Science.gov

Sample records for aerosol flow tube

  1. Infrared spectroscopic methods for the study of aerosol particles using White cell optics: Development and characterization of a new aerosol flow tube.

    PubMed

    Nájera, Juan J; Fochesatto, Javier G; Last, Deborah J; Percival, Carl J; Horn, Andrew B

    2008-12-01

    A description of a new aerosol flow tube apparatus for measurements in situ under atmospherically relevant conditions is presented here. The system consists of a laboratory-made nebulizer generation system and a flow tube with a White cell-based Fourier transform IR for the detection system. An assessment of the White cell coupled to the flow tube was carried out by an extensive set of experiments to ensure the alignment of the infrared beam and optimize the performance of this system. The detection limit for CO was established as (1.0+/-0.3) ppm and 16 passes was chosen as the optimum number of passes to be used in flow tube experiments. Infrared spectroscopy was used to characterize dry aerosol particles in the flow tube. Pure particles composed of ammonium sulfate or sodium chloride ranging between 0.8 and 2.1 mum for size diameter and (0.8-4.9)x10(6) particles/cm(3) for density number were generated by nebulization of aqueous solutions. Direct measurements of the aerosol particle size agree with size spectra retrieved from inversion of the extinction measurements using Mie calculations, where the difference residual value is in the order of 0.2%. The infrared detection limit for ammonium sulfate aerosol particles was determined as d(p)=0.9 mum and N=5x10(3) particles/cm(3) with sigma=1.1 by Mie calculation. Alternatively, Mie calculations were performed to determine the flexibility in varying the optical length when aerosol particles are sent by the injector. The very good agreement between the values retrieved for aerosol particles injected through the flow tube or through the injector clearly validates the estimation of the effective optical path length for the injector. To determine the flexibility in varying the reaction zone length, analysis of the extinction spectra as function of the position of the injector was carried out by monitoring the integrated area of different absorption modes of the ammonium sulfate. We conclude that the aerosol loss in the

  2. Infrared spectroscopic methods for the study of aerosol particles using White cell optics: Development and characterization of a new aerosol flow tube

    NASA Astrophysics Data System (ADS)

    Nájera, Juan J.; Fochesatto, Javier G.; Last, Deborah J.; Percival, Carl J.; Horn, Andrew B.

    2008-12-01

    A description of a new aerosol flow tube apparatus for measurements in situ under atmospherically relevant conditions is presented here. The system consists of a laboratory-made nebulizer generation system and a flow tube with a White cell-based Fourier transform IR for the detection system. An assessment of the White cell coupled to the flow tube was carried out by an extensive set of experiments to ensure the alignment of the infrared beam and optimize the performance of this system. The detection limit for CO was established as (1.0±0.3) ppm and 16 passes was chosen as the optimum number of passes to be used in flow tube experiments. Infrared spectroscopy was used to characterize dry aerosol particles in the flow tube. Pure particles composed of ammonium sulfate or sodium chloride ranging between 0.8 and 2.1 μm for size diameter and (0.8-4.9)×106 particles/cm3 for density number were generated by nebulization of aqueous solutions. Direct measurements of the aerosol particle size agree with size spectra retrieved from inversion of the extinction measurements using Mie calculations, where the difference residual value is in the order of 0.2%. The infrared detection limit for ammonium sulfate aerosol particles was determined as dp=0.9 μm and N =5×103 particles/cm3 with σ =1.1 by Mie calculation. Alternatively, Mie calculations were performed to determine the flexibility in varying the optical length when aerosol particles are sent by the injector. The very good agreement between the values retrieved for aerosol particles injected through the flow tube or through the injector clearly validates the estimation of the effective optical path length for the injector. To determine the flexibility in varying the reaction zone length, analysis of the extinction spectra as function of the position of the injector was carried out by monitoring the integrated area of different absorption modes of the ammonium sulfate. We conclude that the aerosol loss in the flow tube

  3. Heterogeneous uptake of NO2 on Arizona Test Dust under UV-A irradiation: An aerosol flow tube study

    NASA Astrophysics Data System (ADS)

    Dupart, Yoan; Fine, Ludovic; D'Anna, Barbara; George, Christian

    2014-12-01

    The uptake rate of NO2 on Arizona Test Dust aerosols was measured using an aerosol flow tube (AFT). While the uptake rate in the dark could not be measured, the uptake under UV-A irradiation was enhanced, with values in the range from (0.6 ± 0.3) × 10-8, (2.4 ± 0.4) × 10-8. The observed gas phase products were HONO and NO, with yields of at 30% and 9.6%, respectively. The difference between these measurements and those previously reported on macroscopic films are discussed and differences highlighted. Interestingly, a reasonable agreement is observed between the uptake kinetics of NO2 on Arizona Test Dust macroscopic films and aerosols, despite the different experimental approaches. The simplest approach i.e. thin films having a significant porosity, provides similar uptake kinetics to the more complex and realistic AFT approach.

  4. Flow-Tube Investigations of Hypergolic Reactions of a Dicyanamide Ionic Liquid Via Tunable Vacuum Ultraviolet Aerosol Mass Spectrometry.

    PubMed

    Chambreau, Steven D; Koh, Christine J; Popolan-Vaida, Denisia M; Gallegos, Christopher J; Hooper, Justin B; Bedrov, Dmitry; Vaghjiani, Ghanshyam L; Leone, Stephen R

    2016-10-07

    The unusually high heats of vaporization of room-temperature ionic liquids (RTILs) complicate the utilization of thermal evaporation to study ionic liquid reactivity. Although effusion of RTILs into a reaction flow-tube or mass spectrometer is possible, competition between vaporization and thermal decomposition of the RTIL can greatly increase the complexity of the observed reaction products. In order to investigate the reaction kinetics of a hypergolic RTIL, 1-butyl-3-methylimidazolium dicyanamide (BMIM(+)DCA(-)) was aerosolized and reacted with gaseous nitric acid, and the products were monitored via tunable vacuum ultraviolet photoionization time-of-flight mass spectrometry at the Chemical Dynamics Beamline 9.0.2 at the Advanced Light Source. Reaction product formation at m/z 42, 43, 44, 67, 85, 126, and higher masses was observed as a function of HNO3 exposure. The identities of the product species were assigned to the masses on the basis of their ionization energies. The observed exposure profile of the m/z 67 signal suggests that the excess gaseous HNO3 initiates rapid reactions near the surface of the RTIL aerosol. Nonreactive molecular dynamics simulations support this observation, suggesting that diffusion within the particle may be a limiting step. The mechanism is consistent with previous reports that nitric acid forms protonated dicyanamide species in the first step of the reaction.

  5. Guide tube flow diffuser

    SciTech Connect

    Berringer, R.T.; Myron, D.L.

    1980-11-04

    A nuclear reactor upper internal guide tube has a flow diffuser integral with its bottom end. The guide tube provides guidance for control rods during their ascent or descent from the reactor core. The flow diffuser serves to divert the upward flow of reactor coolant around the outside of the guide tube thereby limiting the amount of coolant flow and turbulence within the guide tube, thus enhancing the ease of movement of the control rods.

  6. AEROSOL NUCLEATION AND GROWTH DURING LAMINAR TUBE FLOW: MAXIMUM SATURATIONS AND NUCLEATION RATES. (R827354C008)

    EPA Science Inventory

    An approximate method of estimating the maximum saturation, the nucleation rate, and the total number nucleated per second during the laminar flow of a hot vapour–gas mixture along a tube with cold walls is described. The basis of the approach is that the temperature an...

  7. Laboratory studies of interaction between trace gases and sulphuric acid or sulphate aerosols using flow-tube reactors

    NASA Astrophysics Data System (ADS)

    Leu, Ming-Taun

    Stratospheric ozone provides a protective shield for humanity and the global biosphere from harmful ultraviolet solar radiation. In past decades, theoretical models for the calculation of ozone balance frequently used gas-phase reactions alone in their studies. Since the discovery of the Antarctic ozone hole in 1985, however, it has been demonstrated that knowledge of heterogeneous reactions is needed to understand this significant natural event owing to the anthropogenic emission of chlorofluorocarbons. In this review I will briefly discuss the experimental techniques for the research of heterogeneous chemistry carried out in our laboratory. These experimental instruments include flow-tube reactors, an electron-impact ionization mass spectrometer, a chemical ionization mass spectrometer and a scanning mobility particle spectrometer. Numerous measurements of uptake coefficient (or reaction probability) and solubility of trace gases in liquid sulphuric acid have been performed under the ambient conditions in the upper troposphere and lower stratosphere, mainly 190-250 K and 40-80 wt% of H

  8. Heterogeneous interaction of SiO2 with N2O5: aerosol flow tube and single particle optical levitation-Raman spectroscopy studies.

    PubMed

    Tang, M J; Camp, J C J; Rkiouak, L; McGregor, J; Watson, I M; Cox, R A; Kalberer, M; Ward, A D; Pope, F D

    2014-09-25

    Silica (SiO2) is an important mineral present in atmospheric mineral dust particles, and the heterogeneous reaction of N2O5 on atmospheric aerosol is one of the major pathways to remove nitrogen oxides from the atmosphere. The heterogeneous reaction of N2O5 with SiO2 has only been investigated by two studies previously, and the reported uptake coefficients differ by a factor of >10. In this work two complementary laboratory techniques were used to study the heterogeneous reaction of SiO2 particles with N2O5 at room temperature and at different relative humidities (RHs). The uptake coefficients of N2O5, γ(N2O5), were determined to be (7.2 ± 0.6) × 10(-3) (1σ) at 7% RH and (5.3 ± 0.8) × 10(-3) (1σ) at 40% RH for SiO2 particles, using the aerosol flow tube technique. We show that γ(N2O5) determined in this work can be reconciled with the two previous studies by accounting for the difference in geometric and BET derived aerosol surface areas. To probe the particle phase chemistry, individual micrometer sized SiO2 particles were optically levitated and exposed to a continuous flow of N2O5 at different RHs, and the composition of levitated particles was monitored online using Raman spectroscopy. This study represents the first investigation into the heterogeneous reactions of levitated individual SiO2 particles as a surrogate for mineral dust. Relative humidity was found to play a critical role: while no significant change of particle composition was observed by Raman spectroscopy during exposure to N2O5 at RH of <2%, increasing the RH led to the formation of nitrate species on the particle surface which could be completely removed after decreasing the RH back to <2%. This can be explained by the partitioning of HNO3 between the gas and adsorbed phases. The atmospheric implications of this work are discussed.

  9. Development of an Aerosol Loading Technique for Ignition Time Measurements in Shock Tubes

    DTIC Science & Technology

    2007-08-01

    initial pressure. For the present ignition study a 21% oxygen-79% argon mixture was used. Poppet valves in the endwall are then opened as well as a...the pressure in the driven section of the tube constant. The narrow flow passage past the poppet valves serves to accelerate the flow and generate... valve near the diaphragm connected to a vacuum pump, and a steady-state flow of aerosol/carrier gas mixture is feed into the shock tube while keeping

  10. Nonsteady Flow in Capillary Tubes

    NASA Astrophysics Data System (ADS)

    Hara, Ayako

    2000-03-01

    Surface phenomena in the field of electron devices and the problem of how long. It takes plants to absorb water during their growth in hydroponic cultivation is attraching the attention of riseachers. However, the related study of non-steady flow in capillary tubes has a number of issues that require investigation. In response to this situation, we made attempted to assess nonsteady fiow in capillary tubes, the liquid rise time and other issues, using a motion equation that takes factors including the friction force of the tube and the surface tension into consideration.

  11. Aerosol deposition in bends with turbulent flow

    SciTech Connect

    McFarland, A.R.; Gong, H.; Wente, W.B.

    1997-08-01

    The losses of aerosol particles in bends were determined numerically for a broad range of design and operational conditions. Experimental data were used to check the validity of the numerical model, where the latter employs a commercially available computational fluid dynamics code for characterizing the fluid flow field and Lagrangian particle tracking technique for characterizing aerosol losses. Physical experiments have been conducted to examine the effect of curvature ratio and distortion of the cross section of bends. If it curvature ratio ({delta} = R/a) is greater than about 4, it has little effect on deposition, which is in contrast with the recommendation given in ANSI N13.1-1969 for a minimum curvature ratio of 10. Also, experimental results show that if the tube cross section is flattened by 25% or less, the flattening also has little effect on deposition. Results of numerical tests have been used to develop a correlation of aerosol penetration through a bend as a function of Stokes number (Stk), curvature ratio ({delta}) and the bend angle ({theta}). 17 refs., 10 figs., 2 tabs.

  12. On Flow Stagnation in a Tube Radiator

    NASA Technical Reports Server (NTRS)

    Motil, Brian; Chao, David F.; Sankovic, John M.; Zhang, Nengli

    2007-01-01

    An analysis of the physical process for occurrence of flow stagnation in a space tube-radiator is performed and the mechanism and mathematic description for the flow stagnation are presented. Two causes for pressure drop unbalance between tubes of the radiator are identified: non-uniform cooling environment and different local flow resistances between the tubes. This analysis provides a theoretical basis for experimental simulations of the flow stagnation in a ground-based lab as well as two suggested methods to experimentally simulate flow stagnation. Criteria for the flow stagnation, depending on the viscosity data regressive polynomial, are derived from the extreme condition of the pressure drop in colder tubes. A preliminary numerical calculation is conducted for a space tube-radiator model which confirms the physical and mathematical analyses. The prediction by the criteria for flow stagnation in the tube-radiator model coincides with the numerical calculation result.

  13. Flow and convective cooling in lava tubes

    NASA Astrophysics Data System (ADS)

    Sakimoto, S. E. H.; Zuber, M. T.

    1998-11-01

    Tube-fed basaltic lava flows with lengths ranging from 10 to 200 km are inferred to exhibit similar amounts of cooling. To explain the wide range of implied cooling rates, we consider forced convection as a dominant cooling process in lava tubes and present solutions that express mean temperature versus distance down the tube as a function of flow rate and flow cross section. Our models treat forced convective thermal losses in steady laminar flow through a lava tube with constant temperature walls and constant material properties. We explore the effects of different wall temperature and heat flux rate boundary conditions for circular tube and parallel plate flows over a range of tube sizes, plate spacings, eruption temperatures, and volume flow rates. Results show that nonlinear cooling rates over distance are characteristic of constant wall temperature for a piecewise parallel plate/circular tube model. This provides the best fit to temperature observations for Hawaiian tubes. Such a model may also provide an explanation for the very low (˜10°C) cooling observed in ˜10 km long Hawaii tube flows and inferred in longer ˜50 to 150 km tube-fed flows in Queensland. The forced convective cooling model may also explain similar flow morphologies for long tube-fed basaltic lava flows in a wide variety of locations, since small variations in eruption temperature or flow rate can accommodate the entire range of flow lengths and cooling rates considered. Our results are consistent with previous suggestions that long basaltic flows may be a reflection of low slopes, a particularly steady moderate eruption rate, and well-insulated flow, rather than of high discharge rates.

  14. High Speed Flow in Tubes

    DTIC Science & Technology

    1987-04-14

    variables such as density or pressure are assumed to depend only on time and not on position along the tube so that only some of the 1-D effects are...ideal gas law). 2) The local linear burning rate (rb) depends on the spatial- average pressure within the tube assembly. 3) The ratio of specific... depends on local pressure . 3) Case AD is the same as case AC except that the ratio of specific heats is no longer constant (i.e., Eq. (2.20) is used to

  15. Air flow exploration of abrasive feed tube

    NASA Astrophysics Data System (ADS)

    Zhang, Shijin; Li, Xiaohong; Gu, Yilei

    2009-12-01

    An abrasive water-jet cutting process is one in which water pressure is raised to a very high pressure and forced through a very small orifice to form a very thin high speed jet beam. This thin jet beam is then directed through a chamber and then fed into a secondary nozzle, or mixing tube. During this process, a vacuum is generated in the chamber, and garnet abrasives and air are pulled into the chamber, through an abrasive feed tube, and mixes with this high speed stream of water. Because of the restrictions introduced by the abrasive feed tube geometry, a vacuum gradient is generated along the tube. Although this phenomenon has been recognized and utilized as a way to monitor nozzle condition and abrasive flowing conditions, yet, until now, conditions inside the abrasive feed line have not been completely understood. A possible reason is that conditions inside the abrasive feed line are complicated. Not only compressible flow but also multi-phase, multi-component flow has been involved in inside of abrasive feed tube. This paper explored various aspects of the vacuum creation process in both the mixing chamber and the abrasive feed tube. Based on an experimental exploration, an analytical framework is presented to allow theoretical calculations of vacuum conditions in the abrasive feed tube.

  16. Incompressible viscous flow in tubes with occlusions

    NASA Astrophysics Data System (ADS)

    Huang, Huaxiong

    Viscous, incompressible flow in tubes with partial occlusion is investigated using numerical and experimental procedures. The study is related to the problem of atherosclerosis, one of the most common diseases of the circulatory system. One of the computational difficulties in solving the incompressible Navier-Stokes equations is the lack of pressure or vorticity boundary conditions. A finite difference approach, referred to as the interior constraint (IC) method, is proposed to resolve this difficulty. As a general numerical method, it is formulated for both the stream function-vorticity and primitive (physical) variable formulations. The procedure is explained using a one dimensional model with extensive numerical tests presented for two dimensional cases, including flow in a driven cavity and flow over a backward facing step. Results are obtained with second-order accuracy. Next, the IC method is applied to flow in a tube with an occlusion, which is used as the model for blood flow in stenosed arteries in the study of the pathology of atherosclerosis. Numerical results are obtained for both steady and pulsatile flows. Results are compared with those of SIMPLE, one of the commercially available numerical algorithms. The pulsatile flow study revealed several interesting new features. It suggested that the high shear stress is not likely to initiate atherosclerosis lesions. The recirculation region, which is a prominent feature of the unsteady flow, is more likely to cause the initiation and development of the disease. Experimental measurements for steady flow complement the numerical study and show qualitative agreement.

  17. Aerosol flow reactor method for synthesis of drug nanoparticles.

    PubMed

    Eerikäinen, Hannele; Watanabe, Wiwik; Kauppinen, Esko I; Ahonen, P Petri

    2003-05-01

    An aerosol flow reactor method, a one-step continuous process to produce nanometer-sized drug particles with unimodal size distribution, was developed. This method involves first dissolving the drug material in question into a suitable solvent, which is then followed by atomising the solution as fine droplets into carrier gas. A heated laminar flow reactor tube is used to evaporate the solvent, and solid drug nanoparticles are formed. In this study, the effect of drying temperature on the particle size and morphology was examined. A glucocorticosteroid used for asthma therapy, beclomethasone dipropionate, was selected as an experimental model drug. The geometric number mean particle diameter increases significantly with increasing reactor temperatures due to formation of hollow nanoparticles. Above 160 degrees C, however, further increase in temperature results in decreasing particle size. The produced nanoparticles are spherical and show smooth surfaces at all studied experimental conditions.

  18. Fission-fragment attachment to aerosols and their transport through capillary tubes

    SciTech Connect

    Novick, V.J.; Alvarez, J.L.; Greenwood, R.C.

    1981-01-01

    The transport of radioactive aerosols was studied using equipment, collectively called the Helium jet, that has been constructed to provide basic nuclear physics data on fission product nuclides. The transport of the fission products in the system depends on their attachment to aerosol particles. The system consists of 1) a tube furnace which generates aerosols by the sublimation or evaporation of source material, 2) a helium stream used to transport the aerosols, 3) a 25 m settling tube to eliminate the larger aerosols and smaller aerosols that would deposit in the capillary, 4) a Californium-252 self-fissioning source of fission product nuclides, and 5) a small capillary to carry the radioactive aerosols from the hot cell to the laboratory. Different source materials were aerosolized but NaCl is generally used because it yielded the highest transport efficiencies through the capillary. Particle size measurments were made with NaCl aerosols by using a cascade impactor, an optical light scattering device, and the capillary itself as a diffusion battery by performing radiation measurements and/or electrical conductivity measurements. Both radioactive and nonradioactive aerosols were measured in order to investigate the possibility of a preferential size range for fission product attachment. The measured size distributions were then used to calculate attachment coefficients and finally an attachment time.

  19. Deposition of aerosol particles and flow resistance in mathematical and experimental airway models.

    PubMed

    Kim, C S; Brown, L K; Lewars, G G; Sackner, M A

    1983-07-01

    Aerosol deposition and flow resistance in obstructed airways were determined from five mathematical and experimental airway models. The first three models were theoretical and based upon Weibel's symmetrical lung model with 1) uniform reduction of airway diameter in various groups of airway generations; 2) obstruction of a few major airways such that a severe uneven flow distribution occurs in the lung; 3) focal constriction of selected large airways. In model 3, an empirical formula was utilized to assess deposition and resistance in the constricted airways. The remaining two models were tested experimentally; 4) oscillation of a compliant wall in a straight tube and 5) two-phase gas-liquid flow utilizing human sputum in a rigid branching tube. In models 1, 2, and 3, airway resistance increased to a greater extent than did the increase of aerosol deposition except when small airways were obstructed in model 1. Here, the increase of aerosol deposition was slightly higher than the rise in airway resistance. A sharp increase of aerosol deposition with a minimal increase of flow resistance was demonstrated in models 4 and 5. These data indicate that aerosol deposition may be a more sensitive indicator of airway abnormalities than overall airway resistance in small airways obstruction, during oscillation of large and medium airway walls, and when excessive secretions within the airways move with a wave or slug motion.

  20. Jet-flow from shock tubes

    NASA Astrophysics Data System (ADS)

    Kingery, Charles N.; Gion, Edmund J.

    1989-07-01

    This project was designed to map the magnitude and extent of the high velocity jet flow exiting shock tubes. The flow was measured by installing stagnation probes along three blast lines and by supplementing these measurements with calibrated displacement cubes. The side-on and stagnation overpressure versus time were measured, and from that, the side-on and stagnation impulse were calculated. The stagnation impulse showed a large drop in magnitude as the blast line was moved from the zero line to a 1.5 and then to a 3-diameter offset. A helium driver was used in the 2.54-cm-diameter shock tube to simulate an explosion in a storage magazine. Results are presented in the form of stagnation impulse versus distance along the three blast lines. The significance of these findings is that the present quantity-distance criteria for munitions stored in underground magazines are based on side-on peak overpressure, but our results show that the peak stagnation pressure and impulse are much greater. At a distance where 10.3-kPa (1.5 psi) side-on pressure was measured, a 49.6-kPa (7.2 psi) stagnation pressure was measured. At the same distance, a side-on impulse was 12.6 kPa-ms (1.83 psi-ms), while the stagnation impulse was 134 kPa-ms (20.2 psi-ms)--a dramatic difference.

  1. Pressure-flow reducer for aerosol focusing devices

    DOEpatents

    Gard, Eric; Riot, Vincent; Coffee, Keith; Woods, Bruce; Tobias, Herbert; Birch, Jim; Weisgraber, Todd

    2008-04-22

    A pressure-flow reducer, and an aerosol focusing system incorporating such a pressure-flow reducer, for performing high-flow, atmosphere-pressure sampling while delivering a tightly focused particle beam in vacuum via an aerodynamic focusing lens stack. The pressure-flow reducer has an inlet nozzle for adjusting the sampling flow rate, a pressure-flow reduction region with a skimmer and pumping ports for reducing the pressure and flow to enable interfacing with low pressure, low flow aerosol focusing devices, and a relaxation chamber for slowing or stopping aerosol particles. In this manner, the pressure-flow reducer decouples pressure from flow, and enables aerosol sampling at atmospheric pressure and at rates greater than 1 liter per minute.

  2. Contamination from electrically conductive silicone tubing during aerosol chemical analysis

    SciTech Connect

    Yu, Yong; Alexander, M. L.; Perraud, Veronique; Bruns, Emily; Johnson, Stan; Ezell, Michael J.; Finlayson-Pitts, Barbara J.

    2009-06-01

    Electrically conductive silicone tubing is used to minimize losses in sampling lines during the analysis of airborne particle size distributions and number concentrations. We report contamination from this tubing using gas chromatography-mass spectrometry (GC-MS) of filter-collected samples as well as by particle mass spectrometry. Comparison of electrically conductive silicone and stainless steel tubing showed elevated siloxanes only for the silicone tubing. The extent of contamination increased with length of tubing to which the sample was exposed, and decreased with increasing relative humidity.

  3. Visualization of entry flow separation for oscillating flow in tubes

    NASA Technical Reports Server (NTRS)

    Qiu, Songgang; Simon, Terence W.

    1992-01-01

    Neutrally buoyant helium-filled soap bubbles with laser illumination are used to document entry flow separation for oscillating flow in tubes. For a symmetric entry case, the size of the separation zone appears to mildly depend on Reynolds number in the acceleration phase, but is roughly Reynolds number independent in the deceleration phase. For the asymmetric entry case, the separation zone was larger and appeared to grow somewhat during the deceleration phase. The separation zones for both entry geometry cases remain relatively small throughout the cycle. This is different from what would be observed in all-laminar, oscillator flows and is probably due to the high turbulence of the flow, particularly during the deceleration phase of the cycle.

  4. Stability of Flow Through Collapsible Tubes

    NASA Astrophysics Data System (ADS)

    Hamadiche, M.; Gad-El-Hak, M.

    2000-11-01

    The stability of the Hagen--Poiseuille flow of a Newtonian fluid in an incompressible, collapsible, viscoelastic tube is determined using linear stability analysis. The temporal stability of the system subjected to infinitesimal axisymmetric or non-axisymmetric disturbances is considered. A novel numerical strategy is introduced to study the stability of the coupled fluid--structure system. The strategy alleviates the need for an initial guess and thus ensuring that all the unstable modes within a given closed region in the complex eigenvalue plane will be found. The parameters of the system are chosen such that it is stable if the duct is not allowed to collapse, in this way the unstable modes found are expected to be unique to collapsible tubes. Three different unstable modes are found and the present results are in excellent agreement with the experiments of Bertram and Godbole (J. Fluids & Structures 9, pp. 257--277,1995). Two of the unstable modes have approximately the same frequency which is about a third of the frequency of the third mode. Moreover, the high-frequency mode is non-axisymmetric while one of the low-frequency modes is axisymmetric and the other one non-axisymmetric. The variation of all three unstable modes with the pliability of the duct and the other control parameters of the system will be discussed.

  5. Hydraulic drag at the condensing steam flow in tubes

    NASA Astrophysics Data System (ADS)

    Leontiev, A. I.; Milman, O. O.

    2014-12-01

    The dependency of condensing steam flow parameters in tubes and channels was studied as a function of different flow modes for the coolant: counter-flow, co-flow, cross-flow. The drop for the total pressure of steam is higher for the counter-flow than for the co-flow or cross-flow modes. The pressure drop was estimated with different computation models as a function flow mode. Calculation results were compared with experimental data.

  6. Numerical simulation of flow characteristics in micro shock tubes

    NASA Astrophysics Data System (ADS)

    Zhang, Guang; Setoguchi, Toshiaki; Kim, Heuy Dong

    2015-06-01

    Recently micro shock tubes have been widely used in many engineering and industrial fields, but the characteristics of unsteady flow are not well known to date in micro shock tubes. Compared to conventional shock tubes with macro scales, flows related to shock waves in micro shock tubes are highly complicated. Stronger viscous and dissipative interactions make shock wave dynamic behaviors significantly different from theoretical predictions. In the present study, a CFD work was applied to the unsteady compressible Navier-Stokes equations which were solved using a fully implicit finite volume scheme. The diaphragm pressure ratio and shock tube diameter were varied to investigate their effects on micro shock tube flows. Different wall boundary conditions were also performed to observe shock wave and contact surface propagation with no slip and slip walls. Detailed flow characteristics at the foot of shock wave and contact surface propagation were known from the present numerical simulations.

  7. Siphon flows in isolated magnetic flux tubes. 3: The equilibrium path of the flux tube arch

    NASA Astrophysics Data System (ADS)

    Thomas, John H.; Montesinis, Benjamin

    1989-09-01

    The arched equilibrium path of a thin magnetic flux tube in a plane-stratified, nonmagnetic atmosphere is calculated for cases in which the flux tube contains a steady siphon flow. The large scale mechanical equilibrium of the flux tube involves a balance among the magnetic buoyancy force, the net magnetic tension force due to the curvature of the flux tube axis, and the inertial (centrifugal) force due to the siphon flow along curved streamlines. The ends of the flux tube are assumed to be pinned down by some other external force. Both isothermal and adiabatic siphon flows are considered for flux tubes in an isothermal external atmosphere. For the isothermal case, in the absence of a siphon flow the equilibrium path reduces to the static arch calculated by Parker (1975, 1979). The presence of a siphon flow causes the flux tube arch to bend more sharply, so that magnetic tension can overcome the additional straightening effect of the inertial force, and reduces the maximum width of the arch. The curvature of the arch increases as the siphon flow speed increases. For a critical siphon flow, with supercritical flow in the downstream leg, the arch is asymmetric, with greater curvature in the downstream leg of the arch. Adiabatic flow have qualitatively similar effects, except that adiabatic cooling reduces the buoyancy of the flux tube and thus leads to significantly wider arches. In some cases the cooling is strong enough to create negative buoyancy along sections of the flux tube, requiring upward curvature of the flux tube path along these sections and sometimes leading to unusual equilibrium paths of periodic, sinusoidal form.

