Science.gov

Sample records for aerosol extinction spectroscopy

  1. Optical and Physicochemical Properties of Brown Carbon Aerosol: Light Scattering, FTIR Extinction Spectroscopy, and Hygroscopic Growth.

    PubMed

    Tang, Mingjin; Alexander, Jennifer M; Kwon, Deokhyeon; Estillore, Armando D; Laskina, Olga; Young, Mark A; Kleiber, Paul D; Grassian, Vicki H

    2016-06-23

    A great deal of attention has been paid to brown carbon aerosol in the troposphere because it can both scatter and absorb solar radiation, thus affecting the Earth's climate. However, knowledge of the optical and chemical properties of brown carbon aerosol is still limited. In this study, we have investigated different aspects of the optical properties of brown carbon aerosol that have not been previously explored. These properties include extinction spectroscopy in the mid-infrared region and light scattering at two different visible wavelengths, 532 and 402 nm. A proxy for atmospheric brown carbon aerosol was formed from the aqueous reaction of ammonium sulfate with methylglyoxal. The different optical properties were measured as a function of reaction time for a period of up to 19 days. UV/vis absorption experiments of bulk solutions showed that the optical absorption of aqueous brown carbon solution significantly increases as a function of reaction time in the spectral range from 200 to 700 nm. The analysis of the light scattering data, however, showed no significant differences between ammonium sulfate and brown carbon aerosol particles in the measured scattering phase functions, linear polarization profiles, or the derived real parts of the refractive indices at either 532 or 402 nm, even for the longest reaction times with greatest visible extinction. The light scattering experiments are relatively insensitive to the imaginary part of the refractive index, and it was only possible to place an upper limit of k ≤ 0.01 on the imaginary index values. These results suggest that after the reaction with methylglyoxal the single scattering albedo of ammonium sulfate aerosol is significantly reduced but that the light scattering properties including the scattering asymmetry parameter, which is a measure of the relative amount of forward-to-backward scattering, remain essentially unchanged from that of unprocessed ammonium sulfate. The optical extinction properties

  2. Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480 nm.

    PubMed

    Zhao, Weixiong; Dong, Meili; Chen, Weidong; Gu, Xuejun; Hu, Changjin; Gao, Xiaoming; Huang, Wei; Zhang, Weijun

    2013-02-19

    Despite the significant progress in the measurements of aerosol extinction and absorption using spectroscopy approaches such as cavity ring-down spectroscopy (CRDS) and photoacoustic spectroscopy (PAS), the widely used single-wavelength instruments may suffer from the interferences of gases absorption present in the real environment. A second instrument for simultaneous measurement of absorbing gases is required to characterize the effect of light extinction resulted from gases absorption. We present in this paper the development of a blue light-emitting diode (LED)-based incoherent broad-band cavity-enhanced spectroscopy (IBBCEAS) approach for broad-band measurements of wavelength-resolved aerosol extinction over the spectral range of 445-480 nm. This method also allows for simultaneous measurement of trace gases absorption present in the air sample using the same instrument. On the basis of the measured wavelength-dependent aerosol extinction cross section, the real part of the refractive index (RI) can be directly retrieved in a case where the RI does not vary strongly with the wavelength over the relevant spectral region. Laboratory-generated monodispersed aerosols, polystyrene latex spheres (PSL) and ammonium sulfate (AS), were employed for validation of the RI determination by IBBCEAS measurements. On the basis of a Mie scattering model, the real parts of the aerosol RI were retrieved from the measured wavelength-resolved extinction cross sections for both aerosol samples, which are in good agreement with the reported values. The developed IBBCEAS instrument was deployed for simultaneous measurements of aerosol extinction coefficient and NO(2) concentration in ambient air in a suburban site during two representative days. PMID:23320530

  3. In Situ Measurement of Aerosol Extinction

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W.; Castaneda, R.; Owano, T. G.; Bear, D.; Gore, Warren J. (Technical Monitor)

    2001-01-01

    Aerosols are important contributors to the radiative forcing in the atmosphere. Much of the uncertainty in our knowledge of climate forcing is due to uncertainties in the radiative forcing due to aerosols as illustrated in the IPCC reports of the last ten years. Improved measurement of aerosol optical properties, therefore, is critical to an improved understanding of atmospheric radiative forcing. Additionally, attempts to reconcile in situ and remote measurements of aerosol radiative properties have generally not been successful. This is due in part to the fact that it has been impossible to measure aerosol extinction in situ in the past. In this presentation we introduce a new instrument that employs the techniques used in cavity ringdown spectroscopy to measure the aerosol extinction and scattering coefficients in situ. A prototype instrument has been designed and tested in the lab and the field. It is capable of measuring aerosol extinction coefficient to 2x10(exp -6) per meter. This prototype instrument is described and results are presented.

  4. Aerosol extinction measurements with CO2-lidar

    NASA Technical Reports Server (NTRS)

    Hagard, Arne; Persson, Rolf

    1992-01-01

    With the aim to develop a model for infrared extinction due to aerosols in slant paths in the lower atmosphere we perform measurements with a CO2-lidar. Earlier measurements with a transmissometer along horizontal paths have been used to develop relations between aerosol extinction and meteorological parameters. With the lidar measurements we hope to develop corresponding relations for altitude profiles of the aerosol extinction in the infrared. An important application is prediction of detection range for infrared imaging systems.

  5. Broadband measurements of aerosol extinction in the ultraviolet spectral region

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Flores, J. M.; Brock, C. A.; Brown, S. S.; Rudich, Y.

    2013-01-01

    Aerosols influence the Earth's radiative budget by scattering and absorbing incoming solar radiation. The optical properties of aerosols vary as a function of wavelength, but few measurements have reported the wavelength dependence of aerosol extinction cross-sections and complex refractive indices. We describe a new laboratory instrument to measure aerosol optical extinction as a function of wavelength, using cavity enhanced spectroscopy with a broadband light source. The instrument consists of two broadband channels which span the 360-390 and 385-420 nm spectral regions using two light emitting diodes (LED) and a grating spectrometer with charge-coupled device (CCD) detector. We determined aerosol extinction cross-sections and directly observed Mie scattering resonances for aerosols that are purely scattering (polystyrene latex spheres and ammonium sulfate), slightly absorbing (Suwannee River fulvic acid), and strongly absorbing (nigrosin dye). We describe an approach for retrieving refractive indices as a function of wavelength from the measured extinction cross-sections over the 360-420 nm wavelength region. The retrieved refractive indices for PSL and ammonium sulfate agree within uncertainty with literature values for this spectral region. The refractive index determined for nigrosin is 1.78 (±0.03) + 0.19 (±0.08) i at 360 nm and 1.53 (±0.03) + 0.21 (±0.05) i at 420 nm. The refractive index determined for Suwannee River fulvic acid is 1.71 (±0.02) + 0.07 (±0.06) i at 360 nm and 1.66 (±0.02) + 0.06 (±0.04) i at 420 nm. These laboratory results support the potential for a field instrument capable of determining ambient aerosol optical extinction, average aerosol extinction cross-section, and complex refractive index as a function of wavelength.

  6. Broadband measurements of aerosol extinction in the ultraviolet spectral region

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Flores, J. M.; Brock, C. A.; Brown, S. S.; Rudich, Y.

    2013-04-01

    Aerosols influence the Earth's radiative budget by scattering and absorbing incoming solar radiation. The optical properties of aerosols vary as a function of wavelength, but few measurements have reported the wavelength dependence of aerosol extinction cross sections and complex refractive indices. We describe a new laboratory instrument to measure aerosol optical extinction as a function of wavelength, using cavity enhanced spectroscopy with a broadband light source. The instrument consists of two broadband channels which span the 360-390 and 385-420 nm spectral regions using two light emitting diodes (LED) and a grating spectrometer with charge-coupled device (CCD) detector. We determined aerosol extinction cross sections and directly observed Mie scattering resonances for aerosols that are purely scattering (polystyrene latex spheres and ammonium sulfate), slightly absorbing (Suwannee River fulvic acid), and strongly absorbing (nigrosin dye). We describe an approach for retrieving refractive indices as a function of wavelength from the measured extinction cross sections over the 360-420 nm wavelength region. The retrieved refractive indices for PSL and ammonium sulfate agree within uncertainty with the literature values for this spectral region. The refractive index determined for nigrosin is 1.78 (± 0.03) + 0.19 (± 0.08)i at 360 nm and 1.63 (± 0.03) + 0.21 (± 0.05)i at 420 nm. The refractive index determined for Suwannee River fulvic acid is 1.71 (± 0.02) + 0.07 (± 0.06)i at 360 nm and 1.66 (± 0.02) + 0.06 (± 0.04)i at 420 nm. These laboratory results support the potential for a field instrument capable of determining ambient aerosol optical extinction, average aerosol extinction cross section, and complex refractive index as a function of wavelength.

  7. Wavelength dependence of aerosol extinction coefficient for stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Yue, Glenn K.

    1986-01-01

    A simple empirical formula for the wavelength dependence of the aerosol extinction coefficient is proposed. The relationship between the constants in the formula and the variable parameter in the aerosol size distribution is explicitly expressed. Good agreement is found between the extinction coefficients calculated from the proposed formula and that calculated from Mie theory. The proposed expression is shown to be better than the Angstroem formula commonly used by atmospheric scientists.

  8. Humidity Dependent Extinction of Clay Aerosols

    NASA Astrophysics Data System (ADS)

    Greenslade, M. E.; Attwood, A. R.

    2010-12-01

    Aerosols play an important role in the Earth’s radiative balance by directly scattering and absorbing radiation. The magnitude of aerosol forcing can be altered by changes in relative humidity which cause aerosol size, shape and refractive index to vary. To quantify these effects, a custom cavity ring down instrument operated at 532 nm with two sample channels measures aerosols extinction under dry conditions and at elevated humidity. The optical growth, fRH(ext), is determined as a ratio of the extinction cross section at high relative humidity to that under dry conditions. Three key clay components of mineral dust and mixtures of clay components with ammonium sulfate are investigated using this method. Experimentally obtained optical growth is compared with physical growth factors from the literature and our work determined using several different techniques. Further, Mie theory calculations based on published optical constants are compared with experimental results. Differences between theory and experiment will be discussed.

  9. Intercomparison of aerosol extinction profiles retrieved from MAX-DOAS measurements

    NASA Astrophysics Data System (ADS)

    Frieß, U.; Klein Baltink, H.; Beirle, S.; Clémer, K.; Hendrick, F.; Henzing, B.; Irie, H.; de Leeuw, G.; Li, A.; Moerman, M. M.; van Roozendael, M.; Shaiganfar, R.; Wagner, T.; Wang, Y.; Xie, P.; Yilmaz, S.; Zieger, P.

    2016-07-01

    A first direct intercomparison of aerosol vertical profiles from Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations, performed during the Cabauw Intercomparison Campaign of Nitrogen Dioxide measuring Instruments (CINDI) in summer 2009, is presented. Five out of 14 participants of the CINDI campaign reported aerosol extinction profiles and aerosol optical thickness (AOT) as deduced from observations of differential slant column densities of the oxygen collision complex (O4) at different elevation angles. Aerosol extinction vertical profiles and AOT are compared to backscatter profiles from a ceilometer instrument and to sun photometer measurements, respectively. Furthermore, the near-surface aerosol extinction coefficient is compared to in situ measurements of a humidity-controlled nephelometer and dry aerosol absorption measurements. The participants of this intercomparison exercise use different approaches for the retrieval of aerosol information, including the retrieval of the full vertical profile using optimal estimation and a parametrised approach with a prescribed profile shape. Despite these large conceptual differences, and also differences in the wavelength of the observed O4 absorption band, good agreement in terms of the vertical structure of aerosols within the boundary layer is achieved between the aerosol extinction profiles retrieved by the different groups and the backscatter profiles observed by the ceilometer instrument. AOTs from MAX-DOAS and sun photometer show a good correlation (R>0.8), but all participants systematically underestimate the AOT. Substantial differences between the near-surface aerosol extinction from MAX-DOAS and from the humidified nephelometer remain largely unresolved.

  10. Mid-infrared extinction by sulfate aerosols from the Mt. Pinatubo eruption

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Yue, G. K.; Gunson, M. R.; Zander, R.; Abrams, M. C.

    1994-01-01

    Quantitative measurements of the wavelength dependence of aerosol extinction in the 750-3400/cm spectral region have been derived from 0.01/cm resolution stratospheric solar occultation spectra recorded by the ATMOS (Atmospheric Trace Molecule Spectroscopy) Fourier transform spectrometer about 9 1/2 months after the Mt Pinatubo volcanic eruption. Strong, broad aerosol features have been identified near 900, 1060, 1190, 1720, and 2900/cm below a tangent height of approximately 30 km. Aerosol extinction measurements derived from approximately 0.05/cm wide microwindows nearly free of telluric line absorption in the ATMOS spectra are compared with transmission calculations derived from aerosol size distribution profiles retrieved from correlative SAGE (Stratospheric Aerosol and Gas Experiment) II visible and near i.r. extinction measurements, seasonal and zonally averaged H2SO4 aerosol weight percentage profiles, and published sulfuric acid optical constants derived from room temperature laboratory measurements. The calculated shapes and positions of the aerosol features are generally consistent with the observations, thereby confirming that the aerosols are predominantly concentrated H2SO4-H2O droplets, but there are significant differences between the measured and calculated wavelength dependences of the aerosol extinction. We attribute these differences as primarily the result of errors in the calculated low temperature H2SO4-H2O optical constants. Errors in both the published room temperature optical constants and the limitations of the Lorentz-Lorenz relation are likely to be important.

  11. Infrared Extinction Spectra of Mineral Dust Aerosol

    NASA Astrophysics Data System (ADS)

    Kleiber, P.; Laskina, O.; Alexander, J. M.; Young, M.; Grassian, V. H.

    2012-12-01

    Mineral dust aerosol affects the atmosphere by absorbing and scattering radiation and plays an important role in the Earth's radiative budget. The effect of atmospheric dust on climate is studied by various remote sensing techniques that use measurements from narrow band IR channels of satellites to determine key atmospheric properties. Therefore, it is essential to take radiative effects of mineral dust aerosol into account to correctly process remote sensing data. As aerosols are transported through the atmosphere they undergo aging and heterogeneous chemistry. This leads to changes in their optical properties and their effects on climate. In this study we carried out spectral simulations using both Mie theory and solutions derived in the Rayleigh regime for authentic dust samples and several processed components of mineral dust. Simulations of the extinction based on Mie theory shows that it does not accurately reproduce the peak position and band shape of the prominent IR resonance features. Errors in the simulated peak position and the line shape associated with Mie theory can adversely affect determination of mineral composition based on IR satellite data. Analytic solutions for various shapes derived from Rayleigh theory offer a better fit to the major band features of the spectra, therefore the accuracy of modeling atmospheric dust properties can be improved by using these analytic solutions. It is also important to take aging of mineral dust into account. We investigated the effect of chemical processing on the optical properties. It was shown that interactions of components of mineral dust (calcite, quartz and kaolinite) with humic and organic acids cause a shift of the IR resonance bands of these minerals. It may indicate changes in shape of the particles as well as changes in hygroscopicity and, as the result, the water content in these samples. Therefore, care should be taken when modeling optical properties of aged mineral dust.

  12. Field Studies of Broadband Aerosol Optical Extinction in the Ultraviolet Spectral Region

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Attwood, A.; Brock, C. A.; Brown, S. S.

    2013-12-01

    Aerosols influence the Earth's radiative budget by scattering and absorbing incoming solar radiation. The optical properties of aerosols vary as a function of wavelength, but few measurements have reported the wavelength dependence of aerosol extinction cross sections and complex refractive indices. In the case of brown carbon, its wavelength-dependent absorption in the ultraviolet spectral region has been suggested as an important component of aerosol radiative forcing. We describe a new field instrument to measure aerosol optical extinction as a function of wavelength, using cavity enhanced spectroscopy with a broadband light source. The instrument consists of two broadband channels which span the 360-390 and 385-420 nm spectral regions using two light emitting diodes (LED) and a grating spectrometer with charge-coupled device (CCD) detector. We deployed this instrument during the Fire Lab at Missoula Experiment during Fall 2012 to measure biomass burning aerosol, and again during the Southern Oxidant and Aerosol Study in summer 2013 to measure organic aerosol in the Southeastern U.S. In both field experiments, we determined aerosol optical extinction as a function of wavelength and can interpret this together with size distribution and composition measurements to characterize the aerosol optical properties and radiative forcing.

  13. Mount St. Helens related aerosol properties from solar extinction measurements

    SciTech Connect

    Michalsky, J.J.; Kleckner, E.W.; Stokes, G.M.

    1980-11-01

    The optical extinction due to the introduction of aerosols and aerosol-precursors into the troposphere and stratosphere during the major eruptive phase of Mount St. Helens, Washington, is quantified. The concentration is on the two-week period centered on the major eruption of 22 July 1980. (ACR)

  14. Optical extinction of highly porous aerosol following atmospheric freeze drying

    NASA Astrophysics Data System (ADS)

    Adler, Gabriela; Haspel, Carynelisa; Moise, Tamar; Rudich, Yinon

    2014-06-01

    Porous glassy particles are a potentially significant but unexplored component of atmospheric aerosol that can form by aerosol processing through the ice phase of high convective clouds. The optical properties of porous glassy aerosols formed from a freeze-dry cycle simulating freezing and sublimation of ice particles were measured using a cavity ring down aerosol spectrometer (CRD-AS) at 532 nm and 355 nm wavelength. The measured extinction efficiency was significantly reduced for porous organic and mixed organic-ammonium sulfate particles as compared to the extinction efficiency of the homogeneous aerosol of the same composition prior to the freeze-drying process. A number of theoretical approaches for modeling the optical extinction of porous aerosols were explored. These include effective medium approximations, extended effective medium approximations, multilayer concentric sphere models, Rayleigh-Debye-Gans theory, and the discrete dipole approximation. Though such approaches are commonly used to describe porous particles in astrophysical and atmospheric contexts, in the current study, these approaches predicted an even lower extinction than the measured one. Rather, the best representation of the measured extinction was obtained with an effective refractive index retrieved from a fit to Mie scattering theory assuming spherical particles with a fixed void content. The single-scattering albedo of the porous glassy aerosols was derived using this effective refractive index and was found to be lower than that of the corresponding homogeneous aerosol, indicating stronger relative absorption at the wavelengths measured. The reduced extinction and increased absorption may be of significance in assessing direct, indirect, and semidirect forcing in regions where porous aerosols are expected to be prevalent.

  15. Contributions of dust and smoke to aerosol extinction coefficient

    NASA Astrophysics Data System (ADS)

    Kavouras, I. G.; Xu, J.; Etyemezian, V.; Dubois, D.; Green, M.; Pitchford, M.

    2006-12-01

    Estimating scattering and absorption of light by atmospheric particles is critical for evaluating effects on regional and global climate. The magnitude of the interaction between aerosol and light is strongly related to the aerosol chemical composition among other factors. Dust and smoke are major sources of atmospheric aerosol, especially in the western United States. The importance of those sources has increased in recent decades due to the extensive man-made disturbance of natural ecosystems and land management practices. The objectives of this study were to specifically estimate the impact of dust and smoke on aerosol extinction coefficient measured in the Class I areas of the western states and identify the major causes of dust and types of smoke by using: (i) positive matrix factorization (PMF) to apportion ambient aerosols by source type; (ii) air mass backward trajectory analyses; (iii) land use/soil properties and; (iv) wildlife/prescribed fire data. The study included sites from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network located in western United States. For days with the worst reconstructed light extinction when dust was the major component, contributions from transcontinental transport from Asia, windblown dust from local sources and regional transport from upwind sources were identified. Based on the analysis for days with smoke being the major component of aerosol visibility extinction, the contributions of the following types of fires were determined: (a) wildfires near the site ("hot" emissions); (b) wildfires upwind of the site (aged smoke); (c) agricultural burn emissions; (d) rangeland fires.

  16. Aerosol transport in the coastal environment and effects on extinction

    NASA Astrophysics Data System (ADS)

    Vignati, Elizabetta; de Leeuw, Gerrit; Berkowicz, Ruwim

    1998-11-01

    The aerosol in the coastal environment consists of a complicated mixture of anthropogenic and rural aerosol generated over land, and sea spray aerosol. Also, particles are generate dover sea by physical and chemical processes and the chemical composition may change due to condensation/evaporation of gaseous materials. The actual composition is a function of air mass history and fetch. At the land-sea transition the continental sources cease to exist, and thus the concentrations of land-based particles and gases will gradually decrease. At the same time, sea spray is generated due to the interaction between wind and waves in a developing wave field. A very intense source for sea spray aerosol is the surf zone. Consequently, the aerosol transported over sea in off-shore winds will abruptly charge at the land-sea transition and then gradually loose its continental character, while also the contribution of the surf-generated aerosol will decrease. The latter will be compensated, at least in part, by the production of sea spray aerosol. A Coastal Aerosol Transport model is being developed describing the evolution of the aerosol size distribution in an air column advected from the coast line over sea in off-shore winds. Both removal and production are taken into account. The result are applied to estimate the effect of the changing size distribution on the extinction coefficients. In this contribution, preliminary results are presented from a study of the effects of the surf-generated aerosol and the surface production.

  17. Recent Improvements to CALIOP Level 3 Aerosol Profile Product for Global 3-D Aerosol Extinction Characterization

    NASA Astrophysics Data System (ADS)

    Tackett, J. L.; Getzewich, B. J.; Winker, D. M.; Vaughan, M. A.

    2015-12-01

    With nine years of retrievals, the CALIOP level 3 aerosol profile product provides an unprecedented synopsis of aerosol extinction in three dimensions and the potential to quantify changes in aerosol distributions over time. The CALIOP level 3 aerosol profile product, initially released as a beta product in 2011, reports monthly averages of quality-screened aerosol extinction profiles on a uniform latitude/longitude grid for different cloud-cover scenarios, called "sky conditions". This presentation demonstrates improvements to the second version of the product which will be released in September 2015. The largest improvements are the new sky condition definitions which parse the atmosphere into "cloud-free" views accessible to passive remote sensors, "all-sky" views accessible to active remote sensors and "cloudy-sky" views for opaque and transparent clouds which were previously inaccessible to passive remote sensors. Taken together, the new sky conditions comprehensively summarize CALIOP aerosol extinction profiles for a broad range of scientific queries. In addition to dust-only extinction profiles, the new version will include polluted-dust and smoke-only extinction averages. A new method is adopted for averaging dust-only extinction profiles to reduce high biases which exist in the beta version of the level 3 aerosol profile product. This presentation justifies the new averaging methodology and demonstrates vertical profiles of dust and smoke extinction over Africa during the biomass burning season. Another crucial advancement demonstrated in this presentation is a new approach for computing monthly mean aerosol optical depth which removes low biases reported in the beta version - a scenario unique to lidar datasets.

  18. Improvement of Raman lidar algorithm for quantifying aerosol extinction

    NASA Technical Reports Server (NTRS)

    Russo, Felicita; Whiteman, David; Demoz, Belay; Hoff, Raymond

    2005-01-01

    Aerosols are particles of different composition and origin and influence the formation of clouds which are important in atmospheric radiative balance. At the present there is high uncertainty on the effect of aerosols on climate and this is mainly due to the fact that aerosol presence in the atmosphere can be highly variable in space and time. Monitoring of the aerosols in the atmosphere is necessary to better understanding many of these uncertainties. A lidar (an instrument that uses light to detect the extent of atmospheric aerosol loading) can be particularly useful to monitor aerosols in the atmosphere since it is capable to record the scattered intensity as a function of altitude from molecules and aerosols. One lidar method (the Raman lidar) makes use of the different wavelength changes that occur when light interacts with the varying chemistry and structure of atmospheric aerosols. One quantity that is indicative of aerosol presence is the aerosol extinction which quantifies the amount of attenuation (removal of photons), due to scattering, that light undergoes when propagating in the atmosphere. It can be directly measured with a Raman lidar using the wavelength dependence of the received signal. In order to calculate aerosol extinction from Raman scattering data it is necessary to evaluate the rate of change (derivative) of a Raman signal with respect to altitude. Since derivatives are defined for continuous functions, they cannot be performed directly on the experimental data which are not continuous. The most popular technique to find the functional behavior of experimental data is the least-square fit. This procedure allows finding a polynomial function which better approximate the experimental data. The typical approach in the lidar community is to make an a priori assumption about the functional behavior of the data in order to calculate the derivative. It has been shown in previous work that the use of the chi-square technique to determine the most

  19. Applications of Sunphotometry to Aerosol Extinction and Surface Anisotropy

    SciTech Connect

    Tsay, S.

    2002-09-30

    Support cost-sharing of a newly developed sunphotometer in field deployment for aerosol studies. This is a cost-sharing research to deploy a newly developed sun-sky-surface photometer for studying aerosol extinction and surface anisotropy at the ARM SGP, TWP, and NSA-AAO CART sites and in many field campaigns. Atmospheric aerosols affect the radiative energy balance of the Earth, both directly by perturbing the incoming/outgoing radiation fields and indirectly by influencing the properties/processes of clouds and reactive greenhouse gases. The surface bidirectional reflectance distribution function (BRDF) also plays a crucial role in the radiative energy balance, since the BRDF is required to determine (i) the spectral and spectrally-averaged surface albedo, and (ii) the top-of-the-atmosphere (TOA) angular distribution of radiance field. Therefore, the CART sites provide an excellent, albeit unique, opportunity to collect long-term climatic data in characterizing aerosol properties and various types of surface anisotropy.

  20. Applications of Sunphotometry to Aerosol Extinction and Surface Anisotropy

    NASA Technical Reports Server (NTRS)

    Tsay, S. C.; Holben, B. N.; Privette, J. L.

    2005-01-01

    Support cost-sharing of a newly developed sunphotometer in field deployment for aerosol studies. This is a cost-sharing research to deploy a newly developed sun-sky-surface photometer for studying aerosol extinction and surface anisotropy at the ARM SGP, TWP, and NSA-AAO CART sites and in many field campaigns. Atmospheric aerosols affect the radiative energy balance of the Earth, both directly by perturbing the incoming/outgoing radiation fields and indirectly by influencing the properties/processes of clouds and reactive greenhouse gases. The surface bidirectional reflectance distribution function (BRDF) also plays a crucial role in the radiative energy balance, since the BRDF is required to determine (1) the spectral and spectrally-averaged surface albedo, and (2) the top-of-the-atmosphere (TOA) angular distribution of radiance field. Therefore, the CART sites provide an excellent, albeit unique, opportunity to collect long-term climatic data in characterizing aerosol properties and various types of surface anisotropy.

  1. [Ultraviolet Mie lidar observations of aerosol extinction in a dust storm case over Macao].

    PubMed

    Liu, Qiao-jun; Cheng, A Y S; Zhu, Jian-hua; Fong, S K; Chang, S W; Tam, K S; Viseu, A

    2012-03-01

    Atmospheric aerosol over Macao was monitored by using a 355 nm Mie scattering lidar during the dust event on March 22nd, 2010. Vertical profiles of aerosol extinction coefficients were obtained and correlated with local PM10 concentration. The near-surface aerosol extinction coefficients have good agreement with PM10 concentration values. The aerosol extinction vertical profiles showed that there were distinct layers of dust aerosol concentration. The source and tracks of dust aerosol were analyzed by back-trajectory simulation. Observations showed that this lidar could run well even in dust storm episode, and it would help to further the study on aerosol properties over Macao. PMID:22582620

  2. Infrared extinction spectra of some common liquid aerosols.

    PubMed

    Carlon, H R; Anderson, D H; Milham, M E; Tarnove, T L; Frickel, R H; Sindoni, I

    1977-06-01

    Infrared extinction spectra in the 3-5-microm and 7-13-microm atmospheric window regions have been obtained for smokes of petroleum oil, sulfuric acid, and phosphoric acid of varying droplet concentration and for water fogs. Spectra were also obtained at 0.36-2.35microm for petroleum oil and sulfuric acid smokes. Experimental results were compared, for sulfuric acid and water aerosols, to calculated values obtained from the Mie theory. Agreement was as good as +/-10%. When absorbing smoke droplets are small compared to wavelength, very useful approximations apply, and droplet clouds may be spectrally simulated by thin liquid films. In such cases, the imaginary component of refractive index may be approximated directly from aerosol spectra. At 12.5-microm wavelength, water fog extinction is nearly independent of droplet size distribution, suggesting a simple scheme for measurement of total liquid water content of an optical path. PMID:20168760

  3. Retrieval of Aerosol Properties from Multi-Spectral Extinction Measurements

    NASA Technical Reports Server (NTRS)

    Lacis, Andrew A.

    1999-01-01

    The direct-beam spectral extinction of solar radiation contains information on atmospheric composition in a form that is essentially free from the data analysis complexities that often arise from multiple scattering. Ground based Multi-Filter Shadowband Radiometer (MFRSR) measurements provide such information for the vertical atmospheric column path, while solar occultation measurements from a satellite platform provide horizontal slices through the atmosphere. We describe application of a Multi-Spectral Atmospheric Column Extinction (MACE) analysis technique used to analyze MFRSR data also to occultation measurements made by SAGE II. For analysis, we select the 1985 Nevado del Ruiz volcanic eruption period to retrieve atmospheric profiles of ozone and NO2, and changes in the stratospheric aerosol size and optical depth. The time evolution of volcanic aerosol serves as a passive tracer to study stratospheric dynamics, and changes in particle size put constraints on the sulfur chemistry modeling of volcanic aerosols. Paper presented at The '99 Kyoto Aerosol-Cloud Workshop, held Dec 1-3, 1999, Kyoto, Japan

  4. Comparison of aerosol extinction profiles from lidar and SAGE II data at a tropical station

    NASA Technical Reports Server (NTRS)

    Parameswaran, K.; Rose, K. O.; Murthy, B. V. K.; Osborn, M. T.; Mcmaster, L. R.

    1991-01-01

    Aerosol extinction profiles obtained from lidar data at Trivandrum (8.6 deg N, 77 deg E) are compared with corresponding Stratospheric Aerosol and Gas Experiment II extinction profiles. The agreement between the two is found to be satisfactory. The extinction profiles obtained by both the experiments showed a prominent peak at 23-24 km altitude in the stratosphere. The study revealed large variability in upper tropospheric extinction with location (latitude).

  5. Importance of Raman Lidar Aerosol Extinction Measurements for Aerosol-Cloud Interaction Studies

    NASA Astrophysics Data System (ADS)

    Han, Zaw; Wu, Yonghua; Moshary, Fred; Gross, Barry; Gilerson, Alex

    2016-06-01

    Using a UV Raman Lidar for aerosol extinction, and combining Microwave Radiometer derived Liquid Water Path (LWP) with Multifilter Rotating Shadowband Radiometer derived Cloud Optical depth, to get cloud effective radius (Reff), we observe under certain specialized conditions, clear signatures of the Twomey Aerosol Indirect effect on cloud droplet properties which are consistent with the theoretical bounds. We also show that the measurement is very sensitive to how far the aerosol layer is from the cloud base and demonstrate that surface PM25 is far less useful. Measurements from both the DOE ARM site and new results at CCNY are presented.

  6. In situ measurements of light extinction of stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Metzig, Gunthard

    1991-01-01

    The extinction coefficient of ambient aerosol particles was measured using a multiple transverse cell (White Cell) with an effective path length of 100 m. Measurements were performed at seven fixed wavelengths in the visible region using a white light source and an interference filter set with 2 nm bandwidth and center wavelengths of 405.5, 450, 500, 550, 600, 650, and 692.5 nm. The total air flow in the system was 16.7 1/min; the volume of the chamber is close to 10 liters. It takes about one minute to fill the chamber with particles homogeneously, but it needs up to five minutes to get the chamber particle-free. Before measuring the aerosol, the transmission of the particle-free air is determined; then the aerosol passes through the chamber for a period of ten minutes; after this the transmission of particle-free ambient air is measured again for eight minutes. All times are subject to change. At present the measurements are done with a frequency of 1 Hz, but an increase of up to 30 Hz is possible. The lower detection limit of the used White Cell is 3.4 by 10(exp -06) per m. This is sufficient for measuring the extinction coefficient during most tropospheric and some stratospheric conditions. It will be necessary to increase the sensitivity by a factor of ten when measurements under the clearest stratospheric conditions take place.

  7. A comparative study of aerosol extinction measurements made by the SAM II and SAGE satellite experiments

    NASA Technical Reports Server (NTRS)

    Yue, G. K.; Mccormick, M. P.; Chu, W. P.

    1984-01-01

    SAM II and SAGE are two satellite experiments designed to measure stratospheric aerosol extinction using the technique of solar occultation or limb extinction. Although each sensor is mounted aboard a different satellite, there are occasions when their measurement locations are nearly coincident, thereby providing opportunities for a measurement comparison. In this paper, the aerosol extinction profiles and daily contour plots for some of these events in 1979 are reported. The comparisons shown in this paper demonstrate that SAM II and SAGE are producing similar aerosol extinction profiles within their measurement errors and that since SAM II has been previously validated, these results show the validity of the SAGE aerosol measurements.

  8. Miniature instruments for aerosol extinction at ambient conditions

    NASA Astrophysics Data System (ADS)

    Murphy, D. M.

    2015-12-01

    Aerosol extinction is a fundamental parameter for the direct forcing of climate, visibility, and comparisons to remote sensing. Bringing air into an instrument "box" almost always changes the relative humidity and loses some dust or other large particles. I will show two techniques for miniature instruments that measure extinction at ambient conditions. One is a miniature sun photometer for vertical profiles. In the last year it has successfully gathered data on test flights with excellent performance and signal to noise. The second instrument is a miniature cavity ring down instrument open to the air. In both cases, small instruments require decisions about just what is necessary for the measurement rather than just scaling down larger designs. I will explore the rationale for some of these design choices.

  9. Airborne Cavity Ring-Down Measurement of Aerosol Extinction and Scattering During the Aerosol IOP

    NASA Technical Reports Server (NTRS)

    Strawa, A. W.; Ricci, K.; Provencal, R.; Schmid, B.; Covert, D.; Elleman, R.; Arnott, P.

    2003-01-01

    Large uncertainties in the effects of aerosols on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This paper describes preliminary results from Cadenza, a new continuous wave cavity ring-down (CW-CRD) instrument designed to address these uncertainties. Cadenza measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. In the past year Cadenza was deployed in the Asian Dust Above Monterey (ADAM) and DOE Aerosol Intensive Operating Period (IOP) field projects. During these flights Cadenza produced measurements of aerosol extinction in the range from 0.2 to 300 Mm-1 with an estimated precision of 0.1 Min-1 for 1550 nm light and 0.2 Mm-1 for 675 nm light. Cadenza data from the ADAM and Aerosol IOP missions compared favorably with data from the other instruments aboard the CIRPAS Twin Otter aircraft and participating in those projects.= We present comparisons between the Cadenza measurements and those friom a TSI nephelometer, Particle Soot Absorption Photometer (PSAP), and the AATS 14 sun-photometer. Measurements of the optical properties of smoke and dust plumes sampled during these campaigns are presented and estimates of heating rates due to these plumes are made.

  10. Comparative studies of aerosol extinction measurements made by the SAM II and SAGE II satellite experiments

    NASA Technical Reports Server (NTRS)

    Yue, Glenn K.; Mccormick, M. P.; Chu, W. P.; Wang, P.; Osborn, M. T.

    1989-01-01

    Results from the Stratospheric Aerosol Measurement (SAM) II and Stratospheric Aerosol and Gas Experiment (SAGE) II are compared for measurement locations which are coincident in time and space. At 1.0 micron, the SAM II and SAGE II aerosol extinction profiles are similar within their measurement errors. In addition, sunrise and sunset aerosol extinction data at four different wavelengths are compared for occasions when the SAGE II and SAM II measurements are nearly coincident in space and about 12 hours apart.

  11. Photoacoustic determination of optical absorption to extinction ratio in aerosols.

    PubMed

    Roessler, D M; Faxvog, F R

    1980-02-15

    The photoacoustic technique has been used in conjunction with an optical transmission measurement to determine the fraction of light absorbed in cigarette and acetylene smoke aerosols. At 0.5145-microm wavelength,the absorption-to-extinction fraction is 0.01 +/- 0.003 for cigarette smoke and is in excellent agreement with predictions from Mie theory for smoke particles having a refractive index of 1.45-0.00133i and a median diameter in the 0.15-0.65-microm range. For acetylene smoke the absorbed fraction was 0.85 +/- 0.05. PMID:20216896

  12. Airborne DOAS measurements in Arctic: vertical distributions of aerosol extinction coefficient and NO2 concentration

    NASA Astrophysics Data System (ADS)

    Merlaud, A.; van Roozendael, M.; Theys, N.; Fayt, C.; Hermans, C.; Quennehen, B.; Schwarzenboeck, A.; Ancellet, G.; Pommier, M.; Pelon, J.; Burkhart, J.; Stohl, A.; de Mazière, M.

    2011-05-01

    We report airborne differential optical absorption spectroscopy (DOAS) measurements of aerosol extinction and NO2 tropospheric profiles performed off the North coast of Norway in April 2008. The DOAS instrument was installed on the Safire ATR-42 aircraft during the POLARCAT-France spring campaign and recorded scattered light spectra in near-limb geometry using a scanning telescope. We use O4 slant column measurements to derive the aerosol extinction at 360 nm. Regularization is based on the maximum a posteriori solution, for which we compare a linear and a logarithmic approach. The latter inherently constrains the solution to positive values and yields aerosol extinction profiles more consistent with independently measured size distributions. Two soundings are presented, performed on 8 April 2008 above 71° N, 22° E and on 9 April 2008 above 70° N, 17.8° E. The first profile shows aerosol extinction and NO2 in the marine boundary layer with respective values of 0.04±0.005 km-1 and 1.9±0.3 × 109 molec cm-3. A second extinction layer of 0.01±0.003 km-1 is found at 4 km altitude. During the second sounding, clouds prevented us to retrieve profile parts under 3 km altitude but a layer with enhanced extinction (0.025±0.005 km-1) and NO2 (1.95±0.2 × 109 molec cm-3) is clearly detected at 4 km altitude. From CO and ozone in-situ measurements complemented by back-trajectories, we interpret the measurements in the free troposphere as, for the first sounding, a mix between stratospheric and polluted air from Northern Europe and for the second sounding, polluted air from Central Europe containing NO2. Considering the boundary layer measurements of the first flight, modeled source regions indicate closer sources, especially the Kola Peninsula smelters, which can explain the NO2 enhancement not correlated with a CO increase at the same altitude.

  13. Airborne DOAS measurements in Arctic: vertical distributions of aerosol extinction coefficient and NO2 concentration

    NASA Astrophysics Data System (ADS)

    Merlaud, A.; van Roozendael, M.; Theys, N.; Fayt, C.; Hermans, C.; Quennehen, B.; Schwarzenboeck, A.; Ancellet, G.; Pommier, M.; Pelon, J.; Burkhart, J.; Stohl, A.; de Mazière, M.

    2011-09-01

    We report on airborne Differential Optical Absorption Spectroscopy (DOAS) measurements of aerosol extinction and NO2 tropospheric profiles performed off the North coast of Norway in April 2008. The DOAS instrument was installed on the Safire ATR-42 aircraft during the POLARCAT-France spring campaign and recorded scattered light spectra in near-limb geometry using a scanning telescope. We use O4 slant column measurements to derive the aerosol extinction at 360 nm. Regularization is based on the maximum a posteriori solution, for which we compare a linear and a logarithmic approach. The latter inherently constrains the solution to positive values and yields aerosol extinction profiles more consistent with independently measured size distributions. We present results from two soundings performed on 8 April 2008 above 71° N, 22° E and on 9 April 2008 above 70° N, 17.8° E. The first profile shows aerosol extinction and NO2 in the marine boundary layer with respective values of 0.04 ± 0.005 km-1 and 1.9 ± 0.3 × 109 molec cm-3. A second extinction layer of 0.01 ± 0.003 km-1 is found at 4 km altitude where the NO2 concentration is 0.32 ± 0.2 × 109 molec cm-3. During the second sounding, clouds prevent retrieval of profile parts under 3 km altitude but a layer with enhanced extinction (0.025 ± 0.005 km-1) and NO2 (1.95 ± 0.2 × 109 molec cm-3) is clearly detected at 4 km altitude. From CO and ozone in-situ measurements complemented by back-trajectories, we interpret the measurements in the free troposphere as, for the first sounding, a mix between stratospheric and polluted air from Northern Europe and for the second sounding, polluted air from Central Europe containing NO2. Considering the boundary layer measurements of the first flight, modeled source regions indicate closer sources, especially the Kola Peninsula smelters, which can explain the NO2 enhancement not correlated with a CO increase at the same altitude.

  14. Comparison of aerosol extinction between lidar and SAGE II over Gadanki, a tropical station in India

    NASA Astrophysics Data System (ADS)

    Kulkarni, P.; Ramachandran, S.

    2015-03-01

    An extensive comparison of aerosol extinction has been performed using lidar and Stratospheric Aerosol and Gas Experiment (SAGE) II data over Gadanki (13.5° N, 79.2° E), a tropical station in India, following coincident criteria during volcanically quiescent conditions from 1998 to 2005. The aerosol extinctions derived from lidar are higher than SAGE II during all seasons in the upper troposphere (UT), while in the lower-stratosphere (LS) values are closer. The seasonal mean percent differences between lidar and SAGE II aerosol extinctions are > 100% in the UT and < 50% above 25 km. Different techniques (point and limb observations) played the major role in producing the observed differences. SAGE II aerosol extinction in the UT increases as the longitudinal coverage is increased as the spatial aerosol extent increases, while similar extinction values in LS confirm the zonal homogeneity of LS aerosols. The study strongly emphasized that the best meteorological parameters close to the lidar measurement site in terms of space and time and Ba (sr-1), the ratio between aerosol backscattering and extinction, are needed for the tropics for a more accurate derivation of aerosol extinction.

  15. Retrieving Stratospheric Aerosol Extinction from SCIAMACHY Measurements in Limb Geometry

    NASA Astrophysics Data System (ADS)

    Dörner, Steffen; Penning de Vries, Marloes; Pukite, Janis; Beirle, Steffen; Wagner, Thomas

    2015-04-01

    Techniques for retrieving height resolved information on stratospheric aerosol improved significantly in the past decade with the availability of satellite measurements in limb geometry. Instruments like OMPS, OSIRIS and SCIAMACHY provide height resolved radiance spectra with global coverage. Long term data sets of stratospheric aerosol extinction profiles are important for a detailed investigation of spatial and temporal variation and formation processes (e.g. after volcanic eruptions or in polar stratospheric clouds). Resulting data sets contain vital information for climate models (radiative effect) or chemistry models (reaction surface for heterogeneous chemistry). This study focuses on the SCIAMACHY instrument which measured scattered sunlight in the ultra-violet, visible and near infra-red spectral range since the launch on EnviSat in 2002 until an instrumental error occurred in April 2012. SCIAMACHY's unique method of alternating measurements in limb and nadir geometry provides co-located profile and column information respectively that can be used to characterize plumes with small horizontal extents. The covered wavelength range potentially provides information on effective micro-physical properties of the aerosol particles. However, scattering on background aerosol constitutes only a small fraction of detected radiance and assumptions on particle characteristics (e.g. size distribution) have to be made which results in large uncertainties especially for wavelengths below 700nm and for measurements in backscatter geometry. Methods to reduce these uncertainties are investigated and applied to our newly developed retrieval algorithm. In addition, so called spatial straylight contamination of the measured signal was identified as a significant error source and an empirical correction scheme was developed. A large scale comparison study with SAGE II for the temporal overlap of both instruments (2002 to 2005) shows promising results.

  16. Extinction spectra of mineral dust aerosol components in an environmental aerosol chamber: IR resonance studies

    NASA Astrophysics Data System (ADS)

    Mogili, Praveen K.; Yang, K. H.; Young, Mark A.; Kleiber, Paul D.; Grassian, Vicki H.

    Mineral dust aerosol plays an important role in determining the physical and chemical equilibrium of the atmosphere. To better understand the impact that mineral dust aerosol may have on climate forcing and on remote sensing, we have initiated a study of the optical properties of important components of mineral dust aerosol including silicate clays (illite, kaolinite, and montmorillonite), quartz, anhydrite, and calcite. The extinction spectra are measured in an environmental simulation chamber over a broad wavelength range, which includes both the IR (650-5000 cm -1) and UV-vis (12,500-40,000 cm -1) spectral regions. In this paper, we focus on the IR region from 800 to 1500 cm -1, where many of these mineral dust constituents have characteristic vibrational resonance features. Experimental spectra are compared with Mie theory simulations based on published mineral optical constants. We find that Mie theory generally does a poor job in fitting the IR resonance peak positions and band profiles for nonspherical aerosols in the accumulation mode size range ( D˜0.1-2.5 μm). We explore particle shape effects on the IR resonance line profiles by considering analytic models for extinction of particles with characteristic shapes (i.e. disks, needles, and ellipsoids). Interestingly, Mie theory often appears to give more accurate results for the absorption line profiles of larger particles that fall in the coarse mode size range.

  17. Determination of aerosol extinction coefficient profiles from LIDAR data using the optical depth solution method

    NASA Astrophysics Data System (ADS)

    Aparna, John; Satheesh, S. K.; Mahadevan Pillai, V. P.

    2006-12-01

    The LIDAR equation contains four unknown variables in a two-component atmosphere where the effects caused by both molecules and aerosols have to be considered. The inversion of LIDAR returns to retrieve aerosol extinction profiles, thus, calls for some functional relationship to be assumed between these two. The Klett's method, assumes a functional relationship between the extinction and backscatter. In this paper, we apply a different technique, called the optical depth solution, where we made use of the total optical depth or transmittance of the atmosphere along the LIDAR-measurement range. This method provides a stable solution to the LIDAR equation. In this study, we apply this technique to the data obtained using a micro pulse LIDAR (MPL, model 1000, Science and Engineering Services Inc) to retrieve the vertical distribution of aerosol extinction coefficient. The LIDAR is equipped with Nd-YLF laser at an operating wavelength of 523.5 nm and the data were collected over Bangalore. The LIDAR data are analyzed to get to weighted extinction coefficient profiles or the weighted sum of aerosol and molecular extinction coefficient profiles. Simultaneous measurements of aerosol column optical depth (at 500 nm) using a Microtops sun photometer were used in the retrievals. The molecular extinction coefficient is determined assuming standard atmospheric conditions. The aerosol extinction coefficient profiles are determined by subtracting the molecular part from the weighted extinction coefficient profiles. The details of the method and the results obtained are presented.

  18. Can we predict aerosol extinction in a coastal environment?

    NASA Astrophysics Data System (ADS)

    Tsintikidis, Dimitri; Kichura, Dan; Hammel, Steve

    2007-09-01

    We have been engaged in a long-term test to determine the beam extinction effects of aerosols. During four test periods of one month duration each, we propagated a beam over a 7-km path near the ocean surface, and measured the received intensity in two near-infrared wavebands (1.061 μm and at 1.622 μm). In each test period, meteorological measurements were obtained from a meteorological buoy located at the mid-point of the propagation path. These meteorological data were used as input for the Advanced Navy Aerosol Model (ANAM). In this paper we will describe the comparison between the ANAM predictions and the measured transmission. We found that there are significant and sustained discrepancies between the ANAM model predictions and the optical transmission data. We will focus on two particular problems that have emerged from our comparison: first, the ANAM dependence on local wind speed can cause errors, and second, the local relative humidity is not optimally coupled in the ANAM. We will present the analysis we used to support these claims, and we will present recommendations for modifications to the model.

  19. Optical modeling of aerosol extinction for remote sensing in the marine environment

    NASA Astrophysics Data System (ADS)

    Kaloshin, G. A.

    2013-05-01

    A microphysical model is presented for the surface layer marine and coastal atmospheric aerosols that is based on long-term observations of size distributions for 0.01-100 μm particles in different geographic sites. The fundamental feature of the model is a parameterization of amplitudes and widths for aerosol modes of the aerosol size distribution function (ASDF) as functions of fetch and wind speed. The shape of the ASDF and its dependence on meteorological parameters, altitudes above sea level (H), fetch (X), wind speed (U) and relative humidity (RH) are investigated. The spectral profiles of the aerosol extinction coefficients calculated by MaexPro (Marine Aerosol Extinction Profiles) are in good agreement with observational data and the numerical results obtained from the Navy Aerosol Model (NAM) and the Advanced Navy Aerosol Model (ANAM). Moreover, MaexPro was found to be an accurate and reliable tool for investigation of the optical properties of atmospheric aerosols.

  20. Toward a Combined SAGE II-HALOE Aerosol Climatology: An Evaluation of HALOE Version 19 Stratospheric Aerosol Extinction Coefficient Observations

    NASA Technical Reports Server (NTRS)

    Thomason, L. W.

    2012-01-01

    Herein, the Halogen Occultation Experiment (HALOE) aerosol extinction coefficient data is evaluated in the low aerosol loading period after 1996 as the first necessary step in a process that will eventually allow the production of a combined HALOE/SAGE II (Stratospheric Aerosol and Gas Experiment) aerosol climatology of derived aerosol products including surface area density. Based on these analyses, it is demonstrated that HALOE's 3.46 microns is of good quality above 19 km and suitable for scientific applications above that altitude. However, it is increasingly suspect at lower altitudes and should not be used below 17 km under any circumstances after 1996. The 3.40 microns is biased by about 10% throughout the lower stratosphere due to the failure to clear NO2 but otherwise appears to be a high quality product down to 15 km. The 2.45 and 5.26 micron aerosol extinction coefficient measurements are clearly biased and should not be used for scientific applications after the most intense parts of the Pinatubo period. Many of the issues in the aerosol data appear to be related to either the failure to clear some interfering gas species or doing so poorly. For instance, it is clear that the 3.40micronaerosol extinction coefficient measurements can be improved through the inclusion of an NO2 correction and could, in fact, end up as the highest quality overall HALOE aerosol extinction coefficient measurement. It also appears that the 2.45 and 5.26 micron channels may be improved by updating the Upper Atmosphere Pilot Database which is used as a resource for the removal of gas species otherwise not available from direct HALOE measurements. Finally, a simple model to demonstrate the promise of mixed visible/infrared aerosol extinction coefficient ensembles for the retrieval of bulk aerosol properties demonstrates that a combined HALOE/SAGE II aerosol climatology is feasible and may represent a substantial improvement over independently derived data sets.

  1. Spectrally-resolved measurements of aerosol extinction at ultraviolet and visible wavelengths

    NASA Astrophysics Data System (ADS)

    Flores, M.; Washenfelder, R. A.; Brock, C. A.; Brown, S. S.; Rudich, Y.

    2012-12-01

    Aerosols play an important role in the Earth's radiative budget. Aerosol extinction includes both the scattering and absorption of light, and these vary with wavelength, aerosol diameter, and aerosol composition. Historically, aerosol absorption has been measured using filter-based or extraction methods that are prone to artifacts. There have been few investigations of ambient aerosol optical properties at the blue end of the visible spectrum and into the ultraviolet. Brown carbon is particularly important in this spectral region, because it both absorbs and scatters light, and encompasses a large and variable group of organic compounds from biomass burning and secondary organic aerosol. We have developed a laboratory instrument that combines new, high-power LED light sources with high-finesse optical cavities to achieve sensitive measurements of aerosol optical extinction. This instrument contains two broadband channels, with spectral coverage from 360 - 390 nm and 385 - 420 nm. Using this instrument, we report aerosol extinction in the ultraviolet and near-visible spectral region as a function of chemical composition and structure. We have measured the extinction cross-sections between 360 - 420 nm with 0.5 nm resolution using different sizes and concentrations of polystyrene latex spheres, ammonium sulfate, and Suwannee River fulvic acid. Fitting the real and imaginary part of the refractive index allows the absorption and scattering to be determined.

  2. Spectral Aerosol Extinction (SpEx): a new instrument for in situ ambient aerosol extinction measurements across the UV/visible wavelength range

    NASA Astrophysics Data System (ADS)

    Jordan, C. E.; Anderson, B. E.; Beyersdorf, A. J.; Corr, C. A.; Dibb, J. E.; Greenslade, M. E.; Martin, R. F.; Moore, R. H.; Scheuer, E.; Shook, M. A.; Thornhill, K. L.; Troop, D.; Winstead, E. L.; Ziemba, L. D.

    2015-06-01

    We introduce a new instrument for the measurement of in situ ambient aerosol extinction over the 300-700 nm wavelength range, the Spectral Aerosol Extinction (SpEx) instrument. This measurement capability is envisioned to complement existing in situ instrumentation, allowing for simultaneous measurement of the evolution of aerosol optical, chemical, and physical characteristics in the ambient environment. In this work, a detailed description of the instrument is provided along with characterization tests performed in the laboratory. Measured spectra of NO2 and polystyrene latex spheres (PSLs) agreed well with theoretical calculations. Good agreement was also found with simultaneous aerosol extinction measurements at 450, 530, and 630 nm using CAPS PMex instruments in a series of 22 tests including non-absorbing compounds, dusts, soot, and black and brown carbon analogs. SpEx can more accurately distinguish the presence of brown carbon from other absorbing aerosol due to its 300 nm lower wavelength limit compared to measurements limited to visible wavelengths. Extinction spectra obtained with SpEx contain more information than can be conveyed by a simple power law fit (typically represented by Ångström Exponents). Planned future improvements aim to lower detection limits and ruggedize the instrument for mobile operation.

  3. Light extinction by secondary organic aerosol: an intercomparison of three broadband cavity spectrometers

    NASA Astrophysics Data System (ADS)

    Varma, R. M.; Ball, S. M.; Brauers, T.; Dorn, H.-P.; Heitmann, U.; Jones, R. L.; Platt, U.; Pöhler, D.; Ruth, A. A.; Shillings, A. J. L.; Thieser, J.; Wahner, A.; Venables, D. S.

    2013-11-01

    Broadband optical cavity spectrometers are maturing as a technology for trace-gas detection, but only recently have they been used to retrieve the extinction coefficient of aerosols. Sensitive broadband extinction measurements allow explicit separation of gas and particle phase spectral contributions, as well as continuous spectral measurements of aerosol extinction in favourable cases. In this work, we report an intercomparison study of the aerosol extinction coefficients measured by three such instruments: a broadband cavity ring-down spectrometer (BBCRDS), a cavity-enhanced differential optical absorption spectrometer (CE-DOAS), and an incoherent broadband cavity-enhanced absorption spectrometer (IBBCEAS). Experiments were carried out in the SAPHIR atmospheric simulation chamber as part of the NO3Comp campaign to compare the measurement capabilities of NO3 and N2O5 instrumentation. Aerosol extinction coefficients between 655 and 690 nm are reported for secondary organic aerosols (SOA) formed by the NO3 oxidation of β-pinene under dry and humid conditions. Despite different measurement approaches and spectral analysis procedures, the three instruments retrieved aerosol extinction coefficients that were in close agreement. The refractive index of SOA formed from the β-pinene + NO3 reaction was 1.61, and was not measurably affected by the chamber humidity or by aging of the aerosol over several hours. This refractive index is significantly larger than SOA refractive indices observed in other studies of OH and ozone-initiated terpene oxidations, and may be caused by the large proportion of organic nitrates in the particle phase. In an experiment involving ammonium sulfate particles, the aerosol extinction coefficients as measured by IBBCEAS were found to be in reasonable agreement with those calculated using the Mie theory. The results of the study demonstrate the potential of broadband cavity spectrometers for determining the optical properties of aerosols.

  4. Light extinction by Secondary Organic Aerosol: an intercomparison of three broadband cavity spectrometers

    NASA Astrophysics Data System (ADS)

    Varma, R. M.; Ball, S. M.; Brauers, T.; Dorn, H.-P.; Heitmann, U.; Jones, R. L.; Platt, U.; Pöhler, D.; Ruth, A. A.; Shillings, A. J. L.; Thieser, J.; Wahner, A.; Venables, D. S.

    2013-07-01

    Broadband optical cavity spectrometers are maturing as a technology for trace gas detection, but only recently have they been used to retrieve the extinction coefficient of aerosols. Sensitive broadband extinction measurements allow explicit separation of gas and particle phase spectral contributions, as well as continuous spectral measurements of aerosol extinction in favourable cases. In this work, we report an intercomparison study of the aerosol extinction coefficients measured by three such instruments: a broadband cavity ring-down spectrometer (BBCRDS), a cavity-enhanced differential optical absorption spectrometer (CE-DOAS), and an incoherent broadband cavity-enhanced absorption spectrometer (IBBCEAS). Experiments were carried out in the SAPHIR atmospheric simulation chamber as part of the NO3Comp campaign to compare the measurement capabilities of NO3 and N2O5 instrumentation. Aerosol extinction coefficients between 655 and 690 nm are reported for secondary organic aerosols (SOA) formed by the NO3 oxidation of β-pinene under dry and humid conditions. Despite different measurement approaches and spectral analysis procedures, the three instruments retrieved aerosol extinction coefficients that were in close agreement. The refractive index of SOA formed from the β-pinene + NO3 reaction was 1.61, and was not measurably affected by the chamber humidity or by aging of the aerosol over several hours. This refractive index is significantly larger than SOA refractive indices observed in other studies of OH and ozone-initiated terpene oxidations, and may be caused by the large proportion of organic nitrates in the particle phase. In an experiment involving ammonium sulphate particles the aerosol extinction coefficients as measured by IBBCEAS were found to be in reasonable agreement with those calculated using Mie theory. The results of the study demonstrate the potential of broadband cavity spectrometers for determining the optical properties of aerosols.

  5. Raman Lidar Measurements of Aerosol Extinction and Backscattering. Report 1; Methods and Comparisons

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Melfi, S. H.; Whiteman, D. N.; Evans, K. D.; Leifer, R.

    1998-01-01

    This paper examines the aerosol backscattering and extinction profiles measured at night by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site in April 1994. These lidar data are used to derive aerosol profiles for altitudes between 0.0 1 5 and 5 km. Since this lidar detects Raman scattering from nitrogen and oxygen molecules as well as the elastic scattering from molecules and aerosols, it measures both aerosol backscattering and extinction simultaneously. The aerosol extinction/backscattering ratio varied between approximately 30 sr and 75 sr at 351 nm. Aerosol optical thicknesses derived by integrating the lidar profiles of aerosol extinction measured at night between 0. I and 5 km are found to be about 10-40% lower than those measured by a Sun photometer during the day. This difference is attributed to the contribution by stratospheric aerosols not included in the lidar estimates as well as to diurnal differences in aerosol properties and concentrations. Aerosol profiles close to the surface were acquired by pointing the lidar nearly horizontally. Measurements of aerosol scattering from a tower-mounted nephelometer are found to be 40% lower than lidar measurements of aerosol extinction over a wide range of relative humidities even after accounting for the difference in wavelengths. The reasons for this difference are not clear but may be due to the inability of the nephelometer to accurately measure scattering by large particles.

  6. Raman lidar measurements of aerosol extinction and backscattering: 1. Methods and comparisons

    NASA Astrophysics Data System (ADS)

    Ferrare, R. A.; Melfi, S. H.; Whiteman, D. N.; Evans, K. D.; Leifer, R.

    1998-08-01

    This paper examines the aerosol backscattering and extinction profiles measured at night by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site in April 1994. These lidar data are used to derive aerosol profiles for altitudes between 0.015 and 5 km. Since this lidar detects Raman scattering from nitrogen and oxygen molecules as well as the elastic scattering from molecules and aerosols, it measures both aerosol backscattering and extinction simultaneously. The aerosol extinction/backscattering ratio varied between approximately 30 sr and 75 sr at 351 nm. Aerosol optical thicknesses derived by integrating the lidar profiles of aerosol extinction measured at night between 0.1 and 5 km are found to be about 10-40% lower than those measured by a Sun photometer during the day. This difference is attributed to the contribution by stratospheric aerosols not included in the lidar estimates as well as to diurnal differences in aerosol properties and concentrations. Aerosol profiles close to the surface were acquired by pointing the lidar nearly horizontally. Measurements of aerosol scattering from a tower-mounted nephelometer are found to be 40% lower than lidar measurements of aerosol extinction over a wide range of relative humidities even after accounting for the difference in wavelengths. The reasons for this difference are not clear but may be due to the inability of the nephelometer to accurately measure scattering by large particles.

  7. Accuracy of near-surface aerosol extinction determined from columnar aerosol optical depth measurements in Reno, NV, USA

    NASA Astrophysics Data System (ADS)

    Loría-Salazar, S. Marcela; Arnott, W. Patrick; Moosmüller, Hans

    2014-10-01

    The aim of the present work is a detailed analysis of aerosol columnar optical depth as a tool to determine near-surface aerosol extinction in Reno, Nevada, USA, during the summer of 2012. Ground and columnar aerosol optical properties were obtained by use of in situ Photoacoustic and Integrated Nephelometer and Cimel CE-318 Sun photometer instruments, respectively. Both techniques showed that seasonal weather changes and fire plumes had enormous influence on local aerosol optics. The apparent optical height followed the shape but not magnitude of the development of the convective boundary layer when fire conditions were not present. Back trajectory analysis demonstrated that a local flow known as the Washoe Zephyr circulation often induced aerosol transport from Northern California over the Sierra Nevada Mountains that increased the aerosol optical depth at 500 nm during afternoons when compared with mornings. Aerosol fine mode fraction indicated that afternoon aerosols in June and July and fire plumes in August were dominated by submicron particles, suggesting upwind urban plume biogenically enhanced evolution toward substantial secondary aerosol formation. This fine particle optical depth was inferred to be beyond the surface, thereby complicating use of remote sensing measurements for near-ground aerosol extinction measurements. It is likely that coarse mode depletes fine mode aerosol near the surface by coagulation and condensation of precursor gases.

  8. Aerosol optical absorption measurements with photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Wang, Lei; Liu, Qiang; Wang, Guishi; Tan, Tu; Zhang, Weijun; Chen, Weidong; Gao, Xiaoming

    2015-04-01

    Many parameters related to radiative forcing in climate research are known only with large uncertainties. And one of the largest uncertainties in global radiative forcing is the contribution from aerosols. Aerosols can scatter or absorb the electromagnetic radiation, thus may have negative or positive effects on the radiative forcing of the atmosphere, respectively [1]. And the magnitude of the effect is directly related to the quantity of light absorbed by aerosols [2,3]. Thus, sensitivity and precision measurement of aerosol optical absorption is crucial for climate research. Photoacoustic spectroscopy (PAS) is commonly recognized as one of the best candidates to measure the light absorption of aerosols [4]. A PAS based sensor for aerosol optical absorption measurement was developed. A 532 nm semiconductor laser with an effective power of 160 mW was used as a light source of the PAS sensor. The PAS sensor was calibrated by using known concentration NO2. The minimum detectable optical absorption coefficient (OAC) of aerosol was determined to be 1 Mm-1. 24 hours continues measurement of OAC of aerosol in the ambient air was carried out. And a novel three wavelength PAS aerosol OAC sensor is in development for analysis of aerosol wavelength-dependent absorption Angstrom coefficient. Reference [1] U. Lohmann and J. Feichter, Global indirect aerosol effects: a review, Atmos. Chem. Phys. 5, 715-737 (2005) [2] M. Z. Jacobson, Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature 409, 695-697 (2001) [3] V. Ramanathan and G. Carmichae, Global and regional climate changes due to black carbon, nature geoscience 1, 221-227 (2008) [4] W.P Arnott, H. Moosmuller, C. F. Rogers, T. Jin, and R. Bruch, Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description. Atmos. Environ. 33, 2845-2852 (1999).

  9. The code MaexPro for calculation of aerosol extinction in the marine and coastal environment

    NASA Astrophysics Data System (ADS)

    Kaloshin, G. A.

    2010-04-01

    In the paper the description of the last version of code MaexPro (Marine aerosol extinction Profile) for calculation spectral and vertical profiles of aerosol extinction coefficient α(λ), aerosol sizes distribution, area distribution, volumes distribution, modes aerosol extinction spectra is submitted. Code MaexPro is a computer program under constant development to estimate of EO systems signal power at a location place in which a fetch is key entrance parameter. The program carries out calculation α(λ), as functions of atmospheric effects using standard meteorological parameters, aerosol microphysical structure, a spectral band and a height of the sensor location. Spectral behavior α(λ) can be submitted as graphically, and as tables. Commands overplot for superposition or change of figures; profiles extrapolation; a lens; all kinds of possible copying; the data presentation, convenient for an input in code MODTRAN, and etc. are stipulated. The code MaexPro is a completely mouse-driven PC Windows program with a user-friendly interface. Calculation time of spectral and vertical profiles of α(λ) depends on the necessary wave length resolution, radius of aerosol particles and the location place height, and does not exceed tens seconds for each new meteorological condition. Other calculations characteristics, such as aerosol sizes distribution, area distribution, volumes distribution, modes aerosol extinction spectra, are performed in a few seconds.

  10. Comparison of LIDAR and Cavity Ring-Down Measurements of Aerosol Extinction and Study of Inferred Aerosol Gradients

    NASA Astrophysics Data System (ADS)

    Eberhard, W. L.; Massoli, P.; McCarty, B. J.; Machol, J. L.; Tucker, S. C.

    2007-12-01

    A LIDAR and a Cavity Ring-Down Aerosol Extinction Spectrometer (CRD) instrument simultaneously measured aerosol extinction at 355-nm wavelength from aboard the Research Vessel Ronald H. Brown during the Texas Air Quality Study II campaign. The CRD measured air sampled from the top of the common mast used by several in situ aerosol optical and chemical instruments. The LIDAR's scan sequence included near-horizontal stares (2° elevation angle) with pointing corrected for ship's roll. Aerosol extinction was retrieved using a variant of the slope method. The LIDAR therefore sampled air over a short vertical extent with midpoint higher above the surface than the CRD intake and at a horizontal distance of as much as a few kilometers. The CRD measured aerosol extinction at dry and at high (near-ambient) relative humidity (RH) levels, which were used to scale the measurements to ambient RH for the comparisons. Data from the two instruments for well-mixed conditions (supported by turbulence and atmospheric stability data) are compared to evaluate the degree of agreement between the two methods and reasons for differences. For instances of larger differences, the aerosol gradient below approximately 100 m altitude is inferred and examined in context of low-level meteorological parameters and LIDAR measurements at higher angles.

  11. Spectral aerosol extinction (SpEx): a new instrument for in situ ambient aerosol extinction measurements across the UV/visible wavelength range

    NASA Astrophysics Data System (ADS)

    Jordan, C. E.; Anderson, B. E.; Beyersdorf, A. J.; Corr, C. A.; Dibb, J. E.; Greenslade, M. E.; Martin, R. F.; Moore, R. H.; Scheuer, E.; Shook, M. A.; Thornhill, K. L.; Troop, D.; Winstead, E. L.; Ziemba, L. D.

    2015-11-01

    We introduce a new instrument for the measurement of in situ ambient aerosol extinction over the 300-700 nm wavelength range, the spectral aerosol extinction (SpEx) instrument. This measurement capability is envisioned to complement existing in situ instrumentation, allowing for simultaneous measurement of the evolution of aerosol optical, chemical, and physical characteristics in the ambient environment. In this work, a detailed description of the instrument is provided along with characterization tests performed in the laboratory. Measured spectra of NO2 and polystyrene latex spheres (PSLs) agreed well with theoretical calculations. Good agreement was also found with simultaneous aerosol extinction measurements at 450, 530, and 630 nm using CAPS PMex instruments in a series of 22 tests including nonabsorbing compounds, dusts, soot, and black and brown carbon analogs. SpEx measurements are expected to help identify the presence of ambient brown carbon due to its 300 nm lower wavelength limit compared to measurements limited to longer UV and visible wavelengths. Extinction spectra obtained with SpEx contain more information than can be conveyed by a simple power law fit (typically represented by Ångström exponents). Planned future improvements aim to lower detection limits and ruggedize the instrument for mobile operation.

  12. Aerosol extinction models based on measurements at two sites in Sweden.

    PubMed

    Kaurila, Timo; Hågård, Arne; Persson, Rolf

    2006-09-10

    Two aerosol extinction models have been developed using statistical analysis of long-term optical transmission measurements in Sweden performed at two locations from July 1977 to June 1982. The aerosol volume extinction coefficient for infrared (IR) radiation is calculated by the models with visibility, temperature, and air pressure as input parameters. As in the MODTRAN model, the IR extinction coefficient is proportional to the coefficient at 550 nm, which depends on the visibility. In the new models, the wavelength dependence of the extinction also depends on the visibility. The models predict significantly higher attenuation in the IR than does the Rural aerosol model from MODTRAN, which is commonly used. Comparison with the Maritime model shows that the new models predict lower extinction values in the 3-5 microm region and higher values in the 8-12 microm region. The uncertainties in terms of variance levels are calculated by the models. The properties of aerosols, and thereby the extinction coefficient, are partly correlated to local meteorological parameters, which enables the calculation of a mean predicted value. A substantial part of the variation is, however, caused by conditions in the source area and along the trajectory path of the aerosols. They are not correlated to the local meteorological parameters and therefore cause the variance in the models. PMID:16926909

  13. Infrared extinction spectroscopy and micro-Raman spectroscopy of select components of mineral dust mixed with organic compounds

    NASA Astrophysics Data System (ADS)

    Laskina, Olga; Young, Mark A.; Kleiber, Paul D.; Grassian, Vicki H.

    2013-06-01

    Radiative transfer calculations as well as satellite and ground-based retrieval algorithms often use Mie theory to account for atmospheric mineral dust. However, the approximations used in Mie theory are often not appropriate for mineral dust and can lead to inaccuracies in modeling optical properties. Analytic models that are based on Rayleigh theory and account for particle shapes can offer significant advantages when used to model the IR extinction of mineral dust in the accumulation size mode. Here we extend our investigations of the IR optical properties of mineral dust to include samples that have been processed with organic acids. In particular, we aerosolize several individual components of mineral dust with organic compounds that are common in the atmosphere. Through online and offline analysis of the resulting aerosol particles combining Fourier transform infrared (FTIR) extinction spectroscopy, micro-Raman spectroscopy, and scanning electron microscopy, we have identified three distinct outcomes of the interactions, which depend on the nature of the mineral and the organic acid: reactions with segregation of the products within the particle, formation of a uniform coating on the particle, or a formation of external mixture when there is no significant chemical interaction. Analysis of FTIR extinction spectra of the different dust components that have undergone processing shows red shifts of the prominent IR resonance peaks. The extent of the red shift, which varies from 2 to 10 cm-1, depends on the mineral and the nature of the interaction. Spectral simulations showed that the deviation from Mie theory becomes even more pronounced for these processed mineral dust aerosol components.

  14. Retrieval of aerosol backscatter and extinction from airborne coherent Doppler wind lidar measurements

    NASA Astrophysics Data System (ADS)

    Chouza, F.; Reitebuch, O.; Groß, S.; Rahm, S.; Freudenthaler, V.; Toledano, C.; Weinzierl, B.

    2015-07-01

    A novel method for calibration and quantitative aerosol optical property retrieval from Doppler wind lidars (DWLs) is presented in this work. Due to the strong wavelength dependence of the atmospheric molecular backscatter and the low sensitivity of the coherent DWLs to spectrally broad signals, calibration methods for aerosol lidars cannot be applied to coherent DWLs usually operating at wavelengths between 1.5 and 2 μm. Instead, concurrent measurements of an airborne DWL at 2 μm and the POLIS ground-based aerosol lidar at 532 nm are used in this work, in combination with sun photometer measurements, for the calibration and retrieval of aerosol backscatter and extinction profiles at 532 nm. The proposed method was applied to measurements from the SALTRACE experiment in June-July 2013, which aimed at quantifying the aerosol transport and change in aerosol properties from the Sahara desert to the Caribbean. The retrieved backscatter and extinction coefficient profiles from the airborne DWL are within 20 % of POLIS aerosol lidar and CALIPSO satellite measurements. Thus the proposed method extends the capabilities of coherent DWLs to measure profiles of the horizontal and vertical wind towards aerosol backscatter and extinction profiles, which is of high benefit for aerosol transport studies.

  15. Spectral Aerosol Extinction (SpEx): A New Instrument for In situ Ambient Aerosol Extinction Measurements Across the UV/Visible Wavelength Range

    NASA Technical Reports Server (NTRS)

    Jordan, C. E.; Anderson, B. E.; Beyersdorf, A. J.; Corr, C. A.; Dibb, J. E.; Greenslade, M. E.; Martin, R. F.; Moore, R. H.; Scheuer, E.; Shook, M. A.; Thornhill, K. L.; Troop, D.; Winstead, Edward L.; Ziemba, L. D.

    2015-01-01

    We introduce a new instrument for the measurement of in situ ambient aerosol extinction over the 300-700 nm wavelength range, the Spectral Aerosol Extinction (SpEx) instrument. This measurement capability is envisioned to complement existing in situ instrumentation, allowing for simultaneous measurement of the evolution of aerosol optical, chemical, and physical characteristics in the ambient environment. In this work, a detailed description of the instrument is provided along with characterization tests performed in the laboratory. Measured spectra of NO2 and polystyrene latex spheres agreed well with theoretical calculations. Good agreement was also found with simultaneous aerosol extinction measurements at 450, 530, and 630 nm using CAPS PMex instruments in a series of 22 tests including non-absorbing compounds, dusts, soot, and black and brown carbon analogs. SpEx can more accurately distinguish the presence of brown carbon from other absorbing aerosol due to its 300 nm lower wavelength limit compared to measurements limited to visible wavelengths. In addition, the spectra obtained by SpEx carry more information than can be conveyed by a simple power law fit that is typically defined by the use of Angstrom Exponents. Future improvements aim at lowering detection limits and ruggedizing the instrument for mobile operation.

