, C. D.; Kuwayama, T.

    2012-12-01

    During September of 2011 a suite of real-time instruments was used to sample vehicle emissions at the California Air Resources Board Haagen-Schmidt facility in El Monte, CA. A representative fleet of 8 spark ignition gasoline vehicles, a diesel passenger vehicle, a gasoline direct-injection vehicle and an ultra-low emissions vehicle were tested on a chassis dynamometer. The emissions were sampled into the facility's standard CVS tunnel and diluted to atmospherically relevant levels (5-30 μg/m3) while controlling other factors such as relative humidity or background black carbon particulate loading concentrations. An Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-MS) was among the real-time instruments used and sampled vehicle emissions at 10 second time resolution in order to characterize the non-refractory organic and inorganic particulate matter (PM). PM composition and concentration were tracked throughout the cold start driving cycle which included periods of fast acceleration and high velocity cruise control, meant to recreate typical commuter driving behavior. Variations in inorganic and organic PM composition for a given vehicle throughout the driving cycle as well as for various vehicles with differing emissions loading were characterized. Differences in PM composition for a given vehicle whose emissions are being exposed to differing experimental conditions such as varying relative humidity will also be reported. In conjunction with measurements from a Multi Wavelength Photoacoustic Black Carbon Spectrometer (MWPA-BC) and real-time gas measurements from the CARB facility, we determine the real-time emission ratios of primary organic aerosols (POA) with respect to BC and common combustion gas phase pollutants and compared to different vehicle driving conditions. The results of these tests offer the vehicle emissions community a first time glimpse at the real-time behavior of vehicle PM emissions for a variety of conditions and

  14. Transmission of 10 micron radiation over coastal waters: comparison of point-source image intensities with aerosol extinction and MODTRAN calculations

    NASA Astrophysics Data System (ADS)

    Schwering, Piet B.; de Leeuw, Gerrit; van Eijk, Alexander M.

    1996-10-01

    During the MAPTIP experiments in the Dutch coastal waters, 11 October - 5 November 1993, transmission curves were determined from the intensities of the image of a point source suspended from a helicopter at ranges between 0.5 and 6 NMi. The images were recorded with a 10 micrometer USFA 9092 camera from the MeetPost Noordwijk, a research tower in the North Sea at 9 km from the Dutch coast. The transmission determined from the point source intensities at several ranges is compared with calculated values. The transmission is determined by extinction due to aerosols and molecular species in the propagation path. Both contributions can be determined using code using measured size distributions. Also effects of path radiance and background on the image intensity are considered. In this coastal area, and the off- shore winds that were usually encountered during MAPTIP, the aerosol size distributions are known to be a complicated mixture of continental and marine aerosols. Hence the common aerosol models, that usually work well over the open ocean, are often not so reliable in a coastal environment. An attempt is made to assess the influence of marine and anthropogenic contributions to the aerosol on the detection range of point targets in a coastal atmosphere.

  15. The white-light humidified optical particle spectrometer (WHOPS) - a novel airborne system to characterize aerosol hygroscopicity

    NASA Astrophysics Data System (ADS)

    Rosati, B.; Wehrle, G.; Gysel, M.; Zieger, P.; Baltensperger, U.; Weingartner, E.

    2015-02-01

    Aerosol particles experience hygroscopic growth at enhanced relative humidity (RH), which leads to changes in their optical properties. We developed the white-light humidified optical particle spectrometer (WHOPS), a new instrument to investigate the particles' hygroscopic growth. Here we present a detailed technical description and characterization of the WHOPS in laboratory and field experiments. The WHOPS consists of a differential mobility analyzer, a humidifier/bypass and a white-light aerosol spectrometer (WELAS) connected in series to provide fast measurements of particle hygroscopicity at subsaturated RH and optical properties on airborne platforms. The WELAS employs a white-light source to minimize ambiguities in the optical particle sizing. In contrast to other hygroscopicity instruments, the WHOPS retrieves information of relatively large particles (i.e., diameter D > 280 nm), therefore investigating the more optically relevant size ranges. The effective index of refraction of the dry particles is retrieved from the optical diameter measured for size-selected aerosol samples with a well-defined dry mobility diameter. The data analysis approach for the optical sizing and retrieval of the index of refraction was extensively tested in laboratory experiments with polystyrene latex size standards and ammonium sulfate particles of different diameters. The hygroscopic growth factor (GF) distribution and aerosol mixing state is inferred from the optical size distribution measured for the size-selected and humidified aerosol sample. Laboratory experiments with pure ammonium sulfate particles revealed good agreement with Köhler theory (mean bias of ~3% and maximal deviation of 8% for GFs at RH = 95%). During first airborne measurements in the Netherlands, GFs (mean value of the GF distribution) at RH = 95% between 1.79 and 2.43 with a median of 2.02 were observed for particles with a dry diameter of 500 nm. This corresponds to hygroscopicity parameters (κ

  16. Dust transport over the eastern Mediterranean derived from Total Ozone Mapping Spectrometer, Aerosol Robotic Network, and surface measurements

    NASA Astrophysics Data System (ADS)

    Kalivitis, N.; Gerasopoulos, E.; Vrekoussis, M.; Kouvarakis, G.; Kubilay, N.; Hatzianastassiou, N.; Vardavas, I.; Mihalopoulos, N.

    2007-02-01

    Multiyear surface PM10 measurements performed on Crete Island, Greece, have been used in conjunction with satellite (Total Ozone Mapping Spectrometer (TOMS)) and ground-based remote sensing measurements (Aerosol Robotic Network (AERONET)) to enhance our understanding of the evolution of mineral dust events over the eastern Mediterranean. An analysis of southerly air masses at altitudes of 1000 and 3000 m over a 5 year period (2000-2005), showed that dust can potentially arrive over Crete, either simultaneously in the lower free troposphere and inside the boundary layer (vertical extended transport (VET)) or initially into the free troposphere with the heavier particles gradually being scavenged inside the boundary layer (free troposphere transport (FTT)). Both pathways present significant seasonal variations but on an annual basis contribute almost equally to the dust transport in the area. During VET the aerosol index (AI) derived from TOMS was significantly correlated with surface PM10, and in general AI was found to be adequate for the characterization of dust loadings over the eastern Mediterranean on a climatological basis. A significant covariance between PM10 and AOT was observed during VET as well, indicating that AOT levels from AERONET may be estimated by PM10 levels at the surface. Surface measurements are thus crucial for the validation of remote sensing measurements and hence are a powerful tool for the investigation of the impact of aerosols on climate.

  17. A Chronology of Annual-Mean Effective Radii of Stratospheric Aerosols from Volcanic Eruptions During the Twentieth Century as Derived From Ground-based Spectral Extinction Measurements

    NASA Technical Reports Server (NTRS)

    Strothers, Richard B.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Stratospheric extinction can be derived from ground-based spectral photometric observations of the Sun and other stars (as well as from satellite and aircraft measurements, available since 1979), and is found to increase after large volcanic eruptions. This increased extinction shows a characteristic wavelength dependence that gives information about the chemical composition and the effective (or area weighted mean) radius of the particles responsible for it. Known to be tiny aerosols constituted of sulfuric acid in a water solution, the stratospheric particles at midlatitudes exhibit a remarkable uniformity of their column-averaged effective radii r(sub eff) in the first few months after the eruption. Considering the seven largest eruptions of the twentieth century, r(sub eff) at this phase of peak aerosol abundance is approx. 0.3 micrometers in all cases. A year later, r(sub eff) either has remained about the same size (almost certainly in the case of the Katmai eruption of 1912) or has increased to approx. 0.5 micrometers (definitely so for the Pinatubo eruption of 1991). The reasons for this divergence in aerosol growth are unknown.

  18. Aerosol Optical Depth Measurements by Airborne Sun Photometer in SOLVE II: Comparisons to SAGE III, POAM III and Airborne Spectrometer Measurements

    NASA Technical Reports Server (NTRS)

    Russell, P.; Livingston, J.; Schmid, B.; Eilers, J.; Kolyer, R.; Redemann, J.; Ramirez, S.; Yee, J-H.; Swartz, W.; Shetter, R.

    2004-01-01

    The 14-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14) measured solar-beam transmission on the NASA DC-8 during the Second SAGE III Ozone Loss and Validation Experiment (SOLVE II). This paper presents AATS-14 results for multiwavelength aerosol optical depth (AOD), including its spatial structure and comparisons to results from two satellite sensors and another DC-8 instrument. These are the Stratospheric Aerosol and Gas Experiment III (SAGE III), the Polar Ozone and Aerosol Measurement III (POAM III) and the Direct beam Irradiance Airborne Spectrometer (DIAS).

  19. Characterization of submicron aerosols during a serious pollution month in Beijing (2013) using an aerodyne high-resolution aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Zhang, J. K.; Sun, Y.; Liu, Z. R.; Ji, D. S.; Hu, B.; Liu, Q.; Wang, Y. S.

    2013-07-01

    In January 2013, Beijing experienced several serious haze events. To achieve a better understanding of the characteristics, sources and processes of aerosols during this month, an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed at an urban site between 1 January and 1 February 2013 to obtain the size-resolved chemical composition of non-refractory submicron particles (NR-PM1). During this period, the mean measured NR-PM1 mass concentration was 87.4 μg m-3 and was composed of organics (49.8%), sulfate (21.4%), nitrate (14.6%), ammonium (10.4%), and chloride (3.8%). Moreover, inorganic matter, such as sulfate and nitrate comprised an increasing fraction of the NR-PM1 load as NR-PM1 loading increased, denoting their key roles in particulate pollution during this month. The average size distributions of the species were all dominated by an accumulation mode peaking at approximately 600 nm in vacuum aerodynamic diameter and organics characterized by an additional smaller size (∼200 nm). Elemental analyses showed that the average O/C, H/C, and N/C (molar ratio) of organic matter were 0.34, 1.44 and 0.015, respectively, corresponding to an OM/OC ratio (mass ratio of organic matter to organic carbon) of 1.60. Positive matrix factorization (PMF) analyses of the high-resolution organic mass spectral dataset differentiated the organic aerosol into four components, i.e., oxygenated organic aerosols (OOA), cooking-related (COA), nitrogen-containing (NOA) and hydrocarbon-like (HOA), which on average accounted for 40.0, 23.4, 18.1 and 18.5% of the total organic mass, respectively. Back trajectory clustering analyses indicated that the WNW air masses were associated with the highest NR-PM1 pollution during the campaign. Aerosol particles in southern air masses were especially rich in inorganic and oxidized organic species, whereas northern air masses contained a large fraction of primary species.

  20. Balloon-borne scanning spectrometer system for atmospheric extinction studies in the 350-1100 nm spectral region

    NASA Technical Reports Server (NTRS)

    Thompson, D. A.; Pepin, T. J.; Lane, R. W.

    1982-01-01

    A scanning spectrometer system which is capable of being flown in high-altitude balloon studies of the earth's atmosphere is presented. The instrument is small, has a large operative wavelength range of 350-1100 nm, high data density, and real-time data telemetry to ground. A computer software package is used to provide a real-time monitor of balloon gondola and instrument performance, with the software reliability enhanced by proof of correctness techniques and exhibiting the high degree of reliability necessary for the monitoring system.

  1. Lidar Ratios for Dust Aerosols Derived From Retrievals of CALIPSO Visible Extinction Profiles Constrained by Optical Depths from MODIS-Aqua and CALIPSO/CloudSat Ocean Surface Reflectance Measurements

    NASA Technical Reports Server (NTRS)

    Young, Stuart A.; Josset, Damien B.; Vaughan, Mark A.

    2010-01-01

    CALIPSO's (Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations) analysis algorithms generally require the use of tabulated values of the lidar ratio in order to retrieve aerosol extinction and optical depth from measured profiles of attenuated backscatter. However, for any given time or location, the lidar ratio for a given aerosol type can differ from the tabulated value. To gain some insight as to the extent of the variability, we here calculate the lidar ratio for dust aerosols using aerosol optical depth constraints from two sources. Daytime measurements are constrained using Level 2, Collection 5, 550-nm aerosol optical depth measurements made over the ocean by the MODIS (Moderate Resolution Imaging Spectroradiometer) on board the Aqua satellite, which flies in formation with CALIPSO. We also retrieve lidar ratios from night-time profiles constrained by aerosol column optical depths obtained by analysis of CALIPSO and CloudSat backscatter signals from the ocean surface.

  2. Development Of A Supercontinuum Based Photoacoustic Aerosol Light Absorption And Albedo Spectrometer (PALAAS)

    NASA Astrophysics Data System (ADS)

    Arnold, Ian J.

    Aerosols are a major contributor to the global radiation budget because they modify the planetary albedo with their optical properties. These optical properties need to be measured and understood, ideally at multiple wavelengths. This thesis describes the ongoing development of a supercontinuum based multi-wavelength photoacoustic instrument to measure the light absorption and scattering coefficients of aerosols. Collimation techniques for supercontinuum sources using lens-based and off-axis parabolic mirror-based collimators were evaluated and it was determined that the off-axis mirror had superior collimation abilities for multi-spectral beams. A proof of concept supercontinuum-based photoacoustic instrument was developed using sequential measurements at multiple wavelengths. The instrument data were in good agreement with those from a commercial 3-wavelength photoacoustic instrument and the novel instrument had minimum detectable absorption and scattering coefficients of better than 4 Mm-1 and 21 Mm-1, respectively. The instrument however suffered from poor temporal resolution due to the sequential measurement and required the development of an aerosol delivery system to deliver a slowly varying aerosol concentration. In response, a spectral modulator has been developed to frequency encode different wavelength bands for simultaneous measurement with a photoacoustic instrumen.

  3. Three-dimensional dust aerosol distribution and extinction climatology over northern Africa simulated with the ALADIN numerical prediction model from 2006 to 2010

    NASA Astrophysics Data System (ADS)

    Mokhtari, M.; Tulet, P.; Fischer, C.; Bouteloup, Y.; Bouyssel, F.; Brachemi, O.

    2015-08-01

    The seasonal cycle and optical properties of mineral dust aerosols in northern Africa were simulated for the period from 2006 to 2010 using the numerical atmospheric model ALADIN (Aire Limitée Adaptation dynamique Développement InterNational) coupled to the surface scheme SURFEX (SURFace EXternalisée). The particularity of the simulations is that the major physical processes responsible for dust emission and transport, as well as radiative effects, are taken into account on short timescales and at mesoscale resolution. The aim of these simulations is to quantify the dust emission and deposition, locate the major areas of dust emission and establish a climatology of aerosol optical properties in northern Africa. The mean monthly aerosol optical thickness (AOT) simulated by ALADIN is compared with the AOTs derived from the standard Dark Target (DT) and Deep Blue (DB) algorithms of the Aqua-MODIS (MODerate resolution Imaging Spectroradiometer) products over northern Africa and with a set of sun photometer measurements located at Banizoumbou, Cinzana, Soroa, Mbour and Cape Verde. The vertical distribution of dust aerosol represented by extinction profiles is also analysed using CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) observations. The annual dust emission simulated by ALADIN over northern Africa is 878 Tg year-1. The Bodélé Depression appears to be the main area of dust emission in northern Africa, with an average estimate of about 21.6 Tg year-1. The simulated AOTs are in good agreement with satellite and sun photometer observations. The positions of the maxima of the modelled AOTs over northern Africa match the observed positions, and the ALADIN simulations satisfactorily reproduce the various dust events over the 2006-2010 period. The AOT climatology proposed in this paper provides a solid database of optical properties and consolidates the existing climatology over this region derived from satellites, the AERONET network and regional climate

  4. Sources and characteristics of fine particles over the Yellow Sea and Bohai Sea using online single particle aerosol mass spectrometer.

    PubMed

    Fu, Huaiyu; Zheng, Mei; Yan, Caiqing; Li, Xiaoying; Gao, Huiwang; Yao, Xiaohong; Guo, Zhigang; Zhang, Yuanhang

    2015-03-01

    Marine aerosols over the East China Seas are heavily polluted by continental sources. During the Chinese Comprehensive Ocean Experiment in November 2012, size and mass spectra of individual atmospheric particles in the size range from 0.2 to 2.0 μm were measured on board by a single particle aerosol mass spectrometer (SPAMS). The average hourly particle number (PN) was around 4560±3240 in the South Yellow Sea (SYS), 2900±3970 in the North Yellow Sea (NYS), and 1700±2220 in the Bohai Sea (BS). PN in NYS and BS varied greatly over 3 orders of magnitude, while that in SYS varied slightly. The size distributions were fitted with two log-normal modes. Accumulation mode dominated in NYS and BS, especially during episodic periods. Coarse mode particles played an important role in SYS. Particles were classified using an adaptive resonance theory based neural network algorithm (ART-2a). Six particle types were identified with secondary-containing, aged sea-salt, soot-like, biomass burning, fresh sea-salt, and lead-containing particles accounting for 32%, 21%, 18%, 16%, 4%, and 3% of total PN, respectively. Aerosols in BS were relatively enriched in particles from anthropogenic sources compared to SYS, probably due to emissions from more developed upwind regions and indicating stronger influence of continental outflow on marine environment. Variation of source types depended mainly on origins of transported air masses. This study examined rapid changes in PN, size distribution and source types of fine particles in marine atmospheres. It also demonstrated the effectiveness of high-time-resolution source apportionment by ART-2a. PMID:25766014

  5. Mass-analysis of Charged Aerosol Particles in a PMSE/NLC Layer by a Rocket-borne Spectrometer

    NASA Astrophysics Data System (ADS)

    Robertson, S.; Horanyi, M.; Knappmiller, S.; Kohnert, R.; Sternovsky, Z.; Holzworth, R.; Shimogawa, M.; Friedrich, M.; Gumbel, J.; Khaplanov, M.; Megner, L.; Baumgarten, G.; Latteck, R.; Rapp, M.; Hoppe, U.

    2007-12-01

    The first of two "MASS" (Mesospheric Aerosol Sampling Spectrometer) rockets was launched from the Andoya Rocket Range at 22:51 UTC on 3 August 2007 into PMSE and NLC approximately 26 minutes after an AIM satellite overpass. The sun was 4 degrees below the horizon and the local riometer indicated that the ionospheric conditions were rather quiet, i.e., day time conditions as far as negative cluster ions are concerned. NLC were seen in the previous hour at 83 km by the ALOMAR RMR lidar pointed along the rocket trajectory and were detected at the same altitude by rocket-borne photometer measurements. The rocket carried an electrostatic mass analyzer for the charged fraction of the aerosol particles and both forward and aft deployable electric field booms. The mass analyzer was mounted on the tip of the payload and pointed in the ram direction. It has a forward inlet slit with area of 25 square centimeters and side vents for air exit. Aerosol particles with different ranges of charge-to-mass ratio are collected within the instrument housing on two sets of four biased collector plates, with one set for positive particles and one set for negative particles. A preliminary analysis of the data shows the density of negative particles with radius greater than 3 nm rising sharply at 83 and continuing to 89 km, collocated with PMSE detected by the ALWIN radar. Particles with 1-2 nm radii with both signs of charge and positive particles with less than1 nm radius were detected at 86-88 km. Initial charge-density estimates are several thousands per cubic centimeter for each of these size ranges. The E field booms detected significant potential variations in the PMSE/NLC region. Further analysis will examine in more detail the effects of aerodynamics, payload charging, and spurious charge generation by particle impacts.

  6. Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.; Day, D. A.; Ortega, A. M.; Hayes, P. L.; Krechmer, J. E.; Chen, Q.; Kuwata, M.; Liu, Y. J.; de Sá, S. S.; McKinney, K.; Martin, S. T.; Hu, M.; Budisulistiorini, S. H.; Riva, M.; Surratt, J. D.; St. Clair, J. M.; Isaacman-Van Wertz, G.; Yee, L. D.; Goldstein, A. H.; Carbone, S.; Brito, J.; Artaxo, P.; de Gouw, J. A.; Koss, A.; Wisthaler, A.; Mikoviny, T.; Karl, T.; Kaser, L.; Jud, W.; Hansel, A.; Docherty, K. S.; Alexander, M. L.; Robinson, N. H.; Coe, H.; Allan, J. D.; Canagaratna, M. R.; Paulot, F.; Jimenez, J. L.

    2015-10-01

    Substantial amounts of secondary organic aerosol (SOA) can be formed from isoprene epoxydiols (IEPOX), which are oxidation products of isoprene mainly under low-NO conditions. Total IEPOX-SOA, which may include SOA formed from other parallel isoprene oxidation pathways, was quantified by applying positive matrix factorization (PMF) to aerosol mass spectrometer (AMS) measurements. The IEPOX-SOA fractions of organic aerosol (OA) in multiple field studies across several continents are summarized here and show consistent patterns with the concentration of gas-phase IEPOX simulated by the GEOS-Chem chemical transport model. During the Southern Oxidant and Aerosol Study (SOAS), 78 % of PMF-resolved IEPOX-SOA is accounted by the measured IEPOX-SOA molecular tracers (2-methyltetrols, C5-Triols, and IEPOX-derived organosulfate and its dimers), making it the highest level of molecular identification of an ambient SOA component to our knowledge. An enhanced signal at C5H6O+ (m/z 82) is found in PMF-resolved IEPOX-SOA spectra. To investigate the suitability of this ion as a tracer for IEPOX-SOA, we examine fC5H6O (fC5H6O= C5H6O+/OA) across multiple field, chamber, and source data sets. A background of ~ 1.7 ± 0.1 ‰ (‰ = parts per thousand) is observed in studies strongly influenced by urban, biomass-burning, and other anthropogenic primary organic aerosol (POA). Higher background values of 3.1 ± 0.6 ‰ are found in studies strongly influenced by monoterpene emissions. The average laboratory monoterpene SOA value (5.5 ± 2.0 ‰) is 4 times lower than the average for IEPOX-SOA (22 ± 7 ‰), which leaves some room to separate both contributions to OA. Locations strongly influenced by isoprene emissions under low-NO levels had higher fC5H6O (~ 6.5 ± 2.2 ‰ on average) than other sites, consistent with the expected IEPOX-SOA formation in those studies. fC5H6O in IEPOX-SOA is always elevated (12-40 ‰) but varies substantially between locations, which is shown to reflect

  7. Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements

    DOE PAGESBeta

    Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.; Day, D. A.; Ortega, A. M.; Hayes, P. L.; Krechmer, J. E.; Chen, Q.; Kuwata, M.; Liu, Y. J.; et al

    2015-10-23

    Substantial amounts of secondary organic aerosol (SOA) can be formed from isoprene epoxydiols (IEPOX), which are oxidation products of isoprene mainly under low-NO conditions. Total IEPOX-SOA, which may include SOA formed from other parallel isoprene oxidation pathways, was quantified by applying positive matrix factorization (PMF) to aerosol mass spectrometer (AMS) measurements. The IEPOX-SOA fractions of organic aerosol (OA) in multiple field studies across several continents are summarized here and show consistent patterns with the concentration of gas-phase IEPOX simulated by the GEOS-Chem chemical transport model. During the Southern Oxidant and Aerosol Study (SOAS), 78 % of PMF-resolved IEPOX-SOA is accountedmore » by the measured IEPOX-SOA molecular tracers (2-methyltetrols, C5-Triols, and IEPOX-derived organosulfate and its dimers), making it the highest level of molecular identification of an ambient SOA component to our knowledge. An enhanced signal at C5H6O+ (m/z 82) is found in PMF-resolved IEPOX-SOA spectra. To investigate the suitability of this ion as a tracer for IEPOX-SOA, we examine fC5H6O (fC5H6O= C5H6O+/OA) across multiple field, chamber, and source data sets. A background of ~ 1.7 ± 0.1 ‰ (‰ = parts per thousand) is observed in studies strongly influenced by urban, biomass-burning, and other anthropogenic primary organic aerosol (POA). Higher background values of 3.1 ± 0.6 ‰ are found in studies strongly influenced by monoterpene emissions. The average laboratory monoterpene SOA value (5.5 ± 2.0 ‰) is 4 times lower than the average for IEPOX-SOA (22 ± 7 ‰), which leaves some room to separate both contributions to OA. Locations strongly influenced by isoprene emissions under low-NO levels had higher fC5H6O (~ 6.5 ± 2.2 ‰ on average) than other sites, consistent with the expected IEPOX-SOA formation in those studies. fC5H6O in IEPOX-SOA is always elevated (12–40 ‰) but varies substantially between locations, which is shown

  8. An Investigation of Aerosol and Ozone Measurements from the Cryogenic Limb Array Etalon Spectrometer: Validation and Relation to Other Chemical Species

    NASA Technical Reports Server (NTRS)

    Deshler, Terry

    1997-01-01

    Throughout this study we focused on comparisons of CLAES and in situ measurements of ozone and aerosol extinction. Thus the comparison is between satellite data representative of large spatial regions and in situ data representative of nearly point samples. Both instruments provide vertical profiles, but the region of overlap is limited to between approximately 10 and 100 mb. CLAES Version 7 ozone measurements have been compared to electrochemical cell ozonesonde measurements over McMurdo Station, Antarctica (78 deg S, 167 deg E), Dumont d'Urville, Antarctica (66.7 deg S, 140 deg E), Laramie, Wyoming (41 deg N, 106 deg W), and Bear Island, Norway (74.3 deg N, 19 deg E). Comparisons were made between vertical ozone profiles, and between integrated column ozone over the region of overlap of the measurements. Comparisons using CLAES Version 8 data are underway. CLAES Version 8 aerosol extinction measurements at all wavelengths have also been compared to University of Wyoming aerosol extinctions over McMurdo Station, Antarctica, and over Laramie, Wyoming. Coincidences in all cases were determined by minimizing the distance between the CLAES observations and the surface station, and the time separation between the satellite and in situ measurements.

  9. Photoacoustic spectrometer with a calculable cell constant for measurements of gases and aerosols.

    PubMed

    Havey, Daniel K; Bueno, Pedro A; Gillis, Keith A; Hodges, Joseph T; Mulholland, George W; van Zee, Roger D; Zachariah, Michael R

    2010-10-01

    We benchmark the performance of a photoacoustic spectrometer with a calculable cell constant in applications related to climate change measurements. As presently implemented, this spectrometer has a detection limit of 3.1 × 10(-9) W cm(-1) Hz(-1/2) for absorption by a gas and 1.5 × 10(-8) W cm(-1) Hz(-1/2) for soot particles. Nonstatistical uncertainty limited the accuracy of the instrument to ∼1%, and measurements of the concentration of CO(2) in laboratory air agreed with measurements made using a cavity ring-down spectrometer, to within 1%. Measurements of the enhanced absorption resulting from ultrathin (<5 nm), nonabsorbing coatings on nanoscale soot particles demonstrate the sensitivity of this instrument. Together, these measurements show the instrument's ability to quantitatively measure the absorption coefficient for species of interest to the climate and atmospheric science communities. Because the system constant is known, in most applications the acoustic response of this instrument need not be calibrated against a sample of known optical density, a decided advantage in field applications. Routine enhancements, such as improved processing of the photoacoustic signal and higher laser beam power, should further increase the instrument's precision and sensitivity. PMID:20804170

  10. Validation of GOMOS-Envisat vertical profiles of O3, NO2, NO3, and aerosol extinction using balloon-borne instruments and analysis of the retrievals

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Berthet, Gwenaël; Brogniez, Colette; Catoire, Valery; Fussen, Didier; Goutail, Florence; Oelhaf, Hermann; Pommereau, Jean-Pierre; Roscoe, Howard K.; Wetzel, Gerald; Chartier, Michel; Robert, Claude; Balois, Jean-Yves; Verwaerde, Christian; Auriol, Frédérique; François, Philippe; Gaubicher, Bertrand; Wursteisen, Patrick

    2008-02-01

    The UV-visible Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument onboard Envisat performs nighttime measurements of ozone, NO2, NO3 and of the aerosol extinction, using the stellar occultation method. We have conducted a validation exercise using various balloon-borne instruments in different geophysical conditions from 2002 to 2006, using GOMOS measurements performed with stars of different magnitudes. GOMOS and balloon-borne vertical columns in the middle stratosphere are in excellent agreement for ozone and NO2. Some discrepancies can appear between GOMOS and balloon-borne vertical profiles for the altitude and the amplitude of the concentration maximum. These discrepancies are randomly distributed, and no bias is detected. The accuracy of individual profiles in the middle stratosphere is 10 % for ozone and 25 % for NO2. On the other hand, the GOMOS NO3 retrieval is difficult and no direct validation can be conducted. The GOMOS aerosol content is also well estimated, but the wavelength dependence can be better estimated if the aerosol retrieval is performed only in the visible domain. We can conclude that the GOMOS operational retrieval algorithm works well and that GOMOS has fully respected its primary objective for the study of the trends of species in the middle stratosphere, using the profiles in a statistical manner. Some individual profiles can be partly inaccurate, in particular in the lower stratosphere. Improvements could be obtained by reprocessing some GOMOS transmissions in case of specific studies in the middle and lower stratosphere when using the individual profiles.

  11. Characterization of near-highway submicron aerosols in New York City with a high-resolution time-of-flight aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Sun, Y. L.; Zhang, Q.; Schwab, J. J.; Chen, W.-N.; Bae, M.-S.; Hung, H.-M.; Lin, Y.-C.; Ng, N. L.; Jayne, J.; Massoli, P.; Williams, L. R.; Demerjian, K. L.

    2011-11-01

    Knowledge of the variations of mass concentration, chemical composition and size distributions of submicron aerosols near roadways is of importance for reducing exposure assessment uncertainties in health effects studies. The goal of this study is to deploy and evaluate an Atmospheric Sciences Research Center-Mobile Laboratory (ASRC-ML), equipped with a suite of rapid response instruments for characterization of traffic plumes, adjacent to the Long Island Expressway (LIE) - a high-traffic highway in the New York City Metropolitan Area. In total, four measurement periods, two in the morning and two in the evening were conducted at a location approximately 30 m south of the LIE. The mass concentrations and size distributions of non-refractory submicron aerosol (NR-PM1) species were measured in situ at a time resolution of 1 min by an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer, along with rapid measurements (down to 1 Hz) of gaseous pollutants (e.g., HCHO, NO2, NO, O3, and CO2, etc.), black carbon (BC), and particle number concentrations and size distributions. The particulate organics varied dramatically during periods with highest traffic influences from the nearby roadway. The variations were mainly observed in the hydrocarbon-like organic aerosol (HOA), a surrogate for primary OA from vehicle emissions. The inorganic species (sulfate, ammonium, and nitrate) and oxygenated OA (OOA) showed much smoother variations - with minor impacts from traffic emissions. The concentration and chemical composition of NR-PM1 also varied differently on different days depending on meteorology, traffic intensity and vehicle types. Overall, organics dominated the traffic-related NR-PM1 composition (>60%) with HOA being the major fraction of OA. The traffic-influenced organics showed two distinct modes in mass-weighted size distributions, peaking at ~120 nm and 500 nm (vacuum aerodynamic diameter, Dva), respectively. OOA and inorganic species appear to be

  12. Column-integrated aerosol optical properties from ground-based spectroradiometer measurements at Barrax (Spain) during the Digital Airborne Imaging Spectrometer Experiment (DAISEX) campaigns

    NASA Astrophysics Data System (ADS)

    Pedrós, Roberto; Martinez-Lozano, Jose A.; Utrillas, Maria P.; Gómez-Amo, José L.; Tena, Fernando

    2003-09-01

    The Digital Airborne Imaging Spectrometer Experiment (DAISEX) was carried out for the European Space Agency (ESA) in order to develop the potential of spaceborne imaging spectroscopy for a range of different scientific applications. DAISEX involved simultaneous data acquisitions using different airborne imaging spectrometers over test sites in southeast Spain (Barrax) and the Upper Rhine valley (Colmar, France, and Hartheim, Germany). This paper presents the results corresponding to the column-integrated aerosol optical properties from ground-based spectroradiometer measurements over the Barrax area during the DAISEX campaign days in the years 1998, 1999, and 2000. The instruments used for spectral irradiance measurements were two Licor 1800 and one Optronic OL-754 spectroradiometers. The analysis of the spectral aerosol optical depth in the visible range shows in all cases the predominance of the coarse-particle mode over the fine-particle mode. The analysis of the back trajectories of the air masses indicates a predominance of marine-type aerosols in the lower atmospheric layers in all cases. Overall, the results obtained show that during the DAISEX there was a combination of maritime aerosols with smaller continental aerosols.

  13. Aerosol and Surface Parameter Retrievals for a Multi-Angle, Multiband Spectrometer

    NASA Technical Reports Server (NTRS)

    Broderick, Daniel

    2012-01-01

    This software retrieves the surface and atmosphere parameters of multi-angle, multiband spectra. The synthetic spectra are generated by applying the modified Rahman-Pinty-Verstraete Bidirectional Reflectance Distribution Function (BRDF) model, and a single-scattering dominated atmosphere model to surface reflectance data from Multiangle Imaging SpectroRadiometer (MISR). The aerosol physical model uses a single scattering approximation using Rayleigh scattering molecules, and Henyey-Greenstein aerosols. The surface and atmosphere parameters of the models are retrieved using the Lavenberg-Marquardt algorithm. The software can retrieve the surface and atmosphere parameters with two different scales. The surface parameters are retrieved pixel-by-pixel while the atmosphere parameters are retrieved for a group of pixels where the same atmosphere model parameters are applied. This two-scale approach allows one to select the natural scale of the atmosphere properties relative to surface properties. The software also takes advantage of an intelligent initial condition given by the solution of the neighbor pixels.

  14. Aircraft Measurements of BrO, IO, Glyoxal, NO2, H2O, O2-O2 and Aerosol Extinction Profiles in the Tropics: Comparison with Aircraft-/Ship-Based in Situ and Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Volkamer, R.; Baidar, S.; Campos, T. L.; Coburn, S.; DiGangi, J. P.; Dix, B.; Eloranta, E. W.; Koenig, T. K.; Morley, B.; Ortega, I.; Pierce, B. R.; Reeves, M.; Sinreich, R.; Wang, S.; Zondlo, M. A.; Romashkin, P. A.