  8. Siphon flows in isolated magnetic flux tubes. 3: The equilibrium path of the flux tube arch

    NASA Technical Reports Server (NTRS)

    Thomas, John H.; Montesinis, Benjamin

    1989-01-01

    The arched equilibrium path of a thin magnetic flux tube in a plane-stratified, nonmagnetic atmosphere is calculated for cases in which the flux tube contains a steady siphon flow. The large scale mechanical equilibrium of the flux tube involves a balance among the magnetic buoyancy force, the net magnetic tension force due to the curvature of the flux tube axis, and the inertial (centrifugal) force due to the siphon flow along curved streamlines. The ends of the flux tube are assumed to be pinned down by some other external force. Both isothermal and adiabatic siphon flows are considered for flux tubes in an isothermal external atmosphere. For the isothermal case, in the absence of a siphon flow the equilibrium path reduces to the static arch calculated by Parker (1975, 1979). The presence of a siphon flow causes the flux tube arch to bend more sharply, so that magnetic tension can overcome the additional straightening effect of the inertial force, and reduces the maximum width of the arch. The curvature of the arch increases as the siphon flow speed increases. For a critical siphon flow, with supercritical flow in the downstream leg, the arch is asymmetric, with greater curvature in the downstream leg of the arch. Adiabatic flow have qualitatively similar effects, except that adiabatic cooling reduces the buoyancy of the flux tube and thus leads to significantly wider arches. In some cases the cooling is strong enough to create negative buoyancy along sections of the flux tube, requiring upward curvature of the flux tube path along these sections and sometimes leading to unusual equilibrium paths of periodic, sinusoidal form.

  9. An experimental study of pulsatile flow through compliant tubes

    NASA Astrophysics Data System (ADS)

    Sturgeon, Victoria; Savas, Omer; Saloner, David

    2006-11-01

    An experimental investigation is made into transitional behaviors and instability of oscillatory input flows through elastic tubes, a problem with applications to hemodynamics and flows in the pulmonary system. Sinusoidal input flow is driven through a compliant silicone model in a series of experiments to investigate the effects of wall motion. A novel mechanism allows active control and feedback over the pressure on the tube exterior. By comparing the pressure within and outside of the tube and modifying the exterior pressure accordingly, the tube is inflated in a controlled manner without altering the input flow. In these experiments, the tube wall is deformed sinusoidally with an amplitude of approximately ten percent of its radius. Experiments are conducted using varying values of the parameters α= a √φν and β= δx √φν where a is the tube radius, φ the angular velocity of the input flow, ν the kinematic viscosity, and δx the cross-stream averaged periodic displacement of a fluid particle undergoing pulsatile motion. For a given α, it is found that indications of conditional turbulence appear in this flow through elastic tubes at far lower values of β - and thus at lower amplitudes of oscillation - than are reported in the literature for flows through rigid tubing.

  10. Steady Slug Flow in a Circular Tube

    NASA Astrophysics Data System (ADS)

    Bian, Xiaoqiang; Perlin, Marc; Schultz, William W.

    2002-11-01

    The steady motion of a water slug in a circular tube is studied. When the contact lines completely stick to the tube, the axisymmetric surface modes are solved with a spectral method for originally spherical menisci. The results agree well with a simple 0-degree approximation for lowest slosh mode. The effects of slip in natural frequencies are also discussed. The velocity and menisci geometry are measured for slugs moving in a tilted tube for dry and pre-wetted inner tube surfaces. A custom glass tube has a square outer cross section for minimizing optic distortions and measuring velocity and meniscus geometry. Asymptotic methods and numerics solve the menisci sliding on pre-wetted inner surface. These results are qualitatively compared with our experiments and those in NASA TN-515. As expected, near-meniscus behavior plays a big role in the total resistance to the moving slug.

  11. Vertical, Bubbly, Cross-Flow Characteristics over Tube Bundles

    NASA Astrophysics Data System (ADS)

    Iwaki, C.; Cheong, K. H.; Monji, H.; Matsui, G.

    2005-12-01

    Two-phase flow over tube bundles is commonly observed in shell and tube-type heat exchangers. However, only limited amount of data concerning flow pattern and void fraction exists due to the flow complexity and the difficulties in measurement. The detailed flow structure in tube bundles needs to be understood for reliable and effective design. Therefore, the objective of this study was to clarify the two-phase structure of cross-flow in tube bundles by PIV. Experiments were conducted using two types of models, namely in-line and staggered arrays with a pitch-to-diameter ratio of 1.5. Each test section contains 20 rows of five 15 mm O.D. tubes in each row. The experiment’s data were obtained under very low void fraction (α<0.02). Liquid and gas velocity data in the whole flow field were measured successfully by optical filtering and image processing. The structures of bubbly flow in the two different configurations of tube bundles were described in terms of the velocity vector field, turbulence intensity and void fraction.

  12. Reevaluation of compressible-flow Preston tube calibrations

    NASA Technical Reports Server (NTRS)

    Allen, J. M.

    1977-01-01

    Revised zero-pressure-gradient, adiabatic wall skin-friction-balance data covering a Mach number range from 1.6 to 4.6 led to a reevaluation of existing compressible flow Preston tube calibration equations.

  13. Unexpected water flow through Nafion-tube punctures.

    PubMed

    O'Rourke, Colin; Klyuzhin, Ivan; Park, Ji Sun; Pollack, Gerald H

    2011-05-01

    When a Nafion tube is immersed in water and a small hole is punched in the tube's wall, an unexpected phenomenon occurs: Water flows continuously into the tube through the hole. The phenomenon has proved repeatable, and dynamic aspects were therefore explored, including the effects of altered pH and introduction of a second hole. It appears that the flow is closely tied to the recently discovered "exclusion zone" that forms as an annulus inside the Nafion tube. These zones generate protons in the core of the tube, which exert pressure on the menisci; once a hole is punched, the pressure is relieved by sucking water through the hole. This hypothesis is consistent with the observed experimental evidence and may be relevant to the mechanism of water transport in trees.

  14. Subcooled choked flow through steam generator tube cracks

    NASA Astrophysics Data System (ADS)

    Wolf, Brian J.

    The work presented here describes an experimental investigation into the choked flow of initially subcooled water through simulated steam generator tube cracks at pressures up to 6.9 MPa. The study of such flow is relevant to the prediction of leak flow rates from a nuclear reactor primary side to secondary side through cracks in steam generator tubes. An experimental approach to measuring such flow is de- scribed. Experimental results from data found in literature as well as the data collected in this work are compared with predictions from presented models as well as predictions from the thermal-hydraulic system code RELAP5. It is found that the homogeneous equilibrium model underpredicts choked flow rates of subcooled water through slits and artificial steam generator tube cracks. Additional modeling of thermal non-equilibrium improves the predictibility of choking mass flux for homogeneous models, however they fail to account for the characteristics of the two-phase pressure drop. An integral modeling approach is enhanced using a correlation developed from the data herein. Also, an assessment of the thermal-hydraulics code RELAP5 is performed and it’s applicability to predict choking flow rates through steam generator tube cracks is addressed. This assessment determined that the Henry & Fauske model, as coded in RELAP5, is best suited for modeling choked flow through steam generator tube cracks. Finally, an approach to applying choked flow data that is not at the same thermo-dynamic conditions as a prototype is developed.

  15. Nonlinear dynamics of tube arrays in cross flow

    SciTech Connect

    Chen, S.S.; Cai, Y.; Zhu, S.

    1994-04-01

    Fluidelastic instability of loosely supported tube arrays was studied analytically and experimentally. This is one of the important practical problems of autonomous fluid-structure systems with many interesting motions. Both fluid-damping and fluid-stiffness controlled instabilities were investigated. Depending on the system parameter, the dynamic response of the tubes includes periodic, quasiperiodic, and chaotic motions. The analytical model is based on the unsteady flow theory, which can predict the nonlinear dynamics of tube arrays in cross flow. For fluid-damping controlled instability, analytical results and experimental data agree reasonably well. This study was applied to heat exchangers.

  16. Monte Carlo N-Particle Tracking of Ultrafine Particle Flow in Bent Micro-Tubes

    SciTech Connect

    Casella, Andrew M.; Loyalka, Sudarsham K.

    2016-02-16

    The problem of large pressure-differential driven laminar convective-diffusive ultrafine aerosol flow through bent micro-tubes is of interest in several contemporary research areas including; release of contents from pressurized containment vessels, aerosol sampling equipment, advanced scientific instruments, gas-phase micro-heat exchangers, and microfluidic devices. In each of these areas, the predominant problem is the determination of the fraction of particles entering the micro-tube that is deposited within the tube and the fraction that is transmitted through. Due to the extensive parameter restrictions of this class of problems, a Lagrangian particle tracking method making use of the coupling of the analytical stream line solutions of Dean and the simplified Langevin equation is quite a useful tool in problem characterization. This method is a direct analog to the Monte Carlo N-Particle method of particle transport extensively used in nuclear physics and engineering. In this work, 10 nm diameter particles with a density of 1 g/cm3 are tracked within micro-tubes with toroidal bends with pressure differentials ranging between 0.2175 and 0.87 atmospheres. The tubes have radii of 25 microns and 50 microns and the radius of curvature is between 1 m and 0.3183 cm. The carrier gas is helium, and temperatures of 298 K and 558 K are considered. Numerical convergence is considered as a function of time step size and of the number of particles per simulation. Particle transmission rates and deposition patterns within the bent micro-tubes are calculated.

  17. The effect of fluid flow on coiled tubing reach

    SciTech Connect

    Bhalla, K.; Walton, I.C.

    1996-12-31

    A critical parameter to the success of many coiled tubing (CT) operations in highly deviated or horizontal wells is the depth penetration that can be attained before the CT buckles and locks up. Achieving a desired depth is always critical in CT operations and attaining an additional reach of a few hundred feet can be crucial. This paper addresses the effect of fluid flow in the CT and in the CT/wellbore annulus on the state of force and stress in the CT, and thereby predicts its effect on the reach attainable by the CT. The flow of fluid through the CT and annulus between the CT and borehole modifies the pressures and the effective force which governs the mechanical stability of the CT. The net force per unit length due to fluid flow in the coiled tubing and annulus between the coiled tubing casing/well is calculated in terms of the shear stress and its effect on the onset of buckling and lockup is determined. The model is then implemented in a full tubing forces calculation and the effect of flowing fluids and producing fluids on reach is analyzed. The new model is utilized in the design of commercial jobs. The exact analytic model shows that fluid flow inside the CT has zero impact on reach, that downward flow in the annulus has a favourable impact, and upward flow in the annulus reduces the maximum attainable reach. Using the full tubing forces model, a coiled tubing job can be designed taking into account the flow of a fluid with a specified rheology, density and flow rate. Thus the feasibility of attaining a given reach can be more accurately determined. Results are presented in the form of the surface weight for commercial wells and compared to field jobs.

  18. Carreau model for oscillatory blood flow in a tube

    NASA Astrophysics Data System (ADS)

    Tabakova, S.; Nikolova, E.; Radev, St.

    2014-11-01

    The analysis of the blood flow dynamics (hemodynamics) in tubes is crucial when investigating the rupture of different types of aneurysms. The blood viscosity nonlinear dependence on the flow shear rate creates complicated manifestations of the blood pulsations. Although a great number of studies exists, experimental and numerical, this phenomenon is still not very well understood. The aim of the present work is to propose a numerical model of the oscillatory blood flow in a tube on the basis of the Carreau model of the blood viscosity (nonlinear model with respect to the shear rate). The obtained results for the flow velocity and tangential stress on the tube wall are compared well with other authors' results.

  19. Numerical simulation of transient hypervelocity flow in an expansion tube

    NASA Technical Reports Server (NTRS)

    Jacobs, P. A.

    1992-01-01

    Several numerical simulations of the transient flow of helium in an expansion tube are presented. The aim of the exercise is to provide further information on the operational problems of the NASA Langley expansion tube. The calculations were performed with an axisymmetric Navier-Stokes code based on a finite-volume formulation and upwinding techniques. Although laminar flow and ideal bursting of the diaphragms was assumed, the simulations showed some of the important features seen in the experiments. In particular, the discontinuity in the tube diameter at the primary diaphragm station introduced a transverse perturbation to the expanding driver gas, and this perturbation was seen to propagate into the test gas under some flow conditions. The disturbances seen in the test flow can be characterized as either 'small-amplitude' noise possibly introduced during shock compression or 'large-amplitude' noise associated with the passage of the reflected head of the unsteady expansion.

  20. Vortex tubes in turbulent flows: Identification, representation, reconstruction

    NASA Technical Reports Server (NTRS)

    Banks, David C.; Singer, Bart A.

    1994-01-01

    In many cases the structure of a fluid flow is well-characterized by its vortices, especially for the purpose of visualization. In this paper we present a new algorithm for identifying vortices in complex flows. The algorithm produces a skeleton line along the center of a vortex by using a two-step predictor-corrector scheme. The vorticity vector field serves as the predictor and the pressure gradient (in the perpendicular plane) serves as the corrector. We describe an economical description of the vortex tube's cross-section: a 5-term truncated Fourier series is generally sufficient, and it compresses the representation of the flow by a factor of 4000 or more. We reconstruct the vortex tubes as generalized cylinders, providing a polygonal mesh suitable for display on a graphics workstation. We show how the reconstructed geometry of vortex tubes can be enhanced to help visualize helical motion in a static image.

  1. GENERATION, TRANSPORT AND DEPOSITION OF TUNGSTEN-OXIDE AEROSOLS AT 1000 C IN FLOWING AIR-STEAM MIXTURES.

    SciTech Connect

    GREENE,G.A.; FINFROCK,C.C.

    2001-10-01

    Experiments were conducted to measure the rates of oxidation and vaporization of pure tungsten rods in flowing air, steam and air-steam mixtures in laminar flow. Also measured were the downstream transport of tungsten-oxide condensation aerosols and their region of deposition, including plateout in the superheated flow tube, rainout in the condenser and ambient discharge which was collected on an array of sub-micron aerosol filters. The nominal conditions of the tests, with the exception of the first two tests, were tungsten temperatures of 1000 C, gas mixture temperatures of 200 C and wall temperatures of 150 C to 200 C. It was observed that the tungsten oxidation rates were greatest in all air and least in all steam, generally decreasing non-linearly with increasing steam mole fraction. The tungsten oxidation rates in all air were more than five times greater than the tungsten oxidation rates in all steam. The tungsten vaporization rate was zero in all air and increased with increasing steam mole fraction. The vaporization rate became maximum at a steam mole fraction of 0.85 and decreased thereafter as the steam mole fraction was increased to unity. The tungsten-oxide was transported downstream as condensation aerosols, initially flowing upwards from the tungsten rod through an 18-inch long, one-inch diameter quartz tube, around a 3.5-inch radius, 90{sup o} bend and laterally through a 24-inch horizontal run. The entire length of the quartz glass flow path was heated by electrical resistance clamshell heaters whose temperatures were individually controlled and measured. The tungsten-oxide plateout in the quartz tube was collected, nearly all of which was deposited at the end of the heated zone near the entrance to the condenser which was cold. The tungsten-oxide which rained out in the condenser as the steam condensed was collected with the condensate and weighed after being dried. The aerosol smoke which escaped the condenser was collected on the sub

  2. Flow tracing fidelity of scattering aerosol in laser Doppler velocimetry

    NASA Technical Reports Server (NTRS)

    Mazumder, M. K.; Kirsch, K. J.

    1974-01-01

    An experimental method for determinating the flow tracing fidelity of a scattering aerosol used in laser Doppler velocimeters was developed with particular reference to the subsonic turbulence measurements. The method employs the measurement of the dynamic response of a flow seeding aerosol excited by acoustic waves. The amplitude and frequency of excitation were controlled to simulate the corresponding values of fluid turbulence components. Experimental results are presented on the dynamic response of aerosols over the size range from 0.1 to 2.0 microns in diameter and over the frequency range 100 Hz to 100 kHz. It was observed that unit density spherical scatterers with diameters of 0.2 microns followed subsonic air turbulence frequency components up to 100 kHz with 98 percent fidelity.

  3. Flow tracing fidelity of scattering aerosol in laser Doppler velocimetry

    NASA Technical Reports Server (NTRS)

    Mazumder, M. K.; Kirsch, K. J.

    1975-01-01

    An experimental method for the determination of the flow-tracing fidelity of a scattering aerosol used in laser Doppler velocimeters was developed with particular reference to the subsonic turbulence measurements. The method employs the measurement of the dynamic response of a flow-seeding aerosol excited by acoustic waves. The amplitude and frequency of excitation were controlled in order to simulate the corresponding values of fluid turbulence components. Experimental results are presented on the dynamic response of aerosols over the size range from 0.1 to 2.0 microns in diam and over the frequency range 100 Hz to 100 kHz. It was observed that unit-density spherical scatterers with diameters of 0.2 micron followed subsonic air turbulence frequency components up to 100 kHz with 98% fidelity.

  4. Quantifying the Reactive Uptake of OH by Organic Aerosols in aContinuous Flow Stirred Tank Reactor

    SciTech Connect

    Che, Dung L.; Smith, Jared D.; Leone, Stephen R.; Ahmed, Musahid; Wilson, Kevin R.

    2009-03-01

    Here we report a new method for measuring the heterogeneous chemistry of submicron organic aerosol particles using a continuous flow stirred tank reactor. This approach is designed to quantify the real time heterogeneous kinetics, using a relative rate method, under conditions of low oxidant concentration and long reaction times that more closely mimic the real atmosphere. A general analytical expression, which couples the aerosol chemistry with the flow dynamics in the chamber is developed and applied to the heterogeneous oxidation of squalane particles by hydroxyl radicals (OH) in the presence of O2. The particle phase reaction is monitored via photoionization aerosol mass spectrometry and yields a reactive uptake coefficient of 0.51+-0.10, using OH concentrations of 1-7x108 molec cdot cm-3 and reaction times of 1.5+-3 hours. This uptake coefficient is larger than that found for the reaction carried out under high OH concentrations (~;;1x1010 molec cdot cm-3) and short reaction times in a flow tube reactor. This difference suggests that oxidant concentration and reaction time are not interchangeable quantities in reactions of organic aerosols with radicals. In general, this approach provides a new way to examine how the chemical aging of organic particles measured at short reaction times and high oxidant concentrations in flow tubes might differ from the long reaction times and low oxidant levels found in the real atmosphere.

  5. Flow-induced oscillation of collapsed tubes and airway structures.

    PubMed

    Bertram, Christopher D

    2008-11-30

    The self-excited oscillation of airway structures and flexible tubes in response to flow is reviewed. The structures range from tiny airways deep in the lung causing wheezing at the end of a forced expiration, to the pursed lips of a brass musical instrument player. Other airway structures that vibrate include the vocal cords (and their avian equivalent, the syrinx) and the soft palate of a snorer. These biological cases are compared with experiments on and theories for the self-excited oscillation of flexible tubes conveying a flow on the laboratory bench, with particular reference to those observations dealing with the situation where the inertia of the tube wall is dominant. In each case an attempt is made to summarise the current state of understanding. Finally, some outstanding challenges are identified.

  6. Flow in tubes of non-circular cross-sections

    NASA Astrophysics Data System (ADS)

    Quadir, Raushan Ara

    Laminar, viscous, incompressible flow in tubes of noncircular cross sections is investigated. The specific aims of the investigation are (1) to look at the problems of both developing flow and fully developed flow, (2) to consider noncircular cross sections in a more systematic manner than has been done in the past, and (3) to develop a relatively simple finite element technique for producing accurate numerical solutions of flow in tubes of fairly arbitrary cross sections. Fully developed flow in tubes is governed by a Poisson type equation for the mainstream velocity. Both analytical and numerical solutions are considered. The cross sections studied include elliptic and rectangular cross sections of different aspect ratios, some triangular cross sections, and a series of crescent-shaped cross sections. The physical characteristics of the flow are examined in a systematic manner in order to determine how these characteristics are affected by certain geometrical features of the cross section. Solutions fall into three basic categories depending on the shape of the cross section. In the first category, which includes circular and elliptic cross sections, solutions are possible in closed form. In the second, including rectangular and some triangular cross sections, solutions are in the form of infinite series. In the third, including cross sections of more complicated or irregular shapes, only numerical solutions are possible. Results of calculations of velocity profiles, flow rate, pumping power, and friction factor are presented in a way which can be useful for engineering applications. In numerical studies of both developing and fully developed flow finite element techniques are used. Results are obtained for tubes of rectangular and elliptic cross sections of different aspect ratios, for tubes of crescent-shaped cross sections, and a tube whose cross section is an oval of Cassini. For fully developed flow, results are compared with the corresponding exact

  7. The Caltech Photooxidation Flow Tube reactor: design, fluid dynamics and characterization

    NASA Astrophysics Data System (ADS)

    Huang, Yuanlong; Coggon, Matthew M.; Zhao, Ran; Lignell, Hanna; Bauer, Michael U.; Flagan, Richard C.; Seinfeld, John H.

    2017-03-01

    Flow tube reactors are widely employed to study gas-phase atmospheric chemistry and secondary organic aerosol (SOA) formation. The development of a new laminar-flow tube reactor, the Caltech Photooxidation Flow Tube (CPOT), intended for the study of gas-phase atmospheric chemistry and SOA formation, is reported here. The present work addresses the reactor design based on fluid dynamical characterization and the fundamental behavior of vapor molecules and particles in the reactor. The design of the inlet to the reactor, based on computational fluid dynamics (CFD) simulations, comprises a static mixer and a conical diffuser to facilitate development of a characteristic laminar flow profile. To assess the extent to which the actual performance adheres to the theoretical CFD model, residence time distribution (RTD) experiments are reported with vapor molecules (O3) and submicrometer ammonium sulfate particles. As confirmed by the CFD prediction, the presence of a slight deviation from strictly isothermal conditions leads to secondary flows in the reactor that produce deviations from the ideal parabolic laminar flow. The characterization experiments, in conjunction with theory, provide a basis for interpretation of atmospheric chemistry and SOA studies to follow. A 1-D photochemical model within an axially dispersed plug flow reactor (AD-PFR) framework is formulated to evaluate the oxidation level in the reactor. The simulation indicates that the OH concentration is uniform along the reactor, and an OH exposure (OHexp) ranging from ˜ 109 to ˜ 1012 molecules cm-3 s can be achieved from photolysis of H2O2. A method to calculate OHexp with a consideration for the axial dispersion in the present photochemical system is developed.

  8. Viscous liquid thin-film flow inside a tube

    NASA Astrophysics Data System (ADS)

    Ogrosky, H. Reed; Camassa, Roberto; Forest, M. G.; Joy, Chris; Kim, Jeeho; Olander, Jeffrey

    2012-11-01

    Experiments are conducted over a range of parameters where a high-viscosity silicone oil is fed into the top of a vertical thin glass tube. The oil flows at a continuous rate and the resulting gravity-driven flow coats the inside of the tube. Interfacial instabilities develop due to surface tension and azimuthal curvature. Depending on the experimental parameters, the instabilities either saturate and propagate down the tube as traveling waves or form propagating plugs or liquid bridges. Using a long-wave asymptotic model, we compare the growth rates and phase speed predicted by linear stability analysis with those of the experiments, and the fully nonlinear form of the model is used to predict the formation of plugs. Comparison of the model and experiments to its counterpart exterior setup of a gravity-driven film flow coating a fiber will be mentioned. The experiments are then extended to include pressure-driven airflow at a constant flow rate upwards through the center of the tube. The interfacial stress created by the airflow alters the speed and growth rates of the instabilities. The leading-order effects of the airflow are included in the long-wave model, and a comparison is made once again between model and experiments. We gratefully acknowledge support from NSF RTG DMS-0943851 and NIEHS 534197-3411.

  9. Flow chemistry: intelligent processing of gas-liquid transformations using a tube-in-tube reactor.

    PubMed

    Brzozowski, Martin; O'Brien, Matthew; Ley, Steven V; Polyzos, Anastasios

    2015-02-17

    reactive gas in a given reaction mixture. We have developed a tube-in-tube reactor device consisting of a pair of concentric capillaries in which pressurized gas permeates through an inner Teflon AF-2400 tube and reacts with dissolved substrate within a liquid phase that flows within a second gas impermeable tube. This Account examines our efforts toward the development of a simple, unified methodology for the processing of gaseous reagents in flow by way of development of a tube-in-tube reactor device and applications to key C-C, C-N, and C-O bond forming and hydrogenation reactions. We further describe the application to multistep reactions using solid-supported reagents and extend the technology to processes utilizing multiple gas reagents. A key feature of our work is the development of computer-aided imaging techniques to allow automated in-line monitoring of gas concentration and stoichiometry in real time. We anticipate that this Account will illustrate the convenience and benefits of membrane tube-in-tube reactor technology to improve and concomitantly broaden the scope of gas/liquid/solid reactions in organic synthesis.

  10. Modeling expiratory flow from excised tracheal tube laws.

    PubMed

    Aljuri, N; Freitag, L; Venegas, J G

    1999-11-01

    Flow limitation during forced exhalation and gas trapping during high-frequency ventilation are affected by upstream viscous losses and by the relationship between transmural pressure (Ptm) and cross-sectional area (A(tr)) of the airways, i.e., tube law (TL). Our objective was to test the validity of a simple lumped-parameter model of expiratory flow limitation, including the measured TL, static pressure recovery, and upstream viscous losses. To accomplish this objective, we assessed the TLs of various excised animal tracheae in controlled conditions of quasi-static (no flow) and steady forced expiratory flow. A(tr) was measured from digitized images of inner tracheal walls delineated by transillumination at an axial location defining the minimal area during forced expiratory flow. Tracheal TLs followed closely the exponential form proposed by Shapiro (A. H. Shapiro. J. Biomech. Eng. 99: 126-147, 1977) for elastic tubes: Ptm = K(p) [(A(tr)/A(tr0))(-n) - 1], where A(tr0) is A(tr) at Ptm = 0 and K(p) is a parametric factor related to the stiffness of the tube wall. Using these TLs, we found that the simple model of expiratory flow limitation described well the experimental data. Independent of upstream resistance, all tracheae with an exponent n < 2 experienced flow limitation, whereas a trachea with n > 2 did not. Upstream viscous losses, as expected, reduced maximal expiratory flow. The TL measured under steady-flow conditions was stiffer than that measured under expiratory no-flow conditions, only if a significant static pressure recovery from the choke point to atmosphere was assumed in the measurement.

  11. Oscillatory Flow in Curved and Straight Tubes: Transport and Transition.

    NASA Astrophysics Data System (ADS)

    Eckmann, David Matthew

    Transport of soluble material is analyzed for volume-cycled oscillatory flow in a curved tube. The Navier -Stokes equations of motion are solved using a regular perturbation method for small ratio of tube radius to radius of curvature and order unity amplitude over a range of the Womersley parameter. A stream function definition of the lateral velocities is defined to satisfy the conservation of mass equation exactly. A pressure-gradient amplitude is specified to satisfy the fluid volume-cycling constraint imposed. Axial velocity profiles and cross-sectional steady streaming velocity profiles are compared to previous theories and experiments. The convection-diffusion transport equation is similarly solved by a regular perturbation scheme where uniform steady end concentrations and no wall flux are assumed. The time-average axial transport, consisting of the diffusive and convective flux of solute is calculated. There is substantial modification of transport compared to the straight tube case and the results are interpreted with respect to pulmonary gas exchange. A Laser Doppler Anemometer is used to analyze volume-cycled oscillatory flow of a Newtonian viscous fluid in a straight circular tube. The working fluid is chosen to match index of refraction with the Plexiglas test section. The axial velocity is measured at radial positions across the diameter of the tube for a wide range of amplitude A = stroke distance/tube radius (2.4 <=q A <=q 21.6) and Womersley parameter (9 < alpha < 33). Transition to turbulence is detected during the decelerating phase of fluid motion for 500 < R_delta < 875, where R_delta = alphaAsurd2 is the Reynolds number based on Stokes layer thickness. This instability is confined to the viscous boundary layer and does not appear in the inviscid core as reported by previous investigators, unless a source of vorticity such as a hot -wire anemometer probe is resident in the flow.

  12. Flow and heat transfer enhancement in tube heat exchangers

    NASA Astrophysics Data System (ADS)

    Sayed Ahmed, Sayed Ahmed E.; Mesalhy, Osama M.; Abdelatief, Mohamed A.