  16. Visible and infrared extinction of atmospheric aerosol in the marine and coastal environment.

    PubMed

    Kaloshin, Gennady A

    2011-05-10

    The microphysical model Marine Aerosol Extinction Profiles (MaexPro) for surface layer marine and coastal atmospheric aerosols, which is based on long-term observations of size distributions for 0.01-100 μm particles, is presented. The fundamental feature of the model is a parameterization of amplitudes and widths for aerosol modes of the aerosol size distribution function (ASDF) as functions of fetch and wind speed. The shape of the ASDF and its dependence on meteorological parameters, altitudes above the sea level (H), fetch (X), wind speed (U), and relative humidity is investigated. The model is primarily to characterize aerosols for the near-surface layer (within 25 m). The model is also applicable to higher altitudes within the atmospheric boundary layer, where the change in the vertical profile of aerosol is not very large. In this case, it is only valid for "clean" marine environments, in the absence of air pollution or any other major sources of continental aerosols, such desert dust or smoke from biomass burning. The spectral profiles of the aerosol extinction coefficients calculated by MaexPro are in good agreement with observational data and the numerical results obtained by the well-known Navy Aerosol Model and Advanced Navy Aerosol Model codes. Moreover, MaexPro was found to be an accurate and reliable instrument for investigation of the optical properties of atmospheric aerosols. PMID:21556113

  17. Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles

    NASA Technical Reports Server (NTRS)

    Burton, S. P.; Ferrare, R. A.; Kittaka, C.; Hostetler, C. A.; Hair, J. W.; Obland, M. D.; Rogers, R. R.; Cook, A. L.; Haper, D. B.

    2008-01-01

    Aerosol extinction profiles are derived from backscatter data by constraining the retrieval with column aerosol optical thickness (AOT), for example from coincident MODIS observations and without reliance on a priori assumptions about aerosol type or optical properties. The backscatter data were acquired with the NASA Langley High Spectral Resolution Lidar (HSRL). The HSRL also simultaneously measures extinction independently, thereby providing an ideal data set for evaluating the constrained retrieval of extinction from backscatter. We will show constrained extinction retrievals using various sources of column AOT, and examine comparisons with the HSRL extinction measurements and with a similar retrieval using data from the CALIOP lidar on the CALIPSO satellite.

  18. In Situ Aerosol Profile Measurements and Comparisons with SAGE 3 Aerosol Extinction and Surface Area Profiles at 68 deg North

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Under funding from this proposal three in situ profile measurements of stratospheric sulfate aerosol and ozone were completed from balloon-borne platforms. The measured quantities are aerosol size resolved number concentration and ozone. The one derived product is aerosol size distribution, from which aerosol moments, such as surface area, volume, and extinction can be calculated for comparison with SAGE III measurements and SAGE III derived products, such as surface area. The analysis of these profiles and comparison with SAGE III extinction measurements and SAGE III derived surface areas are provided in Yongxiao (2005), which comprised the research thesis component of Mr. Jian Yongxiao's M.S. degree in Atmospheric Science at the University of Wyoming. In addition analysis continues on using principal component analysis (PCA) to derive aerosol surface area from the 9 wavelength extinction measurements available from SAGE III. Ths paper will present PCA components to calculate surface area from SAGE III measurements and compare these derived surface areas with those available directly from in situ size distribution measurements, as well as surface areas which would be derived from PCA and Thomason's algorithm applied to the four wavelength SAGE II extinction measurements.

  19. The CU Airborne MAX-DOAS instrument: vertical profiling of aerosol extinction and trace gases

    NASA Astrophysics Data System (ADS)

    Baidar, S.; Oetjen, H.; Coburn, S.; Dix, B.; Ortega, I.; Sinreich, R.; Volkamer, R.

    2013-03-01

    The University of Colorado Airborne Multi-Axis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument uses solar stray light to detect and quantify multiple trace gases, including nitrogen dioxide (NO2), glyoxal (CHOCHO), formaldehyde (HCHO), water vapor (H2O), nitrous acid (HONO), iodine monoxide (IO), bromine monoxide (BrO), and oxygen dimers (O4) at multiple wavelengths (absorption bands at 360, 477, 577, 632 nm) simultaneously in the open atmosphere. The instrument is unique as it (1) features a motion compensation system that decouples the telescope field of view from aircraft movements in real time (<0.35° accuracy), and (2) includes measurements of solar stray light photons from nadir, zenith, and multiple elevation angles forward and below the plane by the same spectrometer/detector system. Sets of solar stray light spectra collected from nadir to zenith scans provide some vertical profile information within 2 km above and below the aircraft altitude, and the vertical column density (VCD) below the aircraft is measured in nadir view. Maximum information about vertical profiles is derived simultaneously for trace gas concentrations and aerosol extinction coefficients over similar spatial scales and with a vertical resolution of typically 250 m during aircraft ascent/descent. The instrument is described, and data from flights over California during the CalNex (California Research at the Nexus of Air Quality and Climate Change) and CARES (Carbonaceous Aerosols and Radiative Effects Study) air quality field campaigns is presented. Horizontal distributions of NO2 VCD (below the aircraft) maps are sampled with typically 1 km resolution, and show good agreement with two ground-based MAX-DOAS instruments (slope = 0.95 ± 0.09, R2 = 0.86). As a case study vertical profiles of NO2, CHOCHO, HCHO, and H2O concentrations and aerosol extinction coefficients, ɛ, at 477 nm calculated from O4 measurements from a low approach at Brackett airfield inside the

  20. SAGE I and SAM II measurements of 1 micron aerosol extinction in the free troposphere

    NASA Technical Reports Server (NTRS)

    Kent, G. S.; Farrukh, U. O.; Wang, P. H.; Deepak, A.

    1988-01-01

    The SAGE-I and SAM-II satellite sensors were designed to measure, with global coverage, the 1 micron extinction produced by the stratospheric aerosol. In the absence of high altitude clouds, similar measurements may be made for the free tropospheric aerosol. Median extinction values at middle and high latitudes in the Northern Hemisphere, for altitudes between 5 and 10 km, are found to be one-half to one order of magnitude greater than values at corresponding latitudes in the Southern Hemisphere. In addition, a seasonal increase by a factor of 1.5-2 was observed in both hemispheres, in 1979-80, in local spring and summer. Following major volcanic eruptions, a long-lived enhancement of the aerosol extinction is observed for altitudes above 5 km.

  1. Enhanced extinction of visible radiation due to hydrated aerosols in mist and fog

    NASA Astrophysics Data System (ADS)

    Elias, T.; Dupont, J.-C.; Hammer, E.; Hoyle, C. R.; Haeffelin, M.; Burnet, F.; Jolivet, D.

    2015-06-01

    The study assesses the contribution of aerosols to the extinction of visible radiation in the mist-fog-mist cycle. Relative humidity is large in the mist-fog-mist cycle, and aerosols most efficient in interacting with visible radiation are hydrated and compose the accumulation mode. Measurements of the microphysical and optical properties of these hydrated aerosols with diameters larger than 0.4 μm were carried out near Paris, during November 2011, under ambient conditions. Eleven mist-fog-mist cycles were observed, with a cumulated fog duration of 96 h, and a cumulated mist-fog-mist cycle duration of 240 h. In mist, aerosols grew by taking up water at relative humidities larger than 93%, causing a visibility decrease below 5 km. While visibility decreased down from 5 to a few kilometres, the mean size of the hydrated aerosols increased, and their number concentration (Nha) increased from approximately 160 to approximately 600 cm-3. When fog formed, droplets became the strongest contributors to visible radiation extinction, and liquid water content (LWC) increased beyond 7 mg m-3. Hydrated aerosols of the accumulation mode co-existed with droplets, as interstitial non-activated aerosols. Their size continued to increase, and some aerosols achieved diameters larger than 2.5 μm. The mean transition diameter between the aerosol accumulation mode and the small droplet mode was 4.0 ± 1.1 μm. Nha also increased on average by 60 % after fog formation. Consequently, the mean contribution to extinction in fog was 20 ± 15% from hydrated aerosols smaller than 2.5 μm and 6 ± 7% from larger aerosols. The standard deviation was large because of the large variability of Nha in fog, which could be smaller than in mist or 3 times larger. The particle extinction coefficient in fog can be computed as the sum of a droplet component and an aerosol component, which can be approximated by 3.5 Nha (Nha in cm-3 and particle extinction coefficient in Mm-1. We observed an influence of

  2. Improved stratospheric aerosol extinction profiles from SCIAMACHY: validation and sample results

    NASA Astrophysics Data System (ADS)

    von Savigny, C.; Ernst, F.; Rozanov, A.; Hommel, R.; Eichmann, K.-U.; Rozanov, V.; Burrows, J. P.; Thomason, L. W.

    2015-12-01

    Stratospheric aerosol extinction profiles have been retrieved from SCIAMACHY/Envisat measurements of limb-scattered solar radiation. The retrieval is an improved version of an algorithm presented earlier. The retrieved aerosol extinction profiles are compared to co-located aerosol profile measurements from the SAGE II solar occultation instrument at a wavelength of 525 nm. Comparisons were carried out with two versions of the SAGE II data set (version 6.2 and the new version 7.0). In a global average sense the SCIAMACHY and the SAGE II version 7.0 extinction profiles agree to within about 10 % for altitudes above 15 km. Larger relative differences (up to 40 %) are observed at specific latitudes and altitudes. We also find differences between the two SAGE II data versions of up to 40 % for specific latitudes and altitudes, consistent with earlier reports. Sample results on the latitudinal and temporal variability of stratospheric aerosol extinction and optical depth during the SCIAMACHY mission period are presented. The results confirm earlier reports that a series of volcanic eruptions is responsible for the increase in stratospheric aerosol optical depth from 2002 to 2012. Above about an altitude of 28 km, volcanic eruptions are found to have negligible impact in the period 2002-2012.

  3. Improved stratospheric aerosol extinction profiles from SCIAMACHY: validation and sample results

    NASA Astrophysics Data System (ADS)

    von Savigny, C.; Ernst, F.; Rozanov, A.; Hommel, R.; Eichmann, K.-U.; Rozanov, V.; Burrows, J. P.; Thomason, L. W.

    2015-08-01

    Stratospheric aerosol extinction profiles have been retrieved from SCIAMACHY/Envisat measurements of limb-scattered solar radiation. The retrieval is an improved version of an algorithm presented earlier. The retrieved aerosol extinction profiles are compared to co-located aerosol profile measurements with the SAGE II solar occultation instrument at a wavelength of 525 nm. Comparisons were carried out with two versions of the SAGE II data set (version 6.2 and the new version 7.0). In a global average sense the SCIAMACHY and the SAGE II version 7.0 extinction profiles agree to within about 10 % for altitudes above 15 km. Larger relative differences (up to 40 %) are observed at specific latitudes and altitudes. We also find differences between the two SAGE II data versions of up to 40 % for specific latitudes and altitudes. Sample results on the latitudinal and temporal variability of stratospheric aerosol extinction and optical depth during the SCIAMACHY mission period are presented. The results indicate that a series of volcanic eruptions is responsible for the increase in stratospheric aerosol optical depth from 2002 to 2012. Above about 28 km altitude volcanic eruptions are found to have negligible impact in the period 2002 to 2012.

  4. Microphysical Modeling and POAM III Observations of Aerosol Extinction in the 1998-2003 Antarctic Stratosphere

    NASA Astrophysics Data System (ADS)

    Benson, C. M.; Drdla, K.; Nedoluha, G. E.; Shettle, E. P.; Alfred, J.; Hoppel, K. W.

    2005-12-01

    The Integrated Microphysics and Chemistry on Trajectories (IMPACT) model is used to study Polar stratospheric cloud formation and evolution in the Southern Polar vortex during the 1998-2003 winters. The model is applied to individual air parcels which are advected through the vortex on UKMO wind and temperature fields. The parcel temperature and pressure histories are used by IMPACT to calculate the formation and sedimentation of ice, NAT, SAT, and STS aerosols. Model results are validated by the Polar Ozone and Aerosol Measurement (POAM) III solar occultation instrument. Comparisons of POAM data to the model results help to constrain the microphysical parameters influencing aerosol formation and growth. Measurements of the water vapor mixing ratio are of limited use in clarifying the model microphysics; however, POAM measurements of aerosol extinction prove to be valuable in differentiating model runs. Specifically, the relationship of aerosol extinction to temperature arises from the different temperatures at which the various particle types form and grow. Comparisons of IMPACT calculations of this relationship to POAM measurements constrain the initial fraction of nuclei available for heterogeneous NAT freezing to 0.02% of all aerosols. Constraints are also placed on the ice accommodation coefficient and the NAT-ice lattice compatibility factor. However, these two parameters have similar effects on the extinction-temperature relationship, and thus a range of values are permissible for each.

  5. Measurements of Stratospheric Pinatubo Aerosol Extinction Profiles by a Raman Lidar

    NASA Technical Reports Server (NTRS)

    Abo, Makoto; Nagasawa, Chikao

    1992-01-01

    The Raman lidar has been used for remote measurements of water vapor, ozone and atmospheric temperature in the lower troposphere because the Raman cross section is three orders smaller than the Rayleigh cross section. We estimated the extinction coefficients of the Pinatubo volcanic aerosol in the stratosphere using a Raman lidar. If the precise aerosol extinction coefficients are derived, the backscatter coefficient of a Mie scattering lidar will be more accurately estimated. The Raman lidar has performed to measure density profiles of some species using Raman scattering. Here we used a frequency-doubled Nd:YAG laser for transmitter and received nitrogen vibrational Q-branch Raman scattering signal. Ansmann et al. (1990) derived tropospherical aerosol extinction profiles with a Raman lidar. We think that this method can apply to dense stratospheric aerosols such as Pinatubo volcanic aerosols. As dense aerosols are now accumulated in the stratosphere by Pinatubo volcanic eruption, the error of Ramen lidar signal regarding the fluctuation of air density can be ignored.

  6. In situ measurement of the infrared absorption and extinction of chemical and biologically derived aerosols using flow-through photoacoustics.

    PubMed

    Gurton, Kristan P; Dahmani, Rachid; Ligon, David; Bronk, Burt V

    2005-07-01

    In an effort to establish a more reliable set of optical cross sections for a variety of chemical and biological aerosol simulants, we have developed a flow-through photoacoustic system that is capable of measuring absolute, mass-normalized extinction and absorption cross sections. By employing a flow-through design we avoid issues associated with closed aerosol photoacoustic systems and improve sensitivity. Although the results shown here were obtained for the tunable CO2 laser waveband region, i.e., 9.20-10.80 microm, application to other wavelengths is easily achievable. The aerosols considered are categorized as biological, chemical, and inorganic in origin, i.e., Bacillus atrophaeus endospores, dimethicone silicone oil (SF-96 grade 50), and kaolin clay powder (alumina and silicate), respectively. Results compare well with spectral extinction measured previously by Fourier-transform infrared spectroscopy. Comparisons with Mie theory calculations based on previously published complex indices of refraction and measured size distributions are also presented. PMID:16004057

  7. Enhanced extinction of visible radiation due to hydrated aerosols in mist and fog

    NASA Astrophysics Data System (ADS)

    Elias, T.; Dupont, J.-C.; Hammer, E.; Hoyle, C. R.; Haeffelin, M.; Burnet, F.; Jolivet, D.

    2015-01-01

    The study assesses the contribution of aerosols to the extinction of visible radiation in the mist-fog-mist cycle. Measurements of the microphysical and optical properties of hydrated aerosols with diameters larger than 400 nm, composing the accumulation mode, which are the most efficient to interact with visible radiation, were carried out near Paris, during November 2011, in ambient conditions. Eleven mist-fog-mist cycles were observed, with cumulated fog duration of 95 h, and cumulated mist-fog-mist duration of 240 h. In mist, aerosols grew up by taking up water at relative humidities larger than 93%, causing a visibility decrease below 5 km. While visibility decreased down to few km, the mean size of the hydrated aerosols increased, and their number concentration (Nha) increased from approximately 160 to approximately 600 cm-3. When fog formed, droplets became the strongest contributors to visible radiation extinction, and liquid water content (LWC) increased beyond 7 mg m-3. Hydrated aerosols of the accumulation mode co-existed with droplets, as interstitial non-activated aerosols. Their size continued to increase, and a significant proportion of aerosols achieved diameters larger than 2.5 μm. The mean transition diameter between the accumulation mode and the small droplet mode was 4.0 ± 1.1 μm. Moreover Nha increased on average by 60% after fog formation. Consequently the mean aerosol contribution to extinction in fog was 20 ± 15% for diameter smaller than 2.5 μm and 6 ± 7% beyond. The standard deviation is large because of the large variability of Nha in fog, which could be smaller than in mist or three times larger. The particle extinction coefficient in fog can be computed as the sum of a droplet component and an aerosol component, which can be approximated by 3.5 Nha (Nha in cm-3 and particle extinction coefficient in Mm-1). We observed an influence of the main formation process on Nha, but not on the contribution to fog extinction by aerosols

  8. Light extinction by aerosols during summer air pollution

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Fraser, R. S.

    1983-01-01

    In order to utilize satellite measurements of optical thickness over land for estimating aerosol properties during air pollution episodes, the optical thickness was measured from the surface and investigated. Aerosol optical thicknesses have been derived from solar transmission measurements in eight spectral bands within the band lambda 440-870 nm during the summers of 1980 and 1981 near Washington, DC. The optical thicknesses for the eight bands are strongly correlated. It was found that first eigenvalue of the covariance matrix of all observations accounts for 99 percent of the trace of the matrix. Since the measured aerosol optical thickness was closely proportional to the wavelength raised to a power, the aerosol size distribution derived from it is proportional to the diameter (d) raised to a power for the range of diameters between 0.1 to 1.0 micron. This power is insensitive to the total optical thickness. Changes in the aerosol optical thickness depend on several aerosol parameters, but it is difficult to identify the dominant one. The effects of relative humidity and accumulation mode concentration on the optical thickness are analyzed theoretically, and compared with the measurements.

  9. Simultaneous measurement of optical scattering and extinction on dispersed aerosol samples.

    PubMed

    Dial, Kathy D; Hiemstra, Scott; Thompson, Jonathan E

    2010-10-01

    Accurate and precise measurements of light scattering and extinction by atmospheric particulate matter aid understanding of tropospheric photochemistry and are required for estimates of the direct climate effects of aerosols. In this work, we report on a second generation instrument to simultaneously measure light scattering (b(scat)) and extinction (b(ext)) coefficient by dispersed aerosols. The ratio of scattering to extinction is known as the single scatter albedo (SSA); thus, the instrument is referred to as the albedometer. Extinction is measured with the well-established cavity ring-down (CRD) technique, and the scattering coefficient is determined through collection of light scattered from the CRD beam. The improved instrument allows reduction in sample volume to <1% of the original design, and a reduction in response time by a factor of >30. Through using a commercially available condensation particle counter (CPC), we have measured scattering (σ(scat)) and extinction (σ(ext)) cross sections for size-selected ammonium sulfate and nigrosin aerosols. In most cases, the measured scattering and extinction cross section were within 1 standard deviation of the accepted values generated from Mie theory suggesting accurate measurements are made. While measurement standard deviations for b(ext) and b(scat) were generally <1 Mm(-1) when the measurement cell was sealed or purged with filtered air, relative standard deviations >0.1 for these variables were observed when the particle number density was low. It is inferred that statistical fluctuations of the absolute number of particles within the probe beam leads to this effect. However, measured relative precision in albedo is always superior to that which would be mathematically propagated assuming independent measurements of b(scat) and b(ext). Thus, this report characterizes the measurement precision achieved, evaluates the potential for systematic error to be introduced through light absorption by gases

  10. Compositional and Optical Properties of Titan Haze Analogs Using Aerosol Mass Spectrometry, Photoacoustic Spectroscopy and Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ugelow, M.; Zarzana, K. J.; Tolbert, M. A.

    2015-12-01

    The organic haze that surrounds Saturn's moon Titan is formed through the photolysis and electron initiated dissociation of methane and nitrogen. The chemical pathways leading to haze formation and the resulting haze optical properties are still highly uncertain. Here we examine the compositional and optical properties of Titan haze aerosol analogs. By studying these properties together, the impact of haze on Titan's radiative balance can be better understood. The aerosol analogs studied are produced from different initial methane concentrations (0.1, 2 and 10% CH4) using spark discharge excitation. To determine the complex refractive index of the aerosol, we combine two spectroscopic techniques, one that measures absorption and one that measures extinction: photoacoustic spectroscopy coupled with cavity ring-down spectroscopy (PASCaRD). This technique provides the benefit of a high precision determination of the imaginary component of the refractive index (k), along with the highly sensitive determination of the real component of the refractive index (n). The refractive indices are retrieved at two wavelengths, 405 and 532 nm, using the PASCaRD system. To yield aerosol composition, quadrupole aerosol mass spectrometry is used. Compositional information is obtained from a technique that uses isotopically labeled and unlabeled methane gas. I will present preliminary data on the complex refractive indices of Titan aerosol analogs at both wavelengths, in conjunction with the aerosol composition as a percent by weight of carbon, nitrogen and hydrogen. The correlation of optical and chemical properties should be useful for remote sensing instruments probing Titan haze.

  11. Inter-Comparison of ILAS-II Version 1.4 Aerosol Extinction Coefficient at 780 nm with SAGE II, SAGE III, and POAM III Aerosol Data

    NASA Technical Reports Server (NTRS)

    Saitoh, Naoko; Hayashida, S.; Sugita, T.; Nakajima, H.; Yokota, T.; Hayashi, M.; Shiraishi, K.; Kanzawa, H.; Ejiri, M. K.; Irie, H.; Tanaka, T.; Terao, Y.; Kobayashi, H.; Sasano, Y.; Bevilacqua, R.; Randall, C.; Thomason, L.; Taha, G.

    2006-01-01

    The Improved Limb Atmospheric Spectrometer (ILAS) II on board the Advanced Earth Observing Satellite (ADEOS) II observed stratospheric aerosol in visible/near-infrared/infrared spectra over high latitudes in the Northern and Southern Hemispheres. Observations were taken intermittently from January to March, and continuously from April through October, 2003. We assessed the data quality of ILAS-II version 1.4 aerosol extinction coefficients at 780 nm from comparisons with the Stratospheric Aerosol and Gas Experiment (SAGE) II, SAGE III, and the Polar Ozone and Aerosol Measurement (POAM) III aerosol data. At heights below 20 km in the Northern Hemisphere, aerosol extinction coefficients from ILAS-II agreed with those from SAGE II and SAGE III within 10%, and with those from POAM III within 15%. From 20 to 26 km, ILAS-II aerosol extinction coefficients were smaller than extinction coefficients from the other sensors; differences between ILAS-II and SAGE II ranged from 10% at 20 km to 34% at 26 km. ILAS-II aerosol extinction coefficients from 20 to 25 km in February over the Southern Hemisphere had a negative bias (12-66%) relative to SAGE II aerosol data. The bias increased with increasing altitude. Comparisons between ILAS-II and POAM III aerosol extinction coefficients from January to May in the Southern Hemisphere (defined as the non-Polar Stratospheric Cloud (PSC) season ) yielded qualitatively similar results. From June to October (defined as the PSC season ), aerosol extinction coefficients from ILAS-II were smaller than those from POAM III above 17 km, as in the case of the non-PSC season; however, ILAS-II and POAM III aerosol data were within 15% of each other from 12 to 17 km.

  12. Influence of the aerosol solar extinction on photochemistry during the 2010 Russian wildfires episode

    NASA Astrophysics Data System (ADS)

    Péré, J. C.; Bessagnet, B.; Pont, V.; Mallet, M.; Minvielle, F.

    2015-10-01

    In this work, impact of aerosol solar extinction on the photochemistry over eastern Europe during the 2010 wildfires episode is discussed for the period from 5 to 12 August 2010, which coincides to the peak of fire activity. The methodology is based on an online coupling between the chemistry-transport model CHIMERE (extended by an aerosol optical module) and the radiative transfer code TUV. Results of simulations indicate an important influence of the aerosol solar extinction, in terms of intensity and spatial extent, with a reduction of the photolysis rates of NO2 and O3 up to 50 % (in daytime average) along the aerosol plume transport. At a regional scale, these changes in photolysis rates lead to a 3-15 % increase in the NO2 daytime concentration and to an ozone reduction near the surface of 1-12 %. The ozone reduction is shown to occur over the entire boundary layer, where aerosols are located. Also, the total aerosol mass concentration (PM10) is shown to be decreased by 1-2 %, on average during the studied period, caused by a reduced formation of secondary aerosols such as sulfates and secondary organics (4-10 %) when aerosol impact on photolysis rates is included. In terms of model performance, comparisons of simulations with air quality measurements at Moscow indicate that an explicit representation of aerosols interaction with photolysis rates tend to improve the estimation of the near-surface concentration of ozone and nitrogen dioxide as well as the formation of inorganic aerosol species such as ammonium, nitrates and sulfates.

  13. Radiative properties of the background aerosol: absorption component of extinction.

    PubMed

    Clarke, A D; Charlson, R J

    1985-07-19

    The light-scattering and light-absorption coefficients of the global background aerosol define its single-scatter albedo. Continuous, simultaneous measurements of these optical coefficients were made on a daily basis for the remote marine mid-troposphere; such measurements are essential for assessment of the effects of aerosol on atmospheric radiative transfer. Measurements of light-absorption coefficients made at the Mauna Loa Observatory in Hawaii were higher than expected, and the single-scatter albedo was lower than the value often used in radiative transfer models. Soot appears to be the most likely primary absorber, and hemispheric dispersal of this combustion-derived material is suggested. PMID:17759145

  14. Stratospheric Aerosol and Gas Experiment (SAGE) II and III Aerosol Extinction Measurements in the Arctic Middle and Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Treffeisen, R. E.; Thomason, L. W.; Strom, J.; Herber, A. B.; Burton, S. P.; Yamanouchi, T.

    2006-01-01

    In recent years, substantial effort has been expended toward understanding the impact of tropospheric aerosols on Arctic climate and chemistry. A significant part of this effort has been the collection and documentation of extensive aerosol physical and optical property data sets. However, the data sets present significant interpretive challenges because of the diverse nature of these measurements. Among the longest continuous records is that by the spaceborne Stratospheric Aerosol and Gas Experiment (SAGE) II. Although SAGE tropospheric measurements are restricted to the middle and upper troposphere, they may be able to provide significant insight into the nature and variability of tropospheric aerosol, particularly when combined with ground and airborne observations. This paper demonstrates the capacity of aerosol products from SAGE II and its follow-on experiment SAGE III to describe the temporal and vertical variations of Arctic aerosol characteristics. We find that the measurements from both instruments are consistent enough to be combined. Using this combined data set, we detect a clear annual cycle in the aerosol extinction for the middle and upper Arctic troposphere.

  15. Selection Algorithm for the CALIPSO Lidar Aerosol Extinction-to-Backscatter Ratio

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Winker, David M.; Vaughan, Mark A.

    2006-01-01

    The extinction-to-backscatter ratio (S(sub a)) is an important parameter used in the determination of the aerosol extinction and subsequently the optical depth from lidar backscatter measurements. We outline the algorithm used to determine Sa for the Cloud and Aerosol Lidar and Infrared Pathfinder Spaceborne Observations (CALIPSO) lidar. S(sub a) for the CALIPSO lidar will either be selected from a look-up table or calculated using the lidar measurements depending on the characteristics of aerosol layer. Whenever suitable lofted layers are encountered, S(sub a) is computed directly from the integrated backscatter and transmittance. In all other cases, the CALIPSO observables: the depolarization ratio, delta, the layer integrated attenuated backscatter, beta, and the mean layer total attenuated color ratio, gamma, together with the surface type, are used to aid in aerosol typing. Once the type is identified, a look-up-table developed primarily from worldwide observations, is used to determine the S(sub a) value. The CALIPSO aerosol models include desert dust, biomass burning, background, polluted continental, polluted dust, and marine aerosols.

  16. Mount St. Helens related aerosol properties from solar extinction measurements

    NASA Technical Reports Server (NTRS)

    Michalsky, J. J.; Kleckner, E. W.; Stokes, G. M.

    1982-01-01

    A network of solar radiometers, operated on the North American Continent for an average of 2 years before the first major eruption of Mount St. Helens, Washington, continues to collect direct solar data through the eruptive phase of this volcano. The radiometers collect spectral data through 12 interference filters spanning the sensitivity of the photodiode used as detector. The data are collected every 5 minutes in seven filters and every 15 minutes in five additional filters. A variant of the classical Langley method has been used to measure the optical depth of the aerosols as a function of wavelength. The network, which is the nearest station, is located some 180 kilometers east of the volcano, well within range of noticeable effects during much of the minor as well as major activity. The wavelength dependence of the aerosol-optical depth before and after the 22 July 1980 major eruption, which was well characterized because of favorable meteorological conditions is discussed.

  17. Using high time resolution aerosol and number size distribution measurements to estimate atmospheric extinction.

    PubMed

    Malm, William C; McMeeking, Gavin R; Kreidenweis, Sonia M; Levin, Ezra; Carrico, Christian M; Day, Derek E; Collett, Jeffrey L; Lee, Taehyoung; Sullivan, Amy P; Raja, Suresh

    2009-09-01

    Rocky Mountain National Park is experiencing reduced visibility and changes in ecosystem function due to increasing levels of oxidized and reduced nitrogen. The Rocky Mountain Atmospheric Nitrogen and Sulfur (RoMANS) study was initiated to better understand the origins of sulfur and nitrogen species as well as the complex chemistry occurring during transport from source to receptor. As part of the study, a monitoring program was initiated for two 1-month time periods--one during the spring and the other during late summer/fall. The monitoring program included intensive high time resolution concentration measurements of aerosol number size distribution, inorganic anions, and cations, and 24-hr time resolution of PM2.5 and PM10 mass, sulfate, nitrate, carbon, and soil-related elements concentrations. These data are combined to estimate high time resolution concentrations of PM2.5 and PM10 aerosol mass and fine mass species estimates of ammoniated sulfate, nitrate, and organic and elemental carbon. Hour-by-hour extinction budgets are calculated by using these species concentration estimates and measurements of size distribution and assuming internal and external particle mixtures. Summer extinction was on average about 3 times higher than spring extinction. During spring months, sulfates, nitrates, carbon mass, and PM10 - PM2.5 mass contributed approximately equal amounts of extinction, whereas during the summer months, carbonaceous material extinction was 2-3 times higher than other species. PMID:19785272

  18. Measurement of wavelength-dependent extinction to distinguish between absorbing and nonabsorbing aerosol particulates

    NASA Technical Reports Server (NTRS)

    Portscht, R.

    1977-01-01

    Measurements of spectral transmission factors in smoky optical transmission paths reveal a difference between wavelength exponents of the extinction cross section of high absorption capacity and those of low absorption capacity. A theoretical explanation of this behavior is presented. In certain cases, it is possible to obtain data on the absorption index of aerosol particles in the optical path by measuring the spectral decadic extinction coefficient at, at least, two wavelengths. In this manner it is possible, for instance, to distinguish smoke containing soot from water vapor.

  19. Retrieval of Aerosol Profiles using Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS)

    NASA Astrophysics Data System (ADS)

    Yilmaz, Selami; Frieß, Udo; Apituley, Arnoud; Henzing, Bas; Baars, Holger; Heese, Birgit; Althausen, Dietrich; Adam, Mariana; Putaud, Jean-Philippe; Zieger, Paul; Platt, Ulrich

    2010-05-01

    Multi Axis Differential Absorption Spectroscopy (MAX-DOAS) is a well established measurement technique to derive atmospheric trace gas profiles. Using MAX-DOAS measurements of trace gases with a known vertical profile, like the oxygen-dimer O4, it is possible to retrieve information on atmospheric aerosols. Based on the optimal estimation method, we have developed an algorithm which fits simultaneously measured O4 optical densities and relative intensities at several wavelengths and elevation angles to values simulated by a radiative transfer model. Retrieval parameters are aerosol extinction profile and optical properties such as single scattering albedo, phase function and Angström exponent. In 2008 and 2009 several intercomparison campaigns with established aerosol measurement techniques took place in Cabauw/Netherlands, Melpitz/Germany, Ispra/Italy and Leipzig/Germany, where simultaneous DOAS, lidar, Sun photometer and Nephelometer measurements were performed. Here we present results of the intercomparisons for cloud free conditions. The correlation of the aerosol optical thickness retrieved by the DOAS technique and the Sun photometer shows coefficients of determination from 0.96 to 0.98 and slopes from 0.94 to 1.07. The vertical structure of the DOAS retrieved aerosol extinction profiles compare favourably with the structures seen by the backscatter lidar. However, the vertical spatial development of the boundary layer is reproduced with a lower resolution by the DOAS technique. Strategies for the near real-time retrieval of trace gas profiles, aerosol profiles and optical properties will be discussed as well.

  20. CART and GSFC raman lidar measurements of atmospheric aerosol backscattering and extinction profiles for EOS validation and ARM radiation studies

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Turner, D. D.; Melfi, S. H.; Whiteman, D. N.; Schwenner, G.; Evans, K. D.; Goldsmith, J. E. M.; Tooman, T.

    1998-01-01

    The aerosol retrieval algorithms used by the Moderate-Resolution Imaging Spectroradiometer (MODIS) and Multi-Angle Imaging SpectroRadiometer (MISR) sensors on the Earth Observing Satellite (EOS) AM-1 platform operate by comparing measured radiances with tabulated radiances that have been computed for specific aerosol models. These aerosol models are based almost entirely on surface and/or column averaged measurements and so may not accurately represent the ambient aerosol properties. Therefore, to validate these EOS algorithms and to determine the effects of aerosols on the clear-sky radiative flux, we have begun to evaluate the vertical variability of ambient aerosol properties using the aerosol backscattering and extinction profiles measured by the Cloud and Radiation Testbed (CART) and NASA Goddard Space Flight Center (GSFC) Raman Lidars. Using the procedures developed for the GSFC Scanning Raman Lidar (SRL), we have developed and have begun to implement algorithms for the CART Raman Lidar to routinely provide profiles of aerosol extinction and backscattering during both nighttime and ,daytime operations. Aerosol backscattering and extinction profiles are computed for both lidar systems using data acquired during the 1996 and 1997 Water Vapor Intensive Operating Periods (IOPs). By integrating these aerosol extinction profiles, we derive measurements of aerosol optical thickness and compare these with coincident sun photometer measurements. We also use these measurements to measure the aerosol extinction/backscatter ratio S(sub a) (i.e. 'lidar ratio'). Furthermore, we use the simultaneous water vapor measurements acquired by these Raman lidars to investigate the effects of water vapor on aerosol optical properties.

  1. Modified cavity attenuated phase shift (CAPS) method for airborne aerosol light extinction measurement

    NASA Astrophysics Data System (ADS)

    Perim de Faria, Julia; Bundke, Ulrich; Freedman, Andrew; Petzold, Andreas

    2015-04-01

    Monitoring the direct impact of aerosol particles on climate requires the consideration of at least two major factors: the aerosol single-scattering albedo, defined as the relation between the amount of energy scattered and extinguished by an ensemble of aerosol particles; and the aerosol optical depth, calculated from the integral of the particle extinction coefficient over the thickness of the measured aerosol layer. Remote sensing networks for measuring these aerosol parameters on a regular basis are well in place (e.g., AERONET, ACTRIS), whereas the regular in situ measurement of vertical profiles of atmospheric aerosol optical properties remains still an important challenge in quantifying climate change. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. Recently, a compact and robust family of optical instruments based on the cavity attenuated phase shift (CAPS) technique has become available for measuring aerosol light extinction. In particular, the CAPS PMex particle optical extinction monitor has demonstrated sensitivity of less than 2 Mm-1 in 1 second sampling period; with a 60 s averaging time, a detection limit of less than 0.3 Mm-1 can be achieved. While this technique was successfully deployed for ground-based atmospheric measurements under various conditions, its suitability for operation aboard aircraft in the free and upper free troposphere still has to be demonstrated. Here, we report on the modifications of a CAPS PMex instrument for measuring aerosol light extinction on aircraft, and subsequent laboratory tests for evaluating the modified instrument prototype: (1) In a

  2. Comparison of vertical aerosol extinction coefficients from in-situ and LIDAR measurements

    NASA Astrophysics Data System (ADS)

    Rosati, B.; Herrmann, E.; Bucci, S.; Fierli, F.; Cairo, F.; Gysel, M.; Tillmann, R.; Größ, J.; Gobbi, G. P.; Di Liberto, L.; Di Donfrancesco, G.; Wiedensohler, A.; Weingartner, E.; Virtanen, A.; Mentel, T. F.; Baltensperger, U.

    2015-07-01

    Vertical profiles of aerosol optical properties were explored in a case study near the San Pietro Capofiume (SPC) ground station during the PEGASOS Po Valley campaign in the summer of 2012. A Zeppelin NT airship was employed to investigate the effect of the dynamics of the planetary boundary layer at altitudes between ~ 50-800 m above ground. Determined properties included the aerosol size distribution, the hygroscopic growth factor, the effective index of refraction and the light absorption coefficient. The first three parameters were used to retrieve the light scattering coefficient. Simultaneously, direct measurements of both the scattering and absorption coefficient were carried out at the SPC ground station. Additionally, a LIDAR system provided aerosol extinction coefficients for a vertically resolved comparison between in-situ and remote sensing results. First, the airborne results at low altitudes were validated with the ground measurements. Agreement within approximately ±25 and ±20% was found for the dry scattering and absorption coefficient, respectively. The single scattering albedo, ranged between 0.83 to 0.95, indicating the importance of the absorbing particles in the Po Valley region. A clear layering of the atmosphere was observed during the beginning of the flight (until ~ 10 local time) before the mixed layer (ML) was fully developed. Highest extinction coefficients were found at low altitudes, in the new ML, while values in the residual layer, which could be probed at the beginning of the flight at elevated altitudes, were lower. At the end of the flight (after ~ 12 local time) the ML was fully developed, resulting in constant extinction coefficients at all altitudes measured on the Zeppelin NT. LIDAR results captured these dynamic features well and good agreement was found for the extinction coefficients compared to the in-situ results, using fixed LIDAR ratios (LR) between 30 and 70 sr for the altitudes probed with the Zeppelin. These LR are

  3. Effect of coagulation on extinction in an aerosol plume propagating in the atmosphere.

    PubMed

    Tsang, T H; Brock, J R

    1982-05-01

    Model studies based on the K-theory diffusion assumption have been carried out on aerosol plumes issuing from a crosswind line source in which advection, vertical diffusion, coagulation, sedimentation, and dry deposition are occurring. Procedures are described and a few typical results are presented. It is shown that in appropriate conditions coagulation can play an important role in altering extinction in the plume. An important coupling effect between coagulation and sedimentation/deposition has been demonstrated. In a coagulating plume it is found that total particle mass concentration cannot be inferred from measurements of extinction without a detailed consideration of the effects of coagulation. In realistic atmospheric simulations isopleths of extinction in the plume cross section show complex forms resulting from the wind gradient and its interactions with vertical diffusion and the coagulation and sedimentation/deposition processes. PMID:20389900

  4. Use of Lidar Derived Optical Extinction and Backscattering Coefficients Near Cloud Base to Explore Aerosol-Cloud Interactions

    NASA Astrophysics Data System (ADS)

    Han, Zaw; Wu, Yonhgua; Gross, Barry; Moshary, Fred

    2016-06-01

    Combination of microwave radiometer (MWR) and mutlifilter rotating shadowband radiometer (MFRSR) measurement data together with SBDART radiative transfer model to compute cloud optical depth (COD) and cloud droplet effective radius (Reff). Quantify the first aerosol indirect effect using calculated Reff and aerosol extinction from Raman lidar measurement in urban coastal region. Illustrate comparison between ground-based and satellite retrievals. Demonstrate relationship between surface aerosol (PM2.5) loading and Reff. We also explain the sensitivity of aerosol-cloud-index (ACI) depend on the aerosol layer from cloud base height. Potential used of less noisy elastic backscattering to calculate the ACI instead of using Raman extinction. We also present comparison of elastic backscattering and Raman extinction correlation to Reff.

  5. SAGE III Aerosol Extinction Validation in the Arctic Winter: Comparisons with SAGE II and POAM III

    NASA Technical Reports Server (NTRS)

    Thomason, L. W.; Poole, L. R.; Randall, C. E.

    2007-01-01

    The use of SAGE III multiwavelength aerosol extinction coefficient measurements to infer PSC type is contingent on the robustness of both the extinction magnitude and its spectral variation. Past validation with SAGE II and other similar measurements has shown that the SAGE III extinction coefficient measurements are reliable though the comparisons have been greatly weighted toward measurements made at mid-latitudes. Some aerosol comparisons made in the Arctic winter as a part of SOLVE II suggested that SAGE III values, particularly at longer wavelengths, are too small with the implication that both the magnitude and the wavelength dependence are not reliable. Comparisons with POAM III have also suggested a similar discrepancy. Herein, we use SAGE II data as a common standard for comparison of SAGE III and POAM III measurements in the Arctic winters of 2002/2003 through 2004/2005. During the winter, SAGE II measurements are made infrequently at the same latitudes as these instruments. We have mitigated this problem through the use potential vorticity as a spatial coordinate and thus greatly increased the number of coincident events. We find that SAGE II and III extinction coefficient measurements show a high degree of compatibility at both 1020 nm and 450 nm except a 10-20% bias at both wavelengths. In addition, the 452 to 1020-nm extinction ratio shows a consistent bias of approx. 30% throughout the lower stratosphere. We also find that SAGE II and POAM III are on average consistent though the comparisons show a much higher variability and larger bias than SAGE II/III comparisons. In addition, we find that the two data sets are not well correlated below 18 km. Overall, we find both the extinction values and the spectral dependence from SAGE III are robust and we find no evidence of a significant defect within the Arctic vortex.

  6. Forecasting of aerosol extinction of the sea and coastal atmosphere surface layer

    NASA Astrophysics Data System (ADS)

    Kaloshin, G. A.

    2010-04-01

    The focus of our study is the extinction and optical effects due to aerosol in a specific coastal region. The aerosol microphysical model of the marine and coastal atmosphere surface layer is considered. The model is made on the basis of the long-term experimental data received at researches of aerosol sizes distribution function (dN/dr) in the band particles sizes in 0.01 - 100 μk. The model is developed by present time for the band of heights is 0 - 25 m. Bands of wind speed is 3 - 18 km/s, sizes fetch is up to 120 km, RH = 40 - 98 %. Key feature of model is parameterization of amplitude and width of the modes as functions of fetch and wind speed. In the paper the dN/dr behavior depending at change meteorological parameters, heights above sea level, fetch (X), wind speed (U) and RH is show. On the basis of the developed model with usage of Mie theory for spheres the description of last version of developed code MaexPro (Marine Aerosol Extinction Profiles) for spectral profiles of aerosol extinction coefficients α(λ) calculations in the wavelength band, equal λ = 0.2 - 12 μm is presented. The received results are compared models NAN and ANAM. Also α(λ) profiles for various wind modes (combinations X and U) calculated by MaexPro code are given. The calculated spectrums of α(λ) profiles are compared with experimental data of α(λ) received by a transmission method in various geographical areas.

  7. Aerosol Backscatter and Extinction Retrieval from Airborne Coherent Doppler Wind Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Chouza, F.; Reitebuch, O.; Groß, S.; Rahm, S.; Freudenthaler, V.; Toledano, C.; Weinzierl, B.

    2016-06-01

    A novel method for coherent Doppler wind lidars (DWLs) calibration is shown in this work. Concurrent measurements of a ground based aerosol lidar operating at 532 nm and an airborne DWL at 2 μm are used in combination with sun photometer measurements for the retrieval of backscatter and extinction profiles. The presented method was successfully applied to the measurements obtained during the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE: http://www.pa.op.dlr.de/saltrace), which aimed to characterize the Saharan dust long range transport between Africa and the Caribbean.

  8. Analysis of Antarctic stratospheric aerosol properties using SAGE II extinction measurements

    NASA Technical Reports Server (NTRS)

    Thomason, Larry W.; Poole, Lamont R.

    1992-01-01

    Multispectra aerosol extinction data for the fall and spring of 1987 measured by the SAGE II sensor are employed to determine the physical characteristics of aerosols within the springtime Antarctic polar vortex. Attention is given to the physical processes that give rise to the apparent springtime 'cleansing' of the Antarctic stratosphere. The inferred vertical and radial structure compare favorably with in situ measurements but yield a previously unavailable 2D structure to the distribution of aerosols within the polar vortex. The springtime 'cleansing' of the Antarctic stratosphere is found to be a result of both large-scale subsidence and the preferential removal of large particles by the nucleation and subsequent sedimentation of polar stratospheric clouds.

  9. The impacts of aerosol loading, composition, and water uptake on aerosol extinction variability in the Baltimore-Washington, D.C. region

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Ziemba, L. D.; Chen, G.; Corr, C. A.; Crawford, J. H.; Diskin, G. S.; Moore, R. H.; Thornhill, K. L.; Winstead, E. L.; Anderson, B. E.

    2016-01-01

    In order to utilize satellite-based aerosol measurements for the determination of air quality, the relationship between aerosol optical properties (wavelength-dependent, column-integrated extinction measured by satellites) and mass measurements of aerosol loading (PM2.5 used for air quality monitoring) must be understood. This connection varies with many factors including those specific to the aerosol type - such as composition, size, and hygroscopicity - and to the surrounding atmosphere, such as temperature, relative humidity (RH), and altitude, all of which can vary spatially and temporally. During the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) project, extensive in situ atmospheric profiling in the Baltimore, MD-Washington, D.C. region was performed during 14 flights in July 2011. Identical flight plans and profile locations throughout the project provide meaningful statistics for determining the variability in and correlations between aerosol loading, composition, optical properties, and meteorological conditions. Measured water-soluble aerosol mass was composed primarily of ammonium sulfate (campaign average of 32 %) and organics (57 %). A distinct difference in composition was observed, with high-loading days having a proportionally larger percentage of sulfate due to transport from the Ohio River Valley. This composition shift caused a change in the aerosol water-uptake potential (hygroscopicity) such that higher relative contributions of inorganics increased the bulk aerosol hygroscopicity. These days also tended to have higher relative humidity, causing an increase in the water content of the aerosol. Conversely, low-aerosol-loading days had lower sulfate and higher black carbon contributions, causing lower single-scattering albedos (SSAs). The average black carbon concentrations were 240 ng m-3 in the lowest 1 km, decreasing to 35 ng m-3 in the free troposphere (above

  10. Microscopy and Spectroscopy Techniques to Guide Parameters for Modeling Mineral Dust Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Veghte, D. P.; Moore, J. E.; Jensen, L.; Freedman, M. A.

    2013-12-01

    Mineral dust aerosol particles are the second largest emission by mass into the atmosphere and contribute to the largest uncertainty in radiative forcing. Due to the variation in size, composition, and shape, caused by physical and chemical processing, uncertainty exists as to whether mineral dust causes a net warming or cooling effect. We have used Cavity Ring-Down Aerosol Extinction Spectroscopy (CRD-AES), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM) to measure extinction cross sections and morphologies of size-selected, non-absorbing and absorbing mineral dust aerosol particles. We have found that microscopy is essential for characterizing the polydispersity of the size selection of non-spherical particles. Through the combined use of CRD-AES, microscopy, and computation (Mie theory and Discreet Dipole Approximation), we have determined the effect of shape on the optical properties of additional species including clay minerals, quartz, and hematite in the sub-micron regime. Our results have shown that calcite can be treated as polydisperse spheres while quartz and hematite need additional modeling parameters to account for their irregularity. Size selection of clay minerals cannot be performed due to their irregular shape, but microscopy techniques can be used to better quantify the particle aspect ratio. Our results demonstrate a new method that can be used to extend cavity ring-down spectroscopy for the measurement of the optical properties of non-spherical particles. This characterization will lead to better aerosol extinction parameters for modeling aerosol optical properties in climate models and satellite retrieval algorithms.

  11. Development of the code MaexPro for calculation atmospheric aerosol extinction in the marine and coastal surface layer

    NASA Astrophysics Data System (ADS)

    Kaloshin, Gennady A.; Shishkin, Sergey A.; Serov, Sergey A.

    2006-11-01

    In the paper the description of the last version of the code MaexPro (Marine aerosol extinction Profile) for calculation spectral and vertical profiles of aerosol extinction coefficient α( λ), aerosol sizes distribution, area distribution, volumes distribution, modes aerosol extinction spectra using standard meteorological parameters, aerosol microphysical structure, a spectral band and a height of the sensor location place is submitted. The code MaexPro is the computer program under constantly development to estimate of EO systems signal power at a location place in which a fetch is key entrance parameter. Spectral behavior α( λ) can be submitted as graphically, and as tables. Commands overplot for superposition or change of figures; profiles extrapolation; a lens; all kinds of possible copying; the data presentation, convenient for an input in code MODTRAN, and etc. are stipulated. The code MaexPro is a completely mouse-driven PC Windows program with a user-friendly interface. Calculation time of spectral and vertical profiles of α( λ) depends on the necessary wave length resolution, radius of aerosol particles and the location place height, and does not exceed tens seconds for each new meteorological condition. Other calculations characteristics, such as aerosol sizes distribution, area distribution, volumes distribution, modes aerosol extinction spectra, are performed in a few seconds.

  12. Statistical analysis of the spatial-temporal distribution of aerosol extinction retrieved by micro-pulse lidar in Kashgar, China.

    PubMed

    Zhu, Wenyue; Xu, Chidong; Qian, Xianmei; Wei, Heli

    2013-02-11

    The spatial-temporal distribution of dust aerosol is important in climate model and ecological environment. An observation experiment of the aerosol vertical distribution in the low troposphere was made using the micro-pulse lidar system from Sept. 2008 to Aug. 2009 at the oasis city Kashgar, China, which is near the major dust source area of the Taklimakan desert. The monthly averaged temporal variation of aerosol extinction profiles are given in the paper. The profile of aerosol extinction coefficient suggested that the dust aerosol could be vertically transported from the ground level to the higher altitude of above 5 km around the source region, and the temporal distribution showed that the dust aerosol layer of a few hundred meters thick appeared in the seasons of early spring and summer near the ground surface. PMID:23481711

  13. Relationships between Optical Extinction, Backscatter and Aerosol Surface and Volume in the Stratosphere following the Eruption of Mt. Pinatubo

    NASA Technical Reports Server (NTRS)

    Brock, Charles A.; Jonsson, Haflidi H.; Wilson, James C.; Dye, James E.; Baumgardner, Darrel; Borrmann, Stephan; Pitts, Mike C.; Osborn, Mary T.; DeCoursey, Robert J.; Woods, David C.

    1993-01-01

    The eruption of the Mt. Pinatubo volcano in the Philippines in June 1991 has resulted in increases in the surface and mass concentrations of aerosol particles in the lower stratosphere. Airborne measurements made at midlatitudes between 15 and 21 km from August 1991 to March 1992 show that, prior to December 1991, the Pinatubo aerosol cloud varied widely in microphysical properties such as size distribution, number, surface and volume concentrations and was also spatially variable. Aerosol surface area concentration was found to be highly correlated to extinction at visible and near-infrared wavelengths throughout the measurement period. Similarly, backscatter at common lidar wavelengths was a good predictor of aerosol volume concentrations. These results support the use of satellite extinction measurements to estimate aerosol surface and of lidar measurements to estimate aerosol volume or mass if temporal changes in the relationships between the variables are considered.

  14. Cavity Attenuated Phase Shift (CAPS) Method for Airborne Aerosol Light Extinction Measurement: Instrument Validation and First Results from Field Deployment

    NASA Astrophysics Data System (ADS)

    Petzold, A.; Perim de Faria, J.; Berg, M.; Bundke, U.; Freedman, A.

    2015-12-01

    Monitoring the direct impact of aerosol particles on climate requires the continuous measurement of aerosol optical parameters like the aerosol extinction coefficient on a regular basis. Remote sensing and ground-based networks are well in place (e.g., AERONET, ACTRIS), whereas the regular in situ measurement of vertical profiles of atmospheric aerosol optical properties remains still an important challenge in quantifying climate change. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. Recently, a compact and robust family of optical instruments based on the cavity attenuated phase shift (CAPS) technique has become available for measuring aerosol light extinction. While this technique was successfully deployed for ground-based atmospheric measurements under various conditions, its suitability for operation aboard aircraft in the free and upper free troposphere still has to be demonstrated. In this work, the modifications of a CAPS PMex instrument for measuring aerosol light extinction on aircraft, the results from subsequent laboratory tests for evaluating the modified instrument prototype, and first results from a field deployment aboard a research aircraft will be covered. In laboratory studies, the instrument showed excellent agreement (deviation < 5%) with theoretical values calculated from Rayleigh scattering cross-sections, when operated on pressurized air and CO2 at ambient and low pressure (~200 hPa). For monodisperse and polydisperse aerosols, reference aerosol extinction coefficients were calculated from measured size distributions and agreed with the CAPS PMex instrument

  15. Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles

    NASA Technical Reports Server (NTRS)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Kittaka, C.; Vaughn, M. A.; Remer, L. A.

    2010-01-01

    We derive aerosol extinction profiles from airborne and space-based lidar backscatter signals by constraining the retrieval with column aerosol optical thickness (AOT), with no need to rely on assumptions about aerosol type or lidar ratio. The backscatter data were acquired by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL) and by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. The HSRL also simultaneously measures aerosol extinction coefficients independently using the high spectral resolution lidar technique, thereby providing an ideal data set for evaluating the retrieval. We retrieve aerosol extinction profiles from both HSRL and CALIOP attenuated backscatter data constrained with HSRL, Moderate-Resolution Imaging Spectroradiometer (MODIS), and Multiangle Imaging Spectroradiometer column AOT. The resulting profiles are compared with the aerosol extinction measured by HSRL. Retrievals are limited to cases where the column aerosol thickness is greater than 0.2 over land and 0.15 over water. In the case of large AOT, the results using the Aqua MODIS constraint over water are poorer than Aqua MODIS over land or Terra MODIS. The poorer results relate to an apparent bias in Aqua MODIS AOT over water observed in August 2007. This apparent bias is still under investigation. Finally, aerosol extinction coefficients are derived from CALIPSO backscatter data using AOT from Aqua MODIS for 28 profiles over land and 9 over water. They agree with coincident measurements by the airborne HSRL to within +/-0.016/km +/- 20% for at least two-thirds of land points and within +/-0.028/km +/- 20% for at least two-thirds of ocean points.

  16. Analysis of DIAL/HSRL aerosol backscatter and extinction profiles during the SEAC4RS campaign with an aerosol assimilation system

    NASA Astrophysics Data System (ADS)

    Weaver, C. J.; da Silva, A. M., Jr.; Colarco, P. R.; Randles, C. A.

    2015-12-01

    We retrieve aerosol concentrations and optical information from vertical profiles of airborne 532 nm extinction and 532 and 1064 nm backscatter measurements made during the SEAC4RS summer 2013 campaign. The observations are from the High Spectral Resolution Lidar (HSRL) Airborne Differential Absorption Lidar (DIAL) on board the NASA DC-8. Instead of retrieving information about aerosol microphysical properties such as indexes of refraction, we seek information more directly applicable to an aerosol transport model - in our case the Goddard Chemistry Aerosol Radiation and Transport (GOCART) module used in the GEOS-5 Earth modeling system. A joint atmosphere/aerosol mini-reanalysis was performed for the SEAC4RS period using GEOS-5. The meteorological reanalysis followed the MERRA-2 atmospheric reanalysis protocol, and aerosol information from MODIS, MISR, and AERONET provided a constraint on the simulated aerosol optical depth (i.e., total column loading of aerosols). We focus on the simulated concentrations of 10 relevant aerosol species simulated by the GOCART module: dust, sulfate, and organic and black carbon. Our first retrieval algorithm starts with the SEAC4RS mini-reanalysis and adjusts the concentration of each GOCART aerosol species so that differences between the observed and simulated backscatter and extinction measurements are minimized. In this case, too often we are unable to simulate the observations by simple adjustment of the aerosol concentrations. A second retrieval approach adjusts both the aerosol concentrations and the optical parameters (i.e., assigned mass extinction efficiency) associated with each GOCART species. We present results from DC-8 flights over smoke from forest fires over the western US using both retrieval approaches. Finally, we compare our retrieved quantities with in-situ observations of aerosol absorption, scattering, and mass concentrations at flight altitude.

  17. An effective inversion algorithm for retrieving bimodal aerosol particle size distribution from spectral extinction data

    NASA Astrophysics Data System (ADS)

    He, Zhenzong; Qi, Hong; Yao, Yuchen; Ruan, Liming

    2014-12-01

    The Ant Colony Optimization algorithm based on the probability density function (PDF-ACO) is applied to estimate the bimodal aerosol particle size distribution (PSD). The direct problem is solved by the modified Anomalous Diffraction Approximation (ADA, as an approximation for optically large and soft spheres, i.e., χ≫1 and |m-1|≪1) and the Beer-Lambert law. First, a popular bimodal aerosol PSD and three other bimodal PSDs are retrieved in the dependent model by the multi-wavelength extinction technique. All the results reveal that the PDF-ACO algorithm can be used as an effective technique to investigate the bimodal PSD. Then, the Johnson's SB (J-SB) function and the modified beta (M-β) function are employed as the general distribution function to retrieve the bimodal PSDs under the independent model. Finally, the J-SB and M-β functions are applied to recover actual measurement aerosol PSDs over Beijing and Shanghai obtained from the aerosol robotic network (AERONET). The numerical simulation and experimental results demonstrate that these two general functions, especially the J-SB function, can be used as a versatile distribution function to retrieve the bimodal aerosol PSD when no priori information about the PSD is available.

  18. Aerosol extinction properties over coastal West Bengal Gangetic plain under inter-seasonal and sea breeze influenced transport processes

    NASA Astrophysics Data System (ADS)

    Verma, S.; Priyadharshini, B.; Pani, S. K.; Bharath Kumar, D.; Faruqi, A. R.; Bhanja, S. N.; Mandal, M.

    2016-01-01

    We analysed the atmospheric aerosol extinction properties under an influence of inter-seasonal and sea breeze (SB) transport processes over coastal West Bengal (WB) Gangetic plain (WBGP). The predominant frequency of airmass back trajectory path was through the Arabian Sea (AS) during southwest monsoon (SWmon) and that through the Indo-Gangetic plain (IGP) during transition to winter (Twin) season and the Bay of Bengal during transition to summer (Tsumm) season. Aerosol surface concentration (Sconc) and aerosol extinction exhibited heterogeneity in the seasonal variability over coastal WBGP with their highest seasonal mean being during winter and summer seasons respectively. Seasonal mean extinction was respectively 17% and 30% higher during winter and summer seasons than that during SWmon. While angstrom exponent (AE) was less than one during SWmon, Tsumm, and summer seasons, it was near to one during Twin and winter monsoon (Wmon), and was more than one during winter season. Relative contribution (%) of upper (at altitude above 1 km) aerosol layer (UAL) to aerosol extinction during summer was four times of that during winter. Seasonally distinct vertical distribution of aerosol extinction associated with meteorological and SB influenced transport and that due to influence of high rise open burning emissions was inferred. Possible aerosol subtypes extracted during days in Tsumm were inferred to be mostly constituted of dust and polluted dust during daytime, in addition to polluted continental and smoke in UAL during nighttime. In contrast to that at nearby urban location (Kolkata, KOL), intensity of updraft of airmass evaluated during evening/SB activity hour (1730 local time, (LT)) at study site (Kharagpur, KGP) was as high as 3.5 times the intensity during near to noon hour (1130 LT); this intensity was the highest along coast of westBengal-Orissa. Enhanced Sconc and relative contribution of UAL to aerosol extinction (58% compared to 36% only at nearby urban

  19. Simulation of improved daytime capabilities to retrieve aerosol extinction coefficient using Rotational Raman lidars

    NASA Astrophysics Data System (ADS)

    Madonna, Fabio; Amodeo, Aldo

    2015-04-01

    So far, most of the multi-wavelength Raman lidar observations of aerosols are performed at night, because Raman signals are weak compared to daylight background. Different techniques have been developed to improve Raman lidar daytime capabilities in the past years. Indeed, the retrieval of aerosol extinction during daytime is feasible through the detection of backscattered radiation due to the pure Rotational Raman Spectrum (PRRS) of molecular nitrogen or oxygen, much brighter than the vibration-rotation spectrum. The existing techniques for the measure of PRRS are based on small-bandwidth emitter and receiver systems and on a small receiver field of view to suppress the daylight background. They have been successfully tested and implemented in a few systems which are already in operational use within EARLINET (European Aerosol research Lidar NETwork). In this work, several different configurations used as receiver for a lidar system detecting the PRRS in daytime conditions are compared by means of numerical simulations. The configurations are mainly differentiated by the design of the spectral selection unit implemented in the receiver of each lidar system, based on a narrow-bandwidth filters, broad-band filters, grating spectrometers, and hybrid solutions. The research of configurations able to be more easily implemented on a large number of lidar systems within ACTRIS are explored. To show the performances of the investigated lidar configurations, a blind test has been carried out to get the simulated performances in the retrieval of the aerosol extinction profile during night-time and daytime starting from a known scenario. The atmospheric scenario used as the reference profile is represented by one of the night-time measurements with MUSA (MUlti-wavelength system for Aerosol) lidar at CNR-IMAA Atmospheric Observatory - CIAO (15.72E, 40.60N , 760 m a.s.l., Potenza, Italy). Though all the configuration considered in the blind test proved to be solid to

  20. Modeling of growth and evaporation effects on the extinction of 1.0-micron solar radiation traversing stratospheric sulfuric acid aerosols

    NASA Technical Reports Server (NTRS)

    Yue, G. K.; Deepak, A.

    1981-01-01

    The effects of growth and evaporation of stratospheric sulfuric acid aerosols on the extinction of solar radiation traversing such an aerosol medium are reported for the case of 1.0-micron solar radiation. Modeling results show that aerosol extinction is not very sensitive to the change of ambient water vapor concentration, but is sensitive to ambient temperature changes, especially at low ambient temperatures and high ambient water vapor concentration. A clarification is given of the effects of initial aerosol size distribution and composition on the change of aerosol extinction due to growth and evaporation processes. It is shown that experiments designed to observe solar radiation extinction of aerosols may also be applied to the determination of observed changes in aerosol optical properties, environmental parameters, or the physical and optical characteristics of sulfate aerosols.

  1. Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients.

    PubMed

    Esselborn, Michael; Wirth, Martin; Fix, Andreas; Tesche, Matthias; Ehret, Gerhard

    2008-01-20

    An airborne high spectral resolution lidar (HSRL) based on an iodine absorption filter and a high-power frequency-doubled Nd:YAG laser has been developed to measure backscatter and extinction coefficients of aerosols and clouds. The instrument was operated aboard the Falcon 20 research aircraft of the German Aerospace Center (DLR) during the Saharan Mineral Dust Experiment in May-June 2006 to measure optical properties of Saharan dust. A detailed description of the lidar system, the analysis of its data products, and measurements of backscatter and extinction coefficients of Saharan dust are presented. The system errors are discussed and airborne HSRL results are compared to ground-based Raman lidar and sunphotometer measurements. PMID:18204721

  2. Relationships between optical extinction, backscatter and aerosol surface and volume in the stratosphere following the eruption of Mt. Pinatubo

    NASA Technical Reports Server (NTRS)

    Brock, Charles A.; Jonsson, Haflidi H.; Wilson, James C.; Dye, James E.; Baumgardner, Darrel; Borrmann, Stephan; Pitts, Mike C.; Osborn, Mary T.; Decoursey, Robert J.; Woods, David C.

    1993-01-01

    The eruption of the Mt. Pinatubo volcano in the Philippines in June 1991 has resulted in increases in the surface and mass concentrations of aerosol particles in the lower stratosphere. Airborne measurements made at midlatitudes between 15 and 21 km from August 1991 to March 1992 show that, prior to December 1991, the Pinatubo aerosol cloud varied widely in microphysical properties such as size distribution, number, surface and volume concentrations and was also spatially variable. Aerosol surface area concentration was found to be highly correlated to extinction at visible and near-infrared wavelenghts throughout the measurement period. Similarly, backscatter at common lidar wavelengths was a good predictor of aerosol volume concentrations. These results support the use of satellite extinction measurements to estimate aerosol volume or mass if temporal changes in the relationships between the variables are considered.

  3. Antarctic springtime measurements of ozone, nitrogen dioxide, and aerosol extinction by SAM II, SAGE, and SAGE II

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Larsen, J. C.

    1986-01-01

    Simultaneous vertical profiles of O3, NO2, and aerosol extinction obtained with the Stratospheric Aerosol Measurement II, Stratospheric Aerosol and Gas Experiment (SAGE), and SAGE II satellite instruments across the southern polar vortex show that significant differences exist at all altitudes. Both gaseous species display lower concentrations within the vortex over measurement altitudes ranging from the tropopause to 60 km and 20 to 40 km for O3 and NO2, respectively. Aerosol extinction above 15-18 km and total aerosol stratospheric column are also lower inside the vortex than outside. Total column amounts of O3 and NO2 are found to be strongly coupled to spatial location within the vortex, with minimum total values located around the vortex center. Vertical profiles selected to emphasize the observed difference across the circumpolar vortex are presented for October 13, 1981, and October 13, 1985, near 70 and 68 deg S latitude, respectively.

  4. Use of rotational Raman measurements in multiwavelength aerosol lidar for evaluation of particle backscattering and extinction

    NASA Astrophysics Data System (ADS)

    Veselovskii, I.; Whiteman, D. N.; Korenskiy, M.; Suvorina, A.; Pérez-Ramírez, D.

    2015-10-01

    Vibrational Raman scattering from nitrogen is commonly used in aerosol lidars for evaluation of particle backscattering (β) and extinction (α) coefficients. However, at mid-visible wavelengths, particularly in the daytime, previous measurements have possessed low signal-to-noise ratio. Also, vibrational scattering is characterized by a significant frequency shift of the Raman component, so for the calculation of α and β information about the extinction Ångström exponent is needed. Simulation results presented in this study demonstrate that ambiguity in the choice of Ångström exponent can be the a significant source of uncertainty in the calculation of backscattering coefficients when optically thick aerosol layers are considered. Both of these issues are addressed by the use of pure-rotational Raman (RR) scattering, which is characterized by a higher cross section compared to nitrogen vibrational scattering, and by a much smaller frequency shift, which essentially removes the sensitivity to changes in the Ångström exponent. We describe a practical implementation of rotational Raman measurements in an existing Mie-Raman lidar to obtain aerosol extinction and backscattering at 532 nm. A 2.3 nm width interference filter was used to select a spectral range characterized by low temperature sensitivity within the anti-Stokes branch of the RR spectrum. Simulations demonstrate that the temperature dependence of the scattering cross section does not exceed 1.5 % in the 230-300 K range, making correction for this dependence quite easy. With this upgrade, the NASA GSFC multiwavelength Raman lidar has demonstrated useful α532 measurements and was used for regular observations. Examples of lidar measurements and inversion of optical data to the particle microphysics are given.

  5. Studying the vertical aerosol extinction coefficient by comparing in situ airborne data and elastic backscatter lidar

    NASA Astrophysics Data System (ADS)

    Rosati, Bernadette; Herrmann, Erik; Bucci, Silvia; Fierli, Federico; Cairo, Francesco; Gysel, Martin; Tillmann, Ralf; Größ, Johannes; Gobbi, Gian Paolo; Di Liberto, Luca; Di Donfrancesco, Guido; Wiedensohler, Alfred; Weingartner, Ernest; Virtanen, Annele; Mentel, Thomas F.; Baltensperger, Urs

    2016-04-01

    Vertical profiles of aerosol particle optical properties were explored in a case study near the San Pietro Capofiume (SPC) ground station during the PEGASOS Po Valley campaign in the summer of 2012. A Zeppelin NT airship was employed to investigate the effect of the dynamics of the planetary boundary layer at altitudes between ˜ 50 and 800 m above ground. Determined properties included the aerosol particle size distribution, the hygroscopic growth factor, the effective index of refraction and the light absorption coefficient. The first three parameters were used to retrieve the light scattering coefficient. Simultaneously, direct measurements of both the scattering and absorption coefficient were carried out at the SPC ground station. Additionally, a single wavelength polarization diversity elastic lidar system provided estimates of aerosol extinction coefficients using the Klett method to accomplish the inversion of the signal, for a vertically resolved comparison between in situ and remote-sensing results. Note, however, that the comparison was for the most part done in the altitude range where the overlap function is incomplete and accordingly uncertainties are larger. First, the airborne results at low altitudes were validated with the ground measurements. Agreement within approximately ±25 and ±20 % was found for the dry scattering and absorption coefficient, respectively. The single scattering albedo, ranged between 0.83 and 0.95, indicating the importance of the absorbing particles in the Po Valley region. A clear layering of the atmosphere was observed during the beginning of the flight (until ˜ 10:00 LT - local time) before the mixing layer (ML) was fully developed. Highest extinction coefficients were found at low altitudes, in the new ML, while values in the residual layer, which could be probed at the beginning of the flight at elevated altitudes, were lower. At the end of the flight (after ˜ 12:00 LT) the ML was fully developed, resulting in

  6. How well can we Measure the Vertical Profile of Tropospheric Aerosol Extinction?

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Ferrare, R.; Flynn, C.; Elleman, R.; Covert, D.; Strawa, A.; Welton, E.; Turner, D.; Jonsson, H.; Redemann, J.

    2005-01-01

    The recent Department of Energy Atmospheric Radiation Measurement (ARM) Aerosol Intensive Operations Period (MOP, May 2003) yielded one of the best measurement sets obtained to-date to assess our ability to measure the vertical profile of ambient aerosol extinction sigma(sub ep)(lambda) in the lower troposphere. During one month, a heavily instrumented aircraft with well characterized aerosol sampling ability carrying well proven and new aerosol instrumentation, devoted most of the 60 available flight hours to flying vertical profiles over the heavily instrumented ARM Southern Great Plains (SGP) Climate Research Facility (CRF). This allowed us to compare vertical extinction profiles obtained from 6 different instuments: airborne Sun photometer (AATS-14), airborne nephelometer/absorption photometer, airborne cavity ring-down system, ground-based Raman lidar and 2 ground-based elastic backscatter lidars. We find the in-situ measured sigma(sub ep)(lambda) to be lower than the AATS-14 derived values. Bias differences are 0.002 - 0.004 K/m equivalent to 12-17% in the visible, or 45% in the near-infrared. On the other hand, we find that with respect to AATS-14, the lidar sigma(sub ep)(lambda) are higher. An unnoticed loss of sensitivity of the Raman lidar had occurred leading up to AIOP and we expect better agreement from the recently restored system looking at the collective results from 6 field campaigns conducted since 1996, airborne in situ measurements of sigma(sub ep)(lambda) tend to be biased slightly low (17% at visible wavelengths) when compared to airborne Sun photometer sigma(sub ep)(lambda). On the other hand, sigma(sub ep)(lambda) values derived from lidars tend to have no or positive biases. From the bias differences we conclude that the typical systematic error associated with measuring the tropospheric vertical profile of the ambient aerosol extinction with current state of-the art instrumentation is 15-20% at visible wavelengths and potentially larger in

  7. On the application of Open-Path Fourier Transform Infra-Red spectroscopy to measure aerosols: Observations of water droplets

    SciTech Connect

    Hashmonay, R.A.; Yost, M.G.

    1999-04-01

    This paper proposes the application of Open-Path Fourier Transform Infra-Red (OP-FTIR) spectroscopy to measure aerosols. A preliminary experiment conducted in a standard shower chamber generated a condensed water aerosol cloud. The OP-FTIR beam acquired spectra through the cloud of water droplets. The authors matched calculated extinction spectra to measured extinction in the spectral range between 500 and 5,000 wavenumbers by using Mie theory for spherical particles. The results indicate that size distribution parameters may be retrieved from OP-FTIR spectra acquired over a 1 km optical path with reasonable detection limits on the order of 10 {micro}g{center_dot}m{sup {minus}3} for aerosols with optical properties equivalent to water.

  8. Statistical Characteristics of Aerosol Extinction Coefficient Profile in East Asia from CALIPSO

    NASA Astrophysics Data System (ADS)

    Sun, Xuejin; Zhou, Junhao; Zhou, Yongbo

    2016-06-01

    Aerosol extinction coefficient profile (ECP) is important in radiative transfer modeling, however, knowledge of ECP in some area has not been clearly recognized. To get a full understanding of statistical characteristics of ECP in three Asian regions: the Mongolian Plateau, the North China Plain and the Yellow Sea, CALIPSO aerosol product in 2012 is processed by conventional statistical methods. Orbit averaged ECP turns out to be mainly exponential and Gaussian patterns. Curve fitting shows that the two ECP patterns account for more than 50 percent of all the samples, especially in the Yellow Sea where the frequency of occurrence even reaches over 80 percent. Parameters determining fitting curves are provided consequently. To be specific, Gaussian pattern is the main ECP distribution in the Mongolian Plateau and the Yellow Sea, and exponential pattern predominates in the North China Plain. Besides, aerosol scale height reaches its maximum in summer and in the Mongolian Plateau. Meanwhile, the uplifting and deposition of dust during transportation are potentially explanations to the occurrence of Gaussian ECP. The results have certain representativeness, and contribute to reducing uncertainties of aerosol model in relevant researches.