    2015-01-01

    Tropospheric chemistry of halogens and organic carbon over tropical oceans modifies ozone and atmospheric aerosols, yet atmospheric models remain largely untested for lack of vertically resolved measurements of bromine monoxide (BrO), iodine monoxide (IO) and small oxygenated hydrocarbons like glyoxal (CHOCHO) in the tropical troposphere. BrO, IO, glyoxal, nitrogen dioxide (NO2), water vapor (H2O) and O2-O2 collision complexes (O4/ were measured by the University of Colorado Airborne Multi-AXis Differential Optical Absorption Spectroscopy (CU AMAXDOAS) instrument, aerosol extinction by high spectral resolution lidar (HSRL), in situ aerosol size distributions by an ultra high sensitivity aerosol spectrometer (UHSAS) and in situ H2O by vertical-cavity surface-emitting laser (VCSEL) hygrometer. Data are presented from two research flights (RF12, RF17) aboard the National Science Foundation/ National Center for Atmospheric Research Gulfstream V aircraft over the tropical Eastern Pacific Ocean (tEPO) as part of the "Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated hydrocarbons" (TORERO) project (January/February 2012). We assess the accuracy of O4 slant column density (SCD) measurements in the presence and absence of aerosols. Our O4-inferred aerosol extinction profiles at 477 nm agree within 6% with HSRL in the boundary layer and closely resemble the renormalized profile shape of Mie calculations constrained by UHSAS at low (sub-Rayleigh) aerosol extinction in the free troposphere. CU AMAX-DOAS provides a flexible choice of geometry, which we exploit to minimize the SCD in the reference spectrum (SCDREF, maximize signal-to-noise ratio) and to test the robustness of BrO, IO and glyoxal differential SCDs. The RF12 case study was conducted in pristine marine and free tropospheric air. The RF17 case study was conducted above the NOAA RV Ka'imimoana (TORERO cruise, KA-12-01) and provides independent validation data from ship-based in situ cavity

  15. Aircraft measurements of BrO, IO, glyoxal, NO2, H2O, O2-O2 and aerosol extinction profiles in the tropics: comparison with aircraft-/ship-based in situ and lidar measurements

    NASA Astrophysics Data System (ADS)

    Volkamer, R.; Baidar, S.; Campos, T. L.; Coburn, S.; DiGangi, J. P.; Dix, B.; Eloranta, E. W.; Koenig, T. K.; Morley, B.; Ortega, I.; Pierce, B. R.; Reeves, M.; Sinreich, R.; Wang, S.; Zondlo, M. A.; Romashkin, P. A.

    2015-05-01

    Tropospheric chemistry of halogens and organic carbon over tropical oceans modifies ozone and atmospheric aerosols, yet atmospheric models remain largely untested for lack of vertically resolved measurements of bromine monoxide (BrO), iodine monoxide (IO) and small oxygenated hydrocarbons like glyoxal (CHOCHO) in the tropical troposphere. BrO, IO, glyoxal, nitrogen dioxide (NO2), water vapor (H2O) and O2-O2 collision complexes (O4) were measured by the University of Colorado Airborne Multi-AXis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument, aerosol extinction by high spectral resolution lidar (HSRL), in situ aerosol size distributions by an ultra high sensitivity aerosol spectrometer (UHSAS) and in situ H2O by vertical-cavity surface-emitting laser (VCSEL) hygrometer. Data are presented from two research flights (RF12, RF17) aboard the National Science Foundation/National Center for Atmospheric Research Gulfstream V aircraft over the tropical Eastern Pacific Ocean (tEPO) as part of the "Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated hydrocarbons" (TORERO) project (January/February 2012). We assess the accuracy of O4 slant column density (SCD) measurements in the presence and absence of aerosols. Our O4-inferred aerosol extinction profiles at 477 nm agree within 6% with HSRL in the boundary layer and closely resemble the renormalized profile shape of Mie calculations constrained by UHSAS at low (sub-Rayleigh) aerosol extinction in the free troposphere. CU AMAX-DOAS provides a flexible choice of geometry, which we exploit to minimize the SCD in the reference spectrum (SCDREF, maximize signal-to-noise ratio) and to test the robustness of BrO, IO and glyoxal differential SCDs. The RF12 case study was conducted in pristine marine and free tropospheric air. The RF17 case study was conducted above the NOAA RV Ka'imimoana (TORERO cruise, KA-12-01) and provides independent validation data from ship-based in situ cavity

  16. Mixing state of particles with secondary species by single particle aerosol mass spectrometer in an atmospheric pollution event

    NASA Astrophysics Data System (ADS)

    Xu, Lingling; Chen, Jinsheng

    2016-04-01

    Single particle aerosol mass spectrometer (SPAMS) was used to characterize size distribution, chemical composition, and mixing state of particles in an atmospheric pollution event during 20 Oct. - 5 Nov., 2015 in Xiamen, Southeast China. A total of 533,012 particle mass spectra were obtained and clustered into six groups, comprising of industry metal (4.5%), dust particles (2.6%), carbonaceous species (70.7%), K-Rich particles (20.7%), seasalt (0.6%) and other particles (0.9%). Carbonaceous species were further divided into EC (70.6%), OC (28.5%), and mixed ECOC (0.9%). There were 61.7%, 58.3%, 4.0%, and 14.6% of particles internally mixed with sulfate, nitrate, ammonium and C2H3O, respectively, indicating that these particles had undergone significant aging processing. Sulfate was preferentially mixed with carbonaceous particles, while nitrate tended to mix with metal-containing and dust particles. Compared to clear days, the fractions of EC-, metal- and dust particles remarkably increased, while the fraction of OC-containing particles decreased in pollution days. The mixing state of particles, excepted for OC-containing particles with secondary species was much stronger in pollution days than that in clear days, which revealed the significant influence of secondary particles in atmospheric pollution. The different activity of OC-containing particles might be related to their much smaller aerodynamic diameter. These results could improve our understanding of aerosol characteristics and could be helpful to further investigate the atmospheric process of particles.

  17. Electrical Mobility Spectrometer Using a Diethylene Glycol Condensation Particle Counter for Measurement of Aerosol Size Distributions Down to 1 nm

    SciTech Connect

    Jiang, J.; Kuang, C.; Chen, M.; Attoui, M.; McMurry, P. H.

    2011-02-01

    We report a new scanning mobility particle spectrometer (SMPS) for measuring number size distributions of particles down to {approx}1 nm mobility diameter. This SMPS includes an aerosol charger, a TSI 3085 nano differential mobility analyzer (nanoDMA), an ultrafine condensation particle counter (UCPC) using diethylene glycol (DEG) as the working fluid, and a conventional butanol CPC (the 'booster') to detect the small droplets leaving the DEG UCPC. The response of the DEG UCPC to negatively charged sodium chloride particles with mobility diameters ranging from 1-6 nm was measured. The sensitivity of the DEG UCPC to particle composition was also studied by comparing its response to positively charged 1.47 and 1.70 nm tetra-alkyl ammonium ions, sodium chloride, and silver particles. A high resolution differential mobility analyzer was used to generate the test particles. These results show that the response of this UCPC to sub-2 nm particles is sensitive to particle composition. The applicability of the new SMPS for atmospheric measurement was demonstrated during the Nucleation and Cloud Condensation Nuclei (NCCN) field campaign (Atlanta, Georgia, summer 2009). We operated the instrument at saturator and condenser temperatures that allowed the efficient detection of sodium chloride particles but not of air ions having the same mobility. We found that particles as small as 1 nm were detected during nucleation events but not at other times. Factors affecting size distribution measurements, including aerosol charging in the 1-10 nm size range, are discussed. For the charger used in this study, bipolar charging was found to be more effective for sub-2 nm particles than unipolar charging. No ion induced nucleation inside the charger was observed during the NCCN campaign.

  18. Comparison of three techniques for analysis of data from an Aerosol Time-of-Flight Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Giorio, Chiara; Tapparo, Andrea; Dall'Osto, Manuel; Harrison, Roy M.; Beddows, David C. S.; Di Marco, Chiara; Nemitz, Eiko

    2012-12-01

    The Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) is one of few instruments able to measure the size and mass spectra of individual airborne particles with high temporal resolution. Data analysis is challenging and in the present study, we apply three different techniques (PMF, ART-2a and K-means) to a regional ATOFMS dataset collected at Harwell, UK. For the first time, Positive Matrix Factorization (PMF) was directly applied to single particle mass spectra as opposed to clusters already generated by the other methods. The analysis was performed on a total of 56,898 single particle mass spectra allowing the extraction of 10 factors, their temporal trends and size distributions, named CNO-COOH (cyanide, oxidized organic nitrogen and carboxylic acids), SUL (sulphate), NH4-OOA (ammonium and oxidized organic aerosol), NaCl, EC+ (elemental carbon positive fragments), OC-Arom (aromatic organic carbon), EC- (elemental carbon negative fragments), K (potassium), NIT (nitrate) and OC-CHNO (organic nitrogen). The 10 factor solution from single particle PMF analysis explained 45% of variance of the total dataset, but the factors are well defined from a chemical point of view. Different EC and OC components were separated: fresh EC (factor EC-) from aged EC (factor EC+) and different organic families (factors NH4-OOA, OC-Arom, OC-CHNO and CNO-COOH). A comparison was conducted between PMF, K-means cluster analysis and the ART-2a artificial neural network. K-means and ART-2a give broadly overlapping results (with 9 clusters, each describing the full composition of a particle type), while PMF, by effecting spectral deconvolution, was able to extract and separate the different chemical species contributing to particles, but loses some information on internal mixing. Relationships were also examined between the estimated volumes of ATOFMS PMF factors and species concentrations measured independently by GRAEGOR and AMS instruments, showing generally moderate to strong

  19. Characterization of a real-time tracer for Isoprene Epoxydiols-derived Secondary Organic Aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.; Day, D. A.; Ortega, A. M.; Hayes, P. L.; Krechmer, J. E.; Chen, Q.; Kuwata, M.; Liu, Y. J.; de Sá, S. S.; Martin, S. T.; Hu, M.; Budisulistiorini, S. H.; Riva, M.; Surratt, J. D.; St. Clair, J. M.; Isaacman-Van Wertz, G.; Yee, L. D.; Goldstein, A. H.; Carbone, S.; Artaxo, P.; de Gouw, J. A.; Koss, A.; Wisthaler, A.; Mikoviny, T.; Karl, T.; Kaser, L.; Jud, W.; Hansel, A.; Docherty, K. S.; Robinson, N. H.; Coe, H.; Allan, J. D.; Canagaratna, M. R.; Paulot, F.; Jimenez, J. L.

    2015-04-01

    Substantial amounts of secondary organic aerosol (SOA) can be formed from isoprene epoxydiols (IEPOX), which are oxidation products of isoprene mainly under low-NO conditions. Total IEPOX-SOA, which may include SOA formed from other parallel isoprene low-NO oxidation pathways, was quantified by applying Positive Matrix Factorization (PMF) to aerosol mass spectrometer (AMS) measurements. The IEPOX-SOA fractions of OA in multiple field studies across several continents are summarized here and show consistent patterns with the concentration of gas-phase IEPOX simulated by the GEOS-Chem chemical transport model. During the SOAS study, 78% of IEPOX-SOA is accounted for the measured molecular tracers, making it the highest level of molecular identification of an ambient SOA component to our knowledge. Enhanced signal at C5H6O+ (m/z 82) is found in PMF-resolved IEPOX-SOA spectra. To investigate the suitability of this ion as a tracer for IEPOX-SOA, we examine fC5H6O ( fC5H6O = C5H6O+/OA) across multiple field, chamber and source datasets. A background of ~ 1.7 ± 0.1‰ is observed in studies strongly influenced by urban, biomass-burning and other anthropogenic primary organic aerosol (POA). Higher background values of 3.1 ± 0.8‰ are found in studies strongly influenced by monoterpene emissions. The average laboratory monoterpene SOA value (5.5 ± 2.0‰) is 4 times lower than the average for IEPOX-SOA (22 ± 7‰). Locations strongly influenced by isoprene emissions under low-NO levels had higher fC5H6O (~ 6.5 ± 2.2‰ on average) than other sites, consistent with the expected IEPOX-SOA formation in those studies. fC5H6O in IEPOX-SOA is always elevated (12-40‰) but varies substantially between locations, which is shown to reflect large variations in its detailed molecular composition. The low fC5H6O (< 3‰) observed in non IEPOX-derived isoprene-SOA indicates that this tracer ion is specifically enhanced from IEPOX-SOA, and is not a tracer for all SOA from

  20. Characterization of a real-time tracer for Isoprene Epoxydiols-derived Secondary Organic Aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements

    DOE PAGESBeta

    Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.; Day, D. A.; Ortega, A. M.; Hayes, P. L.; Krechmer, J. E.; Chen, Q.; Kuwata, M.; Liu, Y. J.; et al

    2015-04-16

    Substantial amounts of secondary organic aerosol (SOA) can be formed from isoprene epoxydiols (IEPOX), which are oxidation products of isoprene mainly under low-NO conditions. Total IEPOX-SOA, which may include SOA formed from other parallel isoprene low-NO oxidation pathways, was quantified by applying Positive Matrix Factorization (PMF) to aerosol mass spectrometer (AMS) measurements. The IEPOX-SOA fractions of OA in multiple field studies across several continents are summarized here and show consistent patterns with the concentration of gas-phase IEPOX simulated by the GEOS-Chem chemical transport model. During the SOAS study, 78% of IEPOX-SOA is accounted for the measured molecular tracers, making itmore » the highest level of molecular identification of an ambient SOA component to our knowledge. Enhanced signal at C5H6O+ (m/z 82) is found in PMF-resolved IEPOX-SOA spectra. To investigate the suitability of this ion as a tracer for IEPOX-SOA, we examine fC5H6O ( fC5H6O = C5H6O+/OA) across multiple field, chamber and source datasets. A background of ~ 1.7 ± 0.1‰ is observed in studies strongly influenced by urban, biomass-burning and other anthropogenic primary organic aerosol (POA). Higher background values of 3.1 ± 0.8‰ are found in studies strongly influenced by monoterpene emissions. The average laboratory monoterpene SOA value (5.5 ± 2.0‰) is 4 times lower than the average for IEPOX-SOA (22 ± 7‰). Locations strongly influenced by isoprene emissions under low-NO levels had higher fC5H6O (~ 6.5 ± 2.2‰ on average) than other sites, consistent with the expected IEPOX-SOA formation in those studies. fC5H6O in IEPOX-SOA is always elevated (12–40‰) but varies substantially between locations, which is shown to reflect large variations in its detailed molecular composition. The low fC5H6O (< 3‰) observed in non IEPOX-derived isoprene-SOA indicates that this tracer ion is specifically enhanced from IEPOX-SOA, and is not a tracer for all SOA

  1. Preliminary Observations of organic gas-particle partitioning from biomass combustion smoke using an aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Lee, T.; Kreidenweis, S. M.; Collett, J. L.; Sullivan, A. P.; Carrico, C. M.; Jimenez, J. L.; Cubison, M.; Saarikoski, S.; Worsnop, D. R.; Onasch, T. B.; Fortner, E.; Malm, W. C.; Lincoln, E.; Wold, C. E.; Hao, W.

    2010-12-01

    Aerosols play important roles in adverse health effects, indirect and direct forcing of Earth’s climate, and visibility degradation. Biomass burning emissions from wild and prescribed fires can make a significant contribution to ambient aerosol mass in many locations and seasons. In order to better understand the chemical properties of particles produced by combustion of wild land fuels, an experiment was conducted in 2009 at the U.S. Forest Service/United States Department of Agriculture (USFS/USDA) Fire Science Laboratory (FSL) located in Missoula, Montana, to measure volatility of open biomass burning emissions for a variety of fuel types. Both isothermal and temperature-dependent volatilization were studied, using an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) coupled with thermal denuder. Small quantities (200-800g) of various fuel types, primarily from the U.S., were burned in a large combustion chamber and diluted in two stages in continuous-flow residence chambers. The partitioning of particulate organic mass concentrations by the HR-ToF-AMS was evaluated for each fuel type using nominal dilution ratios characterized both by measuring flow rates in continuous-flow residence chambers and from the concentrations of several conserved tracers. The volatility of biomass burning smoke was found to vary across fuel types. Up to ~60% volatile loss of organic matter was observed as a result of dilution for some smoke samples (e.g., Lodgepole pine and Ponderosa pine). We will investigate relationships between volatility and several parameters such as the absolute mass concentration and chemical composition. We will also examine the behavior of biomass burning tracers, such as AMS m/z 60, under dilution conditions. Previous studies (e.g. Lee et al., AS&T 2010 and Aiken et al., ACP 2009) have observed a strong relationship between OA and AMS m/z 60 in fresh biomass burning smoke. We will examine whether this relationship is altered

  2. Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational pure-rotational Raman lidar

    NASA Astrophysics Data System (ADS)

    Balin, I.; Serikov, I.; Bobrovnikov, S.; Simeonov, V.; Calpini, B.; Arshinov, Y.; van den Bergh, H.

    2004-10-01

    Implementation of the pure-rotational Raman (PRR) lidar method for simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients is reported. The isolation of two wavelength domains of the PRR spectrum and the suppression of the elastically scattered light is carried out by a double-grating polychromator. Experiments involving elastic backscatter from dense clouds and a solid target confirm the high level of suppression of the elastic light in the corresponding acquisition channels of the two selected PRR domains. Calibration of the temperature channel was done both by comparison with an experimentally verified atmospheric temperature model profile and by inter-comparison with radiosondes. Night-time temperature profiles with high vertical resolution were obtained up to the lower stratosphere. The PRR temperature profile combined with the water vapor mixing ratio obtained from the ro-vibrational Raman channel is used to estimate the relative humidity.

  3. Condensation nuclei and aerosol-scattering extinction measurements at Mauna Loa Observatory: 1974-1985. Data report

    SciTech Connect

    Massey, D.M.; Quakenbush, T.K.; Bodhaine, B.A.

    1987-07-01

    The observatory at Mauna Loa, Hawaii measures the characteristics of surface aerosols under background conditions. The instruments provide data that are representative of the background-aerosol climatology at Mauna Loa. These data can also be used to identify potential local contamination periods. The nephelometer's light-scattering measurements show an annual cycle: a maximum in April and a minimum in November, with a variation of a factor of 5.5. The Condensation Nucleus (CN) counter shows a much smaller annual cycle: a maximum in September and a minimum in March, with a variation of a factor of 1.5. A local decrease in CN concentration occurs in August. The Angstrom exponent minimum occurs in May. This indicates larger aerosol particles within the month as compared with the remainder of the year.

  4. CU AMAX-DOAS applications in cloud-free and cloudy atmospheres: innovative Scattered Sun Light observations of trace gases and aerosol extinction

    NASA Astrophysics Data System (ADS)

    Volkamer, R.; Baidar, S.; Coburn, S.; Dix, B. K.; Oetjen, H.; Ortega, I.; Sinreich, R.; Atmospeclab

    2011-12-01

    An innovative airborne scanning multi-axis differential optical absorption spectroscopy (CU AMAX-DOAS) instrument has been developed at the University of Colorado, Boulder. The instrument collects scattered sunlight spectra in a sequence of discrete viewing angles, and employs the DOAS method (inherently calibrated, and selective) to simultaneously retrieve multiple trace gases, e.g., nitrogen dioxide (NO2), nitrous acid (HONO), formaldehyde (HCHO), glyoxal (CHOCHO), bromine oxide (BrO), iodine oxide (IO), chlorine dioxide (OClO), water vapor (H2O), and oxygen dimers (O4, at 360nm, 477nm, and 632nm) differential slant column densities (dSCD). Vertical profiles of these gases and multi-spectral aerosol extinction are inferred by combining Monte-Carlo Radiative Transfer Modelling (RTM) and optimal estimation techniques to construct a model atmosphere that can in principle represent 3D clouds and aerosols. The atmospheric state of this model atmosphere is constrained by observations of O4 dSCDs, Raman Scattering Probability (RSP), and intensity ratios, i.e., quantities that depend solely on relative intensity changes, without need for a direct sun view, or absolute radiance calibration. We show results from ongoing validation efforts (NOAA TwinOtter aircraft during CalNex and CARES), and demonstrate vertical profile retrievals (NSF/NCAR GV over the tropical Pacific Ocean) in both cloud-free and cloudy atmospheres.

  5. Particulate contamination spectrometer. Volume 1: Technical report

    NASA Technical Reports Server (NTRS)

    Schmitt, R. J.; Boyd, B. A.; Linford, R. M. F.

    1975-01-01

    A laser particulate spectrometer (LPS) system was developed to measure the size and speed distributions of particulate (dusts, aerosols, ice particles, etc.) contaminants. Detection of the particulates was achieved by means of light scattering and extinction effects using a single laser beam to cover a size range of 0.8 to 275 microns diameter and a speed range of 0.2 to 20 meter/second. The LPS system was designed to operate in the high vacuum environment of a space simulation chamber with cold shroud temperatures ranging from 77 to 300 K.

  6. El Chichon and 'mystery cloud' aerosols between 30 and 55 km Global observations from the SME visible spectrometer

    NASA Technical Reports Server (NTRS)

    Clancy, R. T.

    1986-01-01

    Visible limb radiances measured by the Solar Mesosphere Explorer (SME) are used to obtain volume scattering ratios for aerosol loading in the 30-55 km altitude range of the stratosphere. Global maps of these ratios are presented for the period January 1982 to August 1984. Significant aerosol scattering from the 'mystery cloud' and El Chichon aerosol layers are found above 30 km. A timescale of approximately 2 months between the appearance of the aerosol at 30.5 km and at 37.5 km is consistent with vertical transport of aerosol or vapor by eddy diffusion above 30 km. An anticorrelation exists between aerosol scattering and stratospheric temperatures. Periods of lower stratospheric temperatures may account for the formation of aerosol between 40 and 55 km altitude.

  7. Initial Assessment of the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR)-Based Aerosol Retrieval: Sensitivity Study

    SciTech Connect

    Kassianov, Evgueni I.; Flynn, Connor J.; Redemann, Jens; Schmid, Beat; Russell, P. B.; Sinyuk, Alexander

    2012-10-24

    The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) being developed for airborne measurements will offer retrievals of aerosol microphysical and optical properties from multi-angular and multi-spectral measurements of sky radiance and direct-beam sun transmittance. In this study, we assess the expected accuracy of the 4STAR-based aerosol retrieval and its sensitivity to major sources of anticipated perturbations in the 4STAR measurements by adapting a theoretical approach previously developed for the AERONET measurements. The major anticipated perturbations are (1) an apparent enhancement of sky radiance at small scattering angles associated with the necessarily compact design of the 4STAR and (2) and an offset (i.e. uncertainty) of sky radiance calibration independent of scattering angle. The assessment is performed through application of the operational AERONET aerosol retrieval and constructed synthetic 4STAR-like data. Particular attention is given to the impact of these perturbations on the upwelling and downwelling broadband fluxes and the direct aerosol radiative forcing at the bottom and top of the atmosphere. The results from this study suggest that limitations in the accuracy of 4STAR-retrieved particle size distributions and scattering phase functions have diminished impact on the accuracy of retrieved bulk microphysical parameters, permitting quite accurate retrievals of properties including the effective radius (up to 10%, or 0.03), and the radiatively important optical properties, such as the asymmetry factor (up to 4%, or ±0.02) and single-scattering albedo (up to 6%, or ±0.04). Also, the obtained results indicate that the uncertainties in the retrieved aerosol optical properties are quite small in the context of the calculated fluxes and direct aerosol radiative forcing (up to 15%, or 3 Wm-2).

  8. In-Flight Chemical Composition Observations of Aircraft Emissions using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Ziemba, L. D.; Martin, R.; Moore, R.; Shook, M.; Thornhill, K. L., II; Winstead, E.; Anderson, B. E.

    2015-12-01

    Commercial aircraft are an important source of aerosols to the upper troposphere. The microphysical and chemical properties of these emitted aerosols govern their ability to act as ice nuclei, both in near-field contrails and for cirrus formation downstream. During the ACCESS-II (Alternative Fuel Effects on Contrails and Cruise Emissions) campaign, NASA DC-8 CFM56-2-C1 engine emissions were sampled systematically at a range of cruise-relevant thrust levels and at several altitudes. Sampling was done aboard the NASA HU-25 Falcon aircraft, which was equipped with a suite of aerosol and gas-phase instruments focused on assessing the effects of burning different fuel mixtures on aerosol properties and their associated contrails. Here we present in-flight measurements of particle chemical composition made by a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). The AMS was able to sufficiently resolve near-field (within 100m) aircraft emissions plumes. Low-sulfur HEFA (hydro-processed esters and fatty-acids) and JetA fuels yielded particles that contained 11 and 8% sulfate, respectively, compared to 30% sulfate contribution for traditional JetA fuel. Each of the fuels produced organic aerosol with similarly low oxygen content. Lubrication oils, which are not a combustion product but result from leaks in the engine, were likely a dominant fraction of the measured organic mass based on mass-spectral marker analysis. These results are compared to similar engine conditions from ground-based testing.

  9. A new approach for retrieving the UV-vis optical properties of ambient aerosols

    NASA Astrophysics Data System (ADS)

    Bluvshtein, Nir; Flores, J. Michel; Segev, Lior; Rudich, Yinon

    2016-08-01

    Atmospheric aerosols play an important part in the Earth's energy budget by scattering and absorbing incoming solar and outgoing terrestrial radiation. To quantify the effective radiative forcing due to aerosol-radiation interactions, researchers must obtain a detailed understanding of the spectrally dependent intensive and extensive optical properties of different aerosol types. Our new approach retrieves the optical coefficients and the single-scattering albedo of the total aerosol population over 300 to 650 nm wavelength, using extinction measurements from a broadband cavity-enhanced spectrometer at 315 to 345 nm and 390 to 420 nm, extinction and absorption measurements at 404 nm from a photoacoustic cell coupled to a cavity ring-down spectrometer, and scattering measurements from a three-wavelength integrating nephelometer. By combining these measurements with aerosol size distribution data, we retrieved the time- and wavelength-dependent effective complex refractive index of the aerosols. Retrieval simulations and laboratory measurements of brown carbon proxies showed low absolute errors and good agreement with expected and reported values. Finally, we implemented this new broadband method to achieve continuous spectral- and time-dependent monitoring of ambient aerosol population, including, for the first time, extinction measurements using cavity-enhanced spectrometry in the 315 to 345 nm UV range, in which significant light absorption may occur.

  10. Estimation of aerosol optical depth and additional atmospheric parameters for the calculation of apparent reflectance from radiance measured by the Airborne Visible/Infrared Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Conel, James E.; Roberts, Dar A.

    1993-01-01

    The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) measures spatial images of the total upwelling spectral radiance from 400 to 2500 nm through 10 nm spectral channels. Quantitative research and application objectives for surface investigations require inversion of the measured radiance of surface reflectance or surface leaving radiance. To calculate apparent surface reflectance, estimates of atmospheric water vapor abundance, cirrus cloud effects, surface pressure elevation, and aerosol optical depth are required. Algorithms for the estimation of these atmospheric parameters from the AVIRIS data themselves are described. From these atmospheric parameters we show an example of the calculation of apparent surface reflectance from the AVIRIS-measured radiance using a radiative transfer code.

  11. Collection efficiency of the Soot-Particle Aerosol Mass Spectrometer (SP-AMS) for internally mixed particulate black carbon

    DOE PAGESBeta

    Willis, M. D.; Lee, A. K. Y.; Onasch, T. B.; Fortner, E. C.; Williams, L. R.; Lambe, A. T.; Worsnop, D. R.; Abbatt, J. P. D.

    2014-05-26

    The soot-particle aerosol mass spectrometer (SP-AMS) uses an intra-cavity infrared laser to vaporize refractory black carbon (rBC) containing particles, making the particle beam–laser beam overlap critical in determining the collection efficiency (CE) for rBC and associated non-refractory particulate matter (NR-PM). This work evaluates the ability of the SP-AMS to quantify rBC and NR-PM mass in internally mixed particles with different thicknesses of organic coating. Using apparent relative ionization efficiencies for uncoated and thickly coated rBC particles, we report measurements of SP-AMS sensitivity to NR-PM and rBC, for Regal Black, the recommended particulate calibration material. Beam width probe (BWP) measurements aremore » used to illustrate an increase in sensitivity for highly coated particles due to narrowing of the particle beam, which enhances the CE of the SP-AMS by increasing the laser beam–particle beam overlap. Assuming complete overlap for thick coatings, we estimate CE for bare Regal Black particles of 0.6 ± 0.1, which suggests that previously measured SP-AMS sensitivities to Regal Black were underestimated by up to a factor of two. The efficacy of the BWP measurements is highlighted by studies at a busy road in downtown Toronto and at a non-roadside location, which show particle beam widths similar to, but greater than that of bare Regal Black and coated Regal Black, respectively. Further BWP measurements at field locations will help to constrain the range of CE for fresh and aged rBC-containing particles. The ability of the SP-AMS to quantitatively assess the composition of internally mixed particles is validated through measurements of laboratory-generated organic coated particles, which demonstrate that the SP-AMS can quantify rBC and NR-PM over a wide range of particle compositions and rBC core sizes.« less

  12. Collection efficiency of the soot-particle aerosol mass spectrometer (SP-AMS) for internally mixed particulate black carbon

    DOE PAGESBeta

    Willis, M. D.; Lee, A. K. Y.; Onasch, T. B.; Fortner, E. C.; Williams, L. R.; Lambe, A. T.; Worsnop, D. R.; Abbatt, J. P. D.

    2014-12-18

    The soot-particle aerosol mass spectrometer (SP-AMS) uses an intra-cavity infrared laser to vaporize refractory black carbon (rBC) containing particles, making the particle beam–laser beam overlap critical in determining the collection efficiency (CE) for rBC and associated non-refractory particulate matter (NR-PM). This work evaluates the ability of the SP-AMS to quantify rBC and NR-PM mass in internally mixed particles with different thicknesses of organic coating. Using apparent relative ionization efficiencies for uncoated and thickly coated rBC particles, we report measurements of SP-AMS sensitivity to NR-PM and rBC, for Regal Black, the recommended particulate calibration material. Beam width probe (BWP) measurements aremore » used to illustrate an increase in sensitivity for highly coated particles due to narrowing of the particle beam, which enhances the CE of the SP-AMS by increasing the laser beam–particle beam overlap. Assuming complete overlap for thick coatings, we estimate CE for bare Regal Black particles of 0.6 ± 0.1, which suggests that previously measured SP-AMS sensitivities to Regal Black were underestimated by up to a factor of 2. The efficacy of the BWP measurements is highlighted by studies at a busy road in downtown Toronto and at a non-roadside location, which show particle beam widths similar to, but greater than that of bare Regal Black and coated Regal Black, respectively. Further BWP measurements at field locations will help to constrain the range of CE for fresh and aged rBC-containing particles. The ability of the SP-AMS to quantitatively assess the composition of internally mixed particles is validated through measurements of laboratory-generated organic coated particles, which demonstrate that the SP-AMS can quantify rBC and NR-PM over a wide range of particle compositions and rBC core sizes.« less

  13. Experimental correlations for transient soot measurement in diesel exhaust aerosol with light extinction, electrical mobility and diffusion charger sensor techniques

    NASA Astrophysics Data System (ADS)

    Bermúdez, Vicente; Pastor, José V.; López, J. Javier; Campos, Daniel

    2014-06-01

    A study of soot measurement deviation using a diffusion charger sensor with three dilution ratios was conducted in order to obtain an optimum setting that can be used to obtain accurate measurements in terms of soot mass emitted by a light-duty diesel engine under transient operating conditions. The paper includes three experimental phases: an experimental validation of the measurement settings in steady-state operating conditions; evaluation of the proposed setting under the New European Driving Cycle; and a study of correlations for different measurement techniques. These correlations provide a reliable tool for estimating soot emission from light extinction measurement or from accumulation particle mode concentration. There are several methods and correlations to estimate soot concentration in the literature but most of them were assessed for steady-state operating points. In this case, the correlations are obtained by more than 4000 points measured in transient conditions. The results of the new two correlations, with less than 4% deviation from the reference measurement, are presented in this paper.

  14. Integrated Analyses of Multiple Worldwide Aerosol Mass Spectrometer Datasets for Improved Understanding of Aerosol Sources and Processes and for Comparison with Global Models

    SciTech Connect

    Zhang, Qi; Jose, Jimenez Luis

    2014-04-28

    The AMS is the only current instrument that provides real-time, quantitative, and size-resolved data on submicron non-refractory aerosol species with a time resolution of a few minutes or better. The AMS field data are multidimensional and massive, containing extremely rich information on aerosol chemistry, microphysics and dynamics—basic information that is required to evaluate and quantify the radiative climate forcing of atmospheric aerosols. The high time resolution of the AMS data also reveals details of aerosol dynamic variations that are vital to understanding the physico-chemical processes of atmospheric aerosols that govern aerosol properties relevant to the climate. There are two primary objectives of this 3-year project. Our first objective is to perform highly integrated analysis of dozens of AMS datasets acquired from various urban, forested, coastal, marine, mountain peak, and rural/remote locations around the world and synthesize and inter-compare results with a focus on the sources and the physico-chemical processes that govern aerosol properties relevant to aerosol climate forcing. Our second objective is to support our collaboration with global aerosol modelers, in which we will supply the size-resolved aerosol composition and temporal variation data (via a public web interface) and our analysis results for use in model testing and validation and for translation of the rich AMS database into model constraints that can improve climate forcing simulations. Several prominent global aerosol modelers have expressed enthusiastic support for this collaboration. The specific tasks that we propose to accomplish include 1) to develop, validate, and apply multivariate analysis techniques for improved characterization and source apportionment of organic aerosols; 2) to evaluate aerosol source regions and relative contributions based on back-trajectory integration (PSCF method); 3) to summarize and synthesize submicron aerosol information, including

  15. Spectral signatures of polar stratospheric clouds and sulfate aerosol

    SciTech Connect

    Massie, S.T.; Bailey, P.L.; Gille, J.C.; Lee, E.C.; Mergenthaler, J.L.; Roche, A.E.; Kumer, J.B.; Fishbein, E.F.; Waters, J.W.; Lahoz, W.A.

    1994-10-15

    Multiwavelength observations of Antarctic and midlatitude aerosol by the Cryogenic Limb Array Etalon Spectrometer (CLAES) experiment on the Upper Atmosphere Research Satellite are used to demonstrate a technique that identifies the location of polar stratospheric clouds. The technique discussed uses the normalized area of the triangle formed by the aerosol extinctions at 925, 1257, and 1605 cm{sup {minus}1} (10.8, 8.0, and 6.2 {mu}m) to derive a spectral aerosol measure M of the aerosol spectrum. Mie calculations for spherical particles and T-matrix calculations for spheroidal particles are used to generate theoretical spectral extinction curves for sulfate and polar stratospheric cloud particles. The values of the spectral aerosol measure M for the sulfate and polar stratospheric cloud particles are shown to be different. Aerosol extinction data, corresponding to temperatures between 180 and 220 K at a pressure of 46 hPa (near 21-km altitude) for 18 August 1992, are used to demonstrate the technique. Thermodynamic calculations, based upon frost-point calculation and laboratory phase-equilibrium studies of nitric acid trihydrate, are used to predict the location of nitric acid trihydrate cloud particles. 47 refs., 22 figs., 3 tabs.

  16. Spectral signatures of polar stratospheric clouds and sulfate aerosol

    NASA Technical Reports Server (NTRS)

    Massie, S. T.; Bailey, P. L.; Gille, J. C.; Lee, E. C.; Mergenthaler, J. L.; Roche, A. E.; Kumer, J. B.; Fishbein, E. F.; Waters, J. W.; Lahoz, W. A.

