Science.gov

Sample records for aerosol extinction spectroscopy

  1. Optical and Physicochemical Properties of Brown Carbon Aerosol: Light Scattering, FTIR Extinction Spectroscopy, and Hygroscopic Growth.

    PubMed

    Tang, Mingjin; Alexander, Jennifer M; Kwon, Deokhyeon; Estillore, Armando D; Laskina, Olga; Young, Mark A; Kleiber, Paul D; Grassian, Vicki H

    2016-06-23

    A great deal of attention has been paid to brown carbon aerosol in the troposphere because it can both scatter and absorb solar radiation, thus affecting the Earth's climate. However, knowledge of the optical and chemical properties of brown carbon aerosol is still limited. In this study, we have investigated different aspects of the optical properties of brown carbon aerosol that have not been previously explored. These properties include extinction spectroscopy in the mid-infrared region and light scattering at two different visible wavelengths, 532 and 402 nm. A proxy for atmospheric brown carbon aerosol was formed from the aqueous reaction of ammonium sulfate with methylglyoxal. The different optical properties were measured as a function of reaction time for a period of up to 19 days. UV/vis absorption experiments of bulk solutions showed that the optical absorption of aqueous brown carbon solution significantly increases as a function of reaction time in the spectral range from 200 to 700 nm. The analysis of the light scattering data, however, showed no significant differences between ammonium sulfate and brown carbon aerosol particles in the measured scattering phase functions, linear polarization profiles, or the derived real parts of the refractive indices at either 532 or 402 nm, even for the longest reaction times with greatest visible extinction. The light scattering experiments are relatively insensitive to the imaginary part of the refractive index, and it was only possible to place an upper limit of k ≤ 0.01 on the imaginary index values. These results suggest that after the reaction with methylglyoxal the single scattering albedo of ammonium sulfate aerosol is significantly reduced but that the light scattering properties including the scattering asymmetry parameter, which is a measure of the relative amount of forward-to-backward scattering, remain essentially unchanged from that of unprocessed ammonium sulfate. The optical extinction properties

  2. Optical and Physicochemical Properties of Brown Carbon Aerosol: Light Scattering, FTIR Extinction Spectroscopy, and Hygroscopic Growth.

    PubMed

    Tang, Mingjin; Alexander, Jennifer M; Kwon, Deokhyeon; Estillore, Armando D; Laskina, Olga; Young, Mark A; Kleiber, Paul D; Grassian, Vicki H

    2016-06-23

    A great deal of attention has been paid to brown carbon aerosol in the troposphere because it can both scatter and absorb solar radiation, thus affecting the Earth's climate. However, knowledge of the optical and chemical properties of brown carbon aerosol is still limited. In this study, we have investigated different aspects of the optical properties of brown carbon aerosol that have not been previously explored. These properties include extinction spectroscopy in the mid-infrared region and light scattering at two different visible wavelengths, 532 and 402 nm. A proxy for atmospheric brown carbon aerosol was formed from the aqueous reaction of ammonium sulfate with methylglyoxal. The different optical properties were measured as a function of reaction time for a period of up to 19 days. UV/vis absorption experiments of bulk solutions showed that the optical absorption of aqueous brown carbon solution significantly increases as a function of reaction time in the spectral range from 200 to 700 nm. The analysis of the light scattering data, however, showed no significant differences between ammonium sulfate and brown carbon aerosol particles in the measured scattering phase functions, linear polarization profiles, or the derived real parts of the refractive indices at either 532 or 402 nm, even for the longest reaction times with greatest visible extinction. The light scattering experiments are relatively insensitive to the imaginary part of the refractive index, and it was only possible to place an upper limit of k ≤ 0.01 on the imaginary index values. These results suggest that after the reaction with methylglyoxal the single scattering albedo of ammonium sulfate aerosol is significantly reduced but that the light scattering properties including the scattering asymmetry parameter, which is a measure of the relative amount of forward-to-backward scattering, remain essentially unchanged from that of unprocessed ammonium sulfate. The optical extinction properties

  3. Measurements of extinction by aerosol particles in the near-infrared using continuous wave cavity ring-down spectroscopy.

    PubMed

    Mellon, Daniel; King, Simon J; Kim, Jin; Reid, Jonathan P; Orr-Ewing, Andrew J

    2011-02-10

    Cavity ring-down spectroscopy using a fiber-coupled continuous wave distributed feedback laser at a wavelength of 1520 nm has been used to measure extinction of light by samples of nearly monodisperse aerosol particles <1 μm in diameter. A model is tested for the analysis of the sample extinction that is based on the Poisson statistics of the number of particles within the intracavity laser beam: variances of measured extinction are used to derive values of the scattering cross section for size-selected aerosol particles, without need for knowledge of the particle number density or sample length. Experimental parameters that influence the performance of the CRD system and the application and limitations of the statistical model are examined in detail. Determinations are reported of the scattering cross sections for polystyrene spheres (PSSs), sodium chloride, and ammonium sulfate, and, for particles greater than 500 nm in diameter, are shown to be in agreement with the corresponding values calculated using Mie theory or Discrete Dipole Approximation methods. For smaller particles, the experimentally derived values of the scattering cross section are larger than the theoretical predictions, and transmission of a small fraction of larger particles into the cavity is argued to be responsible for this discrepancy. The effects of cubic structure on the determination of optical extinction efficiencies of sodium chloride aerosol particles are examined. Values are reported for the real components of the refractive indices at 1520 nm of PSS, sodium chloride, and ammonium sulfate aerosol particles.

  4. Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480 nm.

    PubMed

    Zhao, Weixiong; Dong, Meili; Chen, Weidong; Gu, Xuejun; Hu, Changjin; Gao, Xiaoming; Huang, Wei; Zhang, Weijun

    2013-02-19

    Despite the significant progress in the measurements of aerosol extinction and absorption using spectroscopy approaches such as cavity ring-down spectroscopy (CRDS) and photoacoustic spectroscopy (PAS), the widely used single-wavelength instruments may suffer from the interferences of gases absorption present in the real environment. A second instrument for simultaneous measurement of absorbing gases is required to characterize the effect of light extinction resulted from gases absorption. We present in this paper the development of a blue light-emitting diode (LED)-based incoherent broad-band cavity-enhanced spectroscopy (IBBCEAS) approach for broad-band measurements of wavelength-resolved aerosol extinction over the spectral range of 445-480 nm. This method also allows for simultaneous measurement of trace gases absorption present in the air sample using the same instrument. On the basis of the measured wavelength-dependent aerosol extinction cross section, the real part of the refractive index (RI) can be directly retrieved in a case where the RI does not vary strongly with the wavelength over the relevant spectral region. Laboratory-generated monodispersed aerosols, polystyrene latex spheres (PSL) and ammonium sulfate (AS), were employed for validation of the RI determination by IBBCEAS measurements. On the basis of a Mie scattering model, the real parts of the aerosol RI were retrieved from the measured wavelength-resolved extinction cross sections for both aerosol samples, which are in good agreement with the reported values. The developed IBBCEAS instrument was deployed for simultaneous measurements of aerosol extinction coefficient and NO(2) concentration in ambient air in a suburban site during two representative days. PMID:23320530

  5. New Approaches to Aerosol Optical Extinction Measurement

    NASA Astrophysics Data System (ADS)

    Strawa, A. W.; Owano, T.; Moosmuller, H.; Atkinson, D.; Covert, D.; Ahlquist, N.; Schmid, B.

    2002-12-01

    Aerosols can have important influences on climate and the radiation balance of the atmosphere. However, the temporal and spatial variability of aerosols and our inadequate knowledge of aerosol optical properties have lead to large uncertainties in these effects. Thus improved in-situ measurements of aerosol optical properties, in particular measurement of their extinction coefficients, are required. Recently, the relatively new technique of cavity ring-down spectroscopy has been applied to the problem of making fast, accurate measurements of aerosol extinction coefficient. Typically, extinction measurements have been made by measuring the decrease in the intensity of a light beam that has passed through a particulate-laden cell. Often, the cell contains mirrors which reflect the beam several times increasing the optical path length thereby increasing the extinction. Path lengths of up to 400 m have been obtained, which is still insufficient to measure atmospheric extinction in the visible down to background values. In cavity ring-down, a light beam is reflected many thousands of times between two highly reflective mirrors, resulting in a path length of kilometers. The light exiting the cell decreases exponentially with time, and this exponential decay is related to the extinction of the aerosol inside the cell. The CRD instruments can routinely measure sub-Rayleigh equivalent extinction levels of a few Mm-^1 and are generally more rugged and portable than traditional extinction cells. Possible applications of CRD-based extinction cells include studies of visibility, climate forcing by aerosol, and the validation of aerosol retrieval schemes from satellites such as MODIS, MISR, and CALYPSO. This paper will present the motivation for making improved aerosol extinction measurements and discuss the problems in making the measurement. The cavity ring-down technique will be described. In June, 2002, a calibration and methods intercomparison, the Reno Aerosol Optics Study

  6. Aerosol extinction measurements with CO2-lidar

    NASA Technical Reports Server (NTRS)

    Hagard, Arne; Persson, Rolf

    1992-01-01

    With the aim to develop a model for infrared extinction due to aerosols in slant paths in the lower atmosphere we perform measurements with a CO2-lidar. Earlier measurements with a transmissometer along horizontal paths have been used to develop relations between aerosol extinction and meteorological parameters. With the lidar measurements we hope to develop corresponding relations for altitude profiles of the aerosol extinction in the infrared. An important application is prediction of detection range for infrared imaging systems.

  7. Humidity Dependent Extinction of Clay Aerosols

    NASA Astrophysics Data System (ADS)

    Greenslade, M. E.; Attwood, A. R.

    2010-12-01

    Aerosols play an important role in the Earth’s radiative balance by directly scattering and absorbing radiation. The magnitude of aerosol forcing can be altered by changes in relative humidity which cause aerosol size, shape and refractive index to vary. To quantify these effects, a custom cavity ring down instrument operated at 532 nm with two sample channels measures aerosols extinction under dry conditions and at elevated humidity. The optical growth, fRH(ext), is determined as a ratio of the extinction cross section at high relative humidity to that under dry conditions. Three key clay components of mineral dust and mixtures of clay components with ammonium sulfate are investigated using this method. Experimentally obtained optical growth is compared with physical growth factors from the literature and our work determined using several different techniques. Further, Mie theory calculations based on published optical constants are compared with experimental results. Differences between theory and experiment will be discussed.

  8. Intercomparison of aerosol extinction profiles retrieved from MAX-DOAS measurements

    NASA Astrophysics Data System (ADS)

    Frieß, U.; Klein Baltink, H.; Beirle, S.; Clémer, K.; Hendrick, F.; Henzing, B.; Irie, H.; de Leeuw, G.; Li, A.; Moerman, M. M.; van Roozendael, M.; Shaiganfar, R.; Wagner, T.; Wang, Y.; Xie, P.; Yilmaz, S.; Zieger, P.

    2016-07-01

    A first direct intercomparison of aerosol vertical profiles from Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations, performed during the Cabauw Intercomparison Campaign of Nitrogen Dioxide measuring Instruments (CINDI) in summer 2009, is presented. Five out of 14 participants of the CINDI campaign reported aerosol extinction profiles and aerosol optical thickness (AOT) as deduced from observations of differential slant column densities of the oxygen collision complex (O4) at different elevation angles. Aerosol extinction vertical profiles and AOT are compared to backscatter profiles from a ceilometer instrument and to sun photometer measurements, respectively. Furthermore, the near-surface aerosol extinction coefficient is compared to in situ measurements of a humidity-controlled nephelometer and dry aerosol absorption measurements. The participants of this intercomparison exercise use different approaches for the retrieval of aerosol information, including the retrieval of the full vertical profile using optimal estimation and a parametrised approach with a prescribed profile shape. Despite these large conceptual differences, and also differences in the wavelength of the observed O4 absorption band, good agreement in terms of the vertical structure of aerosols within the boundary layer is achieved between the aerosol extinction profiles retrieved by the different groups and the backscatter profiles observed by the ceilometer instrument. AOTs from MAX-DOAS and sun photometer show a good correlation (R>0.8), but all participants systematically underestimate the AOT. Substantial differences between the near-surface aerosol extinction from MAX-DOAS and from the humidified nephelometer remain largely unresolved.

  9. Optical extinction of highly porous aerosol following atmospheric freeze drying

    NASA Astrophysics Data System (ADS)

    Adler, Gabriela; Haspel, Carynelisa; Moise, Tamar; Rudich, Yinon

    2014-06-01

    Porous glassy particles are a potentially significant but unexplored component of atmospheric aerosol that can form by aerosol processing through the ice phase of high convective clouds. The optical properties of porous glassy aerosols formed from a freeze-dry cycle simulating freezing and sublimation of ice particles were measured using a cavity ring down aerosol spectrometer (CRD-AS) at 532 nm and 355 nm wavelength. The measured extinction efficiency was significantly reduced for porous organic and mixed organic-ammonium sulfate particles as compared to the extinction efficiency of the homogeneous aerosol of the same composition prior to the freeze-drying process. A number of theoretical approaches for modeling the optical extinction of porous aerosols were explored. These include effective medium approximations, extended effective medium approximations, multilayer concentric sphere models, Rayleigh-Debye-Gans theory, and the discrete dipole approximation. Though such approaches are commonly used to describe porous particles in astrophysical and atmospheric contexts, in the current study, these approaches predicted an even lower extinction than the measured one. Rather, the best representation of the measured extinction was obtained with an effective refractive index retrieved from a fit to Mie scattering theory assuming spherical particles with a fixed void content. The single-scattering albedo of the porous glassy aerosols was derived using this effective refractive index and was found to be lower than that of the corresponding homogeneous aerosol, indicating stronger relative absorption at the wavelengths measured. The reduced extinction and increased absorption may be of significance in assessing direct, indirect, and semidirect forcing in regions where porous aerosols are expected to be prevalent.

  10. Contributions of dust and smoke to aerosol extinction coefficient

    NASA Astrophysics Data System (ADS)

    Kavouras, I. G.; Xu, J.; Etyemezian, V.; Dubois, D.; Green, M.; Pitchford, M.

    2006-12-01

    Estimating scattering and absorption of light by atmospheric particles is critical for evaluating effects on regional and global climate. The magnitude of the interaction between aerosol and light is strongly related to the aerosol chemical composition among other factors. Dust and smoke are major sources of atmospheric aerosol, especially in the western United States. The importance of those sources has increased in recent decades due to the extensive man-made disturbance of natural ecosystems and land management practices. The objectives of this study were to specifically estimate the impact of dust and smoke on aerosol extinction coefficient measured in the Class I areas of the western states and identify the major causes of dust and types of smoke by using: (i) positive matrix factorization (PMF) to apportion ambient aerosols by source type; (ii) air mass backward trajectory analyses; (iii) land use/soil properties and; (iv) wildlife/prescribed fire data. The study included sites from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network located in western United States. For days with the worst reconstructed light extinction when dust was the major component, contributions from transcontinental transport from Asia, windblown dust from local sources and regional transport from upwind sources were identified. Based on the analysis for days with smoke being the major component of aerosol visibility extinction, the contributions of the following types of fires were determined: (a) wildfires near the site ("hot" emissions); (b) wildfires upwind of the site (aged smoke); (c) agricultural burn emissions; (d) rangeland fires.

  11. Recent Improvements to CALIOP Level 3 Aerosol Profile Product for Global 3-D Aerosol Extinction Characterization

    NASA Astrophysics Data System (ADS)

    Tackett, J. L.; Getzewich, B. J.; Winker, D. M.; Vaughan, M. A.

    2015-12-01

    With nine years of retrievals, the CALIOP level 3 aerosol profile product provides an unprecedented synopsis of aerosol extinction in three dimensions and the potential to quantify changes in aerosol distributions over time. The CALIOP level 3 aerosol profile product, initially released as a beta product in 2011, reports monthly averages of quality-screened aerosol extinction profiles on a uniform latitude/longitude grid for different cloud-cover scenarios, called "sky conditions". This presentation demonstrates improvements to the second version of the product which will be released in September 2015. The largest improvements are the new sky condition definitions which parse the atmosphere into "cloud-free" views accessible to passive remote sensors, "all-sky" views accessible to active remote sensors and "cloudy-sky" views for opaque and transparent clouds which were previously inaccessible to passive remote sensors. Taken together, the new sky conditions comprehensively summarize CALIOP aerosol extinction profiles for a broad range of scientific queries. In addition to dust-only extinction profiles, the new version will include polluted-dust and smoke-only extinction averages. A new method is adopted for averaging dust-only extinction profiles to reduce high biases which exist in the beta version of the level 3 aerosol profile product. This presentation justifies the new averaging methodology and demonstrates vertical profiles of dust and smoke extinction over Africa during the biomass burning season. Another crucial advancement demonstrated in this presentation is a new approach for computing monthly mean aerosol optical depth which removes low biases reported in the beta version - a scenario unique to lidar datasets.

  12. Improvement of Raman lidar algorithm for quantifying aerosol extinction

    NASA Technical Reports Server (NTRS)

    Russo, Felicita; Whiteman, David; Demoz, Belay; Hoff, Raymond

    2005-01-01

    Aerosols are particles of different composition and origin and influence the formation of clouds which are important in atmospheric radiative balance. At the present there is high uncertainty on the effect of aerosols on climate and this is mainly due to the fact that aerosol presence in the atmosphere can be highly variable in space and time. Monitoring of the aerosols in the atmosphere is necessary to better understanding many of these uncertainties. A lidar (an instrument that uses light to detect the extent of atmospheric aerosol loading) can be particularly useful to monitor aerosols in the atmosphere since it is capable to record the scattered intensity as a function of altitude from molecules and aerosols. One lidar method (the Raman lidar) makes use of the different wavelength changes that occur when light interacts with the varying chemistry and structure of atmospheric aerosols. One quantity that is indicative of aerosol presence is the aerosol extinction which quantifies the amount of attenuation (removal of photons), due to scattering, that light undergoes when propagating in the atmosphere. It can be directly measured with a Raman lidar using the wavelength dependence of the received signal. In order to calculate aerosol extinction from Raman scattering data it is necessary to evaluate the rate of change (derivative) of a Raman signal with respect to altitude. Since derivatives are defined for continuous functions, they cannot be performed directly on the experimental data which are not continuous. The most popular technique to find the functional behavior of experimental data is the least-square fit. This procedure allows finding a polynomial function which better approximate the experimental data. The typical approach in the lidar community is to make an a priori assumption about the functional behavior of the data in order to calculate the derivative. It has been shown in previous work that the use of the chi-square technique to determine the most

  13. Applications of Sunphotometry to Aerosol Extinction and Surface Anisotropy

    SciTech Connect

    Tsay, S.

    2002-09-30

    Support cost-sharing of a newly developed sunphotometer in field deployment for aerosol studies. This is a cost-sharing research to deploy a newly developed sun-sky-surface photometer for studying aerosol extinction and surface anisotropy at the ARM SGP, TWP, and NSA-AAO CART sites and in many field campaigns. Atmospheric aerosols affect the radiative energy balance of the Earth, both directly by perturbing the incoming/outgoing radiation fields and indirectly by influencing the properties/processes of clouds and reactive greenhouse gases. The surface bidirectional reflectance distribution function (BRDF) also plays a crucial role in the radiative energy balance, since the BRDF is required to determine (i) the spectral and spectrally-averaged surface albedo, and (ii) the top-of-the-atmosphere (TOA) angular distribution of radiance field. Therefore, the CART sites provide an excellent, albeit unique, opportunity to collect long-term climatic data in characterizing aerosol properties and various types of surface anisotropy.

  14. Applications of Sunphotometry to Aerosol Extinction and Surface Anisotropy

    NASA Technical Reports Server (NTRS)

    Tsay, S. C.; Holben, B. N.; Privette, J. L.

    2005-01-01

    Support cost-sharing of a newly developed sunphotometer in field deployment for aerosol studies. This is a cost-sharing research to deploy a newly developed sun-sky-surface photometer for studying aerosol extinction and surface anisotropy at the ARM SGP, TWP, and NSA-AAO CART sites and in many field campaigns. Atmospheric aerosols affect the radiative energy balance of the Earth, both directly by perturbing the incoming/outgoing radiation fields and indirectly by influencing the properties/processes of clouds and reactive greenhouse gases. The surface bidirectional reflectance distribution function (BRDF) also plays a crucial role in the radiative energy balance, since the BRDF is required to determine (1) the spectral and spectrally-averaged surface albedo, and (2) the top-of-the-atmosphere (TOA) angular distribution of radiance field. Therefore, the CART sites provide an excellent, albeit unique, opportunity to collect long-term climatic data in characterizing aerosol properties and various types of surface anisotropy.

  15. [Ultraviolet Mie lidar observations of aerosol extinction in a dust storm case over Macao].

    PubMed

    Liu, Qiao-jun; Cheng, A Y S; Zhu, Jian-hua; Fong, S K; Chang, S W; Tam, K S; Viseu, A

    2012-03-01

    Atmospheric aerosol over Macao was monitored by using a 355 nm Mie scattering lidar during the dust event on March 22nd, 2010. Vertical profiles of aerosol extinction coefficients were obtained and correlated with local PM10 concentration. The near-surface aerosol extinction coefficients have good agreement with PM10 concentration values. The aerosol extinction vertical profiles showed that there were distinct layers of dust aerosol concentration. The source and tracks of dust aerosol were analyzed by back-trajectory simulation. Observations showed that this lidar could run well even in dust storm episode, and it would help to further the study on aerosol properties over Macao. PMID:22582620

  16. Infrared extinction spectra of some common liquid aerosols.

    PubMed

    Carlon, H R; Anderson, D H; Milham, M E; Tarnove, T L; Frickel, R H; Sindoni, I

    1977-06-01

    Infrared extinction spectra in the 3-5-microm and 7-13-microm atmospheric window regions have been obtained for smokes of petroleum oil, sulfuric acid, and phosphoric acid of varying droplet concentration and for water fogs. Spectra were also obtained at 0.36-2.35microm for petroleum oil and sulfuric acid smokes. Experimental results were compared, for sulfuric acid and water aerosols, to calculated values obtained from the Mie theory. Agreement was as good as +/-10%. When absorbing smoke droplets are small compared to wavelength, very useful approximations apply, and droplet clouds may be spectrally simulated by thin liquid films. In such cases, the imaginary component of refractive index may be approximated directly from aerosol spectra. At 12.5-microm wavelength, water fog extinction is nearly independent of droplet size distribution, suggesting a simple scheme for measurement of total liquid water content of an optical path.

  17. Retrieval of Aerosol Properties from Multi-Spectral Extinction Measurements

    NASA Technical Reports Server (NTRS)

    Lacis, Andrew A.

    1999-01-01

    The direct-beam spectral extinction of solar radiation contains information on atmospheric composition in a form that is essentially free from the data analysis complexities that often arise from multiple scattering. Ground based Multi-Filter Shadowband Radiometer (MFRSR) measurements provide such information for the vertical atmospheric column path, while solar occultation measurements from a satellite platform provide horizontal slices through the atmosphere. We describe application of a Multi-Spectral Atmospheric Column Extinction (MACE) analysis technique used to analyze MFRSR data also to occultation measurements made by SAGE II. For analysis, we select the 1985 Nevado del Ruiz volcanic eruption period to retrieve atmospheric profiles of ozone and NO2, and changes in the stratospheric aerosol size and optical depth. The time evolution of volcanic aerosol serves as a passive tracer to study stratospheric dynamics, and changes in particle size put constraints on the sulfur chemistry modeling of volcanic aerosols. Paper presented at The '99 Kyoto Aerosol-Cloud Workshop, held Dec 1-3, 1999, Kyoto, Japan

  18. Importance of Raman Lidar Aerosol Extinction Measurements for Aerosol-Cloud Interaction Studies

    NASA Astrophysics Data System (ADS)

    Han, Zaw; Wu, Yonghua; Moshary, Fred; Gross, Barry; Gilerson, Alex

    2016-06-01

    Using a UV Raman Lidar for aerosol extinction, and combining Microwave Radiometer derived Liquid Water Path (LWP) with Multifilter Rotating Shadowband Radiometer derived Cloud Optical depth, to get cloud effective radius (Reff), we observe under certain specialized conditions, clear signatures of the Twomey Aerosol Indirect effect on cloud droplet properties which are consistent with the theoretical bounds. We also show that the measurement is very sensitive to how far the aerosol layer is from the cloud base and demonstrate that surface PM25 is far less useful. Measurements from both the DOE ARM site and new results at CCNY are presented.

  19. Comparison of aerosol extinction profiles from lidar and SAGE II data at a tropical station

    NASA Technical Reports Server (NTRS)

    Parameswaran, K.; Rose, K. O.; Murthy, B. V. K.; Osborn, M. T.; Mcmaster, L. R.

    1991-01-01

    Aerosol extinction profiles obtained from lidar data at Trivandrum (8.6 deg N, 77 deg E) are compared with corresponding Stratospheric Aerosol and Gas Experiment II extinction profiles. The agreement between the two is found to be satisfactory. The extinction profiles obtained by both the experiments showed a prominent peak at 23-24 km altitude in the stratosphere. The study revealed large variability in upper tropospheric extinction with location (latitude).

  20. Airborne Cavity Ring-Down Measurement of Aerosol Extinction and Scattering During the Aerosol IOP

    NASA Technical Reports Server (NTRS)

    Strawa, A. W.; Ricci, K.; Provencal, R.; Schmid, B.; Covert, D.; Elleman, R.; Arnott, P.

    2003-01-01

    Large uncertainties in the effects of aerosols on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This paper describes preliminary results from Cadenza, a new continuous wave cavity ring-down (CW-CRD) instrument designed to address these uncertainties. Cadenza measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. In the past year Cadenza was deployed in the Asian Dust Above Monterey (ADAM) and DOE Aerosol Intensive Operating Period (IOP) field projects. During these flights Cadenza produced measurements of aerosol extinction in the range from 0.2 to 300 Mm-1 with an estimated precision of 0.1 Min-1 for 1550 nm light and 0.2 Mm-1 for 675 nm light. Cadenza data from the ADAM and Aerosol IOP missions compared favorably with data from the other instruments aboard the CIRPAS Twin Otter aircraft and participating in those projects.= We present comparisons between the Cadenza measurements and those friom a TSI nephelometer, Particle Soot Absorption Photometer (PSAP), and the AATS 14 sun-photometer. Measurements of the optical properties of smoke and dust plumes sampled during these campaigns are presented and estimates of heating rates due to these plumes are made.

  1. A comparative study of aerosol extinction measurements made by the SAM II and SAGE satellite experiments

    NASA Technical Reports Server (NTRS)

    Yue, G. K.; Mccormick, M. P.; Chu, W. P.

    1984-01-01

    SAM II and SAGE are two satellite experiments designed to measure stratospheric aerosol extinction using the technique of solar occultation or limb extinction. Although each sensor is mounted aboard a different satellite, there are occasions when their measurement locations are nearly coincident, thereby providing opportunities for a measurement comparison. In this paper, the aerosol extinction profiles and daily contour plots for some of these events in 1979 are reported. The comparisons shown in this paper demonstrate that SAM II and SAGE are producing similar aerosol extinction profiles within their measurement errors and that since SAM II has been previously validated, these results show the validity of the SAGE aerosol measurements.

  2. Comparative studies of aerosol extinction measurements made by the SAM II and SAGE II satellite experiments

    NASA Technical Reports Server (NTRS)

    Yue, Glenn K.; Mccormick, M. P.; Chu, W. P.; Wang, P.; Osborn, M. T.

    1989-01-01

    Results from the Stratospheric Aerosol Measurement (SAM) II and Stratospheric Aerosol and Gas Experiment (SAGE) II are compared for measurement locations which are coincident in time and space. At 1.0 micron, the SAM II and SAGE II aerosol extinction profiles are similar within their measurement errors. In addition, sunrise and sunset aerosol extinction data at four different wavelengths are compared for occasions when the SAGE II and SAM II measurements are nearly coincident in space and about 12 hours apart.

  3. Miniature instruments for aerosol extinction at ambient conditions

    NASA Astrophysics Data System (ADS)

    Murphy, D. M.

    2015-12-01

    Aerosol extinction is a fundamental parameter for the direct forcing of climate, visibility, and comparisons to remote sensing. Bringing air into an instrument "box" almost always changes the relative humidity and loses some dust or other large particles. I will show two techniques for miniature instruments that measure extinction at ambient conditions. One is a miniature sun photometer for vertical profiles. In the last year it has successfully gathered data on test flights with excellent performance and signal to noise. The second instrument is a miniature cavity ring down instrument open to the air. In both cases, small instruments require decisions about just what is necessary for the measurement rather than just scaling down larger designs. I will explore the rationale for some of these design choices.

  4. Photoacoustic determination of optical absorption to extinction ratio in aerosols.

    PubMed

    Roessler, D M; Faxvog, F R

    1980-02-15

    The photoacoustic technique has been used in conjunction with an optical transmission measurement to determine the fraction of light absorbed in cigarette and acetylene smoke aerosols. At 0.5145-microm wavelength,the absorption-to-extinction fraction is 0.01 +/- 0.003 for cigarette smoke and is in excellent agreement with predictions from Mie theory for smoke particles having a refractive index of 1.45-0.00133i and a median diameter in the 0.15-0.65-microm range. For acetylene smoke the absorbed fraction was 0.85 +/- 0.05. PMID:20216896

  5. Aerosol optical absorption measurements with photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Wang, Lei; Liu, Qiang; Wang, Guishi; Tan, Tu; Zhang, Weijun; Chen, Weidong; Gao, Xiaoming

    2015-04-01

    Many parameters related to radiative forcing in climate research are known only with large uncertainties. And one of the largest uncertainties in global radiative forcing is the contribution from aerosols. Aerosols can scatter or absorb the electromagnetic radiation, thus may have negative or positive effects on the radiative forcing of the atmosphere, respectively [1]. And the magnitude of the effect is directly related to the quantity of light absorbed by aerosols [2,3]. Thus, sensitivity and precision measurement of aerosol optical absorption is crucial for climate research. Photoacoustic spectroscopy (PAS) is commonly recognized as one of the best candidates to measure the light absorption of aerosols [4]. A PAS based sensor for aerosol optical absorption measurement was developed. A 532 nm semiconductor laser with an effective power of 160 mW was used as a light source of the PAS sensor. The PAS sensor was calibrated by using known concentration NO2. The minimum detectable optical absorption coefficient (OAC) of aerosol was determined to be 1 Mm-1. 24 hours continues measurement of OAC of aerosol in the ambient air was carried out. And a novel three wavelength PAS aerosol OAC sensor is in development for analysis of aerosol wavelength-dependent absorption Angstrom coefficient. Reference [1] U. Lohmann and J. Feichter, Global indirect aerosol effects: a review, Atmos. Chem. Phys. 5, 715-737 (2005) [2] M. Z. Jacobson, Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature 409, 695-697 (2001) [3] V. Ramanathan and G. Carmichae, Global and regional climate changes due to black carbon, nature geoscience 1, 221-227 (2008) [4] W.P Arnott, H. Moosmuller, C. F. Rogers, T. Jin, and R. Bruch, Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description. Atmos. Environ. 33, 2845-2852 (1999).

  6. Stratospheric Aerosol Extinction Retrieval for SCIAMACHY Measurements in Limb Geometry

    NASA Astrophysics Data System (ADS)

    Dörner, S.; Pukite, J.; Penning de Vries, M.; Beirle, S.; Wagner, T.

    2015-12-01

    Techniques for retrieving height resolved information on stratospheric aerosol improved significantly in the past decade with the availability of satellites measurements in limb geometry. Instruments like OMPS, OSIRIS and SCIAMACHY provide height resolved radiance spectra with global coverage. Long term data sets of stratospheric aerosol extinction profiles are important for a detailed investigation of spatial and temporal variation and formation processes (e.g. after volcanic eruptions or in polar stratospheric clouds). Resulting data sets contain vital information for climate models (radiative effect) or chemistry models (reaction surface for heterogeneous chemistry). This study focuses on the SCIAMACHY instrument which measured scattered sunlight in the ultra violet, visible and near infra red spectral range between 2002 and 2012. SCIAMACHY's unique method of alternating measurements in limb and nadir geometry provides co-located profile and column information respectively that can be used to characterize plumes with small horizontal extents. The covered wavelength range potentially provides information on effective micro-physical properties of the aerosol particles. However, scattering on background aerosol constitutes only a small fraction of detected radiance and assumptions on particle characteristics (e.g., size distribution) have to be made which results in potential uncertainties especially for wavelengths below 700 nm and for measurements in backscatter geometry. Methods to reduce these uncertainties are investigated and applied to our newly developed retrieval algorithm. In addition, so called spatial straylight contamination of the measured signal was identified as a significant error source and an empirical correction scheme was developed. Comparisons with SAGE II measurement in occultation geometry and balloon borne measurements with an optical particle counter confirm the viability of our retrieval algorithm.

  7. Optical modeling of aerosol extinction for remote sensing in the marine environment

    NASA Astrophysics Data System (ADS)

    Kaloshin, G. A.

    2013-05-01

    A microphysical model is presented for the surface layer marine and coastal atmospheric aerosols that is based on long-term observations of size distributions for 0.01-100 μm particles in different geographic sites. The fundamental feature of the model is a parameterization of amplitudes and widths for aerosol modes of the aerosol size distribution function (ASDF) as functions of fetch and wind speed. The shape of the ASDF and its dependence on meteorological parameters, altitudes above sea level (H), fetch (X), wind speed (U) and relative humidity (RH) are investigated. The spectral profiles of the aerosol extinction coefficients calculated by MaexPro (Marine Aerosol Extinction Profiles) are in good agreement with observational data and the numerical results obtained from the Navy Aerosol Model (NAM) and the Advanced Navy Aerosol Model (ANAM). Moreover, MaexPro was found to be an accurate and reliable tool for investigation of the optical properties of atmospheric aerosols.

  8. Toward a Combined SAGE II-HALOE Aerosol Climatology: An Evaluation of HALOE Version 19 Stratospheric Aerosol Extinction Coefficient Observations

    NASA Technical Reports Server (NTRS)

    Thomason, L. W.

    2012-01-01

    Herein, the Halogen Occultation Experiment (HALOE) aerosol extinction coefficient data is evaluated in the low aerosol loading period after 1996 as the first necessary step in a process that will eventually allow the production of a combined HALOE/SAGE II (Stratospheric Aerosol and Gas Experiment) aerosol climatology of derived aerosol products including surface area density. Based on these analyses, it is demonstrated that HALOE's 3.46 microns is of good quality above 19 km and suitable for scientific applications above that altitude. However, it is increasingly suspect at lower altitudes and should not be used below 17 km under any circumstances after 1996. The 3.40 microns is biased by about 10% throughout the lower stratosphere due to the failure to clear NO2 but otherwise appears to be a high quality product down to 15 km. The 2.45 and 5.26 micron aerosol extinction coefficient measurements are clearly biased and should not be used for scientific applications after the most intense parts of the Pinatubo period. Many of the issues in the aerosol data appear to be related to either the failure to clear some interfering gas species or doing so poorly. For instance, it is clear that the 3.40micronaerosol extinction coefficient measurements can be improved through the inclusion of an NO2 correction and could, in fact, end up as the highest quality overall HALOE aerosol extinction coefficient measurement. It also appears that the 2.45 and 5.26 micron channels may be improved by updating the Upper Atmosphere Pilot Database which is used as a resource for the removal of gas species otherwise not available from direct HALOE measurements. Finally, a simple model to demonstrate the promise of mixed visible/infrared aerosol extinction coefficient ensembles for the retrieval of bulk aerosol properties demonstrates that a combined HALOE/SAGE II aerosol climatology is feasible and may represent a substantial improvement over independently derived data sets.

  9. Accuracy of near-surface aerosol extinction determined from columnar aerosol optical depth measurements in Reno, NV, USA

    NASA Astrophysics Data System (ADS)

    Loría-Salazar, S. Marcela; Arnott, W. Patrick; Moosmüller, Hans

    2014-10-01

    The aim of the present work is a detailed analysis of aerosol columnar optical depth as a tool to determine near-surface aerosol extinction in Reno, Nevada, USA, during the summer of 2012. Ground and columnar aerosol optical properties were obtained by use of in situ Photoacoustic and Integrated Nephelometer and Cimel CE-318 Sun photometer instruments, respectively. Both techniques showed that seasonal weather changes and fire plumes had enormous influence on local aerosol optics. The apparent optical height followed the shape but not magnitude of the development of the convective boundary layer when fire conditions were not present. Back trajectory analysis demonstrated that a local flow known as the Washoe Zephyr circulation often induced aerosol transport from Northern California over the Sierra Nevada Mountains that increased the aerosol optical depth at 500 nm during afternoons when compared with mornings. Aerosol fine mode fraction indicated that afternoon aerosols in June and July and fire plumes in August were dominated by submicron particles, suggesting upwind urban plume biogenically enhanced evolution toward substantial secondary aerosol formation. This fine particle optical depth was inferred to be beyond the surface, thereby complicating use of remote sensing measurements for near-ground aerosol extinction measurements. It is likely that coarse mode depletes fine mode aerosol near the surface by coagulation and condensation of precursor gases.

  10. Raman lidar measurements of aerosol extinction and backscattering 1. Methods and comparisons

    SciTech Connect

    Ferrare, R.A.; Melfi, S.H.; Whiteman, D.N.; Evans, K.D.

    1998-08-01

    This paper examines the aerosol backscattering and extinction profiles measured at night by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site in April 1994. These lidar data are used to derive aerosol profiles for altitudes between 0.015 and 5 km. Since this lidar detects Raman scattering from nitrogen and oxygen molecules as well as the elastic scattering from molecules and aerosols, it measures both aerosol backscattering and extinction simultaneously. The aerosol extinction/backscattering ratio varied between approximately 30 sr and 75 sr at 351 nm. Aerosol optical thicknesses derived by integrating the lidar profiles of aerosol extinction measured at night between 0.1 and 5 km are found to be about 10{endash}40{percent} lower than those measured by a Sun photometer during the day. This difference is attributed to the contribution by stratospheric aerosols not included in the lidar estimates as well as to diurnal differences in aerosol properties and concentrations. Aerosol profiles close to the surface were acquired by pointing the lidar nearly horizontally. Measurements of aerosol scattering from a tower-mounted nephelometer are found to be 40{percent} lower than lidar measurements of aerosol extinction over a wide range of relative humidities even after accounting for the difference in wavelengths. The reasons for this difference are not clear but may be due to the inability of the nephelometer to accurately measure scattering by large particles. {copyright} 1998 American Geophysical Union

  11. Raman Lidar Measurements of Aerosol Extinction and Backscattering. Report 1; Methods and Comparisons

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Melfi, S. H.; Whiteman, D. N.; Evans, K. D.; Leifer, R.

    1998-01-01

    This paper examines the aerosol backscattering and extinction profiles measured at night by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site in April 1994. These lidar data are used to derive aerosol profiles for altitudes between 0.0 1 5 and 5 km. Since this lidar detects Raman scattering from nitrogen and oxygen molecules as well as the elastic scattering from molecules and aerosols, it measures both aerosol backscattering and extinction simultaneously. The aerosol extinction/backscattering ratio varied between approximately 30 sr and 75 sr at 351 nm. Aerosol optical thicknesses derived by integrating the lidar profiles of aerosol extinction measured at night between 0. I and 5 km are found to be about 10-40% lower than those measured by a Sun photometer during the day. This difference is attributed to the contribution by stratospheric aerosols not included in the lidar estimates as well as to diurnal differences in aerosol properties and concentrations. Aerosol profiles close to the surface were acquired by pointing the lidar nearly horizontally. Measurements of aerosol scattering from a tower-mounted nephelometer are found to be 40% lower than lidar measurements of aerosol extinction over a wide range of relative humidities even after accounting for the difference in wavelengths. The reasons for this difference are not clear but may be due to the inability of the nephelometer to accurately measure scattering by large particles.

  12. Light extinction by secondary organic aerosol: an intercomparison of three broadband cavity spectrometers

    NASA Astrophysics Data System (ADS)

    Varma, R. M.; Ball, S. M.; Brauers, T.; Dorn, H.-P.; Heitmann, U.; Jones, R. L.; Platt, U.; Pöhler, D.; Ruth, A. A.; Shillings, A. J. L.; Thieser, J.; Wahner, A.; Venables, D. S.

    2013-11-01

    Broadband optical cavity spectrometers are maturing as a technology for trace-gas detection, but only recently have they been used to retrieve the extinction coefficient of aerosols. Sensitive broadband extinction measurements allow explicit separation of gas and particle phase spectral contributions, as well as continuous spectral measurements of aerosol extinction in favourable cases. In this work, we report an intercomparison study of the aerosol extinction coefficients measured by three such instruments: a broadband cavity ring-down spectrometer (BBCRDS), a cavity-enhanced differential optical absorption spectrometer (CE-DOAS), and an incoherent broadband cavity-enhanced absorption spectrometer (IBBCEAS). Experiments were carried out in the SAPHIR atmospheric simulation chamber as part of the NO3Comp campaign to compare the measurement capabilities of NO3 and N2O5 instrumentation. Aerosol extinction coefficients between 655 and 690 nm are reported for secondary organic aerosols (SOA) formed by the NO3 oxidation of β-pinene under dry and humid conditions. Despite different measurement approaches and spectral analysis procedures, the three instruments retrieved aerosol extinction coefficients that were in close agreement. The refractive index of SOA formed from the β-pinene + NO3 reaction was 1.61, and was not measurably affected by the chamber humidity or by aging of the aerosol over several hours. This refractive index is significantly larger than SOA refractive indices observed in other studies of OH and ozone-initiated terpene oxidations, and may be caused by the large proportion of organic nitrates in the particle phase. In an experiment involving ammonium sulfate particles, the aerosol extinction coefficients as measured by IBBCEAS were found to be in reasonable agreement with those calculated using the Mie theory. The results of the study demonstrate the potential of broadband cavity spectrometers for determining the optical properties of aerosols.

  13. Light extinction by Secondary Organic Aerosol: an intercomparison of three broadband cavity spectrometers

    NASA Astrophysics Data System (ADS)

    Varma, R. M.; Ball, S. M.; Brauers, T.; Dorn, H.-P.; Heitmann, U.; Jones, R. L.; Platt, U.; Pöhler, D.; Ruth, A. A.; Shillings, A. J. L.; Thieser, J.; Wahner, A.; Venables, D. S.

    2013-07-01

    Broadband optical cavity spectrometers are maturing as a technology for trace gas detection, but only recently have they been used to retrieve the extinction coefficient of aerosols. Sensitive broadband extinction measurements allow explicit separation of gas and particle phase spectral contributions, as well as continuous spectral measurements of aerosol extinction in favourable cases. In this work, we report an intercomparison study of the aerosol extinction coefficients measured by three such instruments: a broadband cavity ring-down spectrometer (BBCRDS), a cavity-enhanced differential optical absorption spectrometer (CE-DOAS), and an incoherent broadband cavity-enhanced absorption spectrometer (IBBCEAS). Experiments were carried out in the SAPHIR atmospheric simulation chamber as part of the NO3Comp campaign to compare the measurement capabilities of NO3 and N2O5 instrumentation. Aerosol extinction coefficients between 655 and 690 nm are reported for secondary organic aerosols (SOA) formed by the NO3 oxidation of β-pinene under dry and humid conditions. Despite different measurement approaches and spectral analysis procedures, the three instruments retrieved aerosol extinction coefficients that were in close agreement. The refractive index of SOA formed from the β-pinene + NO3 reaction was 1.61, and was not measurably affected by the chamber humidity or by aging of the aerosol over several hours. This refractive index is significantly larger than SOA refractive indices observed in other studies of OH and ozone-initiated terpene oxidations, and may be caused by the large proportion of organic nitrates in the particle phase. In an experiment involving ammonium sulphate particles the aerosol extinction coefficients as measured by IBBCEAS were found to be in reasonable agreement with those calculated using Mie theory. The results of the study demonstrate the potential of broadband cavity spectrometers for determining the optical properties of aerosols.

  14. Examining the relationship among atmospheric aerosols and light scattering and extinction in the Grand Canyon area

    NASA Astrophysics Data System (ADS)

    Malm, William C.; Molenar, John V.; Eldred, Robert A.; Sisler, James F.

    1996-08-01

    During the winter and summer months of 1990 a special study called Project MOHAVE (measurement of haze and visual effects) was carried out with the principle objective of attributing aerosol species to extinction and scattering and the aerosol species to sources and/or source regions. The study area included much of southern California and Nevada, Arizona, and Utah; however, the intensive monitoring sites and primary focus of the study was on the Colorado Plateau of northern Arizona, southern Nevada, and Utah. This paper reports on the apportionment of various aerosol species to measured fine and coarse mass concentrations and these species to scattering and extinction. The study is unique in that a number of "ambient" integrating nephelometers were operated to measure the ambient scattering coefficient, while transmissometers were used to measure atmospheric extinction. Comparison of measured scattering, extinction, and aerosol species concentration, both statistically and theoretically, allows for an estimate of scattering and absorption efficiencies. Analysis suggests that using elemental carbon, derived from thermal optical techniques, to estimate absorption may significantly underestimate absorption. Using elemental carbon, absorption is estimated to be 5% of extinction, while direct measurements of absorption suggest that it is about 30% of measured extinction. Furthermore, because light absorption by soil is usually not accounted for, soil extinction is underestimated by about 30%.

  15. Particle extinction measured at ambient conditions with differential optical absorption spectroscopy. 2. Closure study.

    PubMed

    Müller, Thomas; Müller, Detlef; Dubois, René

    2006-04-01

    Spectral particle extinction coefficients of atmospheric aerosols were measured with, to the best of our knowledge, a newly designed differential optical absorption spectroscopy (DOAS) instrument. A closure study was carried out on the basis of optical and microphysical aerosol properties obtained from nephelometer, particle soot/absorption photometer, hygroscopic tandem differential mobility analyzer, twin differential mobility particle sizer, aerodynamic particle sizer, and Berner impactors. The data were collected at the urban site of Leipzig during a period of 10 days in March 2000. The performance test also includes a comparison of the optical properties measured with DOAS to particle optical properties calculated with a Mie-scattering code. The computations take into account dry and ambient particle conditions. Under dry particle conditions the linear regression and the correlation coefficient for particle extinction are 0.95 and 0.90, respectively. At ambient conditions these parameters are 0.89 and 0.97, respectively. An inversion algorithm was used to retrieve microphysical particle properties from the extinction coefficients measured with DOAS. We found excellent agreement within the retrieval uncertainties.

  16. Particle extinction measured at ambient conditions with differential optical absorption spectroscopy. 2. Closure study.

    PubMed

    Müller, Thomas; Müller, Detlef; Dubois, René

    2006-04-01

    Spectral particle extinction coefficients of atmospheric aerosols were measured with, to the best of our knowledge, a newly designed differential optical absorption spectroscopy (DOAS) instrument. A closure study was carried out on the basis of optical and microphysical aerosol properties obtained from nephelometer, particle soot/absorption photometer, hygroscopic tandem differential mobility analyzer, twin differential mobility particle sizer, aerodynamic particle sizer, and Berner impactors. The data were collected at the urban site of Leipzig during a period of 10 days in March 2000. The performance test also includes a comparison of the optical properties measured with DOAS to particle optical properties calculated with a Mie-scattering code. The computations take into account dry and ambient particle conditions. Under dry particle conditions the linear regression and the correlation coefficient for particle extinction are 0.95 and 0.90, respectively. At ambient conditions these parameters are 0.89 and 0.97, respectively. An inversion algorithm was used to retrieve microphysical particle properties from the extinction coefficients measured with DOAS. We found excellent agreement within the retrieval uncertainties. PMID:16607998

  17. Spectral Aerosol Extinction (SpEx): A New Instrument for In situ Ambient Aerosol Extinction Measurements Across the UV/Visible Wavelength Range

    NASA Technical Reports Server (NTRS)

    Jordan, C. E.; Anderson, B. E.; Beyersdorf, A. J.; Corr, C. A.; Dibb, J. E.; Greenslade, M. E.; Martin, R. F.; Moore, R. H.; Scheuer, E.; Shook, M. A.; Thornhill, K. L.; Troop, D.; Winstead, Edward L.; Ziemba, L. D.

    2015-01-01

    We introduce a new instrument for the measurement of in situ ambient aerosol extinction over the 300-700 nm wavelength range, the Spectral Aerosol Extinction (SpEx) instrument. This measurement capability is envisioned to complement existing in situ instrumentation, allowing for simultaneous measurement of the evolution of aerosol optical, chemical, and physical characteristics in the ambient environment. In this work, a detailed description of the instrument is provided along with characterization tests performed in the laboratory. Measured spectra of NO2 and polystyrene latex spheres agreed well with theoretical calculations. Good agreement was also found with simultaneous aerosol extinction measurements at 450, 530, and 630 nm using CAPS PMex instruments in a series of 22 tests including non-absorbing compounds, dusts, soot, and black and brown carbon analogs. SpEx can more accurately distinguish the presence of brown carbon from other absorbing aerosol due to its 300 nm lower wavelength limit compared to measurements limited to visible wavelengths. In addition, the spectra obtained by SpEx carry more information than can be conveyed by a simple power law fit that is typically defined by the use of Angstrom Exponents. Future improvements aim at lowering detection limits and ruggedizing the instrument for mobile operation.

  18. Visible and infrared extinction of atmospheric aerosol in the marine and coastal environment.

    PubMed

    Kaloshin, Gennady A

    2011-05-10

    The microphysical model Marine Aerosol Extinction Profiles (MaexPro) for surface layer marine and coastal atmospheric aerosols, which is based on long-term observations of size distributions for 0.01-100 μm particles, is presented. The fundamental feature of the model is a parameterization of amplitudes and widths for aerosol modes of the aerosol size distribution function (ASDF) as functions of fetch and wind speed. The shape of the ASDF and its dependence on meteorological parameters, altitudes above the sea level (H), fetch (X), wind speed (U), and relative humidity is investigated. The model is primarily to characterize aerosols for the near-surface layer (within 25 m). The model is also applicable to higher altitudes within the atmospheric boundary layer, where the change in the vertical profile of aerosol is not very large. In this case, it is only valid for "clean" marine environments, in the absence of air pollution or any other major sources of continental aerosols, such desert dust or smoke from biomass burning. The spectral profiles of the aerosol extinction coefficients calculated by MaexPro are in good agreement with observational data and the numerical results obtained by the well-known Navy Aerosol Model and Advanced Navy Aerosol Model codes. Moreover, MaexPro was found to be an accurate and reliable instrument for investigation of the optical properties of atmospheric aerosols. PMID:21556113

  19. Visible and infrared extinction of atmospheric aerosol in the marine and coastal environment.

    PubMed

    Kaloshin, Gennady A

    2011-05-10

    The microphysical model Marine Aerosol Extinction Profiles (MaexPro) for surface layer marine and coastal atmospheric aerosols, which is based on long-term observations of size distributions for 0.01-100 μm particles, is presented. The fundamental feature of the model is a parameterization of amplitudes and widths for aerosol modes of the aerosol size distribution function (ASDF) as functions of fetch and wind speed. The shape of the ASDF and its dependence on meteorological parameters, altitudes above the sea level (H), fetch (X), wind speed (U), and relative humidity is investigated. The model is primarily to characterize aerosols for the near-surface layer (within 25 m). The model is also applicable to higher altitudes within the atmospheric boundary layer, where the change in the vertical profile of aerosol is not very large. In this case, it is only valid for "clean" marine environments, in the absence of air pollution or any other major sources of continental aerosols, such desert dust or smoke from biomass burning. The spectral profiles of the aerosol extinction coefficients calculated by MaexPro are in good agreement with observational data and the numerical results obtained by the well-known Navy Aerosol Model and Advanced Navy Aerosol Model codes. Moreover, MaexPro was found to be an accurate and reliable instrument for investigation of the optical properties of atmospheric aerosols.

  20. Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique

    NASA Technical Reports Server (NTRS)

    Spinhirne, J. D.; Reagan, J. A.; Herman, B. M.

    1980-01-01

    The paper reports on vertical profiles of aerosol extinction and backscatter in the troposphere which were obtained from multi zenith angle lidar measurements. It is reported that a direct slant path solution was found to be not possible due to horizontal inhomogeneity of the atmosphere. Attention is given to the use of a regression analysis with respect to zenith angle for a layer integration of the angle dependent lidar equation in order to determine the optical thickness and aerosol extinction-to-backscatter ratio for defined atmospheric layers and the subsequent evaluation of cross-section profiles.

  1. In Situ Aerosol Profile Measurements and Comparisons with SAGE 3 Aerosol Extinction and Surface Area Profiles at 68 deg North

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Under funding from this proposal three in situ profile measurements of stratospheric sulfate aerosol and ozone were completed from balloon-borne platforms. The measured quantities are aerosol size resolved number concentration and ozone. The one derived product is aerosol size distribution, from which aerosol moments, such as surface area, volume, and extinction can be calculated for comparison with SAGE III measurements and SAGE III derived products, such as surface area. The analysis of these profiles and comparison with SAGE III extinction measurements and SAGE III derived surface areas are provided in Yongxiao (2005), which comprised the research thesis component of Mr. Jian Yongxiao's M.S. degree in Atmospheric Science at the University of Wyoming. In addition analysis continues on using principal component analysis (PCA) to derive aerosol surface area from the 9 wavelength extinction measurements available from SAGE III. Ths paper will present PCA components to calculate surface area from SAGE III measurements and compare these derived surface areas with those available directly from in situ size distribution measurements, as well as surface areas which would be derived from PCA and Thomason's algorithm applied to the four wavelength SAGE II extinction measurements.

  2. Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles

    NASA Technical Reports Server (NTRS)

    Burton, S. P.; Ferrare, R. A.; Kittaka, C.; Hostetler, C. A.; Hair, J. W.; Obland, M. D.; Rogers, R. R.; Cook, A. L.; Haper, D. B.

    2008-01-01

    Aerosol extinction profiles are derived from backscatter data by constraining the retrieval with column aerosol optical thickness (AOT), for example from coincident MODIS observations and without reliance on a priori assumptions about aerosol type or optical properties. The backscatter data were acquired with the NASA Langley High Spectral Resolution Lidar (HSRL). The HSRL also simultaneously measures extinction independently, thereby providing an ideal data set for evaluating the constrained retrieval of extinction from backscatter. We will show constrained extinction retrievals using various sources of column AOT, and examine comparisons with the HSRL extinction measurements and with a similar retrieval using data from the CALIOP lidar on the CALIPSO satellite.

  3. Aerosol impacts on visible light extinction in the atmosphere of Mexico City.

    PubMed

    Eidels-Dubovoi, Silvia

    2002-03-27

    Eleven diurnal aerosol visible light absorption and scattering patterns were obtained from measurements done with an aethalometer and an integrating nephelometer during 28 February-10 March 1997 at two different sites in the Mexico City basin. Both measurement sites, the Merced site affected by regional and urban-scale aerosol and the Pedregal site dominated by regional-scale aerosol, showed a variety of diurnal light absorption and scattering patterns. For the majority of the 11 studied days, the highest absorption peaks appeared in the early morning, 07.00-09.30 h while those of scattering appeared later, 09.30-11.00 h. The earlier absorption peaks could be attributed to the elevated elemental carbon vehicular emissions during the heavy traffic hours whereas the later scattering peaks could be attributed to secondary aerosols formed photochemically in the atmosphere. During the period examined, the Pedregal site exhibited on the average a lower aerosol scattering and a higher aerosol absorption contribution to the total aerosol visible light extinction and a better visibility than that of the Merced site. Hence, the impact of aerosol absorption on the visibility degradation due to aerosols was greater at the less hazy Pedregal site. The overall 11-day aerosol visibility average of 20.9 km found at La Merced site, was only 9.4 km lower than that of 30.3 km found at the Pedregal site. This small aerosol visibility difference, of the order of the standard deviation, led to the conclusion that besides the regional-scale aerosol impact, the urban-scale aerosol impact on aerosol visible light extinction is very similar at La Merced and Pedregal sites.

  4. Compositional and Optical Properties of Titan Haze Analogs Using Aerosol Mass Spectrometry, Photoacoustic Spectroscopy and Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ugelow, M.; Zarzana, K. J.; Tolbert, M. A.

    2015-12-01

    The organic haze that surrounds Saturn's moon Titan is formed through the photolysis and electron initiated dissociation of methane and nitrogen. The chemical pathways leading to haze formation and the resulting haze optical properties are still highly uncertain. Here we examine the compositional and optical properties of Titan haze aerosol analogs. By studying these properties together, the impact of haze on Titan's radiative balance can be better understood. The aerosol analogs studied are produced from different initial methane concentrations (0.1, 2 and 10% CH4) using spark discharge excitation. To determine the complex refractive index of the aerosol, we combine two spectroscopic techniques, one that measures absorption and one that measures extinction: photoacoustic spectroscopy coupled with cavity ring-down spectroscopy (PASCaRD). This technique provides the benefit of a high precision determination of the imaginary component of the refractive index (k), along with the highly sensitive determination of the real component of the refractive index (n). The refractive indices are retrieved at two wavelengths, 405 and 532 nm, using the PASCaRD system. To yield aerosol composition, quadrupole aerosol mass spectrometry is used. Compositional information is obtained from a technique that uses isotopically labeled and unlabeled methane gas. I will present preliminary data on the complex refractive indices of Titan aerosol analogs at both wavelengths, in conjunction with the aerosol composition as a percent by weight of carbon, nitrogen and hydrogen. The correlation of optical and chemical properties should be useful for remote sensing instruments probing Titan haze.

  5. Raman Lidar Measurements of the Aerosol Extinction-to-Backscatter Ratio Over the Southern Great Plains

    SciTech Connect

    Ferrare, Richard; Turner, David D.; Brasseur, L. H.; Feltz, W. F.; Dubovik, O.; Tooman, Tim P.

    2001-09-16

    We derive profiles of the aerosol extinction-to-backscatter ratio, Sa, at 355 nm using aerosol extinction and backscatter profiles measured during 1998 and 1999 by the operational Raman lidar at the Department of Energy Atmospheric Radiation Measurement program Southern Great Plains site in north central Oklahoma. Data from this Raman/Rayleigh-Mie lidar, which measures Raman scattering from nitrogen as well as the combined molecular (Rayleigh) and aerosol (Mie) scattering at the laser wavelength, are used to derive aerosol extinction and backscattering independently as a function of altitude. Because this lidar operates at 355 nm, where molecular backscattering is comparable with aerosol backscattering, Sa retrievals are generally limited to conditions where the aerosol extinction at 355 nm is > 0.03 km-1. The mean value of Sa at 355 nm derived for this period was 60 sr with a standard deviation of 12 sr. Sa was generally about 5-10 sr higher during high aerosol optical thickness (AOT) (> 0.3) conditions than during low AOT (< 0.1). A similar increase in Sa was found when the relative humidity increased from 30 to 80%. Large (> 15%) variations in the vertical profile of Sa occurred about 30% of the time, which implies significant variability in the vertical distribution of aerosol size distribution, shape, and/or composition often occurs. The Raman lidar measurements of Sa were compared with estimates of particle size and refractive index derived from an algorithm that uses ground-based Sun photometer measurements of Sun and sky radiance. For 17 cases of coincident Raman lidar and Sun and sky radiance measurements, Sa was linearly correlated with the aerosol fine mode effective radius and the volume ratio of fine/coarse particles.

  6. SAGE 1 and SAM 2 measurements of 1 micron aerosol extinction in the free troposphere

    NASA Technical Reports Server (NTRS)

    Kent, G. S.; Farrukh, U. O.; Wang, P. H.; Deepak, A.

    1988-01-01

    The SAGE 1 and SAM 2 satellite sensors were designed to measure, with global coverage, the 1 micron extinction produced by the stratospheric aerosol. In the absence of high altitude cloud, similar measurements may be made for the free tropospheric aerosol. Median extinction values in the Northern Hemisphere, for altitudes between 5 and 10 km, are found to be one-half to one order of magnitude greater than values at corresponding latitudes in the Southern Hemisphere. In addition, a seasonal increase by a factor of 1.5 yields 2 is observed in both hemispheres in local spring and summer. Following major volcanic eruptions, a long-lived enhancement of the aerosol extinction is observed for altitudes above 5 km.

  7. SAGE I and SAM II measurements of 1 micron aerosol extinction in the free troposphere

    NASA Technical Reports Server (NTRS)

    Kent, G. S.; Farrukh, U. O.; Wang, P. H.; Deepak, A.

    1988-01-01

    The SAGE-I and SAM-II satellite sensors were designed to measure, with global coverage, the 1 micron extinction produced by the stratospheric aerosol. In the absence of high altitude clouds, similar measurements may be made for the free tropospheric aerosol. Median extinction values at middle and high latitudes in the Northern Hemisphere, for altitudes between 5 and 10 km, are found to be one-half to one order of magnitude greater than values at corresponding latitudes in the Southern Hemisphere. In addition, a seasonal increase by a factor of 1.5-2 was observed in both hemispheres, in 1979-80, in local spring and summer. Following major volcanic eruptions, a long-lived enhancement of the aerosol extinction is observed for altitudes above 5 km.

  8. Enhanced extinction of visible radiation due to hydrated aerosols in mist and fog

    NASA Astrophysics Data System (ADS)

    Elias, T.; Dupont, J.-C.; Hammer, E.; Hoyle, C. R.; Haeffelin, M.; Burnet, F.; Jolivet, D.

    2015-06-01

    The study assesses the contribution of aerosols to the extinction of visible radiation in the mist-fog-mist cycle. Relative humidity is large in the mist-fog-mist cycle, and aerosols most efficient in interacting with visible radiation are hydrated and compose the accumulation mode. Measurements of the microphysical and optical properties of these hydrated aerosols with diameters larger than 0.4 μm were carried out near Paris, during November 2011, under ambient conditions. Eleven mist-fog-mist cycles were observed, with a cumulated fog duration of 96 h, and a cumulated mist-fog-mist cycle duration of 240 h. In mist, aerosols grew by taking up water at relative humidities larger than 93%, causing a visibility decrease below 5 km. While visibility decreased down from 5 to a few kilometres, the mean size of the hydrated aerosols increased, and their number concentration (Nha) increased from approximately 160 to approximately 600 cm-3. When fog formed, droplets became the strongest contributors to visible radiation extinction, and liquid water content (LWC) increased beyond 7 mg m-3. Hydrated aerosols of the accumulation mode co-existed with droplets, as interstitial non-activated aerosols. Their size continued to increase, and some aerosols achieved diameters larger than 2.5 μm. The mean transition diameter between the aerosol accumulation mode and the small droplet mode was 4.0 ± 1.1 μm. Nha also increased on average by 60 % after fog formation. Consequently, the mean contribution to extinction in fog was 20 ± 15% from hydrated aerosols smaller than 2.5 μm and 6 ± 7% from larger aerosols. The standard deviation was large because of the large variability of Nha in fog, which could be smaller than in mist or 3 times larger. The particle extinction coefficient in fog can be computed as the sum of a droplet component and an aerosol component, which can be approximated by 3.5 Nha (Nha in cm-3 and particle extinction coefficient in Mm-1. We observed an influence of

  9. Frequency dependent complex refractive indices of supercooled liquid water and ice determined from aerosol extinction spectra.

    PubMed

    Zasetsky, A Y; Khalizov, A F; Earle, M E; Sloan, J J

    2005-03-31

    Complex refractive indices of supercooled liquid water at 240, 253, 263, and 273 K, and ice at 200, 210, and 235 K in the mid infrared from 460 to 4000 cm(-1) are reported. The results were obtained from the extinction spectra of small (micron-size) aerosol particles, recorded using the cryogenic flow tube technique. An improved iterative procedure for retrieving complex refractive indices from extinction measurements is described. The refractive indices of ice determined in the present study are in good agreement with data reported earlier. The temperature region and range of states covered in the present work are relevant to the study of upper tropospheric and stratospheric aerosols and clouds.

  10. Improved stratospheric aerosol extinction profiles from SCIAMACHY: validation and sample results

    NASA Astrophysics Data System (ADS)

    von Savigny, C.; Ernst, F.; Rozanov, A.; Hommel, R.; Eichmann, K.-U.; Rozanov, V.; Burrows, J. P.; Thomason, L. W.

    2015-12-01

    Stratospheric aerosol extinction profiles have been retrieved from SCIAMACHY/Envisat measurements of limb-scattered solar radiation. The retrieval is an improved version of an algorithm presented earlier. The retrieved aerosol extinction profiles are compared to co-located aerosol profile measurements from the SAGE II solar occultation instrument at a wavelength of 525 nm. Comparisons were carried out with two versions of the SAGE II data set (version 6.2 and the new version 7.0). In a global average sense the SCIAMACHY and the SAGE II version 7.0 extinction profiles agree to within about 10 % for altitudes above 15 km. Larger relative differences (up to 40 %) are observed at specific latitudes and altitudes. We also find differences between the two SAGE II data versions of up to 40 % for specific latitudes and altitudes, consistent with earlier reports. Sample results on the latitudinal and temporal variability of stratospheric aerosol extinction and optical depth during the SCIAMACHY mission period are presented. The results confirm earlier reports that a series of volcanic eruptions is responsible for the increase in stratospheric aerosol optical depth from 2002 to 2012. Above about an altitude of 28 km, volcanic eruptions are found to have negligible impact in the period 2002-2012.

  11. Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations

    NASA Astrophysics Data System (ADS)

    Cattrall, Christopher; Reagan, John; Thome, Kurt; Dubovik, Oleg

    2005-05-01

    The lidar (extinction-to-backscatter) ratios at 0.55 and 1.02 μm and the spectral lidar, extinction, and backscatter ratios of climatically relevant aerosol species are computed on the basis of selected retrievals of aerosol properties from 26 Aerosol Robotic Network (AERONET) sites across the globe. The values, obtained indirectly from sky radiance and solar transmittance measurements, agree very well with values from direct observations. Low mean values of the lidar ratio, Sa, at 0.55 μm for maritime (27 sr) aerosols and desert dust (42 sr) are clearly distinguishable from biomass burning (60 sr) and urban/industrial pollution (71 sr). The effects of nonsphericity of mineral dust are shown, demonstrating that particle shape must be taken into account in any spaceborne lidar inversion scheme. A new aerosol model representing pollution over Southeast Asia is introduced since lidar (58 sr), color lidar, and extinction ratios in this region are distinct from those over other urban/industrial centers, owing to a greater number of large particles relative to fine particles. This discrimination promises improved estimates of regional climate forcing by aerosols containing black carbon and is expected to be of utility to climate modeling and remote sensing communities. The observed variability of the lidar parameters, combined with current validated aerosol data products from Moderate Resolution Imaging Spectroradiometer (MODIS), will afford improved accuracy in the inversion of spaceborne lidar data over both land and ocean.

  12. In situ measurement of the infrared absorption and extinction of chemical and biologically derived aerosols using flow-through photoacoustics.

    PubMed

    Gurton, Kristan P; Dahmani, Rachid; Ligon, David; Bronk, Burt V

    2005-07-01

    In an effort to establish a more reliable set of optical cross sections for a variety of chemical and biological aerosol simulants, we have developed a flow-through photoacoustic system that is capable of measuring absolute, mass-normalized extinction and absorption cross sections. By employing a flow-through design we avoid issues associated with closed aerosol photoacoustic systems and improve sensitivity. Although the results shown here were obtained for the tunable CO2 laser waveband region, i.e., 9.20-10.80 microm, application to other wavelengths is easily achievable. The aerosols considered are categorized as biological, chemical, and inorganic in origin, i.e., Bacillus atrophaeus endospores, dimethicone silicone oil (SF-96 grade 50), and kaolin clay powder (alumina and silicate), respectively. Results compare well with spectral extinction measured previously by Fourier-transform infrared spectroscopy. Comparisons with Mie theory calculations based on previously published complex indices of refraction and measured size distributions are also presented. PMID:16004057

  13. Measurements of Stratospheric Pinatubo Aerosol Extinction Profiles by a Raman Lidar

    NASA Technical Reports Server (NTRS)

    Abo, Makoto; Nagasawa, Chikao

    1992-01-01

    The Raman lidar has been used for remote measurements of water vapor, ozone and atmospheric temperature in the lower troposphere because the Raman cross section is three orders smaller than the Rayleigh cross section. We estimated the extinction coefficients of the Pinatubo volcanic aerosol in the stratosphere using a Raman lidar. If the precise aerosol extinction coefficients are derived, the backscatter coefficient of a Mie scattering lidar will be more accurately estimated. The Raman lidar has performed to measure density profiles of some species using Raman scattering. Here we used a frequency-doubled Nd:YAG laser for transmitter and received nitrogen vibrational Q-branch Raman scattering signal. Ansmann et al. (1990) derived tropospherical aerosol extinction profiles with a Raman lidar. We think that this method can apply to dense stratospheric aerosols such as Pinatubo volcanic aerosols. As dense aerosols are now accumulated in the stratosphere by Pinatubo volcanic eruption, the error of Ramen lidar signal regarding the fluctuation of air density can be ignored.

  14. Enhanced extinction of visible radiation due to hydrated aerosols in mist and fog

    NASA Astrophysics Data System (ADS)

    Elias, T.; Dupont, J.-C.; Hammer, E.; Hoyle, C. R.; Haeffelin, M.; Burnet, F.; Jolivet, D.

    2015-01-01

    The study assesses the contribution of aerosols to the extinction of visible radiation in the mist-fog-mist cycle. Measurements of the microphysical and optical properties of hydrated aerosols with diameters larger than 400 nm, composing the accumulation mode, which are the most efficient to interact with visible radiation, were carried out near Paris, during November 2011, in ambient conditions. Eleven mist-fog-mist cycles were observed, with cumulated fog duration of 95 h, and cumulated mist-fog-mist duration of 240 h. In mist, aerosols grew up by taking up water at relative humidities larger than 93%, causing a visibility decrease below 5 km. While visibility decreased down to few km, the mean size of the hydrated aerosols increased, and their number concentration (Nha) increased from approximately 160 to approximately 600 cm-3. When fog formed, droplets became the strongest contributors to visible radiation extinction, and liquid water content (LWC) increased beyond 7 mg m-3. Hydrated aerosols of the accumulation mode co-existed with droplets, as interstitial non-activated aerosols. Their size continued to increase, and a significant proportion of aerosols achieved diameters larger than 2.5 μm. The mean transition diameter between the accumulation mode and the small droplet mode was 4.0 ± 1.1 μm. Moreover Nha increased on average by 60% after fog formation. Consequently the mean aerosol contribution to extinction in fog was 20 ± 15% for diameter smaller than 2.5 μm and 6 ± 7% beyond. The standard deviation is large because of the large variability of Nha in fog, which could be smaller than in mist or three times larger. The particle extinction coefficient in fog can be computed as the sum of a droplet component and an aerosol component, which can be approximated by 3.5 Nha (Nha in cm-3 and particle extinction coefficient in Mm-1). We observed an influence of the main formation process on Nha, but not on the contribution to fog extinction by aerosols

  15. Light extinction by aerosols during summer air pollution

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Fraser, R. S.

    1983-01-01

    In order to utilize satellite measurements of optical thickness over land for estimating aerosol properties during air pollution episodes, the optical thickness was measured from the surface and investigated. Aerosol optical thicknesses have been derived from solar transmission measurements in eight spectral bands within the band lambda 440-870 nm during the summers of 1980 and 1981 near Washington, DC. The optical thicknesses for the eight bands are strongly correlated. It was found that first eigenvalue of the covariance matrix of all observations accounts for 99 percent of the trace of the matrix. Since the measured aerosol optical thickness was closely proportional to the wavelength raised to a power, the aerosol size distribution derived from it is proportional to the diameter (d) raised to a power for the range of diameters between 0.1 to 1.0 micron. This power is insensitive to the total optical thickness. Changes in the aerosol optical thickness depend on several aerosol parameters, but it is difficult to identify the dominant one. The effects of relative humidity and accumulation mode concentration on the optical thickness are analyzed theoretically, and compared with the measurements.

  16. Aerosol Backscatter and Extinction Retrieval from Airborne Coherent Doppler Wind Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Chouza, F.; Reitebuch, O.; Groß, S.; Rahm, S.; Freudenthaler, V.; Toledano, C.; Weinzierl, B.

    2016-06-01

    A novel method for coherent Doppler wind lidars (DWLs) calibration is shown in this work. Concurrent measurements of a ground based aerosol lidar operating at 532 nm and an airborne DWL at 2 μm are used in combination with sun photometer measurements for the retrieval of backscatter and extinction profiles. The presented method was successfully applied to the measurements obtained during the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE: http://www.pa.op.dlr.de/saltrace), which aimed to characterize the Saharan dust long range transport between Africa and the Caribbean.

  17. Inter-Comparison of ILAS-II Version 1.4 Aerosol Extinction Coefficient at 780 nm with SAGE II, SAGE III, and POAM III Aerosol Data

    NASA Technical Reports Server (NTRS)

    Saitoh, Naoko; Hayashida, S.; Sugita, T.; Nakajima, H.; Yokota, T.; Hayashi, M.; Shiraishi, K.; Kanzawa, H.; Ejiri, M. K.; Irie, H.; Tanaka, T.; Terao, Y.; Kobayashi, H.; Sasano, Y.; Bevilacqua, R.; Randall, C.; Thomason, L.; Taha, G.