  9. Chemical composition of aerosol particles and light extinction apportionment before and during the heating season in Beijing, China

    NASA Astrophysics Data System (ADS)

    Wang, Qingqing; Sun, Yele; Jiang, Qi; Du, Wei; Sun, Chengzhu; Fu, Pingqing; Wang, Zifa

    2015-12-01

    Despite extensive efforts into characterization of the sources and formation mechanisms of severe haze pollution in the megacity of Beijing, the response of aerosol composition and optical properties to coal combustion emissions in the heating season remain poorly understood. Here we conducted a 3 month real-time measurement of submicron aerosol (PM1) composition by an Aerosol Chemical Speciation Monitor and particle light extinction by a Cavity Attenuated Phase Shift extinction monitor in Beijing, China, from 1 October to 31 December 2012. The average (±σ) PM1 concentration was 82.4 (±73.1) µg/m3 during the heating period (HP, 15 November to 31 December), which was nearly 50% higher than that before HP (1 October to 14 November). While nitrate and secondary organic aerosol (SOA) showed relatively small changes, organics, sulfate, and chloride were observed to have significant increases during HP, indicating the dominant impacts of coal combustion sources on these three species. The relative humidity-dependent composition further illustrated an important role of aqueous-phase processing for the sulfate enhancement during HP. We also observed great increases of hydrocarbon-like OA (HOA) and coal combustion OA (CCOA) during HP, which was attributed to higher emissions at lower temperatures and coal combustion emissions, respectively. The relationship between light extinction and chemical composition was investigated using a multiple linear regression model. Our results showed that the largest contributors to particle extinction were ammonium nitrate (32%) and ammonium sulfate (28%) before and during HP, respectively. In addition, the contributions of SOA and primary OA to particle light extinction were quantified. The results showed that the OA extinction was mainly caused by SOA before HP and by SOA and CCOA during HP, yet with small contributions from HOA and cooking aerosol for the entire study period. Our results elucidate substantial changes of aerosol

  10. Infrared extinction spectra of mineral dust aerosol: Single components and complex mixtures

    NASA Astrophysics Data System (ADS)

    Laskina, Olga; Young, Mark A.; Kleiber, Paul D.; Grassian, Vicki H.

    2012-09-01

    Simultaneous Fourier transform infrared (FTIR) extinction spectra and aerosol size distributions have been measured for some components of mineral dust aerosol including feldspars (albite, oligoclase) and diatomaceous earth, as well as more complex authentic dust samples that include Iowa loess and Saharan sand. Spectral simulations for single-component samples, derived from Rayleigh-theory models for characteristic particle shapes, better reproduce the experimental spectra including the peak position and band shape compared to Mie theory. The mineralogy of the authentic dust samples was inferred using analysis of FTIR spectra. This approach allows for analysis of the mineralogy of complex multicomponent dust samples. Extinction spectra for the authentic dust samples were simulated from the derived sample mineralogy using published optical constant data for the individual mineral constituents and assuming an external mixture. Nonspherical particle shape effects were also included in the simulations and were shown to have a significant effect on the results. The results show that the position of the peak and the shape of the band of the IR characteristic features in the 800 to 1400 cm-1 spectral range are not well simulated by Mie theory. The resonance peaks are consistently shifted by more than +40 cm-1 relative to the experimental spectrum in the Mie simulation. Rayleigh model solutions for different particle shapes better predict the peak position and band shape of experimental spectra, even though the Rayleigh condition may not be strictly obeyed in these experiments.

  11. Aerosol optical depth over a remote semi-arid region of South Africa from spectral measurements of the daytime solar extinction and the nighttime stellar extinction

    NASA Astrophysics Data System (ADS)

    Formenti, P.; Winkler, H.; Fourie, P.; Piketh, S.; Makgopa, B.; Helas, G.; Andreae, M. O.

    Spectral daytime aerosol optical depths have been measured at Sutherland, South Africa (32°22'S, 20°48'E), from January 1998 to November 1999. Sutherland is located in the semi-arid Karoo desert, approximately 400-km northeast from Cape Town. The site, remote from major sources of aerosols, hosts the South African Astronomical Observatory (SAAO), where nighttime stellar extinction is being measured. The comparison of daytime and nighttime measurements for the years 1998-1999 makes it possible to validate the astronomical dataset of aerosol optical depth ( τa) dating back to 1991. The 1998 and 1999 annually averaged daytime τa at 500 nm are 0.04±0.04 and 0.06±0.06, respectively. Half-day averages vary between 0.03 and 0.44, with peak values in August-September. This pronounced seasonality is linked to the biomass-burning season in the Southern Hemisphere. Smoke haze layers transported to Sutherland originated primarily on the African landmass at latitudes between 10° and 20°S and passed over Namibia and Angola. On one occasion, aerosols from fires in Brazil transported across the Atlantic Ocean were likely detected. The haze layers reaching Sutherland are therefore at least 2-3 days old. The spectral dependence of the aerosol optical depth for the smoke layers supports the bimodality of the volume size distribution for biomass burning aerosols. The accumulation mode has a volume modal diameter of 0.32 μm, consistent with the hypothesis of aged haze. The stellar measurements (1991-2001) show that, due to the eruption of Mt. Pinatubo, the atmospheric extinction depth at 550 nm in the years 1991-1993 increased by 33% with respect to the average value (0.14±0.03) for the period 1994-2001. Outside the Pinatubo event, extinction is largest in the period 1997-1999.

  12. Aerosol extinction in a remote continental region of the Iberian Peninsula during summer

    NASA Astrophysics Data System (ADS)

    Elias, Thierry; Silva, Ana Maria; Belo, Nuno; Pereira, Sergio; Formenti, Paola; Helas, Günter; Wagner, Frank

    2006-07-01

    Summer in Évora (38°34'N, 7°54'W), Portugal, is described in terms of aerosol properties of extinction of the solar radiation. We create a data set composed of (1) cloud-screened half-day averaged values of aerosol optical thickness (AOT) measured at 7 wavelengths by both a CIMEL Sun/sky-photometer and a YES shadowband radiometer and (2) half day averaged values of aerosol scattering coefficient (ASC) measured at the surface level at two wavelengths by a TSI nephelometer. Spectral dependence of both AOT and ASC gives the column and the surface Ångström exponents, αC and αS, respectively. Measurements are acquired in both 2002 and 2003 summers. Back trajectories are computed. A statistical study of the data set provides thresholds in AOT and αC for a classification of the days. The classification is applied with success to the case study of the 2003 summer heat wave episode and is generalized to the whole data set. In 23% of the cases, the turbidity in Évora is very low, with AOT441 < 0.12 and AOT873 < 0.04. The air mass origin is the North Atlantic Ocean at 700 and 970 hPa. In 31% of the cases, the turbidity is high. Increase of AOT is due to forest fire emissions, originating in the Iberian Peninsula, with 0.30 < AOT441 < 1.10 and αC > 1.2, and to desert dust plumes transported from North Africa within 72 to 120 hours at 700 hPa, with 0.10 < AOT873 < 1.10 and 0.1 < αC < 1.0. The vertical profile is highly variable, and several cases of aerosol mixing in the column are identified. The duration of the aerosol episode during the 2003 summer heat wave is 16 days, which is exceptionally long.

  13. Antarctic measurements of ozone, water vapor, and aerosol extinction by Sage 2 in the spring of 1987

    NASA Technical Reports Server (NTRS)

    Larsen, J. C.; Mccormick, M. Patrick

    1988-01-01

    Recent measurements of ozone, water vapor, and aerosol extinction from the spring of 1987 are presented and compared to 1985 and 1986. The observed changes to variations in meteorological conditions in the vortex for these three years are noted. March ozone data at similar latitudes for these three years will be used to investigate coupling between severity of the springtime depletion and early fall values. Researchers also investigate correlations between the measured species of water vapor, ozone, and aerosols throughout the vortex region.

  14. Characterization and source apportionment of aerosol light extinction with a coupled model of CMB-IMPROVE in Hangzhou, Yangtze River Delta of China

    NASA Astrophysics Data System (ADS)

    Wang, Jiao; Zhang, Yu-fen; Feng, Yin-chang; Zheng, Xian-jue; Jiao, Li; Hong, Sheng-mao; Shen, Jian-dong; Zhu, Tan; Ding, Jing; Zhang, Qi

    2016-09-01

    To investigate the characteristics and sources of aerosol light extinction in the Yangtze River Delta of China, a campaign was carried out in Hangzhou from December 2013 to November 2014. Hourly data for air pollutants including PM2.5, SO2, NO2, O3 and CO, and aerosol optical properties including aerosol scattering coefficient and aerosol absorbing coefficient was obtained in the environmental air quality automatic monitoring station. Meteorological parameters were measured synchronously in the automated meteorology monitoring station. Additionally, around seven sets of ambient PM2.5 samples per month were collected and analyzed during the campaign. The annual mean aerosol scattering coefficient, aerosol absorbing coefficient and aerosol single scattering albedo measured in this study was 514 ± 284 Mm- 1, 35 ± 20 Mm- 1 and 94% respectively. The aerosol extinction coefficient reconstructed using the modified IMPROVE (Interagency Monitoring of Protected Visual Environment) formula was compared to the measured extinction coefficient. Better correlations could be found between the measured and reconstructed extinction coefficient when RH was under 90%. A coupled model of CMB (chemical mass balance) and modified IMPROVE was used to apportion the sources of aerosol light extinction in Hangzhou. Vehicle exhaust, secondary nitrate and secondary sulfate were identified as the most significant sources for aerosol light extinction, accounted for 30.2%, 24.1% and 15.8% respectively.

  15. In situ infrared aerosol spectroscopy for a variety of nerve agent simulants using flow-through photoacoustics.

    PubMed

    Gurton, Kristan P; Felton, Melvin; Dahmani, Rachid; Ligon, David

    2007-09-01

    We present newly measured results of an ongoing experimental program established to measure optical cross sections in the mid- and long-wave infrared for a variety of chemically and biologically based aerosols. For this study we consider only chemically derived aerosols, and in particular, a group of chemical compounds often used as simulants for the detection of extremely toxic organophosphorus nerve agents. These materials include: diethyl methylphosphonate (DEMP), dimethyl methylphosphonate (DMMP), diisopropyl methylphosphonate (DIMP), and diethyl phthalate (DEP). As reported in a prior study [Appl. Opt. 44, 4001 (2005)], we combine two optical techniques well suited for aerosol spectroscopy [i.e., flow-through photoacoustics and Fourier transform infrared (FTIR) emission spectroscopy], to measure in situ the absolute extinction and absorption cross sections over a variety of wavelengths spanning the IR spectral region from 3 to 13 mum. Aerosol size distribution(s), particle number density, and dosimetric measurements are recorded simultaneously in order to present optical cross sections that are aerosol mass normalized, i.e., m(2)/gram. Photoacoustic results, conducted at a series of CO(2) laser lines, compare well with measured broadband FTIR spectral extinction. Both FTIR and photoacoustic data also compare well with Mie theory calculations based on measured size distributions and previously published complex indices of refraction. PMID:17805369

  16. In situ infrared aerosol spectroscopy for a variety of nerve agent simulants using flow-through photoacoustics

    NASA Astrophysics Data System (ADS)

    Gurton, Kristan P.; Felton, Melvin; Dahmani, Rachid; Ligon, David

    2007-09-01

    We present newly measured results of an ongoing experimental program established to measure optical cross sections in the mid- and long-wave infrared for a variety of chemically and biologically based aerosols. For this study we consider only chemically derived aerosols, and in particular, a group of chemical compounds often used as simulants for the detection of extremely toxic organophosphorus nerve agents. These materials include: diethyl methylphosphonate (DEMP), dimethyl methylphosphonate (DMMP), diisopropyl methylphosphonate (DIMP), and diethyl phthalate (DEP). As reported in a prior study [Appl. Opt. 44, 4001 (2005)], we combine two optical techniques well suited for aerosol spectroscopy [i.e., flow-through photoacoustics and Fourier transform infrared (FTIR) emission spectroscopy], to measure in situ the absolute extinction and absorption cross sections over a variety of wavelengths spanning the IR spectral region from 3 to 13 μm. Aerosol size distribution(s), particle number density, and dosimetric measurements are recorded simultaneously in order to present optical cross sections that are aerosol mass normalized, i.e., m2/gram. Photoacoustic results, conducted at a series of CO2 laser lines, compare well with measured broadband FTIR spectral extinction. Both FTIR and photoacoustic data also compare well with Mie theory calculations based on measured size distributions and previously published complex indices of refraction.

  17. Extinction-to-Backscatter Ratios of Lofted Aerosol Layers Observed During the First Three Months of CALIPSO Measurements

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Vaughan, Mark A.; Liu, Zhaoyan; Hu, Yongxiang; Reagan, John A.; Winker, David M.

    2007-01-01

    Case studies from the first three months of the Cloud and Aerosol Lidar and Infrared Pathfinder Spaceborne Observations (CALIPSO) measurements of lofted aerosol layers are analyzed using transmittance [Young, 1995] and two-wavelength algorithms [Vaughan et al., 2004] to determine the aerosol extinction-to-backscatter ratios at 532 and 1064 nm. The transmittance method requires clear air below the layer so that the transmittance through the layer can be determined. Suitable scenes are selected from the browse images and clear air below features is identified by low 532 nm backscatter signal and confirmed by low depolarization and color ratios. The transmittance and two-wavelength techniques are applied to a number of lofted layers and the extinction-to-backscatter ratios are compared with values obtained from the CALIPSO aerosol models [Omar et al., 2004]. The results obtained from these studies are used to adjust the aerosol models and develop observations based extinction-to-backscatter ratio look-up tables and phase functions. Values obtained by these techniques are compared to Sa determinations using other independent methods with a goal of developing probability distribution functions of aerosol type-specific extinction to backscatter ratios. In particular, the results are compared to values determined directly by the High Spectral Resolution Lidar (HSRL) during the CALIPSO CloudSat Validation Experiments (CCVEX) and Sa determined by the application of the two-wavelength lidar Constrained Ratio Aerosol Model-fit (CRAM) retrieval approach [Cattrall et al., 2005; Reagan et al., 2004] to the HSRL data. The results are also compared to values derived using the empirical relationship between the multiple-scattering fraction and the linear depolarization ratio by using Monte Carlo simulations of water clouds [Hu et al., 2006].

  18. Trace aerosol detection and identification by dynamic photoacoustic spectroscopy.

    PubMed

    Sullenberger, R M; Clark, M L; Kunz, R R; Samuels, A C; Emge, D K; Ellzy, M W; Wynn, C M

    2014-12-15

    Dynamic photoacoustic spectroscopy (DPAS) is a high sensitivity technique for standoff detection of trace vapors. A field-portable DPAS system has potential as an early warning provider for gaseous-based chemical threats. For the first time, we utilize DPAS to successfully detect the presence of trace aerosols. Aerosol identification via long-wavelength infrared (LWIR) spectra is demonstrated. We estimate the sensitivity of our DPAS system to aerosols comprised of silica particles is comparable to that of SF(6) gas based on a signal level per absorbance unit metric for the two materials. The implications of these measurements are discussed. PMID:25607495

  19. In situ vertical profiles of aerosol extinction, mass, and composition over the southeast United States during SENEX and SEAC4RS: observations of a modest aerosol enhancement aloft

    NASA Astrophysics Data System (ADS)

    Wagner, N. L.; Brock, C. A.; Angevine, W. M.; Beyersdorf, A.; Campuzano-Jost, P.; Day, D. A.; de Gouw, J. A.; Diskin, G. S.; Gordon, T. D.; Graus, M. G.; Huey, G.; Jimenez, J. L.; Lack, D. A.; Liao, J.; Liu, X.; Markovic, M. Z.; Middlebrook, A. M.; Mikoviny, T.; Peischl, J.; Perring, A. E.; Richardson, M. S.; Ryerson, T. B.; Schwarz, J. P.; Warneke, C.; Welti, A.; Wisthaler, A.; Ziemba, L. D.; Murphy, D. M.

    2015-02-01

    Vertical profiles of submicron aerosol over the southeastern United States (SEUS) during the summertime from in situ aircraft-based measurements were used to construct aggregate profiles of chemical, microphysical, and optical properties. Shallow cumulus convection was observed during many profiles. These conditions enhance vertical transport of trace gases and aerosol and create a cloudy transition layer on top of the sub-cloud mixed layer. The trace gas and aerosol concentrations in the transition layer were modeled as a mixture with contributions from the mixed layer below and the free troposphere above. The amount of vertical mixing, or entrainment of air from the free troposphere, was quantified using the observed mixing ratio of carbon monoxide (CO). Although the median aerosol mass, extinction, and volume decreased with altitude in the transition layer, they were ~10% larger than expected from vertical mixing alone. This enhancement was likely due to secondary aerosol formation in the transition layer. Although the transition layer enhancements of the particulate sulfate and organic aerosol (OA) were both similar in magnitude, only the enhancement of sulfate was statistically significant. The column integrated extinction, or aerosol optical depth (AOD), was calculated for each individual profile, and the transition layer enhancement of extinction typically contributed less than 10% to the total AOD. Our measurements and analysis were motivated by two recent studies that have hypothesized an enhanced layer of secondary organic aerosol (SOA) aloft to explain the summertime enhancement of AOD (2-3 times greater than winter) over the southeastern United States. In contrast to this hypothesis, the modest enhancement we observed in the transition layer was not dominated by OA and was not a large fraction of the summertime AOD.

  20. VUV spectroscopy of carbon dust analogs: contribution to interstellar extinction

    NASA Astrophysics Data System (ADS)

    Gavilan, L.; Alata, I.; Le, K. C.; Pino, T.; Giuliani, A.; Dartois, E.

    2016-02-01

    Context. A full spectral characterization of carbonaceous dust analogs is necessary to understand their potential as carriers of observed astronomical spectral signatures such as the ubiquitous UV bump at 217.5 nm and the far-ultraviolet (FUV) rise common to interstellar extinction curves. Aims: Our goal is to study the spectral properties of carbonaceous dust analogs from the FUV to the mid-infrared (MIR) domain. We seek in particular to understand the spectra of these materials in the FUV range, for which laboratory studies are scarce. Methods: We produced analogs to carbonaceous interstellar dust encountered in various phases of the interstellar medium: amorphous hydrogenated carbons (a-C:H), for carbonaceous dust observed in the diffuse interstellar medium, and soot particles, for the polyaromatic component. Analogs to a-C:H dust were produced using a radio-frequency plasma reactor at low pressures, and soot nanoparticles films were produced in an ethylene (C2H4) flame. We measured transmission spectra of these thin films (thickness <100 nm) in the far-ultraviolet (190-250 nm) and in the vacuum-ultraviolet (VUV; 50-190 nm) regions using the APEX chamber at the DISCO beam line of the SOLEIL synchrotron radiation facility. These were also characterized through infrared microscopy at the SMIS beam line. Results: We successfully measured the transmission spectra of these analogs from λ = 1 μm to 50 nm. From these, we extracted the laboratory optical constants via Kramers-Kronig inversion. We used these constants for comparison to existing interstellar extinction curves. Conclusions: We extend the spectral measurements of these types of carbonaceous analogs into the VUV and link the spectral features in this range to the 3.4 μm band. We suggest that these two materials might contribute to different classes of interstellar extinction curves.

  1. On the accuracy of stratospheric aerosol extinction derived from in situ size distribution measurements and surface area density derived from remote SAGE II and HALOE extinction measurements

    NASA Astrophysics Data System (ADS)

    Kovilakam, Mahesh; Deshler, Terry

    2015-08-01

    In situ stratospheric aerosol measurements, from University of Wyoming optical particle counters (OPCs), are compared with Stratospheric Aerosol Gas Experiment (SAGE) II (versions 6.2 and 7.0) and Halogen Occultation Experiment (HALOE) satellite measurements to investigate differences between SAGE II/HALOE-measured extinction and derived surface area and OPC-derived extinction and surface area. Coincident OPC and SAGE II measurements are compared for a volcanic (1991-1996) and nonvolcanic (1997-2005) period. OPC calculated extinctions agree with SAGE II measurements, within instrumental uncertainty, during the volcanic period, but have been a factor of 2 low during the nonvolcanic period. Three systematic errors associated with the OPC measurements, anisokineticity, inlet particle evaporation, and counting efficiency, were investigated. An overestimation of the OPC counting efficiency is found to be the major source of systematic error. With this correction OPC calculated extinction increases by 15-30% (30-50%) for the volcanic (nonvolcanic) measurements. These changes significantly improve the comparison with SAGE II and HALOE extinctions in the nonvolcanic cases but slightly degrade the agreement in the volcanic period. These corrections have impacts on OPC-derived surface area density, exacerbating the poor agreement between OPC and SAGE II (version 6.2) surface areas. This disparity is reconciled with SAGE II version 7.0 surface areas. For both the volcanic and nonvolcanic cases these changes in OPC counting efficiency and in the operational SAGE II surface area algorithm leave the derived surface areas from both platforms in significantly better agreement and within the ± 40% precision of the OPC moment calculations.

  2. On the accuracy of stratospheric aerosol extinction derived from in situ size distribution measurements and surface area density derived from remote SAGE II and HALOE extinction measurements

    DOE PAGESBeta

    Kovilakam, Mahesh; Deshler, Terry

    2015-08-26

    In situ stratospheric aerosol measurements, from University of Wyoming optical particle counters (OPCs), are compared with Stratospheric Aerosol Gas Experiment (SAGE) II (versions 6.2 and 7.0) and Halogen Occultation Experiment (HALOE) satellite measurements to investigate differences between SAGE II/HALOE-measured extinction and derived surface area and OPC-derived extinction and surface area. Coincident OPC and SAGE II measurements are compared for a volcanic (1991-1996) and nonvolcanic (1997 2005) period. OPC calculated extinctions agree with SAGE II measurements, within instrumental uncertainty, during the volcanic period, but have been a factor of 2 low during the nonvolcanic period. Three systematic errors associated with themore » OPC measurements, anisokineticity, inlet particle evaporation, and counting efficiency, were investigated. An overestimation of the OPC counting efficiency is found to be the major source of systematic error. With this correction OPC calculated extinction increases by 15 30% (30 50%) for the volcanic (nonvolcanic) measurements. These changes significantly improve the comparison with SAGE II and HALOE extinctions in the nonvolcanic cases but slightly degrade the agreement in the volcanic period. These corrections have impacts on OPC-derived surface area density, exacerbating the poor agreement between OPC and SAGE II (version 6.2) surface areas. This disparity is reconciled with SAGE II version 7.0 surface areas. For both the volcanic and nonvolcanic cases these changes in OPC counting efficiency and in the operational SAGE II surface area algorithm leave the derived surface areas from both platforms in significantly better agreement and within the 40% precision of the OPC moment calculations.« less

  3. On the accuracy of stratospheric aerosol extinction derived from in situ size distribution measurements and surface area density derived from remote SAGE II and HALOE extinction measurements

    SciTech Connect

    Kovilakam, Mahesh; Deshler, Terry

    2015-08-26

    In situ stratospheric aerosol measurements, from University of Wyoming optical particle counters (OPCs), are compared with Stratospheric Aerosol Gas Experiment (SAGE) II (versions 6.2 and 7.0) and Halogen Occultation Experiment (HALOE) satellite measurements to investigate differences between SAGE II/HALOE-measured extinction and derived surface area and OPC-derived extinction and surface area. Coincident OPC and SAGE II measurements are compared for a volcanic (1991-1996) and nonvolcanic (1997 2005) period. OPC calculated extinctions agree with SAGE II measurements, within instrumental uncertainty, during the volcanic period, but have been a factor of 2 low during the nonvolcanic period. Three systematic errors associated with the OPC measurements, anisokineticity, inlet particle evaporation, and counting efficiency, were investigated. An overestimation of the OPC counting efficiency is found to be the major source of systematic error. With this correction OPC calculated extinction increases by 15 30% (30 50%) for the volcanic (nonvolcanic) measurements. These changes significantly improve the comparison with SAGE II and HALOE extinctions in the nonvolcanic cases but slightly degrade the agreement in the volcanic period. These corrections have impacts on OPC-derived surface area density, exacerbating the poor agreement between OPC and SAGE II (version 6.2) surface areas. This disparity is reconciled with SAGE II version 7.0 surface areas. For both the volcanic and nonvolcanic cases these changes in OPC counting efficiency and in the operational SAGE II surface area algorithm leave the derived surface areas from both platforms in significantly better agreement and within the 40% precision of the OPC moment calculations.

  4. A new high spectral resolution lidar technique for direct retrievals of cloud and aerosol extinction

    NASA Astrophysics Data System (ADS)

    Yorks, J. E.; McGill, M. J.; Hlavka, D. L.

    2014-12-01

    The Airborne Cloud-Aerosol Transport System (ACATS) is a Doppler lidar system and high spectral resolution lidar (HSRL) recently developed at NASA Goddard Space Flight Center (GSFC). ACATS passes the returned atmospheric backscatter through a single etalon and divides the transmitted signal into several channels (wavelength intervals), which are measured simultaneously and independently (Figure 1). Both the particulate and molecular scattered signal can be directly and unambiguously measured, allowing for direct retrievals of particle extinction. The broad Rayleigh-scattered spectrum is imaged as a nearly flat background, illustrated in Figure 1c. The integral of the particulate backscattered spectrum is analogous to the aerosol measurement from the typical absorption filter HSRL technique in that the molecular and particulate backscatter components can be separated (Figure 1c and 1d). The main difference between HSRL systems that use the iodine filter technique and the multichannel etalon technique used in the ACATS instrument is that the latter directly measures the spectral broadening of the particulate backscatter using the etalon to filter out all backscattered light with the exception of a narrow wavelength interval (1.5 picometers for ACATS) that contains the particulate spectrum (grey, Figure 1a). This study outlines the method and retrieval algorithms for ACATS data products, focusing on the HSRL derived cloud and aerosol properties. While previous ground-based multi-channel etalon systems have been built and operated for wind retrievals, there has been no airborne demonstration of the technique and the method has not been used to derive HSRL cloud and aerosol properties. ACATS has flown on the NASA ER-2 during flights over Alaska in July 2014 and as part of the Wallops Airborne Vegetation Experiment (WAVE) in September 2012. This study will focus on the HSRL aspect of the ACATS instrument, since the method and retrieval algorithms have direct application

  5. Modeling study on seasonal variation in aerosol extinction properties over China.

    PubMed

    Gao, Yi; Zhang, Meigen

    2014-01-01

    To investigate the seasonal variation of aerosol optical depth (AOD), extinction coefficient (EXT), single scattering albedo (SSA) and the decomposed impacts from sulfate (SO4(2-)) and black carbon (BC) over China, numerical experiments are conducted from November 2007 to December 2008 by using WRF-Chem. Comparison of model results with measurements shows that model can reproduce the spatial distribution and seasonal variation of AOD and SSA. Over south China, AOD is largest in spring (0.6-1.2) and lowest in summer (0.2-0.6). Over north, northeast and east China, AOD is highest in summer while lowest in winter. The high value of EXT under 850 hPa which is the reflection of low visibility ranges from 0.4-0.8 km(-1) and the high value area shifts to north during winter, spring and summer, then back to south in autumn. SSA is 0.92-0.94 in winter and 0.94-0.96 for the other three seasons because of highest BC concentration in winter over south China. Over east China, SSA is highest (0.92-0.96) in summer, and 0.88-0.92 during winter, spring and autumn as the concentration of scattering aerosol is highest while BC concentration is lowest in summer over this region. Over north China, SSA is highest (0.9-0.94) in summer and lowest (0.82-0.86) in winter due to the significant variation of aerosol concentration. The SO4(2-) induced EXT increases about 5%-55% and the impacts of BC on EXT is much smaller (2%-10%). The SO4(2-)-induced increase in SSA is 0.01-0.08 and the BC-induced SSA decreases 0.02-0.18. PMID:24649695

  6. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    DOE PAGESBeta

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.; Zhao, C.; Cadeddu, M.

    2016-01-18

    In this study, aerosol radiative effects and thermodynamic responses over South Asia are examined with the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of aerosol optical depths (AODs) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in northern India. The WRF-Chem model is found to heavily underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model's low bias is due to aerosol extinctions below ~2km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AOD andmore » extinction profiles averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to –0.7 K day−1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are

  7. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.; Zhao, C.; Cadeddu, M.

    2016-01-01

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of aerosol optical depths (AODs) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in northern India. The WRF-Chem model is found to heavily underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model's low bias is due to aerosol extinctions below ˜ 2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AOD and extinction profiles averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7 K day-1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to respond differently

  8. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    SciTech Connect

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.; Zhao, C.; Cadeddu, M.

    2015-06-19

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with a version of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of Aerosol Optical Depth (AOD) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in the northern India. The WRF-Chem model is found to underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model low-bias is due to aerosol extinctions below ~2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AOD and extinction profiles averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7 K day−1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to respond

  9. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    DOE PAGESBeta

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.; Zhao, C.; Cadeddu, M.

    2016-01-18

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of aerosol optical depths (AODs) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in northern India. The WRF-Chem model is found to heavily underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model's low bias is due to aerosol extinctions below  ∼  2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AOD and extinction profiles averaged over Southmore » Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to −0.7 K day−1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and

  10. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    DOE PAGESBeta

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.; Zhao, C.; Cadeddu, M.

    2015-06-19

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with a version of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of Aerosol Optical Depth (AOD) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in the northern India. The WRF-Chem model is found to underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model low-bias is due to aerosol extinctions below ~2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AODmore » and extinction profiles averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7 K day−1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to respond

  11. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    SciTech Connect

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.; Zhao, C.; Cadeddu, M.

    2016-01-01

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of aerosol optical depths (AODs) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in northern India. The WRF-Chem model is found to heavily underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model's low bias is due to aerosol extinctions below ~2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AOD and extinction profiles averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7 K day−1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to

  12. Characterization of urban aerosol using aerosol mass spectrometry and proton nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Cleveland, M. J.; Ziemba, L. D.; Griffin, R. J.; Dibb, J. E.; Anderson, C. H.; Lefer, B.; Rappenglück, B.

    2012-07-01

    Particulate matter was measured during August and September of 2006 in Houston as part of the Texas Air Quality Study II Radical and Aerosol Measurement Project. Aerosol size and composition were determined using an Aerodyne quadrupole aerosol mass spectrometer. Aerosol was dominated by sulfate (4.1 ± 2.6 μg m-3) and organic material (5.5 ± 4.0 μg m-3), with contributions of organic material from both primary (˜32%) and secondary (˜68%) sources. Secondary organic aerosol appears to be formed locally. In addition, 29 aerosol filter samples were analyzed using proton nuclear magnetic resonance (1H NMR) spectroscopy to determine relative concentrations of organic functional groups. Houston aerosols are less oxidized than those observed elsewhere, with smaller relative contributions of carbon-oxygen double bonds. These particles do not fit 1H NMR source apportionment fingerprints for identification of secondary, marine, and biomass burning organic aerosol, suggesting that a new fingerprint for highly urbanized and industrially influenced locations be established.

  13. ANALYSIS OF ATMOSPHERIC ORGANIC AEROSOLS BY MASS SPECTROSCOPY

    EPA Science Inventory

    High resolution mass spectroscopy has been found to be a useful means of characterizing the organic fraction of urban aerosols. Quantitative accuracy, however, was limited, particularly for compounds of low abundance. Some ambiguities were found in the assignment of origins of io...

  14. Ultra-high spectral extinction Brillouin spectroscopy for turbid tissue measurements (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Jitao; Fiore, Antonio; Shao, Peng; Yun, Seok-Hyun; Scarcelli, Giuliano

    2016-03-01

    Brillouin spectroscopy allows non-invasive measurement of the mechanical properties of a sample by measuring the spectra of acoustically induced light scattering therein, and thus has been widely investigated for biomedical application. Recently, the development of fast Brillouin spectrometry based on virtually-imaged phased array (VIPA) has made in-situ measurement of biomedical sample possible. However, one limitation of current Brillouin technique is the low spectral extinction, which limits the measurement to nearly transparent sample. In order to measure turbid sample, multistage VIPA can be cascaded to gain spectral extinction. For example, spectral extinction of ~80 dB was achieved using three-stage VIPA; however, this approach significantly sacrificed measurement throughput. In this work, we develop a novel spectrometer that achieves high extinction without significant signal loss. To achieve this goal, we combine a two-stage VIPA spectrometer with a triple-pass Fabry-Perot interferometer. The triple-pass Fabry-Perot interferometer acts as a band-pass filter with ~3 GHz bandwidth and ~35-dB spectral extinction. Therefore, the overall extinction of this spectrometer greatly surpasses 80 dB with only ~20% excess loss. We demonstrated the performance of this spectrometer measuring background-free Brillouin spectra from Intralipid solutions and within chicken tissue.

  15. Effects of incomplete light extinction in frequency-agile, rapid scanning spectroscopy

    NASA Astrophysics Data System (ADS)

    Long, D. A.; Wójtewicz, S.; Hodges, J. T.

    2013-05-01

    The effect of finite beam extinction ratio on the precision and accuracy of cavity ring-down decay time constant measurements was examined using the frequency-agile, rapid scanning, cavity ring-down spectroscopy (FARS-CRDS) technique. This new approach to CRDS uses a waveguide-based electro-optic phase modulator (EOM) to provide a laser beam extinction ratio as high as 80 dB: a value that is ≍30 dB greater than that typically achieved with acousto-optic-modulator- based beam switches. We find that the observed measurement precision scales inversely with extinction ratio, such that an EOM enables measurement of the cavity ring-down decay time with a relative precision of ≍8×10-5. We demonstrate that insufficient extinction can be the dominant cause of statistical uncertainty for extinction ratios below 60 dB. Furthermore, insufficient extinction can result in non-exponential decays, which cause systematic measurement biases in cavity losses and absorption.

  16. A study on the aerosol extinction-to-backscatter ratio with combination of micro-pulse LIDAR and MODIS over Hong Kong

    NASA Astrophysics Data System (ADS)

    He, Q. S.; Li, C. C.; Mao, J. T.; Lau, A. K. H.; Li, P. R.

    2006-08-01

    The aerosol extinction-to-backscatter ratio is an important parameter for inverting LIDAR signals in the LIDAR equation. It is a complicated function of the aerosol microphysical characteristics. In this paper, a method to retrieve the column-averaged aerosol extinction-to-backscatter ratio by constraining the aerosol optical depths (AOD) from a Micro-pulse LIDAR (MPL) by the AOD measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS) is presented. Both measurements were taken on cloud free days between 1 May 2003 and 30 June 2004 over Hong Kong, a coastal city in south China. Simultaneous measurements of aerosol scattering coefficients with a forward scattering visibility sensor are compared with the LIDAR retrieval of aerosol extinction coefficients. The data are then analyzed to determine seasonal trends of the aetrosol extinction-to-backscatter ratio. In addition, the relationships between the extinction-to-backscatter ratio and wind conditions as well as other aerosol microphysical parameters are presented. The mean aerosol extinction-to-backscatter ratio for the whole period was found to be 29.1±5.8 sr, with a minimum of 18 sr in July 2003 and a maximum of 44 sr in March 2004. The ratio is lower in summer because of the dominance of oceanic aerosols in association with the prevailing southwesterly monsoon. In contrast, relatively larger ratios are noted in spring and winter because of the increased impact of local and regional industrial pollutants associated with the northerly monsoon. The extended LIDAR measurements over Hong Kong provide not only a more accurate retrieval of aerosol extinction coefficient profiles, but also significant substantial information for air pollution and climate studies in the region.

  17. Inversion of solar extinction data from the Apollo-Soyuz Test Project Stratospheric Aerosol Measurement (ASTP/SAM) experiment

    NASA Technical Reports Server (NTRS)

    Pepin, T. J.

    1977-01-01

    The inversion methods are reported that have been used to determine the vertical profile of the extinction coefficient due to the stratospheric aerosols from data measured during the ASTP/SAM solar occultation experiment. Inversion methods include the onion skin peel technique and methods of solving the Fredholm equation for the problem subject to smoothing constraints. The latter of these approaches involves a double inversion scheme. Comparisons are made between the inverted results from the SAM experiment and near simultaneous measurements made by lidar and balloon born dustsonde. The results are used to demonstrate the assumptions required to perform the inversions for aerosols.

  18. Evaluating Nighttime CALIOP 0.532 micron Aerosol Optical Depth and Extinction Coefficient Retrievals

    NASA Technical Reports Server (NTRS)

    Campbell, J. R.; Tackett, J. L.; Reid, J. S.; Zhang, J.; Curtis, C. A.; Hyer, E. J.; Sessions, W. R.; Westphal, D. L.; Prospero, J. M.; Welton, E. J.; Omar, A. H.; Vaughan, M. A.; Winker, D. M.

    2012-01-01

    NASA Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) Version 3.01 5-km nighttime 0.532 micron aerosol optical depth (AOD) datasets from 2007 are screened, averaged and evaluated at 1 deg X 1 deg resolution versus corresponding/co-incident 0.550 micron AOD derived using the US Navy Aerosol Analysis and Prediction System (NAAPS), featuring two-dimensional variational assimilation of quality-assured NASA Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging Spectroradiometer (MISR) AOD. In the absence of sunlight, since passive radiometric AOD retrievals rely overwhelmingly on scattered radiances, the model represents one of the few practical global estimates available from which to attempt such a validation. Daytime comparisons, though, provide useful context. Regional-mean CALIOP vertical profiles of night/day 0.532 micron extinction coefficient are compared with 0.523/0.532 micron ground-based lidar measurements to investigate representativeness and diurnal variability. In this analysis, mean nighttime CALIOP AOD are mostly lower than daytime (0.121 vs. 0.126 for all aggregated data points, and 0.099 vs. 0.102 when averaged globally per normalised 1 deg. X 1 deg. bin), though the relationship is reversed over land and coastal regions when the data are averaged per normalised bin (0.134/0.108 vs. 0140/0.112, respectively). Offsets assessed within single bins alone approach +/- 20 %. CALIOP AOD, both day and night, are higher than NAAPS over land (0.137 vs. 0.124) and equal over water (0.082 vs. 0.083) when averaged globally per normalised bin. However, for all data points inclusive, NAAPS exceeds CALIOP over land, coast and ocean, both day and night. Again, differences assessed within single bins approach 50% in extreme cases. Correlation between CALIOP and NAAPS AOD is comparable during both day and night. Higher correlation is found nearest the equator, both as a function of sample size and relative signal magnitudes inherent at

  19. In situ vertical profiles of aerosol extinction, mass, and composition over the southeast United States during SENEX and SEAC4RS: observations of a modest aerosol enhancement aloft

    NASA Astrophysics Data System (ADS)

    Wagner, N. L.; Brock, C. A.; Angevine, W. M.; Beyersdorf, A.; Campuzano-Jost, P.; Day, D.; de Gouw, J. A.; Diskin, G. S.; Gordon, T. D.; Graus, M. G.; Holloway, J. S.; Huey, G.; Jimenez, J. L.; Lack, D. A.; Liao, J.; Liu, X.; Markovic, M. Z.; Middlebrook, A. M.; Mikoviny, T.; Peischl, J.; Perring, A. E.; Richardson, M. S.; Ryerson, T. B.; Schwarz, J. P.; Warneke, C.; Welti, A.; Wisthaler, A.; Ziemba, L. D.; Murphy, D. M.

    2015-06-01

    Vertical profiles of submicron aerosol from in situ aircraft-based measurements were used to construct aggregate profiles of chemical, microphysical, and optical properties. These vertical profiles were collected over the southeastern United States (SEUS) during the summer of 2013 as part of two separate field studies: the Southeast Nexus (SENEX) study and the Study of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS). Shallow cumulus convection was observed during many profiles. These conditions enhance vertical transport of trace gases and aerosol and create a cloudy transition layer on top of the sub-cloud mixed layer. The trace gas and aerosol concentrations in the transition layer were modeled as a mixture with contributions from the mixed layer below and the free troposphere above. The amount of vertical mixing, or entrainment of air from the free troposphere, was quantified using the observed mixing ratio of carbon monoxide (CO). Although the median aerosol mass, extinction, and volume decreased with altitude in the transition layer, they were ~10 % larger than expected from vertical mixing alone. This enhancement was likely due to secondary aerosol formation in the transition layer. Although the transition layer enhancements of the particulate sulfate and organic aerosol (OA) were both similar in magnitude, only the enhancement of sulfate was statistically significant. The column integrated extinction, or aerosol optical depth (AOD), was calculated for each individual profile, and the transition layer enhancement of extinction typically contributed less than 10 % to the total AOD. Our measurements and analysis were motivated by two recent studies that have hypothesized an enhanced layer of secondary aerosol aloft to explain the summertime enhancement of AOD (2-3 times greater than winter) over the southeastern United States. The first study attributes the layer aloft to secondary organic aerosol (SOA) while

  20. An Aerosol Extinction-to-Backscatter Ratio Database Derived from the NASA Micro-Pulse Lidar Network: Applications for Space-based Lidar Observations

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Campbell, James R.; Spinhime, James D.; Berkoff, Timothy A.; Holben, Brent; Tsay, Si-Chee; Bucholtz, Anthony

    2004-01-01

    Backscatter lidar signals are a function of both backscatter and extinction. Hence, these lidar observations alone cannot separate the two quantities. The aerosol extinction-to-backscatter ratio, S, is the key parameter required to accurately retrieve extinction and optical depth from backscatter lidar observations of aerosol layers. S is commonly defined as 4*pi divided by the product of the single scatter albedo and the phase function at 180-degree scattering angle. Values of S for different aerosol types are not well known, and are even more difficult to determine when aerosols become mixed. Here we present a new lidar-sunphotometer S database derived from Observations of the NASA Micro-Pulse Lidar Network (MPLNET). MPLNET is a growing worldwide network of eye-safe backscatter lidars co-located with sunphotometers in the NASA Aerosol Robotic Network (AERONET). Values of S for different aerosol species and geographic regions will be presented. A framework for constructing an S look-up table will be shown. Look-up tables of S are needed to calculate aerosol extinction and optical depth from space-based lidar observations in the absence of co-located AOD data. Applications for using the new S look-up table to reprocess aerosol products from NASA's Geoscience Laser Altimeter System (GLAS) will be discussed.

  1. A fixed frequency aerosol albedometer.

    PubMed

    Thompson, Jonathan E; Barta, Nick; Policarpio, Danielle; Duvall, Richard

    2008-02-01

    A new method for the measurement of aerosol single scatter albedo (omega) at 532 nm was developed. The method employs cavity ring-down spectroscopy (CRDS) for measurement of aerosol extinction coefficient (b(ext)) and an integrating sphere nephelometer for determination of aerosol scattering coefficient (b(scat)). A unique feature of this method is that the extinction and scattering measurements are conducted simultaneously, on the exact same sample volume. Limits of detection (3s) for the extinction and scattering channel were 0.61 Mm(-1) and 2.7 Mm(-1) respectively. PMID:18542299

  2. Correlated IR spectroscopy and visible light scattering measurements of mineral dust aerosol

    NASA Astrophysics Data System (ADS)

    Meland, B.; Kleiber, P. D.; Grassian, V. H.; Young, M. A.

    2010-10-01

    A combined infrared spectroscopy and visible light scattering study of the optical properties of quartz aerosol, a major component of atmospheric dust, is reported. Scattering phase function and polarization measurements for quartz dust at three visible wavelengths (470, 550, 660 nm) are compared with results from T-matrix theory simulations using a uniform spheroid model for particle shape. Aerosol size distributions were measured simultaneously with light scattering. Particle shape distributions were determined in two ways: (1) analysis of electron microscope images of the dust, and (2) spectral fitting of infrared resonance extinction features. Since the aerosol size and shape distributions were measured, experimental scattering data could be directly compared with T-matrix simulations with no adjustable parameters. χ2 analysis suggests that T-matrix simulations based on a uniform spheroid approximation can be used to model the optical properties of irregularly shaped dust particles in the accumulation mode size range, provided the particle shape distribution can be reliably determined. Particle shape distributions derived from electron microscope image analysis give poor fits, indicating that two-dimensional images may not give an accurate representation of the shape distribution for three-dimensional particles. However, simulations based on particle shape models inferred from IR spectral analysis give excellent fits to the experimental data. Our work suggests that correlated IR spectral and visible light scattering measurements, together with the use of theoretical light scattering models, may offer a more accurate method for characterizing atmospheric dust loading, and aerosol composition, size, and shape distributions, which are of great importance in climate modeling.

  3. Four-year long-path monitoring of ambient aerosol extinction at a central European urban site: dependence on relative humidity

    NASA Astrophysics Data System (ADS)

    Skupin, A.; Ansmann, A.; Engelmann, R.; Seifert, P.; Müller, T.

    2016-02-01

    The ambient aerosol particle extinction coefficient is measured with the Spectral Aerosol Extinction Monitoring System (SÆMS) along a 2.84 km horizontal path at 30-50 m height above ground in the urban environment of Leipzig (51.3° N, 12.4° E), Germany, since 2009. The dependence of the particle extinction coefficient (wavelength range from 300 to 1000 nm) on relative humidity up to almost 100 % was investigated. The main results are presented. For the wavelength of 550 nm, the mean extinction enhancement factor was found to be 1.75 ± 0.4 for an increase of relative humidity from 40 to 80 %. The respective 4-year mean extinction enhancement factor is 2.8 ± 0.6 for a relative-humidity increase from 40 to 95 %. A parameterization of the dependency of the urban particle extinction coefficient on relative humidity is presented. A mean hygroscopic exponent of 0.46 for the 2009-2012 period was determined. Based on a backward trajectory cluster analysis, the dependence of several aerosol optical properties for eight air flow regimes was investigated. Large differences were not found, indicating that local pollution sources widely control the aerosol conditions over the urban site. The comparison of the SÆMS extinction coefficient statistics with respective statistics from ambient AERONET sun photometer observations yields good agreement. Also, time series of the particle extinction coefficient computed from in situ-measured dry particle size distributions and humidity-corrected SÆMS extinction values (for 40 % relative humidity) were found in good overall consistency, which verifies the applicability of the developed humidity parameterization scheme. The analysis of the spectral dependence of particle extinction (Ångström exponent) revealed an increase of the 390-881 nm Ångström exponent from, on average, 0.3 (at 30 % relative humidity) to 1.3 (at 95 % relative humidity) for the 4-year period.

  4. Composition of the Martian aerosols through near-IR spectroscopy

    NASA Technical Reports Server (NTRS)

    Erard, Stephane; Cerroni, Priscilla; Coradini, Angioletta

    1993-01-01

    Near-infrared spectroscopy is a powerful technique to study the composition of planetary surfaces, as the main minerals exhibit absorption bands in this spectral range. It gave important information on the mineralogy and petrology of Mars in the past twenty years although in this case it is well known that a large fraction of light is scattered by the airborne particles before reaching the surface. The measured signal is thus the sum of two different contributions that should be studied separately: One from the surface and one from the aerosols that depends on their density, size distribution and composition. Data from the ISM imaging spectrometer are used here to derive the aerosols spectrum. They consist in sets of spectra (from 0.76 to 3.16 microns) of approximately 3000 pixels approximately 25x25 sq km in size. The resulting spectrum exhibits both water-ice and clay mineral features superimposed on a scattering continuum.

  5. Study of MPLNET-Derived Aerosol Climatology over Kanpur, India, and Validation of CALIPSO Level 2 Version 3 Backscatter and Extinction Products

    NASA Technical Reports Server (NTRS)

    Misra, Amit; Tripathi, S. N.; Kaul, D. S.; Welton, Ellsworth J.

    2012-01-01

    The level 2 aerosol backscatter and extinction profiles from the NASA Micropulse Lidar Network (MPLNET) at Kanpur, India, have been studied from May 2009 to September 2010. Monthly averaged extinction profiles from MPLNET shows high extinction values near the surface during October March. Higher extinction values at altitudes of 24 km are observed from April to June, a period marked by frequent dust episodes. Version 3 level 2 Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol profile products have been compared with corresponding data from MPLNET over Kanpur for the above-mentioned period. Out of the available backscatter profiles, the16 profiles used in this study have time differences less than 3 h and distances less than 130 km. Among these profiles, four cases show good comparison above 400 m with R2 greater than 0.7. Comparison with AERONET data shows that the aerosol type is properly identified by the CALIOP algorithm. Cloud contamination is a possible source of error in the remaining cases of poor comparison. Another source of error is the improper backscatter-to-extinction ratio, which further affects the accuracy of extinction coefficient retrieval.

  6. Verification and application of the extended spectral deconvolution algorithm (SDA+) methodology to estimate aerosol fine and coarse mode extinction coefficients in the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Kaku, K. C.; Reid, J. S.; O'Neill, N. T.; Quinn, P. K.; Coffman, D. J.; Eck, T. F.

    2014-10-01

    The spectral deconvolution algorithm (SDA) and SDA+ (extended SDA) methodologies can be employed to separate the fine and coarse mode extinction coefficients from measured total aerosol extinction coefficients, but their common use is currently limited to AERONET (AErosol RObotic NETwork) aerosol optical depth (AOD). Here we provide the verification of the SDA+ methodology on a non-AERONET aerosol product, by applying it to fine and coarse mode nephelometer and particle soot absorption photometer (PSAP) data sets collected in the marine boundary layer. Using data sets collected on research vessels by NOAA-PMEL(National Oceanic and Atmospheric Administration - Pacific Marine Environmental Laboratory), we demonstrate that with accurate input, SDA+ is able to predict the fine and coarse mode scattering and extinction coefficient partition in global data sets representing a range of aerosol regimes. However, in low-extinction regimes commonly found in the clean marine boundary layer, SDA+ output accuracy is sensitive to instrumental calibration errors. This work was extended to the calculation of coarse and fine mode scattering coefficients with similar success. This effort not only verifies the application of the SDA+ method to in situ data, but by inference verifies the method as a whole for a host of applications, including AERONET. Study results open the door to much more extensive use of nephelometers and PSAPs, with the ability to calculate fine and coarse mode scattering and extinction coefficients in field campaigns that do not have the resources to explicitly measure these values.

  7. CU AMAX-DOAS applications in cloud-free and cloudy atmospheres: innovative Scattered Sun Light observations of trace gases and aerosol extinction

    NASA Astrophysics Data System (ADS)

    Volkamer, R.; Baidar, S.; Coburn, S.; Dix, B. K.; Oetjen, H.; Ortega, I.; Sinreich, R.; Atmospeclab

    2011-12-01

    An innovative airborne scanning multi-axis differential optical absorption spectroscopy (CU AMAX-DOAS) instrument has been developed at the University of Colorado, Boulder. The instrument collects scattered sunlight spectra in a sequence of discrete viewing angles, and employs the DOAS method (inherently calibrated, and selective) to simultaneously retrieve multiple trace gases, e.g., nitrogen dioxide (NO2), nitrous acid (HONO), formaldehyde (HCHO), glyoxal (CHOCHO), bromine oxide (BrO), iodine oxide (IO), chlorine dioxide (OClO), water vapor (H2O), and oxygen dimers (O4, at 360nm, 477nm, and 632nm) differential slant column densities (dSCD). Vertical profiles of these gases and multi-spectral aerosol extinction are inferred by combining Monte-Carlo Radiative Transfer Modelling (RTM) and optimal estimation techniques to construct a model atmosphere that can in principle represent 3D clouds and aerosols. The atmospheric state of this model atmosphere is constrained by observations of O4 dSCDs, Raman Scattering Probability (RSP), and intensity ratios, i.e., quantities that depend solely on relative intensity changes, without need for a direct sun view, or absolute radiance calibration. We show results from ongoing validation efforts (NOAA TwinOtter aircraft during CalNex and CARES), and demonstrate vertical profile retrievals (NSF/NCAR GV over the tropical Pacific Ocean) in both cloud-free and cloudy atmospheres.

  8. Single Scattering Albedo of fresh biomass burning aerosols measured using cavity ring down spectroscopy and nephelometry

    NASA Astrophysics Data System (ADS)

    Bililign, Solomon; Singh, Sujeeta; Fiddler, Marc; Smith, Damon; Bililign Research Group Team

    An accurate measurement of optical properties of aerosols is critical for quantifying the effect of aerosols on climate. Uncertainties still persist and measurement results vary significantly. The factors that affect measurement accuracy and the resulting uncertainties of the extinction-minus-scattering method are evaluated using a combination of cavity ring-down spectroscopy (CRDS) and integrating nephelometry and applied to measure the optical properties of fresh soot (size 300 and 400 nm) produced from burning of pine, red oak and cedar. We have demonstrated a system that allows measurement of optical properties at a wide range of wavelengths, which can be extended over most of the solar spectrum to determine ``featured'' absorption cross sections as a function of wavelength. SSA values measured were nearly flat ranging from 0.45 to 0.6. The result also demonstrates that SSA of fresh soot is nearly independent of wavelength of light in the 500-680 wavelength range with a slight increase at longer wavelength. The values are within the range of measured values both in the laboratory and in field studies for fresh soot The work is supported by the Department of Defense Grant W911NF-11-1-0188.

  9. A broadband cavity-enhanced spectrometer for measuring the extinction of aerosols at blue and near-UV wavelengths

    NASA Astrophysics Data System (ADS)

    Venables, Dean; Fullam, Donovan; Hoa Le, Phuoc; Chen, Jun; Böge, Olaf; Herrmann, Hartmut

    2016-04-01

    We describe a new broadband cavity-enhanced absorption spectrometer for sensitive extinction measurements of aerosols. The instrument is distinguished by its broad and continuous spectral coverage from the near-UV to blue wavelengths (ca. 320 to 450 nm). The short wavelength region has been little explored compared to visible wavelengths, but is important because (1) brown carbon (BrC) absorbs strongly in this wavelength region, and (2) absorption of near-UV radiation in the atmosphere alters the photolysis rate of the key atmospheric species O3, NO2, and HONO, with implications for air quality and atmospheric oxidation capacity. The instrument performance and the effect of a switchable in-line filter are characterised. Early results using the instrument in the TROPOS atmospheric simulation chamber are presented. These experiments include studies of secondary organic aerosol formation (SOA), and biomass burning experiments of rice and wheat straw, followed by experiments simulating particle aging under daytime and nighttime conditions.

  10. How Well do State-of-the-Art Techniques Measuring the Vertical Profile of Tropospheric Aerosol Extinction Compare?

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Ferrare, R.; Flynn, C.; Elleman, R.; Covert, D.; Strawa, A.; Welton, E.; Turner, D.; Jonsson, H.; Redemann, J.; Eilers, J.; Ricci, K.; Hallar, A. G.; Clayton, M.; Michalsky, J.; Smirnov, A.; Holben, B.; Barnard, J.

    2006-01-01

    The recent Department of Energy Atmospheric Radiation Measurement (ARM) Aerosol Intensive Operations Period (AIOP, May 2003) yielded one of the best measurement sets obtained to date to assess our ability to measure the vertical profile of ambient aerosol extinction sigma(ep)(lambda) in the lower troposphere. During one month, a heavily instrumented aircraft with well-characterized aerosol sampling ability carrying well-proven and new aerosol instrumentation devoted most of the 60 available flight hours to flying vertical profiles over the heavily instrumented ARM Southern Great Plains (SGP) Climate Research Facility (CRF). This allowed us to compare vertical extinction profiles obtained from six different instruments: airborne Sun photometer (AATS-14), airborne nephelometer/absorption photometer, airborne cavity ring-down system, groundbased Raman lidar, and two ground-based elastic backscatter lidars. We find the in situ measured sigma(ep)(lambda) to be lower than the AATS-14 derived values. Bias differences are 0.002-0.004 Km!1 equivalent to 13-17% in the visible, or 45% in the near-infrared. On the other hand, we find that with respect to AATS-14, the lidar sigma(ep)(lambda) are higher: Bias differences are 0.004 Km(-1) (13%) and 0.007 Km(-1) (24%) for the two elastic backscatter lidars (MPLNET and MPLARM, lambda = 523 nm) and 0.029 Km(-1) (54%) for the Raman lidar (lambda = 355 nm). An unnoticed loss of sensitivity of the Raman lidar had occurred leading up to AIOP, and we expect better agreement from the recently restored system. Looking at the collective results from six field campaigns conducted since 1996, airborne in situ measurements of sigma(ep)(lambda) tend to be biased slightly low (17% at visible wavelengths) when compared to airborne Sun photometer sigma(ep)(lambda). On the other hand, sigma(ep)(lambda) values derived from lidars tend to have no or positive biases. From the bias differences we conclude that the typical systematic error associated

  11. A study on aerosol extinction-to-backscatter ratio with combination of micro-pulse lidar and MODIS over Hong Kong

    NASA Astrophysics Data System (ADS)

    He, Q. S.; Li, C. C.; Mao, J. T.; Lau, A. K. H.

    2006-04-01

    The aerosol extinction-to-backscatter ratio is an important parameter for inverting LIDAR signals in the LIDAR equation. It is also a complicated function of aerosol microphysical characteristics depending on geographical and meteorological conditions. In this paper, a method to retrieve the column-averaged aerosol extinction-to-backscatter ratio by constraining the aerosol optical depths (AOD) recorded by the Moderate Resolution Imaging Spectroradiometer (MODIS) to the ones measured by a Micro-pulse LIDAR (MPL) is presented. Both measurements were taken between 1 May 2003 and 30 June 2004 over Hong Kong, a coastal city in south China. Simultaneous scattering coefficients measured by a forward scattering visibility sensor are compared with the LIDAR retrieval. The data are then analyzed in terms of monthly and seasonal trends. In addition, the relationships between the extinction-to-backscatter ratio and wind conditions as well as other aerosol microphysical parameters are also presented. The mean aerosol extinction-to-backscatter ratio for the whole period is found to be 28.9±6.1 sr, with the minimum of 12 sr in August 2003 and the maximum of 44 sr in March 2004. The ratio is lower in the summer because of the dominance of oceanic aerosols in association with the prevailing southwesterly monsoon. In contrast, relatively larger ratios are noted in spring and winter because of the increased impact of local and regional industrial pollutants associated with the northerly monsoon. The extended LIDAR measurements over Hong Kong provide not only a more accurate retrieval of aerosol extinction coefficient profiles, but also significant information for air pollution and climate studies in the region.

  12. In situ vertical profiles of aerosol extinction, mass, and composition over the SEUS during the SENEX and SEAC4RS studies

    NASA Astrophysics Data System (ADS)

    Wagner, N. L.; Brock, C. A.; Day, D. A.; Diskin, G. S.; Gordon, T. D.; Graus, M.; Holloway, J. S.; Huey, L. G.; Jimenez, J. L.; Lack, D.; Liao, J.; Liu, X.; Markovic, M. Z.; Middlebrook, A. M.; Perring, A. E.; Richardson, M.; Schwarz, J. P.; Warneke, C.; Welti, A.; Wisthaler, A.; Ziemba, L. D.; Murphy, D. M.; Campuzano Jost, P.

    2014-12-01

    Shallow cumulus convection enhances vertical transport of trace gases and aerosol and creates a cloudy transition layer on top of the sub-cloud mixed layer. Two recent studies have proposed that an elevated layer of enhanced organic aerosol over the southeastern United States (SEUS) could explain the discrepancy in the summertime enhancement of aerosol optical depth (AOD) and summertime enhancement of surface measurements of aerosol mass. We investigate the vertical profile of aerosol over the SEUS during the summertime using in situ aircraft-based measurements of aerosol from the SENEX and SEAC4RS studies. During shallow cumulus convection over the SEUS, we found that aerosol and trace gas concentration in the transition layer are diluted by cleaner air from the free troposphere, and the absolute aerosol loading decreases with altitude in the transition layer. However, after normalizing the vertical profiles to the CO boundary layer enhancement to correct for the dilution, the aerosol mass, volume, and extinction relative to the boundary layer CO enhancement is ~20% greater in the transition layer than in the mixed layer. The enhancement of aerosol loading suggests production of aerosol mass in the transition layer, although biomass burning could also be the source of the enhancement. The median composition of the aerosol in the mixed layer is ~70% organics and ~18% sulfate, while it is 65% organics and 23% sulfate in the transition layer. The composition of the aerosol enhancement in the transition layer is roughly equal parts sulfate and organics by mass. The enhancement of aerosol extinction in the transition layer is not sufficient to explain the summertime enhancement of AOD over SEUS.

  13. An Accuracy Assessment of the CALIOP/CALIPSO Version 2/Version 3 Daytime Aerosol Extinction Product Based on a Detailed Multi-Sensor, Multi-Platform Case Study

    NASA Technical Reports Server (NTRS)

    Kacenelenbogen, M.; Vaughan, M. A.; Redemann, J.; Hoff, R. M.; Rogers, R. R.; Ferrare, R. A.; Russell, P. B.; Hostetler, C. A.; Hair, J. W.; Holben, B. N.

    2011-01-01

    The Cloud Aerosol LIdar with Orthogonal Polarization (CALIOP), on board the CALIPSO platform, has measured profiles of total attenuated backscatter coefficient (level 1 products) since June 2006. CALIOP s level 2 products, such as the aerosol backscatter and extinction coefficient profiles, are retrieved using a complex succession of automated algorithms. The goal of this study is to help identify potential shortcomings in the CALIOP version 2 level 2 aerosol extinction product and to illustrate some of the motivation for the changes that have been introduced in the next version of CALIOP data (version 3, released in June 2010). To help illustrate the potential factors contributing to the uncertainty of the CALIOP aerosol extinction retrieval, we focus on a one-day, multi-instrument, multiplatform comparison study during the CALIPSO and Twilight Zone (CATZ) validation campaign on 4 August 2007. On that day, we observe a consistency in the Aerosol Optical Depth (AOD) values recorded by four different instruments (i.e. spaceborne MODerate Imaging Spectroradiometer, MODIS: 0.67 and POLarization and Directionality of Earth s Reflectances, POLDER: 0.58, airborne High Spectral Resolution Lidar, HSRL: 0.52 and ground-based AErosol RObotic NETwork, AERONET: 0.48 to 0.73) while CALIOP AOD is a factor of two lower (0.32 at 532 nm). This case study illustrates the following potential sources of uncertainty in the CALIOP AOD: (i) CALIOP s low signal-to-noise ratio (SNR) leading to the misclassification and/or lack of aerosol layer identification, especially close to the Earth s surface; (ii) the cloud contamination of CALIOP version 2 aerosol backscatter and extinction profiles; (iii) potentially erroneous assumptions of the aerosol extinction-to-backscatter ratio (Sa) used in CALIOP s extinction retrievals; and (iv) calibration coefficient biases in the CALIOP daytime attenuated backscatter coefficient profiles. The use of version 3 CALIOP extinction retrieval for our case

  14. Phase function, backscatter, extinction, and absorption for standard radiation atmosphere and El Chichon aerosol models at visible and near-infrared wavelengths

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Suttles, J. T.; Lecroy, S. R.

    1985-01-01

    Tabular values of phase function, Legendre polynominal coefficients, 180 deg backscatter, and extinction cross section are given for eight wavelengths in the atmospheric windows between 0.4 and 2.2 microns. Also included are single scattering albedo, asymmetry factor, and refractive indices. These values are based on Mie theory calculations for the standard rediation atmospheres (continental, maritime, urban, unperturbed stratospheric, volcanic, upper atmospheric, soot, oceanic, dust, and water-soluble) assest measured volcanic aerosols at several time intervals following the El Chichon eruption. Comparisons of extinction to 180 deg backscatter for different aerosol models are presented and related to lidar data.

  15. EXTINCTION STUDIES OF PROPANE/AIR COUNTERFLOW DIFFUSION FLAMES: THE EFFECTIVENESS OF AEROSOLS

    EPA Science Inventory

    The fire suppression effectiveness of solid aerosols as suitable halon replacements has examined. Experiments were performed in a counterflow diffusion burner, consisting of two 1 cm i.d. tubes separated by 1 cm. Aerosols were delivered to propane/air flames in the air flow. Both...

  16. Design Of A Novel Open-Path Aerosol Extinction Cavity Ringdown Spectrometer And Initial Data From Deployment At NOAA's Atmospheric Observatory

    NASA Astrophysics Data System (ADS)

    Gordon, T. D.; Wagner, N. L.; Richardson, M.; Law, D. C.; Wolfe, D. E.; Brock, C. A.; Erdesz, F.; Murphy, D. M.

    2014-12-01

    The ability to frame effective climate change policy depends strongly on reducing the uncertainty in aerosol radiative forcing, which is currently nearly as great as best estimates of its magnitude. Achieving this goal will require significant progress in measuring aerosol properties, including aerosol optical depth, single scattering albedo and the effect of relative humidity on these properties for both fine and coarse particles. However both ground- and space-based instruments fail or are highly biased in the presence of clouds, severely limiting quantitative estimates of the radiative effects of aerosols where they are advected over low-level clouds. Moreover, many in situ aerosol measurements exclude the coarse fraction, which can be very important in and downwind of desert regions. By measuring the decay rate of a pulsed laser in an optically resonant cavity, cavity ringdown spectrometers (CRDSs) have been employed successfully in measuring aerosol extinction for particles in relative humidities below 90%. At very high humidities (as found in and near clouds), however, existing CRDSs perform poorly, diverging significantly from theoretical extinction values as humidities approach 100%. The new open-path aerosol extinction CRDS described in this poster measures extinction as aerosol is drawn through the sample cavity directly without inlets or tubing for channeling the flow, which cause particle losses, condensation at high RH and other artifacts. This poster presents the key elements of the new open-path CRDS design as well as comparisons with an earlier generation closed-path CRDS and preliminary data obtained during a field study at the 300 meter tower at NOAA's Boulder Atmospheric Observatory (BAO) in Colorado.

  17. Comparison of one-parameter and two-parameter models of aerosol extinction for experimental data of the arid zone of Kazakhstan

    NASA Astrophysics Data System (ADS)

    Shchelkanov, N. N.

    2015-11-01

    Comparison of four aerosol models is carried out: two one-parameter models for a ground layer of the arid zone of Kazakhstan, two-parameter model for horizontal paths and two-parameter model for horizontal and slant paths. It is shown that the models obtained using the new methods for construction of linear regression and separation of the components allow physically correct retrieval of not only the values of the aerosol extinction coefficients, but also their root mean square deviations.

  18. Combined Laboratory and Modeling Study of the IR Extinction and Visible Light Scattering Properties of Mineral Dust Aerosol

    NASA Astrophysics Data System (ADS)

    Alexander, J. M.; Laskina, O.; Meland, B. S.; Parker, A.; Grassian, V. H.; Young, M. A.; Kleiber, P.

    2011-12-01

    Mineral dust aerosol plays a significant role in the Earth's climate system through the scattering and absorption of both incoming solar radiation in the UV-Visible range and outgoing IR terrestrial radiation. Atmospheric dust particles also serve as sites for cloud nucleation indirectly affecting albedo, and as reactive surfaces for heterogeneous chemistry. Correctly modeling the direct and indirect effects of dust requires accurate information about dust loading, dust composition, size, and shape (CSS) distributions, and aerosol optical (scattering and absorption) properties. The optical properties, however, are strongly dependent on both particle shape and composition, and mineral dust aerosol samples are often complex, inhomogeneous mixtures of particles that may be highly irregular in shape. In this work IR extinction and visible light scattering and polarization profiles are measured for a series of authentic and model dust mixtures including samples of Iowa loess, Arizona road dust, and diatomaceous earth. Laboratory measurements also include particle CSS distributions determined through real-time particle sizing, and various ex situ characterization methods. The experimental data are compared with T-Matrix model simulations based on the measured particle size distributions. Different methods used to infer particle shape and composition distributions are explored and evaluated.

  19. Aerosol collection and analysis using diffuse reflectance infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Samuels, Alan C.; Wong, Diane M.; Meyer, Gerald J.; Roelant, Geoffrey J.; Williams, Barry R.; Miles, Ronald W., Jr.; Manning, Christopher J.

    2004-08-01

    Infrared spectroscopy is routinely employed for the identification of organic molecules and, more recently, for the classification of biological materials. We have developed a sample collection method that facilitates infrared analysis of airborne particulates using a diffuse reflectance (DR) technique. Efforts are underway to extend the method to include simultaneous analysis of vapor phase organics by using adsorbent substrates compatible with the DR technique. This series of laboratory results provides proof-of-principle for both the sample collection and data collection processes. Signal processing of the DR spectra is shown to provide rapid qualitative identification of representative aerosol materials, including particulate matter commonly found in the environment. We compare the results for such materials as bacterial spores, pollens and molds, clays and dusts, smoke and soot. Background correction analysis is shown to be useful for differentiation and identification of these constituents. Issues relating to complex mixtures of environmental samples under highly variable conditions are considered. Instrumentation development and materials research are now underway with the aim of constructing a compact sampling system for near real-time monitoring of aerosol and organic pollutants. A miniature, tilt-compensated Fourier transform spectrometer will provide spectroscopic interrogation. A series of advanced digital signal processing methods are also under development to enhance the sensor package. The approach will be useful for industrial applications, chemical and biological agent detection, and environmental monitoring for chemical vapors, hazardous air pollutants, and allergens.

  20. Comparison of Aerosol Backscatter and Extinction Profiles Based on the Earlinet Database and the Single Calculus Chain for Thessaloniki Greece (2001-2014)

    NASA Astrophysics Data System (ADS)

    Voudouri, K.; Siomos, N.; Giannakaki, E.; Amiridis, V.; d'Amico, G.; Balis, D. S.

    2016-06-01

    Aerosol backscatter and extinction coefficient profiles derived by the Single Calculus Chain (SCC) algorithm, which was developed within the European Aerosol Research Lidar Network (EARLINET) are compared with profiles derived by the operational inversion algorithm of Thessaloniki. Measurements performed during the period 2001-2014, that have already been uploaded in the EARLINET database, are considered in this study. The objective of this study is to verify, for the case of Thessaloniki, the consistency of the climatology of the aerosol profiles based on SCC and the EARLINET database data respectively. In this paper we show example comparisons for each lidar product submitted in the official database.

  1. Shedding Light on the Extinction-Enhancement Duality in Gold Nanostar-Enhanced Raman Spectroscopy**

    PubMed Central

    Li, Ming; Kang, Jeon Woong; Dasari, Ramachandra Rao

    2015-01-01

    Surface-enhanced Raman spectroscopy (SERS) has evolved from an esoteric physical phenomenon to a robust and effective analytical method recently. The need of addressing both the field enhancement and the extinction of nanoparticle suspensions, however, has been underappreciated despite its substantive impact on the sensing performance. A systematic experimental investigation of SERS enhancement and attenuation is performed in suspensions of gold nanostars, which exhibit a markedly different behavior in relation to conventional nanoparticles. The relationship is elucidated between the SERS enhancement and the localized surface plasmon resonance band, and the effect of the concentration of the gold nanostars on the signal propagation is investigated. It is shown that an optimal concentration of gold nanostars exists to maximize the enhancement factor (EF), and the maximum EF occurs when the LSPR band is blue-shifted from the excitation wavelength rather than at the on-resonance position. PMID:25331156

  2. Imaginary refractive-index effects on desert-aerosol extinction versus backscatter relationships at 351 nm: numerical computations and comparison with Raman lidar measurements.

    PubMed

    Perrone, Maria Rita; Barnaba, Francesca; De Tomasi, Ferdinando; Gobbi, Gian Paolo; Tafuro, Anna Maria

    2004-10-10

    A numerical model is used to investigate the dependence at 351 nm of desert-aerosol extinction and backscatter coefficients on particle imaginary refractive index (mi). Three ranges (-0.005 < or = mi < or = -0.001, -0.01 < or = mi < or = -0.001, and -0.02 < or = mi < or = -0.001) are considered, showing that backscatter coefficients are reduced as /mi/ increases, whereas extinction coefficients are weakly dependent on mi. Numerical results are compared with extinction and backscatter coefficients retrieved by elastic Raman lidar measurements performed during Saharan dust storms over the Mediterranean Sea. The comparison indicates that a range of -0.01 to -0.001 can be representative of Saharan dust aerosols and that the nonsphericity of mineral particles must be considered. PMID:15508611

  3. Validation of aerosol extinction and water vapor profiles from routine Atmospheric Radiation Measurement Climate Research Facility measurements

    SciTech Connect

    Schmid, Beat; Flynn, Connor J.; Newsom, Rob K.; Turner, David D.; Ferrare, Richard; Clayton, Marian F.; Ogren, John A.; Russell, P. B.; Gore, W.; Dominguez, Roseanne

    2009-11-26

    The accuracy with which vertical profiles of aerosol extinction σep(λ) can be retrieved from ARM Climate Research Facility (ACRF) routine measurements was assessed using data from two airborne field campaigns, the ARM Aerosol Intensive Operation Period (AIOP, May 2003), and the Aerosol Lidar Validation Experiment (ALIVE, September 2005). This assessment pertains to the aerosol at its ambient concentration and thermodynamic state (i.e. σep(λ) either free of or corrected for sampling artifacts) and includes the following ACRF routine methods: Raman Lidar, Micro Pulse Lidar (MPL) and in-situ aerosol profiles (IAP) with a small aircraft. Profiles of aerosol optical depth τp(λ), from which the profiles of σep(λ)are derived through vertical differentiation, were measured by the NASA Ames Airborne Tracking 14-channel Sunphotometer (AATS-14); these data were used as truth in this evaluation. The ACRF IAP σep(550 nm) were lower by 16% (during AIOP) and higher by 10% (during ALIVE) when compared to AATS-14. The ACRF MPL σep(523 nm) were higher by 24% (AIOP) and 19%-21% (ALIVE) compared to AATS-14 but the correlation improved significantly during ALIVE. In the AIOP a second MPL operated by NASA showed a smaller positive bias (13%) with respect to AATS-14. The ACRF Raman Lidar σep(355 nm) were higher by 54% (AIOP) and higher by 6% (ALIVE) compared to AATS-14. The large bias in AIOP stemmed from a gradual loss of the sensitivity of the Raman Lidar starting about the end of 2001 going unnoticed until after AIOP. A major refurbishment and upgrade of the instrument and improvements to a data-processing algorithm led to the significant improvement and very small bias in ALIVE. Finally we find that during ALIVE the Raman Lidar water vapor densities ρw are higher by 8% when compared to AATS-14, whereas comparisons between AATS-14 and in-situ measured ρw aboard two different aircraft showed small negative biases (0 to

  4. Implementation of Rotational Raman Channel in Multiwavelength Aerosol Lidar to Improve Measurements of Particle Extinction and Backscattering at 532 NM

    NASA Astrophysics Data System (ADS)

    Veselovskii, Igor; Whiteman, David N.; Korenskiy, Michael; Suvorina, A.; Perez-Ramirez, Daniel

    2016-06-01

    We describe a practical implementation of rotational Raman (RR) measurements in an existing Mie-Raman lidar to obtain measurements of aerosol extinction and backscattering at 532 nm. A 2.3 nm width interference filter was used to select a spectral range characterized by low temperature sensitivity within the anti-Stokes branch of the RR spectrum. Simulations demonstrate that the temperature dependence of the scattering cross section does not exceed 1.0% in the 230-300K range making accurate correction for this dependence quite easy. With this upgrade, the NASA/GSFC multiwavelength Raman lidar has demonstrated useful α532 measurements and was used for regular observations. Examples of lidar measurements and inversion of optical data to the particle microphysics will be given in presentation.