    1994-01-01

    Multiwavelength observations of Antarctic and midlatitude aerosol by the Cryogenic Limb Array Etalon Spectrometer (CLAES) experiment on the Upper Atmosphere Research Satellite (UARS) are used to demonstrate a technique that identifies the location of polar stratospheric clouds. The technique discussed uses the normalized area of the triangle formed by the aerosol extinctions at 925, 1257, and 1605/cm (10.8, 8.0, and 6.2 micrometers) to derive a spectral aerosol measure M of the aerosol spectrum. Mie calculations for spherical particles and T-matrix calculations for spheriodal particles are used to generate theoretical spectral extinction curves for sulfate and polar stratospheric cloud particles. The values of the spectral aerosol measure M for the sulfate and polar stratospheric cloud particles are shown to be different. Aerosol extinction data, corresponding to temperatures between 180 and 220 K at a pressure of 46 hPa (near 21-km altitude) for 18 August 1992, are used to demonstrate the technique. Thermodynamic calculations, based upon frost-point calculations and laboratory phase-equilibrium studies of nitric acid trihydrate, are used to predict the location of nitric acid trihydrate cloud particles.

  17. ACTRIS ACSM intercomparison - Part 2: Intercomparison of ME-2 organic source apportionment results from 15 individual, co-located aerosol mass spectrometers

    NASA Astrophysics Data System (ADS)

    Fröhlich, R.; Crenn, V.; Setyan, A.; Belis, C. A.; Canonaco, F.; Favez, O.; Riffault, V.; Slowik, J. G.; Aas, W.; Aijälä, M.; Alastuey, A.; Artiñano, B.; Bonnaire, N.; Bozzetti, C.; Bressi, M.; Carbone, C.; Coz, E.; Croteau, P. L.; Cubison, M. J.; Esser-Gietl, J. K.; Green, D. C.; Gros, V.; Heikkinen, L.; Herrmann, H.; Jayne, J. T.; Lunder, C. R.; Minguillón, M. C.; Močnik, G.; O'Dowd, C. D.; Ovadnevaite, J.; Petralia, E.; Poulain, L.; Priestman, M.; Ripoll, A.; Sarda-Estève, R.; Wiedensohler, A.; Baltensperger, U.; Sciare, J.; Prévôt, A. S. H.

    2015-06-01

    Chemically resolved atmospheric aerosol data sets from the largest intercomparison of the Aerodyne aerosol chemical speciation monitors (ACSMs) performed to date were collected at the French atmospheric supersite SIRTA. In total 13 quadrupole ACSMs (Q-ACSM) from the European ACTRIS ACSM network, one time-of-flight ACSM (ToF-ACSM), and one high-resolution ToF aerosol mass spectrometer (AMS) were operated in parallel for about 3 weeks in November and December~2013. Part 1 of this study reports on the accuracy and precision of the instruments for all the measured species. In this work we report on the intercomparison of organic components and the results from factor analysis source apportionment by positive matrix factorisation (PMF) utilising the multilinear engine 2 (ME-2). Except for the organic contribution of mass-to-charge ratio m/z 44 to the total organics (f44), which varied by factors between 0.6 and 1.3 compared to the mean, the peaks in the organic mass spectra were similar among instruments. The m/z 44 differences in the spectra resulted in a variable f44 in the source profiles extracted by ME-2, but had only a minor influence on the extracted mass contributions of the sources. The presented source apportionment yielded four factors for all 15 instruments: hydrocarbon-like organic aerosol (HOA), cooking-related organic aerosol (COA), biomass burning-related organic aerosol (BBOA) and secondary oxygenated organic aerosol (OOA). ME-2 boundary conditions (profile constraints) were optimised individually by means of correlation to external data in order to achieve equivalent / comparable solutions for all ACSM instruments and the results are discussed together with the investigation of the influence of alternative anchors (reference profiles). A comparison of the ME-2 source apportionment output of all 15 instruments resulted in relative standard deviations (SD) from the mean between 13.7 and 22.7 % of the source's average mass contribution depending on the

  18. Single particles measured by a light scattering module coupled to a time-of-flight aerosol mass spectrometer onboard the NOAA P-3 aircraft during SENEX

    NASA Astrophysics Data System (ADS)

    Liao, J.; Middlebrook, A. M.; Welti, A.; Sueper, D.; Murphy, D. M.

    2014-12-01

    Single particles in the eastern US were characterized by a light scattering module coupled to a time-of-flight aerosol mass spectrometer (LS-ToF-AMS) onboard the NOAA P-3 aircraft during the Southeastern Nexus (SENEX) campaign. Single particle data were collected for 30 seconds every 5 minutes. Aerosols larger than 200-300 nm in vacuum aerodynamic diameter can be optically detected by the 405 nm crystal laser and trigger the saving of single particle mass spectra. The measured single particles are internally-mixed as expected. The single particles were classified as prompt, delayed, and null based on the chemical ion signal arrival time difference between prediction from the light scattering signal and measurement by mass spectrometer and the presence or absence of a mass spectrum. On average the number fraction of particles detected as prompt, delayed, and null (no spectrum) is about 30%, 10%, and 60%. The number fraction of these three particle types varied with aerosol size, chemical composition and the investigation region and will be discussed in detail. For example, the number fraction of prompt particles was significantly higher for the flight to the Pennsylvania natural gas shale region on July 6, 2013, which is probably related to the chemical composition (more acidic) and phase of the ambient particles. These particle types and detection efficiency are related to the bouncing effect on the vaporizer and may provide insight into the non-unit AMS collection efficiency. Moreover, most of the particles larger than 800 nm in vacuum aerodynamic diameter sized with the traditional AMS PToF mode are delayed particles and their mass spectral signals appear to be affected by this process.

  19. Single particle characterization using a light scattering module coupled to a time-of-flight aerosol mass spectrometer

    SciTech Connect

    Cross, E.; Onasch, Timothy B.; Canagaratna, Manjula; Jayne, J. T.; Kimmel, Joel; Yu, Xiao-Ying; Alexander, M. L.; Worsnop, Douglas R.; Davidovits, Paul

    2009-10-01

    To accurately model the radiative forcing of aerosol particles, one must measure in real-time the size, shape, density, chemical composition, and mixing state of ambient particles. This is a formidable challenge because the chemical and physical properties of the aerosol particles are highly complex, dependent on the emission sources, the geography and meteorology of the surroundings, and the gas phase composition of the regional atmosphere.

  20. Direct measurements of mass-specific optical cross sections of single-component aerosol mixtures.

    PubMed

    Radney, James G; Ma, Xiaofei; Gillis, Keith A; Zachariah, Michael R; Hodges, Joseph T; Zangmeister, Christopher D

    2013-09-01

    The optical properties of atmospheric aerosols vary widely, being dependent upon particle composition, morphology, and mixing state. This diversity and complexity of aerosols motivates measurement techniques that can discriminate and quantify a variety of single- and multicomponent aerosols that are both internally and externally mixed. Here, we present a new combination of techniques to directly measure the mass-specific extinction and absorption cross sections of laboratory-generated aerosols that are relevant to atmospheric studies. Our approach employs a tandem differential mobility analyzer, an aerosol particle mass analyzer, cavity ring-down and photoacoustic spectrometers, and a condensation particle counter. This suite of instruments enables measurement of aerosol particle size, mass, extinction and absorption coefficients, and aerosol number density, respectively. Taken together, these observables yield the mass-specific extinction and absorption cross sections without the need to model particle morphology or account for sample collection artifacts. Here we demonstrate the technique in a set of case studies which involve complete separation of aerosol by charge, separation of an external mixture by mass, and discrimination between particle types by effective density and single-scattering albedo. PMID:23875772

  1. Inversion of tropospheric profiles of aerosol extinction and HCHO and NO2 mixing ratios from MAX-DOAS observations in Milano during the summer of 2003 and comparison with independent data sets

    NASA Astrophysics Data System (ADS)

    Wagner, T.; Beirle, S.; Brauers, T.; Deutschmann, T.; Frieß, U.; Hak, C.; Halla, J. D.; Heue, K. P.; Junkermann, W.; Li, X.; Platt, U.; Pundt-Gruber, I.

    2011-12-01

    We present aerosol and trace gas profiles derived from MAX-DOAS observations. Our inversion scheme is based on simple profile parameterisations used as input for an atmospheric radiative transfer model (forward model). From a least squares fit of the forward model to the MAX-DOAS measurements, two profile parameters are retrieved including integrated quantities (aerosol optical depth or trace gas vertical column density), and parameters describing the height and shape of the respective profiles. From these results, the aerosol extinction and trace gas mixing ratios can also be calculated. We apply the profile inversion to MAX-DOAS observations during a measurement campaign in Milano, Italy, September 2003, which allowed simultaneous observations from three telescopes (directed to north, west, south). Profile inversions for aerosols and trace gases were possible on 23 days. Especially in the middle of the campaign (17-20 September 2003), enhanced values of aerosol optical depth and NO2 and HCHO mixing ratios were found. The retrieved layer heights were typically similar for HCHO and aerosols. For NO2, lower layer heights were found, which increased during the day. The MAX-DOAS inversion results are compared to independent measurements: (1) aerosol optical depth measured at an AERONET station at Ispra; (2) near-surface NO2 and HCHO (formaldehyde) mixing ratios measured by long path DOAS and Hantzsch instruments at Bresso; (3) vertical profiles of HCHO and aerosols measured by an ultra light aircraft. Depending on the viewing direction, the aerosol optical depths from MAX-DOAS are either smaller or larger than those from AERONET observations. Similar comparison results are found for the MAX-DOAS NO2 mixing ratios versus long path DOAS measurements. In contrast, the MAX-DOAS HCHO mixing ratios are generally higher than those from long path DOAS or Hantzsch instruments. The comparison of the HCHO and aerosol profiles from the aircraft showed reasonable agreement with

  2. Inversion of tropospheric profiles of aerosol extinction and HCHO and NO2 mixing ratios from MAX-DOAS observations in Milano during the summer of 2003 and comparison with independent data sets

    NASA Astrophysics Data System (ADS)

    Wagner, T.; Beirle, S.; Brauers, T.; Deutschmann, T.; Frieß, U.; Hak, C.; Halla, J. D.; Heue, K. P.; Junkermann, W.; Li, X.; Platt, U.; Pundt-Gruber, I.

    2011-06-01

    We present aerosol and trace gas profiles derived from MAX-DOAS observations. Our inversion scheme is based on simple profile parameterisations used as input for an atmospheric radiative transfer model (forward model). From a least squares fit of the forward model to the MAX-DOAS measurements, two profile parameters are retrieved including integrated quantities (aerosol optical depth or trace gas vertical column density), and parameters describing the height and shape of the respective profiles. From these results, the aerosol extinction and trace gas mixing ratios can also be calculated. We apply the profile inversion to MAX-DOAS observations during a measurement campaign in Milano, Italy, September 2003, which allowed simultaneous observations from three telescopes (directed to north, west, south). Profile inversions for aerosols and trace gases were possible on 23 days. Especially in the middle of the campaign (17-20 September 2003), enhanced values of aerosol optical depth and NO2 and HCHO mixing ratios were found. The retrieved layer heights were typically similar for HCHO and aerosols. For NO2, lower layer heights were found, which increased during the day. The MAX-DOAS inversion results are compared to independent measurements: (1) aerosol optical depth measured at an AERONET station at Ispra; (2) near-surface NO2 and HCHO (formaldehyde) mixing ratios measured by long path DOAS and Hantzsch instruments at Bresso; (3) vertical profiles of HCHO and aerosols measured by an ultra light aircraft. Depending on the viewing direction, the aerosol optical depths from MAX-DOAS are either smaller or larger than those from AERONET observations. Similar comparison results are found for the MAX-DOAS NO2 mixing ratios versus long path DOAS measurements. In contrast, the MAX-DOAS HCHO mixing ratios are generally higher than those from long path DOAS or Hantzsch instruments. The comparison of the HCHO and aerosol profiles from the aircraft showed reasonable agreement with

  3. Application of FIGAERO (Filter Inlet for Gases and AEROsol) coupled to a high resolution time of flight chemical ionization mass spectrometer to field and chamber organic aerosol: Implications for carboxylic acid formation and gas-particle partitioning from monoterpene oxidation

    NASA Astrophysics Data System (ADS)

    Lopez-Hilfiker, F.; Mohr, C.; Ehn, M.; Rubach, F.; Mentel, T. F.; Kleist, E.; Wildt, J.; Thornton, J. A.

    2013-12-01

    We present measurements of a large suite of gas and particle phase carboxylic acid containing compounds made with a Filter Inlet for Gas and AEROsol (FIGAERO) coupled to a high resolution time of flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. A prototype operated with acetate negative ion proton transfer chemistry was deployed on the Julich Plant Atmosphere Chamber to study a-pinene oxidation, and a modified version was deployed at the SMEAR II forest station in Hyytiälä, Finland and SOAS, in Brent Alabama. We focus here on results from JPAC and Hyytiälä, where we utilized the same ionization method most selective towards carboxylic acids. In all locations, 100's of organic acid compounds were observed in the gas and particles and many of the same composition acids detected in the gas-phase were detected in the particles upon temperature programmed thermal desorption. Particulate organics detected by FIGAERO are highly correlated with organic aerosol mass measured by an AMS, providing additional volatility and molecular level information about collected aerosol. The fraction of a given compound measured in the particle phase follows expected trends with elemental composition, but many compounds would not be well described by an absorptive partitioning model assuming unity activity coefficients. Moreover the detailed structure in the thermal desorption signals reveals a contribution from thermal decomposition of large molecular weight organics and or oligomers with implications for partitioning measurements and model validation

  4. Investigations of primary and secondary particulate matter of different wood combustion appliances with a high-resolution time-of-flight aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Heringa, M. F.; Decarlo, P. F.; Chirico, R.; Tritscher, T.; Dommen, J.; Weingartner, E.; Richter, R.; Wehrle, G.; Prévôt, A. S. H.; Baltensperger, U.

    2011-06-01

    A series of photo-oxidation smog chamber experiments were performed to investigate the primary emissions and secondary aerosol formation from two different log wood burners and a residential pellet burner under different burning conditions: starting and flaming phase. Emissions were sampled from the chimney and injected into the smog chamber leading to primary organic aerosol (POA) concentrations comparable to ambient levels. The composition of the aerosol was measured by an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and black carbon (BC) instrumentation. The primary emissions were then exposed to xenon light to initiate photo-chemistry and subsequent secondary organic aerosol (SOA) production. After correcting for wall losses, the average increase in organic matter (OM) concentrations by SOA formation for the starting and flaming phase experiments with the two log wood burners was found to be a factor of 4.1±1.4 after five hours of aging. No SOA formation was observed for the stable burning phase of the pellet burner. The startup emissions of the pellet burner showed an increase in OM concentration by a factor of 3.3. Including the measured SOA formation potential, average emission factors of BC+POA+SOA, calculated from CO2 emission, were found to be in the range of 0.04 to 3.9 g/kg wood for the stable burning pellet burner and an old log wood burner during startup respectively. SOA contributed significantly to the ion C2H4O2+ at mass to charge ratio m/z 60, a commonly used marker for primary emissions of wood burning. This contribution at m/z 60 can overcompensate for the degradation of levoglucosan leading to an overestimation of the contribution of wood burning or biomass burning to the total OM. The primary organic emissions from the three different burners showed a wide range in O:C atomic ratio (0.19-0.60) for the starting and flaming conditions, which also increased during aging. Primary wood burning emissions have a

  5. Coordinated Airborne, Spaceborne, and Ground-Based Measurements of Massive, Thick Aerosol Layers During the Dry Season in Southern Africa

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Redemann, J.; Russell, P. B.; Hobbs, P. V.; Hlavka, D. L.; McGill, M. J.; Holben, B. N.; Welton, E. J.; Campbell, J.; Torres, O.; Hipskind, R. Stephen (Technical Monitor)

    2002-01-01

    During the dry-season airborne campaign of the Southern African Regional Science Initiative (SAFARI 2000), unique coordinated observations were made of massive, thick aerosol layers. These layers were often dominated by aerosols from biomass burning. We report on airborne Sunphotometer measurements of aerosol optical depth (lambda=354-1558 nm), columnar water vapor, and vertical profiles of aerosol extinction and water vapor density that were obtained aboard the University of Washington's Convair-580 research aircraft. We compare these with ground-based AERONET Sun/sky radiometer results, with ground based lidar data MPL-Net), and with measurements from a downward-pointing lidar aboard the high-flying NASA ER-2 aircraft. Finally, we show comparisons between aerosol optical depths from the Sunphotometer and those retrieved over land and over water using four spaceborne sensors (TOMS (Total Ozone Mapping Spectrometer), MODIS (Moderate Resolution Imaging Spectrometer), MISR (Multiangle Imaging Spectroradiometer) and ATSR-2 (Along Track Scanning Radiometer)).

  6. [Characteristics and Parameterization for Atmospheric Extinction Coefficient in Beijing].

    PubMed

    Chen, Yi-na; Zhao, Pu-sheng; He, Di; Dong, Fan; Zhao, Xiu-juan; Zhang, Xiao-ling

    2015-10-01

    In order to study the characteristics of atmospheric extinction coefficient in Beijing, systematic measurements had been carried out for atmospheric visibility, PM2.5 concentration, scattering coefficient, black carbon, reactive gases, and meteorological parameters from 2013 to 2014. Based on these data, we compared some published fitting schemes of aerosol light scattering enhancement factor [ f(RH)], and discussed the characteristics and the key influence factors for atmospheric extinction coefficient. Then a set of parameterization models of atmospheric extinction coefficient for different seasons and different polluted levels had been established. The results showed that aerosol scattering accounted for more than 94% of total light extinction. In the summer and autumn, the aerosol hygroscopic growth caused by high relative humidity had increased the aerosol scattering coefficient by 70 to 80 percent. The parameterization models could reflect the influencing mechanism of aerosol and relative humidity upon ambient light extinction, and describe the seasonal variations of aerosol light extinction ability. PMID:26841588

  7. Wavelength-Dependent Optical Absorption Properties of Artificial and Atmospheric Aerosol Measured by a Multi-Wavelength Photoacoustic Spectrometer

    NASA Astrophysics Data System (ADS)

    Utry, N.; Ajtai, T.; Pintér, M.; Bozóki, Z.; Szabó, G.

    2014-12-01

    Various aspects of the photoacoustic (PA) detection method are discussed from the point of view of developing it into a routine tool for measuring the wavelength-dependent optical absorption coefficient of artificial and atmospheric aerosol. The discussion includes the issues of calibration, cross-sensitivity to gaseous molecules, background PA signal subtraction, and size-dependent particle losses within the PA system. The results in this paper are based on a recently developed four-wavelength PA system, which has operational wavelengths in the near-infrared, in the visible, and in the ultraviolet. The measured spectra of artificial and atmospheric aerosol prove the outstanding applicability of the presented PA system.

  8. Evolution of the infrared properties of the Mount Pinatubo aerosol cloud over Laramie, Wyoming

    NASA Astrophysics Data System (ADS)

    Massie, Steven T.; Deshler, Terry; Thomas, Gary E.; Mergenthaler, John L.; Russell, James M.

    1996-10-01

    Particle size distributions measured from May 1991 to April 1994 over Laramie, Wyoming, are used in Mie calculations to model the wavelength dependence and the time evolution of the extinction, single-scattering albedo, and asymmetry parameters of stratospheric sulfate particles. The calculations cover the time period from 45 days before to 1080 days after the eruption of Mt. Pinatubo. The time evolution of the particle size distribution parameters and the evolution of the infrared extinction are examined concurrently and interrelated in terms of the variables present in the Mie equation for the extinction coefficient. The calculations are validated by comparing the theoretical model values to extinction measurements obtained by the Cryogenic Limb Array Etalon Spectrometer (CLAES), Improved Stratospheric and Mesospheric Sounder (ISAMS), Halogen Occultation Experiment (HALOE), and Stratospheric Aerosol and Gas Experiment (SAGE II) experiments. The Wyoming size distributions are also used to derive simple mathematical expressions from which area and volume densities can be estimated using CLAES extinction measurements.

  9. Aerosol properties derived from spectral actinic flux measurements

    NASA Astrophysics Data System (ADS)

    Stark, H.; Schmidt, K. S.; Pilewskie, P.; Cozic, J.; Wollny, A. G.; Brock, C. A.; Baynard, T.; Lack, D.; Parrish, D. D.; Fehsenfeld, F. C.

    2008-12-01

    Measurement of aerosol properties is very important for understanding climate change. Aerosol optical properties influence solar radiation throughout the troposphere. According to the Working Group I report of the intergovernmental panel for climate change [IPCC, 2007], aerosols have a direct radiative forcing of - 0.5±0.4 W/m2 with a medium to low level of scientific understanding. This relatively large uncertainty indicates the need for more frequent and precise measurements of aerosol properties. We will show how actinic flux measurements can be used to derive important optical aerosol parameters such as aerosol optical thickness and depth, surface albedo, angstrom exponent, radiative forcing by clouds and aerosols, aerosol extinction, and others. The instrument used for this study is a combination of two spectroradiometers measuring actinic flux in the ultraviolet and visible radiation range from 280 to 690 nm with a resolution of 1 nm. Actinic flux is measured as the radiation incident on a spherical surface with sensitivity independent of direction. In contrast, irradiance is measured as the radiation incident on a plane surface, which depends on the cosine of the incident angle. Our goal is to assess the capabilities of using spectral actinic flux measurements to derive various aerosol properties. Here we will compare 1) actinic flux measurements to irradiance measurements from the spectral solar flux radiometer (SSFR), 2) derived aerosol size distributions with measurements from a white light optical particle counter (WLOPC) and ultra high sensitivity aerosol size spectrometer (UHSAS), and 3) derived aerosol optical extinction with measurements from a cavity ringdown aerosol extinction spectrometer (CRD-AES). These comparisons will utilize data from three recent field campaigns over New England and the Atlantic Ocean (ICARTT 2004), Texas and the Gulf of Mexico during (TexAQS/GoMACCS 2006), and Alaska and the Arctic Ocean (ARCPAC 2008) when the instruments

  10. Laboratory Experiments and Instrument Intercomparison Studies of Carbonaceous Aerosol Particles

    SciTech Connect

    Davidovits, Paul

    2015-10-20

    ) two well-characterized source of soot particles and (b) a flow reactor for controlled OH and/or O3 oxidation of relevant gas phase species to produce well-characterized SOA particles. After formation, the aerosol particles are subjected to physical and chemical processes that simulate aerosol growth and aging. A suite of instruments in our laboratory is used to characterize the physical and chemical properties of aerosol particles before and after processing. The Time of Flight Aerosol Mass Spectrometer (ToF-AMS) together with a Scanning Mobility Particle Sizer (SMPS) measures particle mass, volume, density, composition (including black carbon content), dynamic shape factor, and fractal dimension. The–ToF-AMS was developed at ARI with Boston College participation. About 120 AMS instruments are now in service (including 5 built for DOE laboratories) performing field and laboratory studies world-wide. Other major instruments include a thermal denuder, two Differential Mobility Analyzers (DMA), a Cloud Condensation Nuclei Counter (CCN), a Thermal desorption Aerosol GC/MS (TAG) and the new Soot Particle Aerosol Mass Spectrometer (SP-AMS). Optical instrumentation required for the studies have been brought to our laboratory as part of ongoing and planned collaborative projects with colleagues from DOE, NOAA and university laboratories. Optical instruments that will be utilized include a Photoacoustic Spectrometer (PAS), a Cavity Ring Down Aerosol Extinction Spectrometer (CRD-AES), a Photo Thermal Interferometer (PTI), a new 7-wavelength Aethalometer and a Cavity Attenuated Phase Shift Extinction Monitor (CAPS). These instruments are providing aerosol absorption, extinction and scattering coefficients at a range of atmospherically relevant wavelengths. During the past two years our work has continued along the lines of our original proposal. We report on 12 completed and/or continuing projects conducted during the period 08/14 to 0814/2015. These projects are described in

  11. Inter-comparison of MAX-DOAS Retrieved Vertical Profiles of Aerosol Extinction, SO2 and NO2 in the Alberta Oil Sands with LIDAR Data and GEM-MACH Air Quality Model.

    NASA Astrophysics Data System (ADS)

    Davis, Zoe; Friess, Udo; Strawbridge, Kevin; Whiteway, James; Aggarwal, Monika; Makar, Paul; Li, Shao-Meng; O'Brien, Jason; Baray, Sabour; Schnitzler, Elijah; Olfert, Jason S.; Osthoff, Hans D.; Lobo, Akshay; McLaren, Robert

    2016-04-01

    Understanding industrial emissions of trace gas pollutants in the Alberta oil sands is essential to maintaining air quality standards and informing public policy. Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements of trace gases can improve knowledge of pollutant levels, vertical distribution and chemical transformation. During an intensive air measurement campaign to study emissions, transport, transformation and deposition of oil sands air pollutants from August to September of 2013, a MAX-DOAS instrument was deployed at a site north of Fort McMurray, Alberta to determine the vertical profiles of aerosol extinction, NO2 and SO2 through retrieval from the MAX-DOAS spectral measurements using an optimal estimation method. The large complement of data collected from multiple instruments deployed during this field campaign provides a unique opportunity to validate and characterize the performance of the MAX-DOAS vertical profile retrievals. Aerosol extinction profiles determined from two Light Detection and Ranging (LIDAR) instruments, one collocated and the other on a Twin Otter aircraft that flew over the site during the study, will be compared to the MAX-DOAS aerosol extinction profile retrievals. Vertical profiles of NO2 and SO2 retrieved from the MAX-DOAS measurements will be further compared with the composite vertical profiles measured from the flights of a second aircraft, the NRC-Convair 580, over the field site during the same measurement period. Finally, the MAX-DOAS retrieved tropospheric vertical column densities (VCDs) of SO2 and NO2 will be compared to the predicted VCDs from Environment and Climate Change Canada's Global Environmental Multi-scale - Modelling Air quality and Chemistry (GEM-MACH) air quality model over the grid cell containing the field site. Emission estimates of SO2 from the major oil mining facility Syncrude Mildred Lake using the MAX-DOAS VCD results, validated through the detailed characterization above

  12. Characterization of ambient aerosols during the Southern Oxidant and Aerosol Study (SOAS) in Centreville, AL with a high-resolution time-of-flight aerosol mass spectrometer Basak Karakurt Cevik1, Yu Jun Leong1, Carlos Hernandez1, Robert Griffin1 1 Rice University, CEE Department, 6100 Main St., Houston, TX 77005, USA

    NASA Astrophysics Data System (ADS)

    Karakurt Cevik, B.; Leong, Y.; Hernandez, C.; Griffin, R. J.

    2013-12-01

    An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a Brechtel Manufacturing, Inc. particle-into-liquid sampler (PILS) were deployed at a rural location in Centreville, AL, from 1 June to 15 July 2013 as a part of the Southern Oxidant and Aerosol Study (SOAS). PILS samples were analyzed with Dionex ion chromatographs. The data will allow us to characterize the temporal characteristics of the concentrations and size distributions of non-refractory (NR) chemical species in the ambient submicron particles. Preliminary analysis of the data indicates that the sub-micron particulate matter is highly dominated by organic matter with a relatively high state of oxidation and it is followed by smaller contributions from sulfate and ammonium. In order to investigate the processes and sources that lead to observed aerosol concentrations at the site, the time series will be analyzed in conjunction with additional trace gas, aerosol, and meteorological measurements. The region is known to have high biogenic volatile organic compounds (VOCs) emissions and many of these biogenic VOCs (BVOCs) are important secondary organic aerosol (SOA) precursors. Preliminary data from the HR-ToF-AMS indicates the importance of oxidized organic aerosol during SOAS. The study will also focus on the importance of the SOA in the total organic fraction and the effect of atmospheric processing on the chemical composition of the organic fraction.

  13. Variations in hygroscopic growth of sub- and super-micron sea spray aerosols during a phytoplankton bloom

    NASA Astrophysics Data System (ADS)

    Forestieri, S.; Jayarathne, T. S.; Stone, E. A.; Laskina, O.; Grassian, V. H.; Lee, C.; Sultana, C. M.; Moore, K.; Cornwell, G.; Novak, G.; Bertram, T. H.; Prather, K. A.; Cappa, C. D.

    2014-12-01

    Marine sea spray aerosols (SSA) make up an important portion of natural aerosols (prior to anthropogenic influence) and are therefore important in establishing the baseline for anthropogenic aerosol climate impacts. One way aerosols impact climate is by scattering solar radiation, and how much light is scattered depends upon the size of aerosols. Aerosols grow larger via water uptake and thus scatter more light at elevated relative humidities. This growth depends on composition. SSA can become enriched in organics during phytoplankton blooms, becoming less salty and therefore less hygroscopic. Aerosol hygroscopicity of SSA sampled during an in-lab phytoplankton bloom were measured during the CAICE-IMPACTS 2014 study. SSA were generated via breaking waves in an enclosed 33 m wave channel filled with natural seawater. Aerosol hygroscopicity was characterized by measuring light extinction at 532 nm of dry aerosols and of aerosols humidified to 85% relative humidity using a Cavity Ringdown Spectrometer. These optical growth factors (humidified extinction/dry extinction) were converted to physical growth factors using Mie Theory calculations and aerosol size distributions measured with a scanning electrical mobility spectrometer (SEMS) and an aerodynamic particle sizer (APS). Growth factors for super- and sub-micron SSA were quantified separately through the use of a PM2.5 cyclone or PM1 impactor. The observed SSA growth factors will be linked to SSA and source water chemical composition determined by both offline and online analysis of samples. The SSA bulk growth factors will also be compared with concurrent measurements of the efficiency with which SSA act as cloud condensation nuclei. Observed SSA growth factors will also be compared to offline hygroscopic growth measurements.

  14. Characterization of aerosol optical properties, chemical composition and mixing states in the winter season in Shanghai, China.

    PubMed

    Tang, Yong; Huang, Yuanlong; Li, Ling; Chen, Hong; Chen, Jianmin; Yang, Xin; Gao, Song; Gross, Deborah S

    2014-12-01

    Physical and chemical properties of ambient aerosols at the single particle level were studied in Shanghai from December 22 to 28, 2009. A Cavity-Ring-Down Aerosol Extinction Spectrometer (CRD-AES) and a nephelometer were deployed to measure aerosol light extinction and scattering properties, respectively. An Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) was used to detect single particle sizes and chemical composition. Seven particle types were detected. Air parcels arrived at the sampling site from the vicinity of Shanghai until mid-day of December 25, when they started to originate from North China. The aerosol extinction, scattering, and absorption coefficients all dropped sharply when this cold, clean air arrived. Aerosol particles changed from a highly aged type before this meteorological shift to a relatively fresh type afterwards. The aerosol optical properties were dependent on the wind direction. Aerosols with high extinction coefficient and scattering Ångström exponent (SAE) were observed when the wind blew from the west and northwest, indicating that they were predominantly fine particles. Nitrate and ammonium correlated most strongly with the change in aerosol optical properties. In the elemental carbon/organic carbon (ECOC) particle type, the diurnal trends of single scattering albedo (SSA) and elemental carbon (EC) signal intensity had a negative correlation. We also found a negative correlation (r=-0.87) between high mass-OC particle number fraction and the SSA in a relatively clean period, suggesting that particulate aromatic components might play an important role in light absorption in urban areas. PMID:25499489

  15. Investigations of primary and secondary particulate matter of different wood combustion appliances with a high-resolution time-of-flight aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Heringa, M. F.; Decarlo, P. F.; Chirico, R.; Tritscher, T.; Dommen, J.; Weingartner, E.; Richter, R.; Wehrle, G.; Prevot, A. S. H.; Baltensperger, U.

    2011-03-01

    A series of photo-oxidation smog chamber experiments were performed to investigate the primary emissions and secondary aerosol formation from two different log wood burners and a residential pellet burner under different burning conditions: starting and flaming phase. Emissions were sampled from the chimney and injected into the smog chamber leading to primary organic aerosol (POA) concentrations comparable to ambient levels. The composition of the aerosol was measured by an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and black carbon (BC) instrumentation. The primary emissions were then exposed to xenon light to initiate photo-chemistry and subsequent secondary organic aerosol (SOA) production. After correcting for wall losses, the average increase in organic matter (OM) concentrations by SOA formation for the starting and flaming phase experiments with the two logwood burners was found to be a factor of 4.1 ± 1.4 after five hours of aging. No SOA formation was observed for the stable burning phase of the pellet burner. The startup emissions of the pellet burner showed an increase in OM concentration by a factor of 3.3. Average emission factors of BC + POA + SOA, calculated from CO2 emission, were found to be in the range of 0.04 to 3.9 g kg-1 wood for the stable burning pellet burner and an old log wood burner during startup respectively. SOA contributed significantly to the ion C2H4O2+ at mass to charge ratio m/z 60, a commonly used marker for primary emissions of wood burning. The primary organic emissions from the three different burners showed a wide range in O/C atomic ratio (0.19-0.60) for the starting and flaming conditions, which also increased during aging. Primary wood burning emissions have a rather low relative contribution at m/z 43 (f43) to the total organic mass spectrum. The non-oxidized fragment C3H7+ has a considerable contribution at m/z 43 for the fresh OA with an increasing contribution of the oxygenated

  16. Optical-chemical-microphysical relationships and closure studies for mixed carbonaceous aerosols observed at Jeju Island; 3-laser photoacoustic spectrometer, particle sizing, and filter analysis

    NASA Astrophysics Data System (ADS)

    Flowers, B. A.; Dubey, M. K.; Mazzoleni, C.; Stone, E. A.; Schauer, J. J.; Kim, S.-W.; Yoon, S. C.

    2010-11-01

    Transport of aerosols in pollution plumes from the mainland Asian continent was observed in situ at Jeju, South Korea during the Cheju Asian Brown Cloud Plume-Asian Monsoon Experiment (CAPMEX) field campaign throughout August and September 2008 using a 3-laser photoacoustic spectrometer (PASS-3), chemical filter analysis, and size distributions. The PASS-3 directly measures the effects of morphology (e.g. coatings) on light absorption that traditional filter-based instruments are unable to address. Transport of mixed sulfate, carbonaceous, and nitrate aerosols from various Asian pollution plumes to Jeju accounted for 74% of the deployment days, showing large variations in their measured chemical and optical properties. Analysis of eight distinct episodes, spanning wide ranges of chemical composition, optical properties, and source regions, reveals that episodes with higher organic carbon (OC)/sulfate (SO42-) and nitrate (NO3-)/SO42- composition ratios exhibit lower single scatter albedo at shorter wavelengths (ω405). We infer complex refractive indices (n-ik) as a function of wavelength for the high, intermediate, and low OC/SO42- pollution episodes by using the observed particle size distributions and the measured optical properties. The smallest mean particle diameter corresponds to the high OC/SO42- aerosol episode. The imaginary part of the refractive index (k) is greater for the high OC/SO42- episode at all wavelengths. A distinct, sharp increase in k at short wavelength implies enhanced light absorption by OC, which accounts for 50% of the light absorption at 405 nm, in the high OC/SO42- episode. Idealized analysis indicates increased absorption at 781 nm by factors greater than 3 relative to denuded black carbon in the laboratory. We hypothesize that coatings of black carbon cores are the mechanism of this enhancement. This implies that climate warming and atmospheric heating rates from black carbon particles can be significantly larger than have been

  17. Series cell light extinction monitor

    DOEpatents

    Novick, Vincent J.