    2006-01-01

    The Improved Limb Atmospheric Spectrometer (ILAS) II on board the Advanced Earth Observing Satellite (ADEOS) II observed stratospheric aerosol in visible/near-infrared/infrared spectra over high latitudes in the Northern and Southern Hemispheres. Observations were taken intermittently from January to March, and continuously from April through October, 2003. We assessed the data quality of ILAS-II version 1.4 aerosol extinction coefficients at 780 nm from comparisons with the Stratospheric Aerosol and Gas Experiment (SAGE) II, SAGE III, and the Polar Ozone and Aerosol Measurement (POAM) III aerosol data. At heights below 20 km in the Northern Hemisphere, aerosol extinction coefficients from ILAS-II agreed with those from SAGE II and SAGE III within 10%, and with those from POAM III within 15%. From 20 to 26 km, ILAS-II aerosol extinction coefficients were smaller than extinction coefficients from the other sensors; differences between ILAS-II and SAGE II ranged from 10% at 20 km to 34% at 26 km. ILAS-II aerosol extinction coefficients from 20 to 25 km in February over the Southern Hemisphere had a negative bias (12-66%) relative to SAGE II aerosol data. The bias increased with increasing altitude. Comparisons between ILAS-II and POAM III aerosol extinction coefficients from January to May in the Southern Hemisphere (defined as the non-Polar Stratospheric Cloud (PSC) season ) yielded qualitatively similar results. From June to October (defined as the PSC season ), aerosol extinction coefficients from ILAS-II were smaller than those from POAM III above 17 km, as in the case of the non-PSC season; however, ILAS-II and POAM III aerosol data were within 15% of each other from 12 to 17 km.

  18. Stratospheric Aerosol and Gas Experiment (SAGE) II and III Aerosol Extinction Measurements in the Arctic Middle and Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Treffeisen, R. E.; Thomason, L. W.; Strom, J.; Herber, A. B.; Burton, S. P.; Yamanouchi, T.

    2006-01-01

    In recent years, substantial effort has been expended toward understanding the impact of tropospheric aerosols on Arctic climate and chemistry. A significant part of this effort has been the collection and documentation of extensive aerosol physical and optical property data sets. However, the data sets present significant interpretive challenges because of the diverse nature of these measurements. Among the longest continuous records is that by the spaceborne Stratospheric Aerosol and Gas Experiment (SAGE) II. Although SAGE tropospheric measurements are restricted to the middle and upper troposphere, they may be able to provide significant insight into the nature and variability of tropospheric aerosol, particularly when combined with ground and airborne observations. This paper demonstrates the capacity of aerosol products from SAGE II and its follow-on experiment SAGE III to describe the temporal and vertical variations of Arctic aerosol characteristics. We find that the measurements from both instruments are consistent enough to be combined. Using this combined data set, we detect a clear annual cycle in the aerosol extinction for the middle and upper Arctic troposphere.

  19. Simultaneous measurement of optical scattering and extinction on dispersed aerosol samples.

    PubMed

    Dial, Kathy D; Hiemstra, Scott; Thompson, Jonathan E

    2010-10-01

    Accurate and precise measurements of light scattering and extinction by atmospheric particulate matter aid understanding of tropospheric photochemistry and are required for estimates of the direct climate effects of aerosols. In this work, we report on a second generation instrument to simultaneously measure light scattering (b(scat)) and extinction (b(ext)) coefficient by dispersed aerosols. The ratio of scattering to extinction is known as the single scatter albedo (SSA); thus, the instrument is referred to as the albedometer. Extinction is measured with the well-established cavity ring-down (CRD) technique, and the scattering coefficient is determined through collection of light scattered from the CRD beam. The improved instrument allows reduction in sample volume to <1% of the original design, and a reduction in response time by a factor of >30. Through using a commercially available condensation particle counter (CPC), we have measured scattering (σ(scat)) and extinction (σ(ext)) cross sections for size-selected ammonium sulfate and nigrosin aerosols. In most cases, the measured scattering and extinction cross section were within 1 standard deviation of the accepted values generated from Mie theory suggesting accurate measurements are made. While measurement standard deviations for b(ext) and b(scat) were generally <1 Mm(-1) when the measurement cell was sealed or purged with filtered air, relative standard deviations >0.1 for these variables were observed when the particle number density was low. It is inferred that statistical fluctuations of the absolute number of particles within the probe beam leads to this effect. However, measured relative precision in albedo is always superior to that which would be mathematically propagated assuming independent measurements of b(scat) and b(ext). Thus, this report characterizes the measurement precision achieved, evaluates the potential for systematic error to be introduced through light absorption by gases

  20. The impact of Pinatubo aerosol extinction on HALOE infrared occultation measurements

    SciTech Connect

    Gordley, L.L.; Thompson, R.E. Jr.; Beaver, G.M.; Russell, J.M. III; Deaver, L.E.; Hervig, M.E.

    1994-12-31

    The use of limb radiation measurements to infer atmospheric parameters continues to be a popular technique. The HALOE (Halogen Occultation Experiment) instrument is a gas correlation radiometer on board the UARS (Upper Atmosphere Research Satellite) that performs solar occultation measurements for inferring vertical profiles of HF, HCl, CH{sub 4}, NO, O{sub 3}, H{sub 2}O, NO{sub 2}, aerosol extinction and temperature. The first four gases and aerosol are inferred from gas correlation measurements. The remainder are inferred from broadband (>20 cm{sup {minus}1}) radiometer measurements. The eruption of Mt. Pinatubo before the UARS launch presented a number of challenges for HALOE data processing. Although ideally the gas correlation technique is insensitive to aerosol, in practice the aerosol signature induces optical effects that must be accurately addressed. The inference of extinction profiles for modeling aerosol signature in the radiometer channels was found to require high vertical resolution. The impact due to vertical resolution and other optical effects on the retrieved results will be discussed. Simulations and HALOE results will be presented to demonstrate and validate the effects. It is found that the Pinatubo layering demands a vertical resolution on the order of 2 km or less to accurately model aerosol effects on broadband limb viewing radiometers.

  1. Selection Algorithm for the CALIPSO Lidar Aerosol Extinction-to-Backscatter Ratio

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Winker, David M.; Vaughan, Mark A.

    2006-01-01

    The extinction-to-backscatter ratio (S(sub a)) is an important parameter used in the determination of the aerosol extinction and subsequently the optical depth from lidar backscatter measurements. We outline the algorithm used to determine Sa for the Cloud and Aerosol Lidar and Infrared Pathfinder Spaceborne Observations (CALIPSO) lidar. S(sub a) for the CALIPSO lidar will either be selected from a look-up table or calculated using the lidar measurements depending on the characteristics of aerosol layer. Whenever suitable lofted layers are encountered, S(sub a) is computed directly from the integrated backscatter and transmittance. In all other cases, the CALIPSO observables: the depolarization ratio, delta, the layer integrated attenuated backscatter, beta, and the mean layer total attenuated color ratio, gamma, together with the surface type, are used to aid in aerosol typing. Once the type is identified, a look-up-table developed primarily from worldwide observations, is used to determine the S(sub a) value. The CALIPSO aerosol models include desert dust, biomass burning, background, polluted continental, polluted dust, and marine aerosols.

  2. Microscopy and Spectroscopy Techniques to Guide Parameters for Modeling Mineral Dust Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Veghte, D. P.; Moore, J. E.; Jensen, L.; Freedman, M. A.

    2013-12-01

    Mineral dust aerosol particles are the second largest emission by mass into the atmosphere and contribute to the largest uncertainty in radiative forcing. Due to the variation in size, composition, and shape, caused by physical and chemical processing, uncertainty exists as to whether mineral dust causes a net warming or cooling effect. We have used Cavity Ring-Down Aerosol Extinction Spectroscopy (CRD-AES), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM) to measure extinction cross sections and morphologies of size-selected, non-absorbing and absorbing mineral dust aerosol particles. We have found that microscopy is essential for characterizing the polydispersity of the size selection of non-spherical particles. Through the combined use of CRD-AES, microscopy, and computation (Mie theory and Discreet Dipole Approximation), we have determined the effect of shape on the optical properties of additional species including clay minerals, quartz, and hematite in the sub-micron regime. Our results have shown that calcite can be treated as polydisperse spheres while quartz and hematite need additional modeling parameters to account for their irregularity. Size selection of clay minerals cannot be performed due to their irregular shape, but microscopy techniques can be used to better quantify the particle aspect ratio. Our results demonstrate a new method that can be used to extend cavity ring-down spectroscopy for the measurement of the optical properties of non-spherical particles. This characterization will lead to better aerosol extinction parameters for modeling aerosol optical properties in climate models and satellite retrieval algorithms.

  3. Latitudinal and altitudinal variation of size distribution of stratospheric aerosols inferred from SAGE aerosol extinction coefficient measurements at two wavelengths

    NASA Technical Reports Server (NTRS)

    Yue, G. K.; Deepak, A.

    1984-01-01

    A method of retrieving aerosol size distribution from the measured extinction of solar radiation at wavelengths of 0.45 microns and 1.0 microns has recently been proposed. This method is utilized to obtain latitudinal and altitudinal variations of size distributions of stratospheric aerosols from the Stratospheric Aerosol and Gas Experiment data for March 1979. Small particles are found in the lower stratosphere of the tropical region, and large particles are found at higher altitudes and latitudes in both hemispheres. Results of this study are consistent with the suggestion that the upper troposphere in tropical regions is a source of condensation nuclei in the stratosphere, and they become mature as they move to higher altitudes and latitude.

  4. Measurement of wavelength-dependent extinction to distinguish between absorbing and nonabsorbing aerosol particulates

    NASA Technical Reports Server (NTRS)

    Portscht, R.

    1977-01-01

    Measurements of spectral transmission factors in smoky optical transmission paths reveal a difference between wavelength exponents of the extinction cross section of high absorption capacity and those of low absorption capacity. A theoretical explanation of this behavior is presented. In certain cases, it is possible to obtain data on the absorption index of aerosol particles in the optical path by measuring the spectral decadic extinction coefficient at, at least, two wavelengths. In this manner it is possible, for instance, to distinguish smoke containing soot from water vapor.

  5. CART and GSFC raman lidar measurements of atmospheric aerosol backscattering and extinction profiles for EOS validation and ARM radiation studies

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Turner, D. D.; Melfi, S. H.; Whiteman, D. N.; Schwenner, G.; Evans, K. D.; Goldsmith, J. E. M.; Tooman, T.

    1998-01-01

    The aerosol retrieval algorithms used by the Moderate-Resolution Imaging Spectroradiometer (MODIS) and Multi-Angle Imaging SpectroRadiometer (MISR) sensors on the Earth Observing Satellite (EOS) AM-1 platform operate by comparing measured radiances with tabulated radiances that have been computed for specific aerosol models. These aerosol models are based almost entirely on surface and/or column averaged measurements and so may not accurately represent the ambient aerosol properties. Therefore, to validate these EOS algorithms and to determine the effects of aerosols on the clear-sky radiative flux, we have begun to evaluate the vertical variability of ambient aerosol properties using the aerosol backscattering and extinction profiles measured by the Cloud and Radiation Testbed (CART) and NASA Goddard Space Flight Center (GSFC) Raman Lidars. Using the procedures developed for the GSFC Scanning Raman Lidar (SRL), we have developed and have begun to implement algorithms for the CART Raman Lidar to routinely provide profiles of aerosol extinction and backscattering during both nighttime and ,daytime operations. Aerosol backscattering and extinction profiles are computed for both lidar systems using data acquired during the 1996 and 1997 Water Vapor Intensive Operating Periods (IOPs). By integrating these aerosol extinction profiles, we derive measurements of aerosol optical thickness and compare these with coincident sun photometer measurements. We also use these measurements to measure the aerosol extinction/backscatter ratio S(sub a) (i.e. 'lidar ratio'). Furthermore, we use the simultaneous water vapor measurements acquired by these Raman lidars to investigate the effects of water vapor on aerosol optical properties.

  6. Modified cavity attenuated phase shift (CAPS) method for airborne aerosol light extinction measurement

    NASA Astrophysics Data System (ADS)

    Perim de Faria, Julia; Bundke, Ulrich; Freedman, Andrew; Petzold, Andreas

    2015-04-01

    Monitoring the direct impact of aerosol particles on climate requires the consideration of at least two major factors: the aerosol single-scattering albedo, defined as the relation between the amount of energy scattered and extinguished by an ensemble of aerosol particles; and the aerosol optical depth, calculated from the integral of the particle extinction coefficient over the thickness of the measured aerosol layer. Remote sensing networks for measuring these aerosol parameters on a regular basis are well in place (e.g., AERONET, ACTRIS), whereas the regular in situ measurement of vertical profiles of atmospheric aerosol optical properties remains still an important challenge in quantifying climate change. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. Recently, a compact and robust family of optical instruments based on the cavity attenuated phase shift (CAPS) technique has become available for measuring aerosol light extinction. In particular, the CAPS PMex particle optical extinction monitor has demonstrated sensitivity of less than 2 Mm-1 in 1 second sampling period; with a 60 s averaging time, a detection limit of less than 0.3 Mm-1 can be achieved. While this technique was successfully deployed for ground-based atmospheric measurements under various conditions, its suitability for operation aboard aircraft in the free and upper free troposphere still has to be demonstrated. Here, we report on the modifications of a CAPS PMex instrument for measuring aerosol light extinction on aircraft, and subsequent laboratory tests for evaluating the modified instrument prototype: (1) In a

  7. Inherent calibration of a novel LED-CE-DOAS instrument to measure iodine oxide, glyoxal, methyl glyoxal, nitrogen dioxide, water vapour and aerosol extinction in open cavity mode

    NASA Astrophysics Data System (ADS)

    Thalman, R.; Volkamer, R.

    2010-06-01

    The combination of Cavity Enhanced Absorption Spectroscopy (CEAS) with broad-band light sources (e.g. Light-Emitting Diodes, LEDs) lends itself to the application of cavity enhanced Differential Optical Absorption Spectroscopy (CE-DOAS) to perform sensitive and selective point measurements of multiple trace gases and aerosol extinction with a single instrument. In contrast to other broad-band CEAS techniques, CE-DOAS relies only on the measurement of relative intensity changes, i.e. does not require knowledge of the light intensity in the absence of trace gases and aerosols (I0). We have built a prototype LED-CE-DOAS instrument in the blue spectral range (420-490 nm) to measure nitrogen dioxide (NO2), glyoxal (CHOCHO), methyl glyoxal (CH3COCHO), iodine oxide (IO), water vapour (H2O) and oxygen dimers (O4). We demonstrate the first CEAS detection of methyl glyoxal, and the first CE-DOAS detection of CHOCHO and IO. A further innovation consists in the measurement of extinction losses from the cavity, e.g. due to aerosols, at two wavelengths by observing O4 (477 nm) and H2O (443 nm) and measuring the pressure, relative humidity and temperature independently. This approach is demonstrated by experiments where laboratory aerosols of known size and refractive index were generated and their extinction measured. The measured extinctions were then compared to the theoretical extinctions calculated using Mie theory (3-7×10-7 cm-1). Excellent agreement is found from both the O4 and H2O retrievals. This enables the first inherently calibrated CEAS measurement in open cavity mode (mirrors facing the open atmosphere), and eliminates the need for sampling lines to supply air to the cavity, and/or keep the cavity enclosed and aerosol free. Measurements in open cavity mode are demonstrated for CHOCHO, CH3COCHO, NO2, H2O and aerosol extinction at 477 nm and 443 nm. Our prototype LED-CE-DOAS provides a low cost, yet research grade innovative instrument for applications in simulation

  8. Comparison of vertical aerosol extinction coefficients from in-situ and LIDAR measurements

    NASA Astrophysics Data System (ADS)

    Rosati, B.; Herrmann, E.; Bucci, S.; Fierli, F.; Cairo, F.; Gysel, M.; Tillmann, R.; Größ, J.; Gobbi, G. P.; Di Liberto, L.; Di Donfrancesco, G.; Wiedensohler, A.; Weingartner, E.; Virtanen, A.; Mentel, T. F.; Baltensperger, U.

    2015-07-01

    Vertical profiles of aerosol optical properties were explored in a case study near the San Pietro Capofiume (SPC) ground station during the PEGASOS Po Valley campaign in the summer of 2012. A Zeppelin NT airship was employed to investigate the effect of the dynamics of the planetary boundary layer at altitudes between ~ 50-800 m above ground. Determined properties included the aerosol size distribution, the hygroscopic growth factor, the effective index of refraction and the light absorption coefficient. The first three parameters were used to retrieve the light scattering coefficient. Simultaneously, direct measurements of both the scattering and absorption coefficient were carried out at the SPC ground station. Additionally, a LIDAR system provided aerosol extinction coefficients for a vertically resolved comparison between in-situ and remote sensing results. First, the airborne results at low altitudes were validated with the ground measurements. Agreement within approximately ±25 and ±20% was found for the dry scattering and absorption coefficient, respectively. The single scattering albedo, ranged between 0.83 to 0.95, indicating the importance of the absorbing particles in the Po Valley region. A clear layering of the atmosphere was observed during the beginning of the flight (until ~ 10 local time) before the mixed layer (ML) was fully developed. Highest extinction coefficients were found at low altitudes, in the new ML, while values in the residual layer, which could be probed at the beginning of the flight at elevated altitudes, were lower. At the end of the flight (after ~ 12 local time) the ML was fully developed, resulting in constant extinction coefficients at all altitudes measured on the Zeppelin NT. LIDAR results captured these dynamic features well and good agreement was found for the extinction coefficients compared to the in-situ results, using fixed LIDAR ratios (LR) between 30 and 70 sr for the altitudes probed with the Zeppelin. These LR are

  9. Use of Lidar Derived Optical Extinction and Backscattering Coefficients Near Cloud Base to Explore Aerosol-Cloud Interactions

    NASA Astrophysics Data System (ADS)

    Han, Zaw; Wu, Yonhgua; Gross, Barry; Moshary, Fred

    2016-06-01

    Combination of microwave radiometer (MWR) and mutlifilter rotating shadowband radiometer (MFRSR) measurement data together with SBDART radiative transfer model to compute cloud optical depth (COD) and cloud droplet effective radius (Reff). Quantify the first aerosol indirect effect using calculated Reff and aerosol extinction from Raman lidar measurement in urban coastal region. Illustrate comparison between ground-based and satellite retrievals. Demonstrate relationship between surface aerosol (PM2.5) loading and Reff. We also explain the sensitivity of aerosol-cloud-index (ACI) depend on the aerosol layer from cloud base height. Potential used of less noisy elastic backscattering to calculate the ACI instead of using Raman extinction. We also present comparison of elastic backscattering and Raman extinction correlation to Reff.

  10. The impacts of aerosol loading, composition, and water uptake on aerosol extinction variability in the Baltimore-Washington, D.C. region

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Ziemba, L. D.; Chen, G.; Corr, C. A.; Crawford, J. H.; Diskin, G. S.; Moore, R. H.; Thornhill, K. L.; Winstead, E. L.; Anderson, B. E.

    2016-01-01

    In order to utilize satellite-based aerosol measurements for the determination of air quality, the relationship between aerosol optical properties (wavelength-dependent, column-integrated extinction measured by satellites) and mass measurements of aerosol loading (PM2.5 used for air quality monitoring) must be understood. This connection varies with many factors including those specific to the aerosol type - such as composition, size, and hygroscopicity - and to the surrounding atmosphere, such as temperature, relative humidity (RH), and altitude, all of which can vary spatially and temporally. During the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) project, extensive in situ atmospheric profiling in the Baltimore, MD-Washington, D.C. region was performed during 14 flights in July 2011. Identical flight plans and profile locations throughout the project provide meaningful statistics for determining the variability in and correlations between aerosol loading, composition, optical properties, and meteorological conditions. Measured water-soluble aerosol mass was composed primarily of ammonium sulfate (campaign average of 32 %) and organics (57 %). A distinct difference in composition was observed, with high-loading days having a proportionally larger percentage of sulfate due to transport from the Ohio River Valley. This composition shift caused a change in the aerosol water-uptake potential (hygroscopicity) such that higher relative contributions of inorganics increased the bulk aerosol hygroscopicity. These days also tended to have higher relative humidity, causing an increase in the water content of the aerosol. Conversely, low-aerosol-loading days had lower sulfate and higher black carbon contributions, causing lower single-scattering albedos (SSAs). The average black carbon concentrations were 240 ng m-3 in the lowest 1 km, decreasing to 35 ng m-3 in the free troposphere (above

  11. SAGE III Aerosol Extinction Validation in the Arctic Winter: Comparisons with SAGE II and POAM III

    NASA Technical Reports Server (NTRS)

    Thomason, L. W.; Poole, L. R.; Randall, C. E.

    2007-01-01

    The use of SAGE III multiwavelength aerosol extinction coefficient measurements to infer PSC type is contingent on the robustness of both the extinction magnitude and its spectral variation. Past validation with SAGE II and other similar measurements has shown that the SAGE III extinction coefficient measurements are reliable though the comparisons have been greatly weighted toward measurements made at mid-latitudes. Some aerosol comparisons made in the Arctic winter as a part of SOLVE II suggested that SAGE III values, particularly at longer wavelengths, are too small with the implication that both the magnitude and the wavelength dependence are not reliable. Comparisons with POAM III have also suggested a similar discrepancy. Herein, we use SAGE II data as a common standard for comparison of SAGE III and POAM III measurements in the Arctic winters of 2002/2003 through 2004/2005. During the winter, SAGE II measurements are made infrequently at the same latitudes as these instruments. We have mitigated this problem through the use potential vorticity as a spatial coordinate and thus greatly increased the number of coincident events. We find that SAGE II and III extinction coefficient measurements show a high degree of compatibility at both 1020 nm and 450 nm except a 10-20% bias at both wavelengths. In addition, the 452 to 1020-nm extinction ratio shows a consistent bias of approx. 30% throughout the lower stratosphere. We also find that SAGE II and POAM III are on average consistent though the comparisons show a much higher variability and larger bias than SAGE II/III comparisons. In addition, we find that the two data sets are not well correlated below 18 km. Overall, we find both the extinction values and the spectral dependence from SAGE III are robust and we find no evidence of a significant defect within the Arctic vortex.

  12. Optical and physical properties of stratospheric aerosols from balloon measurements in the visible and near-infrared domains. 1. Analysis of aerosol extinction spectra from the AMON and SALOMON balloonborne spectrometers.

    PubMed

    Berthet, Gwenaël; Renard, Jean-Baptiste; Brogniez, Colette; Robert, Claude; Chartier, Michel; Pirre, Michel

    2002-12-20

    Aerosol extinction coefficients have been derived in the 375-700-nm spectral domain from measurement in the stratosphere since 1992, at night, at mid- and high latitudes from 15 to 40 km, by two balloonborne spectrometers, Absorption par les Minoritaires Ozone et NO(chi) (AMON) and Spectroscopie d'Absorption Lunaire pour l'Observation des Minoritaires Ozone et NO(chi) (SALOMON). Log-normal size distributions associated with the Mie-computed extinction spectra that best fit the measurements permit calculation of integrated properties of the distributions. Although measured extinction spectra that correspond to background aerosols can be reproduced by the Mie scattering model by use of monomodal log-normal size distributions, each flight reveals some large discrepancies between measurement and theory at several altitudes. The agreement between measured and Mie-calculated extinction spectra is significantly improved by use of bimodal log-normal distributions. Nevertheless, neither monomodal nor bimodal distributions permit correct reproduction of some of the measured extinction shapes, especially for the 26 February 1997 AMON flight, which exhibited spectral behavior attributed to particles from a polar stratospheric cloud event.

  13. Inherent calibration of a blue LED-CE-DOAS instrument to measure iodine oxide, glyoxal, methyl glyoxal, nitrogen dioxide, water vapour and aerosol extinction in open cavity mode

    NASA Astrophysics Data System (ADS)

    Thalman, R.; Volkamer, R.

    2010-12-01

    The combination of Cavity Enhanced Absorption Spectroscopy (CEAS) with broad-band light sources (e.g. Light-Emitting Diodes, LEDs) lends itself to the application of cavity enhanced Differential Optical Absorption Spectroscopy (CE-DOAS) to perform sensitive and selective point measurements of multiple trace gases and aerosol extinction with a single instrument. In contrast to other broad-band CEAS techniques, CE-DOAS relies only on the measurement of relative intensity changes, i.e. does not require knowledge of the light intensity in the absence of trace gases and aerosols (I0). We have built a prototype LED-CE-DOAS instrument in the blue spectral range (420-490 nm) to measure nitrogen dioxide (NO2), glyoxal (CHOCHO), methyl glyoxal (CH3COCHO), iodine oxide (IO), water vapour (H2O) and oxygen dimers (O4). We demonstrate the first direct detection of methyl glyoxal, and the first CE-DOAS detection of CHOCHO and IO. The instrument is further inherently calibrated for light extinction from the cavity by observing O4 or H2O (at 477 nm and 443 nm) and measuring the pressure, relative humidity and temperature independently. This approach is demonstrated by experiments where laboratory aerosols of known size and refractive index were generated and their extinction measured. The measured extinctions were then compared to the theoretical extinctions calculated using Mie theory (3-7 × 10-7cm-1). Excellent agreement is found from both the O4 and H2O retrievals. This enables the first inherently calibrated CEAS measurement at blue wavelengths in open cavity mode, and eliminates the need for sampling lines to supply air to the cavity, i.e., keep the cavity enclosed and/or aerosol free. Measurements in open cavity mode are demonstrated for CHOCHO, CH3COCHO, NO2, H2O and aerosol extinction. Our prototype LED-CE-DOAS provides a low cost, yet research grade innovative instrument for applications in simulation chambers and in the open atmosphere.

  14. Relationships between optical extinction, backscatter and aerosol surface and volume in the stratosphere following the eruption of Mt. Pinatubo

    SciTech Connect

    Brock, C.A.; Jonsson, H.H.; Wilson, J.C. ); Dye, J.E.; Baumgardner, D.; Borrmann, S.; Pitts, M.C.; Osborn, M.T.; DeCoursey, R.J.; Woods, D.C.

    1993-11-19

    The eruption of the Mt. Pinatubo volcano in the Philippines in June 1991 has resulted in increases in the surface and mass concentrations of aerosol particles in the lower stratosphere. Airborne measurements made at midlatitudes between 15 and 21 km from August 1991 to March 1992 show that, prior to December 1991, the Pinatubo aerosol cloud varied widely in microphysical properties such as size distribution, number, surface and volume concentration and was also spatially variable. Aerosol surface area concentration was found to be highly correlated to extinction at visible and near-infrared wavelengths throughout the measurement period. Similarly, backscatter at common lidar wavelengths was a good predictor of aerosol volume concentrations. These results support the use of satellite extinction measurements to estimate aerosol surface and of lidar measurements to estimate aerosol volume or mass if temporal changes in the relationships between the variables are considered. 23 refs., 3 figs., 1 tab.

  15. On the application of Open-Path Fourier Transform Infra-Red spectroscopy to measure aerosols: Observations of water droplets

    SciTech Connect

    Hashmonay, R.A.; Yost, M.G.

    1999-04-01

    This paper proposes the application of Open-Path Fourier Transform Infra-Red (OP-FTIR) spectroscopy to measure aerosols. A preliminary experiment conducted in a standard shower chamber generated a condensed water aerosol cloud. The OP-FTIR beam acquired spectra through the cloud of water droplets. The authors matched calculated extinction spectra to measured extinction in the spectral range between 500 and 5,000 wavenumbers by using Mie theory for spherical particles. The results indicate that size distribution parameters may be retrieved from OP-FTIR spectra acquired over a 1 km optical path with reasonable detection limits on the order of 10 {micro}g{center_dot}m{sup {minus}3} for aerosols with optical properties equivalent to water.

  16. Analysis of DIAL/HSRL aerosol backscatter and extinction profiles during the SEAC4RS campaign with an aerosol assimilation system

    NASA Astrophysics Data System (ADS)

    Weaver, C. J.; da Silva, A. M., Jr.; Colarco, P. R.; Randles, C. A.

    2015-12-01

    We retrieve aerosol concentrations and optical information from vertical profiles of airborne 532 nm extinction and 532 and 1064 nm backscatter measurements made during the SEAC4RS summer 2013 campaign. The observations are from the High Spectral Resolution Lidar (HSRL) Airborne Differential Absorption Lidar (DIAL) on board the NASA DC-8. Instead of retrieving information about aerosol microphysical properties such as indexes of refraction, we seek information more directly applicable to an aerosol transport model - in our case the Goddard Chemistry Aerosol Radiation and Transport (GOCART) module used in the GEOS-5 Earth modeling system. A joint atmosphere/aerosol mini-reanalysis was performed for the SEAC4RS period using GEOS-5. The meteorological reanalysis followed the MERRA-2 atmospheric reanalysis protocol, and aerosol information from MODIS, MISR, and AERONET provided a constraint on the simulated aerosol optical depth (i.e., total column loading of aerosols). We focus on the simulated concentrations of 10 relevant aerosol species simulated by the GOCART module: dust, sulfate, and organic and black carbon. Our first retrieval algorithm starts with the SEAC4RS mini-reanalysis and adjusts the concentration of each GOCART aerosol species so that differences between the observed and simulated backscatter and extinction measurements are minimized. In this case, too often we are unable to simulate the observations by simple adjustment of the aerosol concentrations. A second retrieval approach adjusts both the aerosol concentrations and the optical parameters (i.e., assigned mass extinction efficiency) associated with each GOCART species. We present results from DC-8 flights over smoke from forest fires over the western US using both retrieval approaches. Finally, we compare our retrieved quantities with in-situ observations of aerosol absorption, scattering, and mass concentrations at flight altitude.

  17. Cavity Attenuated Phase Shift (CAPS) Method for Airborne Aerosol Light Extinction Measurement: Instrument Validation and First Results from Field Deployment

    NASA Astrophysics Data System (ADS)

    Petzold, A.; Perim de Faria, J.; Berg, M.; Bundke, U.; Freedman, A.

    2015-12-01

    Monitoring the direct impact of aerosol particles on climate requires the continuous measurement of aerosol optical parameters like the aerosol extinction coefficient on a regular basis. Remote sensing and ground-based networks are well in place (e.g., AERONET, ACTRIS), whereas the regular in situ measurement of vertical profiles of atmospheric aerosol optical properties remains still an important challenge in quantifying climate change. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. Recently, a compact and robust family of optical instruments based on the cavity attenuated phase shift (CAPS) technique has become available for measuring aerosol light extinction. While this technique was successfully deployed for ground-based atmospheric measurements under various conditions, its suitability for operation aboard aircraft in the free and upper free troposphere still has to be demonstrated. In this work, the modifications of a CAPS PMex instrument for measuring aerosol light extinction on aircraft, the results from subsequent laboratory tests for evaluating the modified instrument prototype, and first results from a field deployment aboard a research aircraft will be covered. In laboratory studies, the instrument showed excellent agreement (deviation < 5%) with theoretical values calculated from Rayleigh scattering cross-sections, when operated on pressurized air and CO2 at ambient and low pressure (~200 hPa). For monodisperse and polydisperse aerosols, reference aerosol extinction coefficients were calculated from measured size distributions and agreed with the CAPS PMex instrument

  18. Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles

    NASA Technical Reports Server (NTRS)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Kittaka, C.; Vaughn, M. A.; Remer, L. A.

    2010-01-01

    We derive aerosol extinction profiles from airborne and space-based lidar backscatter signals by constraining the retrieval with column aerosol optical thickness (AOT), with no need to rely on assumptions about aerosol type or lidar ratio. The backscatter data were acquired by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL) and by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. The HSRL also simultaneously measures aerosol extinction coefficients independently using the high spectral resolution lidar technique, thereby providing an ideal data set for evaluating the retrieval. We retrieve aerosol extinction profiles from both HSRL and CALIOP attenuated backscatter data constrained with HSRL, Moderate-Resolution Imaging Spectroradiometer (MODIS), and Multiangle Imaging Spectroradiometer column AOT. The resulting profiles are compared with the aerosol extinction measured by HSRL. Retrievals are limited to cases where the column aerosol thickness is greater than 0.2 over land and 0.15 over water. In the case of large AOT, the results using the Aqua MODIS constraint over water are poorer than Aqua MODIS over land or Terra MODIS. The poorer results relate to an apparent bias in Aqua MODIS AOT over water observed in August 2007. This apparent bias is still under investigation. Finally, aerosol extinction coefficients are derived from CALIPSO backscatter data using AOT from Aqua MODIS for 28 profiles over land and 9 over water. They agree with coincident measurements by the airborne HSRL to within +/-0.016/km +/- 20% for at least two-thirds of land points and within +/-0.028/km +/- 20% for at least two-thirds of ocean points.

  19. An effective inversion algorithm for retrieving bimodal aerosol particle size distribution from spectral extinction data

    NASA Astrophysics Data System (ADS)

    He, Zhenzong; Qi, Hong; Yao, Yuchen; Ruan, Liming

    2014-12-01

    The Ant Colony Optimization algorithm based on the probability density function (PDF-ACO) is applied to estimate the bimodal aerosol particle size distribution (PSD). The direct problem is solved by the modified Anomalous Diffraction Approximation (ADA, as an approximation for optically large and soft spheres, i.e., χ≫1 and |m-1|≪1) and the Beer-Lambert law. First, a popular bimodal aerosol PSD and three other bimodal PSDs are retrieved in the dependent model by the multi-wavelength extinction technique. All the results reveal that the PDF-ACO algorithm can be used as an effective technique to investigate the bimodal PSD. Then, the Johnson's SB (J-SB) function and the modified beta (M-β) function are employed as the general distribution function to retrieve the bimodal PSDs under the independent model. Finally, the J-SB and M-β functions are applied to recover actual measurement aerosol PSDs over Beijing and Shanghai obtained from the aerosol robotic network (AERONET). The numerical simulation and experimental results demonstrate that these two general functions, especially the J-SB function, can be used as a versatile distribution function to retrieve the bimodal aerosol PSD when no priori information about the PSD is available.

  20. Modeling of growth and evaporation effects on the extinction of 1.0-micron solar radiation traversing stratospheric sulfuric acid aerosols

    NASA Technical Reports Server (NTRS)

    Yue, G. K.; Deepak, A.

    1981-01-01

    The effects of growth and evaporation of stratospheric sulfuric acid aerosols on the extinction of solar radiation traversing such an aerosol medium are reported for the case of 1.0-micron solar radiation. Modeling results show that aerosol extinction is not very sensitive to the change of ambient water vapor concentration, but is sensitive to ambient temperature changes, especially at low ambient temperatures and high ambient water vapor concentration. A clarification is given of the effects of initial aerosol size distribution and composition on the change of aerosol extinction due to growth and evaporation processes. It is shown that experiments designed to observe solar radiation extinction of aerosols may also be applied to the determination of observed changes in aerosol optical properties, environmental parameters, or the physical and optical characteristics of sulfate aerosols.

  1. Trace aerosol detection and identification by dynamic photoacoustic spectroscopy.

    PubMed

    Sullenberger, R M; Clark, M L; Kunz, R R; Samuels, A C; Emge, D K; Ellzy, M W; Wynn, C M

    2014-12-15

    Dynamic photoacoustic spectroscopy (DPAS) is a high sensitivity technique for standoff detection of trace vapors. A field-portable DPAS system has potential as an early warning provider for gaseous-based chemical threats. For the first time, we utilize DPAS to successfully detect the presence of trace aerosols. Aerosol identification via long-wavelength infrared (LWIR) spectra is demonstrated. We estimate the sensitivity of our DPAS system to aerosols comprised of silica particles is comparable to that of SF(6) gas based on a signal level per absorbance unit metric for the two materials. The implications of these measurements are discussed. PMID:25607495

  2. Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients.

    PubMed

    Esselborn, Michael; Wirth, Martin; Fix, Andreas; Tesche, Matthias; Ehret, Gerhard

    2008-01-20

    An airborne high spectral resolution lidar (HSRL) based on an iodine absorption filter and a high-power frequency-doubled Nd:YAG laser has been developed to measure backscatter and extinction coefficients of aerosols and clouds. The instrument was operated aboard the Falcon 20 research aircraft of the German Aerospace Center (DLR) during the Saharan Mineral Dust Experiment in May-June 2006 to measure optical properties of Saharan dust. A detailed description of the lidar system, the analysis of its data products, and measurements of backscatter and extinction coefficients of Saharan dust are presented. The system errors are discussed and airborne HSRL results are compared to ground-based Raman lidar and sunphotometer measurements.

  3. Use of rotational Raman measurements in multiwavelength aerosol lidar for evaluation of particle backscattering and extinction

    NASA Astrophysics Data System (ADS)

    Veselovskii, I.; Whiteman, D. N.; Korenskiy, M.; Suvorina, A.; Pérez-Ramírez, D.

    2015-10-01

    Vibrational Raman scattering from nitrogen is commonly used in aerosol lidars for evaluation of particle backscattering (β) and extinction (α) coefficients. However, at mid-visible wavelengths, particularly in the daytime, previous measurements have possessed low signal-to-noise ratio. Also, vibrational scattering is characterized by a significant frequency shift of the Raman component, so for the calculation of α and β information about the extinction Ångström exponent is needed. Simulation results presented in this study demonstrate that ambiguity in the choice of Ångström exponent can be the a significant source of uncertainty in the calculation of backscattering coefficients when optically thick aerosol layers are considered. Both of these issues are addressed by the use of pure-rotational Raman (RR) scattering, which is characterized by a higher cross section compared to nitrogen vibrational scattering, and by a much smaller frequency shift, which essentially removes the sensitivity to changes in the Ångström exponent. We describe a practical implementation of rotational Raman measurements in an existing Mie-Raman lidar to obtain aerosol extinction and backscattering at 532 nm. A 2.3 nm width interference filter was used to select a spectral range characterized by low temperature sensitivity within the anti-Stokes branch of the RR spectrum. Simulations demonstrate that the temperature dependence of the scattering cross section does not exceed 1.5 % in the 230-300 K range, making correction for this dependence quite easy. With this upgrade, the NASA GSFC multiwavelength Raman lidar has demonstrated useful α532 measurements and was used for regular observations. Examples of lidar measurements and inversion of optical data to the particle microphysics are given.

  4. In situ infrared aerosol spectroscopy for a variety of nerve agent simulants using flow-through photoacoustics.

    PubMed

    Gurton, Kristan P; Felton, Melvin; Dahmani, Rachid; Ligon, David

    2007-09-01

    We present newly measured results of an ongoing experimental program established to measure optical cross sections in the mid- and long-wave infrared for a variety of chemically and biologically based aerosols. For this study we consider only chemically derived aerosols, and in particular, a group of chemical compounds often used as simulants for the detection of extremely toxic organophosphorus nerve agents. These materials include: diethyl methylphosphonate (DEMP), dimethyl methylphosphonate (DMMP), diisopropyl methylphosphonate (DIMP), and diethyl phthalate (DEP). As reported in a prior study [Appl. Opt. 44, 4001 (2005)], we combine two optical techniques well suited for aerosol spectroscopy [i.e., flow-through photoacoustics and Fourier transform infrared (FTIR) emission spectroscopy], to measure in situ the absolute extinction and absorption cross sections over a variety of wavelengths spanning the IR spectral region from 3 to 13 mum. Aerosol size distribution(s), particle number density, and dosimetric measurements are recorded simultaneously in order to present optical cross sections that are aerosol mass normalized, i.e., m(2)/gram. Photoacoustic results, conducted at a series of CO(2) laser lines, compare well with measured broadband FTIR spectral extinction. Both FTIR and photoacoustic data also compare well with Mie theory calculations based on measured size distributions and previously published complex indices of refraction. PMID:17805369

  5. In situ infrared aerosol spectroscopy for a variety of nerve agent simulants using flow-through photoacoustics

    NASA Astrophysics Data System (ADS)

    Gurton, Kristan P.; Felton, Melvin; Dahmani, Rachid; Ligon, David

    2007-09-01

    We present newly measured results of an ongoing experimental program established to measure optical cross sections in the mid- and long-wave infrared for a variety of chemically and biologically based aerosols. For this study we consider only chemically derived aerosols, and in particular, a group of chemical compounds often used as simulants for the detection of extremely toxic organophosphorus nerve agents. These materials include: diethyl methylphosphonate (DEMP), dimethyl methylphosphonate (DMMP), diisopropyl methylphosphonate (DIMP), and diethyl phthalate (DEP). As reported in a prior study [Appl. Opt. 44, 4001 (2005)], we combine two optical techniques well suited for aerosol spectroscopy [i.e., flow-through photoacoustics and Fourier transform infrared (FTIR) emission spectroscopy], to measure in situ the absolute extinction and absorption cross sections over a variety of wavelengths spanning the IR spectral region from 3 to 13 μm. Aerosol size distribution(s), particle number density, and dosimetric measurements are recorded simultaneously in order to present optical cross sections that are aerosol mass normalized, i.e., m2/gram. Photoacoustic results, conducted at a series of CO2 laser lines, compare well with measured broadband FTIR spectral extinction. Both FTIR and photoacoustic data also compare well with Mie theory calculations based on measured size distributions and previously published complex indices of refraction.

  6. Studying the vertical aerosol extinction coefficient by comparing in situ airborne data and elastic backscatter lidar

    NASA Astrophysics Data System (ADS)

    Rosati, Bernadette; Herrmann, Erik; Bucci, Silvia; Fierli, Federico; Cairo, Francesco; Gysel, Martin; Tillmann, Ralf; Größ, Johannes; Gobbi, Gian Paolo; Di Liberto, Luca; Di Donfrancesco, Guido; Wiedensohler, Alfred; Weingartner, Ernest; Virtanen, Annele; Mentel, Thomas F.; Baltensperger, Urs

    2016-04-01

    Vertical profiles of aerosol particle optical properties were explored in a case study near the San Pietro Capofiume (SPC) ground station during the PEGASOS Po Valley campaign in the summer of 2012. A Zeppelin NT airship was employed to investigate the effect of the dynamics of the planetary boundary layer at altitudes between ˜ 50 and 800 m above ground. Determined properties included the aerosol particle size distribution, the hygroscopic growth factor, the effective index of refraction and the light absorption coefficient. The first three parameters were used to retrieve the light scattering coefficient. Simultaneously, direct measurements of both the scattering and absorption coefficient were carried out at the SPC ground station. Additionally, a single wavelength polarization diversity elastic lidar system provided estimates of aerosol extinction coefficients using the Klett method to accomplish the inversion of the signal, for a vertically resolved comparison between in situ and remote-sensing results. Note, however, that the comparison was for the most part done in the altitude range where the overlap function is incomplete and accordingly uncertainties are larger. First, the airborne results at low altitudes were validated with the ground measurements. Agreement within approximately ±25 and ±20 % was found for the dry scattering and absorption coefficient, respectively. The single scattering albedo, ranged between 0.83 and 0.95, indicating the importance of the absorbing particles in the Po Valley region. A clear layering of the atmosphere was observed during the beginning of the flight (until ˜ 10:00 LT - local time) before the mixing layer (ML) was fully developed. Highest extinction coefficients were found at low altitudes, in the new ML, while values in the residual layer, which could be probed at the beginning of the flight at elevated altitudes, were lower. At the end of the flight (after ˜ 12:00 LT) the ML was fully developed, resulting in

  7. How well can we Measure the Vertical Profile of Tropospheric Aerosol Extinction?

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Ferrare, R.; Flynn, C.; Elleman, R.; Covert, D.; Strawa, A.; Welton, E.; Turner, D.; Jonsson, H.; Redemann, J.

    2005-01-01

    The recent Department of Energy Atmospheric Radiation Measurement (ARM) Aerosol Intensive Operations Period (MOP, May 2003) yielded one of the best measurement sets obtained to-date to assess our ability to measure the vertical profile of ambient aerosol extinction sigma(sub ep)(lambda) in the lower troposphere. During one month, a heavily instrumented aircraft with well characterized aerosol sampling ability carrying well proven and new aerosol instrumentation, devoted most of the 60 available flight hours to flying vertical profiles over the heavily instrumented ARM Southern Great Plains (SGP) Climate Research Facility (CRF). This allowed us to compare vertical extinction profiles obtained from 6 different instuments: airborne Sun photometer (AATS-14), airborne nephelometer/absorption photometer, airborne cavity ring-down system, ground-based Raman lidar and 2 ground-based elastic backscatter lidars. We find the in-situ measured sigma(sub ep)(lambda) to be lower than the AATS-14 derived values. Bias differences are 0.002 - 0.004 K/m equivalent to 12-17% in the visible, or 45% in the near-infrared. On the other hand, we find that with respect to AATS-14, the lidar sigma(sub ep)(lambda) are higher. An unnoticed loss of sensitivity of the Raman lidar had occurred leading up to AIOP and we expect better agreement from the recently restored system looking at the collective results from 6 field campaigns conducted since 1996, airborne in situ measurements of sigma(sub ep)(lambda) tend to be biased slightly low (17% at visible wavelengths) when compared to airborne Sun photometer sigma(sub ep)(lambda). On the other hand, sigma(sub ep)(lambda) values derived from lidars tend to have no or positive biases. From the bias differences we conclude that the typical systematic error associated with measuring the tropospheric vertical profile of the ambient aerosol extinction with current state of-the art instrumentation is 15-20% at visible wavelengths and potentially larger in

  8. Statistical Characteristics of Aerosol Extinction Coefficient Profile in East Asia from CALIPSO

    NASA Astrophysics Data System (ADS)

    Sun, Xuejin; Zhou, Junhao; Zhou, Yongbo

    2016-06-01

    Aerosol extinction coefficient profile (ECP) is important in radiative transfer modeling, however, knowledge of ECP in some area has not been clearly recognized. To get a full understanding of statistical characteristics of ECP in three Asian regions: the Mongolian Plateau, the North China Plain and the Yellow Sea, CALIPSO aerosol product in 2012 is processed by conventional statistical methods. Orbit averaged ECP turns out to be mainly exponential and Gaussian patterns. Curve fitting shows that the two ECP patterns account for more than 50 percent of all the samples, especially in the Yellow Sea where the frequency of occurrence even reaches over 80 percent. Parameters determining fitting curves are provided consequently. To be specific, Gaussian pattern is the main ECP distribution in the Mongolian Plateau and the Yellow Sea, and exponential pattern predominates in the North China Plain. Besides, aerosol scale height reaches its maximum in summer and in the Mongolian Plateau. Meanwhile, the uplifting and deposition of dust during transportation are potentially explanations to the occurrence of Gaussian ECP. The results have certain representativeness, and contribute to reducing uncertainties of aerosol model in relevant researches.

  9. Chemical composition of aerosol particles and light extinction apportionment before and during the heating season in Beijing, China

    NASA Astrophysics Data System (ADS)

    Wang, Qingqing; Sun, Yele; Jiang, Qi; Du, Wei; Sun, Chengzhu; Fu, Pingqing; Wang, Zifa

    2015-12-01

    Despite extensive efforts into characterization of the sources and formation mechanisms of severe haze pollution in the megacity of Beijing, the response of aerosol composition and optical properties to coal combustion emissions in the heating season remain poorly understood. Here we conducted a 3 month real-time measurement of submicron aerosol (PM1) composition by an Aerosol Chemical Speciation Monitor and particle light extinction by a Cavity Attenuated Phase Shift extinction monitor in Beijing, China, from 1 October to 31 December 2012. The average (±σ) PM1 concentration was 82.4 (±73.1) µg/m3 during the heating period (HP, 15 November to 31 December), which was nearly 50% higher than that before HP (1 October to 14 November). While nitrate and secondary organic aerosol (SOA) showed relatively small changes, organics, sulfate, and chloride were observed to have significant increases during HP, indicating the dominant impacts of coal combustion sources on these three species. The relative humidity-dependent composition further illustrated an important role of aqueous-phase processing for the sulfate enhancement during HP. We also observed great increases of hydrocarbon-like OA (HOA) and coal combustion OA (CCOA) during HP, which was attributed to higher emissions at lower temperatures and coal combustion emissions, respectively. The relationship between light extinction and chemical composition was investigated using a multiple linear regression model. Our results showed that the largest contributors to particle extinction were ammonium nitrate (32%) and ammonium sulfate (28%) before and during HP, respectively. In addition, the contributions of SOA and primary OA to particle light extinction were quantified. The results showed that the OA extinction was mainly caused by SOA before HP and by SOA and CCOA during HP, yet with small contributions from HOA and cooking aerosol for the entire study period. Our results elucidate substantial changes of aerosol

  10. Characterization of urban aerosol using aerosol mass spectrometry and proton nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Cleveland, M. J.; Ziemba, L. D.; Griffin, R. J.; Dibb, J. E.; Anderson, C. H.; Lefer, B.; Rappenglück, B.

    2012-07-01

    Particulate matter was measured during August and September of 2006 in Houston as part of the Texas Air Quality Study II Radical and Aerosol Measurement Project. Aerosol size and composition were determined using an Aerodyne quadrupole aerosol mass spectrometer. Aerosol was dominated by sulfate (4.1 ± 2.6 μg m-3) and organic material (5.5 ± 4.0 μg m-3), with contributions of organic material from both primary (˜32%) and secondary (˜68%) sources. Secondary organic aerosol appears to be formed locally. In addition, 29 aerosol filter samples were analyzed using proton nuclear magnetic resonance (1H NMR) spectroscopy to determine relative concentrations of organic functional groups. Houston aerosols are less oxidized than those observed elsewhere, with smaller relative contributions of carbon-oxygen double bonds. These particles do not fit 1H NMR source apportionment fingerprints for identification of secondary, marine, and biomass burning organic aerosol, suggesting that a new fingerprint for highly urbanized and industrially influenced locations be established.

  11. Retrieval of aerosol refractive index from extinction spectra with a damped harmonic-oscillator band model.

    PubMed

    Thomas, Gareth E; Bass, Stephen F; Grainger, Roy G; Lambert, Alyn

    2005-03-01

    A new method for the retrieval of the spectral refractive indices of micrometer-sized particles from infrared aerosol extinction spectra has been developed. With this method we use a classical damped harmonic-oscillator model of molecular absorption in conjunction with Mie scattering to model extinction spectra, which we then fit to the measurements using a numerical optimal estimation algorithm. The main advantage of this method over the more traditional Kramers-Kronig approach is that it allows the full complex refractive-index spectra, along with the parameters of the particle size distribution, to be retrieved from a single extinction spectrum. The retrieval scheme has been extensively characterized and has been found to provide refractive indices with a maximum uncertainty of approximately 10% (with a minimum of approximately 0.1%). Comparison of refractive indices calculated from measurements of a ternary solution of HNO3, H2SO4, and H2O with those published in J. Phys. Chem. A 104, 783 (2000) show similar differences as found by other authors.

  12. Behavior of zonal mean aerosol extinction ratio and its relationship with zonal mean temperature during the winter 1978-1979 stratospheric warming

    NASA Technical Reports Server (NTRS)

    Wang, P.-H.; Mccormick, M. P.

    1985-01-01

    The behavior of the zonal mean aerosol extinction ratio in the lower stratosphere near 75 deg N and its relationship with the zonal mean temperature during the January-February 1979 stratospheric sudden warming have been investigated based on the satellite sensor SAM II (Stratospheric Aerosol Measurement) and auxiliary meteorological measurements. The results indicate that distinct changes in the zonal mean aerosol extinction ratio occurred during this stratospheric sudden warming. It is also found that horizontal eddy transport due to planetary waves may have played a significant role in determining the distribution of the zonal mean aerosol extinction ratio.

  13. Characterization and source apportionment of aerosol light extinction with a coupled model of CMB-IMPROVE in Hangzhou, Yangtze River Delta of China

    NASA Astrophysics Data System (ADS)

    Wang, Jiao; Zhang, Yu-fen; Feng, Yin-chang; Zheng, Xian-jue; Jiao, Li; Hong, Sheng-mao; Shen, Jian-dong; Zhu, Tan; Ding, Jing; Zhang, Qi

    2016-09-01

    To investigate the characteristics and sources of aerosol light extinction in the Yangtze River Delta of China, a campaign was carried out in Hangzhou from December 2013 to November 2014. Hourly data for air pollutants including PM2.5, SO2, NO2, O3 and CO, and aerosol optical properties including aerosol scattering coefficient and aerosol absorbing coefficient was obtained in the environmental air quality automatic monitoring station. Meteorological parameters were measured synchronously in the automated meteorology monitoring station. Additionally, around seven sets of ambient PM2.5 samples per month were collected and analyzed during the campaign. The annual mean aerosol scattering coefficient, aerosol absorbing coefficient and aerosol single scattering albedo measured in this study was 514 ± 284 Mm- 1, 35 ± 20 Mm- 1 and 94% respectively. The aerosol extinction coefficient reconstructed using the modified IMPROVE (Interagency Monitoring of Protected Visual Environment) formula was compared to the measured extinction coefficient. Better correlations could be found between the measured and reconstructed extinction coefficient when RH was under 90%. A coupled model of CMB (chemical mass balance) and modified IMPROVE was used to apportion the sources of aerosol light extinction in Hangzhou. Vehicle exhaust, secondary nitrate and secondary sulfate were identified as the most significant sources for aerosol light extinction, accounted for 30.2%, 24.1% and 15.8% respectively.

  14. The effects of models of aerosol hygroscopicity on the apportionment of extinction

    NASA Astrophysics Data System (ADS)

    Malm, William C.; Kreidenweis, Sonia M.

    The role that aerosols play in climate forcing and visibility issues has been the subject of research for several decades. Recent research efforts have focused on assessing the contribution of individual species to scattering and absorption under ambient conditions and on how scattering and absorption change as one or more species are removed from the atmosphere. A key concern is the distribution of water among aerosols as a function of mixing assumptions. As an illustrative and relevant example, we examine the roles of sulfates and organics in visibility and climate forcing, and in particular, the implications of assumptions regarding hygroscopic growth behavior upon the assignment of mass-scattering efficiencies to these species. We demonstrate that the total scattering computed for an aerosol sample is relatively insensitive to the choice of internal or external mixture, and can be insensitive to the exact formulation of the hygroscopic growth of the sample. Since the atmospheric aerosol is generally a complex mixture of chemical species, with the precise distribution of species on a particle-by-particle basis not known, the use of semi-empirical models of multicomponent aerosol hygroscopicity is appropriate for the calculation of atmospheric aerosol scattering and/or extinction, particularly since these details appear to be unimportant in most cases. In contrast, the apportionment of percentages of the total scattering to individual chemical species is quite sensitive to the choice of assumption regarding the aerosol microphysical structure. The use of semi-empirical hygroscopic growth models for computing the change in species scattering efficiency can lead to incorrect predictions in the limit of the complete removal of all but one chemical component. We propose a model that invokes the Zdanovskii, Stokes, and Robinson (ZSR) assumptions for the water content of multicomponent mixtures, and demonstrate that this method both approximates the predictions of

  15. Characterization and source apportionment of aerosol light extinction in Chengdu, southwest China

    NASA Astrophysics Data System (ADS)

    Tao, Jun; Zhang, Leiming; Cao, Junji; Hsu, Shih-Chieh; Xia, Xiangao; Zhang, Zhisheng; Lin, Zejian; Cheng, Tiantao; Zhang, Renjian

    2014-10-01

    To investigate aerosol properties in the Sichuan Basin of China, field aerosol sampling was carried out in Chengdu, China during four one-month periods, each in a different season in 2011. Aerosol scattering coefficient (bsp) at dry (RH<40%) and wet (40% < RH<90%) conditions and aerosol absorption coefficient (bap) were measured. Additionally, daily PM2.5 and PM10 samples were also collected. PM2.5 samples were subject to chemical analysis for various chemical components including major water-soluble ions, organic and elemental carbon (OC and EC), trace elements, as well as anhydrosugar Levoglucosan (LG) and Mannosan (MN). A multiple linear regression analysis was applied to the measured dry bsp against (NH4)2SO4, NH4NO3, organic mass (OM), fine soil (FS), and coarse mass (CM, PM2.5-10), and to the measured bap against EC in all the four seasons to evaluate the impact of individual chemical components of PM2.5 and CM on aerosol light extinction (bext = bsp + bap). Mass scattering efficiency (MSE) and mass absorption efficiency (MAE) of the individual chemical components of PM2.5 were estimated based on seasonal regression equations and were then used for estimating bext. The annual bsp, bap and single scattering albedo (SSA) at dry conditions were 456 ± 237 Mm-1, 96 ± 48 Mm-1 and 0.82 ± 0.05, respectively. The annual average bsp at ambient conditions estimated through hygroscopic curve of aerosol (f(RH)) was 763 ± 415 Mm-1, which was 1.7 times of the dry bsp. The annual average SSA at ambient conditions also increased to 0.88 ± 0.04. The estimated dry bext was only 2 ± 9% higher than the measurements and the estimated ambient bext from individual chemical components was only 1 ± 10% lower, on an annual basis, than that estimated from using f(RH). Secondary inorganic aerosols, coal combustion, biomass burning, iron and steel industry, Mo-related industry, soil dust, and CM to bext were estimated to account for 41 ± 19%, 18 ± 12%, 14 ± 13%, 13 ± 11%, 5

  16. Infrared spectroscopy and phase behavior of n-butane aerosols and thin films at cryogenic temperatures.

    PubMed

    Lang, E Kathrin; Knox, Kerry J; Momose, Takamasa; Signorell, Ruth

    2013-11-21

    Spectroscopic studies of two phase transitions of solid n-butane aerosol droplets performed under conditions representative of those in the lower atmosphere of Titan are presented. Pure n-butane aerosols and mixed ensembles of n-butane/acetylene, n-butane/carbon dioxide and n-butane/water aerosols were generated in a bath gas cooling cell at 78 K and their phase transition dynamics monitored using infrared extinction spectroscopy. For pure n-butane aerosols the volume and surface nucleation constants were found to range from JV = 10(12) -10(14) cm(-3) s(-1) and JS = 10(13) -10(15) cm(-2) s(-1), respectively, for the first observed transition, and JV = 10(9) -10(11) cm(-3) s(-1) and JS = 10(11) -10(13) cm(-2) s(-1) for the second observed transition. The phases of the n-butane aerosols were determined by comparing their spectroscopic signatures with spectra collected from thin films of liquid and solid n-butane. The first observed transition was from an amorphous-annealed phase into the metastable crystalline phase II of n-butane. The second transition was from the metastable crystalline phase II into the crystalline phase III. The effect of the presence of a second aerosol substance (acetylene, carbon dioxide or water) was examined; while this accelerated the first phase transition, it did not directly influence the rate of the second phase transition. The kinetic studies might be important for the understanding of cloud formation on Titan, while the spectral data provided, which include the first reported spectrum of liquid n-butane close to the melting point, are expected to be of use for remote sensing applications. PMID:23668828

  17. Extinction-to-Backscatter Ratios of Lofted Aerosol Layers Observed During the First Three Months of CALIPSO Measurements

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Vaughan, Mark A.; Liu, Zhaoyan; Hu, Yongxiang; Reagan, John A.; Winker, David M.

    2007-01-01

    Case studies from the first three months of the Cloud and Aerosol Lidar and Infrared Pathfinder Spaceborne Observations (CALIPSO) measurements of lofted aerosol layers are analyzed using transmittance [Young, 1995] and two-wavelength algorithms [Vaughan et al., 2004] to determine the aerosol extinction-to-backscatter ratios at 532 and 1064 nm. The transmittance method requires clear air below the layer so that the transmittance through the layer can be determined. Suitable scenes are selected from the browse images and clear air below features is identified by low 532 nm backscatter signal and confirmed by low depolarization and color ratios. The transmittance and two-wavelength techniques are applied to a number of lofted layers and the extinction-to-backscatter ratios are compared with values obtained from the CALIPSO aerosol models [Omar et al., 2004]. The results obtained from these studies are used to adjust the aerosol models and develop observations based extinction-to-backscatter ratio look-up tables and phase functions. Values obtained by these techniques are compared to Sa determinations using other independent methods with a goal of developing probability distribution functions of aerosol type-specific extinction to backscatter ratios. In particular, the results are compared to values determined directly by the High Spectral Resolution Lidar (HSRL) during the CALIPSO CloudSat Validation Experiments (CCVEX) and Sa determined by the application of the two-wavelength lidar Constrained Ratio Aerosol Model-fit (CRAM) retrieval approach [Cattrall et al., 2005; Reagan et al., 2004] to the HSRL data. The results are also compared to values derived using the empirical relationship between the multiple-scattering fraction and the linear depolarization ratio by using Monte Carlo simulations of water clouds [Hu et al., 2006].

  18. VUV spectroscopy of carbon dust analogs: contribution to interstellar extinction

    NASA Astrophysics Data System (ADS)

    Gavilan, L.; Alata, I.; Le, K. C.; Pino, T.; Giuliani, A.; Dartois, E.

    2016-02-01

    Context. A full spectral characterization of carbonaceous dust analogs is necessary to understand their potential as carriers of observed astronomical spectral signatures such as the ubiquitous UV bump at 217.5 nm and the far-ultraviolet (FUV) rise common to interstellar extinction curves. Aims: Our goal is to study the spectral properties of carbonaceous dust analogs from the FUV to the mid-infrared (MIR) domain. We seek in particular to understand the spectra of these materials in the FUV range, for which laboratory studies are scarce. Methods: We produced analogs to carbonaceous interstellar dust encountered in various phases of the interstellar medium: amorphous hydrogenated carbons (a-C:H), for carbonaceous dust observed in the diffuse interstellar medium, and soot particles, for the polyaromatic component. Analogs to a-C:H dust were produced using a radio-frequency plasma reactor at low pressures, and soot nanoparticles films were produced in an ethylene (C2H4) flame. We measured transmission spectra of these thin films (thickness <100 nm) in the far-ultraviolet (190-250 nm) and in the vacuum-ultraviolet (VUV; 50-190 nm) regions using the APEX chamber at the DISCO beam line of the SOLEIL synchrotron radiation facility. These were also characterized through infrared microscopy at the SMIS beam line. Results: We successfully measured the transmission spectra of these analogs from λ = 1 μm to 50 nm. From these, we extracted the laboratory optical constants via Kramers-Kronig inversion. We used these constants for comparison to existing interstellar extinction curves. Conclusions: We extend the spectral measurements of these types of carbonaceous analogs into the VUV and link the spectral features in this range to the 3.4 μm band. We suggest that these two materials might contribute to different classes of interstellar extinction curves.

  19. On the accuracy of stratospheric aerosol extinction derived from in situ size distribution measurements and surface area density derived from remote SAGE II and HALOE extinction measurements

    DOE PAGES

    Kovilakam, Mahesh; Deshler, Terry

    2015-08-26

    In situ stratospheric aerosol measurements, from University of Wyoming optical particle counters (OPCs), are compared with Stratospheric Aerosol Gas Experiment (SAGE) II (versions 6.2 and 7.0) and Halogen Occultation Experiment (HALOE) satellite measurements to investigate differences between SAGE II/HALOE-measured extinction and derived surface area and OPC-derived extinction and surface area. Coincident OPC and SAGE II measurements are compared for a volcanic (1991-1996) and nonvolcanic (1997 2005) period. OPC calculated extinctions agree with SAGE II measurements, within instrumental uncertainty, during the volcanic period, but have been a factor of 2 low during the nonvolcanic period. Three systematic errors associated with themore » OPC measurements, anisokineticity, inlet particle evaporation, and counting efficiency, were investigated. An overestimation of the OPC counting efficiency is found to be the major source of systematic error. With this correction OPC calculated extinction increases by 15 30% (30 50%) for the volcanic (nonvolcanic) measurements. These changes significantly improve the comparison with SAGE II and HALOE extinctions in the nonvolcanic cases but slightly degrade the agreement in the volcanic period. These corrections have impacts on OPC-derived surface area density, exacerbating the poor agreement between OPC and SAGE II (version 6.2) surface areas. This disparity is reconciled with SAGE II version 7.0 surface areas. For both the volcanic and nonvolcanic cases these changes in OPC counting efficiency and in the operational SAGE II surface area algorithm leave the derived surface areas from both platforms in significantly better agreement and within the 40% precision of the OPC moment calculations.« less

  20. On the accuracy of stratospheric aerosol extinction derived from in situ size distribution measurements and surface area density derived from remote SAGE II and HALOE extinction measurements

    SciTech Connect

    Kovilakam, Mahesh; Deshler, Terry

    2015-08-26

    In situ stratospheric aerosol measurements, from University of Wyoming optical particle counters (OPCs), are compared with Stratospheric Aerosol Gas Experiment (SAGE) II (versions 6.2 and 7.0) and Halogen Occultation Experiment (HALOE) satellite measurements to investigate differences between SAGE II/HALOE-measured extinction and derived surface area and OPC-derived extinction and surface area. Coincident OPC and SAGE II measurements are compared for a volcanic (1991-1996) and nonvolcanic (1997 2005) period. OPC calculated extinctions agree with SAGE II measurements, within instrumental uncertainty, during the volcanic period, but have been a factor of 2 low during the nonvolcanic period. Three systematic errors associated with the OPC measurements, anisokineticity, inlet particle evaporation, and counting efficiency, were investigated. An overestimation of the OPC counting efficiency is found to be the major source of systematic error. With this correction OPC calculated extinction increases by 15 30% (30 50%) for the volcanic (nonvolcanic) measurements. These changes significantly improve the comparison with SAGE II and HALOE extinctions in the nonvolcanic cases but slightly degrade the agreement in the volcanic period. These corrections have impacts on OPC-derived surface area density, exacerbating the poor agreement between OPC and SAGE II (version 6.2) surface areas. This disparity is reconciled with SAGE II version 7.0 surface areas. For both the volcanic and nonvolcanic cases these changes in OPC counting efficiency and in the operational SAGE II surface area algorithm leave the derived surface areas from both platforms in significantly better agreement and within the 40% precision of the OPC moment calculations.

  1. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.; Zhao, C.; Cadeddu, M.

    2016-01-01

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of aerosol optical depths (AODs) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in northern India. The WRF-Chem model is found to heavily underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model's low bias is due to aerosol extinctions below ˜ 2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AOD and extinction profiles averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7 K day-1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to respond differently

  2. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.; Zhao, C.; Cadeddu, M.

    2015-06-01

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with a version of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of Aerosol Optical Depth (AOD) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in the northern India. The WRF-Chem model is found to underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model low-bias is due to aerosol extinctions below ~2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AOD and extinction profiles averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7 K day-1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to respond differently

  3. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    DOE PAGES

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.; Zhao, C.; Cadeddu, M.

    2016-01-18

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of aerosol optical depths (AODs) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in northern India. The WRF-Chem model is found to heavily underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model's low bias is due to aerosol extinctions below  ∼  2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AOD and extinction profiles averaged over Southmore » Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to −0.7 K day−1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and

  4. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    SciTech Connect

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.; Zhao, C.; Cadeddu, M.

    2016-01-01

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of aerosol optical depths (AODs) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in northern India. The WRF-Chem model is found to heavily underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model's low bias is due to aerosol extinctions below ~2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AOD and extinction profiles averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7 K day−1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to

  5. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    SciTech Connect

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.; Zhao, C.; Cadeddu, M.

    2015-06-19

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with a version of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of Aerosol Optical Depth (AOD) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in the northern India. The WRF-Chem model is found to underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model low-bias is due to aerosol extinctions below ~2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AOD and extinction profiles averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7 K day−1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to respond

  6. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    DOE PAGES

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.; Zhao, C.; Cadeddu, M.

    2015-06-19

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with a version of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of Aerosol Optical Depth (AOD) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in the northern India. The WRF-Chem model is found to underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model low-bias is due to aerosol extinctions below ~2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AODmore » and extinction profiles averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7 K day−1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to respond

  7. Infrared Spectroscopy and Physical Chemistry of Cryogenic Aerosols

    NASA Astrophysics Data System (ADS)

    Clapp, Mannie Lee

    1995-01-01

    Infrared spectroscopy has been used as a tool for elucidating the spectroscopic and physical properties of cryogenic aerosols. Ammonia and hydrazine aerosols have been studied using this technique under conditions designed to mimic those found in the atmosphere of Jupiter. Aerosols of water ice, nitric acid and water, and sulfuric acid and water were also studied under temperature conditions similar to those found in the Earth's stratosphere. Aerosols are generated in low temperature flow cells via homogeneous and heterogeneous nucleation of the gas phase. The technique affords information on the size, composition, number density, and in some cases shape, of the particles created. Both ammonia and hydrazine aerosols were studied over the temperature range from 180 K to 110 K. Mie theory can adequately describe the observed particle spectra in most cases. Under conditions designed to enhance particle aggregation, shape effects in the 9.4 mu m absorption band of the ammonia aerosols become apparent which can be modeled well using the Discrete Dipole Approximation. Both substances can exist as supercooled liquid droplets. Ammonia particles freeze distinctly at 155 K, while hydrazine particles freeze over the temperature range from 180 K to 170 K. Spectra of aerosols which are of mixtures of ammonia and hydrazine reveal that the inclusion of hydrazine into ammonia particles affects the spectrum of the ammonia very little, while the hydrazine absorptions are strongly perturbed. Hydrazine is not very soluble in the ammonia particles, even at very low concentrations. A new technique for determining complex refractive indices from aerosol spectra has been developed and applied to water ice and crystalline hydrazine. Comparisons with previous data indicate that the method is sound and accurate. The temperature dependence of the water ice complex refractive index has been quantified and compares well with previous results as a function of temperature. No temperature

  8. The relationship of satellite-inferred stratospheric aerosol extinction to the position of the 50-mb north polar jet stream

    NASA Technical Reports Server (NTRS)

    Livingston, John M.; Endlich, Roy M.

    1988-01-01

    The relationship between stratospheric aerosols and the location of the north polar night stratospheric jet stream was investigated for selected periods of four successive winters (1979-1982), using measurements from SAM II (Stratospheric Aerosol Measurement II) and SAGE I (Stratospheric Aerosol and Gas Experiment I) satellite-borne sun photometers and corresponding meteorological observations. Each period investigated included a polar stratospheric warming during which major dynamic meteorological changes are known to have perturbed the structure of the polar vortex. The analysis of variations in aerosol extinction mixing ratio patterns among winters and during major stratospheric warming events within separate winters showed a well-defined positive gradient in extinction mixing ratio and temperature across the jet stream from the cyclonic side to the anticyclonic side at altitudes between 20 and 30 km during each winter period. Estimates of extinction mixing ratio profiles measured near the center of the polar vortex suggest that a gradual subsidence took place within the polar vortex during at least three of the four winter periods.

  9. How Well Do State-of-the-Art Techniques Measuring the Vertical Profile of Tropospheric Aerosol Extinction Compare?

    SciTech Connect

    Schmid, Beat; Ferrare, Richard; Flynn, Connor M.; Elleman, Robert; Covert, David; Strawa, A.; Welton, E J.; Turner, David D.; Jonsson, Haf; Redemann, Jens; Eilers, J.; Ricci, K.; Hallar, A. G.; Clayton, M. B.; Michalsky, Joseph J.; Smirnov, A.; Holben, B. N.; Barnard, James C.

    2006-02-01

    The recent U.S. Department of Energy Atmospheric Radiation Measurements (ARM) Aerosol Intensive Observation Period (AIOP, May 2003) yielded one of the best measurement sets obtained to-date to assess our ability to measure the vertical profile of ambient aerosol extinction. During one month, a heavily instrumented aircraft with well characterized aerosol sampling ability carrying well proven and new aerosol instrumentation, devoted most of the 60 available flight hours to flying vertical profiles over the heavily instrumented ARM Southern Great Plains (SGP) Climate Research Facility (CRF). This allowed us to compare vertical extinction profiles obtained from 6 different instruments: airborne Sun photometer, airborne nephelometer/absorption photometer, airborne cavity ring-down system, ground-based Raman lidar and two ground-based elastic backscatter lidars. We find the in situ measurements to be biased low (2 - 4 Mm 1 equivalent to 12-17% in the visible, or 45% in the near-infrared) when compared to airborne sunphotometer extinction. On the other hand, we find that with respect to AATS-14, the lidar ?ep(?) are biased high. Bias differences are 0.004 Km-1 (13%) and 0.007 Km-1 (24%) for the two elastic back-scatter lidars (MPLARM and MPLNET, ? = 523 nm) and 0.029 Km-1 (54%) for the Raman lidar (? = 355 nm). An unnoticed loss of sensitivity of the Raman lidar had occurred leading up to AIOP and we expect better agreement from the recently restored system. Looking at the collective results from six field campaigns conducted since 1996, airborne in situ measurements of extinction tend to be biased slightly low (17% at visible wavelengths) when compared to airborne sunphotometer extinction. On the other hand, extinction derived from lidars tend to have no or positive biases. We conclude that the error associated with measuring the tropospheric vertical profile of the ambient aerosol extinction with current state-of-the art instrumentation is 15-20% at visible wavelengths

  10. AerGOM, an improved algorithm for stratospheric aerosol extinction retrieval from GOMOS observations - Part 2: Intercomparisons

    NASA Astrophysics Data System (ADS)

    Étienne Robert, Charles; Bingen, Christine; Vanhellemont, Filip; Mateshvili, Nina; Dekemper, Emmanuel; Tétard, Cédric; Fussen, Didier; Bourassa, Adam; Zehner, Claus

    2016-09-01

    AerGOM is a retrieval algorithm developed for the GOMOS instrument onboard Envisat as an alternative to the operational retrieval (IPF). AerGOM enhances the quality of the stratospheric aerosol extinction retrieval due to the extension of the spectral range used, refines the aerosol spectral parameterization, the simultaneous inversion of all atmospheric species as well as an improvement of the Rayleigh scattering correction. The retrieval algorithm allows for a good characterization of the stratospheric aerosol extinction for a wide range of wavelengths.In this work, we present the results of stratospheric aerosol extinction comparisons between AerGOM and various spaceborne instruments (SAGE II, SAGE III, POAM III, ACE-MAESTRO and OSIRIS) for different wavelengths. The aerosol extinction intercomparisons for λ < 700 nm and above 20 km show agreements with SAGE II version 7 and SAGE III version 4.0 within ±15 % and ±45 %, respectively. There is a strong positive bias below 20 km at λ < 700 nm, which suggests that cirrus clouds at these altitudes have a large impact on the extinction values. Comparisons performed with GOMOS IPF v6.01 alongside AerGOM show that at short wavelengths and altitudes below 20 km, IPF retrievals are more accurate when evaluated against SAGE II and SAGE III but are much less precise than AerGOM. A modified aerosol spectral parameterization can improve AerGOM in this spectral and altitude range and leads to results that have an accuracy similar to IPF retrievals. Comparisons of AerGOM aerosol extinction coefficients with OSIRIS and SAGE III measurements at wavelengths larger than 700 nm show a very large negative bias at altitudes above 25 km. Therefore, the use of AerGOM aerosol extinction data is not recommended for λ > 700 nm.Due to the unique observational technique of GOMOS, some of the results appear to be dependent on the star occultation parameters such as star apparent temperature and magnitude, solar zenith angle

  11. Ultra-high spectral extinction Brillouin spectroscopy for turbid tissue measurements (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Jitao; Fiore, Antonio; Shao, Peng; Yun, Seok-Hyun; Scarcelli, Giuliano

    2016-03-01

    Brillouin spectroscopy allows non-invasive measurement of the mechanical properties of a sample by measuring the spectra of acoustically induced light scattering therein, and thus has been widely investigated for biomedical application. Recently, the development of fast Brillouin spectrometry based on virtually-imaged phased array (VIPA) has made in-situ measurement of biomedical sample possible. However, one limitation of current Brillouin technique is the low spectral extinction, which limits the measurement to nearly transparent sample. In order to measure turbid sample, multistage VIPA can be cascaded to gain spectral extinction. For example, spectral extinction of ~80 dB was achieved using three-stage VIPA; however, this approach significantly sacrificed measurement throughput. In this work, we develop a novel spectrometer that achieves high extinction without significant signal loss. To achieve this goal, we combine a two-stage VIPA spectrometer with a triple-pass Fabry-Perot interferometer. The triple-pass Fabry-Perot interferometer acts as a band-pass filter with ~3 GHz bandwidth and ~35-dB spectral extinction. Therefore, the overall extinction of this spectrometer greatly surpasses 80 dB with only ~20% excess loss. We demonstrated the performance of this spectrometer measuring background-free Brillouin spectra from Intralipid solutions and within chicken tissue.