  5. Altitude Differentiated Aerosol Extinction Over Tenerife (North Atlantic Coast) During ACE-2 by Means of Ground and Airborne Photometry and Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Formenti, P.; Elias, T.; Welton, J.; Diaz, J. P.; Exposito, F.; Schmid, B.; Powell, D.; Holben, B. N.; Smirnov, A.; Andreae, M. O.; Devaux, C.; Voss, K.; Lelieveld, J.; Livingston, J. M.; Russell, P. B.; Durkee, P. A.

    2000-01-01

    Retrievals of spectral aerosol optical depths (tau(sub a)) by means of sun photometers have been undertaken in Tenerife (28 deg 16' N, 16 deg 36' W) during ACE-2 (June-July 1997). Five ground-based sites were located at four different altitudes in the marine boundary layer and in the free troposphere, from 0 to 3570 m asl. The goal of the investigation was to provide estimates of the vertical aerosol extinction over the island, both under clean and turbid conditions. Inversion of spectral tau(sub a) allowed to retrieve size distributions, from which the single scattering albedo omega(sub 0) and the asymmetry factor g could be estimated as a function of altitude. These parameters were combined to calculate aerosol forcing in the column. Emphasis is put on episodes of increased turbidity, which were observed at different locations simultaneously, and attributed to outbreaks of mineral dust from North Africa. Differentiation of tau(sub a) as a function of altitude provided the vertical profile of the extinction coefficient sigma(sub e). For dust outbreaks, aerosol extinction is concentrated in two distinct layers above and below the strong subsidence inversion around 1200 m asl. Vertical profiles of tau(sub a) and sigma(sub e) are shown for July 8. In some occasions, vertical profiles are compared to LIDAR observations, performed both at sea level and in the low free troposphere, and to airborne measurements of aerosol optical depths.

  6. Optical extinction due to aerosols in the upper haze of Venus: Four years of SOIR/VEX observations from 2006 to 2010

    NASA Astrophysics Data System (ADS)

    Wilquet, Valérie; Drummond, Rachel; Mahieux, Arnaud; Robert, Séverine; Vandaele, Ann Carine; Bertaux, Jean-Loup

    2012-02-01

    The variability of the aerosol loading in the mesosphere of Venus is investigated from a large data set obtained with SOIR, a channel of the SPICAV instrument suite onboard Venus Express. Vertical profiles of the extinction due to light absorption by aerosols are retrieved from a spectral window around 3.0 μm recorded in many solar occultations (˜200) from September 2006 to September 2010. For this period, the continuum of light absorption is analyzed in terms of spatial and temporal variations of the upper haze of Venus. It is shown that there is a high short-term (a few Earth days) and a long-term (˜80 Earth days) variability of the extinction profiles within the data set. Latitudinal dependency of the aerosol loading is presented for the entire period considered and for shorter periods of time as well.

  7. AMS Measurements in National Parks of Aerosol Mass, Size and Composition, Comparison with Filter Samples and Correlation with Particle Hygroscopicity and Optical Extinction Properties

    NASA Astrophysics Data System (ADS)

    Alexander, M.; Taylor, N. F.; Collins, D. R.; Kumar, N.; Allen, J.; Newburn, M.; Lowenthal, D. H.; Zielinska, B.

    2011-12-01

    We report a comparison of results from aerosol studies at Great Smoky Mountain National Park (2006), Mt. Rainier National Park (2009) and Acadia National Park (2011), all class I visibility areas associated with IMPROVE (Interagency Monitoring of Protected Visual Environments) sites. This collaborative study was sponsored by the Electric Power Research Institute (EPRI) and was done with the cooperation of the National Park Service and the EPA. The atmospheric aerosol composition in these sites is influenced by a number of anthropogenic as well as biogenic sources, providing a rich environment for fundamental aerosol studies. The primary purpose of these studies was to add state-of-the-art aerosol instrumentation to the standard light extinction and aerosol measurements at the site, used to determine parameters for the IMPROVE light extinction reconstruction equation, adopted by the EPA to estimate light extinction from atmospheric aerosol concentrations and Rayleigh scattering. The combination of these diverse measurements also provides significant insight into fundamental aerosol properties such as aging and radiative forcing. New instrumentation included a quadrupole aerosol mass spectrometer (Aerodyne Q-AMS-Smoky Mountain Study), a high resolution aerosol time-of-flight mass spectrometer (Aerodyne HR-ToF-AMS - Mt. Rainier and Acadia studies) for real time measurements that directly address the relationship between sulfate, nitrate, and OC size and concentration, which is related to cloud and dry gas-to-particle conversion as air masses age during transport, the relationship between WSOC hygroscopic growth and oxygenated organic (OOA) composition, the OCM/OC ratio, and the chemical composition that determines the ambient hygroscopic state. The OCM/OC ratio and organic water uptake was addressed with high-volume and medium volume PM2.5 aerosol samples. Aerosols were collected daily on Teflon coated glass fiber filters (TGFF) in four high-volume PM2.5 samplers

  8. Surface-Enhanced Resonance Raman Scattering and Visible Extinction Spectroscopy of Copper Chlorophyllin: An Upper Level Chemistry Experiment

    ERIC Educational Resources Information Center

    Schnitzer, Cheryl S.; Reim, Candace Lawson; Sirois, John J.; House, Paul G.

    2010-01-01

    Advanced chemistry students are introduced to surface-enhanced resonance Raman scattering (SERRS) by studying how sodium copper chlorophyllin (CuChl) adsorbs onto silver colloids (CuChl/Ag) as a function of pH. Using both SERRS and visible extinction spectroscopy, the extent of CuChl adsorption and colloidal aggregation are monitored. Initially at…

  9. Inter-comparison of MAX-DOAS Retrieved Vertical Profiles of Aerosol Extinction, SO2 and NO2 in the Alberta Oil Sands with LIDAR Data and GEM-MACH Air Quality Model.

    NASA Astrophysics Data System (ADS)

    Davis, Zoe; Friess, Udo; Strawbridge, Kevin; Whiteway, James; Aggarwal, Monika; Makar, Paul; Li, Shao-Meng; O'Brien, Jason; Baray, Sabour; Schnitzler, Elijah; Olfert, Jason S.; Osthoff, Hans D.; Lobo, Akshay; McLaren, Robert

    2016-04-01

    Understanding industrial emissions of trace gas pollutants in the Alberta oil sands is essential to maintaining air quality standards and informing public policy. Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements of trace gases can improve knowledge of pollutant levels, vertical distribution and chemical transformation. During an intensive air measurement campaign to study emissions, transport, transformation and deposition of oil sands air pollutants from August to September of 2013, a MAX-DOAS instrument was deployed at a site north of Fort McMurray, Alberta to determine the vertical profiles of aerosol extinction, NO2 and SO2 through retrieval from the MAX-DOAS spectral measurements using an optimal estimation method. The large complement of data collected from multiple instruments deployed during this field campaign provides a unique opportunity to validate and characterize the performance of the MAX-DOAS vertical profile retrievals. Aerosol extinction profiles determined from two Light Detection and Ranging (LIDAR) instruments, one collocated and the other on a Twin Otter aircraft that flew over the site during the study, will be compared to the MAX-DOAS aerosol extinction profile retrievals. Vertical profiles of NO2 and SO2 retrieved from the MAX-DOAS measurements will be further compared with the composite vertical profiles measured from the flights of a second aircraft, the NRC-Convair 580, over the field site during the same measurement period. Finally, the MAX-DOAS retrieved tropospheric vertical column densities (VCDs) of SO2 and NO2 will be compared to the predicted VCDs from Environment and Climate Change Canada's Global Environmental Multi-scale - Modelling Air quality and Chemistry (GEM-MACH) air quality model over the grid cell containing the field site. Emission estimates of SO2 from the major oil mining facility Syncrude Mildred Lake using the MAX-DOAS VCD results, validated through the detailed characterization above

  10. Hygroscopic properties and extinction of aerosol particles at ambient relative humidity in South-Eastern China

    NASA Astrophysics Data System (ADS)

    Eichler, H.; Cheng, Y. F.; Birmili, W.; Nowak, A.; Wiedensohler, A.; Brüggemann, E.; Gnauk, T.; Herrmann, H.; Althausen, D.; Ansmann, A.; Engelmann, R.; Tesche, M.; Wendisch, M.; Zhang, Y. H.; Hu, M.; Liu, S.; Zeng, L. M.

    During the "Program of Regional Integrated Experiments of Air Quality over Pearl River Delta 2004 (PRIDE-PRD2004)" hygroscopic properties of particles in the diameter range 22 nm to 10μm were determined. For that purpose, a Humidifying Differential Mobility Particle Sizer (H-DMPS) and a Micro-Orifice Uniform Deposition Impactor (MOUDI) were operated. The derived size-dependent particle hygroscopic growth factors were interpolated to ambient relative humidity (RH) and used to calculate the particle number size distributions (PNSDs) at ambient conditions. A comparison between the modeled particle extinction coefficients (σ) and those observed with a Raman lidar was made. It is shown that the particle extinction coefficient ( σext) at ambient RH can be properly estimated with Mie-model calculations based on the in situ physico-chemical measurements of dry and humidified PNSD and chemical composition.

  11. Aerosol extinction and absorption in Evora, Portugal, during the European 2003 summer heat wave

    NASA Astrophysics Data System (ADS)

    Elias, Thierry G.; Silva, Ana M.; Figueira, Maria J.; Belo, Nuno; Pereira, Sergio; Formenti, Paola; Helas, Gunter

    2004-11-01

    Aerosol optical properties are retrieved from measurements acquired during the 2003 summer at the new AERONET station of Evora, Portugal, with a sun/sky photometer, a fluxmeter and a nephelometer. Aerosol optical thickness (aot) derived at several wavelengths shows that an exceptionally long turbid event occurred in July-August. Desert dust particles transported from North Africa increased aot at 873 nm (aot873) to the value of 0.27 with an Ångstrom exponent αC=0.5. Emissions from forest fires in The Iberic peninsula affected Evora since the end of the dust episode, with aot441 reaching 0.81 and aC=1.8. The aerosol scattering coefficient measured at surface level shows that desert dust does not reach the surface level at Evora while the forest fire emissions were uniformly distributed over the atmospheric column. Sky-radiance and flux measurements agree in retrieval of the aerosol single scattering albedo (assa) at several wavelengths. A large absorption rate is found with a high spectral dependence for desert dust particles (assa441=0.86 and ass873=0.93) and with a flat spectral dependence during the forest fires emission episode (assa441=0.88 and assa873=0.87). All measurements as well as back-trajectory calculations indicate mixture of particles during the desert dust.

  12. Aerosol particle absorption spectroscopy by photothermal modulation of Mie scattered light

    SciTech Connect

    Campillo, A.J.; Dodge, C.J.; Lin, H.B.

    1981-09-15

    Absorption spectroscopy of suspended submicron-sized aqueous ammonium-sulfate aerosol droplets has been performed by employing a CO/sub 2/ laser to photothermally modulate visible Mie scattered light. (AIP)

  13. Field test of a new instrument to measure UV/Vis (300-700 nm) ambient aerosol extinction spectra in Colorado during DISCOVER-AQ

    NASA Astrophysics Data System (ADS)

    Jordan, C. E.; Anderson, B. E.; Beyersdorf, A. J.; Dibb, J. E.; Greenslade, M. E.; Martin, R.; Scheuer, E. M.; Shook, M.; Thornhill, K. L., II; Troop, D.; Winstead, E.; Ziemba, L. D.

    2014-12-01

    An optical instrument has been developed to investigate aerosol extinction spectra in the ambient atmosphere. Based on a White-type cell design and using a differential optical approach, aerosol extinction spectra over the 300-700 nm ultraviolet and visible (UV/Vis) wavelength range are obtained. Laboratory tests conducted at NASA Langley Research Center (NASA LaRC) in March 2014 showed good agreement with Cavity Attenuated Phase Shift (CAPS PMex, Aerodyne Research) extinction measurements (at 450, 530, and 630 nm) for a variety of aerosols, e.g., scatterers such as polystyrene latex spheres and ammonium sulfate; absorbers such as dust (including pigmented minerals), smoke (generated in a miniCAST burning propane) and laboratory smoke analogs (e.g., fullerene soot and aquadag). The instrument was field tested in Colorado in July and August 2014 aboard the NASA mobile laboratory at various ground sites during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) field campaign. A description of the instrument, results from the laboratory tests, and summer field data will be presented. The instrument provides a new tool for probing in situ aerosol optical properties that may help inform remote sensing approaches well into the UV range.

  14. Characterizing the Vertical Profile of Aerosol Particle Extinction and Linear Depolarization over Southeast Asia and the Maritime Continent: The 2007-2009 View from CALIOP

    NASA Technical Reports Server (NTRS)

    Campbell, James R.; Reid, Jeffrey S.; Westphal, Douglas L.; Zhang, Jianglong; Tackett, Jason L.; Chew, Boon Ning; Welton, Ellsworth J.; Shimizu, Atsushi; Sugimoto, Nobuo; Aoki, Kazuma; Winker, David M.

    2012-01-01

    Vertical profiles of 0.532 µm aerosol particle extinction coefficient and linear volume depolarization ratio are described for Southeast Asia and the Maritime Continent. Quality-screened and cloud-cleared Version 3.01 Level 2 NASA Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) 5-km Aerosol Profile datasets are analyzed from 2007 to 2009. Numerical simulations from the U.S. Naval Aerosol Analysis and Predictive System (NAAPS), featuring two-dimensional variational assimilation of NASA Moderate Resolution Imaging Spectroradiometer and Multi-angle Imaging Spectro- Radiometer quality-assured datasets, combined with regional ground-based lidar measurements, are considered for assessing CALIOP retrieval performance, identifying bias, and evaluating regional representativeness. CALIOP retrievals of aerosol particle extinction coefficient and aerosol optical depth (AOD) are high over land and low over open waters relative to NAAPS (0.412/0.312 over land for all data points inclusive, 0.310/0.235 when the per bin average is used and each is treated as single data points; 0.102/0.151 and 0.086/0.124, respectively, over ocean). Regional means, however, are very similar (0.180/0.193 for all data points and 0.155/0.159 when averaged per normalized bin), as the two factors offset one another. The land/ocean offset is investigated, and discrepancies attributed to interpretation of particle composition and a-priori assignment of the extinction-to-backscatter ratio ("lidar ratio") necessary for retrieving the extinction coefficient from CALIOP signals. Over land, NAAPS indicates more dust present than CALIOP algorithms are identifying, indicating a likely assignment of a higher lidar ratio representative of more absorptive particles. NAAPS resolvesmore smoke overwater than identified with CALIOP, indicating likely usage of a lidar ratio characteristic of less absorptive particles to be applied that biases low AOD there. Over open waters except within the Bay of Bengal

  15. Prospects of real-time single-particle biological aerosol analysis: A comparison between laser-induced breakdown spectroscopy and aerosol time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Beddows, D. C. S.; Telle, H. H.

    2005-08-01

    In this paper we discuss the prospects of real-time, in situ laser-induced breakdown spectroscopy applied for the identification and classification of bio-aerosols (including species of potential bio-hazard) within common urban aerosol mixtures. In particular, we address the issues associated with the picking out of bio-aerosols against common background aerosol particles, comparing laser-induced breakdown spectroscopy measurements with data from a mobile single-particle aerosol mass spectrometer (ATOFMS). The data from the latter provide statistical data over an extended period of time, highlighting the variation of the background composition. While single-particle bio-aerosols are detectable in principle, potential problems with small (˜ 1 μm size) bio-aerosols have been identified; constituents of the air mass other than background aerosols, e.g. gaseous CO 2 in conjunction with common background aerosols, may prevent unique recognition of the bio-particles. We discuss whether it is likely that laser-induced breakdown spectroscopy on its own can provide reliable, real-time identification of bio-aerosol in an urban environment, and it is suggested that more than one technique should be or would have to be used. A case for using a combination of laser-induced breakdown spectroscopy and Raman (and/or) laser-induced fluorescence spectroscopy is made.

  16. 1984-1995 Evolution of Stratospheric Aerosol Size, Surface Area, and Volume Derived by Combining SAGE II and CLAES Extinction Measurements

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Bauman, Jill J.

    2000-01-01

    This SAGE II Science Team task focuses on the development of a multi-wavelength, multi- sensor Look-Up-Table (LUT) algorithm for retrieving information about stratospheric aerosols from global satellite-based observations of particulate extinction. The LUT algorithm combines the 4-wavelength SAGE II extinction measurements (0.385 <= lambda <= 1.02 microns) with the 7.96 micron and 12.82 micron extinction measurements from the Cryogenic Limb Array Etalon Spectrometer (CLAES) instrument, thus increasing the information content available from either sensor alone. The algorithm uses the SAGE II/CLAES composite spectra in month-latitude-altitude bins to retrieve values and uncertainties of particle effective radius R(sub eff), surface area S, volume V and size distribution width sigma(sub g).

  17. Use of In Situ Cloud Condensation Nuclei, Extinction, and Aerosol Size Distribution Measurements to Test a Method for Retrieving Cloud Condensation Nuclei Profiles From Surface Measurements

    NASA Technical Reports Server (NTRS)

    Ghan, Stephen J.; Rissman, Tracey A.; Ellman, Robert; Ferrare, Richard A.; Turner, David; Flynn, Connor; Wang, Jian; Ogren, John; Hudson, James; Jonsson, Haflidi H.; VanReken, Timothy; Flagan, Richard C.; Seinfeld, John H.

    2006-01-01

    If the aerosol composition and size distribution below cloud are uniform, the vertical profile of cloud condensation nuclei (CCN) concentration can be retrieved entirely from surface measurements of CCN concentration and particle humidification function and surface-based retrievals of relative humidity and aerosol extinction or backscatter. This provides the potential for long-term measurements of CCN concentrations near cloud base. We have used a combination of aircraft, surface in situ, and surface remote sensing measurements to test various aspects of the retrieval scheme. Our analysis leads us to the following conclusions. The retrieval works better for supersaturations of 0.1% than for 1% because CCN concentrations at 0.1% are controlled by the same particles that control extinction and backscatter. If in situ measurements of extinction are used, the retrieval explains a majority of the CCN variance at high supersaturation for at least two and perhaps five of the eight flights examined. The retrieval of the vertical profile of the humidification factor is not the major limitation of the CCN retrieval scheme. Vertical structure in the aerosol size distribution and composition is the dominant source of error in the CCN retrieval, but this vertical structure is difficult to measure from remote sensing at visible wavelengths.

  18. Variation of haemoglobin extinction coefficients can cause errors in the determination of haemoglobin concentration measured by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, J. G.; Liu, H.

    2007-10-01

    Near-infrared spectroscopy or imaging has been extensively applied to various biomedical applications since it can detect the concentrations of oxyhaemoglobin (HbO2), deoxyhaemoglobin (Hb) and total haemoglobin (Hbtotal) from deep tissues. To quantify concentrations of these haemoglobin derivatives, the extinction coefficient values of HbO2 and Hb have to be employed. However, it was not well recognized among researchers that small differences in extinction coefficients could cause significant errors in quantifying the concentrations of haemoglobin derivatives. In this study, we derived equations to estimate errors of haemoglobin derivatives caused by the variation of haemoglobin extinction coefficients. To prove our error analysis, we performed experiments using liquid-tissue phantoms containing 1% Intralipid in a phosphate-buffered saline solution. The gas intervention of pure oxygen was given in the solution to examine the oxygenation changes in the phantom, and 3 mL of human blood was added twice to show the changes in [Hbtotal]. The error calculation has shown that even a small variation (0.01 cm-1 mM-1) in extinction coefficients can produce appreciable relative errors in quantification of Δ[HbO2], Δ[Hb] and Δ[Hbtotal]. We have also observed that the error of Δ[Hbtotal] is not always larger than those of Δ[HbO2] and Δ[Hb]. This study concludes that we need to be aware of any variation in haemoglobin extinction coefficients, which could result from changes in temperature, and to utilize corresponding animal's haemoglobin extinction coefficients for the animal experiments, in order to obtain more accurate values of Δ[HbO2], Δ[Hb] and Δ[Hbtotal] from in vivo tissue measurements.

  19. Analysis of Venus Express optical extinction due to aerosols in the upper haze of Venus

    NASA Astrophysics Data System (ADS)

    Parkinson, Christopher; Bougher, Stephen; Mahieux, Arnaud; Tellmann, Silvia; Pätzold, Martin; Vandaele, Ann C.; Wilquet, Valérie; Schulte, Rick; Yung, Yuk; Gao, Peter; Bardeen, Charles

    Observations by the SPICAV/SOIR instruments aboard Venus Express (VEx) have revealed that the Upper Haze of Venus is populated by two particle modes, as reported by Wilquet et al. (J. Geophys. Res., 114, E00B42, 2009; Icarus 217, 2012). Gao et al. (In press, Icarus, 2013) posit that the large mode is made up of cloud particles that have diffused upwards from the cloud deck below, while the smaller mode is generated by the in situ nucleation of meteoric dust. They tested this hypothesis by using version 3.0 of the Community Aerosol and Radiation Model for Atmospheres, first developed by Turco et al. (J. Atmos. Sci., 36, 699-717, 1979) and upgraded to version 3.0 by Bardeen et al. (The CARMA 3.0 microphysics package in CESM, Whole Atmosphere Working Group Meeting, 2011). Using the meteoric dust production profile of Kalashnikova et al. (Geophys. Res. Lett., 27, 3293-3296, 2000), the sulfur/sulfate condensation nuclei production profile of Imamura and Hashimoto (J. Atmos. Sci., 58, 3597-3612, 2001), and sulfuric acid vapor production profile of Zhang et al. (Icarus, 217, 714-739, 2012), they numerically simulate a column of the Venus atmosphere from 40 to 100 km above the surface. Their aerosol number density results agree well with Pioneer Venus Orbiter (PVO) data from Knollenberg and Hunten (J. Geophys. Res., 85, 8039-8058, 1980), while their gas distribution results match that of Kolodner and Steffes below 55 km (Icarus, 132, 151-169, 1998). The resulting size distribution of cloud particles shows two distinct modes, qualitatively matching the observations of PVO. They also observe a third mode in their results with a size of a few microns at 48 km altitude, which appears to support the existence of the controversial third mode in the PVO data. This mode disappears if coagulation is not included in the simulation. The Upper Haze size distribution shows two lognormal-like distributions overlapping each other, possibly indicating the presence of the two distinct

  20. Aerosol Optical Extinction during the Front Range Air Pollution and Photochemistry Experiment (FRAPPE) 2014 Summertime Field Campaign, Colorado U.S.A.

    NASA Astrophysics Data System (ADS)

    Dingle, J. H.; Vu, K. K. T.; Bahreini, R.; Apel, E. C.; Campos, T. L.; Cantrell, C. A.; Cohen, R. C.; Ebben, C. J.; Flocke, F. M.; Fried, A.; Herndon, S. C.; Hills, A. J.; Hornbrook, R. S.; Huey, L. G.; Kaser, L.; Mauldin, L.; Montzka, D. D.; Nowak, J. B.; Richter, D.; Roscioli, J. R.; Shertz, S.; Stell, M. H.; Tanner, D.; Tyndall, G. S.; Walega, J.; Weibring, P.; Weinheimer, A. J.

    2015-12-01

    Aerosol optical extinction (βext) was measured in the Colorado Front Range Denver Metropolitan Area as part of the summertime air quality airborne field campaign to characterize the influence of sources, photochemical processing, and transport of pollution on local air quality. An Aerodyne Cavity Attenuated Phase Shift particle light extinction monitor (CAPS-PMex) was deployed to measure dry βext at λ=632 nm at 1 Hz. Data from a suite of gas-phase instrumentation were used to interpret the βext under various categories of aged air masses and sources. Extinction enhancement ratios of Δβext/ΔCO were evaluated under 3 differently aged air mass categories (fresh, intermediately aged, and aged) to investigate impacts of photochemistry on βext. Δβext/ΔCO was significantly increased in heavily aged air masses compared to fresh air masses (0.17 Mm-1/ppbv and 0.094 Mm-1/ppbv respectively). The resulting increase in Δβext/ΔCO under heavily aged air masses was represented by secondary organic aerosols (SOA) formation. Aerosol composition and sources from urban, natural oil and gas wells (OG), and agriculture and livestock operations were also evaluated for their impacts on βext. Linear regression fits to βext vs. organic aerosol mass showed higher correlation coefficients under the urban and OG plumes (r=0.55 and r=0.71 respectively) and weakest under agricultural and livestock plumes (r=0.28). The correlation between βext and nitrate aerosol mass however was best under the agriculture and livestock plumes (r=0.81), followed by OG plumes (r=0.74), suggesting co-location of aerosol nitrate precursor sources with OG emissions. Finally, non-refractory mass extinction efficiency (MEE) was analyzed. MEE was observed to be 1.37 g/m2 and 1.30 g/m2 in OG and urban+OG plumes, respectively.

  1. Electron mean free path from angle-dependent photoelectron spectroscopy of aerosol particles

    SciTech Connect

    Goldmann, Maximilian; Miguel-Sánchez, Javier; West, Adam H. C.; Yoder, Bruce L.; Signorell, Ruth

    2015-06-14

    We propose angle-resolved photoelectron spectroscopy of aerosol particles as an alternative way to determine the electron mean free path of low energy electrons in solid and liquid materials. The mean free path is obtained from fits of simulated photoemission images to experimental ones over a broad range of different aerosol particle sizes. The principal advantage of the aerosol approach is twofold. First, aerosol photoemission studies can be performed for many different materials, including liquids. Second, the size-dependent anisotropy of the photoelectrons can be exploited in addition to size-dependent changes in their kinetic energy. These finite size effects depend in different ways on the mean free path and thus provide more information on the mean free path than corresponding liquid jet, thin film, or bulk data. The present contribution is a proof of principle employing a simple model for the photoemission of electrons and preliminary experimental data for potassium chloride aerosol particles.

  2. Analysis of Venus Express optical extinction due to aerosols in the upper haze of Venus

    NASA Astrophysics Data System (ADS)

    Parkinson, C. D.; Bougher, S. W.; Schulte, R.; Gao, P.; Yung, Y. L.; Vandaele, A.; Wilquet, V.; Mahieux, A.; Tellmann, S.

    2013-12-01

    Observations by the SPICAV/SOIR instruments aboard the Venus Express (VEx) spacecraft have revealed that the upper haze (UH) of Venus, between 70 and 90 km, is variable on the order of days to weeks and that it is populated by two particle modes. Gao et al. (submitted, Icarus, 2013) posit that one mode is made up of cloud particles that have diffused upwards from the main sulfuric acid cloud deck below, while the other mode is generated in situ by nucleation of sulfuric acid droplets on meteoric dust. They also propose that the observed variability in the UH is caused in part by vertical transient winds. They test this hypothesis by simulating a column of the Venus atmosphere from 40 to 100 km above the surface using a model based upon the Community Aerosol and Radiation Model for Atmospheres (CARMA). In this work, we significantly extend the analysis using the new more detailed SOIR/VeRa VEx temperature profiles which better constrain the observed strong CO2 15-micron cooling emission and 4.3-μm near-IR heating in Venus' atmosphere (and consistent with Venus Thermospheric General Circulation Model (VTGCM) simulations of Brecht et al. (2011)). We discuss our new results in context of the recent VEx observations (Wilquet et al., Icarus 217, 2012) with an intercomparison with the PVO data. We will also discuss similarities and differences arising from the PVO and VEx epochs where they exist. Additionally we report on our efforts self-consistently applying the VTGCM to constrain the degree to which effects due to vertical transient wind simulations can establish variability timescales and number density profiles that match VEx observations.

  3. Absolute optical extinction measurements of single nano-objects by spatial modulation spectroscopy using a white lamp.

    PubMed

    Billaud, Pierre; Marhaba, Salem; Grillet, Nadia; Cottancin, Emmanuel; Bonnet, Christophe; Lermé, Jean; Vialle, Jean-Louis; Broyer, Michel; Pellarin, Michel

    2010-04-01

    This article describes a high sensitivity spectrophotometer designed to detect the overall extinction of light by a single nanoparticle (NP) in the 10(-4)-10(-5) relative range, using a transmission measurement configuration. We focus here on the simple and low cost scheme where a white lamp is used as a light source, permitting easy and broadband extinction measurements (300-900 nm). Using a microscope, in a confocal geometry, an increased sensitivity is reached thanks to a modulation of the NP position under the light spot combined with lock-in detection. Moreover, it is shown that this technique gives access to the absolute extinction cross-sections of the single NP provided that the incident electromagnetic field distribution experienced by the NP is accurately characterized. In this respect, an experimental procedure to characterize the light spot profile in the focal plane, using a reference NP as a probe, is also laid out. The validity of this approach is discussed and confirmed by comparing experimental intensity distributions to theoretical calculations taking into account the vector character of the tightly focused beam. The calibration procedure permitting to obtain the absolute extinction cross-section of the probed NP is then fully described. Finally, the force of the present technique is illustrated through selected examples concerning spherical and slightly elongated gold and silver NPs. Absolute extinction measurements are found to be in good consistency with the NP size and shape independently obtained from transmission electron microscopy, showing that spatial modulation spectroscopy is a powerful tool to get an optical fingerprint of the NP. PMID:20441319

  4. Mass spectroscopy of single aerosols from field measurements

    SciTech Connect

    Thomson, D.S.; Murphy, D.M.

    1995-12-31

    We are developing an aircraft instrument for the chemical analysis of individual ambient aerosols in real time. In order to test the laboratory version of this instrument, we participated in a field campaign near the continental divide in Colorado in September, 1993. During this campaign, over 5000 mass spectra of ambient aerosols were collected. Analysis of the negative ion spectra shows that sulfate was the most commonly seen component of smaller particles, while nitrate was more common in larger particles. Organic compounds are present in most particles, and we believe we can distinguish inorganic carbon in some particles. Although numerous distinct classes of particles were observed, indicating external mixtures, almost all of these particle types were themselves mixtures of several compounds. Finally, we note that although the field site experienced distinct polluted and unpolluted episodes, aerosol composition did not correlate with gas phase chemistry.

  5. Transmission of 10 micron radiation over coastal waters: comparison of point-source image intensities with aerosol extinction and MODTRAN calculations

    NASA Astrophysics Data System (ADS)

    Schwering, Piet B.; de Leeuw, Gerrit; van Eijk, Alexander M.

    1996-10-01

    During the MAPTIP experiments in the Dutch coastal waters, 11 October - 5 November 1993, transmission curves were determined from the intensities of the image of a point source suspended from a helicopter at ranges between 0.5 and 6 NMi. The images were recorded with a 10 micrometer USFA 9092 camera from the MeetPost Noordwijk, a research tower in the North Sea at 9 km from the Dutch coast. The transmission determined from the point source intensities at several ranges is compared with calculated values. The transmission is determined by extinction due to aerosols and molecular species in the propagation path. Both contributions can be determined using code using measured size distributions. Also effects of path radiance and background on the image intensity are considered. In this coastal area, and the off- shore winds that were usually encountered during MAPTIP, the aerosol size distributions are known to be a complicated mixture of continental and marine aerosols. Hence the common aerosol models, that usually work well over the open ocean, are often not so reliable in a coastal environment. An attempt is made to assess the influence of marine and anthropogenic contributions to the aerosol on the detection range of point targets in a coastal atmosphere.

  6. A Chronology of Annual-Mean Effective Radii of Stratospheric Aerosols from Volcanic Eruptions During the Twentieth Century as Derived From Ground-based Spectral Extinction Measurements

    NASA Technical Reports Server (NTRS)

    Strothers, Richard B.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Stratospheric extinction can be derived from ground-based spectral photometric observations of the Sun and other stars (as well as from satellite and aircraft measurements, available since 1979), and is found to increase after large volcanic eruptions. This increased extinction shows a characteristic wavelength dependence that gives information about the chemical composition and the effective (or area weighted mean) radius of the particles responsible for it. Known to be tiny aerosols constituted of sulfuric acid in a water solution, the stratospheric particles at midlatitudes exhibit a remarkable uniformity of their column-averaged effective radii r(sub eff) in the first few months after the eruption. Considering the seven largest eruptions of the twentieth century, r(sub eff) at this phase of peak aerosol abundance is approx. 0.3 micrometers in all cases. A year later, r(sub eff) either has remained about the same size (almost certainly in the case of the Katmai eruption of 1912) or has increased to approx. 0.5 micrometers (definitely so for the Pinatubo eruption of 1991). The reasons for this divergence in aerosol growth are unknown.

  7. Source attribution of water-soluble organic aerosol by nuclear magnetic resonance spectroscopy.

    PubMed

    Decesari, Stefano; Mircea, Mihaiela; Cavalli, Fabrizia; Fuzzi, Sandro; Moretti, Fabio; Tagliavini, Emilio; Facchini, Maria Cristina

    2007-04-01

    The functional group compositions of atmospheric aerosol water-soluble organic compoundswere obtained employing proton nuclear magnetic resonance (1H NMR) spectroscopy in a series of recent experiments in several areas of the world characterized by different aerosol sources and pollution levels. Here, we discuss the possibility of using 1H NMR functional group distributions to identifythe sources of aerosol in the different areas. Despite the limited variability of functional group compositions of atmospheric aerosol samples, characteristic 1H NMR fingerprints were derived for three major aerosol sources: biomass burning, secondary formation from anthropogenic and biogenic VOCs, and emission from the ocean. The functional group patterns obtained in areas characterized by one of the above dominant source processes were then compared to identify the dominant sources for samples coming from mixed sources. This analysis shows that H NMR spectroscopy can profitably be used as a valuable tool for aerosol source identification. In addition, compared to other existing methodologies, it is able to relate the source fingerprints to integral chemical properties of the organic mixtures, which determine their reactivity and their physicochemical properties and ultimately the fate of the organic particles in the atmosphere. PMID:17438803

  8. Noise caused by a finite extinction ratio of the light modulator in CW cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, H.; Lehmann, K. K.

    2009-02-01

    A model is presented for the effect of a finite extinction ratio of the light modulator used in continuous wave cavity ring-down spectroscopy (CW-CRDS) experiments. We present a simple analytical expression for the minimum isolation required to prevent a significant increase in the fluctuations of the cavity decay rate, which determine the sensitivity of the method. We also present systematic measurements of the signal to noise in CW-CRDS as a function of the effective isolation of the light modulator, and excellent agreement with the model is found.

  9. Sizing highly-ordered buckyball-shaped aggregates of colloidal nanoparticles by light extinction spectroscopy

    NASA Astrophysics Data System (ADS)

    Onofri, F. R. A.; Barbosa, S.; Touré, O.; Woźniak, M.; Grisolia, C.

    2013-09-01

    We produced self-assembled, densely-packed and highly-ordered aggregates of silica nanoparticles arranged in a rather regular hexagonal-pentagonal surface lattice. To investigate the formation of these aggregates, produced by means of a spray drying method, we developed a light extinction setup and all related models. It is shown that with a geodesic dome model, to describe their morphology, and a T-matrix method to calculate their extinction cross sections, the size distribution and concentration of these flowing aggregates may be recovered from the inversion of transmission spectra.

  10. Chemical characterization of aerosol particles by laser Raman spectroscopy. Revision

    SciTech Connect

    Fung, K.H.

    1999-12-01

    The importance of aerosol particles in many branches of science, such as atmospheric chemistry, combustion, interfacial science, and material processing, has been steadily growing during the past decades. One of the unique properties of these particles is the very high surface-to-volume ratios, thus making them readily serve as centers for gas-phase condensation and heterogeneous reactions. These particles must be characterized by size, shape, physical state, and chemical composition. Traditionally, optical elastic scattering has been applied to obtain the physical properties of these particle (e.g., particle size, size distribution, and particle density). These physical properties are particularly important in atmospheric science as they govern the distribution and transport of atmospheric aerosols.

  11. A rapid method to derive horizontal distributions of trace gases and aerosols near the surface using multi-axis differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Li, A.; Xie, P. H.; Wagner, T.; Chen, H.; Liu, W. Q.; Liu, J. G.

    2014-06-01

    We apply a novel experimental procedure for the rapid measurement of the average volume mixing ratios (VMRs) and horizontal distributions of trace gases such as NO2, SO2, and HCHO in the boundary layer, which was recently suggested by Sinreich et al. (2013). The method is based on two-dimensional scanning multi-axis differential optical absorption spectroscopy (MAX-DOAS). It makes use of two facts (Sinreich et al., 2013): first, the light path for observations at 1° elevation angle traverses mainly air masses located close to the ground (typically < 200 m); second, the light path length can be calculated using the simultaneous measured absorption of the oxygen dimer O4. Thus, the average value of the trace gas VMR in the atmospheric layer between the surface and the particular altitude, for which this observation was sensitive, can be calculated. Compared to the originally proposed method, we introduce several important modifications and improvements: We apply the method only to measurements at 1° elevation angle (besides zenith view), for which the uncertainties of the retrieved values of the VMRs and surface extinctions are especially small. Using only 1° elevation angle for off-axis observation also allows an increased temporal resolution. We determine (and apply) correction factors (and their uncertainties) directly as function of the measured O4 absorption. Finally, the method is extended to trace gases analysed at other wavelengths and also to the retrieval of aerosol extinction. Depending on atmospheric visibility, the typical uncertainty of the results ranges from about 20% to 30%. We apply the rapid method to observations of a newly-developed ground-based multifunctional passive differential optical absorption spectroscopy (GM-DOAS) instrument in the north-west outskirts near Hefei in China. We report NO2, SO2, and HCHO VMRs and aerosol extinction for four azimuth angles and compare these results with those from simultaneous long-path DOAS observations

  12. Lidar Ratios for Dust Aerosols Derived From Retrievals of CALIPSO Visible Extinction Profiles Constrained by Optical Depths from MODIS-Aqua and CALIPSO/CloudSat Ocean Surface Reflectance Measurements

    NASA Technical Reports Server (NTRS)

    Young, Stuart A.; Josset, Damien B.; Vaughan, Mark A.

    2010-01-01

    CALIPSO's (Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations) analysis algorithms generally require the use of tabulated values of the lidar ratio in order to retrieve aerosol extinction and optical depth from measured profiles of attenuated backscatter. However, for any given time or location, the lidar ratio for a given aerosol type can differ from the tabulated value. To gain some insight as to the extent of the variability, we here calculate the lidar ratio for dust aerosols using aerosol optical depth constraints from two sources. Daytime measurements are constrained using Level 2, Collection 5, 550-nm aerosol optical depth measurements made over the ocean by the MODIS (Moderate Resolution Imaging Spectroradiometer) on board the Aqua satellite, which flies in formation with CALIPSO. We also retrieve lidar ratios from night-time profiles constrained by aerosol column optical depths obtained by analysis of CALIPSO and CloudSat backscatter signals from the ocean surface.

  13. High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media

    PubMed Central

    Zhang, Jitao; Yun, Seok Hyun; Scarcelli, Giuliano

    2016-01-01

    Brillouin microscopy has recently emerged as a powerful technique to characterize the mechanical properties of biological tissue, cell, and biomaterials. However, the potential of Brillouin microscopy is currently limited to transparent samples, because Brillouin spectrometers do not have sufficient spectral extinction to reject the predominant non-Brillouin scattered light of turbid media. To overcome this issue, we combined a multi-pass Fabry-Perot interferometer with a two-stage virtually imaged phased array spectrometer. The Fabry-Perot etalon acts as an ultra-narrow band-pass filter for Brillouin light with high spectral extinction and low loss. We report background-free Brillouin spectra from Intralipid solutions and up to 100 μm deep within chicken muscle tissue. PMID:27274097

  14. High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media

    NASA Astrophysics Data System (ADS)

    Fiore, Antonio; Zhang, Jitao; Shao, Peng; Yun, Seok Hyun; Scarcelli, Giuliano

    2016-05-01

    Brillouin microscopy has recently emerged as a powerful technique to characterize the mechanical properties of biological tissue, cell, and biomaterials. However, the potential of Brillouin microscopy is currently limited to transparent samples, because Brillouin spectrometers do not have sufficient spectral extinction to reject the predominant non-Brillouin scattered light of turbid media. To overcome this issue, we combined a multi-pass Fabry-Perot interferometer with a two-stage virtually imaged phased array spectrometer. The Fabry-Perot etalon acts as an ultra-narrow band-pass filter for Brillouin light with high spectral extinction and low loss. We report background-free Brillouin spectra from Intralipid solutions and up to 100 μm deep within chicken muscle tissue.

  15. Infrared spectroscopy and Mie scattering of acetylene aerosols formed in a low temperature diffusion cell

    NASA Technical Reports Server (NTRS)

    Dunder, T.; Miller, R. E.

    1990-01-01

    A method is described for forming and spectroscopically characterizing cryogenic aerosols formed in a low temperature gas cell. By adjusting the cell pressure, gas composition and flow rate, the size distribution of aerosol particles can be varied over a wide range. The combination of pressure and flow rate determine the residence time of the aerosols in the cell and hence the time available for the particles to grow. FTIR spectroscopy, over the range from 600/cm to 6000/cm, is used to characterize the aerosols. The particle size distribution can be varied so that, at one extreme, the spectra show only absorption features associated with the infrared active vibrational bands and, at the other, they display both absorption and Mie scattering. In the latter case, Mie scattering theory is used to obtain semiquantitative aerosol size distributions, which can be understood in terms of the interplay between nucleation and condensation. In the case of acetylene aerosols, the infrared spectra suggest that the particles exist in the high temperature cubic phase of the solid.

  16. Three-dimensional dust aerosol distribution and extinction climatology over northern Africa simulated with the ALADIN numerical prediction model from 2006 to 2010

    NASA Astrophysics Data System (ADS)

    Mokhtari, M.; Tulet, P.; Fischer, C.; Bouteloup, Y.; Bouyssel, F.; Brachemi, O.

    2015-08-01

    The seasonal cycle and optical properties of mineral dust aerosols in northern Africa were simulated for the period from 2006 to 2010 using the numerical atmospheric model ALADIN (Aire Limitée Adaptation dynamique Développement InterNational) coupled to the surface scheme SURFEX (SURFace EXternalisée). The particularity of the simulations is that the major physical processes responsible for dust emission and transport, as well as radiative effects, are taken into account on short timescales and at mesoscale resolution. The aim of these simulations is to quantify the dust emission and deposition, locate the major areas of dust emission and establish a climatology of aerosol optical properties in northern Africa. The mean monthly aerosol optical thickness (AOT) simulated by ALADIN is compared with the AOTs derived from the standard Dark Target (DT) and Deep Blue (DB) algorithms of the Aqua-MODIS (MODerate resolution Imaging Spectroradiometer) products over northern Africa and with a set of sun photometer measurements located at Banizoumbou, Cinzana, Soroa, Mbour and Cape Verde. The vertical distribution of dust aerosol represented by extinction profiles is also analysed using CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) observations. The annual dust emission simulated by ALADIN over northern Africa is 878 Tg year-1. The Bodélé Depression appears to be the main area of dust emission in northern Africa, with an average estimate of about 21.6 Tg year-1. The simulated AOTs are in good agreement with satellite and sun photometer observations. The positions of the maxima of the modelled AOTs over northern Africa match the observed positions, and the ALADIN simulations satisfactorily reproduce the various dust events over the 2006-2010 period. The AOT climatology proposed in this paper provides a solid database of optical properties and consolidates the existing climatology over this region derived from satellites, the AERONET network and regional climate

  17. Use of Cavity Ring Down Spectroscopy to Characterize Organic Acids and Aerosols Emitted in Biomass Burning

    NASA Astrophysics Data System (ADS)

    Bililign, Solomon; Fiddler, Marc; Singh, Sujeeta

    2012-02-01

    One poorly understood, but significant class of volatile organic compounds (VOC) present in biomass burning is gas-phase organic acids and inorganic acids. These acids are extremely difficult to measure because of their adsorptive nature. Particulates and aerosols are also produced during biomass burning and impact the radiation budget of the Earth and, hence, impact global climate. Use cavity ring down spectroscopy (CRD) to measure absorption cross sections for OH overtone induced photochemistry in some organic acids (acetic acid and peracetic acid) will be presented and planed measurements of optical properties of aerosols composed of mixtures of different absorbing and non-absorbing species using CRD will be discussed.

  18. Raman Lidar Measurements of Aerosol Extinction and Backscattering. Report 2; Derivation of Aerosol Real Refractive Index, Single-Scattering Albedo, and Humidification Factor using Raman Lidar and Aircraft Size Distribution

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Melfi, S. H.; Whiteman, D. N.; Evans, K. D.; Poellot, M.; Kaufman, Y. J.

    1998-01-01

    Aerosol backscattering and extinction profiles measured by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site during two nights in April 1994 are discussed. These profiles are shown to be consistent with the simultaneous aerosol size distribution measurements made by a PCASP (Passive Cavity Aerosol Spectrometer Probe) optical particle counter flown on the University of North Dakota Citation aircraft. We describe a technique which uses both lidar and PCASP measurements to derive the dependence of particle size on relative humidity, the aerosol real refractive index n, and estimate the effective single-scattering albedo Omega(sub 0). Values of n ranged between 1.4-1.5 (dry) and 1.37-1.47 (wet); Omega(sub 0) varied between 0.7 and 1.0. The single-scattering albedo derived from this technique is sensitive to the manner in which absorbing particles are represented in the aerosol mixture; representing the absorbing particles as an internal mixture rather than the external mixture assumed here results in generally higher values of Omega(sub 0). The lidar measurements indicate that the change in particle size with relative humidity as measured by the PCASP can be represented in the form discussed by Hattel with the exponent gamma = 0.3 + or - 0.05. The variations in aerosol optical and physical characteristics captured in the lidar and aircraft size distribution measurements are discussed in the context of the meteorological conditions observed during the experiment.

  19. Validation of GOMOS-Envisat vertical profiles of O3, NO2, NO3, and aerosol extinction using balloon-borne instruments and analysis of the retrievals

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Berthet, Gwenaël; Brogniez, Colette; Catoire, Valery; Fussen, Didier; Goutail, Florence; Oelhaf, Hermann; Pommereau, Jean-Pierre; Roscoe, Howard K.; Wetzel, Gerald; Chartier, Michel; Robert, Claude; Balois, Jean-Yves; Verwaerde, Christian; Auriol, Frédérique; François, Philippe; Gaubicher, Bertrand; Wursteisen, Patrick

    2008-02-01

    The UV-visible Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument onboard Envisat performs nighttime measurements of ozone, NO2, NO3 and of the aerosol extinction, using the stellar occultation method. We have conducted a validation exercise using various balloon-borne instruments in different geophysical conditions from 2002 to 2006, using GOMOS measurements performed with stars of different magnitudes. GOMOS and balloon-borne vertical columns in the middle stratosphere are in excellent agreement for ozone and NO2. Some discrepancies can appear between GOMOS and balloon-borne vertical profiles for the altitude and the amplitude of the concentration maximum. These discrepancies are randomly distributed, and no bias is detected. The accuracy of individual profiles in the middle stratosphere is 10 % for ozone and 25 % for NO2. On the other hand, the GOMOS NO3 retrieval is difficult and no direct validation can be conducted. The GOMOS aerosol content is also well estimated, but the wavelength dependence can be better estimated if the aerosol retrieval is performed only in the visible domain. We can conclude that the GOMOS operational retrieval algorithm works well and that GOMOS has fully respected its primary objective for the study of the trends of species in the middle stratosphere, using the profiles in a statistical manner. Some individual profiles can be partly inaccurate, in particular in the lower stratosphere. Improvements could be obtained by reprocessing some GOMOS transmissions in case of specific studies in the middle and lower stratosphere when using the individual profiles.

  20. Analysis of the Organic Content of Marine Aerosols with X-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pham, D.; OBrien, R. E.; Fraund, M.; Laskina, O.; Alpert, P. A.; Prather, K. A.; Knopf, D. A.; Grassian, V. H.; Moffet, R.

    2014-12-01

    The ocean is a major global source of aerosols and the seawater from which they are derived is a complex mixture of organic molecules from organisms including phytoplankton, bacteria, and viruses. Marine aerosols consist of any combination of these components and in different mixing states. The mixing state affects absorption and scattering efficiency as well as their ability to uptake water and form ice. Therefore, there is a need to spatially resolve the chemical composition of individual marine aerosols in order to study their potential effects on the climate. Scanning Transmission X-ray Microscopy coupled with Near Edge X-ray Absorption Fine Structure spectroscopy (SXTM-NEXAFS) gives both spatial resolution as well as the sensitivity to molecular transitions that is necessary to correlate a position on an aerosol with a functional group or inorganic constituent. The morphology, mixing state, and chemical composition from STXM-NEXAFS can be used in conjunction with collocated measurements (light scattering, ice nucleation, etc.) to correlate the spatially resolved chemical composition of aerosols with their physical properties. The goal of this project is to determine if there is a difference in the organic fraction between particles with clearly different morphology and mixing states. Three major classes of marine aerosols have been classified as sea salt, marine gels, and cell fragments. Sea salt is classified by having an inorganic core consisting of NaCl and a thin layer of organic coating on the outside. Marine gels consist of organic material in the form of lipids, polysaccharides, and proteins distributed throughout the aerosol alongside inorganic compounds, such as Ca2+, Mg2+, and K+, that help to stabilize the negative charge of the organic material. Cell fragments include fragments from phytoplankton and bacteria. Efforts are currently underway to quantitatively evaluate differences in NEXAFS spectra for these particle types using nonlinear least

  1. Compositional Analysis of Aerosols Using Calibration-Free Laser-Induced Breakdown Spectroscopy.

    PubMed

    Boudhib, Mohamed; Hermann, Jörg; Dutouquet, Christophe

    2016-04-01

    We demonstrate that the elemental composition of aerosols can be measured using laser-induced breakdown spectroscopy (LIBS) without any preliminary calibration with standard samples. Therefore, a nanosecond Nd:YAG laser beam was focused into a flux of helium charged with alumina aerosols of a few micrometers diameter. The emission spectrum of the laser-generated breakdown plasma was recorded with an echelle spectrometer coupled to a gated detector. The spectral features including emission from both the helium carrier gas and the Al2O3 aerosols were analyzed on the base of a partial local thermodynamic equilibrium. Thus, Boltzmann equilibrium distributions of population number densities were assumed for all plasma species except of helium atoms and ions. By analyzing spectra recorded for different delays between the laser pulse and the detector gate, it is shown that accurate composition measurements are only possible for delays ≤1 μs, when the electron density is large enough to ensure collisional equilibrium for the aerosol vapor species. The results are consistent with previous studies of calibration-free LIBS measurements of solid alumina and glass and promote compositional analysis of aerosols via laser-induced breakdown in helium. PMID:26974717

  2. Method and apparatus for aerosol particle absorption spectroscopy

    DOEpatents

    Campillo, Anthony J.; Lin, Horn-Bond

    1983-11-15

    A method and apparatus for determining the absorption spectra, and other properties, of aerosol particles. A heating beam source provides a beam of electromagnetic energy which is scanned through the region of the spectrum which is of interest. Particles exposed to the heating beam which have absorption bands within the band width of the heating beam absorb energy from the beam. The particles are also illuminated by light of a wave length such that the light is scattered by the particles. The absorption spectra of the particles can thus be determined from an analysis of the scattered light since the absorption of energy by the particles will affect the way the light is scattered. Preferably the heating beam is modulated to simplify the analysis of the scattered light. In one embodiment the heating beam is intensity modulated so that the scattered light will also be intensity modulated when the particles absorb energy. In another embodiment the heating beam passes through an interferometer and the scattered light reflects the Fourier Transform of the absorption spectra.

  3. Determination of the biogenic secondary organic aerosol fraction in the boreal forest by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Finessi, E.; Decesari, S.; Paglione, M.; Giulianelli, L.; Carbone, C.; Gilardoni, S.; Fuzzi, S.; Saarikoski, S.; Raatikainen, T.; Hillamo, R.; Allan, J.; Mentel, Th. F.; Tiitta, P.; Laaksonen, A.; Petäjä, T.; Kulmala, M.; Worsnop, D. R.; Facchini, M. C.

    2012-01-01

    The study investigates the sources of fine organic aerosol (OA) in the boreal forest, based on measurements including both filter sampling (PM1) and online methods and carried out during a one-month campaign held in Hyytiälä, Finland, in spring 2007. Two aerosol mass spectrometers (Q-AMS, ToF-AMS) were employed to measure on-line concentrations of major non-refractory aerosol species, while the water extracts of the filter samples were analyzed by nuclear magnetic resonance (NMR) spectroscopy for organic functional group characterization of the polar organic fraction of the aerosol. AMS and NMR spectra were processed separately by non-negative factorization algorithms, in order to apportion the main components underlying the submicrometer organic aerosol composition and depict them in terms of both mass fragmentation patterns and functional group compositions. The NMR results supported the AMS speciation of oxidized organic aerosol (OOA) into two main fractions, which could be generally labelled as more and less oxidized organics. The more oxidized component was characterized by a mass spectrum dominated by the m/z 44 peak, and in parallel by a NMR spectrum showing aromatic and aliphatic backbones highly substituted with oxygenated functional groups (carbonyls/carboxyls and hydroxyls). Such component, contributing on average 50% of the OA mass throughout the observing period, was associated with pollution outbreaks from the Central Europe. The less oxidized component was enhanced in concomitance with air masses originating from the North-to-West sector, in agreement with previous investigations conducted at this site. NMR factor analysis was able to separate two distinct components under the less oxidized fraction of OA. One of these NMR-factors was associated with the formation of terrestrial biogenic secondary organic aerosol (BSOA), based on the comparison with spectral profiles obtained from laboratory experiments of terpenes photo-oxidation. The second NMR

  4. Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational pure-rotational Raman lidar

    NASA Astrophysics Data System (ADS)

    Balin, I.; Serikov, I.; Bobrovnikov, S.; Simeonov, V.; Calpini, B.; Arshinov, Y.; van den Bergh, H.

    2004-10-01

    Implementation of the pure-rotational Raman (PRR) lidar method for simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients is reported. The isolation of two wavelength domains of the PRR spectrum and the suppression of the elastically scattered light is carried out by a double-grating polychromator. Experiments involving elastic backscatter from dense clouds and a solid target confirm the high level of suppression of the elastic light in the corresponding acquisition channels of the two selected PRR domains. Calibration of the temperature channel was done both by comparison with an experimentally verified atmospheric temperature model profile and by inter-comparison with radiosondes. Night-time temperature profiles with high vertical resolution were obtained up to the lower stratosphere. The PRR temperature profile combined with the water vapor mixing ratio obtained from the ro-vibrational Raman channel is used to estimate the relative humidity.

  5. Toward new techniques to measure heterogeneous oxidation of aerosol: Electrodynamic Balance-Mass Spectrometry (EDB-MS) and Aerosol X-ray Photoelectron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jacobs, M. I.; Heine, N.; Xu, B.; Davies, J. F.; Kirk, B. B.; Kostko, O.; Alayoglu, S.; Wilson, K. R.; Ahmed, M.

    2015-12-01

    The chemical composition and physical properties of aerosol can be changed via heterogeneous oxidation with the OH radical. However, the physical state of the aerosol influences the kinetics of this reaction; liquid particles with a high diffusion coefficient are expected to be well mixed and homogenously oxidized, while oxidation of solid, diffusion-limited aerosol is expected to occur primarily on the surface, creating steep chemical gradients within the particle. We are working to develop several new techniques to study the heterogeneous oxidation of different types of aerosol. We are developing a "modular" electrodynamic balance (EDB) that will enable us to study heterogeneous oxidation at aqueous interfaces using a mass-spectrometer (and potentially other detection techniques). Using a direct analysis in real time (DART) interface, preliminary droplet train measurements have demonstrated single-droplet mass spectrometry to be possible. With long reaction times in our EDB, we will be able to study heterogeneous oxidation of a wide variety of organic species in aqueous droplets. Additionally, we are working to use aerosol photoemission and velocity map imaging (VMI) to study the surface of aerosol particles as they undergo heterogeneous oxidation. With VMI, we're able to collect electrons with a 4π collection efficiency over conventional electron energy analyzers. Preliminary results looking at the ozonolysis of squalene using ultraviolet photoelectron spectroscopy (UPS) show that heterogeneous oxidation kinetic data can be extracted from photoelectron spectra. By moving to X-ray photoemission spectroscopy (XPS), we will determine elemental and chemical composition of the aerosol surface. Thus, aerosol XPS will provide information on the steep chemical gradients that form as diffusion-limited aerosol undergo heterogeneous oxidation.

  6. Condensation nuclei and aerosol-scattering extinction measurements at Mauna Loa Observatory: 1974-1985. Data report

    SciTech Connect

    Massey, D.M.; Quakenbush, T.K.; Bodhaine, B.A.

    1987-07-01

    The observatory at Mauna Loa, Hawaii measures the characteristics of surface aerosols under background conditions. The instruments provide data that are representative of the background-aerosol climatology at Mauna Loa. These data can also be used to identify potential local contamination periods. The nephelometer's light-scattering measurements show an annual cycle: a maximum in April and a minimum in November, with a variation of a factor of 5.5. The Condensation Nucleus (CN) counter shows a much smaller annual cycle: a maximum in September and a minimum in March, with a variation of a factor of 1.5. A local decrease in CN concentration occurs in August. The Angstrom exponent minimum occurs in May. This indicates larger aerosol particles within the month as compared with the remainder of the year.

  7. Vibrational Spectroscopy of Sodium Halide and Hydrogen Halide Aqueous Solutions: Application to Atmospheric Aerosol Chemistry

    NASA Astrophysics Data System (ADS)

    Levering, L. M.; Liu, D.; Allen, H. C.

    2003-12-01

    Heterogeneous reactions on the surfaces of atmospheric aerosols play an important role in atmospheric chemistry. These reactions are capable of converting alkyl and hydrogen halides (common constituents of marine boundary aerosols) into active halogen compounds. Fundamental questions still remain concerning surface species and reaction mechanisms pertaining to marine boundary aerosols. The first step in beginning to understand these heterogeneous reactions is to determine how ions in solution affect the structure of water at the interface. Vibrational sum frequency generation spectroscopy is used to examine the air-liquid interface of sodium halide and hydrogen halide (i.e. strong acid) solutions. In addition, comparison of the bulk water structure to that of the interface is accomplished using Raman spectroscopy. The hydrogen-bonding environment at the surface of NaCl is found to be similar to that of the air-water interface. In contrast, the interfacial water structure of NaBr, HCl, and HBr solutions is significantly altered from that of neat water. In the bulk, NaCl, NaBr, HCl, and HBr solutions disturb the hydrogen-bonding network of neat water. A comparison between the corresponding salts and acids show that the salts produce greater disorder (i.e. less coupling of the water symmetric stretching modes) in the bulk water structure.

  8. Multi axis differential optical absorption spectroscopy (MAX-DOAS) of gas and aerosol distributions.

    PubMed

    Sinreich, R; Friess, U; Wagner, T; Platt, U

    2005-01-01

    We present and demonstrate a relatively simple algorithm, which converts a set of slant column density measurements of oxygen dimers (O4) and NO2 at several different elevation angles to determine the atmospheric aerosol extinction and the absolute concentration and mixing ratio of NO2 within the atmospheric boundary layer. In addition the height of the atmospheric boundary layer can usually be derived, also the technique can be readily extended to determine the concentration of several other trace gases including SO2, CH2O, or glyoxal. The algorithm is based on precise radiation transport modelling determination, taking into account the actual aerosol scenario as determined from the O4 measurements. The required hardware is simple encompassing essentially a miniature spectrometer, a small telescope, a pointing mechanism, and a Personal Computer (PC). Effectively the technique combines the simplicity of a passive MAX-DOAS observation with the capability of a much more complex active DOAS instrument to determine path-averaged, absolutely calibrated mixing ratios of atmospheric trace gases at relatively high accuracy. PMID:16161782

  9. Fourier transform infrared spectroscopy of size-segregated aerosol deposits on foil substrates.

    PubMed

    Hopey, Judith A; Fuller, Kirk A; Krishnaswamy, Venkataramanan; Bowdle, David; Newchurch, Michael J

    2008-05-01

    A method based on Fourier transform infrared (FTIR) double-pass transmittance spectroscopy was developed for determining functional group loading in size-segregated ambient aerosol deposits. The impactor employed for sample collection utilized rotating stages, which produced uniform particulate matter (PM) deposits on standard Al foil substrates. Each sample was analyzed without extraction using an FTIR spectrometer equipped with a reflectometer accessory. The use of the reflectometer obviated the need for infrared window materials as substrates. (NH(4))(2)SO(4) aerosol generated under laboratory conditions were used to calibrate deposit mass to the band strength of the relatively isolated nu(4) bending mode of SO(2-)(4) centered near 620 cm(-1). Atmospheric PM was sampled during the summer of 2004 in Huntsville, Ala. Sulfate concentrations determined in this initial study correlated well with measurements made by collocated EPA air samplers. PMID:18449290

  10. Laser-induced breakdown spectroscopy detection and classification of biological aerosols.

    PubMed

    Hybl, John D; Lithgow, Gregg A; Buckley, Steven G

    2003-10-01

    Laser-induced breakdown spectroscopy (LIBS) is examined as a potential method for detecting airborne biological agents. A spectrally broadband LIBS system was used for laboratory measurements on some common biological agent simulants. These measurements were compared to those of common, naturally occurring biological aerosol components (pollen and fungal spores) to determine the potential of LIBS for discriminating biological agents from natural background aerosols. A principal components analysis illustrates that linear combinations of the detected atomic lines, which are present in different ratios in each of the samples tested, can be used to discriminate biological agent simulants from other biological matter. A more sensitive, narrowband LIBS instrument was used to demonstrate the detection of single simulant (Bg) particles in the size range 1-5 microns. Ca, Mg, and Na, which are present in varying concentrations between 0.3 and 11% (by mass) in the Bg particles, were observed in single particles using LIBS. PMID:14639747

  11. Aircraft Measurements of BrO, IO, Glyoxal, NO2, H2O, O2-O2 and Aerosol Extinction Profiles in the Tropics: Comparison with Aircraft-/Ship-Based in Situ and Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Volkamer, R.; Baidar, S.; Campos, T. L.; Coburn, S.; DiGangi, J. P.; Dix, B.; Eloranta, E. W.; Koenig, T. K.; Morley, B.; Ortega, I.; Pierce, B. R.; Reeves, M.; Sinreich, R.; Wang, S.; Zondlo, M. A.; Romashkin, P. A.

    2015-01-01

    Tropospheric chemistry of halogens and organic carbon over tropical oceans modifies ozone and atmospheric aerosols, yet atmospheric models remain largely untested for lack of vertically resolved measurements of bromine monoxide (BrO), iodine monoxide (IO) and small oxygenated hydrocarbons like glyoxal (CHOCHO) in the tropical troposphere. BrO, IO, glyoxal, nitrogen dioxide (NO2), water vapor (H2O) and O2-O2 collision complexes (O4/ were measured by the University of Colorado Airborne Multi-AXis Differential Optical Absorption Spectroscopy (CU AMAXDOAS) instrument, aerosol extinction by high spectral resolution lidar (HSRL), in situ aerosol size distributions by an ultra high sensitivity aerosol spectrometer (UHSAS) and in situ H2O by vertical-cavity surface-emitting laser (VCSEL) hygrometer. Data are presented from two research flights (RF12, RF17) aboard the National Science Foundation/ National Center for Atmospheric Research Gulfstream V aircraft over the tropical Eastern Pacific Ocean (tEPO) as part of the "Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated hydrocarbons" (TORERO) project (January/February 2012). We assess the accuracy of O4 slant column density (SCD) measurements in the presence and absence of aerosols. Our O4-inferred aerosol extinction profiles at 477 nm agree within 6% with HSRL in the boundary layer and closely resemble the renormalized profile shape of Mie calculations constrained by UHSAS at low (sub-Rayleigh) aerosol extinction in the free troposphere. CU AMAX-DOAS provides a flexible choice of geometry, which we exploit to minimize the SCD in the reference spectrum (SCDREF, maximize signal-to-noise ratio) and to test the robustness of BrO, IO and glyoxal differential SCDs. The RF12 case study was conducted in pristine marine and free tropospheric air. The RF17 case study was conducted above the NOAA RV Ka'imimoana (TORERO cruise, KA-12-01) and provides independent validation data from ship-based in situ cavity

  12. Aircraft measurements of BrO, IO, glyoxal, NO2, H2O, O2-O2 and aerosol extinction profiles in the tropics: comparison with aircraft-/ship-based in situ and lidar measurements

    NASA Astrophysics Data System (ADS)

    Volkamer, R.; Baidar, S.; Campos, T. L.; Coburn, S.; DiGangi, J. P.; Dix, B.; Eloranta, E. W.; Koenig, T. K.; Morley, B.; Ortega, I.; Pierce, B. R.; Reeves, M.; Sinreich, R.; Wang, S.; Zondlo, M. A.; Romashkin, P. A.

    2015-05-01

    Tropospheric chemistry of halogens and organic carbon over tropical oceans modifies ozone and atmospheric aerosols, yet atmospheric models remain largely untested for lack of vertically resolved measurements of bromine monoxide (BrO), iodine monoxide (IO) and small oxygenated hydrocarbons like glyoxal (CHOCHO) in the tropical troposphere. BrO, IO, glyoxal, nitrogen dioxide (NO2), water vapor (H2O) and O2-O2 collision complexes (O4) were measured by the University of Colorado Airborne Multi-AXis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument, aerosol extinction by high spectral resolution lidar (HSRL), in situ aerosol size distributions by an ultra high sensitivity aerosol spectrometer (UHSAS) and in situ H2O by vertical-cavity surface-emitting laser (VCSEL) hygrometer. Data are presented from two research flights (RF12, RF17) aboard the National Science Foundation/National Center for Atmospheric Research Gulfstream V aircraft over the tropical Eastern Pacific Ocean (tEPO) as part of the "Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated hydrocarbons" (TORERO) project (January/February 2012). We assess the accuracy of O4 slant column density (SCD) measurements in the presence and absence of aerosols. Our O4-inferred aerosol extinction profiles at 477 nm agree within 6% with HSRL in the boundary layer and closely resemble the renormalized profile shape of Mie calculations constrained by UHSAS at low (sub-Rayleigh) aerosol extinction in the free troposphere. CU AMAX-DOAS provides a flexible choice of geometry, which we exploit to minimize the SCD in the reference spectrum (SCDREF, maximize signal-to-noise ratio) and to test the robustness of BrO, IO and glyoxal differential SCDs. The RF12 case study was conducted in pristine marine and free tropospheric air. The RF17 case study was conducted above the NOAA RV Ka'imimoana (TORERO cruise, KA-12-01) and provides independent validation data from ship-based in situ cavity

  13. Radial inhomogeneities in particle composition of single, levitated aerosol particles observed by Mie resonance spectroscopy (Invited)

    NASA Astrophysics Data System (ADS)

    Krieger, U. K.; Steimer, S.; Lienhard, D.; Bastelberger, S.

    2013-12-01

    Recent observations have indicated that organic aerosol particles in the atmosphere may exist in an amorphous semi-solid or even solid (i.e. glassy) state, e.g. [1]. The influence of highly viscous and glassy states on the timescale of aerosol particle equilibration with respect to water vapor have been investigated for some model systems of atmospheric aerosol, e.g. [2,3]. In particular, it has been shown that the kinetics of the water absorption/desorption process is controlled entirely by liquid-phase diffusion of water molecules for a highly viscous aerosol particle. A liquid phase diffusion model based on numerically solving the non-linear diffusion equation predicts strong internal gradients in water concentration when condensed phase diffusion impedes the water uptake from the gas phase [2]. Here we observe and quantify the internal concentration gradients in single, levitated, micron size aerosol particles of aqueous MBTCA (3-methyl-1,2,3-Butanetricarboxylic acid) and shikimic acid using elastic Mie resonance spectroscopy. A single, aqueous particle is levitated in an electro-dynamic balance (for details see [2]), dried for several days at room temperature, cooled to the target temperature and exposed to a rapid change in relative humidity. In addition to measuring the elastically backscattered light of a 'white light ' LED source and recording the full spectrum with a spectrograph as in [2], we use a tunable diode laser (TDL) to scan high resolution TE- and TM spectra. This combination allows observing various Mie resonance mode orders simultaneously. Since we perform the experiment at low temperatures and low humidities the changes in the Mie-spectra due to water uptake are sufficiently slow to resolve the kinetics. Experimental Mie resonance spectra are inverted to concentration profiles of water within the particle by applying the numerical diffusion model [2] in conjunction with Mie calculations of multilayered spheres [4]. Potential implications for

  14. Inhomogeneities in particle composition of single, levitated aerosol particles observed by Mie resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Krieger, Ulrich; Lienhard, Daniel; Bastelberger, Sandra; Steimer, Sarah

    2014-05-01

    Recent observations have indicated that organic aerosol particles in the atmosphere may exist in an amorphous semi-solid or even solid (i.e. glassy) state, e.g. [1]. The influence of highly viscous and glassy states on the timescale of aerosol particle equilibration with respect to water vapor have been investigated for some model systems of atmospheric aerosol, e.g. [2,3]. In particular, it has been shown that the kinetics of the water absorption/desorption process is controlled entirely by liquid-phase diffusion of water molecules for a highly viscous aerosol particle. A liquid phase diffusion model based on numerically solving the non-linear diffusion equation predicts strong internal gradients in water concentration when condensed phase diffusion impedes the water uptake from the gas phase [2]. Here we observe and quantify the internal concentration gradients in single, levitated, micron size aerosol particles of aqueous shikimic acid using elastic Mie resonance spectroscopy. A single, aqueous particle is levitated in an electro-dynamic balance (for details see [2]), dried for several days at room temperature, cooled to the target temperature and exposed to a rapid change in relative humidity. In addition to measuring the elastically backscattered light of a "white light" LED source and recording the full spectrum with a spectrograph as in [2], we use a tunable diode laser (TDL) to scan high resolution TE- and TM spectra. This combination allows observing various Mie resonance mode orders simultaneously. Since we perform the experiment at low temperatures and low humidities the changes in the Mie-spectra due to water uptake are sufficiently slow to resolve the kinetics. Experimental Mie resonance spectra are inverted to concentration profiles of water within the particle by applying the numerical diffusion model [2] in conjunction with Mie calculations of multilayered spheres [4]. [1] A. Virtanen et al. (2010): An amorphous solid state of biogenic secondary

  15. Experimental correlations for transient soot measurement in diesel exhaust aerosol with light extinction, electrical mobility and diffusion charger sensor techniques

    NASA Astrophysics Data System (ADS)

    Bermúdez, Vicente; Pastor, José V.; López, J. Javier; Campos, Daniel

    2014-06-01

    A study of soot measurement deviation using a diffusion charger sensor with three dilution ratios was conducted in order to obtain an optimum setting that can be used to obtain accurate measurements in terms of soot mass emitted by a light-duty diesel engine under transient operating conditions. The paper includes three experimental phases: an experimental validation of the measurement settings in steady-state operating conditions; evaluation of the proposed setting under the New European Driving Cycle; and a study of correlations for different measurement techniques. These correlations provide a reliable tool for estimating soot emission from light extinction measurement or from accumulation particle mode concentration. There are several methods and correlations to estimate soot concentration in the literature but most of them were assessed for steady-state operating points. In this case, the correlations are obtained by more than 4000 points measured in transient conditions. The results of the new two correlations, with less than 4% deviation from the reference measurement, are presented in this paper.

  16. Quantitative analysis of liquids from aerosols and microdrops using laser induced breakdown spectroscopy.

    PubMed

    Cahoon, Erica M; Almirall, Jose R

    2012-03-01

    Laser induced breakdown spectroscopy (LIBS) is shown to be capable of low volume (90 pL) quantitative elemental analysis of picogram amounts of dissolved metals in solutions. Single-pulse and collinear double-pulse LIBS were investigated using a 532 nm dual head laser coupled to a spectrometer with an intensified charge coupled device (CCD) detector. Aerosols were produced using a micronebulizer, conditioned inside a concentric spray chamber, and released through an injector tube with a diameter of 1 mm such that a LIBS plasma could be formed ~2 mm from the exit of the tube. The emissions from both the aerosols and a single microdrop were then collected with a broadband high resolution spectrometer. Multielement calibration solutions were prepared, and continuing calibration verification (CCV) standards were analyzed for both aerosol and microdrop systems to calculate the precision, accuracy, and limits of detection for each system. The calibration curves produced correlation coefficients with R(2) values > 0.99 for both systems. The precision, accuracy, and limit of detection (LOD) determined for aerosol LIBS were averaged and determined for the emission lines of Sr II (421.55 nm), Mg II (279.80 nm), Ba II (493.41 nm), and Ca II (396.84 nm) to be ~3.8% RSD, 3.1% bias, 0.7 μg/mL, respectively. A microdrop dispenser was used to deliver single drops containing 90 pL into the space where a LIBS plasma was generated with a focused laser pulse. In the single drop microdrop LIBS experiment, the analysis of a single drop, containing a total mass of 45 pg, resulted in a precision of 13% RSD and a bias of 1% for the Al I (394.40 nm) emission line. The absolute limits of detection of single drop microdrop LIBS for the emission lines Al I (394.40 nm) and Sr II (421.5 nm) were approximately 1 pg, and Ba II (493.41 nm) produced an absolute detection limit of approximately 3 pg. Overall, the precision, accuracy, and absolute LOD determined for single microdrop LIBS resulted in

  17. Prediction Of Organic Aerosol Volatility And Unidentified Functional Group Concentrations From Fourier Transform Infrared (FTIR) Spectroscopy Measurements

    NASA Astrophysics Data System (ADS)

    Ruggeri, G.; Shipley, S.; Henderson, B. H.; Takahama, S.