    2015-11-01

    The performance of heat exchangers can be improved to perform a certain heat-transfer duty by heat transfer enhancement techniques. Enhancement techniques can be divided into two categories: passive and active. Active methods require external power, such as electric or acoustic field, mechanical devices, or surface vibration, whereas passive methods do not require external power but make use of a special surface geometry or fluid additive which cause heat transfer enhancement. The majority of commercially interesting enhancement techniques are passive ones. This paper presents a review of published works on the characteristics of heat transfer and flow in finned tube heat exchangers of the existing patterns. The review considers plain, louvered, slit, wavy, annular, longitudinal, and serrated fins. This review can be indicated by the status of the research in this area which is important. The comparison of finned tubes heat exchangers shows that those with slit, plain, and wavy finned tubes have the highest values of area goodness factor while the heat exchanger with annular fin shows the lowest. A better heat transfer coefficient ha is found for a heat exchanger with louvered finned and thus should be regarded as the most efficient one, at fixed pumping power per heat transfer area. This study points out that although numerous studies have been conducted on the characteristics of flow and heat transfer in round, elliptical, and flat tubes, studies on some types of streamlined-tubes shapes are limited, especially on wing-shaped tubes (Sayed Ahmed et al. in Heat Mass Transf 50: 1091-1102, 2014; in Heat Mass Transf 51: 1001-1016, 2015). It is recommended that further detailed studies via numerical simulations and/or experimental investigations should be carried out, in the future, to put further insight to these fin designs.

  13. Holographic flow visualization at the Langley Expansion Tube

    NASA Astrophysics Data System (ADS)

    Goad, W. K.; Burner, A. W.

    1981-06-01

    A holographic system used for flow visualization at the Langley Expansion Tube is described. A ruby laser which can be singly or doubly pulsed during the short run time of less than 300 microns is used as the light source. With holography, sensitivity adjustments can be optimized after a run instead of before a run as with conventional flow visualization techniques. This results in an increased reliability of the flow visualization available for the study of real-gas effects on flow about models. Holographic techniques such as single-plate schlieren and shadowgraph, two plate interferometry, double pulse interferometry for perfect infinite-fringe interferograms, and double-pulse interferometry used to examine changes in the flow over a short time period are described and examples presented.

  14. Heat transfer research on supercritical water flow upward in tube

    SciTech Connect

    Li, H. B.; Yang, J.; Gu, H. Y.; Zhao, M.; Lu, D. H.; Zhang, J. M.; Wang, F.; Zhang, Y.

    2012-07-01

    The experimental research of heat transfer on supercritical water has been carried out on the supercritical water multipurpose test loop with a 7.6 mm upright tube. The experimental data of heat transfer is obtained. The experimental results of thermal-hydraulic parameters on flow and heat transfer of supercritical water show that: Heat transfer enhancement occurs when the fluid temperature reaches pseudo-critical point with low mass flow velocity, and peters out when the mass flow velocity increases. The heat transfer coefficient and Nusselt number decrease with the heat flux or system pressure increases, and increase with the increasing of mass flow velocity. The wall temperature increases when the mass flow velocity decreases or the system pressure increases. (authors)

  15. Computational fluid dynamics (CFD) simulations of aerosol in a U-shaped steam generator tube

    NASA Astrophysics Data System (ADS)

    Longmire, Pamela

    To quantify primary side aerosol retention, an Eulerian/Lagrangian approach was used to investigate aerosol transport in a compressible, turbulent, adiabatic, internal, wall-bounded flow. The ARTIST experimental project (Phase I) served as the physical model replicated for numerical simulation. Realizable k-epsilon and standard k-o turbulence models were selected from the computational fluid dynamics (CFD) code, FLUENT, to provide the Eulerian description of the gaseous phase. Flow field simulation results exhibited: (a) onset of weak secondary flow accelerated at bend entrance towards the inner wall; (b) flow separation zone development on the convex wall that persisted from the point of onset; (c) centrifugal force concentrated high velocity flow in the direction of the concave wall; (d) formation of vortices throughout the flow domain resulted from rotational (Dean-type) flow; (e) weakened secondary flow assisted the formation of twin vortices in the outflow cross section; and (f) perturbations induced by the bend influenced flow recovery several pipe diameters upstream of the bend. These observations were consistent with those of previous investigators. The Lagrangian discrete random walk model, with and without turbulent dispersion, simulated the dispersed phase behavior, incorrectly. Accurate deposition predictions in wall-bounded flow require modification of the Eddy Impaction Model (EIM). Thus, to circumvent shortcomings of the EIM, the Lagrangian time scale was changed to a wall function and the root-mean-square (RMS) fluctuating velocities were modified to account for the strong anisotropic nature of flow in the immediate vicinity of the wall (boundary layer). Subsequent computed trajectories suggest a precision that ranges from 0.1% to 0.7%, statistical sampling error. The aerodynamic mass median diameter (AMMD) at the inlet (5.5 mum) was consistent with the ARTIST experimental findings. The geometric standard deviation (GSD) varied depending on the

  16. Ordered and random structures in pulsatile flow through constricted tubes

    NASA Astrophysics Data System (ADS)

    Lieber, B. B.

    The poststenotic flow field in a rigid tube was investigated under pulsatile conditions. The waveform employed in the present experiment was sinusoidal and three contoured constrictions with 50, 75, and 90% area reduction were investigated. The fluid dynamic similarity parameters were chosen to represent conditions found in large arteries of humans and of experimental animals, using a Reynolds number range of 200 to 1000 and a frequency parameter value of 5.3. The analysis techniques of autoregressive modeling, correlation methods, and phase-shift averaging were employed in order to extract the maximum information about flow behavior. Analysis focuses on identification and representation of coherent flow disturbances, and examination of the influence of core flow behavior on the cyclic wall shear stress.

  17. Sieve tube geometry in relation to phloem flow.

    PubMed

    Mullendore, Daniel L; Windt, Carel W; Van As, Henk; Knoblauch, Michael

    2010-03-01

    Sieve elements are one of the least understood cell types in plants. Translocation velocities and volume flow to supply sinks with photoassimilates greatly depend on the geometry of the microfluidic sieve tube system and especially on the anatomy of sieve plates and sieve plate pores. Several models for phloem translocation have been developed, but appropriate data on the geometry of pores, plates, sieve elements, and flow parameters are lacking. We developed a method to clear cells from cytoplasmic constituents to image cell walls by scanning electron microscopy. This method allows high-resolution measurements of sieve element and sieve plate geometries. Sieve tube-specific conductivity and its reduction by callose deposition after injury was calculated for green bean (Phaseolus vulgaris), bamboo (Phyllostachys nuda), squash (Cucurbita maxima), castor bean (Ricinus communis), and tomato (Solanum lycopersicum). Phloem sap velocity measurements by magnetic resonance imaging velocimetry indicate that higher conductivity is not accompanied by a higher velocity. Studies on the temporal development of callose show that small sieve plate pores might be occluded by callose within minutes, but plants containing sieve tubes with large pores need additional mechanisms.

  18. Particle seeding flow system for horizontal shock tube

    SciTech Connect

    Johnston, Stephen; Garcia, Nicolas J.; Martinez, Adam A.; Orlicz, Gregory C.; Prestridge, Katherine P.

    2012-08-01

    The Extreme Fluids Team in P-23, Physics Division, studies fluid dynamics at high speeds using high resolution diagnostics. The unsteady forces on a particle driven by a shock wave are not well understood, and they are difficult to model. A horizontal shock tube (HST) is being modified to collect data about the behavior of particles accelerated by shocks. The HST has been used previously for studies of Richtmyer-Meshkov instability using Planar Laser-Induced Fluorescence (PLIF) as well as Particle Image Velocimetry (PIV), diagnostics that measure density and velocity. The purpose of our project is to design a flow system that will introduce particles into the HST. The requirements for this particle flow system (PFS) are that it be non-intrusive, be able to introduce either solid or liquid particles, have an exhaust capability, not interfere with existing diagnostics, and couple with the existing HST components. In addition, the particles must flow through the tube in a uniform way. We met these design criteria by first drawing the existing shock tube and diagnostics and doing an initial design of the ducts for the PFS. We then estimated the losses through the particle flow system from friction and researched possible fans that could be used to drive the particles. Finally, the most challenging component of the design was the coupling to the HST. If we used large inlets, the shock would lose strength as it passed by the inlet, so we designed a novel coupling inlet and outlet that minimize the losses to the shock wave. Our design was reviewed by the Extreme Fluids Team, and it is now being manufactured and built based upon our technical drawings.

  19. Flow synthesis using gaseous ammonia in a Teflon AF-2400 tube-in-tube reactor: Paal-Knorr pyrrole formation and gas concentration measurement by inline flow titration.

    PubMed

    Cranwell, Philippa B; O'Brien, Matthew; Browne, Duncan L; Koos, Peter; Polyzos, Anastasios; Peña-López, Miguel; Ley, Steven V

    2012-08-14

    Using a simple and accessible Teflon AF-2400 based tube-in-tube reactor, a series of pyrroles were synthesised in flow using the Paal-Knorr reaction of 1,4-diketones with gaseous ammonia. An inline flow titration technique allowed measurement of the ammonia concentration and its relationship to residence time and temperature.

  20. Stabilization of the turbulent flows in anisotropic viscoelastic tubes

    NASA Astrophysics Data System (ADS)

    Kizilova, N.; Hamadiche, M.

    Flow around the aircrafts and marine vehicles is turbulized that increases the skin-friction drag and fuel consumption. Here stability of the fully developed turbulent flow of an incompressible fluid in the viscoelastic tube is considered. The eddy viscosity concept is considered to be adequate and the flow velocity, wall displacement and pressures in the fluid and solid wall are timeaveraged quantities. Continuity conditions for the components of the velocity and stress tensor at the fluid-wall interface and no displacement condition at the outer wall of the tube are considered. Solution of the coupled system has been found in the form of the normal mode and the obtained system has been studied using the numerical technique described in [1,2]. The temporal and spatial eigenvalues and the dependencies of the temporal and spatial amplification rates on the rheological parameters of the wall have been computed. It was shown stability of the modes can be increased by a proper choice of the wall parameters. Successful combinations of the wall thickness, elasticity and viscosity have been found for a large variety of materials. It was shown a substantial reduction in the viscous wall shear stress accompanied by a decrease in the turbulence production or Reynolds stress can be reached via using the viscoelastic coating on the rigid surface. The obtained results are in a good agreement with recent direct numerical computations [3].

  1. Characterization of Vapor and Aerosol Flows by Photothermal Methods.

    DTIC Science & Technology

    2014-09-26

    transient Mie-scattering. The main parts of our experimental set-up have been shown previously5 . A Q-switched CO2 laser beam (pulse duration I ps...indicated beam separations in a nitrogen/ethanol vapor flow.The CO2 laser is fired at t-0. Signal decrease and broadening is in agreement with eq. (I...20. AUSTRACT (Confliu W tover@ aede It nemsaem iaind Identif by bleck numier) Pulsed laser heating is used to label aerosols or absorbing vapors

  2. A Comparison of Critical Regimes in Collapsible Tube, Pipe, Open Channel and Gas-Dynamic Flows

    NASA Astrophysics Data System (ADS)

    Arun, C. P.

    2003-11-01

    Though of considerable interest to clinical scientists, collapsible tubes are only recently receiving due interest by fluid physicists. The subject of critical phenomena in collapsible tube flow appears not to have been examined critically. For example, it has been proposed in the past that shock waves in physiological tubes are abnormal. We propose a classification of flow through collapsible tubes recognising that compressibility in gas-dynamic and pipe flow (cf.waterhammer) corresponds to distensibility in collapsible tube flow. Thus, opening and closing waves of collapsible tube flow (predistension regime) is subcritical flow and the post-distension regime, supercritical. Physiological tubes are often hyperelastic and contractile and often, when distension is very significant, a hypercritical regime corresponding to hypersonic gas-dynamic flow is admissible. Such a hypercritical regime would allow storage of energy and muscle contraction in the wall of the tube and hence continuance of propulsion in the essentially intermittent flow that is seen in collapsible tubes. Such a mechanism appears to be in operation in the human aorta, bowel and urethra. The present work offers a comparison of critical regimes in various fluid flow situations including collapsible tubes, that is in harmony with known phenomena seen in nature.

  3. Numerical Investigation of Sheath and Aerosol Flows in the Flow Combination Section of a Baron Fiber Classifier

    PubMed Central

    Dubey, Prahit; Ghia, Urmila; Turkevich, Leonid A.

    2015-01-01

    The Baron fiber classifier is an instrument used to separate fibers by length. The flow combination section (FCS) of this instrument is an upstream annular region, where an aerosol of uncharged fibers is introduced along with two sheath flows; length separation occurs by dielectrophoresis downstream in the flow classification section. In its current implementation at NIOSH, the instrument is capable of processing only very small quantities of fibers. In order to prepare large quantities of length-separated fibers for toxicological studies, the throughput of the instrument needs to be increased, and hence, higher aerosol flow rates need to be considered. However, higher aerosol flow rates may give rise to flow separation or vortex formation in the FCS, arising from the sudden expansion of the aerosol at the inlet nozzle. The goal of the present investigation is to understand the interaction of the sheath and aerosol flows inside the FCS, using computational fluid dynamics (CFD), and to identify possible limits to increasing aerosol flow rates. Numerical solutions are obtained using an axisymmetric model of the FCS, and solving the Navier-Stokes equations governing these flows; in this study, the aerosol flow is treated purely aerodynamically. Results of computations are presented for four different flow rates. The geometry of the converging outer cylinder, along with the two sheath flows, is effective in preventing vortex formation in the FCS for aerosol-to-sheath flow inlet velocity ratios below ~ 50. For higher aerosol flow rates, recirculation is observed in both inner and outer sheaths. Results for velocity, streamlines, and shear stress are presented. PMID:26388662

  4. Accurate modelling of unsteady flows in collapsible tubes.

    PubMed

    Marchandise, Emilie; Flaud, Patrice

    2010-01-01

    The context of this paper is the development of a general and efficient numerical haemodynamic tool to help clinicians and researchers in understanding of physiological flow phenomena. We propose an accurate one-dimensional Runge-Kutta discontinuous Galerkin (RK-DG) method coupled with lumped parameter models for the boundary conditions. The suggested model has already been successfully applied to haemodynamics in arteries and is now extended for the flow in collapsible tubes such as veins. The main difference with cardiovascular simulations is that the flow may become supercritical and elastic jumps may appear with the numerical consequence that scheme may not remain monotone if no limiting procedure is introduced. We show that our second-order RK-DG method equipped with an approximate Roe's Riemann solver and a slope-limiting procedure allows us to capture elastic jumps accurately. Moreover, this paper demonstrates that the complex physics associated with such flows is more accurately modelled than with traditional methods such as finite difference methods or finite volumes. We present various benchmark problems that show the flexibility and applicability of the numerical method. Our solutions are compared with analytical solutions when they are available and with solutions obtained using other numerical methods. Finally, to illustrate the clinical interest, we study the emptying process in a calf vein squeezed by contracting skeletal muscle in a normal and pathological subject. We compare our results with experimental simulations and discuss the sensitivity to parameters of our model.

  5. Advances in flowing afterglow and selected-ion flow tube techniques

    NASA Astrophysics Data System (ADS)

    Squires, Robert R.

    1992-09-01

    New developments in flowing afterglow and selected-ion flow tube (SIFT) techniques are briefly reviewed. Particular emphasis is given to the new chemical and physical information that can be obtained with use of the tandem flowing afterglow-triple quadrupole apparatus developed in the author's laboratory. Several outstanding recent achievements in the design and utilization of flowing afterglow and SIFT instruments in other laboratories are briefly highlighted that illustrate the power and flexibility of flow-tube-based methods. These include isotope tracer experiments with the tandem flowing afterglow-SIFT instrument in Boulder, studies of large molecular cluster ions with the variable temperature facility at Penn State, and gas-phase metal ion reactions with the laser ablation/fast flow reactor in Madison. Recent applications of the flowing afterglow-triple quadrupole instrument in our laboratory have made use of collision-induced dissociation (CID) as a tool for synthesizing novel ions and for obtaining new thermo-chemical information from threshold energy measurements. Collision-induced decar☐ylation of organic car☐ylate ions provides access to a variety of unusual and highly basic carbanions that cannot be generated with conventional ion sources. The formation and properties of saturated alkyl ions and studies of gas-phase reactions of the methyl anion are briefly described. We have developed a new method for carrying out "preparative CID" in a flowing afterglow with use of a mini-drift tube; some recent applications of this new ion source are presented. Measurement of CID thresholds for simple cleavage reactions of thermalized ions can provide accurate measures of bond strengths, gas-phase acidities and basicities, and heats of formation for ions and reactive neutral species. Applications of this approach in the thermochemical characterization of carbenes, benzynes and biradicals are described. Future prospects for the continued development of flow

  6. Hypervelocity flows of argon produced in a free piston driven expansion tube

    NASA Technical Reports Server (NTRS)

    Neely, A. J.; Stalker, R. J.

    1992-01-01

    An expansion tube with a free piston driver has been used to generate quasi-steady hypersonic flows in argon at flow velocities in excess of 9 km/s. Irregular test flow unsteadiness has limited the performance of previous expansion tubes. Test section measurements of pitot pressure, static pressure, and flat plate heat transfer rates are used to confirm the presence of quasi-steady flow, and comparisons are made with predictions for the equilibrium flow of an ideal, ionizing, monatomic gas. The results of this work indicate that expansion tubes can be used to generate quasi-steady hypersonic flows in argon at speeds in excess of Earth orbital velocity.

  7. Analysis of steady viscous flow in slender tubes

    NASA Astrophysics Data System (ADS)

    Bujurke, N. M.; Katagi, N. N.; Awati, V. B.

    2005-09-01

    The computer extended perturbation series method is used to analyze the problem of steady viscous flow in slender tubes. The objective is to obtain an expansion in a power series of λ (= ɛ R, ɛ is a small parameter and R = M/{Lν } is a streamwise Reynolds number) and look for its analytic continuation. Such an expansion was usually terminated at the second or third order term and consequently they have a very limited utility. Sufficiently large number of terms in the series, representing physical quantities are, generated for the detail analysis which enables to get converging Pade’ sums for large λ. Domb-Sykes plot enables in finding singularity restricting the convergence of the series. Useful results valid up to λ = 15 are obtained for different derived quantities whereas in earlier findings [6], analysis could be done only up to λ = 10 resulting into a substantial improvement in the present study.

  8. Program and charts for determining shock tube, and expansion tunnel flow quantities for real air

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III; Wilder, S. E.

    1975-01-01

    A computer program in FORTRAN 4 language was written to determine shock tube, expansion tube, and expansion tunnel flow quantities for real-air test gas. This program permits, as input data, a number of possible combinations of flow quantities generally measured during a test. The versatility of the program is enhanced by the inclusion of such effects as a standing or totally reflected shock at the secondary diaphragm, thermochemical-equilibrium flow expansion and frozen flow expansion for the expansion tube and expansion tunnel, attenuation of the flow in traversing the acceleration section of the expansion tube, real air as the acceleration gas, and the effect of wall boundary layer on the acceleration section air flow. Charts which provide a rapid estimation of expansion tube performance prior to a test are included.

  9. Volatility of Aerosols in the Western European Environment

    DTIC Science & Technology

    1989-12-01

    562-576, 1987.I Stratmann, F. and H. Fissan. Convection, diffusion and thermophoresis in cooled laminar tube flow. J. Aerosol Sci., 19. 793-796, 1988.I...Waldmann, L. and K.H. Schmitt. Thermophoresis and diffusiophoresis of aerosols, in Aerosol Science, Ed. C.N. Davies, Academic Press, London and New

  10. Experimental study on cross-flow induced vibrations in heat exchanger tube bundle

    NASA Astrophysics Data System (ADS)

    Khushnood, Shahab; Nizam, Luqman Ahmad

    2017-03-01

    Vibration in heat exchangers is one of the main problems that the industry has faced over last few decades. Vibration phenomenon in heat exchangers is of major concern for designers and process engineers since it can lead to the tube damage, tube leakage, baffle damage, tube collision damage, fatigue, creep etc. In the present study, vibration response is analyzed on single tube located in the centre of the tube bundle having parallel triangular arrangement (60°) with P/ D ratio of 1.44. The experiment is performed for two different flow conditions. This kind of experiment has not been reported in the literature. Under the first condition, the tube vibration response is analyzed when there is no internal flow in the tube and under the second condition, the response is analyzed when the internal tube flow is maintained at a constant value of 0.1 m/s. The free stream shell side velocity ranges from 0.8 m/s to 1.3 m/s, the reduced gap velocity varies from 1.80 to 2.66 and the Reynolds number varies from 44500 to 66000. It is observed that the internal tube flow results in larger vibration amplitudes for the tube than that without internal tube flow. It is also established that over the current range of shell side flow velocity, the turbulence is the dominant excitation mechanism for producing vibration in the tube since the amplitude varies directly with the increase in the shell side velocity. Damping has no significant effect on the vibration behavior of the tube for the current velocity range.

  11. Internal thermal coupling in direct-flow coaxial vacuum tube collectors

    SciTech Connect

    Glembin, J.; Rockendorf, G.; Scheuren, J.

    2010-07-15

    This investigation covers the impact of low flow rates on the efficiency of coaxial vacuum tube collectors. Measurements show an efficiency reduction of 10% if reducing the flow rate from 78 kg/m{sup 2} h to 31 kg/m{sup 2} h for a collector group with 60 parallel vacuum tubes with a coaxial flow conduit at one-sided connection. For a more profound understanding a model of the coaxial tube was developed which defines the main energy fluxes including the internal thermal coupling. The tube simulations show a non-linear temperature profile along the tube with the maximum temperature in the outer pipe. Due to heat transfer to the entering flow this maximum is not located at the fluid outlet. The non-linearity increases with decreasing flow rates. The experimentally determined flow distribution allows simulating the measured collector array. The simulation results confirm the efficiency decrease at low flow rates. The flow distribution has a further impact on efficiency reduction, but even at an ideal uniform flow, a considerable efficiency reduction at low flow rates is to be expected. As a consequence, low flow rates should be prevented for coaxial tube collectors, thus restricting the possible operation conditions. The effect of constructional modifications like diameter or material variations is presented. Finally the additional impact of a coaxial manifold design is discussed. (author)

  12. Aerosols

    Atmospheric Science Data Center

    2013-04-17

    ... article title:  Aerosols over Central and Eastern Europe     View Larger Image ... last weeks of March 2003, widespread aerosol pollution over Europe was detected by several satellite-borne instruments. The Multi-angle ...

  13. AEROSOL GROWTH IN A STEADY-STATE, CONTINUOUS FLOW CHAMBER: APPLICATION TO STUDIES OF SECONDARY AEROSOL FORMATION

    EPA Science Inventory

    An analytical solution for the steady-state aerosol size distribution achieved in a steady-state, continuous flow chamber is derived, where particle growth is occurring by gas-to-particle conversion and particle loss is occurring by deposition to the walls of the chamber. The s...

  14. Flow of Supercritical Hydrogen in a Uniformly Heated Circular Tube

    NASA Technical Reports Server (NTRS)

    Youn, B.; Mills, A. F.

    1993-01-01

    Turbulent flow of supercritical hydrogen through a uniformly heated circular tube has been investigated using numerical methods, for the range of 4 x 10(exp 5) less than Re less than 3 x 10(exp 6), 5 less than or equal to q(sub W) less than or equal to 10 MW/sq m, 30 less than or equal to T(sub in) less than or equal to 90 K, and 5 less than or equal to P(sub in) less than or equal to 15 MPa. The purpose is to validate a turbulence model and calculation method for the design of active cooling systems of hydrogen-fueled hypersonic aircraft, where the hydrogen fuel a used as coolant. The PHOENICS software package was used for the computations, which required special provision for evaluation of the thermophysical properties of the supercritical hydrogen, and a low Reynolds number form of the k-epsilon turbulence model. Pressure drop and heat transfer data were compared with experiment and existing correlations and good agreement was demonstrated. For the pressure range considered here a "thermal spike" was observed and shown to be due to the secondary peak in specific heat, rather than the primary peak.

  15. Uncertainty Analysis of the Grazing Flow Impedance Tube

    NASA Technical Reports Server (NTRS)

    Brown, Martha C.; Jones, Michael G.; Watson, Willie R.

    2012-01-01

    This paper outlines a methodology to identify the measurement uncertainty of NASA Langley s Grazing Flow Impedance Tube (GFIT) over its operating range, and to identify the parameters that most significantly contribute to the acoustic impedance prediction. Two acoustic liners are used for this study. The first is a single-layer, perforate-over-honeycomb liner that is nonlinear with respect to sound pressure level. The second consists of a wire-mesh facesheet and a honeycomb core, and is linear with respect to sound pressure level. These liners allow for evaluation of the effects of measurement uncertainty on impedances educed with linear and nonlinear liners. In general, the measurement uncertainty is observed to be larger for the nonlinear liners, with the largest uncertainty occurring near anti-resonance. A sensitivity analysis of the aerodynamic parameters (Mach number, static temperature, and static pressure) used in the impedance eduction process is also conducted using a Monte-Carlo approach. This sensitivity analysis demonstrates that the impedance eduction process is virtually insensitive to each of these parameters.

  16. Concentration and velocity measurements in the flow of droplet suspensions through a tube

    NASA Astrophysics Data System (ADS)

    Kowalewski, T. A.

    1984-12-01

    Two optical methods, light absorption and LDA, are applied to measure the concentration and velocity profiles of droplet suspensions flowing through a tube. The droplet concentration is non-uniform and has two maxima, one near the tube wall and one on the tube axis. The measured velocity profiles are blunted, but a central plug-flow region is not observed. The concentration of droplets on the tube axis and the degree of velocity profile blunting depend on relative viscosity. These results can be qualitatively compared with the theory of Chan and Leal.

  17. Numerical simulation of capacitively coupled RF plasma flowing through a tube for the synthesis of silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    Le Picard, Romain; Song, Sang-Heon; Porter, David; Kushner, Mark; Girshick, Steven

    2014-10-01

    Silicon nanocrystals (SiNCs) are of interest for applications in the photonics, electronics, and biomedical areas. Nonthermal plasmas offer several potential advantages for synthesizing SiNCs. In this work, we have developed a numerical model of a capacitively coupled RF plasma used for the synthesis of SiNCs. The plasma, consisting of silane diluted in argon at a total pressure of about 2 Torr, flows through a narrow quartz tube with two ring electrodes. The numerical model is 2D, assuming axisymmetry. An aerosol sectional model is added to the Hybrid Plasma Equipment Model developed by Kushner and coworkers. The aerosol module solves for aerosol size distributions and size-dependent charge distributions. A detailed chemical kinetic mechanism considering silicon hydride species containing up to 5 Si atoms is used to model particle nucleation and surface growth. The sectional model calculates coagulation, particle transport by electric force, neutral drag and ion drag, and particle charging using orbital motion limited theory. Simulation results are presented for selected operating conditions, and are compared to experimental results. This work was partially supported by the US Dept. of Energy Office of Fusion Energy Science (DE-SC0001939), the US National Science Foundation (CHE-124752), and the Minnesota Supercomputing Institute.

  18. Experimental study of rarefied gas flow near sudden contraction junction of a tube

    NASA Astrophysics Data System (ADS)

    Varade, Vijay; Agrawal, Amit; Pradeep, A. M.

    2014-06-01

    An experimental study of nearly isothermal rarefied gas flow near the sudden contraction junction of a tube is presented in this paper. The measurements are performed with nitrogen gas flowing at low pressures in conventional tubes with sudden contraction area ratios of 1.48, 3.74, 12.43, and 64. The flow is dynamically similar to gas flow in a microchannel as the Knudsen number (0.0001 < Kn < 0.032) falls in the slip flow regime. The Reynolds number in the smaller section (Res) ranges between 0.2 and 837. The static pressure measurements are analyzed to understand the flow behavior. The static pressure variation along the wall and uniform radial pressure profile near the junction indicates absence of flow separation and vena contracta. The static pressure variation in both the tubes approaches the pressure variation as that of an isolated straight tube at a certain critical Knudsen number for a given area ratio. The velocity field is obtained through a momentum balance and using the flow measurements. The effect of larger momentum diffusivity and slip at the wall, restricts any deviation in velocity profile from its parabolic nature at the junction and suppresses flow separation and vena contracta. The larger inertia force at the sudden contraction junction causes larger acceleration of the flow near the junction in the smaller tube as compared to that of the straight tube. The larger pressure drop in the sudden contraction is a result of the extent of flow compression and additional acceleration near the junction in the smaller tube as compared to the straight tube. This paper reports a set of new results that are expected to help in improving understanding of gaseous slip flows.