  12. Inversion of solar extinction data from the Apollo-Soyuz Test Project Stratospheric Aerosol Measurement (ASTP/SAM) experiment

    NASA Technical Reports Server (NTRS)

    Pepin, T. J.

    1977-01-01

    The inversion methods are reported that have been used to determine the vertical profile of the extinction coefficient due to the stratospheric aerosols from data measured during the ASTP/SAM solar occultation experiment. Inversion methods include the onion skin peel technique and methods of solving the Fredholm equation for the problem subject to smoothing constraints. The latter of these approaches involves a double inversion scheme. Comparisons are made between the inverted results from the SAM experiment and near simultaneous measurements made by lidar and balloon born dustsonde. The results are used to demonstrate the assumptions required to perform the inversions for aerosols.

  13. Aerosol Optical Properties and Component Extinction from Measurements on the Ronald H. Brown During ACE-Asia

    NASA Astrophysics Data System (ADS)

    Quinn, P. K.; Bates, T. S.; Coffman, D.; Miller, T.; Anderson, J.

    2002-12-01

    Measurements of aerosol chemical, physical, and optical properties were made onboard the NOAA R/V Ronald H. Brown during the ACE-Asia Intensive Field Program to characterize Asian aerosol as it was transported across the Pacific Ocean. The ship traveled across the Pacific from Hawaii to Japan and into the East China Sea and the Sea of Japan. Based on trajectory analysis, the aerosol has been categorized as remote marine, volcanic from the Miyakejima volcano, polluted from Korea and Japan, polluted from Beijing, polluted mixed with dust during post frontal conditions, and polluted mixed with dust from Shanghai and Korea. Presented here, for these different categories, are aerosol optical properties (scattering and absorption coefficients, single scattering albedo (SSA), Angstrom Exponent, and aerosol optical depth), mass fractions of the major chemical components, and mass extinction efficiencies and extinction coefficients for individual aerosol components. Lowest scattering and absorption coefficients and highest single scattering albedos were measured in marine air masses encountered as the ship transited from Hawaii toward Japan (mean SSA = 0.97). Lowest SSA were measured in polluted air masses from Korea and Japan (mean SSA = 0.90). With dust mixed into the polluted air masses, SSA increased due to the high scattering levels associated with the dust (mean SSA ranged from 0.92 to 0.96 for different pollution/dust mixtures). These SSA are for the sub-10 micron aerosol at 55 percent RH. They were 1 to 4 percent lower for the sub-1 micron aerosol. Unique to the ACE Asia aerosol was the observation of significant absorption at 550 nm by supermicron aerosol. A correlation between supermicron elemental carbon concentrations and the ratio of absorption by sub-1 um aerosol to absorption by sub-10 um aerosol suggests that supermicron EC is responsible. As the mean concentration of supermicron EC increased from the marine to polluted to polluted with dust cases, the ratio

  14. Composition of the Martian aerosols through near-IR spectroscopy

    NASA Technical Reports Server (NTRS)

    Erard, Stephane; Cerroni, Priscilla; Coradini, Angioletta

    1993-01-01

    Near-infrared spectroscopy is a powerful technique to study the composition of planetary surfaces, as the main minerals exhibit absorption bands in this spectral range. It gave important information on the mineralogy and petrology of Mars in the past twenty years although in this case it is well known that a large fraction of light is scattered by the airborne particles before reaching the surface. The measured signal is thus the sum of two different contributions that should be studied separately: One from the surface and one from the aerosols that depends on their density, size distribution and composition. Data from the ISM imaging spectrometer are used here to derive the aerosols spectrum. They consist in sets of spectra (from 0.76 to 3.16 microns) of approximately 3000 pixels approximately 25x25 sq km in size. The resulting spectrum exhibits both water-ice and clay mineral features superimposed on a scattering continuum.

  15. Evaluating Nighttime CALIOP 0.532 micron Aerosol Optical Depth and Extinction Coefficient Retrievals

    NASA Technical Reports Server (NTRS)

    Campbell, J. R.; Tackett, J. L.; Reid, J. S.; Zhang, J.; Curtis, C. A.; Hyer, E. J.; Sessions, W. R.; Westphal, D. L.; Prospero, J. M.; Welton, E. J.; Omar, A. H.; Vaughan, M. A.; Winker, D. M.

    2012-01-01

    NASA Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) Version 3.01 5-km nighttime 0.532 micron aerosol optical depth (AOD) datasets from 2007 are screened, averaged and evaluated at 1 deg X 1 deg resolution versus corresponding/co-incident 0.550 micron AOD derived using the US Navy Aerosol Analysis and Prediction System (NAAPS), featuring two-dimensional variational assimilation of quality-assured NASA Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging Spectroradiometer (MISR) AOD. In the absence of sunlight, since passive radiometric AOD retrievals rely overwhelmingly on scattered radiances, the model represents one of the few practical global estimates available from which to attempt such a validation. Daytime comparisons, though, provide useful context. Regional-mean CALIOP vertical profiles of night/day 0.532 micron extinction coefficient are compared with 0.523/0.532 micron ground-based lidar measurements to investigate representativeness and diurnal variability. In this analysis, mean nighttime CALIOP AOD are mostly lower than daytime (0.121 vs. 0.126 for all aggregated data points, and 0.099 vs. 0.102 when averaged globally per normalised 1 deg. X 1 deg. bin), though the relationship is reversed over land and coastal regions when the data are averaged per normalised bin (0.134/0.108 vs. 0140/0.112, respectively). Offsets assessed within single bins alone approach +/- 20 %. CALIOP AOD, both day and night, are higher than NAAPS over land (0.137 vs. 0.124) and equal over water (0.082 vs. 0.083) when averaged globally per normalised bin. However, for all data points inclusive, NAAPS exceeds CALIOP over land, coast and ocean, both day and night. Again, differences assessed within single bins approach 50% in extreme cases. Correlation between CALIOP and NAAPS AOD is comparable during both day and night. Higher correlation is found nearest the equator, both as a function of sample size and relative signal magnitudes inherent at

  16. On the Accuracy of Stratospheric Aerosol Extinction and Surface Area Derived from in situ and Remote Measurements

    NASA Astrophysics Data System (ADS)

    Kovilakam, Mahesh

    Measurements from University of Wyoming balloon-borne optical particle counters (OPCs) provide one of the longest stratospheric aerosol records in the world. In this study, University of Wyoming OPC measurements are compared with Stratospheric Aerosol Gas Experiment (SAGE II) satellite measurements to uncover the reason for differences between SAGE II and OPC measurements during non-volcanic (background) periods. The surface area density (SAD) estimation from various stratospheric aerosol measurements is important, because of surface reactions which affect abundances of oxides of nitrogen and ozone, and thereby the chemistry of the stratosphere. It is therefore important to get an accurate estimation of surface area density, as many climate models use aerosol climatologies provided by satellites. OPC and SAGE II measurements are compared for volcanic (1991-1996) and non-volcanic or background (1997-2004) periods. The extinction comparisons show that OPC extinctions calculated at SAGE II wavelengths are about a factor of 2 lower than SAGE II during the non-volcanic period. Under volcanic conditions the differences decrease; however, OPC extinction is still less than SAGE II extinction. This led to an investigation of the three most important systematic errors associated with the OPC measurements anisokineticity, evaporation of particles in the OPC inlet, and counting efficiency. The effect of anisokineticity is found to be negligible. For calculating the evaporation of particles in the OPC inlet, a heat transfer model is developed to calculate the mean air temperature inside the inlet, which is then coupled with a microphysical model to predict the evaporation of stratospheric aerosol particles. This evaporation increases OPC extinctions by 10-15% for both volcanic and non-volcanic cases; however, counting efficiency is the major source of error, which increases the extinction by 30-50% for the volcanic case, and 80-150% for the non-volcanic cases. These corrections

  17. Retrievals of Extensive and Intensive Aerosol Parameters from Vertical Profiles of Extinction Coefficient Acquired by the MAESTRO Occultation Spectrometer: Case Study of Sarychev Volcano Plumes

    NASA Astrophysics Data System (ADS)

    Saha, A.; O'Neill, N. T.; McElroy, C. T.; Sioris, C.; Zou, J.

    2011-12-01

    The Canadian MAESTRO (Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) instrument aboard the SCISAT-1 Satellite is an aerosol profiling occultation device that is part of the ACE (Atmospheric Chemistry Experiment) mission. This spectrometer produces spectra of aerosol extinction profiles above the upper troposphere. The extinction coefficient spectra permit the discrimination of sub-micron (fine mode) and super-micron (coarse mode) contributions and, in principle, the retrieval of fine mode effective radius. Retrievals applied to lower stratospheric and upper tropospheric aerosol plumes resulting from the eruption of the Sarychev-peak volcano in June of 2009 are presented. Preliminary results indicate that the fine and coarse mode discrimination and the particle sizing capability are coherent with available information on Sarychev aerosols.

  18. Particle extinction measured at ambient conditions with differential optical absorption spectroscopy. 1. system setup and characterization.

    PubMed

    Müller, Thomas; Müller, Detlef; Dubois, René

    2005-03-20

    We describe an instrument for measuring the particle extinction coefficient at ambient conditions in the spectral range from 270 to 1000 nm. It is based on a differential optical absorption spectroscopy (DOAS) system, which was originally used for measuring trace-gas concentrations of atmospheric absorbers in the ultraviolet-visible wavelength range. One obtains the particle extinction spectrum by measuring the total atmospheric extinction and subtracting trace-gas absorption and Rayleigh scattering. The instrument consists of two nested Newton-type telescopes, which are simultaneously used for emitting and detecting light, and two arrays of retroreflectors at the ends of the two light paths. The design of this new instrument solves crucial problems usually encountered in the design of such instruments. The telescope is actively repositioned during the measurement cycle. Particle extinction is simultaneously measured at several wavelengths by the use of two grating spectrometers. Optical turbulence causes lateral movement of the spot of light in the receiver telescope. Monitoring of the return signals with a diode permits correction for this effect. Phase-sensitive detection efficiently suppresses background signals from the atmosphere as well as from the instrument itself. The performance of the instrument was tested during a measurement period of 3 months from January to March 2000. The instrument ran without significant interruption during that period. A mean accuracy of 0.032 km(-1) was found for the extinction coefficient for an 11-day period in March. PMID:15813269

  19. Single Scattering Albedo of fresh biomass burning aerosols measured using cavity ring down spectroscopy and nephelometry

    NASA Astrophysics Data System (ADS)

    Bililign, Solomon; Singh, Sujeeta; Fiddler, Marc; Smith, Damon; Bililign Research Group Team

    An accurate measurement of optical properties of aerosols is critical for quantifying the effect of aerosols on climate. Uncertainties still persist and measurement results vary significantly. The factors that affect measurement accuracy and the resulting uncertainties of the extinction-minus-scattering method are evaluated using a combination of cavity ring-down spectroscopy (CRDS) and integrating nephelometry and applied to measure the optical properties of fresh soot (size 300 and 400 nm) produced from burning of pine, red oak and cedar. We have demonstrated a system that allows measurement of optical properties at a wide range of wavelengths, which can be extended over most of the solar spectrum to determine ``featured'' absorption cross sections as a function of wavelength. SSA values measured were nearly flat ranging from 0.45 to 0.6. The result also demonstrates that SSA of fresh soot is nearly independent of wavelength of light in the 500-680 wavelength range with a slight increase at longer wavelength. The values are within the range of measured values both in the laboratory and in field studies for fresh soot The work is supported by the Department of Defense Grant W911NF-11-1-0188.

  20. Examining the relationship between atmospheric aerosols and light extinction at Mount Rainier and North Cascades National Parks

    NASA Astrophysics Data System (ADS)

    Malm, W. C.; Gebhart, K. A.; Molenar, J.; Cahill, T.; Eldred, R.; Huffman, D.

    During the summer of 1990, the National Park Service carried out a study in the state of Washington called the Pacific Northwest Regional Visibility Experiment using Natural Tracers (PREVENT). The goal of the study was to apportion atmospheric aerosols to scattering and extinction and to source types at Mount Rainier and North Cascades National Parks. The study was designed to collect all necessary emissions, meteorology, ambient concentrations, and atmospheric optical data necessary to support a variety of source attribution techniques. This paper will report on the apportionment of various aerosol species to measured fine mass concentrations and ambient scattering coefficients. One highlight of this study was the near-ambient measurement of atmospheric scattering with a modified integrating nephelometer. It is therefore possible to explore the relationship between hygroscopic aerosols and scattering in the ambient atmosphere.

  1. Optical properties of urban aerosols, aircraft emissions, and heavy-duty diesel trucks using aerosol light extinction measurements by an Aerodyne Cavity Attenuated Phase Shift Particle Extinction Monitor (CAPS PMex)

    NASA Astrophysics Data System (ADS)

    Freedman, A.; Massoli, P.; Wood, E. C.; Allan, J. D.; Fortner, E.; Yu, Z.; Herndon, S. C.; Miake-Lye, R. C.; Onasch, T. B.

    2010-12-01

    We present results of optical property characterization of ambient particulate during several field deployments where measurements of aerosol light extinction (σep) are obtained using an Aerodyne Cavity Attenuated Phase Shift Particle Extinction Monitor (CAPS PMex). The CAPS PMex is able to provide extinction measurements with 3-σ detection limit of 3 Mm-1 for 1s integration time. The CAPS PMex (630 nm) is integrated in the Aerodyne Research, Inc. (ARI) mobile laboratory where a co-located Multi Angle Absorption Photometer (MAAP) provides particle light absorption coefficient at 632 nm. The combination of the CAPS with the MAAP data allows estimating the single scattering albedo (ω) of the ambient aerosol particles. The ARI mobile laboratory was deployed in winter 2010 at the Chicago O’Hare International Airport to measure gas phase and particulate emissions from different aircraft engines, and during summer 2010 in Oakland, CA, to characterize vehicular gaseous and particulate emissions (mainly exhaust from heavy-duty diesel trucks) from the Caldecott Tunnel. We provide estimates of black carbon emission factors from individual aircraft engines and diesel trucks, in addition to characterizing the optical properties of these ambient samples studying fleet-average emissions for both light-duty passenger vehicles and heavy-duty diesel trucks. Two CAPS PMex instruments (measuring σep at 630 and 532 nm) were also deployed during the CalNex 2010 study (May 14 - June 16) at the CalTech ground site in Pasadena, CA. During the same time, a photo-acoustic spectrometer (PAS, DMT) and an aethalometer instrument (Magee Sci.) measured particle light absorption of submicron aerosol particles from the same sample line as the CAPS PMex monitors. We combine these data to provide multi-wavelength ω trends for the one-month campaign. Our results show the high potential of the CAPS as light weight, compact instrument to perform precise and accurate σep measurements of

  2. An Aerosol Extinction-to-Backscatter Ratio Database Derived from the NASA Micro-Pulse Lidar Network: Applications for Space-based Lidar Observations

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Campbell, James R.; Spinhime, James D.; Berkoff, Timothy A.; Holben, Brent; Tsay, Si-Chee; Bucholtz, Anthony

    2004-01-01

    Backscatter lidar signals are a function of both backscatter and extinction. Hence, these lidar observations alone cannot separate the two quantities. The aerosol extinction-to-backscatter ratio, S, is the key parameter required to accurately retrieve extinction and optical depth from backscatter lidar observations of aerosol layers. S is commonly defined as 4*pi divided by the product of the single scatter albedo and the phase function at 180-degree scattering angle. Values of S for different aerosol types are not well known, and are even more difficult to determine when aerosols become mixed. Here we present a new lidar-sunphotometer S database derived from Observations of the NASA Micro-Pulse Lidar Network (MPLNET). MPLNET is a growing worldwide network of eye-safe backscatter lidars co-located with sunphotometers in the NASA Aerosol Robotic Network (AERONET). Values of S for different aerosol species and geographic regions will be presented. A framework for constructing an S look-up table will be shown. Look-up tables of S are needed to calculate aerosol extinction and optical depth from space-based lidar observations in the absence of co-located AOD data. Applications for using the new S look-up table to reprocess aerosol products from NASA's Geoscience Laser Altimeter System (GLAS) will be discussed.

  3. Development of an Internet accessible software: optics and spectroscopy of gas-aerosol media

    NASA Astrophysics Data System (ADS)

    Voitsekhovskaya, O. K.; Kashirskii, D. E.; Egorov, O. V.

    2015-11-01

    A description of an Internet accessible software «Optics and spectroscopy of gas-aerosol media» is represented. The new software is focused on research in the field of direct and inverse problems of optics and spectroscopy of gas-aerosol media.

  4. Broadband optical extinction measurements and complex refractive indices in the ultraviolet spectral region for biogenic secondary organic aerosol exposed to ammonia

    NASA Astrophysics Data System (ADS)

    Flores, J.; Washenfelder, R. A.; Lee, H.; Segev, L.; Nizkorodov, S.; Brown, S. S.; Rudich, Y.

    2013-12-01

    The interaction between aerosols and sunlight plays an important role in the radiative balance of Earth's atmosphere. Aerosols can both scatter and absorb solar radiation causing surface cooling and heating of the atmosphere. These interactions depend on the optical properties of the aerosols (i.e., complex refractive index). Secondary organic aerosol (SOA) account for a significant fraction of the tropospheric aerosol. However, their chemical, physical, and optical properties, especially as they are processed in the atmosphere (aging), are still poorly understood. In this study, SOA formed by the ozonolysis of various biogenic volatile organic compound (BVOC) precursors (α-pinene, limonene, and α-humulene) were exposed to humid air containing various concentrations of gaseous ammonia which has been shown to cause the biogenic SOA to ';brown' on filters. The extent of absorption of the SOA in the aerosol phase cause by the exposure to gaseous ammonia was measured by a newly developed instrument to measure aerosol extinction as a function of wavelength using Broadband Cavity Enhanced Spectroscopy (BBCES) with a broadband light source. Size-selected measurements of the humid SOA exposed to NH3 for about 1.5 hours were used to derive complex refractive indices (RI) as a function of wavelength in the UV spectral region (from 360 - 420nm). The imaginary part of the refractive index did not exceed 0.05 in the 360 - 420 nm range for SOA formed from the three BVOCs even at high concentrations of NH3 (>1ppm), allowing to place an upper limit of k = 0.05. Furthermore, the small k values are consistent with bulk UV-VIS measurements. However, for the α-pinene SOA, the real part of the RI slightly increased from n = 1.49 to n = 1.55 with negligible spectral dependence. For limonene and α-humulene the real part remind constant within error calculations. Based on these observations, reactive uptake of gaseous ammonia is not expected to significantly affect absorption and

  5. AerGOM, an improved algorithm for stratospheric aerosol extinction retrieval from GOMOS observations - Part 1: Algorithm description

    NASA Astrophysics Data System (ADS)

    Vanhellemont, Filip; Mateshvili, Nina; Blanot, Laurent; Étienne Robert, Charles; Bingen, Christine; Sofieva, Viktoria; Dalaudier, Francis; Tétard, Cédric; Fussen, Didier; Dekemper, Emmanuel; Kyrölä, Erkki; Laine, Marko; Tamminen, Johanna; Zehner, Claus

    2016-09-01

    The GOMOS instrument on Envisat has successfully demonstrated that a UV-Vis-NIR spaceborne stellar occultation instrument is capable of delivering quality data on the gaseous and particulate composition of Earth's atmosphere. Still, some problems related to data inversion remained to be examined. In the past, it was found that the aerosol extinction profile retrievals in the upper troposphere and stratosphere are of good quality at a reference wavelength of 500 nm but suffer from anomalous, retrieval-related perturbations at other wavelengths. Identification of algorithmic problems and subsequent improvement was therefore necessary. This work has been carried out; the resulting AerGOM Level 2 retrieval algorithm together with the first data version AerGOMv1.0 forms the subject of this paper. The AerGOM algorithm differs from the standard GOMOS IPF processor in a number of important ways: more accurate physical laws have been implemented, all retrieval-related covariances are taken into account, and the aerosol extinction spectral model is strongly improved. Retrieval examples demonstrate that the previously observed profile perturbations have disappeared, and the obtained extinction spectra look in general more consistent. We present a detailed validation study in a companion paper; here, to give a first idea of the data quality, a worst-case comparison at 386 nm shows SAGE II-AerGOM correlation coefficients that are up to 1 order of magnitude larger than the ones obtained with the GOMOS IPFv6.01 data set.

  6. Four-year long-path monitoring of ambient aerosol extinction at a central European urban site: dependence on relative humidity

    NASA Astrophysics Data System (ADS)

    Skupin, A.; Ansmann, A.; Engelmann, R.; Seifert, P.; Müller, T.

    2016-02-01

    The ambient aerosol particle extinction coefficient is measured with the Spectral Aerosol Extinction Monitoring System (SÆMS) along a 2.84 km horizontal path at 30-50 m height above ground in the urban environment of Leipzig (51.3° N, 12.4° E), Germany, since 2009. The dependence of the particle extinction coefficient (wavelength range from 300 to 1000 nm) on relative humidity up to almost 100 % was investigated. The main results are presented. For the wavelength of 550 nm, the mean extinction enhancement factor was found to be 1.75 ± 0.4 for an increase of relative humidity from 40 to 80 %. The respective 4-year mean extinction enhancement factor is 2.8 ± 0.6 for a relative-humidity increase from 40 to 95 %. A parameterization of the dependency of the urban particle extinction coefficient on relative humidity is presented. A mean hygroscopic exponent of 0.46 for the 2009-2012 period was determined. Based on a backward trajectory cluster analysis, the dependence of several aerosol optical properties for eight air flow regimes was investigated. Large differences were not found, indicating that local pollution sources widely control the aerosol conditions over the urban site. The comparison of the SÆMS extinction coefficient statistics with respective statistics from ambient AERONET sun photometer observations yields good agreement. Also, time series of the particle extinction coefficient computed from in situ-measured dry particle size distributions and humidity-corrected SÆMS extinction values (for 40 % relative humidity) were found in good overall consistency, which verifies the applicability of the developed humidity parameterization scheme. The analysis of the spectral dependence of particle extinction (Ångström exponent) revealed an increase of the 390-881 nm Ångström exponent from, on average, 0.3 (at 30 % relative humidity) to 1.3 (at 95 % relative humidity) for the 4-year period.

  7. Aerosol collection and analysis using diffuse reflectance infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Samuels, Alan C.; Wong, Diane M.; Meyer, Gerald J.; Roelant, Geoffrey J.; Williams, Barry R.; Miles, Ronald W., Jr.; Manning, Christopher J.

    2004-08-01

    Infrared spectroscopy is routinely employed for the identification of organic molecules and, more recently, for the classification of biological materials. We have developed a sample collection method that facilitates infrared analysis of airborne particulates using a diffuse reflectance (DR) technique. Efforts are underway to extend the method to include simultaneous analysis of vapor phase organics by using adsorbent substrates compatible with the DR technique. This series of laboratory results provides proof-of-principle for both the sample collection and data collection processes. Signal processing of the DR spectra is shown to provide rapid qualitative identification of representative aerosol materials, including particulate matter commonly found in the environment. We compare the results for such materials as bacterial spores, pollens and molds, clays and dusts, smoke and soot. Background correction analysis is shown to be useful for differentiation and identification of these constituents. Issues relating to complex mixtures of environmental samples under highly variable conditions are considered. Instrumentation development and materials research are now underway with the aim of constructing a compact sampling system for near real-time monitoring of aerosol and organic pollutants. A miniature, tilt-compensated Fourier transform spectrometer will provide spectroscopic interrogation. A series of advanced digital signal processing methods are also under development to enhance the sensor package. The approach will be useful for industrial applications, chemical and biological agent detection, and environmental monitoring for chemical vapors, hazardous air pollutants, and allergens.

  8. Study of MPLNET-Derived Aerosol Climatology over Kanpur, India, and Validation of CALIPSO Level 2 Version 3 Backscatter and Extinction Products

    NASA Technical Reports Server (NTRS)

    Misra, Amit; Tripathi, S. N.; Kaul, D. S.; Welton, Ellsworth J.

    2012-01-01

    The level 2 aerosol backscatter and extinction profiles from the NASA Micropulse Lidar Network (MPLNET) at Kanpur, India, have been studied from May 2009 to September 2010. Monthly averaged extinction profiles from MPLNET shows high extinction values near the surface during October March. Higher extinction values at altitudes of 24 km are observed from April to June, a period marked by frequent dust episodes. Version 3 level 2 Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol profile products have been compared with corresponding data from MPLNET over Kanpur for the above-mentioned period. Out of the available backscatter profiles, the16 profiles used in this study have time differences less than 3 h and distances less than 130 km. Among these profiles, four cases show good comparison above 400 m with R2 greater than 0.7. Comparison with AERONET data shows that the aerosol type is properly identified by the CALIOP algorithm. Cloud contamination is a possible source of error in the remaining cases of poor comparison. Another source of error is the improper backscatter-to-extinction ratio, which further affects the accuracy of extinction coefficient retrieval.

  9. A broadband cavity-enhanced spectrometer for measuring the extinction of aerosols at blue and near-UV wavelengths

    NASA Astrophysics Data System (ADS)

    Venables, Dean; Fullam, Donovan; Hoa Le, Phuoc; Chen, Jun; Böge, Olaf; Herrmann, Hartmut

    2016-04-01

    We describe a new broadband cavity-enhanced absorption spectrometer for sensitive extinction measurements of aerosols. The instrument is distinguished by its broad and continuous spectral coverage from the near-UV to blue wavelengths (ca. 320 to 450 nm). The short wavelength region has been little explored compared to visible wavelengths, but is important because (1) brown carbon (BrC) absorbs strongly in this wavelength region, and (2) absorption of near-UV radiation in the atmosphere alters the photolysis rate of the key atmospheric species O3, NO2, and HONO, with implications for air quality and atmospheric oxidation capacity. The instrument performance and the effect of a switchable in-line filter are characterised. Early results using the instrument in the TROPOS atmospheric simulation chamber are presented. These experiments include studies of secondary organic aerosol formation (SOA), and biomass burning experiments of rice and wheat straw, followed by experiments simulating particle aging under daytime and nighttime conditions.

  10. How Well do State-of-the-Art Techniques Measuring the Vertical Profile of Tropospheric Aerosol Extinction Compare?

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Ferrare, R.; Flynn, C.; Elleman, R.; Covert, D.; Strawa, A.; Welton, E.; Turner, D.; Jonsson, H.; Redemann, J.; Eilers, J.; Ricci, K.; Hallar, A. G.; Clayton, M.; Michalsky, J.; Smirnov, A.; Holben, B.; Barnard, J.

    2006-01-01

    The recent Department of Energy Atmospheric Radiation Measurement (ARM) Aerosol Intensive Operations Period (AIOP, May 2003) yielded one of the best measurement sets obtained to date to assess our ability to measure the vertical profile of ambient aerosol extinction sigma(ep)(lambda) in the lower troposphere. During one month, a heavily instrumented aircraft with well-characterized aerosol sampling ability carrying well-proven and new aerosol instrumentation devoted most of the 60 available flight hours to flying vertical profiles over the heavily instrumented ARM Southern Great Plains (SGP) Climate Research Facility (CRF). This allowed us to compare vertical extinction profiles obtained from six different instruments: airborne Sun photometer (AATS-14), airborne nephelometer/absorption photometer, airborne cavity ring-down system, groundbased Raman lidar, and two ground-based elastic backscatter lidars. We find the in situ measured sigma(ep)(lambda) to be lower than the AATS-14 derived values. Bias differences are 0.002-0.004 Km!1 equivalent to 13-17% in the visible, or 45% in the near-infrared. On the other hand, we find that with respect to AATS-14, the lidar sigma(ep)(lambda) are higher: Bias differences are 0.004 Km(-1) (13%) and 0.007 Km(-1) (24%) for the two elastic backscatter lidars (MPLNET and MPLARM, lambda = 523 nm) and 0.029 Km(-1) (54%) for the Raman lidar (lambda = 355 nm). An unnoticed loss of sensitivity of the Raman lidar had occurred leading up to AIOP, and we expect better agreement from the recently restored system. Looking at the collective results from six field campaigns conducted since 1996, airborne in situ measurements of sigma(ep)(lambda) tend to be biased slightly low (17% at visible wavelengths) when compared to airborne Sun photometer sigma(ep)(lambda). On the other hand, sigma(ep)(lambda) values derived from lidars tend to have no or positive biases. From the bias differences we conclude that the typical systematic error associated

  11. Extinction coefficient (1 micrometer) properties of high-altitude clouds from solar occultation measurements (1985-1990): Evidence of volcanic aerosol effect

    NASA Technical Reports Server (NTRS)

    Wang, Pi-Huan; Minnis, Patrick; Yue, Glenn K.

    1995-01-01

    The properties of the 1-micrometer volume extinction coefficient of two geographically different high-altitude cloud systems have been examined for the posteruption period (1985-1990) of the April 1982 El Chichon volcanic event with emphasis on the effect of volcanic aerosols on clouds. These two high-altitude cloud systems are the tropical clouds in the tropopause region observed by the Stratospheric Aerosol and Gas Experiment (SAGE) 2 and the polar stratospheric clouds (PSCs) sighted by the Stratospheric Aerosol Measurement (SAM) 2. The results indicate that volcanic aerosols alter the frequency distributions of these high-altitude clouds in such a manner that the occurrence of clouds having high extinction coefficients (6 x 10(exp -3) - 2 x 10(exp -2)/km) is suppressed, while that of clouds having low extinction coefficients (2 x 10(exp -3) - 6 x 10(exp -2)/km) is enhanced. This influence of the volcanic aerosols appears to be opposite to the increase in the extinction coefficient of optically thick clouds observed by the Earth Radiation Budget Experiment (ERBE) during the initial posteruption period of the June 1991 Pinatubo eruption. A plausible explanation of this difference, based on the Mie theory, is presented. As a consequence of the Mie theory, the effective radius of most, if not all, of the high-altitude clouds, measured by the SAGE series of satellite instruments must be less than about 0.8 micrometers. This mean cloud particle size implied by the satellite extinction-coefficient data at a single wavelength (1 micrometer) is further substantiated by the particle size analysis based on cloud extinction coefficient at two wavelengths (0.525 and 1.02 micrometers) obtained by the SAGE 2 observations. Most of the radiation measured by ERBE is reflected by cloud systems comprised of particles having effective radii much greater than 1 micrometer. A reduction in the effective radius of these clouds due to volcanic aerosols is expected to increase their

  12. An Accuracy Assessment of the CALIOP/CALIPSO Version 2/Version 3 Daytime Aerosol Extinction Product Based on a Detailed Multi-Sensor, Multi-Platform Case Study

    NASA Technical Reports Server (NTRS)

    Kacenelenbogen, M.; Vaughan, M. A.; Redemann, J.; Hoff, R. M.; Rogers, R. R.; Ferrare, R. A.; Russell, P. B.; Hostetler, C. A.; Hair, J. W.; Holben, B. N.

    2011-01-01

    The Cloud Aerosol LIdar with Orthogonal Polarization (CALIOP), on board the CALIPSO platform, has measured profiles of total attenuated backscatter coefficient (level 1 products) since June 2006. CALIOP s level 2 products, such as the aerosol backscatter and extinction coefficient profiles, are retrieved using a complex succession of automated algorithms. The goal of this study is to help identify potential shortcomings in the CALIOP version 2 level 2 aerosol extinction product and to illustrate some of the motivation for the changes that have been introduced in the next version of CALIOP data (version 3, released in June 2010). To help illustrate the potential factors contributing to the uncertainty of the CALIOP aerosol extinction retrieval, we focus on a one-day, multi-instrument, multiplatform comparison study during the CALIPSO and Twilight Zone (CATZ) validation campaign on 4 August 2007. On that day, we observe a consistency in the Aerosol Optical Depth (AOD) values recorded by four different instruments (i.e. spaceborne MODerate Imaging Spectroradiometer, MODIS: 0.67 and POLarization and Directionality of Earth s Reflectances, POLDER: 0.58, airborne High Spectral Resolution Lidar, HSRL: 0.52 and ground-based AErosol RObotic NETwork, AERONET: 0.48 to 0.73) while CALIOP AOD is a factor of two lower (0.32 at 532 nm). This case study illustrates the following potential sources of uncertainty in the CALIOP AOD: (i) CALIOP s low signal-to-noise ratio (SNR) leading to the misclassification and/or lack of aerosol layer identification, especially close to the Earth s surface; (ii) the cloud contamination of CALIOP version 2 aerosol backscatter and extinction profiles; (iii) potentially erroneous assumptions of the aerosol extinction-to-backscatter ratio (Sa) used in CALIOP s extinction retrievals; and (iv) calibration coefficient biases in the CALIOP daytime attenuated backscatter coefficient profiles. The use of version 3 CALIOP extinction retrieval for our case

  13. Phase function, backscatter, extinction, and absorption for standard radiation atmosphere and El Chichon aerosol models at visible and near-infrared wavelengths

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Suttles, J. T.; Lecroy, S. R.

    1985-01-01

    Tabular values of phase function, Legendre polynominal coefficients, 180 deg backscatter, and extinction cross section are given for eight wavelengths in the atmospheric windows between 0.4 and 2.2 microns. Also included are single scattering albedo, asymmetry factor, and refractive indices. These values are based on Mie theory calculations for the standard rediation atmospheres (continental, maritime, urban, unperturbed stratospheric, volcanic, upper atmospheric, soot, oceanic, dust, and water-soluble) assest measured volcanic aerosols at several time intervals following the El Chichon eruption. Comparisons of extinction to 180 deg backscatter for different aerosol models are presented and related to lidar data.

  14. Influence of relative humidity on aerosol composition: Impacts on light extinction and visibility impairment at two sites in coastal area of China

    NASA Astrophysics Data System (ADS)

    Qu, W. J.; Wang, J.; Zhang, X. Y.; Wang, D.; Sheng, L. F.

    2015-02-01

    Investigation on the aerosol characteristics, surface visibility (Vis) and meteorology at BGS (Baguanshan, Qingdao) and LNA (Lin'an, Zhejiang) shows that the ambient aerosol chemical composition and light extinction are relative humidity (RH) dependent. At higher RH, both the strengthened hygroscopic growth and the more efficient oxidization (of the precursor gases and formation of the secondary sulfate and nitrate) contribute to the increase of the mass fraction of the hygroscopic species, which consequently results in the increase of the aerosol mass extinction efficiency (MEE) and Vis reduction at the two Chinese coastal sites. MEE and chemical composition of the aerosol vary significantly under different regional transport ways; the airmasses from the ocean directions are associated with higher RH, higher sulfate mass fraction and greater MEE at BGS, while MEEs are smaller and associated with lower RH and lower sulfate fraction for the airmasses from the continent directions. Vis shows better correlation with PM2.5 and PM10 mass concentrations when RH effect on aerosol hygroscopic growth is considered. At BGS, the sulfate mass fraction in PM2.5 and PM10 (in average 32.4% and 27.4%) can explain about 60.7% and 74.3% of the variance of the aerosol MEE, respectively; sulfate and nitrate contribute to about 61% of the light extinction. RH plays a key role in aerosol extinction and visibility variation over this coastal area of China. Formation of the secondary aerosol (especially sulfate and nitrate) as well as hygroscopic growth under favorable (more stable and humid) meteorological conditions should be paid adequate attention in regulation of air quality and Vis improvement over eastern China in addition to the routine emission control measurements.

  15. Results of a comprehensive atmospheric aerosol-radiation experiment in the southwestern United States. I - Size distribution, extinction optical depth and vertical profiles of aerosols suspended in the atmosphere. II - Radiation flux measurements and

    NASA Technical Reports Server (NTRS)

    Deluisi, J. J.; Furukawa, F. M.; Gillette, D. A.; Schuster, B. G.; Charlson, R. J.; Porch, W. M.; Fegley, R. W.; Herman, B. M.; Rabinoff, R. A.; Twitty, J. T.

    1976-01-01

    Results are reported for a field test that was aimed at acquiring a sufficient set of measurements of aerosol properties required as input for radiative-transfer calculations relevant to the earth's radiation balance. These measurements include aerosol extinction and size distributions, vertical profiles of aerosols, and radiation fluxes. Physically consistent, vertically inhomogeneous models of the aerosol characteristics of a turbid atmosphere over a desert and an agricultural region are constructed by using direct and indirect sampling techniques. These results are applied for a theoretical interpretation of airborne radiation-flux measurements. The absorption term of the complex refractive index of aerosols is estimated, a regional variation in the refractive index is noted, and the magnitude of solar-radiation absorption by aerosols and atmospheric molecules is determined.

  16. Validation studies using multiwavelength Cryogenic Limb Array Etalon Spectrometer (CLAES) observations of stratospheric aerosol

    NASA Astrophysics Data System (ADS)

    Massie, Steven T.; Gille, John C.; Edwards, David P.; Bailey, Paul L.; Lyjak, Lawrence V.; Craig, Cheryl A.; Cavanaugh, Charles P.; Mergenthaler, John L.; Roche, Aidan E.; Kumer, John B.; Lambert, Alyn; Grainger, Roy G.; Rodgers, Clive D.; Taylor, Frederic W.; Russell, James M.; Park, Jae H.; Deshler, Terry; Hervig, Mark E.; Fishbein, Evan F.; Waters, Joe W.; Lahoz, William A.

    1996-04-01

    Validation studies of multiwavelength Cryogenic Limb Array Etalon Spectrometer (CLAES) observations of stratospheric aerosol are discussed. An error analysis of the CLAES aerosol extinction data is presented. Aerosol extinction precision values are estimated at latitudes and times at which consecutive Upper Atmosphere Research Satellite (UARS) orbits overlap. Comparisons of CLAES aerosol data with theoretical Mie calculations, based upon in situ particle size measurements at Laramie, Wyoming, are presented. CLAES aerosol data are also compared to scaled aerosol extinction measured by the Stratospheric Aerosol and Gas Experiment (SAGE II) and Atmospheric Trace Molecule Spectroscopy (ATMOS) experiments. Observed and calculated extinction spectra, from CLAES, Improved Stratospheric and Mesospheric Sounder (ISAMS), and Halogen Occultation Experiment (HALOE) data, are compared. CLAES extinction data have precisions between 10 and 25%, instrumental biases near 30%, and accuracies between 33 and 43%.

  17. Comparison of Aerosol Backscatter and Extinction Profiles Based on the Earlinet Database and the Single Calculus Chain for Thessaloniki Greece (2001-2014)

    NASA Astrophysics Data System (ADS)

    Voudouri, K.; Siomos, N.; Giannakaki, E.; Amiridis, V.; d'Amico, G.; Balis, D. S.

    2016-06-01

    Aerosol backscatter and extinction coefficient profiles derived by the Single Calculus Chain (SCC) algorithm, which was developed within the European Aerosol Research Lidar Network (EARLINET) are compared with profiles derived by the operational inversion algorithm of Thessaloniki. Measurements performed during the period 2001-2014, that have already been uploaded in the EARLINET database, are considered in this study. The objective of this study is to verify, for the case of Thessaloniki, the consistency of the climatology of the aerosol profiles based on SCC and the EARLINET database data respectively. In this paper we show example comparisons for each lidar product submitted in the official database.

  18. Determination of the size distribution of metallic nanoparticles by optical extinction spectroscopy

    SciTech Connect

    Pena, Ovidio; Rodriguez-Fernandez, Luis; Rodriguez-Iglesias, Vladimir; Kellermann, Guinther; Crespo-Sosa, Alejandro; Cheang-Wong, Juan Carlos; Silva-Pereyra, Hector Gabriel; Arenas-Alatorre, Jesus; Oliver, Alicia

    2009-01-20

    A method is proposed to estimate the size distribution of nearly spherical metallic nanoparticles (NPs) from optical extinction spectroscopy (OES) measurements based on Mie's theory and an optimization algorithm. The described method is compared against two of the most widely used techniques for the task: transmission electron microscopy (TEM) and small-angle x-ray scattering (SAXS). The size distribution of Au and Cu NPs, obtained by ion implantation in silica and a subsequent thermal annealing in air, was determined by TEM, grazing-incidence SAXS (GISAXS) geometry, and our method, and the average radius obtained by all the three techniques was almost the same for the two studied metals. Concerning the radius dispersion (RD), OES and GISAXS give very similar results, while TEM considerably underestimates the RD of the distribution.

  19. Altitude Differentiated Aerosol Extinction Over Tenerife (North Atlantic Coast) During ACE-2 by Means of Ground and Airborne Photometry and Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Formenti, P.; Elias, T.; Welton, J.; Diaz, J. P.; Exposito, F.; Schmid, B.; Powell, D.; Holben, B. N.; Smirnov, A.; Andreae, M. O.; Devaux, C.; Voss, K.; Lelieveld, J.; Livingston, J. M.; Russell, P. B.; Durkee, P. A.

    2000-01-01

    Retrievals of spectral aerosol optical depths (tau(sub a)) by means of sun photometers have been undertaken in Tenerife (28 deg 16' N, 16 deg 36' W) during ACE-2 (June-July 1997). Five ground-based sites were located at four different altitudes in the marine boundary layer and in the free troposphere, from 0 to 3570 m asl. The goal of the investigation was to provide estimates of the vertical aerosol extinction over the island, both under clean and turbid conditions. Inversion of spectral tau(sub a) allowed to retrieve size distributions, from which the single scattering albedo omega(sub 0) and the asymmetry factor g could be estimated as a function of altitude. These parameters were combined to calculate aerosol forcing in the column. Emphasis is put on episodes of increased turbidity, which were observed at different locations simultaneously, and attributed to outbreaks of mineral dust from North Africa. Differentiation of tau(sub a) as a function of altitude provided the vertical profile of the extinction coefficient sigma(sub e). For dust outbreaks, aerosol extinction is concentrated in two distinct layers above and below the strong subsidence inversion around 1200 m asl. Vertical profiles of tau(sub a) and sigma(sub e) are shown for July 8. In some occasions, vertical profiles are compared to LIDAR observations, performed both at sea level and in the low free troposphere, and to airborne measurements of aerosol optical depths.

  20. Changes in surface aerosol extinction trends over China during 1980-2013 inferred from quality-controlled visibility data

    NASA Astrophysics Data System (ADS)

    Li, Jing; Li, Chengcai; Zhao, Chunsheng; Su, Tianning

    2016-08-01

    Pollution in China has been attracting extensive attention both globally and regionally, especially due to the perceptually worsening "smog" condition in recent years. We use routine visibility measurements from 1980 to 2013 at 272 World Meteorological Organization stations in China to assess the temporal changes in the magnitude and the sign of pollution trends. A strict and comprehensive quality control procedure is enforced by considering several issues not typically addressed in previous studies. Two methods are used to independently estimate the trend and its significance level. Results show that, in general, a strong increase in aerosol extinction coefficient over the majority of China is observed in the 1980s, followed by a moderate decrease in the 1990s, another increase in the 2000s, and a shift to decrease since around 2006 for some regions. Seasonally, winter and fall trends appear to be the strongest, while summer has the lowest trend.

  1. Implementation of Rotational Raman Channel in Multiwavelength Aerosol Lidar to Improve Measurements of Particle Extinction and Backscattering at 532 NM

    NASA Astrophysics Data System (ADS)

    Veselovskii, Igor; Whiteman, David N.; Korenskiy, Michael; Suvorina, A.; Perez-Ramirez, Daniel

    2016-06-01

    We describe a practical implementation of rotational Raman (RR) measurements in an existing Mie-Raman lidar to obtain measurements of aerosol extinction and backscattering at 532 nm. A 2.3 nm width interference filter was used to select a spectral range characterized by low temperature sensitivity within the anti-Stokes branch of the RR spectrum. Simulations demonstrate that the temperature dependence of the scattering cross section does not exceed 1.0% in the 230-300K range making accurate correction for this dependence quite easy. With this upgrade, the NASA/GSFC multiwavelength Raman lidar has demonstrated useful α532 measurements and was used for regular observations. Examples of lidar measurements and inversion of optical data to the particle microphysics will be given in presentation.

  2. Optical extinction due to aerosols in the upper haze of Venus: Four years of SOIR/VEX observations from 2006 to 2010

    NASA Astrophysics Data System (ADS)

    Wilquet, Valérie; Drummond, Rachel; Mahieux, Arnaud; Robert, Séverine; Vandaele, Ann Carine; Bertaux, Jean-Loup

    2012-02-01

    The variability of the aerosol loading in the mesosphere of Venus is investigated from a large data set obtained with SOIR, a channel of the SPICAV instrument suite onboard Venus Express. Vertical profiles of the extinction due to light absorption by aerosols are retrieved from a spectral window around 3.0 μm recorded in many solar occultations (˜200) from September 2006 to September 2010. For this period, the continuum of light absorption is analyzed in terms of spatial and temporal variations of the upper haze of Venus. It is shown that there is a high short-term (a few Earth days) and a long-term (˜80 Earth days) variability of the extinction profiles within the data set. Latitudinal dependency of the aerosol loading is presented for the entire period considered and for shorter periods of time as well.

  3. Vertical columns of NO2, HONO, HCHO, CHOCHO and aerosol extinction: diurnal and seasonal variations in context of CalNex and CARES

    NASA Astrophysics Data System (ADS)

    Ortega, I.; Coburn, S.; Oetjen, H.; Sinreich, R.; Thalman, R. M.; Waxman, E.; Volkamer, R.

    2011-12-01

    We present results from two ground-based University of Colorado Multi Axis Differential Optical Absorption Spectroscopy (CU-MAX-DOAS) instruments that were deployed during the CALNEX and CARES 2010 field campaigns. Ground based CU-MAX-DOAS measurements were carried out through Dec 2010, and measured vertical column abundances of nitrogen dioxide (NO2), nitrous acid (HONO), formaldehyde (HCHO), glyoxal (CHOCHO), and aerosol extinction, which is determined indirectly from observing the oxygen dimers (O4). The measurements were acquired on the top of Millikan library at Caltech, Pasadena, CA, at the Fontana Arrows site located 60 Km east of Caltech, and for a limited period also downwind of Sacramento at T1 site during CARES. In the South Coast Air Basin, the MAX-DOAS instruments at both sites collected an extended time series of use to test satellites, and atmospheric chemistry models. We determine the state of the planetary boundary layer by comparing the columns observations with in-situ sensors, and place the CALNEX and CARES measurements intensive into seasonal context.

  4. Inter-comparison of MAX-DOAS Retrieved Vertical Profiles of Aerosol Extinction, SO2 and NO2 in the Alberta Oil Sands with LIDAR Data and GEM-MACH Air Quality Model.

    NASA Astrophysics Data System (ADS)

    Davis, Zoe; Friess, Udo; Strawbridge, Kevin; Whiteway, James; Aggarwal, Monika; Makar, Paul; Li, Shao-Meng; O'Brien, Jason; Baray, Sabour; Schnitzler, Elijah; Olfert, Jason S.; Osthoff, Hans D.; Lobo, Akshay; McLaren, Robert

    2016-04-01

    Understanding industrial emissions of trace gas pollutants in the Alberta oil sands is essential to maintaining air quality standards and informing public policy. Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements of trace gases can improve knowledge of pollutant levels, vertical distribution and chemical transformation. During an intensive air measurement campaign to study emissions, transport, transformation and deposition of oil sands air pollutants from August to September of 2013, a MAX-DOAS instrument was deployed at a site north of Fort McMurray, Alberta to determine the vertical profiles of aerosol extinction, NO2 and SO2 through retrieval from the MAX-DOAS spectral measurements using an optimal estimation method. The large complement of data collected from multiple instruments deployed during this field campaign provides a unique opportunity to validate and characterize the performance of the MAX-DOAS vertical profile retrievals. Aerosol extinction profiles determined from two Light Detection and Ranging (LIDAR) instruments, one collocated and the other on a Twin Otter aircraft that flew over the site during the study, will be compared to the MAX-DOAS aerosol extinction profile retrievals. Vertical profiles of NO2 and SO2 retrieved from the MAX-DOAS measurements will be further compared with the composite vertical profiles measured from the flights of a second aircraft, the NRC-Convair 580, over the field site during the same measurement period. Finally, the MAX-DOAS retrieved tropospheric vertical column densities (VCDs) of SO2 and NO2 will be compared to the predicted VCDs from Environment and Climate Change Canada's Global Environmental Multi-scale - Modelling Air quality and Chemistry (GEM-MACH) air quality model over the grid cell containing the field site. Emission estimates of SO2 from the major oil mining facility Syncrude Mildred Lake using the MAX-DOAS VCD results, validated through the detailed characterization above

  5. Surface-Enhanced Resonance Raman Scattering and Visible Extinction Spectroscopy of Copper Chlorophyllin: An Upper Level Chemistry Experiment

    ERIC Educational Resources Information Center

    Schnitzer, Cheryl S.; Reim, Candace Lawson; Sirois, John J.; House, Paul G.

    2010-01-01

    Advanced chemistry students are introduced to surface-enhanced resonance Raman scattering (SERRS) by studying how sodium copper chlorophyllin (CuChl) adsorbs onto silver colloids (CuChl/Ag) as a function of pH. Using both SERRS and visible extinction spectroscopy, the extent of CuChl adsorption and colloidal aggregation are monitored. Initially at…

  6. Electron mean free path from angle-dependent photoelectron spectroscopy of aerosol particles

    SciTech Connect

    Goldmann, Maximilian; Miguel-Sánchez, Javier; West, Adam H. C.; Yoder, Bruce L.; Signorell, Ruth

    2015-06-14

    We propose angle-resolved photoelectron spectroscopy of aerosol particles as an alternative way to determine the electron mean free path of low energy electrons in solid and liquid materials. The mean free path is obtained from fits of simulated photoemission images to experimental ones over a broad range of different aerosol particle sizes. The principal advantage of the aerosol approach is twofold. First, aerosol photoemission studies can be performed for many different materials, including liquids. Second, the size-dependent anisotropy of the photoelectrons can be exploited in addition to size-dependent changes in their kinetic energy. These finite size effects depend in different ways on the mean free path and thus provide more information on the mean free path than corresponding liquid jet, thin film, or bulk data. The present contribution is a proof of principle employing a simple model for the photoemission of electrons and preliminary experimental data for potassium chloride aerosol particles.

  7. Aerosol optical extinction during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) 2014 summertime field campaign, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Dingle, Justin H.; Vu, Kennedy; Bahreini, Roya; Apel, Eric C.; Campos, Teresa L.; Flocke, Frank; Fried, Alan; Herndon, Scott; Hills, Alan J.; Hornbrook, Rebecca S.; Huey, Greg; Kaser, Lisa; Montzka, Denise D.; Nowak, John B.; Reeves, Mike; Richter, Dirk; Roscioli, Joseph R.; Shertz, Stephen; Stell, Meghan; Tanner, David; Tyndall, Geoff; Walega, James; Weibring, Petter; Weinheimer, Andrew

    2016-09-01

    Summertime aerosol optical extinction (βext) was measured in the Colorado Front Range and Denver metropolitan area as part of the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) campaign during July-August 2014. An Aerodyne cavity attenuated phase shift particle light extinction monitor (CAPS-PMex) was deployed to measure βext (at average relative humidity of 20 ± 7 %) of submicron aerosols at λ = 632 nm at 1 Hz. Data from a suite of gas-phase instrumentation were used to interpret βext behavior in various categories of air masses and sources. Extinction enhancement ratios relative to CO (Δβext / ΔCO) were higher in aged urban air masses compared to fresh air masses by ˜ 50 %. The resulting increase in Δβext / ΔCO for highly aged air masses was accompanied by formation of secondary organic aerosols (SOAs). In addition, the impacts of aerosol composition on βext in air masses under the influence of urban, natural oil and gas operations (O&G), and agriculture and livestock operations were evaluated. Estimated non-refractory mass extinction efficiency (MEE) values for different air mass types ranged from 1.51 to 2.27 m2 g-1, with the minimum and maximum values observed in urban and agriculture-influenced air masses, respectively. The mass distribution for organic, nitrate, and sulfate aerosols presented distinct profiles in different air mass types. During 11-12 August, regional influence of a biomass burning event was observed, increasing the background βext and estimated MEE values in the Front Range.

  8. Mass spectroscopy of single aerosols from field measurements

    SciTech Connect

    Thomson, D.S.; Murphy, D.M.

    1995-12-31

    We are developing an aircraft instrument for the chemical analysis of individual ambient aerosols in real time. In order to test the laboratory version of this instrument, we participated in a field campaign near the continental divide in Colorado in September, 1993. During this campaign, over 5000 mass spectra of ambient aerosols were collected. Analysis of the negative ion spectra shows that sulfate was the most commonly seen component of smaller particles, while nitrate was more common in larger particles. Organic compounds are present in most particles, and we believe we can distinguish inorganic carbon in some particles. Although numerous distinct classes of particles were observed, indicating external mixtures, almost all of these particle types were themselves mixtures of several compounds. Finally, we note that although the field site experienced distinct polluted and unpolluted episodes, aerosol composition did not correlate with gas phase chemistry.

  9. Characterizing the vertical profile of aerosol particle extinction and linear depolarization over Southeast Asia and the Maritime Continent: The 2007-2009 view from CALIOP

    NASA Astrophysics Data System (ADS)

    Campbell, James R.; Reid, Jeffrey S.; Westphal, Douglas L.; Zhang, Jianglong; Tackett, Jason L.; Chew, Boon Ning; Welton, Ellsworth J.; Shimizu, Atsushi; Sugimoto, Nobuo; Aoki, Kazuma; Winker, David M.

    2013-03-01

    Vertical profiles of 0.532 μm aerosol particle extinction coefficient and linear volume depolarization ratio are described for Southeast Asia and the Maritime Continent. Quality-screened and cloud-cleared Version 3.01 Level 2 NASA Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) 5-km Aerosol Profile datasets are analyzed from 2007 to 2009. Numerical simulations from the U.S. Naval Aerosol Analysis and Predictive System (NAAPS), featuring two-dimensional variational assimilation of NASA Moderate Resolution Imaging Spectroradiometer and Multi-angle Imaging SpectroRadiometer quality-assured datasets, combined with regional ground-based lidar measurements, are considered for assessing CALIOP retrieval performance, identifying bias, and evaluating regional representativeness. CALIOP retrievals of aerosol particle extinction coefficient and aerosol optical depth (AOD) are high over land and low over open waters relative to NAAPS (0.412/0.312 over land for all data points inclusive, 0.310/0.235 when the per bin average is used and each is treated as single data points; 0.102/0.151 and 0.086/0.124, respectively, over ocean). Regional means, however, are very similar (0.180/0.193 for all data points and 0.155/0.159 when averaged per normalized bin), as the two factors offset one another. The land/ocean offset is investigated, and discrepancies attributed to interpretation of particle composition and a-priori assignment of the extinction-to-backscatter ratio (“lidar ratio”) necessary for retrieving the extinction coefficient from CALIOP signals. Over land, NAAPS indicates more dust present than CALIOP algorithms are identifying, indicating a likely assignment of a higher lidar ratio representative of more absorptive particles. NAAPS resolves more smoke over water than identified with CALIOP, indicating likely usage of a lidar ratio characteristic of less absorptive particles to be applied that biases low AOD there. Over open waters except within the Bay of

  10. Characterizing the Vertical Profile of Aerosol Particle Extinction and Linear Depolarization over Southeast Asia and the Maritime Continent: The 2007-2009 View from CALIOP

    NASA Technical Reports Server (NTRS)

    Campbell, James R.; Reid, Jeffrey S.; Westphal, Douglas L.; Zhang, Jianglong; Tackett, Jason L.; Chew, Boon Ning; Welton, Ellsworth J.; Shimizu, Atsushi; Sugimoto, Nobuo; Aoki, Kazuma; Winker, David M.

    2012-01-01

    Vertical profiles of 0.532 µm aerosol particle extinction coefficient and linear volume depolarization ratio are described for Southeast Asia and the Maritime Continent. Quality-screened and cloud-cleared Version 3.01 Level 2 NASA Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) 5-km Aerosol Profile datasets are analyzed from 2007 to 2009. Numerical simulations from the U.S. Naval Aerosol Analysis and Predictive System (NAAPS), featuring two-dimensional variational assimilation of NASA Moderate Resolution Imaging Spectroradiometer and Multi-angle Imaging Spectro- Radiometer quality-assured datasets, combined with regional ground-based lidar measurements, are considered for assessing CALIOP retrieval performance, identifying bias, and evaluating regional representativeness. CALIOP retrievals of aerosol particle extinction coefficient and aerosol optical depth (AOD) are high over land and low over open waters relative to NAAPS (0.412/0.312 over land for all data points inclusive, 0.310/0.235 when the per bin average is used and each is treated as single data points; 0.102/0.151 and 0.086/0.124, respectively, over ocean). Regional means, however, are very similar (0.180/0.193 for all data points and 0.155/0.159 when averaged per normalized bin), as the two factors offset one another. The land/ocean offset is investigated, and discrepancies attributed to interpretation of particle composition and a-priori assignment of the extinction-to-backscatter ratio ("lidar ratio") necessary for retrieving the extinction coefficient from CALIOP signals. Over land, NAAPS indicates more dust present than CALIOP algorithms are identifying, indicating a likely assignment of a higher lidar ratio representative of more absorptive particles. NAAPS resolvesmore smoke overwater than identified with CALIOP, indicating likely usage of a lidar ratio characteristic of less absorptive particles to be applied that biases low AOD there. Over open waters except within the Bay of Bengal

  11. Fast statistical measurement of aspect ratio distribution of gold nanorod ensembles by optical extinction spectroscopy.

    PubMed

    Xu, Ninghan; Bai, Benfeng; Tan, Qiaofeng; Jin, Guofan

    2013-02-11

    Fast and accurate geometric characterization and metrology of noble metal nanoparticles such as gold nanorod (NR) ensembles is highly demanded in practical production, trade, and application of nanoparticles. Traditional imaging methods such as transmission electron microscopy (TEM) need to measure a sufficiently large number of nanoparticles individually in order to characterize a nanoparticle ensemble statistically, which are time-consuming and costly, though accurate enough. In this work, we present the use of optical extinction spectroscopy (OES) to fast measure the aspect ratio distribution (which is a critical geometric parameter) of gold NR ensembles statistically. By comparing with the TEM results experimentally, it is shown that the mean aspect ratio obtained by the OES method coincides with that of the TEM method well if the other NR structural parameters are reasonably pre-determined, while the OES method is much faster and of more statistical significance. Furthermore, the influences of these NR structural parameters on the measurement results are thoroughly analyzed and the possible measures to improve the accuracy of solving the ill-posed inverse scattering problem are discussed. By using the OES method, it is also possible to determine the mass-volume concentration of NRs, which is helpful for improving the solution of the inverse scattering problem while is unable to be obtained by the TEM method.

  12. Use of In Situ Cloud Condensation Nuclei, Extinction, and Aerosol Size Distribution Measurements to Test a Method for Retrieving Cloud Condensation Nuclei Profiles From Surface Measurements

    NASA Technical Reports Server (NTRS)

    Ghan, Stephen J.; Rissman, Tracey A.; Ellman, Robert; Ferrare, Richard A.; Turner, David; Flynn, Connor; Wang, Jian; Ogren, John; Hudson, James; Jonsson, Haflidi H.; VanReken, Timothy; Flagan, Richard C.; Seinfeld, John H.

    2006-01-01

    If the aerosol composition and size distribution below cloud are uniform, the vertical profile of cloud condensation nuclei (CCN) concentration can be retrieved entirely from surface measurements of CCN concentration and particle humidification function and surface-based retrievals of relative humidity and aerosol extinction or backscatter. This provides the potential for long-term measurements of CCN concentrations near cloud base. We have used a combination of aircraft, surface in situ, and surface remote sensing measurements to test various aspects of the retrieval scheme. Our analysis leads us to the following conclusions. The retrieval works better for supersaturations of 0.1% than for 1% because CCN concentrations at 0.1% are controlled by the same particles that control extinction and backscatter. If in situ measurements of extinction are used, the retrieval explains a majority of the CCN variance at high supersaturation for at least two and perhaps five of the eight flights examined. The retrieval of the vertical profile of the humidification factor is not the major limitation of the CCN retrieval scheme. Vertical structure in the aerosol size distribution and composition is the dominant source of error in the CCN retrieval, but this vertical structure is difficult to measure from remote sensing at visible wavelengths.

  13. 1984-1995 Evolution of Stratospheric Aerosol Size, Surface Area, and Volume Derived by Combining SAGE II and CLAES Extinction Measurements

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Bauman, Jill J.

    2000-01-01

    This SAGE II Science Team task focuses on the development of a multi-wavelength, multi- sensor Look-Up-Table (LUT) algorithm for retrieving information about stratospheric aerosols from global satellite-based observations of particulate extinction. The LUT algorithm combines the 4-wavelength SAGE II extinction measurements (0.385 <= lambda <= 1.02 microns) with the 7.96 micron and 12.82 micron extinction measurements from the Cryogenic Limb Array Etalon Spectrometer (CLAES) instrument, thus increasing the information content available from either sensor alone. The algorithm uses the SAGE II/CLAES composite spectra in month-latitude-altitude bins to retrieve values and uncertainties of particle effective radius R(sub eff), surface area S, volume V and size distribution width sigma(sub g).

  14. Chemical characterization of aerosol particles by laser Raman spectroscopy. Revision

    SciTech Connect

    Fung, K.H.

    1999-12-01

    The importance of aerosol particles in many branches of science, such as atmospheric chemistry, combustion, interfacial science, and material processing, has been steadily growing during the past decades. One of the unique properties of these particles is the very high surface-to-volume ratios, thus making them readily serve as centers for gas-phase condensation and heterogeneous reactions. These particles must be characterized by size, shape, physical state, and chemical composition. Traditionally, optical elastic scattering has been applied to obtain the physical properties of these particle (e.g., particle size, size distribution, and particle density). These physical properties are particularly important in atmospheric science as they govern the distribution and transport of atmospheric aerosols.

  15. Analysis of Venus Express optical extinction due to aerosols in the upper haze of Venus

    NASA Astrophysics Data System (ADS)

    Parkinson, Christopher; Bougher, Stephen; Mahieux, Arnaud; Tellmann, Silvia; Pätzold, Martin; Vandaele, Ann C.; Wilquet, Valérie; Schulte, Rick; Yung, Yuk; Gao, Peter; Bardeen, Charles

    Observations by the SPICAV/SOIR instruments aboard Venus Express (VEx) have revealed that the Upper Haze of Venus is populated by two particle modes, as reported by Wilquet et al. (J. Geophys. Res., 114, E00B42, 2009; Icarus 217, 2012). Gao et al. (In press, Icarus, 2013) posit that the large mode is made up of cloud particles that have diffused upwards from the cloud deck below, while the smaller mode is generated by the in situ nucleation of meteoric dust. They tested this hypothesis by using version 3.0 of the Community Aerosol and Radiation Model for Atmospheres, first developed by Turco et al. (J. Atmos. Sci., 36, 699-717, 1979) and upgraded to version 3.0 by Bardeen et al. (The CARMA 3.0 microphysics package in CESM, Whole Atmosphere Working Group Meeting, 2011). Using the meteoric dust production profile of Kalashnikova et al. (Geophys. Res. Lett., 27, 3293-3296, 2000), the sulfur/sulfate condensation nuclei production profile of Imamura and Hashimoto (J. Atmos. Sci., 58, 3597-3612, 2001), and sulfuric acid vapor production profile of Zhang et al. (Icarus, 217, 714-739, 2012), they numerically simulate a column of the Venus atmosphere from 40 to 100 km above the surface. Their aerosol number density results agree well with Pioneer Venus Orbiter (PVO) data from Knollenberg and Hunten (J. Geophys. Res., 85, 8039-8058, 1980), while their gas distribution results match that of Kolodner and Steffes below 55 km (Icarus, 132, 151-169, 1998). The resulting size distribution of cloud particles shows two distinct modes, qualitatively matching the observations of PVO. They also observe a third mode in their results with a size of a few microns at 48 km altitude, which appears to support the existence of the controversial third mode in the PVO data. This mode disappears if coagulation is not included in the simulation. The Upper Haze size distribution shows two lognormal-like distributions overlapping each other, possibly indicating the presence of the two distinct

  16. Variation of haemoglobin extinction coefficients can cause errors in the determination of haemoglobin concentration measured by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, J. G.; Liu, H.

    2007-10-01

    Near-infrared spectroscopy or imaging has been extensively applied to various biomedical applications since it can detect the concentrations of oxyhaemoglobin (HbO2), deoxyhaemoglobin (Hb) and total haemoglobin (Hbtotal) from deep tissues. To quantify concentrations of these haemoglobin derivatives, the extinction coefficient values of HbO2 and Hb have to be employed. However, it was not well recognized among researchers that small differences in extinction coefficients could cause significant errors in quantifying the concentrations of haemoglobin derivatives. In this study, we derived equations to estimate errors of haemoglobin derivatives caused by the variation of haemoglobin extinction coefficients. To prove our error analysis, we performed experiments using liquid-tissue phantoms containing 1% Intralipid in a phosphate-buffered saline solution. The gas intervention of pure oxygen was given in the solution to examine the oxygenation changes in the phantom, and 3 mL of human blood was added twice to show the changes in [Hbtotal]. The error calculation has shown that even a small variation (0.01 cm-1 mM-1) in extinction coefficients can produce appreciable relative errors in quantification of Δ[HbO2], Δ[Hb] and Δ[Hbtotal]. We have also observed that the error of Δ[Hbtotal] is not always larger than those of Δ[HbO2] and Δ[Hb]. This study concludes that we need to be aware of any variation in haemoglobin extinction coefficients, which could result from changes in temperature, and to utilize corresponding animal's haemoglobin extinction coefficients for the animal experiments, in order to obtain more accurate values of Δ[HbO2], Δ[Hb] and Δ[Hbtotal] from in vivo tissue measurements.

  17. Aerosol Optical Extinction during the Front Range Air Pollution and Photochemistry Experiment (FRAPPE) 2014 Summertime Field Campaign, Colorado U.S.A.

    NASA Astrophysics Data System (ADS)

    Dingle, J. H.; Vu, K. K. T.; Bahreini, R.; Apel, E. C.; Campos, T. L.; Cantrell, C. A.; Cohen, R. C.; Ebben, C. J.; Flocke, F. M.; Fried, A.; Herndon, S. C.; Hills, A. J.; Hornbrook, R. S.; Huey, L. G.; Kaser, L.; Mauldin, L.; Montzka, D. D.; Nowak, J. B.; Richter, D.; Roscioli, J. R.; Shertz, S.; Stell, M. H.; Tanner, D.; Tyndall, G. S.; Walega, J.; Weibring, P.; Weinheimer, A. J.

    2015-12-01

    Aerosol optical extinction (βext) was measured in the Colorado Front Range Denver Metropolitan Area as part of the summertime air quality airborne field campaign to characterize the influence of sources, photochemical processing, and transport of pollution on local air quality. An Aerodyne Cavity Attenuated Phase Shift particle light extinction monitor (CAPS-PMex) was deployed to measure dry βext at λ=632 nm at 1 Hz. Data from a suite of gas-phase instrumentation were used to interpret the βext under various categories of aged air masses and sources. Extinction enhancement ratios of Δβext/ΔCO were evaluated under 3 differently aged air mass categories (fresh, intermediately aged, and aged) to investigate impacts of photochemistry on βext. Δβext/ΔCO was significantly increased in heavily aged air masses compared to fresh air masses (0.17 Mm-1/ppbv and 0.094 Mm-1/ppbv respectively). The resulting increase in Δβext/ΔCO under heavily aged air masses was represented by secondary organic aerosols (SOA) formation. Aerosol composition and sources from urban, natural oil and gas wells (OG), and agriculture and livestock operations were also evaluated for their impacts on βext. Linear regression fits to βext vs. organic aerosol mass showed higher correlation coefficients under the urban and OG plumes (r=0.55 and r=0.71 respectively) and weakest under agricultural and livestock plumes (r=0.28). The correlation between βext and nitrate aerosol mass however was best under the agriculture and livestock plumes (r=0.81), followed by OG plumes (r=0.74), suggesting co-location of aerosol nitrate precursor sources with OG emissions. Finally, non-refractory mass extinction efficiency (MEE) was analyzed. MEE was observed to be 1.37 g/m2 and 1.30 g/m2 in OG and urban+OG plumes, respectively.

  18. Infrared spectroscopy and Mie scattering of acetylene aerosols formed in a low temperature diffusion cell

    NASA Technical Reports Server (NTRS)

    Dunder, T.; Miller, R. E.

    1990-01-01

    A method is described for forming and spectroscopically characterizing cryogenic aerosols formed in a low temperature gas cell. By adjusting the cell pressure, gas composition and flow rate, the size distribution of aerosol particles can be varied over a wide range. The combination of pressure and flow rate determine the residence time of the aerosols in the cell and hence the time available for the particles to grow. FTIR spectroscopy, over the range from 600/cm to 6000/cm, is used to characterize the aerosols. The particle size distribution can be varied so that, at one extreme, the spectra show only absorption features associated with the infrared active vibrational bands and, at the other, they display both absorption and Mie scattering. In the latter case, Mie scattering theory is used to obtain semiquantitative aerosol size distributions, which can be understood in terms of the interplay between nucleation and condensation. In the case of acetylene aerosols, the infrared spectra suggest that the particles exist in the high temperature cubic phase of the solid.

  19. Use of Cavity Ring Down Spectroscopy to Characterize Organic Acids and Aerosols Emitted in Biomass Burning

    NASA Astrophysics Data System (ADS)

    Bililign, Solomon; Fiddler, Marc; Singh, Sujeeta

    2012-02-01

    One poorly understood, but significant class of volatile organic compounds (VOC) present in biomass burning is gas-phase organic acids and inorganic acids. These acids are extremely difficult to measure because of their adsorptive nature. Particulates and aerosols are also produced during biomass burning and impact the radiation budget of the Earth and, hence, impact global climate. Use cavity ring down spectroscopy (CRD) to measure absorption cross sections for OH overtone induced photochemistry in some organic acids (acetic acid and peracetic acid) will be presented and planed measurements of optical properties of aerosols composed of mixtures of different absorbing and non-absorbing species using CRD will be discussed.

  20. Optical and physical properties of stratospheric aerosols from balloon measurements in the visible and near-infrared domains. II. Comparison of extinction, reflectance, polarization, and counting measurements.

    PubMed

    Renard, Jean-Baptiste; Berthet, Gwenaël; Robert, Claude; Chartier, Michel; Pirre, Michel; Brogniez, Colette; Herman, Maurice; Verwaerde, Christian; Balois, Jean-Yves; Ovarlez, Joëlle; Ovarlez, Henri; Crespin, Jacques; Deshler, Terry

    2002-12-20

    The physical properties of stratospheric aerosols can be retrieved from optical measurements involving extinction, radiance, polarization, and counting. We present here the results of measurements from the balloonborne instruments AMON, SALOMON, and RADIBAL, and from the French Laboratoire de Météorologie Dynamique and the University of Wyoming balloonborne particle counters. A cross comparison of the measurements was made for observations of background aerosols conducted during the polar winters of February 1997 and January-February 2000 for various altitudes from 13 to 19 km. On the one band, the effective radius and the total amount of background aerosols derived from the various sets of data are similar and are in agreement with pre-Pinatubo values. On the other hand, strong discrepancies occur in the shapes of the bimodal size distributions obtained from analysis of the raw measurement of the various instruments. It seems then that the log-normal assumption cannot fully reproduce the size distribution of background aerosols. The effect ofthe presence of particular aerosols on the measurements is discussed, and a new strategy for observations is proposed.