    2014-12-01

    Fourier Transform Infrared (FTIR) spectroscopy is used to measure the functional group composition of organic aerosols (Russell et al., 2011). However, certain functional groups are not directly detected by FTIR spectroscopy, either due to fundamental limitations of the technique (e.g. tertiary carbons), or specific limitations of commonly employed methods of sample collection and analysis (e.g. ester and ether groups, Takahama et al., 2013). In addition, FTIR does not probe the size of molecules comprising an organic aerosol mixture, which prevents the direct calculation of organic aerosol volatility from FTIR measurements. In this study, primary organic aerosol concentrations in mixtures corresponding to different ambient scenarios have been extracted from previous GC-MS studies (Rogge et al., 1993). Secondary organic aerosol concentrations for different scenarios are simulated with an explicit chemistry model (Master Chemical Mechanism, http://mcm.leeds.ac.uk/MCM ; Jerkin et al. 1997; Saunders et al., 2003; Jerkin et al., 2003) and partitioning model (SIMPOL.1, Pankow et al., 2008). For each of the different scenarios the concentrations of functional groups that are typically accessible by FTIR are calculated and analyzed in relation to the extra information not easily accessible by FTIR (e.g. volatility, tertiary carbons, ester and ether). The ability to predict the unknown quantities from FTIR measurements and thereby reduce the uncertainty in OM concentrations and OM/OC ratios measured by FTIR is examined and discussed.

  18. Investigating hygroscopic behavior and phase separation of organic/inorganic mixed phase aerosol particles with FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Zawadowicz, M. A.; Cziczo, D. J.

    2013-12-01

    Atmospheric aerosol particles can be composed of inorganic salts, such as ammonium sulfate and sodium chloride, and therefore exhibit hygroscopic properties. Many inorganic salts have very well-defined deliquescence and efflorescence points at which they take up and lose water, respectively. For example, the deliquescence relative humidity of pure ammonium sulfate is about 80% and its efflorescence point is about 35%. This behavior of ammonium sulfate is important to atmospheric chemistry because some reactions, such as the hydrolysis of nitrogen pentoxide, occur on aqueous but not crystalline surfaces. Deliquescence and efflorescence of simple inorganic salt particles have been investigated by a variety of methods, such as IR spectroscopy, tandem mobility analysis and electrodynamic balance. Field measurements have shown that atmospheric aerosol are not typically a single inorganic salt, instead they often contain organic as well as inorganic species. Mixed inorganic/organic aerosol particles, while abundant in the atmosphere, have not been studied as extensively. Many recent studies have focused on microscopy techniques that require deposition of the aerosol on a glass slide, possibly changing its surface properties. This project investigates the deliquescence and efflorescence points, phase separation and ability to exchange gas-phase components of mixed organic and inorganic aerosol using a flow tube coupled with FTIR spectroscopy. Ammonium sulfate aerosol mixed with organic polyols with different O:C ratios, including glycerol, 1,2,6-hexanetriol, 1,4-butanediol and 1,5-pentanediol have been investigated. This project aims to study gas-phase exchange in these aerosol systems to determine if exchange is impacted when phase separation occurs.

  19. Inversion of tropospheric profiles of aerosol extinction and HCHO and NO2 mixing ratios from MAX-DOAS observations in Milano during the summer of 2003 and comparison with independent data sets

    NASA Astrophysics Data System (ADS)

    Wagner, T.; Beirle, S.; Brauers, T.; Deutschmann, T.; Frieß, U.; Hak, C.; Halla, J. D.; Heue, K. P.; Junkermann, W.; Li, X.; Platt, U.; Pundt-Gruber, I.

    2011-12-01

    We present aerosol and trace gas profiles derived from MAX-DOAS observations. Our inversion scheme is based on simple profile parameterisations used as input for an atmospheric radiative transfer model (forward model). From a least squares fit of the forward model to the MAX-DOAS measurements, two profile parameters are retrieved including integrated quantities (aerosol optical depth or trace gas vertical column density), and parameters describing the height and shape of the respective profiles. From these results, the aerosol extinction and trace gas mixing ratios can also be calculated. We apply the profile inversion to MAX-DOAS observations during a measurement campaign in Milano, Italy, September 2003, which allowed simultaneous observations from three telescopes (directed to north, west, south). Profile inversions for aerosols and trace gases were possible on 23 days. Especially in the middle of the campaign (17-20 September 2003), enhanced values of aerosol optical depth and NO2 and HCHO mixing ratios were found. The retrieved layer heights were typically similar for HCHO and aerosols. For NO2, lower layer heights were found, which increased during the day. The MAX-DOAS inversion results are compared to independent measurements: (1) aerosol optical depth measured at an AERONET station at Ispra; (2) near-surface NO2 and HCHO (formaldehyde) mixing ratios measured by long path DOAS and Hantzsch instruments at Bresso; (3) vertical profiles of HCHO and aerosols measured by an ultra light aircraft. Depending on the viewing direction, the aerosol optical depths from MAX-DOAS are either smaller or larger than those from AERONET observations. Similar comparison results are found for the MAX-DOAS NO2 mixing ratios versus long path DOAS measurements. In contrast, the MAX-DOAS HCHO mixing ratios are generally higher than those from long path DOAS or Hantzsch instruments. The comparison of the HCHO and aerosol profiles from the aircraft showed reasonable agreement with

  20. Inversion of tropospheric profiles of aerosol extinction and HCHO and NO2 mixing ratios from MAX-DOAS observations in Milano during the summer of 2003 and comparison with independent data sets

    NASA Astrophysics Data System (ADS)

    Wagner, T.; Beirle, S.; Brauers, T.; Deutschmann, T.; Frieß, U.; Hak, C.; Halla, J. D.; Heue, K. P.; Junkermann, W.; Li, X.; Platt, U.; Pundt-Gruber, I.

    2011-06-01

    We present aerosol and trace gas profiles derived from MAX-DOAS observations. Our inversion scheme is based on simple profile parameterisations used as input for an atmospheric radiative transfer model (forward model). From a least squares fit of the forward model to the MAX-DOAS measurements, two profile parameters are retrieved including integrated quantities (aerosol optical depth or trace gas vertical column density), and parameters describing the height and shape of the respective profiles. From these results, the aerosol extinction and trace gas mixing ratios can also be calculated. We apply the profile inversion to MAX-DOAS observations during a measurement campaign in Milano, Italy, September 2003, which allowed simultaneous observations from three telescopes (directed to north, west, south). Profile inversions for aerosols and trace gases were possible on 23 days. Especially in the middle of the campaign (17-20 September 2003), enhanced values of aerosol optical depth and NO2 and HCHO mixing ratios were found. The retrieved layer heights were typically similar for HCHO and aerosols. For NO2, lower layer heights were found, which increased during the day. The MAX-DOAS inversion results are compared to independent measurements: (1) aerosol optical depth measured at an AERONET station at Ispra; (2) near-surface NO2 and HCHO (formaldehyde) mixing ratios measured by long path DOAS and Hantzsch instruments at Bresso; (3) vertical profiles of HCHO and aerosols measured by an ultra light aircraft. Depending on the viewing direction, the aerosol optical depths from MAX-DOAS are either smaller or larger than those from AERONET observations. Similar comparison results are found for the MAX-DOAS NO2 mixing ratios versus long path DOAS measurements. In contrast, the MAX-DOAS HCHO mixing ratios are generally higher than those from long path DOAS or Hantzsch instruments. The comparison of the HCHO and aerosol profiles from the aircraft showed reasonable agreement with

  1. The extinction curves of star-forming regions from z = 0.1 to 6.7 using GRB afterglow spectroscopy

    NASA Astrophysics Data System (ADS)

    Zafar, T.; Watson, D.; Fynbo, J. P. U.; Malesani, D.; Jakobsson, P.; de Ugarte Postigo, A.

    2011-08-01

    Studies of extinction curves provide insights into the properties of interstellar dust. Until recently, however, very few extinction curves existed outside the local group. GRB afterglows are well suited to extinction studies due to their brightness, simple power-law spectra and their occurrence in distant star forming galaxies. In this paper we present results from the SED analysis of a sample of 41 GRB afterglows, from X-ray to NIR wavelengths. The sample is based on spectra from VLT-FORS, with additional data primarily from Swift. This is the largest sample of extinction curves outside the Local Group and, to date, the only extragalactic sample of absolute extinction curves based on spectroscopy. Estimates of the distribution of restframe visual extinctions, the extinction curves, and the intrinsic spectral shapes of GRB afterglows are obtained. Their correlation with H i column density as well as total and gas-phase metal column density are examined. The line-of-sight gas-to-dust and metals-to-dust ratios are determined and examined as a function of total column density, ISM metallicity and redshift. The intrinsic SEDs of the afterglows show that approximately half the sample require a cooling break between the optical and X-ray ranges. The broken power-law SEDs show an average change in the spectral index of Δβ = 0.51 with a very small standard deviation of 0.02 (excluding the outlier GRB 080210). This is consistent with the expectations from a simple synchrotron model. Such a close convergence of values suggests that the X-ray afterglows of GRBs may be used with considerably more confidence to set the absolute flux level and intrinsic spectral indices in the optical and UV. Of the sample, 63% are well described by a featureless (SMC-type) extinction curve. Almost a quarter of our sample is consistent with no significant extinction (typically AV ≲ 0.1). The 2175 Å extinction bump is detected unequivocally in 7% of our sample (3 GRBs), which all have AV

  2. Note: A portable laser induced breakdown spectroscopy instrument for rapid sampling and analysis of silicon-containing aerosols

    NASA Astrophysics Data System (ADS)

    McLaughlin, R. P.; Mason, G. S.; Miller, A. L.; Stipe, C. B.; Kearns, J. D.; Prier, M. W.; Rarick, J. D.

    2016-05-01

    A portable instrument has been developed for measuring silicon-containing aerosols in near real-time using laser-induced breakdown spectroscopy (LIBS). The instrument uses a vacuum system to collect and deposit airborne particulate matter onto a translatable reel of filter tape. LIBS is used to analyze the deposited material, determining the amount of silicon-containing compounds present. In laboratory testing with pure silica (SiO2), the correlation between LIBS intensity for a characteristic silicon emission and the concentration of silica in a model aerosol was determined for a range of concentrations, demonstrating the instrument's plausibility for identifying hazardous levels of silicon-containing compounds.

  3. Note: A portable laser induced breakdown spectroscopy instrument for rapid sampling and analysis of silicon-containing aerosols.

    PubMed

    McLaughlin, R P; Mason, G S; Miller, A L; Stipe, C B; Kearns, J D; Prier, M W; Rarick, J D

    2016-05-01

    A portable instrument has been developed for measuring silicon-containing aerosols in near real-time using laser-induced breakdown spectroscopy (LIBS). The instrument uses a vacuum system to collect and deposit airborne particulate matter onto a translatable reel of filter tape. LIBS is used to analyze the deposited material, determining the amount of silicon-containing compounds present. In laboratory testing with pure silica (SiO2), the correlation between LIBS intensity for a characteristic silicon emission and the concentration of silica in a model aerosol was determined for a range of concentrations, demonstrating the instrument's plausibility for identifying hazardous levels of silicon-containing compounds. PMID:27250478

  4. Vertical profiles of aerosol volume from high-spectral-resolution infrared transmission measurements. I. Methodology.

    PubMed

    Eldering, A; Irion, F W; Chang, A Y; Gunson, M R; Mills, F P; Steele, H M

    2001-06-20

    The wavelength-dependent aerosol extinction in the 800-1250-cm(-1) region has been derived from ATMOS (atmospheric trace molecule spectroscopy) high-spectral-resolution IR transmission measurements. Using models of aerosol and cloud extinction, we have performed weighted nonlinear least-squares fitting to determine the aerosol-volume columns and vertical profiles of stratospheric sulfate aerosol and cirrus cloud volume. Modeled extinction by use of cold-temperature aerosol optical constants for a 70-80% sulfuric-acid-water solution shows good agreement with the measurements, and the derived aerosol volumes for a 1992 occultation are consistent with data from other experiments after the eruption of Mt. Pinatubo. The retrieved sulfuric acid aerosol-volume profiles are insensitive to the aerosol-size distribution and somewhat sensitive to the set of optical constants used. Data from the nonspherical cirrus extinction model agree well with a 1994 mid-latitude measurement indicating the presence of cirrus clouds at the tropopause. PMID:18357329

  5. Applications of optical spectroscopy and stable isotope analyses to organic aerosol source discrimination in an urban area

    NASA Astrophysics Data System (ADS)

    Mladenov, N.; Alados-Arboledas, L.; Olmo, F. J.; Lyamani, H.; Delgado, A.; Molina, A.; Reche, I.

    2011-02-01

    Understanding the chemical character of organic aerosols is extremely important for evaluating their role in climate forcing and human respiratory health. Aerosol columnar properties retrieved by sun photometry represent a large dataset of information about the physical and light absorbing and scattering properties of the total aerosol, but lack more detailed chemical information about the organic fraction of atmospheric particulate matter. To obtain additional information about relationships between organic aerosol sources and columnar properties, we simultaneously examined stable isotope properties of PM 10 aerosols from urban (Granada, Spain) and remote (Sierra Nevada, Spain) sites and diesel exhaust, spectroscopic properties of water soluble organic carbon (WSOC) of PM 10 aerosols, and sun photometry measurements. We demonstrated that C and N stable isotopes and parameters from UV-vis and fluorescence spectroscopy are able to discriminate between aerosols receiving substantial fossil fuel pollution and those influenced by Saharan dust in an urban area. More depleted δ 13C was associated with low asymmetry parameter, g λ, and high values of the spectral slope ratio, S R, were associated with high effective radius, typical of pollution situations. The humification index (HIX), used predominantly to evaluate the degree of organic matter humification, was significantly related to g λ and the radius of fine mode particles, r f, and may reflect aging of the Saharan dust-influenced aerosols. Parallel factor analysis (PARAFAC) modeling identified a fluorescent component (C3) with a spectrum similar to that of naphthalene, which was significantly related to g λ and r f. The diesel exhaust sample represented a pollution end-member, with the lightest δ 13C value (-26.4‰), lowest S R (0.95), lowest HIX (2.77) and highest %C3 (20%) of all samples.

  6. [Characteristics and Parameterization for Atmospheric Extinction Coefficient in Beijing].

    PubMed

    Chen, Yi-na; Zhao, Pu-sheng; He, Di; Dong, Fan; Zhao, Xiu-juan; Zhang, Xiao-ling

    2015-10-01

    In order to study the characteristics of atmospheric extinction coefficient in Beijing, systematic measurements had been carried out for atmospheric visibility, PM2.5 concentration, scattering coefficient, black carbon, reactive gases, and meteorological parameters from 2013 to 2014. Based on these data, we compared some published fitting schemes of aerosol light scattering enhancement factor [ f(RH)], and discussed the characteristics and the key influence factors for atmospheric extinction coefficient. Then a set of parameterization models of atmospheric extinction coefficient for different seasons and different polluted levels had been established. The results showed that aerosol scattering accounted for more than 94% of total light extinction. In the summer and autumn, the aerosol hygroscopic growth caused by high relative humidity had increased the aerosol scattering coefficient by 70 to 80 percent. The parameterization models could reflect the influencing mechanism of aerosol and relative humidity upon ambient light extinction, and describe the seasonal variations of aerosol light extinction ability. PMID:26841588

  7. Laboratory Studies of Model Stratospheric Aerosol Films Using Fourier Transform Infrared Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Middlebrook, Ann Marie

    Heterogeneous chemistry plays an important role in the balance of stratospheric ozone. Although the chemical composition and phase of stratospheric aerosols affect their heterogeneous reactivity, these quantities have not been firmly established. Stratospheric sulfate aerosols (SSAs), found globally, are composed of mixtures of sulfuric acid and water. Type I polar stratospheric clouds (PSCs) composed of nitric acid and water can form when temperatures drop to {~}193 K, whereas Type II PSCs composed of pure ice form at or below the ice frost point ({~}189 K). This thesis focuses on using Fourier transform infrared (FTIR) spectroscopy to determine the likely composition and phase of stratospheric particles by examining thin nitric-acid/ice and sulfuric-acid/water films representative of polar and global stratospheric aerosols, respectively. First, we measured the composition of FTIR-characterized nitric-acid/ice films using mass spectrometry. Results confirmed the infrared assignments of nitric acid monohydrate (NAM), dihydrate (NAD), and amorphous HNO_3 /H_2O films. We also observed two infrared spectra for nitric acid trihydrate ( alpha- and beta-NAT). Using optical interference measurements at lambda = 632 nm, we obtained the real refractive indices for amorphous H_2O/HNO_3 (from 1.31 for dilute HNO_3 to 1.49 for pure HNO_3), NAM (1.53), alpha-NAT (1.51), beta -NAT (>=1.46), and ice (1.30) films. We then performed cooling experiments to determine which nitric-acid/ice might form in the stratosphere. Under stratospheric water and nitric acid partial pressures, either amorphous 3:1 H_2O:HNO _3 or beta-NAT films formed at temperatures above the ice frost point. Other experiments indicated that beta-NAT is the most stable nitric acid hydrate under stratospheric conditions. Thus we believe that Type I PSCs are composed of beta-NAT crystals. To mimic phase changes of SSAs, we subjected liquid sulfuric acid films to temperature cycles in the presence of water. While

  8. Multiple Scattering in Transit Transmission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Misra, Amit; Meadows, V.; Crisp, D.

    2014-01-01

    Exoplanet transit transmission spectroscopy is a powerful tool that has been used to characterize Jupiter and Neptune-sized transiting exoplanets, and a Super-Earth/Mini-Neptune. Because of the flat and featureless spectra for many of these planets, a large number of exoplanets are thought to have cloud or aerosol haze layers in their atmospheres. Clouds and aerosols lead to extinction of flux, but can also scatter photons into the beam to a distant observer. Most transit transmission spectroscopy models include extinction from cloud and aerosol particles, but do not include the effects of directional and multiple scattering from these particles. We have updated an existing transit transmission spectroscopy model to include a backwards Monte Carlo ray tracing scheme that simulates directional and multiple scattering from cloud and aerosol particles. For the paths which connect the host star to a distant observer, we generate a transit transmission spectrum using the calculated paths. We have run simulations for scattering functions ranging from isotropic to strongly forward scattering. We vary the optical depth from optically thin (max transmission of 10% on limb) to very optically thick (max transmission of 0.1%) and the particle vertical distribution from homogeneously distributed in the atmosphere to over a only one layer of the model atmosphere. We find that for a particle layer that is optically thin and confined to a narrow vertical extent, multiple scattering can lead to significant decreases in planetary absorption by nearly 30% when compared to model results with only extinction from clouds and aerosols.

  9. Characterization of atmospheric aerosols in the Adirondack Mountains using PIXE, SEM/EDX, and Micro-Raman spectroscopies

    NASA Astrophysics Data System (ADS)

    Vineyard, M. F.; LaBrake, S. M.; Ali, S. F.; Nadareski, B. J.; Safiq, A. D.; Smith, J. W.; Yoskowitz, J. T.

    2015-05-01

    We are making detailed measurements of the composition of atmospheric aerosols collected in the Adirondack Mountains as a function of particle size using proton-induced X-ray emission, scanning electron microscopy with energy-dispersive X-ray spectroscopy, and Micro-Raman spectroscopy. These measurements provide valuable data to help identify the sources and understand the transport, transformation, and effects of airborne pollutants in upstate New York. Preliminary results indicate significant concentrations of sulfur in small particles that can travel great distances, and that this sulfur may be in the form of oxides that can contribute to acid rain.

  10. Derivation of optical properties of carbonaceous aerosols by monochromated electron energy-loss spectroscopy.

    PubMed

    Zhu, Jiangtao; Crozier, Peter A; Ercius, Peter; Anderson, James R

    2014-06-01

    Monochromated electron energy-loss spectroscopy (EELS) is employed to determine the optical properties of carbonaceous aerosols from the infrared to the ultraviolet region of the spectrum. It is essential to determine their optical properties to understand their accurate contribution to radiative forcing for climate change. The influence of surface and interface plasmon effects on the accuracy of dielectric data determined from EELS is discussed. Our measurements show that the standard thin film formulation of Kramers-Kronig analysis can be employed to make accurate determination of the dielectric function for carbonaceous particles down to about 40 nm in size. The complex refractive indices of graphitic and amorphous carbon spherules found in the atmosphere were determined over the wavelength range 200-1,200 nm. The graphitic carbon was strongly absorbing black carbon, whereas the amorphous carbon shows a more weakly absorbing brown carbon profile. The EELS approach provides an important tool for exploring the variation in optical properties of atmospheric carbon. PMID:24735494

  11. Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy

    NASA Astrophysics Data System (ADS)

    Panne, U.; Neuhauser, R. E.; Theisen, M.; Fink, H.; Niessner, R.

    2001-06-01

    Particulate heavy metals can lead to severe toxic and carcinogenic effects in humans when inhaled in higher concentrations. For the development of a quasi-continuous emission monitor based on automatic filter sampling on a filter band, laser-induced plasma spectroscopy (LIPS) was studied for analysis of heavy metal aerosols on quartz fiber filters. The system consists of a 19-inch laser and detector module connected to a miniaturized sensor head through fiber optics, allowing maximum flexibility of the set-up. Parameters for optimum time-resolved analysis, i.e. detection wavelength, timing and filter material, were established. The LIPS investigations were accompanied by a rigorous reference analysis based on total reflection X-ray fluorescence (TXRF) analysis. The detection limits for heavy metals (Cd, Ni, As, Co, Mn, Sb, Cr, Tl, Sn, V, Cu and Pb) on filters varied between 0.01 and approximately 0.91 μg cm -2, corresponding to volume detection limits of 0.02-2.73 μg m -3. Analysis of filter samples from waste incineration demonstrated the potential of the LIPS approach. In combination with an echelle spectrometer, ambient samples from environmental monitoring could be characterized in much better detail, due to the improved detection limits and the superior spectral resolution, and spectral range of the echelle.

  12. Series cell light extinction monitor

    DOEpatents

    Novick, Vincent J.

    1990-01-01

    A method and apparatus for using the light extinction measurements from two or more light cells positioned along a gasflow chamber in which the gas volumetric rate is known to determine particle number concentration and mass concentration of an aerosol independent of extinction coefficient and to determine estimates for particle size and mass concentrations. The invention is independent of particle size. This invention has application to measurements made during a severe nuclear reactor fuel damage test.

  13. Rethinking Extinction.

    PubMed

    Dunsmoor, Joseph E; Niv, Yael; Daw, Nathaniel; Phelps, Elizabeth A

    2015-10-01

    Extinction serves as the leading theoretical framework and experimental model to describe how learned behaviors diminish through absence of anticipated reinforcement. In the past decade, extinction has moved beyond the realm of associative learning theory and behavioral experimentation in animals and has become a topic of considerable interest in the neuroscience of learning, memory, and emotion. Here, we review research and theories of extinction, both as a learning process and as a behavioral technique, and consider whether traditional understandings warrant a re-examination. We discuss the neurobiology, cognitive factors, and major computational theories, and revisit the predominant view that extinction results in new learning that interferes with expression of the original memory. Additionally, we reconsider the limitations of extinction as a technique to prevent the relapse of maladaptive behavior and discuss novel approaches, informed by contemporary theoretical advances, that augment traditional extinction methods to target and potentially alter maladaptive memories. PMID:26447572

  14. Micro-Raman Spectroscopy to Complement Proton-Induced X-Ray Emission in the Analysis of Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Safiq, Alexandrea; Ali, Salina; Nadarski, Benjamin; Smith, Jeremy; Yoskowitz, Josh; Labrake, Scott; Vineyard, Michael; Union College Team

    2013-10-01

    There is an active research program in the Union College Ion-Beam Analysis Laboratory on proton-induced X-ray emission (PIXE) analysis of atmospheric aerosols. PIXE is a powerful tool for the study of airborne pollution because it provides information on a broad range of elements simultaneously, has low detection limits, is nondestructive, does not require large samples, and the analysis can be performed in a short amount of time. However, PIXE provides only elemental information. We are investigating the use of Micro-Raman spectroscopy (MRS) to complement PIXE analysis of aerosol samples by providing chemical information. In MRS, laser light is inelastically scattered from a sample and the vibrational spectrum of the scattered light is used to identify molecules and their functional groups. We are focusing on aerosol samples collected in the Adirondack Mountains that have considerable concentrations of sulfur that may contribute to acid rain. The MRS spectra collected on aerosol samples are being compared with a library of standards to try to determine the molecular structures in which the sulfur is bound. We will describe the analysis and present preliminary results. Union College Undergraduate Research Program.

  15. New Approach for Near-Real-Time Measurement of Elemental Composition of Aerosol Using Laser-Induced Breakdown Spectroscopy

    PubMed Central

    Diwakar, Prasoon; Kulkarni, Pramod; Birch, M. Eileen

    2015-01-01

    A new approach has been developed for making near-real-time measurement of elemental composition of aerosols using plasma spectroscopy. The method allows preconcentration of miniscule particle mass (pg to ng) directly from the sampled aerosol stream through electrostatic deposition of charged particles (30–900 nm) onto a flat-tip microneedle electrode. The collected material is subsequently ablated from the electrode and monitored by laser-induced breakdown spectroscopy. Atomic emission spectra were collected using a broadband spectrometer with a wavelength range of 200–980 nm. A single-sensor delay time of 1.3 μs was used in the spectrometer for all elements to allow simultaneous measurement of multiple elements. The system was calibrated for various elements including Cd, Cr, Cu, Mn, Na, and Ti. The absolute mass detection limits for these elements were experimentally determined and found to be in the range of 0.018–5 ng. The electrostatic collection technique has many advantages over other substrate-based methods involving aerosol collection on a filter or its focused deposition using an aerodynamic lens. Because the particle mass is collected over a very small area that is smaller than the spatial extent of the laser-induced plasma, the entire mass is available for analysis. This considerably improves reliability of the calibration and enhances measurement accuracy and precision. Further, the aerosol collection technique involves very low pressure drop, thereby allowing higher sample flow rates with much smaller pumps—a desirable feature for portable instrumentation. Higher flow rates also make it feasible to measure trace element concentrations at part per trillion levels. Detection limits in the range of 18–670 ng m−3 can be achieved for most of the elements studied at a flow rate of 1.5 L min−1 with sampling times of 5 min. PMID:26692632

  16. Analysis of functional groups in atmospheric aerosols by infrared spectroscopy: sparse methods for statistical selection of relevant absorption bands

    NASA Astrophysics Data System (ADS)

    Takahama, Satoshi; Ruggeri, Giulia; Dillner, Ann M.

    2016-07-01

    Various vibrational modes present in molecular mixtures of laboratory and atmospheric aerosols give rise to complex Fourier transform infrared (FT-IR) absorption spectra. Such spectra can be chemically informative, but they often require sophisticated algorithms for quantitative characterization of aerosol composition. Naïve statistical calibration models developed for quantification employ the full suite of wavenumbers available from a set of spectra, leading to loss of mechanistic interpretation between chemical composition and the resulting changes in absorption patterns that underpin their predictive capability. Using sparse representations of the same set of spectra, alternative calibration models can be built in which only a select group of absorption bands are used to make quantitative prediction of various aerosol properties. Such models are desirable as they allow us to relate predicted properties to their underlying molecular structure. In this work, we present an evaluation of four algorithms for achieving sparsity in FT-IR spectroscopy calibration models. Sparse calibration models exclude unnecessary wavenumbers from infrared spectra during the model building process, permitting identification and evaluation of the most relevant vibrational modes of molecules in complex aerosol mixtures required to make quantitative predictions of various measures of aerosol composition. We study two types of models: one which predicts alcohol COH, carboxylic COH, alkane CH, and carbonyl CO functional group (FG) abundances in ambient samples based on laboratory calibration standards and another which predicts thermal optical reflectance (TOR) organic carbon (OC) and elemental carbon (EC) mass in new ambient samples by direct calibration of infrared spectra to a set of ambient samples reserved for calibration. We describe the development and selection of each calibration model and evaluate the effect of sparsity on prediction performance. Finally, we ascribe

  17. Infrared spectroscopy of homogeneously nucleated hydrazine aerosols - Disordered and crystalline phases. [in planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Dunder, T.; Clapp, M. L.; Miller, R. E.

    1993-01-01

    It is shown that aerosols generated at low temperatures and high condensation rate spontaneously form in a highly crystalline state. The resonant absorption bands in the IR spectra of these highly crystalline particles are much sharper than any reported previously in the bulk, and reveal details in the N-H vibrational bands that have not been previously observed. A disordered phase is also observed at somewhat higher temperatures. These results are consistent with this being a supercooled liquid. The fact that the spectra associated with these two aerosol phases are quite different is important to any future attempts at detecting hydrazine aerosols in planetary atmospheres by remote sensing techniques.

  18. Temperature dependent optical constants from aerosol spectroscopy: Applications to stratospheric clouds

    SciTech Connect

    Niedziela, R.F.; Miller, R.E.

    1996-10-01

    The refractive indices of various atmospheric condensates are of great importance in both modeling and remote sensing. In the past, data of this type was only available from thin film measurements made on substrates. The applicability of these data for the study of atmospheric aerosols has really never been tested in detail. We have developed a new approach that allows for the direction determination of frequency dependent refractive indices directly from aerosol spectra. In this paper we discuss the application of this methodology to the study of laboratory generated aerosols of interest in stratospheric heterogeneous chemistry. In particular, we report studies on water, nitric and sulfuric acid aerosols. In the latter case, we report temperature and composition dependent optical constants over the range of conditions appropriate for the stratosphere.

  19. Aerosol Extinction and Single Scattering Albedo Downwind of the Summer 2008 California Wildfires Measured With Photoacoustic Spectrometers and Sunphotometers From 355 nm to 1047 nm.

    NASA Astrophysics Data System (ADS)

    Arnott, W. P.; Gyawali, M. S.; Arnold, I. J.

    2008-12-01

    Hundreds of wildfires in Northern California were sparked by lightning during the summer of 2008, resulting in downwind smoke for much of June and July associated with the flaming and smoldering stages of the fires. These fires are consistent with a growing trend towards increasing biomass burning worldwide. Climate impacts from the smoke depend critically on the smoke amount and aerosol optical properties. We report comparison of aerosol optics measurements in Reno Nevada made during the very smoky summer month of July with the relatively clean, average month of August. Photoacoustic instruments equipped with integrating nephelometers were used to measure aerosol light scattering and absorption at wavelengths of 355 nm, 405 nm, 532 nm, 870 nm, and 1047 nm. Total aerosol optical depth was measured with a sun photometer operating at 430nm, 470nm, 530nm, 660nm, 870nm and 950nm. A spectrometer based sun photometer with an operating range from 390nm to 880 nm was also used for a few days as well. These measurements document the intensity of the smoke optical impacts downwind. They are processed further to reveal a strong variation of the aerosol light absorption on wavelength, indicating the presence of light absorbing organic material and perhaps wavelength dependent absorption caused by black carbon particles coated with organic and inorganic particulate matter. On the day with most smoke in Reno (July 10, 2008) Angstrom coefficients for absorption as high as 3.6 were found for wavelengths of 405 nm and 870 nm, with the corresponding single scattering albedo near 0.92 at 405 nm. Aerosol optical depths of 3.5 were found for 430 nm on July 10th from the sun photometer measurements. A roughly fourfold increase in aerosol optical quantities was observed between the months of July and August 2008, attesting to the large average effects of biomass aerosols from the California wildfires.

  20. Dynamic terahertz spectroscopy of gas molecules mixed with unwanted aerosol under atmospheric pressure using fibre-based asynchronous-optical-sampling terahertz time-domain spectroscopy

    PubMed Central

    Hsieh, Yi-Da; Nakamura, Shota; Abdelsalam, Dahi Ghareab; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Hindle, Francis; Yasui, Takeshi

    2016-01-01

    Terahertz (THz) spectroscopy is a promising method for analysing polar gas molecules mixed with unwanted aerosols due to its ability to obtain spectral fingerprints of rotational transition and immunity to aerosol scattering. In this article, dynamic THz spectroscopy of acetonitrile (CH3CN) gas was performed in the presence of smoke under the atmospheric pressure using a fibre-based, asynchronous-optical-sampling THz time-domain spectrometer. To match THz spectral signatures of gas molecules at atmospheric pressure, the spectral resolution was optimized to 1 GHz with a measurement rate of 1 Hz. The spectral overlapping of closely packed absorption lines significantly boosted the detection limit to 200 ppm when considering all the spectral contributions of the numerous absorption lines from 0.2 THz to 1 THz. Temporal changes of the CH3CN gas concentration were monitored under the smoky condition at the atmospheric pressure during volatilization of CH3CN droplets and the following diffusion of the volatilized CH3CN gas without the influence of scattering or absorption by the smoke. This system will be a powerful tool for real-time monitoring of target gases in practical applications of gas analysis in the atmospheric pressure, such as combustion processes or fire accident. PMID:27301319

  1. Dynamic terahertz spectroscopy of gas molecules mixed with unwanted aerosol under atmospheric pressure using fibre-based asynchronous-optical-sampling terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Hsieh, Yi-Da; Nakamura, Shota; Abdelsalam, Dahi Ghareab; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Hindle, Francis; Yasui, Takeshi

    2016-06-01

    Terahertz (THz) spectroscopy is a promising method for analysing polar gas molecules mixed with unwanted aerosols due to its ability to obtain spectral fingerprints of rotational transition and immunity to aerosol scattering. In this article, dynamic THz spectroscopy of acetonitrile (CH3CN) gas was performed in the presence of smoke under the atmospheric pressure using a fibre-based, asynchronous-optical-sampling THz time-domain spectrometer. To match THz spectral signatures of gas molecules at atmospheric pressure, the spectral resolution was optimized to 1 GHz with a measurement rate of 1 Hz. The spectral overlapping of closely packed absorption lines significantly boosted the detection limit to 200 ppm when considering all the spectral contributions of the numerous absorption lines from 0.2 THz to 1 THz. Temporal changes of the CH3CN gas concentration were monitored under the smoky condition at the atmospheric pressure during volatilization of CH3CN droplets and the following diffusion of the volatilized CH3CN gas without the influence of scattering or absorption by the smoke. This system will be a powerful tool for real-time monitoring of target gases in practical applications of gas analysis in the atmospheric pressure, such as combustion processes or fire accident.

  2. Dynamic terahertz spectroscopy of gas molecules mixed with unwanted aerosol under atmospheric pressure using fibre-based asynchronous-optical-sampling terahertz time-domain spectroscopy.

    PubMed

    Hsieh, Yi-Da; Nakamura, Shota; Abdelsalam, Dahi Ghareab; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Hindle, Francis; Yasui, Takeshi

    2016-01-01

    Terahertz (THz) spectroscopy is a promising method for analysing polar gas molecules mixed with unwanted aerosols due to its ability to obtain spectral fingerprints of rotational transition and immunity to aerosol scattering. In this article, dynamic THz spectroscopy of acetonitrile (CH3CN) gas was performed in the presence of smoke under the atmospheric pressure using a fibre-based, asynchronous-optical-sampling THz time-domain spectrometer. To match THz spectral signatures of gas molecules at atmospheric pressure, the spectral resolution was optimized to 1 GHz with a measurement rate of 1 Hz. The spectral overlapping of closely packed absorption lines significantly boosted the detection limit to 200 ppm when considering all the spectral contributions of the numerous absorption lines from 0.2 THz to 1 THz. Temporal changes of the CH3CN gas concentration were monitored under the smoky condition at the atmospheric pressure during volatilization of CH3CN droplets and the following diffusion of the volatilized CH3CN gas without the influence of scattering or absorption by the smoke. This system will be a powerful tool for real-time monitoring of target gases in practical applications of gas analysis in the atmospheric pressure, such as combustion processes or fire accident. PMID:27301319

  3. Gas Phase Spectroscopy of Cold PAH Ions: Contribution to the Interstellar Extinction and the Diffuse Interstellar Bands

    NASA Technical Reports Server (NTRS)

    Biennier, L.; Salama, F.; Allamandola, L. J.; Scherer, J. J.; OKeefe, A.

    2002-01-01

    Polycyclic Aromatic Hydrocarbon molecules (PAHs) are ubiquitous in the interstellar medium (ISM) and constitute the building blocks of interstellar dust grains. Despite their inferred important role in mediating the energetic and chemical processes in thc ISM, their exact contribution to the interstellar extinction, and in particular to the diffuse interstellar bands (DIBs) remains unclear. The DIBs are spectral absorption features observed in the line of sight of stars that are obscured by diffuse interstellar clouds. More than 200 bands have been reported to date spanning from the near UV to the near IR with bandwidths ranging from 0.4 to 40 Angstroms (Tielens & Snow 1995). The present consensus is that the DIBs arise from free flying, gas-phase, organic molecules and/or ions that are abundant under the typical conditions reigning in the diffuse ISM. PAHs have been proposed as possible carriers (Allamandola et al. 1985; Leger & DHendecourt 1985). The PAH hypothesis is consistent with the cosmic abundance of Carbon and Hydrogen and with the required photostability of the DIB carriers against the strong VUV radiation field in the diffuse interstellar clouds. A significant fraction of PAHs is expected to be ionized in the diffuse ISM.

  4. Silver-silver oxide core-shell nanoparticles by femtosecond laser ablation: core and shell sizing by extinction spectroscopy

    NASA Astrophysics Data System (ADS)

    Schinca, D. C.; Scaffardi, L. B.; Videla, F. A.; Torchia, G. A.; Moreno, P.; Roso, L.

    2009-11-01

    The generation of small silver metal nanoparticles (Nps) by ultrashort pulsed laser ablation has been an active area of research in recent years due to their interest in several fields of applied research such as biotechnology and material research, in particular those with sizes smaller than 10 nm. In general, laser ablation tends to produce environmentally clean metal Nps compared with wet chemical methods. However, since silver may be oxidized in the presence of water or ethanol, core-shell silver-silver oxide (Ag-Ag2O) Nps can be formed, whose size and thickness must be determined and characterized for functionalization related to future applications. This work analyses the size characteristics of core-shell Ag-Ag2O colloid nanostructures (smaller than 10 nm) obtained by femtosecond laser ablation of solid silver targets in different liquid media (water or ethanol) through the study of their optical extinction spectra. A fit of full experimental spectrum using Mie theory allows the determination of core size and shell thickness distributions as a function of fluence. The red-shift of the plasmon peak wavelength with respect to the bare-core peak wavelength at 400 nm, produced by the oxide shell, may be easily measured even for very small thicknesses. It was found that the dominant Ag2O effective thickness is inversely proportional to the fluence, reaching a maximum of 0.2 nm for a fluence of 60 J cm-2 and a minimum of 0.04 nm for a fluence of 1000 J cm-2.

  5. Raman Spectroscopy Techniques for the Detection of Biological Samples in Suspensions and as Aerosol Particles: A Review

    NASA Astrophysics Data System (ADS)

    Félix-Rivera, Hilsamar; Hernández-Rivera, Samuel P.

    2012-03-01

    This article reviews current scientific literature focusing on Raman spectroscopy modalities that have been successfully applied to the detection of biological samples in aqueous suspensions and in aerosols. Normal Raman, surface enhanced Raman scattering, coherent anti-stokes Raman scattering, resonance Raman and UV-Raman spectropies, allow the detection of biological samples in situ in the near field and as well as in the far field at standoff distances. Applications span from fundamental studies to applied research in areas of defense and security and in monitoring of environmental pollution. A primary focus has been placed on biological samples including bacteria, pollen, virus, and biological contents in these specimens, in suspensions, and in aerosols. Several Raman spectroscopy studies have been reviewed to show how various modalities can achieve detection in these biosystems. Current data generated by our group is also included. Necessary parameters used to accomplish the detection and data analysis, which could also be used to interpret the results and to render the methodologies robust and reliable, are discussed.

  6. Discriminating Bio-aerosols from Non-Bio-aerosols in Real-Time by Pump-Probe Spectroscopy.

    PubMed

    Sousa, Gustavo; Gaulier, Geoffrey; Bonacina, Luigi; Wolf, Jean-Pierre

    2016-01-01

    The optical identification of bioaerosols in the atmosphere and its discrimination against combustion related particles is a major issue for real-time, field compatible instruments. In the present paper, we show that by embedding advanced pump-probe depletion spectroscopy schemes in a portable instrument, it is possible to discriminate amino acid containing airborne particles (bacteria, humic particles, etc.) from poly-cyclic aromatic hydrocarbon containing combustion particles (Diesel droplets, soot, vehicle exhausts) with high selectivity. Our real-time, multi-modal device provides, in addition to the pump-probe depletion information, fluorescence spectra (over 32 channels), fluorescence lifetime and Mie scattering patterns of each individually flowing particle in the probed air. PMID:27619546

  7. [Development of a photoacoustic spectroscopy system for the measurement of absorption coefficient of atmospheric aerosols].

    PubMed

    Liu, Qiang; Niu, Ming-Sheng; Wang, Gui-Shi; Cao, Zhen-Song; Liu, Kun; Chen, Wei-Dong; Gao, Xiao-Ming

    2013-07-01

    In the present paper, the authors focus on the effect of the resonance frequency shift due to the changes in temperature and humidity on the PA signal, present several methods to control the noise derived form gas flow and vibration from the sampling pump. Based on the efforts mentioned above, a detection limit of 1.4 x 10(-8) W x cm(-1) x Hz(-1/2) was achieved for the measurement of atmospheric aerosols absorption coefficient. During the experiments, the PA cell was calibrated with the absorption of standard NO2 gas at 532 nm and the atmospheric aerosols were measured continuously. The measurement results show that the PAS is suitable for the real-time measurement of the absorption coefficient of atmospheric aerosols in their natural suspended state. PMID:24059163

  8. Light extinction in the atmosphere

    SciTech Connect

    Laulainen, N.

    1992-06-01

    Atmospheric aerosol particles originating from natural sources, such as volcanos and sulfur-bearing gas emissions from the oceans, and from human sources, such as sulfur emissions from fossil fuel combustion and biomass burning, strongly affect visual air quality and are suspected to significantly affect radiative climate forcing of the planet. During the daytime, aerosols obscure scenic vistas, while at night they diminish our ability to observe stellar objects. Scattering of light is the main means by which aerosols attenuate and redistribute light in the atmosphere and by which aerosols can alter and reduce visibility and potentially modify the energy balance of the planet. Trends and seasonal variability of atmospheric aerosol loading, such as column-integrated light extinction or optical depth, and how they may affect potential climate change have been difficult to quantify because there have been few observations made of important aerosol optical parameters, such as optical depth, over the globe and over time and often these are of uneven quality. To address questions related to possible climate change, there is a pressing need to acquire more high-quality aerosol optical depth data. Extensive deployment of improved solar radiometers over the next few years will provide higher-quality extinction data over a wider variety of locations worldwide. An often overlooked source of turbidity data, however, is available from astronomical observations, particularly stellar photoelectric photometry observations. With the exception of the Project ASTRA articles published almost 20 years ago, few of these data ever appear in the published literature. This paper will review the current status of atmospheric extinction observations, as highlighted by the ASTRA work and augmented by more recent solar radiometry measurements.

  9. ALE: Astronomical LIDAR for Extinction

    NASA Astrophysics Data System (ADS)

    Zimmer, Peter C.; McGraw, J. T.; Gimmestad, G.; Roberts, D.; Stewart, J.; Dawsey, M.; Fitch, J.; Smith, J.; Townsend, A.; Black, B.

    2006-12-01

    The primary impediment to precision all-sky photometry is the scattering or absorption of incoming starlight by the aerosols suspended in, and the molecules of, the Earth's atmosphere. The University of New Mexico (UNM) and the Georgia Tech Research Institute (GTRI) are currently developing the Astronomical LIDAR (LIght Detection And Ranging) for Extinction (ALE), which is undergoing final integration and initial calibration at UNM. ALE is based upon a 527nm laser operated at a pulse repetition rate of 1500 pps, and rendered eyesafe by expanding its beam through a 32cm diameter transmitter. The alt-az mounted ALE will operate in multiple modes, including mapping the sky to obtain a quantitative measurement of extinction sources, measuring a monochromatic extinction coefficient by producing Langely plots, and monitoring extinction in the direction in which a telescope is observing. A primary goal is to use the Rayleigh scattered LIDAR return from air above 20km as a quasi-constant illumination source. Air above this altitude is generally free from aerosols and the variations in density are relatively constant over intervals of a few minutes. When measured at several zenith angles, the integrated line-of-sight extinction can be obtained from a simple model fit of these returns. The 69 microjoule exit pulse power and 0.6m aperture receiver will allow ALE to collect approximately one million photons per minute from above 20km, enough to enable measurements of the monochromatic vertical extinction to better than 1% under photometric conditions. Along the way, ALE will also provide a plethora of additional information about the vertical and horizontal distributions of low-lying aerosols, dust or smoke in the free troposphere, and high cirrus, as well as detect the passage of boundary layer atmospheric gravity waves. This project is funded by NSF Grant 0421087.

  10. Comparison of Aerosol Classification From Airborne High Spectral Resolution Lidar and the CALIPSO Vertical Feature Mask

    NASA Technical Reports Server (NTRS)

    Burton, Sharon P.; Ferrare, Rich A.; Omar, Ali H.; Vaughan, Mark A.; Rogers, Raymond R.; Hostetler, Chris a.; Hair, Johnathan W.; Obland, Michael D.; Butler, Carolyn F.; Cook, Anthony L.; Harper, David B.

    2012-01-01

    Knowledge of aerosol composition and vertical distribution is crucial for assessing the impact of aerosols on climate. In addition, aerosol classification is a key input to CALIOP aerosol retrievals, since CALIOP requires an inference of the lidar ratio in order to estimate the effects of aerosol extinction and backscattering. In contrast, the NASA airborne HSRL-1 directly measures both aerosol extinction and backscatter, and therefore the lidar ratio (extinction-to-backscatter ratio). Four aerosol intensive properties from HSRL-1 are combined to infer aerosol type. Aerosol classification results from HSRL-1 are used here to validate the CALIOP aerosol type inferences.

  11. Discrimination and classification of bio-aerosol particles using optical spectroscopy and scattering

    NASA Astrophysics Data System (ADS)

    Eversole, Jay D.

    2011-03-01

    For more than a decade now, there has been significant emphasis for development of sensors of agent aerosols, especially for biological warfare (BW) agents. During this period, the Naval Research Laboratory (NRL) and other labs have explored the application of optical and spectroscopic methods relevant to biological composition discrimination to aerosol particle characterization. I will first briefly attempt to establish the connection between sensor performance metrics which are statistically determined, and aerosol particle measurements through the use of computational models, and also describe the challenge of ambient background characterization that would be needed to establish more reliable and deterministic sensor performance predictions. Greater attention will then be devoted to a discussion of basic particle properties and their measurement. The NRL effort has adopted an approach based on direct measurements on individual particles, principally of elastic scatter and laser-induced fluorescence (LIF), rather than populations of particles. The development of a LIF instrument using two sequential excitation wavelengths to detect fluorescence in discrete spectral bands will be described. Using this instrument, spectral characteristics of particles from a variety of biological materials including BW agent surrogates, as well as other ``calibration'' particles and some known ambient air constituents will be discussed in terms of the dependence of optical signatures on aerosol particle composition, size and incident laser fluence. Comparison of scattering and emission measurements from particles composed of widely different taxa, as well as from similar species under different growth conditions highlight the difficulties of establishing ground truth for complex biological material compositions. One aspect that is anticipated to provide greater insight to this type of particle classification capability is the development of a fundamental computational model of

  12. Extinctions of life

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1988-01-01

    This meeting presentation examines mass extinctions through earth's history. Extinctions are charted for marine families and marine genera. Timing of marine genera extinctions is discussed. Periodicity in extinctions during the Mesozoic and Cenozoic eras is plotted and compared with Paleozoic extinction peaks. The role of extinction in evolution and mankind's role in present extinctions are examined.

  13. Australian Extinctions

    ERIC Educational Resources Information Center

    Science Teacher, 2005

    2005-01-01

    Massive extinctions of animals and the arrival of the first humans in ancient Australia--which occurred 45,000 to 55,000 years ago--may be linked. Researchers at the Carnegie Institution, University of Colorado, Australian National University, and Bates College believe that massive fires set by the first humans may have altered the ecosystem of…

  14. Development of infrared photothermal deflection spectroscopy (mirage effect) for analysis of condensed-phase aerosols collected in a micro-orifice uniform deposit impactor.

    PubMed

    Dada, Oluwatosin O; Bialkowski, Stephen E

    2008-12-01

    The potential of mid-infrared photothermal deflection spectrometry for aerosol analysis is demonstrated. Ammonium nitrate aerosols are deposited on a flat substrate using a micro-orifice uniform deposit impactor (MOUDI). Photothermal spectroscopy with optical beam deflection (mirage effect) is used to detect deposited aerosols. Photothermal deflection from aerosols is measured by using pulsed infrared laser light to heat up aerosols collected on the substrate. The deflection signal is obtained by measuring the position of a spot from a beam of light as it passes near the heated surface. The results indicate non-rotating impaction as the preferred MOUDI impaction method. Energy-dependent photothermal measurement shows a linear relationship between signal and laser intensity, and no loss of signal with time is observed. The detection limit from the signal-mass curve is 7.31 ng. For 30 minutes collection time and 30 L/min flow rate of the impactor, the limit of detection in terms of aerosol mass concentration is 0.65 microg m(-3). PMID:19094392

  15. Aerosol characterization with lidar methods

    NASA Astrophysics Data System (ADS)

    Sugimoto, Nobuo; Nishizawa, Tomoaki; Shimizu, Atsushi; Matsui, Ichiro

    2014-08-01

    Aerosol component analysis methods for characterizing aerosols were developed for various types of lidars including polarization-sensitive Mie scattering lidars, multi-wavelength Raman scattering lidars, and multi-wavelength highspectral- resolution lidars. From the multi-parameter lidar data, the extinction coefficients for four aerosol components can be derived. The microphysical parameters such as single scattering albedo and effective radius can be also estimated from the derived aerosol component distributions.

  16. Characterization of water-soluble organic matter in urban aerosol by 1H-NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Chalbot, Marie-Cecile G.; Chitranshi, Priyanka; Gamboa da Costa, Gonçalo; Pollock, Erik; Kavouras, Ilias G.

    2016-03-01

    The functional and 13C isotopic compositions of water-soluble organic carbon (WSOC) in atmospheric aerosol were determined by nuclear magnetic resonance (1H-NMR) and isotope ratio mass spectrometry (IRMS) in an urban location in the Southern Mississippi Valley. The origin of WSOC was resolved using the functional distribution of organic hydrogen, δ13C ratio, and positive matrix factorization (PMF). Three factors were retained based on NMR spectral bins loadings. Two factors (factors 1 and 3) demonstrated strong associations with the aliphatic region in the NMR spectra and levoglucosan resonances. Differences between the two factors included the abundance of the aromatic functional group for factor 1, indicating fresh emissions and, for factor 3, the presence of resonances attributed to secondary ammonium nitrate and low δ13C ratio values that are indicative of secondary organic aerosol. Factors 1 and 3 added 0.89 and 1.08 μgC m-3, respectively, with the highest contribution in the summer and fall. Factor 2 retained resonances consistent with saccharides and was attributed to pollen particles. Its contribution to WSOC varied from 0.22 μgC m-3 in winter to 1.04 μgC m-3 in spring.

  17. Dual-pulse Laser Induced Breakdown Spectroscopy for analysis of gaseous and aerosol systems: Plasma-analyte interactions

    NASA Astrophysics Data System (ADS)

    Windom, B. C.; Diwakar, P. K.; Hahn, D. W.

    2006-07-01

    Dual-pulse LIBS has been previously investigated to a large extent on solid and liquid phase analytes, where it has been demonstrated to significantly enhance atomic emission signal intensity, and more importantly, to enhance the analyte peak-to-base and signal-to-noise ratios. This study focuses on the effects of an orthogonal dual-pulse laser configuration on the atomic emission response for both purely gaseous and calcium-based aerosol samples. The gaseous sample consisted of purified (i.e. aerosol free) air, from which nitrogen and oxygen spectral emission lines were analyzed. Measurements for the gaseous system resulted in no notable improvements with the dual-pulse configuration as compared to the single-pulse LIBS. Experiments were also conducted in purified air seeded with calcium-rich particles, which revealed a marked improvement in calcium atomic emission peak-to-base (˜ 2-fold increase) and signal-to-noise ratios (˜ 4-fold increase) with the dual-pulse configuration. In addition to increased analyte response, dual-pulse LIBS yielded an enhanced single-particle sampling rate when compared to conventional LIBS. Transmission measurements with respect to the plasma-creating laser pulse were recorded for both single and dual-pulse methods over a range of temporal delays. In consideration of the spectroscopic and transmission data, the plasma-analyte interactions realized with a dual-pulse methodology are explained in terms of the interaction with the initially expanding plasma shock wave, which differs between gaseous and particulate phase analytes, as reported in a recent study [V. Hohreiter, D.W. Hahn, Calibration effects for laser-induced breakdown spectroscopy of gaseous sample streams: analyte response of gas-phase species versus solid-phase species, Anal. Chem. 77 (2005) 1118-1124].

  18. DUST EXTINCTION FROM BALMER DECREMENTS OF STAR-FORMING GALAXIES AT 0.75 {<=} z {<=} 1.5 WITH HUBBLE SPACE TELESCOPE/WIDE-FIELD-CAMERA 3 SPECTROSCOPY FROM THE WFC3 INFRARED SPECTROSCOPIC PARALLEL SURVEY

    SciTech Connect

    Dominguez, A.; Siana, B.; Masters, D.; Henry, A. L.; Martin, C. L.; Scarlata, C.; Bedregal, A. G.; Malkan, M.; Ross, N. R.; Atek, H.; Colbert, J. W.; Teplitz, H. I.; Rafelski, M.; McCarthy, P.; Hathi, N. P.; Dressler, A.; Bunker, A.

    2013-02-15

    Spectroscopic observations of H{alpha} and H{beta} emission lines of 128 star-forming galaxies in the redshift range 0.75 {<=} z {<=} 1.5 are presented. These data were taken with slitless spectroscopy using the G102 and G141 grisms of the Wide-Field-Camera 3 (WFC3) on board the Hubble Space Telescope as part of the WFC3 Infrared Spectroscopic Parallel survey. Interstellar dust extinction is measured from stacked spectra that cover the Balmer decrement (H{alpha}/H{beta}). We present dust extinction as a function of H{alpha} luminosity (down to 3 Multiplication-Sign 10{sup 41} erg s{sup -1}), galaxy stellar mass (reaching 4 Multiplication-Sign 10{sup 8} M {sub Sun }), and rest-frame H{alpha} equivalent width. The faintest galaxies are two times fainter in H{alpha} luminosity than galaxies previously studied at z {approx} 1.5. An evolution is observed where galaxies of the same H{alpha} luminosity have lower extinction at higher redshifts, whereas no evolution is found within our error bars with stellar mass. The lower H{alpha} luminosity galaxies in our sample are found to be consistent with no dust extinction. We find an anti-correlation of the [O III] {lambda}5007/H{alpha} flux ratio as a function of luminosity where galaxies with L {sub H{alpha}} < 5 Multiplication-Sign 10{sup 41} erg s{sup -1} are brighter in [O III] {lambda}5007 than H{alpha}. This trend is evident even after extinction correction, suggesting that the increased [O III] {lambda}5007/H{alpha} ratio in low-luminosity galaxies is likely due to lower metallicity and/or higher ionization parameters.

  19. Vertical Profiles of Aerosol Volume from High Spectral Resolution Infrared Transmission Measurements: Results

    NASA Technical Reports Server (NTRS)

    Eldering, Annmarie; Kahn, Brian H.; Mills, Franklin P.; Irion, Fredrick W.; Steele, Helen M.; Gunson, Michael R.

    2004-01-01

    The high-resolution infrared absorption spectra of the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment are utilized to derive vertical profiles of sulfate aerosol volume density and extinction coefficient. Following the eruption of Mt. Pinatubo in June 1991, the ATMOS spectra obtained on three Space Shuttle missions (1992, 1993, and 1994) provide a unique opportunity to study the global stratospheric sulfate aerosol layer shortly after a major volcanic eruption and periodically during the decay phase. Synthetic sulfate aerosol spectra are fit to the observed spectra, and a global fitting inversion routine is used to derive vertical profiles of sulfate aerosol volume density. Vertical profiles of sulfate aerosol volume density for the three missions over portions of the globe are presented, with the peak in aerosol volume density occurring from as low as 10 km (polar latitudes) to as high as 20 km (subtropical latitudes). Derived aerosol volume density is as high as 2-3.5 (mu)m(exp 3) per cubic centimeter +/-10% in 1992, decreasing to 0.2-0.5 (mu)m(exp 3) per cubic centimeter +/-20% in 1994, in agreement with other experiments. Vertical extinction profiles derived from ATMOS are compared with profiles from Improved Stratospheric And Mesospheric Sounder (ISAMS) and Cryogenic Limb Array Etalon Spectrometer (CLAES) that coincide in space and time and show good general agreement. The uncertainty of the ATMOS vertical profiles is similar to CLAES and consistently smaller than ISAMS at similar altitudes.

  20. Impossible Extinction

    NASA Astrophysics Data System (ADS)

    Cockell, Charles S.

    2003-03-01

    Every 225 million years the Earth, and all the life on it, completes one revolution around the Milky Way Galaxy. During this remarkable journey, life is influenced by calamitous changes. Comets and asteroids strike the surface of the Earth, stars explode, enormous volcanoes erupt, and, more recently, humans litter the planet with waste. Many animals and plants become extinct during the voyage, but humble microbes, simple creatures made of a single cell, survive this journey. This book takes a tour of the microbial world, from the coldest and deepest places on Earth to the hottest and highest, and witnesses some of the most catastrophic events that life can face. Impossible Extinction tells this remarkable story to the general reader by explaining how microbes have survived on Earth for over three billion years. Charles Cockell received his doctorate from the University of Oxford, and is currently a microbiologist with rhe Search for Extraterrestrial Intelligence Institute (SETI), based at the British Antarctic Survey in Cambridge, UK. His research focusses on astrobiology, life in the extremes and the human exploration of Mars. Cockell has been on expeditions to the Arctic, Antarctic, Mongolia, and in 1993 he piloted a modified insect-collecting ultra-light aircraft over the Indonesian rainforests. He is Chair of the Twenty-one Eleven Foundation for Exploration, a charity that supports expeditions that forge links between space exploration and environmentalism.

  1. Atmospheric aerosol characterization combining multi-wavelength Raman lidar and MAX-DOAS measurements in Gwanjgu

    NASA Astrophysics Data System (ADS)

    Chong, Jihyo; Shin, Dong Ho; Kim, Kwang Chul; Lee, Kwon-Ho; Shin, Sungkyun; Noh, Young M.; Müller, Detlef; Kim, Young J.

    2011-11-01

    Integrated approach has been adopted at the ADvanced Environmental Research Center (ADEMRC), Gwangju Institute of Science and Technology (GIST), Korea for effective monitoring of atmospheric aerosol. Various active and passive optical remote sensing techniques such as multi-wavelength (3β+2α+1δ) Raman LIDAR, sun-photometry, MAX-DOAS, and satellite retrieval have been utilized. This integrated monitoring system approach combined with in-situ surface measurement is to allow better characterization of physical and optical properties of atmospheric aerosol. Information on the vertical distribution and microphysical properties of atmospheric aerosol is important for understanding its transport characteristics as well as radiative effect. The GIST multi-wavelength (3β + 2α+1δ) Raman lidar system can measure vertical profiles of optical properties of atmospheric aerosols such as extinction coefficients at 355 and 532nm, particle backscatter coefficients at 355, 532 and 1064 nm, and depolarization ratio at 532nm. The incomplete overlap between the telescope field-of-view and beam divergence of the transmitting laser significantly affects lidar measurement, resulting in higher uncertainty near the surface where atmospheric aerosols of interest are concentrated. Differential Optical Absorption Spectroscopy (DOAS) technique is applied as a complementary tool for the detection of atmospheric aerosols near the surface. The passive Multi-Axis DOAS (MAX-DOAS) technique uses scattered sunlight as a light source from several viewing directions. Recently developed aerosol retrieval algorithm based on O4 slant column densities (SCDs) measured at UV and visible wavelengths has been utilized to derive aerosol information (e.g., aerosol optical depth (AOD) and aerosol extinction coefficients (AECs)) in the lower troposphere. The aerosol extinction coefficient at 356 nm was retrieved for the 0-1 and 1-2 km layers based on the MAX-DOAS measurements using the retrieval algorithm

  2. SAGE II aerosol data validation based on retrieved aerosol model size distribution from SAGE II aerosol measurements

    NASA Technical Reports Server (NTRS)

    Wang, Pi-Huan; Mccormick, M. P.; Mcmaster, L. R.; Chu, W. P.; Swissler, T. J.; Osborn, M. T.; Russell, P. B.; Oberbeck, V. R.; Livingston, J.; Rosen, J. M.

    1989-01-01

    Consideration is given to aerosol correlative measurements experiments for the Stratospheric Aerosol and Gas Experiment (SAGE) II, conducted between November 1984 and July 1986. The correlative measurements were taken with an impactor/laser probe, a dustsonde, and an airborne 36-cm lidar system. The primary aerosol quantities measured by the ground-based instruments are compared with those calculated from the aerosol size distributions from SAGE II aerosol extinction measurements. Good agreement is found between the two sets of measurements.

  3. Method and apparatus for aerosol-particle absorption spectroscopy. [DOE patent application

    SciTech Connect

    Campillo, A.J.; Lin, H.B.

    1981-06-25

    A method and apparatus are described for determining the absorption spectra, and other properties, of aerosol particles. A heating beam source provides a beam of electromagnetic energy which is scanned through the region of the spectrum which is of interest. Particles exposed to the heating beam which have absorption bands within the band width of the heating beam absorb energy from the beam. The particles are also illuminated by light of a wave length such that the light is scattered by the particles. The absorption spectra of the particles can thus be determined from an analysis of the scattered light since the absorption of energy by the particles will affect the way the light is scattered. Preferably the heating beam is modulated to simplify the analysis of the scattered light. In one embodiment the heating beam is intensity modulated so that the scattered light will also be intensity modulated when the particles absorb energy. In another embodiment the heating beam passes through an interferometer and the scattered light reflects the Fourier Transform of the absorption spectra.

  4. Measuring black carbon spectral extinction in the visible and infrared

    NASA Astrophysics Data System (ADS)

    Smith, A. J. A.; Peters, D. M.; McPheat, R.; Lukanihins, S.; Grainger, R. G.

    2015-09-01

    This work presents measurements of the spectral extinction of black carbon aerosol from 400 nm to 15 μm. The aerosol was generated using a Miniature Combustion Aerosol Standard soot generator and then allowed to circulate in an aerosol cell where its extinction was measured using a grating spectrometer in the visible and a Fourier transform spectrometer in the infrared. Size distribution, number concentration, and mass extinction cross sections have also been obtained using single-particle aerosol samplers. A mean mass extinction cross section at 550 nm of 8.3 ± 1.6 m2 g-1 is found which, assuming a reasonable single scatter albedo of 0.2, corresponds to a mass absorption cross section of 6.6 ± 1.3 m2 g-1. This compares well with previously reported literature values. Computer analysis of electron microscope images of the particles provides independent confirmation of the size distribution as well as fractal parameters of the black carbon aerosol. The aerosol properties presented in this work are representative of very fresh, uncoated black carbon aerosol. After atmospheric processing of such aerosols (which could include mixing with other constituents and structural changes), different optical properties would be expected.

  5. SAGE II aerosol correlative observations - Profile measurements

    NASA Technical Reports Server (NTRS)

    Osborn, M. T.; Rosen, J. M.; Mccormick, M. P.; Wang, Pi-Huan; Livinfston, J. M.

    1989-01-01

    Profiles of the aerosol extinction measurements from the Stratospheric Aerosol and Gas Experiment (SAGE) II are compared with profiles from five correlative experiments between November 1984 and July 1986. The correlative profiles were derived from six-channel dustsonde measurements and two-wavelength lidar backscatter data. The correlation between the dustsonde- and lidar-derived measurements and the SAGE II data is good, validating the SAGE II lower stratospheric aerosol extinction measurements.

  6. Influence of shape on the optical properties of hematite aerosol

    NASA Astrophysics Data System (ADS)

    Veghte, Daniel P.; Moore, Justin E.; Jensen, Lasse; Freedman, Miriam Arak

    2015-07-01

    Mineral dust particles are the second highest emitted aerosol type by mass. Due to changes in particle size, composition, and shape that are caused by physical processes and reactive chemistry, optical properties vary during transport, contributing uncertainty in the calculation of radiative forcing. Hematite is the major absorbing species of mineral dust. In this study, we analyzed the extinction cross sections of nigrosin and hematite particles using cavity ring-down aerosol extinction spectroscopy (CRD-AES) and have measured particle shape and size distributions using transmission electron microscopy. Nigrosin was also used in this study as a spherical standard for absorbing particles. The size-selected nigrosin particles have a narrow size distribution, with extinction cross sections that are described by Mie theory. In contrast, the size distribution of size-selected hematite particles is more polydisperse. The extinction cross sections were modeled using Mie theory and the discrete dipole approximation (DDA). The DDA was used to model more complex shapes that account for the surface roughness and particle geometry. Of the four models used, Mie theory was the simplest to implement, but had significant error with a 26.1% difference from the CRD-AES results. By increasing the complexity of the models using the DDA, we determined that spheroids had a 14.7% difference, roughened spheres a 12.8% difference, and roughened spheroids a 11.2% difference from the experimental results. Using additional parameters that account for particle shape is necessary to model the optical properties of hematite particles and leads to improved extinction cross sections for modeling aerosol optical properties.

  7. Evaluation of MAX-DOAS aerosol retrievals by coincident observations using CRDS, lidar, and sky radiometer in Tsukuba, Japan

    NASA Astrophysics Data System (ADS)

    Irie, H.; Nakayama, T.; Shimizu, A.; Yamazaki, A.; Nagai, T.; Uchiyama, A.; Zaizen, Y.; Kagamitani, S.; Matsumi, Y.

    2015-01-01

    Coincident aerosol observations of Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS), Cavity Ring Down Spectroscopy (CRDS), lidar, and sky radiometer were conducted in Tsukuba, Japan on 5-18 October 2010. MAX-DOAS aerosol retrieval (for aerosol extinction coefficient and aerosol optical depth at 476 nm) was evaluated from the viewpoint of the need for a correction factor for oxygen collision complexes (O4 or O2-O2) absorption. The present study strongly supports this need, as systematic residuals at relatively high elevation angles (20 and 30°) were evident in MAX-DOAS profile retrievals conducted without the correction. However, adopting a single number for the correction factor (fO4 = 1.25) for all of the elevation angles led to systematic overestimation of near-surface aerosol extinction coefficients, as reported in the literature. To achieve agreement with all three observations, we limited the set of elevation angles to ≤ 10° and adopted an elevation-angle-dependent correction factor for practical profile retrievals with scattered light observations by a ground-based MAX-DOAS. With these modifications, we expect to minimize the possible effects of temperature-dependent O4 absorption cross section and uncertainty in DOAS fit on an aerosol profile retrieval, although more efforts are encouraged to quantitatively identify a physical explanation for the need of a correction factor.

  8. Evaluation of MAX-DOAS aerosol retrievals by coincident observations using CRDS, lidar, and sky radiometer inTsukuba, Japan

    NASA Astrophysics Data System (ADS)

    Irie, H.; Nakayama, T.; Shimizu, A.; Yamazaki, A.; Nagai, T.; Uchiyama, A.; Zaizen, Y.; Kagamitani, S.; Matsumi, Y.

    2015-07-01

    Coincident aerosol observations of multi-axis differential optical absorption spectroscopy (MAX-DOAS), cavity ring-down spectroscopy (CRDS), lidar, and sky radiometer were conducted in Tsukuba, Japan, on 5-18 October 2010. MAX-DOAS aerosol retrieval (for aerosol extinction coefficient and aerosol optical depth at 476 nm) was evaluated from the viewpoint of the need for a correction factor for oxygen collision complexes (O4 or O2-O2) absorption. The present study strongly supports this need, as systematic residuals at relatively high elevation angles (20 and 30°) were evident in MAX-DOAS profile retrievals conducted without the correction. However, adopting a single number for the correction factor (fO4 = 1.25) for all of the elevation angles led to systematic overestimation of near-surface aerosol extinction coefficients, as reported in the literature. To achieve agreement with all three observations, we limited the set of elevation angles to ≤10° and adopted an elevation-angle-dependent correction factor for practical profile retrievals with scattered light observations by a ground-based MAX-DOAS. With these modifications, we expect to minimize the possible effects of temperature-dependent O4 absorption cross section and uncertainty in DOAS fit on an aerosol profile retrieval, although more efforts are encouraged to quantitatively identify a physical explanation for the need of a correction factor.

  9. Large Binocular Telescope and Sptizer Spectroscopy of Star-forming Galaxies at 1 < z < 3: Extinction and Star Formation Rate Indicators

    NASA Technical Reports Server (NTRS)

    Rujopakarn, W.; Rieke, G. H.; Papovich, C. J.; Weiner, B. J.; Rigby, Jane; Rex, M.; Bian, F.; Kuhn, O. P.; Thompson, D.

    2012-01-01

    We present spectroscopic observations in the rest-frame optical and near- to mid-infrared wavelengths of four gravitationally lensed infrared (IR) luminous star-forming galaxies at redshift 1 < z < 3 from the LUCIFER instrument on the Large Binocular Telescope and the Infrared Spectrograph on Spitzer. The sample was selected to represent pure, actively star-forming systems, absent of active galactic nuclei. The large lensing magnifications result in high signal-to-noise spectra that can probe faint IR recombination lines, including Paa and Bra at high redshifts. The sample was augmented by three lensed galaxies with similar suites of unpublished data and observations from the literature, resulting in the final sample of seven galaxies. We use the IR recombination lines in conjunction with Ha observations to probe the extinction, Av, of these systems, as well as testing star formation rate (SFR) indicators against the SFR measured by fitting spectral energy distributions to far-IR photometry. Our galaxies occupy a range of Av from 0 to 5.9 mag, larger than previously known for a similar range of IR luminosities at these redshifts. Thus, estimates of SFR even at z 2 must take careful count of extinction in the most IR luminous galaxies.We also measure extinction by comparing SFR estimates from optical emission lines with those from far- IR measurements. The comparison of results from these two independent methods indicates a large variety of dust distribution scenarios at 1 < z < 3. Without correcting for dust extinction, the Ha SFR indicator underestimates the SFR; the size of the necessary correction depends on the IR luminosity and dust distribution scenario. Individual SFR estimates based on the 6.2µm polycyclic aromatic hydrocarbon emission line luminosity do not show a systematic discrepancy with extinction, although a considerable, 0.2 dex, scatter is observed.

  10. Analysis of aerosol vertical distribution and variability in Hong Kong

    NASA Astrophysics Data System (ADS)

    He, Qianshan; Li, Chengcai; Mao, Jietai; Lau, Alexis Kai-Hon; Chu, D. A.

    2008-07-01

    Aerosol vertical distribution is an important piece of information to improve aerosol retrieval from satellite remote sensing. Aerosol extinction coefficient profile and its integral form, aerosol optical depth (AOD), as well as atmospheric boundary layer (ABL) height and haze layer height can be derived using lidar measurements. In this paper, we used micropulse lidar measurements acquired from May 2003 to June 2004 to illustrate seasonal variations of AOD and ABL height in Hong Kong. On average, about 64% of monthly mean aerosol optical depths were contributed by aerosols within the mixing layer (with a maximum (˜76%) in November and a minimum (˜55%) in September) revealing the existence of large abundance of aerosols above ABL due to regional transport. The characteristics of seasonal averaged aerosol profiles over Hong Kong in the study period are presented to illustrate seasonal phenomena of aerosol transport and associated meteorological conditions. The correlation between AOD and surface extinction coefficient, as found, is generally poor (r2 ˜0.42) since elevated aerosol layers increase columnar aerosol abundance but not extinction at surface. The typical aerosol extinction profile in the ABL can be characterized by a low value near the surface and values increased with altitude reaching the top of ABL. When aerosol vertical profile is assumed, surface extinction coefficient can be derived from AOD using two algorithms, which are discussed in detail in this paper. Preliminary analysis showed that better estimates of the extinction coefficient at the ground level could be obtained using two-layer aerosol extinction profiles (r2 ˜0.78, slope ˜0.82, and intercept ˜0.15) than uniform profiles of extinction with height within the ABL (r2 ˜0.65, slope ˜0.27, and intercept ˜0.03). The improvement in correlation is promising on mapping satellite retrieved AOD to surface aerosol extinction coefficient for urban and regional environmental studies on air

  11. Complex refractive indices of aerosols retrieved by continuous wave-cavity ring down aerosol spectrometer.

    PubMed

    Lang-Yona, N; Rudich, Y; Segre, E; Dinar, E; Abo-Riziq, A

    2009-03-01

    The major uncertainties associated with the direct impact of aerosols on climate call for fast and accurate characterization of their optical properties. Cavity ring down (CRD) spectroscopy provides highly sensitive measurement of aerosols' extinction coefficients from which the complex refractive index (RI) of the aerosol may be retrieved accurately for spherical particles of known size and number density, thus it is possible to calculate the single scattering albedo and other atmospherically relevant optical parameters. We present a CRD system employing continuous wave (CW) single mode laser. The single mode laser and the high repetition rate obtained significantly improve the sensitivity and reliability of the system, compared to a pulsed laser CRD setup. The detection limit of the CW-CRD system is between 6.67 x 10(-10) cm(-1) for an empty cavity and 3.63 x 10(-9) cm(-1) for 1000 particles per cm(3) inside the cavity, at a 400 Hz sampling and averaging of 2000 shots for one sample measurement taken in 5 s. For typical pulsed-CRD, the detection limit for an empty cavity is less than 3.8 x 10(-9) cm(-1) for 1000 shots averaged over 100 s at 10 Hz. The system was tested for stability, accuracy, and RI retrievals for scattering and absorbing laboratory-generated aerosols. Specifically, the retrieved extinction remains very stable for long measurement times (1 h) with an order of magnitude change in aerosol number concentration. In addition, the optical cross section (sigma(ext)) of a 400 nm polystyrene latex sphere (PSL) was determined within 2% error compared to the calculated value based on Mie theory. The complex RI of PSL, nigrosin, and ammonium sulfate (AS) aerosols were determined by measuring the extinction efficiency (Q(ext)) as a function of the size parameter ((piD)/lambda) and found to be in very good agreement with literature values. A mismatch in the retrieved RI of Suwannee River fulvic acid (SRFA) compared to a previous study was observed and is

  12. Large Binocular Telescope and Spitzer Spectroscopy of Star-forming Galaxies at 1 Extinction and Star Formation Rate Indicators

    NASA Astrophysics Data System (ADS)

    Rujopakarn, W.; Rieke, G. H.; Papovich, C. J.; Weiner, B. J.; Rigby, J. R.; Rex, M.; Bian, F.; Kuhn, O. P.; Thompson, D.