    1990-01-01

    A method and apparatus for using the light extinction measurements from two or more light cells positioned along a gasflow chamber in which the gas volumetric rate is known to determine particle number concentration and mass concentration of an aerosol independent of extinction coefficient and to determine estimates for particle size and mass concentrations. The invention is independent of particle size. This invention has application to measurements made during a severe nuclear reactor fuel damage test.

  18. Rethinking Extinction.

    PubMed

    Dunsmoor, Joseph E; Niv, Yael; Daw, Nathaniel; Phelps, Elizabeth A

    2015-10-01

    Extinction serves as the leading theoretical framework and experimental model to describe how learned behaviors diminish through absence of anticipated reinforcement. In the past decade, extinction has moved beyond the realm of associative learning theory and behavioral experimentation in animals and has become a topic of considerable interest in the neuroscience of learning, memory, and emotion. Here, we review research and theories of extinction, both as a learning process and as a behavioral technique, and consider whether traditional understandings warrant a re-examination. We discuss the neurobiology, cognitive factors, and major computational theories, and revisit the predominant view that extinction results in new learning that interferes with expression of the original memory. Additionally, we reconsider the limitations of extinction as a technique to prevent the relapse of maladaptive behavior and discuss novel approaches, informed by contemporary theoretical advances, that augment traditional extinction methods to target and potentially alter maladaptive memories. PMID:26447572

  19. Dual-wavelength-excitation single-particle fluorescence spectrometer/particle sorter for real-time measurement of organic carbon and biological aerosols

    NASA Astrophysics Data System (ADS)

    Pan, Yong-Le; Pinnick, Ron G.; Hill, Steven C.; Huang, Hermes; Chang, Richard K.

    2008-10-01

    We report the development of a Single-Particle Fluorescence Spectrometer (SPFS) system capable of measuring two UV-laser excited fluorescence spectra from a single particle on-the-fly. The two dispersed fluorescence spectra are obtained from excitation by two lasers at different wavelengths (263 nm and 351 nm). The SPFS samples single particles with sizes primarily in the 1-10 μm range. The fluorescence spectra are recorded from 280 nm to 600 nm (in 20 channels) for 263 nm excitation and from 370 nm to 700 nm (in 22 channels) for 351 nm excitation. The elastic scattering (channel 4 and 9) is also recorded for sizing each particle. A time stamp for single particles is marked with a variable time interval resolution from 10 ms to 10 minutes. The SPFS employs a virtual-impactor concentrator to concentrate respirable-sized particles with a resulting (size-dependent) effective flow rate of around 100 liters/min. The SPFS can measure single-particle spectra at a maximum rate of 90,000/sec, although the highest rates we have experienced for the ambient are only several hundred/sec. When the SPFS is combined with an aerodynamic deflector (puffer) to sort particles according to their fluorescence spectral characteristics, the SPFS/puffer system can selectively deflect and collect an enriched sample of targeted particles (at rates limited by the puffer) of 1200 particles/sec, for further examination. In laboratory tests, aerosol particles with similar UV-LIF spectra (e.g. B. subtilis and E.coli) are puffed into the reservoir of a micro-fluidic cell, where fluorescent-labeled antibodies bind to them and were classified by their labeled fluorescence. Measurements of the background ambient aerosol with the SPFS system made at sites with different regional climate (Connecticut, Maryland, and New Mexico) were clustered (unstructured hierarchical analysis) into 8-10 groups, with over 90% of all the fluorescent particles contained within these clusters (threshold dot product=0

  20. Extinction of Harrington's Mountain Goat

    NASA Astrophysics Data System (ADS)

    Mead, Jim I.; Martin, Paul S.; Euler, Robert C.; Long, Austin; Jull, A. J. T.; Toolin, Laurence J.; Donahue, Douglas J.; Linick, T. W.

    1986-02-01

    Keratinous horn sheaths of the extinct Harrington's mountain goat, Oreamnos harringtoni, were recovered at or near the surface of dry caves of the Grand Canyon, Arizona. Twenty-three separate specimens from two caves were dated nondestructively by the tandem accelerator mass spectrometer (TAMS). Both the TAMS and the conventional dates indicate that Harrington's mountain goat occupied the Grand Canyon for at least 19,000 years prior to becoming extinct by 11,160 ± 125 radiocarbon years before present. The youngest average radiocarbon dates on Shasta ground sloths, Nothrotheriops shastensis, from the region are not significantly younger than those on extinct mountain goats. Rather than sequential extinction with Harrington's mountain goat disappearing from the Grand Canyon before the ground sloths, as one might predict in view of evidence of climatic warming at the time, the losses were concurrent. Both extinctions coincide with the regional arrival of Clovis hunters.

  1. Extinction of Harrington's mountain goat

    SciTech Connect

    Mead, J.I.; Martin, P.S.; Euler, R.C.; Long, A.; Jull, A.J.T.; Toolin, L.J.; Donahue, D.J.; Linick, T.W.

    1986-02-01

    Keratinous horn sheaths of the extinct Harrington's mountain goat, Oreamnos harringtoni, were recovered at or near the surface of dry caves of the Grand Canyon, Arizona. Twenty-three separate specimens from two caves were dated nondestructively by the tandem accelerator mass spectrometer (TAMS). Both the TAMS and the conventional dates indicate that Harrington's mountain goat occupied the Grand Canyon for at least 19,000 years prior to becoming extinct by 11,160 +/- 125 radiocarbon years before present. The youngest average radiocarbon dates on Shasta ground sloths, Nothrotheriops shastensis, from the region are not significantly younger than those on extinct mountain goats. Rather than sequential extinction with Harrington's mountain goat disappearing from the Grand Canyon before the ground sloths, as one might predict in view of evidence of climatic warming at the time, the losses were concurrent. Both extinctions coincide with the regional arrival of Clovis hunters.

  2. Interstellar extinction in the ultraviolet

    NASA Technical Reports Server (NTRS)

    Bless, R. C.; Savage, B. D.

    1972-01-01

    Interstellar extinction curves over the region 3600-1100 A for 17 stars are presented. The observations were made by the two Wisconsin spectrometers onboard the OAO-2 with spectral resolutions of 10 A and 20 A. The extinction curves generally show a pronounced maximum at 2175 plus or minus 25 A, a broad minimum in the region 1800-1350 A, and finally a rapid rise to the far ultraviolet. Large extinction variations from star to star are found, especially in the far ultraviolet; however, with only two possible exceptions in this sample, the wavelength at the maximum of the extinction bump is essentially constant. These data are combined with visual and infrared observations to display the extinction behavior over a range in wavelength of about a factor of 20.

  3. Cluster Analysis of the Organic Peaks in Bulk Mass Spectra Obtained During the 2002 New England Air Quality Study with an Aerodyne Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Marcolli, C.; Canagaratna, M. R.; Worsnop, D. R.; Bahreini, R.; de Gouw, J. A.; Warneke, C.; Goldan, P. D.; Kuster, W. C.; Williams, E. J.; Lerner, B. M.; Roberts, J. M.; Meagher, J. F.; Fehsenfeld, F. C.; Marchewka, M.; Bertman, S. B.; Middlebrook, A. M.

    2006-12-01

    We applied hierarchical cluster analysis to an Aerodyne aerosol mass spectrometer (AMS) bulk mass spectral dataset collected aboard the NOAA research vessel R. H. Brown during the 2002 New England Air Quality Study off the east coast of the United States. Emphasizing the organic peaks, the cluster analysis yielded a series of categories that are distinguishable with respect to their mass spectra and their occurrence as a function of time. The differences between the categories mainly arise from relative intensity changes rather than from the presence or absence of specific peaks. The most frequent category exhibits a strong signal at m/z 44 and represents oxidized organic matter probably originating from both anthropogenic as well as biogenic sources. On the basis of spectral and trace gas correlations, the second most common category with strong signals at m/z 29, 43, and 44 contains contributions from isoprene oxidation products. The third through the fifth most common categories have peak patterns characteristic of monoterpene oxidation products and were most frequently observed when air masses from monoterpene rich regions were sampled. Taken together, the second through the fifth most common categories represent on average 17% of the total organic mass that stems likely from biogenic sources during the ship's cruise. These numbers have to be viewed as lower limits since the most common category was attributed to anthropogenic sources for this calculation. The cluster analysis was also very effective in identifying a few contaminated mass spectra that were not removed during pre-processing. This study demonstrates that hierarchical clustering is a useful tool to analyze the complex patterns of the organic peaks in bulk aerosol mass spectra from a field study.

  4. A new application of hierarchical cluster analysis to investigate organic peaks in bulk mass spectra obtained with an Aerodyne Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Middlebrook, A. M.; Marcolli, C.; Canagaratna, M. R.; Worsnop, D. R.; Bahreini, R.; de Gouw, J. A.; Warneke, C.; Goldan, P. D.; Kuster, W. C.; Williams, E. J.; Lerner, B. M.; Roberts, J. M.; Meagher, J. F.; Fehsenfeld, F. C.; Marchewka, M. L.; Bertman, S. B.

    2006-12-01

    We applied hierarchical cluster analysis to an Aerodyne aerosol mass spectrometer (AMS) bulk mass spectral dataset collected aboard the NOAA research vessel Ronald H. Brown during the 2002 New England Air Quality Study off the east coast of the United States. Emphasizing the organic peaks, the cluster analysis yielded a series of categories that are distinguishable with respect to their mass spectra and their occurrence as a function of time. The differences between the categories mainly arise from relative intensity changes rather than from the presence or absence of specific peaks. The most frequent category exhibits a strong signal at m/z 44 and represents oxidized organic matter probably originating from both anthropogenic as well as biogenic sources. On the basis of spectral and trace gas correlations, the second most common category with strong signals at m/z 29, 43, and 44 contains contributions from isoprene oxidation products. The third through the fifth most common categories have peak patterns characteristic of monoterpene oxidation products and were most frequently observed when air masses from monoterpene rich regions were sampled. Taken together, the second through the fifth most common categories represent on average 17% of the total organic mass that stems likely from biogenic sources during the ship's cruise. These numbers have to be viewed as lower limits since the most common category was attributed to anthropogenic sources for this calculation. The cluster analysis was also very effective in identifying a few contaminated mass spectra that were not removed during pre-processing. This study demonstrates that hierarchical clustering is a useful tool to analyze the complex patterns of the organic peaks in bulk aerosol mass spectra from a field study.

  5. Preliminary Observations of Particulate Matter at Baeng-Yeong Island, Korea, with a High Resolution Time of Flight Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Park, J.; Lee, T.; Lee, S.; Kim, J.; Jang, S.; Lee, D.; Ahn, J.; Jeon, H.; Lee, G.; Collett, J. L.

    2010-12-01

    Rapid industrial growth in China has resulted in large emissions of anthropogenic air pollutants in the past decade. Since the predominant regional winds near the Korean Peninsula are westerly throughout the year, except for summer, transport of air pollution from eastern China is a concern to neighboring countries such as South Korea and Japan and even to more distant regions such as the western United States. In order to improve understanding of the characteristics of pollutant transport from a variety of source regions to Korea, intensive field measurements were conducted from August - October 2010 at Baeng-Yeong Island, Korea. Baeng-Yeong Island is located in the sea west of the Korean Peninsula, approximately 180 km from the Shandong Peninsula. The island is situated close to the North Korea-South Korea Border. Under varying transport conditions, therefore, the island is predominantly influenced by emissions from China, North Korea or South Korea. An Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed on the island to provide insight into particle size distributions and non-refractory fine particle composition, including concentrations of nitrate, sulfate, and organic carbon, with 5 minute time resolution. Many periods during the early part of the study were dominated by carbonaceous and sulfate aerosol. Increasing sulfate and organic concentrations were associated with changes in air transport patterns to the site. The presentation will provide an overview of the composition of particulate matter measured on the island and examine how changes in composition and species concentrations are related to changes in regional transport patterns as represented by the NOAA HYSPLIT model.

  6. [Analysis of Single Particle Aging and Mixing State at an Agriculture Site (Quzhou) in the North China Plain in Summer Using a Single Particle Aerosol Mass Spectrometer].

    PubMed

    Huang, Zi-long; Zeng, Li-mm; Dong, I-Iua-Bin; Li, Mei; Zhu, Tong

    2016-04-15

    To characterize the size distribution and chemical ompsitins f abiet prtices t a agicuturesit intheNorh o Chinese Plain, a single particle aerosol mass spectrometer (SPAMS) was deployed from June 30 to July 8, 2013. A total of 230,152 particles in the size range of 0.2-2.0 pm were chemically analyzed with both positive and negative ion spectra. The results revealed that aerosol could he classified into eight dominant groups, including elemental carbon (EC, 55.5%), organic carbon (OC, 10.7%), alkalis (Na-K, 17.4%), other metals (1.7%), Fe-rich (6.3%), Pb-rich (3.1%), dust (4.8%), and other (0.8%). The observed eight types of particles contained secondary components such as 46NO2-, 62NO3-, 96SO3-, 96SO4-, 97HSO4-, showing that they probably went through different aging processes. The analysis of particle size distribution showed that 700-800 nm was the peak value of all particles, and that dust and Fe particles were mainly in the coarse size range. EC particles subtype group research revealed EC particles tended to be aging with the above mentioned secondary ions and eventually led to a particle type conversion from EC to the less aging ECN and the more serious aging ECS, the diurnal variation of which was obviously negatively correlated, and there was a possibility of forming OC/EC mixture with the adsorption of secondary organic matter on EC surface. PMID:27548937

  7. Aerosol Climate Time Series in ESA Aerosol_cci

    NASA Astrophysics Data System (ADS)

    Popp, Thomas; de Leeuw, Gerrit; Pinnock, Simon

    2016-04-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. Meanwhile, full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer, but also from ATSR instruments and the POLDER sensor), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which were also validated and improved in the reprocessing. For the three ATSR algorithms the use of an ensemble method was tested. The paper will summarize and discuss the status of dataset reprocessing and validation. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension

  8. Chemical Characteristics of Particulate Matter from Vehicle emission using High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS)

    NASA Astrophysics Data System (ADS)

    Park, T.; Lee, T.; Kang, S.; Lee, J.; Kim, J.; Son, J.; Yoo, H. M.; Kim, K.; Park, G.

    2015-12-01

    Car emissions are major contributors of particulate matter (PM) in the urban environment and effects of air pollution, climate change, and human activities. By increasing of interest in research of car emission for assessment of the PM control, it became require to understand the chemical composition and characteristics of the car exhaust gases and particulate matter. To understand car emission characteristics of PM, we will study PM of car emissions for five driving modes (National Institute Environmental Research (NIER)-5, NIER-9, NIER-12, NIER-14) and three fixed speed driving modes (30km/h, 70km/h, 110km/h) using different fuel types (gasoline, diesel, and LPG) at Transportation Pollution Research Center (TPRC) of NIER in Incheon, South Korea. PM chemical composition of car emission was measured for concentrations of organics, sulfate, nitrate, ammonium, PAHs, oxidation states and size distribution using an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and engine exhaust particle sizer (EEPS) on real-time. In the study, organics concentration was dominated for all cases of driving modes and the concentration of organics was increased in 110km/h fixed speed mode for gasoline and diesel. The presentation will provide an overview of the chemical composition of PM in the car emissions.

  9. Vertical Profiles of Aerosol Volume from High Spectral Resolution Infrared Transmission Measurements: Results

    NASA Technical Reports Server (NTRS)

    Eldering, Annmarie; Kahn, Brian H.; Mills, Franklin P.; Irion, Fredrick W.; Steele, Helen M.; Gunson, Michael R.

    2004-01-01

    The high-resolution infrared absorption spectra of the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment are utilized to derive vertical profiles of sulfate aerosol volume density and extinction coefficient. Following the eruption of Mt. Pinatubo in June 1991, the ATMOS spectra obtained on three Space Shuttle missions (1992, 1993, and 1994) provide a unique opportunity to study the global stratospheric sulfate aerosol layer shortly after a major volcanic eruption and periodically during the decay phase. Synthetic sulfate aerosol spectra are fit to the observed spectra, and a global fitting inversion routine is used to derive vertical profiles of sulfate aerosol volume density. Vertical profiles of sulfate aerosol volume density for the three missions over portions of the globe are presented, with the peak in aerosol volume density occurring from as low as 10 km (polar latitudes) to as high as 20 km (subtropical latitudes). Derived aerosol volume density is as high as 2-3.5 (mu)m(exp 3) per cubic centimeter +/-10% in 1992, decreasing to 0.2-0.5 (mu)m(exp 3) per cubic centimeter +/-20% in 1994, in agreement with other experiments. Vertical extinction profiles derived from ATMOS are compared with profiles from Improved Stratospheric And Mesospheric Sounder (ISAMS) and Cryogenic Limb Array Etalon Spectrometer (CLAES) that coincide in space and time and show good general agreement. The uncertainty of the ATMOS vertical profiles is similar to CLAES and consistently smaller than ISAMS at similar altitudes.

  10. An aerosol absorption remote sensing algorithm

    NASA Astrophysics Data System (ADS)

    Zhai, P.; Winker, D. M.; Hu, Y.; Trepte, C. R.; Lucker, P. L.

    2013-12-01

    Aerosol absorption plays an important role in the climate by modulating atmospheric radiative forcing processes. Unfortunately aerosol absorption is very difficult to obtain via satellite remote sensing techniques. In this work we have built an algorithm to obtain aerosol absorption optical depth using both measurements from a passive O2 A-band spectrometer and an active lidar. The instrument protocols for these two satellite instruments are the O2 A-band spectrometer onboard the Orbiting Carbon Observatory (OCO-2) and the CALIOP onboard CALIPSO. The aerosol height and typing information is obtained from the CALIOP measurement. The aerosol extinction and absorption optical depths are then retrieved by fitting the forward model simulations to the O2 A-band spectrometer measurements. The forward model simulates the scattering and absorption of solar light at high spectral resolution in the O2 A-band region. The O2 and other gas absorption coefficients near 0.76 micron are calculated by either the line-by-line code (for instance, the Atmospheric Radiative Transfer Simulator) or the OCO2 ABSCO Look-Up-Table. The line parameters used are from the HITRAN 2008 database (http://www.cfa.harvard.edu/hitran/). The multiple light scattering by molecules, aerosols, and clouds is handled by the radiative transfer model based on the successive order of scattering method (Zhai et al, JQSRT, Vol. 111, pp. 1025-1040, 2010). The code is parallelized with Message Passing Interface (MPI) for better efficiency. The aerosol model is based on Shettle and Fenn (AFGL-TR 790214, 1979) with variant relative humidity. The vertical distribution of the aerosols and clouds will be read in from the CALIPSO product (http://www-calipso.larc.nasa.gov). The surface albedo is estimated by the continuum of the three bands of OCO2 payloads. Sensitivity study shows that the Gaussian quadrature (stream) number should be at least 12 to ensure the reflectance error is within 0.5% at the top of the atmosphere

  11. Light extinction in the atmosphere

    SciTech Connect

    Laulainen, N.

    1992-06-01

    Atmospheric aerosol particles originating from natural sources, such as volcanos and sulfur-bearing gas emissions from the oceans, and from human sources, such as sulfur emissions from fossil fuel combustion and biomass burning, strongly affect visual air quality and are suspected to significantly affect radiative climate forcing of the planet. During the daytime, aerosols obscure scenic vistas, while at night they diminish our ability to observe stellar objects. Scattering of light is the main means by which aerosols attenuate and redistribute light in the atmosphere and by which aerosols can alter and reduce visibility and potentially modify the energy balance of the planet. Trends and seasonal variability of atmospheric aerosol loading, such as column-integrated light extinction or optical depth, and how they may affect potential climate change have been difficult to quantify because there have been few observations made of important aerosol optical parameters, such as optical depth, over the globe and over time and often these are of uneven quality. To address questions related to possible climate change, there is a pressing need to acquire more high-quality aerosol optical depth data. Extensive deployment of improved solar radiometers over the next few years will provide higher-quality extinction data over a wider variety of locations worldwide. An often overlooked source of turbidity data, however, is available from astronomical observations, particularly stellar photoelectric photometry observations. With the exception of the Project ASTRA articles published almost 20 years ago, few of these data ever appear in the published literature. This paper will review the current status of atmospheric extinction observations, as highlighted by the ASTRA work and augmented by more recent solar radiometry measurements.

  12. ALE: Astronomical LIDAR for Extinction

    NASA Astrophysics Data System (ADS)

    Zimmer, Peter C.; McGraw, J. T.; Gimmestad, G.; Roberts, D.; Stewart, J.; Dawsey, M.; Fitch, J.; Smith, J.; Townsend, A.; Black, B.

    2006-12-01

    The primary impediment to precision all-sky photometry is the scattering or absorption of incoming starlight by the aerosols suspended in, and the molecules of, the Earth's atmosphere. The University of New Mexico (UNM) and the Georgia Tech Research Institute (GTRI) are currently developing the Astronomical LIDAR (LIght Detection And Ranging) for Extinction (ALE), which is undergoing final integration and initial calibration at UNM. ALE is based upon a 527nm laser operated at a pulse repetition rate of 1500 pps, and rendered eyesafe by expanding its beam through a 32cm diameter transmitter. The alt-az mounted ALE will operate in multiple modes, including mapping the sky to obtain a quantitative measurement of extinction sources, measuring a monochromatic extinction coefficient by producing Langely plots, and monitoring extinction in the direction in which a telescope is observing. A primary goal is to use the Rayleigh scattered LIDAR return from air above 20km as a quasi-constant illumination source. Air above this altitude is generally free from aerosols and the variations in density are relatively constant over intervals of a few minutes. When measured at several zenith angles, the integrated line-of-sight extinction can be obtained from a simple model fit of these returns. The 69 microjoule exit pulse power and 0.6m aperture receiver will allow ALE to collect approximately one million photons per minute from above 20km, enough to enable measurements of the monochromatic vertical extinction to better than 1% under photometric conditions. Along the way, ALE will also provide a plethora of additional information about the vertical and horizontal distributions of low-lying aerosols, dust or smoke in the free troposphere, and high cirrus, as well as detect the passage of boundary layer atmospheric gravity waves. This project is funded by NSF Grant 0421087.

  13. Chemical apportionment of aerosol optical properties during the Asia-Pacific Economic Cooperation summit in Beijing, China

    NASA Astrophysics Data System (ADS)

    Han, Tingting; Xu, Weiqi; Chen, Chen; Liu, Xingang; Wang, Qingqing; Li, Jie; Zhao, Xiujuan; Du, Wei; Wang, Zifa; Sun, Yele

    2015-12-01

    We have investigated the chemical and optical properties of aerosol particles during the 2014 Asia-Pacific Economic Cooperation (APEC) summit in Beijing, China, using the highly time-resolved measurements by a high-resolution aerosol mass spectrometer and a cavity attenuated phase shift extinction monitor. The average (±σ) extinction coefficient (bext) and absorption coefficient (bap) were 186.5 (±184.5) M m-1 and 23.3 (±21.9) M m-1 during APEC, which were decreased by 63% and 56%, respectively, compared to those before APEC primarily due to strict emission controls. The aerosol composition and size distributions showed substantial changes during APEC; as a response, the mass scattering efficiency (MSE) of PM1 was decreased from 4.7 m2 g-1 to 3.5 m2 g-1. Comparatively, the average single-scattering albedo (SSA) remained relatively unchanged, illustrating the synchronous reductions of bext and bap during APEC. MSE and SSA were found to increase as function of the oxidation degree of organic aerosol (OA), indicating a change of aerosol optical properties during the aging processes. The empirical relationships between chemical composition and particle extinction were established using a multiple linear regression model. Our results showed the largest contribution of ammonium nitrate to particle extinction, accounting for 35.1% and 29.3% before and during APEC, respectively. This result highlights the important role of ammonium nitrate in the formation of severe haze pollution during this study period. We also observed very different optical properties of primary and secondary aerosol. Owing to emission controls in Beijing and surrounding regions and also partly the influences of meteorological changes, the average bext of secondary aerosol during APEC was decreased by 71% from 372.3 M m-1 to 108.5 M m-1, whereas that of primary aerosol mainly from cooking, traffic, and biomass burning emissions showed a smaller reduction from 136.7 M m-1 to 71.3 M m-1. As a result

  14. Comparison of Aerosol Classification From Airborne High Spectral Resolution Lidar and the CALIPSO Vertical Feature Mask

    NASA Technical Reports Server (NTRS)

    Burton, Sharon P.; Ferrare, Rich A.; Omar, Ali H.; Vaughan, Mark A.; Rogers, Raymond R.; Hostetler, Chris a.; Hair, Johnathan W.; Obland, Michael D.; Butler, Carolyn F.; Cook, Anthony L.; Harper, David B.

    2012-01-01

    Knowledge of aerosol composition and vertical distribution is crucial for assessing the impact of aerosols on climate. In addition, aerosol classification is a key input to CALIOP aerosol retrievals, since CALIOP requires an inference of the lidar ratio in order to estimate the effects of aerosol extinction and backscattering. In contrast, the NASA airborne HSRL-1 directly measures both aerosol extinction and backscatter, and therefore the lidar ratio (extinction-to-backscatter ratio). Four aerosol intensive properties from HSRL-1 are combined to infer aerosol type. Aerosol classification results from HSRL-1 are used here to validate the CALIOP aerosol type inferences.

  15. Extinctions of life

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1988-01-01

    This meeting presentation examines mass extinctions through earth's history. Extinctions are charted for marine families and marine genera. Timing of marine genera extinctions is discussed. Periodicity in extinctions during the Mesozoic and Cenozoic eras is plotted and compared with Paleozoic extinction peaks. The role of extinction in evolution and mankind's role in present extinctions are examined.

  16. Characterising coarse PBA dynamics in real-time above and below a tropical rainforest canopy using a dual channel UV fluorescence aerosol spectrometer.

    NASA Astrophysics Data System (ADS)

    Gabey, A.; Gallagher, M. W.; Burgess, R.; Coe, H.; McFiggans, G.,; Kaye, P. H.; Stanley, W. R.; Davies, F.; Foot, V. E.

    2009-04-01

    single-particle dual channel UV fluorescence spectrometer (Kaye et al., 2008) capable of detecting PBA by inducing fluorescence in two so-called biofluorophores - one present during metabolism and the other an amino acid - in the particle size range 1 m < Dp < 20 m. Real-time PBA measurements were performed above and below the canopy of a tropical rainforest in Borneo, Malaysia as part of the Oxidant and Particle Photochemical Processes (OP3) and the Aerosol Coupling in the Earth System (ACES) projects. PBA were found to dominate the coarse loading at Dp > 2 m. In qualitative agreement with measurements of culturable airborne material in a tropical forest's understory (Gilbert, 2005) a diurnal cycle of PBA number concentration is present, reaching a maximum of ~4000 l-1 at local midnight and falling to ~100 l-1 around midday. The role of the planetary boundary layer's collapse and re-establishment in dictating this variation in is also investigated using LIDAR data. Transient PBA concentration spikes lasting several minutes are superposed on the smooth underlying diurnal variation and occur at similar times each day. Nucleopore filter samples were also taken in-situ and analysed under an Environmental scanning electron microscope (ESEM) in Manchester. The images obtained showed the PBA fraction to be dominated by fungal spores of diameter 2-5 m, from various species including ABM. Since such species tend to release spores in bursts at regular times this appears to account for the PBA concentration spikes.

  17. Australian Extinctions

    ERIC Educational Resources Information Center

    Science Teacher, 2005

    2005-01-01

    Massive extinctions of animals and the arrival of the first humans in ancient Australia--which occurred 45,000 to 55,000 years ago--may be linked. Researchers at the Carnegie Institution, University of Colorado, Australian National University, and Bates College believe that massive fires set by the first humans may have altered the ecosystem of…

  18. Results from the Portable Infrared Aerosol Transmission Experiment (PIRATE) - Caribbean: An examination of the column integrated infrared extinction of Saharan dust and comparisons with data commonly used in models

    NASA Astrophysics Data System (ADS)

    Thomas, M.; Gautier, C.

    2004-12-01

    Infrared optical depth of Saharan dust from field measurements made in Puerto Rico are presented and compared with frequently-used dust models. The Portable Infrared Aerosol Transmission Experiment (PIRATE) - Caribbean was a ground-based experiment that measured the infrared transmission of transportted dust from the Saharan Desert. A Fourier Transform Infrared (FTIR) spectrometer was used in Boqueron, Puerto Rico from June 23 through June 30, 2004 as a high-resolution infrared sun photometer. The visible aerosol optical depth (AOD) around the time of each FTIR measurement was taken from a nearby AERONET sensor at La Parguera, Puerto Rico, for reference. The FTIR recorded the direct solar and scattered radiances from 3 to 14 microns. By collecting the solar radiance for several days, some for which the AOD was either very low (<0.1) or high (>0.5), the infrared AOD of the dust was determined as a function of wavelength. The measured infrared AOD of the dust is compared with frequently-used dust models, i.e. Volz and Sokolik, for various effective radii and assumed dust compositions. Since Saharan dust is often pervasive over large regions of the globe, these results are potentially important in models and satellite measurements attempting to determine the regional forcing from dust.

  19. A fixed frequency aerosol albedometer.

    PubMed

    Thompson, Jonathan E; Barta, Nick; Policarpio, Danielle; Duvall, Richard

    2008-02-01

    A new method for the measurement of aerosol single scatter albedo (omega) at 532 nm was developed. The method employs cavity ring-down spectroscopy (CRDS) for measurement of aerosol extinction coefficient (b(ext)) and an integrating sphere nephelometer for determination of aerosol scattering coefficient (b(scat)). A unique feature of this method is that the extinction and scattering measurements are conducted simultaneously, on the exact same sample volume. Limits of detection (3s) for the extinction and scattering channel were 0.61 Mm(-1) and 2.7 Mm(-1) respectively. PMID:18542299

  20. [Characteristics and Formation Mechanism of a Multi-Day Haze in the Winter of Shijiazhuang Using a Single Particle Aerosol Mass Spectrometer (SPAMS)].

    PubMed

    Zhou, Jing-bo; Ren, Yi-bin; Hong, Gang; Lu, Na; Li, Zhi-guo; Li, Lei; Li, Hui-lai; Jin, Wei

    2015-11-01

    A multi-day haze episode occurred in Shijiazhuang during November 18-26, 2014. The characteristics were studied based on the data collected by the single particle aerosol mass spectrometer (SPAMS) located in the automatic monitoring station (20 meters) of Shijiazhuang. In accordance with the source spectral library of atmospheric pollutant emissions in Shijiazhuang, the main sources were distinguished and analyzed. The mass concentration of particulate matters and meteorological conditions being taken in account, the causes of haze in winter were also studied. It turned out that fine particulate matters in the Shijiazhuang air were mainly from 7 different sources: the tracer ion of coal source was Al; the tracer ions of industry sources were OC, Fe, and Pb; the tracer ion of motor vehicle tail gas source was EC; the tracer ions of dust source were Al, Ca and Si; the tracer ions of biomass burning source were K and levoglucosan; the tracer ions of pure secondary inorganic source were SO4-, NO2-, and NO3-, and the tracer ion of dining source was HOC. Of the above mentioned, OC, HOC, EC, HEC, ECOC, rich potassium particles minerals and heavy metals were 8 dominant polluting groups in hazy days. OC and ECOC particles were the majority, which accounted for more than 50% and 20% of the overall measured particles. OC particles were mainly discharged from coal combustion and industrial processes, and ECOC particles were mainly from coal combustion and vehicle exhaust emissions. When haze occurred in Shijiazhuang the proportion of pollutant particles of NH4+, SO4- , NO2- and NO3- increased, of which NH4+ was the most sharply increased. The mixed degree between EC, OC and NH4+, So4-, NO3- in the haze was higher than usual, of which NH4+ was the most sharply increased. In the static and stable weather gaseous (SO2, NO(x), NH3, VOCs) pollutants and particles were difficult to spread and accumulated rapidly, which were discharged from coal combustion, the process of the medical

  1. Aerosol characterization with lidar methods

    NASA Astrophysics Data System (ADS)

    Sugimoto, Nobuo; Nishizawa, Tomoaki; Shimizu, Atsushi; Matsui, Ichiro

    2014-08-01

    Aerosol component analysis methods for characterizing aerosols were developed for various types of lidars including polarization-sensitive Mie scattering lidars, multi-wavelength Raman scattering lidars, and multi-wavelength highspectral- resolution lidars. From the multi-parameter lidar data, the extinction coefficients for four aerosol components can be derived. The microphysical parameters such as single scattering albedo and effective radius can be also estimated from the derived aerosol component distributions.

  2. Determination of the broadband optical properties of biomass burning aerosol

    NASA Astrophysics Data System (ADS)

    Bluvshtein, Nir; Flores, J. Michel; Segev, Lior; Lin, Peng; Laskin, Alexander; Rudich, Yinon

    2016-04-01

    The direct and semi-direct effects of atmospheric aerosol on the Earth's energy balance are still the two of the largest uncertainties in our understanding of anthropogenic radiative forcing. In this study we developed a new approach for determining high sensitivity broadband UV-Vis spectrum (300-650 nm) of extinction, scattering and absorption coefficients, single scattering albedo and the complex refractive index for continuous, spectral and time dependent, monitoring of polydisperse aerosols population. This new approach was applied in a study of biomass burning aerosol. Extinction, scattering and absorption coefficients (αext, αsca, αabs, respectively) were continually monitored using photoacoustic spectrometer coupled to a cavity ring down spectrometer (PA-CRD-AS) at 404 nm, a dual-channel Broadband cavity-enhanced spectrometer (BBCES) at 315-345 nm and 390-420 nm and a three channel integrating nephelometer (IN) centered at 457, 525 and 637 nm. During the biomass burning event, the measured aerosol number concentration increased by more than an order of magnitude relative to other week nights and the mode of the aerosols size distribution increased from 40-50 nm to 110nm diameter. αext and αsca increased by a factor of about 5.5 and 4.5, respectively. The αabs increased by a factor over 20, indicating a significant change in the aerosol overall chemical composition. The imaginary part of the complex RI at 404nm increased from its background level at about 0.02 to a peak of about 0.08 and the SSA decreased from 0.9 to about 0.6. Significant change of the absorption spectral dependence indicates formation of visible-light absorbing compounds. The mass absorption cross section of the water soluble organic aerosol (MACWSOA) reached up to about 12% of the corresponding value for black carbon (BC) at 450 nm and up to 30% at 300 nm. These results demonstrate the importance of biomass burning in understanding global and regional radiative forcing.

  3. Measurements of Saharan Dust Extinction Spectra in the Infrared

    NASA Astrophysics Data System (ADS)

    Thomas, M.; Gautier, C.; Ricchiazzi, P.; Peterson, P.; Salustro, C.

    2006-12-01

    The infrared extinction spectra of Saharan dust obtained by the Portable Infrared Aerosol Transmission Experiment (PIRATE) are reported in this paper. Saharan dust extinction (optical thickness) spectra from 8 to 13 mm were obtained using solar occultation measurements at Mbour, Senegal in January and March 2006 using a Fourier Transform Infrared (FTIR) spectrometer. The FTIR measured the solar flux in the infrared in the presence of Saharan dust, and the optical thickness was determined by comparing the measured spectra to the modeled spectra without dust for the same solar zenith angle, water vapor concentration and ozone concentration. The modeled spectra were generated using the Santa Barbara Disort Atmospheric Radiative Transfer (SBDART) program. . The infrared optical thickness spectra is compared with modeled optical thickness spectra obtained using Mie theory and dust index of refraction from various sources with assumed log-normal size distributions. Results from these measurements may provide information for improving the remote detection of Saharan dust from space in the infrared using MODIS or AIRS.