  1. Simultaneous retrieval of the complex refractive indices of the core and shell of coated aerosol particles from extinction measurements using simulated annealing.

    PubMed

    Erlick, Carynelisa; Haspel, Mitch; Rudich, Yinon

    2011-08-01

    Simultaneously retrieving the complex refractive indices of the core and shell of coated aerosol particles given the measured extinction efficiency as a function of particle dimensions (core diameter and coated diameter) is much more difficult than retrieving the complex refractive index of homogeneous aerosol particles. Not only must the minimization be performed over a four-parameter space, making it less efficient, but in addition the absolute value of the difference between the measured extinction and the calculated extinction does not have an easily distinguished global minimum. Rather, there are a number of local minima to which almost all conventional retrieval algorithms converge. In this work, we develop a new (to our knowledge) retrieval algorithm that employs the numerical method known as simulated annealing with an innovative "temperature" schedule. This study is limited only to spherical particles with a concentric shell and to cases in which the diameter of both the core and the coated particle are known. We find that when the top ranking particle sizes according to their information content are combined from separate experiments to make up the particle size distribution, the simulated annealing retrieval algorithm is quite robust and by far superior to a greedy random perturbation approach often used.

  2. Absolute optical extinction measurements of single nano-objects by spatial modulation spectroscopy using a white lamp.

    PubMed

    Billaud, Pierre; Marhaba, Salem; Grillet, Nadia; Cottancin, Emmanuel; Bonnet, Christophe; Lermé, Jean; Vialle, Jean-Louis; Broyer, Michel; Pellarin, Michel

    2010-04-01

    This article describes a high sensitivity spectrophotometer designed to detect the overall extinction of light by a single nanoparticle (NP) in the 10(-4)-10(-5) relative range, using a transmission measurement configuration. We focus here on the simple and low cost scheme where a white lamp is used as a light source, permitting easy and broadband extinction measurements (300-900 nm). Using a microscope, in a confocal geometry, an increased sensitivity is reached thanks to a modulation of the NP position under the light spot combined with lock-in detection. Moreover, it is shown that this technique gives access to the absolute extinction cross-sections of the single NP provided that the incident electromagnetic field distribution experienced by the NP is accurately characterized. In this respect, an experimental procedure to characterize the light spot profile in the focal plane, using a reference NP as a probe, is also laid out. The validity of this approach is discussed and confirmed by comparing experimental intensity distributions to theoretical calculations taking into account the vector character of the tightly focused beam. The calibration procedure permitting to obtain the absolute extinction cross-section of the probed NP is then fully described. Finally, the force of the present technique is illustrated through selected examples concerning spherical and slightly elongated gold and silver NPs. Absolute extinction measurements are found to be in good consistency with the NP size and shape independently obtained from transmission electron microscopy, showing that spatial modulation spectroscopy is a powerful tool to get an optical fingerprint of the NP. PMID:20441319

  3. Nuclear magnetic resonance spectroscopy for determining the functional content of organic aerosols: a review.

    PubMed

    Chalbot, Marie-Cecile G; Kavouras, Ilias G

    2014-08-01

    The knowledge deficit of organic aerosol (OA) composition has been identified as the most important factor limiting our understanding of the atmospheric fate and implications of aerosol. The efforts to chemically characterize OA include the increasing utilization of nuclear magnetic resonance spectroscopy (NMR). Since 1998, the functional composition of different types, sizes and fractions of OA has been studied with one-dimensional, two-dimensional and solid state proton and carbon-13 NMR. This led to the use of functional group ratios to reconcile the most important sources of OA, including secondary organic aerosol and initial source apportionment using positive matrix factorization. Future research efforts may be directed towards the optimization of experimental parameters, detailed NMR experiments and analysis by pattern recognition methods to identify the chemical components, determination of the NMR fingerprints of OA sources and solid state NMR to study the content of OA as a whole.

  4. Characteristics of solid aerosols produced by optical catapulting studied by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Fortes, F. J.; Laserna, J. J.

    2010-08-01

    Optical catapulting (OC) constitutes an effective method to transport small amounts of different materials in the form of a solid aerosol. In this report, laser-induced breakdown spectroscopy (LIBS) is used for the analysis of those aerosols produced by OC. For this purpose, materials were catapulted using a Q-switch Nd:YAG laser. A second Q-switch Nd:YAG laser was used for LIBS analysis of the ejected particles. Data processing of aerosols was conducted using conditional data analysis. Also, the standard deviation method was used for the qualitative identification of the ejected particles. Two modes of interaction in OC (OC with focused or defocused pulses) have been evaluated and discussed. LIBS demonstrates that the distribution (spreading) of the ejected particles along the propagation axis increased as a function of the interpulse delay time. The mass density and the thickness of the target also play an important role in OC-LIBS.

  5. A Chronology of Annual-Mean Effective Radii of Stratospheric Aerosols from Volcanic Eruptions During the Twentieth Century as Derived From Ground-based Spectral Extinction Measurements

    NASA Technical Reports Server (NTRS)

    Strothers, Richard B.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Stratospheric extinction can be derived from ground-based spectral photometric observations of the Sun and other stars (as well as from satellite and aircraft measurements, available since 1979), and is found to increase after large volcanic eruptions. This increased extinction shows a characteristic wavelength dependence that gives information about the chemical composition and the effective (or area weighted mean) radius of the particles responsible for it. Known to be tiny aerosols constituted of sulfuric acid in a water solution, the stratospheric particles at midlatitudes exhibit a remarkable uniformity of their column-averaged effective radii r(sub eff) in the first few months after the eruption. Considering the seven largest eruptions of the twentieth century, r(sub eff) at this phase of peak aerosol abundance is approx. 0.3 micrometers in all cases. A year later, r(sub eff) either has remained about the same size (almost certainly in the case of the Katmai eruption of 1912) or has increased to approx. 0.5 micrometers (definitely so for the Pinatubo eruption of 1991). The reasons for this divergence in aerosol growth are unknown.

  6. Analysis of the Organic Content of Marine Aerosols with X-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pham, D.; OBrien, R. E.; Fraund, M.; Laskina, O.; Alpert, P. A.; Prather, K. A.; Knopf, D. A.; Grassian, V. H.; Moffet, R.

    2014-12-01

    The ocean is a major global source of aerosols and the seawater from which they are derived is a complex mixture of organic molecules from organisms including phytoplankton, bacteria, and viruses. Marine aerosols consist of any combination of these components and in different mixing states. The mixing state affects absorption and scattering efficiency as well as their ability to uptake water and form ice. Therefore, there is a need to spatially resolve the chemical composition of individual marine aerosols in order to study their potential effects on the climate. Scanning Transmission X-ray Microscopy coupled with Near Edge X-ray Absorption Fine Structure spectroscopy (SXTM-NEXAFS) gives both spatial resolution as well as the sensitivity to molecular transitions that is necessary to correlate a position on an aerosol with a functional group or inorganic constituent. The morphology, mixing state, and chemical composition from STXM-NEXAFS can be used in conjunction with collocated measurements (light scattering, ice nucleation, etc.) to correlate the spatially resolved chemical composition of aerosols with their physical properties. The goal of this project is to determine if there is a difference in the organic fraction between particles with clearly different morphology and mixing states. Three major classes of marine aerosols have been classified as sea salt, marine gels, and cell fragments. Sea salt is classified by having an inorganic core consisting of NaCl and a thin layer of organic coating on the outside. Marine gels consist of organic material in the form of lipids, polysaccharides, and proteins distributed throughout the aerosol alongside inorganic compounds, such as Ca2+, Mg2+, and K+, that help to stabilize the negative charge of the organic material. Cell fragments include fragments from phytoplankton and bacteria. Efforts are currently underway to quantitatively evaluate differences in NEXAFS spectra for these particle types using nonlinear least

  7. Compositional Analysis of Aerosols Using Calibration-Free Laser-Induced Breakdown Spectroscopy.

    PubMed

    Boudhib, Mohamed; Hermann, Jörg; Dutouquet, Christophe

    2016-04-01

    We demonstrate that the elemental composition of aerosols can be measured using laser-induced breakdown spectroscopy (LIBS) without any preliminary calibration with standard samples. Therefore, a nanosecond Nd:YAG laser beam was focused into a flux of helium charged with alumina aerosols of a few micrometers diameter. The emission spectrum of the laser-generated breakdown plasma was recorded with an echelle spectrometer coupled to a gated detector. The spectral features including emission from both the helium carrier gas and the Al2O3 aerosols were analyzed on the base of a partial local thermodynamic equilibrium. Thus, Boltzmann equilibrium distributions of population number densities were assumed for all plasma species except of helium atoms and ions. By analyzing spectra recorded for different delays between the laser pulse and the detector gate, it is shown that accurate composition measurements are only possible for delays ≤1 μs, when the electron density is large enough to ensure collisional equilibrium for the aerosol vapor species. The results are consistent with previous studies of calibration-free LIBS measurements of solid alumina and glass and promote compositional analysis of aerosols via laser-induced breakdown in helium.

  8. Compositional Analysis of Aerosols Using Calibration-Free Laser-Induced Breakdown Spectroscopy.

    PubMed

    Boudhib, Mohamed; Hermann, Jörg; Dutouquet, Christophe

    2016-04-01

    We demonstrate that the elemental composition of aerosols can be measured using laser-induced breakdown spectroscopy (LIBS) without any preliminary calibration with standard samples. Therefore, a nanosecond Nd:YAG laser beam was focused into a flux of helium charged with alumina aerosols of a few micrometers diameter. The emission spectrum of the laser-generated breakdown plasma was recorded with an echelle spectrometer coupled to a gated detector. The spectral features including emission from both the helium carrier gas and the Al2O3 aerosols were analyzed on the base of a partial local thermodynamic equilibrium. Thus, Boltzmann equilibrium distributions of population number densities were assumed for all plasma species except of helium atoms and ions. By analyzing spectra recorded for different delays between the laser pulse and the detector gate, it is shown that accurate composition measurements are only possible for delays ≤1 μs, when the electron density is large enough to ensure collisional equilibrium for the aerosol vapor species. The results are consistent with previous studies of calibration-free LIBS measurements of solid alumina and glass and promote compositional analysis of aerosols via laser-induced breakdown in helium. PMID:26974717

  9. Method and apparatus for aerosol particle absorption spectroscopy

    DOEpatents

    Campillo, Anthony J.; Lin, Horn-Bond

    1983-11-15

    A method and apparatus for determining the absorption spectra, and other properties, of aerosol particles. A heating beam source provides a beam of electromagnetic energy which is scanned through the region of the spectrum which is of interest. Particles exposed to the heating beam which have absorption bands within the band width of the heating beam absorb energy from the beam. The particles are also illuminated by light of a wave length such that the light is scattered by the particles. The absorption spectra of the particles can thus be determined from an analysis of the scattered light since the absorption of energy by the particles will affect the way the light is scattered. Preferably the heating beam is modulated to simplify the analysis of the scattered light. In one embodiment the heating beam is intensity modulated so that the scattered light will also be intensity modulated when the particles absorb energy. In another embodiment the heating beam passes through an interferometer and the scattered light reflects the Fourier Transform of the absorption spectra.

  10. Lidar Ratios for Dust Aerosols Derived From Retrievals of CALIPSO Visible Extinction Profiles Constrained by Optical Depths from MODIS-Aqua and CALIPSO/CloudSat Ocean Surface Reflectance Measurements

    NASA Technical Reports Server (NTRS)

    Young, Stuart A.; Josset, Damien B.; Vaughan, Mark A.

    2010-01-01

    CALIPSO's (Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations) analysis algorithms generally require the use of tabulated values of the lidar ratio in order to retrieve aerosol extinction and optical depth from measured profiles of attenuated backscatter. However, for any given time or location, the lidar ratio for a given aerosol type can differ from the tabulated value. To gain some insight as to the extent of the variability, we here calculate the lidar ratio for dust aerosols using aerosol optical depth constraints from two sources. Daytime measurements are constrained using Level 2, Collection 5, 550-nm aerosol optical depth measurements made over the ocean by the MODIS (Moderate Resolution Imaging Spectroradiometer) on board the Aqua satellite, which flies in formation with CALIPSO. We also retrieve lidar ratios from night-time profiles constrained by aerosol column optical depths obtained by analysis of CALIPSO and CloudSat backscatter signals from the ocean surface.

  11. Sizing highly-ordered buckyball-shaped aggregates of colloidal nanoparticles by light extinction spectroscopy

    NASA Astrophysics Data System (ADS)

    Onofri, F. R. A.; Barbosa, S.; Touré, O.; Woźniak, M.; Grisolia, C.

    2013-09-01

    We produced self-assembled, densely-packed and highly-ordered aggregates of silica nanoparticles arranged in a rather regular hexagonal-pentagonal surface lattice. To investigate the formation of these aggregates, produced by means of a spray drying method, we developed a light extinction setup and all related models. It is shown that with a geodesic dome model, to describe their morphology, and a T-matrix method to calculate their extinction cross sections, the size distribution and concentration of these flowing aggregates may be recovered from the inversion of transmission spectra.

  12. Effect of temperature, atmospheric condition, and particle size on extinction in a plume of volatile aerosol dispersed in the atmospheric surface layer.

    PubMed

    Tsang, T T; Pai, P; Korgaonkar, N V

    1988-02-01

    The objective of this work is to study the effects of ambient temperature, atmospheric condition, and particle size on the extinction coefficient of diesel fuel and fog oil smoke. A first-order closure model is used to describe the turbulent diffusion of the smoke in the atmospheric surface layer. Mean values of wind speed and diffusivity in the vertical direction are obtained by the use of the Monin-Obukhov similarity theory. The 2-D crosswind line source model also includes the aerosol kinetic processes of evaporation, sedimentation, and deposition. Numerical results are obtained from simulations on a supercomputer.

  13. Determination of the biogenic secondary organic aerosol fraction in the boreal forest by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Finessi, E.; Decesari, S.; Paglione, M.; Giulianelli, L.; Carbone, C.; Gilardoni, S.; Fuzzi, S.; Saarikoski, S.; Raatikainen, T.; Hillamo, R.; Allan, J.; Mentel, Th. F.; Tiitta, P.; Laaksonen, A.; Petäjä, T.; Kulmala, M.; Worsnop, D. R.; Facchini, M. C.

    2012-01-01

    The study investigates the sources of fine organic aerosol (OA) in the boreal forest, based on measurements including both filter sampling (PM1) and online methods and carried out during a one-month campaign held in Hyytiälä, Finland, in spring 2007. Two aerosol mass spectrometers (Q-AMS, ToF-AMS) were employed to measure on-line concentrations of major non-refractory aerosol species, while the water extracts of the filter samples were analyzed by nuclear magnetic resonance (NMR) spectroscopy for organic functional group characterization of the polar organic fraction of the aerosol. AMS and NMR spectra were processed separately by non-negative factorization algorithms, in order to apportion the main components underlying the submicrometer organic aerosol composition and depict them in terms of both mass fragmentation patterns and functional group compositions. The NMR results supported the AMS speciation of oxidized organic aerosol (OOA) into two main fractions, which could be generally labelled as more and less oxidized organics. The more oxidized component was characterized by a mass spectrum dominated by the m/z 44 peak, and in parallel by a NMR spectrum showing aromatic and aliphatic backbones highly substituted with oxygenated functional groups (carbonyls/carboxyls and hydroxyls). Such component, contributing on average 50% of the OA mass throughout the observing period, was associated with pollution outbreaks from the Central Europe. The less oxidized component was enhanced in concomitance with air masses originating from the North-to-West sector, in agreement with previous investigations conducted at this site. NMR factor analysis was able to separate two distinct components under the less oxidized fraction of OA. One of these NMR-factors was associated with the formation of terrestrial biogenic secondary organic aerosol (BSOA), based on the comparison with spectral profiles obtained from laboratory experiments of terpenes photo-oxidation. The second NMR

  14. Toward new techniques to measure heterogeneous oxidation of aerosol: Electrodynamic Balance-Mass Spectrometry (EDB-MS) and Aerosol X-ray Photoelectron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jacobs, M. I.; Heine, N.; Xu, B.; Davies, J. F.; Kirk, B. B.; Kostko, O.; Alayoglu, S.; Wilson, K. R.; Ahmed, M.

    2015-12-01

    The chemical composition and physical properties of aerosol can be changed via heterogeneous oxidation with the OH radical. However, the physical state of the aerosol influences the kinetics of this reaction; liquid particles with a high diffusion coefficient are expected to be well mixed and homogenously oxidized, while oxidation of solid, diffusion-limited aerosol is expected to occur primarily on the surface, creating steep chemical gradients within the particle. We are working to develop several new techniques to study the heterogeneous oxidation of different types of aerosol. We are developing a "modular" electrodynamic balance (EDB) that will enable us to study heterogeneous oxidation at aqueous interfaces using a mass-spectrometer (and potentially other detection techniques). Using a direct analysis in real time (DART) interface, preliminary droplet train measurements have demonstrated single-droplet mass spectrometry to be possible. With long reaction times in our EDB, we will be able to study heterogeneous oxidation of a wide variety of organic species in aqueous droplets. Additionally, we are working to use aerosol photoemission and velocity map imaging (VMI) to study the surface of aerosol particles as they undergo heterogeneous oxidation. With VMI, we're able to collect electrons with a 4π collection efficiency over conventional electron energy analyzers. Preliminary results looking at the ozonolysis of squalene using ultraviolet photoelectron spectroscopy (UPS) show that heterogeneous oxidation kinetic data can be extracted from photoelectron spectra. By moving to X-ray photoemission spectroscopy (XPS), we will determine elemental and chemical composition of the aerosol surface. Thus, aerosol XPS will provide information on the steep chemical gradients that form as diffusion-limited aerosol undergo heterogeneous oxidation.

  15. Three-dimensional dust aerosol distribution and extinction climatology over northern Africa simulated with the ALADIN numerical prediction model from 2006 to 2010

    NASA Astrophysics Data System (ADS)

    Mokhtari, M.; Tulet, P.; Fischer, C.; Bouteloup, Y.; Bouyssel, F.; Brachemi, O.

    2015-08-01

    The seasonal cycle and optical properties of mineral dust aerosols in northern Africa were simulated for the period from 2006 to 2010 using the numerical atmospheric model ALADIN (Aire Limitée Adaptation dynamique Développement InterNational) coupled to the surface scheme SURFEX (SURFace EXternalisée). The particularity of the simulations is that the major physical processes responsible for dust emission and transport, as well as radiative effects, are taken into account on short timescales and at mesoscale resolution. The aim of these simulations is to quantify the dust emission and deposition, locate the major areas of dust emission and establish a climatology of aerosol optical properties in northern Africa. The mean monthly aerosol optical thickness (AOT) simulated by ALADIN is compared with the AOTs derived from the standard Dark Target (DT) and Deep Blue (DB) algorithms of the Aqua-MODIS (MODerate resolution Imaging Spectroradiometer) products over northern Africa and with a set of sun photometer measurements located at Banizoumbou, Cinzana, Soroa, Mbour and Cape Verde. The vertical distribution of dust aerosol represented by extinction profiles is also analysed using CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) observations. The annual dust emission simulated by ALADIN over northern Africa is 878 Tg year-1. The Bodélé Depression appears to be the main area of dust emission in northern Africa, with an average estimate of about 21.6 Tg year-1. The simulated AOTs are in good agreement with satellite and sun photometer observations. The positions of the maxima of the modelled AOTs over northern Africa match the observed positions, and the ALADIN simulations satisfactorily reproduce the various dust events over the 2006-2010 period. The AOT climatology proposed in this paper provides a solid database of optical properties and consolidates the existing climatology over this region derived from satellites, the AERONET network and regional climate

  16. High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media

    NASA Astrophysics Data System (ADS)

    Fiore, Antonio; Zhang, Jitao; Shao, Peng; Yun, Seok Hyun; Scarcelli, Giuliano

    2016-05-01

    Brillouin microscopy has recently emerged as a powerful technique to characterize the mechanical properties of biological tissue, cell, and biomaterials. However, the potential of Brillouin microscopy is currently limited to transparent samples, because Brillouin spectrometers do not have sufficient spectral extinction to reject the predominant non-Brillouin scattered light of turbid media. To overcome this issue, we combined a multi-pass Fabry-Perot interferometer with a two-stage virtually imaged phased array spectrometer. The Fabry-Perot etalon acts as an ultra-narrow band-pass filter for Brillouin light with high spectral extinction and low loss. We report background-free Brillouin spectra from Intralipid solutions and up to 100 μm deep within chicken muscle tissue.

  17. Raman Lidar Measurements of Aerosol Extinction and Backscattering. Report 2; Derivation of Aerosol Real Refractive Index, Single-Scattering Albedo, and Humidification Factor using Raman Lidar and Aircraft Size Distribution

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Melfi, S. H.; Whiteman, D. N.; Evans, K. D.; Poellot, M.; Kaufman, Y. J.

    1998-01-01

    Aerosol backscattering and extinction profiles measured by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site during two nights in April 1994 are discussed. These profiles are shown to be consistent with the simultaneous aerosol size distribution measurements made by a PCASP (Passive Cavity Aerosol Spectrometer Probe) optical particle counter flown on the University of North Dakota Citation aircraft. We describe a technique which uses both lidar and PCASP measurements to derive the dependence of particle size on relative humidity, the aerosol real refractive index n, and estimate the effective single-scattering albedo Omega(sub 0). Values of n ranged between 1.4-1.5 (dry) and 1.37-1.47 (wet); Omega(sub 0) varied between 0.7 and 1.0. The single-scattering albedo derived from this technique is sensitive to the manner in which absorbing particles are represented in the aerosol mixture; representing the absorbing particles as an internal mixture rather than the external mixture assumed here results in generally higher values of Omega(sub 0). The lidar measurements indicate that the change in particle size with relative humidity as measured by the PCASP can be represented in the form discussed by Hattel with the exponent gamma = 0.3 + or - 0.05. The variations in aerosol optical and physical characteristics captured in the lidar and aircraft size distribution measurements are discussed in the context of the meteorological conditions observed during the experiment.

  18. Raman lidar measurements of aerosol extinction and backscattering 2. Derivation of aerosol real refractive index, single-scattering albedo, and humidification factor using Raman lidar and aircraft size distribution measurements

    SciTech Connect

    Ferrare, R.A.; Melfi, S.H.; Whiteman, D.N.; Kaufman, Y.J.; Evans, K.D.

    1998-08-01

    Aerosol backscattering and extinction profiles measured by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site during two nights in April 1994 are discussed. These profiles are shown to be consistent with the simultaneous aerosol size distribution measurements made by a PCASP (Passive Cavity Aerosol Spectrometer Probe) optical particle counter flown on the University of North Dakota Citation aircraft. We describe a technique which uses both lidar and PCASP measurements to derive the dependence of particle size on relative humidity, the aerosol real refractive index {ital n}, and estimate the effective single-scattering albedo {omega}{sub 0}. Values of {ital n} ranged between 1.4{endash}1.5 (dry) and 1.37{endash}1.47 (wet); {omega}{sub 0} varied between 0.7 and 1.0. The single-scattering albedo derived from this technique is sensitive to the manner in which absorbing particles are represented in the aerosol mixture; representing the absorbing particles as an internal mixture rather than the external mixture assumed here results in generally higher values of {omega}{sub 0}. The lidar measurements indicate that the change in particle size with relative humidity as measured by the PCASP can be represented in the form discussed by {ital Hanel} [1976] with the exponent {gamma}=0.3{plus_minus}0.05. The variations in aerosol optical and physical characteristics captured in the lidar and aircraft size distribution measurements are discussed in the context of the meteorological conditions observed during the experiment. {copyright} 1998 American Geophysical Union

  19. Multi axis differential optical absorption spectroscopy (MAX-DOAS) of gas and aerosol distributions.

    PubMed

    Sinreich, R; Friess, U; Wagner, T; Platt, U

    2005-01-01

    We present and demonstrate a relatively simple algorithm, which converts a set of slant column density measurements of oxygen dimers (O4) and NO2 at several different elevation angles to determine the atmospheric aerosol extinction and the absolute concentration and mixing ratio of NO2 within the atmospheric boundary layer. In addition the height of the atmospheric boundary layer can usually be derived, also the technique can be readily extended to determine the concentration of several other trace gases including SO2, CH2O, or glyoxal. The algorithm is based on precise radiation transport modelling determination, taking into account the actual aerosol scenario as determined from the O4 measurements. The required hardware is simple encompassing essentially a miniature spectrometer, a small telescope, a pointing mechanism, and a Personal Computer (PC). Effectively the technique combines the simplicity of a passive MAX-DOAS observation with the capability of a much more complex active DOAS instrument to determine path-averaged, absolutely calibrated mixing ratios of atmospheric trace gases at relatively high accuracy.

  20. Multi axis differential optical absorption spectroscopy (MAX-DOAS) of gas and aerosol distributions.

    PubMed

    Sinreich, R; Friess, U; Wagner, T; Platt, U

    2005-01-01

    We present and demonstrate a relatively simple algorithm, which converts a set of slant column density measurements of oxygen dimers (O4) and NO2 at several different elevation angles to determine the atmospheric aerosol extinction and the absolute concentration and mixing ratio of NO2 within the atmospheric boundary layer. In addition the height of the atmospheric boundary layer can usually be derived, also the technique can be readily extended to determine the concentration of several other trace gases including SO2, CH2O, or glyoxal. The algorithm is based on precise radiation transport modelling determination, taking into account the actual aerosol scenario as determined from the O4 measurements. The required hardware is simple encompassing essentially a miniature spectrometer, a small telescope, a pointing mechanism, and a Personal Computer (PC). Effectively the technique combines the simplicity of a passive MAX-DOAS observation with the capability of a much more complex active DOAS instrument to determine path-averaged, absolutely calibrated mixing ratios of atmospheric trace gases at relatively high accuracy. PMID:16161782

  1. Inhomogeneities in particle composition of single, levitated aerosol particles observed by Mie resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Krieger, Ulrich; Lienhard, Daniel; Bastelberger, Sandra; Steimer, Sarah

    2014-05-01

    Recent observations have indicated that organic aerosol particles in the atmosphere may exist in an amorphous semi-solid or even solid (i.e. glassy) state, e.g. [1]. The influence of highly viscous and glassy states on the timescale of aerosol particle equilibration with respect to water vapor have been investigated for some model systems of atmospheric aerosol, e.g. [2,3]. In particular, it has been shown that the kinetics of the water absorption/desorption process is controlled entirely by liquid-phase diffusion of water molecules for a highly viscous aerosol particle. A liquid phase diffusion model based on numerically solving the non-linear diffusion equation predicts strong internal gradients in water concentration when condensed phase diffusion impedes the water uptake from the gas phase [2]. Here we observe and quantify the internal concentration gradients in single, levitated, micron size aerosol particles of aqueous shikimic acid using elastic Mie resonance spectroscopy. A single, aqueous particle is levitated in an electro-dynamic balance (for details see [2]), dried for several days at room temperature, cooled to the target temperature and exposed to a rapid change in relative humidity. In addition to measuring the elastically backscattered light of a "white light" LED source and recording the full spectrum with a spectrograph as in [2], we use a tunable diode laser (TDL) to scan high resolution TE- and TM spectra. This combination allows observing various Mie resonance mode orders simultaneously. Since we perform the experiment at low temperatures and low humidities the changes in the Mie-spectra due to water uptake are sufficiently slow to resolve the kinetics. Experimental Mie resonance spectra are inverted to concentration profiles of water within the particle by applying the numerical diffusion model [2] in conjunction with Mie calculations of multilayered spheres [4]. [1] A. Virtanen et al. (2010): An amorphous solid state of biogenic secondary

  2. Radial inhomogeneities in particle composition of single, levitated aerosol particles observed by Mie resonance spectroscopy (Invited)

    NASA Astrophysics Data System (ADS)

    Krieger, U. K.; Steimer, S.; Lienhard, D.; Bastelberger, S.

    2013-12-01

    Recent observations have indicated that organic aerosol particles in the atmosphere may exist in an amorphous semi-solid or even solid (i.e. glassy) state, e.g. [1]. The influence of highly viscous and glassy states on the timescale of aerosol particle equilibration with respect to water vapor have been investigated for some model systems of atmospheric aerosol, e.g. [2,3]. In particular, it has been shown that the kinetics of the water absorption/desorption process is controlled entirely by liquid-phase diffusion of water molecules for a highly viscous aerosol particle. A liquid phase diffusion model based on numerically solving the non-linear diffusion equation predicts strong internal gradients in water concentration when condensed phase diffusion impedes the water uptake from the gas phase [2]. Here we observe and quantify the internal concentration gradients in single, levitated, micron size aerosol particles of aqueous MBTCA (3-methyl-1,2,3-Butanetricarboxylic acid) and shikimic acid using elastic Mie resonance spectroscopy. A single, aqueous particle is levitated in an electro-dynamic balance (for details see [2]), dried for several days at room temperature, cooled to the target temperature and exposed to a rapid change in relative humidity. In addition to measuring the elastically backscattered light of a 'white light ' LED source and recording the full spectrum with a spectrograph as in [2], we use a tunable diode laser (TDL) to scan high resolution TE- and TM spectra. This combination allows observing various Mie resonance mode orders simultaneously. Since we perform the experiment at low temperatures and low humidities the changes in the Mie-spectra due to water uptake are sufficiently slow to resolve the kinetics. Experimental Mie resonance spectra are inverted to concentration profiles of water within the particle by applying the numerical diffusion model [2] in conjunction with Mie calculations of multilayered spheres [4]. Potential implications for

  3. Core and shell sizing of small silver-coated nanospheres by optical extinction spectroscopy.

    PubMed

    Schinca, D C; Scaffardi, L B

    2008-12-10

    Silver metal nanoparticles (Nps) are extensively used in different areas of research and technology due to their interesting optical, thermal and electric properties, especially for bare core and core-shell nanostructures with sizes smaller than 10 nm. Since these properties are core-shell size-dependent, size measurement is important in manipulating their potential functionalization and applications. Bare and coated small silver Nps fabricated by physical and chemical methods present specific characteristics in their extinction spectra that are potentially useful for sizing purposes. This work presents a novel procedure to size mean core radius smaller than 10 nm and mean shell thickness of silver core-shell Nps based on a comparative study of the characteristics in their optical extinction spectra in different media as a function of core radii, shell thickness and coating refractive index. From the regularities derived from these relationships, it can be concluded that plasmon full width at half-maximum (FWHM) is sensitive to core size but not to coating thickness, while plasmon resonance wavelength (PRW) is related to shell thickness and mostly independent of core radius. These facts, which allow sizing simultaneously both mean core radius and shell thickness, can also be used to size bare silver Nps as a special case of core-shell Nps with zero shell thickness. The proposed method was applied to size experimental samples and the results show good agreement with conventional TEM microscopy.

  4. Influence of size-corrected bound-electron contribution on nanometric silver dielectric function. Sizing through optical extinction spectroscopy

    NASA Astrophysics Data System (ADS)

    Santillán, J. M. J.; Videla, F. A.; Fernández van Raap, M. B.; Muraca, D.; Scaffardi, L. B.; Schinca, D. C.

    2013-10-01

    by Ag, while the latter is composed by two species: silver-silver oxide (Ag-Ag2O) and hollow silver (air-Ag) particles. High-resolution transmission microscopy and atomic force microscopy analysis performed on the dried suspension agree with the sizing obtained by optical extinction spectroscopy, showing that the latter is a very good complementary technique to standard microscopy methods.

  5. Microphysical and Chemical Properties of Agricultural Aerosols

    NASA Astrophysics Data System (ADS)

    Brooks, S. D.; Moon, S.; Littleton, R.; Auvermann, B.

    2005-12-01

    Due to significant atmospheric loadings of agricultural dust aerosols, the aerosol's ability to contribute significantly to climate forcing on a regional to global level has been a topic of recent interest. Efforts have been made to quantify both the aerosol extinction of the total aerosol population and the hygroscopic and chemical properties of individual particles at a cattle feedyard near Canyon, Texas. Measurements of aerosol extinction are made using open-path transmissometry. Our results show that extinction varies significantly with relative humidity. To further explore the hygroscopic nature of the particles, size-resolved aerosol samples are collected using a cascade impactor system (7 stages ranging from 0.6 micron to 16 micron diameter) and hygroscopicity measurements are conducted on these using an Environmental Scanning Electron Microscope (ESEM). Complimentary determination of the elemental composition of individual particles is performed using Energy Dispersive X-ray Spectroscopy. Results of the optical properties, hygroscopicity and chemical composition of aerosols will be presented and atmospheric implications discussed.

  6. Application of modified Twomey techniques to invert lidar angular scatter and solar extinction data for determining aerosol size distributions

    NASA Technical Reports Server (NTRS)

    Herman, B. M.

    1977-01-01

    Polarization properties of the angularly scattered laser light from a volume of air are used to determine the size distribution of the aerosol particles within the volume by the use of appropriate inversion techniques. Similar techniques are employed to determine a mean size distribution of the particulates within a vertical column through the atmosphere from determinations of the aerosol optical depth as a function of wavelength. In both of these examples, a modification of an inversion technique originally described by Twomey has been employed. Details of this method are presented as well as results from actual measurements employing bistatic lidar and solar radiometer.

  7. Aircraft measurements of BrO, IO, glyoxal, NO2, H2O, O2-O2 and aerosol extinction profiles in the tropics: comparison with aircraft-/ship-based in situ and lidar measurements

    NASA Astrophysics Data System (ADS)

    Volkamer, R.; Baidar, S.; Campos, T. L.; Coburn, S.; DiGangi, J. P.; Dix, B.; Eloranta, E. W.; Koenig, T. K.; Morley, B.; Ortega, I.; Pierce, B. R.; Reeves, M.; Sinreich, R.; Wang, S.; Zondlo, M. A.; Romashkin, P. A.

    2015-05-01

    Tropospheric chemistry of halogens and organic carbon over tropical oceans modifies ozone and atmospheric aerosols, yet atmospheric models remain largely untested for lack of vertically resolved measurements of bromine monoxide (BrO), iodine monoxide (IO) and small oxygenated hydrocarbons like glyoxal (CHOCHO) in the tropical troposphere. BrO, IO, glyoxal, nitrogen dioxide (NO2), water vapor (H2O) and O2-O2 collision complexes (O4) were measured by the University of Colorado Airborne Multi-AXis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument, aerosol extinction by high spectral resolution lidar (HSRL), in situ aerosol size distributions by an ultra high sensitivity aerosol spectrometer (UHSAS) and in situ H2O by vertical-cavity surface-emitting laser (VCSEL) hygrometer. Data are presented from two research flights (RF12, RF17) aboard the National Science Foundation/National Center for Atmospheric Research Gulfstream V aircraft over the tropical Eastern Pacific Ocean (tEPO) as part of the "Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated hydrocarbons" (TORERO) project (January/February 2012). We assess the accuracy of O4 slant column density (SCD) measurements in the presence and absence of aerosols. Our O4-inferred aerosol extinction profiles at 477 nm agree within 6% with HSRL in the boundary layer and closely resemble the renormalized profile shape of Mie calculations constrained by UHSAS at low (sub-Rayleigh) aerosol extinction in the free troposphere. CU AMAX-DOAS provides a flexible choice of geometry, which we exploit to minimize the SCD in the reference spectrum (SCDREF, maximize signal-to-noise ratio) and to test the robustness of BrO, IO and glyoxal differential SCDs. The RF12 case study was conducted in pristine marine and free tropospheric air. The RF17 case study was conducted above the NOAA RV Ka'imimoana (TORERO cruise, KA-12-01) and provides independent validation data from ship-based in situ cavity

  8. Aircraft Measurements of BrO, IO, Glyoxal, NO2, H2O, O2-O2 and Aerosol Extinction Profiles in the Tropics: Comparison with Aircraft-/Ship-Based in Situ and Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Volkamer, R.; Baidar, S.; Campos, T. L.; Coburn, S.; DiGangi, J. P.; Dix, B.; Eloranta, E. W.; Koenig, T. K.; Morley, B.; Ortega, I.; Pierce, B. R.; Reeves, M.; Sinreich, R.; Wang, S.; Zondlo, M. A.; Romashkin, P. A.

    2015-01-01

    Tropospheric chemistry of halogens and organic carbon over tropical oceans modifies ozone and atmospheric aerosols, yet atmospheric models remain largely untested for lack of vertically resolved measurements of bromine monoxide (BrO), iodine monoxide (IO) and small oxygenated hydrocarbons like glyoxal (CHOCHO) in the tropical troposphere. BrO, IO, glyoxal, nitrogen dioxide (NO2), water vapor (H2O) and O2-O2 collision complexes (O4/ were measured by the University of Colorado Airborne Multi-AXis Differential Optical Absorption Spectroscopy (CU AMAXDOAS) instrument, aerosol extinction by high spectral resolution lidar (HSRL), in situ aerosol size distributions by an ultra high sensitivity aerosol spectrometer (UHSAS) and in situ H2O by vertical-cavity surface-emitting laser (VCSEL) hygrometer. Data are presented from two research flights (RF12, RF17) aboard the National Science Foundation/ National Center for Atmospheric Research Gulfstream V aircraft over the tropical Eastern Pacific Ocean (tEPO) as part of the "Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated hydrocarbons" (TORERO) project (January/February 2012). We assess the accuracy of O4 slant column density (SCD) measurements in the presence and absence of aerosols. Our O4-inferred aerosol extinction profiles at 477 nm agree within 6% with HSRL in the boundary layer and closely resemble the renormalized profile shape of Mie calculations constrained by UHSAS at low (sub-Rayleigh) aerosol extinction in the free troposphere. CU AMAX-DOAS provides a flexible choice of geometry, which we exploit to minimize the SCD in the reference spectrum (SCDREF, maximize signal-to-noise ratio) and to test the robustness of BrO, IO and glyoxal differential SCDs. The RF12 case study was conducted in pristine marine and free tropospheric air. The RF17 case study was conducted above the NOAA RV Ka'imimoana (TORERO cruise, KA-12-01) and provides independent validation data from ship-based in situ cavity

  9. Note: A portable laser induced breakdown spectroscopy instrument for rapid sampling and analysis of silicon-containing aerosols

    NASA Astrophysics Data System (ADS)

    McLaughlin, R. P.; Mason, G. S.; Miller, A. L.; Stipe, C. B.; Kearns, J. D.; Prier, M. W.; Rarick, J. D.

    2016-05-01

    A portable instrument has been developed for measuring silicon-containing aerosols in near real-time using laser-induced breakdown spectroscopy (LIBS). The instrument uses a vacuum system to collect and deposit airborne particulate matter onto a translatable reel of filter tape. LIBS is used to analyze the deposited material, determining the amount of silicon-containing compounds present. In laboratory testing with pure silica (SiO2), the correlation between LIBS intensity for a characteristic silicon emission and the concentration of silica in a model aerosol was determined for a range of concentrations, demonstrating the instrument's plausibility for identifying hazardous levels of silicon-containing compounds.

  10. Note: A portable laser induced breakdown spectroscopy instrument for rapid sampling and analysis of silicon-containing aerosols.

    PubMed

    McLaughlin, R P; Mason, G S; Miller, A L; Stipe, C B; Kearns, J D; Prier, M W; Rarick, J D

    2016-05-01

    A portable instrument has been developed for measuring silicon-containing aerosols in near real-time using laser-induced breakdown spectroscopy (LIBS). The instrument uses a vacuum system to collect and deposit airborne particulate matter onto a translatable reel of filter tape. LIBS is used to analyze the deposited material, determining the amount of silicon-containing compounds present. In laboratory testing with pure silica (SiO2), the correlation between LIBS intensity for a characteristic silicon emission and the concentration of silica in a model aerosol was determined for a range of concentrations, demonstrating the instrument's plausibility for identifying hazardous levels of silicon-containing compounds. PMID:27250478

  11. Laser-induced breakdown spectroscopy of liquid solutions: a comparative study on the forms of liquid surface and liquid aerosol.

    PubMed

    Yang, Xinyan; Guo, Lianbo; Li, Jiaming; Yi, Rongxing; Hao, Zhongqi; Shen, Meng; Zhou, Ran; Li, Kuohu; Li, Xiangyou; Lu, Yongfeng; Zeng, Xiaoyan

    2016-09-10

    Liquid surface and liquid aerosol as the traditional liquid forms for laser-induced breakdown spectroscopy (LIBS) and inductively coupled plasma (ICP), respectively, have been used to analyze chromium (Cr) and cadmium (Cd) elements using LIBS in a liquid solution. The spectral differences, the effects of laser energy and laser frequency, the accumulated number of laser pulses, gate delay time, and the quantitative analyses for a liquid surface and a liquid aerosol were compared. The results showed that the liquid surface demonstrated a lower plasma threshold, higher optical emission intensity, and higher single-to-noise ratio. Moreover, the relative standard deviations (RSDs) of the intensities of the liquid aerosol are better than those of the liquid surface. Furthermore, the results of the quantitative analyses of Cr I 357.86 nm and Cd I 361.05 nm of the liquid surface are close to those of the liquid aerosol. The limit of detections of Cr and Cd of the liquid surface were 2.764 and 86.869  μg/mL, which were close to those of liquid aerosol, 2.847  μg/mL of Cr and 97.635  μg/mL of Cd. For both the liquid surface and liquid aerosol, the coefficient of determination R2 of the calibration curve for Cr and Cd were above 0.99, and the average RSDs of Cr and Cd of the liquid surface were 0.027 and 0.054, which were similar to the 0.020 of Cr and 0.042 of Cd of the liquid aerosol. These results suggest that both the liquid surface and aerosol have similar detection abilities for water quality monitoring. PMID:27661382

  12. Laser-induced breakdown spectroscopy of liquid solutions: a comparative study on the forms of liquid surface and liquid aerosol.

    PubMed

    Yang, Xinyan; Guo, Lianbo; Li, Jiaming; Yi, Rongxing; Hao, Zhongqi; Shen, Meng; Zhou, Ran; Li, Kuohu; Li, Xiangyou; Lu, Yongfeng; Zeng, Xiaoyan

    2016-09-10

    Liquid surface and liquid aerosol as the traditional liquid forms for laser-induced breakdown spectroscopy (LIBS) and inductively coupled plasma (ICP), respectively, have been used to analyze chromium (Cr) and cadmium (Cd) elements using LIBS in a liquid solution. The spectral differences, the effects of laser energy and laser frequency, the accumulated number of laser pulses, gate delay time, and the quantitative analyses for a liquid surface and a liquid aerosol were compared. The results showed that the liquid surface demonstrated a lower plasma threshold, higher optical emission intensity, and higher single-to-noise ratio. Moreover, the relative standard deviations (RSDs) of the intensities of the liquid aerosol are better than those of the liquid surface. Furthermore, the results of the quantitative analyses of Cr I 357.86 nm and Cd I 361.05 nm of the liquid surface are close to those of the liquid aerosol. The limit of detections of Cr and Cd of the liquid surface were 2.764 and 86.869  μg/mL, which were close to those of liquid aerosol, 2.847  μg/mL of Cr and 97.635  μg/mL of Cd. For both the liquid surface and liquid aerosol, the coefficient of determination R2 of the calibration curve for Cr and Cd were above 0.99, and the average RSDs of Cr and Cd of the liquid surface were 0.027 and 0.054, which were similar to the 0.020 of Cr and 0.042 of Cd of the liquid aerosol. These results suggest that both the liquid surface and aerosol have similar detection abilities for water quality monitoring.

  13. Reconciliation and interpretation of the Big Bend National Park light extinction source apportionment: results from the Big Bend Regional Aerosol and Visibility Observational Study--part II.

    PubMed

    Pitchford, Marc L; Schichtel, Bret A; Gebhart, Kristi A; Barna, Michael G; Malm, William C; Tombach, Ivar H; Knipping, Eladio M

    2005-11-01

    The recently completed Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study focused on particulate sulfate source attribution for a 4-month period from July through October 1999. A companion paper in this issue by Schichtel et al. describes the methods evaluation and results reconciliation of the BRAVO Study sulfate attribution approaches. This paper summarizes the BRAVO Study extinction budget assessment and interprets the attribution results in the context of annual and multiyear causes of haze by drawing on long-term aerosol monitoring data and regional transport climatology, as well as results from other investigations. Particulate sulfates, organic carbon, and coarse mass are responsible for most of the haze at Big Bend National Park, whereas fine particles composed of light-absorbing carbon, fine soils, and nitrates are relatively minor contributors. Spring and late summer through fall are the two periods of high-haze levels at Big Bend. Particulate sulfate and carbonaceous compounds contribute in a similar magnitude to the spring haze period, whereas sulfates are the primary cause of haze during the late summer and fall period. Atmospheric transport patterns to Big Bend vary throughout the year, resulting in a seasonal cycle of different upwind source regions contributing to its haze levels. Important sources and source regions for haze at Big Bend include biomass smoke from Mexico and Central America in the spring and African dust during the summer. Sources of sulfur dioxide (SO2) emissions in Mexico, Texas, and in the Eastern United States all contribute to Big Bend haze in varying amounts over different times of the year, with a higher contribution from Mexican sources in the spring and early summer, and a higher contribution from U.S. sources during late summer and fall. Some multiple-day haze episodes result from the influence of several source regions, whereas others are primarily because of emissions from a single source region.

  14. Chemical speciation of chlorine in atmospheric aerosol samples by high-resolution proton induced X-ray emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Kertész, Zsófia; Furu, Enikő; Kavčič, Matjaž

    2013-01-01

    Chlorine is a main elemental component of atmospheric particulate matter (APM). The knowledge of the chemical form of chlorine is of primary importance for source apportionment and for estimation of health effects of APM. In this work the applicability of high-resolution wavelength dispersive proton induced X-ray emission (PIXE) spectroscopy for chemical speciation of chlorine in fine fraction atmospheric aerosols is studied. A Johansson-type crystal spectrometer with energy resolution below the natural linewidth of Cl K lines was used to record the high-resolution Kα and Kβ proton induced spectra of several reference Cl compounds and two atmospheric aerosol samples, which were collected for conventional PIXE analysis. The Kα spectra which refers to the oxidation state, showed very minor differences due to the high electronegativity of Cl. However, the Kβ spectra exhibited pronounced chemical effects which were significant enough to perform chemical speciation. The major chlorine component in two fine fraction aerosol samples collected during a 2010 winter campaign in Budapest was clearly identified as NaCl by comparing the high-resolution Cl Kβ spectra from the aerosol samples with the corresponding reference spectra. This work demonstrates the feasibility of high-resolution PIXE method for chemical speciation of Cl in aerosols.

  15. Vertical profiles of aerosol volume from high-spectral-resolution infrared transmission measurements. I. Methodology.

    PubMed

    Eldering, A; Irion, F W; Chang, A Y; Gunson, M R; Mills, F P; Steele, H M

    2001-06-20

    The wavelength-dependent aerosol extinction in the 800-1250-cm(-1) region has been derived from ATMOS (atmospheric trace molecule spectroscopy) high-spectral-resolution IR transmission measurements. Using models of aerosol and cloud extinction, we have performed weighted nonlinear least-squares fitting to determine the aerosol-volume columns and vertical profiles of stratospheric sulfate aerosol and cirrus cloud volume. Modeled extinction by use of cold-temperature aerosol optical constants for a 70-80% sulfuric-acid-water solution shows good agreement with the measurements, and the derived aerosol volumes for a 1992 occultation are consistent with data from other experiments after the eruption of Mt. Pinatubo. The retrieved sulfuric acid aerosol-volume profiles are insensitive to the aerosol-size distribution and somewhat sensitive to the set of optical constants used. Data from the nonspherical cirrus extinction model agree well with a 1994 mid-latitude measurement indicating the presence of cirrus clouds at the tropopause.

  16. Characterization of atmospheric aerosols in the Adirondack Mountains using PIXE, SEM/EDX, and Micro-Raman spectroscopies

    NASA Astrophysics Data System (ADS)

    Vineyard, M. F.; LaBrake, S. M.; Ali, S. F.; Nadareski, B. J.; Safiq, A. D.; Smith, J. W.; Yoskowitz, J. T.

    2015-05-01

    We are making detailed measurements of the composition of atmospheric aerosols collected in the Adirondack Mountains as a function of particle size using proton-induced X-ray emission, scanning electron microscopy with energy-dispersive X-ray spectroscopy, and Micro-Raman spectroscopy. These measurements provide valuable data to help identify the sources and understand the transport, transformation, and effects of airborne pollutants in upstate New York. Preliminary results indicate significant concentrations of sulfur in small particles that can travel great distances, and that this sulfur may be in the form of oxides that can contribute to acid rain.

  17. Derivation of optical properties of carbonaceous aerosols by monochromated electron energy-loss spectroscopy.

    PubMed

    Zhu, Jiangtao; Crozier, Peter A; Ercius, Peter; Anderson, James R

    2014-06-01

    Monochromated electron energy-loss spectroscopy (EELS) is employed to determine the optical properties of carbonaceous aerosols from the infrared to the ultraviolet region of the spectrum. It is essential to determine their optical properties to understand their accurate contribution to radiative forcing for climate change. The influence of surface and interface plasmon effects on the accuracy of dielectric data determined from EELS is discussed. Our measurements show that the standard thin film formulation of Kramers-Kronig analysis can be employed to make accurate determination of the dielectric function for carbonaceous particles down to about 40 nm in size. The complex refractive indices of graphitic and amorphous carbon spherules found in the atmosphere were determined over the wavelength range 200-1,200 nm. The graphitic carbon was strongly absorbing black carbon, whereas the amorphous carbon shows a more weakly absorbing brown carbon profile. The EELS approach provides an important tool for exploring the variation in optical properties of atmospheric carbon. PMID:24735494

  18. Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy

    NASA Astrophysics Data System (ADS)

    Panne, U.; Neuhauser, R. E.; Theisen, M.; Fink, H.; Niessner, R.

    2001-06-01

    Particulate heavy metals can lead to severe toxic and carcinogenic effects in humans when inhaled in higher concentrations. For the development of a quasi-continuous emission monitor based on automatic filter sampling on a filter band, laser-induced plasma spectroscopy (LIPS) was studied for analysis of heavy metal aerosols on quartz fiber filters. The system consists of a 19-inch laser and detector module connected to a miniaturized sensor head through fiber optics, allowing maximum flexibility of the set-up. Parameters for optimum time-resolved analysis, i.e. detection wavelength, timing and filter material, were established. The LIPS investigations were accompanied by a rigorous reference analysis based on total reflection X-ray fluorescence (TXRF) analysis. The detection limits for heavy metals (Cd, Ni, As, Co, Mn, Sb, Cr, Tl, Sn, V, Cu and Pb) on filters varied between 0.01 and approximately 0.91 μg cm -2, corresponding to volume detection limits of 0.02-2.73 μg m -3. Analysis of filter samples from waste incineration demonstrated the potential of the LIPS approach. In combination with an echelle spectrometer, ambient samples from environmental monitoring could be characterized in much better detail, due to the improved detection limits and the superior spectral resolution, and spectral range of the echelle.

  19. Nanosphere lithography: fabrication of large-area Ag nanoparticle arrays by convective self-assembly and their characterization by scanning UV-visible extinction spectroscopy.

    PubMed

    Ormonde, Anjeanette D; Hicks, Erin C M; Castillo, Jimmy; Van Duyne, Richard P

    2004-08-01

    This work employs UV-visible extinction spectroscopy as a new spectral mapping technique to characterize self-assembled polystyrene microsphere samples produced by convective self-assembly (CSA). This spectroscopic technique was successfully used to analyze the periodic particle arrays produced by the polystyrene template, yielding a detailed characterization of each sample. The CSA-prepared samples proved to be more uniform across a sample as well as more reproducible than previous sample preparation techniques. For the first time, a detailed characterization and quantitative evaluation of the entire sample has been performed by spectroscopic mapping.

  20. Characterizing the formation of organic layers on the surface of inorganic/aqueous aerosols by Raman spectroscopy.

    PubMed

    Buajarern, Jariya; Mitchem, Laura; Reid, Jonathan P

    2007-11-22

    We demonstrate that nonlinear Raman spectroscopy coupled with aerosol optical tweezers can be used to probe the evolving phase partitioning in mixed organic/inorganic/aqueous aerosol droplets that adopt a core-shell structure in which the aqueous phase is coated in an organic layer. Specifically, we demonstrate that the characteristic fingerprint of wavelengths at which stimulated Raman scattering is observed can be used to assess the phase behavior of multiphase decane/aqueous sodium chloride droplets. Decane is observed to form a layer on the surface of the core aqueous droplet, and from the spectroscopic signature the aqueous core size can be determined with nanometer accuracy and the thickness of the decane layer with an accuracy of +/-8 nm. Further, the presence of the organic layer is observed to reduce the rate at which water evaporates from the core of the droplet with an increasing rate of evaporation observed with diminishing layer thickness.

  1. Characterizing the formation of organic layers on the surface of inorganic/aqueous aerosols by Raman spectroscopy.

    PubMed

    Buajarern, Jariya; Mitchem, Laura; Reid, Jonathan P

    2007-11-22

    We demonstrate that nonlinear Raman spectroscopy coupled with aerosol optical tweezers can be used to probe the evolving phase partitioning in mixed organic/inorganic/aqueous aerosol droplets that adopt a core-shell structure in which the aqueous phase is coated in an organic layer. Specifically, we demonstrate that the characteristic fingerprint of wavelengths at which stimulated Raman scattering is observed can be used to assess the phase behavior of multiphase decane/aqueous sodium chloride droplets. Decane is observed to form a layer on the surface of the core aqueous droplet, and from the spectroscopic signature the aqueous core size can be determined with nanometer accuracy and the thickness of the decane layer with an accuracy of +/-8 nm. Further, the presence of the organic layer is observed to reduce the rate at which water evaporates from the core of the droplet with an increasing rate of evaporation observed with diminishing layer thickness. PMID:17958403

  2. New Approach for Near-Real-Time Measurement of Elemental Composition of Aerosol Using Laser-Induced Breakdown Spectroscopy

    PubMed Central

    Diwakar, Prasoon; Kulkarni, Pramod; Birch, M. Eileen

    2015-01-01

    A new approach has been developed for making near-real-time measurement of elemental composition of aerosols using plasma spectroscopy. The method allows preconcentration of miniscule particle mass (pg to ng) directly from the sampled aerosol stream through electrostatic deposition of charged particles (30–900 nm) onto a flat-tip microneedle electrode. The collected material is subsequently ablated from the electrode and monitored by laser-induced breakdown spectroscopy. Atomic emission spectra were collected using a broadband spectrometer with a wavelength range of 200–980 nm. A single-sensor delay time of 1.3 μs was used in the spectrometer for all elements to allow simultaneous measurement of multiple elements. The system was calibrated for various elements including Cd, Cr, Cu, Mn, Na, and Ti. The absolute mass detection limits for these elements were experimentally determined and found to be in the range of 0.018–5 ng. The electrostatic collection technique has many advantages over other substrate-based methods involving aerosol collection on a filter or its focused deposition using an aerodynamic lens. Because the particle mass is collected over a very small area that is smaller than the spatial extent of the laser-induced plasma, the entire mass is available for analysis. This considerably improves reliability of the calibration and enhances measurement accuracy and precision. Further, the aerosol collection technique involves very low pressure drop, thereby allowing higher sample flow rates with much smaller pumps—a desirable feature for portable instrumentation. Higher flow rates also make it feasible to measure trace element concentrations at part per trillion levels. Detection limits in the range of 18–670 ng m−3 can be achieved for most of the elements studied at a flow rate of 1.5 L min−1 with sampling times of 5 min. PMID:26692632

  3. Analysis of functional groups in atmospheric aerosols by infrared spectroscopy: sparse methods for statistical selection of relevant absorption bands

    NASA Astrophysics Data System (ADS)

    Takahama, Satoshi; Ruggeri, Giulia; Dillner, Ann M.

    2016-07-01

    Various vibrational modes present in molecular mixtures of laboratory and atmospheric aerosols give rise to complex Fourier transform infrared (FT-IR) absorption spectra. Such spectra can be chemically informative, but they often require sophisticated algorithms for quantitative characterization of aerosol composition. Naïve statistical calibration models developed for quantification employ the full suite of wavenumbers available from a set of spectra, leading to loss of mechanistic interpretation between chemical composition and the resulting changes in absorption patterns that underpin their predictive capability. Using sparse representations of the same set of spectra, alternative calibration models can be built in which only a select group of absorption bands are used to make quantitative prediction of various aerosol properties. Such models are desirable as they allow us to relate predicted properties to their underlying molecular structure. In this work, we present an evaluation of four algorithms for achieving sparsity in FT-IR spectroscopy calibration models. Sparse calibration models exclude unnecessary wavenumbers from infrared spectra during the model building process, permitting identification and evaluation of the most relevant vibrational modes of molecules in complex aerosol mixtures required to make quantitative predictions of various measures of aerosol composition. We study two types of models: one which predicts alcohol COH, carboxylic COH, alkane CH, and carbonyl CO functional group (FG) abundances in ambient samples based on laboratory calibration standards and another which predicts thermal optical reflectance (TOR) organic carbon (OC) and elemental carbon (EC) mass in new ambient samples by direct calibration of infrared spectra to a set of ambient samples reserved for calibration. We describe the development and selection of each calibration model and evaluate the effect of sparsity on prediction performance. Finally, we ascribe

  4. [Characteristics and Parameterization for Atmospheric Extinction Coefficient in Beijing].

    PubMed

    Chen, Yi-na; Zhao, Pu-sheng; He, Di; Dong, Fan; Zhao, Xiu-juan; Zhang, Xiao-ling

    2015-10-01

    In order to study the characteristics of atmospheric extinction coefficient in Beijing, systematic measurements had been carried out for atmospheric visibility, PM2.5 concentration, scattering coefficient, black carbon, reactive gases, and meteorological parameters from 2013 to 2014. Based on these data, we compared some published fitting schemes of aerosol light scattering enhancement factor [ f(RH)], and discussed the characteristics and the key influence factors for atmospheric extinction coefficient. Then a set of parameterization models of atmospheric extinction coefficient for different seasons and different polluted levels had been established. The results showed that aerosol scattering accounted for more than 94% of total light extinction. In the summer and autumn, the aerosol hygroscopic growth caused by high relative humidity had increased the aerosol scattering coefficient by 70 to 80 percent. The parameterization models could reflect the influencing mechanism of aerosol and relative humidity upon ambient light extinction, and describe the seasonal variations of aerosol light extinction ability. PMID:26841588

  5. [Characteristics and Parameterization for Atmospheric Extinction Coefficient in Beijing].

    PubMed

    Chen, Yi-na; Zhao, Pu-sheng; He, Di; Dong, Fan; Zhao, Xiu-juan; Zhang, Xiao-ling

    2015-10-01

    In order to study the characteristics of atmospheric extinction coefficient in Beijing, systematic measurements had been carried out for atmospheric visibility, PM2.5 concentration, scattering coefficient, black carbon, reactive gases, and meteorological parameters from 2013 to 2014. Based on these data, we compared some published fitting schemes of aerosol light scattering enhancement factor [ f(RH)], and discussed the characteristics and the key influence factors for atmospheric extinction coefficient. Then a set of parameterization models of atmospheric extinction coefficient for different seasons and different polluted levels had been established. The results showed that aerosol scattering accounted for more than 94% of total light extinction. In the summer and autumn, the aerosol hygroscopic growth caused by high relative humidity had increased the aerosol scattering coefficient by 70 to 80 percent. The parameterization models could reflect the influencing mechanism of aerosol and relative humidity upon ambient light extinction, and describe the seasonal variations of aerosol light extinction ability.

  6. Optical atmospheric extinction over Cerro Paranal

    NASA Astrophysics Data System (ADS)

    Patat, F.; Moehler, S.; O'Brien, K.; Pompei, E.; Bensby, T.; Carraro, G.; de Ugarte Postigo, A.; Fox, A.; Gavignaud, I.; James, G.; Korhonen, H.; Ledoux, C.; Randall, S.; Sana, H.; Smoker, J.; Stefl, S.; Szeifert, T.

    2011-03-01

    Aims: The present study was conducted to determine the optical extinction curve for Cerro Paranal under typical clear-sky observing conditions, with the purpose of providing the community with a function to be used to correct the observed spectra, with an accuracy of 0.01 mag airmass-1. Additionally, this work was meant to analyze the variability of the various components, to derive the main atmospheric parameters, and to set a term of reference for future studies, especially in view of the construction of the Extremely Large Telescope on the nearby Cerro Armazones. Methods: The extinction curve of Paranal was obtained through low-resolution spectroscopy of 8 spectrophotometric standard stars observed with FORS1 mounted at the 8.2 m Very Large Telescope, covering a spectral range 3300-8000 Å. A total of 600 spectra were collected on more than 40 nights distributed over six months, from October 2008 to March 2009. The average extinction curve was derived using a global fit algorithm, which allowed us to simultaneously combine all the available data. The main atmospheric parameters were retrieved using the LBLRTM radiative transfer code, which was also utilised to study the impact of variability of the main molecular bands of O2, O3, and H2O, and to estimate their column densities. Results: In general, the extinction curve of Paranal appears to conform to those derived for other astronomical sites in the Atacama desert, like La Silla and Cerro Tololo. However, a systematic deficit with respect to the extinction curve derived for Cerro Tololo before the El Chichón eruption is detected below 4000 Å. We attribute this downturn to a non standard aerosol composition, probably revealing the presence of volcanic pollutants above the Atacama desert. An analysis of all spectroscopic extinction curves obtained since 1974 shows that the aerosol composition has been evolving during the last 35 years. The persistence of traces of non meteorologic haze suggests the effect of

  7. Dynamic terahertz spectroscopy of gas molecules mixed with unwanted aerosol under atmospheric pressure using fibre-based asynchronous-optical-sampling terahertz time-domain spectroscopy.

    PubMed

    Hsieh, Yi-Da; Nakamura, Shota; Abdelsalam, Dahi Ghareab; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Hindle, Francis; Yasui, Takeshi

    2016-06-15

    Terahertz (THz) spectroscopy is a promising method for analysing polar gas molecules mixed with unwanted aerosols due to its ability to obtain spectral fingerprints of rotational transition and immunity to aerosol scattering. In this article, dynamic THz spectroscopy of acetonitrile (CH3CN) gas was performed in the presence of smoke under the atmospheric pressure using a fibre-based, asynchronous-optical-sampling THz time-domain spectrometer. To match THz spectral signatures of gas molecules at atmospheric pressure, the spectral resolution was optimized to 1 GHz with a measurement rate of 1 Hz. The spectral overlapping of closely packed absorption lines significantly boosted the detection limit to 200 ppm when considering all the spectral contributions of the numerous absorption lines from 0.2 THz to 1 THz. Temporal changes of the CH3CN gas concentration were monitored under the smoky condition at the atmospheric pressure during volatilization of CH3CN droplets and the following diffusion of the volatilized CH3CN gas without the influence of scattering or absorption by the smoke. This system will be a powerful tool for real-time monitoring of target gases in practical applications of gas analysis in the atmospheric pressure, such as combustion processes or fire accident.

  8. Dynamic terahertz spectroscopy of gas molecules mixed with unwanted aerosol under atmospheric pressure using fibre-based asynchronous-optical-sampling terahertz time-domain spectroscopy

    PubMed Central

    Hsieh, Yi-Da; Nakamura, Shota; Abdelsalam, Dahi Ghareab; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Hindle, Francis; Yasui, Takeshi

    2016-01-01

    Terahertz (THz) spectroscopy is a promising method for analysing polar gas molecules mixed with unwanted aerosols due to its ability to obtain spectral fingerprints of rotational transition and immunity to aerosol scattering. In this article, dynamic THz spectroscopy of acetonitrile (CH3CN) gas was performed in the presence of smoke under the atmospheric pressure using a fibre-based, asynchronous-optical-sampling THz time-domain spectrometer. To match THz spectral signatures of gas molecules at atmospheric pressure, the spectral resolution was optimized to 1 GHz with a measurement rate of 1 Hz. The spectral overlapping of closely packed absorption lines significantly boosted the detection limit to 200 ppm when considering all the spectral contributions of the numerous absorption lines from 0.2 THz to 1 THz. Temporal changes of the CH3CN gas concentration were monitored under the smoky condition at the atmospheric pressure during volatilization of CH3CN droplets and the following diffusion of the volatilized CH3CN gas without the influence of scattering or absorption by the smoke. This system will be a powerful tool for real-time monitoring of target gases in practical applications of gas analysis in the atmospheric pressure, such as combustion processes or fire accident. PMID:27301319

  9. Dynamic terahertz spectroscopy of gas molecules mixed with unwanted aerosol under atmospheric pressure using fibre-based asynchronous-optical-sampling terahertz time-domain spectroscopy.

    PubMed

    Hsieh, Yi-Da; Nakamura, Shota; Abdelsalam, Dahi Ghareab; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Hindle, Francis; Yasui, Takeshi

    2016-01-01

    Terahertz (THz) spectroscopy is a promising method for analysing polar gas molecules mixed with unwanted aerosols due to its ability to obtain spectral fingerprints of rotational transition and immunity to aerosol scattering. In this article, dynamic THz spectroscopy of acetonitrile (CH3CN) gas was performed in the presence of smoke under the atmospheric pressure using a fibre-based, asynchronous-optical-sampling THz time-domain spectrometer. To match THz spectral signatures of gas molecules at atmospheric pressure, the spectral resolution was optimized to 1 GHz with a measurement rate of 1 Hz. The spectral overlapping of closely packed absorption lines significantly boosted the detection limit to 200 ppm when considering all the spectral contributions of the numerous absorption lines from 0.2 THz to 1 THz. Temporal changes of the CH3CN gas concentration were monitored under the smoky condition at the atmospheric pressure during volatilization of CH3CN droplets and the following diffusion of the volatilized CH3CN gas without the influence of scattering or absorption by the smoke. This system will be a powerful tool for real-time monitoring of target gases in practical applications of gas analysis in the atmospheric pressure, such as combustion processes or fire accident. PMID:27301319

  10. Dynamic terahertz spectroscopy of gas molecules mixed with unwanted aerosol under atmospheric pressure using fibre-based asynchronous-optical-sampling terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Hsieh, Yi-Da; Nakamura, Shota; Abdelsalam, Dahi Ghareab; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Hindle, Francis; Yasui, Takeshi

    2016-06-01

    Terahertz (THz) spectroscopy is a promising method for analysing polar gas molecules mixed with unwanted aerosols due to its ability to obtain spectral fingerprints of rotational transition and immunity to aerosol scattering. In this article, dynamic THz spectroscopy of acetonitrile (CH3CN) gas was performed in the presence of smoke under the atmospheric pressure using a fibre-based, asynchronous-optical-sampling THz time-domain spectrometer. To match THz spectral signatures of gas molecules at atmospheric pressure, the spectral resolution was optimized to 1 GHz with a measurement rate of 1 Hz. The spectral overlapping of closely packed absorption lines significantly boosted the detection limit to 200 ppm when considering all the spectral contributions of the numerous absorption lines from 0.2 THz to 1 THz. Temporal changes of the CH3CN gas concentration were monitored under the smoky condition at the atmospheric pressure during volatilization of CH3CN droplets and the following diffusion of the volatilized CH3CN gas without the influence of scattering or absorption by the smoke. This system will be a powerful tool for real-time monitoring of target gases in practical applications of gas analysis in the atmospheric pressure, such as combustion processes or fire accident.

  11. Further evidence for charge transfer complexes in brown carbon aerosols from excitation-emission matrix fluorescence spectroscopy.

    PubMed

    Phillips, Sabrina M; Smith, Geoffrey D

    2015-05-14

    The light-absorbing fraction of organic molecules in ambient aerosols, known as "brown carbon," is an important yet poorly characterized component. Despite the fact that brown carbon could alter the radiative forcing of aerosols significantly, identification of specific chromophores has remained challenging. We recently demonstrated that charge transfer (CT) complexes formed in organic molecules could be responsible for a large fraction of absorption observed in water-extracted ambient particulate matter.1 In the present study, we use excitation-emission matrix fluorescence spectroscopy to further corroborate the importance of CT complexes in defining aerosol optical properties. Monotonically increasing and decreasing quantum yields, decreasing Stokes shifts, and red-shifting emission maxima are observed from ambient particulate matter collected in Athens, Georgia, strongly suggesting that a superposition of independent chromophores is not sufficient to explain brown carbon absorption and fluorescence. Instead, we show that a model in which such chromophores are energetically coupled to a dense manifold of CT complexes is consistent with all of the observations. Further, we suggest that a significant fraction of the observed fluorescence originates from CT complexes and that their contribution to brown carbon absorption is likely greater than we reported previously.

  12. Discriminating Bio-aerosols from Non-Bio-aerosols in Real-Time by Pump-Probe Spectroscopy

    PubMed Central

    Sousa, Gustavo; Gaulier, Geoffrey; Bonacina, Luigi; Wolf, Jean-Pierre

    2016-01-01

    The optical identification of bioaerosols in the atmosphere and its discrimination against combustion related particles is a major issue for real-time, field compatible instruments. In the present paper, we show that by embedding advanced pump-probe depletion spectroscopy schemes in a portable instrument, it is possible to discriminate amino acid containing airborne particles (bacteria, humic particles, etc.) from poly-cyclic aromatic hydrocarbon containing combustion particles (Diesel droplets, soot, vehicle exhausts) with high selectivity. Our real-time, multi-modal device provides, in addition to the pump-probe depletion information, fluorescence spectra (over 32 channels), fluorescence lifetime and Mie scattering patterns of each individually flowing particle in the probed air. PMID:27619546

  13. Discriminating Bio-aerosols from Non-Bio-aerosols in Real-Time by Pump-Probe Spectroscopy.

    PubMed

    Sousa, Gustavo; Gaulier, Geoffrey; Bonacina, Luigi; Wolf, Jean-Pierre

    2016-01-01

    The optical identification of bioaerosols in the atmosphere and its discrimination against combustion related particles is a major issue for real-time, field compatible instruments. In the present paper, we show that by embedding advanced pump-probe depletion spectroscopy schemes in a portable instrument, it is possible to discriminate amino acid containing airborne particles (bacteria, humic particles, etc.) from poly-cyclic aromatic hydrocarbon containing combustion particles (Diesel droplets, soot, vehicle exhausts) with high selectivity. Our real-time, multi-modal device provides, in addition to the pump-probe depletion information, fluorescence spectra (over 32 channels), fluorescence lifetime and Mie scattering patterns of each individually flowing particle in the probed air. PMID:27619546

  14. Discriminating Bio-aerosols from Non-Bio-aerosols in Real-Time by Pump-Probe Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sousa, Gustavo; Gaulier, Geoffrey; Bonacina, Luigi; Wolf, Jean-Pierre

    2016-09-01

    The optical identification of bioaerosols in the atmosphere and its discrimination against combustion related particles is a major issue for real-time, field compatible instruments. In the present paper, we show that by embedding advanced pump-probe depletion spectroscopy schemes in a portable instrument, it is possible to discriminate amino acid containing airborne particles (bacteria, humic particles, etc.) from poly-cyclic aromatic hydrocarbon containing combustion particles (Diesel droplets, soot, vehicle exhausts) with high selectivity. Our real-time, multi-modal device provides, in addition to the pump-probe depletion information, fluorescence spectra (over 32 channels), fluorescence lifetime and Mie scattering patterns of each individually flowing particle in the probed air.

  15. [Development of a photoacoustic spectroscopy system for the measurement of absorption coefficient of atmospheric aerosols].

    PubMed

    Liu, Qiang; Niu, Ming-Sheng; Wang, Gui-Shi; Cao, Zhen-Song; Liu, Kun; Chen, Wei-Dong; Gao, Xiao-Ming

    2013-07-01

    In the present paper, the authors focus on the effect of the resonance frequency shift due to the changes in temperature and humidity on the PA signal, present several methods to control the noise derived form gas flow and vibration from the sampling pump. Based on the efforts mentioned above, a detection limit of 1.4 x 10(-8) W x cm(-1) x Hz(-1/2) was achieved for the measurement of atmospheric aerosols absorption coefficient. During the experiments, the PA cell was calibrated with the absorption of standard NO2 gas at 532 nm and the atmospheric aerosols were measured continuously. The measurement results show that the PAS is suitable for the real-time measurement of the absorption coefficient of atmospheric aerosols in their natural suspended state. PMID:24059163

  16. ChemCam Passive Sky Spectroscopy at Gale Crater: Diurnal and Seasonal cycles of O2, H2O, and aerosols

    NASA Astrophysics Data System (ADS)

    McConnochie, T. H.; Smith, M. D.; Bender, S. C.; Wolff, M. J.; Johnson, J. R.; Lemmon, M. T.; Wiens, R. C.; Maurice, S.; Gasnault, O.; Blaney, D. L.; DeFlores, L. P.; Harri, A. M.; Kemppinen, O.; Genzer, M.; Moores, J.; Wong, M. H.; Trainer, M. G.; Martín-Torres, J.; Zorzano, M. P.; Franz, H. B.; Barraclough, B. L.; Atreya, S. K.; Mahaffy, P. R.; Lefèvre, F.; Lasue, J.