    2012-08-01

    We present spectroscopic observations in the rest-frame optical and near- to mid-infrared wavelengths of four gravitationally lensed infrared (IR) luminous star-forming galaxies at redshift 1 extinction, Av , of these systems, as well as testing star formation rate (SFR) indicators against the SFR measured by fitting spectral energy distributions to far-IR photometry. Our galaxies occupy a range of Av from ~0 to 5.9 mag, larger than previously known for a similar range of IR luminosities at these redshifts. Thus, estimates of SFR even at z ~ 2 must take careful count of extinction in the most IR luminous galaxies. We also measure extinction by comparing SFR estimates from optical emission lines with those from far-IR measurements. The comparison of results from these two independent methods indicates a large variety of dust distribution scenarios at 1 < z < 3. Without correcting for dust extinction, the Hα SFR indicator underestimates the SFR; the size of the necessary correction depends on the IR luminosity and dust distribution scenario. Individual SFR estimates based on the 6.2 μm polycyclic aromatic hydrocarbon emission line luminosity do not show a systematic discrepancy with extinction, although a considerable, ~ 0.2 dex, scatter is observed. The LBT is an international collaboration among institutions in the United States, Italy

  13. [Determination of the retrieval arithmetic of aerosol size distribution measured by DOAS].

    PubMed

    Si, Fu-qi; Xie, Pin-hua; Liu, Jian-guo; Zhang, Yu-jun; Liu, Wen-qing; Hiroaki, Kuze; Nobuo, Takeuchi

    2008-10-01

    Atmospheric aerosol is not only an important factor for the change in global climate, but also a polluting matter. Moreover, aerosol plays a main role in chemical reaction of polluting gases. Determination of aerosol has become an important re- search in the study of atmospheric environment. Differential optical absorption spectroscopy (DOAS) is a very useful technique that allows quantitative measurement of atmospheric trace gas concentrations based on their fingerprint absorption. It also can be used to retrieve aerosol extinction coefficient. In the present work, the method of determination of aerosol size distribution measured by flash DOAS is described, and the arithmetic based on Monte-Carlo is the emphasis. By comparison with the concentration of PM10, visibility and Angstrom wavelength exponent, a good correlation can be found. Application of DOAS in aerosol field not only provides a novel method for aerosol detection, but also extends the field of application of DOAS technology. Especially, aerosol DOAS plays an important role in the study of atmospheric chemistry. PMID:19123420

  14. Extinction cross section measurements for a single optically trapped particle

    NASA Astrophysics Data System (ADS)

    Cotterell, Michael I.; Preston, Thomas C.; Mason, Bernard J.; Orr-Ewing, Andrew J.; Reid, Jonathan P.

    2015-08-01

    Bessel beam (BB) optical traps have become widely used to confine single and multiple aerosol particles across a broad range of sizes, from a few microns to < 200 nm in radius. The radiation pressure force exerted by the core of a single, zeroth-order BB incident on a particle can be balanced by a counter-propagating gas flow, allowing a single particle to be trapped indefinitely. The pseudo non-diffracting nature of BBs enables particles to be confined over macroscopic distances along the BB core propagation length; the position of the particle along this length can be finely controlled by variation of the BB laser power. This latter property is exploited to optimize the particle position at the center of the TEM00 mode of a high finesse optical cavity, allowing cavity ring-down spectroscopy (CRDS) to be performed on single aerosol particles and their optical extinction cross section, σext, measured. Further, the variation in the light from the illuminating BB elastically scattered by the particle is recorded as a function of scattering angle. Such intensity distributions are fitted to Lorenz-Mie theory to determine the particle radius. The trends in σext with particle radius are modelled using cavity standing wave Mie simulations and a particle's varying refractive index with changing relative humidity is determined. We demonstrate σext measurements on individual sub-micrometer aerosol particles and determine the lowest limit in particle size that can be probed by this technique. The BB-CRDS method will play a key role in reducing the uncertainty associated with atmospheric aerosol radiative forcing, which remains among the largest uncertainties in climate modelling.

  15. Primary and secondary biomass burning aerosols determined by proton nuclear magnetic resonance (1H-NMR) spectroscopy during the 2008 EUCAARI campaign in the Po Valley (Italy)

    NASA Astrophysics Data System (ADS)

    Paglione, M.; Saarikoski, S.; Carbone, S.; Hillamo, R.; Facchini, M. C.; Finessi, E.; Giulianelli, L.; Carbone, C.; Fuzzi, S.; Moretti, F.; Tagliavini, E.; Swietlicki, E.; Eriksson Stenström, K.; Prévôt, A. S. H.; Massoli, P.; Canaragatna, M.; Worsnop, D.; Decesari, S.

    2014-05-01

    Atmospheric organic aerosols are generally classified as primary and secondary (POA and SOA) according to their formation processes. An actual separation, however, is challenging when the timescales of emission and gas-to-particle formation overlap. The presence of SOA formation in biomass burning plumes leads to scientific questions about whether the oxidized fraction of biomass burning aerosol is rather of secondary or primary origin, as some studies would suggest, and about the chemical compositions of oxidized biomass burning POA and SOA. In this study, we apply nuclear magnetic resonance (NMR) spectroscopy to investigate the functional group composition of fresh and aged biomass burning aerosols during an intensive field campaign in the Po Valley, Italy. The campaign was part of the EUCAARI project and was held at the rural station of San Pietro Capofiume in spring 2008. Factor analysis applied to the set of NMR spectra was used to apportion the wood burning contribution and other organic carbon (OC) source contributions, including aliphatic amines. Our NMR results, referred to the polar, water-soluble fraction of OC, show that fresh wood burning particles are composed of polyols and aromatic compounds, with a sharp resemblance to wood burning POA produced in wood stoves, while aged samples are clearly depleted of alcohols and are enriched in aliphatic acids with a smaller contribution of aromatic compounds. The comparison with biomass burning organic aerosols (BBOA) determined by high-resolution aerosol mass spectrometry (HR-TOF-AMS) at the site shows only a partial overlap between NMR BB-POA and AMS BBOA, which can be explained by either the inability of BBOA to capture all BB-POA composition, especially the alcohol fraction, or the fact that BBOA account for insoluble organic compounds unmeasured by the NMR. Therefore, an unambiguous composition for biomass burning POA could not be derived from this study, with NMR analysis indicating a higher O / C ratio

  16. Primary and secondary biomass burning aerosols determined by proton nuclear magnetic resonance (H-NMR) spectroscopy during the 2008 EUCAARI campaign in the Po Valley (Italy)

    NASA Astrophysics Data System (ADS)

    Paglione, M.; Saarikoski, S.; Carbone, S.; Hillamo, R.; Facchini, M. C.; Finessi, E.; Giulianelli, L.; Carbone, C.; Fuzzi, S.; Moretti, F.; Tagliavini, E.; Swietlicki, E.; Eriksson Stenström, K.; Prévôt, A. S. H.; Massoli, P.; Canaragatna, M.; Worsnop, D.; Decesari, S.

    2013-12-01

    Atmospheric organic aerosols are generally classified into primary and secondary (POA and SOA) according to their formation processes. An actual separation, however, is challenging when the timescales of emission and of gas-to-particle formation overlap. The presence of SOA formation in biomass burning plumes leads to scientific questions about whether the oxidized fraction of biomass burning aerosol is rather of secondary or primary origin, as some studies would suggest, and about the chemical compositions of oxidized biomass burning POA and SOA. In this study, we apply nuclear magnetic resonance (NMR) spectroscopy to investigate the functional group composition of fresh and aged biomass burning aerosols during an intensive field campaign in the Po Valley, Italy. The campaign was part of the EUCAARI project and was held at the rural station of San Pietro Capofiume in spring 2008. Factor analysis applied to the set of NMR spectra was used to apportion the wood burning contribution and other organic carbon (OC) source contributions, including aliphatic amines. Our NMR results, referred to the polar, water-soluble fraction of OC, show that fresh wood burning particles are composed of polyols and aromatic compounds, with a sharp resemblance with wood burning POA produced in wood stoves, while aged samples are clearly depleted of alcohols and are enriched in aliphatic acids with a smaller contribution of aromatic compounds. The comparison with biomass burning organic aerosols (BBOA) determined by high resolution aerosol mass spectrometry (HR-TOF-AMS) at the site shows only a partial overlap between NMR BB-POA and AMS BBOA, which can be explained by either the inability of BBOA to capture all BB-POA composition, especially the alcohol fraction, or the fact that BBOA account for insoluble organic compounds unmeasured by the NMR. Therefore, an unambiguous composition for biomass burning POA could not be derived from this study, with NMR analysis indicating a higher O / C

  17. Intercomparison of stratospheric water vapor observed by satellite experiments - Stratospheric Aerosol and Gas Experiment II versus Limb Infrared Monitor of the Stratosphere and Atmospheric Trace Molecule Spectroscopy

    NASA Technical Reports Server (NTRS)

    Chiou, E. W.; Mccormick, M. P.; Mcmaster, L. R.; Chu, W. P.; Larsen, J. C.; Rind, D.; Oltmans, S.

    1993-01-01

    A comparison is made of the stratospheric water vapor measurements made by the satellite sensors of the Stratospheric Aerosol and Gas Experiment II (SAGE II), the Nimbus-7 LIMS, and the Spacelab 3 Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment. It was found that, despite differences in the measurement techniques, sampling bias, and observational periods, the three experiments have disclosed a generally consistent pattern of stratospheric water vapor distribution. The only significant difference occurs at high southern altitudes in May below 18 km, where LIMS measurements were 2-3 ppmv greater than those of SAGE II and ATMOS.

  18. Relating Aerosol Mass and Optical Depth in the Summertime Continental Boundary Layer

    NASA Astrophysics Data System (ADS)

    Brock, C. A.; Wagner, N.; Middlebrook, A. M.; Attwood, A. R.; Washenfelder, R. A.; Brown, S. S.; McComiskey, A. C.; Gordon, T. D.; Welti, A.; Carlton, A. G.; Murphy, D. M.

    2014-12-01

    Aerosol optical depth (AOD), the column-integrated ambient aerosol light extinction, is determined from satellite and ground-based remote sensing measurements. AOD is the parameter most often used to validate earth system model simulations of aerosol mass. Relating aerosol mass to AOD, however, is problematic due to issues including aerosol water uptake as a function of relative humidity (RH) and the complicated relationship between aerosol physicochemical properties and light extinction. Measurements of aerosol microphysical, chemical, and optical properties help to constrain the relationship between aerosol mass and optical depth because aerosol extinction at ambient RH is a function of the abundance, composition and size distribution of the aerosol. We use vertical profiles of humidity and dry aerosol extinction observed in the southeastern United States (U.S.) to examine the relationship between submicron aerosol mass concentration and extinction at ambient RH. We show that the κ-Köhler parameterization directly, and without additional Mie calculations, describes the change in extinction with varying RH as a function of composition for both aged aerosols typical of the polluted summertime continental boundary layer and the biomass burning aerosols we encountered. We calculate how AOD and the direct radiative effect in the eastern U.S. have likely changed due to trends in aerosol composition in recent decades. We also examine the sensitivity of AOD to the RH profile and to aerosol composition, size distribution and abundance.

  19. Study of the aerosol fragrances of eugenol derivatives in Cananga odorata using diffuse reflectance infrared Fourier transform spectroscopy and gas chromatography.

    PubMed

    Kuo, Su-Ching; Chuang, Shien-Kai; Lin, Ho-Yang; Wang, Lai-Hao

    2009-10-19

    The purpose of this study was to develop and test a diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) method, a fast and non-destructive method without extraction, and compare it with the standard gas chromatography (GC) method currently used. A micro-orifice uniform deposit impactor (MOUDI) was used to sample all the size distributions of the aerosol particles of essential oils to investigate the relation between size distributions and the indoor concentration distributions of ylang essential oils. Correlation coefficients for DRIFTS and GC were 0.9904, 0.9910, 0.9913, and 0.9983 for eugenol, isoeugenol, methyl ether, and eugenyl acetate, respectively. The results showed that the concentrations of the four eugenol derivatives of smoke were approximately three times higher than those of mist. Additionally, the major size distributions of aerosol were 0.19 microm and 1.8 microm for the smoke and mist methods, respectively. Because these two methods produce similar results, DRIFTS is a practical method for assessing these fragrances in aerosols. PMID:19800479

  20. Implications of extinction due to meteoritic smoke in the upper stratosphere

    NASA Astrophysics Data System (ADS)

    Neely, Ryan R., III; English, Jason M.; Toon, Owen B.; Solomon, Susan; Mills, Michael; Thayer, Jeffery P.

    2011-12-01

    Recent optical observations of aerosols in the upper stratosphere and mesosphere show significant amounts of extinction at altitudes above about 40 km where the stratospheric sulfate aerosol layer ends. Recent modeling of this region reveals that meteoritic smoke settling from the mesosphere and its interaction with the upper part of the sulfate aerosol layer is the origin of the observed extinction. Extinction in this region has major implications for the interpretation and analysis of several kinds of aerosol data (satellite and lidar). We compare observations from the SAGE II satellite and from NOAA's lidar located at Mauna Loa, Hawaii to extinction profiles derived from the Whole Atmosphere Community Climate Model (WACCM) coupled with the Community Aerosol and Radiation Model for Atmospheres (CARMA). Our results show that a major source of extinction exists in the region above about 30 km that must be addressed by all remote sensing instruments that have traditionally used the stratosphere above about 30 km as an aerosol free region to estimate the molecular component of their total extinction. It is also shown that meteoritic smoke not only contributes to but also becomes the dominant source of aerosol extinction above 35 km and poleward of 30 degrees in latitude, as well as above 40 km in the tropics. After addressing the concerns described here, current and past observations of this region could be reanalyzed to further our understanding of meteoritic dust in the upper stratosphere.

  1. Efficient modal-expansion discrete-dipole approximation: Application to the simulation of optical extinction and electron energy-loss spectroscopies

    NASA Astrophysics Data System (ADS)

    Guillaume, Stéphane-Olivier; de Abajo, F. Javier García; Henrard, Luc

    2013-12-01

    An efficient procedure is introduced for the calculation of the optical response of individual and coupled metallic nanoparticles in the framework of the discrete-dipole approximation (DDA). We introduce a modal expansion in the basis set of discrete dipoles and show that a few suitably selected modes are sufficient to compute optical spectra with reasonable accuracy, thus reducing the required numerical effort relative to other DDA approaches. Our method offers a natural framework for the study of localized plasmon modes, including plasmon hybridization. As a proof of concept, we investigate optical extinction and electron energy-loss spectra of monomers, dimers, and quadrumers formed by flat silver squares. This method should find application to the previously prohibited simulation of complex particle arrays.

  2. Heterogeneous Photochemistry and Optical Properties of Mineral Dust Aerosol

    NASA Astrophysics Data System (ADS)

    Grassian, Vicki

    2012-02-01

    It is now widely recognized that heterogeneous reactions of mineral dust aerosol with trace atmospheric gases impact the chemical balance of the atmosphere and the physicochemical properties of these particles. Field studies using single particle analysis, have now shown that the chemistry is mineralogy specific and follows the trends expected from laboratory studies. These laboratory studies, which were initiated over a decade ago, have focused on the nighttime chemistry of mineral dust aerosol which is really only ``half'' the story. This talk will focus on two aspects of solar light interaction with mineral dust aerosol. First, the heterogeneous photochemistry of adsorbed chromophores (e.g. nitrate ion) and light absorbing components of mineral dust (iron oxides and titanium dioxide) is discussed. These heterogeneous photochemical reactions are poorly understood and laboratory studies to better quantify these reactions in order to determine the impact on the chemical balance of the atmosphere are needed, as will be discussed. Second, the optical properties of mineral dust aerosol measured by extinction infrared spectroscopy and visible light scattering show that shape effects are extremely important for mineral dust aerosol.

  3. Aerosol studies in mid-latitude coastal environments in Australia

    NASA Technical Reports Server (NTRS)

    Young, S. A.; Cutten, D.; Lynch, M. J.; Davies, J. E.

    1986-01-01

    The results of the evaluation of several inversion procedures that were used to select one which provides the most accurate atmospheric extinction profiles for small aerosol extinction coefficients (that often predominate in the maritime airmass) are presented. Height profiles of atmospheric extinction calculated by a two component atmospheric solution to the LIDAR equation will be compared with corresponding in-situ extinction profiles based on the size distribution profiles obtained in Western Australia. Values of the aerosol backscatter to extinction ratio obtained from multi-angle LIDAR measurements will be used in this solution.

  4. Measurement of Gas and Aerosol Phase Absorption Spectra across the Visible and Near-IR Using Supercontinuum Photoacoustic Spectroscopy.

    PubMed

    Radney, James G; Zangmeister, Christopher D

    2015-07-21

    We demonstrate a method to measure the absorption spectra of gas and aerosol species across the visible and near-IR (500 to 840 nm) using a photoacoustic (PA) spectrometer and a pulsed supercontinuum laser source. Measurements of gas phase absorption spectra were demonstrated using H2O(g) as a function of relative humidity (RH). The measured absorption intensities and peak shapes were able to be quantified and compared to spectra calculated using the 2012 High Resolution Transmission (HITRAN2012) database. Size and mass selected nigrosin aerosol was used to measure absorption spectra across the visible and near-IR. Spectra were measured as a function of aerosol size/mass and show good agreement to Mie theory calculations. Lastly, we measured the broadband absorption spectrum of flame generated soot aerosol at 5% and 70% RH. For the high RH case, we are able to quantifiably separate the soot and water absorption contributions. For soot, we observe an enhancement in the mass specific absorption cross section ranging from 1.5 at 500 nm (p < 0.01) to 1.2 at 840 nm (p < 0.2) and a concomitant increase in the absorption Ångström exponent from 1.2 ± 0.4 (5% RH) to 1.6 ± 0.3 (70% RH). PMID:26098142

  5. Infrared differential-absorption Mueller matrix spectroscopy and neural network-based data fusion for biological aerosol standoff detection.

    PubMed

    Carrieri, Arthur H; Copper, Jack; Owens, David J; Roese, Erik S; Bottiger, Jerold R; Everly, Robert D; Hung, Kevin C

    2010-01-20

    An active spectrophotopolarimeter sensor and support system were developed for a military/civilian defense feasibility study concerning the identification and standoff detection of biological aerosols. Plumes of warfare agent surrogates gamma-irradiated Bacillus subtilis and chicken egg white albumen (analytes), Arizona road dust (terrestrial interferent), water mist (atmospheric interferent), and talcum powders (experiment controls) were dispersed inside windowless chambers and interrogated by multiple CO(2) laser beams spanning 9.1-12.0 microm wavelengths (lambda). Molecular vibration and vibration-rotation activities by the subject analyte are fundamentally strong within this "fingerprint" middle infrared spectral region. Distinct polarization-modulations of incident irradiance and backscatter radiance of tuned beams generate the Mueller matrix (M) of subject aerosol. Strings of all 15 normalized elements {M(ij)(lambda)/M(11)(lambda)}, which completely describe physical and geometric attributes of the aerosol particles, are input fields for training hybrid Kohonen self-organizing map feed-forward artificial neural networks (ANNs). The properly trained and validated ANN model performs pattern recognition and type-classification tasks via internal mappings. A typical ANN that mathematically clusters analyte, interferent, and control aerosols with nil overlap of species is illustrated, including sensitivity analysis of performance. PMID:20090802

  6. Is extinction forever?

    PubMed

    Smith-Patten, Brenda D; Bridge, Eli S; Crawford, Priscilla H C; Hough, Daniel J; Kelly, Jeffrey F; Patten, Michael A

    2015-05-01

    Mistrust of science has seeped into public perception of the most fundamental aspect of conservation-extinction. The term ought to be straightforward, and yet, there is a disconnect between scientific discussion and public views. This is not a mere semantic issue, rather one of communication. Within a population dynamics context, we say that a species went locally extinct, later to document its return. Conveying our findings matters, for when we use local extinction, an essentially nonsensical phrase, rather than extirpation, which is what is meant, then we contribute to, if not create outright, a problem for public understanding of conservation, particularly as local extinction is often shortened to extinction in media sources. The public that receives the message of our research void of context and modifiers comes away with the idea that extinction is not forever or, worse for conservation as a whole, that an extinction crisis has been invented. PMID:25711479

  7. Is extinction forever?

    PubMed Central

    Bridge, Eli S.; Crawford, Priscilla H. C.; Hough, Daniel J.; Kelly, Jeffrey F.; Patten, Michael A.

    2015-01-01

    Mistrust of science has seeped into public perception of the most fundamental aspect of conservation—extinction. The term ought to be straightforward, and yet, there is a disconnect between scientific discussion and public views. This is not a mere semantic issue, rather one of communication. Within a population dynamics context, we say that a species went locally extinct, later to document its return. Conveying our findings matters, for when we use local extinction, an essentially nonsensical phrase, rather than extirpation, which is what is meant, then we contribute to, if not create outright, a problem for public understanding of conservation, particularly as local extinction is often shortened to extinction in media sources. The public that receives the message of our research void of context and modifiers comes away with the idea that extinction is not forever or, worse for conservation as a whole, that an extinction crisis has been invented. PMID:25711479

  8. Biological selectivity of extinction

    NASA Astrophysics Data System (ADS)

    Kitchell, Jennifer A.

    Selective survival across major extinction event horizons is both a bothersome puzzle and an opportunity to delimit the biologically interesting question of causality. Heritable differences in characters may have predictable consequences in terms of differential species survival. Differences in magnitude and intensity of extinction are insufficient to distinguish background from mass extinction regimes. Biological adaptations may establish links of causality between abnormal times of mass extinction and normal times of background extinction. A current hypothesis, developed from a comparison of extinction patterns among Late Cretaceous molluscs, is that biological adaptations of organisms, effective during normal times of Earth history, are ineffectual during times of crises. A counter example is provided by data from high-latitude laminated marine strata that preserve evidence of an actively exploited life-history strategy among Late Cretaceous phytoplankton. These data illustrate a causal dependency between a biological character selected for during times of background extinction and macroevolutionary survivorship during an unusual time of crisis.

  9. Influence of oxygen addition to the carrier gas on laser-induced breakdown spectroscopy measurements on aerosols

    NASA Astrophysics Data System (ADS)

    Palazzo, N.; Migliorini, F.; Dondè, R.; Maffi, S.; De Iuliis, S.

    2016-01-01

    In this work, laser-induced breakdown spectrosopy is implemented on aerosol particles for absolute concentration analysis. The aim of this work is the investigation of the effect of the bath gas used for nebulizing the aerosol. Nitrogen, air, and 50% O2 in N2 mixture have been chosen as carrier gasses in order to analyze the effect of oxygen addition to the gas. LIBS measurements have been carried out on aerosol particles produced from CuCl2 2H2O solutions, and the 324.7 nm Cu line is considered. As a first analysis, plasma parameters, such as temperature and electron density, have been evaluated changing the carrier gas. Measurements to derive the LIBS calibration curve of the 324.7 nm Cu line are carried out in air and in N2. The significant difference in the slope of the resulting calibration curves has to be attributed to the oxygen addition to the bath gas. To explore such behavior, time-resolved measurements of the Cu line and peak/base ratio have been performed. The presence of two competitive effects have been observed that becomes significant increasing the amount of oxygen in the carrier gas. One is the oxygen-quenching effect, already observed in the literature, and the other one is the enhancement of the Cu LIBS signal, expecially at short delay times. These effects have been observed also at other Cu lines and changing the analyte source. The results are presented and widely discussed.

  10. Secondary extinctions of biodiversity.

    PubMed

    Brodie, Jedediah F; Aslan, Clare E; Rogers, Haldre S; Redford, Kent H; Maron, John L; Bronstein, Judith L; Groves, Craig R

    2014-12-01

    Extinctions beget further extinctions when species lose obligate mutualists, predators, prey, or hosts. Here, we develop a conceptual model of species and community attributes affecting secondary extinction likelihood, incorporating mechanisms that buffer organisms against partner loss. Specialized interactors, including 'cryptic specialists' with diverse but nonredundant partner assemblages, incur elevated risk. Risk is also higher for species that cannot either evolve new traits following partner loss or obtain novel partners in communities reorganizing under changing environmental conditions. Partner loss occurs alongside other anthropogenic impacts; multiple stressors can circumvent ecological buffers, enhancing secondary extinction risk. Stressors can also offset each other, reducing secondary extinction risk, a hitherto unappreciated phenomenon. This synthesis suggests improved conservation planning tactics and critical directions for research on secondary extinctions. PMID:25445878

  11. Inference of stratospheric aerosol composition and size distribution from SAGE II satellite measurements

    NASA Technical Reports Server (NTRS)

    Wang, Pi-Huan; Mccormick, M. P.; Fuller, W. H.; Yue, G. K.; Swissler, T. J.; Osborn, M. T.

    1989-01-01

    A method for inferring stratospheric aerosol composition and size distribution from the water vapor concentration and aerosol extinction measurements obtained in the Stratospheric Aerosol and Gas Experiment (SAGE) II and the associated temperature from the NMC. The aerosols are assumed to be sulfuric acid-water droplets. A modified Levenberg-Marquardt algorithm is used to determine model size distribution parameters based on the SAGE II multiwavelength aerosol extinctions. It is found that the best aerosol size information is contained in the aerosol radius range between about 0.25 and 0.80 micron.

  12. Gradual extinction reduces reinstatement

    PubMed Central

    Shiban, Youssef; Wittmann, Jasmin; Weißinger, Mara; Mühlberger, Andreas

    2015-01-01

    The current study investigated whether gradually reducing the frequency of aversive stimuli during extinction can prevent the return of fear. Thirty-one participants of a three-stage procedure (acquisition, extinction and a reinstatement test on day 2) were randomly assigned to a standard extinction (SE) and gradual extinction (GE) procedure. The two groups differed only in the extinction procedure. While the SE group ran through a regular extinction process without any negative events, the frequency of the aversive stimuli during the extinction phase was gradually reduced for the GE group. The unconditioned stimulus (US) was an air blast (5 bar, 10 ms). A spider and a scorpion were used as conditioned stimuli (CS). The outcome variables were contingency ratings and physiological measures (skin conductance response, SCR and startle response). There were no differences found between the two groups for the acquisition and extinction phases concerning contingency ratings, SCR, or startle response. GE compared to SE significantly reduced the return of fear in the reinstatement test for the startle response but not for SCR or contingency ratings. This study was successful in translating the findings in rodent to humans. The results suggest that the GE process is suitable for increasing the efficacy of fear extinction. PMID:26441581

  13. Mass extinction: a commentary

    NASA Technical Reports Server (NTRS)

    Raup, D. M.

    1987-01-01

    Four neocatastrophist claims about mass extinction are currently being debated; they are that: 1, the late Cretaceous mass extinction was caused by large body impact; 2, as many as five other major extinctions were caused by impact; 3, the timing of extinction events since the Permian is uniformly periodic; and 4, the ages of impact craters on Earth are also periodic and in phase with the extinctions. Although strongly interconnected the four claims are independent in the sense that none depends on the others. Evidence for a link between impact and extinction is strong but still needs more confirmation through bed-by-bed and laboratory studies. An important area for future research is the question of whether extinction is a continuous process, with the rate increasing at times of mass extinctions, or whether it is episodic at all scales. If the latter is shown to be generally true, then species are at risk of extinction only rarely during their existence and catastrophism, in the sense of isolated events of extreme stress, is indicated. This is line of reasoning can only be considered an hypothesis for testing. In a larger context, paleontologists may benefit from a research strategy that looks to known Solar System and Galactic phenomena for predictions about environmental effects on earth. The recent success in the recognition of Milankovitch Cycles in the late Pleistocene record is an example of the potential of this research area.

  14. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1996-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size-resolved aerosol microphysics and chemistry. Both profiles included a pollution haze from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core. The soot core increased the calculated extinction by about 10% in the most polluted drier layer relative to a pure sulfate aerosol but had significantly less effect at higher humidities. A 3 km descent through a boundary layer air mass dominated by pollutant aerosol with relative humidities (RH) 10-77% yielded a close agreement between the measured and calculated aerosol optical depths (550 nm) of 0.160 (+/- 0.07) and 0. 157 (+/- 0.034) respectively. During descent the aerosol mass scattering coefficient per unit sulfate mass varied from about 5 to 16 m(exp 2)/g and primarily dependent upon ambient RH. However, the total scattering coefficient per total fine mass was far less variable at about 4+/- 0.7 m(exp 2)/g. A subsequent descent through a Saharan dust layer located above the pollution aerosol layer revealed that both layers contributed similarly to aerosol optical depth. The scattering per unit mass of the coarse aged dust was estimated at 1.1 +/- 0.2 m(exp 2)/g. The large difference (50%) in measured and calculated optical depth for the dust layer exceeded measurements.

  15. Global distribution of stratospheric aerosols by satellite measurements

    NASA Astrophysics Data System (ADS)

    McCormick, M. P.

    1982-01-01

    A description is given of the first-ever global stratospheric aerosol climatology which is being developed by the earth-orbiting SAM II and SAGE satellite-based sensors. These sensors use the technique of solar occulation; that is, for every spacecraft sunrise and sunset, the modulation of solar intensity caused by the intervening earth-limb is measured. These data are mathematically inverted to yield vertical profiles of aerosol extinction coefficients with 1 km resolution. The data show seasonal variations which are similar in each hemisphere, with strong correlation between aerosol extinction and the corresponding temperature field. Typical values of extinction in the stratosphere are found to be about 0.0001 to 0.0002 per km at 1 micrometer; stratospheric optical depths at this wavelength are about 0.002. The peak extinction in the stratospheric aerosol layer follows the tropopause with altitude, with peak extinction ratios about 10 km above the local tropopause.

  16. Heterogeneous interaction of SiO2 with N2O5: aerosol flow tube and single particle optical levitation-Raman spectroscopy studies.

    PubMed

    Tang, M J; Camp, J C J; Rkiouak, L; McGregor, J; Watson, I M; Cox, R A; Kalberer, M; Ward, A D; Pope, F D

    2014-09-25

    Silica (SiO2) is an important mineral present in atmospheric mineral dust particles, and the heterogeneous reaction of N2O5 on atmospheric aerosol is one of the major pathways to remove nitrogen oxides from the atmosphere. The heterogeneous reaction of N2O5 with SiO2 has only been investigated by two studies previously, and the reported uptake coefficients differ by a factor of >10. In this work two complementary laboratory techniques were used to study the heterogeneous reaction of SiO2 particles with N2O5 at room temperature and at different relative humidities (RHs). The uptake coefficients of N2O5, γ(N2O5), were determined to be (7.2 ± 0.6) × 10(-3) (1σ) at 7% RH and (5.3 ± 0.8) × 10(-3) (1σ) at 40% RH for SiO2 particles, using the aerosol flow tube technique. We show that γ(N2O5) determined in this work can be reconciled with the two previous studies by accounting for the difference in geometric and BET derived aerosol surface areas. To probe the particle phase chemistry, individual micrometer sized SiO2 particles were optically levitated and exposed to a continuous flow of N2O5 at different RHs, and the composition of levitated particles was monitored online using Raman spectroscopy. This study represents the first investigation into the heterogeneous reactions of levitated individual SiO2 particles as a surrogate for mineral dust. Relative humidity was found to play a critical role: while no significant change of particle composition was observed by Raman spectroscopy during exposure to N2O5 at RH of <2%, increasing the RH led to the formation of nitrate species on the particle surface which could be completely removed after decreasing the RH back to <2%. This can be explained by the partitioning of HNO3 between the gas and adsorbed phases. The atmospheric implications of this work are discussed. PMID:25188692

  17. Airborne Aerosol Closure Studies During PRIDE

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Livingston, John M.; Russell, Philip B.; Schmid, Beat; Reid, Jeff

    2000-01-01

    The Puerto Rico Dust Experiment (PRIDE) was conducted during June/July of 2000 to study the properties of Saharan dust aerosols transported across the Atlantic Ocean to the Caribbean Islands. During PRIDE, the NASA Ames Research Center six-channel (380 - 1020 nm) airborne autotracking sunphotometer (AATS-6) was operated aboard a Piper Navajo airplane alongside a suite of in situ aerosol instruments. The in situ aerosol instrumentation relevant to this paper included a Forward Scattering Spectrometer Probe (FSSP-100) and a Passive Cavity Aerosol Spectrometer Probe (PCASP), covering the radius range of approx. 0.05 to 10 microns. The simultaneous and collocated measurement of multi-spectral aerosol optical depth and in situ particle size distribution data permits a variety of closure studies. For example, vertical profiles of aerosol optical depth obtained during local aircraft ascents and descents can be differentiated with respect to altitude and compared to extinction profiles calculated using the in situ particle size distribution data (and reasonable estimates of the aerosol index of refraction). Additionally, aerosol extinction (optical depth) spectra can be inverted to retrieve estimates of the particle size distributions, which can be compared directly to the in situ size distributions. In this paper we will report on such closure studies using data from a select number of vertical profiles at Cabras Island, Puerto Rico, including measurements in distinct Saharan Dust Layers. Preliminary results show good agreement to within 30% between mid-visible aerosol extinction derived from the AATS-6 optical depth profiles and extinction profiles forward calculated using 60s-average in situ particle size distributions and standard Saharan dust aerosol refractive indices published in the literature. In agreement with tendencies observed in previous studies, our initial results show an underestimate of aerosol extinction calculated based on the in situ size distributions

  18. Raman Spectroscopy of Isotopic Water Diffusion in Ultraviscous, Glassy, and Gel States in Aerosol by Use of Optical Tweezers.

    PubMed

    Davies, James F; Wilson, Kevin R

    2016-02-16

    The formation of ultraviscous, glassy, and amorphous gel states in aqueous aerosol following the loss of water results in nonequilibrium dynamics due to the extended time scales for diffusive mixing. Existing techniques for measuring water diffusion by isotopic exchange are limited by contact of samples with the substrate, and methods applied to infer diffusion coefficients from mass transport in levitated droplets requires analysis by complex coupled differential equations to derive diffusion coefficients. We present a new technique that combines contactless levitation with aerosol optical tweezers with isotopic exchange (D2O/H2O) to measure the water diffusion coefficient over a broad range (Dw ≈ 10(-12)-10(-17) m(2)·s(-1)) in viscous organic liquids (citric acid, sucrose, and shikimic acid) and inorganic gels (magnesium sulfate, MgSO4). For the organic liquids in binary and ternary mixtures, Dw depends on relative humidity and follows a simple compositional Vignes relationship. In MgSO4 droplets, water diffusivity decreases sharply with water activity and is consistent with predictions from percolation theory. These measurements show that, by combining micrometer-sized particle levitation (a contactless measurement with rapid mixing times) with an established probe of water diffusion, Dw can be simply and directly quantified for amorphous and glassy states that are inaccessible to existing methods. PMID:26751163

  19. Infrared spectroscopy of methoxyphenols involved as atmospheric secondary organic aerosol precursors: Gas-phase vibrational cross-sections

    NASA Astrophysics Data System (ADS)

    Cuisset, A.; Coeur, C.; Mouret, G.; Ahmad, W.; Tomas, A.; Pirali, O.

    2016-08-01

    Methoxyphenols are emitted in the atmosphere from biomass burning and recent works have shown the potential role of these oxygenated aromatic species in the formation of secondary organic aerosols. IR spectroscopic data that would enable their remote measurement in the atmosphere remain scarce in the literature. Room temperature Far-IR cross-sections of 4 methoxyphenols (2-methoxyphenol or guaiacol, 3-methoxyphenol, 4-methoxyphenol and 2,6-dimethoxyphenol or syringol) have been determined using the THz synchrotron radiation available at SOLEIL. Mid- and near-IR regions have also been investigated with a conventional Fourier transform IR setup and allowed to provide a set of vibrational cross-sections of the studied methoxyphenols. Finally, gas-phase cross sections of two nitroguaiacol isomers (4-nitroguaiacol and 5-nitroguaiacol), two intermediate products involved in the formation of secondary organic aerosols have been measured in the mid- and near-IR with a heated multi-pass cell. Harmonic and anharmonic density functional theory calculations were carried out for all the studied compounds and allowed a full assignment of the recorded rovibrational bands.

  20. Retrieval of aerosol optical and micro-physical properties with 2D-MAX-DOAS

    NASA Astrophysics Data System (ADS)

    Ortega, Ivan; Coburn, Sean; Hostetler, Chris; Ferrare, Rich; Hair, Johnathan; Kassianov, Evgueni; Barnard, James; Berg, Larry; Schmid, Beat; Tomlinson, Jason; Hodges, Gary; Lantz, Kathy; Wagner, Thomas; Volkamer, Rainer

    2015-04-01

    Recent retrievals of 2 dimensional (2D) Multi-AXis Differential Optical Absorption Spectroscopy (2D-MAX-DOAS) have highlighted its importance in order to infer diurnal horizontal in-homogeneities around the measurement site. In this work, we expand the capabilities of 2D measurements in order to estimate simultaneously aerosol optical and micro-physical properties. Specifically, we present a retrieval method to obtain: (1) aerosol optical thickness (AOT) in the boundary layer (BL) and free troposphere (FT) and (2) the effective complex refractive index and the effective radius of the aerosol column size distribution. The retrieval method to obtain AOT is based on an iterative comparison of measured normalized radiances, oxygen collision pair (O4), and absolute Raman Scattering Probability (RSP) with the forward model calculations derived with the radiative transfer model McArtim based on defined aerosol extinction profiles. Once the aerosol load is determined we use multiple scattering phase functions and single scattering albedo (SSA) obtained with Mie calculations which then constrain the RTM to forward model solar almucantar normalized radiances. The simulated almucantar normalized radiances are then compared to the measured normalized radiances. The best-fit, determined by minimizing the root mean square, retrieves the complex refractive index, and effective radius. We apply the retrieval approach described above to measurements carried out during the 2012 intensive operation period of the Two Column Aerosol Project (TCAP) held on Cape Cod, MA, USA. Results are presented for two ideal case studies with both large and small aerosol loading and similar air mass outflow from the northeast coast of the US over the West Atlantic Ocean. The aerosol optical properties are compared with several independent instruments, including the NASA Langley airborne High Spectral Resolution Lidar (HSRL-2) for highly resolved extinction profiles during the overpasses, and with the

  1. Extinction and the fossil record

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. J. Jr; Sepkoski JJ, ,. J. r. (Principal Investigator)

    1994-01-01

    The author examines evidence of mass extinctions in the fossil record and searches for reasons for such large extinctions. Five major mass extinctions eliminated at least 40 percent of animal genera in the oceans and from 65 to 95 percent of ocean species. Questions include the occurrence of gradual or catastrophic extinctions, causes, environment, the capacity of a perturbation to cause extinctions each time it happens, and the possibility and identification of complex events leading to a mass extinction.

  2. Light emitting diode cavity enhanced differential optical absorption spectroscopy (LED-CE-DOAS): a novel technique for monitoring atmospheric trace gases

    NASA Astrophysics Data System (ADS)

    Thalman, Ryan M.; Volkamer, Rainer M.

    2009-08-01

    The combination of Cavity Enhanced Absorption Spectroscopy (CEAS) with broad-band light sources (e.g. Light- Emitting Diodes, LEDs) lends itself to the application of cavity enhanced DOAS (CE-DOAS) to perform sensitive and selective point measurements of multiple trace gases with a single instrument. In contrast to other broad-band CEAS techniques, CE-DOAS relies only on the measurement of relative intensity changes, i.e., does not require knowledge of the light intensity in the absence of trace gases and aerosols (I0). We have built a prototype LED-CE-DOAS instrument in the blue spectral range (420-490nm) to measure nitrogen dioxide (NO2), glyoxal (CHOCHO), iodine monoxide (IO), water (H2O) and oxygen dimers (O4). Aerosol extinction is retrieved at two wavelengths by means of observing water and O4 and measuring pressure, temperature and relative humidity independently. The instrument components are presented, and the approach to measure aerosol extinction is demonstrated by means of a set of experiments where laboratory generated monodisperse aerosols are added to the cavity. The aerosol extinction cross section agrees well with Mie calculations, demonstrating that our setup enables measurements of the above gases in open cavity mode.

  3. Mexico City Aerosol Transect

    NASA Astrophysics Data System (ADS)

    Lewandowski, P. A.; Eichinger, W. E.; Prueger, J.; Holder, H. L.

    2007-12-01

    A radiative impact study was conducted in Mexico City during MILAGRO/MIRAGE campaign in March of 2006. On a day when the predominant wind was from the north to the south, authors measured radiative properties of the atmosphere in six locations across the city ranging from the city center, through the city south limits and the pass leading out of the city (causing pollutants to funnel through the area). A large change in aerosol optical properties has been noticed. The aerosol optical depth has generally increased outside of the city and angstrom coefficient has changed significantly towards smaller values. Aerosol size distribution was calculated using SkyRadPack. The total optical depths allowed coincidental lidar data to calculate total extinction profiles for all the locations for 1064nm.

  4. Is extinction age dependent?

    USGS Publications Warehouse

    Doran, N.A.; Arnold, A.J.; Parker, W.C.; Huffer, F.W.

    2006-01-01

    Age-dependent extinction is an observation with important biological implications. Van Valen's Red Queen hypothesis triggered three decades of research testing its primary implication: that age is independent of extinction. In contrast to this, later studies with species-level data have indicated the possible presence of age dependence. Since the formulation of the Red Queen hypothesis, more powerful tests of survivorship models have been developed. This is the first report of the application of the Cox Proportional Hazards model to paleontological data. Planktonic foraminiferal morphospecies allow the taxonomic and precise stratigraphic resolution necessary for the Cox model. As a whole, planktonic foraminiferal morphospecies clearly show age-dependent extinction. In particular, the effect is attributable to the presence of shorter-ranged species (range < 4 myr) following extinction events. These shorter-ranged species also possess tests with unique morphological architecture. The morphological differences are probably epiphenomena of underlying developmental and heterochronic processes of shorter-ranged species that survived various extinction events. Extinction survivors carry developmental and morphological characteristics into postextinction recovery times, and this sets them apart from species populations established independently of extinction events. Copyright ?? 2006, SEPM (Society for Sedimentary Geology).

  5. ON THE PROPORTIONALITY OF FINE MASS CONCENTRATION AND EXTINCTION COEFFICIENT FOR BIMODAL SIZE DISTRIBUTIONS

    EPA Science Inventory

    For a bimodal size distribution of ambient aerosol, an upper limit in particle size can be chosen for the fine aerosol fraction so that the extinction coefficient for light scattering and absorption is directly proportional to the fine mass concentration, with no dependence on th...

  6. Temporal Dynamics of Recovery from Extinction Shortly after Extinction Acquisition

    ERIC Educational Resources Information Center

    Archbold, Georgina E.; Dobbek, Nick; Nader, Karim

    2013-01-01

    Evidence suggests that extinction is new learning. Memory acquisition involves both short-term memory (STM) and long-term memory (LTM) components; however, few studies have examined early phases of extinction retention. Retention of auditory fear extinction was examined at various time points. Shortly (1-4 h) after extinction acquisition…

  7. Regional characteristics of the relationship between columnar AOD and surface PM2.5: Application of lidar aerosol extinction profiles over Baltimore-Washington Corridor during DISCOVER-AQ

    NASA Astrophysics Data System (ADS)

    Chu, D. Allen; Ferrare, Richard; Szykman, James; Lewis, Jasper; Scarino, Amy; Hains, Jennifer; Burton, Sharon; Chen, Gao; Tsai, Tzuchin; Hostetler, Chris; Hair, Johnathan; Holben, Brent; Crawford, James

    2015-01-01

    The first field campaign of DISCOVER-AQ (Deriving Information on Surface conditions from COlumn and VERtically resolved observations relevant to Air Quality) took place in July 2011 over Baltimore-Washington Corridor (BWC). A suite of airborne remote sensing and in-situ sensors was deployed along with ground networks for mapping vertical and horizontal distribution of aerosols. Previous researches were based on a single lidar station because of the lack of regional coverage. This study uses the unique airborne HSRL (High Spectral Resolution Lidar) data to baseline PM2.5 (particulate matter of aerodynamic diameter less than 2.5 μm) estimates and applies to regional air quality with satellite AOD (Aerosol Optical Depth) retrievals over BWC (∼6500 km2). The linear approximation takes into account aerosols aloft above AML (Aerosol Mixing Layer) by normalizing AOD with haze layer height (i.e., AOD/HLH). The estimated PM2.5 mass concentrations by HSRL AOD/HLH are shown within 2 RMSE (Root Mean Square Error ∼9.6 μg/m3) with correlation ∼0.88 with the observed over BWC. Similar statistics are shown when applying HLH data from a single location over the distance of 100 km. In other words, a single lidar is feasible to cover the range of 100 km with expected uncertainties. The employment of MPLNET-AERONET (MicroPulse Lidar NETwork - AErosol RObotic NETwork) measurements at NASA GSFC produces similar statistics of PM2.5 estimates as those derived by HSRL. The synergy of active and passive remote sensing aerosol measurements provides the foundation for satellite application of air quality on a daily basis. For the optimal range of 10 km, the MODIS-estimated PM2.5 values are found satisfactory at 27 (out of 36) sunphotometer locations with mean RMSE of 1.6-3.3 μg/m3 relative to PM2.5 estimated by sunphotometers. The remaining 6 of 8 marginal sites are found in the coastal zone, for which associated large RMSE values ∼4.5-7.8 μg/m3 are most likely due to

  8. Fear Extinction in Rodents

    PubMed Central

    Chang, Chun-hui; Knapska, Ewelina; Orsini, Caitlin A.; Rabinak, Christine A.; Zimmerman, Joshua M.; Maren, Stephen

    2009-01-01

    Pavlovian conditioning paradigms have become important model systems for understanding the neuroscience of behavior. In particular, studies of the extinction of Pavlovian fear responses are yielding important information about the neural substrates of anxiety disorders in humans. These studies are germane to understanding the neural mechanisms underlying behavioral interventions that suppress fear, including exposure therapy. This chapter described detailed behavioral protocols for examining the nature and properties of fear extinction in laboratory rodents. PMID:19340814

  9. Extinction with multiple excitors

    PubMed Central

    McConnell, Bridget L.; Miguez, Gonzalo; Miller, Ralph R.

    2012-01-01

    Four conditioned suppression experiments with rats, using an ABC renewal design, investigated the effects of compounding the target conditioned excitor with additional, nontarget conditioned excitors during extinction. Experiment 1 showed stronger extinction, as evidenced by less renewal, when the target excitor was extinguished in compound with a second excitor, relative to when it was extinguished with associatively neutral stimuli. Critically, this deepened extinction effect was attenuated (i.e., more renewal occurred) when a third excitor was added during extinction training. This novel demonstration contradicts the predictions of associative learning models based on total error reduction, but it is explicable in terms of a counteraction effect within the framework of the extended comparator hypothesis. The attenuated deepened extinction effect was replicated in Experiments 2a and 3, which also showed that pretraining consisting of weakening the association between the two additional excitors (Experiments 2a and 2b) or weakening the association between one of the additional excitors and the unconditioned stimulus (Experiment 3) attenuated the counteraction effect, thereby resulting in a decrease in responding to the target excitor. These results suggest that more than simple total error reduction determines responding after extinction. PMID:23055103

  10. Extinction of oscillating populations.

    PubMed

    Smith, Naftali R; Meerson, Baruch

    2016-03-01

    Established populations often exhibit oscillations in their sizes that, in the deterministic theory, correspond to a limit cycle in the space of population sizes. If a population is isolated, the intrinsic stochasticity of elemental processes can ultimately bring it to extinction. Here we study extinction of oscillating populations in a stochastic version of the Rosenzweig-MacArthur predator-prey model. To this end we develop a WKB (Wentzel, Kramers and Brillouin) approximation to the master equation, employing the characteristic population size as the large parameter. Similar WKB theories have been developed previously in the context of population extinction from an attracting multipopulation fixed point. We evaluate the extinction rates and find the most probable paths to extinction from the limit cycle by applying Floquet theory to the dynamics of an effective four-dimensional WKB Hamiltonian. We show that the entropic barriers to extinction change in a nonanalytic way as the system passes through the Hopf bifurcation. We also study the subleading pre-exponential factors of the WKB approximation. PMID:27078294

  11. Extinction of oscillating populations

    NASA Astrophysics Data System (ADS)

    Smith, Naftali R.; Meerson, Baruch

    2016-03-01

    Established populations often exhibit oscillations in their sizes that, in the deterministic theory, correspond to a limit cycle in the space of population sizes. If a population is isolated, the intrinsic stochasticity of elemental processes can ultimately bring it to extinction. Here we study extinction of oscillating populations in a stochastic version of the Rosenzweig-MacArthur predator-prey model. To this end we develop a WKB (Wentzel, Kramers and Brillouin) approximation to the master equation, employing the characteristic population size as the large parameter. Similar WKB theories have been developed previously in the context of population extinction from an attracting multipopulation fixed point. We evaluate the extinction rates and find the most probable paths to extinction from the limit cycle by applying Floquet theory to the dynamics of an effective four-dimensional WKB Hamiltonian. We show that the entropic barriers to extinction change in a nonanalytic way as the system passes through the Hopf bifurcation. We also study the subleading pre-exponential factors of the WKB approximation.

  12. Mass extinction causes debated

    NASA Astrophysics Data System (ADS)

    Katzoff, Judith A.

    A highly charged atmosphere and a tacit agreement to disagree marked the first Union session at the 1985 AGU Fall Meeting,“Where Are We Now on Iridium, Anomalies, Extinctions, Impacts, Volcanism, and Periodicity?” The session brought together a remarkably large and varied group of participants who are studying topics related to mass extinctions. “The important thing is bringing all these people together, sharing … how they think,” said J. John Sepkoski, Jr., of the University of Chicago, who presented one of the session's invited papers.The controversies under discussion included the nature of the catastrophic events that may have occurred 65 million years ago to precipitate mass extinctions between the Cretaceous and Tertiary periods and whether mass extinctions have occurred at regular intervals (and if so, what those intervals are). Both the group advocating extraterrestrial impacts and that advocating episodes of unusual terrestrial volcanism seemed to agree that both kinds of catastrophes would have brought on highly acidic precipitation that could have threatened many life forms. In fact, one paleontologist called for closer examination of patterns of survival during periods of mass extinctions in order to gain clues about the nature of the events that may have brought on the extinctions. “The survivors … set limits on what could have occurred,” said William A. Clemens of the University of California, Berkeley.

  13. Stratospheric aerosol forcing for climate modeling: 1850-1978

    NASA Astrophysics Data System (ADS)

    Arfeuille, Florian; Luo, Beiping; Thomason, Larry; Vernier, Jean-Paul; Peter, Thomas

    2016-04-01

    We present here a stratospheric aerosol dataset produced using the available aerosol optical depth observations from the pre-satellite period. The scarce atmospheric observations are supplemented by additional information from an aerosol microphysical model, initialized by ice-core derived sulfur emissions. The model is used to derive extinctions at all altitudes, latitudes and times when sulfur injections are known for specific volcanic eruptions. The simulated extinction coefficients are then scaled to match the observed optical depths. In order to produce the complete optical properties at all wavelengths (and the aerosol surface area and volume densities) needed by climate models, we assume a lognormal size distribution of the aerosols. Correlations between the extinctions in the visible and the effective radius and distribution width parameters are taken from the better constrained SAGE II period. The aerosol number densities are then fitted to match the derived extinctions in the 1850-1978 period. From these aerosol size distributions, we then calculate extinction coefficients, single scattering albedos and asymmetry factors at all wavelengths using the Mie theory. The aerosol surface area densities and volume densities are also provided.

  14. Atmospheric aerosols: Their Optical Properties and Effects (supplement)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A digest of technical papers is presented. Topics include aerosol size distribution from spectral attenuation with scattering measurements; comparison of extinction and backscattering coefficients for measured and analytic stratospheric aerosol size distributions; using hybrid methods to solve problems in radiative transfer and in multiple scattering; blue moon phenomena; absorption refractive index of aerosols in the Denver pollution cloud; a two dimensional stratospheric model of the dispersion of aerosols from the Fuego volcanic eruption; the variation of the aerosol volume to light scattering coefficient; spectrophone in situ measurements of the absorption of visible light by aerosols; a reassessment of the Krakatoa volcanic turbidity, and multiple scattering in the sky radiance.

  15. Microstructure and Electron Energy-Loss Spectroscopy Analysis of Interface Between Cu Substrate and Al2O3 Film Formed by Aerosol Deposition Method

    NASA Astrophysics Data System (ADS)

    Naoe, Kazuaki; Nishiki, Masashi; Sato, Keishi

    2014-12-01

    Aerosol deposition method is a technique to form dense films by impacting solid particles on a substrate at room temperature. To clarify the bonding mechanism between AD films and substrates, TEM observation and electron energy-loss spectroscopy (EELS) analysis of the interface between Al2O3 AD films and Cu substrates were conducted. The Al2O3 film was directly adhered to the Cu substrate without any void or crack. The film was composed of randomly oriented α-Al2O3 crystal grains of about 10-20 nm large. At the Al2O3/Cu interface, the lattice fringes of the film were recognized, and no interfacial layer with nanometer-order thickness could be found. EELS spectra near O- K edge obtained at the interface had the pre-peak feature at around 528 eV. According to previously reported experiments and theoretical calculations, this suggests interactions between Cu and O in Al2O3 at the interface. It is inferred that not only the anchoring effect but also the ionic bonding and covalent bonding that originates from the Cu-O interactions contribute to the bonding between Al2O3 AD films and Cu substrates.

  16. Fourier Transform Infrared Spectroscopy for Identification and Quantification of Organic Functional Groups in Aqueous Phase Secondary Organic Aerosol

    NASA Astrophysics Data System (ADS)

    George, K.; Ruthenburg, T. C.; Smith, J.; Anastasio, C.; Dillner, A. M.

    2011-12-01

    Particles in the atmosphere influence visibility, climate, and human health. Secondary organic aerosols (SOA) formed from chemical reactions in the atmosphere constitute a portion of total organic particle mass. Most research on SOA has focused on gas phase reactions; however, reactions taking place in cloud and fog drops may be significant. One group of water-soluble compounds that participate in these reactions is phenols. Phenols, emitted from biomass burning, react in the aqueous phase to form low-volatility SOA products. The products formed from these reactions are currently poorly characterized. In order to characterize laboratory-generated samples, we are developing an attenuated total reflectance-Fourier transform infrared spectroscopic (ATR-FTIR) technique to identify and quantify organic functional groups in SOA. Aqueous SOA is made in the laboratory by illuminating solutions of phenolic compounds with an oxidant. The illuminated solution is then blown to dryness in order to determine the mass of SOA produced. The dry SOA is reconstituted in water and drops of this solution are placed onto a single-reflection ATR accessory. In order to identify and quantify functional groups in the complex SOA samples, it is necessary to calibrate with compounds and mixtures of compounds containing bond types similar to those found in the laboratory-generated SOA. Initially, focus has been placed on multiple peaks located in the region between 1800 cm-1 and 800 cm-1, including peaks for C=O and C-O. We distinguish between characteristic absorbances to begin determining the organic functional group composition of the SOA samples. This ATR-FTIR technique complements information from mass spectrometry measurements and allows us to quantify organic mass for non-volatile SOA products.

  17. Retrieval of composition and size distribution of stratospheric aerosols with the SAGE II satellite experiment

    NASA Technical Reports Server (NTRS)

    Yue, Glenn K.; Mccormick, M. P.; Chu, W. P.

    1986-01-01

    The SAGE II satellite system was launched on October 5, 1984. It has seven radiometric channels and is beginning to provide water vapor, NO2, and O3 concentration profiles and aerosol extinction profiles at a minimum of three wavelengths. A simple, fast and operational method of retrieving characteristics of stratospheric aerosols from the water vapor and three-wavelength aerosol extinction profiles is proposed. Some examples are given to show the practicality of the scheme. Possible sources of error for the retrieved values and the limitation of the proposed method are discussed. This method may also prove applicable to the study of aerosol characteristics in other multispectral extinction measurements.

  18. Optical properties of internally mixed aerosol particles composed of dicarboxylic acids and ammonium sulfate.

    PubMed

    Freedman, Miriam A; Hasenkopf, Christa A; Beaver, Melinda R; Tolbert, Margaret A

    2009-12-01

    We have investigated the optical properties of internally mixed aerosol particles composed of dicarboxylic acids and ammonium sulfate using cavity ring-down aerosol extinction spectroscopy at a wavelength of 532 nm. The real refractive indices of these nonabsorbing species were retrieved from the extinction and concentration of the particles using Mie scattering theory. We obtain refractive indices for pure ammonium sulfate and pure dicarboxylic acids that are consistent with literature values, where they exist, to within experimental error. For mixed particles, however, our data deviates significantly from a volume-weighted average of the pure components. Surprisingly, the real refractive indices of internal mixtures of succinic acid and ammonium sulfate are higher than either of the pure components at the highest organic weight fractions. For binary internal mixtures of oxalic or adipic acid with ammonium sulfate, the real refractive indices of the mixtures are approximately the same as ammonium sulfate for all organic weight fractions. Various optical mixing rules for homogeneous and slightly heterogeneous systems fail to explain the experimental real refractive indices. It is likely that complex particle morphologies are responsible for the observed behavior of the mixed particles. Implications of our results for atmospheric modeling and aerosol structure are discussed. PMID:19877658

  19. Hybridization and extinction.

    PubMed

    Todesco, Marco; Pascual, Mariana A; Owens, Gregory L; Ostevik, Katherine L; Moyers, Brook T; Hübner, Sariel; Heredia, Sylvia M; Hahn, Min A; Caseys, Celine; Bock, Dan G; Rieseberg, Loren H

    2016-08-01

    Hybridization may drive rare taxa to extinction through genetic swamping, where the rare form is replaced by hybrids, or by demographic swamping, where population growth rates are reduced due to the wasteful production of maladaptive hybrids. Conversely, hybridization may rescue the viability of small, inbred populations. Understanding the factors that contribute to destructive versus constructive outcomes of hybridization is key to managing conservation concerns. Here, we survey the literature for studies of hybridization and extinction to identify the ecological, evolutionary, and genetic factors that critically affect extinction risk through hybridization. We find that while extinction risk is highly situation dependent, genetic swamping is much more frequent than demographic swamping. In addition, human involvement is associated with increased risk and high reproductive isolation with reduced risk. Although climate change is predicted to increase the risk of hybridization-induced extinction, we find little empirical support for this prediction. Similarly, theoretical and experimental studies imply that genetic rescue through hybridization may be equally or more probable than demographic swamping, but our literature survey failed to support this claim. We conclude that halting the introduction of hybridization-prone exotics and restoring mature and diverse habitats that are resistant to hybrid establishment should be management priorities. PMID:27468307

  20. Research on aerosol profiles and parameterization scheme in Southeast China

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Deng, Tao; Tan, Haobo; Liu, Xiantong; Yang, Honglong

    2016-09-01

    The vertical distribution of the aerosol extinction coefficient serves as a basis for evaluating aerosol radiative forcing and air quality modeling. In this study, MODIS AOD data and ground-based lidar extinction coefficients were employed to verify 6 years (2009-2014) aerosol extinction data obtained via CALIOP for Southeast China. The objective was mainly to provide the parameterization scheme of annual and seasonal aerosol extinction profiles. The results showed that the horizontal and vertical distributions of CALIOP extinction data were highly accurate in Southeast China. The annual average AOD below 2 km accounted for 64% of the total layer, with larger proportions observed in winter (80%) and autumn (80%) and lower proportions observed in summer (70%) and spring (59%). The AOD was maximum in the spring (0.58), followed by the autumn and winter (0.44), and reached a minimum in the summer (0.40). The near-surface extinction coefficient increased from summer, spring, autumn and winter, in that order. The Elterman profile is obviously lower than the profiles observed by CALIOP in Southeast China. The annual average and seasonal aerosol profiles showed an exponential distribution, and could be divided into two sections. Two sections exponential fitting was used in the parameterization scheme. In the first section, the aerosol scale height reached 2200 m with a maximum (3,500 m) in summer and a minimum (1,230 m) in winter, which meant that the aerosol extinction decrease with height slower in summer, but more rapidly in winter. In second section, the aerosol scale height was maximum in spring, which meant that the higher aerosol diffused in spring.

  1. SAGE aerosol measurements. Volume 3: January 1, 1981 to November 18, 1981

    NASA Technical Reports Server (NTRS)

    Mccormick, M. Patrick

    1987-01-01

    The Stratospheric Aerosol and Gas Experiment (SAGE) satellite system, launched February 18, 1979, obtained profiles of aerosol extinction at 1.00 micron and 0.45 micron ozone concentration, and nitrogen dioxide concentration. Data taken during sunset events are presented in the form of zonal and seasonal averages of aerosol extinction of 1.00 micron and 0.45 micron, ratios of aerosol extinction to molecular extinction at 1.00 micron and ratios of aerosol extinction at 0.45 micron to aerosol extinction at 1.00 micron. Averages for 1981 are shown in tables, and in profile and contour plots (as a function of altitude and latitude). In addition, temperature data provided by NOAA for the time and location of each SAGE measurement are averaged and shown in a similar format. The stratospheric aerosol distribution for 1981 shows effects of volcanically injected material from eruptions of Ulawun, Alaid, and Pagan. Peak values of aerosol extinction at 0.45 micron and 1.00 micron were 2 to 4 times higher than typical peak values observed during near background conditions. Stratospheric aerosol optical depth values at 1.00 microns increased by a factor of about 2 from near background levels in regions of volcanic activity. During the year, these values ranged from between 0.001 and 0.006. The largest were near the location of a recent eruption. The distribution of the ratio of aerosol to molecular extinction at 1.00 microns also showed that maximum values are found in the vicinity of an eruption. These maximums varied in altitude, but remained below a height of about 25 km. No attempt has been made to give detailed explanations or interpretations of these data. The intent is to provide, in a ready-to-use visual format, representative zonal and seasonal averages of aerosol extinction data for the third calendar year of the SAGE data set to facilitate atmospheric and climatic studies.

  2. SAGE aerosol measurements. Volume 3: January 1, 1981 to November 18, 1981

    NASA Astrophysics Data System (ADS)

    McCormick, M. Patrick

    1987-02-01

    The Stratospheric Aerosol and Gas Experiment (SAGE) satellite system, launched February 18, 1979, obtained profiles of aerosol extinction at 1.00 micron and 0.45 micron ozone concentration, and nitrogen dioxide concentration. Data taken during sunset events are presented in the form of zonal and seasonal averages of aerosol extinction of 1.00 micron and 0.45 micron, ratios of aerosol extinction to molecular extinction at 1.00 micron and ratios of aerosol extinction at 0.45 micron to aerosol extinction at 1.00 micron. Averages for 1981 are shown in tables, and in profile and contour plots (as a function of altitude and latitude). In addition, temperature data provided by NOAA for the time and location of each SAGE measurement are averaged and shown in a similar format. The stratospheric aerosol distribution for 1981 shows effects of volcanically injected material from eruptions of Ulawun, Alaid, and Pagan. Peak values of aerosol extinction at 0.45 micron and 1.00 micron were 2 to 4 times higher than typical peak values observed during near background conditions. Stratospheric aerosol optical depth values at 1.00 microns increased by a factor of about 2 from near background levels in regions of volcanic activity. During the year, these values ranged from between 0.001 and 0.006. The largest were near the location of a recent eruption. The distribution of the ratio of aerosol to molecular extinction at 1.00 microns also showed that maximum values are found in the vicinity of an eruption. These maximums varied in altitude, but remained below a height of about 25 km. No attempt has been made to give detailed explanations or interpretations of these data. The intent is to provide, in a ready-to-use visual format, representative zonal and seasonal averages of aerosol extinction data for the third calendar year of the SAGE data set to facilitate atmospheric and climatic studies.

  3. Biological Extinction in Earth History

    NASA Astrophysics Data System (ADS)

    Raup, David M.

    1986-03-01

    Virtually all plant and animal species that have ever lived on the earth are extinct. For this reason alone, extinction must play an important role in the evolution of life. The five largest mass extinctions of the past 600 million years are of greatest interest, but there is also a spectrum of smaller events, many of which indicate biological systems in profound stress. Extinction may be episodic at all scales, with relatively long periods of stability alternating with short-lived extinction events. Most extinction episodes are biologically selective, and further analysis of the victims and survivors offers the greatest chance of deducing the proximal causes of extinction. A drop in sea level and climatic change are most frequently invoked to explain mass extinctions, but new theories of collisions with extraterrestrial bodies are gaining favor. Extinction may be constructive in a Darwinian sense or it may only perturb the system by eliminating those organisms that happen to be susceptible to geologically rare stresses.

  4. Biological extinction in earth history

    NASA Technical Reports Server (NTRS)

    Raup, D. M.

    1986-01-01

    Virtually all plant and animal species that have ever lived on the earth are extinct. For this reason alone, extinction must play an important role in the evolution of life. The five largest mass extinctions of the past 600 million years are of greatest interest, but there is also a spectrum of smaller events, many of which indicate biological systems in profound stress. Extinction may be episodic at all scales, with relatively long periods of stability alternating with short-lived extinction events. Most extinction episodes are biologically selective, and further analysis of the victims and survivors offers the greatest chance of deducing the proximal causes of extinction. A drop in sea level and climatic change are most frequently invoked to explain mass extinctions, but new theories of collisions with extraterrestrial bodies are gaining favor. Extinction may be constructive in a Darwinian sense or it may only perturb the system by eliminating those organisms that happen to be susceptible to geologically rare stresses.

  5. Species extinction mires ecosystem

    SciTech Connect

    Holzman, D.

    1990-03-26

    Extinction is normal in the evolution of life, but amphibians, insects, birds and mammals are vanishing at an alarming pace. While habitat destruction, overexploitation and pollution are among the main causes, some disappearances cannot be explained. The extinction problem among amphibians mirrors the general, worldwide phenomenon. A synergism of insults may be responsible. Chance events such as a dry year might occasionally clean out a pond. But a larger lake nearby would replenish it. Now acid pollution adds to the ponds' burden while stocking of amphibian-eating sport fish in the lake - which happens even in natural parks - would destroy the source of replenishment. Some fear that extinctions ultimately could destroy nature's fabric.

  6. Supernovae and mass extinctions

    NASA Technical Reports Server (NTRS)

    Vandenbergh, S.

    1994-01-01

    Shklovsky and others have suggested that some of the major extinctions in the geological record might have been triggered by explosions of nearby supernovae. The frequency of such extinction events will depend on the galactic supernova frequency and on the distance up to which a supernova explosion will produce lethal effects upon terrestrial life. In the present note it will be assumed that a killer supernova has to occur so close to Earth that it will be embedded in a young, active, supernova remnant. Such young remnants typically have radii approximately less than 3 pc (1 x 10(exp 19) cm). Larger (more pessimistic?) killer radii have been adopted by Ruderman, Romig, and by Ellis and Schramm. From observations of historical supernovae, van den Bergh finds that core-collapse (types Ib and II) supernovae occur within 4 kpc of the Sun at a rate of 0.2 plus or minus 0.1 per century. Adopting a layer thickness of 0.3 kpc for the galacitc disk, this corresponds to a rate of approximately 1.3 x 10(exp -4) supernovae pc(exp -3) g.y.(exp -1). Including supernovae of type Ia will increase the total supernovae rate to approximately 1.5 x 10(exp -4) supernovae pc(exp -3) g.y.(exp -1). For a lethal radius of R pc the rate of killer events will therefore be 1.7 (R/3)(exp 3) x 10(exp -2) supernovae per g.y. However, a frequency of a few extinctions per g.y. is required to account for the extinctions observed during the phanerozoic. With R (extinction) approximately 3 pc, the galactic supernova frequency is therefore too low by 2 orders of magnitude to account for the major extinctions in the geological record.

  7. Results from the Portable Infrared Aerosol Transmission Experiment (PIRATE) - Caribbean: An examination of the column integrated infrared extinction of Saharan dust and comparisons with data commonly used in models

    NASA Astrophysics Data System (ADS)

    Thomas, M.; Gautier, C.

    2004-12-01

    Infrared optical depth of Saharan dust from field measurements made in Puerto Rico are presented and compared with frequently-used dust models. The Portable Infrared Aerosol Transmission Experiment (PIRATE) - Caribbean was a ground-based experiment that measured the infrared transmission of transportted dust from the Saharan Desert. A Fourier Transform Infrared (FTIR) spectrometer was used in Boqueron, Puerto Rico from June 23 through June 30, 2004 as a high-resolution infrared sun photometer. The visible aerosol optical depth (AOD) around the time of each FTIR measurement was taken from a nearby AERONET sensor at La Parguera, Puerto Rico, for reference. The FTIR recorded the direct solar and scattered radiances from 3 to 14 microns. By collecting the solar radiance for several days, some for which the AOD was either very low (<0.1) or high (>0.5), the infrared AOD of the dust was determined as a function of wavelength. The measured infrared AOD of the dust is compared with frequently-used dust models, i.e. Volz and Sokolik, for various effective radii and assumed dust compositions. Since Saharan dust is often pervasive over large regions of the globe, these results are potentially important in models and satellite measurements attempting to determine the regional forcing from dust.

  8. Measurements of Aerosol Vertical Profiles and Optical Properties during INDOEX 1999 Using Micro-Pulse Lidars

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Voss, Kenneth J.; Quinn, Patricia K.; Flatau, Piotr J.; Markowicz, Krzysztof; Campbell, James R.; Spinhirne, James D.; Gordon, Howard R.; Johnson, James E.; Starr, David OC. (Technical Monitor)

    2001-01-01

    Micro-pulse lidar systems (MPL) were used to measure aerosol properties during the Indian Ocean Experiment (INDOEX) 1999 field phase. Measurements were made from two platforms: the NOAA ship RN Ronald H. Brown, and the Kaashidhoo Climate Observatory (KCO) in the Maldives. Sunphotometers were used to provide aerosol optical depths (AOD) needed to calibrate the MPL. This study focuses on the height distribution and optical properties (at 523 nm) of aerosols observed during the campaign. The height of the highest aerosols (top height) was calculated and found to be below 4 km for most of the cruise. The marine boundary layer (MBL) top was calculated and found to be less than 1 km. MPL results were combined with air mass trajectories, radiosonde profiles of temperature and humidity, and aerosol concentration and optical measurements. Humidity varied from approximately 80% near the surface to 50% near the top height during the entire cruise. The average value and standard deviation of aerosol optical parameters were determined for characteristic air mass regimes. Marine aerosols in the absence of any continental influence were found to have an AOD of 0.05 +/- 0.03, an extinction-to-backscatter ratio (S-ratio) of 33 +/- 6 sr, and peak extinction values around 0.05/km (near the MBL top). The marine results are shown to be in agreement with previously measured and expected values. Polluted marine areas over the Indian Ocean, influenced by continental aerosols, had AOD values in excess of 0.2, S-ratios well above 40 sr, and peak extinction values approximately 0.20/km (near the MBL top). The polluted marine results are shown to be similar to previously published values for continental aerosols. Comparisons between MPL derived extinction near the ship (75 m) and extinction calculated at ship-level using scattering measured by a nephelometer and absorption using a PSAP were conducted. The comparisons indicated that the MPL algorithm (using a constant S-ratio throughout the

  9. Background stratospheric aerosol reference model

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Wang, P.

    1989-01-01

    In this analysis, a reference background stratospheric aerosol optical model is developed based on the nearly global SAGE 1 satellite observations in the non-volcanic period from March 1979 to February 1980. Zonally averaged profiles of the 1.0 micron aerosol extinction for the tropics and the mid- and high-altitudes for both hemispheres are obtained and presented in graphical and tabulated form for the different seasons. In addition, analytic expressions for these seasonal global zonal means, as well as the yearly global mean, are determined according to a third order polynomial fit to the vertical profile data set. This proposed background stratospheric aerosol model can be useful in modeling studies of stratospheric aerosols and for simulations of atmospheric radiative transfer and radiance calculations in atmospheric remote sensing.

  10. SAGE II aerosol data validation and initial data use - An introduction and overview

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Mccormick, M. P.

    1989-01-01

    The process of validating data from the Stratospheric Aerosol and Gas Experiment (SAGE) II and the initial use of the validated data are reviewed. The instruments developed for the SAGE II, the influence of the eruption of El Chichon on the global stratospheric aerosol, and various data validation experiments are discussed. Consideration is given to methods for deriving aerosol physical and optical properties from SAGE II extinction data and for inferring particle size distribution moments from SAGE II spectral extinction values.

  11. Extinction from a paleontological perspective

    NASA Technical Reports Server (NTRS)

    Raup, D. M.

    1993-01-01

    Extinction of widespread species is common in evolutionary time (millions of years) but rare in ecological time (hundreds or thousands of years). In the fossil record, there appears to be a smooth continuum between background and mass extinction; and the clustering of extinctions at mass extinctions cannot be explained by the chance coincidence of independent events. Although some extinction is selective, much is apparently random in that survivors have no recognizable superiority over victims. Extinction certainly plays an important role in evolution, but whether it is constructive or destructive has not yet been determined.