  4. Hyperspectral Aerosol Optical Depths from TCAP Flights

    SciTech Connect

    Shinozuka, Yohei; Johnson, Roy R.; Flynn, Connor J.; Russell, P. B.; Schmid, Beat; Redemann, Jens; Dunagan, Stephen; Kluzek, Celine D.; Hubbe, John M.; Segal-Rosenheimer, Michal; Livingston, J. M.; Eck, T.; Wagener, Richard; Gregory, L.; Chand, Duli; Berg, Larry K.; Rogers, Ray; Ferrare, R. A.; Hair, John; Hostetler, Chris A.; Burton, S. P.

    2013-11-13

    4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research), the world’s first hyperspectral airborne tracking sunphotometer, acquired aerosol optical depths (AOD) at 1 Hz during all July 2012 flights of the Two Column Aerosol Project (TCAP). Root-mean square differences from AERONET ground-based observations were 0.01 at wavelengths between 500-1020 nm, 0.02 at 380 and 1640 nm and 0.03 at 440 nm in four clear-sky fly-over events, and similar in ground side-by-side comparisons. Changes in the above-aircraft AOD across 3-km-deep spirals were typically consistent with integrals of coincident in situ (on DOE Gulfstream 1 with 4STAR) and lidar (on NASA B200) extinction measurements within 0.01, 0.03, 0.01, 0.02, 0.02, 0.02 at 355, 450, 532, 550, 700, 1064 nm, respectively, despite atmospheric variations and combined measurement uncertainties. Finer vertical differentials of the 4STAR measurements matched the in situ ambient extinction profile within 14% for one homogeneous column. For the AOD observed between 350-1660 nm, excluding strong water vapor and oxygen absorption bands, estimated uncertainties were ~0.01 and dominated by (then) unpredictable throughput changes, up to +/-0.8%, of the fiber optic rotary joint. The favorable intercomparisons herald 4STAR’s spatially-resolved high-frequency hyperspectral products as a reliable tool for climate studies and satellite validation.

  5. Impossible Extinction

    NASA Astrophysics Data System (ADS)

    Cockell, Charles S.

    2003-03-01

    Every 225 million years the Earth, and all the life on it, completes one revolution around the Milky Way Galaxy. During this remarkable journey, life is influenced by calamitous changes. Comets and asteroids strike the surface of the Earth, stars explode, enormous volcanoes erupt, and, more recently, humans litter the planet with waste. Many animals and plants become extinct during the voyage, but humble microbes, simple creatures made of a single cell, survive this journey. This book takes a tour of the microbial world, from the coldest and deepest places on Earth to the hottest and highest, and witnesses some of the most catastrophic events that life can face. Impossible Extinction tells this remarkable story to the general reader by explaining how microbes have survived on Earth for over three billion years. Charles Cockell received his doctorate from the University of Oxford, and is currently a microbiologist with rhe Search for Extraterrestrial Intelligence Institute (SETI), based at the British Antarctic Survey in Cambridge, UK. His research focusses on astrobiology, life in the extremes and the human exploration of Mars. Cockell has been on expeditions to the Arctic, Antarctic, Mongolia, and in 1993 he piloted a modified insect-collecting ultra-light aircraft over the Indonesian rainforests. He is Chair of the Twenty-one Eleven Foundation for Exploration, a charity that supports expeditions that forge links between space exploration and environmentalism.

  6. SAGE II aerosol data validation based on retrieved aerosol model size distribution from SAGE II aerosol measurements

    NASA Technical Reports Server (NTRS)

    Wang, Pi-Huan; Mccormick, M. P.; Mcmaster, L. R.; Chu, W. P.; Swissler, T. J.; Osborn, M. T.; Russell, P. B.; Oberbeck, V. R.; Livingston, J.; Rosen, J. M.

    1989-01-01

    Consideration is given to aerosol correlative measurements experiments for the Stratospheric Aerosol and Gas Experiment (SAGE) II, conducted between November 1984 and July 1986. The correlative measurements were taken with an impactor/laser probe, a dustsonde, and an airborne 36-cm lidar system. The primary aerosol quantities measured by the ground-based instruments are compared with those calculated from the aerosol size distributions from SAGE II aerosol extinction measurements. Good agreement is found between the two sets of measurements.

  7. Development of a new corona discharge based ion source for high resolution time-of-flight chemical ionization mass spectrometer to measure gaseous H2SO4 and aerosol sulfate

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Yang, Dongsen; Ma, Yan; Chen, Mindong; Cheng, Jin; Li, Shizheng; Wang, Ming

    2015-10-01

    A new corona discharge (CD) based ion source was developed for a commercial high-resolution time-of-flight chemical ionization mass spectrometer (HRToF-CIMS) (Aerodyne Research Inc.) to measure both gaseous sulfuric acid (H2SO4) and aerosol sulfate after thermal desorption. Nitrate core ions (NO3-) were used as reagent ions and were generated by a negative discharge in zero air followed by addition of excess nitrogen dioxide (NO2) to convert primary ions and hydroxyl radicals (OH) into NO3- ions and nitric acid (HNO3). The CD-HRToF-CIMS showed no detectable interference from hundreds parts per billion by volume (ppbv) of sulfur dioxide (SO2). Unlike the atmospheric pressure ionization (API) ToF-CIMS, the CD ion source was integrated onto the ion-molecule reaction (IMR) chamber and which made it possible to measure aerosol sulfate by coupling to a filter inlet for gases and aerosols (FIGAERO). Moreover, compared with a quadrupole-based mass spectrometer, the desired HSO4- signal was detected by its exact mass of m/z 96.960, which was well resolved from the potential interferences of HCO3-ṡ(H2O)2 (m/z 97.014) and O-ṡH2OṡHNO3 (m/z 97.002). In this work, using laboratory-generated standards the CD-HRToF-CIMS was demonstrated to be able to detect as low as 3.1 × 105 molecules cm-3 gaseous H2SO4 and 0.5 μg m-3 ammonium sulfate based on 10-s integration time and two times of the baseline noise. The CD ion source had the advantages of low cost and a simple but robust structure. Since the system was non-radioactive and did not require corrosive HNO3 gas, it can be readily field deployed. The CD-HRToF-CIMS can be a powerful tool for both field and laboratory studies of aerosol formation mechanism and the chemical processes that were critical to understand the evolution of aerosols in the atmosphere.

  8. Spectral characterisation of mineralogical components of dust, HULIS and winter time aerosol using multi-wavelength photoacoustic spectrometer. A laboratory and a field study

    NASA Astrophysics Data System (ADS)

    Ajtai, Tibor; Utry, Noémi; Filep, Ágnes; Tátrai, Dávid; Bozóki, Zoltán; Szabó, Gábor

    2013-04-01

    Aerosol can interact with solar radiation via scattering and absorption. The back scattering fraction of incoming solar irradiation has cooling effect, while the forward scattering redistributes electromagnetic energy into the atmosphere. The photon energy transformed into thermal energy via the light absorption, therefore the absorption process heating absorbing particles and also their surroundings While scattering can be measured fairly accurately, the assessment of the radiative effect of light absorption by aerosol can only be determined with limited accuracy, in part, because of the lack of reliable instrument for absorption measurement. The photoacoustic (PA) spectroscopy is the only method that can measure light absorption by aerosol in-situ (without sampling artifacts) with high sensitivity and temporal resolution, but not widespread in its application yet. Recently, multi-wavelength photoacoustic instruments including excitation at UVs have become available and open up a new perspective on in-situ investigation of light absorption by aerosol as well as its wavelength dependency. In this study we present novel results of an in-situ study of aerosol light absorption measurement of re-dispersed mineralogical composition of dust such as illit, caolinite, quartz, rutile, limestone, hematite and HULIS aerosols using state-of-the-art multi-wavelength photoacoustic instrument (4λ-PAS). We experimentally demonstrated that the absorption feature of MAC (mass specific aerosol absorption) could be used as chemically selective parameter. We also demonstrated the results of an in-situ winter time ambient aerosol measurement. The hourly concentration of trace elements(i.e. K, Ca, Fe, and Si), gaseous pollutants (CO and NOx), as well as the size distribution of ambient aerosol were also analyzed during the measurement campaign. The levoglucosan measurement was made to confirm that the daily fluctuation of ambient AAE (absorption Angstrom Exponent) governed by the

  9. SAGE II aerosol correlative observations - Profile measurements

    NASA Technical Reports Server (NTRS)

    Osborn, M. T.; Rosen, J. M.; Mccormick, M. P.; Wang, Pi-Huan; Livinfston, J. M.

    1989-01-01

    Profiles of the aerosol extinction measurements from the Stratospheric Aerosol and Gas Experiment (SAGE) II are compared with profiles from five correlative experiments between November 1984 and July 1986. The correlative profiles were derived from six-channel dustsonde measurements and two-wavelength lidar backscatter data. The correlation between the dustsonde- and lidar-derived measurements and the SAGE II data is good, validating the SAGE II lower stratospheric aerosol extinction measurements.

  10. Towards an improved aerosol product from SCIAMACHY limb measurements

    NASA Astrophysics Data System (ADS)

    Rozanov, Alexei; Burrows, John; Hommel, Rene

    2015-04-01

    Stratospheric aerosols are of a great scientific interest because of their crucial role in the Earth's radiative budget as well as their contribution to chemical processes resulting in ozone depletion. While the permanent aerosol background in the stratosphere is determined by the tropical injection of SO2, COS and sulphate particles from the troposphere, major perturbations of the stratospheric aerosol layer result form an uplift of SO2 after strong volcanic eruptions. Satellite measurements in the visible spectral range represent one of the most important sources of information about the vertical distribution of the stratospheric aerosol on the global scale. This study employs measurements of the scattered solar light performed in the limb viewing geometry from the space borne spectrometer SCIAMACHY, which operated onboard the ENVISAT satellite from August 2002 to April 2012. A progress in the development of SCIAMACHY aerosol data product within the ROSA/ROMIC project including the improvements in the extinction coefficient data base and steps towards the retrieval of particle size distribution parameters is reported.

  11. Analysis of secondary organic aerosol using a Micro-Orifice Volatilization Impactor (MOVI) coupled to an ion trap mass spectrometer with atmospheric pressure chemical ionization (APCI-IT/MS)

    NASA Astrophysics Data System (ADS)

    Brueggemann, M.; Vogel, A.; Hoffmann, T.

    2012-04-01

    We describe the development and characterization of a Micro-Orifice Volatilization Impactor (MOVI) which is coupled to an ion trap mass spectrometer with atmospheric pressure chemical ionization (APCI-IT/MS), and its application in laboratory and field measurements. The MOVI-APCI-IT/MS allows the quantification of organic acids and other oxidation products of volatile organic compounds (VOCs) in secondary organic aerosols (SOA) on a semi-continuous basis. Furthermore, the vapor pressure and saturation concentration of the particle components can be estimated. The MOVI was first described in 2010 by Yatavelli and Thornton (Yatavelli and Thornton, 2010). It is a single stage, multi-nozzle impactor with 100 nozzles, each having a diameter of 150 μm. At a flow-rate of 10 L·min-1 air is drawn through the MOVI and particles are collected on a deposition plate. The cut-point diameter (d50, diameter of 50% collection efficiency) is at 130 nm. A low pressure-drop of only 5.3% of atmospheric pressure behind the nozzles allows collecting not only low-volatile but even semi-volatile compounds, which are an important part of SOA. After collecting particles hydrocarbon-free synthetic air is led over the collection surface into the APCI-IT/MS and the collection surface is heated up to 120 ° C in less than 200 s, volatilizing the sampled SOA. The vaporized compounds are transferred into the ion source and subsequently analyzed by mass spectrometry. Due to the soft ionization at atmospheric pressure the obtained mass spectra show only low fragmentations and can easily be interpreted. In laboratory experiments the MOVI-APCI-IT/MS was used for the chemical analysis of SOA generated from α-pinene-ozonolysis in a smog chamber. The limit of detection was found at 7.3 ng for pinic acid. The vapor pressure log p0 and the saturation concentration C25* for pinic acid were calculated from the desorption temperature using the method presented by Faulhaber et al. (Faulhaber et al., 2009

  12. Retrieval of Stratospheric Aerosol Properties from SCIAMACHY limb observations

    NASA Astrophysics Data System (ADS)

    Doerner, S.; Kühl, S.; Pukite, J.; Penning de Vries, M. J.; Hoermann, C.; von Savigny, C.; Deutschmann, T.; Wagner, T.

    2012-12-01

    Since the start of the Stratospheric Aerosol Measurement program in 1975 satellites have been improving our understanding of the global distribution of trace gases, clouds and aerosols. Observations in occultation and limb geometry provide profile information on stratospheric aerosol, which have an important influence on the global radiation budget (e.g., after strong volcanic eruptions) and the stratospheric ozone chemistry (e.g., the chlorine activation inside the polar vortex). The Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY (SCIAMACHY) on ENVISAT performed measurements in limb geometry for almost ten years between 2002 and 2012. Its vertical resolution of about 3.3 km at the tangent point and the broad spectral range (UV/VIS/NIR) allow to retrieve profile information of stratospheric trace gases (e.g., O3, NO2, BrO or OClO) and stratospheric aerosol properties. Pioneering studies (e.g., Savigny et al., 2005) showed that in particular from color indices (including the near IR spectral range) signatures of stratospheric aerosols and polar stratospheric clouds (PSCs) can be retrieved. In our study we investigate the sensitivity of SCIAMACHY's broad spectral range to aerosol particle properties by comparing measured spectra with simulated results from the 3D full spherical Monte Carlo Atmospheric Radiative Transfer Model McArtim. In particular, we focus on the absorption properties in the UV spectral range, the extinction coefficient and the Angström exponent. The final aim of our study is to use SCIAMACHY limb measurements for the profile retrieval of optical parameters (e.g., absorption and phase function) from which microphysical properties (e.g., mean aerosol particle diameter) of the stratospheric aerosol particles can be deduced.

  13. Characteristics of submicron particulate matter at the urban roadside in downtown Hong Kong—Overview of 4 months of continuous high-resolution aerosol mass spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Lee, Berto P.; Li, Yong Jie; Yu, Jian Zhen; Louie, Peter K. K.; Chan, Chak K.

    2015-07-01

    Hong Kong, one of the world's most densely populated cities and an international financial center, has been suffering from traffic-related air pollution. This study presents the first real-time high-resolution aerosol mass spectrometry measurements of submicron nonrefractory particulate matter (NR-PM1) at the urban roadside in Hong Kong from March to July 2013 with the aim to identify major sources, to assess local and nonlocal emissions, and to characterize trends at different time scales. Organics were dominant, with fresh primary organic aerosol representing two thirds of the total measured organics. Cooking contributions in organic aerosol were assessed directly for the first time in Hong Kong and exceeded those related to vehicles although traffic was still the major PM1 source when elemental carbon was included. These findings were supported by additional measurements including traffic data, elemental/organic carbon, and VOC data. Springtime concentrations were about double of those in summer, due to a strong seasonal transition which affected meteorological conditions and street-level circulation. Local formation of secondary species was not clearly discernible in either season. The elemental composition of organic aerosol remained stable with similar elemental ratios across the covered seasons: OM/OC: 1.49 ± 0.13, O/C: 0.25 ± 0.10, H/C: 1.68 ± 0.08 for spring and OM/OC: 1.43 ± 0.14, O/C: 0.21 ± 0.11, H/C: 1.69 ± 0.08 for summer. Diurnal changes in H/C and O/C as a result of mixing of primary organic aerosol and secondary organic aerosol were evident in the van Krevelen plot.

  14. Analysis of aerosol vertical distribution and variability in Hong Kong

    NASA Astrophysics Data System (ADS)

    He, Qianshan; Li, Chengcai; Mao, Jietai; Lau, Alexis Kai-Hon; Chu, D. A.

    2008-07-01

    Aerosol vertical distribution is an important piece of information to improve aerosol retrieval from satellite remote sensing. Aerosol extinction coefficient profile and its integral form, aerosol optical depth (AOD), as well as atmospheric boundary layer (ABL) height and haze layer height can be derived using lidar measurements. In this paper, we used micropulse lidar measurements acquired from May 2003 to June 2004 to illustrate seasonal variations of AOD and ABL height in Hong Kong. On average, about 64% of monthly mean aerosol optical depths were contributed by aerosols within the mixing layer (with a maximum (˜76%) in November and a minimum (˜55%) in September) revealing the existence of large abundance of aerosols above ABL due to regional transport. The characteristics of seasonal averaged aerosol profiles over Hong Kong in the study period are presented to illustrate seasonal phenomena of aerosol transport and associated meteorological conditions. The correlation between AOD and surface extinction coefficient, as found, is generally poor (r2 ˜0.42) since elevated aerosol layers increase columnar aerosol abundance but not extinction at surface. The typical aerosol extinction profile in the ABL can be characterized by a low value near the surface and values increased with altitude reaching the top of ABL. When aerosol vertical profile is assumed, surface extinction coefficient can be derived from AOD using two algorithms, which are discussed in detail in this paper. Preliminary analysis showed that better estimates of the extinction coefficient at the ground level could be obtained using two-layer aerosol extinction profiles (r2 ˜0.78, slope ˜0.82, and intercept ˜0.15) than uniform profiles of extinction with height within the ABL (r2 ˜0.65, slope ˜0.27, and intercept ˜0.03). The improvement in correlation is promising on mapping satellite retrieved AOD to surface aerosol extinction coefficient for urban and regional environmental studies on air

  15. Measuring the temporal evolution of aerosol composition in a remote marine environment influenced by Saharan dust outflow using a new single particle mass spectrometer.

    NASA Astrophysics Data System (ADS)

    Marsden, Nicholas; Williams, Paul; Flynn, Michael; Taylor, Jonathan; Liu, Dantong; Allan, James; Coe, Hugh

    2016-04-01

    Refractory material constitutes a significant fraction of the atmospheric aerosol burden and has a strong influence on climate through the direct radiative effect and aerosol-cloud interactions, particularly in cold and mixed phase clouds. Composition of refractory aerosols is traditionally measured using off-line analytical techniques such as filter analyses. However, when using off-line techniques the temporal evolution of the data set is lost, meaning the measurements are difficult to relate to atmospheric processes. Recently, single particle mass spectrometry (SPMS) has proven a useful tool for the on-line study of refractory aerosols with the ability to probe size resolved chemical composition with high temporal resolution on a particle by particle basis. A new Laser Ablation Aerosol Time-of-Flight (LAAP-TOF) SPMS instrument with a modified optical detection system was deployed for ground based measurements at Praia, Cape Verde during the Ice in Cloud - Dust (ICE-D) multi-platform campaign in August 2015. A primary aim of the project was to evaluate the impact of Saharan dust on ice nucleation in mixed phase clouds. The instrument was operated over a 16 day period in which several hundred thousand single particle mass spectra were obtained from air masses with back trajectories traversing the Mid-Atlantic, Sahara Desert and West Africa. The data presented indicate external mixtures of sea salt and silicate mineral dust internally mixed with secondary species that are consistent with long range transport to a remote marine environment. The composition and size distributions measured with the LAAP-TOF are compared with measurements from an aerodynamic particle sizer (APS), Single Particle Soot Photometer (SP2), and data from SEM-EDX analysis of filter samples. The particle number fraction identified as silicate mineral from the mass spectra correlates with a fraction of the incandescent particles measured with the SP2. We discuss the suitability of the modified

  16. Monolithic spectrometer

    DOEpatents

    Rajic, S.; Egert, C.M.; Kahl, W.K.; Snyder, W.B. Jr.; Evans, B.M. III; Marlar, T.A.; Cunningham, J.P.

    1998-05-19

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays. 6 figs.

  17. Monolithic spectrometer

    DOEpatents

    Rajic, Slobodan; Egert, Charles M.; Kahl, William K.; Snyder, Jr., William B.; Evans, III, Boyd M.; Marlar, Troy A.; Cunningham, Joseph P.

    1998-01-01

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

  18. Tropopsheric Aerosol Chemistry via Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Worsnop, Douglas

    2008-03-01

    A broad overview of size resolved aerosol chemistry in urban, rural and remote regions is evolving from deployment of aerosol mass spectrometers (AMS) throughout the northern hemisphere. Using thermal vaporization and electron impact ionization as universal detector of non-refractory inorganic and organic composition, the accumulation of AMS results represent a library of mass spectral signatures of aerosol chemistry. For organics in particular, mass spectral factor analysis provides a procedure for classifying (and simplifying) complex mixtures composed of the hundreds or thousands of individual compounds. Correlations with parallel gas and aerosol measurements (e.g. GC/MS, HNMR, FTIR) supply additional chemical information needed to interpret mass spectra. The challenge is to separate primary and secondary; anthropogenic, biogenic and biomass burning sources - and subsequent - transformations of aerosol chemistry and microphysics.

  19. Estimation of black carbon content for biomass burning aerosols from multi-channel Raman lidar data

    NASA Astrophysics Data System (ADS)

    Talianu, Camelia; Marmureanu, Luminita; Nicolae, Doina

    2015-04-01

    Biomass burning due to natural processes (forest fires) or anthropical activities (agriculture, thermal power stations, domestic heating) is an important source of aerosols with a high content of carbon components (black carbon and organic carbon). Multi-channel Raman lidars provide information on the spectral dependence of the backscatter and extinction coefficients, embedding information on the black carbon content. Aerosols with a high content of black carbon have large extinction coefficients and small backscatter coefficients (strong absorption), while aerosols with high content of organic carbon have large backscatter coefficients (weak absorption). This paper presents a method based on radiative calculations to estimate the black carbon content of biomass burning aerosols from 3b+2a+1d lidar signals. Data is collected at Magurele, Romania, at the cross-road of air masses coming from Ukraine, Russia and Greece, where burning events are frequent during both cold and hot seasons. Aerosols are transported in the free troposphere, generally in the 2-4 km altitude range, and reaches the lidar location after 2-3 days. Optical data are collected between 2011-2012 by a multi-channel Raman lidar and follows the quality assurance program of EARLINET. Radiative calculations are made with libRadTran, an open source radiative model developed by ESA. Validation of the retrievals is made by comparison to a co-located C-ToF Aerosol Mass Spectrometer. Keywords: Lidar, aerosols, biomass burning, radiative model, black carbon Acknowledgment: This work has been supported by grants of the Romanian National Authority for Scientific Research, Programme for Research- Space Technology and Advanced Research - STAR, project no. 39/2012 - SIAFIM, and by Romanian Partnerships in priority areas PNII implemented with MEN-UEFISCDI support, project no. 309/2014 - MOBBE

  20. Characterization of the organic matter in submicron urban aerosols using a Thermo-Desorption Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (TD-PTR-TOF-MS)

    NASA Astrophysics Data System (ADS)

    Salvador, Christian Mark; Ho, T.-T.; Chou, Charles C.-K.; Chen, M.-J.; Huang, W.-R.; Huang, S.-H.

    2016-09-01

    Organic matter is the most complicated and unresolved major component of atmospheric aerosol particles. Its sources and global budget are still highly uncertain and thereby necessitate further research efforts with state-of-the-art instrument. This study employed a Thermo-Desorption Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (TD-PTR-TOF-MS) for characterization of ambient organic aerosols. First, five authentic standard substances, which include phthalic acid, levoglucosan, arabitol, cis-pinonic acid and glutaric acid, were utilized to examine the response of the instrument. The results demonstrated the linearity of the TD-PTR-TOF-MS signals against a range of mass loading of specific species on filters. However, it was found that significant fragmentation happened to those challenging compounds, although the proton-transfer-reaction (PTR) was recognized as a soft ionization technique. Consequently, quantitative characterization of aerosols with the TD-PTR-TOF-MS depended on the availability of the fragmentation pattern in mass spectra and the recovery rate with the quantification ion peak(s). The instrument was further deployed to analyze a subset of submicron aerosol samples collected at the TARO (Taipei Aerosol and Radiation Observatory) in Taipei, Taiwan during August 2013. The results were compared with the measurements from a conventional DRI thermo-optical carbon analyzer. The inter-comparison indicated that the TD-PTR-TOF-MS underestimated the mass of total organic matter (TOM) in aerosol samples by 27%. The underestimation was most likely due to the thermo-decomposition during desorption processes and fragmentation in PTR drift tube, where undetectable fragments were formed. Besides, condensation loss of low vapor pressure species in the transfer components was also responsible for the underestimation to a certain degree. Nevertheless, it was showed that the sum of the mass concentrations of the major detected ion peaks correlated strongly

  1. Relating Aerosol Mass and Optical Depth in the Summertime Continental Boundary Layer

    NASA Astrophysics Data System (ADS)

    Brock, C. A.; Wagner, N.; Middlebrook, A. M.; Attwood, A. R.; Washenfelder, R. A.; Brown, S. S.; McComiskey, A. C.; Gordon, T. D.; Welti, A.; Carlton, A. G.; Murphy, D. M.

    2014-12-01

    Aerosol optical depth (AOD), the column-integrated ambient aerosol light extinction, is determined from satellite and ground-based remote sensing measurements. AOD is the parameter most often used to validate earth system model simulations of aerosol mass. Relating aerosol mass to AOD, however, is problematic due to issues including aerosol water uptake as a function of relative humidity (RH) and the complicated relationship between aerosol physicochemical properties and light extinction. Measurements of aerosol microphysical, chemical, and optical properties help to constrain the relationship between aerosol mass and optical depth because aerosol extinction at ambient RH is a function of the abundance, composition and size distribution of the aerosol. We use vertical profiles of humidity and dry aerosol extinction observed in the southeastern United States (U.S.) to examine the relationship between submicron aerosol mass concentration and extinction at ambient RH. We show that the κ-Köhler parameterization directly, and without additional Mie calculations, describes the change in extinction with varying RH as a function of composition for both aged aerosols typical of the polluted summertime continental boundary layer and the biomass burning aerosols we encountered. We calculate how AOD and the direct radiative effect in the eastern U.S. have likely changed due to trends in aerosol composition in recent decades. We also examine the sensitivity of AOD to the RH profile and to aerosol composition, size distribution and abundance.

  2. Impact of organic coating on growth of ammonium sulfate particles: light extinction measurements relevant for the direct effect

    NASA Astrophysics Data System (ADS)

    Robinson, C. B.; Zarzana, K. J.; Hasenkopf, C. A.; Tolbert, M. A.

    2012-12-01

    Light extinction by particles is strongly dependent on chemical composition, particle size, and water uptake. Relative humidity affects extinction by causing changes in refractive index and particle size due to hygroscopic growth. The ability of particles to take up water depends on their composition and structure. In both laboratory and field studies, inorganic salts completely covered by an organic coating have been observed. The impact of this coating on water uptake is uncertain, and a systematic study that examines water uptake as a function of relative humidity is highly desirable. These data are critical to evaluate the aerosol direct effect on climate, which is one of the most uncertain aspects of future climate change. In this study, we probe the connection between aerosol composition, size and light extinction directly by measuring fRHext, the ratio of the extinction coefficient for humidified particles to the extinction coefficient for dry particles. Particles were composed of 1,2,6-hexanetriol and ammonium sulfate, a system that forms organic coatings around the inorganic core. A cavity ring-down aerosol extinction spectrometer at 532 nm is used to measure the optical growth factor as a function of relative humidity. The fRHext values for a range of %RH for pure ammonium sulfate, pure 1,2,6-hexanetriol, and ammonium sulfate particles with 1,2,6-hexanetriol coatings were measured. The coated particles are created using a method of liquid-liquid separation, where the particles are exposed to water vapor creating a RH% above their deliquescence RH%. The particles are then dried with a Nafion dryer to a RH% that is below the point where liquid-liquid phase separation is observed, but above the efflorescence RH%. Pure 1,2,6-hexanetriol takes up little water over the observed RH range of 45-65%, and therefore fRHext ~ 1. With pure ammonium sulfate for the same RH% range, the fRHext varied from 1.5 - 2, depending on the RH% and the particle size. For the

  3. On-Line Measurement of Beryllium, Chromium, and Mercury by Using Aerosol Beam Focused Laser-Induced Plasma Spectrometer and TIme-Integrated Filter Sampling and Reference Method

    SciTech Connect

    Cheng, M.-D.; Vannice, R.W.

    2003-05-20

    A novel real-time monitor for aerosol particles has been developed by the Oak Ridge National Laboratory (ORNL). The instrument is designed to perform in-situ measurement for the elemental composition of aerosol particles in flue gas. They had tested this monitor at the Eastman Chemical Company in July 2001 taking advantage of the emissions from a waste incinerator operated by the company as the background. To investigate the behavior and response of the monitor under simulated/known conditions, stock solutions of prepared metal concentration(s) were nebulized to provide spikes for the instrument testing. Strengths of the solutions were designed such that a reference method (RM) was able to collect sufficient material on filter samples that were analyzed in a laboratory to produce 30-minute average data points. Parallel aerosol measurements were performed by using the ORNL instrument. Recorded signal of an individual element was processed and the concentration calculated from a calibration curve established prior to the campaign. RM data were able to reflect the loads simulated in the spiked waste stream. However, it missed one beryllium sample. The possibility of bias exists in the RM determination of chromium that could lead to erroneous comparison between the RM and the real-time monitoring data. With the real-time detection capability, the ORNL instrument was able to reveal the emission variation by making seven measurements within a 30-minute cycle. The ability of the instrument also enables the reconstruction of the baseline chromium emission concentration. The measurements for mercury by both methods are in good agreement.

  4. On-Line Measurements of Beryllium, Chromium, and Mercury by Using Aerosol Beam Focused Laser-Induced Plasma Spectrometer and Time-Integrated Filter Sampling Reference Method

    SciTech Connect

    Cheng, M.D.

    2003-05-15

    A novel real-time monitor for aerosol particles has been developed by the Oak Ridge National Laboratory (ORNL). The instrument is designed to perform in-situ measurement for the elemental composition of aerosol particles in flue gas. We had tested this monitor at the Eastman Chemical Company in July 2001 taking advantage of the emissions from a waste incinerator operated by the company as the background. To investigate the behavior and response of the monitor under simulated/known conditions, stock solutions of prepared metal concentration(s) were nebulized to provide spikes for the instrument testing. Strengths of the solutions were designed such that a reference method (RM) was able to collect sufficient material on filter samples that were subsequently analyzed in a laboratory to produce 30-minute average data points. Parallel aerosol measurements were performed by using the ORNL instrument. Recorded signal of an individual element was processed and the concentration calculated from a calibration curve established prior to the campaign. RM data were able to reflect the loads simulated in the spiked waste stream. However, it missed one beryllium sample. The possibility of bias exists in the RM determination of chromium that could lead to erroneous comparison between the RM and the real-time monitoring data. With the real-time detection capability, the ORNL instrument was able to reveal the emission variation by making seven measurements within a 30-minute cycle. The ability of the instrument also enables the reconstruction of the baseline chromium emission concentration. The measurements for mercury by both methods are in good agreement.

  5. Implications of extinction due to meteoritic smoke in the upper stratosphere

    NASA Astrophysics Data System (ADS)

    Neely, Ryan R., III; English, Jason M.; Toon, Owen B.; Solomon, Susan; Mills, Michael; Thayer, Jeffery P.

    2011-12-01

    Recent optical observations of aerosols in the upper stratosphere and mesosphere show significant amounts of extinction at altitudes above about 40 km where the stratospheric sulfate aerosol layer ends. Recent modeling of this region reveals that meteoritic smoke settling from the mesosphere and its interaction with the upper part of the sulfate aerosol layer is the origin of the observed extinction. Extinction in this region has major implications for the interpretation and analysis of several kinds of aerosol data (satellite and lidar). We compare observations from the SAGE II satellite and from NOAA's lidar located at Mauna Loa, Hawaii to extinction profiles derived from the Whole Atmosphere Community Climate Model (WACCM) coupled with the Community Aerosol and Radiation Model for Atmospheres (CARMA). Our results show that a major source of extinction exists in the region above about 30 km that must be addressed by all remote sensing instruments that have traditionally used the stratosphere above about 30 km as an aerosol free region to estimate the molecular component of their total extinction. It is also shown that meteoritic smoke not only contributes to but also becomes the dominant source of aerosol extinction above 35 km and poleward of 30 degrees in latitude, as well as above 40 km in the tropics. After addressing the concerns described here, current and past observations of this region could be reanalyzed to further our understanding of meteoritic dust in the upper stratosphere.

  6. Airborne measurements of hygroscopicity and mixing state of aerosols in the planetary boundary layer during the PEGASOS campaigns

    NASA Astrophysics Data System (ADS)

    Rosati, Bernadette; Weingartner, Ernest; Gysel, Martin; Rubach, Florian; Mentel, Thomas; Baltensperger, Urs

    2014-05-01

    properties and mixing state. By combining these results with measurements from an aerosol mass spectrometer (AMS) and an aethalometer, insights can be gathered to explain their hygroscopicity. In this work we will present vertical profiles of the hygroscopic growth and mixing state of aerosol particles measured during Zeppelin flights of the PEGASOS campaigns in the Netherlands, Italy and Finland. Results from ground measurements will also be included to compare the aerosol directly at the surface with different heights. W.T. Morgan et al., Enhancement of the aerosol direct radiative effect by semi-volatile aerosol components: Airborne measurements in North-Western Europe, Atmospheric Chemistry and Physics 10(2010), pp. 8151-8171. P. Zieger et al., Comparison of ambient aerosol extinction coefficients obtained from in-situ, MAX-DOAS and LIDAR measurements at Cabauw, Atmospheric Chemistry and Physics 11(2011), pp. 2603-2624.

  7. Evaluation of LIDAR/Polarimeter Aerosol Measurements by In Situ Instrumentation during DEVOTE

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Ziemba, L. D.; Anderson, B. E.; Dolgos, G.; Ottaviani, M.; Obland, M. D.; Rogers, R.; Thornhill, K. L.; Winstead, E. L.; Yang, M. M.; Hair, J. W.

    2011-12-01

    Combined measurements from LIDAR (LIght Detection And Ranging) and polarimeter instruments provide the opportunity for enhanced satellite observations of aerosol properties including retrievals of aerosol optical depth, single scattering albedo, effective radius, and refractive index. However, these retrievals (specifically for refractive index) have not been fully vetted and require additional intercomparisons with in situ measurements to improve accuracy. Proper validation of these combined LIDAR/polarimeter retrievals requires evaluation in varying atmospheric conditions and of varying aerosol composition. As part of this effort, two NASA Langley King Air aircraft have been outfitted to provide coordinated measurements of aerosol properties. One will be used as a remote sensing platform with the NASA Langley high-spectral resolution LIDAR (HSRL) and NASA GISS research scanning polarimeter (RSP). The second aircraft has been modified for use as an in situ platform and will house a suite of aerosol microphysical instrumentation, a pair of diode laser hygrometers (DLHs) for water vapor and cloud extinction measurements, and a polarized imaging nephelometer (PI-Neph). The remote sensing package has flown in a variety of campaigns, however only rarely has been able to coordinate with in situ measurements. The use of two collocated aircraft will allow for future coordinated flights to provide a more complete dataset for evaluation of aerosol retrievals and allow for fast-response capability. Results from the first coordinated King Air flights as part of DEVOTE (Development and Evaulation of satellite ValidatiOn Tools by Experimenters) will be presented. Flights are planned out of Hampton, VA during September and October 2011 including underflights of the CALIPSO satellite and overflights of ground-based AERONET (AErosol RObotic NETwork) sites. These will provide a comparison of aerosol properties between in situ and remote instruments (ground, aircraft, and satellite

  8. Correlation spectrometer

    DOEpatents

    Sinclair, Michael B.; Pfeifer, Kent B.; Flemming, Jeb H.; Jones, Gary D.; Tigges, Chris P.