  19. PIV measurements of the flow field just downstream of an oscillating collapsible tube.

    PubMed

    Bertram, C D; Truong, N K; Hall, S D

    2008-12-01

    We probed the time-varying flow field immediately downstream of a flexible tube conveying an aqueous flow, during flow-induced oscillation of small amplitude, at time-averaged Reynolds numbers (Re) in the range 300-550. Velocity vector components in the plane of a laser sheet were measured by high-speed ("time-resolved") particle image velocimetry. The sheet was aligned alternately with both the major axis and the minor axis of the collapsing tube by rotating the pressure chamber in which the tube was mounted. The Womersley number of the oscillations was approximately 10. In the major-axis plane the flow fields were characterized by two jets that varied in lateral spacing. The rapid deceleration of flow at maximal collapse caused the jets momentarily to merge about one diameter into the downstream pipe, and strengthened and enlarged the existing retrograde flow lateral to each jet. Collapse also spread the jets maximally, allowing retrograde flow between them during the ascent from its minimum of the pressure at the end of the flexible tube. The minor-axis flow fields showed that the between-jet retrograde flow at this time extended all the way across the pipe. Whereas the retrograde flow lateral to the jets terminated within three diameters of the tube end at Re=335 at all times, it extended beyond three diameters at Re=525 for some 25% of the cycle including the time of maximal flow deceleration. Off-axis sheet positioning revealed the lateral jets to be crescent shaped. When the pressure outside the tube was increased, flattening the tube more, the jets retained a more consistent lateral position. These results illuminate the flows created by collapsible-tube oscillation in a laminar regime accessible to numerical modeling.

  20. Study on turbulent flow and heat transfer performance of tubes with internal fins in EGR cooler

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Ling, Xiang; Peng, Hao

    2015-01-01

    In this paper, flow and heat transfer performances of the tubes with internal longitudinal fins in Exhaust Gas Recirculation (EGR ) cooler were investigated by three-dimension computation and experiment . Each test tube was a single-pipe structure, without inner tube. Three-dimension computation was performed to determine the thermal characteristics difference between the two kinds of tubes, that is, the tube with an inner solid staff as a blocked structure and the tube without the blocked structure. The effects of fin width and fin height on heat transfer and flow are examined. For proving the validity of numerical method, the calculated results were compared with corresponding experimental data. The tube-side friction factor and heat transfer coefficient were examined. As a result, the maximum deviations between the numerical results and the experimental data are approximately 5.4 % for friction factor and 8.6 % for heat transfer coefficient, respectively. It is found that two types of internally finned tubes enhance significantly heat transfer. The heat transfer of the tube with blocked structure is better, while the pressure drop of the tube without blocked structure is lower. The comprehensive performance of the unblocked tube is better to applied in EGR cooler.

  1. Forced convective flow and heat transfer of upward cocurrent air-water slug flow in vertical plain and swirl tubes

    SciTech Connect

    Chang, Shyy Woei; Yang, Tsun Lirng

    2009-10-15

    This experimental study comparatively examined the two-phase flow structures, pressured drops and heat transfer performances for the cocurrent air-water slug flows in the vertical tubes with and without the spiky twisted tape insert. The two-phase flow structures in the plain and swirl tubes were imaged using the computerized high frame-rate videography with the Taylor bubble velocity measured. Superficial liquid Reynolds number (Re{sub L}) and air-to-water mass flow ratio (AW), which were respectively in the ranges of 4000-10000 and 0.003-0.02 were selected as the controlling parameters to specify the flow condition and derive the heat transfer correlations. Tube-wise averaged void fraction and Taylor bubble velocity were well correlated by the modified drift flux models for both plain and swirl tubes at the slug flow condition. A set of selected data obtained from the plain and swirl tubes was comparatively examined to highlight the impacts of the spiky twisted tape on the air-water interfacial structure and the pressure drop and heat transfer performances. Empirical heat transfer correlations that permitted the evaluation of individual and interdependent Re{sub L} and AW impacts on heat transfer in the developed flow regions of the plain and swirl tubes at the slug flow condition were derived. (author)

  2. Flow distribution analysis on the cooling tube network of ITER thermal shield

    SciTech Connect

    Nam, Kwanwoo; Chung, Wooho; Noh, Chang Hyun; Kang, Dong Kwon; Kang, Kyoung-O; Ahn, Hee Jae; Lee, Hyeon Gon

    2014-01-29

    Thermal shield (TS) is to be installed between the vacuum vessel or the cryostat and the magnets in ITER tokamak to reduce the thermal radiation load to the magnets operating at 4.2K. The TS is cooled by pressurized helium gas at the inlet temperature of 80K. The cooling tube is welded on the TS panel surface and the composed flow network of the TS cooling tubes is complex. The flow rate in each panel should be matched to the thermal design value for effective radiation shielding. This paper presents one dimensional analysis on the flow distribution of cooling tube network for the ITER TS. The hydraulic cooling tube network is modeled by an electrical analogy. Only the cooling tube on the TS surface and its connecting pipe from the manifold are considered in the analysis model. Considering the frictional factor and the local loss in the cooling tube, the hydraulic resistance is expressed as a linear function with respect to mass flow rate. Sub-circuits in the TS are analyzed separately because each circuit is controlled by its own control valve independently. It is found that flow rates in some panels are insufficient compared with the design values. In order to improve the flow distribution, two kinds of design modifications are proposed. The first one is to connect the tubes of the adjacent panels. This will increase the resistance of the tube on the panel where the flow rate is excessive. The other design suggestion is that an orifice is installed at the exit of tube routing where the flow rate is to be reduced. The analysis for the design suggestions shows that the flow mal-distribution is improved significantly.

  3. Dynamics of Magnetic Flux Tubes in an Advective Flow around a Black Hole

    NASA Astrophysics Data System (ADS)

    Deb, Arnab; Chakrabarti, Sandip Kumar; Giri, Kinsuk

    2016-07-01

    Magnetic fields cannibalized by an accretion flow would very soon have a dominant toroidal component. Without changing the topology, we study the movements of these flux tubes inside a geometrically thick advective disk which undergo centrifugal pressure supported shocks. We also consider the effects of the flux tubes on the flow. We use a finite element method (Total Variation Diminishing) for this purpose and specifically focussed whether the flux tubes contribute to changes in outflow properties in terms of its collimation and outflow rates. It is seen that depending upon the cross sectional radius of the flux tubes (which control the drag force), these field lines may move towards the central object or oscillate vertically before eventually escaping out of the funnel wall (pressure zero surface). These interesting results obtained with and without flux tubes point to the role the flux tubes play in collimation of jets and outflows.

  4. Stability of the flow in a soft tube deformed due to an applied pressure gradient

    NASA Astrophysics Data System (ADS)

    Verma, M. K. S.; Kumaran, V.

    2015-04-01

    A linear stability analysis is carried out for the flow through a tube with a soft wall in order to resolve the discrepancy of a factor of 10 for the transition Reynolds number between theoretical predictions in a cylindrical tube and the experiments of Verma and Kumaran [J. Fluid Mech. 705, 322 (2012), 10.1017/jfm.2011.55]. Here the effect of tube deformation (due to the applied pressure difference) on the mean velocity profile and pressure gradient is incorporated in the stability analysis. The tube geometry and dimensions are reconstructed from experimental images, where it is found that there is an expansion and then a contraction of the tube in the streamwise direction. The mean velocity profiles at different downstream locations and the pressure gradient, determined using computational fluid dynamics, are found to be substantially modified by the tube deformation. The velocity profiles are then used in a linear stability analysis, where the growth rates of perturbations are calculated for the flow through a tube with the wall modeled as a neo-Hookean elastic solid. The linear stability analysis is carried out for the mean velocity profiles at different downstream locations using the parallel flow approximation. The analysis indicates that the flow first becomes unstable in the downstream converging section of the tube where the flow profile is more pluglike when compared to the parabolic flow in a cylindrical tube. The flow is stable in the upstream diverging section where the deformation is maximum. The prediction for the transition Reynolds number is in good agreement with experiments, indicating that the downstream tube convergence and the consequent modification in the mean velocity profile and pressure gradient could reduce the transition Reynolds number by an order of magnitude.

  5. Experimental investigation of turbulent flow in smooth and longitudinal grooved tubes

    NASA Technical Reports Server (NTRS)

    Nitschke, P.

    1984-01-01

    Turbulent flow in tubes with and without longitudinal grooves is examined. The discovery of fine grooves forming a sort of streamline pattern on the body of sharks led to the expectation that the grooves on a surface reduce the momentum change, and thus the drag. To test this thesis, drag law, velocity profile and the profile of the velocity fluctuation were determined. Results show that for moderate Reynolds numbers the drag coefficient for grooved tubes is about 3 percent smaller than that of the smooth tubes. At higher Reynolds numbers, however, the drag coefficient for grooved tubes becomes larger than that for smooth tubes. No significant differences in the velocity profiles between grooved tubes and smooth tubes are found.

  6. High enthalpy, hypervelocity flows of air and argon in an expansion tube

    NASA Technical Reports Server (NTRS)

    Neely, A. J; Stalker, R. J.; Paull, A.

    1991-01-01

    An expansion tube with a free piston driver has been used to generate quasi-steady hypersonic flows in argon and air at flow velocities in excess of 9 km/s. Irregular test flow unsteadiness has limited the performance of previous expansion tubes, and it has been found that this can be avoided by attention to the interaction between the test gas accelerating expansion and the contact surface in the primary shock tube. Test section measurements of pitot pressure, static pressure and flat plate heat transfer are reported. An approximate analytical theory has been developed for predicting the velocities achieved in the unsteady expansion of the ionizing or dissociating test gas.

  7. Analyzing the effect on heat transfer due to nonuniform distribution of liquid flow among the tubes of a shell-and-tube heat exchanger

    NASA Astrophysics Data System (ADS)

    Zinkevich, A. I.; Sharifullin, V. N.; Sharifullin, A. V.

    2010-09-01

    A method is proposed using which nonuniform distribution of liquid flow among the tubes of a shell-and-tube apparatus can be taken into account by means of a statistical distribution function. A formula showing interrelation of this function with the indicator of heat transfer intensity in the apparatus tube space is given.

  8. Gas flow and thermal mixing in a helically wound tube bundle

    SciTech Connect

    Chiger, H.D.

    1980-07-01

    The thermal dissipation of a hot gas streak flowing across a segment of a helically wound tube bundle and the bypass flow streaming between the tubes and the bundle wall were investigated experimentally in the range of 8000 < Re < 50,000. Two different modes of creating a hot streak were employed. A planar hot streak was (1) injected at the entrance to the tube bundle and (2) generated by electrically heating several tubes past the bundle inlet. In the first case the mixing occurs in a region of lower turbulence since it occurs near the bundle inlet. In the second case the mixing occurs in a region of higher turbulence since the flow has already passed over several tube rows before the hot streak is generated.

  9. Numerical Investigation of the Flow Structure in a Kaplan Draft Tube at Part Load

    NASA Astrophysics Data System (ADS)

    Maddahian, R.; Cervantes, M. J.; Sotoudeh, N.

    2016-11-01

    This research presents numerical simulation of the unsteady flow field inside the draft tube of a Kaplan turbine at part load condition. Due to curvature of streamlines, the ordinary two-equations turbulence models fail to predict the flow features. Therefore, a modification of the Shear Stress Transport (SST-SAS) model is utilized to approximate the turbulent stresses. A guide vane, complete runner and draft tube are considered to insure the real boundary conditions at the draft tube inlet. The outlet boundary is assumed to discharge into the atmosphere. The obtained pressure fluctuations inside the draft tube are in good agreement with available experimental data. In order to further investigate the RVR formation and its movement, the λ2 criterion, relating the position of the vortex core and strength to the second largest Eigen value of the velocity gradient tensor, is employed. The method used for vortex identification shows the flow structure and vortex motion inside the draft tube accurately.

  10. Interface dynamics of capillary driven flow in a tube

    NASA Astrophysics Data System (ADS)

    Ichikawa, Naoki; Satoda, Yoko; Nakada, Takeshi

    This paper describes the dynamics of a liquid driven by capillary force in a tube. The movement of a gas-liquid interface in a horizontal tube as a result of capillary action has been investigated. A theoretical analysis of the interface dynamics is presented where dimensionless numbers representing time and distance scales are introduced, and a unique functional relation is derived. Experiments were carried out with distilled water as the test liquid in glass tubes of inner diameter from 0.5 mm to 4.0 mm. The position of the gas-liquid interface as a function of time was observed. The experimental results agree well with theory.

  11. Uptake of gaseous formaldehyde onto soil surfaces: a coated-wall flow tube study

    NASA Astrophysics Data System (ADS)

    Li, Guo; Su, Hang; Li, Xin; Meusel, Hannah; Kuhn, Uwe; Pöschl, Ulrich; Shao, Min; Cheng, Yafang

    2015-04-01

    Gaseous formaldehyde (HCHO) is an important intermediate molecule and source of HO2 radicals. However, discrepancies exist between model simulated and observed HCHO concentrations, suggesting missing sources or sinks in the HCHO budget. Multiphase processes on the surface of soil and airborne soil-derived particles have been suggested as an important mechanism for the production/removal of atmospheric trace gases and aerosols. In this work, the uptake of gaseous HCHO on soil surfaces were investigated through coated-wall flow tube experiments with HCHO concentration ranging from 10 to 40 ppbv. The results show that the adsorption of HCHO occurred on soil surfaces, and the uptake coefficient dropped gradually (i.e., by a factor of 5 after 1 hour) as the reactive surface sites were consumed. The HCHO uptake coefficient was found to be affected by the relative humidity (RH), decreasing from (2.4 ± 0.5) × 10-4 at 0% RH to (3.0 ± 0.08) × 10-5 at 70% RH, due to competition of water molecule absorption on the soil surface. A release of HCHO from reacted soil was also detected by applying zero air, suggesting the nature of reversible physical absorption and the existence of an equilibrium at the soil-gas interface. It implies that soil could be either a source or a sink for HCHO, depending on the ambient HCHO concentration. We also develop a Matlab program to calculate the uptake coefficient under laminar flow conditions based on the Cooney-Kim-Davis method.

  12. Flow and axial dispersion in a sinusoidal-walled tube: Effects of inertial and unsteady flows

    NASA Astrophysics Data System (ADS)

    Richmond, Marshall C.; Perkins, William A.; Scheibe, Timothy D.; Lambert, Adam; Wood, Brian D.

    2013-12-01

    In this work, we consider a sinusoidal-walled tube (a three-dimensional tube with sinusoidally-varying diameter) as a simplified conceptualization of flow in porous media. Direct numerical simulation using computational fluid dynamics (CFD) methods was used to compute velocity fields by solving the Navier-Stokes equations, and also to numerically solve the volume averaging closure problem, for a range of Reynolds numbers (Re) spanning the low-Re to inertial flow regimes, including one simulation at Re=449 for which unsteady flow was observed. The longitudinal dispersion observed for the flow was computed using a random walk particle tracking method, and this was compared to the longitudinal dispersion predicted from a volume-averaged macroscopic mass balance using the method of volume averaging; the results of the two methods were consistent. Our results are compared to experimental measurements of dispersion in porous media and to previous theoretical results for both the low-Re, Stokes flow regime and for values of Re representing the steady inertial regime. In the steady inertial regime, a power-law increase in the effective longitudinal dispersion (DL) with Re was found, and this is consistent with previous results. This rapid rate of increase is caused by trapping of solute in expansions due to flow separation (eddies). One unsteady (but non-turbulent) flow case (Re=449) was also examined. For this case, the rate of increase of DL with Re was smaller than that observed at lower Re. Velocity fluctuations in this regime lead to increased rates of solute mass transfer between the core flow and separated flow regions, thus diminishing the amount of tailing caused by solute trapping in eddies and thereby reducing longitudinal dispersion. The observed tailing was further explored through analysis of concentration skewness (third moment) and its assymptotic convergence to conventional advection-dispersion behavior (skewness = 0). The method of volume averaging was

  13. Measurements and computations of mass flow and momentum flux through short tubes in rarefied gases

    NASA Astrophysics Data System (ADS)

    Lilly, T. C.; Gimelshein, S. F.; Ketsdever, A. D.; Markelov, G. N.

    2006-09-01

    Gas flows through orifices and short tubes have been extensively studied from the 1960s through the 1980s for both fundamental and practical reasons. These flows are a basic and often important element of various modern gas driven instruments. Recent advances in micro- and nanoscale technologies have paved the way for a generation of miniaturized devices in various application areas, from clinical analyses to biochemical detection to aerospace propulsion. The latter is the main area of interest of this study, where rarefied gas flow into a vacuum through short tubes with thickness-to-diameter ratios varying from 0.015 to 1.2 is investigated both experimentally and numerically with kinetic and continuum approaches. Helium and nitrogen gases are used in the range of Reynolds numbers from 0.02 to 770 (based on the tube diameter), corresponding to Knudsen numbers from 40 down to about 0.001. Propulsion properties of relatively thin and thick tubes are examined. Good agreement between experimental and numerical results is observed for mass flow rate and momentum flux, the latter being corrected for the experimental facility background pressure. For thick-to-thin tube ratios of mass flow and momentum flux versus pressure, a minimum is observed at a Knudsen number of about 0.5. A short tube propulsion efficiency is shown to be much higher than that of a thin orifice. The effect of surface specularity on a thicker tube specific impulse was found to be relatively small.

  14. PIV measurement of the vertical cross-flow structure over tube bundles

    NASA Astrophysics Data System (ADS)

    Iwaki, C.; Cheong, K. H.; Monji, H.; Matsui, G.

    Shell and tube heat exchangers are among the most commonly used types of heat exchangers. Shell-side cross-flow in tube bundles has received considerable attention and has been investigated extensively. However, the microscopic flow structure including velocity distribution, wake, and turbulent structure in the tube bundles needs to be determined for more effective designs. Therefore, in this study, in order to clarify the detailed structure of cross-flow in tube bundles with particle image velocimetry (PIV), experiments were conducted using two types of model; in-line and staggered bundles with a pitch-to-diameter ratio of 1.5, containing 20 rows of five 15 mm O.D. tubes in each row. The velocity data in the whole flow field were measured successfully by adjusting the refractive index of the working fluid to that of the tube material. The flow features were characterized in different tube bundles with regards to the velocity vector field, vortex structure, and turbulent intensity.

  15. Computational model for the transition from peristaltic to pulsatile flow in the embryonic heart tube.

    PubMed

    Taber, Larry A; Zhang, Jinmei; Perucchio, Renato

    2007-06-01

    Early in development, the heart is a single muscle-wrapped tube without formed valves. Yet survival of the embryo depends on the ability of this tube to pump blood at steadily increasing rates and pressures. Developmental biologists historically have speculated that the heart tube pumps via a peristaltic mechanism, with a wave of contraction propagating from the inflow to the outflow end. Physiological measurements, however, have shown that the flow becomes pulsatile in character quite early in development, before the valves form. Here, we use a computational model for flow though the embryonic heart to explore the pumping mechanism. Results from the model show that endocardial cushions, which are valve primordia arising near the ends of the tube, induce a transition from peristaltic to pulsatile flow. Comparison of numerical results with published experimental data shows reasonably good agreement for various pressure and flow parameters. This study illustrates the interrelationship between form and function in the early embryonic heart.

  16. TWO-PHASE FLOW OF TWO HFC REFRIGERANT MIXTURES THROUGH SHORT-TUBE ORIFICES

    EPA Science Inventory

    The report gives results of an experimental investigation to develop an acceptable flow model for short tube orifice expansion devices used in heat pumps. The refrigerants investigated were two hydrofluorocarbon (HFC) mixtures considered hydrochlorofluorocarbon (HCFC)-22 replacem...

  17. Velocity and shear rate estimates of some non-Newtonian oscillatory flows in tubes

    NASA Astrophysics Data System (ADS)

    Kutev, N.; Tabakova, S.; Radev, S.

    2016-10-01

    The two-dimensional Newtonian and non-Newtonian (Carreau viscosity model used) oscillatory flows in straight tubes are studied theoretically and numerically. The corresponding analytical solution of the Newtonian flow and the numerical solution of the Carreau viscosity model flow show differences in velocity and shear rate. Some estimates for the velocity and shear rate differences are theoretically proved. As numerical examples the blood flow in different type of arteries and the polymer flow in pipes are considered.

  18. Thermodynamic Analysis and Optimization Based on Exergy Flow for a Two-Staged Pulse Tube Refrigerator

    DTIC Science & Technology

    2010-01-01

    model is convenient for thermodynamic analysis and optimization and shows the important characteristics of two-stage PTRs. Exergy comes into the system ...THERMODYNAMIC ANALYSIS AND OPTIMIZATION BASED ON EXERGY FLOW FOR A TWOSTAGED PULSE TUBE REFRIGERATOR A. Razani, T. Fraser, C. Dodson, and T. Roberts...Prescribed by ANSI Std Z39-18 THERMODYNAMIC ANALYSIS AND OPTIMIZATION BASED ON EXERGY FLOW FOR A TWO-STAGED PULSE TUBE REFRIGERATOR A. Razani 1,3

  19. Analysis of flow parameters of a Newtonian fluid through a cylindrical collapsible tube.

    PubMed

    Kanyiri, Caroline W; Kinyanjui, Mathew; Giterere, Kang'ethe

    2014-01-01

    In this research study, fluid flow through a cylindrical collapsible tube has been investigated. Of particular interest is the effect of flow parameters on the cross sectional area of a collapsible tube, flow velocity and internal pressure of the fluid. The flow parameters considered are longitudinal tension and volumetric flow rate. The tube is considered collapsible in the transverse direction, taken to be perpendicular to the main flow direction. Collapse happens when external pressure exceeds internal pressure and hence the tube results to a highly noncircular cross sectional area. The fluid flow in consideration is steady and incompressible. Equations governing the flow are non-linear and cannot be solved analytically. Therefore an approximate solution to the equations has been determined numerically. In this case, finite difference method has been used. A computer program has then been used to generate the results which are presented in form of graphs. The results show that the longitudinal tension is directly proportional to both the cross sectional area and internal pressure and inversely proportional to the flow velocity and that change in volumetric flow rate has no effect on the cross sectional area but it is directly proportional to the flow velocity and inversely proportional to the internal pressure.

  20. Experimental investigation of the draft tube inlet flow of a bulb turbine

    NASA Astrophysics Data System (ADS)

    Vuillemard, J.; Aeschlimann, V.; Fraser, R.; Lemay, S.; Deschênes, C.

    2014-03-01

    In the BulbT project framework, a bulb turbine model was studied with a strongly diverging draft tube. At high discharge, flow separation occurs in the draft tube correlated to significant efficiency and power drops. In this context, a focus was put on the draft tube inlet flow conditions. Actually, a precise inlet flow velocity field is required for comparison and validation purposes with CFD simulation. This paper presents different laser Doppler velocimetry (LDV) measurements at the draft tube inlet and their analysis. The LDV was setup to measure the axial and circumferential velocity on a radius under the runner and a diameter under the hub. A method was developed to perform indirect measurement of the mean radial velocity component. Five operating conditions were studied to correlate the inlet flow to the separation in the draft tube. Mean velocities, fluctuations and frequencies allowed characterizing the flow. Using this experimental database, the flow structure was characterized. Phase averaged velocities based on the runner position allowed detecting the runner blade wakes. The velocity gradients induced by the blade tip vortices were captured. The guide vane wakes was also detected at the draft tube inlet. The recirculation in the hub wake was observed.

  1. Investigation of an anomalous flow condition of the Langley pilot model expansion tube

    NASA Technical Reports Server (NTRS)

    Friesen, W. J.

    1974-01-01

    Free-stream flow velocity measurements were made in the Langley pilot model expansion tube during the test flow interval. During this interval, an anomalous dip in pitot pressure occurs for the expansion tube operating conditions employed. Within the test flow interval, the main conclusions reached from comparison of the measured flow velocity, pitot pressure, and tube wall pressure are: the variations which occur in velocity and wall pressure are small compared with the variations in pitot pressure; a corresponding dip in the derived flow density is associated with the dip in pitot pressure; and the value of the average density over the interval, which results from the expansion from the shocked intermediate chamber condition, is approximately one-half of the value that can result from only an isentropic process.

  2. Air-water two-phase flow in a 3-mm horizontal tube

    NASA Astrophysics Data System (ADS)

    Chen, Ing Youn; Chang, Yu-Juei; Wang, Chi-Chung

    2000-01-01

    Two-phase flow pattern and friction characteristics for air-water flow in a 3.17 mm smooth tube are reported in this study. The range of air-water mass flux is between 50 to 700 kg/m2.s and gas quality is between 0.0001 to 0.9. The pressure drop data are analyzed using the concept of the two-phase frictional multipliers and the Martinelli parameter. Experimental data show that the two-phase friction multipliers are strongly related to the flow pattern. Taitel & Dukler flow regime map fails to predict the stratified flow pattern data. Their transition lines between annular-wavy and annular-intermittent give fair agreement with data. A modified correlation from Klimenko and Fyodoros criterion is able to distinguish the annular and stratified data. For two-phase flow in small tubes, the effect of surface tension force should be significantly present as compared to gravitational force. The tested empirical frictional correlations couldn't predict the pressure drop in small tubes for various working fluids. It is suggested to correlate a reliable frictional multiplier for small horizontal tubes from a large database of various working fluids, and to develop the flow pattern dependent models for the prediction of two-phase pressure drop in small tubes. .

  3. Kinetic theory and turbulent discontinuities. [shock tube flow

    NASA Technical Reports Server (NTRS)

    Johnson, J. A., III; I, L.; Li, Y.; Ramaian, R.; Santigo, J. P.

    1981-01-01

    Shock tube discontinuities were used to test and extend a kinetic theory of turbulence. In shock wave and contact surface fluctuations, coherent phenomena were found which provide new support for the microscopic nonempirical approach to turbulent systems, especially those with boundary layer-like instabilities.

  4. Heat Exchange Between a Liquid Flowing in a Tube and an External Flow Around it with Intense Stirring

    NASA Astrophysics Data System (ADS)

    Moshinskii, A. I.

    2014-11-01

    A mathematical model of heat exchange between a tube (a coil) with a liquid flowing inside it and an external flow around it is considered. Limiting equations of the process with intense stirring are derived. Some solutions of the proposed equations are obtained that can be used in modeling the processes occurring in heat exchangers.

  5. Numerical study on coupled fluid flow and heat transfer process in parabolic trough solar collector tube

    SciTech Connect

    Tao, Y.B.; He, Y.L.

    2010-10-15

    A unified two-dimensional numerical model was developed for the coupled heat transfer process in parabolic solar collector tube, which includes nature convection, forced convection, heat conduction and fluid-solid conjugate problem. The effects of Rayleigh number (Ra), tube diameter ratio and thermal conductivity of the tube wall on the heat transfer and fluid flow performance were numerically analyzed. The distributions of flow field, temperature field, local Nu and local temperature gradient were examined. The results show that when Ra is larger than 10{sup 5}, the effects of nature convection must be taken into account. With the increase of tube diameter ratio, the Nusselt number in inner tube (Nu{sub 1}) increases and the Nusselt number in annuli space (Nu{sub 2}) decreases. With the increase of tube wall thermal conductivity, Nu{sub 1} decreases and Nu{sub 2} increases. When thermal conductivity is larger than 200 W/(m K), it would have little effects on Nu and average temperatures. Due to the effect of the nature convection, along the circumferential direction (from top to down), the temperature in the cross-section decreases and the temperature gradient on inner tube surface increases at first. Then, the temperature and temperature gradients would present a converse variation at {theta} near {pi}. The local Nu on inner tube outer surface increases along circumferential direction until it reaches a maximum value then it decreases again. (author)

  6. Biophysical analysis of bacterial and viral systems. A shock tube study of bio-aerosols and a correlated AFM/nanosims investigation of vaccinia virus

    SciTech Connect

    Gates, Sean Damien

    2013-05-01

    The work presented herein is concerned with the development of biophysical methodology designed to address pertinent questions regarding the behavior and structure of select pathogenic agents. Two distinct studies are documented: a shock tube analysis of endospore-laden bio-aerosols and a correlated AFM/NanoSIMS study of the structure of vaccinia virus.

  7. Numerical Simulation of Two-Phase Critical Flow with the Phase Change in the Nozzle Tube

    NASA Astrophysics Data System (ADS)

    Ishigaki, Masahiro; Watanabe, Tadashi; Nakamura, Hideo

    Two-phase critical flow in the nozzle tube is analyzed numerically by the best estimate code TRACE and the CFD code FLUENT, and the performance of the mass flow rate estimation by the numerical codes is discussed. For the best estimate analysis by the TRACE code, the critical flow option is turned on. The mixture model is used with the cavitation model and the evaporation-condensation model for the numerical simulation by the FLUENT code. Two test cases of the two-phase critical flow are analyzed. One case is the critical flashing flow in a convergent-divergent nozzle (Super Moby Dick experiment), and the other case is the break nozzle flow for a steam generator tube rupture experiment of pressurized water reactors at Large Scale Test Facility of Japan Atomic Energy Agency. The calculation results of the mass flow rates by the numerical simulations show good agreements with the experimental results.

  8. Detailed flow and force measurements in a rotated triangular tube bundle subjected to two-phase cross-flow

    NASA Astrophysics Data System (ADS)

    Pettigrew, M. J.; Zhang, C.; Mureithi, N. W.; Pamfil, D.