    2015-12-01

    The Mars Science Laboratory's (MSL) ChemCam spectrometer has been measuring atmospheric aerosol properties and gas abundances for more than one Martian year, doing so by operating in passive mode and observing scattered sky light at two different elevation angles. We perform these observations at 1 - 2 week intervals, occasionally acquiring multiple observations on a given day to assess the diurnal cycle. Six parameters are retrieved from each observation: dust aerosol particle effective radius, ice aerosol particle effective radius, the fraction of opacity contributed by ice rather than dust aerosol, the ratio of aerosol extinction scale height to gas pressure scale height (as a parameterization of the aerosol vertical profile), the O2 volume mixing ratio, and the water vapor column abundance (in precipitable microns). The retrieval works by first constructing a ratio of the spectra from the two elevation angles and then fitting a discrete ordinates multiple scattering radiative transfer model. Total column opacity, CO2 mixing ratio, and atmospheric pressure are exogenous inputs. They are sourced from Mastcam, SAM QMS, and REMS measurements, respectively. An important feature of our procedure, which we have verified by numerical experimentation, is that the retrieved gas abundances have negligible sensitivity to the accuracy of the aerosol parameter solutions or to exogenous inputs or to a wide range of model assumptions. We will present a survey of the results from the extensive ChemCam passive sky data set, including comparisons to related SAM and REMS in-situ atmospheric sampling and to Mastcam and Navcam sky observation campaigns. We will show that O2 has temporal variation unexplained by existing photochemical models and has vertical variations within the bottom 10 km of the atmosphere in some seasons. We will also show the water vapor is well mixed within the bottom 10 km in some seasons but not in others, and we will address a variety of aerosol phenomena.

  17. Series cell light extinction monitor

    DOEpatents

    Novick, Vincent J.

    1990-01-01

    A method and apparatus for using the light extinction measurements from two or more light cells positioned along a gasflow chamber in which the gas volumetric rate is known to determine particle number concentration and mass concentration of an aerosol independent of extinction coefficient and to determine estimates for particle size and mass concentrations. The invention is independent of particle size. This invention has application to measurements made during a severe nuclear reactor fuel damage test.

  18. Discrimination and classification of bio-aerosol particles using optical spectroscopy and scattering

    NASA Astrophysics Data System (ADS)

    Eversole, Jay D.

    2011-03-01

    For more than a decade now, there has been significant emphasis for development of sensors of agent aerosols, especially for biological warfare (BW) agents. During this period, the Naval Research Laboratory (NRL) and other labs have explored the application of optical and spectroscopic methods relevant to biological composition discrimination to aerosol particle characterization. I will first briefly attempt to establish the connection between sensor performance metrics which are statistically determined, and aerosol particle measurements through the use of computational models, and also describe the challenge of ambient background characterization that would be needed to establish more reliable and deterministic sensor performance predictions. Greater attention will then be devoted to a discussion of basic particle properties and their measurement. The NRL effort has adopted an approach based on direct measurements on individual particles, principally of elastic scatter and laser-induced fluorescence (LIF), rather than populations of particles. The development of a LIF instrument using two sequential excitation wavelengths to detect fluorescence in discrete spectral bands will be described. Using this instrument, spectral characteristics of particles from a variety of biological materials including BW agent surrogates, as well as other ``calibration'' particles and some known ambient air constituents will be discussed in terms of the dependence of optical signatures on aerosol particle composition, size and incident laser fluence. Comparison of scattering and emission measurements from particles composed of widely different taxa, as well as from similar species under different growth conditions highlight the difficulties of establishing ground truth for complex biological material compositions. One aspect that is anticipated to provide greater insight to this type of particle classification capability is the development of a fundamental computational model of

  19. Mid- and far-infrared absorption spectroscopy of Titan’s aerosols analogues

    NASA Astrophysics Data System (ADS)

    Gautier, Thomas; Carrasco, Nathalie; Mahjoub, Ahmed; Vinatier, Sandrine; Giuliani, Alexandre; Szopa, Cyril; Anderson, Carrie M.; Correia, Jean-Jacques; Dumas, Paul; Cernogora, Guy

    2012-09-01

    In this work we present mid- and far-infrared absorption spectra of Titan’s aerosol analogues produced in the PAMPRE experimental setup. The evolution of the linear absorption coefficient ε (cm-1) is given as a function of the wavenumber. We provide a complete dataset regarding the influence that the concentration of methane vapor in the gas mixture has on the tholin spectra. Among other effects, the intensity of the 2900 cm-1 (3.4 μm) pattern (attributed to methyl stretching modes) increases when the methane concentration increases. More generally, tholins produced with low methane concentrations seem to be more amine based polymers, whereas tholins produced with higher methane concentrations contains more aliphatic carbon based structures. Moreover, it is shown that the position of the bands around 2900 cm-1 depends on the chemical environment of the methyl functional group. We conclude that the presence of these absorption bands in Titan’s atmosphere, as measured with the VIMS instrument onboard Cassini is in agreement with an aerosol contribution. We also compare the far-infrared spectrum of tholin to spectra of Titan’s aerosols derived from recent Cassini-CIRS observations displaying many similarities, particularly with absorption bands at 325 cm-1, 515 cm-1, and the methyl attributed 1380 cm-1 and 1450 cm-1 bands.

  20. Rethinking Extinction.

    PubMed

    Dunsmoor, Joseph E; Niv, Yael; Daw, Nathaniel; Phelps, Elizabeth A

    2015-10-01

    Extinction serves as the leading theoretical framework and experimental model to describe how learned behaviors diminish through absence of anticipated reinforcement. In the past decade, extinction has moved beyond the realm of associative learning theory and behavioral experimentation in animals and has become a topic of considerable interest in the neuroscience of learning, memory, and emotion. Here, we review research and theories of extinction, both as a learning process and as a behavioral technique, and consider whether traditional understandings warrant a re-examination. We discuss the neurobiology, cognitive factors, and major computational theories, and revisit the predominant view that extinction results in new learning that interferes with expression of the original memory. Additionally, we reconsider the limitations of extinction as a technique to prevent the relapse of maladaptive behavior and discuss novel approaches, informed by contemporary theoretical advances, that augment traditional extinction methods to target and potentially alter maladaptive memories. PMID:26447572

  1. Rethinking Extinction

    PubMed Central

    Dunsmoor, Joseph E.; Niv, Yael; Daw, Nathaniel; Phelps, Elizabeth A.

    2015-01-01

    Extinction serves as the leading theoretical framework and experimental model to describe how learned behaviors diminish through absence of anticipated reinforcement. In the past decade, extinction has moved beyond the realm of associative learning theory and behavioral experimentation in animals and has become a topic of considerable interest in the neuroscience of learning, memory, and emotion. Here, we review research and theories of extinction, both as a learning process and as a behavioral technique, and consider whether traditional understandings warrant a re-examination. We discuss the neurobiology, cognitive factors, and major computational theories, and revisit the predominant view that extinction results in new learning that interferes with expression of the original memory. Additionally, we reconsider the limitations of extinction as a technique to prevent the relapse of maladaptive behavior, and discuss novel approaches, informed by contemporary theoretical advances, that augment traditional extinction methods to target and potentially alter maladaptive memories. PMID:26447572

  2. Rethinking Extinction.

    PubMed

    Dunsmoor, Joseph E; Niv, Yael; Daw, Nathaniel; Phelps, Elizabeth A

    2015-10-01

    Extinction serves as the leading theoretical framework and experimental model to describe how learned behaviors diminish through absence of anticipated reinforcement. In the past decade, extinction has moved beyond the realm of associative learning theory and behavioral experimentation in animals and has become a topic of considerable interest in the neuroscience of learning, memory, and emotion. Here, we review research and theories of extinction, both as a learning process and as a behavioral technique, and consider whether traditional understandings warrant a re-examination. We discuss the neurobiology, cognitive factors, and major computational theories, and revisit the predominant view that extinction results in new learning that interferes with expression of the original memory. Additionally, we reconsider the limitations of extinction as a technique to prevent the relapse of maladaptive behavior and discuss novel approaches, informed by contemporary theoretical advances, that augment traditional extinction methods to target and potentially alter maladaptive memories.

  3. Gas Phase Spectroscopy of Cold PAH Ions: Contribution to the Interstellar Extinction and the Diffuse Interstellar Bands

    NASA Technical Reports Server (NTRS)

    Biennier, L.; Salama, F.; Allamandola, L. J.; Scherer, J. J.; OKeefe, A.

    2002-01-01

    Polycyclic Aromatic Hydrocarbon molecules (PAHs) are ubiquitous in the interstellar medium (ISM) and constitute the building blocks of interstellar dust grains. Despite their inferred important role in mediating the energetic and chemical processes in thc ISM, their exact contribution to the interstellar extinction, and in particular to the diffuse interstellar bands (DIBs) remains unclear. The DIBs are spectral absorption features observed in the line of sight of stars that are obscured by diffuse interstellar clouds. More than 200 bands have been reported to date spanning from the near UV to the near IR with bandwidths ranging from 0.4 to 40 Angstroms (Tielens & Snow 1995). The present consensus is that the DIBs arise from free flying, gas-phase, organic molecules and/or ions that are abundant under the typical conditions reigning in the diffuse ISM. PAHs have been proposed as possible carriers (Allamandola et al. 1985; Leger & DHendecourt 1985). The PAH hypothesis is consistent with the cosmic abundance of Carbon and Hydrogen and with the required photostability of the DIB carriers against the strong VUV radiation field in the diffuse interstellar clouds. A significant fraction of PAHs is expected to be ionized in the diffuse ISM.

  4. Comparison of Aerosol Classification From Airborne High Spectral Resolution Lidar and the CALIPSO Vertical Feature Mask

    NASA Technical Reports Server (NTRS)

    Burton, Sharon P.; Ferrare, Rich A.; Omar, Ali H.; Vaughan, Mark A.; Rogers, Raymond R.; Hostetler, Chris a.; Hair, Johnathan W.; Obland, Michael D.; Butler, Carolyn F.; Cook, Anthony L.; Harper, David B.

    2012-01-01

    Knowledge of aerosol composition and vertical distribution is crucial for assessing the impact of aerosols on climate. In addition, aerosol classification is a key input to CALIOP aerosol retrievals, since CALIOP requires an inference of the lidar ratio in order to estimate the effects of aerosol extinction and backscattering. In contrast, the NASA airborne HSRL-1 directly measures both aerosol extinction and backscatter, and therefore the lidar ratio (extinction-to-backscatter ratio). Four aerosol intensive properties from HSRL-1 are combined to infer aerosol type. Aerosol classification results from HSRL-1 are used here to validate the CALIOP aerosol type inferences.

  5. Silver-silver oxide core-shell nanoparticles by femtosecond laser ablation: core and shell sizing by extinction spectroscopy

    NASA Astrophysics Data System (ADS)

    Schinca, D. C.; Scaffardi, L. B.; Videla, F. A.; Torchia, G. A.; Moreno, P.; Roso, L.

    2009-11-01

    The generation of small silver metal nanoparticles (Nps) by ultrashort pulsed laser ablation has been an active area of research in recent years due to their interest in several fields of applied research such as biotechnology and material research, in particular those with sizes smaller than 10 nm. In general, laser ablation tends to produce environmentally clean metal Nps compared with wet chemical methods. However, since silver may be oxidized in the presence of water or ethanol, core-shell silver-silver oxide (Ag-Ag2O) Nps can be formed, whose size and thickness must be determined and characterized for functionalization related to future applications. This work analyses the size characteristics of core-shell Ag-Ag2O colloid nanostructures (smaller than 10 nm) obtained by femtosecond laser ablation of solid silver targets in different liquid media (water or ethanol) through the study of their optical extinction spectra. A fit of full experimental spectrum using Mie theory allows the determination of core size and shell thickness distributions as a function of fluence. The red-shift of the plasmon peak wavelength with respect to the bare-core peak wavelength at 400 nm, produced by the oxide shell, may be easily measured even for very small thicknesses. It was found that the dominant Ag2O effective thickness is inversely proportional to the fluence, reaching a maximum of 0.2 nm for a fluence of 60 J cm-2 and a minimum of 0.04 nm for a fluence of 1000 J cm-2.

  6. Characterization of water-soluble organic matter in urban aerosol by 1H-NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Chalbot, Marie-Cecile G.; Chitranshi, Priyanka; Gamboa da Costa, Gonçalo; Pollock, Erik; Kavouras, Ilias G.

    2016-03-01

    The functional and 13C isotopic compositions of water-soluble organic carbon (WSOC) in atmospheric aerosol were determined by nuclear magnetic resonance (1H-NMR) and isotope ratio mass spectrometry (IRMS) in an urban location in the Southern Mississippi Valley. The origin of WSOC was resolved using the functional distribution of organic hydrogen, δ13C ratio, and positive matrix factorization (PMF). Three factors were retained based on NMR spectral bins loadings. Two factors (factors 1 and 3) demonstrated strong associations with the aliphatic region in the NMR spectra and levoglucosan resonances. Differences between the two factors included the abundance of the aromatic functional group for factor 1, indicating fresh emissions and, for factor 3, the presence of resonances attributed to secondary ammonium nitrate and low δ13C ratio values that are indicative of secondary organic aerosol. Factors 1 and 3 added 0.89 and 1.08 μgC m-3, respectively, with the highest contribution in the summer and fall. Factor 2 retained resonances consistent with saccharides and was attributed to pollen particles. Its contribution to WSOC varied from 0.22 μgC m-3 in winter to 1.04 μgC m-3 in spring.

  7. Aerosol characterization with lidar methods

    NASA Astrophysics Data System (ADS)

    Sugimoto, Nobuo; Nishizawa, Tomoaki; Shimizu, Atsushi; Matsui, Ichiro

    2014-08-01

    Aerosol component analysis methods for characterizing aerosols were developed for various types of lidars including polarization-sensitive Mie scattering lidars, multi-wavelength Raman scattering lidars, and multi-wavelength highspectral- resolution lidars. From the multi-parameter lidar data, the extinction coefficients for four aerosol components can be derived. The microphysical parameters such as single scattering albedo and effective radius can be also estimated from the derived aerosol component distributions.

  8. Light extinction in the atmosphere

    SciTech Connect

    Laulainen, N.

    1992-06-01

    Atmospheric aerosol particles originating from natural sources, such as volcanos and sulfur-bearing gas emissions from the oceans, and from human sources, such as sulfur emissions from fossil fuel combustion and biomass burning, strongly affect visual air quality and are suspected to significantly affect radiative climate forcing of the planet. During the daytime, aerosols obscure scenic vistas, while at night they diminish our ability to observe stellar objects. Scattering of light is the main means by which aerosols attenuate and redistribute light in the atmosphere and by which aerosols can alter and reduce visibility and potentially modify the energy balance of the planet. Trends and seasonal variability of atmospheric aerosol loading, such as column-integrated light extinction or optical depth, and how they may affect potential climate change have been difficult to quantify because there have been few observations made of important aerosol optical parameters, such as optical depth, over the globe and over time and often these are of uneven quality. To address questions related to possible climate change, there is a pressing need to acquire more high-quality aerosol optical depth data. Extensive deployment of improved solar radiometers over the next few years will provide higher-quality extinction data over a wider variety of locations worldwide. An often overlooked source of turbidity data, however, is available from astronomical observations, particularly stellar photoelectric photometry observations. With the exception of the Project ASTRA articles published almost 20 years ago, few of these data ever appear in the published literature. This paper will review the current status of atmospheric extinction observations, as highlighted by the ASTRA work and augmented by more recent solar radiometry measurements.

  9. Method and apparatus for aerosol-particle absorption spectroscopy. [DOE patent application

    SciTech Connect

    Campillo, A.J.; Lin, H.B.

    1981-06-25

    A method and apparatus are described for determining the absorption spectra, and other properties, of aerosol particles. A heating beam source provides a beam of electromagnetic energy which is scanned through the region of the spectrum which is of interest. Particles exposed to the heating beam which have absorption bands within the band width of the heating beam absorb energy from the beam. The particles are also illuminated by light of a wave length such that the light is scattered by the particles. The absorption spectra of the particles can thus be determined from an analysis of the scattered light since the absorption of energy by the particles will affect the way the light is scattered. Preferably the heating beam is modulated to simplify the analysis of the scattered light. In one embodiment the heating beam is intensity modulated so that the scattered light will also be intensity modulated when the particles absorb energy. In another embodiment the heating beam passes through an interferometer and the scattered light reflects the Fourier Transform of the absorption spectra.

  10. Vertical Profiles of Aerosol Volume from High Spectral Resolution Infrared Transmission Measurements: Results

    NASA Technical Reports Server (NTRS)

    Eldering, Annmarie; Kahn, Brian H.; Mills, Franklin P.; Irion, Fredrick W.; Steele, Helen M.; Gunson, Michael R.

    2004-01-01

    The high-resolution infrared absorption spectra of the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment are utilized to derive vertical profiles of sulfate aerosol volume density and extinction coefficient. Following the eruption of Mt. Pinatubo in June 1991, the ATMOS spectra obtained on three Space Shuttle missions (1992, 1993, and 1994) provide a unique opportunity to study the global stratospheric sulfate aerosol layer shortly after a major volcanic eruption and periodically during the decay phase. Synthetic sulfate aerosol spectra are fit to the observed spectra, and a global fitting inversion routine is used to derive vertical profiles of sulfate aerosol volume density. Vertical profiles of sulfate aerosol volume density for the three missions over portions of the globe are presented, with the peak in aerosol volume density occurring from as low as 10 km (polar latitudes) to as high as 20 km (subtropical latitudes). Derived aerosol volume density is as high as 2-3.5 (mu)m(exp 3) per cubic centimeter +/-10% in 1992, decreasing to 0.2-0.5 (mu)m(exp 3) per cubic centimeter +/-20% in 1994, in agreement with other experiments. Vertical extinction profiles derived from ATMOS are compared with profiles from Improved Stratospheric And Mesospheric Sounder (ISAMS) and Cryogenic Limb Array Etalon Spectrometer (CLAES) that coincide in space and time and show good general agreement. The uncertainty of the ATMOS vertical profiles is similar to CLAES and consistently smaller than ISAMS at similar altitudes.

  11. Atmospheric aerosol characterization combining multi-wavelength Raman lidar and MAX-DOAS measurements in Gwanjgu

    NASA Astrophysics Data System (ADS)

    Chong, Jihyo; Shin, Dong Ho; Kim, Kwang Chul; Lee, Kwon-Ho; Shin, Sungkyun; Noh, Young M.; Müller, Detlef; Kim, Young J.

    2011-11-01

    Integrated approach has been adopted at the ADvanced Environmental Research Center (ADEMRC), Gwangju Institute of Science and Technology (GIST), Korea for effective monitoring of atmospheric aerosol. Various active and passive optical remote sensing techniques such as multi-wavelength (3β+2α+1δ) Raman LIDAR, sun-photometry, MAX-DOAS, and satellite retrieval have been utilized. This integrated monitoring system approach combined with in-situ surface measurement is to allow better characterization of physical and optical properties of atmospheric aerosol. Information on the vertical distribution and microphysical properties of atmospheric aerosol is important for understanding its transport characteristics as well as radiative effect. The GIST multi-wavelength (3β + 2α+1δ) Raman lidar system can measure vertical profiles of optical properties of atmospheric aerosols such as extinction coefficients at 355 and 532nm, particle backscatter coefficients at 355, 532 and 1064 nm, and depolarization ratio at 532nm. The incomplete overlap between the telescope field-of-view and beam divergence of the transmitting laser significantly affects lidar measurement, resulting in higher uncertainty near the surface where atmospheric aerosols of interest are concentrated. Differential Optical Absorption Spectroscopy (DOAS) technique is applied as a complementary tool for the detection of atmospheric aerosols near the surface. The passive Multi-Axis DOAS (MAX-DOAS) technique uses scattered sunlight as a light source from several viewing directions. Recently developed aerosol retrieval algorithm based on O4 slant column densities (SCDs) measured at UV and visible wavelengths has been utilized to derive aerosol information (e.g., aerosol optical depth (AOD) and aerosol extinction coefficients (AECs)) in the lower troposphere. The aerosol extinction coefficient at 356 nm was retrieved for the 0-1 and 1-2 km layers based on the MAX-DOAS measurements using the retrieval algorithm

  12. SAGE II aerosol data validation based on retrieved aerosol model size distribution from SAGE II aerosol measurements

    NASA Technical Reports Server (NTRS)

    Wang, Pi-Huan; Mccormick, M. P.; Mcmaster, L. R.; Chu, W. P.; Swissler, T. J.; Osborn, M. T.; Russell, P. B.; Oberbeck, V. R.; Livingston, J.; Rosen, J. M.

    1989-01-01

    Consideration is given to aerosol correlative measurements experiments for the Stratospheric Aerosol and Gas Experiment (SAGE) II, conducted between November 1984 and July 1986. The correlative measurements were taken with an impactor/laser probe, a dustsonde, and an airborne 36-cm lidar system. The primary aerosol quantities measured by the ground-based instruments are compared with those calculated from the aerosol size distributions from SAGE II aerosol extinction measurements. Good agreement is found between the two sets of measurements.

  13. Extinctions of life

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1988-01-01

    This meeting presentation examines mass extinctions through earth's history. Extinctions are charted for marine families and marine genera. Timing of marine genera extinctions is discussed. Periodicity in extinctions during the Mesozoic and Cenozoic eras is plotted and compared with Paleozoic extinction peaks. The role of extinction in evolution and mankind's role in present extinctions are examined.

  14. SAGE Aerosol Measurements. Volume 2: 1 January - 31 December 1980

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.

    1986-01-01

    The stratospheric Aerosol and Gas Experiment (SAGE) satellite system, launched on February 18, 1979, provides profiles of aerosol extinction at wavelengths of 1.00 and 0.45 micron, ozone concentration, and nitrogen dioxide concentration. Data taken during sunset events in the form of zonal averages and seasonal averages of the aerosol extinction at 1.00 and 0.45 micron, ratios of the aerosol extinction to the molecular extinction at 1.00 micron, and ratios of the aerosol extinction at 0.45 micron to the aerosol extinction at 1.00 micron are presented. The averages for l980 are shown in tables and in profile and contour plots (as a function of altitude and latitude). In addition, temperature data provided by the National Oceanic and Atmospheric Administration (NOAA) for the time and location of each SAGE measurement are averaged and shown in a similar format.

  15. Australian Extinctions

    ERIC Educational Resources Information Center

    Science Teacher, 2005

    2005-01-01

    Massive extinctions of animals and the arrival of the first humans in ancient Australia--which occurred 45,000 to 55,000 years ago--may be linked. Researchers at the Carnegie Institution, University of Colorado, Australian National University, and Bates College believe that massive fires set by the first humans may have altered the ecosystem of…

  16. SAGE II aerosol correlative observations - Profile measurements

    NASA Technical Reports Server (NTRS)

    Osborn, M. T.; Rosen, J. M.; Mccormick, M. P.; Wang, Pi-Huan; Livinfston, J. M.

    1989-01-01

    Profiles of the aerosol extinction measurements from the Stratospheric Aerosol and Gas Experiment (SAGE) II are compared with profiles from five correlative experiments between November 1984 and July 1986. The correlative profiles were derived from six-channel dustsonde measurements and two-wavelength lidar backscatter data. The correlation between the dustsonde- and lidar-derived measurements and the SAGE II data is good, validating the SAGE II lower stratospheric aerosol extinction measurements.

  17. Evaluation of MAX-DOAS aerosol retrievals by coincident observations using CRDS, lidar, and sky radiometer in Tsukuba, Japan

    NASA Astrophysics Data System (ADS)

    Irie, H.; Nakayama, T.; Shimizu, A.; Yamazaki, A.; Nagai, T.; Uchiyama, A.; Zaizen, Y.; Kagamitani, S.; Matsumi, Y.

    2015-01-01

    Coincident aerosol observations of Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS), Cavity Ring Down Spectroscopy (CRDS), lidar, and sky radiometer were conducted in Tsukuba, Japan on 5-18 October 2010. MAX-DOAS aerosol retrieval (for aerosol extinction coefficient and aerosol optical depth at 476 nm) was evaluated from the viewpoint of the need for a correction factor for oxygen collision complexes (O4 or O2-O2) absorption. The present study strongly supports this need, as systematic residuals at relatively high elevation angles (20 and 30°) were evident in MAX-DOAS profile retrievals conducted without the correction. However, adopting a single number for the correction factor (fO4 = 1.25) for all of the elevation angles led to systematic overestimation of near-surface aerosol extinction coefficients, as reported in the literature. To achieve agreement with all three observations, we limited the set of elevation angles to ≤ 10° and adopted an elevation-angle-dependent correction factor for practical profile retrievals with scattered light observations by a ground-based MAX-DOAS. With these modifications, we expect to minimize the possible effects of temperature-dependent O4 absorption cross section and uncertainty in DOAS fit on an aerosol profile retrieval, although more efforts are encouraged to quantitatively identify a physical explanation for the need of a correction factor.

  18. Evaluation of MAX-DOAS aerosol retrievals by coincident observations using CRDS, lidar, and sky radiometer inTsukuba, Japan

    NASA Astrophysics Data System (ADS)

    Irie, H.; Nakayama, T.; Shimizu, A.; Yamazaki, A.; Nagai, T.; Uchiyama, A.; Zaizen, Y.; Kagamitani, S.; Matsumi, Y.

    2015-07-01

    Coincident aerosol observations of multi-axis differential optical absorption spectroscopy (MAX-DOAS), cavity ring-down spectroscopy (CRDS), lidar, and sky radiometer were conducted in Tsukuba, Japan, on 5-18 October 2010. MAX-DOAS aerosol retrieval (for aerosol extinction coefficient and aerosol optical depth at 476 nm) was evaluated from the viewpoint of the need for a correction factor for oxygen collision complexes (O4 or O2-O2) absorption. The present study strongly supports this need, as systematic residuals at relatively high elevation angles (20 and 30°) were evident in MAX-DOAS profile retrievals conducted without the correction. However, adopting a single number for the correction factor (fO4 = 1.25) for all of the elevation angles led to systematic overestimation of near-surface aerosol extinction coefficients, as reported in the literature. To achieve agreement with all three observations, we limited the set of elevation angles to ≤10° and adopted an elevation-angle-dependent correction factor for practical profile retrievals with scattered light observations by a ground-based MAX-DOAS. With these modifications, we expect to minimize the possible effects of temperature-dependent O4 absorption cross section and uncertainty in DOAS fit on an aerosol profile retrieval, although more efforts are encouraged to quantitatively identify a physical explanation for the need of a correction factor.

  19. DUST EXTINCTION FROM BALMER DECREMENTS OF STAR-FORMING GALAXIES AT 0.75 {<=} z {<=} 1.5 WITH HUBBLE SPACE TELESCOPE/WIDE-FIELD-CAMERA 3 SPECTROSCOPY FROM THE WFC3 INFRARED SPECTROSCOPIC PARALLEL SURVEY

    SciTech Connect

    Dominguez, A.; Siana, B.; Masters, D.; Henry, A. L.; Martin, C. L.; Scarlata, C.; Bedregal, A. G.; Malkan, M.; Ross, N. R.; Atek, H.; Colbert, J. W.; Teplitz, H. I.; Rafelski, M.; McCarthy, P.; Hathi, N. P.; Dressler, A.; Bunker, A.

    2013-02-15

    Spectroscopic observations of H{alpha} and H{beta} emission lines of 128 star-forming galaxies in the redshift range 0.75 {<=} z {<=} 1.5 are presented. These data were taken with slitless spectroscopy using the G102 and G141 grisms of the Wide-Field-Camera 3 (WFC3) on board the Hubble Space Telescope as part of the WFC3 Infrared Spectroscopic Parallel survey. Interstellar dust extinction is measured from stacked spectra that cover the Balmer decrement (H{alpha}/H{beta}). We present dust extinction as a function of H{alpha} luminosity (down to 3 Multiplication-Sign 10{sup 41} erg s{sup -1}), galaxy stellar mass (reaching 4 Multiplication-Sign 10{sup 8} M {sub Sun }), and rest-frame H{alpha} equivalent width. The faintest galaxies are two times fainter in H{alpha} luminosity than galaxies previously studied at z {approx} 1.5. An evolution is observed where galaxies of the same H{alpha} luminosity have lower extinction at higher redshifts, whereas no evolution is found within our error bars with stellar mass. The lower H{alpha} luminosity galaxies in our sample are found to be consistent with no dust extinction. We find an anti-correlation of the [O III] {lambda}5007/H{alpha} flux ratio as a function of luminosity where galaxies with L {sub H{alpha}} < 5 Multiplication-Sign 10{sup 41} erg s{sup -1} are brighter in [O III] {lambda}5007 than H{alpha}. This trend is evident even after extinction correction, suggesting that the increased [O III] {lambda}5007/H{alpha} ratio in low-luminosity galaxies is likely due to lower metallicity and/or higher ionization parameters.

  20. Primary and secondary biomass burning aerosols determined by proton nuclear magnetic resonance (H-NMR) spectroscopy during the 2008 EUCAARI campaign in the Po Valley (Italy)

    NASA Astrophysics Data System (ADS)

    Paglione, M.; Saarikoski, S.; Carbone, S.; Hillamo, R.; Facchini, M. C.; Finessi, E.; Giulianelli, L.; Carbone, C.; Fuzzi, S.; Moretti, F.; Tagliavini, E.; Swietlicki, E.; Eriksson Stenström, K.; Prévôt, A. S. H.; Massoli, P.; Canaragatna, M.; Worsnop, D.; Decesari, S.

    2013-12-01

    Atmospheric organic aerosols are generally classified into primary and secondary (POA and SOA) according to their formation processes. An actual separation, however, is challenging when the timescales of emission and of gas-to-particle formation overlap. The presence of SOA formation in biomass burning plumes leads to scientific questions about whether the oxidized fraction of biomass burning aerosol is rather of secondary or primary origin, as some studies would suggest, and about the chemical compositions of oxidized biomass burning POA and SOA. In this study, we apply nuclear magnetic resonance (NMR) spectroscopy to investigate the functional group composition of fresh and aged biomass burning aerosols during an intensive field campaign in the Po Valley, Italy. The campaign was part of the EUCAARI project and was held at the rural station of San Pietro Capofiume in spring 2008. Factor analysis applied to the set of NMR spectra was used to apportion the wood burning contribution and other organic carbon (OC) source contributions, including aliphatic amines. Our NMR results, referred to the polar, water-soluble fraction of OC, show that fresh wood burning particles are composed of polyols and aromatic compounds, with a sharp resemblance with wood burning POA produced in wood stoves, while aged samples are clearly depleted of alcohols and are enriched in aliphatic acids with a smaller contribution of aromatic compounds. The comparison with biomass burning organic aerosols (BBOA) determined by high resolution aerosol mass spectrometry (HR-TOF-AMS) at the site shows only a partial overlap between NMR BB-POA and AMS BBOA, which can be explained by either the inability of BBOA to capture all BB-POA composition, especially the alcohol fraction, or the fact that BBOA account for insoluble organic compounds unmeasured by the NMR. Therefore, an unambiguous composition for biomass burning POA could not be derived from this study, with NMR analysis indicating a higher O / C

  1. Primary and secondary biomass burning aerosols determined by proton nuclear magnetic resonance (1H-NMR) spectroscopy during the 2008 EUCAARI campaign in the Po Valley (Italy)

    NASA Astrophysics Data System (ADS)

    Paglione, M.; Saarikoski, S.; Carbone, S.; Hillamo, R.; Facchini, M. C.; Finessi, E.; Giulianelli, L.; Carbone, C.; Fuzzi, S.; Moretti, F.; Tagliavini, E.; Swietlicki, E.; Eriksson Stenström, K.; Prévôt, A. S. H.; Massoli, P.; Canaragatna, M.; Worsnop, D.; Decesari, S.

    2014-05-01

    Atmospheric organic aerosols are generally classified as primary and secondary (POA and SOA) according to their formation processes. An actual separation, however, is challenging when the timescales of emission and gas-to-particle formation overlap. The presence of SOA formation in biomass burning plumes leads to scientific questions about whether the oxidized fraction of biomass burning aerosol is rather of secondary or primary origin, as some studies would suggest, and about the chemical compositions of oxidized biomass burning POA and SOA. In this study, we apply nuclear magnetic resonance (NMR) spectroscopy to investigate the functional group composition of fresh and aged biomass burning aerosols during an intensive field campaign in the Po Valley, Italy. The campaign was part of the EUCAARI project and was held at the rural station of San Pietro Capofiume in spring 2008. Factor analysis applied to the set of NMR spectra was used to apportion the wood burning contribution and other organic carbon (OC) source contributions, including aliphatic amines. Our NMR results, referred to the polar, water-soluble fraction of OC, show that fresh wood burning particles are composed of polyols and aromatic compounds, with a sharp resemblance to wood burning POA produced in wood stoves, while aged samples are clearly depleted of alcohols and are enriched in aliphatic acids with a smaller contribution of aromatic compounds. The comparison with biomass burning organic aerosols (BBOA) determined by high-resolution aerosol mass spectrometry (HR-TOF-AMS) at the site shows only a partial overlap between NMR BB-POA and AMS BBOA, which can be explained by either the inability of BBOA to capture all BB-POA composition, especially the alcohol fraction, or the fact that BBOA account for insoluble organic compounds unmeasured by the NMR. Therefore, an unambiguous composition for biomass burning POA could not be derived from this study, with NMR analysis indicating a higher O / C ratio

  2. Intercomparison of stratospheric water vapor observed by satellite experiments - Stratospheric Aerosol and Gas Experiment II versus Limb Infrared Monitor of the Stratosphere and Atmospheric Trace Molecule Spectroscopy

    NASA Technical Reports Server (NTRS)

    Chiou, E. W.; Mccormick, M. P.; Mcmaster, L. R.; Chu, W. P.; Larsen, J. C.; Rind, D.; Oltmans, S.

    1993-01-01

    A comparison is made of the stratospheric water vapor measurements made by the satellite sensors of the Stratospheric Aerosol and Gas Experiment II (SAGE II), the Nimbus-7 LIMS, and the Spacelab 3 Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment. It was found that, despite differences in the measurement techniques, sampling bias, and observational periods, the three experiments have disclosed a generally consistent pattern of stratospheric water vapor distribution. The only significant difference occurs at high southern altitudes in May below 18 km, where LIMS measurements were 2-3 ppmv greater than those of SAGE II and ATMOS.

  3. Direct measurements of the optical cross sections and refractive indices of individual volatile and hygroscopic aerosol particles.

    PubMed

    Mason, B J; Cotterell, M I; Preston, T C; Orr-Ewing, A J; Reid, J P

    2015-06-01

    We present measurements of the evolving extinction cross sections of individual aerosol particles (spanning 700-2500 nm in radius) during the evaporation of volatile components or hygroscopic growth using a combination of a single particle trap formed from a Bessel light beam and cavity ring-down spectroscopy. For single component organic aerosol droplets of 1,2,6-hexanetriol, polyethylene glycol 400, and glycerol, the slow evaporation of the organic component (over time scales of 1000 to 10,000 s) leads to a time-varying size and extinction cross section that can be used to estimate the refractive index of the droplet. Measurements on binary aqueous-inorganic aerosol droplets containing one of the inorganic solutes ammonium bisulfate, ammonium sulfate, sodium nitrate, or sodium chloride (over time scales of 1000 to 15,000 s) under conditions of changing relative humidity show that extinction cross-section measurements are consistent with expectations from accepted models for the variation in droplet refractive index with hygroscopic growth. In addition, we use these systems to establish an experimental protocol for future single particle extinction measurements. The advantages of mapping out the evolving light extinction cross-section of an individual particle over extended time frames accompanied by hygroscopic cycling or component evaporation are discussed.

  4. Measuring black carbon spectral extinction in the visible and infrared

    NASA Astrophysics Data System (ADS)

    Smith, A. J. A.; Peters, D. M.; McPheat, R.; Lukanihins, S.; Grainger, R. G.

    2015-09-01

    This work presents measurements of the spectral extinction of black carbon aerosol from 400 nm to 15 μm. The aerosol was generated using a Miniature Combustion Aerosol Standard soot generator and then allowed to circulate in an aerosol cell where its extinction was measured using a grating spectrometer in the visible and a Fourier transform spectrometer in the infrared. Size distribution, number concentration, and mass extinction cross sections have also been obtained using single-particle aerosol samplers. A mean mass extinction cross section at 550 nm of 8.3 ± 1.6 m2 g-1 is found which, assuming a reasonable single scatter albedo of 0.2, corresponds to a mass absorption cross section of 6.6 ± 1.3 m2 g-1. This compares well with previously reported literature values. Computer analysis of electron microscope images of the particles provides independent confirmation of the size distribution as well as fractal parameters of the black carbon aerosol. The aerosol properties presented in this work are representative of very fresh, uncoated black carbon aerosol. After atmospheric processing of such aerosols (which could include mixing with other constituents and structural changes), different optical properties would be expected.

  5. [Determination of the retrieval arithmetic of aerosol size distribution measured by DOAS].

    PubMed

    Si, Fu-qi; Xie, Pin-hua; Liu, Jian-guo; Zhang, Yu-jun; Liu, Wen-qing; Hiroaki, Kuze; Nobuo, Takeuchi

    2008-10-01

    Atmospheric aerosol is not only an important factor for the change in global climate, but also a polluting matter. Moreover, aerosol plays a main role in chemical reaction of polluting gases. Determination of aerosol has become an important re- search in the study of atmospheric environment. Differential optical absorption spectroscopy (DOAS) is a very useful technique that allows quantitative measurement of atmospheric trace gas concentrations based on their fingerprint absorption. It also can be used to retrieve aerosol extinction coefficient. In the present work, the method of determination of aerosol size distribution measured by flash DOAS is described, and the arithmetic based on Monte-Carlo is the emphasis. By comparison with the concentration of PM10, visibility and Angstrom wavelength exponent, a good correlation can be found. Application of DOAS in aerosol field not only provides a novel method for aerosol detection, but also extends the field of application of DOAS technology. Especially, aerosol DOAS plays an important role in the study of atmospheric chemistry.

  6. [Determination of the retrieval arithmetic of aerosol size distribution measured by DOAS].

    PubMed

    Si, Fu-qi; Xie, Pin-hua; Liu, Jian-guo; Zhang, Yu-jun; Liu, Wen-qing; Hiroaki, Kuze; Nobuo, Takeuchi

    2008-10-01

    Atmospheric aerosol is not only an important factor for the change in global climate, but also a polluting matter. Moreover, aerosol plays a main role in chemical reaction of polluting gases. Determination of aerosol has become an important re- search in the study of atmospheric environment. Differential optical absorption spectroscopy (DOAS) is a very useful technique that allows quantitative measurement of atmospheric trace gas concentrations based on their fingerprint absorption. It also can be used to retrieve aerosol extinction coefficient. In the present work, the method of determination of aerosol size distribution measured by flash DOAS is described, and the arithmetic based on Monte-Carlo is the emphasis. By comparison with the concentration of PM10, visibility and Angstrom wavelength exponent, a good correlation can be found. Application of DOAS in aerosol field not only provides a novel method for aerosol detection, but also extends the field of application of DOAS technology. Especially, aerosol DOAS plays an important role in the study of atmospheric chemistry. PMID:19123420

  7. Study of the aerosol fragrances of eugenol derivatives in Cananga odorata using diffuse reflectance infrared Fourier transform spectroscopy and gas chromatography.

    PubMed

    Kuo, Su-Ching; Chuang, Shien-Kai; Lin, Ho-Yang; Wang, Lai-Hao

    2009-10-19

    The purpose of this study was to develop and test a diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) method, a fast and non-destructive method without extraction, and compare it with the standard gas chromatography (GC) method currently used. A micro-orifice uniform deposit impactor (MOUDI) was used to sample all the size distributions of the aerosol particles of essential oils to investigate the relation between size distributions and the indoor concentration distributions of ylang essential oils. Correlation coefficients for DRIFTS and GC were 0.9904, 0.9910, 0.9913, and 0.9983 for eugenol, isoeugenol, methyl ether, and eugenyl acetate, respectively. The results showed that the concentrations of the four eugenol derivatives of smoke were approximately three times higher than those of mist. Additionally, the major size distributions of aerosol were 0.19 microm and 1.8 microm for the smoke and mist methods, respectively. Because these two methods produce similar results, DRIFTS is a practical method for assessing these fragrances in aerosols.

  8. Surface Enhanced Raman Spectroscopy (SERS) of Atmospheric Particles and Single Particle pH from Raman Microspectroscopy: Tools to Provide Greater Chemical Detail about Secondary Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Ault, A. P.; Craig, R. L.; Bondy, A. L.

    2015-12-01

    The ability to probe the chemical complexity and physicochemical properties of individual organic aerosols and organic-inorganic mixtures is needed to improve our understanding of their formation and evolution in the atmosphere, as well as their impacts on climate. This work will describe two new methods being developed to probe individual particles with Raman microspectroscopy: SERS provides unprecedented sensitivity regarding the functional groups present and single particle pH provide a direct probe of atmospheric particle acidity Surface enhanced Raman spectroscopy (SERS) generates enhanced Raman signal and has been applied to atmospheric aerosol particles and model systems in the laboratory, leading to enhancements of 101-102. This has allowed rich vibrational spectra to be observed for submicron particles, with detailed functional group and phase state information. Single particle pH is been developed to allow direct observation of individual particle pH through a combination of a spectral approach and an independent method based on changes in diameter at different relative humidities. Together these provide an independent check and an important improvement on indirect methods to allow detailed chemical studies. Together, the new SERS and single particle pH methods have the potential to improve our understanding of atmospheric organic aerosol mechanisms and evolution in the atmosphere.

  9. Study of the aerosol fragrances of eugenol derivatives in Cananga odorata using diffuse reflectance infrared Fourier transform spectroscopy and gas chromatography.

    PubMed

    Kuo, Su-Ching; Chuang, Shien-Kai; Lin, Ho-Yang; Wang, Lai-Hao

    2009-10-19

    The purpose of this study was to develop and test a diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) method, a fast and non-destructive method without extraction, and compare it with the standard gas chromatography (GC) method currently used. A micro-orifice uniform deposit impactor (MOUDI) was used to sample all the size distributions of the aerosol particles of essential oils to investigate the relation between size distributions and the indoor concentration distributions of ylang essential oils. Correlation coefficients for DRIFTS and GC were 0.9904, 0.9910, 0.9913, and 0.9983 for eugenol, isoeugenol, methyl ether, and eugenyl acetate, respectively. The results showed that the concentrations of the four eugenol derivatives of smoke were approximately three times higher than those of mist. Additionally, the major size distributions of aerosol were 0.19 microm and 1.8 microm for the smoke and mist methods, respectively. Because these two methods produce similar results, DRIFTS is a practical method for assessing these fragrances in aerosols. PMID:19800479

  10. Effects of relative humidity on aerosol light scattering and its importance for the comparison of remote sensing with in-situ measurements

    NASA Astrophysics Data System (ADS)

    Zieger, Paul; Clemer, Katrijn; Yilmaz, Selami; Frieß, Udo; Irie, Hitoshi; Henzing, Bas; Fierz-Schmidhauser, Rahel; de Leeuw, Gerrit; Baltensperger, Urs; Weingartner, Ernest

    2010-05-01

    In the field, in-situ measurements of aerosol light scattering are often performed under dry conditions (relative humidity RH < 30-40%) which differ from the ambient ones. Since ambient aerosol particles experience a hygroscopic growth at enhanced RH, their micro physical and optical properties - especially the aerosol light scattering - are strongly dependent on RH. The knowledge of this RH effect is of eminent importance for climate forcing calculations or for the comparison of remote sensing with in-situ measurements. Here, we will present results from the Cabauw Intercomparison Campaign of Nitrogen Dioxide measuring Instruments (CINDI, June-July 2009, Cabauw, The Netherlands). During this campaign different remote sensing and in-situ instruments were used to derive atmospheric parameters mainly NO2 but also aerosol properties. The aerosol in-situ measurements were performed in the basement of the Cabauw tower (inlet height 60 m). The aerosol scattering coefficient was measured dry and at various, predefined RH conditions between 20 and 95% with a recently developed humidified nephelometer (WetNeph) and with a second nephelometer measuring at dry conditions. In addition, the aerosol absorption coefficient was measured by a multi-angle absorption photometer (MAAP). This combination of measurements allows the determination of the aerosol extinction coefficient at ambient RH. Three MAX-DOAS (multi-axis differential optical absorption spectroscopy) instruments retrieved vertical profiles of the aerosol extinction coefficient during CINDI. The retrieved aerosol extinction corresponding to the lowest profile layer can now be directly compared to the in-situ value, which is now re-calculated to ambient RH.

  11. Large Binocular Telescope and Sptizer Spectroscopy of Star-forming Galaxies at 1 < z < 3: Extinction and Star Formation Rate Indicators

    NASA Technical Reports Server (NTRS)

    Rujopakarn, W.; Rieke, G. H.; Papovich, C. J.; Weiner, B. J.; Rigby, Jane; Rex, M.; Bian, F.; Kuhn, O. P.; Thompson, D.

    2012-01-01

    We present spectroscopic observations in the rest-frame optical and near- to mid-infrared wavelengths of four gravitationally lensed infrared (IR) luminous star-forming galaxies at redshift 1 < z < 3 from the LUCIFER instrument on the Large Binocular Telescope and the Infrared Spectrograph on Spitzer. The sample was selected to represent pure, actively star-forming systems, absent of active galactic nuclei. The large lensing magnifications result in high signal-to-noise spectra that can probe faint IR recombination lines, including Paa and Bra at high redshifts. The sample was augmented by three lensed galaxies with similar suites of unpublished data and observations from the literature, resulting in the final sample of seven galaxies. We use the IR recombination lines in conjunction with Ha observations to probe the extinction, Av, of these systems, as well as testing star formation rate (SFR) indicators against the SFR measured by fitting spectral energy distributions to far-IR photometry. Our galaxies occupy a range of Av from 0 to 5.9 mag, larger than previously known for a similar range of IR luminosities at these redshifts. Thus, estimates of SFR even at z 2 must take careful count of extinction in the most IR luminous galaxies.We also measure extinction by comparing SFR estimates from optical emission lines with those from far- IR measurements. The comparison of results from these two independent methods indicates a large variety of dust distribution scenarios at 1 < z < 3. Without correcting for dust extinction, the Ha SFR indicator underestimates the SFR; the size of the necessary correction depends on the IR luminosity and dust distribution scenario. Individual SFR estimates based on the 6.2µm polycyclic aromatic hydrocarbon emission line luminosity do not show a systematic discrepancy with extinction, although a considerable, 0.2 dex, scatter is observed.

  12. Impossible Extinction

    NASA Astrophysics Data System (ADS)

    Cockell, Charles S.

    2003-03-01

    Every 225 million years the Earth, and all the life on it, completes one revolution around the Milky Way Galaxy. During this remarkable journey, life is influenced by calamitous changes. Comets and asteroids strike the surface of the Earth, stars explode, enormous volcanoes erupt, and, more recently, humans litter the planet with waste. Many animals and plants become extinct during the voyage, but humble microbes, simple creatures made of a single cell, survive this journey. This book takes a tour of the microbial world, from the coldest and deepest places on Earth to the hottest and highest, and witnesses some of the most catastrophic events that life can face. Impossible Extinction tells this remarkable story to the general reader by explaining how microbes have survived on Earth for over three billion years. Charles Cockell received his doctorate from the University of Oxford, and is currently a microbiologist with rhe Search for Extraterrestrial Intelligence Institute (SETI), based at the British Antarctic Survey in Cambridge, UK. His research focusses on astrobiology, life in the extremes and the human exploration of Mars. Cockell has been on expeditions to the Arctic, Antarctic, Mongolia, and in 1993 he piloted a modified insect-collecting ultra-light aircraft over the Indonesian rainforests. He is Chair of the Twenty-one Eleven Foundation for Exploration, a charity that supports expeditions that forge links between space exploration and environmentalism.

  13. Relating Aerosol Mass and Optical Depth in the Summertime Continental Boundary Layer

    NASA Astrophysics Data System (ADS)

    Brock, C. A.; Wagner, N.; Middlebrook, A. M.; Attwood, A. R.; Washenfelder, R. A.; Brown, S. S.; McComiskey, A. C.; Gordon, T. D.; Welti, A.; Carlton, A. G.; Murphy, D. M.

    2014-12-01

    Aerosol optical depth (AOD), the column-integrated ambient aerosol light extinction, is determined from satellite and ground-based remote sensing measurements. AOD is the parameter most often used to validate earth system model simulations of aerosol mass. Relating aerosol mass to AOD, however, is problematic due to issues including aerosol water uptake as a function of relative humidity (RH) and the complicated relationship between aerosol physicochemical properties and light extinction. Measurements of aerosol microphysical, chemical, and optical properties help to constrain the relationship between aerosol mass and optical depth because aerosol extinction at ambient RH is a function of the abundance, composition and size distribution of the aerosol. We use vertical profiles of humidity and dry aerosol extinction observed in the southeastern United States (U.S.) to examine the relationship between submicron aerosol mass concentration and extinction at ambient RH. We show that the κ-Köhler parameterization directly, and without additional Mie calculations, describes the change in extinction with varying RH as a function of composition for both aged aerosols typical of the polluted summertime continental boundary layer and the biomass burning aerosols we encountered. We calculate how AOD and the direct radiative effect in the eastern U.S. have likely changed due to trends in aerosol composition in recent decades. We also examine the sensitivity of AOD to the RH profile and to aerosol composition, size distribution and abundance.

  14. Infrared differential-absorption Mueller matrix spectroscopy and neural network-based data fusion for biological aerosol standoff detection.

    PubMed

    Carrieri, Arthur H; Copper, Jack; Owens, David J; Roese, Erik S; Bottiger, Jerold R; Everly, Robert D; Hung, Kevin C

    2010-01-20

    An active spectrophotopolarimeter sensor and support system were developed for a military/civilian defense feasibility study concerning the identification and standoff detection of biological aerosols. Plumes of warfare agent surrogates gamma-irradiated Bacillus subtilis and chicken egg white albumen (analytes), Arizona road dust (terrestrial interferent), water mist (atmospheric interferent), and talcum powders (experiment controls) were dispersed inside windowless chambers and interrogated by multiple CO(2) laser beams spanning 9.1-12.0 microm wavelengths (lambda). Molecular vibration and vibration-rotation activities by the subject analyte are fundamentally strong within this "fingerprint" middle infrared spectral region. Distinct polarization-modulations of incident irradiance and backscatter radiance of tuned beams generate the Mueller matrix (M) of subject aerosol. Strings of all 15 normalized elements {M(ij)(lambda)/M(11)(lambda)}, which completely describe physical and geometric attributes of the aerosol particles, are input fields for training hybrid Kohonen self-organizing map feed-forward artificial neural networks (ANNs). The properly trained and validated ANN model performs pattern recognition and type-classification tasks via internal mappings. A typical ANN that mathematically clusters analyte, interferent, and control aerosols with nil overlap of species is illustrated, including sensitivity analysis of performance. PMID:20090802

  15. Measurement of Gas and Aerosol Phase Absorption Spectra across the Visible and Near-IR Using Supercontinuum Photoacoustic Spectroscopy.

    PubMed

    Radney, James G; Zangmeister, Christopher D

    2015-07-21

    We demonstrate a method to measure the absorption spectra of gas and aerosol species across the visible and near-IR (500 to 840 nm) using a photoacoustic (PA) spectrometer and a pulsed supercontinuum laser source. Measurements of gas phase absorption spectra were demonstrated using H2O(g) as a function of relative humidity (RH). The measured absorption intensities and peak shapes were able to be quantified and compared to spectra calculated using the 2012 High Resolution Transmission (HITRAN2012) database. Size and mass selected nigrosin aerosol was used to measure absorption spectra across the visible and near-IR. Spectra were measured as a function of aerosol size/mass and show good agreement to Mie theory calculations. Lastly, we measured the broadband absorption spectrum of flame generated soot aerosol at 5% and 70% RH. For the high RH case, we are able to quantifiably separate the soot and water absorption contributions. For soot, we observe an enhancement in the mass specific absorption cross section ranging from 1.5 at 500 nm (p < 0.01) to 1.2 at 840 nm (p < 0.2) and a concomitant increase in the absorption Ångström exponent from 1.2 ± 0.4 (5% RH) to 1.6 ± 0.3 (70% RH). PMID:26098142

  16. Extinction cross section measurements for a single optically trapped particle

    NASA Astrophysics Data System (ADS)

    Cotterell, Michael I.; Preston, Thomas C.; Mason, Bernard J.; Orr-Ewing, Andrew J.; Reid, Jonathan P.

    2015-08-01

    Bessel beam (BB) optical traps have become widely used to confine single and multiple aerosol particles across a broad range of sizes, from a few microns to < 200 nm in radius. The radiation pressure force exerted by the core of a single, zeroth-order BB incident on a particle can be balanced by a counter-propagating gas flow, allowing a single particle to be trapped indefinitely. The pseudo non-diffracting nature of BBs enables particles to be confined over macroscopic distances along the BB core propagation length; the position of the particle along this length can be finely controlled by variation of the BB laser power. This latter property is exploited to optimize the particle position at the center of the TEM00 mode of a high finesse optical cavity, allowing cavity ring-down spectroscopy (CRDS) to be performed on single aerosol particles and their optical extinction cross section, σext, measured. Further, the variation in the light from the illuminating BB elastically scattered by the particle is recorded as a function of scattering angle. Such intensity distributions are fitted to Lorenz-Mie theory to determine the particle radius. The trends in σext with particle radius are modelled using cavity standing wave Mie simulations and a particle's varying refractive index with changing relative humidity is determined. We demonstrate σext measurements on individual sub-micrometer aerosol particles and determine the lowest limit in particle size that can be probed by this technique. The BB-CRDS method will play a key role in reducing the uncertainty associated with atmospheric aerosol radiative forcing, which remains among the largest uncertainties in climate modelling.

  17. Influence of oxygen addition to the carrier gas on laser-induced breakdown spectroscopy measurements on aerosols

    NASA Astrophysics Data System (ADS)

    Palazzo, N.; Migliorini, F.; Dondè, R.; Maffi, S.; De Iuliis, S.

    2016-01-01

    In this work, laser-induced breakdown spectrosopy is implemented on aerosol particles for absolute concentration analysis. The aim of this work is the investigation of the effect of the bath gas used for nebulizing the aerosol. Nitrogen, air, and 50% O2 in N2 mixture have been chosen as carrier gasses in order to analyze the effect of oxygen addition to the gas. LIBS measurements have been carried out on aerosol particles produced from CuCl2 2H2O solutions, and the 324.7 nm Cu line is considered. As a first analysis, plasma parameters, such as temperature and electron density, have been evaluated changing the carrier gas. Measurements to derive the LIBS calibration curve of the 324.7 nm Cu line are carried out in air and in N2. The significant difference in the slope of the resulting calibration curves has to be attributed to the oxygen addition to the bath gas. To explore such behavior, time-resolved measurements of the Cu line and peak/base ratio have been performed. The presence of two competitive effects have been observed that becomes significant increasing the amount of oxygen in the carrier gas. One is the oxygen-quenching effect, already observed in the literature, and the other one is the enhancement of the Cu LIBS signal, expecially at short delay times. These effects have been observed also at other Cu lines and changing the analyte source. The results are presented and widely discussed.

  18. Heterogeneous interaction of SiO2 with N2O5: single particle optical levitation-Raman spectroscopy and aerosol flow tube studies

    NASA Astrophysics Data System (ADS)

    Tang, Mingjin; Camp, Jules; Cox, Tony; Kalberer, Markus; McGregor, James; Rkiouak, Laylla; Ward, Andy; Watson, Matt; Pope, Francis

    2014-05-01

    The heterogeneous reaction of SiO2 with N2O5 was investigated at room temperature and different relative humidities (RH). The uptake coefficient of N2O5 onto airborne sub-micrometre SiO2 particles, γ(N2O5), was measured using an atmospheric-pressure aerosol flow tube. γ(N2O5) was measured to be (4.8±0.4)×10-3 at 7% RH and (3.5±0.5)×10-3 at 40%, probably suggesting a slightly negative dependence on RH. In contrast, Raman spectroscopy measurements of the singles particles during the exposure to N2O5 show that the amount of nitrate formed on the particles increases with RH, and that nitrate formed on the particles can be entirely removed when the RH is reduced to 0%. The results suggest that nitric acid formed in the heterogeneous hydrolysis of N2O5 on the SiO2 surface can partition in both the gas phase and particulate phase, and the RH determines the partitioning. The atmospheric implications for photochemistry and aerosol aging processes will also be discussed.

  19. Heterogeneous interaction of SiO2 with N2O5: aerosol flow tube and single particle optical levitation-Raman spectroscopy studies.

    PubMed

    Tang, M J; Camp, J C J; Rkiouak, L; McGregor, J; Watson, I M; Cox, R A; Kalberer, M; Ward, A D; Pope, F D

    2014-09-25

    Silica (SiO2) is an important mineral present in atmospheric mineral dust particles, and the heterogeneous reaction of N2O5 on atmospheric aerosol is one of the major pathways to remove nitrogen oxides from the atmosphere. The heterogeneous reaction of N2O5 with SiO2 has only been investigated by two studies previously, and the reported uptake coefficients differ by a factor of >10. In this work two complementary laboratory techniques were used to study the heterogeneous reaction of SiO2 particles with N2O5 at room temperature and at different relative humidities (RHs). The uptake coefficients of N2O5, γ(N2O5), were determined to be (7.2 ± 0.6) × 10(-3) (1σ) at 7% RH and (5.3 ± 0.8) × 10(-3) (1σ) at 40% RH for SiO2 particles, using the aerosol flow tube technique. We show that γ(N2O5) determined in this work can be reconciled with the two previous studies by accounting for the difference in geometric and BET derived aerosol surface areas. To probe the particle phase chemistry, individual micrometer sized SiO2 particles were optically levitated and exposed to a continuous flow of N2O5 at different RHs, and the composition of levitated particles was monitored online using Raman spectroscopy. This study represents the first investigation into the heterogeneous reactions of levitated individual SiO2 particles as a surrogate for mineral dust. Relative humidity was found to play a critical role: while no significant change of particle composition was observed by Raman spectroscopy during exposure to N2O5 at RH of <2%, increasing the RH led to the formation of nitrate species on the particle surface which could be completely removed after decreasing the RH back to <2%. This can be explained by the partitioning of HNO3 between the gas and adsorbed phases. The atmospheric implications of this work are discussed. PMID:25188692

  20. Heterogeneous interaction of SiO2 with N2O5: aerosol flow tube and single particle optical levitation-Raman spectroscopy studies.

    PubMed

    Tang, M J; Camp, J C J; Rkiouak, L; McGregor, J; Watson, I M; Cox, R A; Kalberer, M; Ward, A D; Pope, F D

    2014-09-25

    Silica (SiO2) is an important mineral present in atmospheric mineral dust particles, and the heterogeneous reaction of N2O5 on atmospheric aerosol is one of the major pathways to remove nitrogen oxides from the atmosphere. The heterogeneous reaction of N2O5 with SiO2 has only been investigated by two studies previously, and the reported uptake coefficients differ by a factor of >10. In this work two complementary laboratory techniques were used to study the heterogeneous reaction of SiO2 particles with N2O5 at room temperature and at different relative humidities (RHs). The uptake coefficients of N2O5, γ(N2O5), were determined to be (7.2 ± 0.6) × 10(-3) (1σ) at 7% RH and (5.3 ± 0.8) × 10(-3) (1σ) at 40% RH for SiO2 particles, using the aerosol flow tube technique. We show that γ(N2O5) determined in this work can be reconciled with the two previous studies by accounting for the difference in geometric and BET derived aerosol surface areas. To probe the particle phase chemistry, individual micrometer sized SiO2 particles were optically levitated and exposed to a continuous flow of N2O5 at different RHs, and the composition of levitated particles was monitored online using Raman spectroscopy. This study represents the first investigation into the heterogeneous reactions of levitated individual SiO2 particles as a surrogate for mineral dust. Relative humidity was found to play a critical role: while no significant change of particle composition was observed by Raman spectroscopy during exposure to N2O5 at RH of <2%, increasing the RH led to the formation of nitrate species on the particle surface which could be completely removed after decreasing the RH back to <2%. This can be explained by the partitioning of HNO3 between the gas and adsorbed phases. The atmospheric implications of this work are discussed.

  1. Efficient modal-expansion discrete-dipole approximation: Application to the simulation of optical extinction and electron energy-loss spectroscopies

    NASA Astrophysics Data System (ADS)

    Guillaume, Stéphane-Olivier; de Abajo, F. Javier García; Henrard, Luc

    2013-12-01

    An efficient procedure is introduced for the calculation of the optical response of individual and coupled metallic nanoparticles in the framework of the discrete-dipole approximation (DDA). We introduce a modal expansion in the basis set of discrete dipoles and show that a few suitably selected modes are sufficient to compute optical spectra with reasonable accuracy, thus reducing the required numerical effort relative to other DDA approaches. Our method offers a natural framework for the study of localized plasmon modes, including plasmon hybridization. As a proof of concept, we investigate optical extinction and electron energy-loss spectra of monomers, dimers, and quadrumers formed by flat silver squares. This method should find application to the previously prohibited simulation of complex particle arrays.

  2. International ultraviolet explorer spectroscopy of hot stars in the LMC and SMC - The SMC extinction law, stellar flux distributions, and details of the stellar winds

    NASA Astrophysics Data System (ADS)

    Hutchings, J. B.

    1982-04-01

    IUE high- and low-dispersion spectral observations of hot stars in the Small Magellanic Cloud and Large Magellanic Cloud are presented. The extinction curve for the SMC derived from the data is much steeper in the UV than those of the LMC or the Galaxy. Based on stellar continuum data, stellar temperatures in the Magellanic Clouds are found to be normal and consistent with their spectral types, and the H-R diagram shows most stars to be evolved. Strong, sharp-sided absorption lines found in the UV spectra are found to vary with stellar spectral type, and are identified with stellar winds, which are much weaker in the Magellanic Clouds than in the Galaxy. These wind data may have implications for stellar mass loss rates and resultant stellar masses in the SMC and LMC.

  3. Implications of extinction due to meteoritic smoke in the upper stratosphere

    NASA Astrophysics Data System (ADS)

    Neely, Ryan R., III; English, Jason M.; Toon, Owen B.; Solomon, Susan; Mills, Michael; Thayer, Jeffery P.

    2011-12-01

    Recent optical observations of aerosols in the upper stratosphere and mesosphere show significant amounts of extinction at altitudes above about 40 km where the stratospheric sulfate aerosol layer ends. Recent modeling of this region reveals that meteoritic smoke settling from the mesosphere and its interaction with the upper part of the sulfate aerosol layer is the origin of the observed extinction. Extinction in this region has major implications for the interpretation and analysis of several kinds of aerosol data (satellite and lidar). We compare observations from the SAGE II satellite and from NOAA's lidar located at Mauna Loa, Hawaii to extinction profiles derived from the Whole Atmosphere Community Climate Model (WACCM) coupled with the Community Aerosol and Radiation Model for Atmospheres (CARMA). Our results show that a major source of extinction exists in the region above about 30 km that must be addressed by all remote sensing instruments that have traditionally used the stratosphere above about 30 km as an aerosol free region to estimate the molecular component of their total extinction. It is also shown that meteoritic smoke not only contributes to but also becomes the dominant source of aerosol extinction above 35 km and poleward of 30 degrees in latitude, as well as above 40 km in the tropics. After addressing the concerns described here, current and past observations of this region could be reanalyzed to further our understanding of meteoritic dust in the upper stratosphere.

  4. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1996-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size-resolved aerosol microphysics and chemistry. Both profiles included a pollution haze from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core. The soot core increased the calculated extinction by about 10% in the most polluted drier layer relative to a pure sulfate aerosol but had significantly less effect at higher humidities. A 3 km descent through a boundary layer air mass dominated by pollutant aerosol with relative humidities (RH) 10-77% yielded a close agreement between the measured and calculated aerosol optical depths (550 nm) of 0.160 (+/- 0.07) and 0. 157 (+/- 0.034) respectively. During descent the aerosol mass scattering coefficient per unit sulfate mass varied from about 5 to 16 m(exp 2)/g and primarily dependent upon ambient RH. However, the total scattering coefficient per total fine mass was far less variable at about 4+/- 0.7 m(exp 2)/g. A subsequent descent through a Saharan dust layer located above the pollution aerosol layer revealed that both layers contributed similarly to aerosol optical depth. The scattering per unit mass of the coarse aged dust was estimated at 1.1 +/- 0.2 m(exp 2)/g. The large difference (50%) in measured and calculated optical depth for the dust layer exceeded measurements.

  5. Raman Spectroscopy of Isotopic Water Diffusion in Ultraviscous, Glassy, and Gel States in Aerosol by Use of Optical Tweezers.

    PubMed

    Davies, James F; Wilson, Kevin R

    2016-02-16

    The formation of ultraviscous, glassy, and amorphous gel states in aqueous aerosol following the loss of water results in nonequilibrium dynamics due to the extended time scales for diffusive mixing. Existing techniques for measuring water diffusion by isotopic exchange are limited by contact of samples with the substrate, and methods applied to infer diffusion coefficients from mass transport in levitated droplets requires analysis by complex coupled differential equations to derive diffusion coefficients. We present a new technique that combines contactless levitation with aerosol optical tweezers with isotopic exchange (D2O/H2O) to measure the water diffusion coefficient over a broad range (Dw ≈ 10(-12)-10(-17) m(2)·s(-1)) in viscous organic liquids (citric acid, sucrose, and shikimic acid) and inorganic gels (magnesium sulfate, MgSO4). For the organic liquids in binary and ternary mixtures, Dw depends on relative humidity and follows a simple compositional Vignes relationship. In MgSO4 droplets, water diffusivity decreases sharply with water activity and is consistent with predictions from percolation theory. These measurements show that, by combining micrometer-sized particle levitation (a contactless measurement with rapid mixing times) with an established probe of water diffusion, Dw can be simply and directly quantified for amorphous and glassy states that are inaccessible to existing methods. PMID:26751163

  6. Infrared spectroscopy of methoxyphenols involved as atmospheric secondary organic aerosol precursors: Gas-phase vibrational cross-sections

    NASA Astrophysics Data System (ADS)

    Cuisset, A.; Coeur, C.; Mouret, G.; Ahmad, W.; Tomas, A.; Pirali, O.

    2016-08-01

    Methoxyphenols are emitted in the atmosphere from biomass burning and recent works have shown the potential role of these oxygenated aromatic species in the formation of secondary organic aerosols. IR spectroscopic data that would enable their remote measurement in the atmosphere remain scarce in the literature. Room temperature Far-IR cross-sections of 4 methoxyphenols (2-methoxyphenol or guaiacol, 3-methoxyphenol, 4-methoxyphenol and 2,6-dimethoxyphenol or syringol) have been determined using the THz synchrotron radiation available at SOLEIL. Mid- and near-IR regions have also been investigated with a conventional Fourier transform IR setup and allowed to provide a set of vibrational cross-sections of the studied methoxyphenols. Finally, gas-phase cross sections of two nitroguaiacol isomers (4-nitroguaiacol and 5-nitroguaiacol), two intermediate products involved in the formation of secondary organic aerosols have been measured in the mid- and near-IR with a heated multi-pass cell. Harmonic and anharmonic density functional theory calculations were carried out for all the studied compounds and allowed a full assignment of the recorded rovibrational bands.

  7. Aerosol profiling by Raman lidar in Nanjing, China

    NASA Astrophysics Data System (ADS)

    Cao, Nianwen; Yang, Shaobo; Xie, Yinhai; Zhu, Cunxiong

    2015-10-01

    Aerosol profiles at 607 nm over ranges from 2 to 20 km were obtained using Raman lidar in Nanjing, China. The measured aerosol extinction coefficient was largely stable at about 1.5-2.5 × 10-4 m-1 after noise and Rayleigh corrections were applied. The noise effect in Raman lidar aerosol measurements is analyzed, and a formula relating aerosol extinction coefficient error and noise is presented in detail. Simulation and experimental results are in good agreement, indicating that the noise-related calculation for the Raman lidar aerosol measurement error is reasonable.

  8. Phanerozoic Biodiversity Mass Extinctions

    NASA Astrophysics Data System (ADS)

    Bambach, Richard K.

    2006-05-01

    Recent analyses of Sepkoski's genus-level compendium show that only three events form a statistically separate class of high extinction intensities when only post-Early Ordovician intervals are considered, but geologists have called numerous events mass extinctions. Is this a conflict? A review of different methods of tabulating data from the Sepkoski database reveals 18 intervals during the Phanerozoic have peaks of both magnitude and rate of extinction that appear in each tabulating scheme. These intervals all fit Sepkoski's definition of mass extinction. However, they vary widely in timing and effect of extinction, demonstrating that mass extinctions are not a homogeneous group of events. No consensus has been reached on the kill mechanism for any marine mass extinction. In fact, adequate data on timing in ecologic, rather than geologic, time and on geographic and environmental distribution of extinction have not yet been systematically compiled for any extinction event.

  9. Inference of stratospheric aerosol composition and size distribution from SAGE II satellite measurements

    NASA Technical Reports Server (NTRS)

    Wang, Pi-Huan; Mccormick, M. P.; Fuller, W. H.; Yue, G. K.; Swissler, T. J.; Osborn, M. T.

    1989-01-01

    A method for inferring stratospheric aerosol composition and size distribution from the water vapor concentration and aerosol extinction measurements obtained in the Stratospheric Aerosol and Gas Experiment (SAGE) II and the associated temperature from the NMC. The aerosols are assumed to be sulfuric acid-water droplets. A modified Levenberg-Marquardt algorithm is used to determine model size distribution parameters based on the SAGE II multiwavelength aerosol extinctions. It is found that the best aerosol size information is contained in the aerosol radius range between about 0.25 and 0.80 micron.

  10. Discrimination of cloud and aerosol in the Stratospheric Aerosol and Gas Experiment III occultation data.

    PubMed

    Kent, G S; Wang, P H; Skeens, K M

    1997-11-20

    The Stratospheric Aerosol and Gas Experiment (SAGE) III, scheduled for a first launch in mid-1998, will be making measurements of the extinction that is due to aerosols and gases at many wavelengths between 385 and 1550 nm. In the troposphere and wintertime polar stratosphere, extinction will also occur because of the presence of cloud along the optical path from the Sun to the satellite instrument. We describe a method for separating the effects of aerosol and cloud using the extinction at 525, 1020, and 1550 nm and present the results of simulation studies. These studies show that the new method will work well under background nonvolcanic aerosol conditions in the upper troposphere and lower stratosphere. Under conditions of severe volcanic contamination, the error rate for the separation of aerosol and cloud may rise as high as 30%.

  11. Retrieval of aerosol optical and micro-physical properties with 2D-MAX-DOAS

    NASA Astrophysics Data System (ADS)

    Ortega, Ivan; Coburn, Sean; Hostetler, Chris; Ferrare, Rich; Hair, Johnathan; Kassianov, Evgueni; Barnard, James; Berg, Larry; Schmid, Beat; Tomlinson, Jason; Hodges, Gary; Lantz, Kathy; Wagner, Thomas; Volkamer, Rainer

    2015-04-01

    Recent retrievals of 2 dimensional (2D) Multi-AXis Differential Optical Absorption Spectroscopy (2D-MAX-DOAS) have highlighted its importance in order to infer diurnal horizontal in-homogeneities around the measurement site. In this work, we expand the capabilities of 2D measurements in order to estimate simultaneously aerosol optical and micro-physical properties. Specifically, we present a retrieval method to obtain: (1) aerosol optical thickness (AOT) in the boundary layer (BL) and free troposphere (FT) and (2) the effective complex refractive index and the effective radius of the aerosol column size distribution. The retrieval method to obtain AOT is based on an iterative comparison of measured normalized radiances, oxygen collision pair (O4), and absolute Raman Scattering Probability (RSP) with the forward model calculations derived with the radiative transfer model McArtim based on defined aerosol extinction profiles. Once the aerosol load is determined we use multiple scattering phase functions and single scattering albedo (SSA) obtained with Mie calculations which then constrain the RTM to forward model solar almucantar normalized radiances. The simulated almucantar normalized radiances are then compared to the measured normalized radiances. The best-fit, determined by minimizing the root mean square, retrieves the complex refractive index, and effective radius. We apply the retrieval approach described above to measurements carried out during the 2012 intensive operation period of the Two Column Aerosol Project (TCAP) held on Cape Cod, MA, USA. Results are presented for two ideal case studies with both large and small aerosol loading and similar air mass outflow from the northeast coast of the US over the West Atlantic Ocean. The aerosol optical properties are compared with several independent instruments, including the NASA Langley airborne High Spectral Resolution Lidar (HSRL-2) for highly resolved extinction profiles during the overpasses, and with the

  12. Light emitting diode cavity enhanced differential optical absorption spectroscopy (LED-CE-DOAS): a novel technique for monitoring atmospheric trace gases

    NASA Astrophysics Data System (ADS)

    Thalman, Ryan M.; Volkamer, Rainer M.

    2009-08-01

    The combination of Cavity Enhanced Absorption Spectroscopy (CEAS) with broad-band light sources (e.g. Light- Emitting Diodes, LEDs) lends itself to the application of cavity enhanced DOAS (CE-DOAS) to perform sensitive and selective point measurements of multiple trace gases with a single instrument. In contrast to other broad-band CEAS techniques, CE-DOAS relies only on the measurement of relative intensity changes, i.e., does not require knowledge of the light intensity in the absence of trace gases and aerosols (I0). We have built a prototype LED-CE-DOAS instrument in the blue spectral range (420-490nm) to measure nitrogen dioxide (NO2), glyoxal (CHOCHO), iodine monoxide (IO), water (H2O) and oxygen dimers (O4). Aerosol extinction is retrieved at two wavelengths by means of observing water and O4 and measuring pressure, temperature and relative humidity independently. The instrument components are presented, and the approach to measure aerosol extinction is demonstrated by means of a set of experiments where laboratory generated monodisperse aerosols are added to the cavity. The aerosol extinction cross section agrees well with Mie calculations, demonstrating that our setup enables measurements of the above gases in open cavity mode.