    2010-04-13

    A correlation spectrometer can detect a large number of gaseous compounds, or chemical species, with a species-specific mask wheel. In this mode, the spectrometer is optimized for the direct measurement of individual target compounds. Additionally, the spectrometer can measure the transmission spectrum from a given sample of gas. In this mode, infrared light is passed through a gas sample and the infrared transmission signature of the gasses present is recorded and measured using Hadamard encoding techniques. The spectrometer can detect the transmission or emission spectra in any system where multiple species are present in a generally known volume.

  9. Laboratory and Field Characterizations of a Filter Inlet for Gases and AEROsols (FIGAERO) Collector Module for a Chemical Ionization Time-of-Flight Mass Spectrometer (CI-TOFMS) Instrument

    NASA Astrophysics Data System (ADS)

    Nowak, J. B.; Vogel, A.; Massoli, P.; Lambe, A. T.; Stark, H.; Kimmel, J.; Isaacman-VanWertz, G. A.; Kroll, J. H.; Canagaratna, M. R.; Worsnop, D. R.; Jayne, J. T.

    2015-12-01

    The Aerodyne Research, Inc. (ARI) Filter Inlet for Gases and AEROsols (FIGAERO) collector module is an add-on for Chemical Ionization Time-of-Flight Mass Spectrometer (CI-TOFMS) instruments. The FIGAERO enables simultaneous real-time chemical analysis of trace gases and particles in ambient air. The collector module described here is modelled after the University of Washington (UW) design of Lopez-Hilfikeret al., 2014. The collector module mounts directly to the front of the CI-TOFMS ion molecule reactor, replacing the standard gas phase inlet. Automated operation follows a two-step sequence alternating between gas and particle sampling. Gas and particle flows are sampled through separate inlet lines. Software provides automated control of the ARI FIGAERO and determines which inlet line is sampled into ion molecule reaction region. While in the gas phase measuring position particles are separately collected on a filter. After sufficient particle collection, heated clean nitrogen is passed over the filter to desorb the particles on the filter. The thermally desorbed material is then measured with the CI-TOFMS. Though conceptually similar, the ARI FIGAERO is mechanically different enough from the UW design that it requires its own performance assessment. Presented here is the characterization of the ARI FIGAERO collector module. The FIGAERO performance is assessed by using laboratory, chamber, and field data collected using iodide as the reagent ion to examine detection sensitivity, quantification limits, and time response. Lopez-Hilfiker et al., "A novel method for online analysis of gas and particle composition: description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO)", Atmos. Meas. Tech., 7, 983-1001 (2014)

  10. Aerosol studies in mid-latitude coastal environments in Australia

    NASA Technical Reports Server (NTRS)

    Young, S. A.; Cutten, D.; Lynch, M. J.; Davies, J. E.

    1986-01-01

    The results of the evaluation of several inversion procedures that were used to select one which provides the most accurate atmospheric extinction profiles for small aerosol extinction coefficients (that often predominate in the maritime airmass) are presented. Height profiles of atmospheric extinction calculated by a two component atmospheric solution to the LIDAR equation will be compared with corresponding in-situ extinction profiles based on the size distribution profiles obtained in Western Australia. Values of the aerosol backscatter to extinction ratio obtained from multi-angle LIDAR measurements will be used in this solution.

  11. On the Stratospheric Aerosol and Gas Experiment III on the International Space Station

    NASA Technical Reports Server (NTRS)

    Hernandez, Gloria; Zawodny, Joseph M.; Cisewski, Michael S.; Thornton, Brooke M.; Panetta, Andrew D,; Roell, Marilee M.; Vernier, Jean-Paul

    2014-01-01

    The Stratospheric Aerosol and Gas Experiment III on International Space Station (SAGE3/ISS) is anticipated to be delivered to Cape Canaveral in the spring of 2015. This is the fourth generation, fifth instrument, of visible/near-IR solar occultation instruments operated by the National Aeronautics and Space Agency (NASA) to investigate the Earth's upper atmosphere. The instrument is a moderate resolution spectrometer covering wavelengths from 290 nm to 1550 nm. The nominal science products include vertical profiles of trace gases, such as ozone, nitrogen dioxide and water vapor, along with multi-wavelength aerosol extinction. The SAGE3/ISS validation program will be based upon internal consistency of the measurements, detailed analysis of the retrieval algorithm, and comparisons with independent correlative measurements. The Instrument Payload (IP), mission architecture, and major challenges are also discussed.

  12. Multidimensional spectrometer

    SciTech Connect

    Zanni, Martin Thomas; Damrauer, Niels H.

    2010-07-20

    A multidimensional spectrometer for the infrared, visible, and ultraviolet regions of the electromagnetic spectrum, and a method for making multidimensional spectroscopic measurements in the infrared, visible, and ultraviolet regions of the electromagnetic spectrum. The multidimensional spectrometer facilitates measurements of inter- and intra-molecular interactions.

  13. Identification of oxidized organic atmospheric species during the Southern Oxidant and Aerosol Study (SOAS) using a novel Ion Mobility Time-of-Flight Chemical Ionization Mass Spectrometer (IMS-ToF-CIMS)

    NASA Astrophysics Data System (ADS)

    Krechmer, J.; Canagaratna, M.; Kimmel, J.; Junninen, H.; Knochenmuss, R.; Cubison, M.; Massoli, P.; Stark, H.; Jayne, J. T.; Surratt, J. D.; Jimenez, J. L.; Worsnop, D. R.

    2013-12-01

    We present results from the field deployment of a novel Ion Mobility Time-of-flight Chemical Ionization Mass Spectrometer (CI-IMS-TOF) during the Southern Oxidant and Aerosol Study (SOAS). IMS-TOF is a 2-dimensional analysis method, which separates gas-phase ions by mobility prior to determination of mass-to-charge ratio by mass spectrometry. Ion mobility is a unique physical property that is determined by the collisional cross section of an ion. Because mobility depends on size and shape, the IMS measurement is able to resolve isomers and isobaric compounds. Additionally, trends in IMS-TOF data space can be used to identify relationships between ions, such as common functionality or polymeric series. During SOAS we interfaced the IMS-TOF to a nitrate ion (NO3-) chemical ionization source that enables the selective ionization of highly oxidized gas phase species (those having a high O:C ratio) through clustering with the reagent ion. Highly oxidized products of terpenes and isoprene are important secondary organic aerosol precursors (SOA) that play an uncertain but important role in particle-phase chemistry. We present several case studies of atmospheric events during SOAS that exhibited elevated concentrations of sulfuric acid and/or organics. These events exhibited a rise in particle number and provide an opportunity to examine the role that organic species may have in local atmospheric new particle formation events. We also present the results from the field deployment and subsequent laboratory studies utilizing a Potential Aerosol Mass (PAM) flow reactor as the inlet for the CI-IMS-TOF. The reactor draws in ambient air and exposes it to high concentrations of the OH radical, created by photolysis O3 in the presence of water. The highly oxidized products are then sampled directly by the CI-IMS-TOF. We performed several experiments including placing pine and deciduous plants directly in front of the reactor opening and observed large increases in the number and

  14. Is extinction forever?

    PubMed

    Smith-Patten, Brenda D; Bridge, Eli S; Crawford, Priscilla H C; Hough, Daniel J; Kelly, Jeffrey F; Patten, Michael A

    2015-05-01

    Mistrust of science has seeped into public perception of the most fundamental aspect of conservation-extinction. The term ought to be straightforward, and yet, there is a disconnect between scientific discussion and public views. This is not a mere semantic issue, rather one of communication. Within a population dynamics context, we say that a species went locally extinct, later to document its return. Conveying our findings matters, for when we use local extinction, an essentially nonsensical phrase, rather than extirpation, which is what is meant, then we contribute to, if not create outright, a problem for public understanding of conservation, particularly as local extinction is often shortened to extinction in media sources. The public that receives the message of our research void of context and modifiers comes away with the idea that extinction is not forever or, worse for conservation as a whole, that an extinction crisis has been invented. PMID:25711479

  15. Is extinction forever?

    PubMed Central

    Bridge, Eli S.; Crawford, Priscilla H. C.; Hough, Daniel J.; Kelly, Jeffrey F.; Patten, Michael A.

    2015-01-01

    Mistrust of science has seeped into public perception of the most fundamental aspect of conservation—extinction. The term ought to be straightforward, and yet, there is a disconnect between scientific discussion and public views. This is not a mere semantic issue, rather one of communication. Within a population dynamics context, we say that a species went locally extinct, later to document its return. Conveying our findings matters, for when we use local extinction, an essentially nonsensical phrase, rather than extirpation, which is what is meant, then we contribute to, if not create outright, a problem for public understanding of conservation, particularly as local extinction is often shortened to extinction in media sources. The public that receives the message of our research void of context and modifiers comes away with the idea that extinction is not forever or, worse for conservation as a whole, that an extinction crisis has been invented. PMID:25711479

  16. Biological selectivity of extinction

    NASA Astrophysics Data System (ADS)

    Kitchell, Jennifer A.

    Selective survival across major extinction event horizons is both a bothersome puzzle and an opportunity to delimit the biologically interesting question of causality. Heritable differences in characters may have predictable consequences in terms of differential species survival. Differences in magnitude and intensity of extinction are insufficient to distinguish background from mass extinction regimes. Biological adaptations may establish links of causality between abnormal times of mass extinction and normal times of background extinction. A current hypothesis, developed from a comparison of extinction patterns among Late Cretaceous molluscs, is that biological adaptations of organisms, effective during normal times of Earth history, are ineffectual during times of crises. A counter example is provided by data from high-latitude laminated marine strata that preserve evidence of an actively exploited life-history strategy among Late Cretaceous phytoplankton. These data illustrate a causal dependency between a biological character selected for during times of background extinction and macroevolutionary survivorship during an unusual time of crisis.

  17. Investigation of the spectral responses of laser generated aerosol from household coals using a state-of-the-art multi-wavelength photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Ajtai, Tibor; Utry, Noemi; Pinter, Mate; Kiss-Albert, Gergely; Smausz, Tomi; Konya, Zoltan; Hopp, Bela; Szabo, Gabor; Bozoki, Zoltan

    2016-04-01

    We present the investigation of the inherent, spectral features of laser generated and chemically characterized residential coal aerosols generated in our recently introduced laser ablation based LAC generator. The optical absorption and the scattering features of the generated aerosol were investigated by our state-of-the-art multi wavelength PAS instrument (4λ-PAS) and a multi wavelength cosinus sensor (Aurora 3000). The quantified wavelength dependency (AAE and SAE) are deduced from the measured data. Finally, relationship between the optical and the thermochemical characteristics is revealed. Atmospheric light absorbing carbonaceous particulate matter (LAC) is in the middle of scientific interest especially because of its climatic and adverse health relevance. The latest scientific assessments identified atmospheric soot as the second most important anthropogenic emission regarding its climatic effect and as one of the most harmful atmospheric constituents based on its health aspects. LAC dominantly originates from anthropogenic sources, so its real time and selective identification is also essential for the means of its legal regulation. Despite of its significance the inherent properties of LAC are rarely described and the available data is widely spread even in the case of the most intensively studied black or elementary carbon. Therefore, the investigation of the inherent climate and health relevant properties of atmospheric soot is a highly actual issue. Moreover investigation of the optical and toxic properties of LAC originating from the combustion of household coals is almost completely missing from literature. There are two major reasons for that. Firstly, the characteristic parameters of soot are complex and vary in a wide range and depend not only on the initial burning conditions and the type of fuels but also the ambient factors. The other is the lack of a soot standard material and a generator which are suitable for modelling the real atmospheric

  18. Overview of the Cumulus Humilis Aerosol Processing Study.

    SciTech Connect

    Berg, L. K.; Berkowitz, C. M.; Ogren, J. A.; Hostetler, C. A.; Ferrare, R. A.; Dubey, M.; Andrews, E.; Coulter, R. L.; Hair, J. W.; Hubbe, J. M.Lee, Y. N.; Mazzoleni, C; Olfert, J; Springston, SR; Environmental Science Division; PNNL; NOAA Earth System Research Lab.; NASA Langley Research Center; LANL; BNL; Univ.of Alberta; Univ. of Colorado

    2009-11-01

    Aerosols influence climate directly by scattering and absorbing radiation and indirectly through their influence on cloud microphysical and dynamical properties. The Intergovernmental Panel on Climate Change (IPCC) concluded that the global radiative forcing due to aerosols is large and in general cools the planet. But the uncertainties in these estimates are also large due to our poor understanding of many of the important processes related to aerosols and clouds. To address this uncertainty an integrated strategy for addressing issues related to aerosols and aerosol processes was proposed. Using this conceptual framework, the Cumulus Humilis Aerosol Processing Study (CHAPS) is a stage 1 activity, that is, a detailed process study. The specific focus of CHAPS was to provide concurrent observations of the chemical composition of the activated [particles that are currently serving as cloud condensation nuclei (CCN)] and nonactivated aerosols, the scattering and extinction profiles, and detailed aerosol and droplet size spectra in the vicinity of Oklahoma City, Oklahoma, during June 2007. Numerous campaigns have examined aerosol properties downwind from large pollution sources, including the Megacity Initiative: Local and Global Research Observations (MILAGRO) campaign and the two of the three Aerosol Characterization Experiments, ACE-2 and ACE-Asia. Other studies conducted near cities have examined changes in both aerosols and clouds downwind of urban areas. For example wintertime stratiform clouds associated with the urban plumes of Denver, Colorado, and Kansas City, Missouri, have a larger number concentration and smaller median volume diameter of droplets than clouds that had not been affected by the urban plume. Likewise, a decrease in precipitation in polluted regions along the Front Range of the Rocky Mountains was discovered. In a modeling study, it was found that precipitation downwind of urban areas may be influenced by changes in aerosols as well as the

  19. Secondary extinctions of biodiversity.

    PubMed

    Brodie, Jedediah F; Aslan, Clare E; Rogers, Haldre S; Redford, Kent H; Maron, John L; Bronstein, Judith L; Groves, Craig R

    2014-12-01

    Extinctions beget further extinctions when species lose obligate mutualists, predators, prey, or hosts. Here, we develop a conceptual model of species and community attributes affecting secondary extinction likelihood, incorporating mechanisms that buffer organisms against partner loss. Specialized interactors, including 'cryptic specialists' with diverse but nonredundant partner assemblages, incur elevated risk. Risk is also higher for species that cannot either evolve new traits following partner loss or obtain novel partners in communities reorganizing under changing environmental conditions. Partner loss occurs alongside other anthropogenic impacts; multiple stressors can circumvent ecological buffers, enhancing secondary extinction risk. Stressors can also offset each other, reducing secondary extinction risk, a hitherto unappreciated phenomenon. This synthesis suggests improved conservation planning tactics and critical directions for research on secondary extinctions. PMID:25445878

  20. SCINTILLATION SPECTROMETER

    DOEpatents

    Bell, P.R.; Francis, J.E.

    1960-06-21

    A portable scintillation spectrometer is described which is especially useful in radio-biological studies for determining the uptake and distribution of gamma -emitting substances in tissue. The spectrometer includes a collimator having a plurality of apertures that are hexagonal in cross section. Two crystals are provided: one is activated to respond to incident rays from the collimator; the other is not activated and shields the first from external radiation.

  1. Inference of stratospheric aerosol composition and size distribution from SAGE II satellite measurements

    NASA Technical Reports Server (NTRS)

    Wang, Pi-Huan; Mccormick, M. P.; Fuller, W. H.; Yue, G. K.; Swissler, T. J.; Osborn, M. T.

    1989-01-01

    A method for inferring stratospheric aerosol composition and size distribution from the water vapor concentration and aerosol extinction measurements obtained in the Stratospheric Aerosol and Gas Experiment (SAGE) II and the associated temperature from the NMC. The aerosols are assumed to be sulfuric acid-water droplets. A modified Levenberg-Marquardt algorithm is used to determine model size distribution parameters based on the SAGE II multiwavelength aerosol extinctions. It is found that the best aerosol size information is contained in the aerosol radius range between about 0.25 and 0.80 micron.

  2. Gradual extinction reduces reinstatement

    PubMed Central

    Shiban, Youssef; Wittmann, Jasmin; Weißinger, Mara; Mühlberger, Andreas

    2015-01-01

    The current study investigated whether gradually reducing the frequency of aversive stimuli during extinction can prevent the return of fear. Thirty-one participants of a three-stage procedure (acquisition, extinction and a reinstatement test on day 2) were randomly assigned to a standard extinction (SE) and gradual extinction (GE) procedure. The two groups differed only in the extinction procedure. While the SE group ran through a regular extinction process without any negative events, the frequency of the aversive stimuli during the extinction phase was gradually reduced for the GE group. The unconditioned stimulus (US) was an air blast (5 bar, 10 ms). A spider and a scorpion were used as conditioned stimuli (CS). The outcome variables were contingency ratings and physiological measures (skin conductance response, SCR and startle response). There were no differences found between the two groups for the acquisition and extinction phases concerning contingency ratings, SCR, or startle response. GE compared to SE significantly reduced the return of fear in the reinstatement test for the startle response but not for SCR or contingency ratings. This study was successful in translating the findings in rodent to humans. The results suggest that the GE process is suitable for increasing the efficacy of fear extinction. PMID:26441581

  3. Mass extinction: a commentary

    NASA Technical Reports Server (NTRS)

    Raup, D. M.

    1987-01-01

    Four neocatastrophist claims about mass extinction are currently being debated; they are that: 1, the late Cretaceous mass extinction was caused by large body impact; 2, as many as five other major extinctions were caused by impact; 3, the timing of extinction events since the Permian is uniformly periodic; and 4, the ages of impact craters on Earth are also periodic and in phase with the extinctions. Although strongly interconnected the four claims are independent in the sense that none depends on the others. Evidence for a link between impact and extinction is strong but still needs more confirmation through bed-by-bed and laboratory studies. An important area for future research is the question of whether extinction is a continuous process, with the rate increasing at times of mass extinctions, or whether it is episodic at all scales. If the latter is shown to be generally true, then species are at risk of extinction only rarely during their existence and catastrophism, in the sense of isolated events of extreme stress, is indicated. This is line of reasoning can only be considered an hypothesis for testing. In a larger context, paleontologists may benefit from a research strategy that looks to known Solar System and Galactic phenomena for predictions about environmental effects on earth. The recent success in the recognition of Milankovitch Cycles in the late Pleistocene record is an example of the potential of this research area.

  4. Aerosol Optical Properties and Black Carbon Measurements (Ambient and Thermally-Denuded) from Detling, UK During the ClearfLo IOP in Winter 2012

    NASA Astrophysics Data System (ADS)

    Gorkowski, K.; Aiken, A. C.; Dubey, M. K.; Herndon, S. C.; Williams, L. R.; Worsnop, D. R.; Massoli, P.; Fortner, E.; Freedman, A.; Ng, N. L.; Allan, J. D.

    2012-12-01

    Continuous direct online aerosol and trace gas measurements were made in Delting, UK over the course of four weeks during the winter of 2012 as a part of the ClearfLo (Clean Air for London) campaign. Aerosols were sampled from the London plume (~33 miles WNW), fresh highway (~0.15 mi and 1.5 mi S, A249 and M20), urban (Maidstone; ~3 mi SW), power station (~8 mi N), and Continental European outflow (~50+ mi E/SE). LANL measurements include aerosol absorption and scattering at four wavelengths (375, 405, 532, 781 nm; PASS), aerosol extinction at 450 nm (CAPS), single particle black carbon (BC) number and mass concentrations (SP2), aerosol size distributions (LAS and SMPS), ambient and thermally-denuded aerosol filter samples for SEM and EDS analysis, PM10 C-13 aerosol filter samples, gas-phase CO2, H2O, and CH4 (Picarro). The SP2, PASS, and CAPS were located behind a valve-switching set-up to enable ambient and thermally-denuded (TD) samples to be collected at 10 minute intervals during the campaign, cycling between four temperature settings of 50, 120, 180, and 250C. Absorption from organics and coatings on BC are characterized by comparing the ambient data with the TD samples for the different aerosol sources that were sampled. Measurements from the SP2 are combined with absorption measurements from the three-wavelength photoacoustic soot spectrometer (PASS-3) at 405, 532, and 781 nm to determine wavelength-dependent mass absorption coefficients (MACs) and absorption angstrom exponents (AAEs). Extinction measurements from the CAPS compare well with the PASS using extinction angstrom exponents calculated from the PASS. BC increases with CO/CO2, a marker for inefficient combustion. We examine the mixing state of BC in the aged aerosol plumes by using the time lag between the scattering and incandescence signals measured by the SP2 and SEM analysis as a function of denuding temperature. The Detling/ClearfLo dataset is one of the most comprehensive in situ sets of

  5. Far-ultraviolet extinction determined from Voyager data

    NASA Technical Reports Server (NTRS)

    Snow, Theodore P.; Allen, M. M.; Polidan, R. S.

    1990-01-01

    Data from the Voyager UV spectrometers are used to derive FUV extinction curves for 19 stars, using the pair-comparison method after the removal of the effects of line absorption due to H I and H2. It is shown that the FUV extinction rise continues to the limit of the data at about 925 A, supporting the theoretical prediction by Longo et al. (1989) that the FUV extinction continues to rise toward short wavelengths all the way to the Lyman limit at 912 A.

  6. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1996-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size-resolved aerosol microphysics and chemistry. Both profiles included a pollution haze from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core. The soot core increased the calculated extinction by about 10% in the most polluted drier layer relative to a pure sulfate aerosol but had significantly less effect at higher humidities. A 3 km descent through a boundary layer air mass dominated by pollutant aerosol with relative humidities (RH) 10-77% yielded a close agreement between the measured and calculated aerosol optical depths (550 nm) of 0.160 (+/- 0.07) and 0. 157 (+/- 0.034) respectively. During descent the aerosol mass scattering coefficient per unit sulfate mass varied from about 5 to 16 m(exp 2)/g and primarily dependent upon ambient RH. However, the total scattering coefficient per total fine mass was far less variable at about 4+/- 0.7 m(exp 2)/g. A subsequent descent through a Saharan dust layer located above the pollution aerosol layer revealed that both layers contributed similarly to aerosol optical depth. The scattering per unit mass of the coarse aged dust was estimated at 1.1 +/- 0.2 m(exp 2)/g. The large difference (50%) in measured and calculated optical depth for the dust layer exceeded measurements.

  7. Global distribution of stratospheric aerosols by satellite measurements

    NASA Astrophysics Data System (ADS)

    McCormick, M. P.

    1982-01-01

    A description is given of the first-ever global stratospheric aerosol climatology which is being developed by the earth-orbiting SAM II and SAGE satellite-based sensors. These sensors use the technique of solar occulation; that is, for every spacecraft sunrise and sunset, the modulation of solar intensity caused by the intervening earth-limb is measured. These data are mathematically inverted to yield vertical profiles of aerosol extinction coefficients with 1 km resolution. The data show seasonal variations which are similar in each hemisphere, with strong correlation between aerosol extinction and the corresponding temperature field. Typical values of extinction in the stratosphere are found to be about 0.0001 to 0.0002 per km at 1 micrometer; stratospheric optical depths at this wavelength are about 0.002. The peak extinction in the stratospheric aerosol layer follows the tropopause with altitude, with peak extinction ratios about 10 km above the local tropopause.

  8. Ultraviolet photometry from the Orbiting Astronomical Observatory. II Interstellar extinction.

    NASA Technical Reports Server (NTRS)

    Bless, R. C.; Savage, B. D.

    1972-01-01

    Evaluation of interstellar extinction curves over the region from 3600 to 1100 A for 17 stars. The observations were made by the two Wisconsin spectrometers on board the Orbiting Astronomical Observatory 2, with spectral resolutions of 10 and 20 A. The extinction curves generally show a pronounced maximum at 2175 plus or minus 25 A, a broad minimum in the region from 1800 to 1350 A, and finally a rapid rise to the far-ultraviolet. Large extinction variations from star to star are found, especially in the far-ultraviolet; however, with only two possible exceptions in this sample, the wavelength at the maximum of the extinction bump is essentially constant. These data are combined with visual and infrared observations to display the extinction behavior over a range in wavelength of about a factor of 20. The observations appear to require a multicomponent model of the interstellar dust.

  9. Extinction and the fossil record

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. J. Jr; Sepkoski JJ, ,. J. r. (Principal Investigator)

    1994-01-01

    The author examines evidence of mass extinctions in the fossil record and searches for reasons for such large extinctions. Five major mass extinctions eliminated at least 40 percent of animal genera in the oceans and from 65 to 95 percent of ocean species. Questions include the occurrence of gradual or catastrophic extinctions, causes, environment, the capacity of a perturbation to cause extinctions each time it happens, and the possibility and identification of complex events leading to a mass extinction.

  10. Mass Spectrometer for Airborne Micro-Organisms

    NASA Technical Reports Server (NTRS)

    Sinha, M. P.; Friedlander, S. K.

    1986-01-01

    Bacteria and other micro-organisms identified continously with aid of new technique for producing samples for mass spectrometer. Technique generates aerosol of organisms and feeds to spectrometer. Given species of organism produces characteristic set of peaks in mass spectrum and thereby identified. Technique useful for monitoring bacterial makeup in environmental studies and in places where cleanliness is essential, such as hospital operating rooms, breweries, and pharmaceutical plants.

  11. Mexico City Aerosol Transect

    NASA Astrophysics Data System (ADS)

    Lewandowski, P. A.; Eichinger, W. E.; Prueger, J.; Holder, H. L.

    2007-12-01

    A radiative impact study was conducted in Mexico City during MILAGRO/MIRAGE campaign in March of 2006. On a day when the predominant wind was from the north to the south, authors measured radiative properties of the atmosphere in six locations across the city ranging from the city center, through the city south limits and the pass leading out of the city (causing pollutants to funnel through the area). A large change in aerosol optical properties has been noticed. The aerosol optical depth has generally increased outside of the city and angstrom coefficient has changed significantly towards smaller values. Aerosol size distribution was calculated using SkyRadPack. The total optical depths allowed coincidental lidar data to calculate total extinction profiles for all the locations for 1064nm.

  12. Multiaperture Spectrometer

    NASA Technical Reports Server (NTRS)

    Schindler, Rudolf A.; Pagano, Robert J.; O'Callaghan, Fred G.

    1991-01-01

    Proposed multiaperture spectrometer containing single grating provides high spectral resolution over broad spectrum. Produces parallel line images, each of which highly spectrally resolved display of intensity vs. wavelength in wavelength band of one of orders of spectrum produced by grating. Advantages; convenient two-dimensional spectral image, fewer components, and greater efficiency.

  13. Spectrometer gun

    DOEpatents

    Waechter, David A.; Wolf, Michael A.; Umbarger, C. John

    1985-01-01

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

  14. Spectrometer gun

    DOEpatents

    Waechter, D.A.; Wolf, M.A.; Umbarger, C.J.

    1981-11-03

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun is described that includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

  15. Sugars in Antarctic aerosol

    NASA Astrophysics Data System (ADS)

    Barbaro, Elena; Kirchgeorg, Torben; Zangrando, Roberta; Vecchiato, Marco; Piazza, Rossano; Barbante, Carlo; Gambaro, Andrea

    2015-10-01

    The processes and transformations occurring in the Antarctic aerosol during atmospheric transport were described using selected sugars as source tracers. Monosaccharides (arabinose, fructose, galactose, glucose, mannose, ribose, xylose), disaccharides (sucrose, lactose, maltose, lactulose), alcohol-sugars (erythritol, mannitol, ribitol, sorbitol, xylitol, maltitol, galactitol) and anhydrosugars (levoglucosan, mannosan and galactosan) were measured in the Antarctic aerosol collected during four different sampling campaigns. For quantification, a sensitive high-pressure anion exchange chromatography was coupled with a single quadrupole mass spectrometer. The method was validated, showing good accuracy and low method quantification limits. This study describes the first determination of sugars in the Antarctic aerosol. The total mean concentration of sugars in the aerosol collected at the "Mario Zucchelli" coastal station was 140 pg m-3; as for the aerosol collected over the Antarctic plateau during two consecutive sampling campaigns, the concentration amounted to 440 and 438 pg m-3. The study of particle-size distribution allowed us to identify the natural emission from spores or from sea-spray as the main sources of sugars in the coastal area. The enrichment of sugars in the fine fraction of the aerosol collected on the Antarctic plateau is due to the degradation of particles during long-range atmospheric transport. The composition of sugars in the coarse fraction was also investigated in the aerosol collected during the oceanographic cruise.

  16. Is extinction age dependent?

    USGS Publications Warehouse

    Doran, N.A.; Arnold, A.J.; Parker, W.C.; Huffer, F.W.

    2006-01-01

    Age-dependent extinction is an observation with important biological implications. Van Valen's Red Queen hypothesis triggered three decades of research testing its primary implication: that age is independent of extinction. In contrast to this, later studies with species-level data have indicated the possible presence of age dependence. Since the formulation of the Red Queen hypothesis, more powerful tests of survivorship models have been developed. This is the first report of the application of the Cox Proportional Hazards model to paleontological data. Planktonic foraminiferal morphospecies allow the taxonomic and precise stratigraphic resolution necessary for the Cox model. As a whole, planktonic foraminiferal morphospecies clearly show age-dependent extinction. In particular, the effect is attributable to the presence of shorter-ranged species (range < 4 myr) following extinction events. These shorter-ranged species also possess tests with unique morphological architecture. The morphological differences are probably epiphenomena of underlying developmental and heterochronic processes of shorter-ranged species that survived various extinction events. Extinction survivors carry developmental and morphological characteristics into postextinction recovery times, and this sets them apart from species populations established independently of extinction events. Copyright ?? 2006, SEPM (Society for Sedimentary Geology).

  17. ON THE PROPORTIONALITY OF FINE MASS CONCENTRATION AND EXTINCTION COEFFICIENT FOR BIMODAL SIZE DISTRIBUTIONS

    EPA Science Inventory

    For a bimodal size distribution of ambient aerosol, an upper limit in particle size can be chosen for the fine aerosol fraction so that the extinction coefficient for light scattering and absorption is directly proportional to the fine mass concentration, with no dependence on th...

  18. Temporal Dynamics of Recovery from Extinction Shortly after Extinction Acquisition

    ERIC Educational Resources Information Center

    Archbold, Georgina E.; Dobbek, Nick; Nader, Karim

    2013-01-01

    Evidence suggests that extinction is new learning. Memory acquisition involves both short-term memory (STM) and long-term memory (LTM) components; however, few studies have examined early phases of extinction retention. Retention of auditory fear extinction was examined at various time points. Shortly (1-4 h) after extinction acquisition…

  19. Regional characteristics of the relationship between columnar AOD and surface PM2.5: Application of lidar aerosol extinction profiles over Baltimore-Washington Corridor during DISCOVER-AQ

    NASA Astrophysics Data System (ADS)

    Chu, D. Allen; Ferrare, Richard; Szykman, James; Lewis, Jasper; Scarino, Amy; Hains, Jennifer; Burton, Sharon; Chen, Gao; Tsai, Tzuchin; Hostetler, Chris; Hair, Johnathan; Holben, Brent; Crawford, James

    2015-01-01

    The first field campaign of DISCOVER-AQ (Deriving Information on Surface conditions from COlumn and VERtically resolved observations relevant to Air Quality) took place in July 2011 over Baltimore-Washington Corridor (BWC). A suite of airborne remote sensing and in-situ sensors was deployed along with ground networks for mapping vertical and horizontal distribution of aerosols. Previous researches were based on a single lidar station because of the lack of regional coverage. This study uses the unique airborne HSRL (High Spectral Resolution Lidar) data to baseline PM2.5 (particulate matter of aerodynamic diameter less than 2.5 μm) estimates and applies to regional air quality with satellite AOD (Aerosol Optical Depth) retrievals over BWC (∼6500 km2). The linear approximation takes into account aerosols aloft above AML (Aerosol Mixing Layer) by normalizing AOD with haze layer height (i.e., AOD/HLH). The estimated PM2.5 mass concentrations by HSRL AOD/HLH are shown within 2 RMSE (Root Mean Square Error ∼9.6 μg/m3) with correlation ∼0.88 with the observed over BWC. Similar statistics are shown when applying HLH data from a single location over the distance of 100 km. In other words, a single lidar is feasible to cover the range of 100 km with expected uncertainties. The employment of MPLNET-AERONET (MicroPulse Lidar NETwork - AErosol RObotic NETwork) measurements at NASA GSFC produces similar statistics of PM2.5 estimates as those derived by HSRL. The synergy of active and passive remote sensing aerosol measurements provides the foundation for satellite application of air quality on a daily basis. For the optimal range of 10 km, the MODIS-estimated PM2.5 values are found satisfactory at 27 (out of 36) sunphotometer locations with mean RMSE of 1.6-3.3 μg/m3 relative to PM2.5 estimated by sunphotometers. The remaining 6 of 8 marginal sites are found in the coastal zone, for which associated large RMSE values ∼4.5-7.8 μg/m3 are most likely due to

  20. Fear Extinction in Rodents

    PubMed Central

    Chang, Chun-hui; Knapska, Ewelina; Orsini, Caitlin A.; Rabinak, Christine A.; Zimmerman, Joshua M.; Maren, Stephen

    2009-01-01

    Pavlovian conditioning paradigms have become important model systems for understanding the neuroscience of behavior. In particular, studies of the extinction of Pavlovian fear responses are yielding important information about the neural substrates of anxiety disorders in humans. These studies are germane to understanding the neural mechanisms underlying behavioral interventions that suppress fear, including exposure therapy. This chapter described detailed behavioral protocols for examining the nature and properties of fear extinction in laboratory rodents. PMID:19340814

  1. The Spectrometer

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2012-01-01

    In the fall of 1999 I was shown an Ocean Optics spectrometer-in-the-computer at St. Patricks College at Maynooth, Ireland, and thought that I had seen heaven. Of course, it could not resolve the sodium D-lines (I had done that many years before with a homemade wire diffraction grating), and I began to realize that inside was some familiar old…

  2. Extinction with multiple excitors

    PubMed Central

    McConnell, Bridget L.; Miguez, Gonzalo; Miller, Ralph R.