    2005-05-01

    Two-phase cross-flow exists in many shell-and-tube heat exchangers. A detailed knowledge of the characteristics of two-phase cross-flow in tube bundles is required to understand and formulate flow-induced vibration parameters such as damping, fluidelastic instability, and random excitation due to turbulence. An experimental program was undertaken with a rotated-triangular array of cylinders subjected to air/water flow to simulate two-phase mixtures. The array is made of relatively large diameter cylinders (38 mm) to allow for detailed two-phase flow measurements between cylinders. Fiber-optic probes were developed to measure local void fraction. Local flow velocities and bubble diameters or characteristic lengths of the two-phase mixture are obtained by using double probes. Both the dynamic lift and drag forces were measured with a strain gauge instrumented cylinder.

  9. Active Learning in Fluid Mechanics: Youtube Tube Flow and Puzzling Fluids Questions

    ERIC Educational Resources Information Center

    Hrenya, Christine M.

    2011-01-01

    Active-learning exercises appropriate for a course in undergraduate fluid mechanics are presented. The first exercise involves an experiment in gravity-driven tube flow, with small groups of students partaking in a contest to predict the experimental flow rates using the mechanical energy balance. The second exercise takes the form of an…

  10. Interaction of heat transfer and gas flow in a vertical hot tube

    NASA Astrophysics Data System (ADS)

    Abolpour, Bahador; Afsahi, M. Mehdi; Yaghobi, Mohsen; Goharrizi, Ataallah Soltani; Azizkarimi, Mehdi

    2017-02-01

    One of the main interests in industries, especially metallurgical industries, is improving the overall rate of the processes. A solution for this issue in the processes including gas phase (such as gas-solid reactions) is operating at high temperature. Mechanism of heat transfer to the gas phase at this condition is complex regarding effect of temperature on the gas properties. In this study, interaction of heat transfer and gas flow in a vertical hot tube has been investigated, experimentally and numerically. Finally, effects of inlet volumetric flow rate, gaseous type, extent of the tube wall heat flux and tube diameter on temperature and velocity distributions of the gaseous phase inside the tube have been studied.

  11. Measurement and analysis of energy flow in Stirling-type pulse tube refrigerator

    NASA Astrophysics Data System (ADS)

    Ki, Taekyung; Jeong, Sangkwon; Seo, Mansu; Park, Inmyong

    2012-06-01

    The analysis of energy flow is a useful method for understanding a system. This paper focuses on the instantaneous measurement of physical conditions and analysis of energy flow in the Stirling-type pulse tube refrigerator. For measuring physical conditions of the working fluid such as the mass flow rate, the temperature, and the pressure, several cryogenic sensors are installed in the Stirling-type pulse tube refrigerator optimally designed in the operating condition of 60 Hz and 2.5 MPa. The physical conditions of the working fluid in the Stirling-type pulse tube refrigerator are carefully measured as varying the operating frequency and the charging pressure. From the measured results, the enthalpy, the PV work, and the loss are quantified in each location of the PTR and the conversion of energy flows is experimentally confirmed. The results of this paper can be used for understanding the optimal operating condition and modifying correlations of various losses in the Stirling-type pulse tube refrigerator. KEYWORDS: Energy flow, Loss, Pulse tube refrigerator

  12. A numerical study of steady flow through a curved tube with wavy walls

    NASA Astrophysics Data System (ADS)

    Prince, Chekema; Gu, Mingyao; Peterson, Sean

    2011-11-01

    Flow through curved tubes has been studied for nearly a century owing to the practical industrial applications and general academic interest. More recently, interest in curved tubes has resurfaced due to the ubiquity of curvature in the vasculature and the resulting need to accurately model arterial vessels. Previous studies have focused primarily on circular cross sections and the roles of the Dean number and curvature ratio on the flow physics. In this study we examine the effect of wavy walls, that is, axially aligned ribs extending the length of the tube, on steady flow through mildly and finite curved tubes using computational fluid dynamics. Analytical work on the subject has been limited to low Dean numbers and small bump heights, thus we primarily focus on the impact of higher Dean number with large protrusions on the flow physics. The results are compared with those in circular cross section tubes at the same Dean number. Particular attention is paid to flow characteristics of interest in the vasculature, such as wall shear stress, that have been shown to stimulate biochemical pathways that trigger cell growth.

  13. Conveyor belt effect in the flow through a tube of a viscous fluid with spinning particles.

    PubMed

    Felderhof, B U

    2012-04-28

    The extended Navier-Stokes equations describing the steady-state hydrodynamics of a viscous fluid with spinning particles are solved for flow through a circular cylindrical tube. The flow caused by an applied torque density in the azimuthal direction and linear in the radial distance from the axis is compared with the flow caused by a uniform applied force density directed along the axis of the tube. In both cases the flow velocity is of Poiseuille type plus a correction. In the first case the flow velocity is caused by the conveyor belt effect of spinning particles. The corrections to the Poiseuille flow pattern in the two cases differ only by a proportionality factor. The spin velocity profiles in the two cases are also proportional.

  14. Combined electron-beam and ozone treatment of wastewater in the aerosol flow

    NASA Astrophysics Data System (ADS)

    Pikaev, A. K.; Podzorova, E. A.; Bakhtin, O. M.

    1997-01-01

    Combined electron-beam and ozone method for purification and disinfection of wastewater in the aerosol flow is considered. The method consists in spraying the wastewater and subsequent electron-beam treatment of the produced aerosol flow in the presence of ozone. The results of the study on the purification of municipal wastewater by this method with using pilot plant based on low-energy electron accelerator (energy 0.3 MeV, maximum electron-beam power 15 kW) are described. The output of the plant is 500 m 3/day. The data on economic feasibility of the method are presented.

  15. Gap-flow Mediated Transport of Pollution to a Remote Coastal Site: Effects upon Aerosol Composition

    NASA Astrophysics Data System (ADS)

    Cornwell, G.; Martin, A.; Petters, M.; Prather, K. A.; Taylor, H.; Rothfuss, N.; DeMott, P. J.; Kreidenweis, S. M.

    2015-12-01

    During the CalWater 2015 field campaign, observations of aerosol size, concentration, chemical composition, and cloud activity were made at Bodega Bay, CA on the remote California coast. Strong anthropogenic influence on air quality, aerosol physicochemical properties and cloud activity was observed at Bodega Bay during periods of special meteorological conditions, known as Petaluma Gap Flow, in which air from California's interior is transported to the coast. This study utilizes single particle mass spectrometry, along with aerosol physical and chemical measurements and meteorological measurements to show that the dramatic change in aerosol properties is strongly related to regional meteorology and anthropogenically-influenced chemical processes in California's Central Valley. The change in airmass properties from those typical of a remote marine environment to properties of a continental regime has impacts on atmospheric radiative balance and cloud formation that must be accounted for in regional climate simulation.

  16. VFLOW2D - A Vorte-Based Code for Computing Flow Over Elastically Supported Tubes and Tube Arrays

    SciTech Connect

    WOLFE,WALTER P.; STRICKLAND,JAMES H.; HOMICZ,GREGORY F.; GOSSLER,ALBERT A.

    2000-10-11

    A numerical flow model is developed to simulate two-dimensional fluid flow past immersed, elastically supported tube arrays. This work is motivated by the objective of predicting forces and motion associated with both deep-water drilling and production risers in the oil industry. This work has other engineering applications including simulation of flow past tubular heat exchangers or submarine-towed sensor arrays and the flow about parachute ribbons. In the present work, a vortex method is used for solving the unsteady flow field. This method demonstrates inherent advantages over more conventional grid-based computational fluid dynamics. The vortex method is non-iterative, does not require artificial viscosity for stability, displays minimal numerical diffusion, can easily treat moving boundaries, and allows a greatly reduced computational domain since vorticity occupies only a small fraction of the fluid volume. A gridless approach is used in the flow sufficiently distant from surfaces. A Lagrangian remap scheme is used near surfaces to calculate diffusion and convection of vorticity. A fast multipole technique is utilized for efficient calculation of velocity from the vorticity field. The ability of the method to correctly predict lift and drag forces on simple stationary geometries over a broad range of Reynolds numbers is presented.

  17. Flow and Temperature Distribution Evaluation on Sodium Heated Large-sized Straight Double-wall-tube Steam Generator

    SciTech Connect

    Kisohara, Naoyuki; Moribe, Takeshi; Sakai, Takaaki

    2006-07-01

    The sodium heated steam generator (SG) being designed in the feasibility study on commercialized fast reactor cycle systems is a straight double-wall-tube type. The SG is large sized to reduce its manufacturing cost by economics of scale. This paper addresses the temperature and flow multi-dimensional distributions at steady state to obtain the prospect of the SG. Large-sized heat exchanger components are prone to have non-uniform flow and temperature distributions. These phenomena might lead to tube buckling or tube to tube-sheet junction failure in straight tube type SGs, owing to tubes thermal expansion difference. The flow adjustment devices installed in the SG are optimized to prevent these issues, and the temperature distribution properties are uncovered by analysis methods. The analysis model of the SG consists of two parts, a sodium inlet distribution plenum (the plenum) and a heat transfer tubes bundle region (the bundle). The flow and temperature distributions in the plenum and the bundle are evaluated by the three-dimensional code 'FLUENT' and the two dimensional thermal-hydraulic code 'MSG', respectively. The MSG code is particularly developed for sodium heated SGs in JAEA. These codes have revealed that the sodium flow is distributed uniformly by the flow adjustment devices, and that the lateral tube temperature distributions remain within the allowable temperature range for the structural integrity of the tubes and the tube to tube-sheet junctions. (authors)

  18. Pressure losses during steam flow and condensation in tubes and channels

    NASA Astrophysics Data System (ADS)

    Leontiev, A. I.; Milman, O. O.

    2014-12-01

    Theoretical and experimental investigations have revealed the dependence of parameters of the process of steam condensation in tubes and channels on the scheme of heat-exchange fluid flow, including counter, forward, and cross flow systems. The total pressure losses in the case of counter flow are greater than those in the case of forward and cross flow. This dependence is valid for the flow of gases and plasma in channels with significant density variation (e.g., due to heating and cooling). Pressure losses have been evaluated using various computational models, and the results are compared to experimental data.

  19. Free-stream temperature, density, and pressure measurements in an expansion tube flow

    NASA Technical Reports Server (NTRS)

    Haggard, K. V.

    1973-01-01

    An experimental study was conducted to determine test-flow conditions in the Langley pilot model expansion tube. Measurements of temperature, density, wall pressure, pitot pressure, and shock and interface velocities were compared with theoretical calculations based on various models of the flow cycle. The vibrational temperature and integrated density of the molecular oxygen component of the flow were measured by use of vacuum ultraviolet absorption techniques. These measurements indicate both the presence and possible degree of nonequilibrium in the flow. Data are compared with several simplified models of the flow cycle, and data trends are discussed.

  20. Calculation of unsteady flow in tubes of combustion engines with special regard to multiple branching

    NASA Astrophysics Data System (ADS)

    Goerg, K. A.

    1982-12-01

    A theoretical basis for numerical analysis of unsteady flow in internal combustion engines is suggested. By a general study of an arbitrary throttle point as control volume, only two flow conditions-inlet flow and outlet flow-have to be computed. The throttle-point function is reduced to linking tube parts in a logical way. The convergence criteria of the solution methods used (Lax-Wendroff, Hartree, Predictor Corrector, and fixed point method) guarantee that the solutions are unequivocal. Limiting value studies lead to the formulation of an algorithm, which allows the computation of the throttle flow by multiple branching.

  1. Influence of outlet geometry on strongly swirling turbulent flow through a circular tube

    NASA Astrophysics Data System (ADS)

    Escudier, M. P.; Nickson, A. K.; Poole, R. J.

    2006-12-01

    The results are reported for an extensive series of measurements (using laser Doppler anemometry) of the mean and fluctuating flow fields for swirling turbulent flow downstream of an orifice in a tube. The influence of a concentric outlet contraction is found to be negligible for low "supercritical" swirl. For high "subcritical" swirl, the outlet geometry is found to have a significant influence throughout the flow field and, in the case of an eccentric (i.e., offset) outlet, to lead to an asymmetric flow with a distorted core. In no case was the core found to precess or the flow to be periodic.

  2. Flow Rate Driven by Peristaltic Movement in Plasmodial Tube of Physarum Polycephalum

    NASA Astrophysics Data System (ADS)

    Yamada, Hiroyasu; Nakagaki, Toshiyuki

    2008-07-01

    We report a theoretical analysis of protoplasmic streaming driven by peristaltic movement in an elastic tube of an amoeba-like organism. The Plasmodium of Physarum polycephalum, a true slime mold, is a large amoeboid organism that adopts a sheet-like form with a tubular network. The network extends throughout the Plasmodium and enables the transport and circulation of chemical signals and nutrients. This tubular flow is driven by periodically propagating waves of active contraction of the tube cortex, a process known as peristaltic movement. We derive the relationship between the phase velocity of the contraction wave and the flow rate, and we discuss the physiological implications of this relationship.

  3. Analysis of laminar flow heat transfer in uniform temperature circular tubes with tape inserts

    NASA Astrophysics Data System (ADS)

    Manglik, R. M.; Bergles, A. E.

    1986-05-01

    Constant property, laminar flow heat transfer in a semicircular tube with uniform wall temperature has been analyzed to define the lower bound of heat transfer augmentation in circular tubes with twisted-tape inserts. Two thermal boundary conditions, which correspond to the two extremes of the fin effect of twisted tapes encountered in practical applications, are considered. Numerical solutions, employing finite-difference formulations for the governing momentum and energy equations were carried out for the thermal entrance region and for fully developed flow.

  4. Laminar flow studies of a low-temperature space radiator model using D-shaped tubes

    NASA Technical Reports Server (NTRS)

    Cintula, T. C.; Prok, G. M.; Johnston, D. B.

    1972-01-01

    Test results of a low-temperature space radiator model are presented. Radiator performance is evaluated with a low-thermal-conductivity fluid in laminar flow in D-shaped cross-section tubes. The test covered a Reynolds number range from 50 to 4500 and a fluid temperature range from 294 to 414 K (70 to 286 F). For low-temperature radiators, the fluid-to-surface temperature differential was predominately influenced by fluid temperature in laminar flow. Heat transfer and pressure drop for the radiator tube could be predicted within engineering accuracy from existing correlations.

  5. Blood flow in small tubes: quantifying the transition to the non-continuum regime

    PubMed Central

    Lei, Huan; Fedosov, Dmitry A.; Caswell, Bruce; Karniadakis, George Em

    2013-01-01

    In small vessels blood is usually treated as a Newtonian fluid down to diameters of ~200 μm. We investigate the flow of red blood cell (RBC) suspensions driven through small tubes (diameters 10–150 μm) in the range marking the transition from arterioles and venules to the largest capillary vessels. The results of the simulations combined with previous simulations of uniform shear flow and experimental data show that for diameters less than ~100 μm the suspension’s stress cannot be described as a continuum, even a heterogeneous one. We employ the dissipative particle dynamics (DPD) model, which has been successfully used to predict human blood bulk viscosity in homogeneous shear flow. In tube flow the cross-stream stress gradient induces an inhomogeneous distribution of RBCs featuring a centreline cell density peak, and a cell-free layer (CFL) next to the wall. For a neutrally buoyant suspension the imposed linear shear-stress distribution together with the differentiable velocity distribution allow the calculation of the local viscosity across the tube section. The viscosity across the section as a function of the strain rate is found to be essentially independent of tube size for the larger diameters and is determined by the local haematocrit (H) and shear rate. Other RBC properties such as asphericity, deformation, and cell-flow orientation exhibit similar dependence for the larger tube diameters. As the tube size decreases below ~100 μm in diameter, the viscosity in the central region departs from the large-tube similarity function of the shear rate, since H increases significantly towards the centreline. The dependence of shear stress on tube size, in addition to the expected local shear rate and local haematocrit, implies that blood flow in small tubes cannot be described as a heterogeneous continuum. Based on the analysis of the DPD simulations and on available experimental results, we propose a simple velocity-slip model that can be used in

  6. Excitation condition analysis of guided wave on PFA tubes for ultrasonic flow meter.

    PubMed

    Li, Xuan; Xiao, Xufeng; Cao, Li

    2016-12-01

    Impurity accumulation, which decreases the accuracy of flow measurement, is a critical problem when applying Z-shaped or U-shaped ultrasonic flow meters on straight PFA tubes. It can be expected that the guided wave can be used to implement flow measurement on straight PFA tubes. In this paper, the propagation of guided wave is explained by finite element simulations for the flow meter design. Conditions of guided wave generation, including the excitation frequency and the wedge structure, are studied in the simulations. The wedge is designed as a cone which is friendly to be manufactured and installed. The cone angle, the piezoelectric wafer's resonant frequency and the vibration directions are studied in the simulations. The simulations shows that the propagation of guided wave in thin PFA tubes is influenced by the piezoelectric wafers' resonant frequency and the vibration direction when the mode is on the 'water line'. Based on the results of the simulations, an experiment is conducted to verify the principles of excitation conditions, which performs flow measurement on a straight PFA tube well.

  7. A Hands-on Exercise in Building Darcy Tubes to Improve Student Understanding of Groundwater Flow

    NASA Astrophysics Data System (ADS)

    Smith, J. A.

    2012-12-01

    Teaching undergraduate students about sustainability typically includes discussions of water resources and the flow of groundwater in aquifers. Understanding the flow of groundwater is a fundamental step for students, but one that can easily get mired in equations (e.g., Darcy's Law). In an effort to transform Darcy's Law, which describes flow of fluid through a porous medium, from an abstract concept to a hands-on experiment, I had undergraduate students build working "Darcy tubes" and calculate hydraulic conductivity during a three-hour lab period. At the beginning of the lab period, I presented the students with the materials: three pairs of plastic soda bottles with straight sides, glass tubing, pantyhose (for screens), rubber hosing, sieved sand in three grain sizes (1-2 mm, 0.5-1.0 mm, and 0.25-0.5 mm), and various types of tape and adhesive. After we discussed the basic design of a Darcy tube (inlet and outlet, with two piezometers), the students went to work. Real-time problem-solving was an integral (and exciting) part of the exercise. Within two hours, they had built three Darcy tubes, each filled with a different sand size. The students determined the cross-sectional area of each tube (A) and the distance between the two piezometers (L). We then ran the experiments, using tinted water so that we could more easily tell when the sand in the tubes was saturated. We measured discharge (Q) through the tube and marked the height of the water in each piezometer to calculate difference in hydraulic head (Δh). With the data we had collected, the students were able to calculate hydraulic conductivity (K) using a simple form of Darcy's Law: Q = -KA (Δh/L). Despite the simplicity of the Darcy tubes, the students' K values were reasonable for the sediment types that we used. Student comments on the Darcy tube exercise were overwhelmingly positive. The Darcy tubes could be used in a subsequent lab period for exploration of more advanced concepts, such as

  8. Experimental studies on pressure drop characteristics of cryogenic cross-counter flow coiled finned tube heat exchangers

    NASA Astrophysics Data System (ADS)

    Gupta, Prabhat Kumar; Kush, P. K.; Tiwari, Ashesh

    2010-04-01

    Cross-counter flow coiled finned tube heat exchangers used in medium capacity helium liquefiers/refrigerators were developed in our lab. These heat exchangers were developed using integrated low finned tubes. Experimental studies have been performed to know the pressure drop characteristics of tube side and shell side flow of these heat exchangers. All experiments were performed at room temperature in the Reynolds number range of 3000-30,000 for tube side and 25-155 for shell side. The results of present experiments indicate that available correlations for tube side can not be used for prediction of tube side pressure drop data due to complex surface formation at inner side of tube during formation of fins over the outer surface. Results also indicate that surface roughness effect becomes more pronounced as the value of di/ D m increases. New correlations based on present experimental data are proposed for predicting the friction factors for tube side and shell side.

  9. The motion of magnetic flux tube at the dayside magnetopause under the influence of solar wind flow

    SciTech Connect

    Liu, Z.X.; Hu, Y.D.; Li, F. ); Pu, Z.Y. )

    1990-05-01

    The authors propose that flux transfer events (FTEs) at the dayside magnetopause are formed by fluid vortices in the flow field. According to the view of vortex-induced reconnection a FTE tube is a magnetic fluid vortex tube (MF vortex tube). The motion of a FTE tube can be represented by that of a MF vortex in the formation region located in the dayside magnetopause region. This study deals with the internal and external influences governing the motion of MF vortex tubes. The equations of motion of a vortex tube are established and solved. It is found that a FTE tube moves frm low latitude to high latitude with a certain speed. However, the motional path is not a straight line but oscillates about the northward direction for the northern hemisphere. The motional velocity, amplitude and period of the oscillation depend on the flow field and magnetic field in the magnetosheath and magnetosphere as well as the size of the FTE tube.

  10. Formation of anisotropic Tl-1212, Tl-2212, Tl-1223 and Tl-2223 particles using aerosol flow reacted powders

    SciTech Connect

    Paranthaman, M.; Goyal, A.; Heatherly, D.E.; Kroeger, D.M.

    1994-12-31

    Highly anisotropic particles of Tl-1212, Tl-2212, Tl-1223 and Tl-2223 superconductors were grown. The Tl-free precursor powders with the compositions Ba{sub 1}Ca{sub 2}Cu{sub 3}Ag{sub 0.37}O{sub 6} and Ba{sub 2}Ca{sub 2}Cu{sub 3}Ag{sub 0.37}O{sub 7} were prepared using an aerosol flow reactor. These precursor powders were then post-annealed in 0.1 atm oxygen at 700 C for 4h to reduce the carbon present and mixed with Tl{sub 2}O{sub 3} (typical composition of Tl{sub x}; x = 0.6--1.0). The Tl-containing powders were heated in sealed gold tubes between 650--890 C for various times. X-ray diffraction showed that the Tl-2212 and Tl-2223 phases were stable over a wide range of temperatures. Scanning electron microscopy showed evidence for the presence of high aspect-ratio particles. These highly anisotropic particles may be of interest for the preparation of powder-in-tube and other powder deposited conductors, for current leads, and for grain alignment studies.

  11. Assessment of increased sampling pump flow rates in a disposable, inhalable aerosol sampler.

    PubMed

    Stewart, Justin; Sleeth, Darrah K; Handy, Rod G; Pahler, Leon F; Anthony, T Renee; Volckens, John

    2017-03-01

    A newly designed, low-cost, disposable inhalable aerosol sampler was developed to assess workers personal exposure to inhalable particles. This sampler was originally designed to operate at 10 L/min to increase sample mass and, therefore, improve analytical detection limits for filter-based methods. Computational fluid dynamics modeling revealed that sampler performance (relative to aerosol inhalability criteria) would not differ substantially at sampler flows of 2 and 10 L/min. With this in mind, the newly designed inhalable aerosol sampler was tested in a wind tunnel, simultaneously, at flows of 2 and 10 L/min flow. A mannequin was equipped with 6 sampler/pump assemblies (three pumps operated at 2 L/min and three pumps at 10 L/min) inside a wind tunnel, operated at 0.2 m/s, which has been shown to be a typical indoor workplace wind speed. In separate tests, four different particle sizes were injected to determine if the sampler's performance with the new 10 L/min flow rate significantly differed to that at 2 L/min. A comparison between inhalable mass concentrations using a Wilcoxon signed rank test found no significant difference in the concentration of particles sampled at 10 and 2 L/min for all particle sizes tested. Our results suggest that this new aerosol sampler is a versatile tool that can improve exposure assessment capabilities for the practicing industrial hygienist by improving the limit of detection and allowing for shorting sampling times.

  12. CFD analysis of flow through Venturi tube and its discharge coefficient

    NASA Astrophysics Data System (ADS)

    Tukimin, A.; Zuber, M.; Ahmad, K. A.

    2016-10-01

    Venturi tube plays a very important role in different fields of engineering. It has a number of industrial applications in which its design is an essential factor. Venturi tube used in gas measurement applications provides an accurate critical gas flow measurement. There is a need to design Venturi tube with an effective analytical tool or software. In this work, two parameters: pressure drop and velocity discharge nozzle were analyzed using Computational Fluid Dynamics (CFD). The results obtained were then analyzed for accurate determination of the Venturi tube's discharge coefficient, Cd. It was found that there is less than 1% difference between the average values of the discharge coefficient obtained from the numerical analysis and experimental results.

  13. The Effects of Glucose Therapy Agents-Apple Juice, Orange Juice, and Cola-on Enteral Tube Flow and Patency.

    PubMed

    Steinberg, Daphna J; Montreuil, Jasmine; Santoro, Andrea L; Zettas, Antonia; Lowe, Julia

    2016-06-01

    To develop evidence-based hypoglycemia treatment protocols in patients receiving total enteral nutrition, this study determined the effect on enteral tube flow of glucose therapy agents: apple juice, orange juice, and cola, and it also examined the effects of tube type and feed type with these glucose therapy agents. For this study, 12 gastrostomy tubes (6 polyethylene and 6 silicone) were set at 50 mL/h. Each feeding set was filled with Isosource HN with fibre or Novasource Renal. Each tube was irrigated with 1 glucose therapy agent, providing approximately 20 g of carbohydrate every 4 h. Flow-rate measurements were collected at 2 h intervals. The results showed that the glucose therapy agent choice affected flow rates: apple juice and cola had higher average flow rates than orange juice (P = 0.01). A significant difference was found between tube type and enteral formula: polyethylene tubes had higher average flow rates than silicone tubes (P < 0.0001), and Isosource HN with fibre had higher flow rates than Novasource Renal (P = 0.01). We concluded that apple juice and cola have less tube clogging potential than orange juice, and thus may be considered as primary treatment options for hypoglycemia in enterally fed patients. Polyethylene tubes and Isosource HN with fibre were less likely to clog than silicone tubes and Novasource Renal.

  14. Application of Fast Optical Tomography to Flow Tubes

    DTIC Science & Technology

    2007-11-02

    electro-optics, quantum electronics, solid-state lasers , optical propagation and communications; microwave semiconductor devices, microwave /millimeter...34Application of Tomography in 3-D Transonic Flows, AIAA-87-1374, AIAA 19th Fluid Dynamics, Plasma Dynamics and Laser Conference, Honolulu, Hawaii...thermomechanics, gas kinetics and radiation; cw and pulsed chemical and excimer laser development including chemical kinetics, spectroscopy, optical

  15. On the Quantitative Analysis of Liquid Flow in Physiological Tubes.

    DTIC Science & Technology

    1982-12-01

    SS - . .. 1 _ Table 2 Pump Contractile Tissue Cardiac Ciliated Skeletal Smooth System Muscle Epithelium Muscle Muscle CNS( Ventricles ...skeletal muscle compression....................... 33 2. Pressure effects ........................... 33 3. Viscous effects... muscle ................................. 68 VII. COMBINATION PUMPS .................................... 69 A. Pulsatile-Skeletal Flow Propulsion

  16. Damping and fluidelastic instability in two-phase cross-flow heat exchanger tube arrays

    NASA Astrophysics Data System (ADS)

    Moran, Joaquin E.

    An experimental study was conducted to investigate damping and fluidelastic instability in tube arrays subjected to two-phase cross-flow. The purpose of this research was to improve our understanding of these phenomena and how they are affected by void fraction and flow regime. The model tube bundle had 10 cantilevered tubes in a parallel-triangular configuration, with a pitch ratio of 1.49. The two-phase flow loop used in this research utilized Refrigerant 11 as the working fluid, which better models steam-water than air-water mixtures in terms of vapour-liquid mass ratio as well as permitting phase changes due to pressure fluctuations. The void fraction was measured using a gamma densitometer, introducing an improvement over the Homogeneous Equilibrium Model (HEM) in terms of void fraction, density and velocity predictions. Three different damping measurement methodologies were implemented and compared in order to obtain a more reliable damping estimate. The methods were the traditionally used half-power bandwidth, the logarithmic decrement and an exponential fitting to the tube decay response. The decay trace was obtained by "plucking" the monitored tube from outside the test section using a novel technique, in which a pair of electromagnets changed their polarity at the natural frequency of the tube to produce resonance. The experiments showed that the half-power bandwidth produces higher damping values than the other two methods. The primary difference between the methods is caused by tube frequency shifting, triggered by fluctuations in the added mass and coupling between the tubes, which depend on void fraction and flow regime. The exponential fitting proved to be the more consistent and reliable approach to estimating damping. In order to examine the relationship between the damping ratio and mass flux, the former was plotted as a function of void fraction and pitch mass flux in an iso-contour plot. The results showed that damping is not independent of mass

  17. Mathematical model for the peristaltic flow of nanofluid through eccentric tubes comprising porous medium

    NASA Astrophysics Data System (ADS)

    Nadeem, S.; Riaz, Arshad; Ellahi, R.; Akbar, Noreen Sher

    2014-08-01

    Mathematical model for peristaltic flow of nanofluid between eccentric tubes is investigated through a porous medium. Assumptions of long wavelength and low Reynolds number are carried out to observe the intestinal flow. The flow is considered to be unsteady and incompressible. Analytical solutions are evaluated through homotopy perturbation method. The expression of pressure rise is obtained through numerical integration whose data is presented in table. The problems under consideration are made dimensionless to reduce the complication of the analysis and to merge the extra parameters. All the emerging parameters affecting the flow phenomenon are discussed graphically. Trapping bolus scheme is also presented through streamlines for various pertinent quantities.