  13. Fourier Transform Infrared Spectroscopy for Identification and Quantification of Organic Functional Groups in Aqueous Phase Secondary Organic Aerosol

    NASA Astrophysics Data System (ADS)

    George, K.; Ruthenburg, T. C.; Smith, J.; Anastasio, C.; Dillner, A. M.

    2011-12-01

    Particles in the atmosphere influence visibility, climate, and human health. Secondary organic aerosols (SOA) formed from chemical reactions in the atmosphere constitute a portion of total organic particle mass. Most research on SOA has focused on gas phase reactions; however, reactions taking place in cloud and fog drops may be significant. One group of water-soluble compounds that participate in these reactions is phenols. Phenols, emitted from biomass burning, react in the aqueous phase to form low-volatility SOA products. The products formed from these reactions are currently poorly characterized. In order to characterize laboratory-generated samples, we are developing an attenuated total reflectance-Fourier transform infrared spectroscopic (ATR-FTIR) technique to identify and quantify organic functional groups in SOA. Aqueous SOA is made in the laboratory by illuminating solutions of phenolic compounds with an oxidant. The illuminated solution is then blown to dryness in order to determine the mass of SOA produced. The dry SOA is reconstituted in water and drops of this solution are placed onto a single-reflection ATR accessory. In order to identify and quantify functional groups in the complex SOA samples, it is necessary to calibrate with compounds and mixtures of compounds containing bond types similar to those found in the laboratory-generated SOA. Initially, focus has been placed on multiple peaks located in the region between 1800 cm-1 and 800 cm-1, including peaks for C=O and C-O. We distinguish between characteristic absorbances to begin determining the organic functional group composition of the SOA samples. This ATR-FTIR technique complements information from mass spectrometry measurements and allows us to quantify organic mass for non-volatile SOA products.

  14. Is extinction forever?

    PubMed

    Smith-Patten, Brenda D; Bridge, Eli S; Crawford, Priscilla H C; Hough, Daniel J; Kelly, Jeffrey F; Patten, Michael A

    2015-05-01

    Mistrust of science has seeped into public perception of the most fundamental aspect of conservation-extinction. The term ought to be straightforward, and yet, there is a disconnect between scientific discussion and public views. This is not a mere semantic issue, rather one of communication. Within a population dynamics context, we say that a species went locally extinct, later to document its return. Conveying our findings matters, for when we use local extinction, an essentially nonsensical phrase, rather than extirpation, which is what is meant, then we contribute to, if not create outright, a problem for public understanding of conservation, particularly as local extinction is often shortened to extinction in media sources. The public that receives the message of our research void of context and modifiers comes away with the idea that extinction is not forever or, worse for conservation as a whole, that an extinction crisis has been invented.

  15. Is extinction forever?

    PubMed Central

    Bridge, Eli S.; Crawford, Priscilla H. C.; Hough, Daniel J.; Kelly, Jeffrey F.; Patten, Michael A.

    2015-01-01

    Mistrust of science has seeped into public perception of the most fundamental aspect of conservation—extinction. The term ought to be straightforward, and yet, there is a disconnect between scientific discussion and public views. This is not a mere semantic issue, rather one of communication. Within a population dynamics context, we say that a species went locally extinct, later to document its return. Conveying our findings matters, for when we use local extinction, an essentially nonsensical phrase, rather than extirpation, which is what is meant, then we contribute to, if not create outright, a problem for public understanding of conservation, particularly as local extinction is often shortened to extinction in media sources. The public that receives the message of our research void of context and modifiers comes away with the idea that extinction is not forever or, worse for conservation as a whole, that an extinction crisis has been invented. PMID:25711479

  16. Bimodal extinction without cross-modal extinction.

    PubMed Central

    Inhoff, A W; Rafal, R D; Posner, M J

    1992-01-01

    Three patients with unilateral neurological injury were clinically examined. All showed consistent unilateral extinction in the tactile and visual modalities on simultaneous intramodal stimulation. There was virtually no evidence for cross-modal extinction, however, so that contralateral stimulation of one modality would have extinguished perception of ipsilateral stimuli in the other modality. It is concluded that the attentional system controlling the encoding of tactile and visual stimuli is not unified across the two sensory domains. PMID:1548496

  17. Determination of aerosol size distributions from spectral attenuation measurements.

    PubMed

    Grassl, H

    1971-11-01

    An iteration method for the determination of size distributions of aerosols from spectral attenuation data, similar to the one previously published for clouds, is presented. The basis for this iteration is to consider the extinction efficiency factor of particles as a set of weighting functions covering the entire radius region of a distribution. The weighting functions were calculated exactly from the Mie theory. Aerosol distributions are shown derived from tests with analytical size distributions and also generated from measured aerosol extinction data in seven spectral channels from 0.4-microto 10-micro wavelength in continental aerosols. The influence of relative humidity on the complex index of refraction is also discussed.

  18. Atmospheric aerosols: Their Optical Properties and Effects (supplement)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A digest of technical papers is presented. Topics include aerosol size distribution from spectral attenuation with scattering measurements; comparison of extinction and backscattering coefficients for measured and analytic stratospheric aerosol size distributions; using hybrid methods to solve problems in radiative transfer and in multiple scattering; blue moon phenomena; absorption refractive index of aerosols in the Denver pollution cloud; a two dimensional stratospheric model of the dispersion of aerosols from the Fuego volcanic eruption; the variation of the aerosol volume to light scattering coefficient; spectrophone in situ measurements of the absorption of visible light by aerosols; a reassessment of the Krakatoa volcanic turbidity, and multiple scattering in the sky radiance.

  19. LIDAR for measuring atmospheric extinction

    NASA Astrophysics Data System (ADS)

    Dawsey, M.; Gimmestad, G.; Roberts, D.; McGraw, J.; Zimmer, P.; Fitch, J.

    2006-06-01

    The Georgia Tech Research Institute and the University of New Mexico are developing a compact, rugged, eye safe lidar (laser radar) to be used specifically for measuring atmospheric extinction in support of the second generation of the CCD/Transit Instrument (CTI-II). The CTI-II is a 1.8 meter telescope that will be used to accomplish a precise timedomain imaging photometric and astrometric survey at the McDonald Observatory in West Texas. The supporting lidar will enable more precise photometry by providing real-time measurements of the amount of atmospheric extinction as well as its cause, i.e. low-lying aerosols, dust or smoke in the free troposphere, or high cirrus. The goal of this project is to develop reliable, cost-effective lidar technology for any observatory. The lidar data can be used to efficiently allocate observatory time and to provide greater integrity for ground-based data. The design is described in this paper along with estimates of the lidar's performance.

  20. Stratospheric aerosol forcing for climate modeling: 1850-1978

    NASA Astrophysics Data System (ADS)

    Arfeuille, Florian; Luo, Beiping; Thomason, Larry; Vernier, Jean-Paul; Peter, Thomas

    2016-04-01

    We present here a stratospheric aerosol dataset produced using the available aerosol optical depth observations from the pre-satellite period. The scarce atmospheric observations are supplemented by additional information from an aerosol microphysical model, initialized by ice-core derived sulfur emissions. The model is used to derive extinctions at all altitudes, latitudes and times when sulfur injections are known for specific volcanic eruptions. The simulated extinction coefficients are then scaled to match the observed optical depths. In order to produce the complete optical properties at all wavelengths (and the aerosol surface area and volume densities) needed by climate models, we assume a lognormal size distribution of the aerosols. Correlations between the extinctions in the visible and the effective radius and distribution width parameters are taken from the better constrained SAGE II period. The aerosol number densities are then fitted to match the derived extinctions in the 1850-1978 period. From these aerosol size distributions, we then calculate extinction coefficients, single scattering albedos and asymmetry factors at all wavelengths using the Mie theory. The aerosol surface area densities and volume densities are also provided.

  1. Stratospheric Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf, F.; Gore, Warren J. (Technical Monitor)

    1998-01-01

    Stratospheric aerosols affect the atmospheric energy balance by scattering and absorbing solar and terrestrial radiation. They also can alter stratospheric chemical cycles by catalyzing heterogeneous reactions which markedly perturb odd nitrogen, chlorine and ozone levels. Aerosol measurements by satellites began in NASA in 1975 with the Stratospheric Aerosol Measurement (SAM) program, to be followed by the Stratospheric Aerosol and Gas Experiment (SAGE) starting in 1979. Both programs employ the solar occultation, or Earth limb extinction, techniques. Major results of these activities include the discovery of polar stratospheric clouds (PSCs) in both hemispheres in winter, illustrations of the impacts of major (El Chichon 1982 and Pinatubo 1991) eruptions, and detection of a negative global trend in lower stratospheric/upper tropospheric aerosol extinction. This latter result can be considered a triumph of successful worldwide sulfur emission controls. The SAGE record will be continued and improved by SAGE III, currently scheduled for multiple launches beginning in 2000 as part of the Earth Observing System (EOS). The satellite program has been supplemented by in situ measurements aboard the ER-2 (20 km ceiling) since 1974, and from the DC-8 (13 km ceiling) aircraft beginning in 1989. Collection by wire impactors and subsequent electron microscopic and X-ray energy-dispersive analyses, and optical particle spectrometry have been the principle techniques. Major findings are: (1) The stratospheric background aerosol consists of dilute sulfuric acid droplets of around 0.1 micrometer modal diameter at concentration of tens to hundreds of monograms per cubic meter; (2) Soot from aircraft amounts to a fraction of one percent of the background total aerosol; (3) Volcanic eruptions perturb the sulfuric acid, but not the soot, aerosol abundance by several orders of magnitude; (4) PSCs contain nitric acid at temperatures below 195K, supporting chemical hypotheses

  2. Gradual extinction reduces reinstatement

    PubMed Central

    Shiban, Youssef; Wittmann, Jasmin; Weißinger, Mara; Mühlberger, Andreas

    2015-01-01

    The current study investigated whether gradually reducing the frequency of aversive stimuli during extinction can prevent the return of fear. Thirty-one participants of a three-stage procedure (acquisition, extinction and a reinstatement test on day 2) were randomly assigned to a standard extinction (SE) and gradual extinction (GE) procedure. The two groups differed only in the extinction procedure. While the SE group ran through a regular extinction process without any negative events, the frequency of the aversive stimuli during the extinction phase was gradually reduced for the GE group. The unconditioned stimulus (US) was an air blast (5 bar, 10 ms). A spider and a scorpion were used as conditioned stimuli (CS). The outcome variables were contingency ratings and physiological measures (skin conductance response, SCR and startle response). There were no differences found between the two groups for the acquisition and extinction phases concerning contingency ratings, SCR, or startle response. GE compared to SE significantly reduced the return of fear in the reinstatement test for the startle response but not for SCR or contingency ratings. This study was successful in translating the findings in rodent to humans. The results suggest that the GE process is suitable for increasing the efficacy of fear extinction. PMID:26441581

  3. Mass extinction: a commentary

    NASA Technical Reports Server (NTRS)

    Raup, D. M.

    1987-01-01

    Four neocatastrophist claims about mass extinction are currently being debated; they are that: 1, the late Cretaceous mass extinction was caused by large body impact; 2, as many as five other major extinctions were caused by impact; 3, the timing of extinction events since the Permian is uniformly periodic; and 4, the ages of impact craters on Earth are also periodic and in phase with the extinctions. Although strongly interconnected the four claims are independent in the sense that none depends on the others. Evidence for a link between impact and extinction is strong but still needs more confirmation through bed-by-bed and laboratory studies. An important area for future research is the question of whether extinction is a continuous process, with the rate increasing at times of mass extinctions, or whether it is episodic at all scales. If the latter is shown to be generally true, then species are at risk of extinction only rarely during their existence and catastrophism, in the sense of isolated events of extreme stress, is indicated. This is line of reasoning can only be considered an hypothesis for testing. In a larger context, paleontologists may benefit from a research strategy that looks to known Solar System and Galactic phenomena for predictions about environmental effects on earth. The recent success in the recognition of Milankovitch Cycles in the late Pleistocene record is an example of the potential of this research area.

  4. Retrieval Of Stratospheric Aerosol Properties From Sciamachy Limb Observations

    NASA Astrophysics Data System (ADS)

    Dorner, Steffen; Pukite, Janis; Kuhl, Sven; Penning de Vries, Marloes; Wagner, Thomas

    2013-12-01

    In this study we present a new technique to retrieve aerosol extinction profiles from SCIAMACHY measurements in limb geometry using the Monte Carlo Atmospheric Radiative Transfer Inversion Model (McArtim). Our retrieval algorithm follows the Onion-Peeling approach: Starting at a reference tan- gent height the aerosol extinction is varied for each subsequent tangent height until the simulated intensity profile is in agreement with the measurement. In self validation studies the retrieval algorithm performed well showing errors below 5 % for an altitude range of 13 to 30 km. In addition we investigated the effect of gradients in aerosol extinction along the line of sight. Using the standard homogeneous approach for aerosol plumes can lead to strong underestimations in extinction and plume altitude.

  5. Intercomparison of stratospheric water vapor observed by satellite experiments: Stratospheric Aerosol and Gas Experiment II versus Limb Infrared Monitor of the Stratosphere and Atmospheric Trace Molecule Spectroscopy

    SciTech Connect

    Chiou, E.W.; Larsen, J.C. ); McCormick, M.P.; McMaster, L.R.; Chu, W.P. ); Rind, D. ); Oltmans, S. )

    1993-03-20

    This paper presents a comparison of the stratospheric water vapor measurements made by the satellite-borne sensors the Stratospheric Aerosol and Gas Experiment II (SAGE II), the Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS), and the Spacelab 3 Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment. LIMS obtained data for 7 months between November 1978 and May 1979; ATMOS was carried on Shuttle and observed eight profiles from April 30 to May 6, 1985 at approximately 30[degrees]N and 50[degrees]S; and, SAGE II continues to make measurements since its launch in October 1984. For both 30[degrees]N and 50[degrees]S in May, the comparisons between SAGE II and ATMOS show agreement within the estimated combined uncertainty of the two experiments. Several important features identified by LIMS observations have been confirmed by SAGE II: a well-developed hygropause in the lower stratosphere at low- to mid-latitudes, a poleward latitudinal gradient, increasing water vapor mixing ratios with altitude in the tropics, and the transport of dry lower stratospheric water vapor upward and southward in May, and upward and northward in November. A detailed comparative study also indicates that the two previously suggested corrections for LIMS, a correction in tropical lower stratosphere due to a positive temperature bias and the correction above 28 km based on improved emissivities will bring LIMS measurements much closer to those of SAGE II. The only significant difference occurs at high southern latitudes in May below 18 km, where LIMS measurements are 2-3 ppmv greater. It should be noted that LIMS observations are from 16 to 50 km, ATMOS from 14 to 86 km, and SAGE II from mid-troposphere to 40 km. With multiyear coverage, SAGE II observations should be useful for studying tropospheric-stratospheric exchange, for stratospheric transport, and for preparing water vapor climatologies for the stratosphere and the upper troposphere. 32 refs., 14 figs., 2 tabs.

  6. Regional characteristics of the relationship between columnar AOD and surface PM2.5: Application of lidar aerosol extinction profiles over Baltimore-Washington Corridor during DISCOVER-AQ

    NASA Astrophysics Data System (ADS)

    Chu, D. Allen; Ferrare, Richard; Szykman, James; Lewis, Jasper; Scarino, Amy; Hains, Jennifer; Burton, Sharon; Chen, Gao; Tsai, Tzuchin; Hostetler, Chris; Hair, Johnathan; Holben, Brent; Crawford, James

    2015-01-01

    The first field campaign of DISCOVER-AQ (Deriving Information on Surface conditions from COlumn and VERtically resolved observations relevant to Air Quality) took place in July 2011 over Baltimore-Washington Corridor (BWC). A suite of airborne remote sensing and in-situ sensors was deployed along with ground networks for mapping vertical and horizontal distribution of aerosols. Previous researches were based on a single lidar station because of the lack of regional coverage. This study uses the unique airborne HSRL (High Spectral Resolution Lidar) data to baseline PM2.5 (particulate matter of aerodynamic diameter less than 2.5 μm) estimates and applies to regional air quality with satellite AOD (Aerosol Optical Depth) retrievals over BWC (∼6500 km2). The linear approximation takes into account aerosols aloft above AML (Aerosol Mixing Layer) by normalizing AOD with haze layer height (i.e., AOD/HLH). The estimated PM2.5 mass concentrations by HSRL AOD/HLH are shown within 2 RMSE (Root Mean Square Error ∼9.6 μg/m3) with correlation ∼0.88 with the observed over BWC. Similar statistics are shown when applying HLH data from a single location over the distance of 100 km. In other words, a single lidar is feasible to cover the range of 100 km with expected uncertainties. The employment of MPLNET-AERONET (MicroPulse Lidar NETwork - AErosol RObotic NETwork) measurements at NASA GSFC produces similar statistics of PM2.5 estimates as those derived by HSRL. The synergy of active and passive remote sensing aerosol measurements provides the foundation for satellite application of air quality on a daily basis. For the optimal range of 10 km, the MODIS-estimated PM2.5 values are found satisfactory at 27 (out of 36) sunphotometer locations with mean RMSE of 1.6-3.3 μg/m3 relative to PM2.5 estimated by sunphotometers. The remaining 6 of 8 marginal sites are found in the coastal zone, for which associated large RMSE values ∼4.5-7.8 μg/m3 are most likely due to

  7. Retrieval of composition and size distribution of stratospheric aerosols with the SAGE II satellite experiment

    NASA Technical Reports Server (NTRS)

    Yue, Glenn K.; Mccormick, M. P.; Chu, W. P.

    1986-01-01

    The SAGE II satellite system was launched on October 5, 1984. It has seven radiometric channels and is beginning to provide water vapor, NO2, and O3 concentration profiles and aerosol extinction profiles at a minimum of three wavelengths. A simple, fast and operational method of retrieving characteristics of stratospheric aerosols from the water vapor and three-wavelength aerosol extinction profiles is proposed. Some examples are given to show the practicality of the scheme. Possible sources of error for the retrieved values and the limitation of the proposed method are discussed. This method may also prove applicable to the study of aerosol characteristics in other multispectral extinction measurements.

  8. Background stratospheric aerosol reference model

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Wang, P.

    1989-01-01

    In this analysis, a reference background stratospheric aerosol optical model is developed based on the nearly global SAGE 1 satellite observations in the non-volcanic period from March 1979 to February 1980. Zonally averaged profiles of the 1.0 micron aerosol extinction for the tropics and the mid- and high-altitudes for both hemispheres are obtained and presented in graphical and tabulated form for the different seasons. In addition, analytic expressions for these seasonal global zonal means, as well as the yearly global mean, are determined according to a third order polynomial fit to the vertical profile data set. This proposed background stratospheric aerosol model can be useful in modeling studies of stratospheric aerosols and for simulations of atmospheric radiative transfer and radiance calculations in atmospheric remote sensing.

  9. Research on aerosol profiles and parameterization scheme in Southeast China

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Deng, Tao; Tan, Haobo; Liu, Xiantong; Yang, Honglong

    2016-09-01

    The vertical distribution of the aerosol extinction coefficient serves as a basis for evaluating aerosol radiative forcing and air quality modeling. In this study, MODIS AOD data and ground-based lidar extinction coefficients were employed to verify 6 years (2009-2014) aerosol extinction data obtained via CALIOP for Southeast China. The objective was mainly to provide the parameterization scheme of annual and seasonal aerosol extinction profiles. The results showed that the horizontal and vertical distributions of CALIOP extinction data were highly accurate in Southeast China. The annual average AOD below 2 km accounted for 64% of the total layer, with larger proportions observed in winter (80%) and autumn (80%) and lower proportions observed in summer (70%) and spring (59%). The AOD was maximum in the spring (0.58), followed by the autumn and winter (0.44), and reached a minimum in the summer (0.40). The near-surface extinction coefficient increased from summer, spring, autumn and winter, in that order. The Elterman profile is obviously lower than the profiles observed by CALIOP in Southeast China. The annual average and seasonal aerosol profiles showed an exponential distribution, and could be divided into two sections. Two sections exponential fitting was used in the parameterization scheme. In the first section, the aerosol scale height reached 2200 m with a maximum (3,500 m) in summer and a minimum (1,230 m) in winter, which meant that the aerosol extinction decrease with height slower in summer, but more rapidly in winter. In second section, the aerosol scale height was maximum in spring, which meant that the higher aerosol diffused in spring.

  10. Direct Measurement of Aerosol Absorption Using Photothermal Interferometry

    NASA Astrophysics Data System (ADS)

    Sedlacek, A. J.; Lee, J. A.

    2007-12-01

    Efforts to bound the contribution of light absorption in aerosol radiative forcing is still very much an active area of research in large part because aerosol extinction is dominated by light scattering. In response to this and other technical issues, the aerosol community has actively pursued the development of new instruments to measure aerosol absorption (e.g., photoacoustic spectroscopy (PAS) and multi-angle absorption photometer (MAAP)). In this poster, we introduce the technique of photothermal interferometry (PTI), which combines the direct measurement capabilities of photothermal spectroscopy (PTS) with high-sensitivity detection of the localized heating brought about by the PT process through interferometry. At its most fundamental level, the PTI technique measures the optical pathlength change that one arm of an interferometer (referred to as the 'probe' arm) experiences relative to the other arm of the interferometer (called the 'reference' arm). When the two arms are recombined at a beamsplitter, an interference pattern is created. If the optical pathlength in one arm of the interferometer changes, a commensurate shift in the interference pattern will take place. For the specific application of measuring light absorption, the heating of air surrounding the light- absorbing aerosol following laser illumination induces the optical pathlength change. This localized heating creates a refractive index gradient causing the probe arm of the interferometer to take a slightly different optical pathlength relative to the unperturbed reference arm. This effect is analogous to solar heating of a road causing mirages. As discussed above, this altered optical pathlength results in a shift in the interference pattern that is then detected as a change in the signal intensity by a single element detector. The current optical arrangement utilizes a folded Jamin interferometer design (Sedlacek, 2006) that provides a platform that is robust with respect to sensitivity

  11. Beliefs about Human Extinction

    SciTech Connect

    Tonn, Bruce Edward

    2009-11-01

    This paper presents the results of a web-based survey about futures issues. Among many questions, respondents were asked whether they believe humans will become extinct. Forty-five percent of the almost 600 respondents believe that humans will become extinct. Many of those holding this believe felt that humans could become extinct within 500-1000 years. Others estimated extinction 5000 or more years into the future. A logistic regression model was estimated to explore the bases for this belief. It was found that people who describe themselves a secular are more likely to hold this belief than people who describe themselves as being Protestant. Older respondents and those who believe that humans have little control over their future also hold this belief. In addition, people who are more apt to think about the future and are better able to imagine potential futures tend to also believe that humans will become extinct.

  12. Measurements of Aerosol Vertical Profiles and Optical Properties during INDOEX 1999 Using Micro-Pulse Lidars

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Voss, Kenneth J.; Quinn, Patricia K.; Flatau, Piotr J.; Markowicz, Krzysztof; Campbell, James R.; Spinhirne, James D.; Gordon, Howard R.; Johnson, James E.; Starr, David OC. (Technical Monitor)

    2001-01-01

    Micro-pulse lidar systems (MPL) were used to measure aerosol properties during the Indian Ocean Experiment (INDOEX) 1999 field phase. Measurements were made from two platforms: the NOAA ship RN Ronald H. Brown, and the Kaashidhoo Climate Observatory (KCO) in the Maldives. Sunphotometers were used to provide aerosol optical depths (AOD) needed to calibrate the MPL. This study focuses on the height distribution and optical properties (at 523 nm) of aerosols observed during the campaign. The height of the highest aerosols (top height) was calculated and found to be below 4 km for most of the cruise. The marine boundary layer (MBL) top was calculated and found to be less than 1 km. MPL results were combined with air mass trajectories, radiosonde profiles of temperature and humidity, and aerosol concentration and optical measurements. Humidity varied from approximately 80% near the surface to 50% near the top height during the entire cruise. The average value and standard deviation of aerosol optical parameters were determined for characteristic air mass regimes. Marine aerosols in the absence of any continental influence were found to have an AOD of 0.05 +/- 0.03, an extinction-to-backscatter ratio (S-ratio) of 33 +/- 6 sr, and peak extinction values around 0.05/km (near the MBL top). The marine results are shown to be in agreement with previously measured and expected values. Polluted marine areas over the Indian Ocean, influenced by continental aerosols, had AOD values in excess of 0.2, S-ratios well above 40 sr, and peak extinction values approximately 0.20/km (near the MBL top). The polluted marine results are shown to be similar to previously published values for continental aerosols. Comparisons between MPL derived extinction near the ship (75 m) and extinction calculated at ship-level using scattering measured by a nephelometer and absorption using a PSAP were conducted. The comparisons indicated that the MPL algorithm (using a constant S-ratio throughout the

  13. SAGE II aerosol data validation and initial data use - An introduction and overview

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Mccormick, M. P.

    1989-01-01

    The process of validating data from the Stratospheric Aerosol and Gas Experiment (SAGE) II and the initial use of the validated data are reviewed. The instruments developed for the SAGE II, the influence of the eruption of El Chichon on the global stratospheric aerosol, and various data validation experiments are discussed. Consideration is given to methods for deriving aerosol physical and optical properties from SAGE II extinction data and for inferring particle size distribution moments from SAGE II spectral extinction values.

  14. Extinction and the fossil record

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. J. Jr; Sepkoski JJ, ,. J. r. (Principal Investigator)

    1994-01-01

    The author examines evidence of mass extinctions in the fossil record and searches for reasons for such large extinctions. Five major mass extinctions eliminated at least 40 percent of animal genera in the oceans and from 65 to 95 percent of ocean species. Questions include the occurrence of gradual or catastrophic extinctions, causes, environment, the capacity of a perturbation to cause extinctions each time it happens, and the possibility and identification of complex events leading to a mass extinction.

  15. Characterizing the Vertical Distribution of Aerosols Over the ARM SGP Site

    SciTech Connect

    Richard Ferrare, Connor Flynn, David Turner

    2009-05-05

    This project focused on: 1) evaluating the performance of the DOE ARM SGP Raman lidar system in measuring profiles of water vapor and aerosols, and 2) the use of the Raman lidar measurements of aerosol and water vapor profiles for assessing the vertical distribution of aerosols and water vapor simulated by global transport models and examining diurnal variability of aerosols and water vapor. The highest aerosol extinction was generally observed close to the surface during the nighttime just prior to sunrise. The high values of aerosol extinction are most likely associated with increased scattering by hygroscopic aerosols, since the corresponding average relative humidity values were above 70%. After sunrise, relative humidity and aerosol extinction below 500 m decreased with the growth in the daytime convective boundary layer. The largest aerosol extinction for altitudes above 1 km occurred during the early afternoon most likely as a result of the increase in relative humidity. The water vapor mixing ratio profiles generally showed smaller variations with altitude between day and night. We also compared simultaneous measurements of relative humidity, aerosol extinction, and aerosol optical thickness derived from the ARM SGP Raman lidar and in situ instruments on board a small aircraft flown routinely over the ARM SGP site. In contrast, the differences between the CARL and IAP aerosol extinction measurements are considerably larger. Aerosol extinction derived from the IAP measurements is, on average, about 30-40% less than values derived from the Raman lidar. The reasons for this difference are not clear, but may be related to the corrections for supermicron scattering and relative humidity that were applied to the IAP data. The investigators on this project helped to set up a major field mission (2003 Aerosol IOP) over the DOE ARM SGP site. One of the goals of the mission was to further evaluate the aerosol and water vapor retrievals from this lidar system

  16. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect

    Richard A. Ferrare; David D. Turner

    2011-09-01

    Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.

  17. Spatial and seasonal trends in particle concentration and optical extinction in the United States

    NASA Astrophysics Data System (ADS)

    Malm, William C.; Sisler, James F.; Huffman, Dale; Eldred, Robert A.; Cahill, Thomas A.

    1994-01-01

    In the spring of 1988 an interagency consortium of Federal Land Managers and the Environmental Protection Agency initiated a national visibility and aerosol monitoring network to track spatial and temporal trends of visibility and visibility-reducing particles. The monitoring network consists of 36 stations located mostly in the western United States. The major visibility-reducing aerosol species, sulfates, nitrates, organics, light-absorbing carbon, and wind-blown dust are monitored as well as light scattering and extinction. Sulfates and organics are responsible for most of the extinction at most locations throughout the United States, while at sites in southern California nitrates are dominant. In the eastern United States, sulfates contribute to about two thirds of the extinction. In almost all cases, extinction and the major aerosol types are highest in the summer and lowest during the winter months.

  18. Aerosol effects and corrections in the Halogen Occultation Experiment

    NASA Technical Reports Server (NTRS)

    Hervig, Mark E.; Russell, James M., III; Gordley, Larry L.; Daniels, John; Drayson, S. Roland; Park, Jae H.

    1995-01-01

    The eruptions of Mt. Pinatubo in June 1991 increased stratospheric aerosol loading by a factor of 30, affecting chemistry, radiative transfer, and remote measurements of the stratosphere. The Halogen Occultation Experiment (HALOE) instrument on board Upper Atmosphere Research Satellite (UARS) makes measurements globally for inferring profiles of NO2, H2O, O3, HF, HCl, CH4, NO, and temperature in addition to aerosol extinction at five wavelengths. Understanding and removing the aerosol extinction is essential for obtaining accurate retrievals from the radiometer channels of NO2, H2O and O3 in the lower stratosphere since these measurements are severely affected by contaminant aerosol absorption. If ignored, aerosol absorption in the radiometer measurements is interpreted as additional absorption by the target gas, resulting in anomalously large mixing ratios. To correct the radiometer measurements for aerosol effects, a retrieved aerosol extinction profile is extrapolated to the radiometer wavelengths and then included as continuum attenuation. The sensitivity of the extrapolation to size distribution and composition is small for certain wavelength combinations, reducing the correction uncertainty. The aerosol corrections extend the usable range of profiles retrieved from the radiometer channels to the tropopause with results that agree well with correlative measurements. In situations of heavy aerosol loading, errors due to aerosol in the retrieved mixing ratios are reduced to values of about 15, 25, and 60% in H2O, O3, and NO2, respectively, levels that are much less than the correction magnitude.

  19. Is extinction age dependent?

    USGS Publications Warehouse

    Doran, N.A.; Arnold, A.J.; Parker, W.C.; Huffer, F.W.

    2006-01-01

    Age-dependent extinction is an observation with important biological implications. Van Valen's Red Queen hypothesis triggered three decades of research testing its primary implication: that age is independent of extinction. In contrast to this, later studies with species-level data have indicated the possible presence of age dependence. Since the formulation of the Red Queen hypothesis, more powerful tests of survivorship models have been developed. This is the first report of the application of the Cox Proportional Hazards model to paleontological data. Planktonic foraminiferal morphospecies allow the taxonomic and precise stratigraphic resolution necessary for the Cox model. As a whole, planktonic foraminiferal morphospecies clearly show age-dependent extinction. In particular, the effect is attributable to the presence of shorter-ranged species (range < 4 myr) following extinction events. These shorter-ranged species also possess tests with unique morphological architecture. The morphological differences are probably epiphenomena of underlying developmental and heterochronic processes of shorter-ranged species that survived various extinction events. Extinction survivors carry developmental and morphological characteristics into postextinction recovery times, and this sets them apart from species populations established independently of extinction events. Copyright ?? 2006, SEPM (Society for Sedimentary Geology).

  20. Organic aerosols

    SciTech Connect

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN.

  1. A diagnostic stratospheric aerosol size distribution inferred from SAGE II measurements

    NASA Technical Reports Server (NTRS)

    Thomason, Larry W.

    1991-01-01

    An aerosol size distribution model for the stratosphere is inferred based on 5 years of Stratospheric Aerosol and Gas Experiment (SAGE) II measurements of multispectral aerosol and water vapor extinction. The SAGE II aerosol and water vapor extinction data strongly suggest that there is a critical particle radius below which there is a relatively weak dependence of particle number density with size and above which there are few, if any, particles. A segmented power law model, as a simple representation of this dependence, is used in theoretical calculations and intercomparisons with a variety of aerosol measurements including dustsondes, longwave lidar, and wire impactors and shows a consistently good agreement.

  2. SEAC4RS Aerosol Radiative Effects and Heating Rates

    NASA Astrophysics Data System (ADS)

    Cochrane, S.; Schmidt, S.; Redemann, J.; Hair, J. W.; Ferrare, R. A.; Segal-Rosenhaimer, M.; LeBlanc, S. E.

    2015-12-01

    We will present (a) aerosol optical properties, (b) aerosol radiative forcing, (c) aerosol and gas absorption and heating rates, and (d) spectral surface albedo for cases from August 19th and 26th of the SEAC4RS mission. This analysis is based on irradiance data from the Solar Spectral Flux Radiometer (SSFR), spectral aerosol optical depth from the Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR), and extinction profiles from the DIAL/High Spectral Resolution Lidar (HSRL). We derive spectrally resolved values of single scattering albedo, asymmetry parameter, and surface albedo from the data, and determine profiles of absorption and heating rate segregated by absorber (aerosol and gas).

  3. Stratospheric aerosol properties and their effects on infrared radiation.

    NASA Technical Reports Server (NTRS)

    Remsberg, E. E.

    1973-01-01

    This paper presents a stratospheric aerosol model and infers its effects on terrestrial radiation. Composition of the aerosol is assumed to be concentrated sulfuric acid. An appropriate size distribution has been determined from available size distribution measurements of other investigators. Aerosols composed of concentrated sulfuric acid emit energy in the atmospheric window region of the infrared spectrum, 8-13 microns. Laboratory measurements of optical constant data obtained at room temperature are presented for 75 and 90% aqueous sulfuric acid. Calculations of an aerosol extinction coefficient are then performed by using the above data. Effects of changes in aerosol phase and temperature are discussed but not resolved.

  4. Results from the Portable Infrared Aerosol Transmission Experiment (PIRATE) - Caribbean: An examination of the column integrated infrared extinction of Saharan dust and comparisons with data commonly used in models

    NASA Astrophysics Data System (ADS)

    Thomas, M.; Gautier, C.

    2004-12-01

    Infrared optical depth of Saharan dust from field measurements made in Puerto Rico are presented and compared with frequently-used dust models. The Portable Infrared Aerosol Transmission Experiment (PIRATE) - Caribbean was a ground-based experiment that measured the infrared transmission of transportted dust from the Saharan Desert. A Fourier Transform Infrared (FTIR) spectrometer was used in Boqueron, Puerto Rico from June 23 through June 30, 2004 as a high-resolution infrared sun photometer. The visible aerosol optical depth (AOD) around the time of each FTIR measurement was taken from a nearby AERONET sensor at La Parguera, Puerto Rico, for reference. The FTIR recorded the direct solar and scattered radiances from 3 to 14 microns. By collecting the solar radiance for several days, some for which the AOD was either very low (<0.1) or high (>0.5), the infrared AOD of the dust was determined as a function of wavelength. The measured infrared AOD of the dust is compared with frequently-used dust models, i.e. Volz and Sokolik, for various effective radii and assumed dust compositions. Since Saharan dust is often pervasive over large regions of the globe, these results are potentially important in models and satellite measurements attempting to determine the regional forcing from dust.

  5. Temporal Dynamics of Recovery from Extinction Shortly after Extinction Acquisition

    ERIC Educational Resources Information Center

    Archbold, Georgina E.; Dobbek, Nick; Nader, Karim

    2013-01-01

    Evidence suggests that extinction is new learning. Memory acquisition involves both short-term memory (STM) and long-term memory (LTM) components; however, few studies have examined early phases of extinction retention. Retention of auditory fear extinction was examined at various time points. Shortly (1-4 h) after extinction acquisition…

  6. Merging the OSIRIS and SAGE II stratospheric aerosol records

    NASA Astrophysics Data System (ADS)

    Rieger, L. A.; Bourassa, A. E.; Degenstein, D. A.

    2015-09-01

    The Optical Spectrograph and InfraRed Imaging System (OSIRIS) instrument on the Odin satellite, launched in 2001 and currently operational, measures limb-scattered sunlight from which profiles of stratospheric aerosol extinction are retrieved. The Stratospheric Aerosol and Gas Experiment (SAGE) II was launched in 1984 and provided measurements of stratospheric aerosol extinction until mid-2005. This provides approximately 4 years of mission overlap which has allowed us to consistently extend the SAGE II version 7.00 record to the present using OSIRIS aerosol extinction retrievals. In this work we first compare coincident aerosol extinction observations during the overlap period by interpolating the SAGE II 525nm and 1020nm channels to the OSIRIS extinction wavelength of 750nm. In the tropics to midlatitudes mean differences are typically less than 10%, although larger biases are seen at higher latitudes and at altitudes outside the main aerosol layer. OSIRIS aerosol extinction retrievals at 750nm are used to create a monthly time series zonally averaged in 5°bins and qualitatively compared to SAGE II 525nm observations averaged in the same way. The OSIRIS time series is then translated to 525nm with an Ângström exponent relation and bias corrected. For most locations, this provides agreement during the overlap time period to better than 15%. Uncertainty in the resulting OSIRIS time series is estimated through a series of simulation studies over the range of aerosol particle size distributions observed by in situ balloon instruments and is found to be approximately 20% for background and moderately volcanic aerosol loading conditions for the majority of OSIRIS measurement conditions.

  7. Development of a Scheimpflug Lidar System for Atmospheric Aerosol Monitoring

    NASA Astrophysics Data System (ADS)

    Mei, Liang; Brydegaard, Mikkel

    2016-06-01

    This work presents a Scheimpflug lidar system which was employed for atmospheric aerosol monitoring in southern Sweden. Atmospheric aerosol fluctuation was observed around rush-hour. The extinction coefficient over 6 km was retrieved, i.e., 0.15 km-1, by employing the slop-method during the time when the atmosphere was relatively homogenous. The measurements successfully demonstrate the potential of using a Scheimpflug lidar technique for atmospheric aerosol monitoring applications.

  8. Extinction with multiple excitors

    PubMed Central

    McConnell, Bridget L.; Miguez, Gonzalo; Miller, Ralph R.

    2012-01-01

    Four conditioned suppression experiments with rats, using an ABC renewal design, investigated the effects of compounding the target conditioned excitor with additional, nontarget conditioned excitors during extinction. Experiment 1 showed stronger extinction, as evidenced by less renewal, when the target excitor was extinguished in compound with a second excitor, relative to when it was extinguished with associatively neutral stimuli. Critically, this deepened extinction effect was attenuated (i.e., more renewal occurred) when a third excitor was added during extinction training. This novel demonstration contradicts the predictions of associative learning models based on total error reduction, but it is explicable in terms of a counteraction effect within the framework of the extended comparator hypothesis. The attenuated deepened extinction effect was replicated in Experiments 2a and 3, which also showed that pretraining consisting of weakening the association between the two additional excitors (Experiments 2a and 2b) or weakening the association between one of the additional excitors and the unconditioned stimulus (Experiment 3) attenuated the counteraction effect, thereby resulting in a decrease in responding to the target excitor. These results suggest that more than simple total error reduction determines responding after extinction. PMID:23055103

  9. Extinction of oscillating populations

    NASA Astrophysics Data System (ADS)

    Smith, Naftali R.; Meerson, Baruch

    2016-03-01

    Established populations often exhibit oscillations in their sizes that, in the deterministic theory, correspond to a limit cycle in the space of population sizes. If a population is isolated, the intrinsic stochasticity of elemental processes can ultimately bring it to extinction. Here we study extinction of oscillating populations in a stochastic version of the Rosenzweig-MacArthur predator-prey model. To this end we develop a WKB (Wentzel, Kramers and Brillouin) approximation to the master equation, employing the characteristic population size as the large parameter. Similar WKB theories have been developed previously in the context of population extinction from an attracting multipopulation fixed point. We evaluate the extinction rates and find the most probable paths to extinction from the limit cycle by applying Floquet theory to the dynamics of an effective four-dimensional WKB Hamiltonian. We show that the entropic barriers to extinction change in a nonanalytic way as the system passes through the Hopf bifurcation. We also study the subleading pre-exponential factors of the WKB approximation.

  10. Extinction of oscillating populations.

    PubMed

    Smith, Naftali R; Meerson, Baruch

    2016-03-01

    Established populations often exhibit oscillations in their sizes that, in the deterministic theory, correspond to a limit cycle in the space of population sizes. If a population is isolated, the intrinsic stochasticity of elemental processes can ultimately bring it to extinction. Here we study extinction of oscillating populations in a stochastic version of the Rosenzweig-MacArthur predator-prey model. To this end we develop a WKB (Wentzel, Kramers and Brillouin) approximation to the master equation, employing the characteristic population size as the large parameter. Similar WKB theories have been developed previously in the context of population extinction from an attracting multipopulation fixed point. We evaluate the extinction rates and find the most probable paths to extinction from the limit cycle by applying Floquet theory to the dynamics of an effective four-dimensional WKB Hamiltonian. We show that the entropic barriers to extinction change in a nonanalytic way as the system passes through the Hopf bifurcation. We also study the subleading pre-exponential factors of the WKB approximation. PMID:27078294

  11. Optical closure study on light-absorbing aerosols

    NASA Astrophysics Data System (ADS)

    Petzold, Andreas; Bundke, Ulrich; Freedman, Andrew; Onasch, Timothy B.; Massoli, Paola; Andrews, Elizabeth; Hallar, Anna G.

    2014-05-01

    The in situ measurement of atmospheric aerosol optical properties is an important component of quantifying climate change. In particular, the in-situ measurement of the aerosol single-scattering albedo (SSA), which is the ratio of aerosol scattering to aerosol extinction, is identified as a key challenge in atmospheric sciences and climate change research. Ideally, the complete set of aerosol optical properties is measured through optical closure studies which simultaneous measure aerosol extinction, scattering and absorption coefficients. The recent development of new optical instruments have made real-time in situ optical closure studies attainable, however, many of these instruments are state-of-the-art but not practical for routine monitoring. In our studies we deployed a suit of well-established and recently developed instruments including the cavity attenuated phase shift (CAPS) method for aerosol light extinction, multi-angle absorption photometer (MAAP) and particle soot absorption photometer (PSAP) for aerosol light absorption, and an integrating nephelometer (NEPH) for aerosol light scattering measurements. From these directly measured optical properties we calculated light absorption from extinction minus scattering (difference method), light extinction from scattering plus absorption, and aerosol single-scattering albedo from combinations CAPS + MAAP, NEPH + PSAP, NEPH + MAAP, CAPS + NEPH. Closure studies were conducted for laboratory-generated aerosols composed of various mixtures of black carbon (Regal 400R pigment black, Cabot Corp.) and ammonium sulphate, urban aerosol (Billerica, MA), and background aerosol (Storm Peak Lab.). Key questions addressed in our closure studies are: (1) how well can we measure aerosol light absorption by various methods, and (2) how well can we measure the aerosol single-scattering albedo by various instrument combinations? In particular we investigated (3) whether the combination of a CAPS and NEPH provides a reasonable

  12. SAGE II aerosol validation - Selected altitude measurements, including particle micromeasurements

    NASA Technical Reports Server (NTRS)

    Oberbeck, Verne R.; Russell, Philip B.; Pueschel, Rudolf F.; Snetsinger, Kenneth G.; Ferry, Guy V.; Livingston, John M.; Rosen, James N.; Osborn, Mary T.; Kritz, Mark A.

    1989-01-01

    The validity of particulate extinction coefficients derived from limb path solar radiance measurements obtained during the Stratospheric Aerosol and Gas Experiment (SAGE) II is tested. The SAGE II measurements are compared with correlative aerosol measurements taken during January 1985, August 1985, and July 1986 with impactors, laser spectrometers, and filter samplers on a U-2 aircraft, an upward pointing lidar on a P-3 aircraft, and balloon-borne optical particle counters. The data for July 29, 1986 are discussed in detail. The aerosol measurements taken on this day at an altitude of 20.5 km produce particulate extinction values which validate the SAGE II values for similar wavelengths.

  13. Comparisons of Airborne HSRL and Modeled Aerosol Profiles

    NASA Astrophysics Data System (ADS)

    Ferrare, R. A.; Burton, S. P.; Hostetler, C. A.; Hair, J. W.; Ismail, S.; Rogers, R. R.; Notari, A.; Berkoff, T.; Butler, C. F.; Collins, J. E., Jr.; Fenn, M. A.; Scarino, A. J.; Clayton, M.; Mueller, D.; Chemyakin, E.; Fast, J. D.; Berg, L. K.; Randles, C. A.; Colarco, P. R.; daSilva, A.

    2014-12-01

    Aerosol profiles derived from a regional and a global model are compared with aerosol profiles acquired by NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidars (HSRLs) during recent field missions. We compare simulated aerosol profiles obtained from the WRF-Chem regional model with those measured by the airborne HSRL-2 instrument over the Atlantic Ocean east of Cape Cod in July 2012 during the Department of Energy Two-Column Aerosol Project (TCAP). While deployed on the LaRC King Air during TCAP, HSRL-2 acquired profiles of aerosol extinction at 355 and 532 nm, as well as aerosol backscatter and depolarization at 355, 532, and 1064 nm. Additional HSRL-2 data products include profiles of aerosol type, mixed layer depth, and aerosol microphysical parameters (e.g. effective radius, concentration). The HSRL-2 and WRF-Chem aerosol profiles are compared along the aircraft flight tracks. HSRL-2 profiles acquired during the NASA Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission over Houston during September 2013 are compared with the NASA Goddard Earth Observing System global model, version 5 (GEOS-5) profiles. In addition to comparing backscatter and extinction profiles, the fraction of aerosol extinction and optical thickness from various aerosol species from GEOS-5 are compared with aerosol extinction and optical thickness contributed by aerosol types derived from HSRL-2 data. We also compare aerosol profiles modeled by GEOS-5 with those measured by the airborne LaRC DIAL/HSRL instrument during August and September 2013 when it was deployed on the NASA DC-8 for the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) mission. DIAL/HSRL measured extinction (532 nm), backscatter (532 and 1064 nm), and depolarization profiles (532 and 1064 nm) in both nadir and zenith directions during long transects over the

  14. Final Technical Report. Cloud and Radiation Testbed (CART) Raman Lidar measurement of atmospheric aerosols for the Atmospheric Radiation Measurement (ARM) Program

    SciTech Connect

    Ferrare, Richard A.

    2002-08-19

    Vertical profiles of aerosol extinction are required for determination of the effects of aerosols on the clear-sky radiative flux. Since recent studies have demonstrated the inability to compute these profiles on surface aerosol measurements alone, vertical profiles of aerosol optical properties must be acquired to compute aerosol radiative effects throughout the entire atmospheric column. Following the recommendation of the ARM Aerosol Working Group, the investigator developed, evaluated, and implemented algorithms for the CART Raman Lidar to provide profiles of aerosol extinction and backscattering. By virtue of its ability to measure vertical profiles of both aerosol extinction and water vapor simultaneously in the same scattering volume, we used the resulting profiles from the CART Raman Lidar to investigate the impact of water vapor and relative humidity on aerosol extinction throughout the column on a continuous and routine basis. The investigator used these the CART Raman Lidar aerosol extinction and backscattering profiles to evaluate the vertical variability of aerosol extinction and the extinction/backscatter ratio over the ARM SGP site.

  15. Temporal and spatial variations of the Vienna aerosol.

    PubMed

    Horvath, H; Habenreich, T A; Kreiner, I; Norek, C

    1989-07-01

    For several intensive sampling periods the mass concentration, light extinction, light scattering and light absorption coefficients, and the mass size distribution of the aerosol have been determined at up to eleven location in the non-industrial town of Vienna. Obviously, large variations of the measured values have been found. The following factors influenced the aerosol markedly: wind speed, wind direction, increased aerosol production such as by space heating or traffic and resuspension. Most of the variations in aerosol were found to be caused by these factors. A comparison of the mass concentration and light absorption of the aerosol upwind and downwind of Vienna permitted the estimation of locally produced aerosols: about 50% of the mass of the aerosol and 75% of the light-absorbing aerosol appears to be produced locally.

  16. Development of 2-D-MAX-DOAS and retrievals of trace gases and aerosols optical properties

    NASA Astrophysics Data System (ADS)

    Ortega, Ivan

    Air pollution is a major problem worldwide that adversely a_ects human health, impacts ecosystems and climate. In the atmosphere, there are hundreds of important compounds participating in complex atmospheric reactions linked to air quality and climate. Aerosols are relevant because they modify the radiation balance, a_ect clouds, and thus Earth albedo. The amount of aerosol is often characterized by the vertical integral through the entire height of the atmosphere of the logarithm fraction of incident light that is extinguished called Aerosol Optical Depth (AOD). The AOD at 550 nm (AOD550) over land is 0.19 (multi annual global mean), and that over oceans is 0.13. About 43 % of the Earth surface shows AOD550 smaller than 0.1. There is a need for measurement techniques that are optimized to measure aerosol optical properties under low AOD conditions, sample spatial scales that resemble satellite ground-pixels and atmospheric models, and help integrate remote sensing and in-situ observations to obtain optical closure on the effects of aerosols and trace gases in our changing environment. In this work, I present the recent development of the University of Colorado two dimensional (2-D) Multi-AXis Differential Optical Absorption Spectroscopy (2-D-MAX-DOAS) instrument to measure the azimuth and altitude distribution of trace gases and aerosol optical properties simultaneously with a single instrument. The instrument measures solar scattered light from any direction in the sky, including direct sun light in the hyperspectral domain. In Chapter 2, I describe the capabilities of 2-D measurements in the context of retrievals of azimuth distributions of nitrogen dioxide (NO2), formaldehyde (HCHO), and glyoxal (CHOCHO), which are precursors for tropospheric O3 and aerosols. The measurements were carried out during the Multi-Axis DOAS Comparison campaign for Aerosols and Trace gases (MAD-CAT) campaign in Mainz, Germany and show the ability to bridge spatial scales to

  17. SAGE aerosol measurements. Volume 1: February 21, 1979 to December 31, 1979

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.

    1985-01-01

    The Stratospheric Aerosol and Gas Experiment (SAGE) satellite system, launched on February 18, 1979, provides profiles of aerosol extinction, ozone concentration, and nitrogen dioxide concentration between about 80 N and 80 S. Zonal averages, separated into sunrise and sunset events, and seasonal averages of the aerosol extinction at 1.00 microns and 0.45 microns ratios of the aerosol extinction to the molecular extinction at 1.00 microns, and ratios of the aerosol extinction at 0.45 microns to the aerosol extinction at 1.00 microns are given. The averages for 1979 are shown in tables and in profile and contour plots (as a function of altitude and latitude). In addition, temperature data provided by the National Oceanic and Atmospheric Administration (NOAA) for the time and location of each SAGE measurement are averaged and shown in a similar format. Typical values of the peak aerosol extinction were 0.0001 to 0.0002 km at 1.00 microns depth values for the 1.00 microns channel varied between 0.001 and 0.002 over all latitudes.

  18. Note: A combined aerodynamic lens/ambient pressure x-ray photoelectron spectroscopy experiment for the on-stream investigation of aerosol surfaces

    SciTech Connect

    Mysak, Erin R.; Starr, David E.; Wilson, Kevin R.; Bluhm, Hendrik

    2010-01-15

    We discuss a new approach for the measurement of the surfaces of free aerosol particles with diameters from 50 to 1000 nm. Particles in this size range have significant influence on the heterogeneous chemistry in the atmosphere and affect human health. Interfacing an aerodynamic lens to an ambient pressure x-ray photoelectron spectrometer permits measurement of the surface chemical composition of unsupported aerosol particles in real time. We discuss the basic considerations for the design of such an instrument, its current limitations and potentials for improvement. Results from a proof-of-principle experiment on silicon oxide particles with average diameters of 270 nm are shown.

  19. Extinction and backscatter measurements of Antarctic PSC's, 1987: Implications for particle and vapor removal

    NASA Technical Reports Server (NTRS)

    Poole, L. R.; Mccormick, M. Patrick; Browell, Edward V.; Trepte, C. R.; Fahey, D. W.; Kelly, K. K.; Ferry, G. V.; Pueschel, R. F.; Jones, R. L.

    1988-01-01

    The temperature dependence is examined of optical properties measured in the Antarctic during 1987 at the 70 mb level (near 18 km), a level chosen to correlate the results with in situ measurements made from the NASA-Ames ER-2 aircraft during the 1987 Airborne Antarctic Ozone Experiment (AAOE). The data set consists of extinction measurements by Sam 2 inside the Antarctic polar vortex from May to October 1987; and backscatter measurements by the UV-DIAL (Ultraviolet Differential Absorption Lidar) system aboard the Ames DC-8 aircraft during selected AAOE flights. Observed trends are compared with results from a revised version of Pole and McCormick's model to classify the PSC observations by Type (1 or 2) and infer the temporal behavior of the ambient aerosol and ambient vapor mixing ratios. The sample figures show monthly ensembles of the 70-mb Sam 2 extinction ratio (the ratio of aerosol or PSC extinction to molecule extinction) as a function of NMC temperature at the beginning (June) and (October) of the 1987 Antarctic winter. Both ensembles show two rather distinct clusters of points: one oriented in the near vertical direction which depicts the change with temperature of the ambient aerosol extinction ratio; and a second cluster oriented in the near horizontal direction whose position on the vertical scale marks a change in particle phase (i.e., PSC formation) and whose length (the extinction enhancement related to that of the ambient aerosol) is an indicator of PSC type.

  20. Merging the SAGE II and OSIRIS Stratospheric Aerosol Records

    NASA Astrophysics Data System (ADS)

    Rieger, Landon; Bourassa, Adam; Degenstein, Doug

    2016-04-01

    The Optical Spectrograph and InfraRed Imaging System (OSIRIS) instrument on the Odin satellite, launched in 2001 and currently operational, measures limb-scattered sunlight from which profiles of stratospheric aerosol extinction at 750nm are retrieved. The Stratospheric Aerosol and Gas (SAGE) II instrument was operational from 1985 to 2005, and provided aerosol extinction at several visible and near infrared wavelengths. This work compares the SAGE II and OSIRIS aerosol extinction measurements during the four years of instrument overlap by interpolating the SAGE II data to 750nm using the 525 and 1020nm channels. Agreement is generally favourable in the tropics and mid-latitudes with differences less than 10% for the majority of the aerosol layer. However, near the UTLS and outside of the tropics agreement is poorer and reasons for this are investigated. Comparisons between the OSIRIS and SAGE II aerosol extinction measurements at 750nm are used to develop a merged aerosol climatology as a function of time, latitude and altitude at the native SAGE II wavelength of 525nm. Error due to assumptions in the OSIRIS retrieval and wavelength conversion are explored through simulation studies over a range of particle size distributions and is found to be approximately 20% for the majority of low-to-moderate volcanic loading conditions and OSIRIS geometries. Other sources of error such as cloud contamination in the UTLS are also explored.

  1. Hybridization and extinction.

    PubMed

    Todesco, Marco; Pascual, Mariana A; Owens, Gregory L; Ostevik, Katherine L; Moyers, Brook T; Hübner, Sariel; Heredia, Sylvia M; Hahn, Min A; Caseys, Celine; Bock, Dan G; Rieseberg, Loren H

    2016-08-01

    Hybridization may drive rare taxa to extinction through genetic swamping, where the rare form is replaced by hybrids, or by demographic swamping, where population growth rates are reduced due to the wasteful production of maladaptive hybrids. Conversely, hybridization may rescue the viability of small, inbred populations. Understanding the factors that contribute to destructive versus constructive outcomes of hybridization is key to managing conservation concerns. Here, we survey the literature for studies of hybridization and extinction to identify the ecological, evolutionary, and genetic factors that critically affect extinction risk through hybridization. We find that while extinction risk is highly situation dependent, genetic swamping is much more frequent than demographic swamping. In addition, human involvement is associated with increased risk and high reproductive isolation with reduced risk. Although climate change is predicted to increase the risk of hybridization-induced extinction, we find little empirical support for this prediction. Similarly, theoretical and experimental studies imply that genetic rescue through hybridization may be equally or more probable than demographic swamping, but our literature survey failed to support this claim. We conclude that halting the introduction of hybridization-prone exotics and restoring mature and diverse habitats that are resistant to hybrid establishment should be management priorities. PMID:27468307

  2. Stress and Fear Extinction.

    PubMed

    Maren, Stephen; Holmes, Andrew

    2016-01-01

    Stress has a critical role in the development and expression of many psychiatric disorders, and is a defining feature of posttraumatic stress disorder (PTSD). Stress also limits the efficacy of behavioral therapies aimed at limiting pathological fear, such as exposure therapy. Here we examine emerging evidence that stress impairs recovery from trauma by impairing fear extinction, a form of learning thought to underlie the suppression of trauma-related fear memories. We describe the major structural and functional abnormalities in brain regions that are particularly vulnerable to stress, including the amygdala, prefrontal cortex, and hippocampus, which may underlie stress-induced impairments in extinction. We also discuss some of the stress-induced neurochemical and molecular alterations in these brain regions that are associated with extinction deficits, and the potential for targeting these changes to prevent or reverse impaired extinction. A better understanding of the neurobiological basis of stress effects on extinction promises to yield novel approaches to improving therapeutic outcomes for PTSD and other anxiety and trauma-related disorders.

  3. Properties of aerosol processed by ice clouds

    NASA Astrophysics Data System (ADS)

    Rudich, Y.; Adler, G.; Moise, T.; Erlick-Haspel, C.

    2012-12-01

    We suggest that highly porous aerosol (HPA) can form in the upper troposphere/lower stratosphere when ice particles encounter sub-saturation leading to ice sublimation similar to freeze drying. This process can occur at the lower layers of cirrus clouds (few km), at anvils of high convective clouds and thunderstorms, in clouds forming in atmospheric gravitational waves, in contrails and in high convective clouds injecting to the stratosphere. A new experimental system that simulates freeze drying of proxies for atmospheric aerosol at atmospheric pressure was constructed and various proxies for atmospheric soluble aerosol were studied. The properties of resulting HPA were characterized by various methods. It was found that the resulting aerosol have larger sizes (extent depends on substance and mixing), lower density (largevoid fraction), lower optical extinction and higher CCN activity and IN activity. Implication of HPA's unique properties and their atmospheric consequences to aerosol processing in ice clouds and to cloud cycles will be discussed.

  4. Infrared refractive index of atmospheric aerosol substances.

    PubMed

    Volz, F E

    1972-04-01

    The optical constants in the ir from lambda2.5 microm to 40 microm (4000-250 cm(-1)) of dry natural aerosol substances and of sea salt are presented. The aerosol substances were obtained from rain and snow water: dust and soot by sedimentation, and water soluble salts by evaporation. The spectra of the absorption index n' were derived from our published transmittance measurements of potassium bromide disks. The real part n of the refractive index was calculated from the specular reflectance at near normal incidence of disks of pure aerosol substance. The observed spectral features are being related to chemical constituents, notably sulfates and alcohol soluble organics. Optical constants of composite and wet aerosol are discussed. A simple model confirms the measured transmission of a coarse dry powder of water solubles and shows that the extinction by natural aerosol should have a minimum near 8 microm and a strong maximum near 9 microm.

  5. Changes in the optical properties of benzo[a]pyrene-coated aerosols upon heterogeneous reactions with NO2 and NO3.

    PubMed

    Lu, Jessica W; Flores, J Michel; Lavi, Avi; Abo-Riziq, Ali; Rudich, Yinon

    2011-04-14

    Chemical reactions can alter the chemical, physical, and optical properties of aerosols. It has been postulated that nitration of aerosols can account for atmospheric absorbance over urban areas. To study this potentially important process, the change in optical properties of laboratory-generated benzo[a]pyrene (BaP)-coated aerosols following exposure to NO(2) and NO(3) was investigated at 355 nm and 532 nm by three aerosol analysis techniques. The extinction coefficient was determined at 355 nm and 532 nm from cavity ring-down aerosol spectroscopy (CRD-AS); the absorption coefficient was measured by photoacoustic spectroscopy (PAS) at 532 nm, while an on-line aerosol mass spectrometer (AMS) supplied real-time quantitative information about the chemical composition of aerosols. In this study, 240 nm polystyrene latex (PSL) spheres were thinly coated with BaP to form 300 or 310 nm aerosols that were exposed to high concentrations of NO(2) and NO(3) and measured with CRD-AS, PAS, and the AMS. The extinction efficiencies (Q(ext)) changed after exposure to NO(2) and NO(3) at both wavelengths. Prior to reaction, Q(ext) for the 355 nm and 532 nm wavelengths were 4.36 ± 0.04 and 2.39 ± 0.05, respectively, and Q(ext) increased to 5.26 ± 0.04 and 2.79 ± 0.05 after exposure. The absorption cross-section at 532 nm, determined with PAS, reached σ(abs) = (0.039 ± 0.001) × 10(-8) cm(2), indicating that absorption increased with formation of nitro-BaP, the main reaction product detected by the AMS. The single-scattering albedo (SSA), a measure of particle scattering efficiency, decreased from 1 to 0.85 ± 0.03, showing that changes in the optical properties of BaP-covered aerosols due to nitration may have implications for regional radiation budget and, hence, climate. PMID:21373662

  6. Biological extinction in earth history

    NASA Technical Reports Server (NTRS)

    Raup, D. M.

    1986-01-01

    Virtually all plant and animal species that have ever lived on the earth are extinct. For this reason alone, extinction must play an important role in the evolution of life. The five largest mass extinctions of the past 600 million years are of greatest interest, but there is also a spectrum of smaller events, many of which indicate biological systems in profound stress. Extinction may be episodic at all scales, with relatively long periods of stability alternating with short-lived extinction events. Most extinction episodes are biologically selective, and further analysis of the victims and survivors offers the greatest chance of deducing the proximal causes of extinction. A drop in sea level and climatic change are most frequently invoked to explain mass extinctions, but new theories of collisions with extraterrestrial bodies are gaining favor. Extinction may be constructive in a Darwinian sense or it may only perturb the system by eliminating those organisms that happen to be susceptible to geologically rare stresses.

  7. Aerosol measurements at the South Pole

    NASA Astrophysics Data System (ADS)

    Bodhaine, Barry A.; Deluisi, John J.; Harris, Joyce M.; Houmere, Pamela; Bauman, Sene

    1986-09-01

    Some results are given regarding the aerosol measurement program conducted by the NOAA at their atmospheric monitoring observatory at Amundsen-Scott Station, South Pole. The program consists of the continuous measurement of condensation nuclei (CN) concentration and aerosol scattering extinction coefficient. A time series of sodium, chlorine, and sulfur concentrations shows that the sulfur and CN records are similar and that the sodium, chlorine, and extinction coefficient records are similar. Large episodes of sodium are measured at the ground in the austral winter and are apparently caused by large-scale warming and weakening of the surface temperature inversion. The CN data show an annual cycle with a maximum exceeding 100 per cubic centimeter in the austral summer and a minimum of about 10 per cubic centimeter in the winter. The extinction coefficient data show an anual cycle markedly different from that of CN with a maximum in late winter, a secondary maximum in summer, and a minimum in May.

  8. The Vertical Distribution of Aerosols Over the Atmospheric Radiation Measurement Southern Great Plains Site Measured versus Modeled

    SciTech Connect

    Ferrare, R.; Turner, D.D.; Clayton, M.; Guibert, S.; Schulz, M.; Chin, M.

    2005-03-18

    Aerosol extinction profiles measured by the Department of Energy Atmospheric Radiation Measurement (ARM) Climate Research Facility Raman lidar are used to evaluate aerosol extinction profiles and aerosol optical thickness (AOT) simulated by aerosol models as part of the Aerosol module inter- Comparison in global models (AEROCOM) project. This project seeks to diagnose aerosol modules of global models and subsequently identify and eliminate weak components in aerosol modules used for global modeling; AEROCOM activities also include assembling data sets to be used in the evaluations. The AEROCOM average aerosol extinction profiles typically show good agreement with the Raman lidar profiles for altitudes above about 2 km; below 2 km the average model profiles are significantly (30-50%) lower than the Raman lidar profiles. The vertical variability in the average aerosol extinction profiles simulated by these models is less than the variability in the corresponding Raman lidar pro files. The measurements also show a much larger diurnal variability than the Interaction with Chemistry and Aerosols (INCA) model, particularly near the surface where there is a high correlation between aerosol extinction and relative humidity.

  9. Aerosol Climate Time Series Evaluation In ESA Aerosol_cci

    NASA Astrophysics Data System (ADS)

    Popp, T.; de Leeuw, G.; Pinnock, S.

    2015-12-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. By the end of 2015 full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which are also validated. The paper will summarize and discuss the results of major reprocessing and validation conducted in 2015. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension with successor instruments of the Sentinel family will be described and the complementarity of the different satellite aerosol products

  10. Species extinction mires ecosystem

    SciTech Connect

    Holzman, D.

    1990-03-26

    Extinction is normal in the evolution of life, but amphibians, insects, birds and mammals are vanishing at an alarming pace. While habitat destruction, overexploitation and pollution are among the main causes, some disappearances cannot be explained. The extinction problem among amphibians mirrors the general, worldwide phenomenon. A synergism of insults may be responsible. Chance events such as a dry year might occasionally clean out a pond. But a larger lake nearby would replenish it. Now acid pollution adds to the ponds' burden while stocking of amphibian-eating sport fish in the lake - which happens even in natural parks - would destroy the source of replenishment. Some fear that extinctions ultimately could destroy nature's fabric.

  11. Controversy over mass extinctions

    NASA Astrophysics Data System (ADS)

    Katzoff, Judith A.

    The notion that mass extinctions of species occur at 26-million-year (m.y.) intervals received wide attention in the scientific and popular press a little over a year ago. According to the theory, some sort of periodic extra-terrestrial event had led to the episodes of extinction; comet showers brought on by any of a variety of causes were frequently offered as one explanation.Now the idea is back in the news, this time drawing criticism. An article published in the June 20 issue of Nature criticizes the original analysis, by David Raup and John Sepkoski of the University of Chicago, on the grounds that their data base was overly pared down and that they used a biased definition for mass extinction. Raup and his supporters say that papers now in press will answer the objections.

  12. Analytic approximation to randomly oriented spheroid extinction

    NASA Astrophysics Data System (ADS)

    Evans, B. T. N.; Fournier, G. R.

    1993-12-01

    The estimation of electromagnetic extinction through dust or other nonspherical atmospheric aerosols and hydrosols is an essential first step in the evaluation of the performance of all electro-optic systems. Investigations were conducted to reduce the computational burden in calculating the extinction from nonspherical particles. An analytic semi-empirical approximation to the extinction efficiency Q(sub ext) for randomly oriented spheroids, based on an extension of the anomalous diffraction formula, is given and compared with the extended boundary condition or T-matrix method. This will allow for better and more general modeling of obscurants. Using this formula, Q(sub ext) can be evaluated over 10,000 times faster than with previous methods. This approximation has been verified for complex refractive indices m=n-ik, where n ranges from one to infinity and k from zero to infinity, and aspect ratios of 0.2 to 5. It is believed that the approximation is uniformly valid over all size parameters and aspect ratios. It has the correct Rayleigh, refractive index, and large particle asymptotic behaviors. The accuracy and limitations of this formula are extensively discussed.

  13. Supernovae and mass extinctions

    NASA Technical Reports Server (NTRS)

    Vandenbergh, S.

    1994-01-01

    Shklovsky and others have suggested that some of the major extinctions in the geological record might have been triggered by explosions of nearby supernovae. The frequency of such extinction events will depend on the galactic supernova frequency and on the distance up to which a supernova explosion will produce lethal effects upon terrestrial life. In the present note it will be assumed that a killer supernova has to occur so close to Earth that it will be embedded in a young, active, supernova remnant. Such young remnants typically have radii approximately less than 3 pc (1 x 10(exp 19) cm). Larger (more pessimistic?) killer radii have been adopted by Ruderman, Romig, and by Ellis and Schramm. From observations of historical supernovae, van den Bergh finds that core-collapse (types Ib and II) supernovae occur within 4 kpc of the Sun at a rate of 0.2 plus or minus 0.1 per century. Adopting a layer thickness of 0.3 kpc for the galacitc disk, this corresponds to a rate of approximately 1.3 x 10(exp -4) supernovae pc(exp -3) g.y.(exp -1). Including supernovae of type Ia will increase the total supernovae rate to approximately 1.5 x 10(exp -4) supernovae pc(exp -3) g.y.(exp -1). For a lethal radius of R pc the rate of killer events will therefore be 1.7 (R/3)(exp 3) x 10(exp -2) supernovae per g.y. However, a frequency of a few extinctions per g.y. is required to account for the extinctions observed during the phanerozoic. With R (extinction) approximately 3 pc, the galactic supernova frequency is therefore too low by 2 orders of magnitude to account for the major extinctions in the geological record.

  14. Passive detection of biological aerosols in the atmosphere with a Fourier Transform Instrument (FTIR)--the results of the measurements in the laboratory and in the field.

    PubMed

    Błęcka, M I; Rataj, M; Szymański, G

    2012-06-01

    Fourier Transform Infrared Radiation (FTIR) spectroscopy is one of the most powerful methods for the detection of gaseous constituents, aerosols, and dust in planetary atmospheres. Infrared spectroscopy plays an important role in searching for biomarkers, organics and biological substances in the Universe. The possibility of detection and identifications with FTIR spectrometer of bio-aerosol spores (Bacillus atrophaeus var. globigii=BG) in the atmosphere is discussed in this paper. We describe the results of initial spectral measurements performed in the laboratory and in the field. The purpose of these experiments was to detect and to identify bio-aerosol spores in two conditions: 1) In a closed chamber where the thermal contrast between the background and aerosols was large, and 2) In open air where the thermal contrast between the background and aerosols was small. The extinction spectrum of BG spores was deduced by comparing our measurements with models, and other measurements known from the literature. Our theoretical and experimental studies indicate that, during passive remote sensing measurements, it is difficult-but possible to detect and to identify bio-aerosol clouds by their spectral signatures. The simple spectral analysis described in the paper can be useful for the detection of various kinds of trace aerosols-not only in the Earth's atmosphere, but also during planetary missions in the environments of other astronomical objects such as planets, comets etc. We expect that the interpretation of data from spectrometric sounding of Venus and Mars during the current missions Mars and Venus Express, and later during the Rosetta mission will benefit from our experimental work and numerical modelling.

  15. Passive detection of biological aerosols in the atmosphere with a Fourier Transform Instrument (FTIR)--the results of the measurements in the laboratory and in the field.

    PubMed

    Błęcka, M I; Rataj, M; Szymański, G

    2012-06-01

    Fourier Transform Infrared Radiation (FTIR) spectroscopy is one of the most powerful methods for the detection of gaseous constituents, aerosols, and dust in planetary atmospheres. Infrared spectroscopy plays an important role in searching for biomarkers, organics and biological substances in the Universe. The possibility of detection and identifications with FTIR spectrometer of bio-aerosol spores (Bacillus atrophaeus var. globigii=BG) in the atmosphere is discussed in this paper. We describe the results of initial spectral measurements performed in the laboratory and in the field. The purpose of these experiments was to detect and to identify bio-aerosol spores in two conditions: 1) In a closed chamber where the thermal contrast between the background and aerosols was large, and 2) In open air where the thermal contrast between the background and aerosols was small. The extinction spectrum of BG spores was deduced by comparing our measurements with models, and other measurements known from the literature. Our theoretical and experimental studies indicate that, during passive remote sensing measurements, it is difficult-but possible to detect and to identify bio-aerosol clouds by their spectral signatures. The simple spectral analysis described in the paper can be useful for the detection of various kinds of trace aerosols-not only in the Earth's atmosphere, but also during planetary missions in the environments of other astronomical objects such as planets, comets etc. We expect that the interpretation of data from spectrometric sounding of Venus and Mars during the current missions Mars and Venus Express, and later during the Rosetta mission will benefit from our experimental work and numerical modelling. PMID:22707349

  16. Optical and Hygroscopic Studies of Aerosols In Simulated Planetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Hasenkopf, Christa A.

    2011-08-01

    Basic characteristics of the early Earth climate, the only known environment in the Universe in which life has been known to emerge and thrive, remain a mystery. In particular, little is understood about the Earth's atmosphere 2.8 billion years ago. From climate models and laboratory studies, it is postulated that an organic haze, much like that found on Saturn's largest moon Titan, covered the early Earth. This haze, generated from photolysis of carbon dioxide (CO2) and methane (CH4), may have had profound climatic consequences. Climate models of the early Earth that include this haze have had to rely upon optical properties of a Titan laboratory analog. Titan haze, though thought to be similar, is formed from a different combination of precursor gases and by different energy sources than early Earth haze. This thesis examines the direct and indirect radiative effects of aerosol on early Earth climate by studying the optical and hygroscopic properties of a laboratory analog. A Titan analog is studied for comparison and to better understand spacecraft-retrieved haze chemical and optical properties from Titan. The properties of the laboratory analogs, generated in a flowing reactor cell with a continuum ultraviolet (UV) light source, were primarily measured using cavity ringdown aerosol extinction spectroscopy and UV-visible (UV-Vis) transmission spectroscopy. We find that the optical properties of our early Earth analog are significantly different than those of the Titan analog from Khare et al. (1984). In both the UV and visible, when modeled as fractals, particles with the optical properties of the early Earth analog have approximately 30% larger extinction efficiencies than particles with Khare et al. (1984) values. This result implies our early Earth haze analog would provide a more efficient UV shield and have a stronger antigreenhouse effect than the Khare et al. (1984) Titan analog. Our Titan analog has significantly smaller imaginary refractive index values

  17. Extinction from a paleontological perspective

    NASA Technical Reports Server (NTRS)

    Raup, D. M.