    2012-01-01

    Four conditioned suppression experiments with rats, using an ABC renewal design, investigated the effects of compounding the target conditioned excitor with additional, nontarget conditioned excitors during extinction. Experiment 1 showed stronger extinction, as evidenced by less renewal, when the target excitor was extinguished in compound with a second excitor, relative to when it was extinguished with associatively neutral stimuli. Critically, this deepened extinction effect was attenuated (i.e., more renewal occurred) when a third excitor was added during extinction training. This novel demonstration contradicts the predictions of associative learning models based on total error reduction, but it is explicable in terms of a counteraction effect within the framework of the extended comparator hypothesis. The attenuated deepened extinction effect was replicated in Experiments 2a and 3, which also showed that pretraining consisting of weakening the association between the two additional excitors (Experiments 2a and 2b) or weakening the association between one of the additional excitors and the unconditioned stimulus (Experiment 3) attenuated the counteraction effect, thereby resulting in a decrease in responding to the target excitor. These results suggest that more than simple total error reduction determines responding after extinction. PMID:23055103

  3. Extinction of oscillating populations.

    PubMed

    Smith, Naftali R; Meerson, Baruch

    2016-03-01

    Established populations often exhibit oscillations in their sizes that, in the deterministic theory, correspond to a limit cycle in the space of population sizes. If a population is isolated, the intrinsic stochasticity of elemental processes can ultimately bring it to extinction. Here we study extinction of oscillating populations in a stochastic version of the Rosenzweig-MacArthur predator-prey model. To this end we develop a WKB (Wentzel, Kramers and Brillouin) approximation to the master equation, employing the characteristic population size as the large parameter. Similar WKB theories have been developed previously in the context of population extinction from an attracting multipopulation fixed point. We evaluate the extinction rates and find the most probable paths to extinction from the limit cycle by applying Floquet theory to the dynamics of an effective four-dimensional WKB Hamiltonian. We show that the entropic barriers to extinction change in a nonanalytic way as the system passes through the Hopf bifurcation. We also study the subleading pre-exponential factors of the WKB approximation. PMID:27078294

  4. Extinction of oscillating populations

    NASA Astrophysics Data System (ADS)

    Smith, Naftali R.; Meerson, Baruch

    2016-03-01

    Established populations often exhibit oscillations in their sizes that, in the deterministic theory, correspond to a limit cycle in the space of population sizes. If a population is isolated, the intrinsic stochasticity of elemental processes can ultimately bring it to extinction. Here we study extinction of oscillating populations in a stochastic version of the Rosenzweig-MacArthur predator-prey model. To this end we develop a WKB (Wentzel, Kramers and Brillouin) approximation to the master equation, employing the characteristic population size as the large parameter. Similar WKB theories have been developed previously in the context of population extinction from an attracting multipopulation fixed point. We evaluate the extinction rates and find the most probable paths to extinction from the limit cycle by applying Floquet theory to the dynamics of an effective four-dimensional WKB Hamiltonian. We show that the entropic barriers to extinction change in a nonanalytic way as the system passes through the Hopf bifurcation. We also study the subleading pre-exponential factors of the WKB approximation.

  5. Mass extinction causes debated

    NASA Astrophysics Data System (ADS)

    Katzoff, Judith A.

    A highly charged atmosphere and a tacit agreement to disagree marked the first Union session at the 1985 AGU Fall Meeting,“Where Are We Now on Iridium, Anomalies, Extinctions, Impacts, Volcanism, and Periodicity?” The session brought together a remarkably large and varied group of participants who are studying topics related to mass extinctions. “The important thing is bringing all these people together, sharing … how they think,” said J. John Sepkoski, Jr., of the University of Chicago, who presented one of the session's invited papers.The controversies under discussion included the nature of the catastrophic events that may have occurred 65 million years ago to precipitate mass extinctions between the Cretaceous and Tertiary periods and whether mass extinctions have occurred at regular intervals (and if so, what those intervals are). Both the group advocating extraterrestrial impacts and that advocating episodes of unusual terrestrial volcanism seemed to agree that both kinds of catastrophes would have brought on highly acidic precipitation that could have threatened many life forms. In fact, one paleontologist called for closer examination of patterns of survival during periods of mass extinctions in order to gain clues about the nature of the events that may have brought on the extinctions. “The survivors … set limits on what could have occurred,” said William A. Clemens of the University of California, Berkeley.

  6. Overview of the Stratospheric Aerosol and Gas Experiment III (SAGE III) on the International Space Station

    NASA Astrophysics Data System (ADS)

    Flittner, David; Pitts, Michael; Zawodny, Joe; Hill, Charles; Damadeo, Robert; Moore, Randy; Cisewski, Michael

    2012-07-01

    vapor, along with multi-wavelength aerosol extinction. Though in the visible portion of the spectrum the brightness of the Sun is one million times that of the full Moon, the SAGE III instrument is designed to cover this large dynamic range and also perform lunar occultations on a routine basis to augment the solar products. The standard lunar products were demonstrated during the SAGE III/M3M mission and include ozone, nitrogen dioxide & nitrogen trioxide. The operational flexibility of the SAGE III spectrometer accomplishes the main goal of producing ozone and aerosol extinction profiles, while allowing exploration of new possibilities for the occultation technique, such as night-time aerosol extinction profiles or other trace gases not measured by SAGE in the past.

  7. Stratospheric aerosol forcing for climate modeling: 1850-1978

    NASA Astrophysics Data System (ADS)

    Arfeuille, Florian; Luo, Beiping; Thomason, Larry; Vernier, Jean-Paul; Peter, Thomas

    2016-04-01

    We present here a stratospheric aerosol dataset produced using the available aerosol optical depth observations from the pre-satellite period. The scarce atmospheric observations are supplemented by additional information from an aerosol microphysical model, initialized by ice-core derived sulfur emissions. The model is used to derive extinctions at all altitudes, latitudes and times when sulfur injections are known for specific volcanic eruptions. The simulated extinction coefficients are then scaled to match the observed optical depths. In order to produce the complete optical properties at all wavelengths (and the aerosol surface area and volume densities) needed by climate models, we assume a lognormal size distribution of the aerosols. Correlations between the extinctions in the visible and the effective radius and distribution width parameters are taken from the better constrained SAGE II period. The aerosol number densities are then fitted to match the derived extinctions in the 1850-1978 period. From these aerosol size distributions, we then calculate extinction coefficients, single scattering albedos and asymmetry factors at all wavelengths using the Mie theory. The aerosol surface area densities and volume densities are also provided.

  8. Atmospheric aerosols: Their Optical Properties and Effects (supplement)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A digest of technical papers is presented. Topics include aerosol size distribution from spectral attenuation with scattering measurements; comparison of extinction and backscattering coefficients for measured and analytic stratospheric aerosol size distributions; using hybrid methods to solve problems in radiative transfer and in multiple scattering; blue moon phenomena; absorption refractive index of aerosols in the Denver pollution cloud; a two dimensional stratospheric model of the dispersion of aerosols from the Fuego volcanic eruption; the variation of the aerosol volume to light scattering coefficient; spectrophone in situ measurements of the absorption of visible light by aerosols; a reassessment of the Krakatoa volcanic turbidity, and multiple scattering in the sky radiance.

  9. Vertical structure and optical properties of Titan's aerosols from radiance measurements made inside and outside the atmosphere

    NASA Astrophysics Data System (ADS)

    Doose, Lyn R.; Karkoschka, Erich; Tomasko, Martin G.; Anderson, Carrie M.

    2016-05-01

    Prompted by the detection of stratospheric cloud layers by Cassini's Composite Infrared Spectrometer (CIRS; see Anderson, C.M., Samuelson, R.E. [2011]. Icarus 212, 762-778), we have re-examined the observations made by the Descent Imager/Spectral Radiometer (DISR) in the atmosphere of Titan together with two constraints from measurements made outside the atmosphere. No evidence of thin layers (<1 km) in the DISR image data sets is seen beyond the three previously reported layers at 21 km, 11 km, and 7 km by Karkoschka and Tomasko (Karkoschka, E., Tomasko, M.G. [2009]. Icarus 199, 442-448). On the other hand, there is evidence of a thicker layer centered at about 55 km. A rise in radiance gradients in the Downward-Looking Visible Spectrometer (DLVS) data below 55 km indicates an increase in the volume extinction coefficient near this altitude. To fit the geometric albedo measured from outside the atmosphere the decrease in the single scattering albedo of Titan's aerosols at high altitudes, noted in earlier studies of DISR data, must continue to much higher altitudes. The altitude of Titan's limb as a function of wavelength requires that the scale height of the aerosols decrease with altitude from the 65 km value seen in the DISR observations below 140 km to the 45 km value at higher altitudes. We compared the variation of radiance with nadir angle observed in the DISR images to improve our aerosol model. Our new aerosol model fits the altitude and wavelength variations of the observations at small and intermediate nadir angles but not for large nadir angles, indicating an effect that is not reproduced by our radiative transfer model. The volume extinction profiles are modeled by continuous functions except near the enhancement level near 55 km altitude. The wavelength dependence of the extinction optical depth is similar to earlier results at wavelengths from 500 to 700 nm, but is smaller at shorter wavelengths and larger toward longer wavelengths. A Hapke

  10. Retrieval of composition and size distribution of stratospheric aerosols with the SAGE II satellite experiment

    NASA Technical Reports Server (NTRS)

    Yue, Glenn K.; Mccormick, M. P.; Chu, W. P.

    1986-01-01

    The SAGE II satellite system was launched on October 5, 1984. It has seven radiometric channels and is beginning to provide water vapor, NO2, and O3 concentration profiles and aerosol extinction profiles at a minimum of three wavelengths. A simple, fast and operational method of retrieving characteristics of stratospheric aerosols from the water vapor and three-wavelength aerosol extinction profiles is proposed. Some examples are given to show the practicality of the scheme. Possible sources of error for the retrieved values and the limitation of the proposed method are discussed. This method may also prove applicable to the study of aerosol characteristics in other multispectral extinction measurements.

  11. Lidar profiling of aerosol optical properties from Paris to Lake Baikal (Siberia)

    NASA Astrophysics Data System (ADS)

    Dieudonné, E.; Chazette, P.; Marnas, F.; Totems, J.; Shang, X.

    2015-05-01

    In June 2013, a ground-based mobile lidar performed the ~10 000 km ride from Paris to Ulan-Ude, near Lake Baikal, profiling for the first time aerosol optical properties all the way from western Europe to central Siberia. The instrument was equipped with N2-Raman and depolarization channels that enabled an optical speciation of aerosols in the low and middle troposphere. The extinction-to-backscatter ratio (also called lidar ratio or LR) and particle depolarization ratio (PDR) at 355 nm have been retrieved. The LR in the lower boundary layer (300-700 m) was found to be 63 ± 17 sr on average during the campaign with a distribution slightly skewed toward higher values that peaks between 50 and 55 sr. Although the difference is small, PDR values observed in Russian cities (>2%, except after rain) are systematically higher than the ones measured in Europe (<1%), which is probably an effect of the lifting of terrigenous aerosols by traffic on roads. Biomass burning layers from grassland or/and forest fires in southern Russia exhibit LR values ranging from 65 to 107 sr and from 3 to 4% for the PDR. During the route, desert dust aerosols originating from the Caspian and Aral seas regions were characterized for the first time, with a LR (PDR) of 43 ± 14 sr (23 ± 2%) for pure dust. The lidar observations also showed that this dust event extended over 2300 km and lasted for ~6 days. Measurements from the Moderate Resolution Imaging Spectrometer (MODIS) show that our results are comparable in terms of aerosol optical thickness (between 0.05 and 0.40 at 355 nm) with the mean aerosol load encountered throughout our route.

  12. Lidar profiling of aerosol optical properties from Paris to Lake Baikal (Siberia)

    NASA Astrophysics Data System (ADS)

    Dieudonné, E.; Chazette, P.; Marnas, F.; Totems, J.; Shang, X.

    2014-11-01

    In June 2013, a ground-based mobile lidar performed the 10 000 km ride from Paris to Ulan-Ude, near Lake Baikal, profiling for the first time aerosol optical properties all the way from Western Europe to central Siberia. The instrument was equipped with N2-Raman and depolarization channels that enabled an optical speciation of aerosols in the low and middle troposphere. The backscatter-to-extinction ratio (BER) and particle depolarization ratio (PDR) at 355 nm have been retrieved. The BER in the lower boundary layer (300-700 m) was found to be 0.017 ± 0.009 sr-1 in average during the campaign, with slightly higher values in background conditions near Lake Baikal (0.021 ± 0.010 sr-1 in average) corresponding to dust-like particles. PDR values observed in Russian cities (>1.7%) are higher than the ones measured in European cities (<1.3%) due to the lifting of terrigenous aerosols by traffic on roads with a bad tarmac. Biomass burning layers from grassland or/and forest fires in southern Russia exhibit BER values ranging from 0.010 to 0.015 sr-1 and from 2 to 3% for the PDR. Desert dust aerosols originating from the Caspian and Aral seas regions were characterized for the first time, with a BER (PDR) of 0.022 sr-1 (21%) for pure dust, and 0.011 sr-1 (15%) for a mix between dust and biomass burning. The lidar observations also showed that this dust event extended over 2300 km and lasted for ~6 days. Measurements from the Moderate Resolution Imaging Spectrometer (MODIS) show that our results are comparable in terms of aerosol optical thickness (between 0.05 and 0.40 at 355 nm) with the mean aerosol load encountered throughout our route.

  13. Optical, physical, and chemical properties of springtime aerosol over Barrow Alaska in 2008

    SciTech Connect

    Shantz, Nicole C.; Gultepe, Ismail; Andrews, Elisabeth; Earle, Michael; MacDonald, A. M.; Liu, Peter S.K.; Leaitch, W. R.

    2014-03-06

    Airborne observations from four flights during the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) are used to examine some cloud-free optical, physical, and chemical properties of aerosol particles in the springtime Arctic troposphere. The number concentrations of particles larger than 0.12 μm (Na>120), important for light extinction and cloud droplet formation, ranged from 15 to 2260 cm-3, with the higher Na>120 cases dominated by measurements from two flights of long-range transported biomass burning (BB) aerosols. The two other flights examined here document a relatively clean aerosol and an Arctic Haze aerosol impacted by larger particles largely composed of dust. For observations from the cleaner case and the BB cases, the particle light scattering coefficients at low relative humidity (RH<20%) increased nonlinearly with increasing Na>120, driven mostly by an increase in mean sizes of particles with increasing Na>120 (BB cases). For those three cases, particle light absorption coefficients also increased nonlinearly with increasing Na>120 and linearly with increasing submicron particle volume concentration. In addition to black carbon, brown carbon was estimated to have increased light absorption coefficients by 27% (450 nm wavelength) and 14% (550 nm) in the BB cases. For the case with strong dust influence, the absorption relative to submicron particle volume was small compared with the other cases. There was a slight gradient of Passive Cavity Aerosol Spectrometer Probe (PCASP) mean volume diameter (MVD) towards smaller sizes with increasing height, which suggests more scavenging of the more elevated particles, consistent with a typically longer lifetime of particles higher in the atmosphere. However, in approximately 10% of the cases, the MVD increased (>0.4 μm) with increasing altitude, suggesting transport of larger fine particle mass (possibly coarse particle mass) at high levels over the Arctic. This may be because of transport of

  14. MASS SPECTROMETER

    DOEpatents

    White, F.A.

    1960-08-23

    A mass spectrometer is designed with a first adjustable magnetic field for resolving an ion beam into beams of selected masses, a second adjustable magnetic field for further resolving the ion beam from the first field into beams of selected masses, a thin foil disposed in the path of the beam between the first and second magnets to dissociate molecular ions incident thereon, an electrostatic field for further resolving the ion beam from the second field into beams of selected masses, and a detector disposed adjacent to the electrostatic field to receive the ion beam.

  15. Hybridization and extinction.

    PubMed

    Todesco, Marco; Pascual, Mariana A; Owens, Gregory L; Ostevik, Katherine L; Moyers, Brook T; Hübner, Sariel; Heredia, Sylvia M; Hahn, Min A; Caseys, Celine; Bock, Dan G; Rieseberg, Loren H

    2016-08-01

    Hybridization may drive rare taxa to extinction through genetic swamping, where the rare form is replaced by hybrids, or by demographic swamping, where population growth rates are reduced due to the wasteful production of maladaptive hybrids. Conversely, hybridization may rescue the viability of small, inbred populations. Understanding the factors that contribute to destructive versus constructive outcomes of hybridization is key to managing conservation concerns. Here, we survey the literature for studies of hybridization and extinction to identify the ecological, evolutionary, and genetic factors that critically affect extinction risk through hybridization. We find that while extinction risk is highly situation dependent, genetic swamping is much more frequent than demographic swamping. In addition, human involvement is associated with increased risk and high reproductive isolation with reduced risk. Although climate change is predicted to increase the risk of hybridization-induced extinction, we find little empirical support for this prediction. Similarly, theoretical and experimental studies imply that genetic rescue through hybridization may be equally or more probable than demographic swamping, but our literature survey failed to support this claim. We conclude that halting the introduction of hybridization-prone exotics and restoring mature and diverse habitats that are resistant to hybrid establishment should be management priorities. PMID:27468307

  16. Research on aerosol profiles and parameterization scheme in Southeast China

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Deng, Tao; Tan, Haobo; Liu, Xiantong; Yang, Honglong

    2016-09-01

    The vertical distribution of the aerosol extinction coefficient serves as a basis for evaluating aerosol radiative forcing and air quality modeling. In this study, MODIS AOD data and ground-based lidar extinction coefficients were employed to verify 6 years (2009-2014) aerosol extinction data obtained via CALIOP for Southeast China. The objective was mainly to provide the parameterization scheme of annual and seasonal aerosol extinction profiles. The results showed that the horizontal and vertical distributions of CALIOP extinction data were highly accurate in Southeast China. The annual average AOD below 2 km accounted for 64% of the total layer, with larger proportions observed in winter (80%) and autumn (80%) and lower proportions observed in summer (70%) and spring (59%). The AOD was maximum in the spring (0.58), followed by the autumn and winter (0.44), and reached a minimum in the summer (0.40). The near-surface extinction coefficient increased from summer, spring, autumn and winter, in that order. The Elterman profile is obviously lower than the profiles observed by CALIOP in Southeast China. The annual average and seasonal aerosol profiles showed an exponential distribution, and could be divided into two sections. Two sections exponential fitting was used in the parameterization scheme. In the first section, the aerosol scale height reached 2200 m with a maximum (3,500 m) in summer and a minimum (1,230 m) in winter, which meant that the aerosol extinction decrease with height slower in summer, but more rapidly in winter. In second section, the aerosol scale height was maximum in spring, which meant that the higher aerosol diffused in spring.

  17. SAGE aerosol measurements. Volume 3: January 1, 1981 to November 18, 1981

    NASA Technical Reports Server (NTRS)

    Mccormick, M. Patrick

    1987-01-01

    The Stratospheric Aerosol and Gas Experiment (SAGE) satellite system, launched February 18, 1979, obtained profiles of aerosol extinction at 1.00 micron and 0.45 micron ozone concentration, and nitrogen dioxide concentration. Data taken during sunset events are presented in the form of zonal and seasonal averages of aerosol extinction of 1.00 micron and 0.45 micron, ratios of aerosol extinction to molecular extinction at 1.00 micron and ratios of aerosol extinction at 0.45 micron to aerosol extinction at 1.00 micron. Averages for 1981 are shown in tables, and in profile and contour plots (as a function of altitude and latitude). In addition, temperature data provided by NOAA for the time and location of each SAGE measurement are averaged and shown in a similar format. The stratospheric aerosol distribution for 1981 shows effects of volcanically injected material from eruptions of Ulawun, Alaid, and Pagan. Peak values of aerosol extinction at 0.45 micron and 1.00 micron were 2 to 4 times higher than typical peak values observed during near background conditions. Stratospheric aerosol optical depth values at 1.00 microns increased by a factor of about 2 from near background levels in regions of volcanic activity. During the year, these values ranged from between 0.001 and 0.006. The largest were near the location of a recent eruption. The distribution of the ratio of aerosol to molecular extinction at 1.00 microns also showed that maximum values are found in the vicinity of an eruption. These maximums varied in altitude, but remained below a height of about 25 km. No attempt has been made to give detailed explanations or interpretations of these data. The intent is to provide, in a ready-to-use visual format, representative zonal and seasonal averages of aerosol extinction data for the third calendar year of the SAGE data set to facilitate atmospheric and climatic studies.

  18. SAGE aerosol measurements. Volume 3: January 1, 1981 to November 18, 1981

    NASA Astrophysics Data System (ADS)

    McCormick, M. Patrick

    1987-02-01

    The Stratospheric Aerosol and Gas Experiment (SAGE) satellite system, launched February 18, 1979, obtained profiles of aerosol extinction at 1.00 micron and 0.45 micron ozone concentration, and nitrogen dioxide concentration. Data taken during sunset events are presented in the form of zonal and seasonal averages of aerosol extinction of 1.00 micron and 0.45 micron, ratios of aerosol extinction to molecular extinction at 1.00 micron and ratios of aerosol extinction at 0.45 micron to aerosol extinction at 1.00 micron. Averages for 1981 are shown in tables, and in profile and contour plots (as a function of altitude and latitude). In addition, temperature data provided by NOAA for the time and location of each SAGE measurement are averaged and shown in a similar format. The stratospheric aerosol distribution for 1981 shows effects of volcanically injected material from eruptions of Ulawun, Alaid, and Pagan. Peak values of aerosol extinction at 0.45 micron and 1.00 micron were 2 to 4 times higher than typical peak values observed during near background conditions. Stratospheric aerosol optical depth values at 1.00 microns increased by a factor of about 2 from near background levels in regions of volcanic activity. During the year, these values ranged from between 0.001 and 0.006. The largest were near the location of a recent eruption. The distribution of the ratio of aerosol to molecular extinction at 1.00 microns also showed that maximum values are found in the vicinity of an eruption. These maximums varied in altitude, but remained below a height of about 25 km. No attempt has been made to give detailed explanations or interpretations of these data. The intent is to provide, in a ready-to-use visual format, representative zonal and seasonal averages of aerosol extinction data for the third calendar year of the SAGE data set to facilitate atmospheric and climatic studies.

  19. Biological Extinction in Earth History

    NASA Astrophysics Data System (ADS)

    Raup, David M.

    1986-03-01

    Virtually all plant and animal species that have ever lived on the earth are extinct. For this reason alone, extinction must play an important role in the evolution of life. The five largest mass extinctions of the past 600 million years are of greatest interest, but there is also a spectrum of smaller events, many of which indicate biological systems in profound stress. Extinction may be episodic at all scales, with relatively long periods of stability alternating with short-lived extinction events. Most extinction episodes are biologically selective, and further analysis of the victims and survivors offers the greatest chance of deducing the proximal causes of extinction. A drop in sea level and climatic change are most frequently invoked to explain mass extinctions, but new theories of collisions with extraterrestrial bodies are gaining favor. Extinction may be constructive in a Darwinian sense or it may only perturb the system by eliminating those organisms that happen to be susceptible to geologically rare stresses.

  20. Biological extinction in earth history

    NASA Technical Reports Server (NTRS)

    Raup, D. M.

    1986-01-01

    Virtually all plant and animal species that have ever lived on the earth are extinct. For this reason alone, extinction must play an important role in the evolution of life. The five largest mass extinctions of the past 600 million years are of greatest interest, but there is also a spectrum of smaller events, many of which indicate biological systems in profound stress. Extinction may be episodic at all scales, with relatively long periods of stability alternating with short-lived extinction events. Most extinction episodes are biologically selective, and further analysis of the victims and survivors offers the greatest chance of deducing the proximal causes of extinction. A drop in sea level and climatic change are most frequently invoked to explain mass extinctions, but new theories of collisions with extraterrestrial bodies are gaining favor. Extinction may be constructive in a Darwinian sense or it may only perturb the system by eliminating those organisms that happen to be susceptible to geologically rare stresses.

  1. Measuring Sodium Chloride Contents of Aerosols

    NASA Technical Reports Server (NTRS)

    Sinha, M. P.; Friedlander, S. K.

    1986-01-01

    Amount of sodium chloride in individual aerosol particles measured in real time by analyzer that includes mass spectrometer. Analyzer used to determine mass distributions of active agents in therapeutic or diagnostic aerosols derived from saline solutions and in analyzing ocean spray. Aerosol particles composed of sodium chloride introduced into oven, where individually vaporized on hot wall. Vapor molecules thermally dissociated, and some of resulting sodium atoms ionized on wall. Ions leave oven in burst and analyzed by spectrometer, which is set to monitor sodium-ion intensity.

  2. In-Situ Measurements of Aerosol Optical and Hygroscopic Properties at the Look Rock Site during SOAS 2013

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zimmermann, K.; Bertram, T. H.; Corrigan, A. L.; Guzman, J. M.; Russell, L. M.; Budisulistiorini, S.; Li, X.; Surratt, J. D.; Hicks, W.; Bairai, S. T.; Cappa, C. D.

    2013-12-01

    One of the main goals of the Southern Oxidant and Aerosol Study (SOAS) is to characterize the climate-relevant properties of aerosols over the southeastern United States at the interface of biogenic and anthropogenic emissions. As part of the SOAS campaign, the UCD cavity ringdown/photoacoustic spectrometer was deployed to make in-situ measurements of aerosol light extinction, absorption and sub-saturated hygroscopicity at the Look Rock site (LRK) in the Great Smoky Mountains National Park, TN from June 1 to July 15, 2013. The site is influenced by substantial biogenic emissions with varying impacts from anthropogenic pollutants, allowing for direct examination of the optical and hygroscopic properties of anthropogenic-influenced biogenic secondary organic aerosols (SOA). During the experiment period, the average dry aerosol extinction (Bext), absorption (Babs) coefficients and single scattering albedo (SSA) at 532 nm were 30.3 × 16.5 Mm-1, 1.12 × 0.78 Mm-1 and 0.96 × 0.06. The Babs at 532 nm was well correlated (r2 = 0.79) with the refractory black carbon (rBC) number concentration determined by a single particle soot spectrometer (SP2). The absorption by black carbon (BC), brown carbon (BrC) and the absorption enhancement due to the 'lensing' effect were quantified by comparing the Babs of ambient and thermo-denuded aerosols at 405 nm and 532 nm. The optical sub-saturated hygroscopic growth factor was derived from extinction and particle size distribution measurements at dry and elevated relative humidity. In addition, to explore the extent to which ammonia mediated chemistry leads to BrC formation, as suggested in recent laboratory studies(1,2), we performed an NH3 perturbation experiment in-situ for 1 week during the study, in which ambient aerosols were exposed to approximately 100 ppb NH3 with a residence time of ~ 3hr. The broader implications of these observational data at LRK will be discussed in the context of the concurrent gas and aerosol chemical

  3. Species extinction mires ecosystem

    SciTech Connect

    Holzman, D.

    1990-03-26

    Extinction is normal in the evolution of life, but amphibians, insects, birds and mammals are vanishing at an alarming pace. While habitat destruction, overexploitation and pollution are among the main causes, some disappearances cannot be explained. The extinction problem among amphibians mirrors the general, worldwide phenomenon. A synergism of insults may be responsible. Chance events such as a dry year might occasionally clean out a pond. But a larger lake nearby would replenish it. Now acid pollution adds to the ponds' burden while stocking of amphibian-eating sport fish in the lake - which happens even in natural parks - would destroy the source of replenishment. Some fear that extinctions ultimately could destroy nature's fabric.

  4. Supernovae and mass extinctions

    NASA Technical Reports Server (NTRS)

    Vandenbergh, S.

    1994-01-01

    Shklovsky and others have suggested that some of the major extinctions in the geological record might have been triggered by explosions of nearby supernovae. The frequency of such extinction events will depend on the galactic supernova frequency and on the distance up to which a supernova explosion will produce lethal effects upon terrestrial life. In the present note it will be assumed that a killer supernova has to occur so close to Earth that it will be embedded in a young, active, supernova remnant. Such young remnants typically have radii approximately less than 3 pc (1 x 10(exp 19) cm). Larger (more pessimistic?) killer radii have been adopted by Ruderman, Romig, and by Ellis and Schramm. From observations of historical supernovae, van den Bergh finds that core-collapse (types Ib and II) supernovae occur within 4 kpc of the Sun at a rate of 0.2 plus or minus 0.1 per century. Adopting a layer thickness of 0.3 kpc for the galacitc disk, this corresponds to a rate of approximately 1.3 x 10(exp -4) supernovae pc(exp -3) g.y.(exp -1). Including supernovae of type Ia will increase the total supernovae rate to approximately 1.5 x 10(exp -4) supernovae pc(exp -3) g.y.(exp -1). For a lethal radius of R pc the rate of killer events will therefore be 1.7 (R/3)(exp 3) x 10(exp -2) supernovae per g.y. However, a frequency of a few extinctions per g.y. is required to account for the extinctions observed during the phanerozoic. With R (extinction) approximately 3 pc, the galactic supernova frequency is therefore too low by 2 orders of magnitude to account for the major extinctions in the geological record.

  5. Measurements of Aerosol Vertical Profiles and Optical Properties during INDOEX 1999 Using Micro-Pulse Lidars

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Voss, Kenneth J.; Quinn, Patricia K.; Flatau, Piotr J.; Markowicz, Krzysztof; Campbell, James R.; Spinhirne, James D.; Gordon, Howard R.; Johnson, James E.; Starr, David OC. (Technical Monitor)

    2001-01-01

    Micro-pulse lidar systems (MPL) were used to measure aerosol properties during the Indian Ocean Experiment (INDOEX) 1999 field phase. Measurements were made from two platforms: the NOAA ship RN Ronald H. Brown, and the Kaashidhoo Climate Observatory (KCO) in the Maldives. Sunphotometers were used to provide aerosol optical depths (AOD) needed to calibrate the MPL. This study focuses on the height distribution and optical properties (at 523 nm) of aerosols observed during the campaign. The height of the highest aerosols (top height) was calculated and found to be below 4 km for most of the cruise. The marine boundary layer (MBL) top was calculated and found to be less than 1 km. MPL results were combined with air mass trajectories, radiosonde profiles of temperature and humidity, and aerosol concentration and optical measurements. Humidity varied from approximately 80% near the surface to 50% near the top height during the entire cruise. The average value and standard deviation of aerosol optical parameters were determined for characteristic air mass regimes. Marine aerosols in the absence of any continental influence were found to have an AOD of 0.05 +/- 0.03, an extinction-to-backscatter ratio (S-ratio) of 33 +/- 6 sr, and peak extinction values around 0.05/km (near the MBL top). The marine results are shown to be in agreement with previously measured and expected values. Polluted marine areas over the Indian Ocean, influenced by continental aerosols, had AOD values in excess of 0.2, S-ratios well above 40 sr, and peak extinction values approximately 0.20/km (near the MBL top). The polluted marine results are shown to be similar to previously published values for continental aerosols. Comparisons between MPL derived extinction near the ship (75 m) and extinction calculated at ship-level using scattering measured by a nephelometer and absorption using a PSAP were conducted. The comparisons indicated that the MPL algorithm (using a constant S-ratio throughout the

  6. Background stratospheric aerosol reference model

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Wang, P.

    1989-01-01

    In this analysis, a reference background stratospheric aerosol optical model is developed based on the nearly global SAGE 1 satellite observations in the non-volcanic period from March 1979 to February 1980. Zonally averaged profiles of the 1.0 micron aerosol extinction for the tropics and the mid- and high-altitudes for both hemispheres are obtained and presented in graphical and tabulated form for the different seasons. In addition, analytic expressions for these seasonal global zonal means, as well as the yearly global mean, are determined according to a third order polynomial fit to the vertical profile data set. This proposed background stratospheric aerosol model can be useful in modeling studies of stratospheric aerosols and for simulations of atmospheric radiative transfer and radiance calculations in atmospheric remote sensing.

  7. SAGE II aerosol data validation and initial data use - An introduction and overview

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Mccormick, M. P.

    1989-01-01

    The process of validating data from the Stratospheric Aerosol and Gas Experiment (SAGE) II and the initial use of the validated data are reviewed. The instruments developed for the SAGE II, the influence of the eruption of El Chichon on the global stratospheric aerosol, and various data validation experiments are discussed. Consideration is given to methods for deriving aerosol physical and optical properties from SAGE II extinction data and for inferring particle size distribution moments from SAGE II spectral extinction values.

  8. Extinction from a paleontological perspective

    NASA Technical Reports Server (NTRS)

    Raup, D. M.

    1993-01-01

    Extinction of widespread species is common in evolutionary time (millions of years) but rare in ecological time (hundreds or thousands of years). In the fossil record, there appears to be a smooth continuum between background and mass extinction; and the clustering of extinctions at mass extinctions cannot be explained by the chance coincidence of independent events. Although some extinction is selective, much is apparently random in that survivors have no recognizable superiority over victims. Extinction certainly plays an important role in evolution, but whether it is constructive or destructive has not yet been determined.

  9. Extinction from a paleontological perspective.

    PubMed

    Raup, D M

    1993-01-01

    Extinction of widespread species is common in evolutionary time (millions of years) but rare in ecological time (hundreds or thousands of years). In the fossil record, there appears to be a smooth continuum between background and mass extinction; and the clustering of extinctions at mass extinctions cannot be explained by the chance coincidence of independent events. Although some extinction is selective, much is apparently random in that survivors have no recognizable superiority over victims. Extinction certainly plays an important role in evolution, but whether it is constructive or destructive has not yet been determined. PMID:11539838

  10. Characterizing the Vertical Distribution of Aerosols Over the ARM SGP Site

    SciTech Connect

    Richard Ferrare, Connor Flynn, David Turner

    2009-05-05

    This project focused on: 1) evaluating the performance of the DOE ARM SGP Raman lidar system in measuring profiles of water vapor and aerosols, and 2) the use of the Raman lidar measurements of aerosol and water vapor profiles for assessing the vertical distribution of aerosols and water vapor simulated by global transport models and examining diurnal variability of aerosols and water vapor. The highest aerosol extinction was generally observed close to the surface during the nighttime just prior to sunrise. The high values of aerosol extinction are most likely associated with increased scattering by hygroscopic aerosols, since the corresponding average relative humidity values were above 70%. After sunrise, relative humidity and aerosol extinction below 500 m decreased with the growth in the daytime convective boundary layer. The largest aerosol extinction for altitudes above 1 km occurred during the early afternoon most likely as a result of the increase in relative humidity. The water vapor mixing ratio profiles generally showed smaller variations with altitude between day and night. We also compared simultaneous measurements of relative humidity, aerosol extinction, and aerosol optical thickness derived from the ARM SGP Raman lidar and in situ instruments on board a small aircraft flown routinely over the ARM SGP site. In contrast, the differences between the CARL and IAP aerosol extinction measurements are considerably larger. Aerosol extinction derived from the IAP measurements is, on average, about 30-40% less than values derived from the Raman lidar. The reasons for this difference are not clear, but may be related to the corrections for supermicron scattering and relative humidity that were applied to the IAP data. The investigators on this project helped to set up a major field mission (2003 Aerosol IOP) over the DOE ARM SGP site. One of the goals of the mission was to further evaluate the aerosol and water vapor retrievals from this lidar system

  11. [Pollution Characteristics and Light Extinction Effects of Water-soluble Ions in PM2.5 During Winter Hazy Days at North Suburban Nanjing].