  18. Analysis of the flow rate characteristics of valveless piezoelectric pump with fractal-like Y-shape branching tubes

    NASA Astrophysics Data System (ADS)

    Huang, Jun; Zhang, Jianhui; Wang, Shouyin; Liu, Weidong

    2014-05-01

    Microchannel heat sink with high heat transfer coefficients has been extensively investigated due to its wide application prospective in electronic cooling. However, this cooling system requires a separate pump to drive the fluid transfer, which is uneasy to minimize and reduces their reliability and applicability of the whole system. In order to avoid these problems, valveless piezoelectric pump with fractal-like Y-shape branching tubes is proposed. Fractal-like Y-shape branching tube used in microchannel heat sinks is exploited as no-moving-part valve of the valveless piezoelectric pump. In order to obtain flow characteristics of the pump, the relationship between tube structure and flow rate of the pump is studied. Specifically, the flow resistances of fractal-like Y-shape branching tubes and flow rate of the pump are analyzed by using fractal theory. Then, finite element software is employed to simulate the flow field of the tube, and the relationships between pressure drop and flow rate along merging and dividing flows are obtained. Finally, valveless piezoelectric pumps with fractal-like Y-shape branching tubes with different fractal dimensions of diameter distribution are fabricated, and flow rate experiment is conducted. The experimental results show that the flow rate of the pump increases with the rise of fractal dimension of the tube diameter. When fractal dimension is 3, the maximum flow rate of the valveless pump is 29.16 mL/min under 100 V peak to peak (13 Hz) power supply, which reveals the relationship between flow rate and fractal dimensions of tube diameter distribution. This paper investigates the flow characteristics of valveless piezoelectric pump with fractal-like Y-shape branching tubes, which provides certain references for valveless piezoelectric pump with fractal-like Y-shape branching tubes in application on electronic chip cooling.

  19. Thermochemical Nonequilibrium Analysis of Oxygen in Shock Tube Flows

    NASA Astrophysics Data System (ADS)

    Neitzel, Kevin; Kim, Jae Gang; Boyd, Iain D.

    The successful development of hypersonic vehicles requires a detailed knowledge of the flow physics around the vehicle. The physics knowledge and modeling confidence drives the development of the major vehicle flight systems including the thermal protection system and flight control system. Specifically, an understanding of the thermochemical nonequilibrium behavior is crucial for this flight regime. The hypersonic flight regime involves an extremely high level of energy so a small error in the modeling of the energy processes can result in drastic changes in the vehicle design, including prohibitive design requirements. This emphasizes the need for a deep understanding of the underlying flow phenomena and molecular energy transfer processes in order to adequately design a hypersonic vehicle computationally.

  20. Heat transfer during intermittent/slug flow in horizontal tubes

    SciTech Connect

    Shoham, O.; Dukler, A.E.; Taitel, Y.

    1982-08-01

    Heat transfer characteristics for two-phase gas-liquid slug flow in a horizontal pipe have been measured. The time variation of temperature, heat transfer coefficients, and heat flux is reported for the different zones of slug flow: the mixing region at the nose, the body of the slug, the liquid film, and the gas bubble behind the slug. Substantial differences in heat transfer coefficient exist between the bottom and top of the slug. This results from the fact that each slug is effectively a thermally developing entry region caused by the presence of a hot upper wall just upstream of each slug. A qualitative theory is presented which explains this behavior. 18 refs.

  1. A model of plasma membrane flow and cytosis regulation in growing pollen tubes.

    PubMed

    Chavarría-Krauser, Andrés; Yejie, Du

    2011-09-21

    A model of cytosis regulation in growing pollen tubes is developed and simulations presented. The authors address the question on the minimal assumptions needed to describe the pattern of exocytosis and endocytosis reported recently by experimental biologists. Biological implications of the model are also treated. Concepts of flow and conservation of membrane material are used to pose an equation system, which describes the movement of plasma membrane in the tip of growing pollen tubes. After obtaining the central equations, relations describing the rates of endocytosis and exocytosis are proposed. Two cytosis receptors (for exocytosis and endocytosis), which have different recycling rates and activation times, suffice to describe a stable growing tube. Simulations show a very good spatial separation between endocytosis and exocytosis, in which separation is shown to depend strongly on exocytic vesicle delivery. In accordance to measurements, most vesicles in the clear zone are predicted to be endocytic. Membrane flow is essential to maintain cell polarity, and bi-directional flow seems to be a natural consequence of the proposed mechanism. For the first time, a model addressing plasma membrane flow and cytosis regulation were posed. Therefore, it represents a missing piece in an integrative model of pollen tube growth, in which cell wall mechanics, hydrodynamic fluxes and regulation mechanisms are combined.

  2. Uniformity of Ludwieg tube flows. [temperature variations behind nonsteady expansion wave

    NASA Technical Reports Server (NTRS)

    Russell, D. A.; Knoke, G. S.; Wai, J. C.

    1975-01-01

    Pressure and speed of sound measurements are used to obtain averaged gas properties in a Ludwieg combustion tube in which the gas is burned just prior to use. Absorption of a laser beam in the exit flow is used to check the predicted temperature uniformity. The burning process and the heat transfer to the cold walls are modeled. Interferograms of Ludwieg tube boundary layers are utilized to develop a new semiempirical boundary layer expression referred to as the integral density thickness, which is then applied to a recently developed linearized analysis of the effects of this layer. Pressure-time histories are determined for a wide range of tube flow Mach number and aspect ratio. Viscous and nonviscous effects are considered. It is shown that although the influence of the integral density thickness on the flow can be large, a modified linear theory can be used to estimate the effects for arbitrary tube flow Mach number and values of the aspect ratio that include cases where the boundary layers have merged.

  3. A Calibration of the Preston Tube in Liquid Flow Systems.

    DTIC Science & Technology

    1979-12-01

    connected to a 40 in. mercury manometer bank. Two total pressure probe installations are available, with one located at the extreme outflow end of the pipe...versatile and assured both good probe alignment to the flow and negligible probe interference effects. The probe was connected to a single 30 in. mercury ... manometer which gave readings accurate to .05 in. Hg as did the 40 in. manometer bank. 17 *r4 $4 P., 0 ~r54 so 18 Additional features of the oil pipe

  4. Migration of a droplet in a cylindrical tube in the creeping flow regime

    NASA Astrophysics Data System (ADS)

    Nath, Binita; Biswas, Gautam; Dalal, Amaresh; Sahu, Kirti Chandra

    2017-03-01

    The migration of a neutrally buoyant droplet in a tube containing another immiscible liquid is investigated numerically in the creeping flow regime. A fully developed velocity profile is imposed at the inlet of the tube. The interface between the two immiscible fluids is captured using a coupled level-set and volume-of-fluid approach. The deformation and breakup dynamics of the droplet are investigated in terms of three dimensionless parameters, namely, the ratio between the radius of the undeformed droplet and the radius of the capillary tube, the viscosity ratio between the dispersed and the continuous phases, and the capillary number that measures the relative importance of the viscous force over the surface tension force. It has been observed that the droplet, while traversing through the tube, either approaches a steady bulletlike shape or develops a prominent reentrant cavity at its rear. Depending on the initial droplet size, there exists a critical capillary number for every flow configuration beyond which the drop fails to maintain a steady shape and breaks into fragments. The deformation and breakup phenomena depend primarily on the droplet size, the viscosity ratio, and the capillary number. Special attention has been given to the case where the drop diameter is comparable with the tube diameter. A thorough computational study has been conducted to find the critical capillary number for a range of droplets of varied sizes suspended in systems having different viscosity ratios.

  5. Modelling complex draft-tube flows using near-wall turbulence closures

    SciTech Connect

    Ventikos, Y.; Sotiropoulos, F.; Patel, V.C.

    1996-12-31

    This paper presents a finite-volume method for simulating flows through complex hydroturbine draft-tube configurations using near-wall turbulence closures. The method employs the artificial-compressibility pressure-velocity coupling approach in conjunction with multigrid acceleration for fast convergence on very fine grids. Calculations are carried out for a draft tube with two downstream piers on a computational mesh consisting of 1.2x10{sup 6} nodes. Comparisons of the computed results with measurements demonstrate the ability of the method to capture most experimental trends with reasonable accuracy. Calculated three-dimensional particle traces reveal very complex flow features in the vicinity of the piers, including horse-shoe longitudinal vortices and and regions of flow reversal.

  6. Computational fluid dynamics (CFD) simulations of dilute fluid-particle flows in aerosol concentrators

    NASA Astrophysics Data System (ADS)

    Hari, Sridhar

    2003-07-01

    In this study, commercially available Computational Fluid Dynamics (CFD) software, CFX-4.4 has been used for the simulations of aerosol transport through various aerosol-sampling devices. Aerosol transport was modeled as a classical dilute and dispersed two-phase flow problem. Eulerian-Lagrangian framework was adopted wherein the fluid was treated as the continuous phase and aerosol as the dispersed phase, with a one-way coupling between the phases. Initially, performance of the particle transport algorithm implemented in the code was validated against available experimental and numerical data in the literature. Code predictions were found to be in good agreement against experimental data and previous numerical predictions. As a next step, the code was used as a tool to optimize the performance of a virtual impactor prototype. Suggestions on critical geometrical details available in the literature, for a virtual impactor, were numerically investigated on the prototype and the optimum set of parameters was determined. Performance curves were generated for the optimized design at various operating conditions. A computational model of the Linear Slot Virtual Impactor (LSVI) fabricated based on the optimization study, was constructed using the worst-case values of the measured geometrical parameters, with offsets in the horizontal and vertical planes. Simulations were performed on this model for the LSVI operating conditions. Behavior of various sized particles inside the impactor was illustrated with the corresponding particle tracks. Fair agreement was obtained between code predictions and experimental results. Important information on the virtual impactor performance, not known earlier, or, not reported in the literature in the past, obtained from this study, is presented. In the final part of this study, simulations on aerosol deposition in turbulent pipe flow were performed. Code predictions were found to be completely uncorrelated to experimental data. The

  7. Analysis and testing of compressible flow ejectors with variable area mixing tubes.

    NASA Technical Reports Server (NTRS)

    Hickman, K. E.; Hill, P. G.; Gilbert, G. B.

    1972-01-01

    An analytical model has been developed to predict the flow behavior within axisymmetric single-nozzle ejectors employing variable-area mixing tubes. The primary flow may be supersonic or subsonic and may have a different stagnation temperature from the subsonic secondary flow. Tests were performed on an ejector with an 800 F supersonic (M = 2.72) primary jet to evaluate the analytical model. Measured velocity profiles, temperature profiles, and wall static pressure distributions are presented and compared to the analytical predictions. Agreement is generally good.

  8. Cross-Roll Flow Forming of ODS Alloy Heat Exchanger Tubes For Hoop Creep Enhancement

    SciTech Connect

    Bimal K. Kad

    2006-09-30

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. The research program outlined here is iterative in nature and is intended to systematically (a) examine and identify post-extrusion forming methodologies to create hoop strengthened tubes, which will be (b) evaluated at ''in-service'' loads at service temperatures and environments. In this 12th quarter of performance, program activities are concluded for Task 2 and continuing for Tasks 3, 4 and

  9. Micromachined lab-on-a-tube sensors for simultaneous brain temperature and cerebral blood flow measurements.

    PubMed

    Li, Chunyan; Wu, Pei-Ming; Hartings, Jed A; Wu, Zhizhen; Cheyuo, Cletus; Wang, Ping; LeDoux, David; Shutter, Lori A; Ramaswamy, Bharat Ram; Ahn, Chong H; Narayan, Raj K

    2012-08-01

    This work describes the development of a micromachined lab-on-a-tube device for simultaneous measurement of brain temperature and regional cerebral blood flow. The device consists of two micromachined gold resistance temperature detectors with a 4-wire configuration. One is used as a temperature sensor and the other as a flow sensor. The temperature sensor operates with AC excitation current of 500 μA and updates its outputs at a rate of 5 Hz. The flow sensor employs a periodic heating and cooling technique under constant-temperature mode and updates its outputs at a rate of 0.1 Hz. The temperature sensor is also used to compensate for temperature changes during the heating period of the flow sensor to improve the accuracy of flow measurements. To prevent thermal and electronic crosstalk between the sensors, the temperature sensor is located outside the "thermal influence" region of the flow sensor and the sensors are separated into two different layers with a thin-film Copper shield. We evaluated the sensors for accuracy, crosstalk and long-term drift in human blood-stained cerebrospinal fluid. These in vitro experiments showed that simultaneous temperature and flow measurements with a single lab-on-a-tube device are accurate and reliable over the course of 5 days. It has a resolution of 0.013 °C and 0.18 ml/100 g/min; and achieves an accuracy of 0.1 °C and 5 ml/100 g/min for temperature and flow sensors respectively. The prototype device and techniques developed here establish a foundation for a multi-sensor lab-on-a-tube, enabling versatile multimodality monitoring applications.

  10. Studies on heat transfer in flow of silver nanofluid through a straight tube with twisted tape inserts

    NASA Astrophysics Data System (ADS)

    Waghole, D. R.; Warkhedkar, R. M.; Kulkarni, V. S.; Shrivastva, R. K.

    2016-02-01

    Convective heat transfer in the flow of silver nanofluid through a straight tube with twisted tape inserts was investigated experimentally. This straight tube was used as absorber/receiver tube in parabolic trough collector. The experiments were conducted for Reynolds number range 500 < Re < 6000 with twisted tape inserts of different twist ratio range 0.577 < H/D < 1.732. This experimental study shows that twisted tape inserts enhances heat transfer rate in the tube. The heat transfer coefficient and friction factor in the flow of silver nanofliud with 5 % volume fraction (concentration) are higher compared to the flow of water. From this study, Nusselt number, friction factor and enhancement factor are found as 2.0-3.0 times, 10-48.5 and 135-175 %, respectively with silver nanofliud. Finally new possible correlations for predicting heat transfer and friction factor in the flow of silver nanofliud through the straight tube with twisted tape inserts are proposed.

  11. Nanofluids heat transfer and flow analysis in vertical spirally coiled tubes using Eulerian two-phase turbulent model

    NASA Astrophysics Data System (ADS)

    Naphon, P.; Arisariyawong, T.; Nualboonrueng, T.

    2017-02-01

    A computation fluid dynamics study has been performed to analyze the nanofluids heat transfer and flow characteristics in the spirally coiled tubes. Eulerian two-phase turbulent model is applied to simulate the heat transfer and flow characteristics in the vertical spirally coiled tube. The spirally coiled tubes are fabricated by bending a 8.50 mm inner diameter straight copper tube into a spiral-coil with two different curvature ratios of 0.035, 0.060. The predicted results are verified with the present measured data. Reasonable agreement is obtained from the comparison between the measured data and the predicted results. In addition, due to the centrifugal force, the induced secondary flow has significant effect on the heat transfer enhancement as flowing through the spirally coiled tube. Effects of curvature, nanofluids concentration and hot water temperature on the nanofluids heat transfer characteristics and pressure drop are considered.

  12. Experimental investigation of heat transfer performance coefficient in tube bundle of shell and tube heat exchanger in two-phase flow

    NASA Astrophysics Data System (ADS)

    Karaś, Marcin; Zając, Daniel; Ulbrich, Roman

    2014-03-01

    This paper presents the results of studies in two phase gasliquid flow around tube bundle in the model of shell tube heat exchanger. Experimental investigations of heat transfer coefficient on the tubes surface were performed with the aid of electrochemical technique. Chilton-Colburn analogy between heat and mass transfer was used. Twelve nickel cathodes were mounted on the outside surface of one of the tubes. Measurement of limiting currents in the cathodic reduction of ferricyanide ions on nickel electrodes in aqueous solution of equimolar quantities of K3Fe(CN)6 and K4Fe(CN)6 in the presence of NaOH basic solution were applied to determine the mass transfer coefficient. Controlled diffusion from ions at the electrode was observed and limiting current plateau was measured. Measurements were performed with data acquisition equipment controlled by software created for this experiment. Mass transfer coefficient was calculated on the basis of the limiting current measurements. Results of mass transfer experiments (mass transfer coefficient) were recalculated to heat transfer coefficient. During the experiments, simultaneously conducted was the the investigation of two-phase flow structures around tubes with the use of digital particle image velocimetry. Average velocity fields around tubes were created with the use of a number of flow images and compared with the results of heat transfer coefficient calculations.

  13. Numerical evaluation of laminar heat transfer enhancement in nanofluid flow in coiled square tubes.

    PubMed

    Sasmito, Agus Pulung; Kurnia, Jundika Candra; Mujumdar, Arun Sadashiv

    2011-05-09

    Convective heat transfer can be enhanced by changing flow geometry and/or by enhancing thermal conductivity of the fluid. This study proposes simultaneous passive heat transfer enhancement by combining the geometry effect utilizing nanofluids inflow in coils. The two nanofluid suspensions examined in this study are: water-Al2O3 and water-CuO. The flow behavior and heat transfer performance of these nanofluid suspensions in various configurations of coiled square tubes, e.g., conical spiral, in-plane spiral, and helical spiral, are investigated and compared with those for water flowing in a straight tube. Laminar flow of a Newtonian nanofluid in coils made of square cross section tubes is simulated using computational fluid dynamics (CFD)approach, where the nanofluid properties are treated as functions of particle volumetric concentration and temperature. The results indicate that addition of small amounts of nanoparticles up to 1% improves significantly the heat transfer performance; however, further addition tends to deteriorate heat transfer performance.

  14. Numerical evaluation of laminar heat transfer enhancement in nanofluid flow in coiled square tubes

    PubMed Central

    2011-01-01

    Convective heat transfer can be enhanced by changing flow geometry and/or by enhancing thermal conductivity of the fluid. This study proposes simultaneous passive heat transfer enhancement by combining the geometry effect utilizing nanofluids inflow in coils. The two nanofluid suspensions examined in this study are: water-Al2O3 and water-CuO. The flow behavior and heat transfer performance of these nanofluid suspensions in various configurations of coiled square tubes, e.g., conical spiral, in-plane spiral, and helical spiral, are investigated and compared with those for water flowing in a straight tube. Laminar flow of a Newtonian nanofluid in coils made of square cross section tubes is simulated using computational fluid dynamics (CFD)approach, where the nanofluid properties are treated as functions of particle volumetric concentration and temperature. The results indicate that addition of small amounts of nanoparticles up to 1% improves significantly the heat transfer performance; however, further addition tends to deteriorate heat transfer performance. PMID:21711901

  15. Selected Ion Flow-Drift Tube Mass Spectrometry: Quantification of Volatile Compounds in Air and Breath.

    PubMed

    Spesyvyi, Anatolii; Smith, David; Španěl, Patrik

    2015-12-15

    A selected ion flow-drift tube mass spectrometric analytical technique, SIFDT-MS, is described that extends the established selected ion flow tube mass spectrometry, SIFT-MS, by the inclusion of a static but variable E-field along the axis of the flow tube reactor in which the analytical ion-molecule chemistry occurs. The ion axial speed is increased in proportion to the reduced field strength E/N (N is the carrier gas number density), and the residence/reaction time, t, which is measured by Hadamard transform multiplexing, is correspondingly reduced. To ensure a proper understanding of the physics and ion chemistry underlying SIFDT-MS, ion diffusive loss to the walls of the flow-drift tube and the mobility of injected H3O(+) ions have been studied as a function of E/N. It is seen that the derived diffusion coefficient and mobility of H3O(+) ions are consistent with those previously reported. The rate coefficient has been determined at elevated E/N for the association reaction of the H3O(+) reagent ions with H2O molecules, which is the first step in the production of H3O(+)(H2O)1,2,3 reagent hydrate ions. The production of hydrated analyte ion was also experimentally investigated. The analytical performance of SIFDT-MS is demonstrated by the quantification of acetone and isoprene in exhaled breath. Finally, the essential features of SIFDT-MS and SIFT-MS are compared, notably pointing out that a much lower speed of the flow-drive pump is required for SIFDT-MS, which facilitates the development of smaller cost-effective analytical instruments for real time breath and fluid headspace analyses.

  16. Nanoparticles containing ketoprofen and acrylic polymers prepared by an aerosol flow reactor method.

    PubMed

    Eerikäinen, Hannele; Peltonen, Leena; Raula, Janne; Hirvonen, Jouni; Kauppinen, Esko I

    2004-09-23

    The purpose of this study was to outline the effects of interactions between a model drug and various acrylic polymers on the physical properties of nanoparticles prepared by an aerosol flow reactor method. The amount of model drug, ketoprofen, in the nanoparticles was varied, and the nanoparticles were analyzed for particle size distribution, particle morphology, thermal properties, IR spectroscopy, and drug release. The nanoparticles produced were spherical, amorphous, and had a matrix-type structure. Ketoprofen crystallization was observed when the amount of drug in Eudragit L nanoparticles was more than 33% (wt/wt). For Eudragit E and Eudragit RS nanoparticles, the drug acted as an effective plasticizer resulting in lowering of the glass transition of the polymer. Two factors affected the preparation of nanoparticles by the aerosol flow reactor method, namely, the solubility of the drug in the polymer matrix and the thermal properties of the resulting drug-polymer matrix.

  17. A numerical investigation of the 3-D flow in shell and tube heat exchangers

    SciTech Connect

    Prithiviraj, M.; Andrews, M.J.

    1996-12-31

    A three-dimensional computer program for simulation of the flow and heat transfer inside Shell and Tube Heat Exchangers has been developed. The simulation of shell and tube heat exchangers is based on a distributed resistance method that uses a modified two equation {kappa}-{epsilon} turbulence model along with non-equilibrium wall functions. Volume porosities and non-homogeneous surface permeabilities account for the obstructions due to the tubes and arbitrary arrangement of baffles. Sub-models are described for baffle-shell and baffle-tube leakage, shellside and tubeside heat transfer, with geometry generators for tubes, baffles, and nozzle inlets and outlets. The sub-models in HEATX use parameters that have not been altered from their published values. Computed heat transfer and pressure drop are compared with experimental data from the Delaware project (Bell, 1963). Numerically computed pressure drops are also compared for different baffle cuts, and different number of baffles with the experiments of Halle et al. (1984) which were performed in an industrial sized heat exchanger at Argonne National Labs. Discussion of the results is given with particular reference to global and local properties such as pressure drop, temperature variation, and heat transfer coefficients. Good agreement is obtained between the experiments and HEATX computations for the shellside pressure drop and outlet temperatures for the shellside and tubeside streams.

  18. Hybrid modeling of convective laminar flow in a permeable tube associated with the cross-flow process

    NASA Astrophysics Data System (ADS)

    Venezuela, A. L.; Pérez-Guerrero, J. S.; Fontes, S. R.

    2009-03-01

    The confined flows in tubes with permeable surfaces are associated to tangential filtration processes (microfiltration or ultrafiltration). The complexity of the phenomena do not allow for the development of exact analytical solutions, however, approximate solutions are of great interest for the calculation of the transmembrane outflow and estimate of the concentration polarization phenomenon. In the present work, the generalized integral transform technique (GITT) was employed in solving the laminar and permanent flow in permeable tubes of Newtonian and incompressible fluid. The mathematical formulation employed the parabolic differential equation of chemical species conservation (convective-diffusive equation). The velocity profiles for the entrance region flow, which are found in the connective terms of the equation, were assessed by solutions obtained from literature. The velocity at the permeable wall was considered uniform, with the concentration at the tube wall regarded as variable with an axial position. A computational methodology using global error control was applied to determine the concentration in the wall and concentration boundary layer thickness. The results obtained for the local transmembrane flux and the concentration boundary layer thickness were compared against others in literature.

  19. Respirator Filter Efficiency Testing Against Particulate and Biological Aerosols Under Moderate to High Flow Rates

    DTIC Science & Technology

    2006-08-01

    stopped and the filter removed from the system for analysis. Polonium - 210 static eliminators were used to minimize particle loss during transport to...may provide a considerable overestimate of filter performance. Brosseau et al. (1990) compared the collection of silica and asbestos aerosols by DM...a half times as great as that measured under steady flow conditions, which is consistent with the results of Stafford et al. (1973). The asbestos

  20. Plume Mechanics and Aerosol Growth Processes.

    DTIC Science & Technology

    1987-07-01

    UNIT ELEMENT NO. NO NO ACCESSION NO %. Aberdeen Proving Ground, MD 21010-5423 II 11 TITLE (include Security Classification) Plume Mechanics and...formulation and a finite element sc hem e ......... ..................... 192 c. Diffusion of aerosols in laminar flow in a cylindrical tube...The principal elements are the liquid oil and carrier gas metering systems, the oil vaporizer, coaxial jet system, and the sampling and aerosol

  1. Numerical analysis of the steam flow field in shell and tube heat exchanger

    NASA Astrophysics Data System (ADS)

    Bartoszewicz, Jarosław; Bogusławski, Leon

    2016-06-01

    In the paper, the results of numerical simulations of the steam flow in a shell and tube heat exchanger are presented. The efficiency of different models of turbulence was tested. In numerical calculations the following turbulence models were used: k-ɛ, RNG k-ɛ, Wilcox k-ω, Chen-Kim k-ɛ, and Lam-Bremhorst k-ɛ. Numerical analysis of the steam flow was carried out assuming that the flow at the inlet section of the heat exchanger were divided into three parts. The angle of steam flow at inlet section was determined individually in order to obtain the best configuration of entry vanes and hence improve the heat exchanger construction. Results of numerical studies were verified experimentally for a real heat exchanger. The modification of the inlet flow direction according to theoretical considerations causes the increase of thermal power of a heat exchanger of about 14%.

  2. Modeling aerosol formation in opposed-flow diffusion flames.

    PubMed

    Violi, Angela; D'Anna, Andrea; D'Alessio, Antonio; Sarofim, Adel F

    2003-06-01

    The microstructures of atmospheric pressure, counter-flow, sooting, flat, laminar ethylene diffusion flames have been studied numerically by using a new kinetic model developed for hydrocarbon oxidation and pyrolysis. Modeling results are in reasonable agreement with experimental data in terms of concentration profiles of stable species and gas-phase aromatic compounds. Modeling results are used to analyze the controlling steps of aromatic formation and soot growth in counter-flow configurations. The formation of high molecular mass aromatics in diffusion controlled conditions is restricted to a narrow area close to the flame front where these species reach a molecular weight of about 1000 u. Depending on the flame configuration, soot formation is controlled by the coagulation of nanoparticles or by the addition of PAH to soot nuclei.

  3. Gas Dynamics, Characterization, and Calibration of Fast Flow Flight Cascade Impactor Quartz Crystal Microbalances (QCM) for Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Grant, J.R.; Thorpe, A. N.; James, C.; Michael, A.; Ware, M.; Senftle, F.; Smith, S.

    1997-01-01

    During recent high altitude flights, we have tested the aerosol section of the fast flow flight cascade impactor quartz crystal microbalance (QCM) on loan to Howard University from NASA. The aerosol mass collected during these flights was disappointingly small. Increasing the flow through the QCM did not correct the problem. It was clear that the instrument was not being operated under proper conditions for aerosol collect ion primarily because the gas dynamics is not well understood. A laboratory study was therefore undertaken using two different fast flow QCM's in an attempt to establish the gas flow characteristics of the aerosol sections and its effect on particle collection, Some tests were made at low temperatures but most of the work reported here was carried out at room temperature. The QCM is a cascade type impactor originally designed by May (1945) and later modified by Anderson (1966) and Mercer et al (1970) for chemical gas analysis. The QCM has been used extensively for collecting and sizing stratospheric aerosol particles. In this paper all flow rates are given or corrected and referred to in terms of air at STP. All of the flow meters were kept at STP. Although there have been several calibration and evaluation studies of moderate flow cascade impactors of less than or equal to 1 L/rein., there is little experimental information on the gas flow characteristics for fast flow rates greater than 1 L/rein.

  4. Saturated flow boiling heat transfer correlation for carbon dioxide for horizontal smooth tubes

    NASA Astrophysics Data System (ADS)

    Turgut, Oguz Emrah; Asker, Mustafa

    2017-01-01

    Literature comprises fewer studies about flow boiling modelling of refrigerants for in tube flows. In addition, researches on two phase flow heat transfer are based on the mathematical models which were derived in a very limited operational condition and correlated for their own measurements. In this study, a new flow boiling model including the superposed effects of nucleate and convective boiling mechanisms is proposed through the minimization of the cumulative error between the proposed mathematical model and actual data by means of artificial cooperative search algorithm and applied to the database of R-744 (carbon dioxide), available from different studies in the literature. Predictions obtained from the proposed model have been compared with those of retained from the literature correlations developed for flow boiling in tubes. The comparison results indicate that the new model outperforms the literature correlations in terms of prediction accuracy. Results of the comparisons reveal that the proposed flow boiling mathematical model has a mean absolute relative error of 14.6% and predicts 76.7% of the experimental data within ±20.0%.

  5. Magnetic field effect on flow parameters of blood along with magnetic particles in a cylindrical tube

    NASA Astrophysics Data System (ADS)

    Sharma, Shashi; Singh, Uaday; Katiyar, V. K.