  12. Extinction from a paleontological perspective.

    PubMed

    Raup, D M

    1993-01-01

    Extinction of widespread species is common in evolutionary time (millions of years) but rare in ecological time (hundreds or thousands of years). In the fossil record, there appears to be a smooth continuum between background and mass extinction; and the clustering of extinctions at mass extinctions cannot be explained by the chance coincidence of independent events. Although some extinction is selective, much is apparently random in that survivors have no recognizable superiority over victims. Extinction certainly plays an important role in evolution, but whether it is constructive or destructive has not yet been determined. PMID:11539838

  13. Infrared spectroscopic methods for the study of aerosol particles using White cell optics: Development and characterization of a new aerosol flow tube.

    PubMed

    Nájera, Juan J; Fochesatto, Javier G; Last, Deborah J; Percival, Carl J; Horn, Andrew B

    2008-12-01

    A description of a new aerosol flow tube apparatus for measurements in situ under atmospherically relevant conditions is presented here. The system consists of a laboratory-made nebulizer generation system and a flow tube with a White cell-based Fourier transform IR for the detection system. An assessment of the White cell coupled to the flow tube was carried out by an extensive set of experiments to ensure the alignment of the infrared beam and optimize the performance of this system. The detection limit for CO was established as (1.0+/-0.3) ppm and 16 passes was chosen as the optimum number of passes to be used in flow tube experiments. Infrared spectroscopy was used to characterize dry aerosol particles in the flow tube. Pure particles composed of ammonium sulfate or sodium chloride ranging between 0.8 and 2.1 mum for size diameter and (0.8-4.9)x10(6) particles/cm(3) for density number were generated by nebulization of aqueous solutions. Direct measurements of the aerosol particle size agree with size spectra retrieved from inversion of the extinction measurements using Mie calculations, where the difference residual value is in the order of 0.2%. The infrared detection limit for ammonium sulfate aerosol particles was determined as d(p)=0.9 mum and N=5x10(3) particles/cm(3) with sigma=1.1 by Mie calculation. Alternatively, Mie calculations were performed to determine the flexibility in varying the optical length when aerosol particles are sent by the injector. The very good agreement between the values retrieved for aerosol particles injected through the flow tube or through the injector clearly validates the estimation of the effective optical path length for the injector. To determine the flexibility in varying the reaction zone length, analysis of the extinction spectra as function of the position of the injector was carried out by monitoring the integrated area of different absorption modes of the ammonium sulfate. We conclude that the aerosol loss in the

  14. Characterizing the Vertical Distribution of Aerosols Over the ARM SGP Site

    SciTech Connect

    Richard Ferrare, Connor Flynn, David Turner

    2009-05-05

    This project focused on: 1) evaluating the performance of the DOE ARM SGP Raman lidar system in measuring profiles of water vapor and aerosols, and 2) the use of the Raman lidar measurements of aerosol and water vapor profiles for assessing the vertical distribution of aerosols and water vapor simulated by global transport models and examining diurnal variability of aerosols and water vapor. The highest aerosol extinction was generally observed close to the surface during the nighttime just prior to sunrise. The high values of aerosol extinction are most likely associated with increased scattering by hygroscopic aerosols, since the corresponding average relative humidity values were above 70%. After sunrise, relative humidity and aerosol extinction below 500 m decreased with the growth in the daytime convective boundary layer. The largest aerosol extinction for altitudes above 1 km occurred during the early afternoon most likely as a result of the increase in relative humidity. The water vapor mixing ratio profiles generally showed smaller variations with altitude between day and night. We also compared simultaneous measurements of relative humidity, aerosol extinction, and aerosol optical thickness derived from the ARM SGP Raman lidar and in situ instruments on board a small aircraft flown routinely over the ARM SGP site. In contrast, the differences between the CARL and IAP aerosol extinction measurements are considerably larger. Aerosol extinction derived from the IAP measurements is, on average, about 30-40% less than values derived from the Raman lidar. The reasons for this difference are not clear, but may be related to the corrections for supermicron scattering and relative humidity that were applied to the IAP data. The investigators on this project helped to set up a major field mission (2003 Aerosol IOP) over the DOE ARM SGP site. One of the goals of the mission was to further evaluate the aerosol and water vapor retrievals from this lidar system

  15. Direct Measurement of Aerosol Absorption Using Photothermal Interferometry

    NASA Astrophysics Data System (ADS)

    Sedlacek, A. J.; Lee, J. A.

    2007-12-01

    Efforts to bound the contribution of light absorption in aerosol radiative forcing is still very much an active area of research in large part because aerosol extinction is dominated by light scattering. In response to this and other technical issues, the aerosol community has actively pursued the development of new instruments to measure aerosol absorption (e.g., photoacoustic spectroscopy (PAS) and multi-angle absorption photometer (MAAP)). In this poster, we introduce the technique of photothermal interferometry (PTI), which combines the direct measurement capabilities of photothermal spectroscopy (PTS) with high-sensitivity detection of the localized heating brought about by the PT process through interferometry. At its most fundamental level, the PTI technique measures the optical pathlength change that one arm of an interferometer (referred to as the 'probe' arm) experiences relative to the other arm of the interferometer (called the 'reference' arm). When the two arms are recombined at a beamsplitter, an interference pattern is created. If the optical pathlength in one arm of the interferometer changes, a commensurate shift in the interference pattern will take place. For the specific application of measuring light absorption, the heating of air surrounding the light- absorbing aerosol following laser illumination induces the optical pathlength change. This localized heating creates a refractive index gradient causing the probe arm of the interferometer to take a slightly different optical pathlength relative to the unperturbed reference arm. This effect is analogous to solar heating of a road causing mirages. As discussed above, this altered optical pathlength results in a shift in the interference pattern that is then detected as a change in the signal intensity by a single element detector. The current optical arrangement utilizes a folded Jamin interferometer design (Sedlacek, 2006) that provides a platform that is robust with respect to sensitivity

  16. Intercomparison of stratospheric water vapor observed by satellite experiments: Stratospheric Aerosol and Gas Experiment II versus Limb Infrared Monitor of the Stratosphere and Atmospheric Trace Molecule Spectroscopy

    SciTech Connect

    Chiou, E.W.; Larsen, J.C. ); McCormick, M.P.; McMaster, L.R.; Chu, W.P. ); Rind, D. ); Oltmans, S. )

    1993-03-20

    This paper presents a comparison of the stratospheric water vapor measurements made by the satellite-borne sensors the Stratospheric Aerosol and Gas Experiment II (SAGE II), the Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS), and the Spacelab 3 Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment. LIMS obtained data for 7 months between November 1978 and May 1979; ATMOS was carried on Shuttle and observed eight profiles from April 30 to May 6, 1985 at approximately 30[degrees]N and 50[degrees]S; and, SAGE II continues to make measurements since its launch in October 1984. For both 30[degrees]N and 50[degrees]S in May, the comparisons between SAGE II and ATMOS show agreement within the estimated combined uncertainty of the two experiments. Several important features identified by LIMS observations have been confirmed by SAGE II: a well-developed hygropause in the lower stratosphere at low- to mid-latitudes, a poleward latitudinal gradient, increasing water vapor mixing ratios with altitude in the tropics, and the transport of dry lower stratospheric water vapor upward and southward in May, and upward and northward in November. A detailed comparative study also indicates that the two previously suggested corrections for LIMS, a correction in tropical lower stratosphere due to a positive temperature bias and the correction above 28 km based on improved emissivities will bring LIMS measurements much closer to those of SAGE II. The only significant difference occurs at high southern latitudes in May below 18 km, where LIMS measurements are 2-3 ppmv greater. It should be noted that LIMS observations are from 16 to 50 km, ATMOS from 14 to 86 km, and SAGE II from mid-troposphere to 40 km. With multiyear coverage, SAGE II observations should be useful for studying tropospheric-stratospheric exchange, for stratospheric transport, and for preparing water vapor climatologies for the stratosphere and the upper troposphere. 32 refs., 14 figs., 2 tabs.

  17. [Multi-wavelength spectral aerosol scale height in inshore in contrast with that in inland].

    PubMed

    Han, Yong; Rao, Rui-Zhong; Wang, Ying-Jian

    2009-01-01

    In the present paper, based on the exponential attenuation of atmospheric aerosol concentration with height, so using continuous spectrum sun-photometer, forward scatter visibility sensor and hygrothermograph, the authors measured the atmosphere column optical characteristic and plane spectral extinction coefficient on earth on the base of two experiments at some edge of ocean at the same time, respectively, set up the calculative method of multi-wavelength spectral aerosol scale height. Firstly, the authors obtained atmospheric horizontal extinction coefficient with forward scattering visibility sensor, which subtracted molecular extinction coefficient, and could get aerosol extinction coefficient near ground; Then, selecting sea salt model, using OPAC software, the authors also could calculate the aerosol extinction coefficient under different humidity (0%, 50%, 70%, 80%, 90%, 95%, 98% and 99%) and different wavelength (400, 450, 500, 550, 600, 650, 700 and 750 nm), the aerosol extinction coefficient was detected by visibility sensor, using interpolation method, respectively; Finally, using the data of atmospheric columniation optical thickness detected by continuous spectral sun-photometer and subtracted molecular optical thickness corresponding wavelengths were accounted out by Modtran 4. 0. The authors obtained the characteristic of spectral aerosol scale height of visible light (wavelength is 400, 440, 532, 550 and 690 nm): with wavelength increments, and spectral aerosol scale height was found to decline neither in inland nor in inshore in China; Spectral aerosol scale height in winter is higher than in summer in southeast inshore; but spectral aerosol scale height in winter is smaller in summer than in inland. PMID:19385200

  18. Unexpectedly many extinct hominins.

    PubMed

    Bokma, Folmer; van den Brink, Valentijn; Stadler, Tanja

    2012-09-01

    Recent studies indicate that Neanderthal and Denisova hominins may have been separate species, while debate continues on the status of Homo floresiensis. The decade-long debate between "splitters," who recognize over 20 hominin species, and "lumpers," who maintain that all these fossils belong to just a few lineages, illustrates that we do not know how many extinct hominin species to expect. Here, we present probability distributions for the number of speciation events and the number of contemporary species along a branch of a phylogeny. With estimates of hominin speciation and extincton rates, we then show that the expected total number of extinct hominin species is 8, but may be as high as 27. We also show that it is highly unlikely that three very recent species disappeared due to natural, background extinction. This may indicate that human-like remains are too easily considered distinct species. Otherwise, the evidence suggesting that Neanderthal and the Denisova hominin represent distinct species implies a recent wave of extinctions, ostensibly driven by the only survivor, H. sapiens. PMID:22946817

  19. Context, Learning, and Extinction

    ERIC Educational Resources Information Center

    Gershman, Samuel J.; Blei, David M.; Niv, Yael

    2010-01-01

    A. Redish et al. (2007) proposed a reinforcement learning model of context-dependent learning and extinction in conditioning experiments, using the idea of "state classification" to categorize new observations into states. In the current article, the authors propose an interpretation of this idea in terms of normative statistical inference. They…

  20. Cognitive Processes in Extinction

    ERIC Educational Resources Information Center

    Lovibond, Peter F.

    2004-01-01

    Human conditioning research shows that learning is closely related to consciously available contingency knowledge, requires attentional resources, and is influenced by language. This research suggests a cognitive model in which extinction consists of changes in contingency beliefs in long-term memory. Laboratory and clinical evidence on extinction…

  1. Aerosol effects and corrections in the Halogen Occultation Experiment

    NASA Technical Reports Server (NTRS)

    Hervig, Mark E.; Russell, James M., III; Gordley, Larry L.; Daniels, John; Drayson, S. Roland; Park, Jae H.

    1995-01-01

    The eruptions of Mt. Pinatubo in June 1991 increased stratospheric aerosol loading by a factor of 30, affecting chemistry, radiative transfer, and remote measurements of the stratosphere. The Halogen Occultation Experiment (HALOE) instrument on board Upper Atmosphere Research Satellite (UARS) makes measurements globally for inferring profiles of NO2, H2O, O3, HF, HCl, CH4, NO, and temperature in addition to aerosol extinction at five wavelengths. Understanding and removing the aerosol extinction is essential for obtaining accurate retrievals from the radiometer channels of NO2, H2O and O3 in the lower stratosphere since these measurements are severely affected by contaminant aerosol absorption. If ignored, aerosol absorption in the radiometer measurements is interpreted as additional absorption by the target gas, resulting in anomalously large mixing ratios. To correct the radiometer measurements for aerosol effects, a retrieved aerosol extinction profile is extrapolated to the radiometer wavelengths and then included as continuum attenuation. The sensitivity of the extrapolation to size distribution and composition is small for certain wavelength combinations, reducing the correction uncertainty. The aerosol corrections extend the usable range of profiles retrieved from the radiometer channels to the tropopause with results that agree well with correlative measurements. In situations of heavy aerosol loading, errors due to aerosol in the retrieved mixing ratios are reduced to values of about 15, 25, and 60% in H2O, O3, and NO2, respectively, levels that are much less than the correction magnitude.

  2. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect

    Richard A. Ferrare; David D. Turner

    2011-09-01

    Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.

  3. Background stratospheric aerosol reference model

    NASA Astrophysics Data System (ADS)

    McCormick, M. P.; Wang, Pi-Huan

    Nearly global SAGE I satellite observations in the nonvolcanic period from March 1979 to February 1980 are used to produce a reference background stratospheric aerosol optical model. Zonally average profiles of the 1.0-micron aerosol extinction for the tropics, midlatitudes, and high latitudes for both hemispheres are given in graphical and tabulated form for the different seasons. A third order polynomial fit to the vertical profile data set is used to derive analytic expressions for the seasonal global means and the yearly global mean. The results have application to the simulation of atmospheric radiative transfer and radiance calculations in atmospheric remote sensing.

  4. Extinction Curves of Lensing Galaxies

    NASA Astrophysics Data System (ADS)

    Elíasdóttir, Árdís

    2006-09-01

    Dust extinction causes light from distant sources to be dimmed on itsway to the observer. In cosmological studies, such as SN Ia studies,it is of great importance that the effects of dust extinction becorrectly accounted for. However, although dust properties, andhence extinction, are expected to vary with redshift, not very muchis known about the extinction properties of high redshift galaxies.This is because the methods traditionally used to study extinctioncurves are only applicable for the most nearby galaxies. Studyinggravitationally lensed quasars is an emerging method of studying thedust extinction of high redshift galaxies. I will present an ESO VLTstudy of 10 such lensing galaxies, with redshifts up to 1. The 10systems display varying amount and type of extinction, with thedoubly imaged quasar B1152+199 showing the greatest extinction with A(V)=2.4 and R_V=2.1 for a Galactic type extinction law.

  5. A diagnostic stratospheric aerosol size distribution inferred from SAGE II measurements

    NASA Technical Reports Server (NTRS)

    Thomason, Larry W.

    1991-01-01

    An aerosol size distribution model for the stratosphere is inferred based on 5 years of Stratospheric Aerosol and Gas Experiment (SAGE) II measurements of multispectral aerosol and water vapor extinction. The SAGE II aerosol and water vapor extinction data strongly suggest that there is a critical particle radius below which there is a relatively weak dependence of particle number density with size and above which there are few, if any, particles. A segmented power law model, as a simple representation of this dependence, is used in theoretical calculations and intercomparisons with a variety of aerosol measurements including dustsondes, longwave lidar, and wire impactors and shows a consistently good agreement.

  6. Protostars at Low Extinction in Orion A

    NASA Astrophysics Data System (ADS)

    Lewis, John Arban; Lada, Charles J.

    2016-07-01

    In the list of young stellar objects (YSOs) compiled by Megeath et al. for the Orion A molecular cloud, only 44 out of 1208 sources found projected onto low extinction ({A}{{K}}\\lt 0.8 mag) gas are identified as protostars. These objects are puzzling because protostars are not typically expected to be associated with extended low extinction material. Here, we use high resolution extinction maps generated from Herschel data, optical/infrared and Spitzer Space Telescope photometry and spectroscopy of the low extinction protostellar candidate sources to determine if they are likely true protostellar sources or contaminants. Out of 44 candidate objects, we determine that 10 sources are likely protostars, with the rest being more evolved YSOs (18), galaxies (4), false detections of nebulosity and cloud edges (9), or real sources for which more data are required to ascertain their nature (3). We find none of the confirmed protostars to be associated with recognizable dense cores and we briefly discuss possible origins for these orphaned objects.

  7. Mass Extinctions Past and Present.

    ERIC Educational Resources Information Center

    Allmon, Warren Douglas

    1987-01-01

    Discusses some parallels that seem to exist between mass extinction recognizable in the geologic record and the impending extinction of a significant proportion of the earth's species due largely to tropical deforestation. Describes some recent theories of causal factors and periodicities in mass extinction. (Author/TW)

  8. Merging the OSIRIS and SAGE II stratospheric aerosol records

    NASA Astrophysics Data System (ADS)

    Rieger, L. A.; Bourassa, A. E.; Degenstein, D. A.

    2015-09-01

    The Optical Spectrograph and InfraRed Imaging System (OSIRIS) instrument on the Odin satellite, launched in 2001 and currently operational, measures limb-scattered sunlight from which profiles of stratospheric aerosol extinction are retrieved. The Stratospheric Aerosol and Gas Experiment (SAGE) II was launched in 1984 and provided measurements of stratospheric aerosol extinction until mid-2005. This provides approximately 4 years of mission overlap which has allowed us to consistently extend the SAGE II version 7.00 record to the present using OSIRIS aerosol extinction retrievals. In this work we first compare coincident aerosol extinction observations during the overlap period by interpolating the SAGE II 525nm and 1020nm channels to the OSIRIS extinction wavelength of 750nm. In the tropics to midlatitudes mean differences are typically less than 10%, although larger biases are seen at higher latitudes and at altitudes outside the main aerosol layer. OSIRIS aerosol extinction retrievals at 750nm are used to create a monthly time series zonally averaged in 5°bins and qualitatively compared to SAGE II 525nm observations averaged in the same way. The OSIRIS time series is then translated to 525nm with an Ângström exponent relation and bias corrected. For most locations, this provides agreement during the overlap time period to better than 15%. Uncertainty in the resulting OSIRIS time series is estimated through a series of simulation studies over the range of aerosol particle size distributions observed by in situ balloon instruments and is found to be approximately 20% for background and moderately volcanic aerosol loading conditions for the majority of OSIRIS measurement conditions.

  9. On-line and in-situ detection of polycyclic aromatic hydrocarbons (PAH) on aerosols via thermodesorption and laser-induced fluorescence spectroscopy.

    PubMed

    Panne, U; Knöller, A; Kotzick, R; Niessner, R

    2000-02-01

    A fiber optical sensor system for the determination of polycyclic aromatic hydrocarbons (PAH) on aerosols by laser-induced, time-resolved fluorescence is combined with a thermodesorption device. The sensor system is based on an aerosol flow cell, which is fibre-optically coupled to a pulsed nitrogen laser for excitation and the detection system. Time-resolved fluorescence emission spectra are detected by a monochromator equipped with a photomultiplier and a fast digital storage oscilloscope. The analytical figures of merit of the thermodenuder are reported for benzo[a]pyrene, benzo[b]fluoranthene, and benzo[ghi]-perylene on ultrafine soot and NaCl aerosols. By thermodesorption of the PAH, problems due to quenching of the PAH fluorescence by the bulk aerosol material or excimer formation on the aerosol surface were avoided. For the PAH under study, the sensitivity was improved considerably and detection limits between 110 and 850 ng m(-3) were attained, while a response time of 2-3 min was achieved with the thermodenuder. A calibration for PAH on ultrafine soot and NaCl aerosols was established independent of the aerosol substrate. PMID:11220329

  10. SEAC4RS Aerosol Radiative Effects and Heating Rates

    NASA Astrophysics Data System (ADS)

    Cochrane, S.; Schmidt, S.; Redemann, J.; Hair, J. W.; Ferrare, R. A.; Segal-Rosenhaimer, M.; LeBlanc, S. E.

    2015-12-01

    We will present (a) aerosol optical properties, (b) aerosol radiative forcing, (c) aerosol and gas absorption and heating rates, and (d) spectral surface albedo for cases from August 19th and 26th of the SEAC4RS mission. This analysis is based on irradiance data from the Solar Spectral Flux Radiometer (SSFR), spectral aerosol optical depth from the Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR), and extinction profiles from the DIAL/High Spectral Resolution Lidar (HSRL). We derive spectrally resolved values of single scattering albedo, asymmetry parameter, and surface albedo from the data, and determine profiles of absorption and heating rate segregated by absorber (aerosol and gas).

  11. Stratospheric aerosol properties and their effects on infrared radiation.

    NASA Technical Reports Server (NTRS)

    Remsberg, E. E.

    1973-01-01

    This paper presents a stratospheric aerosol model and infers its effects on terrestrial radiation. Composition of the aerosol is assumed to be concentrated sulfuric acid. An appropriate size distribution has been determined from available size distribution measurements of other investigators. Aerosols composed of concentrated sulfuric acid emit energy in the atmospheric window region of the infrared spectrum, 8-13 microns. Laboratory measurements of optical constant data obtained at room temperature are presented for 75 and 90% aqueous sulfuric acid. Calculations of an aerosol extinction coefficient are then performed by using the above data. Effects of changes in aerosol phase and temperature are discussed but not resolved.

  12. Final Technical Report. Cloud and Radiation Testbed (CART) Raman Lidar measurement of atmospheric aerosols for the Atmospheric Radiation Measurement (ARM) Program

    SciTech Connect

    Ferrare, Richard A.

    2002-08-19

    Vertical profiles of aerosol extinction are required for determination of the effects of aerosols on the clear-sky radiative flux. Since recent studies have demonstrated the inability to compute these profiles on surface aerosol measurements alone, vertical profiles of aerosol optical properties must be acquired to compute aerosol radiative effects throughout the entire atmospheric column. Following the recommendation of the ARM Aerosol Working Group, the investigator developed, evaluated, and implemented algorithms for the CART Raman Lidar to provide profiles of aerosol extinction and backscattering. By virtue of its ability to measure vertical profiles of both aerosol extinction and water vapor simultaneously in the same scattering volume, we used the resulting profiles from the CART Raman Lidar to investigate the impact of water vapor and relative humidity on aerosol extinction throughout the column on a continuous and routine basis. The investigator used these the CART Raman Lidar aerosol extinction and backscattering profiles to evaluate the vertical variability of aerosol extinction and the extinction/backscatter ratio over the ARM SGP site.

  13. SAGE aerosol measurements. Volume 1: February 21, 1979 to December 31, 1979

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.

    1985-01-01

    The Stratospheric Aerosol and Gas Experiment (SAGE) satellite system, launched on February 18, 1979, provides profiles of aerosol extinction, ozone concentration, and nitrogen dioxide concentration between about 80 N and 80 S. Zonal averages, separated into sunrise and sunset events, and seasonal averages of the aerosol extinction at 1.00 microns and 0.45 microns ratios of the aerosol extinction to the molecular extinction at 1.00 microns, and ratios of the aerosol extinction at 0.45 microns to the aerosol extinction at 1.00 microns are given. The averages for 1979 are shown in tables and in profile and contour plots (as a function of altitude and latitude). In addition, temperature data provided by the National Oceanic and Atmospheric Administration (NOAA) for the time and location of each SAGE measurement are averaged and shown in a similar format. Typical values of the peak aerosol extinction were 0.0001 to 0.0002 km at 1.00 microns depth values for the 1.00 microns channel varied between 0.001 and 0.002 over all latitudes.

  14. Development of a Scheimpflug Lidar System for Atmospheric Aerosol Monitoring

    NASA Astrophysics Data System (ADS)

    Mei, Liang; Brydegaard, Mikkel

    2016-06-01

    This work presents a Scheimpflug lidar system which was employed for atmospheric aerosol monitoring in southern Sweden. Atmospheric aerosol fluctuation was observed around rush-hour. The extinction coefficient over 6 km was retrieved, i.e., 0.15 km-1, by employing the slop-method during the time when the atmosphere was relatively homogenous. The measurements successfully demonstrate the potential of using a Scheimpflug lidar technique for atmospheric aerosol monitoring applications.

  15. SAGE II aerosol validation - Selected altitude measurements, including particle micromeasurements

    NASA Technical Reports Server (NTRS)

    Oberbeck, Verne R.; Russell, Philip B.; Pueschel, Rudolf F.; Snetsinger, Kenneth G.; Ferry, Guy V.; Livingston, John M.; Rosen, James N.; Osborn, Mary T.; Kritz, Mark A.

    1989-01-01

    The validity of particulate extinction coefficients derived from limb path solar radiance measurements obtained during the Stratospheric Aerosol and Gas Experiment (SAGE) II is tested. The SAGE II measurements are compared with correlative aerosol measurements taken during January 1985, August 1985, and July 1986 with impactors, laser spectrometers, and filter samplers on a U-2 aircraft, an upward pointing lidar on a P-3 aircraft, and balloon-borne optical particle counters. The data for July 29, 1986 are discussed in detail. The aerosol measurements taken on this day at an altitude of 20.5 km produce particulate extinction values which validate the SAGE II values for similar wavelengths.

  16. Discreteness induced extinction

    NASA Astrophysics Data System (ADS)

    dos Santos, Renato Vieira; da Silva, Linaena Méricy

    2015-11-01

    Two simple models based on ecological problems are discussed from the point of view of non-equilibrium statistical mechanics. It is shown how discrepant may be the results of the models that include spatial distribution with discrete interactions when compared with the continuous analogous models. In the continuous case we have, under certain circumstances, the population explosion. When we take into account the finiteness of the population, we get the opposite result, extinction. We will analyze how these results depend on the dimension d of the space and describe the phenomenon of the "Discreteness Inducing Extinction" (DIE). The results are interpreted in the context of the "paradox of sex", an old problem of evolutionary biology.

  17. Organic aerosols

    SciTech Connect

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN.

  18. Extinction of Light during the Fog Life Cycle: a Result from the ParisFog Experiment

    SciTech Connect

    Elias, T.; Haeffelin, M.; Drobinski, P.

    2009-03-11

    Data set acquired by five particle-dedicated instruments set up on the SIRTA experimental site during the ParisFog field campaign are exploited to document microphysical properties of particles contributing to extinction of visible radiation in variable situations. The case study is a 48-hour period when atmospheric conditions are highly variable: relative humidity changes between 50 and 100%, visibility ranges between 35000 and 65 m, the site is either downwind Paris area either under maritime influence. A dense and homogeneous fog formed by radiative cooling during the 18-19 February night. In 7 hours, visibility decreases from 26 000 m to 65 m, because of transported pollution (factor 3 in visibility reduction), aerosol hydration (factor 20) and aerosol activation (factor 6). According to Mie theory, extinction in clear-sky polluted and unpolluted regimes is due equally to Aitken and accumulation modes. Extinction in haze is due to hydrated aerosols distributed in the accumulation mode, for diameter smaller than 2 {mu}m. Hydrated aerosols of the accumulation mode still contribute to 20-30% extinction in the fog. Measurements show that fog droplets, with diameter included between 2 and 10 {mu}m, contribute to 40% extinction during the first hours of the fog.

  19. Development of 2-D-MAX-DOAS and retrievals of trace gases and aerosols optical properties

    NASA Astrophysics Data System (ADS)

    Ortega, Ivan

    Air pollution is a major problem worldwide that adversely a_ects human health, impacts ecosystems and climate. In the atmosphere, there are hundreds of important compounds participating in complex atmospheric reactions linked to air quality and climate. Aerosols are relevant because they modify the radiation balance, a_ect clouds, and thus Earth albedo. The amount of aerosol is often characterized by the vertical integral through the entire height of the atmosphere of the logarithm fraction of incident light that is extinguished called Aerosol Optical Depth (AOD). The AOD at 550 nm (AOD550) over land is 0.19 (multi annual global mean), and that over oceans is 0.13. About 43 % of the Earth surface shows AOD550 smaller than 0.1. There is a need for measurement techniques that are optimized to measure aerosol optical properties under low AOD conditions, sample spatial scales that resemble satellite ground-pixels and atmospheric models, and help integrate remote sensing and in-situ observations to obtain optical closure on the effects of aerosols and trace gases in our changing environment. In this work, I present the recent development of the University of Colorado two dimensional (2-D) Multi-AXis Differential Optical Absorption Spectroscopy (2-D-MAX-DOAS) instrument to measure the azimuth and altitude distribution of trace gases and aerosol optical properties simultaneously with a single instrument. The instrument measures solar scattered light from any direction in the sky, including direct sun light in the hyperspectral domain. In Chapter 2, I describe the capabilities of 2-D measurements in the context of retrievals of azimuth distributions of nitrogen dioxide (NO2), formaldehyde (HCHO), and glyoxal (CHOCHO), which are precursors for tropospheric O3 and aerosols. The measurements were carried out during the Multi-Axis DOAS Comparison campaign for Aerosols and Trace gases (MAD-CAT) campaign in Mainz, Germany and show the ability to bridge spatial scales to

  20. Merging the SAGE II and OSIRIS Stratospheric Aerosol Records

    NASA Astrophysics Data System (ADS)

    Rieger, Landon; Bourassa, Adam; Degenstein, Doug

    2016-04-01

    The Optical Spectrograph and InfraRed Imaging System (OSIRIS) instrument on the Odin satellite, launched in 2001 and currently operational, measures limb-scattered sunlight from which profiles of stratospheric aerosol extinction at 750nm are retrieved. The Stratospheric Aerosol and Gas (SAGE) II instrument was operational from 1985 to 2005, and provided aerosol extinction at several visible and near infrared wavelengths. This work compares the SAGE II and OSIRIS aerosol extinction measurements during the four years of instrument overlap by interpolating the SAGE II data to 750nm using the 525 and 1020nm channels. Agreement is generally favourable in the tropics and mid-latitudes with differences less than 10% for the majority of the aerosol layer. However, near the UTLS and outside of the tropics agreement is poorer and reasons for this are investigated. Comparisons between the OSIRIS and SAGE II aerosol extinction measurements at 750nm are used to develop a merged aerosol climatology as a function of time, latitude and altitude at the native SAGE II wavelength of 525nm. Error due to assumptions in the OSIRIS retrieval and wavelength conversion are explored through simulation studies over a range of particle size distributions and is found to be approximately 20% for the majority of low-to-moderate volcanic loading conditions and OSIRIS geometries. Other sources of error such as cloud contamination in the UTLS are also explored.

  1. Information Retrieval from SAGE II and MFRSR Multi-Spectral Extinction Measurements

    NASA Technical Reports Server (NTRS)

    Lacis, Andrew A.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Direct beam spectral extinction measurements of solar radiation contain important information on atmospheric composition in a form that is essentially free from multiple scattering contributions that otherwise tend to complicate the data analysis and information retrieval. Such direct beam extinction measurements are available from the solar occultation satellite-based measurements made by the Stratospheric and Aerosol Gas Experiment (SAGE II) instrument and by ground-based Multi-Filter Shadowband Radiometers (MFRSRs). The SAGE II data provide cross-sectional slices of the atmosphere twice per orbit at seven wavelengths between 385 and 1020 nm with approximately 1 km vertical resolution, while the MFRSR data provide atmospheric column measurements at six wavelengths between 415 and 940 nm but at one minute time intervals. We apply the same retrieval technique of simultaneous least-squares fit to the observed spectral extinctions to retrieve aerosol optical depth, effective radius and variance, and ozone, nitrogen dioxide, and water vapor amounts from the SAGE II and MFRSR measurements. The retrieval technique utilizes a physical model approach based on laboratory measurements of ozone and nitrogen dioxide extinction, line-by-line and numerical k-distribution calculations for water vapor absorption, and Mie scattering constraints on aerosol spectral extinction properties. The SAGE II measurements have the advantage of being self-calibrating in that deep space provides an effective zero point for the relative spectral extinctions. The MFRSR measurements require periodic clear-day Langley regression calibration events to maintain accurate knowledge of instrument calibration.

  2. Influence of the aerosol vertical distribution on the retrievals of aerosol optical depth from satellite radiance measurements

    NASA Astrophysics Data System (ADS)

    Quijano, Ana Lía; Sokolik, Irina N.; Toon, Owen B.

    2000-11-01

    We investigate the importance of the layered vertical distribution of absorbing and non-absorbing tropospheric aerosols for the retrieval of the aerosol optical depth from satellite radiances measured at visible wavelengths at a single viewing angle. We employ lidar and in-situ measurements of aerosol extinction coefficients and optical depths to model radiances which would have been observed by a satellite. Then, we determine the aerosol optical depth that would produce the observed radiance under various sets of assumptions which are often used in current retrieval algorithms. We demonstrate that, in the presence of dust or other absorbing aerosols, the retrieved aerosol optical depth can underestimate or overestimate the observed optical depth by a factor of two or more depending on the choice of an aerosol optical model and the relative position of different aerosol layers. The presence of undetected clouds provides a further complication.

  3. Aerosol measurements at the South Pole

    NASA Astrophysics Data System (ADS)

    Bodhaine, Barry A.; Deluisi, John J.; Harris, Joyce M.; Houmere, Pamela; Bauman, Sene

    1986-09-01

    Some results are given regarding the aerosol measurement program conducted by the NOAA at their atmospheric monitoring observatory at Amundsen-Scott Station, South Pole. The program consists of the continuous measurement of condensation nuclei (CN) concentration and aerosol scattering extinction coefficient. A time series of sodium, chlorine, and sulfur concentrations shows that the sulfur and CN records are similar and that the sodium, chlorine, and extinction coefficient records are similar. Large episodes of sodium are measured at the ground in the austral winter and are apparently caused by large-scale warming and weakening of the surface temperature inversion. The CN data show an annual cycle with a maximum exceeding 100 per cubic centimeter in the austral summer and a minimum of about 10 per cubic centimeter in the winter. The extinction coefficient data show an anual cycle markedly different from that of CN with a maximum in late winter, a secondary maximum in summer, and a minimum in May.

  4. Endangered and Extinct Radioactivity

    NASA Astrophysics Data System (ADS)

    Leising, M. D.

    1993-07-01

    Gamma ray spectroscopy holds great promise for probing nucleosynthesis in individual nucleosynthesis events, via observations of short-lived radioactivity, and for measuring global galactic nucleosynthesis today with detections of longer-lived radioactivity. Many of the astrophysical issues addressed by these observations are precisely those that must be understood in order to interpret observations of extinct radioactivity in meteorites. It was somewhat surprising that the former case was realized first for a Type II supernova, when both 56Co [1] and 57Co [2] were detected in SN 1987A. These provide unprecedented constraints on models of Type II explosions. Live 26Al in the galaxy might come from Type II supernovae and their progenitors, and if this is eventually shown to be the case, can constrain massive star evolution, supernova nucleosynthesis, the galactic Type II supernova rate, and even models of the chemical evolution of the galaxy [3]. Titanium-44 is produced primarily in the alpha-rich freezeout from nuclear statistical equilibrium, possibly in Type Ia [4] and almost certainly in Type II supernovae [5]. The galactic recurrence time of these events is comparable to the 44Ti lifetime, so we expect to be able to see at most a few otherwise unseen 44Ti remnants at any given time. No such remnants have been detected yet [6]. Very simple arguments lead to the expectation that about 4 x 10^-4 M(sub)solar mass of 44Ca are produced per century. The product of the supernova frequency times the 44Ti yield per event must equal this number. Even assuming that only the latest event would be seen, rates in excess of 2 century^-1 are ruled out at >=99% confidence by the gamma ray limits. Only rates less than 0.3 century^-1 are acceptable at >5% confidence, and this means that the yield per event must be >10^-3 M(sub)solar mass to produce the requisite 44Ca. Rates this low are incompatible with current estimates for Type II supernovae and yields this high are also very

  5. An investigation of Raman lidar aerosol measurements and their application to the study of the aerosol indirect effect

    NASA Astrophysics Data System (ADS)

    Russo, Felicita

    The problem of the increasing global atmospheric temperature has motivated a large interest in studying the mechanisms that can influence the radiative balance of the planet. Aerosols are responsible for several radiative effects in the atmosphere: an increase of aerosol loading in the atmosphere increases the reflectivity of the atmosphere and has an estimated cooling effect and is called the aerosol direct effect. Another process involving aerosols is the effect that an increase in their concentration in the atmosphere has on the formation of clouds and is called the aerosol indirect effect. In the latest IPCC report, the aerosol indirect effect was estimated to be responsible for a radiative forcing ranging between -0.3 W/m2 to -1.8 W/m2, which can be as large as, but opposite in sign to, the radiative forcing due to greenhouse gases. The main goal of this dissertation is to study the Raman lidar measurements of quantities relevant for the investigation of the aerosol indirect effect and ultimately to apply these measurements to a quantification of the aerosol indirect effect. In particular we explore measurements of the aerosol extinction from both the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) and the US Department of Energy (DOE) ARM Climate Research Facility Raman Lidar (CARL). An algorithm based on the chi-squared technique to calculate the aerosol extinction, which was introduced first by Whiteman (1999), is here validated using both simulated and experimental data. It has been found as part of this validation that the aerosol extinction uncertainty retrieved with this technique is on average smaller that the uncertainty calculated with the technique traditionally used. This algorithm was then used to assess the performance of the CARL aerosol extinction retrieval for low altitudes. Additionally, since CARL has been upgraded with a channel for measuring Raman liquid water scattering, measurements of cloud liquid water content, droplet

  6. MEST- avoid next extinction

    NASA Astrophysics Data System (ADS)

    Cao, Dayong

    2012-11-01

    Asteroid 2011 AG5 will impact on Earth in 2040. (See Donald K. Yoemans, ``Asteroid 2011 AG5 - A Reality Check,'' NASA-JPL, 2012) In 2011, The author say: the dark hole will take the dark comet to impact our solar system in 20 years, and give a systemic model between the sun and its companion-dark hole to explain why were there periodicity mass extinction on earth. (see Dayong Cao, BAPS.2011.CAL.C1.7, BAPS.2011.DFD.LA.24, BAPS.2012.APR.K1.78 and BAPS.2011.APR.K1.17) The dark Asteroid 2011 AG5 (as a dark comet) is made of the dark matter which has a space-time (as frequence-amplitude square) center- a different systemic model from solar systemic model. It can asborb the space-time and wave. So it is ``dark.'' When many dark matters hit on our earth, they can break our atom structure and our genetic code to trigger the Mass Extinction. In our experiments, consciousness can change the systematic model and code by a life-informational technology. So it can change the output signals of the solar cell. (see Dayong Cao, BAPS.2011.MAR.C1.286 and BAPS.2012.MAR.P33.14) So we will develop the genetic code of lives to evolution and sublimation, will use the dark matter to change the systemic model between dark hole and sun and will avoid next extinction.

  7. Changes in the optical properties of benzo[a]pyrene-coated aerosols upon heterogeneous reactions with NO2 and NO3.

    PubMed

    Lu, Jessica W; Flores, J Michel; Lavi, Avi; Abo-Riziq, Ali; Rudich, Yinon

    2011-04-14

    Chemical reactions can alter the chemical, physical, and optical properties of aerosols. It has been postulated that nitration of aerosols can account for atmospheric absorbance over urban areas. To study this potentially important process, the change in optical properties of laboratory-generated benzo[a]pyrene (BaP)-coated aerosols following exposure to NO(2) and NO(3) was investigated at 355 nm and 532 nm by three aerosol analysis techniques. The extinction coefficient was determined at 355 nm and 532 nm from cavity ring-down aerosol spectroscopy (CRD-AS); the absorption coefficient was measured by photoacoustic spectroscopy (PAS) at 532 nm, while an on-line aerosol mass spectrometer (AMS) supplied real-time quantitative information about the chemical composition of aerosols. In this study, 240 nm polystyrene latex (PSL) spheres were thinly coated with BaP to form 300 or 310 nm aerosols that were exposed to high concentrations of NO(2) and NO(3) and measured with CRD-AS, PAS, and the AMS. The extinction efficiencies (Q(ext)) changed after exposure to NO(2) and NO(3) at both wavelengths. Prior to reaction, Q(ext) for the 355 nm and 532 nm wavelengths were 4.36 ± 0.04 and 2.39 ± 0.05, respectively, and Q(ext) increased to 5.26 ± 0.04 and 2.79 ± 0.05 after exposure. The absorption cross-section at 532 nm, determined with PAS, reached σ(abs) = (0.039 ± 0.001) × 10(-8) cm(2), indicating that absorption increased with formation of nitro-BaP, the main reaction product detected by the AMS. The single-scattering albedo (SSA), a measure of particle scattering efficiency, decreased from 1 to 0.85 ± 0.03, showing that changes in the optical properties of BaP-covered aerosols due to nitration may have implications for regional radiation budget and, hence, climate. PMID:21373662

  8. Properties of aerosol processed by ice clouds

    NASA Astrophysics Data System (ADS)

    Rudich, Y.; Adler, G.; Moise, T.; Erlick-Haspel, C.

    2012-12-01

    We suggest that highly porous aerosol (HPA) can form in the upper troposphere/lower stratosphere when ice particles encounter sub-saturation leading to ice sublimation similar to freeze drying. This process can occur at the lower layers of cirrus clouds (few km), at anvils of high convective clouds and thunderstorms, in clouds forming in atmospheric gravitational waves, in contrails and in high convective clouds injecting to the stratosphere. A new experimental system that simulates freeze drying of proxies for atmospheric aerosol at atmospheric pressure was constructed and various proxies for atmospheric soluble aerosol were studied. The properties of resulting HPA were characterized by various methods. It was found that the resulting aerosol have larger sizes (extent depends on substance and mixing), lower density (largevoid fraction), lower optical extinction and higher CCN activity and IN activity. Implication of HPA's unique properties and their atmospheric consequences to aerosol processing in ice clouds and to cloud cycles will be discussed.

  9. Extinction Events Can Accelerate Evolution

    PubMed Central

    Lehman, Joel; Miikkulainen, Risto

    2015-01-01

    Extinction events impact the trajectory of biological evolution significantly. They are often viewed as upheavals to the evolutionary process. In contrast, this paper supports the hypothesis that although they are unpredictably destructive, extinction events may in the long term accelerate evolution by increasing evolvability. In particular, if extinction events extinguish indiscriminately many ways of life, indirectly they may select for the ability to expand rapidly through vacated niches. Lineages with such an ability are more likely to persist through multiple extinctions. Lending computational support for this hypothesis, this paper shows how increased evolvability will result from simulated extinction events in two computational models of evolved behavior. The conclusion is that although they are destructive in the short term, extinction events may make evolution more prolific in the long term. PMID:26266804

  10. Rescuing Ecosystems from Extinction Cascades

    NASA Astrophysics Data System (ADS)

    Sahasrabudhe, Sagar; Motter, Adilson

    2010-03-01

    Food web perturbations stemming from climate change, overexploitation, invasive species, and natural disasters often cause an initial loss of species that results in a cascade of secondary extinctions. Using a predictive modeling framework, here we will present a systematic network-based approach to reduce the number of secondary extinctions. We will show that the extinction of one species can often be compensated by the concurrent removal of a second specific species, which is a counter-intuitive effect not previously tested in complex food webs. These compensatory perturbations frequently involve long-range interactions that are not a priori evident from local predator-prey relationships. Strikingly, in numerous cases even the early removal of a species that would eventually be extinct by the cascade is found to significantly reduce the number of cascading extinctions. Other nondestructive interventions based on partial removals and growth suppression and/or mortality increase are shown to sometimes prevent all secondary extinctions.

  11. Raman Lidar Profiling of Aerosols Over the Central US; Diurnal Variability and Comparisons with the GOCART Model

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Chin, M.; Clayton, M.; Turner, D.

    2002-01-01

    We use profiles of aerosol extinction, water vapor mixing ratio, and relative humidity measured by the ARM SGP Raman lidar in northern Oklahoma to show how the vertical distributions of aerosol extinction and water vapor vary throughout the diurnal cycle. While significant (20-30%) variations in aerosol extinction occurred near the surface as well as aloft, smaller (approximately 10%) variations were observed in the diurnal variability of aerosol optical thickness (AOT). The diurnal variations in aerosol extinction profiles are well correlated with corresponding variations in the average relative humidity profiles. The water vapor mixing ratio profiles and integrated water vapor amounts generally show less diurnal variability. The Raman lidar profiles are also used to evaluate the aerosol optical thickness and aerosol extinction profiles simulated by the GOCART global aerosol model. Initial comparisons show that the AOT simulated by GOCART was in closer agreement with the AOT derived from the Raman lidar and Sun photometer measurements during November 2000 than during September 2000. For both months, the vertical variability in average aerosol extinction profiles simulated by GOCART is less than the variability in the corresponding Raman lidar profiles.

  12. Natural organic matter in urban aerosols: Comparison between water and alkaline soluble components using excitation-emission matrix fluorescence spectroscopy and multiway data analysis

    NASA Astrophysics Data System (ADS)

    Matos, João T. V.; Freire, Sandra M. S. C.; Duarte, Regina M. B. O.; Duarte, Armando C.

    2015-02-01

    Understanding the complexity of Natural Organic Matter (NOM) in atmospheric aerosols has remained an important goal for the atmospheric research community. This work employs a Parallel Factor Model (PARAFAC) with Alternating Least Squares (ALS) algorithm to decompose and further compare sets of excitation-emission matrices fluorescence spectra of Water-soluble and Alkaline-soluble Organic Matter (WSOM and ASOM, respectively), sequentially extracted from urban aerosols collected during different seasons. The PARAFAC-ALS modelling identified three components in both WSOM and ASOM, whose maximum intensities follow a clear seasonal trend and which are likely to represent the dominant fluorescent moieties in NOM from urban aerosols. The PARAFAC-ALS modelling also indicated differences between the colder and warmer seasons in the fluorescence map of one WSOM component, which contrast with the results obtained for the ASOM, where the fluorescence signatures were found to be constant along the seasons, suggesting that the ASOM may have an in situ origin.

  13. Detection and quantification of water-based aerosols using active open-path FTIR

    NASA Astrophysics Data System (ADS)

    Kira, Oz; Linker, Raphael; Dubowski, Yael

    2016-04-01

    Aerosols have a leading role in many eco-systems and knowledge of their properties is critical for many applications. This study suggests using active Open-Path Fourier Transform Infra-Red (OP-FTIR) spectroscopy for quantifying water droplets and solutes load in the atmosphere. The OP-FTIR was used to measure water droplets, with and without solutes, in a 20 m spray tunnel. Three sets of spraying experiments generated different hydrosols clouds: (1) tap water only, (2) aqueous ammonium sulfate (0.25–3.6%wt) and (3) aqueous ethylene glycol (0.47–2.38%wt). Experiment (1) yielded a linear relationship between the shift of the extinction spectrum baseline and the water load in the line-of-sight (LOS) (R2 = 0.984). Experiment (2) also yielded a linear relationship between the integrated extinction in the range of 880–1150 cm‑1 and the ammonium sulfate load in the LOS (R2 = 0.972). For the semi-volatile ethylene glycol (experiment 3), present in the gas and condense phases, quantification was much more complex and two spectral approaches were developed: (1) according to the linear relationship from the first experiment (determination error of 8%), and (2) inverse modeling (determination error of 57%). This work demonstrates the potential of the OP-FTIR for detecting clouds of water-based aerosols and for quantifying water droplets and solutes at relatively low concentrations.

  14. Detection and quantification of water-based aerosols using active open-path FTIR.

    PubMed

    Kira, Oz; Linker, Raphael; Dubowski, Yael

    2016-01-01

    Aerosols have a leading role in many eco-systems and knowledge of their properties is critical for many applications. This study suggests using active Open-Path Fourier Transform Infra-Red (OP-FTIR) spectroscopy for quantifying water droplets and solutes load in the atmosphere. The OP-FTIR was used to measure water droplets, with and without solutes, in a 20 m spray tunnel. Three sets of spraying experiments generated different hydrosols clouds: (1) tap water only, (2) aqueous ammonium sulfate (0.25-3.6%wt) and (3) aqueous ethylene glycol (0.47-2.38%wt). Experiment (1) yielded a linear relationship between the shift of the extinction spectrum baseline and the water load in the line-of-sight (LOS) (R(2) = 0.984). Experiment (2) also yielded a linear relationship between the integrated extinction in the range of 880-1150 cm(-1) and the ammonium sulfate load in the LOS (R(2) = 0.972). For the semi-volatile ethylene glycol (experiment 3), present in the gas and condense phases, quantification was much more complex and two spectral approaches were developed: (1) according to the linear relationship from the first experiment (determination error of 8%), and (2) inverse modeling (determination error of 57%). This work demonstrates the potential of the OP-FTIR for detecting clouds of water-based aerosols and for quantifying water droplets and solutes at relatively low concentrations. PMID:27121498

  15. Periodicity in marine extinction events

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. John, Jr.; Raup, David M.

    1986-01-01

    The periodicity of extinction events is examined in detail. In particular, the temporal distribution of specific, identifiable extinction events is analyzed. The nature and limitations of the data base on the global fossil record is discussed in order to establish limits of resolution in statistical analyses. Peaks in extinction intensity which appear to differ significantly from background levels are considered, and new analyses of the temporal distribution of these peaks are presented. Finally, some possible causes of periodicity and of interdependence among extinction events over the last quarter billion years of earth history are examined.

  16. The impact of mass extinctions

    NASA Technical Reports Server (NTRS)

    Flessa, Karl W.

    1988-01-01

    In the years since Snowbird an explosive growth of research on the patterns, causes, and consequences of extinction was seen. The fossil record of extinction is better known, stratigraphic sections were scrutinized in great detail, and additional markers of environmental change were discovered in the rock record. However flawed, the fossil record is the only record that exists of natural extinction. Compilations from the primary literature contain a faint periodic signal: the extinctions of the past 250 my may be regulary spaced. The reality of the periodicity remains a subject for debate. The implications of periodicity are so profound that the debate is sure to continue. The greater precision from stratigraphic sections spanning extinction events has yet to resolve controversies concerning the rates at which extinctions occurred. Some sections seem to record sudden terminations, while others suggest gradual or steplike environmental deterioration. Unfortunately, the manner in which the strata record extinctions and compile stratigraphic ranges makes a strictly literal reading of the fossil record inadvisable. Much progress was made in the study of mass extinctions. The issues are more sharply defined but they are not fully resolved. Scenarios should look back to the phenomena they purport to explain - not just an iridium-rich layer, but the complex fabric of a mass extinction.

  17. Airborne Lidar Measurements of Aerosol Optical Properties During SAFARI-2000

    NASA Technical Reports Server (NTRS)

    McGill, M. J.; Hlavka, D. L.; Hart, W. D.; Welton, E. J.; Campbell, J. R.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The Cloud Physics Lidar (CPL) operated onboard the NASA ER-2 high altitude aircraft during the SAFARI-2000 field campaign. The CPL provided high spatial resolution measurements of aerosol optical properties at both 1064 nm and 532 nm. We present here results of planetary boundary layer (PBL) aerosol optical depth analysis and profiles of aerosol extinction. Variation of optical depth and extinction are examined as a function of regional location. The wide-scale aerosol mapping obtained by the CPL is a unique data set that will aid in future studies of aerosol transport. Comparisons between the airborne CPL and ground-based MicroPulse Lidar Network (MPL-Net) sites are shown to have good agreement.

  18. Passive detection of biological aerosols in the atmosphere with a Fourier Transform Instrument (FTIR)--the results of the measurements in the laboratory and in the field.

    PubMed

    Błęcka, M I; Rataj, M; Szymański, G

    2012-06-01

    Fourier Transform Infrared Radiation (FTIR) spectroscopy is one of the most powerful methods for the detection of gaseous constituents, aerosols, and dust in planetary atmospheres. Infrared spectroscopy plays an important role in searching for biomarkers, organics and biological substances in the Universe. The possibility of detection and identifications with FTIR spectrometer of bio-aerosol spores (Bacillus atrophaeus var. globigii=BG) in the atmosphere is discussed in this paper. We describe the results of initial spectral measurements performed in the laboratory and in the field. The purpose of these experiments was to detect and to identify bio-aerosol spores in two conditions: 1) In a closed chamber where the thermal contrast between the background and aerosols was large, and 2) In open air where the thermal contrast between the background and aerosols was small. The extinction spectrum of BG spores was deduced by comparing our measurements with models, and other measurements known from the literature. Our theoretical and experimental studies indicate that, during passive remote sensing measurements, it is difficult-but possible to detect and to identify bio-aerosol clouds by their spectral signatures. The simple spectral analysis described in the paper can be useful for the detection of various kinds of trace aerosols-not only in the Earth's atmosphere, but also during planetary missions in the environments of other astronomical objects such as planets, comets etc. We expect that the interpretation of data from spectrometric sounding of Venus and Mars during the current missions Mars and Venus Express, and later during the Rosetta mission will benefit from our experimental work and numerical modelling. PMID:22707349

  19. Characterization of a Photoacoustic Aerosol Absorption Spectrometer for Aircraft-based Measurements

    NASA Astrophysics Data System (ADS)

    Mason, B. J.; Wagner, N. L.; Richardson, M.; Brock, C. A.; Murphy, D. M.; Adler, G.

    2015-12-01

    Atmospheric aerosol directly impacts the Earth's climate through extinction of incoming and outgoing radiation. The optical extinction is due to both scattering and absorption. In situ measurements of aerosol extinction and scattering are well established and have uncertainties less than 5%. However measurements of aerosol absorption typically have uncertainties of 20-30%. Development and characterization of more accurate and precise instrumentation for measurement of aerosol absorption will enable a deeper understand of significance and spatial distribution of black and brown carbon aerosol, the effect of atmospheric processes on aerosol optical properties, and influence of aerosol optical properties on direct radiative forcing. Here, we present a detailed characterization of a photoacoustic aerosol absorption spectrometer designed for deployment aboard research aircraft. The spectrometer operates at three colors across the visible spectrum and is calibrated in the field using ozone. The field calibration is validated in the laboratory using synthetic aerosol and simultaneous measurements of extinction and scattering. In addition, the sensitivity of the instrument is characterized under conditions typically encountered during aircraft sampling e.g. as a function of changing pressure. We will apply this instrument characterization to ambient aerosol absorption data collected during the SENEX and SEAC4RS aircraft based field campaigns.

  20. Elevated aerosol layers modify the O2-O2 absorption measured by ground-based MAX-DOAS

    NASA Astrophysics Data System (ADS)

    Ortega, Ivan; Berg, Larry K.; Ferrare, Richard A.; Hair, Johnathan W.; Hostetler, Chris A.; Volkamer, Rainer

    2016-06-01

    The oxygen collisional complex (O2-O2, or O4) is a greenhouse gas, and a calibration trace gas used to infer aerosol and cloud properties by Differential Optical Absorption Spectroscopy (DOAS). Recent reports suggest the need for an O4 correction factor (CFO4) when comparing simulated and measured O4 differential slant column densities (dSCD) by passive DOAS. We investigate the sensitivity of O4 dSCD simulations at ultraviolet (360 nm) and visible (477 nm) wavelengths towards separately measured aerosol extinction profiles. Measurements were conducted by the University of Colorado 2D-MAX-DOAS instrument and NASA's multispectral High Spectral Resolution Lidar (HSRL-2) during the Two Column Aerosol Project (TCAP) at Cape Cod, MA in July 2012. During two case study days with (1) high aerosol load (17 July, AOD~0.35 at 477 nm), and (2) near molecular scattering conditions (22 July, AOD<0.10 at 477 nm) the measured and calculated O4 dSCDs agreed within 6.4±0.4% (360 nm) and 4.7±0.6% (477 nm) if the HSRL-2 profiles were used as input to the calculations. However, if in the calculations the aerosol is confined to the surface layer (while keeping AOD constant) we find 0.53aerosol layers, unless accounted for, can cause negative bias in the simulated O4 dSCDs that can explain CFO4. The air density and aerosol profile aloft needs to be taken into account when interpreting the O4 from ground-based MAX-DOAS. Opportunities to identify and better characterize these elevated layers are also discussed.

  1. LASE measurements of aerosols and water vapor during TARFOX

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard A.; Ismail, Syed; Browell, Edward V.; Brackett, Vincent G.; Kooi, Susan A.; Clayton, Marian B.; Melfi, Harvey; Whiteman, David N.; Schwenner, Geary; Evans, Keith D.; Hobbs, Peter V.; Veefkind, J. Pepijn; Russell, Philip B.; Livingston, John M.; Hignett, Philip; Holben, Brent N.; Remer, Lorraine A.

    1998-01-01

    The TARFOX (Tropospheric Aerosol Radiative Forcing Observational Experiment) intensive field campaign was designed to reduce uncertainties in estimates of the effects of anthropogenic aerosols on climate by measuring direct radiative effects and the optical, physical, and chemical properties of aerosols [1]. TARFOX was conducted off the East Coast of the United States between July 10-31, 1996. Ground, aircraft, and satellite-based sensors measured the sensitivity of radiative fields at various atmospheric levels to aerosol optical properties (i.e., optical thickness, phase function, single-scattering albedo) and to the vertical profile of aerosols. The LASE (Lidar Atmospheric Sensing Experiment) instrument, which was flown on the NASA ER-2 aircraft, measured vertical profiles of total scattering ratio and water vapor during a series of 9 flights. These profiles were used in real-time to help direct the other aircraft to the appropriate altitudes for intensive sampling of aerosol layers. We have subsequently used the LASE aerosol data to derive aerosol backscattering and extinction profiles. Using these aerosol extinction profiles, we derived estimates of aerosol optical thickness (AOT) and compared these with measurements of AOT from both ground and airborne sun photometers and derived from the ATSR-2 (Along Track and Scanning Radiometer 2) sensor on ERS-2 (European Remote Sensing Satellite-2). We also used the water vapor mixing ratio profiles measured simultaneously by LASE to derive precipitable water vapor and compare these to ground based measurements.

  2. The global 3-D distribution of tropospheric aerosols as characterized by CALIOP

    NASA Astrophysics Data System (ADS)

    Winker, D. M.; Tackett, J. L.; Getzewich, B. J.; Liu, Z.; Vaughan, M. A.; Rogers, R. R.

    2013-03-01

    The CALIOP lidar, carried on the CALIPSO satellite, has been acquiring global atmospheric profiles since June 2006. This dataset now offers the opportunity to characterize the global 3-D distribution of aerosol as well as seasonal and interannual variations, and confront aerosol models with observations in a way that has not been possible before. With that goal in mind, a monthly global gridded dataset of daytime and nighttime aerosol extinction profiles has been constructed, available as a Level 3 aerosol product. Averaged aerosol profiles for cloud-free and all-sky conditions are reported separately. This 6-yr dataset characterizes the global 3-dimensional distribution of tropospheric aerosol. Vertical distributions are seen to vary with season, as both source strengths and transport mechanisms vary. In most regions, clear-sky and all-sky mean aerosol profiles are found to be quite similar, implying a lack of correlation between high semi-transparent cloud and aerosol in the lower troposphere. An initial evaluation of the accuracy of the aerosol extinction profiles is presented. Detection limitations and the representivity of aerosol profiles in the upper troposphere are of particular concern. While results are preliminary, we present evidence that the monthly-mean CALIOP aerosol profiles provide quantitative characterization of elevated aerosol layers in major transport pathways. Aerosol extinction in the free troposphere in clean conditions, where the true aerosol extinction is typically 0.001 km-1 or less, is generally underestimated, however. The work described here forms an initial global 3-D aerosol climatology which we plan to extend and improve over time.

  3. Pleistocene extinctions: haunting the survivors.

    PubMed

    Hofreiter, Michael

    2007-08-01

    For many years, the megafaunal extinctions at the end of the Pleistocene have been assumed to have affected only those species that became extinct. However, recent analyses show that the surviving species may also have experienced losses in terms of genetic and ecological diversity. PMID:17686436

  4. Ecology: Dynamics of Indirect Extinction.

    PubMed

    Montoya, Jose M

    2015-12-01

    The experimental identification of the mechanism by which extinctions of predators trigger further predator extinctions emphasizes the role of indirect effects between species in disturbed ecosystems. It also has deep consequences for the hidden magnitude of the current biodiversity crisis. PMID:26654371

  5. Acoustic integrated extinction

    PubMed Central

    Norris, Andrew N.

    2015-01-01

    The integrated extinction (IE) is defined as the integral of the scattering cross section as a function of wavelength. Sohl et al. (2007 J. Acoust. Soc. Am. 122, 3206–3210. (doi:10.1121/1.2801546)) derived an IE expression for acoustic scattering that is causal, i.e. the scattered wavefront in the forward direction arrives later than the incident plane wave in the background medium. The IE formula was based on electromagnetic results, for which scattering is causal by default. Here, we derive a formula for the acoustic IE that is valid for causal and non-causal scattering. The general result is expressed as an integral of the time-dependent forward scattering function. The IE reduces to a finite integral for scatterers with zero long-wavelength monopole and dipole amplitudes. Implications for acoustic cloaking are discussed and a new metric is proposed for broadband acoustic transparency. PMID:27547100

  6. A model for the separation of cloud and aerosol in SAGE II occultation data

    NASA Technical Reports Server (NTRS)

    Kent, G. S.; Winker, D. M.; Osborn, M. T.; Skeens, K. M.

    1993-01-01

    The Stratospheric Aerosol and Gas Experiment (SAGE) II satellite experiment measures the extinction due to aerosols and thin cloud, at wavelengths of 0.525 and 1.02 micrometers, down to an altitude of 6 km. The wavelength dependence of the extinction due to aerosols differs from that of the extinction due to cloud and is used as the basis of a model for separating these two components. The model is presented and its validation using airborne lidar data, obtained coincident with SAGE II observations, is described. This comparison shows that smaller SAGE II cloud extinction values correspond to the presence of subvisible cirrus cloud in the lidar record. Examples of aerosol and cloud data products obtained using this model to interpret SAGE II upper tropospheric and lower stratospheric data are also shown.

  7. Measuring Extinction with ALE

    NASA Astrophysics Data System (ADS)

    Zimmer, Peter C.; McGraw, J. T.; Gimmestad, G. G.; Roberts, D.; Stewart, J.; Smith, J.; Fitch, J.

    2007-12-01

    ALE (Astronomical LIDAR for Extinction) is deployed at the University of New Mexico's (UNM) Campus Observatory in Albuquerque, NM. It has begun a year-long testing phase prior deployment at McDonald Observatory in support of the CCD/Transit Instrument II (CTI-II). ALE is designed to produce a high-precision measurement of atmospheric absorption and scattering above the observatory site every ten minutes of every moderately clear night. LIDAR (LIght Detection And Ranging) is the VIS/UV/IR analog of radar, using a laser, telescope and time-gated photodetector instead of a radio transmitter, dish and receiver. In the case of ALE -- an elastic backscatter LIDAR -- 20ns-long, eye-safe laser pulses are launched 2500 times per second from a 0.32m transmitting telescope co-mounted with a 50mm short-range receiver on an alt-az mounted 0.67m long-range receiver. Photons from the laser pulse are scattered and absorbed as the pulse propagates through the atmosphere, a portion of which are scattered into the field of view of the short- and long-range receiver telescopes and detected by a photomultiplier. The properties of a given volume of atmosphere along the LIDAR path are inferred from both the altitude-resolved backscatter signal as well as the attenuation of backscatter signal from altitudes above it. We present ALE profiles from the commissioning phase and demonstrate some of the astronomically interesting atmospheric information that can be gleaned from these data, including, but not limited to, total line-of-sight extinction. This project is funded by NSF Grant 0421087.

  8. Four years of ground-based MAX-DOAS observations of aerosols, NO2, SO2 and HCHO in Wuxi, China

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Lampel, Johannes; Wagner, Thomas; Li, Ang; Xie, Pinhua; Wu, Dexia; Beirle, Steffen

    2016-04-01

    Understanding the temporal variation and spatial distribution of the abundances of nitrogen dioxide (NO2), sulphur dioxide (SO2), formaldehyde (HCHO) and aerosols is necessary to study their role in tropospheric chemistry and to estimate their importance among anthropogenic emissions. To accomplish this, we operated a Multi AXis - Differential Optical Absorption Spectroscopy (MAX-DOAS) instrument from May 2011 to Nov 2014 in Wuxi, China. A new inversion algorithm PriAM (profile inversion algorithm of aerosol extinction and trace gas concentration) developed at AIOFM in cooperation with MPIC based on the optimal estimation algorithm is applied to obtain tropospheric profiles of trace gases and aerosols from the long-term observations. The performance of the inversion algorithm is evaluated by comparisons with other independent techniques for a period longer than one year. The cloud effect on the retrieved column densities, surface concentrations and profiles of the trace gases and aerosols is evaluated using of a cloud classification scheme based on the MAX-DOAS measurements themselves. From this study recommendations for the quality of the MAX-DOAS results for different cloud scenarios are given. Further, the MAX-DOAS results are used to characterize the seasonal, diurnal, and weekly variations of NO2, SO2, HCHO and aerosols. Systematic weekly variations are found for all the species, indicating a significant contribution of anthropogenic emissions to the observed abundances. The good correlations between the trace gases and aerosols, especially for HCHO, indicate a significant contribution of secondary aerosols from the precursors to the total aerosol load. We use the wind dependence of the pollutants to identify the dominating sources. High values are observed when the wind comes from the direction of industrial areas.

  9. A global aerosol classification algorithm incorporating multiple satellite data sets of aerosol and trace gas abundances

    NASA Astrophysics Data System (ADS)

    Penning de Vries, M. J. M.; Beirle, S.; Hörmann, C.; Kaiser, J. W.; Stammes, P.; Tilstra, L. G.; Tuinder, O. N. E.; Wagner, T.

    2015-09-01

    Detecting the optical properties of aerosols using passive satellite-borne measurements alone is a difficult task due to the broadband effect of aerosols on the measured spectra and the influences of surface and cloud reflection. We present another approach to determine aerosol type, namely by studying the relationship of aerosol optical depth (AOD) with trace gas abundance, aerosol absorption, and mean aerosol size. Our new Global Aerosol Classification Algorithm, GACA, examines relationships between aerosol properties (AOD and extinction Ångström exponent from the Moderate Resolution Imaging Spectroradiometer (MODIS), UV Aerosol Index from the second Global Ozone Monitoring Experiment, GOME-2) and trace gas column densities (NO2, HCHO, SO2 from GOME-2, and CO from MOPITT, the Measurements of Pollution in the Troposphere instrument) on a monthly mean basis. First, aerosol types are separated based on size (Ångström exponent) and absorption (UV Aerosol Index), then the dominating sources are identified based on mean trace gas columns and their correlation with AOD. In this way, global maps of dominant aerosol type and main source type are constructed for each season and compared with maps of aerosol composition from the global MACC (Monitoring Atmospheric Composition and Climate) model. Although GACA cannot correctly characterize transported or mixed aerosols, GACA and MACC show good agreement regarding the global seasonal cycle, particularly for urban/industrial aerosols. The seasonal cycles of both aerosol type and source are also studied in more detail for selected 5° × 5° regions. Again, good agreement between GACA and MACC is found for all regions, but some systematic differences become apparent: the variability of aerosol composition (yearly and/or seasonal) is often not well captured by MACC, the amount of mineral dust outside of the dust belt appears to be overestimated, and the abundance of secondary organic aerosols is underestimated in comparison

  10. Extinction of Harrington's Mountain Goat

    NASA Astrophysics Data System (ADS)

    Mead, Jim I.; Martin, Paul S.; Euler, Robert C.; Long, Austin; Jull, A. J. T.; Toolin, Laurence J.; Donahue, Douglas J.; Linick, T. W.

    1986-02-01

    Keratinous horn sheaths of the extinct Harrington's mountain goat, Oreamnos harringtoni, were recovered at or near the surface of dry caves of the Grand Canyon, Arizona. Twenty-three separate specimens from two caves were dated nondestructively by the tandem accelerator mass spectrometer (TAMS). Both the TAMS and the conventional dates indicate that Harrington's mountain goat occupied the Grand Canyon for at least 19,000 years prior to becoming extinct by 11,160 ± 125 radiocarbon years before present. The youngest average radiocarbon dates on Shasta ground sloths, Nothrotheriops shastensis, from the region are not significantly younger than those on extinct mountain goats. Rather than sequential extinction with Harrington's mountain goat disappearing from the Grand Canyon before the ground sloths, as one might predict in view of evidence of climatic warming at the time, the losses were concurrent. Both extinctions coincide with the regional arrival of Clovis hunters.

  11. Extinction of Harrington's mountain goat

    SciTech Connect

    Mead, J.I.; Martin, P.S.; Euler, R.C.; Long, A.; Jull, A.J.T.; Toolin, L.J.; Donahue, D.J.; Linick, T.W.

    1986-02-01

    Keratinous horn sheaths of the extinct Harrington's mountain goat, Oreamnos harringtoni, were recovered at or near the surface of dry caves of the Grand Canyon, Arizona. Twenty-three separate specimens from two caves were dated nondestructively by the tandem accelerator mass spectrometer (TAMS). Both the TAMS and the conventional dates indicate that Harrington's mountain goat occupied the Grand Canyon for at least 19,000 years prior to becoming extinct by 11,160 +/- 125 radiocarbon years before present. The youngest average radiocarbon dates on Shasta ground sloths, Nothrotheriops shastensis, from the region are not significantly younger than those on extinct mountain goats. Rather than sequential extinction with Harrington's mountain goat disappearing from the Grand Canyon before the ground sloths, as one might predict in view of evidence of climatic warming at the time, the losses were concurrent. Both extinctions coincide with the regional arrival of Clovis hunters.

  12. Behavioral tagging of extinction learning.

    PubMed

    de Carvalho Myskiw, Jociane; Benetti, Fernando; Izquierdo, Iván

    2013-01-15

    Extinction of contextual fear in rats is enhanced by exposure to a novel environment at 1-2 h before or 1 h after extinction training. This effect is antagonized by administration of protein synthesis inhibitors anisomycin and rapamycin into the hippocampus, but not into the amygdala, immediately after either novelty or extinction training, as well as by the gene expression blocker 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole administered after novelty training, but not after extinction training. Thus, this effect can be attributed to a mechanism similar to synaptic tagging, through which long-term potentiation can be enhanced by other long-term potentiations or by exposure to a novel environment in a protein synthesis-dependent fashion. Extinction learning produces a tag at the appropriate synapses, whereas novelty learning causes the synthesis of plasticity-related proteins that are captured by the tag, strengthening the synapses that generated this tag. PMID:23277583

  13. Interstellar extinction in the ultraviolet

    NASA Technical Reports Server (NTRS)

    Bless, R. C.; Savage, B. D.

    1972-01-01

    Interstellar extinction curves over the region 3600-1100 A for 17 stars are presented. The observations were made by the two Wisconsin spectrometers onboard the OAO-2 with spectral resolutions of 10 A and 20 A. The extinction curves generally show a pronounced maximum at 2175 plus or minus 25 A, a broad minimum in the region 1800-1350 A, and finally a rapid rise to the far ultraviolet. Large extinction variations from star to star are found, especially in the far ultraviolet; however, with only two possible exceptions in this sample, the wavelength at the maximum of the extinction bump is essentially constant. These data are combined with visual and infrared observations to display the extinction behavior over a range in wavelength of about a factor of 20.

  14. Deep Extinction Mapping in Molecular Cores

    NASA Astrophysics Data System (ADS)

    Hodapp, Klaus; Urban, Laurie; Rieke, Marcia

    2014-12-01

    This proposal is for preparatory observations of the targets selected for a future James Webb Space Telescope (JWST) Near-Infrared Camera (NIRCam) guaranteed time project, as well as for a more general preparation for the science of this project. Our JWST project with NIRCam, NIRSpec, and MIRI is aimed at obtaining the deepest, and therefore best sampled, extinction maps of a sample of molecular cores, selected to contain quiescent, collapsing, and star-forming cores. We will also obtain spectroscopy of suitable, selected background stars for a detailed study of both the continuum extinction law and the ice feature absorption. The proposed Spitzer IRAC observations are aimed at identifying specific background stars for these future spectroscopic observations with JWST NIRSpec or NIRCam (grism), and with MIRI. For detailed planning of the JWST observations, we need to know how many suitable background stars are available, how many NIRSpec multi-slit pointing will be required, or whether slitless NIRCam grism spectroscopy is feasible. In addition to their role in preparing future JWST observations, the proposed Spitzer observations will immediately be used, together with UKIRT data we have already obtained and together with archival imaging data from other ground-based telescopes, to compute column density maps of the target objects and compare those with JCMT continuum and CO line emission maps to study the temperature distribution and gas freeze-out effects in those dense molecular cores. This work will form the main part of L. Urban's Ph.D. thesis project.

  15. Scattering and Absorption of E&M radiation by small particles-applications to study impact of biomass aerosols on climate

    NASA Astrophysics Data System (ADS)

    Bililign, Solomon; Singh, Sujeeta; Fiddler, Marc; Smith, Damon

    2015-03-01

    The phenomena of scattering, absorption, and emission of light and other electromagnetic radiation by small particles are central to many science and engineering disciplines. Absorption of solar radiation by black carbon aerosols has a significant impact on the atmospheric energy distribution and hydrologic processes. By intercepting incoming solar radiation before it reaches the surface, aerosols heat the atmosphere and, in turn, cool the surface. The magnitude of the atmospheric forcing induced by anthropogenic absorbing aerosols, mainly black carbon (BC) emitted from biomass burning and combustion processes has been suggested to be comparable to the atmospheric forcing by all greenhouse gases (GHGs). Despite the global abundance of biomass burning for cooking, forests clearing for agriculture and wild fires, the optical properties of these aerosols have not been characterized at wide range of wavelengths. Our laboratory uses a combination of Cavity ring down spectroscopy and integrating nephelometry to measure optical properties of (extinction, absorption and scattering coefficients) of biomass aerosols. Preliminary results will be presented. Supported by the Department of Defense under Grant #W911NF-11-1-0188.