    1993-01-01

    Extinction of widespread species is common in evolutionary time (millions of years) but rare in ecological time (hundreds or thousands of years). In the fossil record, there appears to be a smooth continuum between background and mass extinction; and the clustering of extinctions at mass extinctions cannot be explained by the chance coincidence of independent events. Although some extinction is selective, much is apparently random in that survivors have no recognizable superiority over victims. Extinction certainly plays an important role in evolution, but whether it is constructive or destructive has not yet been determined.

  18. Elevated aerosol layers modify the O2-O2 absorption measured by ground-based MAX-DOAS

    NASA Astrophysics Data System (ADS)

    Ortega, Ivan; Berg, Larry K.; Ferrare, Richard A.; Hair, Johnathan W.; Hostetler, Chris A.; Volkamer, Rainer

    2016-06-01

    The oxygen collisional complex (O2-O2, or O4) is a greenhouse gas, and a calibration trace gas used to infer aerosol and cloud properties by Differential Optical Absorption Spectroscopy (DOAS). Recent reports suggest the need for an O4 correction factor (CFO4) when comparing simulated and measured O4 differential slant column densities (dSCD) by passive DOAS. We investigate the sensitivity of O4 dSCD simulations at ultraviolet (360 nm) and visible (477 nm) wavelengths towards separately measured aerosol extinction profiles. Measurements were conducted by the University of Colorado 2D-MAX-DOAS instrument and NASA's multispectral High Spectral Resolution Lidar (HSRL-2) during the Two Column Aerosol Project (TCAP) at Cape Cod, MA in July 2012. During two case study days with (1) high aerosol load (17 July, AOD~0.35 at 477 nm), and (2) near molecular scattering conditions (22 July, AOD<0.10 at 477 nm) the measured and calculated O4 dSCDs agreed within 6.4±0.4% (360 nm) and 4.7±0.6% (477 nm) if the HSRL-2 profiles were used as input to the calculations. However, if in the calculations the aerosol is confined to the surface layer (while keeping AOD constant) we find 0.53aerosol layers, unless accounted for, can cause negative bias in the simulated O4 dSCDs that can explain CFO4. The air density and aerosol profile aloft needs to be taken into account when interpreting the O4 from ground-based MAX-DOAS. Opportunities to identify and better characterize these elevated layers are also discussed.

  19. Airborne Lidar Measurements of Aerosol Optical Properties During SAFARI-2000

    NASA Technical Reports Server (NTRS)

    McGill, M. J.; Hlavka, D. L.; Hart, W. D.; Welton, E. J.; Campbell, J. R.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The Cloud Physics Lidar (CPL) operated onboard the NASA ER-2 high altitude aircraft during the SAFARI-2000 field campaign. The CPL provided high spatial resolution measurements of aerosol optical properties at both 1064 nm and 532 nm. We present here results of planetary boundary layer (PBL) aerosol optical depth analysis and profiles of aerosol extinction. Variation of optical depth and extinction are examined as a function of regional location. The wide-scale aerosol mapping obtained by the CPL is a unique data set that will aid in future studies of aerosol transport. Comparisons between the airborne CPL and ground-based MicroPulse Lidar Network (MPL-Net) sites are shown to have good agreement.

  20. Detection and quantification of water-based aerosols using active open-path FTIR.

    PubMed

    Kira, Oz; Linker, Raphael; Dubowski, Yael

    2016-04-28

    Aerosols have a leading role in many eco-systems and knowledge of their properties is critical for many applications. This study suggests using active Open-Path Fourier Transform Infra-Red (OP-FTIR) spectroscopy for quantifying water droplets and solutes load in the atmosphere. The OP-FTIR was used to measure water droplets, with and without solutes, in a 20 m spray tunnel. Three sets of spraying experiments generated different hydrosols clouds: (1) tap water only, (2) aqueous ammonium sulfate (0.25-3.6%wt) and (3) aqueous ethylene glycol (0.47-2.38%wt). Experiment (1) yielded a linear relationship between the shift of the extinction spectrum baseline and the water load in the line-of-sight (LOS) (R(2) = 0.984). Experiment (2) also yielded a linear relationship between the integrated extinction in the range of 880-1150 cm(-1) and the ammonium sulfate load in the LOS (R(2) = 0.972). For the semi-volatile ethylene glycol (experiment 3), present in the gas and condense phases, quantification was much more complex and two spectral approaches were developed: (1) according to the linear relationship from the first experiment (determination error of 8%), and (2) inverse modeling (determination error of 57%). This work demonstrates the potential of the OP-FTIR for detecting clouds of water-based aerosols and for quantifying water droplets and solutes at relatively low concentrations.

  1. Detection and quantification of water-based aerosols using active open-path FTIR

    NASA Astrophysics Data System (ADS)

    Kira, Oz; Linker, Raphael; Dubowski, Yael

    2016-04-01

    Aerosols have a leading role in many eco-systems and knowledge of their properties is critical for many applications. This study suggests using active Open-Path Fourier Transform Infra-Red (OP-FTIR) spectroscopy for quantifying water droplets and solutes load in the atmosphere. The OP-FTIR was used to measure water droplets, with and without solutes, in a 20 m spray tunnel. Three sets of spraying experiments generated different hydrosols clouds: (1) tap water only, (2) aqueous ammonium sulfate (0.25–3.6%wt) and (3) aqueous ethylene glycol (0.47–2.38%wt). Experiment (1) yielded a linear relationship between the shift of the extinction spectrum baseline and the water load in the line-of-sight (LOS) (R2 = 0.984). Experiment (2) also yielded a linear relationship between the integrated extinction in the range of 880–1150 cm‑1 and the ammonium sulfate load in the LOS (R2 = 0.972). For the semi-volatile ethylene glycol (experiment 3), present in the gas and condense phases, quantification was much more complex and two spectral approaches were developed: (1) according to the linear relationship from the first experiment (determination error of 8%), and (2) inverse modeling (determination error of 57%). This work demonstrates the potential of the OP-FTIR for detecting clouds of water-based aerosols and for quantifying water droplets and solutes at relatively low concentrations.

  2. LASE measurements of aerosols and water vapor during TARFOX

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard A.; Ismail, Syed; Browell, Edward V.; Brackett, Vincent G.; Kooi, Susan A.; Clayton, Marian B.; Melfi, Harvey; Whiteman, David N.; Schwenner, Geary; Evans, Keith D.; Hobbs, Peter V.; Veefkind, J. Pepijn; Russell, Philip B.; Livingston, John M.; Hignett, Philip; Holben, Brent N.; Remer, Lorraine A.

    1998-01-01

    The TARFOX (Tropospheric Aerosol Radiative Forcing Observational Experiment) intensive field campaign was designed to reduce uncertainties in estimates of the effects of anthropogenic aerosols on climate by measuring direct radiative effects and the optical, physical, and chemical properties of aerosols [1]. TARFOX was conducted off the East Coast of the United States between July 10-31, 1996. Ground, aircraft, and satellite-based sensors measured the sensitivity of radiative fields at various atmospheric levels to aerosol optical properties (i.e., optical thickness, phase function, single-scattering albedo) and to the vertical profile of aerosols. The LASE (Lidar Atmospheric Sensing Experiment) instrument, which was flown on the NASA ER-2 aircraft, measured vertical profiles of total scattering ratio and water vapor during a series of 9 flights. These profiles were used in real-time to help direct the other aircraft to the appropriate altitudes for intensive sampling of aerosol layers. We have subsequently used the LASE aerosol data to derive aerosol backscattering and extinction profiles. Using these aerosol extinction profiles, we derived estimates of aerosol optical thickness (AOT) and compared these with measurements of AOT from both ground and airborne sun photometers and derived from the ATSR-2 (Along Track and Scanning Radiometer 2) sensor on ERS-2 (European Remote Sensing Satellite-2). We also used the water vapor mixing ratio profiles measured simultaneously by LASE to derive precipitable water vapor and compare these to ground based measurements.

  3. Characterization of a Photoacoustic Aerosol Absorption Spectrometer for Aircraft-based Measurements

    NASA Astrophysics Data System (ADS)

    Mason, B. J.; Wagner, N. L.; Richardson, M.; Brock, C. A.; Murphy, D. M.; Adler, G.

    2015-12-01

    Atmospheric aerosol directly impacts the Earth's climate through extinction of incoming and outgoing radiation. The optical extinction is due to both scattering and absorption. In situ measurements of aerosol extinction and scattering are well established and have uncertainties less than 5%. However measurements of aerosol absorption typically have uncertainties of 20-30%. Development and characterization of more accurate and precise instrumentation for measurement of aerosol absorption will enable a deeper understand of significance and spatial distribution of black and brown carbon aerosol, the effect of atmospheric processes on aerosol optical properties, and influence of aerosol optical properties on direct radiative forcing. Here, we present a detailed characterization of a photoacoustic aerosol absorption spectrometer designed for deployment aboard research aircraft. The spectrometer operates at three colors across the visible spectrum and is calibrated in the field using ozone. The field calibration is validated in the laboratory using synthetic aerosol and simultaneous measurements of extinction and scattering. In addition, the sensitivity of the instrument is characterized under conditions typically encountered during aircraft sampling e.g. as a function of changing pressure. We will apply this instrument characterization to ambient aerosol absorption data collected during the SENEX and SEAC4RS aircraft based field campaigns.

  4. Protostars at Low Extinction in Orion A

    NASA Astrophysics Data System (ADS)

    Lewis, John Arban; Lada, Charles J.

    2016-07-01

    In the list of young stellar objects (YSOs) compiled by Megeath et al. for the Orion A molecular cloud, only 44 out of 1208 sources found projected onto low extinction ({A}{{K}}\\lt 0.8 mag) gas are identified as protostars. These objects are puzzling because protostars are not typically expected to be associated with extended low extinction material. Here, we use high resolution extinction maps generated from Herschel data, optical/infrared and Spitzer Space Telescope photometry and spectroscopy of the low extinction protostellar candidate sources to determine if they are likely true protostellar sources or contaminants. Out of 44 candidate objects, we determine that 10 sources are likely protostars, with the rest being more evolved YSOs (18), galaxies (4), false detections of nebulosity and cloud edges (9), or real sources for which more data are required to ascertain their nature (3). We find none of the confirmed protostars to be associated with recognizable dense cores and we briefly discuss possible origins for these orphaned objects.

  5. Mechanisms of fear extinction.

    PubMed

    Myers, K M; Davis, M

    2007-02-01

    Excessive fear and anxiety are hallmarks of a variety of disabling anxiety disorders that affect millions of people throughout the world. Hence, a greater understanding of the brain mechanisms involved in the inhibition of fear and anxiety is attracting increasing interest in the research community. In the laboratory, fear inhibition most often is studied through a procedure in which a previously fear conditioned organism is exposed to a fear-eliciting cue in the absence of any aversive event. This procedure results in a decline in conditioned fear responses that is attributed to a process called fear extinction. Extensive empirical work by behavioral psychologists has revealed basic behavioral characteristics of extinction, and theoretical accounts have emphasized extinction as a form of inhibitory learning as opposed to an erasure of acquired fear. Guided by this work, neuroscientists have begun to dissect the neural mechanisms involved, including the regions in which extinction-related plasticity occurs and the cellular and molecular processes that are engaged. The present paper will cover behavioral, theoretical and neurobiological work, and will conclude with a discussion of clinical implications.

  6. Context, Learning, and Extinction

    ERIC Educational Resources Information Center

    Gershman, Samuel J.; Blei, David M.; Niv, Yael

    2010-01-01

    A. Redish et al. (2007) proposed a reinforcement learning model of context-dependent learning and extinction in conditioning experiments, using the idea of "state classification" to categorize new observations into states. In the current article, the authors propose an interpretation of this idea in terms of normative statistical inference. They…

  7. Unexpectedly many extinct hominins.

    PubMed

    Bokma, Folmer; van den Brink, Valentijn; Stadler, Tanja

    2012-09-01

    Recent studies indicate that Neanderthal and Denisova hominins may have been separate species, while debate continues on the status of Homo floresiensis. The decade-long debate between "splitters," who recognize over 20 hominin species, and "lumpers," who maintain that all these fossils belong to just a few lineages, illustrates that we do not know how many extinct hominin species to expect. Here, we present probability distributions for the number of speciation events and the number of contemporary species along a branch of a phylogeny. With estimates of hominin speciation and extincton rates, we then show that the expected total number of extinct hominin species is 8, but may be as high as 27. We also show that it is highly unlikely that three very recent species disappeared due to natural, background extinction. This may indicate that human-like remains are too easily considered distinct species. Otherwise, the evidence suggesting that Neanderthal and the Denisova hominin represent distinct species implies a recent wave of extinctions, ostensibly driven by the only survivor, H. sapiens. PMID:22946817

  8. Biogeography and extinction

    SciTech Connect

    Jablonski, D.

    1985-01-01

    The geographic ranges of species and clades, and the deployment of those clades among biogeographic provinces, are important determinants of rates and patterns of extinction. Studies of Late Cretaceous mollusks of the Gulf and Atlantic Coastal Plain confirm that species duration is closely correlated with geographic range during times of normal, background extinction. When species that originate in the last 2 myr of the Cretaceous, the correlation increases significantly. The fact that even these truncated species frequently attained broad geographic ranges indicates that during background times duration is a function of geographic range and not vice versa. However, during the end-Cretaceous mass extinction, it is clade geographic range and not the within-province ranges of its constituent species that determines survivorship: about 55% of the widespread genera but only 12% of the endemic genera survive, regardless of the ranges of their individual species. Thus, clade geographic range is an irreducible property, with effects decoupled from species-level or organismic traits that determine species' geographic ranges. Clades with tropical distributions suffer disproportionately, again independent of species' geographic range magnitudes. Survivorship of taxa or morphologies during mass extinctions may have little to do with adaptation at the organismic or even species level, but depends at least in part on clade-level traits that are less important during background times.

  9. Cognitive Processes in Extinction

    ERIC Educational Resources Information Center

    Lovibond, Peter F.

    2004-01-01

    Human conditioning research shows that learning is closely related to consciously available contingency knowledge, requires attentional resources, and is influenced by language. This research suggests a cognitive model in which extinction consists of changes in contingency beliefs in long-term memory. Laboratory and clinical evidence on extinction…

  10. A global aerosol classification algorithm incorporating multiple satellite data sets of aerosol and trace gas abundances

    NASA Astrophysics Data System (ADS)

    Penning de Vries, M. J. M.; Beirle, S.; Hörmann, C.; Kaiser, J. W.; Stammes, P.; Tilstra, L. G.; Tuinder, O. N. E.; Wagner, T.

    2015-09-01

    Detecting the optical properties of aerosols using passive satellite-borne measurements alone is a difficult task due to the broadband effect of aerosols on the measured spectra and the influences of surface and cloud reflection. We present another approach to determine aerosol type, namely by studying the relationship of aerosol optical depth (AOD) with trace gas abundance, aerosol absorption, and mean aerosol size. Our new Global Aerosol Classification Algorithm, GACA, examines relationships between aerosol properties (AOD and extinction Ångström exponent from the Moderate Resolution Imaging Spectroradiometer (MODIS), UV Aerosol Index from the second Global Ozone Monitoring Experiment, GOME-2) and trace gas column densities (NO2, HCHO, SO2 from GOME-2, and CO from MOPITT, the Measurements of Pollution in the Troposphere instrument) on a monthly mean basis. First, aerosol types are separated based on size (Ångström exponent) and absorption (UV Aerosol Index), then the dominating sources are identified based on mean trace gas columns and their correlation with AOD. In this way, global maps of dominant aerosol type and main source type are constructed for each season and compared with maps of aerosol composition from the global MACC (Monitoring Atmospheric Composition and Climate) model. Although GACA cannot correctly characterize transported or mixed aerosols, GACA and MACC show good agreement regarding the global seasonal cycle, particularly for urban/industrial aerosols. The seasonal cycles of both aerosol type and source are also studied in more detail for selected 5° × 5° regions. Again, good agreement between GACA and MACC is found for all regions, but some systematic differences become apparent: the variability of aerosol composition (yearly and/or seasonal) is often not well captured by MACC, the amount of mineral dust outside of the dust belt appears to be overestimated, and the abundance of secondary organic aerosols is underestimated in comparison

  11. Extinction times in experimental populations.

    PubMed

    Drake, John M

    2006-09-01

    Predicting population extinctions is a key element of quantitative conservation biology and population ecology. Although stochastic population theories have long been used to obtain theoretical distributions of population extinction times, model-based predictions have rarely been tested. Here I report results from a quantitative analysis of extinction time in 281 experimental populations of water fleas (Daphnia magna) in variable environments. To my knowledge, this is the first quantitative estimate of the shape of the distribution of population extinction times based on extinction data for any species. The finding that the distribution of population extinction times was extraordinarily peaked is consistent with theoretical predictions for density-independent populations, but inconsistent with predictions for density-dependent populations. The tail of the extinction time distribution was not exponential. These results imply that our current theories of extinction are inadequate. Future work should focus on how demographic stochasticity scales with population size and effects of nonrandom variable environments on population growth and decline.

  12. Ecology: Dynamics of Indirect Extinction.

    PubMed

    Montoya, Jose M

    2015-12-01

    The experimental identification of the mechanism by which extinctions of predators trigger further predator extinctions emphasizes the role of indirect effects between species in disturbed ecosystems. It also has deep consequences for the hidden magnitude of the current biodiversity crisis.

  13. Analysis of Atmospheric Aerosols Collected in an Urban Area in Upstate NY Using Proton Induced X-ray Emission (PIXE) Spectroscopy

    NASA Astrophysics Data System (ADS)

    Smith, Jeremy; Ali, Salina; Nadareski, Benjamin; Safiq, Alexandrea; Yoskowitz, Joshua; Labrake, Scott; Vineyard, Michael

    2013-10-01

    We examined atmospheric aerosol samples collected in Schenectady NY for evidence of pollution. We collected aerosol samples using a nine stage cascade impactor which distributes the particulate matter by aerodynamic size onto 7.5 μm Kapton foils. We then used a 1MV electrostatic Pelletron accelerator to produce a 2.2 MeV proton beam to hit the impacted foils. X-ray intensity versus energy spectra were collected using an Amptek x-ray detector where the x-rays are produced from the proton beam interacting with the sample. This is called PIXE. The elemental composition and concentrations of the elements present in the aerosol samples were determined using a software package called GUPIX. We have found elements ranging from Al to Pb and in particular have found significant amounts of Pb and Br on some of our impacted foils, with a Br/Pb ratio of 0.6 +/- 0.2 which agrees with previous studies. This result suggests the presence of leaded aviation fuel perhaps due to the proximity of the collection site to a small airport with a significant amount of general aviation traffic. Union College.

  14. Four years of ground-based MAX-DOAS observations of aerosols, NO2, SO2 and HCHO in Wuxi, China

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Lampel, Johannes; Wagner, Thomas; Li, Ang; Xie, Pinhua; Wu, Dexia; Beirle, Steffen

    2016-04-01

    Understanding the temporal variation and spatial distribution of the abundances of nitrogen dioxide (NO2), sulphur dioxide (SO2), formaldehyde (HCHO) and aerosols is necessary to study their role in tropospheric chemistry and to estimate their importance among anthropogenic emissions. To accomplish this, we operated a Multi AXis - Differential Optical Absorption Spectroscopy (MAX-DOAS) instrument from May 2011 to Nov 2014 in Wuxi, China. A new inversion algorithm PriAM (profile inversion algorithm of aerosol extinction and trace gas concentration) developed at AIOFM in cooperation with MPIC based on the optimal estimation algorithm is applied to obtain tropospheric profiles of trace gases and aerosols from the long-term observations. The performance of the inversion algorithm is evaluated by comparisons with other independent techniques for a period longer than one year. The cloud effect on the retrieved column densities, surface concentrations and profiles of the trace gases and aerosols is evaluated using of a cloud classification scheme based on the MAX-DOAS measurements themselves. From this study recommendations for the quality of the MAX-DOAS results for different cloud scenarios are given. Further, the MAX-DOAS results are used to characterize the seasonal, diurnal, and weekly variations of NO2, SO2, HCHO and aerosols. Systematic weekly variations are found for all the species, indicating a significant contribution of anthropogenic emissions to the observed abundances. The good correlations between the trace gases and aerosols, especially for HCHO, indicate a significant contribution of secondary aerosols from the precursors to the total aerosol load. We use the wind dependence of the pollutants to identify the dominating sources. High values are observed when the wind comes from the direction of industrial areas.

  15. Analysis of Characteristics of Dust Aerosols in Northwest China based on Satellite Remote-sensing Data

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Liu, D.; Zhao, Q.

    2015-12-01

    Based on the CloudSat data, effects of dust aerosol on cloud parameters under the circumstance of the monthly average, dusty days and dust-free days were analyzed during April, 2010. By using L2 aerosol profiles satellite data of CALIOP/CALIOPSO the aerosol extinction coefficients were analyzed over northwest China. As an important case, space distribution and transmission route of dust aerosol were investigated during the dust events occurred from April 16th to 18th in 2013 over northwest China, based on L1 data of CALIOP/CALIOPSO, a combination of multiple satellite data and models. The results show that (1) dust aerosols could cause the reduction in effective radius of particle, cloud liquid water content and cloud optical thickness, and the increase of the number concentration of liquid cloud particles as well, (2) The aerosol extinction coefficients were decreased with the increase of height. The value of the aerosol extinction coefficients in desert area was greater than that in the area of Gansu Province due to urbanization. Distribution of the aerosol extinction coefficients in spring was nearly the same as the annual average. (3) Using aerosol products of the vertical characteristics from CALIOP/CALIOPSO, aerosol was classified during dust events, and with NAPPS Global aerosol model, daily distribution of the dust aerosol concentration was given, showing the transport and diffusion of dust aerosol. With HYSPLIT trajectory model dust transportation path of the sand dust source areas was simulated and identified. During the outbreak of dust event dust aerosol was mainly distributed over the surface about 3km, with depolarization ratio at 0.4 and color ratio at 1.2. During the dust events were close to weak and stop, dust aerosol was mainly distributed over the surface under 2 km, with depolarization ratio from 0.2 to 0.3, and color ratio about 1.

  16. A new description of Titan's aerosol optical properties from the analysis of VIMS Emission Phase Function observations

    NASA Astrophysics Data System (ADS)

    Rodriguez, Sebastien; Maltagliati, Luca; Sotin, Christophe; Rannou, Pascal; Bézard, Bruno; Cornet, Thomas

    2016-10-01

    The Huygens probe gave unprecedented information on the properties of Titan's aerosols (vertical distribution, opacity as a function of wavelength, phase function, single scattering albedo) by in-situ measurements (Tomasko et al. 2008). Being the only existing in-situ atmospheric probing for Titan, this aerosol model currently is the reference for many Titan studies (e.g. by being applied as physical input in radiative transfer models of the atmosphere). Recently a reanalysis of the DISR dataset, corroborated by data from the Downward-Looking Visible Spectrometer (DLVS), was carried out by the same group (Doose et al. 2016), leading to significant changes to the indications given by Tomasko et al. (2008).Here we present the analysis of the Emission Phase Function observation (EPF) performed by VIMS during the Cassini flyby T88 (November 2012). An EPF observes the same spot on the surface (and thus the same atmosphere) with the same emergence angle but with different incidence angles. In this way, our EPF allows, for the first time, to have direct information on the phase function of Titan's aerosols, as well as on other important physical parameters of the aerosols as the behavior of their extinction as a function of wavelength and the single scattering albedo (also as a function of wavelength) for the whole VIMS range (0.8-5.2 μm). The T88 EPF is composed of 25 VIMS datacubes spanning a scattering angle range approximately from 0°to 70°.We used the radiative transfer model described in Hirtzig et al. (2013) as baseline, updated with improved methane (+ related isotopes) spectroscopy. By changing the aerosol description in the model, we found the combination of aerosol optical parameters that fits best a constant aerosol column density over the whole set of the VIMS datacubes. We confirmed that the new results from Doose et al. (2016) do improve the fit for what concerns the vertical profile and the extinction as a function of wavelength. However, a different

  17. A new description of Titan's aerosol optical properties from the analysis of VIMS Emission Phase Function observations

    NASA Astrophysics Data System (ADS)

    Maltagliati, Luca; Rodriguez, Sebastien; Sotin, Christophe; Rannou, Pascal; Bezard, Bruno; Cornet, Thomas

    2016-06-01

    The Huygens probe gave unprecedented information on the properties of Titan's aerosols (vertical distribution, opacity as a function of wavelength, phase function, single scattering albedo) by in-situ measurements (Tomasko et al. 2008). Being the only existing in-situ atmospheric probing for Titan, this aerosol model currently is the reference for many Titan studies (e.g. by being applied as physical input in radiative transfer models of the atmosphere). Recently a reanalysis of the DISR dataset, corroborated by data from the Downward-Looking Visible Spectrometer (DLVS), was carried out by the same group (Doose et al. 2016), leading to significant changes to the indications given by Tomasko et al. (2008). Here we present the analysis of the Emission Phase Function observation (EPF) performed by VIMS during the Cassini flyby T88 (November 2012). An EPF observes the same spot on the surface (and thus the same atmosphere) with the same emergence angle but with different incidence angles. In this way, our EPF allows, for the first time, to have direct information on the phase function of Titan's aerosols, as well as on other important physical parameters of the aerosols as the behavior of their extinction as a function of wavelength and the single scattering albedo (also as a function of wavelength) for the whole VIMS range (0.8-5.2 µm). The T88 EPF is composed of 25 VIMS datacubes spanning a scattering angle range approximately from 0°to 70°. We used the radiative transfer model described in Hirtzig et al. (2013) as baseline, updated with improved methane (+ related isotopes) spectroscopy. By changing the aerosol description in the model, we found the combination of aerosol optical parameters that fits best a constant aerosol column density over the whole set of the VIMS datacubes. We confirmed that the new results from Doose et al. (2016) do improve the fit for what concerns the vertical profile and the extinction as a function of wavelength. However, a different

  18. Mass Extinctions Past and Present.

    ERIC Educational Resources Information Center

    Allmon, Warren Douglas

    1987-01-01

    Discusses some parallels that seem to exist between mass extinction recognizable in the geologic record and the impending extinction of a significant proportion of the earth's species due largely to tropical deforestation. Describes some recent theories of causal factors and periodicities in mass extinction. (Author/TW)

  19. Scattering and Absorption of E&M radiation by small particles-applications to study impact of biomass aerosols on climate

    NASA Astrophysics Data System (ADS)

    Bililign, Solomon; Singh, Sujeeta; Fiddler, Marc; Smith, Damon

    2015-03-01

    The phenomena of scattering, absorption, and emission of light and other electromagnetic radiation by small particles are central to many science and engineering disciplines. Absorption of solar radiation by black carbon aerosols has a significant impact on the atmospheric energy distribution and hydrologic processes. By intercepting incoming solar radiation before it reaches the surface, aerosols heat the atmosphere and, in turn, cool the surface. The magnitude of the atmospheric forcing induced by anthropogenic absorbing aerosols, mainly black carbon (BC) emitted from biomass burning and combustion processes has been suggested to be comparable to the atmospheric forcing by all greenhouse gases (GHGs). Despite the global abundance of biomass burning for cooking, forests clearing for agriculture and wild fires, the optical properties of these aerosols have not been characterized at wide range of wavelengths. Our laboratory uses a combination of Cavity ring down spectroscopy and integrating nephelometry to measure optical properties of (extinction, absorption and scattering coefficients) of biomass aerosols. Preliminary results will be presented. Supported by the Department of Defense under Grant #W911NF-11-1-0188.

  20. Extinction of Light during the Fog Life Cycle: a Result from the ParisFog Experiment

    SciTech Connect

    Elias, T.; Haeffelin, M.; Drobinski, P.

    2009-03-11

    Data set acquired by five particle-dedicated instruments set up on the SIRTA experimental site during the ParisFog field campaign are exploited to document microphysical properties of particles contributing to extinction of visible radiation in variable situations. The case study is a 48-hour period when atmospheric conditions are highly variable: relative humidity changes between 50 and 100%, visibility ranges between 35000 and 65 m, the site is either downwind Paris area either under maritime influence. A dense and homogeneous fog formed by radiative cooling during the 18-19 February night. In 7 hours, visibility decreases from 26 000 m to 65 m, because of transported pollution (factor 3 in visibility reduction), aerosol hydration (factor 20) and aerosol activation (factor 6). According to Mie theory, extinction in clear-sky polluted and unpolluted regimes is due equally to Aitken and accumulation modes. Extinction in haze is due to hydrated aerosols distributed in the accumulation mode, for diameter smaller than 2 {mu}m. Hydrated aerosols of the accumulation mode still contribute to 20-30% extinction in the fog. Measurements show that fog droplets, with diameter included between 2 and 10 {mu}m, contribute to 40% extinction during the first hours of the fog.

  1. Evaluation of the NASA Langley Research Center airborne High Spectral Resolution Lidar extinction measurements during the Megacity Initiative: Local and Global Research Observations (MILAGRO) Campaign

    NASA Astrophysics Data System (ADS)

    Rogers, R. R.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Cook, A. L.; Harper, D. B.; Obland, M. D.; Burton, S. P.; Clarke, A. D.; Russell, P. B.; Redemann, J.; Livingston, J. M.

    2007-12-01

    The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) was deployed on the NASA LaRC B-200 King Air aircraft and measured profiles of aerosol extinction, backscatter, and depolarization during the Megacity Initiative: Local and Global Research Observations (MILAGRO) Campaign in March 2006. The HSRL collected approximately 55 hours of data over 15 science flights, which were coordinated with the Sky Research J-31 aircraft (5 flights), the DOE G-1 aircraft (6 flights), and the NCAR C-130 aircraft (4 flights). This coordinated effort in MILAGRO provides the first opportunity to evaluate the HSRL aerosol extinction and optical thickness profiles with corresponding profiles derived from the other airborne measurements: 1) the 14 channel NASA Ames Airborne Tracking Sunphotometer (AATS-14) on the J-31 and the in situ nephelometer measurements of aerosol scattering and Particle Soot Absorption Photometer (PSAP) measurements of aerosol absorption from the Hawaii Group for Environment and Atmospheric Research (HiGEAR) on the C-130. This study will include comparisons of aerosol extinction from these three techniques in cases where the HSRL flew directly over the AATS-14 and HiGEAR instruments while they measured aerosol extinction profiles. The results are used in assessing the uncertainty of the HSRL extinction profiles. Column aerosol optical depth (AOD) derived from the HSRL measurements is also compared with AOD derived from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements acquired on the Terra and Aqua spacecraft and from Aerosol Robotic Network (AERONET) ground-based Sun photometer measurements.

  2. A model for the separation of cloud and aerosol in SAGE II occultation data

    NASA Technical Reports Server (NTRS)

    Kent, G. S.; Winker, D. M.; Osborn, M. T.; Skeens, K. M.

    1993-01-01

    The Stratospheric Aerosol and Gas Experiment (SAGE) II satellite experiment measures the extinction due to aerosols and thin cloud, at wavelengths of 0.525 and 1.02 micrometers, down to an altitude of 6 km. The wavelength dependence of the extinction due to aerosols differs from that of the extinction due to cloud and is used as the basis of a model for separating these two components. The model is presented and its validation using airborne lidar data, obtained coincident with SAGE II observations, is described. This comparison shows that smaller SAGE II cloud extinction values correspond to the presence of subvisible cirrus cloud in the lidar record. Examples of aerosol and cloud data products obtained using this model to interpret SAGE II upper tropospheric and lower stratospheric data are also shown.

  3. Information Retrieval from SAGE II and MFRSR Multi-Spectral Extinction Measurements

    NASA Technical Reports Server (NTRS)

    Lacis, Andrew A.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Direct beam spectral extinction measurements of solar radiation contain important information on atmospheric composition in a form that is essentially free from multiple scattering contributions that otherwise tend to complicate the data analysis and information retrieval. Such direct beam extinction measurements are available from the solar occultation satellite-based measurements made by the Stratospheric and Aerosol Gas Experiment (SAGE II) instrument and by ground-based Multi-Filter Shadowband Radiometers (MFRSRs). The SAGE II data provide cross-sectional slices of the atmosphere twice per orbit at seven wavelengths between 385 and 1020 nm with approximately 1 km vertical resolution, while the MFRSR data provide atmospheric column measurements at six wavelengths between 415 and 940 nm but at one minute time intervals. We apply the same retrieval technique of simultaneous least-squares fit to the observed spectral extinctions to retrieve aerosol optical depth, effective radius and variance, and ozone, nitrogen dioxide, and water vapor amounts from the SAGE II and MFRSR measurements. The retrieval technique utilizes a physical model approach based on laboratory measurements of ozone and nitrogen dioxide extinction, line-by-line and numerical k-distribution calculations for water vapor absorption, and Mie scattering constraints on aerosol spectral extinction properties. The SAGE II measurements have the advantage of being self-calibrating in that deep space provides an effective zero point for the relative spectral extinctions. The MFRSR measurements require periodic clear-day Langley regression calibration events to maintain accurate knowledge of instrument calibration.

  4. Discreteness induced extinction

    NASA Astrophysics Data System (ADS)

    dos Santos, Renato Vieira; da Silva, Linaena Méricy

    2015-11-01

    Two simple models based on ecological problems are discussed from the point of view of non-equilibrium statistical mechanics. It is shown how discrepant may be the results of the models that include spatial distribution with discrete interactions when compared with the continuous analogous models. In the continuous case we have, under certain circumstances, the population explosion. When we take into account the finiteness of the population, we get the opposite result, extinction. We will analyze how these results depend on the dimension d of the space and describe the phenomenon of the "Discreteness Inducing Extinction" (DIE). The results are interpreted in the context of the "paradox of sex", an old problem of evolutionary biology.

  5. Global Aerosol Distributions Derived From the CALIPSO Observations

    NASA Astrophysics Data System (ADS)

    Kittaka, C.; Winker, D.; Omar, A.; Liu, Z.; Vaughan, M.; Trepte, C.

    2008-12-01

    Since June 2006, CALIPSO continues to provide routine and systematic measurements of lidar backscatter at two wavelengths, 532 and 1064 nm. As an active sensor, the quality of the measurement is nearly insensitive to surface properties allowing quantitative measurements in regions that are problematic to passive sensors. In particular, aerosol and cloud observations in the polar regions and desert areas are possible with the CALIPSO lidar through the different seasons of a year. The CALIPSO level 2 products, which include aerosol and cloud vertical profiles along tracks, reveal, for the first time, the multi-layer structure of aerosols and clouds on a global scale. This allows not only a depiction of aerosols in relation to clouds, but also the investigation of the interaction between aerosols and clouds. In this study, we present global distributions of aerosol in terms of season, layer height, aerosol species, and in relation to clouds using two years of CALIPSO observations. The CALIPSO aerosol extinction data sets under clear sky are evaluated against the AERONET aerosol optical depth (AOD) and the MODIS AOD collection 5 data sets. The agreement and discrepancies from these comparisons are characterized regionally and investigated using other CALIPSO observable and retrieved parameters. Furthermore, aerosols above clouds and in the vicinity of clouds are examined on a global scale. The implications for aerosol radiative forcing are discussed, highlighting the new and interesting aerosol features obtained from CALIPSO observations.

  6. Atmospheric responses to the redistribution of anthropogenic aerosols

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Jiang, Jonathan H.; Su, Hui

    2015-09-01

    The geographical shift of global anthropogenic aerosols from the developed countries to the Asian continent since the 1980s could potentially perturb the regional and global climate due to aerosol-cloud-radiation interactions. We use an atmospheric general circulation model with different aerosol scenarios to investigate the radiative and microphysical effects of anthropogenic aerosols from different regions on the radiation budget, precipitation, and large-scale circulations. An experiment contrasting anthropogenic aerosol scenarios in 1970 and 2010 shows that the altered cloud reflectivity and solar extinction by aerosols results in regional surface temperature cooling in East and South Asia, and warming in the US and Europe, respectively. These aerosol-induced temperature changes are consistent with the relative temperature trends from 1980 to 2010 over different regions in the reanalysis data. A reduced meridional streamfunction and zonal winds over the tropics as well as a poleward shift of the jet stream suggest weakened and expanded tropical circulations, which are induced by the redistributed aerosols through a relaxing of the meridional temperature gradient. Consequently, precipitation is suppressed in the deep tropics and enhanced in the subtropics. Our assessments of the aerosol effects over the different regions suggest that the increasing Asian pollution accounts for the weakening of the tropics circulation, while the decreasing pollution in Europe and US tends to shift the circulation systems southward. Moreover, the aerosol indirect forcing is predominant over the total aerosol forcing in magnitude, while aerosol radiative and microphysical effects jointly shape the meridional energy distributions and modulate the circulation systems.

  7. Pulsar extinction. [astrophysics

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.; Baker, K.; Turk, J. S.

    1975-01-01

    Radio emission from pulsars, attributed to an instability associated with the creation of electron-positron pairs from gamma rays was investigated. The condition for pair creation therefore lead to an extinction condition. The relevant physical processes were analyzed in the context of a mathematical model, according to which radiation originated at the polar caps and magnetic field lines changed from a closed configuration to an open configuration at the force balance or corotation radius.

  8. Development of a laser-induced breakdown spectroscopy instrument for detection and classification of single-particle aerosols in real-time

    NASA Astrophysics Data System (ADS)

    Tjärnhage, Torbjörn; Gradmark, Per-Åke; Larsson, Anders; Mohammed, Abdelsalam; Landström, Lars; Sagerfors, Eva; Jonsson, Per; Kullander, Fredrik; Andersson, Magnus

    2013-06-01

    Detection of aerosolized biological warfare agents by means of LIBS commonly operate with pulsed lasers running at constant repetition rate, resulting in very low hit rates. In this paper, we present a prototype where the LIBS laser is only fired if a particle is expected in the focal zone. A significantly improved hit rate for detection and classification of μm sized single particles in real-time is achieved. Hit rates of 40% and 70% for NaCl particles of sizes 3 and 7.0 μm, respectively, can be reached in triggered configuration, as compared to 1% and 2% when the laser is un-triggered.

  9. Retrieval of trace gases from aerosol-influenced infrared transmission spectra observed by low-spectral-resolution Fourier-transform spectrometers.

    PubMed

    Uemura, Nobuyuki; Kuriki, Satoshi; Nobuta, Koji; Yokota, Tatsuya; Nakajima, Hideaki; Sugita, Takafumi; Sasano, Yasuhiro

    2005-01-20

    A method for the simultaneous retrieval of gas concentrations and an extinction spectrum of aerosols and polar stratospheric clouds from infrared transmission spectra observed in the solar occultation geometry is described. It is particularly suited to measurements by Fourier-transform spectrometers with relatively low spectral resolution (0.1-1 cm(-1)). The method does not require a priori assumptions on aerosol properties; it utilizes only the fact that the wave-number dependence of aerosol extinction is much weaker than that of gas absorption. In this method, an aerosol extinction spectrum is approximated by a straight line within a relatively wide spectral range defined as mediumwindow.

  10. Stratospheric aerosol profile retrievals from SCIAMACHY limb-scatter observations

    NASA Astrophysics Data System (ADS)

    Ernst, Florian; Von Savigny, PD Christian; Rozanov, Alexei; Bovensmann, Heinrich; Brinkhoff, Lena; Burrows, John

    2012-07-01

    Stratospheric aerosol extinction profiles are retrieved from SCIAMACHY/Envisat limb-scatter observations in the visible and near-IR spectral range. The retrieval scheme is based on an optimal estimation approach in combination with the radiative transfer model SCIATRAN and employs normalized and paired limb-radiance profiles at 470 nm and 750 nm. This contribution provides an overview of the retrieval approach adopted and includes first results on stratospheric aerosol time series spanning the entire duration of the Envisat mission, i.e. from fall 2002 to the present. The time series display obvious signatures of the volcanic eruptions as well as strong pyroCb events that occurred during the period studied. Comparison of the stratospheric extinction profiles with co-located SAGE II aerosol extinction profiles yields agreement of the global mean profiles within 20% between 15 and 35 km altitude.

  11. Composition and physical properties of the Asian Tropopause Aerosol Layer and the North American Tropospheric Aerosol Layer

    PubMed Central

    Yu, Pengfei; Toon, Owen B; Neely, Ryan R; Martinsson, Bengt G; Brenninkmeijer, Carl A M

    2015-01-01

    Recent studies revealed layers of enhanced aerosol scattering in the upper troposphere and lower stratosphere over Asia (Asian Tropopause Aerosol Layer (ATAL)) and North America (North American Tropospheric Aerosol Layer (NATAL)). We use a sectional aerosol model (Community Aerosol and Radiation Model for Atmospheres (CARMA)) coupled with the Community Earth System Model version 1 (CESM1) to explore the composition and optical properties of these aerosol layers. The observed aerosol extinction enhancement is reproduced by CESM1/CARMA. Both model and observations indicate a strong gradient of the sulfur-to-carbon ratio from Europe to the Asia on constant pressure surfaces. We found that the ATAL is mostly composed of sulfates, surface-emitted organics, and secondary organics; the NATAL is mostly composed of sulfates and secondary organics. The model also suggests that emission increases in Asia between 2000 and 2010 led to an increase of aerosol optical depth of the ATAL by 0.002 on average which is consistent with observations. Key Points The Asian Tropopause Aerosol Layer is composed of sulfate, primary organics, and secondary organics The North American Tropospheric Aerosol Layer is mostly composed of sulfate and secondary organics Aerosol Optical Depth of Asian Tropopause Aerosol Layer increases by 0.002 from 2000 to 2010 PMID:26709320

  12. Using environmental scanning electron microscopy to determine the hygroscopic properties of agricultural aerosols

    NASA Astrophysics Data System (ADS)

    Hiranuma, Naruki; Brooks, Sarah D.; Auvermann, Brent W.; Littleton, Rick

    A field study at a cattle feedlot in the Texas Panhandle was conducted to characterize the hygroscopic, morphological, and chemical properties of agricultural aerosols and to identify possible correlations between these properties. To explore the hygroscopic nature of the agricultural particles, we have collected size-resolved aerosol samples using a cascade impactor system and have used an environmental scanning electron microscope (ESEM) to determine the water uptake by individual particles in those samples as a function of relative humidity (RH). In addition, complementary determination of the elemental composition of single particles was performed using energy dispersive X-ray spectroscopy (EDS). Our results indicate that most of the agricultural particles do not take up significant amounts of water when exposed to up to 96% RH. However, a small fraction of particles in the coarse mode deliquesced at approximately 75% RH and reached twice their original sizes by 96% RH. The observed changes in particle size with increased RH may significantly impact total aerosol extinction, visibility, and human health.

  13. Aerosol Best Estimate Value-Added Product

    SciTech Connect

    Flynn, C; Turner, D; Koontz, A; Chand, D; Sivaraman, C

    2012-07-19

    The objective of the Aerosol Best Estimate (AEROSOLBE) value-added product (VAP) is to provide vertical profiles of aerosol extinction, single scatter albedo, asymmetry parameter, and Angstroem exponents for the atmospheric column above the Central Facility at the ARM Southern Great Plains (SGP) site. We expect that AEROSOLBE will provide nearly continuous estimates of aerosol optical properties under a range of conditions (clear, broken clouds, overcast clouds, etc.). The primary requirement of this VAP was to provide an aerosol data set as continuous as possible in both time and height for the Broadband Heating Rate Profile (BBHRP) VAP in order to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Even though BBHRP has been completed, AEROSOLBE results are very valuable for environmental, atmospheric, and climate research.

  14. Comparison of Aerosol Classification from Airborne High Spectral Resolution Lidar and the CALIPSO Vertical Feature Mask

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Ferrare, R. A.; Omar, A. H.; Hostetler, C. A.; Hair, J. W.; Rogers, R.; Obland, M. D.; Butler, C. F.; Cook, A. L.; Harper, D. B.

    2012-12-01

    The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL-1) on the NASA B200 aircraft has acquired large datasets of aerosol extinction (532nm), backscatter (532 and 1064nm), and depolarization (532 and 1064nm) profiles during 349 science flights in 19 field missions across North America since 2006. The extinction-to-backscatter ratio ("lidar ratio"), aerosol depolarization ratios, and backscatter color ratio measurements from HSRL-1 are scale-invariant parameters that depend on aerosol type but not concentration. These four aerosol intensive parameters are combined to qualitatively classify HSRL aerosol measurements into eight separate composition types. The classification methodology uses models formed from "training cases" with known aerosol type. The remaining measurements are then compared with these models using the Mahalanobis distance. Aerosol products from the CALIPSO satellite include aerosol type information as well, which is used as input to the CALIPSO aerosol retrieval. CALIPSO aerosol types are inferred using a mix of aerosol loading-dependent parameters, estimated aerosol depolarization, and location, altitude, and surface type information. The HSRL instrument flies beneath the CALIPSO satellite orbit track, presenting the opportunity for comparisons between the HSRL aerosol typing and the CALIPSO Vertical Feature Mask Aerosol Subtype product, giving insight into the performance of the CALIPSO aerosol type algorithm. We find that the aerosol classification from the two instruments frequently agree for marine aerosols and pure dust, and somewhat less frequently for pollution and smoke. In addition, the comparison suggests that the CALIPSO polluted dust type is overly inclusive, encompassing cases of dust combined with marine aerosol as well as cases without much evidence of dust. Qualitative classification of aerosol type combined with quantitative profile measurements of aerosol backscatter and extinction has many useful

  15. Aerosolized Antibiotics.

    PubMed

    Restrepo, Marcos I; Keyt, Holly; Reyes, Luis F

    2015-06-01

    Administration of medications via aerosolization is potentially an ideal strategy to treat airway diseases. This delivery method ensures high concentrations of the medication in the targeted tissues, the airways, with generally lower systemic absorption and systemic adverse effects. Aerosolized antibiotics have been tested as treatment for bacterial infections in patients with cystic fibrosis (CF), non-CF bronchiectasis (NCFB), and ventilator-associated pneumonia (VAP). The most successful application of this to date is treatment of infections in patients with CF. It has been hypothesized that similar success would be seen in NCFB and in difficult-to-treat hospital-acquired infections such as VAP. This review summarizes the available evidence supporting the use of aerosolized antibiotics and addresses the specific considerations that clinicians should recognize when prescribing an aerosolized antibiotic for patients with CF, NCFB, and VAP.

  16. Global Aerosols

    Atmospheric Science Data Center

    2013-04-19

    ... sizes and from multiple sources, including biomass burning, mineral dust, sea salt and regional industrial pollution. A color scale is ... desert source region. Deserts are the main sources of mineral dust, and MISR obtains aerosol optical depth at visible wavelengths ...

  17. Cloud identification in atmospheric trace molecule spectroscopy infrared occultation measurements.

    PubMed

    Kahn, Brian H; Eldering, Annmarie; Irion, Fredrick W; Mills, Franklin P; Sen, Bhaswar; Gunson, Michael R

    2002-05-20

    High-resolution infrared nongas absorption spectra derived from the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment are analyzed for evidence of the presence of cirrus clouds. Several nonspherical ice extinction models based on realistic size distributions and crystal habits along with a stratospheric sulfate aerosol model are fit to the spectra, and comparisons are made with different model combinations. Nonspherical ice models often fit observed transmission spectra better than a spherical Mie ice model, and some discrimination among nonspherical models is noted. The ATMOS lines of sight for eight occultations are superimposed on coincident geostationary satellite infrared imagery, and brightness temperatures along the lines of sight are compared with retrieved vertical temperature profiles. With these comparisons, studies of two cases of clear sky, three cases of opaque cirrus, and three cases of patchy cirrus are discussed.

  18. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom

    NASA Astrophysics Data System (ADS)

    McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.

    2011-09-01

    Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the United Kingdom. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA

  19. Composition of Polar Stratospheric Clouds from Infrared Spectroscopy

    NASA Technical Reports Server (NTRS)

    Tolbert, M. A.; Anthony, S. E.; Disselkamp, R.; Toon, O. B.; Condon, Estelle P. (Technical Monitor)

    1995-01-01

    Heterogeneous reactions on polar stratospheric clouds (PSCs) have recently been implicated in Arctic and Antarctic ozone destruction. Although the chemistry is well documented, the composition of the clouds remains uncertain. The most common PSCs (type I) are thought to be composed of HNO3/H2O mixtures. Although the exact process is not clear, type I PSCs are believed to nucleate on preexisting stratospheric sulfate aerosols (SSAs) composed of sulfuric acid and water. We are using infrared spectroscopy to study the composition and formation mechanism of type I PSCs. In the laboratory, we have used FTIR spectroscopy to probe the composition and phase of H2SO4/HNO3/H2O aerosols under winter polar stratospheric conditions. We have also used recently measured infrared optical constants for HNO3/H2O mixtures to analyze solar infrared extinction measurements of type I PSCs obtained in September 1987 over Antarctica. The results of these studies will be discussed in the context of current theories for polar stratospheric clouds formation.

  20. Satellite stratospheric aerosol measurement validation

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Mccormick, M. P.

    1984-01-01

    The validity of the stratospheric aerosol measurements made by the satellite sensors SAM II and SAGE was tested by comparing their results with each other and with results obtained by other techniques (lider, dustsonde, filter, and impactor). The latter type of comparison required the development of special techniques that convert the quantity measured by the correlative sensor (e.g., particle backscatter, number, or mass) to that measured by the satellite sensor (extinction) and quantitatively estimate the uncertainty in the conversion process. The results of both types of comparisons show agreement within the measurement and conversion uncertainties. Moreover, the satellite uncertainty is small compared to aerosol natural variability (caused by seasonal changes, volcanoes, sudden warmings, and vortex structure). It was concluded that the satellite measurements are valid.

  1. Satellite stratospheric aerosol measurement validation

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Mccormick, M. P.

    1984-01-01

    The validity of the stratospheric aerosol measurements made by the satellite sensors SAM II and SAGE was tested by comparing their results with each other and with results obtained by other techniques (lider, dustsonde, filter, and impactor). The latter type of comparison required the development of special techniques that convert the quantity measured by the correlative sensor (e.g. particle backscatter, number, or mass) to that measured by the satellite sensor (extinction) and quantitatively estimate the uncertainty in the conversion process. The results of both types of comparisons show agreement within the measurement and conversion uncertainties. Moreover, the satellite uncertainty is small compared to aerosol natural variability (caused by seasonal changes, volcanoes, sudden warmings, and vortex structure). It was concluded that the satellite measurements are valid.

  2. Tropospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    It is widely believed that "On a clear day you can see forever," as proclaimed in the 1965 Broadway musical of the same name. While an admittedly beautiful thought, we all know that this concept is only figurative. Aside from Earth's curvature and Rayleigh scattering by air molecules, aerosols - colloidal suspensions of solid or liquid particles in a gas - limit our vision. Even on the clearest day, there are billions of aerosol particles per cubic meter of air.Atmospheric aerosols are commonly referred to as smoke, dust, haze, and smog, terms that are loosely reflective of their origin and composition. Aerosol particles have arisen naturally for eons from sea spray, volcanic emissions, wind entrainment of mineral dust, wildfires, and gas-to-particle conversion of hydrocarbons from plants and dimethylsulfide from the oceans. However, over the industrial period, the natural background aerosol has been greatly augmented by anthropogenic contributions, i.e., those produced by human activities. One manifestation of this impact is reduced visibility (Figure 1). Thus, perhaps more than in other realms of geochemistry, when considering the composition of the troposphere one must consider the effects of these activities. The atmosphere has become a reservoir for vast quantities of anthropogenic emissions that exert important perturbations on it and on the planetary ecosystem in general. Consequently, much recent research focuses on the effects of human activities on the atmosphere and, through them, on the environment and Earth's climate. For these reasons consideration of the geochemistry of the atmosphere, and of atmospheric aerosols in particular, must include the effects of human activities. (201K)Figure 1. Impairment of visibility by aerosols. Photographs at Yosemite National Park, California, USA. (a) Low aerosol concentration (particulate matter of aerodynamic diameter less than 2.5 μm, PM2.5=0.3 μg m-3; particulate matter of aerodynamic diameter less than 10

  3. Simulating Titan's Aerosols in a Three Dimensional GCM

    NASA Astrophysics Data System (ADS)

    Larson, E.; Toon, O.; Friedson, A.; West, R.

    2011-10-01

    We present the results of a coupled three dimensional global climate model (GCM) and aerosol microphsyics model to elucidate properties of the aerosols and their radiative effects on the atmosphere. In particular, we are interested in determining the size, number density, aerosol charging, and production rate of the aerosols. The values along with DISR derived indices of refraction allow us to retrieve optical depths and extinctions at all latitudes and seasons. We couple these aerosols to the radiative transfer code and see the effects on the heating rate and temperatures. These coupled aerosols also have dynamical feedbacks. Our model also allows us to study the historical albedo seasonal cycle from a microphysics perspective. We compare these properties with spacecraft and ground based data and use them to constrain the model.

  4. Extinction in human fear conditioning.

    PubMed

    Hermans, Dirk; Craske, Michelle G; Mineka, Susan; Lovibond, Peter F

    2006-08-15

    Although most extinction research is conducted in animal laboratories, the study of extinction learning in human fear conditioning has gained increasing attention over the last decade. The most important findings from human fear extinction are reviewed in this article. Specifically, we review experimental investigations of the impact of conditioned inhibitors, conditioned exciters, context renewal, and reinstatement on fear extinction in human samples. We discuss data from laboratory studies of the extinction of aversively conditioned stimuli, as well as results from experimental clinical work with fearful or anxious individuals. We present directions for future research, in particular the need for further investigation of differences between animal and human conditioning outcomes, and research examining the role of both automatic and higher-order cognitive processes in human conditioning and extinction.

  5. Extinction events can accelerate evolution.

    PubMed

    Lehman, Joel; Miikkulainen, Risto

    2015-01-01

    Extinction events impact the trajectory of biological evolution significantly. They are often viewed as upheavals to the evolutionary process. In contrast, this paper supports the hypothesis that although they are unpredictably destructive, extinction events may in the long term accelerate evolution by increasing evolvability. In particular, if extinction events extinguish indiscriminately many ways of life, indirectly they may select for the ability to expand rapidly through vacated niches. Lineages with such an ability are more likely to persist through multiple extinctions. Lending computational support for this hypothesis, this paper shows how increased evolvability will result from simulated extinction events in two computational models of evolved behavior. The conclusion is that although they are destructive in the short term, extinction events may make evolution more prolific in the long term.

  6. Extinction Events Can Accelerate Evolution

    PubMed Central

    Lehman, Joel; Miikkulainen, Risto

    2015-01-01

    Extinction events impact the trajectory of biological evolution significantly. They are often viewed as upheavals to the evolutionary process. In contrast, this paper supports the hypothesis that although they are unpredictably destructive, extinction events may in the long term accelerate evolution by increasing evolvability. In particular, if extinction events extinguish indiscriminately many ways of life, indirectly they may select for the ability to expand rapidly through vacated niches. Lineages with such an ability are more likely to persist through multiple extinctions. Lending computational support for this hypothesis, this paper shows how increased evolvability will result from simulated extinction events in two computational models of evolved behavior. The conclusion is that although they are destructive in the short term, extinction events may make evolution more prolific in the long term. PMID:26266804

  7. Separating Dust Mixtures and Other External Aerosol Mixtures Using Airborne High Spectral Resolution Lidar Data

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Ferrare, R. A.; Vaughan, M.; Hostetler, C. A.; Rogers, R. R.; Hair, J. W.; Cook, A. L.; Harper, D. B.

    2013-12-01

    Knowledge of aerosol type is important for source attribution and for determining the magnitude and assessing the consequences of aerosol radiative forcing. The NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL-1) has acquired considerable datasets of both aerosol extensive parameters (e.g. aerosol optical depth) and intensive parameters (e.g. aerosol depolarization ratio, lidar ratio) that can be used to infer aerosol type. An aerosol classification methodology has been used extensively to classify HSRL-1 aerosol measurements of different aerosol types including dust, smoke, urban pollution, and marine aerosol. However, atmospheric aerosol is frequently not a single pure type, but instead occurs as a mixture of types, and this mixing affects the optical and radiative properties of the aerosol. Here we present a comprehensive and unified set of rules for characterizing external mixtures using several key aerosol intensive parameters: extinction-to-backscatter ratio (i.e. lidar ratio), backscatter color ratio, and depolarization ratio. Our mixing rules apply not just to the scalar values of aerosol intensive parameters, but to multi-dimensional normal distributions with variance in each measurement dimension. We illustrate the applicability of the mixing rules using examples of HSRL-1 data where mixing occurred between different aerosol types, including advected Saharan dust mixed with the marine boundary layer in the Caribbean Sea and locally generated dust mixed with urban pollution in the Mexico City surroundings. For each of these cases we infer a time-height cross section of mixing ratio along the flight track and we partition aerosol extinction into portions attributed to the two pure types. Since multiple aerosol intensive parameters are measured and included in these calculations, the techniques can also be used for cases without significant depolarization (unlike similar work by earlier researchers), and so a third example of a

  8. Aerosol direct radiative effect over China estimated with visibility measurements

    NASA Astrophysics Data System (ADS)

    Ye, K.; Lin, J.

    2012-12-01

    As a short-lived climate forcer, aerosols exhibit strong radiative effects that vary significantly across the space and time. Current understanding of the long-term variability of aerosol climate forcings is however very poor due to lack of relevant atmospheric measurements. Historic records for visibility measurements from thousands of ground meteorological stations offer a plausible tool to study the decadal and multi-decadal variability of aerosol radiative effects. As a first step, this study presents a method to estimate aerosol direct radiative effect over China based on visibility data for 2006. Visibility data from about 400 ground stations are converted to near-surface aerosol extinction coefficients, which are converted then to aerosol optical depth (AOD) based on spatially and temporally varying vertical distributions of aerosol optical properties simulated by the widely used chemical transport model GEOS-Chem. The resulting AOD data are consistent with direct measurements from the China Aerosol Remote Sensing Network (CARSNET) and the Aerosol Robotic Network (AERONET) in regions where visibility and AOD measurement sites are close in distance. Next, the visibility-derived AOD data are combined with other aerosol optical properties adopted from GEOS-Chem, cloud data from ground stations and surface albedo data from moderate-resolution imaging spectroradiometer (MODIS) to derive the direct radiative effect, by employing the Santa Barbara DISORT Atmospheric Radiative Transfer model (SBDART). Spatial and monthly variations of aerosol radiative effects are examined.

  9. Separating mixtures of aerosol types in airborne High Spectral Resolution Lidar data

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Vaughan, M. A.; Ferrare, R. A.; Hostetler, C. A.

    2014-02-01

    Knowledge of aerosol type is important for determining the magnitude and assessing the consequences of aerosol radiative forcing, and can provide useful information for source attribution studies. However, atmospheric aerosol is frequently not a single pure type, but instead occurs as a mixture of types, and this mixing affects the optical and radiative properties of the aerosol. This paper extends the work of earlier researchers by using the aerosol intensive parameters measured by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL-1) to develop a comprehensive and unified set of rules for characterizing the external mixing of several key aerosol intensive parameters: extinction-to-backscatter ratio (i.e., lidar ratio), backscatter color ratio, and depolarization ratio. We present the mixing rules in a particularly simple form that leads easily to mixing rules for the covariance matrices that describe aerosol distributions, rather than just single values of measured parameters. These rules can be applied to infer mixing ratios from the lidar-observed aerosol parameters, even for cases without significant depolarization. We demonstrate our technique with measurement curtains from three HSRL-1 flights which exhibit mixing between two aerosol types, urban pollution plus dust, marine plus dust, and smoke plus marine. For these cases, we infer a time-height cross-section of extinction mixing ratio along the flight track, and partition aerosol extinction into portions attributed to the two pure types.

  10. Aerosol optical depth estimates based on nephelometer measurements at the SGP arm site

    SciTech Connect

    Bergin, M.H.; Ogren, J.A.; Halthore, R.

    1996-03-01

    The scattering of shortwave radiation by anthropogenic aerosols during clear-sky conditions, termed direct aerosol forcing, has been estimated to be roughly 1 W/m{sup 2} on a global annual average and may be as high as 50 W/m{sup 2} locally and instantaneously new source regions. The extent of the direct aerosol forcing effect at a given time and place depends primarily in the aerosol optical depth, {tau}, as well as on other factors including the solar zenith angle, aerosol upscatter fraction, and the single scatter albedo (ratio of light scattering to total extinction). The aerosol optical depth at a given wavelength ({tau}{sub {lambda}}) can be written as the integral with height to the top of the atmosphere (toa) of the aerosol extinction coefficient, b{sub ext,p}. Where b{sub ext,p} is the sum of the aerosol extinction (b{sub ap}) and scattering (b{sub sp}) coefficients. The objectives of this research are to use nephelometer measurements of the scattering coefficient to estimate the aerosol optical depth at a specific wavelength (530 nm), and to compare these results with optical depths measured by a Multi-Filter Rotating Shadowband Radiometer (MFRSR) and Cimel Sun Photometer. This comparison will used to determine if all of the key parameters related to aerosol optical depth are being measured at the SGP ARM site.

  11. The impact of mass extinctions

    NASA Technical Reports Server (NTRS)

    Flessa, Karl W.

    1988-01-01

    In the years since Snowbird an explosive growth of research on the patterns, causes, and consequences of extinction was seen. The fossil record of extinction is better known, stratigraphic sections were scrutinized in great detail, and additional markers of environmental change were discovered in the rock record. However flawed, the fossil record is the only record that exists of natural extinction. Compilations from the primary literature contain a faint periodic signal: the extinctions of the past 250 my may be regulary spaced. The reality of the periodicity remains a subject for debate. The implications of periodicity are so profound that the debate is sure to continue. The greater precision from stratigraphic sections spanning extinction events has yet to resolve controversies concerning the rates at which extinctions occurred. Some sections seem to record sudden terminations, while others suggest gradual or steplike environmental deterioration. Unfortunately, the manner in which the strata record extinctions and compile stratigraphic ranges makes a strictly literal reading of the fossil record inadvisable. Much progress was made in the study of mass extinctions. The issues are more sharply defined but they are not fully resolved. Scenarios should look back to the phenomena they purport to explain - not just an iridium-rich layer, but the complex fabric of a mass extinction.

  12. Periodicity in marine extinction events

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. John, Jr.; Raup, David M.

    1986-01-01

    The periodicity of extinction events is examined in detail. In particular, the temporal distribution of specific, identifiable extinction events is analyzed. The nature and limitations of the data base on the global fossil record is discussed in order to establish limits of resolution in statistical analyses. Peaks in extinction intensity which appear to differ significantly from background levels are considered, and new analyses of the temporal distribution of these peaks are presented. Finally, some possible causes of periodicity and of interdependence among extinction events over the last quarter billion years of earth history are examined.

  13. The pharmacology of extinction.

    PubMed

    Huxtable, R J

    1992-08-01

    It is impossible to predict what compounds of pharmacological interest may be present in an unexamined species. The extinction of such species may result, therefore, in the loss of therapeutically significant compounds. The fact that science will never know what has been lost does not lessen the significance of the loss. A number of species are discussed to exemplify the potential loss. Ginkgo biloba is an ancient plant, apparently saved from a natural extinction by human intervention. From this tree, the ginkgolides have been isolated. These are potent inhibitors of platelet activating factor and hold promise in the treatment of cerebral ischemia and brain edema. Two species, the tree Taxus brevifolia and the leech Hirudo medicinalis, are threatened as a result of human activity. Both have recently yielded complex compounds of therapeutic importance. The antitumor agent, taxol, is obtained from T. brevifolia and the thrombin inhibitor, hirudin, is found in H. medicinalis. Catharanthus roseus, source of the anticancer agents vincristine and vinblastine, although not threatened, derives from a largely unexamined but severely stressed ecosystem of some 5000 plant species. In other examples, ethnobotanical knowledge of certain plants may be lost while the species survive, as exemplified by the suppression of the Aztec ethnobotany of Mesoamerica by the invading Spanish. Finally, the fallacy of the 'snail darter syndrome', where species may be viewed as too insignificant to worry about, is exposed by consideration of the pharmacological activities of a sea hare (a shell-less marine mollusc) and various leeches.

  14. CALIPSO-inferred aerosol direct radiative effects: Bias estimates using ground-based Raman lidars

    NASA Astrophysics Data System (ADS)

    Thorsen, Tyler J.; Fu, Qiang

    2015-12-01

    Observational constraints on the change in the radiative energy budget caused by the presence of aerosols, i.e., the aerosol direct radiative effect (DRE), have recently been made using observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO). CALIPSO observations have the potential to provide improved global estimates of aerosol DRE compared to passive sensor-derived estimates due to CALIPSO's ability to perform vertically resolved aerosol retrievals over all surface types and over cloud. In this study, uncertainties in CALIPSO-inferred aerosol DRE are estimated using multiple years of observations from the Atmospheric Radiation Measurement (ARM) program's Raman lidars at midlatitude and tropical sites. We find that CALIPSO is unable to detect all radiatively significant aerosol, resulting in an underestimate in the magnitude of the aerosol DRE by 30-50% at the two ARM sites. The undetected aerosol is likely the consequence of random noise in CALIPSO measurements and therefore will affect global observations as well. This suggests that the global aerosol DRE inferred from CALIPSO observations are likely too weak. Also examined is the impact of the ratio of extinction-to-backscatter (i.e., the lidar ratio) whose value CALIPSO retrievals must assume to obtain the aerosol extinction profile. It is shown that if CALIPSO can reproduce the climatological value of the lidar ratio at a given location, then the aerosol DRE there can be accurately calculated (within about 3%).

  15. Retrieval of the aerosol direct radiative effect over clouds from spaceborne spectrometry

    NASA Astrophysics Data System (ADS)

    Graaf, M.; Tilstra, L. G.; Wang, P.; Stammes, P.

    2012-04-01

    The solar radiative absorption by an aerosol layer above clouds is quantified using passive satellite spectrometry from the ultraviolet (UV) to the shortwave infrared (SWIR). UV-absorbing aerosols have a strong signature that can be detected using UV reflectance measurements, even when above clouds. Since the aerosol extinction optical thickness decreases rapidly with increasing wavelength for biomass burning aerosols, the properties of the clouds below the aerosol layer can be retrieved in the SWIR, where aerosol extinction optical thickness is sufficiently small. Using radiative transfer computations, the contribution of the clouds to the reflected radiation can be modeled for the entire solar spectrum. In this way, cloud and aerosol effects can be separated for a scene with aerosols above clouds. Aerosol microphysical assumptions and retrievals are avoided by modeling only the pure (aerosol-free) cloud spectra. An algorithm was developed using the spaceborne spectrometer Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY). The aerosol direct radiative effect (DRE) over clouds over the South Atlantic Ocean west of Africa, averaged through August 2006 was found to be 23 ± 8 Wm-2 with a mean variation over the region in this month of 22 Wm-2. The largest aerosol DRE over clouds found in that month was 132 ± 8 Wm-2. The algorithm can be applied to any instrument, or a combination of instruments, that measures UV, visible and SWIR reflectances at the top of the atmosphere (TOA) simultaneously.

  16. Revisiting Aerosol Effects in Global Climate Models Using an Aerosol Lidar Simulator

    NASA Astrophysics Data System (ADS)

    Ma, P. L.; Chepfer, H.; Winker, D. M.; Ghan, S.; Rasch, P. J.

    2015-12-01

    Aerosol effects are considered a major source of uncertainty in global climate models and the direct and indirect radiative forcings have strong model dependency. These forcings are routinely evaluated (and calibrated) against observations, among them satellite retrievals are greatly used for their near-global coverage. However, the forcings calculated from model output are not directly comparable with those computed from satellite retrievals since sampling and algorithmic differences (such as cloud screening, noise reduction, and retrieval) between models and observations are not accounted for. It is our hypothesis that the conventional model validation procedures for comparing satellite observations and model simulations can mislead model development and introduce biases. Hence, we have developed an aerosol lidar simulator for global climate models that simulates the CALIOP lidar signal at 532nm. The simulator uses the same algorithms as those used to produce the "GCM-oriented CALIPSO Aerosol Product" to (1) objectively sample lidar signal profiles; and (2) derive aerosol fields (e.g., extinction profile, aerosol type, etc) from lidar signals. This allows us to sample and derive aerosol fields in the model and real atmosphere in identical ways. Using the Department of Energy's ACME model simulations, we found that the simulator-retrieved aerosol distribution and aerosol-cloud interactions are significantly different from those computed from conventional approaches, and that the model is much closer to satellite estimates than previously believed.

  17. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect

    Turner, David, D.; Ferrare, Richard, A.

    2011-07-06

    The 'Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds' project focused extensively on the analysis and utilization of water vapor and aerosol profiles derived from the ARM Raman lidar at the Southern Great Plains ARM site. A wide range of different tasks were performed during this project, all of which improved quality of the data products derived from the lidar or advanced the understanding of atmospheric processes over the site. These activities included: upgrading the Raman lidar to improve its sensitivity; participating in field experiments to validate the lidar aerosol and water vapor retrievals; using the lidar aerosol profiles to evaluate the accuracy of the vertical distribution of aerosols in global aerosol model simulations; examining the correlation between relative humidity and aerosol extinction, and how these change, due to horizontal distance away from cumulus clouds; inferring boundary layer turbulence structure in convective boundary layers from the high-time-resolution lidar water vapor measurements; retrieving cumulus entrainment rates in boundary layer cumulus clouds; and participating in a field experiment that provided data to help validate both the entrainment rate retrievals and the turbulent profiles derived from lidar observations.

  18. Spectral Signatures of Polar Stratospheric Clouds and Sulfate Aerosol.

    NASA Astrophysics Data System (ADS)

    Massie, S. T.; Bailey, P. L.; Gille, J. C.; Lee, E. C.; Mergenthaler, J. L.; Roche, A. E.; Kumer, J. B.; Fishbein, E. F.; Waters, J. W.; Lahoz, W. A.

    1994-10-01

    Multiwavelength observations of Antarctic and midlatitude aerosol by the Cryogenic Limb Array Etalon Spectrometer (CLAES) experiment on the Upper Atmosphere Research Satellite are used to demonstrate a technique that identifies the location of polar stratospheric clouds. The technique discussed uses the normalized area of the triangle formed by the aerosol extinctions at 925, 1257, and 1605 cm1 (10.8, 8.0, and 6.2 m) to derive a spectral aerosol measure M of the aerosol spectrum. Mie calculations for spherical particles and T-matrix calculations for spheroidal particles are used to generate theoretical spectral extinction curves for sulfate and polar stratospheric cloud particles. The values of the spectral aerosol measure M for the sulfate and polar stratospheric cloud particles are shown to be different. Aerosol extinction data, corresponding to temperatures between 180 and 220 K at a pressure of 46 hPa (near 21-km altitude) for 18 August 1992, are used to demonstrate the technique. Thermodynamic calculations, based upon frost-point calculations and laboratory phase-equilibrium studies of nitric acid trihydrate, are used to predict the location of nitric acid trihydrate cloud particles.

  19. Spectral signatures of polar stratospheric clouds and sulfate aerosol

    SciTech Connect

    Massie, S.T.; Bailey, P.L.; Gille, J.C.; Lee, E.C.; Mergenthaler, J.L.; Roche, A.E.; Kumer, J.B.; Fishbein, E.F.; Waters, J.W.; Lahoz, W.A.

    1994-10-15

    Multiwavelength observations of Antarctic and midlatitude aerosol by the Cryogenic Limb Array Etalon Spectrometer (CLAES) experiment on the Upper Atmosphere Research Satellite are used to demonstrate a technique that identifies the location of polar stratospheric clouds. The technique discussed uses the normalized area of the triangle formed by the aerosol extinctions at 925, 1257, and 1605 cm{sup {minus}1} (10.8, 8.0, and 6.2 {mu}m) to derive a spectral aerosol measure M of the aerosol spectrum. Mie calculations for spherical particles and T-matrix calculations for spheroidal particles are used to generate theoretical spectral extinction curves for sulfate and polar stratospheric cloud particles. The values of the spectral aerosol measure M for the sulfate and polar stratospheric cloud particles are shown to be different. Aerosol extinction data, corresponding to temperatures between 180 and 220 K at a pressure of 46 hPa (near 21-km altitude) for 18 August 1992, are used to demonstrate the technique. Thermodynamic calculations, based upon frost-point calculation and laboratory phase-equilibrium studies of nitric acid trihydrate, are used to predict the location of nitric acid trihydrate cloud particles. 47 refs., 22 figs., 3 tabs.

  20. Retrieval of stratospheric aerosol size distributions and integral properties from simulated lidar backscatter measurements.

    PubMed

    Yue, G K

    2000-10-20

    A new approach for retrieving aerosol properties from extinction spectra is extended to retrieve aerosol properties from lidar backscatter measurements. In this method it is assumed that aerosol properties are expressed as a linear combination of backscatters at three or fewer wavelengths commonly used in lidar measurements. The coefficients in the weighted linear combination are obtained by minimization of the retrieval error averaged for a set of testing size distributions. The formulas can be used easily by investigators to retrieve aerosol properties from lidar backscatter measurements such as the Lidar In-Space Technology Experiment and Pathfinder Instruments for Clouds and Aerosols Spaceborne Observations.