    2015-03-01

    In this paper, the effect of external uniform magnetic field on flow parameters of both blood and magnetic particles is reported through a mathematical model using magnetohydrodynamics (MHD) approach. The fluid is acted upon by a varying pressure gradient and an external uniform magnetic field is applied perpendicular to the cylindrical tube. The governing nonlinear partial differential equations were solved numerically and found that flow parameters are affected by the influence of magnetic field. Further, artificial blood (75% water+25% Glycerol) along with iron oxide magnetic particles were prepared and transported into a glass tube with help of a peristaltic pump. The velocity of artificial blood along with magnetic particles was experimentally measured at different magnetic fields ranging from 100 to 600 mT. The model results show that the velocity of blood and magnetic particles is appreciably reduced under the influence of magnetic field, which is supported by our experimental results.

  6. Experimental perfect-gas study of expansion-tube flow characteristics

    NASA Technical Reports Server (NTRS)

    Shinn, J. L.; Miller, C. G., III

    1978-01-01

    Results of an experimental investigation of expansion tube flow characteristics performed with helium test gas and acceleration gas are presented. The use of helium, eliminates complex real gas chemistry in the comparison of measured and predicted flow quantities. The driver gas was unheated helium at a nominal pressure of 33 MN sq m. The quiescent test gas pressure and quiescent acceleration gas pressure were varied from 0.7 to 50 kN/sq m and from 2.5 to 53 N/sq m, respectively. The effects of tube-wall boundary layer growth and finite secondary diaphragm opening time were examined through the variation of the quiescent gas pressures and secondary diaphragm thickness. Optimum operating conditions for helium test gas were also defined.

  7. Monitoring chloramines and bromamines in a humid environment using selected ion flow tube mass spectrometry.

    PubMed

    Hu, Wan-Ping; Langford, Vaughan S; McEwan, Murray J; Milligan, Daniel B; Storer, Malina K; Dummer, Jack; Epton, Michael J

    2010-06-30

    The selectivity and sensitivity of selected ion flow tube mass spectrometry (SIFT-MS) for individual breath analysis of haloamines has been improved by heating the flow tube in a commercial instrument to around 106 degrees C. Data is presented showing the marked reduction in the number density of water clusters of product ions of common breath metabolites that are isobaric with the product ions from monochloramine and monobromamine that are used to monitor the haloamine concentrations. These results have direct relevance to the real-time monitoring of chloramines in drinking water, swimming pools and food processing plants. However, once the isobaric overlaps from water cluster ions are reduced at the higher temperatures, there is no conclusive evidence showing the presence of haloamines on single breath exhalations in the mid parts per trillion range from examination of the breaths of volunteers.

  8. A One Dimensional Model to Predict Steady Flow Through a Collapsible Tube

    NASA Astrophysics Data System (ADS)

    Unhale, S. A.; Marino, G.; Parameswaran, S.

    2005-06-01

    Flow through tubes that can collapse during normal operation characterizes virtually every bodily fluid-carrying vessel. A MATLAB program was developed to solve a one-dimensional numerical model for steady state collapsible tube flow. The numerical results were then compared with experimental findings of Bertram [10]. The model included a novel polynomial-defined relationship between the Reynolds number and skin friction coefficient. The results are in strong agreement with experiment (r > 0.95). Further correlation analysis showed significance at the 0.025 level [r 14 = 0.986; r 17 = 0.975; r 15 = 0.990; r 15 = 0.956; r 19 = 0.943; p ≪ 0.001]. An average error of less than ten percent existed between computations and experiment.

  9. Cross-Roll Flow Forming of ODS Alloy Heat Exchanger Tubes For Hoop Creep Enhancement

    SciTech Connect

    Bimal Kad

    2007-09-30

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program were to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. The research program outlined was iterative and intended to systematically (i) examine and identify post-extrusion forming methodologies to create hoop strengthened tubes, to be (ii) evaluated at 'in-service' loads at service temperatures and environments. Our report outlines the significant hoop creep enhancements possible via secondary cross-rolling and/or flow-forming operations. Each of the

  10. Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments

    SciTech Connect

    Mendler, O J; Takeuchi, K; Young, M Y

    1986-10-01

    The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results.

  11. Experimental and Numerical Modeling of Rarefied Gas Flows Through Orifices and Short Tubes

    DTIC Science & Technology

    2005-07-13

    approach (solution of the Navier - Stokes equations , NS hereafter). 437 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for...Continuum approach. The Navier - Stokes computations were performed with commercial software, CFD- FASTRAN, which is a sophisticated compressible finite-volume...micro and nanotechnologies (such as lubrication problems that deal with transitional flows in long channels and tubes) and porous media (represented by a

  12. Reactions of Ions with Ionic Liquid Vapors by Selected-Ion Flow Tube Mass Spectrometry

    DTIC Science & Technology

    2016-06-07

    are observed by selected ion flow tube mass spectrometry. Free energies of the reactions involved are determined by ab initio quantum mechanical...spectrometry. Free energies of the reactions involving 1-ethyl-3-methylimidazolium bis-trifluoromethylsulfonylimide determined by ab initio...of the ion pairs should indicate potential reactivity with the above ions. Apparently, the Coulombic energy gained by ion addition or ion exchange

  13. CROSS-ROLL FLOW FORMING OF ODS ALLOY HEAT EXCHANGER TUBES FOR HOOP CREEP ENHANCEMENT

    SciTech Connect

    Bimal K. Kad

    2005-06-27

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. Recent studies in cross-rolled ODS-alloy sheets (produced from flattened tubes) indicate that transverse creep is significantly enhanced via controlled transverse grain fibering, and similar improvements are expected for cross-rolled tubes. The research program outlined here is iterative in nature and is intended to systematically (i) prescribe extrusion consolidation methodologies via detailed

  14. Secondary organic aerosol formation and primary organic aerosol oxidation from biomass burning smoke in a flow reactor during FLAME-3

    NASA Astrophysics Data System (ADS)

    Ortega, A. M.; Day, D. A.; Cubison, M. J.; Brune, W. H.; Bon, D.; de Gouw, J. A.; Jimenez, J. L.

    2013-05-01

    We report the physical and chemical effects of photochemically aging dilute biomass-burning smoke. A potential aerosol mass "PAM" flow reactor was used with analysis by a high-resolution aerosol mass spectrometer and a proton-transfer reaction ion-trap mass spectrometer during the FLAME-3 campaign. Hydroxyl (OH) radical concentrations in the reactor reached up to ~ 1000 times average tropospheric levels, producing effective OH exposures equivalent to up to 5 days aging in the atmosphere. VOC observations show aromatics and terpenes decrease with aging, while formic acid and other unidentified oxidation products increase. Unidentified gas-phase oxidation products, previously observed in atmospheric and laboratory measurements, were observed here, including evidence of multiple generations of photochemistry. Substantial new organic aerosol (OA) mass ("net SOA"; secondary OA) was observed from aging biomass-burning smoke, resulting in an total OA average of 1.42 ± 0.36 times the initial primary OA (POA) after oxidation. This study confirms that the net SOA to POA ratio of biomass burning smoke is far lower on average than that observed for urban emissions. Although most fuels were very reproducible, significant differences were observed among the biomasses, with some fuels resulting in a doubling of the OA mass, while for others a very small increase or even a decrease was observed. Net SOA formation in the photochemical reactor increased with OH exposure (OHexp), typically peaking around three days of equivalent atmospheric photochemical age (OHexp ~ 3.9 × 1011 molecules cm-3 s-1), then leveling off at higher exposures. The amount of additional OA mass added from aging is positively correlated with initial POA concentration, but not with the total VOC concentration or the concentration of known SOA precursors. The mass of SOA formed often exceeds the mass of the known VOC precursors, indicating the likely importance of primary semivolatile/intermediate volatility

  15. On the use of the periodicity condition in cross-flow tube

    NASA Astrophysics Data System (ADS)

    Beladjine, Boumedienne; Aounallah, Mohammed; Belkadi, Mustapha; Aadjlout, Lahouari; Imine, Omar

    2015-05-01

    This paper presents the results of measurements and numerical predictions of turbulent cross-flow through an in-line 7×7 bundle configuration with a constant transverse and longitudinal pitch-to-diameter ratio of 1.44. The experiments are conducted to measure the pressure around tubes, using DPS differential pressure scanner with air flow, in square channel at a Reynolds number of 35000 based on the gap velocity and the tube diameter. The commercial ANSYS FLUENT is used to solve the unsteady Reynolds-Averaged Navier-Stokes (RANS) equations. The primary aim of the present study is to search for a turbulent model that could serve as an engineering design tool at a relatively low computational cost. The performances of the Spalart-Allmaras, the RNG k-ɛ, the Shear Stress Transport k-ω and the second moment closure RSM models are evaluated by comparing their simulation results against experimental data. The second objective is to verify the validity of the periodicity assumption taken account in the most previous numerical works by considering the filled bundle geometry. The CFD results show that the Spalart-Allmaras model on the fine mesh are comparable to the experiments while the periodicity statement did not produce consistently the flow behavior in the 7×7 tube bundle configuration.

  16. The effect of flat bar supports on the cross flow induced response of heat exchanger U-tubes

    SciTech Connect

    Weaver, D.S.; Schneider, W.

    1982-01-01

    A wind tunnel study was conducted to determine the effect of flat bar supports on the cross-flow induced response of heat exchanger U-tubes. The 13 mm diameter tubes formed a triangular array with a pitch ratio o 1.57 and a mean U-bend diameter of about 1.5 m. A 0.3 m long section of the array was exposed to a flow parallel to the plane of the U-bends. Experiments were conducted with no supports, with 1 set of flat bars at the apex and with 2 sets of flat bar supports at the apex and 45/sup 0/ points. In each case, the tube response was monitored to a flow velocity beyond that required for fluid elastic instability. Limited experiments were also conducted to examine the effect of tube support clearance on tube response. Conclusions are drawn regarding the effectiveness of flat bars as U-bend antivibration supports.

  17. Optimization and improvement of PM2.5 thermophoretic deposition efficiency in turbulent gas flowing over tube surfaces.

    PubMed

    Tao, Zhou; Zenghui, Wang; Ruichang, Yang

    2005-09-01

    PM2.5 thermophoretic deposition efficiency in turbulent gas flowing over tube surfaces is analyzed using the new concept of potential capacity and potential capacity variation. According to Romay's model, a thermophoretic deposition efficiency model in turbulent gas flowing over tube surfaces is built up based on the potential capacity. Through computing and analyzing thermophoretic deposition efficiency, PM2.5 thermophoretic deposition efficiency in turbulent gas flowing over tube surfaces in direct ratio to the potential capacity variation and in inverse ratio to the temperature ratio of tube wall to entrance gas-particle mixture. And the imprecise notion of thermophoretic deposition efficiency direct ratio to the temperature difference between tube wall and entrance gas-particle mixture is reviewed. There are credible foundations to be provided for improving and researching thermophoretic deposition efficiency in theory and experiment.

  18. Modelling flow pattern transitions for steady upward gas-liquid flow in vertical tubes. [Bubble, slug, churn and dispersed-annular; also existence regions and transitions

    SciTech Connect

    Taitel, Y.; Bornea, D.; Dukler, A.E.

    1980-05-01

    Models for predicting flow patterns in steady upward gas-liquid flow in vertical tubes (such as production-well tubing) delineate the transition boundaries between each of the four basic flow patterns for gas-liquid flow in vertical tubes: bubble, slug, churn, and dispersed-annular. Model results suggest that churn flow is the development region for the slug pattern and that bubble flow can exist in small pipes only at high liquid rates, where turbulent dispersion forces are high. Each transition depends on the flow-rate pair, fluid properties, and pipe size, but the nature of the dependence is different for each transition because of differing control mechanisms. The theoretical predictions are in reasonably good agreement with a variety of published flow maps based on experimental data.

  19. Nonlinear saturation of the Rayleigh instability due to oscillatory flow in a liquid-lined tube

    NASA Astrophysics Data System (ADS)

    Halpern, David; Grotberg, James B.

    2003-10-01

    In this paper, the stability of core annular flows consisting of two immiscible fluids in a cylindrical tube with circular cross-section is examined. Such flows are important in a wide range of industrial and biomedical applications. For example, in secondary oil recovery, water is pumped into the well to displace the remaining oil. It is also of relevance in the lung, where a thin liquid film coats the inner surface of the small airways of the lungs. In both cases, the flow is influenced by a surface-tension instability, which may induce the breakup of the core fluid into short plugs, reducing the efficiency of the oil recovery, or blocking the passage of air in the lung thus inducing airway closure. We consider the stability of a thin film coating the inner surface of a rigid cylindrical tube with the less viscous fluid in the core. For thick enough films, the Rayleigh instability forms a liquid bulge that can grow to eventually create a plug blocking the tube. The analysis explores the effect of an oscillatory core flow on the interfacial dynamics and particularly the nonlinear stabilization of the bulge. The oscillatory core flow exerts tangential and normal stresses on the interface between the two fluids that are simplified by uncoupling the core and film analyses in the thin-film high-frequency limit of the governing equations. Lubrication theory is used to derive a nonlinear evolution equation for the position of the air liquid interface which includes the effects of the core flow. It is shown that the core flow can prevent plug formation of the more viscous film layer by nonlinear saturation of the capillary instability. The stabilization mechanism is similar to that of a reversing butter knife, where the core shear wipes the growing liquid bulge back on to the tube wall during the main tidal volume stroke, but allows it to grow back as the stoke and shear turn around. To be successful, the leading film thickness ahead of the bulge must be smaller than the

  20. A quiet flow Ludwieg tube for study of transition in compressible boundary layers: Design and feasibility

    NASA Technical Reports Server (NTRS)

    Schneider, Steven P.

    1990-01-01

    Since Ludwieg tubes have been around for many years, and NASA has already established the feasibility of creating quiet-flow wind tunnels, the major question addressed was the cost of the proposed facility. Cost estimates were obtained for major system components, and new designs which allowed fabrication at lower cost were developed. A large fraction of the facility cost comes from the fabrication of the highly polished quiet-flow supersonic nozzle. Methods for the design of this nozzle were studied at length in an attempt to find an effective but less expensive design. Progress was sufficient to show that a quality facility can be fabricated at a reasonable cost.

  1. Numerical prediction of a draft tube flow taking into account uncertain inlet conditions

    NASA Astrophysics Data System (ADS)

    Brugiere, O.; Balarac, G.; Corre, C.; Metais, O.; Flores, E.; Pleroy

    2012-11-01

    The swirling turbulent flow in a hydroturbine draft tube is computed with a non-intrusive uncertainty quantification (UQ) method coupled to Reynolds-Averaged Navier-Stokes (RANS) modelling in order to take into account in the numerical prediction the physical uncertainties existing on the inlet flow conditions. The proposed approach yields not only mean velocity fields to be compared with measured profiles, as is customary in Computational Fluid Dynamics (CFD) practice, but also variance of these quantities from which error bars can be deduced on the computed profiles, thus making more significant the comparison between experiment and computation.

  2. Creeping gaseous flows through elastic tube and annulus micro-configurations

    NASA Astrophysics Data System (ADS)

    Elbaz, Shai; Jacob, Hila; Gat, Amir

    2016-11-01

    Gaseous flows in elastic micro-configurations is relevant to biological systems (e.g. alveolar ducts in the lungs) as well as to applications such as gas actuated soft micro-robots. We here examine the effect of low-Mach-number compressibility on creeping gaseous axial flows through linearly elastic tube and annulus micro-configurations. For steady flows, the leading-order effects of elasticity on the pressure distribution and mass-flux are obtained. For transient flow in a tube with small deformations, elastic effects are shown to be negligible in leading order due to compressibility. We then examine transient flows in annular configurations where the deformation is significant compared with the gap between the inner and outer cylinders defining the annulus. Both compressibility and elasticity are obtained as dominant terms interacting with viscosity. For a sudden flux impulse, the governing non-linear leading order diffusion equation is initially approximated by a porous-medium-equation of order 2.5 for the pressure square. However, as the fluid expand and the pressure decreases, the governing equation degenerates to a porous-medium-equation of order 2 for the pressure.

  3. An analytical model for decaying swirl flow and heat transfer inside a tube

    SciTech Connect

    Wu, H.Y.; Cheng, H.E.; Shuai, R.J.; Zhou, Q.T.

    2000-02-01

    Decaying swirl flow can enhance the heat transfer inside a tube. For the decaying swirl flow of which maximum tangential velocity is located in the immediate vicinity of the wall, an analytical model based on the fluid theorem about the moment of momentum is proposed for the local maximum tangential velocity, local friction factor, and local Nusselt number in this paper. The analytical solutions compare favorably with the experimental data. Influences of the Reynolds number, wall roughness and initial tangential-to-axial velocity ratio on the decaying characteristics of the friction factor and Nusselt number have been analyzed. The analytical results show that the swirl flow decays more rapidly at the initial segment; for same conditions, the friction factor decays more severely than the Nusselt number; relative to the values of the nonswirl flow, the friction factor increases more intensely than the Nusselt number.

  4. Two phase choke flow in tubes with very large L/D

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Simoneau, R. J.

    1977-01-01

    Data were obtained for two phase and gaseous choked flow nitrogen in a long constant area duct of 16200 L/D with a diverging diffuser attached to the exit. Flow rate data were taken along five isotherms (reduced temperature of 0.81, 0.96, 1.06, 1.12, and 2.34) for reduced pressures to 3. The flow rate data were mapped in the usual manner using stagnation conditions at the inlet mixing chamber upstream of the entrance length. The results are predictable by a two phase homogeneous equilibrium choking flow model which includes wall friction. A simplified theory which in essence decouples the long tube region from the high acceleration choking region also appears to predict the data resonably well, but about 15 percent low.

  5. Infrared spectroscopy of aerosols

    NASA Astrophysics Data System (ADS)

    Mentel, Th.; Sebald, H.

    2003-04-01

    In our large Aerosol Chamber at the FZ Jülich we apply HR FTIR absorption spectroscopy for the determination of trace gases. In the FTIR spectra we also observe broad absorptions of several 10 to a few 100 cm-1 widths that arise from species in the condensed aerosol phase: liquid H_2O, NO_3^-, SO_42-, HSO_4^-, or dicarboxylic acids. Moreover, the aerosol droplets caused extinctions over several 1000 cm-1 by IR scattering. This allows for in-situ observation of changes in the condensed aerosol phase e.g. on HNO_3 uptake, like the shift of the sulfate/bisulfate equilibrium or the growth by water condensation. The IR absorptions of the condensed aerosol phase provide useful extra information in process studies, if they can be quantified. Therefore the absorption cross section, respective, the absorption index which is the imaginary part of the complex refractive index is needed. We set up an aerosol flow tube in which IR spectroscopy on a 8 m light path and aerosol size distribution measurements in the range from 20 nm - 10 μm can be performed simultaneously. We measured sulfate aerosols at several relative humidities (dry, metastable, deliquescent). We will demonstrate an iterative procedure based on Mie calculations and Kramers Kronig transformation to retrieve the absorption index from the observed IR spectra and the corresponding size distribution (for dry ammonium sulfate). We will compare resulting absorption indices for aqueous sodium bisulfate aerosols at several relative humidties with thermodynamic model calculations for the Na^+/H^+/HSO_4^-/SO_42-/H_2O system.

  6. Convective heat transfer in foams under laminar flow in pipes and tube bundles.

    PubMed

    Attia, Joseph A; McKinley, Ian M; Moreno-Magana, David; Pilon, Laurent

    2012-12-01

    The present study reports experimental data and scaling analysis for forced convection of foams and microfoams in laminar flow in circular and rectangular tubes as well as in tube bundles. Foams and microfoams are pseudoplastic (shear thinning) two-phase fluids consisting of tightly packed bubbles with diameters ranging from tens of microns to a few millimeters. They have found applications in separation processes, soil remediation, oil recovery, water treatment, food processes, as well as in fire fighting and in heat exchangers. First, aqueous solutions of surfactant Tween 20 with different concentrations were used to generate microfoams with various porosity, bubble size distribution, and rheological behavior. These different microfoams were flowed in uniformly heated circular tubes of different diameter instrumented with thermocouples. A wide range of heat fluxes and flow rates were explored. Experimental data were compared with analytical and semi-empirical expressions derived and validated for single-phase power-law fluids. These correlations were extended to two-phase foams by defining the Reynolds number based on the effective viscosity and density of microfoams. However, the local Nusselt and Prandtl numbers were defined based on the specific heat and thermal conductivity of water. Indeed, the heated wall was continuously in contact with a film of water controlling convective heat transfer to the microfoams. Overall, good agreement between experimental results and model predictions was obtained for all experimental conditions considered. Finally, the same approach was shown to be also valid for experimental data reported in the literature for laminar forced convection of microfoams in rectangular minichannels and of macrofoams across aligned and staggered tube bundles with constant wall heat flux.

  7. Convective heat transfer in foams under laminar flow in pipes and tube bundles

    PubMed Central

    Attia, Joseph A.; McKinley, Ian M.; Moreno-Magana, David; Pilon, Laurent

    2014-01-01

    The present study reports experimental data and scaling analysis for forced convection of foams and microfoams in laminar flow in circular and rectangular tubes as well as in tube bundles. Foams and microfoams are pseudoplastic (shear thinning) two-phase fluids consisting of tightly packed bubbles with diameters ranging from tens of microns to a few millimeters. They have found applications in separation processes, soil remediation, oil recovery, water treatment, food processes, as well as in fire fighting and in heat exchangers. First, aqueous solutions of surfactant Tween 20 with different concentrations were used to generate microfoams with various porosity, bubble size distribution, and rheological behavior. These different microfoams were flowed in uniformly heated circular tubes of different diameter instrumented with thermocouples. A wide range of heat fluxes and flow rates were explored. Experimental data were compared with analytical and semi-empirical expressions derived and validated for single-phase power-law fluids. These correlations were extended to two-phase foams by defining the Reynolds number based on the effective viscosity and density of microfoams. However, the local Nusselt and Prandtl numbers were defined based on the specific heat and thermal conductivity of water. Indeed, the heated wall was continuously in contact with a film of water controlling convective heat transfer to the microfoams. Overall, good agreement between experimental results and model predictions was obtained for all experimental conditions considered. Finally, the same approach was shown to be also valid for experimental data reported in the literature for laminar forced convection of microfoams in rectangular minichannels and of macrofoams across aligned and staggered tube bundles with constant wall heat flux. PMID:25552745

  8. Combustor with two stage primary fuel tube with concentric members and flow regulating

    DOEpatents

    Parker, David Marchant; Whidden, Graydon Lane; Zolyomi, Wendel

    1999-01-01

    A combustor for a gas turbine having a centrally located fuel nozzle and inner, middle and outer concentric cylindrical liners, the inner liner enclosing a primary combustion zone. The combustor has an air inlet that forms two passages for pre-mixing primary fuel and air to be supplied to the primary combustion zone. Each of the pre-mixing passages has a circumferential array of swirl vanes. A plurality of primary fuel tube assemblies extend through both pre-mixing passages, with each primary fuel tube assembly located between a pair of swirl vanes. Each primary fuel tube assembly is comprised of two tubular members. The first member supplies fuel to the first pre-mixing passage, while the second member, which extends through the first member, supplies fuel to the second pre-mixing passage. An annular fuel manifold is divided into first and second chambers by a circumferentially extending baffle. The proximal end of the first member is attached to the manifold itself while the proximal end of the second member is attached to the baffle. The distal end of the first member is attached directly to the second member at around its mid-point. The inlets of the first and second members are in flow communication with the first and second manifold chambers, respectively. Control valves separately regulate the flow of fuel to the two chambers and, therefore, to the two members of the fuel tube assemblies, thereby allowing the flow of fuel to the first and second pre-mixing passages to be separately controlled.

  9. Atmospheric pressure flow reactor / aerosol mass spectrometer studies of tropospheric aerosol nucleat and growth kinetics. Final report, June, 2001

    SciTech Connect

    Worsnop, Douglas R.

    2001-06-01

    The objective of this program was to determine the mechanisms and rates of growth and transformation and growth processes that control secondary aerosol particles in both the clear and polluted troposphere. The experimental plan coupled an aerosol mass spectrometer (AMS) with a chemical ionization mass spectrometer to provide simultaneous measurement of condensed and particle phases. The first task investigated the kinetics of tropospheric particle growth and transformation by measuring vapor accretion to particles (uptake coefficients, including mass accommodation coefficients and heterogeneous reaction rate coefficients). Other work initiated investigation of aerosol nucleation processes by monitoring the appearance of submicron particles with the AMS as a function of precursor gas concentrations. Three projects were investigated during the program: (1) Ozonolysis of oleic acid aerosols as model of chemical reactivity of secondary organic aerosol; (2) Activation of soot particles by measurement deliquescence in the presence of sulfuric acid and water vapor; (3) Controlled nucleation and growth of sulfuric acid aerosols.

  10. CROSS-ROLL FLOW FORMING OF ODS ALLOY HEAT EXCHANGER TUBES FOR HOOP CREEP ENHANCEMENT

    SciTech Connect

    Bimal K. Kad

    2004-05-31

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. Recent studies in cross-rolled ODS-alloy sheets (produced from flattened tubes) indicate that transverse creep is significantly enhanced via controlled transverse grain fibering, and similar improvements are expected for cross-rolled tubes. The research program outlined here is iterative in nature and is intended to systematically (1) prescribe extrusion consolidation methodologies via detailed

  11. CROSS-ROLL FLOW FORMING OF ODS ALLOY HEAT EXCHANGER TUBES FOR HOOP CREEP ENHANCEMENT

    SciTech Connect

    Bimal K. Kad

    2004-03-31

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. Recent studies in cross-rolled ODS-alloy sheets (produced from flattened tubes) indicate that transverse creep is significantly enhanced via controlled transverse grain fibering, and similar improvements are expected for cross-rolled tubes. The research program outlined here is iterative in nature and is intended to systematically (1) prescribe extrusion consolidation methodologies via detailed

  12. CROSS-ROLL FLOW FORMING OF ODS ALLOY HEAT EXCHANGER TUBES FOR HOOP CREEP ENHANCEMENT

    SciTech Connect

    Bimal K. Kad

    2005-02-28

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. Recent studies in cross-rolled ODS-alloy sheets (produced from flattened tubes) indicate that transverse creep is significantly enhanced via controlled transverse grain fibering, and similar improvements are expected for cross-rolled tubes. The research program outlined here is iterative in nature and is intended to systematically (i) prescribe extrusion consolidation methodologies via detailed

  13. CROSS-ROLL FLOW FORMING OF ODS ALLOY HEAT EXCHANGER TUBES FOR HOOP CREEP ENHANCEMENT

    SciTech Connect

    Bimal K. Kad

    2004-08-31

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. Recent studies in cross-rolled ODS-alloy sheets (produced from flattened tubes) indicate that transverse creep is significantly enhanced via controlled transverse grain fibering, and similar improvements are expected for cross-rolled tubes. The research program outlined here is iterative in nature and is intended to systematically (i) prescribe extrusion consolidation methodologies via detailed

  14. CROSS-ROLL FLOW FORMING OF ODS ALLOY HEAT EXCHANGER TUBES FOR HOOP CREEP ENHANCEMENT

    SciTech Connect

    Bimal K. Kad

    2004-11-30

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. Recent studies in cross-rolled ODS-alloy sheets (produced from flattened tubes) indicate that transverse creep is significantly enhanced via controlled transverse grain fibering, and similar improvements are expected for cross-rolled tubes. The research program outlined here is iterative in nature and is intended to systematically (i) prescribe extrusion consolidation methodologies via detailed

  15. Respiratory flows during early childhood: Computational models to examine therapeutic aerosols in the developing airways

    NASA Astrophysics Data System (ADS)

    Tenenbaum-Katan, Janna; Hofemeier, Philipp; Sznitman, Josué; Janna Tenenbaum-Katan Team

    2015-11-01

    Inhalation therapy is the cornerstone of early-childhood respiratory treatments, as well as a rising potential for systemic drug delivery and pulmonary vaccination. As such, indispensable understanding of respiratory flow phenomena, coupled with particle transport at the deep regions of children's lungs is necessary to attain efficient targeting of aerosol therapy. However, fundamental research of pulmonary transport is overwhelmingly focused on adults. In our study, we have developed an anatomically-inspired computational model of representing pulmonary acinar regions at several age points during a child's development. Our numerical simulations examine respiratory flows and particle deposition maps within the acinar model, accounting for varying age dependant anatomical considerations and ventilation patterns. Resulting deposition maps of aerosols alter with age, such findings might suggest that medication protocols of inhalation therapy in young children should be considered to be accordingly amended with the child's development. Additionally to understanding basic scientific concepts of age effects on aerosol deposition, our research can potentially contribute practical guidelines to therapy protocols, and its' necessary modifications with age. We acknowledge the support of the ISF and the Israeli ministry of Science.