  16. Particle Imaging, Characterization and Extinction Measurement with Digital Holography

    NASA Astrophysics Data System (ADS)

    Subedi, Nava; Berg, Matthew

    2015-03-01

    Digital holographic microcopy (DHM) can be a ground breaking technique in the field of particle diagnostic because of its capability for imaging, characterization and extinction measurement in situ. The beauty of this technique is that a single experimental set up is able to do all these works at the same time. In this sense DHM can be used to establish a new kind of instrumentation having the properties of cost-effective, light-weight and portable. Besides this, this technique also has lots of useful applications in the field of aerosol research, climate modeling, life science, polymer crystallization, and defense. We are using DHM for sub-micron sized particle imaging, characterization and extinction. In this work, a particle is illuminated by a pulsed laser and the interference pattern produced by superposition of particle's forward-scattered wave with the incident wave is recorded by a digital camera. The recorded pattern constitutes a digital hologram which can be numerically processed to get image, composition information and extinction cross-section of the particle. These information of the particle are the basic requirements for the characterization of respirable-sized (1-10 μm) aerosols particles.

  17. The end-Permian mass extinction: A complex, multicausal extinction

    NASA Technical Reports Server (NTRS)

    Erwin, D. H.

    1994-01-01

    The end-Permian mass extinction was the most extensive in the history of life and remains one of the most complex. Understanding its causes is particularly important because it anchors the putative 26-m.y. pattern of periodic extinction. However, there is no good evidence for an impact and this extinction appears to be more complex than others, involving at least three phases. The first began with the onset of a marine regression during the Late Permian and resulting elimination of most marine basins, reduction in habitat area, and increased climatic instability; the first pulse of tetrapod extinctions occurred in South Africa at this time. The second phase involved increased regression in many areas (although apparently not in South China) and heightened climatic instability and environmental degradation. Release of gas hydrates, oxidation of marine carbon, and the eruption of the Siberian flood basalts occurred during this phase. The final phase of the extinction episode began with the earliest Triassic marine regression and destruction of nearshore continental habitats. Some evidence suggests oceanic anoxia may have developed during the final phase of the extinction, although it appears to have been insufficient to the sole cause of the extinction.

  18. Mesoscale Variations of Tropospheric Aerosols(.

    NASA Astrophysics Data System (ADS)

    Anderson, Theodore L.; Charlson, Robert J.; Winker, David M.; Ogren, John A.; Holmén, Kim

    2003-01-01

    Tropospheric aerosols are calculated to cause global-scale changes in the earth's heat balance, but these forcings are space/time integrals over highly variable quantities. Accurate quantification of these forcings will require an unprecedented synergy among satellite, airborne, and surface-based observations, as well as models. This study considers one aspect of achieving this synergy-the need to treat aerosol variability in a consistent and realistic way. This need creates a requirement to rationalize the differences in spatiotemporal resolution and coverage among the various observational and modeling approaches. It is shown, based on aerosol optical data from diverse regions, that mesoscale variability (specifically, for horizontal scales of 40-400 km and temporal scales of 2-48 h) is a common and perhaps universal feature of lower-tropospheric aerosol light extinction. Such variation is below the traditional synoptic or `airmass' scale (where the aerosol is often assumed to be essentially homogeneous except for plumes from point sources) and below the scales that are readily resolved by chemical transport models. The present study focuses on documenting this variability. Possible physical causes and practical implications for coordinated observational strategies are also discussed.

  19. SAGE II aerosol data validation based on retrieved aerosol model size distribution from SAGE II aerosol measurements.

    PubMed

    Wang, P H; McCormick, M P; McMaster, L R; Chu, W P; Swissler, T J; Osborn, M T; Russell, P B; Oberbeck, V R; Livingston, J; Rosen, J M; Hofmann, D J; Grams, G W; Fuller, W H; Yue, G K

    1989-06-20

    This paper describes an investigation of the comprehensive aerosol correlative measurement experiments conducted between November 1984 and July 1986 for satellite measurement program of the Stratospheric Aerosol and Gas Experiment (SAGE II). The correlative sensors involved in the experiments consist of the NASA Ames Research Center impactor/laser probe, the University of Wyoming dustsonde, and the NASA Langley Research Center airborne 14-inch (36 cm) lidar system. The approach of the analysis is to compare the primary aerosol quantities measured by the ground-based instruments with the calculated ones based on the aerosol size distributions retrieved from the SAGE II aerosol extinction measurements. The analysis shows that the aerosol size distributions derived from the SAGE II observations agree qualitatively with the in situ measurements made by the impactor/laser probe. The SAGE II-derived vertical distributions of the ratio N0.15/N0.25 (where Nr is the cumulative aerosol concentration for particle radii greater than r, in micrometers) and the aerosol backscatter profiles at 0.532- and 0.6943-micrometer lidar wavelengths are shown to agree with the dustsonde and the 14-inch (36-cm) lidar observations, with the differences being within the respective uncertainties of the SAGE II and the other instruments. PMID:11539801

  20. Tropical and Midlatitude Cirrus Cloud Extinction and Backscatter From Multiyear Raman Lidar Measurements.

    NASA Astrophysics Data System (ADS)

    Thorsen, T. J.; Fu, Q.

    2014-12-01

    Lidars have the capability to provide unparalleled range-resolved observations of particulate extinction. However, lidars fundamentally measure backscattered energy, not extinction, and for widely prevalent single-channel elastic backscatter lidars extinction must be obtained by assuming a backscatter-extinction relationship. Our knowledge of this relationship, known as the lidar ratio, mainly consists values determined via the transmission-loss method: which can only provide layer-averaged values and is only applicable to a subset of all cloud layers. Directly-retrieved, vertically resolved extinction coefficients and lidar ratios are obtainable through the use of more advance high spectral resolution lidars (HSRL) or Raman lidars (RL). However, the complexity of operating a HSRL or RL has limited their use for cloud observations to very limited time periods: typical only a few months or less. In this work, we present a newly developed retrieval for the Atmospheric Radiation Measurement (ARM) program's Raman lidars for Feature detection and EXtinction retrieval (FEX). FEX improves upon existing ARM products by using multiple, complimentary quantities to identify both clouds and aerosols and retrieve their extinction and backscatter profiles. Multiple years of data are examined at both the Lamont, Oklahoma and Darwin, Australia ARM sites; providing the most comprehensive climatology to date of cirrus extinction and lidar ratios. Variations in these optical properties with classification of the synoptic state and their relationship with microphysical parameters (temperature, relative humidity and depolarization) are examined.

  1. The Truth about Stratospheric Aerosols: Key Results from SPARC`s Assessment of Stratospheric Aerosol Properties

    NASA Astrophysics Data System (ADS)

    Thomason, L. W.; Peter, T.

    2005-12-01

    Given the critical role it plays in ozone chemistry, the Assessment of Stratospheric Aerosol Properties (ASAP) has been carried out by the WCRP project on Stratospheric Process and their Role in Climate (SPARC). The objective of this report was to present a systematic analysis of the state of knowledge of stratospheric aerosols including their precursors. It includes an examination of precursor concentrations and trends, measurements of stratospheric aerosol properties, trends in those properties, and modeling their formation, transport, and distribution in both background and volcanic conditions. The assessment found that the dominant nonvolcanic stratospheric aerosol precursor gases are OCS, SO2, and tropospheric aerosol. Therefore, though SO2, human-related activities play a significant role in the observed background stratospheric aerosol. There is general agreement between measured OCS and modeling of its transformation to sulfate aerosol, and observed aerosols. However, there is a significant dearth of SO2 measurements, and the role of tropospheric SO2 in the stratospheric aerosol budget - while significant - remains a matter of some guesswork. The assessment also found that there is basic agreement between the various data sets and models particularly during periods of elevated loading. However, at background levels significant differences were found that indicate that substantial questions remain regarding the nature of stratospheric aerosol during these periods particularly in the lower stratosphere. For instance, during periods of very low aerosol loading significant differences exist between systems for key parameters including aerosol surface area density and extinction. At the same time, comparisons of models and satellite observations of aerosol extinction found good agreement at visible wavelengths above 20-25 km altitude region but are less satisfactory for infrared wavelengths. While there are some model short-comings relative to observations in

  2. Contrasting organic aerosol particles from boreal and tropical forests during HUMPPA-COPEC-2010 and AMAZE-08 using coherent vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Ebben, C. J.; Martinez, I. S.; Shrestha, M.; Buchbinder, A. M.; Corrigan, A. L.; Guenther, A.; Karl, T.; Petäjä, T.; Song, W. W.; Zorn, S. R.; Artaxo, P.; Kulmala, M.; Martin, S. T.; Russell, L. M.; Williams, J.; Geiger, F. M.

    2011-06-01

    We present the vibrational sum frequency generation spectra of organic particles collected in a boreal forest in Finland and a tropical forest in Brazil. These spectra are compared to those of secondary organic material produced in the Harvard Environmental Chamber. By comparing coherent vibrational spectra of a variety of terpene and olefin reference compounds, along with the secondary organic material synthesized in the environmental chamber, we show that submicron aerosol particles sampled in Southern Finland during HUMPPA-COPEC-2010 are composed to a large degree of material similar in chemical composition to synthetic α-pinene-derived material. For material collected in Brazil as part of AMAZE-08, the organic component is found to be chemically complex in the coarse mode but highly uniform in the fine mode. When combined with histogram analyses of the isoprene and monoterpene abundance recorded during the HUMPPA-COPEC-2010 and AMAZE-08 campaigns, the findings presented here indicate that if air is rich in monoterpenes, submicron-sized secondary aerosol particles that form under normal OH and O3 concentration levels can be described in terms of their hydrocarbon content as being similar to α-pinene-derived model secondary organic aerosol particles. If the isoprene concentration dominates the chemical composition of organic compounds in forest air, then the hydrocarbon component of secondary organic material in the submicron size range is not simply well-represented by that of isoprene-derived model secondary organic aerosol particles but is more complex. Throughout the climate-relevant size range of the fine mode, however, we find that the chemical composition of the secondary organic particle material from such air is invariant with size, suggesting that the particle growth does not change the chemical composition of the hydrocarbon component of the particles in a significant way.

  3. Contrasting organic aerosol particles from boreal and tropical forests during HUMPPA-COPEC-2010 and AMAZE-08 using coherent vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Ebben, C. J.; Martinez, I. S.; Shrestha, M.; Buchbinder, A. M.; Corrigan, A. L.; Guenther, A.; Karl, T.; Petäjä, T.; Song, W. W.; Zorn, S. R.; Artaxo, P.; Kulmala, M.; Martin, S. T.; Russell, L. M.; Williams, J.; Geiger, F. M.

    2011-10-01

    We present the vibrational sum frequency generation spectra of organic particles collected in a boreal forest in Finland and a tropical forest in Brazil. These spectra are compared to those of secondary organic material produced in the Harvard Environmental Chamber. By comparing coherent vibrational spectra of a variety of terpene and olefin reference compounds, along with the secondary organic material synthesized in the environmental chamber, we show that submicron aerosol particles sampled in Southern Finland during HUMPPA-COPEC-2010 are composed to a large degree of material similar in chemical composition to synthetic α-pinene-derived material. For material collected in Brazil as part of AMAZE-08, the organic component is found to be chemically complex in the coarse mode but highly uniform in the fine mode. When combined with histogram analyses of the isoprene and monoterpene abundance recorded during the HUMPPA-COPEC-2010 and AMAZE-08 campaigns, the findings presented here indicate that if air is rich in monoterpenes, submicron-sized secondary aerosol particles that form under normal OH and O3 concentration levels can be described in terms of their hydrocarbon content as being similar to α-pinene-derived model secondary organic aerosol particles. If the isoprene concentration dominates the chemical composition of organic compounds in forest air, then the hydrocarbon component of secondary organic material in the submicron size range is not simply well-represented by that of isoprene-derived model secondary organic aerosol particles but is more complex. Throughout the climate-relevant size range of the fine mode, however, we find that the chemical composition of the secondary organic particle material from such air is invariant with size, suggesting that the particle growth does not change the chemical composition of the hydrocarbon component of the particles in a significant way.

  4. Mass Extinctions in Earth's History

    NASA Astrophysics Data System (ADS)

    Ward, P. D.

    2002-12-01

    Mass extinctions are short intervals of elevated species death. Possible causes of Earth's mass extinctions are both external (astronomical) and internal (tectonic and biotic changes from planetary mechanisms). Paleontologists have identified five "major" mass extinctions (>50 die-off in less than a million years) and more than 20 other minor events over the past 550 million years. Earlier major extinction events undoubtedly also occurred, but we have no fossil record; these were probably associated with, for example, the early heavy bombardment that cleared out the solar system, the advent of oxygen in the atmosphere, and various "snowball Earth" events. Mass extinctions are viewed as both destructive (species death ) and constructive, in that they allow evolutionary innovation in the wake of species disappearances. From an astrobiological perspective, mass extinctions must be considered as able both to reduce biodiversity and even potentially end life on any planet. Of the five major mass extinctions identified on Earth, only one (the Cretaceous/Tertiary event 65 million years ago that famously killed off the dinosaurs ) is unambiguously related to the impact of an asteroid or comet ( 10-km diameter). The Permian/Triassic (250 Myr ago) and Triassic/Jurassic (202 Myr ago) events are now the center of debate between those favoring impact and those suggesting large volume flooding by basaltic lavas. The final two events, Ordovician (440 Myr ago) and Devonian (370 Myr ago) have no accepted causal mechanisms.

  5. The learning of fear extinction.

    PubMed

    Furini, Cristiane; Myskiw, Jociane; Izquierdo, Ivan

    2014-11-01

    Recent work on the extinction of fear-motivated learning places emphasis on its putative circuitry and on its modulation. Extinction is the learned inhibition of retrieval of previously acquired responses. Fear extinction is used as a major component of exposure therapy in the treatment of fear memories such as those of the posttraumatic stress disorder (PTSD). It is initiated and maintained by interactions between the hippocampus, basolateral amygdala and ventromedial prefrontal cortex, which involve feedback regulation of the latter by the other two areas. Fear extinction depends on NMDA receptor activation. It is positively modulated by d-serine acting on the glycine site of NMDA receptors and blocked by AP5 (2-amino-5-phosphono propionate) in the three structures. In addition, histamine acting on H2 receptors and endocannabinoids acting on CB1 receptors in the three brain areas mentioned, and muscarinic cholinergic fibers from the medial septum to hippocampal CA1 positively modulate fear extinction. Importantly, fear extinction can be made state-dependent on circulating epinephrine, which may play a role in situations of stress. Exposure to a novel experience can strongly enhance the consolidation of fear extinction through a synaptic tagging and capture mechanism; this may be useful in the therapy of states caused by fear memory like PTSD. PMID:25452113

  6. Extinction in young massive clusters

    NASA Astrophysics Data System (ADS)

    De Marchi, Guido; Panagia, Nino

    2016-01-01

    Up to ages of ~100 Myr, massive clusters are still swamped in large amounts of gas and dust, causing considerable and uneven levels of extinction. At the same time, large grains (ices?) produced by type II supernovae profoundly alter the interstellar medium (ISM), thus resulting in extinction properties very different from those of the diffuse ISM. To obtain physically meaningful parameters of stars (luminosities, effective temperatures, masses, ages, etc.) we must understand and measure the local extinction law. We have developed a powerful method to unambiguously determine the extinction law everywhere across a cluster field, using multi-band photometry of red giant stars belonging to the red clump (RC) and are applying it to young massive clusters in the Local Group. In the Large Magellanic Cloud, with about 20 RC stars per arcmin2, for each field we can easily derive an accurate extinction curve over the entire wavelength range of the photometry. As an example, we present the extinction law of the Tarantula nebula (30 Dor) based on thousands of stars observed as part of the Hubble Tarantula Treasury Project. We discuss how the incautious adoption of the Milky Way extinction law in the analysis of massive star forming regions may lead to serious underestimates of the fluxes and of the star formation rates by factors of 2 or more.

  7. New theories about ancient extinctions

    USGS Publications Warehouse

    Spall, H.

    1986-01-01

    But all this may be changing. Mass extinctions have been very much in the news in the last few years, triggered in large part by the proposal that the extinction of the dinosaurs and marine animals was caused by a catastrophic collision between the Earth and an extra-terrestrial body (bolide). Recently an equally contentious suggestion has been made that mass extinctions have swept the Earth every 26 to 31 million years for at least the last 250 million years-caused by encounters with some kind of extra-terrestrial object such as one of the asteroids or the comets. 

  8. Comparison of Aerosol Classification from Airborne High Spectral Resolution Lidar and the CALIPSO Vertical Feature Mask

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Ferrare, R. A.; Omar, A. H.; Hostetler, C. A.; Hair, J. W.; Rogers, R.; Obland, M. D.; Butler, C. F.; Cook, A. L.; Harper, D. B.

    2012-12-01

    The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL-1) on the NASA B200 aircraft has acquired large datasets of aerosol extinction (532nm), backscatter (532 and 1064nm), and depolarization (532 and 1064nm) profiles during 349 science flights in 19 field missions across North America since 2006. The extinction-to-backscatter ratio ("lidar ratio"), aerosol depolarization ratios, and backscatter color ratio measurements from HSRL-1 are scale-invariant parameters that depend on aerosol type but not concentration. These four aerosol intensive parameters are combined to qualitatively classify HSRL aerosol measurements into eight separate composition types. The classification methodology uses models formed from "training cases" with known aerosol type. The remaining measurements are then compared with these models using the Mahalanobis distance. Aerosol products from the CALIPSO satellite include aerosol type information as well, which is used as input to the CALIPSO aerosol retrieval. CALIPSO aerosol types are inferred using a mix of aerosol loading-dependent parameters, estimated aerosol depolarization, and location, altitude, and surface type information. The HSRL instrument flies beneath the CALIPSO satellite orbit track, presenting the opportunity for comparisons between the HSRL aerosol typing and the CALIPSO Vertical Feature Mask Aerosol Subtype product, giving insight into the performance of the CALIPSO aerosol type algorithm. We find that the aerosol classification from the two instruments frequently agree for marine aerosols and pure dust, and somewhat less frequently for pollution and smoke. In addition, the comparison suggests that the CALIPSO polluted dust type is overly inclusive, encompassing cases of dust combined with marine aerosol as well as cases without much evidence of dust. Qualitative classification of aerosol type combined with quantitative profile measurements of aerosol backscatter and extinction has many useful

  9. Aerosol Best Estimate Value-Added Product

    SciTech Connect

    Flynn, C; Turner, D; Koontz, A; Chand, D; Sivaraman, C

    2012-07-19

    The objective of the Aerosol Best Estimate (AEROSOLBE) value-added product (VAP) is to provide vertical profiles of aerosol extinction, single scatter albedo, asymmetry parameter, and Angstroem exponents for the atmospheric column above the Central Facility at the ARM Southern Great Plains (SGP) site. We expect that AEROSOLBE will provide nearly continuous estimates of aerosol optical properties under a range of conditions (clear, broken clouds, overcast clouds, etc.). The primary requirement of this VAP was to provide an aerosol data set as continuous as possible in both time and height for the Broadband Heating Rate Profile (BBHRP) VAP in order to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Even though BBHRP has been completed, AEROSOLBE results are very valuable for environmental, atmospheric, and climate research.

  10. Aerosol optical depth measuring network - project description

    NASA Astrophysics Data System (ADS)

    Aaltonen, A.; Koskela, K.; Lihavainen, L.

    2003-04-01

    The Finnish Meteorological Institute (FMI), in collaboration with Servicio Meteorológico Nacional (SMN), Argentina, is constructing a network for aerosol optical depth (AOD) measurements. Measurements are to be started in the summer 2003 with three sunphotometers, model PFR, Davos. One of them will be sited in Marambio (64°S), Antarctica, and the rest two in the Observatory of Jokioinen (61°N) and Sodankylä GAW station (67°N), Finland. Each instrument consists of a precision filter radiometer and a suntracker. Due to the harsh climate conditions special solutions had to be introduced to keep the instrument warm and free from snow. Aerosol optical depth measured at Pallas-Sodankylä GAW station can be compared with estimated aerosol extinction, which is calculated from ground base aerosol scattering and absorption coefficient measurements.

  11. Research in Depolarization and Extinction Coefficient of Particles in Tibetan Plateau by Lidar

    NASA Astrophysics Data System (ADS)

    Dai, Guangyao; Song, Xiaoquan; Zhai, Xiaochun; Wu, Songhua

    2016-06-01

    Vertical profiles of the depolarization ratio and the extinction coefficient of atmospheric particles in Tibetan Plateau were measured with the OUC Water Vapor, Cloud and Aerosol Lidar during the 3rd Tibetan Plateau Atmospheric Expedition Experiment Campaign in 2013 and 2014. The cloud types and phases, the spatial temporal distribution of the aerosols and the boundary layer height in the Tibetan Plateau were obtained using polarization lidar technique. In this paper, the depolarization ratio was validated with CALIOP polarization simultaneous data, and the extinction coefficient was retrieved by the Fernald method. The result implied that the atmosphere in the Tibetan Plateau was quite clean with low aerosol load and serious pollution. The ice-water mixed cumulus, water cumulus or stratus clouds in Litang and Nagqu were occurred and classified, respectively. The boundary layer height in Nagqu at average altitude over 4600 m was obtained at around 200 m-300 m, which was commonly lower than that in other observed sites.

  12. Composition and physical properties of the Asian Tropopause Aerosol Layer and the North American Tropospheric Aerosol Layer

    PubMed Central

    Yu, Pengfei; Toon, Owen B; Neely, Ryan R; Martinsson, Bengt G; Brenninkmeijer, Carl A M

    2015-01-01

    Recent studies revealed layers of enhanced aerosol scattering in the upper troposphere and lower stratosphere over Asia (Asian Tropopause Aerosol Layer (ATAL)) and North America (North American Tropospheric Aerosol Layer (NATAL)). We use a sectional aerosol model (Community Aerosol and Radiation Model for Atmospheres (CARMA)) coupled with the Community Earth System Model version 1 (CESM1) to explore the composition and optical properties of these aerosol layers. The observed aerosol extinction enhancement is reproduced by CESM1/CARMA. Both model and observations indicate a strong gradient of the sulfur-to-carbon ratio from Europe to the Asia on constant pressure surfaces. We found that the ATAL is mostly composed of sulfates, surface-emitted organics, and secondary organics; the NATAL is mostly composed of sulfates and secondary organics. The model also suggests that emission increases in Asia between 2000 and 2010 led to an increase of aerosol optical depth of the ATAL by 0.002 on average which is consistent with observations. Key Points The Asian Tropopause Aerosol Layer is composed of sulfate, primary organics, and secondary organics The North American Tropospheric Aerosol Layer is mostly composed of sulfate and secondary organics Aerosol Optical Depth of Asian Tropopause Aerosol Layer increases by 0.002 from 2000 to 2010 PMID:26709320

  13. Passive Detection of Biological Aerosols in the Atmosphere with a Fourier Transform Instrument (FTIR)—the Results of the Measurements in the Laboratory and in the Field

    NASA Astrophysics Data System (ADS)

    Błęcka, M. I.; Rataj, M.; Szymański, G.

    2012-06-01

    Fourier Transform Infrared Radiation (FTIR) spectroscopy is one of the most powerful methods for the detection of gaseous constituents, aerosols, and dust in planetary atmospheres. Infrared spectroscopy plays an important role in searching for biomarkers, organics and biological substances in the Universe. The possibility of detection and identifications with FTIR spectrometer of bio-aerosol spores ( Bacillus atrophaeus var. globigii=BG) in the atmosphere is discussed in this paper. We describe the results of initial spectral measurements performed in the laboratory and in the field. The purpose of these experiments was to detect and to identify bio-aerosol spores in two conditions: 1) In a closed chamber where the thermal contrast between the background and aerosols was large, and 2) In open air where the thermal contrast between the background and aerosols was small. The extinction spectrum of BG spores was deduced by comparing our measurements with models, and other measurements known from the literature. Our theoretical and experimental studies indicate that, during passive remote sensing measurements, it is difficult—but possible to detect and to identify bio-aerosol clouds by their spectral signatures. The simple spectral analysis described in the paper can be useful for the detection of various kinds of trace aerosols—not only in the Earth's atmosphere, but also during planetary missions in the environments of other astronomical objects such as planets, comets etc. We expect that the interpretation of data from spectrometric sounding of Venus and Mars during the current missions Mars and Venus Express, and later during the Rosetta mission will benefit from our experimental work and numerical modelling.

  14. Investigation of ultraviolet interstellar extinction

    NASA Technical Reports Server (NTRS)

    Payne, C.; Haramundanis, K. L.

    1973-01-01

    Results concerning interstellar extinction in the ultraviolet are reported. These results were initially obtained by using data from main-sequence stars and were extended to include supergiants and emission stars. The principal finding of the analysis of ultraviolet extinction is not only that it is wavelength dependent, but that if changes with galactic longitude in the U3 passband (lambda sub eff = 1621 A); it does not change significantly in the U2 passband (lambda sub eff = 2308 A). Where data are available in the U4 passband (lambda sub eff = 1537 A), they confirm the rapid rise of extinction in the ultraviolet found by other investigators. However, in all cases, emission stars must be used with great caution. It is important to realize that while extinction continues to rise toward shorter wavelengths in the ultraviolet, including the shortest ultraviolet wavelengths measured (1100 A), it no longer plays an important role in the X-ray region (50 A).

  15. What Caused the Mass Extinction?

    ERIC Educational Resources Information Center

    Alvarez, Walter; And Others

    1990-01-01

    Presented are the arguments of two different points of view on the mass extinction of the dinosaurs. Evidence of extraterrestrial impact theory and massive volcanic eruption theory are discussed. (CW)

  16. The Sixth Great Mass Extinction

    ERIC Educational Resources Information Center

    Wagler, Ron

    2012-01-01

    Five past great mass extinctions have occurred during Earth's history. Humanity is currently in the midst of a sixth, human-induced great mass extinction of plant and animal life (e.g., Alroy 2008; Jackson 2008; Lewis 2006; McDaniel and Borton 2002; Rockstrom et al. 2009; Rohr et al. 2008; Steffen, Crutzen, and McNeill 2007; Thomas et al. 2004;…

  17. Magnetic reversals and mass extinctions

    NASA Technical Reports Server (NTRS)

    Raup, D. M.

    1985-01-01

    The results of a study of reversals of the earth's magnetic field over the past 165 Myr are presented. A stationary periodicity of 30 Myr emerges which predicts pulses of increased reversal activity centered at 10, 40, 70, . . . Myr before the present. The correlation between the reversal intensity and biological extinctions is examined, and a nontrivial discrepancy is found between the magnetic and extinction periodicity.

  18. Cloud identification in atmospheric trace molecule spectroscopy infrared occultation measurements.

    PubMed

    Kahn, Brian H; Eldering, Annmarie; Irion, Fredrick W; Mills, Franklin P; Sen, Bhaswar; Gunson, Michael R

    2002-05-20

    High-resolution infrared nongas absorption spectra derived from the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment are analyzed for evidence of the presence of cirrus clouds. Several nonspherical ice extinction models based on realistic size distributions and crystal habits along with a stratospheric sulfate aerosol model are fit to the spectra, and comparisons are made with different model combinations. Nonspherical ice models often fit observed transmission spectra better than a spherical Mie ice model, and some discrimination among nonspherical models is noted. The ATMOS lines of sight for eight occultations are superimposed on coincident geostationary satellite infrared imagery, and brightness temperatures along the lines of sight are compared with retrieved vertical temperature profiles. With these comparisons, studies of two cases of clear sky, three cases of opaque cirrus, and three cases of patchy cirrus are discussed. PMID:12027163

  19. Extinction, Relapse, and Behavioral Momentum

    PubMed Central

    Podlesnik, Christopher A.; Shahan, Timothy A.

    2010-01-01

    Previous experiments on behavioral momentum have shown that relative resistance to extinction of operant behavior in the presence of a discriminative stimulus depends upon the baseline rate or magnitude of reinforcement associated with that stimulus (i.e., the Pavlovian stimulus-reinforcer relation). Recently, we have shown that relapse of operant behavior in reinstatement, resurgence, and context renewal preparations also is a function of baseline stimulus-reinforcer relations. In this paper we present new data examining the role of baseline stimulus-reinforcer relations on resistance to extinction and relapse using a variety of baseline training conditions and relapse operations. Furthermore, we evaluate the adequacy of a behavioral-momentum based model in accounting for the results. The model suggests that relapse occurs as a result of a decrease in the disruptive impact of extinction precipitated by a change in circumstances associated with extinction, and that the degree of relapse is a function of the pre-extinction baseline Pavlovian stimulus-reinforcer relation. Across experiments, relative resistance to extinction and relapse were greater in the presence of stimuli associated with more favorable conditions of reinforcement and were positively related to one another. In addition, the model did a good job in accounting for these effects. Thus, behavioral momentum theory may provide a useful quantitative approach for characterizing how differential reinforcement conditions contribute to relapse of operant behavior. PMID:20152889

  20. Extinction, relapse, and behavioral momentum.

    PubMed

    Podlesnik, Christopher A; Shahan, Timothy A

    2010-05-01

    Previous experiments on behavioral momentum have shown that relative resistance to extinction of operant behavior in the presence of a discriminative stimulus depends upon the baseline rate or magnitude of reinforcement associated with that stimulus (i.e., the Pavlovian stimulus-reinforcer relation). Recently, we have shown that relapse of operant behavior in reinstatement, resurgence, and context renewal preparations also is a function of baseline stimulus-reinforcer relations. In this paper we present new data examining the role of baseline stimulus-reinforcer relations on resistance to extinction and relapse using a variety of baseline training conditions and relapse operations. Furthermore, we evaluate the adequacy of a behavioral momentum based model in accounting for the results. The model suggests that relapse occurs as a result of a decrease in the disruptive impact of extinction precipitated by a change in circumstances associated with extinction, and that the degree of relapse is a function of the pre-extinction baseline Pavlovian stimulus-reinforcer relation. Across experiments, relative resistance to extinction and relapse were greater in the presence of stimuli associated with more favorable conditions of reinforcement and were positively related to one another. In addition, the model did a good job in accounting for these effects. Thus, behavioral momentum theory may provide a useful quantitative approach for characterizing how differential reinforcement conditions contribute to relapse of operant behavior. PMID:20152889

  1. Determination of trace metals in atmospheric aerosols with a heavy matrix of cellulose by microwave digestion-inductively coupled plasma mass spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Karl X.; Swami, Kamal; Husain, Liaquat

    2002-01-01

    A microwave digestion method followed by inductively coupled plasma mass spectrometric (ICP-MS) analysis was developed to determine trace metal concentrations in atmospheric aerosol samples with a heavy matrix of cellulose material. A combination of HF-HNO 3-H 2O 2-H 3BO 3 was used for digestion. The background spectral features contributed by the matrix elements were studied. In particular, spectral and non-spectral interference caused by B and F were investigated. Detection limits of V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Sb and Pb were determined in the presence of various amounts of matrix elements. In general, the detection limits of most elements degraded with an increase in B and F. Vanadium (V) suffered most due to severe spectral interference from 11B 40Ar + and/or 19F 16O 16O. The concentrations of elements in filter paper matrix blanks were measured. An NIST standard (urban particulate matter, 1648), as well as real world atmospheric aerosol samples from Whiteface Mountain, NY, and from Mayville, NY were pressed into pellets with a great amount of cellulose filter material and digested, and the concentrations of trace metals were determined. For the NIST standard, the recoveries of V, Mn, Fe, Co, Ni, Cu, Zn, Cd, As, Sb and Pb were over 90%, while 77 and 70% for Cr and Se, respectively. For the atmospheric aerosol samples from Whiteface Mountain and Mayville, NY, only the values of Fe, Se, As, Sb and Zn could be compared with those obtained through instrumental neutron activation analysis, and the agreement was within ±10%.

  2. Abiotic causes of the great mass extinction of marine biota at the Triassic-Jurassic boundary

    NASA Astrophysics Data System (ADS)

    Barash, M. S.

    2015-05-01

    In the interval of the Triassic-Jurassic boundary up to 80% of marine species became extinct. The main hypotheses on the causes of this mass extinction are reviewed. The extinction was triggered by a powerful eruption of basalts in the Central Atlantic Magmatic Province. In addition, several impact craters have been found. Extraterrestrial factors resulted in two main sequences of events: terrestrial, leading to strong volcanism, and extraterrestrial (impact events). They produced similar effects: emissions of harmful chemical compounds and aerosols. Consequences included the greenhouse effect, darkening of the atmosphere (which prevented photosynthesis), stagnation of the oceans, and anoxia. Biological productivity decreased; food chains collapsed. As a result, all vital processes were disturbed, and a large portion of the biota went extinct.

  3. Development of a laser-induced breakdown spectroscopy instrument for detection and classification of single-particle aerosols in real-time

    NASA Astrophysics Data System (ADS)

    Tjärnhage, Torbjörn; Gradmark, Per-Åke; Larsson, Anders; Mohammed, Abdelsalam; Landström, Lars; Sagerfors, Eva; Jonsson, Per; Kullander, Fredrik; Andersson, Magnus

    2013-06-01

    Detection of aerosolized biological warfare agents by means of LIBS commonly operate with pulsed lasers running at constant repetition rate, resulting in very low hit rates. In this paper, we present a prototype where the LIBS laser is only fired if a particle is expected in the focal zone. A significantly improved hit rate for detection and classification of μm sized single particles in real-time is achieved. Hit rates of 40% and 70% for NaCl particles of sizes 3 and 7.0 μm, respectively, can be reached in triggered configuration, as compared to 1% and 2% when the laser is un-triggered.

  4. Global Aerosols

    Atmospheric Science Data Center

    2013-04-19

    ... sizes and from multiple sources, including biomass burning, mineral dust, sea salt and regional industrial pollution. A color scale is ... desert source region. Deserts are the main sources of mineral dust, and MISR obtains aerosol optical depth at visible wavelengths ...

  5. Short-term Variability of Extinction by Broadband Stellar Photometry

    SciTech Connect

    Musat, I.C.; Ellingson, R.G.

    2005-03-18

    Aerosol optical depth variation over short-term time intervals is determined from broadband observations of stars with a whole sky imager. The main difficulty in such measurements consists of accurately separating the star flux value from the non-stellar diffuse skylight. Using correction method to overcome this difficulty, the monochromatic extinction at the ground due to aerosols is extracted from heterochromatic measurements. A form of closure is achieved by comparison with simultaneous or temporally close measurements with other instruments, and the total error of the method, as a combination of random error of measurements and systematic error of calibration and model, is assessed as being between 2.6 and 3% rms.

  6. Composition of Polar Stratospheric Clouds from Infrared Spectroscopy

    NASA Technical Reports Server (NTRS)

    Tolbert, M. A.; Anthony, S. E.; Disselkamp, R.; Toon, O. B.; Condon, Estelle P. (Technical Monitor)

    1995-01-01

    Heterogeneous reactions on polar stratospheric clouds (PSCs) have recently been implicated in Arctic and Antarctic ozone destruction. Although the chemistry is well documented, the composition of the clouds remains uncertain. The most common PSCs (type I) are thought to be composed of HNO3/H2O mixtures. Although the exact process is not clear, type I PSCs are believed to nucleate on preexisting stratospheric sulfate aerosols (SSAs) composed of sulfuric acid and water. We are using infrared spectroscopy to study the composition and formation mechanism of type I PSCs. In the laboratory, we have used FTIR spectroscopy to probe the composition and phase of H2SO4/HNO3/H2O aerosols under winter polar stratospheric conditions. We have also used recently measured infrared optical constants for HNO3/H2O mixtures to analyze solar infrared extinction measurements of type I PSCs obtained in September 1987 over Antarctica. The results of these studies will be discussed in the context of current theories for polar stratospheric clouds formation.

  7. Composition of polar stratospheric clouds from infrared spectroscopy

    SciTech Connect

    Tolbert, M.A.; Anthony, S.E.; Disselkamp, R.; Toon, O.B.

    1995-12-31

    Heterogeneous reactions on polar stratospheric clouds (PSCs) have recently been implicated in Arctic and Antarctic ozone destruction. Although the chemistry is well documented, the composition of the clouds remains uncertain. The most common PSCs (type I) are thought to be composed of HNO{sub 3}/H{sub 2}O mixtures. Although the exact process is not clear, type I PSCs are believed to nucleate on preexisting stratospheric sulfate aerosols (SSAs) composed of sulfuric acid and water. We are using infrared spectroscopy to study the composition and formation mechanism of type I PSCs. In the laboratory, we have used FTIR spectroscopy to probe the composition and phase of H{sub 2}SO{sub 4}/HNO{sub 3}/H{sub 2}O aerosols under winter polar stratospheric conditions. We have also used recently measured infrared optical constants for HNO{sub 3}/H{sub 2}O mixtures to analyze solar infrared extinction measurements of type I PSCs obtained in September, 1987 over Antarctica. The results of these studies will be discussed in the context of current theories for polar stratospheric cloud formation.

  8. Separating Dust Mixtures and Other External Aerosol Mixtures Using Airborne High Spectral Resolution Lidar Data

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Ferrare, R. A.; Vaughan, M.; Hostetler, C. A.; Rogers, R. R.; Hair, J. W.; Cook, A. L.; Harper, D. B.

    2013-12-01

    Knowledge of aerosol type is important for source attribution and for determining the magnitude and assessing the consequences of aerosol radiative forcing. The NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL-1) has acquired considerable datasets of both aerosol extensive parameters (e.g. aerosol optical depth) and intensive parameters (e.g. aerosol depolarization ratio, lidar ratio) that can be used to infer aerosol type. An aerosol classification methodology has been used extensively to classify HSRL-1 aerosol measurements of different aerosol types including dust, smoke, urban pollution, and marine aerosol. However, atmospheric aerosol is frequently not a single pure type, but instead occurs as a mixture of types, and this mixing affects the optical and radiative properties of the aerosol. Here we present a comprehensive and unified set of rules for characterizing external mixtures using several key aerosol intensive parameters: extinction-to-backscatter ratio (i.e. lidar ratio), backscatter color ratio, and depolarization ratio. Our mixing rules apply not just to the scalar values of aerosol intensive parameters, but to multi-dimensional normal distributions with variance in each measurement dimension. We illustrate the applicability of the mixing rules using examples of HSRL-1 data where mixing occurred between different aerosol types, including advected Saharan dust mixed with the marine boundary layer in the Caribbean Sea and locally generated dust mixed with urban pollution in the Mexico City surroundings. For each of these cases we infer a time-height cross section of mixing ratio along the flight track and we partition aerosol extinction into portions attributed to the two pure types. Since multiple aerosol intensive parameters are measured and included in these calculations, the techniques can also be used for cases without significant depolarization (unlike similar work by earlier researchers), and so a third example of a

  9. Thermal Transgressions and Phanerozoic Extinctions

    NASA Astrophysics Data System (ADS)

    Worsley, T. R.; Kidder, D. L.

    2007-12-01

    A number of significant Phanerozoic extinctions are associated with marine transgressions that were probably driven by rapid ocean warming. The conditions associated with what we call thermal transgressions are extremely stressful to life on Earth. The Earth system setting associated with end-Permian extinction exemplifies an end-member case of our model. The conditions favoring extreme warmth and sea-level increases driven by thermal expansion are also conducive to changes in ocean circulation that foster widespread anoxia and sulfidic subsurface ocean waters. Equable climates are characterized by reduced wind shear and weak surface ocean circulation. Late Permian and Early Triassic thermohaline circulation differs considerably from today's world, with minimal polar sinking and intensified mid-latitude sinking that delivers sulfate from shallow evaporative areas to deeper water where it is reduced to sulfide. Reduced nutrient input to oceans from land at many of the extinction intervals results from diminished silicate weathering and weakened delivery of iron via eolian dust. The falloff in iron-bearing dust leads to minimal nitrate production, weakening food webs and rendering faunas and floras more susceptible to extinction when stressed. Factors such as heat, anoxia, ocean acidification, hypercapnia, and hydrogen sulfide poisoning would significantly affect these biotas. Intervals of tectonic quiescence set up preconditions favoring extinctions. Reductions in chemical silicate weathering lead to carbon dioxide buildup, oxygen drawdown, nutrient depletion, wind and ocean current abatement, long-term global warming, and ocean acidification. The effects of extinction triggers such as large igneous provinces, bolide impacts, and episodes of sudden methane release are more potent against the backdrop of our proposed preconditions. Extinctions that have characteristics we call for in the thermal transgressions include the Early Cambrian Sinsk event, as well as

  10. A Compact Airborne High Spectral Resolution Lidar for Observations of Aerosol and Cloud Optical Properties

    NASA Technical Reports Server (NTRS)

    Hostetler, Chris A.; Hair, John W.; Cook, Anthony L.

    2002-01-01

    We are in the process of developing a nadir-viewing, aircraft-based high spectral resolution lidar (HSRL) at NASA Langley Research Center. The system is designed to measure backscatter and extinction of aerosols and tenuous clouds. The primary uses of the instrument will be to validate spaceborne aerosol and cloud observations, carry out regional process studies, and assess the predictions of chemical transport models. In this paper, we provide an overview of the instrument design and present the results of simulations showing the instrument's capability to accurately measure extinction and extinction-to-backscatter ratio.

  11. Light scattering from diatomaceous earth aerosol

    NASA Astrophysics Data System (ADS)

    Alexander, Jennifer M.; Meland, B.; Laskina, Olga; Young, M. A.; Grassian, V. H.; Kleiber, P. D.

    2013-08-01

    The light scattering and extinction properties of mineral aerosol are strongly affected by dust particle shape. In this work, scattering phase function and polarization profiles of diatomaceous earth aerosol are measured at a wavelength of 550 nm, and the results are compared to T-matrix theory based simulations using uniform spheroid models for the particle shape. The particle shape distribution is determined by spectral fitting of the experimental infrared (IR) extinction spectral line profile for diatomaceous earth dust. It is found that a particle shape model that peaks toward both extreme rod-like and disk-like shapes results in the best fits to the IR spectral data. This particle shape model is then used as a basis for modeling the visible light scattering properties. While the visible simulations show only modestly good agreement with the data, the fits are generally better than those obtained using more commonly invoked particle shape distributions.

  12. Spectral signatures of polar stratospheric clouds and sulfate aerosol

    SciTech Connect

    Massie, S.T.; Bailey, P.L.; Gille, J.C.; Lee, E.C.; Mergenthaler, J.L.; Roche, A.E.; Kumer, J.B.; Fishbein, E.F.; Waters, J.W.; Lahoz, W.A.

    1994-10-15

    Multiwavelength observations of Antarctic and midlatitude aerosol by the Cryogenic Limb Array Etalon Spectrometer (CLAES) experiment on the Upper Atmosphere Research Satellite are used to demonstrate a technique that identifies the location of polar stratospheric clouds. The technique discussed uses the normalized area of the triangle formed by the aerosol extinctions at 925, 1257, and 1605 cm{sup {minus}1} (10.8, 8.0, and 6.2 {mu}m) to derive a spectral aerosol measure M of the aerosol spectrum. Mie calculations for spherical particles and T-matrix calculations for spheroidal particles are used to generate theoretical spectral extinction curves for sulfate and polar stratospheric cloud particles. The values of the spectral aerosol measure M for the sulfate and polar stratospheric cloud particles are shown to be different. Aerosol extinction data, corresponding to temperatures between 180 and 220 K at a pressure of 46 hPa (near 21-km altitude) for 18 August 1992, are used to demonstrate the technique. Thermodynamic calculations, based upon frost-point calculation and laboratory phase-equilibrium studies of nitric acid trihydrate, are used to predict the location of nitric acid trihydrate cloud particles. 47 refs., 22 figs., 3 tabs.

  13. Spectral signatures of polar stratospheric clouds and sulfate aerosol

    NASA Technical Reports Server (NTRS)

    Massie, S. T.; Bailey, P. L.; Gille, J. C.; Lee, E. C.; Mergenthaler, J. L.; Roche, A. E.; Kumer, J. B.; Fishbein, E. F.; Waters, J. W.; Lahoz, W. A.

    1994-01-01

    Multiwavelength observations of Antarctic and midlatitude aerosol by the Cryogenic Limb Array Etalon Spectrometer (CLAES) experiment on the Upper Atmosphere Research Satellite (UARS) are used to demonstrate a technique that identifies the location of polar stratospheric clouds. The technique discussed uses the normalized area of the triangle formed by the aerosol extinctions at 925, 1257, and 1605/cm (10.8, 8.0, and 6.2 micrometers) to derive a spectral aerosol measure M of the aerosol spectrum. Mie calculations for spherical particles and T-matrix calculations for spheriodal particles are used to generate theoretical spectral extinction curves for sulfate and polar stratospheric cloud particles. The values of the spectral aerosol measure M for the sulfate and polar stratospheric cloud particles are shown to be different. Aerosol extinction data, corresponding to temperatures between 180 and 220 K at a pressure of 46 hPa (near 21-km altitude) for 18 August 1992, are used to demonstrate the technique. Thermodynamic calculations, based upon frost-point calculations and laboratory phase-equilibrium studies of nitric acid trihydrate, are used to predict the location of nitric acid trihydrate cloud particles.

  14. CALIPSO-inferred aerosol direct radiative effects: Bias estimates using ground-based Raman lidars

    NASA Astrophysics Data System (ADS)

    Thorsen, Tyler J.; Fu, Qiang

    2015-12-01

    Observational constraints on the change in the radiative energy budget caused by the presence of aerosols, i.e., the aerosol direct radiative effect (DRE), have recently been made using observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO). CALIPSO observations have the potential to provide improved global estimates of aerosol DRE compared to passive sensor-derived estimates due to CALIPSO's ability to perform vertically resolved aerosol retrievals over all surface types and over cloud. In this study, uncertainties in CALIPSO-inferred aerosol DRE are estimated using multiple years of observations from the Atmospheric Radiation Measurement (ARM) program's Raman lidars at midlatitude and tropical sites. We find that CALIPSO is unable to detect all radiatively significant aerosol, resulting in an underestimate in the magnitude of the aerosol DRE by 30-50% at the two ARM sites. The undetected aerosol is likely the consequence of random noise in CALIPSO measurements and therefore will affect global observations as well. This suggests that the global aerosol DRE inferred from CALIPSO observations are likely too weak. Also examined is the impact of the ratio of extinction-to-backscatter (i.e., the lidar ratio) whose value CALIPSO retrievals must assume to obtain the aerosol extinction profile. It is shown that if CALIPSO can reproduce the climatological value of the lidar ratio at a given location, then the aerosol DRE there can be accurately calculated (within about 3%).

  15. Particle backscatter, extinction, and lidar ratio profiling with Raman lidar in south and north China

    SciTech Connect

    Tesche, Matthias; Ansmann, Albert; Mueller, Detlef; Althausen, Dietrich; Engelmann, Ronny; Hu Min; Zhang Yuanghang

    2007-09-01

    Aerosol Raman lidar observations of profiles of the particle extinction and backscatter coefficients and the respective extinction-to-backscatter ratio (lidar ratio) were performed under highly polluted conditions in the Pearl River Delta (PRD) in southern China in October 2004 and at Beijing during a clear period with moderately polluted to background aerosol conditions in January 2005. The anthropogenic haze in the PRD is characterized by volume light-extinction coefficients of particles ranging from approximately 200 to800 Mm-1 and lidar ratios mostly between 40 and 55 sr (average of47{+-}6 sr). Almost clean air masses were observed throughout the measurements of the Beijing campaign. These air masses originated from arid desert-steppe-like regions (greater Gobi area).Extinction values usually varied between 100 and300 Mm-1, and the lidar ratios were considerably lower (compared with PRD values) with values mostly from 30 to 45 sr (average of38{+-}7 sr). Gobi dust partly influenced the observations. Unexpectedly low lidar ratios of approximately 25 sr were found for a case of background aerosol with a low optical depth of 0.05. The low lidar ratios are consistent with Mie-scattering calculations applied to ground-based observations of particle size distributions.

  16. Carriers of the astronomical 2175 ? extinction feature

    SciTech Connect

    Bradley, J; Dai, Z; Ernie, R; Browning, N; Graham, G; Weber, P; Smith, J; Hutcheon, I; Ishii, H; Bajt, S; Floss, C; Stadermann, F

    2004-07-20

    The 2175 {angstrom} extinction feature is by far the strongest spectral signature of interstellar dust observed by astronomers. Forty years after its discovery the origin of the feature and the nature of the carrier remain controversial. The feature is enigmatic because although its central wavelength is almost invariant its bandwidth varies strongly from one sightline to another, suggesting multiple carriers or a single carrier with variable properties. Using a monochromated transmission electron microscope and valence electron energy-loss spectroscopy we have detected a 5.7 eV (2175 {angstrom}) feature in submicrometer-sized interstellar grains within interplanetary dust particles (IDPs) collected in the stratosphere. The carriers are organic carbon and amorphous silicates that are abundant and closely associated with one another both in IDPs and in the interstellar medium. Multiple carriers rather than a single carrier may explain the invariant central wavelength and variable bandwidth of the astronomical 2175 {angstrom} feature.

  17. Effect of Aerosol Size and Hygroscopicity on Aerosol Optical Depth in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Brock, Charles; Wagner, Nick; Gordon, Timothy

    2016-04-01

    Aerosol optical depth (AOD) is affected by the size, optical characteristics, and hygroscopicity of particles, confounding attempts to link remote sensing observations of AOD to measured or modeled aerosol mass concentrations. In situ airborne observations of aerosol optical, chemical, microphysical and hygroscopic properties were made in the southeastern United States in the daytime in summer 2013. We use these observations to constrain a simple model that is used to test the sensitivity of AOD to the various measured parameters. As expected, the AOD was found to be most sensitive to aerosol mass concentration and to aerosol water content, which is controlled by aerosol hygroscopicity and the ambient relative humidity. However, AOD was also fairly sensitive to the mean particle diameter and the width of the size distribution. These parameters are often prescribed in global models that use simplified modal parameterizations to describe the aerosol, suggesting that the values chosen could substantially bias the calculated relationship between aerosol mass and optical extinction, AOD, and radiative forcing.

  18. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect

    Turner, David, D.; Ferrare, Richard, A.

    2011-07-06

    The 'Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds' project focused extensively on the analysis and utilization of water vapor and aerosol profiles derived from the ARM Raman lidar at the Southern Great Plains ARM site. A wide range of different tasks were performed during this project, all of which improved quality of the data products derived from the lidar or advanced the understanding of atmospheric processes over the site. These activities included: upgrading the Raman lidar to improve its sensitivity; participating in field experiments to validate the lidar aerosol and water vapor retrievals; using the lidar aerosol profiles to evaluate the accuracy of the vertical distribution of aerosols in global aerosol model simulations; examining the correlation between relative humidity and aerosol extinction, and how these change, due to horizontal distance away from cumulus clouds; inferring boundary layer turbulence structure in convective boundary layers from the high-time-resolution lidar water vapor measurements; retrieving cumulus entrainment rates in boundary layer cumulus clouds; and participating in a field experiment that provided data to help validate both the entrainment rate retrievals and the turbulent profiles derived from lidar observations.

  19. Revisiting Aerosol Effects in Global Climate Models Using an Aerosol Lidar Simulator

    NASA Astrophysics Data System (ADS)

    Ma, P. L.; Chepfer, H.; Winker, D. M.; Ghan, S.; Rasch, P. J.

    2015-12-01

    Aerosol effects are considered a major source of uncertainty in global climate models and the direct and indirect radiative forcings have strong model dependency. These forcings are routinely evaluated (and calibrated) against observations, among them satellite retrievals are greatly used for their near-global coverage. However, the forcings calculated from model output are not directly comparable with those computed from satellite retrievals since sampling and algorithmic differences (such as cloud screening, noise reduction, and retrieval) between models and observations are not accounted for. It is our hypothesis that the conventional model validation procedures for comparing satellite observations and model simulations can mislead model development and introduce biases. Hence, we have developed an aerosol lidar simulator for global climate models that simulates the CALIOP lidar signal at 532nm. The simulator uses the same algorithms as those used to produce the "GCM-oriented CALIPSO Aerosol Product" to (1) objectively sample lidar signal profiles; and (2) derive aerosol fields (e.g., extinction profile, aerosol type, etc) from lidar signals. This allows us to sample and derive aerosol fields in the model and real atmosphere in identical ways. Using the Department of Energy's ACME model simulations, we found that the simulator-retrieved aerosol distribution and aerosol-cloud interactions are significantly different from those computed from conventional approaches, and that the model is much closer to satellite estimates than previously believed.

  20. Biostratigraphic case studies of six major extinctions

    NASA Technical Reports Server (NTRS)

    Sloan, R. E.

    1988-01-01

    Biostratigraphic case studies of six major extinctions show all are gradual save one, which is a catastrophic extinction of terrestrial origin. These extinctions show a continuum of environmental insults from major to minor. The major causes of these extinctions are positive and negative eustatic sea level changes, temperature, or ecological competition. Extraterrestrial causes should not be posited without positive association with a stratigraphically sharp extinction. The Cretaceous-Tertiary terrestrial extinction is considerably smaller in percentage of extinction than the marine extinction and is spread over 10 my of the Cretaceous and 1 my of the Tertiary. Sixty percent of the 30 dinosaurs in the northern Great Plains of the U.S. and Canada had become extinct in the 9 my before the late Maastrichtian sea level drop. The best data on the Permo-Triassic terrestrial extinction are from the Karoo basin of South Africa. This is a series of 6 extinctions in some 8 my, recorded in some 2800 meters of sediment. Precision of dating is enhanced by the high rate of accumulation of these sediments. Few data are readily available on the timing of the marine Permo-Triassic extinction, due to the very restricted number of sequences of Tatarian marine rocks. The terminal Ordovician extinction at 438 my is relatively rapid, taking place over about 0.5 my. The most significant aspect of this extinction is a eustatic sea level lowering associated with a major episode of glaciation. New data on this extinction is the reduction from 61 genera of trilobites in North America to 14, for a 77 percent extinction. Another Ordovician extinction present over 10 percent of the North American craton occurs at 454 my in the form of a catastrophic extinction due to a volcanic eruption which blanketed the U.S. east of the Transcontinental Arch. This is the only other sizeable extinction in the Ordovician.

  1. Interstellar Extinction Toward Young Stars

    NASA Astrophysics Data System (ADS)

    McJunkin, Matthew; France, Kevin

    2015-01-01

    We present work on a molecular hydrogen (H2) fluorescence model to characterize the ultraviolet (UV) extinction curve along the line of sight towards young stars with circumstellar disks. Stellar UV radiation plays a strong role in heating the disk gas and driving chemical reactions, so it is important to measure the UV extinction curve in order to reconstruct the intrinsic stellar UV flux impacting the disk. To measure the extinction, we compare modeled H2 fluorescence spectra to observed H2 lines. Lyman-alpha radiation from the stars pumps electronic transitions of H2 in the disk, and we model the flux that is re-emitted through the subsequent fluorescent cascade. We then extract the extinction along the line-of-sight over the 1100-1700 Angstrom wavelength region from the difference between the modeled H2 fluorescence and the HST-COS data. The shape of the extinction curve allows us to characterize the dust grain distribution in the intervening material as well as to recover the intrinsic spectral energy distribution of the stars over a wide wavelength range.

  2. The extinction of the dinosaurs.

    PubMed

    Brusatte, Stephen L; Butler, Richard J; Barrett, Paul M; Carrano, Matthew T; Evans, David C; Lloyd, Graeme T; Mannion, Philip D; Norell, Mark A; Peppe, Daniel J; Upchurch, Paul; Williamson, Thomas E

    2015-05-01

    Non-avian dinosaurs went extinct 66 million years ago, geologically coincident with the impact of a large bolide (comet or asteroid) during an interval of massive volcanic eruptions and changes in temperature and sea level. There has long been fervent debate about how these events affected dinosaurs. We review a wealth of new data accumulated over the past two decades, provide updated and novel analyses of long-term dinosaur diversity trends during the latest Cretaceous, and discuss an emerging consensus on the extinction's tempo and causes. Little support exists for a global, long-term decline across non-avian dinosaur diversity prior to their extinction at the end of the Cretaceous. However, restructuring of latest Cretaceous dinosaur faunas in North America led to reduced diversity of large-bodied herbivores, perhaps making communities more susceptible to cascading extinctions. The abruptness of the dinosaur extinction suggests a key role for the bolide impact, although the coarseness of the fossil record makes testing the effects of Deccan volcanism difficult. PMID:25065505

  3. Flood basalts and extinction events

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.

    1993-01-01

    The largest known effusive eruptions during the Cenozoic and Mesozoic Eras, the voluminous flood basalts, have long been suspected as being associated with major extinctions of biotic species. Despite the possible errors attached to the dates in both time series of events, the significance level of the suspected correlation is found here to be 1 percent to 4 percent. Statistically, extinctions lag eruptions by a mean time interval that is indistinguishable from zero, being much less than the average residual derived from the correlation analysis. Oceanic flood basalts, however, must have had a different biological impact, which is still uncertain owing to the small number of known examples and differing physical factors. Although not all continental flood basalts can have produced major extinction events, the noncorrelating eruptions may have led to smaller marine extinction events that terminated at least some of the less catastrophically ending geologic stages. Consequently, the 26 Myr quasi-periodicity seen in major marine extinctions may be only a sampling effect, rather than a manifestation of underlying periodicity.

  4. Flood basalts and mass extinctions

    NASA Technical Reports Server (NTRS)

    Morgan, W. Jason

    1988-01-01

    There appears to be a correlation between the times of flood basalts and mass-extinction events. There is a correlation of flood basalts and hotspot tracks--flood basalts appear to mark the beginning of a new hotspot. Perhaps there is an initial instability in the mantle that bursts forth as a flood basalt but then becomes a steady trickle that persists for many tens of millions of years. Suppose that flood basalts and not impacts cause the environmental changes that lead to mass-extinctions. This is a very testable hypothesis: it predicts that the ages of the flows should agree exactly with the times of extinctions. The Deccan and K-T ages agree with this hypothesis; An iridium anomaly at extinction boundaries apparently can be explained by a scaled-up eruption of the Hawaiian type; the occurrence of shocked-quartz is more of a problem. However if the flood basalts are all well dated and their ages indeed agree with extinction times, then surely some mechanism to appropriately produce shocked-quartz will be found.

  5. High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. I - Theory and instrumentation

    NASA Technical Reports Server (NTRS)

    Shipley, S. T.; Tracy, D. H.; Eloranta, E. W.; Roesler, F. L.; Weinman, J. A.; Trauger, J. T.; Sroga, J. T.

    1983-01-01

    A high spectral resolution lidar technique to measure optical scattering properties of atmospheric aerosols is described. Light backscattered by the atmosphere from a narrowband optically pumped oscillator-amplifier dye laser is separated into its Doppler broadened molecular and elastically scattered aerosol components by a two-channel Fabry-Perot polyetalon interferometer. Aerosol optical properties, such as the backscatter ratio, optical depth, extinction cross section, scattering cross section, and the backscatter phase function, are derived from the two-channel measurements.

  6. SAM II aerosol profile measurements, Poker Flat, Alaska; July 16-19, 1979

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Chu, W. P.; Mcmaster, L. R.; Grams, G. W.; Herman, B. M.; Pepin, T. J.; Russell, P. B.; Swissler, T. J.

    1981-01-01

    SAM II satellite measurements during the July 1979 Poker Flat mission, yielded an aerosol extinction coefficient of 0.0004/km at 1.0 micron wavelength, in the region of the stratospheric aerosol mixing ratio peak (12-16 km). The stratospheric aerosol optical depth for these data, calculated from the tropopause through 30 km, is approximately 0.001. These results are consistent with the average 1979 summertime values found throughout the Arctic.

  7. A temperature- and composition-dependent study of H{sub 2}SO{sub 4} aerosol optical constants using fourier transform and tunable diode laser infrared spectroscopy

    SciTech Connect

    Niedziela, R.F.; Norman, M.L.; DeForest, C.L.; Miller, R.E.; Worsnop, D.R.

    1999-10-07

    Frequency-dependent optical constants have been determined from the Fourier transform infrared spectra of laboratory-generated liquid sulfuric acid/water aerosols over a range of temperatures and compositions that are relevant to the upper troposphere and lower stratosphere of Earth. The compositions of the particles were determined in situ using a tunable diode laser to monitor equilibrium water vapor pressures. The infrared complex refractive indices of sulfuric acid are shown to be strongly dependent on temperature and composition, because of changes in the equilibrium between sulfate and bisulfate ions. Results from this study also have implications in understanding the temperature dependence of intermolecular interactions within ionic solutions. The database presented here is the most extensive yet available for the liquid solutions of sulfuric acid.

  8. Investigation of aerosol and cloud properties using multiwavelength Raman lidar measurements

    NASA Astrophysics Data System (ADS)

    Verghese, Sachin John

    Lidar measurements obtained during several field campaigns have provided an extensive dataset for investigating aerosol characteristics and cloud properties. In this thesis we use measurements of multi-wavelength optical extinction measured with a Raman lidar to infer aerosol and cloud particle size variations. Aerosol extinction depends on both size and number density of the scatterers. The optical extinction at different wavelengths depends on the sixth power of the size parameter for aerosols much smaller than the scattering wavelength, and on the second power of the size parameter for aerosols much larger than the wavelength. Changes in the density of a particular size aerosol lead to a proportional response. The extinction profiles at several wavelengths are simultaneously examined to study changes in the aerosol size distribution over an interesting range of sizes corresponding to accumulation-mode particles. Model calculations based on Mie scattering theory are compared with extinction profiles at different wavelengths, water vapor profiles, and other simultaneous measurements, to investigate the formation and dissipation of cloud structures. The optical scattering measurements from aerosols and cloud particles demonstrate that various characteristics of aerosols and visibility can be determined. We demonstrate the capability of the new technique using the multi-wavelength extinction ratios to profile information about changes in CCN particle size in the range of 50 nm to 0.5 mum. Examples taken from three different field campaigns demonstrate that changes in the size of the cloud particles during the different stages of growth and dissipation are observed in the multi-wavelength aerosol extinction using this technique. We also show the relationship that exists between particle size increase or decrease in cloud regions, based on the extinction coefficients and changes in relative humidity. The deliquescence relative humidity (DRH) is found to exert a strong

  9. Light scattering from aerosol particles in the El Paso del Norte region / the effect of humidity

    NASA Astrophysics Data System (ADS)

    Medina Calderon, Richard

    Atmospheric aerosols play an important role in climate forcing, through scattering and absorption of the incoming solar radiation. The extinction of light by the presence of atmospheric aerosols was studied using two first-principle models, and corresponding computer codes. In the first model the extinction of light from irregularly shaped aerosol particles was analyzed. In the second model it was assumed that the irregularly shaped aerosol particles were covered by a film of water, and the hygroscopicity and the extinction of light by the aerosols was analyzed. These models were then applied to the Paso del Norte region and their light extinction results compared with a local extinctiometer. The inter-comparison of the models extinction results and the extinctiometer values were well correlated. It was observed that for high humidity days the model that used an aerosol particle covered with a water film correlated better with the experimental extinctiometer measurements. While these two models were validated in the Paso del Norte region, they are also applicable to any other region, under humid or dry atmospheric conditions.

  10. Vertical Profiles of Aerosol Optical Properties Over Central Illinois and Comparison with Surface and Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Sheridan P. J.; Andrews, E.; Ogren, J A.; Tackett, J. L.; Winker, D. M.

    2012-01-01

    Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1) measure the in situ aerosol properties and determine their vertical and temporal variability and (2) relate these aircraft measurements to concurrent surface and satellite measurements. Underflights of the CALIPSO satellite show reasonable agreement in a majority of retrieved profiles between aircraft-measured extinction at 532 nm (adjusted to ambient relative humidity) and CALIPSO-retrieved extinction, and suggest that routine aircraft profiling programs can be used to better understand and validate satellite retrieval algorithms. CALIPSO tended to overestimate the aerosol extinction at this location in some boundary layer flight segments when scattered or broken clouds were present, which could be related to problems with CALIPSO cloud screening methods. The in situ aircraft-collected aerosol data suggest extinction thresholds for the likelihood of aerosol layers being detected by the CALIOP lidar. These statistical data offer guidance as to the likelihood of CALIPSO's ability to retrieve aerosol extinction at various locations around the globe.

  11. Volcanic Aerosols from Satellites: Current and Emerging Capabilities

    NASA Astrophysics Data System (ADS)

    Bhartia, P. K.; McCormick, M. P.; Loughman, R. P.

    2015-12-01

    There are 5 instruments currently operating in space with capability to measure stratospheric aerosols. Two of these are lidar backscatter instruments (CALIOP & ISS/CATS) that provide high vertical resolution, day/night coverage, and polarization information to separate ice clouds from sulfate aerosols. Two are limb scattering instruments (OSIRIS & OMPS-LP) with high sensitivity to aerosols and provide extensive spatial coverage of the sunlit globe. And a Canadian solar occultation instrument (ACE-MAESTRO) measures aerosol extinction twice per orbit. Next year we are expecting the launch of the SAGE III instrument on ISS with capability to measure aerosol extinction and Angstrom Exponent (AE) at multiple wavelengths by solar and lunar occultation techniques. It also has limb scattering capability to provide spatial coverage between solar occultations. The 51.6˚ inclination of the ISS orbit will allow SAGE III to measure aerosol scattering across the gobe for a wide range of scattering angles. Therefore, ISS SAGE III has the capability to provide vertically resolved information about a wide variety of aerosol properties, potentially including aerosol extinction, size distribution, refractive index, and particle shape parameters, similar to the one provided by the ground-based almucantar technique. In our talk we will focus primarily on the synergy between the OMPS LP instrument that has been flying on the Suomi NPP satellite since October 2011 and ISS SAGE III. We will show how these measurements can be combined together to capture spatial and temporal evolution of aerosols and ozone in large volcanic plumes to validate models and to support field campaigns.

  12. Retrieval and Reconsolidation Accounts of Fear Extinction

    PubMed Central

    Ponnusamy, Ravikumar; Zhuravka, Irina; Poulos, Andrew M.; Shobe, Justin; Merjanian, Michael; Huang, Jeannie; Wolvek, David; O’Neill, Pia-Kelsey; Fanselow, Michael S.

    2016-01-01

    Extinction is the primary mode for the treatment of anxiety disorders. However, extinction memories are prone to relapse. For example, fear is likely to return when a prolonged time period intervenes between extinction and a subsequent encounter with the fear-provoking stimulus (spontaneous recovery). Therefore there is considerable interest in the development of procedures that strengthen extinction and to prevent such recovery of fear. We contrasted two procedures in rats that have been reported to cause such deepened extinction. One where extinction begins before the initial consolidation of fear memory begins (immediate extinction) and another where extinction begins after a brief exposure to the consolidated fear stimulus. The latter is thought to open a period of memory vulnerability similar to that which occurs during initial consolidation (reconsolidation update). We also included a standard extinction treatment and a control procedure that reversed the brief exposure and extinction phases. Spontaneous recovery was only found with the standard extinction treatment. In a separate experiment we tested fear shortly after extinction (i.e., within 6 h). All extinction procedures, except reconsolidation update reduced fear at this short-term test. The findings suggest that strengthened extinction can result from alteration in both retrieval and consolidation processes. PMID:27242459

  13. Infectious disease, endangerment, and extinction.

    PubMed

    Macphee, Ross D E; Greenwood, Alex D

    2013-01-01

    Infectious disease, especially virulent infectious disease, is commonly regarded as a cause of fluctuation or decline in biological populations. However, it is not generally considered as a primary factor in causing the actual endangerment or extinction of species. We review here the known historical examples in which disease has, or has been assumed to have had, a major deleterious impact on animal species, including extinction, and highlight some recent cases in which disease is the chief suspect in causing the outright endangerment of particular species. We conclude that the role of disease in historical extinctions at the population or species level may have been underestimated. Recent methodological breakthroughs may lead to a better understanding of the past and present roles of infectious disease in influencing population fitness and other parameters. PMID:23401844

  14. Speeding up spontaneous disease extinction

    NASA Astrophysics Data System (ADS)

    Khasin, Michael

    2012-02-01

    The dynamics of epidemic in a susceptible population is affected both by the random character of interactions between the individuals and by environmental variations. As a consequence, the sizes of the population groups (infected, susceptible, etc.) fluctuate in the course of evolution of the epidemic. In a small community a rare large fluctuation in the number of infected can result in extinction of the disease. We suggest a novel paradigm of controlling the epidemic, where the control field, such as vaccination, is designed to maximize the rate of spontaneous disease extinction. We show that, for a limited-scope vaccination, the optimal vaccination protocol and its impact on the epidemics have universal features: (i) the vaccine must be applied in pulses, (ii) the spontaneous disease extinction is synchronized with the vaccination. We trace this universality to general properties of the response of large fluctuations to external perturbations.

  15. Infectious Disease, Endangerment, and Extinction

    PubMed Central

    MacPhee, Ross D. E.; Greenwood, Alex D.

    2013-01-01

    Infectious disease, especially virulent infectious disease, is commonly regarded as a cause of fluctuation or decline in biological populations. However, it is not generally considered as a primary factor in causing the actual endangerment or extinction of species. We review here the known historical examples in which disease has, or has been assumed to have had, a major deleterious impact on animal species, including extinction, and highlight some recent cases in which disease is the chief suspect in causing the outright endangerment of particular species. We conclude that the role of disease in historical extinctions at the population or species level may have been underestimated. Recent methodological breakthroughs may lead to a better understanding of the past and present roles of infectious disease in influencing population fitness and other parameters. PMID:23401844

  16. The atmospheric extinction of light

    NASA Astrophysics Data System (ADS)

    Hughes, Stephen W.; Cowley, Michael; Powell, Sean; Carroll, Joshua

    2016-01-01

    An experiment is described that enables students to understand the properties of atmospheric extinction due to Rayleigh scattering. The experiment requires the use of red, green and blue lasers attached to a travelling microscope or similar device. The laser beams are passed through an artificial atmosphere, made from milky water, at varying depths, before impinging on either a light meter or a photodiode integral to a Picotech Dr. DAQ ADC. A plot of measured spectral intensity verses depth reveals the contribution Rayleigh scattering has to the extinction coefficient. For the experiment with the light meter, the extinction coefficients for red, green and blue light in the milky sample of water were 0.27, 0.36 and 0.47 cm-1 respectively and 0.032, 0.037 and 0.092 cm-1 for the Picotech Dr. DAQ ADC.

  17. The galactic cycle of extinction

    NASA Astrophysics Data System (ADS)

    Gillman, Michael; Erenler, Hilary

    2008-01-01

    Global extinction and geological events have previously been linked with galactic events such as spiral arm crossings and galactic plane oscillation. The expectation that these are repeating predictable events has led to studies of periodicity in a wide set of biological, geological and climatic phenomena. Using data on carbon isotope excursions, large igneous provinces and impact craters, we identify three time zones of high geological activity which relate to the timings of the passage of the Solar System through the spiral arms. These zones are shown to include a significantly large proportion of high extinction periods. The mass extinction events at the ends of the Ordovician, Permian and Cretaceous occur in the first zone, which contains the predicted midpoints of the spiral arms. The start of the Cambrian, end of the Devonian and end of the Triassic occur in the second zone. The pattern of extinction timing in relation to spiral arm structure is supported by the positions of the superchrons and the predicted speed of the spiral arms. The passage times through an arm are simple multiples of published results on impact and fossil record periodicity and galactic plane half-periods. The total estimated passage time through four arms is 703.8 Myr. The repetition of extinction events at the same points in different spiral arm crossings suggests a common underlying galactic cause of mass extinctions, mediated through galactic effects on geological, solar and extra-solar processes. The two largest impact craters (Sudbury and Vredefort), predicted to have occurred during the early part of the first zone, extend the possible pattern to more than 2000 million years ago.

  18. [Two Data Inversion Algorithms of Aerosol Horizontal Distributiol Detected by MPL and Error Analysis].

    PubMed

    Lü, Li-hui; Liu, Wen-qing; Zhang, Tian-shu; Lu, Yi-huai; Dong, Yun-sheng; Chen, Zhen-yi; Fan, Guang-qiang; Qi, Shao-shuai

    2015-07-01

    Atmospheric aerosols have important impacts on human health, the environment and the climate system. Micro Pulse Lidar (MPL) is a new effective tool for detecting atmosphere aerosol horizontal distribution. And the extinction coefficient inversion and error analysis are important aspects of data processing. In order to detect the horizontal distribution of atmospheric aerosol near the ground, slope and Fernald algorithms were both used to invert horizontal MPL data and then the results were compared. The error analysis showed that the error of the slope algorithm and Fernald algorithm were mainly from theoretical model and some assumptions respectively. Though there still some problems exist in those two horizontal extinction coefficient inversions, they can present the spatial and temporal distribution of aerosol particles accurately, and the correlations with the forward-scattering visibility sensor are both high with the value of 95%. Furthermore relatively speaking, Fernald algorithm is more suitable for the inversion of horizontal extinction coefficient. PMID:26717723

  19. Tropospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    It is widely believed that "On a clear day you can see forever," as proclaimed in the 1965 Broadway musical of the same name. While an admittedly beautiful thought, we all know that this concept is only figurative. Aside from Earth's curvature and Rayleigh scattering by air molecules, aerosols - colloidal suspensions of solid or liquid particles in a gas - limit our vision. Even on the clearest day, there are billions of aerosol particles per cubic meter of air.Atmospheric aerosols are commonly referred to as smoke, dust, haze, and smog, terms that are loosely reflective of their origin and composition. Aerosol particles have arisen naturally for eons from sea spray, volcanic emissions, wind entrainment of mineral dust, wildfires, and gas-to-particle conversion of hydrocarbons from plants and dimethylsulfide from the oceans. However, over the industrial period, the natural background aerosol has been greatly augmented by anthropogenic contributions, i.e., those produced by human activities. One manifestation of this impact is reduced visibility (Figure 1). Thus, perhaps more than in other realms of geochemistry, when considering the composition of the troposphere one must consider the effects of these activities. The atmosphere has become a reservoir for vast quantities of anthropogenic emissions that exert important perturbations on it and on the planetary ecosystem in general. Consequently, much recent research focuses on the effects of human activities on the atmosphere and, through them, on the environment and Earth's climate. For these reasons consideration of the geochemistry of the atmosphere, and of atmospheric a