  1. Global Aerosol Effect Retrieval From Passive Hyperspectral Measurements

    NASA Astrophysics Data System (ADS)

    de Graaf, M.; Tilstra, L. G.; Stammes, P.

    2013-12-01

    Absorbing aerosols can have a significant local direct radiative effect (DRE), while the global average aerosol DRE remains highly uncertain. Modelling studies have shown that the magnitude and sign of the aerosol DRE at the top of the atmosphere (TOA) depend on the scene, especially on the albedo of the scene under the aerosol layer. It changes with cloud fraction, from large positive for overcast conditions when aerosols are present above the cloud, to large negative for clear sky ocean scenes. Observational studies, which are necessary to constrain the model studies, have been scarce. The results of modelling studies depend strongly on the assumed aerosol properties. Observational studies also need to assume aerosol type and geophysical properties to derive aerosol optical properties from radiation measurements. This introduces large uncertainties in the retrieved aerosol DRE. Furthermore, the retrieval of aerosols over clouds from passive instruments is difficult, due to the large optical thickness of clouds. Therefore, observational studies of aerosol direct and indirect effects from passive satellite instruments are invariably restricted to aerosol studies close to the cloud edges. We have developed a method to derive the aerosol DRE for smoke over clouds directly from passive satellite hyperspectral reflectance measurements, independent of aerosol micro- physical property assumptions. This allows us to assess the local aerosol DRE from passive imagery directly on a pixel to pixel basis, even over clouds. The solar radiative absorption by smoke layers is quantified using the TOA reflectance spectrum from the ultraviolet (UV) to the shortwave infrared (SWIR). UV- absorbing aerosols have a strong signature that can be detected using UV reflectance measurements. Since the aerosol extinction optical thickness decreases rapidly with increasing wavelength for smoke, the properties of the scene below the aerosol layer can be retrieved in the SWIR, where aerosol

  2. A Compact Airborne High Spectral Resolution Lidar for Observations of Aerosol and Cloud Optical Properties

    NASA Technical Reports Server (NTRS)

    Hostetler, Chris A.; Hair, John W.; Cook, Anthony L.

    2002-01-01

    We are in the process of developing a nadir-viewing, aircraft-based high spectral resolution lidar (HSRL) at NASA Langley Research Center. The system is designed to measure backscatter and extinction of aerosols and tenuous clouds. The primary uses of the instrument will be to validate spaceborne aerosol and cloud observations, carry out regional process studies, and assess the predictions of chemical transport models. In this paper, we provide an overview of the instrument design and present the results of simulations showing the instrument's capability to accurately measure extinction and extinction-to-backscatter ratio.

  3. Deep Extinction Mapping in Molecular Cores

    NASA Astrophysics Data System (ADS)

    Hodapp, Klaus; Urban, Laurie; Rieke, Marcia

    2014-12-01

    This proposal is for preparatory observations of the targets selected for a future James Webb Space Telescope (JWST) Near-Infrared Camera (NIRCam) guaranteed time project, as well as for a more general preparation for the science of this project. Our JWST project with NIRCam, NIRSpec, and MIRI is aimed at obtaining the deepest, and therefore best sampled, extinction maps of a sample of molecular cores, selected to contain quiescent, collapsing, and star-forming cores. We will also obtain spectroscopy of suitable, selected background stars for a detailed study of both the continuum extinction law and the ice feature absorption. The proposed Spitzer IRAC observations are aimed at identifying specific background stars for these future spectroscopic observations with JWST NIRSpec or NIRCam (grism), and with MIRI. For detailed planning of the JWST observations, we need to know how many suitable background stars are available, how many NIRSpec multi-slit pointing will be required, or whether slitless NIRCam grism spectroscopy is feasible. In addition to their role in preparing future JWST observations, the proposed Spitzer observations will immediately be used, together with UKIRT data we have already obtained and together with archival imaging data from other ground-based telescopes, to compute column density maps of the target objects and compare those with JCMT continuum and CO line emission maps to study the temperature distribution and gas freeze-out effects in those dense molecular cores. This work will form the main part of L. Urban's Ph.D. thesis project.

  4. Analysis of the unresolved organic fraction in atmospheric aerosols with ultrahigh-resolution mass spectrometry and nuclear magnetic resonance spectroscopy: organosulfates as photochemical smog constituents.

    PubMed

    Schmitt-Kopplin, Philippe; Gelencsér, Andras; Dabek-Zlotorzynska, Ewa; Kiss, Gyula; Hertkorn, Norbert; Harir, Mourad; Hong, Yang; Gebefügi, Istvan

    2010-10-01

    Complementary molecular and atomic signatures obtained from Fourier transform ion cyclotron resonance (FTICR) mass spectra and NMR spectra provided unequivocal attribution of CHO, CHNO, CHOS, and CHNOS molecular series in secondary organic aerosols (SOA) and high-resolution definition of carbon chemical environments. Sulfate esters were confirmed as major players in SOA formation and as major constituents of its water-soluble fraction (WSOC). Elevated concentrations of SO(2), sulfate, and photochemical activity were shown to increase the proportion of SOA sulfur-containing compounds. Sulfonation of CHO precursors by means of heterogeneous reactions between carbonyl derivatives and sulfuric acid in gas-phase photoreactions was proposed as a likely formation mechanism of CHOS molecules. In addition, photochemistry induced oligomerization processes of CHOS molecules. Methylesters found in methanolic extracts of a SOA subjected to strong photochemical exposure were considered secondary products derived from sulfate esters by methanolysis. The relative abundance of nitrogen-containing compounds (CHNO and CHNOS series) appeared rather dependent on local effects such as biomass burning. Extensive aliphatic branching and disruption of extended NMR spin-systems by carbonyl derivatives and other heteroatoms were the most significant structural motifs in SOA. The presence of heteroatoms in elevated oxidation states suggests a clearly different SOA formation trajectory in comparison with established terrestrial and aqueous natural organic matter. PMID:20879800

  5. Analysis of the unresolved organic fraction in atmospheric aerosols with ultrahigh-resolution mass spectrometry and nuclear magnetic resonance spectroscopy: organosulfates as photochemical smog constituents.

    PubMed

    Schmitt-Kopplin, Philippe; Gelencsér, Andras; Dabek-Zlotorzynska, Ewa; Kiss, Gyula; Hertkorn, Norbert; Harir, Mourad; Hong, Yang; Gebefügi, Istvan

    2010-10-01

    Complementary molecular and atomic signatures obtained from Fourier transform ion cyclotron resonance (FTICR) mass spectra and NMR spectra provided unequivocal attribution of CHO, CHNO, CHOS, and CHNOS molecular series in secondary organic aerosols (SOA) and high-resolution definition of carbon chemical environments. Sulfate esters were confirmed as major players in SOA formation and as major constituents of its water-soluble fraction (WSOC). Elevated concentrations of SO(2), sulfate, and photochemical activity were shown to increase the proportion of SOA sulfur-containing compounds. Sulfonation of CHO precursors by means of heterogeneous reactions between carbonyl derivatives and sulfuric acid in gas-phase photoreactions was proposed as a likely formation mechanism of CHOS molecules. In addition, photochemistry induced oligomerization processes of CHOS molecules. Methylesters found in methanolic extracts of a SOA subjected to strong photochemical exposure were considered secondary products derived from sulfate esters by methanolysis. The relative abundance of nitrogen-containing compounds (CHNO and CHNOS series) appeared rather dependent on local effects such as biomass burning. Extensive aliphatic branching and disruption of extended NMR spin-systems by carbonyl derivatives and other heteroatoms were the most significant structural motifs in SOA. The presence of heteroatoms in elevated oxidation states suggests a clearly different SOA formation trajectory in comparison with established terrestrial and aqueous natural organic matter.

  6. Aerosol Climate Time Series in ESA Aerosol_cci

    NASA Astrophysics Data System (ADS)

    Popp, Thomas; de Leeuw, Gerrit; Pinnock, Simon

    2016-04-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. Meanwhile, full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer, but also from ATSR instruments and the POLDER sensor), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which were also validated and improved in the reprocessing. For the three ATSR algorithms the use of an ensemble method was tested. The paper will summarize and discuss the status of dataset reprocessing and validation. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension

  7. SAM II aerosol profile measurements, Poker Flat, Alaska; July 16-19, 1979

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Chu, W. P.; Mcmaster, L. R.; Grams, G. W.; Herman, B. M.; Pepin, T. J.; Russell, P. B.; Swissler, T. J.

    1981-01-01

    SAM II satellite measurements during the July 1979 Poker Flat mission, yielded an aerosol extinction coefficient of 0.0004/km at 1.0 micron wavelength, in the region of the stratospheric aerosol mixing ratio peak (12-16 km). The stratospheric aerosol optical depth for these data, calculated from the tropopause through 30 km, is approximately 0.001. These results are consistent with the average 1979 summertime values found throughout the Arctic.

  8. Ecology: Dynamics of Indirect Extinction.

    PubMed

    Montoya, Jose M

    2015-12-01

    The experimental identification of the mechanism by which extinctions of predators trigger further predator extinctions emphasizes the role of indirect effects between species in disturbed ecosystems. It also has deep consequences for the hidden magnitude of the current biodiversity crisis. PMID:26654371

  9. Pleistocene extinctions: haunting the survivors.

    PubMed

    Hofreiter, Michael

    2007-08-01

    For many years, the megafaunal extinctions at the end of the Pleistocene have been assumed to have affected only those species that became extinct. However, recent analyses show that the surviving species may also have experienced losses in terms of genetic and ecological diversity. PMID:17686436

  10. Acoustic integrated extinction

    PubMed Central

    Norris, Andrew N.

    2015-01-01

    The integrated extinction (IE) is defined as the integral of the scattering cross section as a function of wavelength. Sohl et al. (2007 J. Acoust. Soc. Am. 122, 3206–3210. (doi:10.1121/1.2801546)) derived an IE expression for acoustic scattering that is causal, i.e. the scattered wavefront in the forward direction arrives later than the incident plane wave in the background medium. The IE formula was based on electromagnetic results, for which scattering is causal by default. Here, we derive a formula for the acoustic IE that is valid for causal and non-causal scattering. The general result is expressed as an integral of the time-dependent forward scattering function. The IE reduces to a finite integral for scatterers with zero long-wavelength monopole and dipole amplitudes. Implications for acoustic cloaking are discussed and a new metric is proposed for broadband acoustic transparency. PMID:27547100

  11. Photochemistry of Model Organic Aerosol Systems

    NASA Astrophysics Data System (ADS)

    Mang, S. A.; Bateman, A. P.; Dailo, M.; Do, T.; Nizkorodov, S. A.; Pan, X.; Underwood, J. S.; Walser, M. L.

    2007-05-01

    Up to 90 percent of urban aerosol particles have been shown to contain organic molecules. Reactions of these particles with atmospheric oxidants and/or sunlight result in large changes in their composition, toxicity, and ability to act as cloud condensation nuclei. For this reason, chemistry of model organic aerosol particles initiated by oxidation and direct photolysis is of great interest to atmospheric, climate, and health scientists. Most studies in this area have focused on identifying the products of oxidation of the organic aerosols, while the products of direct photolysis of the resulting molecules remaining in the aerosol particle have been left mostly unexplored. We have explored direct photolytic processes occurring in selected organic aerosol systems using infrared cavity ringdown spectroscopy to identify small gas phase products of photolysis, and mass-spectrometric and photometric techniques to study the condensed phase products. The first model system was secondary organic aerosol formed from the oxidation of several monoterpenes by ozone in the presence and absence of NOx, under different humidities. The second system modeled after oxidatively aged primary organic aerosol particles was a thin film of either alkanes or saturated fatty acids oxidized in several different ways, with the oxidation initiated by ozone, chlorine atom, or OH. In every case, the general conclusion was that the photochemical processing of model organic aerosols is significant. Such direct photolysis processes are believed to age organic aerosol particles on time scales that are short compared to the particles' atmospheric lifetimes.

  12. Measuring Extinction with ALE

    NASA Astrophysics Data System (ADS)

    Zimmer, Peter C.; McGraw, J. T.; Gimmestad, G. G.; Roberts, D.; Stewart, J.; Smith, J.; Fitch, J.

    2007-12-01

    ALE (Astronomical LIDAR for Extinction) is deployed at the University of New Mexico's (UNM) Campus Observatory in Albuquerque, NM. It has begun a year-long testing phase prior deployment at McDonald Observatory in support of the CCD/Transit Instrument II (CTI-II). ALE is designed to produce a high-precision measurement of atmospheric absorption and scattering above the observatory site every ten minutes of every moderately clear night. LIDAR (LIght Detection And Ranging) is the VIS/UV/IR analog of radar, using a laser, telescope and time-gated photodetector instead of a radio transmitter, dish and receiver. In the case of ALE -- an elastic backscatter LIDAR -- 20ns-long, eye-safe laser pulses are launched 2500 times per second from a 0.32m transmitting telescope co-mounted with a 50mm short-range receiver on an alt-az mounted 0.67m long-range receiver. Photons from the laser pulse are scattered and absorbed as the pulse propagates through the atmosphere, a portion of which are scattered into the field of view of the short- and long-range receiver telescopes and detected by a photomultiplier. The properties of a given volume of atmosphere along the LIDAR path are inferred from both the altitude-resolved backscatter signal as well as the attenuation of backscatter signal from altitudes above it. We present ALE profiles from the commissioning phase and demonstrate some of the astronomically interesting atmospheric information that can be gleaned from these data, including, but not limited to, total line-of-sight extinction. This project is funded by NSF Grant 0421087.

  13. Extinction of Harrington's mountain goat.

    PubMed

    Mead, J I; Martin, P S; Euler, R C; Long, A; Jull, A J; Toolin, L J; Donahue, D J; Linick, T W

    1986-02-01

    Keratinous horn sheaths of the extinct Harrington's mountain goat, Oreamnos harringtoni, were recovered at or near the surface of dry caves of the Grand Canyon, Arizona. Twenty-three separate specimens from two caves were dated nondestructively by the tandem accelerator mass spectrometer (TAMS). Both the TAMS and the conventional dates indicate that Harrington's mountain goat occupied the Grand Canyon for at least 19,000 years prior to becoming extinct by 11,160 +/- 125 radiocarbon years before present. The youngest average radiocarbon dates on Shasta ground sloths, Nothrotheriops shastensis, from the region are not significantly younger than those on extinct mountain goats. Rather than sequential extinction with Harrington's mountain goat disappearing from the Grand Canyon before the ground sloths, as one might predict in view of evidence of climatic warming at the time, the losses were concurrent. Both extinctions coincide with the regional arrival of Clovis hunters.

  14. Interstellar extinction in the ultraviolet

    NASA Technical Reports Server (NTRS)

    Bless, R. C.; Savage, B. D.

    1972-01-01

    Interstellar extinction curves over the region 3600-1100 A for 17 stars are presented. The observations were made by the two Wisconsin spectrometers onboard the OAO-2 with spectral resolutions of 10 A and 20 A. The extinction curves generally show a pronounced maximum at 2175 plus or minus 25 A, a broad minimum in the region 1800-1350 A, and finally a rapid rise to the far ultraviolet. Large extinction variations from star to star are found, especially in the far ultraviolet; however, with only two possible exceptions in this sample, the wavelength at the maximum of the extinction bump is essentially constant. These data are combined with visual and infrared observations to display the extinction behavior over a range in wavelength of about a factor of 20.

  15. Extinction of Harrington's mountain goat

    SciTech Connect

    Mead, J.I.; Martin, P.S.; Euler, R.C.; Long, A.; Jull, A.J.T.; Toolin, L.J.; Donahue, D.J.; Linick, T.W.

    1986-02-01

    Keratinous horn sheaths of the extinct Harrington's mountain goat, Oreamnos harringtoni, were recovered at or near the surface of dry caves of the Grand Canyon, Arizona. Twenty-three separate specimens from two caves were dated nondestructively by the tandem accelerator mass spectrometer (TAMS). Both the TAMS and the conventional dates indicate that Harrington's mountain goat occupied the Grand Canyon for at least 19,000 years prior to becoming extinct by 11,160 +/- 125 radiocarbon years before present. The youngest average radiocarbon dates on Shasta ground sloths, Nothrotheriops shastensis, from the region are not significantly younger than those on extinct mountain goats. Rather than sequential extinction with Harrington's mountain goat disappearing from the Grand Canyon before the ground sloths, as one might predict in view of evidence of climatic warming at the time, the losses were concurrent. Both extinctions coincide with the regional arrival of Clovis hunters.

  16. Extinction of Harrington's Mountain Goat

    NASA Astrophysics Data System (ADS)

    Mead, Jim I.; Martin, Paul S.; Euler, Robert C.; Long, Austin; Jull, A. J. T.; Toolin, Laurence J.; Donahue, Douglas J.; Linick, T. W.

    1986-02-01

    Keratinous horn sheaths of the extinct Harrington's mountain goat, Oreamnos harringtoni, were recovered at or near the surface of dry caves of the Grand Canyon, Arizona. Twenty-three separate specimens from two caves were dated nondestructively by the tandem accelerator mass spectrometer (TAMS). Both the TAMS and the conventional dates indicate that Harrington's mountain goat occupied the Grand Canyon for at least 19,000 years prior to becoming extinct by 11,160 ± 125 radiocarbon years before present. The youngest average radiocarbon dates on Shasta ground sloths, Nothrotheriops shastensis, from the region are not significantly younger than those on extinct mountain goats. Rather than sequential extinction with Harrington's mountain goat disappearing from the Grand Canyon before the ground sloths, as one might predict in view of evidence of climatic warming at the time, the losses were concurrent. Both extinctions coincide with the regional arrival of Clovis hunters.

  17. Research in Depolarization and Extinction Coefficient of Particles in Tibetan Plateau by Lidar

    NASA Astrophysics Data System (ADS)

    Dai, Guangyao; Song, Xiaoquan; Zhai, Xiaochun; Wu, Songhua

    2016-06-01

    Vertical profiles of the depolarization ratio and the extinction coefficient of atmospheric particles in Tibetan Plateau were measured with the OUC Water Vapor, Cloud and Aerosol Lidar during the 3rd Tibetan Plateau Atmospheric Expedition Experiment Campaign in 2013 and 2014. The cloud types and phases, the spatial temporal distribution of the aerosols and the boundary layer height in the Tibetan Plateau were obtained using polarization lidar technique. In this paper, the depolarization ratio was validated with CALIOP polarization simultaneous data, and the extinction coefficient was retrieved by the Fernald method. The result implied that the atmosphere in the Tibetan Plateau was quite clean with low aerosol load and serious pollution. The ice-water mixed cumulus, water cumulus or stratus clouds in Litang and Nagqu were occurred and classified, respectively. The boundary layer height in Nagqu at average altitude over 4600 m was obtained at around 200 m-300 m, which was commonly lower than that in other observed sites.

  18. Airborne Sunphotometry of Aerosol Optical Depth and Columnar Water Vapor During ACE-Asia

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Schmid, B.; Russell, P. B.; Livingston, J. M.; Eilers, J. A.; Ramirez, S. A.; Kahn, R.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    During the Intensive Field Campaign (IFC) of the Aerosol Characterization Experiment - Asia (ACE-Asia), March-May 2001, the 6-channel NASA Ames Airborne Tracking Sunphotometer (AATS-6) operated during 15 of the 19 research flights aboard the NCAR C- 130, while its 14-channel counterpart (AATS- 14) was flown successfully on all 18 research flights of a Twin Otter aircraft operated by the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS), Monterey, CA. ACE-Asia was the fourth in a series of aerosol characterization experiments and focused on aerosol outflow from the Asian continent to the Pacific basin. Each ACE was designed to integrate suborbital and satellite measurements and models so as to reduce the uncertainty in calculations of the climate forcing due to aerosols. The Ames Airborne Tracking Sunphotometers measured solar beam transmission at 6 (380-1021 nm, AATS-6) and 14 wavelengths (353-1558 nm, AATS-14) respectively, yielding aerosol optical depth (AOD) spectra and column water vapor (CWV). Vertical differentiation in profiles yielded aerosol extinction and water vapor concentration. The wavelength dependence of AOD and extinction indicates that supermicron dust was often a major component of the aerosol. Frequently this dust-containing aerosol extended to high altitudes. For example, in data flights analyzed to date 34 +/- 13% of full-column AOD(525 nm) was above 3 km. In contrast, only 10 +/- 4% of CWV was above 3 km. In this paper, we will show first sunphotometer-derived results regarding the spatial variation of AOD and CWV, as well as the vertical distribution of aerosol extinction and water vapor concentration. Preliminary comparison studies between our AOD/aerosol extinction data and results from: (1) extinction products derived using in situ measurements and (2) AOD retrievals using the Multi-angle Imaging Spectro-Radiometer (MISR) aboard the TERRA satellite will also be presented.

  19. [Aerosol therapy].

    PubMed

    Wildhaber, J H

    1998-08-15

    Aerosol therapy plays a major role in the diagnosis and treatment of various lung diseases. The aim of inhalation therapy is to deposit a reproducible and adequate dose of a specific drug to the airways, in order to achieve a high, local, clinical effect while avoiding serious systemic side effects. To achieve this goal, it is therefore important to have an efficient inhalation device to deliver different medications. However, the currently available therapeutic inhalation devices (nebuliser, pressurised metered-dose inhaler and dry powder inhaler) are not very efficient in aerosol delivery and have several disadvantages. Inhalation devices can be assessed by in vitro studies, filter studies and radiolabelled deposition studies. Several radiolabelled deposition studies have shown that nebulisers and pressurised metered-dose inhalers are not very efficient in aerosol delivery. In children, before 1997, only 0.5% to 15% of the total nebulised or actuated dose from a nebuliser or pressurised metered-dose inhaler actually reached the lungs. These numbers were somewhat improved in adults, 30% of the total nebulised or actuated dose reaching the airways. Aerosol therapy with dry powder inhalers was the most efficient before 1997, 30% of the total dose being deposited in the lungs of adults and children. In 1997, new developments in pressurised metered-dose inhalers much improved their efficiency in aerosol delivery. Lung deposition can be increased by up to 60% with use of a non-electrostatic holding chamber and/or a pressurised metered-dose inhaler with a hydrofluoroalkane propellant possessing superior aerosol characteristics. Several studies comparing the clinical efficiency of different inhalation devices have shown that the choice of an optimal inhalation device is crucial. In addition to the aerosol characteristics, ventilation parameters and airway morphology have an important bearing on deposition patterns. These parameters may be greatly influenced by the

  20. The post-pinatubo evolution of stratospheric aerosol surface area density as inferred from SAGE 2

    NASA Technical Reports Server (NTRS)

    Poole, L. R.; Thomason, L. W.

    1994-01-01

    Following the eruption of Mount Pinatubo in June of 1991, the aerosol mass loading of the stratosphere increased from -1 Mt to approximately 30 Mt. This change in aerosol loading was responsible for numerous radiative and chemical changes observed within the stratosphere. As a result, the ability to quantify aerosol properties on a global basis during this period is important. Aerosol surface area density is a critical parameter in governing the rates of heterogeneous reactions, such as ClONO2 plus H2O yields HNO3 plus HOCl, which influence the stratospheric abundance of ozone. Following the eruption of Mt. Pinatubo, measurements by the Stratospheric Aerosol and Gas Experiment (SAGE 2) indicated that the stratospheric aerosol surface area density increased by as much as a factor of 100. Using SAGE 2 multi-wavelength aerosol extinction data, aerosol surface area density as well as mass are derived for the period following the eruption of Mt. Pinatubo through the present.

  1. Aerosol Absorption in the Atmosphere: Perspectives from Global Model, Ground-Based Measurements, and Field Observations

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Holben, Brent; Anderson, Tad; Quinn, Patricia; Duncan, Bryan; Ginoux, Paul

    2003-01-01

    Aerosol absorption in the atmosphere poses a major uncertainty in assessing the aerosol climate effects. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, and our limited knowledge of aerosol mixing state and optical properties. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt. We compare the model calculated total aerosol optical thickness, extinction, and absorption with those quantities from the ground-based sun photometer measurements from AERONET at several different wavelengths and the field observations from ACE-Asia. We will examine what are the most sensitive factors in determining the aerosol absorption, and the consequences of assessing the aerosol radiative forcing and atmospheric heating associated with those factors.

  2. Aerosol Sources, Absorption, and Intercontinental Transport: Synergies among Models, Remote Sensing, and Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Ginoux, Paul; Dubovik, Oleg; Holben, Brent; Kaufman, Yoram; chu, Allen; Anderson, Tad; Quinn, Patricia

    2003-01-01

    Aerosol climate forcing is one of the largest uncertainties in assessing the anthropogenic impact on the global climate system. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, our limited knowledge of aerosol mixing state and optical properties, and the consequences of intercontinental transport of aerosols and their precursors. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt, from anthropogenic, biomass burning, and natural sources. We compare the model calculated aerosol extinction and absorption with those quantities from the ground-based sun photometer measurements from AERONET at several different wavelengths and the field observations from ACE-Asia, and model calculated total aerosol optical depth and fine mode fractions with the MODIS satellite retrieval. We will also estimate the intercontinental transport of pollution and dust aerosols from their source regions to other areas in different seasons.

  3. Aerosol Absorption in the Atmosphere: Perspectives from Global Model, Ground-Based Measurements, and Field Observations

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Dubovik, Oleg; Holben, Brent; Torres, Omar; Anderson, Tad; Quinn, Patricia; Ginoux, Paul

    2004-01-01

    Aerosol absorption in the atmosphere poses a major uncertainty in assessing the aerosol climate effects. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, and our limited knowledge of aerosol mixing state and optical properties. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt. We compare the model calculated total aerosol optical thickness, extinction, and absorption with those quantities from the ground-based sun photometer measurements from AERONET, satellite retrievals from the TOMS instrument, and field observations from ACE-Asia. We will examine the most sensitive factors in determining the aerosol absorption. and the consequences of assessing the aerosol radiative forcing and atmospheric heating associated with those factors.

  4. Aerosol Absorption in the Atmosphere: Perspectives from Global Model, Ground-Based Measurements, and Field Observations

    NASA Technical Reports Server (NTRS)

    Chin, Main; Dubovik, Oleg; Holben, Brent; Anderson, Tad; Quinn, Patricia; Duncan, Bryan; Ginoux, Paul

    2004-01-01

    Aerosol absorption in the atmosphere poses a major uncertainty in assessing the aerosol climate effects. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, and our limited knowledge of aerosol mixing state and optical properties. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt. We compare the model calculated total aerosol optical thickness, extinction, and absorption with those quantities from the ground-based sun photometer measurements from AERONET at several different wavelengths and the field observations from ACE-Asia. We will examine the most sensitive factors in determining the aerosol absorption, and the consequences of assessing the aerosol radiative forcing and atmospheric heating associated with those factors.

  5. Aerosol Sources, Absorption, and Intercontinental Transport: Synergies Among Models, Remote Sensing, and Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Chu, Allen; Levy, Robert; Remer, Lorraine; Kaufman, Yoram; Dubovik, Oleg; Holben, Brent; Eck, Tom; Anderson, Tad; Quinn, Patricia

    2004-01-01

    Aerosol climate forcing is one of the largest uncertainties in assessing the anthropogenic impact on the global climate system. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, our limited knowledge of aerosol mixing state and optical properties, and the consequences of intercontinental transport of aerosols and their precursors. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt, from anthropogenic, .biomass burning, and natural sources. We compare the model calculated aerosol extinction and absorption with those quantities from the ground-based sun photometer measurements from AERON" at several different wavelengths and the field observations from ACE-Asia, and model calculated total aerosol optical depth and fine mode fractions with the MODIS satellite retrieval. We will also estimate the intercontinental transport of pollution and dust aerosols from their source regions to other areas in different seasons.

  6. Identifying Aerosol Type/Mixture from Aerosol Absorption Properties Using AERONET

    NASA Technical Reports Server (NTRS)

    Giles, D. M.; Holben, B. N.; Eck, T. F.; Sinyuk, A.; Dickerson, R. R.; Thompson, A. M.; Slutsker, I.; Li, Z.; Tripathi, S. N.; Singh, R. P.; Zibordi, G.

    2010-01-01

    Aerosols are generated in the atmosphere through anthropogenic and natural mechanisms. These sources have signatures in the aerosol optical and microphysical properties that can be used to identify the aerosol type/mixture. Spectral aerosol absorption information (absorption Angstrom exponent; AAE) used in conjunction with the particle size parameterization (extinction Angstrom exponent; EAE) can only identify the dominant absorbing aerosol type in the sample volume (e.g., black carbon vs. iron oxides in dust). This AAE/EAE relationship can be expanded to also identify non-absorbing aerosol types/mixtures by applying an absorption weighting. This new relationship provides improved aerosol type distinction when the magnitude of absorption is not equal (e.g, black carbon vs. sulfates). The Aerosol Robotic Network (AERONET) data provide spectral aerosol optical depth and single scattering albedo - key parameters used to determine EAE and AAE. The proposed aerosol type/mixture relationship is demonstrated using the long-term data archive acquired at AERONET sites within various source regions. The preliminary analysis has found that dust, sulfate, organic carbon, and black carbon aerosol types/mixtures can be determined from this AAE/EAE relationship when applying the absorption weighting for each available wavelength (Le., 440, 675, 870nm). Large, non-spherical dust particles absorb in the shorter wavelengths and the application of 440nm wavelength absorption weighting produced the best particle type definition. Sulfate particles scatter light efficiently and organic carbon particles are small near the source and aggregate over time to form larger less absorbing particles. Both sulfates and organic carbon showed generally better definition using the 870nm wavelength absorption weighting. Black carbon generation results from varying combustion rates from a number of sources including industrial processes and biomass burning. Cases with primarily black carbon showed

  7. The end-Permian mass extinction: A complex, multicausal extinction

    NASA Technical Reports Server (NTRS)

    Erwin, D. H.

    1994-01-01

    The end-Permian mass extinction was the most extensive in the history of life and remains one of the most complex. Understanding its causes is particularly important because it anchors the putative 26-m.y. pattern of periodic extinction. However, there is no good evidence for an impact and this extinction appears to be more complex than others, involving at least three phases. The first began with the onset of a marine regression during the Late Permian and resulting elimination of most marine basins, reduction in habitat area, and increased climatic instability; the first pulse of tetrapod extinctions occurred in South Africa at this time. The second phase involved increased regression in many areas (although apparently not in South China) and heightened climatic instability and environmental degradation. Release of gas hydrates, oxidation of marine carbon, and the eruption of the Siberian flood basalts occurred during this phase. The final phase of the extinction episode began with the earliest Triassic marine regression and destruction of nearshore continental habitats. Some evidence suggests oceanic anoxia may have developed during the final phase of the extinction, although it appears to have been insufficient to the sole cause of the extinction.

  8. Vertical Profiles of Aerosol Optical Properties Over Central Illinois and Comparison with Surface and Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Sheridan P. J.; Andrews, E.; Ogren, J A.; Tackett, J. L.; Winker, D. M.

    2012-01-01

    Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1) measure the in situ aerosol properties and determine their vertical and temporal variability and (2) relate these aircraft measurements to concurrent surface and satellite measurements. Underflights of the CALIPSO satellite show reasonable agreement in a majority of retrieved profiles between aircraft-measured extinction at 532 nm (adjusted to ambient relative humidity) and CALIPSO-retrieved extinction, and suggest that routine aircraft profiling programs can be used to better understand and validate satellite retrieval algorithms. CALIPSO tended to overestimate the aerosol extinction at this location in some boundary layer flight segments when scattered or broken clouds were present, which could be related to problems with CALIPSO cloud screening methods. The in situ aircraft-collected aerosol data suggest extinction thresholds for the likelihood of aerosol layers being detected by the CALIOP lidar. These statistical data offer guidance as to the likelihood of CALIPSO's ability to retrieve aerosol extinction at various locations around the globe.

  9. Aerosol physical properties in the stratosphere (APPS) radiometer design

    NASA Technical Reports Server (NTRS)

    Gray, C. R.; Woodin, E. A.; Anderson, T. J.; Magee, R. J.; Karthas, G. W.

    1977-01-01

    The measurement concepts and radiometer design developed to obtain earth-limb spectral radiance measurements for the Aerosol Physical Properties in the Stratosphere (APPS) measurement program are presented. The measurements made by a radiometer of this design can be inverted to yield vertical profiles of Rayleigh scatterers, ozone, nitrogen dioxide, aerosol extinction, and aerosol physical properties, including a Junge size-distribution parameter, and a real and imaginary index of refraction. The radiometer design provides the capacity for remote sensing of stratospheric constituents from space on platforms such as the space shuttle and satellites, and therefore provides for global measurements on a daily basis.

  10. New insights into secondary organic aerosol from the ozonolysis of α-pinene from combined infrared spectroscopy and mass spectrometry measurements.

    PubMed

    Kidd, Carla; Perraud, Véronique; Finlayson-Pitts, Barbara J

    2014-11-01

    Understanding mechanisms of formation, growth and physical properties of secondary organic aerosol (SOA) is central to predicting impacts on visibility, health and climate. It has been known for many decades that the oxidation of monoterpenes by ozone in the gas phase readily forms particles. However, the species responsible for the initial nucleation and the subsequent growth are not well established. Recent studies point to high molecular weight highly oxygenated products with extremely low vapor pressures (ELVOC, extremely low volatility organic compounds) as being responsible for the initial nucleation, with more volatile species contributing to particle growth. We report here the results of studies of SOA formed in the ozonolysis of α-pinene in air at 297 ± 2 K using atmospheric solids analysis probe (ASAP) mass spectrometry, attenuated total reflectance (ATR) Fourier transform infrared spectrometry and proton transfer reaction (PTR) mass spectrometry. Smaller particles are shown to be less volatile and have on average higher molecular mass components compared to larger particles, consistent with recent proposals regarding species responsible for the formation and growth of particles in this system. Thus the signatures of species responsible for particle development at various stages are observable even in particles of several hundred nm diameter. Pinonaldehyde and acetic acid were observed to evaporate from a film of impacted SOA at room temperature, from which the ratio of their diffusion coefficients to the square of the average film thickness, D/l(2), could be obtained. For acetic acid and pinonaldehyde, D/l(2) = 6.8 × 10(-6) s(-1) and 5.0 × 10(-6) s(-1) respectively, the relative magnitudes being consistent with the size difference between acetic acid and pinonaldehyde molecules. Limitations to quantifying the film thickness and hence absolute values of the diffusion coefficient are discussed and highlight a need for novel experimental methods for

  11. Nondestructive and rapid determination of nitrate in soil, dry deposits and aerosol samples using KBr-matrix with diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS).

    PubMed

    Verma, Santosh Kumar; Deb, Manas Kanti

    2007-01-23

    This paper presents the development of a new, rapid and precise analytical method for submicrogram levels of nitrate (NO3-) in environmental samples like soil, dry deposit samples, and coarse and fine aerosol particles. The determination of submicrogram levels of nitrate is based on the selection of a quantitative analytical peak at 1385 cm(-1) among the three observed vibrational peaks and preparing calibration curves using different known concentrations of nitrate by diffuse reflectance Fourier transform infra red spectrometric (DRIFTS) technique. Pre-weighed and ground infrared (IR) grade KBr was used as substrate over which remarkably wide range of known concentration of nitrate was sprayed and dried. The dried sample was analyzed by DRIFTS and absorbance was measured. Eight calibration curves for four different concentration ranges of nitrate for absorbance as well as peak area were prepared for samples containing lower and relatively higher values of nitrate. The relative standard deviation (n=8) for the nitrate concentration ranges, 0.05-40, 0.05-1.5, 1.5-25, 5-40 microg/0.1 g KBr were in the range 1.6-2.3% for the above calibration curves. The limit of detection (LOD) of the method is 0.07 microg g(-1) NO3-. The F- and t-tests were performed to check the analytical quality assurance test. The noteworthy feature of the reported method is the noninterference of any of the associated cations. The results were compared with that of ion-chromatographic method with high degree of acceptability. The method can be applied in wide concentration ranges. The method is reagent less, nondestructive, very fast, repeatable, and accurate and has high sample throughput value.

  12. Evaluation of SAGE II and Balloon-Borne Stratospheric Aerosol Measurements: Evaluation of Aerosol Measurements from SAGE II, HALOE, and Balloonborne Optical Particle Counters

    NASA Technical Reports Server (NTRS)

    Hervig, Mark; Deshler, Terry; Moddrea, G. (Technical Monitor)

    2002-01-01

    Stratospheric aerosol measurements from the University of Wyoming balloonborne optical particle counters (OPCs), the Stratospheric Aerosol and Gas Experiment (SAGE) II, and the Halogen Occultation Experiment (HALOE) were compared in the period 1982-2000, when measurements were available. The OPCs measure aerosol size distributions, and HALOE multiwavelength (2.45-5.26 micrometers) extinction measurements can be used to retrieve aerosol size distributions. Aerosol extinctions at the SAGE II wavelengths (0.386-1.02 micrometers) were computed from these size distributions and compared to SAGE II measurements. In addition, surface areas derived from all three experiments were compared. While the overall impression from these results is encouraging, the agreement can change with latitude, altitude, time, and parameter. In the broadest sense, these comparisons fall into two categories: high aerosol loading (volcanic periods) and low aerosol loading (background periods and altitudes above 25 km). When the aerosol amount was low, SAGE II and HALOE extinctions were higher than the OPC estimates, while the SAGE II surface areas were lower than HALOE and the OPCS. Under high loading conditions all three instruments mutually agree to within 50%.

  13. Iterative method for the inversion of multiwavelength lidar signals to determine aerosol size distribution.

    PubMed

    Rajeev, K; Parameswaran, K

    1998-07-20

    Two iterative methods of inverting lidar backscatter signals to determine altitude profiles of aerosol extinction and altitude-resolved aerosol size distribution (ASD) are presented. The first method is for inverting two-wavelength lidar signals in which the shape of the ASD is assumed to be of power-law type, and the second method is for inverting multiwavelength lidar signals without assuming any a priori analytical form of ASD. An arbitrary value of the aerosol extinction-to-backscatter ratio (S(1)) is assumed initially to invert the lidar signals, and the ASD determined by use of the spectral dependence of the retrieved aerosol extinction coefficients is used to improve the value of S(1) iteratively. The methods are tested for different forms of altitude-dependent ASD's by use of simulated lidar-backscatter-signal profiles. The effect of random noise on the lidar backscatter signals is also studied.

  14. CALIPSO-inferred aerosol direct radiative effects: Bias estimates using ground-based Raman lidars

    NASA Astrophysics Data System (ADS)

    Thorsen, T. J.; Fu, Q.

    2015-12-01

    Observational constraints on the change in radiative energy budget caused by the presence of aerosols, i.e. the aerosol direct radiative effect (DRE), have recently been made using observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO). CALIPSO observations have the potential to provide improved global estimates of aerosol DRE compared to passive sensor-derived estimates due to CALIPSO's ability to perform vertically-resolved aerosol retrievals over all surface types and over cloud. In this study we estimate the uncertainties in CALIPSO-inferred aerosol DRE using multiple years of observations from the Atmospheric Radiation Measurement (ARM) program's Raman lidars (RL) at midlatitude and tropical sites. Examined are assumptions about the ratio of extinction-to-backscatter (i.e. the lidar ratio) made by the CALIPSO retrievals, which are needed to retrieve the aerosol extinction profile. The lidar ratio is shown to introduce minimal error in the mean aerosol DRE at the top-of-atmosphere and surface. It is also shown that CALIPSO is unable to detection all radiatively-significant aerosol, resulting in an underestimate in the magnitude of the aerosol DRE. Therefore, global estimates of the aerosol DRE inferred from CALIPSO are likely too weak.

  15. Investigation of multiple scattering effects in aerosols

    NASA Technical Reports Server (NTRS)

    Deepak, A.

    1980-01-01

    The results are presented of investigations on the various aspects of multiple scattering effects on visible and infrared laser beams transversing dense fog oil aerosols contained in a chamber (4' x 4' x 9'). The report briefly describes: (1) the experimental details and measurements; (2) analytical representation of the aerosol size distribution data by two analytical models (the regularized power law distribution and the inverse modified gamma distribution); (3) retrieval of aerosol size distributions from multispectral optical depth measurements by two methods (the two and three parameter fast table search methods and the nonlinear least squares method); (4) modeling of the effects of aerosol microphysical (coagulation and evaporation) and dynamical processes (gravitational settling) on the temporal behavior of aerosol size distribution, and hence on the extinction of four laser beams with wavelengths 0.44, 0.6328, 1.15, and 3.39 micrometers; and (5) the exact and approximate formulations for four methods for computing the effects of multiple scattering on the transmittance of laser beams in dense aerosols, all of which are based on the solution of the radiative transfer equation under the small angle approximation.

  16. The learning of fear extinction.

    PubMed

    Furini, Cristiane; Myskiw, Jociane; Izquierdo, Ivan

    2014-11-01

    Recent work on the extinction of fear-motivated learning places emphasis on its putative circuitry and on its modulation. Extinction is the learned inhibition of retrieval of previously acquired responses. Fear extinction is used as a major component of exposure therapy in the treatment of fear memories such as those of the posttraumatic stress disorder (PTSD). It is initiated and maintained by interactions between the hippocampus, basolateral amygdala and ventromedial prefrontal cortex, which involve feedback regulation of the latter by the other two areas. Fear extinction depends on NMDA receptor activation. It is positively modulated by d-serine acting on the glycine site of NMDA receptors and blocked by AP5 (2-amino-5-phosphono propionate) in the three structures. In addition, histamine acting on H2 receptors and endocannabinoids acting on CB1 receptors in the three brain areas mentioned, and muscarinic cholinergic fibers from the medial septum to hippocampal CA1 positively modulate fear extinction. Importantly, fear extinction can be made state-dependent on circulating epinephrine, which may play a role in situations of stress. Exposure to a novel experience can strongly enhance the consolidation of fear extinction through a synaptic tagging and capture mechanism; this may be useful in the therapy of states caused by fear memory like PTSD.

  17. Mass Extinctions in Earth's History

    NASA Astrophysics Data System (ADS)

    Ward, P. D.

    2002-12-01

    Mass extinctions are short intervals of elevated species death. Possible causes of Earth's mass extinctions are both external (astronomical) and internal (tectonic and biotic changes from planetary mechanisms). Paleontologists have identified five "major" mass extinctions (>50 die-off in less than a million years) and more than 20 other minor events over the past 550 million years. Earlier major extinction events undoubtedly also occurred, but we have no fossil record; these were probably associated with, for example, the early heavy bombardment that cleared out the solar system, the advent of oxygen in the atmosphere, and various "snowball Earth" events. Mass extinctions are viewed as both destructive (species death ) and constructive, in that they allow evolutionary innovation in the wake of species disappearances. From an astrobiological perspective, mass extinctions must be considered as able both to reduce biodiversity and even potentially end life on any planet. Of the five major mass extinctions identified on Earth, only one (the Cretaceous/Tertiary event 65 million years ago that famously killed off the dinosaurs ) is unambiguously related to the impact of an asteroid or comet ( 10-km diameter). The Permian/Triassic (250 Myr ago) and Triassic/Jurassic (202 Myr ago) events are now the center of debate between those favoring impact and those suggesting large volume flooding by basaltic lavas. The final two events, Ordovician (440 Myr ago) and Devonian (370 Myr ago) have no accepted causal mechanisms.

  18. The learning of fear extinction.

    PubMed

    Furini, Cristiane; Myskiw, Jociane; Izquierdo, Ivan

    2014-11-01

    Recent work on the extinction of fear-motivated learning places emphasis on its putative circuitry and on its modulation. Extinction is the learned inhibition of retrieval of previously acquired responses. Fear extinction is used as a major component of exposure therapy in the treatment of fear memories such as those of the posttraumatic stress disorder (PTSD). It is initiated and maintained by interactions between the hippocampus, basolateral amygdala and ventromedial prefrontal cortex, which involve feedback regulation of the latter by the other two areas. Fear extinction depends on NMDA receptor activation. It is positively modulated by d-serine acting on the glycine site of NMDA receptors and blocked by AP5 (2-amino-5-phosphono propionate) in the three structures. In addition, histamine acting on H2 receptors and endocannabinoids acting on CB1 receptors in the three brain areas mentioned, and muscarinic cholinergic fibers from the medial septum to hippocampal CA1 positively modulate fear extinction. Importantly, fear extinction can be made state-dependent on circulating epinephrine, which may play a role in situations of stress. Exposure to a novel experience can strongly enhance the consolidation of fear extinction through a synaptic tagging and capture mechanism; this may be useful in the therapy of states caused by fear memory like PTSD. PMID:25452113

  19. Extinction in young massive clusters

    NASA Astrophysics Data System (ADS)

    De Marchi, Guido; Panagia, Nino

    2016-01-01

    Up to ages of ~100 Myr, massive clusters are still swamped in large amounts of gas and dust, causing considerable and uneven levels of extinction. At the same time, large grains (ices?) produced by type II supernovae profoundly alter the interstellar medium (ISM), thus resulting in extinction properties very different from those of the diffuse ISM. To obtain physically meaningful parameters of stars (luminosities, effective temperatures, masses, ages, etc.) we must understand and measure the local extinction law. We have developed a powerful method to unambiguously determine the extinction law everywhere across a cluster field, using multi-band photometry of red giant stars belonging to the red clump (RC) and are applying it to young massive clusters in the Local Group. In the Large Magellanic Cloud, with about 20 RC stars per arcmin2, for each field we can easily derive an accurate extinction curve over the entire wavelength range of the photometry. As an example, we present the extinction law of the Tarantula nebula (30 Dor) based on thousands of stars observed as part of the Hubble Tarantula Treasury Project. We discuss how the incautious adoption of the Milky Way extinction law in the analysis of massive star forming regions may lead to serious underestimates of the fluxes and of the star formation rates by factors of 2 or more.

  20. Lidar network observations of tropospheric aerosols

    NASA Astrophysics Data System (ADS)

    Sugimoto, Nobuo; Matsui, Ichiro; Shimizu, Atsushi; Nishizawa, Tomoaki; Hara, Yukari; Xie, Chenbo; Uno, Itsushi; Yumimoto, Keiya; Wang, Zifa; Yoon, Soon-Chang

    2008-12-01

    Observations of tropospheric aerosols (mineral dust, air-pollution aerosols, etc.) and clouds are being conducted using a network of two-wavelength (1064nm, 532nm) polarization (532nm) lidars in the East Asian region. Currently, the lidars are operated continuously at 23 locations in Japan, Korea, China, Mongolia and Thailand. A real-time data processing system was developed for the network, and the data products such as the attenuated backscatter coefficients and the estimated extinction coefficients for non-spherical and spherical aerosols are generated automatically for online network stations. The data are used in the real-time monitoring of Asian dust as well as in the studies of regional air pollution and climate change.

  1. Infrared and X-ray Absorption Near Edge Structure Spectroscopy Analyses of the Titan Haze Simulation (THS) Aerosols Produced at Low Temperature (200 K)

    NASA Astrophysics Data System (ADS)

    Sciamma-O'Brien, Ella; Salama, Farid

    2016-10-01

    We present our latest results on the Titan Haze Simulation (THS) experiment developed on the COSmIC simulation chamber at NASA Ames. In Titan's atmosphere, a complex organic chemistry induced by UV radiation and electron bombardment occurs between N2 and CH4 and leads to the production of larger molecules and solid aerosols. In the THS, Titan's chemistry is simulated by pulsed plasma in the stream of a supersonic expansion, at Titan-like temperature (200 K). The residence time of the gas in the pulsed plasma discharge is ~3 µs, hence the chemistry is truncated allowing us to probe the first and intermediate steps of the chemistry, by adding heavier precursors into the initial N2-CH4 gas mixture. Experiments have been performed in different gas mixtures from the simpler N2-CH4 (98:2 and 95:5), to more complex mixtures: N2-CH4-C2H2 (91:5:4 and 94.5:5:0.5), N2-CH4-C6H6 (90:5:5) and N2-CH4-C2H2-C6H6 (86:5:4:5). Both the gas and solid phases have been analyzed using a combination of in situ and ex situ diagnostics.A recent mass spectrometry analysis of the gas phase demonstrated that the THS is a unique tool to monitor the different steps of the N2-CH4 chemistry [1]. The results of the solid phase study are consistent with the chemical growth evolution observed in the gas phase. The solid phase products are in the form of grains produced in volume and not from interaction on the substrate's surface. Scanning Electron Microscopy images have shown that more complex mixtures produce larger aggregates (100-500 nm in N2-CH4, up to 5 µm in N2-CH4-C2H2-C6H6). Moreover, the morphology of the grains seems to depend on the precursors, a finding that could have an impact on Titan haze microphysical models. We will present the latest results of the infrared and x-ray absorption near edge structure spectroscopic measurements that have been performed on all four mixtures. These results provide information on the nature of the different functional groups present in our samples as

  2. New theories about ancient extinctions

    USGS Publications Warehouse

    Spall, H.

    1986-01-01

    But all this may be changing. Mass extinctions have been very much in the news in the last few years, triggered in large part by the proposal that the extinction of the dinosaurs and marine animals was caused by a catastrophic collision between the Earth and an extra-terrestrial body (bolide). Recently an equally contentious suggestion has been made that mass extinctions have swept the Earth every 26 to 31 million years for at least the last 250 million years-caused by encounters with some kind of extra-terrestrial object such as one of the asteroids or the comets. 

  3. Short-term Variability of Extinction by Broadband Stellar Photometry

    SciTech Connect

    Musat, I.C.; Ellingson, R.G.

    2005-03-18

    Aerosol optical depth variation over short-term time intervals is determined from broadband observations of stars with a whole sky imager. The main difficulty in such measurements consists of accurately separating the star flux value from the non-stellar diffuse skylight. Using correction method to overcome this difficulty, the monochromatic extinction at the ground due to aerosols is extracted from heterochromatic measurements. A form of closure is achieved by comparison with simultaneous or temporally close measurements with other instruments, and the total error of the method, as a combination of random error of measurements and systematic error of calibration and model, is assessed as being between 2.6 and 3% rms.

  4. Abiotic causes of the great mass extinction of marine biota at the Triassic-Jurassic boundary

    NASA Astrophysics Data System (ADS)

    Barash, M. S.

    2015-05-01

    In the interval of the Triassic-Jurassic boundary up to 80% of marine species became extinct. The main hypotheses on the causes of this mass extinction are reviewed. The extinction was triggered by a powerful eruption of basalts in the Central Atlantic Magmatic Province. In addition, several impact craters have been found. Extraterrestrial factors resulted in two main sequences of events: terrestrial, leading to strong volcanism, and extraterrestrial (impact events). They produced similar effects: emissions of harmful chemical compounds and aerosols. Consequences included the greenhouse effect, darkening of the atmosphere (which prevented photosynthesis), stagnation of the oceans, and anoxia. Biological productivity decreased; food chains collapsed. As a result, all vital processes were disturbed, and a large portion of the biota went extinct.

  5. An Analysis of AERONET Aerosol Absorption Properties and Classifications Representative of Aerosol Source Regions

    NASA Technical Reports Server (NTRS)

    Giles, David M.; Holben, Brent N.; Eck, Thomas F.; Sinyuk, Aliaksandr; Smirnov, Alexander; Slutsker, Ilya; Dickerson, R. R.; Thompson, A. M.; Schafer, J. S.

    2012-01-01

    Partitioning of mineral dust, pollution, smoke, and mixtures using remote sensing techniques can help improve accuracy of satellite retrievals and assessments of the aerosol radiative impact on climate. Spectral aerosol optical depth (tau) and single scattering albedo (omega (sub 0) ) from Aerosol Robotic Network (AERONET) measurements are used to form absorption [i.e., omega (sub 0) and absorption Angstrom exponent (alpha(sub abs))] and size [i.e., extinction Angstrom exponent (alpha(sub ext)) and fine mode fraction of tau] relationships to infer dominant aerosol types. Using the long-term AERONET data set (1999-2010), 19 sites are grouped by aerosol type based on known source regions to: (1) determine the average omega (sub 0) and alpha(sub abs) at each site (expanding upon previous work); (2) perform a sensitivity study on alpha(sub abs) by varying the spectral omega (sub 0); and (3) test the ability of each absorption and size relationship to distinguish aerosol types. The spectral omega (sub 0) averages indicate slightly more aerosol absorption (i.e., a 0.0 < delta omega (sub 0) <= 0.02 decrease) than in previous work and optical mixtures of pollution and smoke with dust show stronger absorption than dust alone. Frequency distributions of alpha(sub abs) show significant overlap among aerosol type categories and at least 10% of the alpha(sub abs) retrievals in each category are below 1.0. Perturbing the spectral omega (sub 0) by +/- 0.03 induces significant alpha(sub abs) changes from the unperturbed value by at least approx. +/- 0.6 for Dust, approx. +/-0.2 for Mixed, and approx. +/-0.1 for Urban/Industrial and Biomass Burning. The omega (sub 0)440nm and alpha(sub ext) 440-870nm relationship shows the best separation among aerosol type clusters, providing a simple technique for determining aerosol type from surface- and future space-based instrumentation.

  6. The contribution of aerosol hygroscopic growth to the modeled aerosol radiative effect

    NASA Astrophysics Data System (ADS)

    Kokkola, Harri; Kühn, Thomas; Kirkevåg, Alf; Romakkaniemi, Sami; Arola, Antti

    2016-04-01

    The hygroscopic growth of atmospheric aerosols can have a significant effect on the direct radiative effect of atmospheric aerosol. However, there are significant uncertainties concerning how much of the radiative forcing is due to different chemical compounds, especially water. For example, modeled optical depth of water in global aerosol-climate models varies by more than a factor of two. These differences can be attributed to differences in modeled 1) hygroscopicity, 2) ambient relative humidity, and/or 3) aerosol size distribution. In this study, we investigate which of these above-mentioned factors cause the largest variability in the modeled optical depth of water. In order to do this, we have developed a tool that calculates aerosol extinction using interchangeable global 3D data of aerosol composition, relative humidity, and aerosol size distribution fields. This data is obtained from models that have taken part in the open international initiative AeroCom (Aerosol Comparisons between Observations and Models). In addition, we use global 3D data for relative humidity from the Atmospheric Infrared Sounder (AIRS) flying on board NASA's Aqua satellite and the National Centers for Environmental Prediction (NCEP) reanalysis data. These observations are used to evaluate the modeled relative humidity fields. In the first stage of the study, we made a detailed investigation using the aerosol-chemistry-climate model ECHAM-HAMMOZ in which most of the aerosol optical depth is caused by water. Our results show that the model significantly overestimates the relative humidity over the oceans while over land, the overestimation is lower or it is underestimated. Since this overestimation occurs over the oceans, the water optical depth is amplified as the hygroscopic growth is very sensitive to changes in high relative humidities. Over land, error in modeled relative humidity is unlikely to cause significant errors in water optical depth as relative humidities are generally

  7. Properties of Stratospheric Aerosol Estimated from HALOE Data

    NASA Technical Reports Server (NTRS)

    Lee, Kwang-Mog; Park, Jae H.; Massie, Steven T.; Choi, Wookap

    2001-01-01

    Extinction coefficients for stratospheric aerosols at 8 HALOE (HALogen Occultation Experiment) wavelengths are determined by comparing transmittances data for two adjacent solar occultation measurements, where one limb path is loaded with aerosols but the other path is free of aerosols. These extinction coefficients are used to infer the aerosol properties such as composition and size distribution parameters. Mie theory has been used to calculate the extinction coefficients, and a nonlinear least square method is applied to determine the aerosol properties. Sixteen cases are selected for the retrieval in southern hemisphere at latitudes from 21 to 48 deg S for the period of 29 Mar - 31 May 1992. Retrieved size width ranges from 1.1 to 1.5 and radius ranges from 0.25 to 0.45 micrometers. These size parameters are within the ranges of in situ measurements at Laramie, Wyoming. Retrieved weight percent of H2SO4 is larger than the equilibrium value by about 5 to approximately 10 weight percent, similar to the results for northern hemisphere at latitudes 20 to 55 deg N for the period from Nov 1991 to Feb. 1992.

  8. Aerosol analysis techniques and results from micro pulse lidar

    NASA Technical Reports Server (NTRS)

    Hlavka, Dennis L.; Spinhirne, James D.; Campbell, James R.; Reagan, John A.; Powell, Donna

    1998-01-01

    aerosol optical depth as well as aerosol extinction can be calculated. The techniques used to calibrate the lidar, calculate the aerosol extinction-to-backscatter ratio, and produce profiles of aerosol extinction and aerosol optical depths, will be described. Results using these techniques will be presented for case studies at the ARM site in the Tropical West Pacific and later in the Southern Great Plains.

  9. Aerosol Correction for Improving OMPS/LP Ozone Retrieval

    NASA Technical Reports Server (NTRS)

    Chen, Zhong; Bhartia, Pawan K.; Loughman, Robert

    2015-01-01

    The Ozone Mapping and Profiler Suite Limb Profiler (OMPS-LP) on board the Suomi National Polar-orbiting Partnership (SNPP) satellite was launched on Oct. 28, 2011. Limb profilers measures the radiance scattered from the Earth's atmospheric in limb viewing mode from 290 to 1000 nm and infer ozone profiles from tropopause to 60 km. The recently released OMPS-LP Version 2 data product contains the first publicly released ozone profiles retrievals, and these are now available for the entire OMPS mission, which extends from April, 2012. The Version 2 data product retrievals incorporate several important improvements to the algorithm. One of the primary changes is to turn off the aerosol retrieval module. The aerosol profiles retrieved inside the ozone code was not helping the ozone retrieval and was adding noise and other artifacts. Aerosols including polar stratospheric cloud (PSC) and polar mesospheric clouds (PMC) have a detectable effect on OMPS-LP data. Our results show that ignoring the aerosol contribution would produce an ozone density bias of up to 10 percent in the region of maximum aerosol extinction. Therefore, aerosol correction is needed to improve the quality of the retrieved ozone concentration profile. We provide Aerosol Scattering Index (ASI) for detecting aerosols-PMC-PSC, defined as ln(Im-Ic) normalized at 45km, where Im is the measured radiance and Ic is the calculated radiance assuming no aerosols. Since ASI varies with wavelengths, latitude and altitude, we can start by assuming no aerosol profiles in calculating the ASIs and then use the aerosol profile to see if it significantly reduces the residuals. We also discuss the effect of aerosol size distribution on the ozone profile retrieval process. Finally, we present an aerosol-PMC-PSC correction scheme.

  10. Stochastic models of population extinction.

    PubMed

    Ovaskainen, Otso; Meerson, Baruch

    2010-11-01

    Theoretical ecologists have long sought to understand how the persistence of populations depends on biotic and abiotic factors. Classical work showed that demographic stochasticity causes the mean time to extinction to increase exponentially with population size, whereas variation in environmental conditions can lead to a power-law scaling. Recent work has focused especially on the influence of the autocorrelation structure ('color') of environmental noise. In theoretical physics, there is a burst of research activity in analyzing large fluctuations in stochastic population dynamics. This research provides powerful tools for determining extinction times and characterizing the pathway to extinction. It yields, therefore, sharp insights into extinction processes and has great potential for further applications in theoretical biology.

  11. What Caused the Mass Extinction?

    ERIC Educational Resources Information Center

    Alvarez, Walter; And Others

    1990-01-01

    Presented are the arguments of two different points of view on the mass extinction of the dinosaurs. Evidence of extraterrestrial impact theory and massive volcanic eruption theory are discussed. (CW)

  12. Updating Martin's global extinction model

    NASA Astrophysics Data System (ADS)

    Gillespie, Richard

    2008-12-01

    Australia has been cited as a weak link in anthropogenic models of megafauna extinction, but recent work suggests instead that the evidence for rapid extinction shortly after human arrival is robust. The global model is revisited, based on the contention that late Pleistocene megafauna extinctions took place rapidly on islands, and some islands (such as Australia and the Americas) are much larger than others. Modern dating methods are increasingly able to refine chronologies, and careful scrutiny suggests that hundreds of dates should be deleted from archives. An updated summary of results from New Zealand, North America and Australia is presented, with a brief discussion on why temperate refugia offering protection from climate change ultimately did not work, strongly supporting the global extinction hypothesis pioneered by Paul Martin.

  13. Investigation of ultraviolet interstellar extinction

    NASA Technical Reports Server (NTRS)

    Payne, C.; Haramundanis, K. L.

    1973-01-01

    Results concerning interstellar extinction in the ultraviolet are reported. These results were initially obtained by using data from main-sequence stars and were extended to include supergiants and emission stars. The principal finding of the analysis of ultraviolet extinction is not only that it is wavelength dependent, but that if changes with galactic longitude in the U3 passband (lambda sub eff = 1621 A); it does not change significantly in the U2 passband (lambda sub eff = 2308 A). Where data are available in the U4 passband (lambda sub eff = 1537 A), they confirm the rapid rise of extinction in the ultraviolet found by other investigators. However, in all cases, emission stars must be used with great caution. It is important to realize that while extinction continues to rise toward shorter wavelengths in the ultraviolet, including the shortest ultraviolet wavelengths measured (1100 A), it no longer plays an important role in the X-ray region (50 A).

  14. Mass extinctions: Ecological diversity maintained

    NASA Astrophysics Data System (ADS)

    Aberhan, Martin

    2014-03-01

    The end-Permian extinction decimated marine life on an unprecedented scale. However, an analysis of the lifestyles of the surviving genera shows that very little functional diversity was lost at the sea floor.

  15. Longwave radiative forcing by aqueous aerosols

    SciTech Connect

    Gaffney, J.S.; Marley, N.A.

    1995-01-01

    Recently, a great deal of interest has been focused on the role of aerosols in climatic change because of their potential cooling impacts due to light scattering. Recent advances in infrared spectroscopy using cylindrical internal reflectance have allowed the longwave absorption of dissolved aerosol species and the associated liquid water to be accurately determined and evaluated. Experimental measurements using these techniques have shown that dissolved sulfate, nitrate, and numerous other aerosol species will act to cause greenhouse effects. Preliminary calculations indicate that the longwave climate forcing (i.e., heating) for sulfate aerosol will be comparable in magnitude to the cooling effect produced by light scattering. However, more detailed modeling will clearly be needed to address the impact of the longwave forcing due to aerosols as a function of atmospheric height and composition. Their work has shown that aerosol composition will be important in determining longwave forcing, while shortwave forcing will be more related to the physical size of the aerosol droplets. On the basis of these studies, it is increasingly apparent that aerosols, fogs, and clouds play a key role in determining the radiative balance of the atmosphere and in controlling regional and global climates.

  16. Aerosol Optical Properties Measured Onboard the Ronald H. Brown During ACE Asia as a Function of Aerosol Chemical Composition and Source Region

    NASA Technical Reports Server (NTRS)

    Quinn, P. K.; Coffman, D. J.; Bates, T. S.; Welton, E. J.; Covert, D. S.; Miller, T. L.; Johnson, J. E.; Maria, S.; Russell, L.; Arimoto, R.

    2004-01-01

    During the ACE Asia intensive field campaign conducted in the spring of 2001 aerosol properties were measured onboard the R/V Ronald H. Brown to study the effects of the Asian aerosol on atmospheric chemistry and climate in downwind regions. Aerosol properties measured in the marine boundary layer included chemical composition; number size distribution; and light scattering, hemispheric backscattering, and absorption coefficients. In addition, optical depth and vertical profiles of aerosol 180 deg backscatter were measured. Aerosol within the ACE Asia study region was found to be a complex mixture resulting from marine, pollution, volcanic, and dust sources. Presented here as a function of air mass source region are the mass fractions of the dominant aerosol chemical components, the fraction of the scattering measured at the surface due to each component, mass scattering efficiencies of the individual components, aerosol scattering and absorption coefficients, single scattering albedo, Angstrom exponents, optical depth, and vertical profiles of aerosol extinction. All results except aerosol optical depth and the vertical profiles of aerosol extinction are reported at a relative humidity of 55 +/- 5%. An over-determined data set was collected so that measured and calculated aerosol properties could be compared, internal consistency in the data set could be assessed, and sources of uncertainty could be identified. By taking into account non-sphericity of the dust aerosol, calculated and measured aerosol mass and scattering coefficients agreed within overall experimental uncertainties. Differences between measured and calculated aerosol absorption coefficients were not within reasonable uncertainty limits, however, and may indicate the inability of Mie theory and the assumption of internally mixed homogeneous spheres to predict absorption by the ACE Asia aerosol. Mass scattering efficiencies of non-sea salt sulfate aerosol, sea salt, submicron particulate organic

  17. The Sixth Great Mass Extinction

    ERIC Educational Resources Information Center

    Wagler, Ron

    2012-01-01

    Five past great mass extinctions have occurred during Earth's history. Humanity is currently in the midst of a sixth, human-induced great mass extinction of plant and animal life (e.g., Alroy 2008; Jackson 2008; Lewis 2006; McDaniel and Borton 2002; Rockstrom et al. 2009; Rohr et al. 2008; Steffen, Crutzen, and McNeill 2007; Thomas et al. 2004;…

  18. Particle backscatter, extinction, and lidar ratio profiling with Raman lidar in south and north China

    SciTech Connect

    Tesche, Matthias; Ansmann, Albert; Mueller, Detlef; Althausen, Dietrich; Engelmann, Ronny; Hu Min; Zhang Yuanghang

    2007-09-01

    Aerosol Raman lidar observations of profiles of the particle extinction and backscatter coefficients and the respective extinction-to-backscatter ratio (lidar ratio) were performed under highly polluted conditions in the Pearl River Delta (PRD) in southern China in October 2004 and at Beijing during a clear period with moderately polluted to background aerosol conditions in January 2005. The anthropogenic haze in the PRD is characterized by volume light-extinction coefficients of particles ranging from approximately 200 to800 Mm-1 and lidar ratios mostly between 40 and 55 sr (average of47{+-}6 sr). Almost clean air masses were observed throughout the measurements of the Beijing campaign. These air masses originated from arid desert-steppe-like regions (greater Gobi area).Extinction values usually varied between 100 and300 Mm-1, and the lidar ratios were considerably lower (compared with PRD values) with values mostly from 30 to 45 sr (average of38{+-}7 sr). Gobi dust partly influenced the observations. Unexpectedly low lidar ratios of approximately 25 sr were found for a case of background aerosol with a low optical depth of 0.05. The low lidar ratios are consistent with Mie-scattering calculations applied to ground-based observations of particle size distributions.

  19. Contributions of particle absorption to mass extinction coefficients (0.55-14microm) of soil-derived atmospheric dusts: erratum.

    PubMed

    Carlon, H R

    1980-04-01

    Mass extinction coefficients of soil-derived atmospheric dusts often are determined largely by the absorption (rather than scattering) by individual particles, especially at longer IR wavelengths. Under many conditions, reasonable estimates of mass extinction coefficients of dusts can be made from absorption coefficients without the need for detailed knowledge of particle optical constants to perform, e.g., Mie calculations. This paper discusses absorption coefficients of dusts in the visible and IR wavelengths and the physical mechanisms of dust aerosol generation determining that portion of extinction attributable to absorption in a given dust cloud. Some soils, especially clays, can produce dust clouds that are almost pure. absorbers at longer IR wavelengths.

  20. Contributions of particle absorption to mass extinction coefficients (0.55-14 microm) of soil-derived atmospheric dusts.

    PubMed

    Carlon, H R

    1980-03-01

    Mass extinction coefficients of soil-derived atmospheric dusts often are determined largely by the absorption (rather than scattering) by individual particles, especially at longer IR wavelengths. Under many conditions, reasonable estimates of mass extinction coefficients of dusts can be made from absorption coefficients without the need for detailed knowledge of particle optical constants to perform, e.g., Mie calculations. This paper discusses absorption coefficients of dusts in the visible and IR wavelengths and the physical mechanisms of dust aerosol generation determining that portion of extinction attributable to absorption in a given dust cloud. Some soils, especially clays, can produce dust clouds that are almost pure absorbers at longer IR wavelengths.

  1. A model of mass extinction.

    PubMed

    Newman, M E

    1997-12-01

    In the last few years a number of authors have suggested that evolution may be a so-called self-organized critical phenomenon, and that critical processes might have a significant effect on the dynamics of ecosystems. In particular it has been suggested that mass extinction may arise through a purely biotic mechanism as the result of "coevolutionary avalanches". In this paper we first explore the empirical evidence which has been put forward in favor of this conclusion. The data center principally around the existence of power-law functional forms in the distribution of the sizes of extinction events and other quantities. We then propose a new mathematical model of mass extinction which does not rely on coevolutionary effects and in which extinction is caused entirely by the action of environmental stress on species. In combination with a simple model of species adaption we show that this process can account for all the observed data without the need to invoke coevolution and critical processes. The model also makes some independent predictions, such as the existence of "aftershock" extinctions in the aftermath of large mass extinction events, which should in theory be testable against the fossil record.

  2. Extinction, Relapse, and Behavioral Momentum

    PubMed Central

    Podlesnik, Christopher A.; Shahan, Timothy A.

    2010-01-01

    Previous experiments on behavioral momentum have shown that relative resistance to extinction of operant behavior in the presence of a discriminative stimulus depends upon the baseline rate or magnitude of reinforcement associated with that stimulus (i.e., the Pavlovian stimulus-reinforcer relation). Recently, we have shown that relapse of operant behavior in reinstatement, resurgence, and context renewal preparations also is a function of baseline stimulus-reinforcer relations. In this paper we present new data examining the role of baseline stimulus-reinforcer relations on resistance to extinction and relapse using a variety of baseline training conditions and relapse operations. Furthermore, we evaluate the adequacy of a behavioral-momentum based model in accounting for the results. The model suggests that relapse occurs as a result of a decrease in the disruptive impact of extinction precipitated by a change in circumstances associated with extinction, and that the degree of relapse is a function of the pre-extinction baseline Pavlovian stimulus-reinforcer relation. Across experiments, relative resistance to extinction and relapse were greater in the presence of stimuli associated with more favorable conditions of reinforcement and were positively related to one another. In addition, the model did a good job in accounting for these effects. Thus, behavioral momentum theory may provide a useful quantitative approach for characterizing how differential reinforcement conditions contribute to relapse of operant behavior. PMID:20152889

  3. Extinction, relapse, and behavioral momentum.

    PubMed

    Podlesnik, Christopher A; Shahan, Timothy A

    2010-05-01

    Previous experiments on behavioral momentum have shown that relative resistance to extinction of operant behavior in the presence of a discriminative stimulus depends upon the baseline rate or magnitude of reinforcement associated with that stimulus (i.e., the Pavlovian stimulus-reinforcer relation). Recently, we have shown that relapse of operant behavior in reinstatement, resurgence, and context renewal preparations also is a function of baseline stimulus-reinforcer relations. In this paper we present new data examining the role of baseline stimulus-reinforcer relations on resistance to extinction and relapse using a variety of baseline training conditions and relapse operations. Furthermore, we evaluate the adequacy of a behavioral momentum based model in accounting for the results. The model suggests that relapse occurs as a result of a decrease in the disruptive impact of extinction precipitated by a change in circumstances associated with extinction, and that the degree of relapse is a function of the pre-extinction baseline Pavlovian stimulus-reinforcer relation. Across experiments, relative resistance to extinction and relapse were greater in the presence of stimuli associated with more favorable conditions of reinforcement and were positively related to one another. In addition, the model did a good job in accounting for these effects. Thus, behavioral momentum theory may provide a useful quantitative approach for characterizing how differential reinforcement conditions contribute to relapse of operant behavior. PMID:20152889

  4. Extinction, relapse, and behavioral momentum.

    PubMed

    Podlesnik, Christopher A; Shahan, Timothy A

    2010-05-01

    Previous experiments on behavioral momentum have shown that relative resistance to extinction of operant behavior in the presence of a discriminative stimulus depends upon the baseline rate or magnitude of reinforcement associated with that stimulus (i.e., the Pavlovian stimulus-reinforcer relation). Recently, we have shown that relapse of operant behavior in reinstatement, resurgence, and context renewal preparations also is a function of baseline stimulus-reinforcer relations. In this paper we present new data examining the role of baseline stimulus-reinforcer relations on resistance to extinction and relapse using a variety of baseline training conditions and relapse operations. Furthermore, we evaluate the adequacy of a behavioral momentum based model in accounting for the results. The model suggests that relapse occurs as a result of a decrease in the disruptive impact of extinction precipitated by a change in circumstances associated with extinction, and that the degree of relapse is a function of the pre-extinction baseline Pavlovian stimulus-reinforcer relation. Across experiments, relative resistance to extinction and relapse were greater in the presence of stimuli associated with more favorable conditions of reinforcement and were positively related to one another. In addition, the model did a good job in accounting for these effects. Thus, behavioral momentum theory may provide a useful quantitative approach for characterizing how differential reinforcement conditions contribute to relapse of operant behavior.

  5. SAGE II Measurements of Stratospheric Aerosol Properties at Non-Volcanic Levels

    NASA Technical Reports Server (NTRS)

    Thomason, Larry W.; Burton, Sharon P.; Luo, Bei-Ping; Peter, Thomas

    2008-01-01

    Since 2000, stratospheric aerosol levels have been relatively stable and at the lowest levels observed in the historical record. Given the challenges of making satellite measurements of aerosol properties at these levels, we have performed a study of the sensitivity of the product to the major components of the processing algorithm used in the production of SAGE II aerosol extinction measurements and the retrieval process that produces the operational surface area density (SAD) product. We find that the aerosol extinction measurements, particularly at 1020 nm, remain robust and reliable at the