    PubMed

    Zhou, Yao-yao; Ma, Yan; Zheng, Jun; Cui, Fen-ping; Wang, Li

    2015-06-01

    To investigate the characteristics of water-soluble ions in PM2.5 and their contribution to light extinction in haze days, on-line monitoring of PM2.5. was conducted at North Suburban Nanjing from 25 January through 3 February, 2013. Water-soluble components were collected with a particle-into-liquid sampler (PILS), and analyzed by ion chromatography (IC) for the contents of SO4(2-), NO3-, NH4+, Cl-, Na+, K+, Mg2+ and Ca2+ Simultaneously particle size distributions were measured using scanning mobility particle sizer (SMPS) and Aerodynamic Particle Sizer (APS). The absorption and scattering coefficients were measured by three-wavelength photoacoustic soot spectrometer (PASS-3). Trace gases (SO2, NO2 etc.) were also monitored. The results showed that the average concentrations of total water-soluble ions were 70.3 and 22.9 microg x m(-3) in haze and normal days, respectively. Secondary hygroscopic components including SO4(2-), NO3- and NH4+ were the major ionic pollutants. Hazy days favored the conversion of SO2 and NOx, to SO4(2-) and NO3-, respectively, and in particular the oxidation of NOx. Using multiple linear regression statistical method, the empirical relationship between the dry aerosol extinction coefficient and the chemical composition was established. NH4NO3 was found to be the largest contributor to aerosol extinction in winter in Nanjing, followed by (NH4)2SO4, OC and EC. In two heavy pollution events, the increase of ion concentrations was influenced by the increase of primary emissions and secondary transformation. PMID:26387291

  12. An overview of the StraPolEté project : dynamics, aerosols and bromine content of the polar region in summertime

    NASA Astrophysics Data System (ADS)

    Huret, N.; Catoire, V.; Berthet, G.; Renard, J.; Thiéblemont, R.; Salazar, V.; Krysztofiak, G.; Payan, S.; Camy-Peyret, C.; Té, Y.; Bureau, J.; Brogniez, C.; Lefevre, F.; Jegou, F.; Godin-Beekmann, S.; Pérot, K.; Dorf, M.; Kreycy, S.; Werner, B.; Pfeilsticker, K.; Orsolini, Y.

    2010-12-01

    The polar stratosphere in the summertime remains largely unexplored. Dynamical conditions are characterized by large scale transport and mixing between air masses of higher and lower latitude origins. Understanding these exchanges is crucial since they have a large impact on the distribution of trace gases and aerosols at polar latitudes, and thus on the stratospheric ozone budget. Ozone change affects the radiative balance, the coupling between troposphere and stratosphere, and therefore the climate. In the framework of the International Polar Year, the STRAPOLETE project starts on January 2009. It is associated with a successful balloon borne campaign which took place close to Kiruna (Sweeden) from 2 August 2009 to 12 September 2009 with eight balloon flights. During this campaign the main characteristics of the summertime arctic stratosphere have been captured. The data set obtained using UV-visible and infrared instruments, remote and in situ sensing embarked spectrometers will provide detailed information on vertical distributions of more than fifteen chemical tracers and reactive species from the upper troposphere to the middle stratosphere. A number of in situ optical aerosol counters, a UV-visible remote spectrometer for the aerosol extinction and a photopolarimeter will provide information on the nature and size distribution of the stratospheric aerosols. These balloon measurements with high precision and high vertical resolution are relevant to qualify the dynamical processes occuring in this region during summertime, the aerosols variability, the bromine abundance and establish a reference state of the polar summer stratosphere. The data set is "complete" by satellite data offering large spatial coverage of the region of interest. Data analysis is made using relevant dynamical (trajectory calculations, contour advection model) and chemistry-transport models (CTM) to highlight major mechanisms that controlled the distribution of tracers, aerosols and

  13. High-Resolution Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Dozier, Jeff; Goetz, Alexander F. H.

    1990-01-01

    Earth resources observed in greater detail. High-Resolution Imaging Spectrometer, undergoing development for use in NASA's Earth Observing System, measures reflectance of Earth's surface in visible and near-infrared wavelengths. From an orbit around Earth, instrument scans surface of Earth in 200 wavelength bands simultaneously. Produces images enabling identification of minerals in rocks and soils, important algal pigments in oceans and inland waters, changes in spectra associated with biochemistry of plant canopies, compositions of atmospheric aerosols, sizes of grains in snow, and contamination of snow by impurities that absorb visible light.

  14. [Multi-wavelength spectral aerosol scale height in inshore in contrast with that in inland].

    PubMed

    Han, Yong; Rao, Rui-Zhong; Wang, Ying-Jian

    2009-01-01

    In the present paper, based on the exponential attenuation of atmospheric aerosol concentration with height, so using continuous spectrum sun-photometer, forward scatter visibility sensor and hygrothermograph, the authors measured the atmosphere column optical characteristic and plane spectral extinction coefficient on earth on the base of two experiments at some edge of ocean at the same time, respectively, set up the calculative method of multi-wavelength spectral aerosol scale height. Firstly, the authors obtained atmospheric horizontal extinction coefficient with forward scattering visibility sensor, which subtracted molecular extinction coefficient, and could get aerosol extinction coefficient near ground; Then, selecting sea salt model, using OPAC software, the authors also could calculate the aerosol extinction coefficient under different humidity (0%, 50%, 70%, 80%, 90%, 95%, 98% and 99%) and different wavelength (400, 450, 500, 550, 600, 650, 700 and 750 nm), the aerosol extinction coefficient was detected by visibility sensor, using interpolation method, respectively; Finally, using the data of atmospheric columniation optical thickness detected by continuous spectral sun-photometer and subtracted molecular optical thickness corresponding wavelengths were accounted out by Modtran 4. 0. The authors obtained the characteristic of spectral aerosol scale height of visible light (wavelength is 400, 440, 532, 550 and 690 nm): with wavelength increments, and spectral aerosol scale height was found to decline neither in inland nor in inshore in China; Spectral aerosol scale height in winter is higher than in summer in southeast inshore; but spectral aerosol scale height in winter is smaller in summer than in inland. PMID:19385200

  15. Unexpectedly many extinct hominins.

    PubMed

    Bokma, Folmer; van den Brink, Valentijn; Stadler, Tanja

    2012-09-01

    Recent studies indicate that Neanderthal and Denisova hominins may have been separate species, while debate continues on the status of Homo floresiensis. The decade-long debate between "splitters," who recognize over 20 hominin species, and "lumpers," who maintain that all these fossils belong to just a few lineages, illustrates that we do not know how many extinct hominin species to expect. Here, we present probability distributions for the number of speciation events and the number of contemporary species along a branch of a phylogeny. With estimates of hominin speciation and extincton rates, we then show that the expected total number of extinct hominin species is 8, but may be as high as 27. We also show that it is highly unlikely that three very recent species disappeared due to natural, background extinction. This may indicate that human-like remains are too easily considered distinct species. Otherwise, the evidence suggesting that Neanderthal and the Denisova hominin represent distinct species implies a recent wave of extinctions, ostensibly driven by the only survivor, H. sapiens. PMID:22946817

  16. Context, Learning, and Extinction

    ERIC Educational Resources Information Center

    Gershman, Samuel J.; Blei, David M.; Niv, Yael

    2010-01-01

    A. Redish et al. (2007) proposed a reinforcement learning model of context-dependent learning and extinction in conditioning experiments, using the idea of "state classification" to categorize new observations into states. In the current article, the authors propose an interpretation of this idea in terms of normative statistical inference. They…

  17. Cognitive Processes in Extinction

    ERIC Educational Resources Information Center

    Lovibond, Peter F.

    2004-01-01

    Human conditioning research shows that learning is closely related to consciously available contingency knowledge, requires attentional resources, and is influenced by language. This research suggests a cognitive model in which extinction consists of changes in contingency beliefs in long-term memory. Laboratory and clinical evidence on extinction…

  18. Aerosol effects and corrections in the Halogen Occultation Experiment

    NASA Technical Reports Server (NTRS)

    Hervig, Mark E.; Russell, James M., III; Gordley, Larry L.; Daniels, John; Drayson, S. Roland; Park, Jae H.

    1995-01-01

    The eruptions of Mt. Pinatubo in June 1991 increased stratospheric aerosol loading by a factor of 30, affecting chemistry, radiative transfer, and remote measurements of the stratosphere. The Halogen Occultation Experiment (HALOE) instrument on board Upper Atmosphere Research Satellite (UARS) makes measurements globally for inferring profiles of NO2, H2O, O3, HF, HCl, CH4, NO, and temperature in addition to aerosol extinction at five wavelengths. Understanding and removing the aerosol extinction is essential for obtaining accurate retrievals from the radiometer channels of NO2, H2O and O3 in the lower stratosphere since these measurements are severely affected by contaminant aerosol absorption. If ignored, aerosol absorption in the radiometer measurements is interpreted as additional absorption by the target gas, resulting in anomalously large mixing ratios. To correct the radiometer measurements for aerosol effects, a retrieved aerosol extinction profile is extrapolated to the radiometer wavelengths and then included as continuum attenuation. The sensitivity of the extrapolation to size distribution and composition is small for certain wavelength combinations, reducing the correction uncertainty. The aerosol corrections extend the usable range of profiles retrieved from the radiometer channels to the tropopause with results that agree well with correlative measurements. In situations of heavy aerosol loading, errors due to aerosol in the retrieved mixing ratios are reduced to values of about 15, 25, and 60% in H2O, O3, and NO2, respectively, levels that are much less than the correction magnitude.

  19. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect

    Richard A. Ferrare; David D. Turner

    2011-09-01

    Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.

  20. Background stratospheric aerosol reference model

    NASA Astrophysics Data System (ADS)

    McCormick, M. P.; Wang, Pi-Huan

    Nearly global SAGE I satellite observations in the nonvolcanic period from March 1979 to February 1980 are used to produce a reference background stratospheric aerosol optical model. Zonally average profiles of the 1.0-micron aerosol extinction for the tropics, midlatitudes, and high latitudes for both hemispheres are given in graphical and tabulated form for the different seasons. A third order polynomial fit to the vertical profile data set is used to derive analytic expressions for the seasonal global means and the yearly global mean. The results have application to the simulation of atmospheric radiative transfer and radiance calculations in atmospheric remote sensing.

  1. Extinction Curves of Lensing Galaxies

    NASA Astrophysics Data System (ADS)

    Elíasdóttir, Árdís

    2006-09-01

    Dust extinction causes light from distant sources to be dimmed on itsway to the observer. In cosmological studies, such as SN Ia studies,it is of great importance that the effects of dust extinction becorrectly accounted for. However, although dust properties, andhence extinction, are expected to vary with redshift, not very muchis known about the extinction properties of high redshift galaxies.This is because the methods traditionally used to study extinctioncurves are only applicable for the most nearby galaxies. Studyinggravitationally lensed quasars is an emerging method of studying thedust extinction of high redshift galaxies. I will present an ESO VLTstudy of 10 such lensing galaxies, with redshifts up to 1. The 10systems display varying amount and type of extinction, with thedoubly imaged quasar B1152+199 showing the greatest extinction with A(V)=2.4 and R_V=2.1 for a Galactic type extinction law.

  2. A diagnostic stratospheric aerosol size distribution inferred from SAGE II measurements

    NASA Technical Reports Server (NTRS)

    Thomason, Larry W.

    1991-01-01

    An aerosol size distribution model for the stratosphere is inferred based on 5 years of Stratospheric Aerosol and Gas Experiment (SAGE) II measurements of multispectral aerosol and water vapor extinction. The SAGE II aerosol and water vapor extinction data strongly suggest that there is a critical particle radius below which there is a relatively weak dependence of particle number density with size and above which there are few, if any, particles. A segmented power law model, as a simple representation of this dependence, is used in theoretical calculations and intercomparisons with a variety of aerosol measurements including dustsondes, longwave lidar, and wire impactors and shows a consistently good agreement.

  3. Aerosol activation properties and CCN closure during TCAP

    NASA Astrophysics Data System (ADS)

    Mei, F.; Tomlinson, J. M.; Shilling, J. E.; Wilson, J. M.; Zelenyuk, A.; Chand, D.; Comstock, J. M.; Hubbe, J.; Berg, L. K.; Schmid, B.

    2013-12-01

    The indirect effects of atmospheric aerosols currently remain the most uncertain components in forcing of climate change over the industrial period (IPCC, 2007). This large uncertainty is partially due to our incomplete understanding of the ability of particles to form cloud droplets under atmospherically relevant supersaturation. In addition, there is a large uncertainty in the aerosol optical depth (AOD) simulated by climate models near the North American coast and a wide variety in the types of clouds are observed over this region. The goal of the US Department of Energy Two Column Aerosol Project (TCAP) is to understand the processes responsible for producing and maintaining aerosol distributions and associated radiative and cloud forcing off the coast of North America. During the TCAP study, aerosol total number concentration, cloud condensation nuclei (CCN) spectra and aerosol chemical composition were in-situ measured from the DOE Gulfstream 1 (G-1) research aircraft during two Intensive Operations Periods (IOPs), one conducted in July 2012 and the other in February 2013. An overall aerosol size distribution was achieved by merging the observations from several instruments, including Ultra High Sensitivity Aerosol Spectrometer - Airborne (UHSAS-A, DMT), Passive Cavity Aerosol Spectrometer Probe (PCASP-200, DMT), and Cloud Aerosol Spectrometer (CAS, DMT). Aerosol chemical composition was characterized using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, Aerodyne Inc.) and single particle mass spectrometer, mini-SPLAT. Based on the aerosol size distribution, CCN number concentration (characterized by a DMT dual column CCN counter with a range from 0.1% to 0.4%), and chemical composition, a CCN closure was obtained. The sensitivity of CCN closure to organic hygroscopicity was investigated. The differences in aerosol/CCN properties between two columns, and between two phases, will be discussed.

  4. Ultra-high spectral extinction Brillouin spectroscopy for turbid tissue measurements (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Jitao; Fiore, Antonio; Shao, Peng; Yun, Seok-Hyun; Scarcelli, Giuliano

    2016-03-01

    Brillouin spectroscopy allows non-invasive measurement of the mechanical properties of a sample by measuring the spectra of acoustically induced light scattering therein, and thus has been widely investigated for biomedical application. Recently, the development of fast Brillouin spectrometry based on virtually-imaged phased array (VIPA) has made in-situ measurement of biomedical sample possible. However, one limitation of current Brillouin technique is the low spectral extinction, which limits the measurement to nearly transparent sample. In order to measure turbid sample, multistage VIPA can be cascaded to gain spectral extinction. For example, spectral extinction of ~80 dB was achieved using three-stage VIPA; however, this approach significantly sacrificed measurement throughput. In this work, we develop a novel spectrometer that achieves high extinction without significant signal loss. To achieve this goal, we combine a two-stage VIPA spectrometer with a triple-pass Fabry-Perot interferometer. The triple-pass Fabry-Perot interferometer acts as a band-pass filter with ~3 GHz bandwidth and ~35-dB spectral extinction. Therefore, the overall extinction of this spectrometer greatly surpasses 80 dB with only ~20% excess loss. We demonstrated the performance of this spectrometer measuring background-free Brillouin spectra from Intralipid solutions and within chicken tissue.

  5. Mass Extinctions Past and Present.

    ERIC Educational Resources Information Center

    Allmon, Warren Douglas

    1987-01-01

    Discusses some parallels that seem to exist between mass extinction recognizable in the geologic record and the impending extinction of a significant proportion of the earth's species due largely to tropical deforestation. Describes some recent theories of causal factors and periodicities in mass extinction. (Author/TW)

  6. Mixing state of ambient aerosols in Nanjing city by single particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Wang, Honglei; An, Junlin; Shen, Lijuan; Zhu, Bin; Xia, Li; Duan, Qing; Zou, Jianan

    2016-05-01

    To investigate the mixing state and size-resolved aerosol in Nanjing, measurements were carried out for the period 14th January-1st February 2013 by using a Single Particle Aerosol Mass Spectrometer (SPAMS). A total of 10,864,766 particles were sized with vacuum aerodynamic diameter (dva) in the range of 0.2-2.0 μm. Of which, 1,989,725 particles were successfully ionized. Aerosol particles employed for analyzing SPAMS data utilized 96% of the hit particles to identify 5 main particle groups. The particle classes include: K-rich particles (K-CN, K-Nitrate, K-Sulfate and K-Secondary), sodium particles, ammonium particles, carbon-rich particles (OC, EC and OCEC) and heavy-metal particles (Fe-Secondary, Pb-Nitrate, Cu-Mn-Secondary and V-Secondary). EC was the largest contributor with a fraction of 21.78%, followed by K-Secondary (17.87%), K-Nitrate (12.68%) and K-CN (11.25%). High particle level and high RH (relative humidity) are two important factors decreasing visibility in Nanjing. Different particle classes have distinct extinction effects. It anti-correlated well with visibility for the K-secondary, sodium, ammonium, EC, Fe-Secondary and K-Nitrate particles. The proportion of EC particles at 0.65-1.4 μm was up to 25% on haze days and was below 10% on clean days.

  7. Mixing state of ambient aerosols in Nanjing city by single particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Wang, Honglei; An, Junlin; Shen, Lijuan; Zhu, Bin; Xia, Li; Duan, Qing; Zou, Jianan

    2016-05-01

    To investigate the mixing state and size-resolved aerosol in Nanjing, measurements were carried out for the period 14th January-1st February 2013 by using a Single Particle Aerosol Mass Spectrometer (SPAMS). A total of 10,864,766 particles were sized with vacuum aerodynamic diameter (dva) in the range of 0.2-2.0 μm. Of which, 1,989,725 particles were successfully ionized. Aerosol particles employed for analyzing SPAMS data utilized 96% of the hit particles to identify 5 main particle groups. The particle classes include: K-rich particles (K-CN, K-Nitrate, K-Sulfate and K-Secondary), sodium particles, ammonium particles, carbon-rich particles (OC, EC and OCEC) and heavy-metal particles (Fe-Secondary, Pb-Nitrate, Cu-Mn-Secondary and V-Secondary). EC was the largest contributor with a fraction of 21.78%, followed by K-Secondary (17.87%), K-Nitrate (12.68%) and K-CN (11.25%). High particle level and high RH (relative humidity) are two important factors decreasing visibility in Nanjing. Different particle classes have distinct extinction effects. It anti-correlated well with visibility for the K-secondary, sodium, ammonium, EC, Fe-Secondary and K-Nitrate particles. The proportion of EC particles at 0.65-1.4 μm was up to 25% on haze days and was below 10% on clean days.

  8. Earth Science With the Stratospheric Aerosol and Gas Experiment III (SAGE III) on the International Space Station

    NASA Technical Reports Server (NTRS)

    Zawodny, Joe; Vernier, Jean-Paul; Thomason, Larry; Roell, Marilee; Pitts, Mike; Moore, Randy; Hill, Charles; Flittner, David; Damadeo, Rob; Cisewski, Mike

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment (SAGE) III is the fourth generation of solar occultation instruments operated by NASA, the first coming under a different acronym, to investigate the Earth's upper atmosphere. Three flight-ready SAGE III instruments were built by Ball Aerospace in the late 1990s, with one launched aboard the former Russian Aviation and Space Agency (now known as Roskosmos) Meteor-3M platform on 10 December 2001 (continuing until the platform lost power in 2006). Another of the original instruments was manifested for the ISS in the 2004 time frame, but was delayed because of budgetary considerations. Fortunately, that SAGE III/ISS mission was restarted in 2009 with a major focus upon filling an anticipated gap in ozone and aerosol observation in the second half of this decade. Here we discuss the mission architecture, its implementation, and data that will be produced by SAGE III/ISS, including their expected accuracy and coverage. The 52-degree inclined orbit of the ISS is well-suited for solar occultation and provides near-global observations on a monthly basis with excellent coverage of low and mid-latitudes. This is similar to that of the SAGE II mission (1985-2005), whose data set has served the international atmospheric science community as a standard for stratospheric ozone and aerosol measurements. The nominal science products include vertical profiles of trace gases, such as ozone, nitrogen dioxide and water vapor, along with multi-wavelength aerosol extinction. Though in the visible portion of the spectrum the brightness of the Sun is one million times that of the full Moon, the SAGE III instrument is designed to cover this large dynamic range and also perform lunar occultations on a routine basis to augment the solar products. The standard lunar products were demonstrated during the SAGE III/M3M mission and include ozone, nitrogen dioxide & nitrogen trioxide. The operational flexibility of the SAGE III spectrometer accomplishes

  9. Merging the OSIRIS and SAGE II stratospheric aerosol records

    NASA Astrophysics Data System (ADS)

    Rieger, L. A.; Bourassa, A. E.; Degenstein, D. A.

    2015-09-01

    The Optical Spectrograph and InfraRed Imaging System (OSIRIS) instrument on the Odin satellite, launched in 2001 and currently operational, measures limb-scattered sunlight from which profiles of stratospheric aerosol extinction are retrieved. The Stratospheric Aerosol and Gas Experiment (SAGE) II was launched in 1984 and provided measurements of stratospheric aerosol extinction until mid-2005. This provides approximately 4 years of mission overlap which has allowed us to consistently extend the SAGE II version 7.00 record to the present using OSIRIS aerosol extinction retrievals. In this work we first compare coincident aerosol extinction observations during the overlap period by interpolating the SAGE II 525nm and 1020nm channels to the OSIRIS extinction wavelength of 750nm. In the tropics to midlatitudes mean differences are typically less than 10%, although larger biases are seen at higher latitudes and at altitudes outside the main aerosol layer. OSIRIS aerosol extinction retrievals at 750nm are used to create a monthly time series zonally averaged in 5°bins and qualitatively compared to SAGE II 525nm observations averaged in the same way. The OSIRIS time series is then translated to 525nm with an Ângström exponent relation and bias corrected. For most locations, this provides agreement during the overlap time period to better than 15%. Uncertainty in the resulting OSIRIS time series is estimated through a series of simulation studies over the range of aerosol particle size distributions observed by in situ balloon instruments and is found to be approximately 20% for background and moderately volcanic aerosol loading conditions for the majority of OSIRIS measurement conditions.

  10. Aerosol in the Pacific troposphere

    NASA Technical Reports Server (NTRS)

    Clarke, Antony D.

    1989-01-01

    The use of near real-time optical techniques is emphasized for the measurement of mid-tropospheric aerosol over the Central Pacific. The primary focus is on measurement of the aerosol size distribution over the range of particle diameters from 0.15 to 5.0 microns that are essential for modeling CO2 backscatter values in support of the laser atmospheric wind sounder (LAWS) program. The measurement system employs a LAS-X (Laser Aerosol Spectrometer-PMS, Boulder, CO) with a custom 256 channel pulse height analyzer and software for detailed measurement and analysis of aerosol size distributions. A thermal preheater system (Thermo Optic Aerosol Descriminator (TOAD) conditions the aerosol in a manner that allows the discrimination of the size distribution of individual aerosol components such as sulfuric acid, sulfates and refractory species. This allows assessment of the relative contribution of each component to the BCO2 signal. This is necessary since the different components have different sources, exhibit independent variability and provide different BCO2 signals for a given mass and particle size. Field activities involve experiments designed to examine both temporal and spatial variability of these aerosol components from ground based and aircraft platforms.

  11. SEAC4RS Aerosol Radiative Effects and Heating Rates

    NASA Astrophysics Data System (ADS)

    Cochrane, S.; Schmidt, S.; Redemann, J.; Hair, J. W.; Ferrare, R. A.; Segal-Rosenhaimer, M.; LeBlanc, S. E.

    2015-12-01

    We will present (a) aerosol optical properties, (b) aerosol radiative forcing, (c) aerosol and gas absorption and heating rates, and (d) spectral surface albedo for cases from August 19th and 26th of the SEAC4RS mission. This analysis is based on irradiance data from the Solar Spectral Flux Radiometer (SSFR), spectral aerosol optical depth from the Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR), and extinction profiles from the DIAL/High Spectral Resolution Lidar (HSRL). We derive spectrally resolved values of single scattering albedo, asymmetry parameter, and surface albedo from the data, and determine profiles of absorption and heating rate segregated by absorber (aerosol and gas).

  12. Stratospheric aerosol properties and their effects on infrared radiation.

    NASA Technical Reports Server (NTRS)

    Remsberg, E. E.

    1973-01-01

    This paper presents a stratospheric aerosol model and infers its effects on terrestrial radiation. Composition of the aerosol is assumed to be concentrated sulfuric acid. An appropriate size distribution has been determined from available size distribution measurements of other investigators. Aerosols composed of concentrated sulfuric acid emit energy in the atmospheric window region of the infrared spectrum, 8-13 microns. Laboratory measurements of optical constant data obtained at room temperature are presented for 75 and 90% aqueous sulfuric acid. Calculations of an aerosol extinction coefficient are then performed by using the above data. Effects of changes in aerosol phase and temperature are discussed but not resolved.

  13. Radiocarbon dates on bones of extinct birds from Hawaii

    SciTech Connect

    James, H.F.; Stafford, T.W. Jr.; Steadman, D.W.; Olson, S.L.; Martin, P.S.; Jull, A.J.; McCoy, P.C.

    1987-04-01

    Bones from a stratified sedimentary deposit in the Puu Naio Cave site on Maui, Hawaiian Islands, reveal the late Holocene extinction of 19 species of birds. The age of the sediment and associated fauna was determined by direct radiocarbon dating (tandem particle accelerator-mass spectrometer; TAMS) of amino acids extracted from bones weighing as little as 450 mg. The /sup 14/C dates indicate that sediment has been accumulating in the lava tube for at least the last 7750 years, a suitable time frame for testing the hypothesis that Holocene extinction on islands began after human colonization. Despite growing evidence that a worldwide wave of extinctions coincided with human colonization of oceanic islands, little radiometric data have been available to date the extinction of most small fossil vertebrates on islands. The TAMS technique of dating purified collagen from the bones of small vertebrates could lead to vastly improved chronologies of extinction for oceanic islands where catastrophic mid- to late-Holocene extinction is expected or known to have occurred. Chronologies derived from nonarcheological sites that show continuous sedimentation, such as the Puu Naio Cave deposit, may also yield key evidence on the timing of earliest human settlement of Oceania.

  14. Final Technical Report. Cloud and Radiation Testbed (CART) Raman Lidar measurement of atmospheric aerosols for the Atmospheric Radiation Measurement (ARM) Program

    SciTech Connect

    Ferrare, Richard A.

    2002-08-19

    Vertical profiles of aerosol extinction are required for determination of the effects of aerosols on the clear-sky radiative flux. Since recent studies have demonstrated the inability to compute these profiles on surface aerosol measurements alone, vertical profiles of aerosol optical properties must be acquired to compute aerosol radiative effects throughout the entire atmospheric column. Following the recommendation of the ARM Aerosol Working Group, the investigator developed, evaluated, and implemented algorithms for the CART Raman Lidar to provide profiles of aerosol extinction and backscattering. By virtue of its ability to measure vertical profiles of both aerosol extinction and water vapor simultaneously in the same scattering volume, we used the resulting profiles from the CART Raman Lidar to investigate the impact of water vapor and relative humidity on aerosol extinction throughout the column on a continuous and routine basis. The investigator used these the CART Raman Lidar aerosol extinction and backscattering profiles to evaluate the vertical variability of aerosol extinction and the extinction/backscatter ratio over the ARM SGP site.

  15. Influences of tropospheric ozone and aerosols on satellite-derived UV

    NASA Astrophysics Data System (ADS)

    McKenzie, Richard

    2003-06-01

    In recent years the availability and quality of UV radiation data have improved appreciably. However, high quality measurements from intercalibrated ground-based spectrometers are available at only a few sites worldwide. Satellite derived UV irradiances, on the other hand, offer the advantages of global coverage and avoid the problems of instrument intercalibrations when investigating geographic differences in UV. However, with the satellite sensors in common use, the retrievals can be subject to errors due to variability in the distribution of ozone and aerosols in the lower atmosphere. Previous studies have shown good agreement between satellite-derived UV and ground-based measurements at pristine locations, but with increasing overestimations of the surface UV at more polluted sites, which are characterized by larger concentrations of ozone and aerosols in the troposphere. Consequently, the contrast in UV between pristine locations and more polluted locations may be underestimated by the satellite retrievals. Here we investigate the relative contribution to these differences due ozone profile differences and aerosol extinction. It is found that both factors contribute to the errors, but that the aerosol effect dominates. Tropospheric aerosols can result in satellite overestimations exceeding 30% in populated regions. Large concentrations of tropospheric ozone also lead to satellite overestimations. Firstly, the total ozone column would be underestimated, and secondly, the underestimated component is disproportionately important because of the increased path length and warmer temperatures in the troposphere. If tropospheric ozone were less than expected, as in more pristine locations, then there would be a tendency for satellite-derived UV to be too large by up to ~ 5%.

  16. SAGE aerosol measurements. Volume 1: February 21, 1979 to December 31, 1979

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.

    1985-01-01

    The Stratospheric Aerosol and Gas Experiment (SAGE) satellite system, launched on February 18, 1979, provides profiles of aerosol extinction, ozone concentration, and nitrogen dioxide concentration between about 80 N and 80 S. Zonal averages, separated into sunrise and sunset events, and seasonal averages of the aerosol extinction at 1.00 microns and 0.45 microns ratios of the aerosol extinction to the molecular extinction at 1.00 microns, and ratios of the aerosol extinction at 0.45 microns to the aerosol extinction at 1.00 microns are given. The averages for 1979 are shown in tables and in profile and contour plots (as a function of altitude and latitude). In addition, temperature data provided by the National Oceanic and Atmospheric Administration (NOAA) for the time and location of each SAGE measurement are averaged and shown in a similar format. Typical values of the peak aerosol extinction were 0.0001 to 0.0002 km at 1.00 microns depth values for the 1.00 microns channel varied between 0.001 and 0.002 over all latitudes.

  17. Development of a Scheimpflug Lidar System for Atmospheric Aerosol Monitoring

    NASA Astrophysics Data System (ADS)

    Mei, Liang; Brydegaard, Mikkel

    2016-06-01

    This work presents a Scheimpflug lidar system which was employed for atmospheric aerosol monitoring in southern Sweden. Atmospheric aerosol fluctuation was observed around rush-hour. The extinction coefficient over 6 km was retrieved, i.e., 0.15 km-1, by employing the slop-method during the time when the atmosphere was relatively homogenous. The measurements successfully demonstrate the potential of using a Scheimpflug lidar technique for atmospheric aerosol monitoring applications.

  18. Discreteness induced extinction

    NASA Astrophysics Data System (ADS)

    dos Santos, Renato Vieira; da Silva, Linaena Méricy

    2015-11-01

    Two simple models based on ecological problems are discussed from the point of view of non-equilibrium statistical mechanics. It is shown how discrepant may be the results of the models that include spatial distribution with discrete interactions when compared with the continuous analogous models. In the continuous case we have, under certain circumstances, the population explosion. When we take into account the finiteness of the population, we get the opposite result, extinction. We will analyze how these results depend on the dimension d of the space and describe the phenomenon of the "Discreteness Inducing Extinction" (DIE). The results are interpreted in the context of the "paradox of sex", an old problem of evolutionary biology.

  19. Organic aerosols

    SciTech Connect

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN.

  20. The GeoTASO airborne spectrometer project

    NASA Astrophysics Data System (ADS)

    Leitch, J. W.; Delker, T.; Good, W.; Ruppert, L.; Murcray, F.; Chance, K.; Liu, X.; Nowlan, C.; Janz, S. J.; Krotkov, N. A.; Pickering, K. E.; Kowalewski, M.; Wang, J.

    2014-10-01

    The NASA ESTO-funded Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) development project demonstrates a reconfigurable multi-order airborne spectrometer and tests the performance of spectra separation and filtering on the sensor spectral measurements and subsequent trace gas and aerosol retrievals. The activities support mission risk reduction for the UV-Visible air quality measurements from geostationary orbit for the TEMPO and GEMS missions1 . The project helps advance the retrieval algorithm readiness through retrieval performance tests using scene data taken with varying sensor parameters. We report initial results of the project.

  1. Changes in the optical properties of benzo[a]pyrene-coated aerosols upon heterogeneous reactions with NO2 and NO3.

    PubMed

    Lu, Jessica W; Flores, J Michel; Lavi, Avi; Abo-Riziq, Ali; Rudich, Yinon

    2011-04-14

    Chemical reactions can alter the chemical, physical, and optical properties of aerosols. It has been postulated that nitration of aerosols can account for atmospheric absorbance over urban areas. To study this potentially important process, the change in optical properties of laboratory-generated benzo[a]pyrene (BaP)-coated aerosols following exposure to NO(2) and NO(3) was investigated at 355 nm and 532 nm by three aerosol analysis techniques. The extinction coefficient was determined at 355 nm and 532 nm from cavity ring-down aerosol spectroscopy (CRD-AS); the absorption coefficient was measured by photoacoustic spectroscopy (PAS) at 532 nm, while an on-line aerosol mass spectrometer (AMS) supplied real-time quantitative information about the chemical composition of aerosols. In this study, 240 nm polystyrene latex (PSL) spheres were thinly coated with BaP to form 300 or 310 nm aerosols that were exposed to high concentrations of NO(2) and NO(3) and measured with CRD-AS, PAS, and the AMS. The extinction efficiencies (Q(ext)) changed after exposure to NO(2) and NO(3) at both wavelengths. Prior to reaction, Q(ext) for the 355 nm and 532 nm wavelengths were 4.36 ± 0.04 and 2.39 ± 0.05, respectively, and Q(ext) increased to 5.26 ± 0.04 and 2.79 ± 0.05 after exposure. The absorption cross-section at 532 nm, determined with PAS, reached σ(abs) = (0.039 ± 0.001) × 10(-8) cm(2), indicating that absorption increased with formation of nitro-BaP, the main reaction product detected by the AMS. The single-scattering albedo (SSA), a measure of particle scattering efficiency, decreased from 1 to 0.85 ± 0.03, showing that changes in the optical properties of BaP-covered aerosols due to nitration may have implications for regional radiation budget and, hence, climate. PMID:21373662

  2. Extinction of Light during the Fog Life Cycle: a Result from the ParisFog Experiment

    SciTech Connect

    Elias, T.; Haeffelin, M.; Drobinski, P.

    2009-03-11

    Data set acquired by five particle-dedicated instruments set up on the SIRTA experimental site during the ParisFog field campaign are exploited to document microphysical properties of particles contributing to extinction of visible radiation in variable situations. The case study is a 48-hour period when atmospheric conditions are highly variable: relative humidity changes between 50 and 100%, visibility ranges between 35000 and 65 m, the site is either downwind Paris area either under maritime influence. A dense and homogeneous fog formed by radiative cooling during the 18-19 February night. In 7 hours, visibility decreases from 26 000 m to 65 m, because of transported pollution (factor 3 in visibility reduction), aerosol hydrat