  16. Thermal and fluid flow characteristics in a tube equipped with peripherally-cut dual twisted tapes

    NASA Astrophysics Data System (ADS)

    Changcharoen, W.; Somravysin, P.; Eiamsa-ard, S.

    2014-12-01

    This article presents an experimental analysis of the turbulent flow of water in a heat exchanger tube fitted with peripherally-cut dual twisted tapes (PDTs) under a constant wall heat-flux condition. The peripherallycut dual twisted tapes with different cutting pitch ratios (l/y = 0.5, 0.75 and 1.0) were tested for Reynolds numbers in the range of 5400 to 14,000. The experimental results showed thatNusselt number and friction factor of the tubes fitted with PDTswere considerably higher than those of the plain tube and those of the tubes with single twisted tape (ST) and dual twisted tapes (DTs). It was found that PDTs with l/y = 0.5, 0.75 and 1.0 gave higher heat transfer rate than the typical DTs, with average Nusselt numbers greater by 12.1%, 7.8% and 3.8%, respectively. For the range investigated, PDTs with the smallest l/y ratio offered the highest thermal performance factor of 1.14.

  17. Numerical study of chemical reactions in a surface microdischarge tube with mist flow based on experiment

    NASA Astrophysics Data System (ADS)

    Shibata, T.; Nishiyama, H.

    2014-03-01

    Recently, a water treatment method of spraying solution into a discharge region has been developed and shows high energy efficiency. In this study, a simulation model of a water treatment method using a surface microdischarge (SMD) tube with mist flow is proposed for further understanding the detailed chemical reactions. Our model has three phases (plasma, gas and liquid) and three simulation steps. The carrier gas is humid air including 2% or 3% water vapour. The chemical species diffusion characteristics in the SMD tube and the concentrations in a droplet are clarified in a wide pH interval. The simulation results show that the chemical species generated on the SMD tube inner wall are diffused to the central axis and dissolved into fine droplets. Especially, OH radicals dissolve into droplets a few mm away from the SMD tube wall because of acidification of the droplets. Furthermore, the hydrogen peroxide density, which is the most important indicator of a radical reaction in water, is influenced by the initial solution pH. This pH dependence results from ozone self-decomposition in water.

  18. O(2) release from erythrocytes flowing in a narrow O(2)-permeable tube: effects of erythrocyte aggregation.

    PubMed

    Tateishi, N; Suzuki, Y; Cicha, I; Maeda, N

    2001-07-01

    The effects of erythrocyte aggregation on O(2) release were examined using O(2)-permeable fluorinated ethylenepropylene copolymer tubes (inner diameter, 25 microm; outer diameter, 100 microm). Measurements were performed using an apparatus built on an inverted microscope that contained a scanning-grating spectrophotometer with a photon count detector connected to two photomultipliers and an image processor through a video camera. The rate of O(2) release from the cells flowing in the narrow tube was determined based on the visible absorption spectrum and the flow velocity of the cells as well as the tube size. When the tube was exposed to nitrogen-saturated deoxygenated saline containing 10 mM sodium dithionite, the flowing erythrocytes were deoxygenated in proportion to the traveling distance, and the deoxygenation at a given distance increased with decreasing flow velocity and cell concentration (hematocrit). Adding Dextran T-70 to the cell suspension increased erythrocyte aggregation in the tube, which resulted in suppressed cell deoxygenation and increased marginal cell-free-layer thickness. The deoxygenation was inversely proportional to the cell-free-layer thickness. The relation was not essentially altered even when the medium viscosity was adjusted with Dextran T-40 to remain constant. The rate of O(2) release from erythrocytes in the tube was discussed in relation to the O(2) diffusion process. We conclude that the diffusion of O(2) from erythrocytes flowing in narrow tubes is inhibited primarily by erythrocyte aggregation itself and partly by thickening of the cell-free layer.

  19. 3D Laboratory Measurements of Forces, Flows, and Collimation in Arched Flux Tubes

    NASA Astrophysics Data System (ADS)

    Haw, Magnus; Bellan, Paul

    2016-10-01

    Fully 3D, vector MHD force measurements from an arched, current carrying flux tube (flux rope) are presented. The experiment consists of two arched plasma-filled flux ropes each powered by a capacitor bank. The two loops are partially overlapped, as in a Venn diagram, and collide and reconnect during their evolution. B-field data is taken on the lower plasma arch using a 54 channel B-dot probe. 3D volumetric data is acquired by placing the probe at 2700 locations and taking 5 plasma shots at each location. The resulting data set gives high resolution (2cm, 10ns) volumetric B-field data with high reproducibility (deviation of 3% between shots). Taking the curl of the measured 3D B-field gives current densities (J) in good agreement with measured capacitor bank current. The JxB forces calculated from the data have a strong axial component at the base of the current channel and are shown to scale linearly with axial gradients in current density. Assuming force balance in the flux tube minor radius direction, we infer near-Alfvenic axial flows from the footpoint regions which are consistent with the measured axial forces. Flux tube collimation is observed in conjunction with these axial flows. These dynamic processes are relevant to the stability and dynamics of coronal loops. Supported provided by NSF, AFOSR.

  20. Numerical modeling of condensation from vapor-gas mixtures for forced down flow inside a tube

    SciTech Connect

    Yuann, R Y; Schrock, V E; Chen, Xiang

    1995-09-01

    Laminar film condensation is the dominant heat transfer mode inside tubes. In the present paper direct numerical simulation of the detailed transport process within the steam-gas core flow and in the condensate film is carried out. The problem was posed as an axisymmetric two dimensional (r, z) gas phase inside an annular condensate film flow with an assumed smooth interface. The fundamental conservation equations were written for mass, momentum, species concentration and energy in the gaseous phase with effective diffusion parameters characterizing the turbulent region. The low Reynolds number two equation {kappa}-{epsilon} model was employed to determine the eddy diffusion coefficients. The liquid film was described by similar formulation without the gas species equation. An empirical correlation was employed to correct for the effect of film waviness on the interfacial shear. A computer code named COAPIT (Condensation Analysis Program Inside Tube) was developed to implement numerical solution of the fundamental equations. The equations were solved by a marching technique working downstream from the entrance of the condensing section. COAPIT was benchmarked against experimental data and overall reasonable agreement was found for the key parameters such as heat transfer coefficient and tube inner wall temperature. The predicted axial development of radial profiles of velocity, composition and temperature and occurrence of metastable vapor add insight to the physical phenomena.

  1. CHF multiplier of subcooled flow boiling for non-uniform heating conditions in swirl tube

    SciTech Connect

    Inasaka, F.; Nariai, H.

    1994-12-31

    The high heat flux components of fusion reactors, such as divertor plates and beam dumps of neutral beam injectors, are estimated to be subjected to very high heat loads more than 10 MW/m{sup 2}. Critical heat flux (CHF), which determines the upper limit of heat removal, is one of the most important problems in designing cooling systems. For practical applications in cooling systems, subcooled flow boiling in water combined with swirl-flow in tubes with internal twisted tape is thought to be the most superior for CHF characteristics in fusion reactor components, heat by irradiation comes in from one side of the wall, and cooling channel is then under circumferentially non-uniform heating condition. Authors have conducted the experiments on the CHF with internal twisted tapes under circumferentially non-uniform heating conditions and showed that when the intensity of non-uniformity increased, q{sub cH} (peak heat flux at burnout under nonuniform heating condition) in tube with internal twisted tape increased above the q{sub c,unif} (CHF under uniform heating condition), though the average qualities were the same for both cases. They also showed that this CHF enhancement was not seen in smooth tubes without tape under the same average qualities.

  2. Centrifugal scaling of isothermal gas-liquid flows in horizontal tubes

    NASA Astrophysics Data System (ADS)

    Geraets, Jacques Joseph Marie

    1986-05-01

    To test the similarity criteria of two-phase gas-liquid flows, arising from the governing equations and boundary conditions, the flow of air and a water-glycerine mixture in a 50 mm diameter horizontal tube is compared with a two-phase flow of helium and water in a 5 mm diameter tube rotating around a parallel vertical axis (the effective gravity is 113 g0). Results emphasize that in general only dimensionless correlations provide meaningful predictions. The homogeneous Dukler case 1 (1964b) correlation, which contains no two-phase information, provides the best fit (the standard deviation is 21%) with the measured pressure drops. For predicting flow pattern the most promising approach is that of Taitel and Dukler (1976). Examples of scaling down large diameter, high pressure pipelines are presented. With a scale factor of 1/30 equality of the Froude number, the gas-liquid density ratio, and either the Reynolds number or the Weber number can be realized. Compressibility and gas viscosity are not properly scaled.

  3. Fluid particle diffusion through high-hematocrit blood flow within a capillary tube.

    PubMed

    Saadatmand, Maryam; Ishikawa, Takuji; Matsuki, Noriaki; Jafar Abdekhodaie, Mohammad; Imai, Yohsuke; Ueno, Hironori; Yamaguchi, Takami

    2011-01-04

    Fluid particle diffusion through blood flow within a capillary tube is an important phenomenon to understand, especially for studies in mass transport in the microcirculation as well as in solving technical issues involved in mixing in biomedical microdevices. In this paper, the spreading of tracer particles through up to 20% hematocrit blood, flowing in a capillary tube, was studied using a confocal micro-PTV system. We tracked hundreds of particles in high-hematocrit blood and measured the radial dispersion coefficient. Results yielded significant enhancement of the particle diffusion, due to a micron-scale flow-field generated by red blood cell motions. By increasing the flow rate, the particle dispersion increased almost linearly under constant hematocrit levels. The particle dispersion also showed near linear dependency on hematocrit up to 20%. A scaling analysis of the results, on the assumption that the tracer trajectories were unbiased random walks, was shown to capture the main features of the results. The dispersion of tracer particles was about 0.7 times that of RBCs. These findings provide good insight into transport phenomena in the microcirculation and in biomedical microdevices.

  4. A Local Condensation Analysis Representing Two-phase Annular Flow in Condenser/radiator Capillary Tubes

    NASA Technical Reports Server (NTRS)

    Karimi, Amir

    1991-01-01

    NASA's effort for the thermal environmental control of the Space Station Freedom is directed towards the design, analysis, and development of an Active Thermal Control System (ATCS). A two phase, flow through condenser/radiator concept was baselined, as a part of the ATCS, for the radiation of space station thermal load into space. The proposed condenser rejects heat through direct condensation of ATCS working fluid (ammonia) in the small diameter radiator tubes. Analysis of the condensation process and design of condenser tubes are based on the available two phase flow models for the prediction of flow regimes, heat transfer, and pressure drops. The prediction formulas use the existing empirical relationships of friction factor at gas-liquid interface. An attempt is made to study the stability of interfacial waves in two phase annular flow. The formulation is presented of a stability problem in cylindrical coordinates. The contribution of fluid viscosity, surface tension, and transverse radius of curvature to the interfacial surface is included. A solution is obtained for Kelvin-Helmholtz instability problem which can be used to determine the critical and most dangerous wavelengths for interfacial waves.

  5. Condensation of Forced Convection Two-Phase Flow in a Miniature Tube

    NASA Technical Reports Server (NTRS)

    Begg, E.; Faghri, A.; Krustalev, D.

    1999-01-01

    A physical/mathematical model of annular film condensation at the inlet of a miniature tube has been developed. In the model, the liquid flow is coupled with the vapor flow along the liquid-vapor interface through the interfacial temperature, heat flux, shear stress, and pressure jump conditions due to surface tension effects. The model predicts the shape of the liquid-vapor interface along the condenser and leads to the conclusion that there is complete condensation at a certain distance from the condenser inlet. The numerical results show that complete condensation of the incoming vapor is possible at comparatively low heat loads and that this is a special case of a more general condensation regime with two-phase bubbly flow downstream of the initial annular film condensation region. Observations from the flow visualization experiment confirm the existence and qualitative features of annular film condensation leading to the complete condensation phenomenon in a small diameter (3.25 mm) circular tube condenser.

  6. Protective tubes for sodium heated water tubes

    DOEpatents

    Essebaggers, Jan

    1979-01-01

    A heat exchanger in which water tubes are heated by liquid sodium which minimizes the results of accidental contact between the water and the sodium caused by failure of one or more of the water tubes. A cylindrical protective tube envelopes each water tube and the sodium flows axially in the annular spaces between the protective tubes and the water tubes.

  7. Evaporation heat transfer and friction characteristics of R-134a flowing downward in a vertical corrugated tube

    SciTech Connect

    Aroonrat, Kanit; Wongwises, Somchai

    2011-01-15

    Differently from most previous studies, the heat transfer and friction characteristics of the pure refrigerant HFC-134a during evaporation inside a vertical corrugated tube are experimentally investigated. The double tube test sections are 0.5 m long with refrigerant flowing in the inner tube and heating water flowing in the annulus. The inner tubes are one smooth tube and two corrugated tubes, which are constructed from smooth copper tube of 8.7 mm inner diameter. The test runs are performed at evaporating temperatures of 10, 15, and 20 C, heat fluxes of 20, 25, and 30 kW/m{sup 2}, and mass fluxes of 200, 300, and 400 kg/m{sup 2} s. The quality of the refrigerant in the test section is calculated using the temperature and pressure obtained from the experiment. The pressure drop across the test section is measured directly by a differential pressure transducer. The effects of heat flux, mass flux, and evaporation temperature on the heat transfer coefficient and two-phase friction factor are also discussed. It is found that the percentage increases of the heat transfer coefficient and the two-phase friction factor of the corrugated tubes compared with those of the smooth tube are approximately 0-10% and 70-140%, respectively. (author)

  8. Cross-Roll Flow Forming of ODS Alloy Heat Exchanger Tubes For Hoop Creep Enhancement

    SciTech Connect

    Bimal K. Kad

    2005-11-23

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. Recent studies in crossrolled ODS-alloy sheets (produced from flattened tubes) indicate that transverse creep is significantly enhanced via controlled transverse grain fibering, and similar improvements are expected for cross-rolled tubes. The research program outlined here is iterative in nature and is intended to systematically (1) examine and identify post-extrusion forming methodologies to

  9. Experimental study on flow boiling heat transfer of LNG in a vertical smooth tube

    NASA Astrophysics Data System (ADS)

    Chen, Dongsheng; Shi, Yumei

    2013-10-01

    An experimental apparatus is set up in this work to study the upward flow boiling heat transfer characteristics of LNG (liquefied natural gas) in vertical smooth tubes with inner diameters of 8 mm and 14 mm. The experiments were performed at various inlet pressures from 0.3 to 0.7 MPa. The results were obtained over the mass flux range from 16 to 200 kg m-2 s-1 and heat fluxes ranging from 8.0 to 32 kW m-2. The influences of quality, heat flux and mass flux, tube diameter on the heat transfer characteristic are examined and discussed. The comparisons of the experimental heat transfer coefficients with the predicted values from the existing correlations are analyzed. The correlation by Zou et al. [16] shows the best accuracy with the RMS deviation of 31.7% in comparison with the experimental data.

  10. The Effect of Fin Pitch on Fluid Elastic Instability of Tube Arrays Subjected to Cross Flow of Water

    NASA Astrophysics Data System (ADS)

    Desai, Sandeep Rangrao; Pavitran, Sampat

    2016-07-01

    Failure of tubes in shell and tube exchangers is attributed to flow induced vibrations of such tubes. There are different excitations mechanisms due to which flow induced vibration occurs and among such mechanisms, fluid elastic instability is the most prominent one as it causes the most violent vibrations and may lead to rapid tube failures within short time. Fluid elastic instability is the fluid-structure interaction phenomenon which occurs when energy input by the fluid force exceeds energy expended in damping. This point is referred as instability threshold and corresponding velocity is referred as critical velocity. Once flow velocity exceeds critical flow velocity, the vibration amplitude increases very rapidly with flow velocity. An experimental program is carried out to determine the critical velocity at instability for plain and finned tube arrays subjected to cross flow of water. The tube array geometry is parallel triangular with cantilever end condition and pitch ratios considered are 2.6 and 2.1. The objective of research is to determine the effect of increase in pitch ratio on instability threshold for plain tube arrays and to assess the effect of addition of fins as well as increase in fin density on instability threshold for finned tube arrays. Plain tube array with two different pitch ratios; 2.1 and 2.6 and finned tube arrays with same pitch ratio; 2.6 but with two different fin pitches; such as fine (10 fpi) and coarse (4 fpi) are considered for the experimentation. Connors' equation that relates critical velocity at instability to different parameters, on which instability depends, has been used as the basis for analysis and the concept of effective diameter is used for the present investigation. The modal parameters are first suitably modified using natural frequency reduction setup that is already designed and developed to reduce natural frequency and hence to achieve experimental simulation of fluid elastic instability within the limited

  11. KELVIN-HELMHOLTZ INSTABILITY IN CORONAL MAGNETIC FLUX TUBES DUE TO AZIMUTHAL SHEAR FLOWS

    SciTech Connect

    Soler, R.; Terradas, J.; Oliver, R.; Ballester, J. L.; Goossens, M.

    2010-04-01

    Transverse oscillations of coronal loops are often observed and have been theoretically interpreted as kink magnetohydrodynamic (MHD) modes. Numerical simulations by Terradas et al. suggest that shear flows generated at the loop boundary during kink oscillations could give rise to a Kelvin-Helmholtz instability (KHI). Here, we investigate the linear stage of the KHI in a cylindrical magnetic flux tube in the presence of azimuthal shear motions. We consider the basic, linearized MHD equations in the beta = 0 approximation and apply them to a straight and homogeneous cylindrical flux tube model embedded in a coronal environment. Azimuthal shear flows with a sharp jump of the velocity at the cylinder boundary are included in the model. We obtain an analytical expression for the dispersion relation of the unstable MHD modes supported by the configuration, and compute analytical approximations of the critical velocity shear and the KHI growth rate in the thin tube limit. A parametric study of the KHI growth rates is performed by numerically solving the full dispersion relation. We find that fluting-like modes can develop a KHI in timescales comparable to the period of kink oscillations of the flux tube. The KHI growth rates increase with the value of the azimuthal wavenumber and decrease with the longitudinal wavenumber. However, the presence of a small azimuthal component of the magnetic field can suppress the KHI. Azimuthal motions related to kink oscillations of untwisted coronal loops may trigger a KHI, but this phenomenon has not been observed to date. We propose that the azimuthal component of the magnetic field is responsible for suppressing the KHI in a stable coronal loop. The required twist is small enough to prevent the development of the pinch instability.

  12. A criterion to determine uniform and non-uniform stratified liquid-gas flow through horizontal tubes

    SciTech Connect

    Bishop, A.A.; Deshpande, S.D.

    1986-04-01

    Non-uniform liquid-gas stratified flow (i.e. flow with an interfacial level gradient, ILG) can exist when high viscosity liquids and/or large diameter tubes are used. The available data, covering a wide range of liquid viscosities (0.8 to 310 mPa.s) and tube diameters (0.0254 m to 0.216 m), are analyzed. It is shown that the Lockhart-Martinelli parameter, X less than or equal to 1 is a criterion to determine uniform stratified flow and disappearance of ILG. In addition, interfacial shear stress relationships are also shown to be indicative of different types of stratified flow.

  13. Determination of Maintaining Time of Temperature Traces of Aerosol Droplet Water Flows During Motion in a Flame

    NASA Astrophysics Data System (ADS)

    Antonov, D. V.; Voitkov, I. S.; Strizhak, P. A.

    2016-02-01

    To develop fire fighting technologies, the temperatures of combustible products were measured after passing an aerosol droplet flow of water through the flames (with monitored temperatures). It was applied the aerosol flows with droplets of sizes less than 100 μm, 100-200 μm, and 200-300 μm. Investigations were conducted at a temperature of combustible products from 500 K to 900 K. Temperatures of gases in droplet flow traces and maintaining times of relatively low temperatures in these areas (it can be considered as temperature trace) were defined. It was obtained the satisfactory agreement of experimental results and numerical simulation data.

  14. Nanofluid heat transfer under mixed convection flow in a tube for solar thermal energy applications.

    PubMed

    Sekhar, Y Raja; Sharma, K V; Kamal, Subhash

    2016-05-01

    The solar flat plate collector operating under different convective modes has low efficiency for energy conversion. The energy absorbed by the working fluid in the collector system and its heat transfer characteristics vary with solar insolation and mass flow rate. The performance of the system is improved by reducing the losses from the collector. Various passive methods have been devised to aid energy absorption by the working fluid. Also, working fluids are modified using nanoparticles to improve the thermal properties of the fluid. In the present work, simulation and experimental studies are undertaken for pipe flow at constant heat flux boundary condition in the mixed convection mode. The working fluid at low Reynolds number in the mixed laminar flow range is undertaken with water in thermosyphon mode for different inclination angles of the tube. Local and average coefficients are determined experimentally and compared with theoretical values for water-based Al2O3 nanofluids. The results show an enhancement in heat transfer in the experimental range with Rayleigh number at higher inclinations of the collector tube for water and nanofluids.

  15. Velocity measurements of low Reynolds number tube flow using fiber-optic technology

    SciTech Connect

    Bianchi, J. Christopher

    1993-03-01

    In 1988 Nielsen started work to measure the spatial variability of the mass flux vector being transported in a porous medium. To measure the spatial variability of the mass flux vector, the spatial variability of its components(velocity, concentration) must be measured. Nielsen was successful in measuring the pore level concentration at many different pores and in verifying the assumption that a nonuniform concentration field exists within the mixing zone between two miscible fluids. However, Nielsen was unable to conduct the necessary pore level velocity measurements needed. Nielsen`s work is being continued and a probe is being developed that will measure both velocity and concentration components at pore level. The probe is essentially the same probe used to make the pore level concentration measurements with added capabilities needed to make the velocity measurements. This probe has several design variables, dealing primarily with the velocity component, that need further investigation. The research presented in this thesis investigates these parameters by performing experiments in a capillary tube. The tube is a controlled system where the velocity of the fluid can be determined from the volumetric flow rate using Poiseuille`s solution for viscous flow. Also, a statistically based relationship between the velocity measured with the probe and the velocity determined from the volumetric flow rate has been developed.

  16. Experimental estimation of the local heat-transfer coefficient in coiled tubes in turbulent flow regime

    NASA Astrophysics Data System (ADS)

    Bozzoli, F.; Cattani, L.; Mocerino, A.; Rainieri, S.

    2016-09-01

    Wall curvature is a popular heat transfer enhancement technique since it gives origin to the centrifugal force in the fluid: this phenomenon promotes local maxima in the velocity distribution that locally increase the temperature gradients at the wall by enhancing the heat transfer both in the laminar and in the turbulent flow regime. This geometry produces an asymmetrical distribution of the velocity field over the cross-section of the tube which lead to a significant variation in the convective heat-transfer coefficient along the circumferential angular coordinate: it presents higher values at the outer bend side of the wall surface than at the inner bend side. Although the irregular distribution of the heat transfer coefficient may be critical in some industrial applications, most of the authors did not investigate this aspect, mainly due to the practical difficulty of measuring heat flux on internal wall surface of a pipe. In the present investigation the local convective heat-transfer coefficient is experimentally estimated at the fluid-wall interface in coiled tubes when turbulent flow regime occurs; in particular, temperature distribution maps on the external coil wall are employed as input data of the inverse heat conduction problem in the wall and a solution approach based on the Tikhonov regularisation is implemented. The results, obtained with water as working fluid, are focused on the fully developed region in the turbulent flow regime in the Reynolds number range of 5000 to 12000.

  17. Tensile properties and flow behavior analysis of modified 9Cr-1Mo steel clad tube material

    NASA Astrophysics Data System (ADS)

    Singh, Kanwarjeet; Latha, S.; Nandagopal, M.; Mathew, M. D.; Laha, K.; Jayakumar, T.

    2014-11-01

    The tensile properties and flow behavior of modified 9Cr-1Mo steel clad tube have been investigated in the framework of various constitutive equations for a wide range of temperatures (300-923 K) and strain rates (3 × 10-3 s-1, 3 × 10-4 s-1 and 3 × 10-5 s-1). The tensile flow behavior of modified 9Cr-1Mo steel clad tube was most accurately described by Voce equation. The variation of instantaneous work hardening rate (θ = dσ/dε) and σθ with stress (σ) indicated two stage behavior characterized by rapid decrease at low stresses (transient stage) followed by a gradual decrease in high stresses (Stage III). The variation of work hardening parameters and work hardening rate in terms of θ vs. σ and σθ vs. σ with temperature exhibited three distinct regimes. Rapid decrease in flow stress and work hardening parameters and rapid shift of θ vs. σ and σθ vs. σ towards low stresses with increase in temperature indicated dynamic recovery at high temperatures. Tensile properties of the material have been best predicted from Voce equation.

  18. Velocity measurements of low Reynolds number tube flow using fiber-optic technology

    SciTech Connect

    Bianchi, J.C.

    1993-03-01

    In 1988 Nielsen started work to measure the spatial variability of the mass flux vector being transported in a porous medium. To measure the spatial variability of the mass flux vector, the spatial variability of its components(velocity, concentration) must be measured. Nielsen was successful in measuring the pore level concentration at many different pores and in verifying the assumption that a nonuniform concentration field exists within the mixing zone between two miscible fluids. However, Nielsen was unable to conduct the necessary pore level velocity measurements needed. Nielsen's work is being continued and a probe is being developed that will measure both velocity and concentration components at pore level. The probe is essentially the same probe used to make the pore level concentration measurements with added capabilities needed to make the velocity measurements. This probe has several design variables, dealing primarily with the velocity component, that need further investigation. The research presented in this thesis investigates these parameters by performing experiments in a capillary tube. The tube is a controlled system where the velocity of the fluid can be determined from the volumetric flow rate using Poiseuille's solution for viscous flow. Also, a statistically based relationship between the velocity measured with the probe and the velocity determined from the volumetric flow rate has been developed.

  19. Computation of the Nusselt number asymptotes for laminar forced convection flows in internally finned tubes

    SciTech Connect

    Ledezma, G.A.; Campo, A.

    1999-04-01

    The utilization of internal longitudinal finned tubes has received unparallel attention in the heat transfer literature over the years as a result of its imminent application in high performance compact heat exchangers to enhance the heat transfer between laminar streams of viscous fluids and tube walls. Here, the central goal of this paper is to report a simple approximate way for the prediction of the two asymptotes for the local Nusselt number in laminar forced convection flows inside internal longitudinal finned tubes. The computational attributes of the Method Of Lines (MOL) are propitious for the determination of asymptotic temperature solutions and corresponding heat transfer rates (one for Z {r_arrow} 0 and the other for z {r_arrow} {infinity}). The two local Nusselt number sub-distributions, namely Nu{sub z{r_arrow}0} and Nu{sub z{r_arrow}{infinity}}, blend themselves into an approximate Nusselt number distribution that covers the entire z-domain in a natural way.

  20. Dry powder aerosols generated by standardized entrainment tubes from drug blends with lactose monohydrate: 2. Ipratropium bromide monohydrate and fluticasone propionate.

    PubMed

    Xu, Zhen; Mansour, Heidi M; Mulder, Tako; McLean, Richard; Langridge, John; Hickey, Anthony J

    2010-08-01

    The objectives of this study were: systematic investigation of dry powder aerosol performance using standardized entrainment tubes (SETs) and lactose-based formulations with two model drugs; mechanistic evaluation of performance data by powder aerosol deaggregation equation (PADE). The drugs (IPB and FP) were prepared in sieved and milled lactose carriers (2% w/w). Aerosol studies were performed using SETs (shear stresses tau(s) = 0.624-13.143 N/m(2)) by twin-stage liquid impinger, operated at 60 L/min. PADE was applied for formulation screening. Excellent correlation was observed when PADE was adopted correlating FPF to tau(s). Higher tau(s) corresponded to higher FPF values followed by a plateau representing invariance of FPF with increasing tau(s). The R(2) values for PADE linear regression were 0.9905-0.9999. Performance described in terms of the maximum FPF (FPF(max): 15.0-37.6%) resulted in a rank order of ML-B/IPB > ML-A/IPB > SV-A/IPB > SV-B/IPB > ML-B/FP > ML-A/FP > SV-B/FP > SV-A/FP. The performance of IPB was superior to FP in all formulations. The difference in lactose monohydrate carriers was less pronounced for the FPF in IPB than in FP formulations. The novel PADE offers a robust method for evaluating aerodynamic performance of dry powder formulations within a defined tau(s) range.

  1. Circumventing Imprecise Geometric Information and Development of a Unified Modeling Technique for Various Flow Regimes in Capillary Tubes

    NASA Astrophysics Data System (ADS)

    Abbasi, Bahman

    2012-11-01

    Owing to their manufacturability and reliability, capillary tubes are the most common expansion devices in household refrigerators. Therefore, investigating flow properties in the capillary tubes is of immense appeal in the said business. The models to predict pressure drop in two-phase internal flows invariably rely upon highly precise geometric information. The manner in which capillary tubes are manufactured makes them highly susceptible to geometric imprecisions, which renders geometry-based models unreliable to the point of obsoleteness. Aware of the issue, manufacturers categorize capillary tubes based on Nitrogen flow rate through them. This categorization method presents an opportunity to substitute geometric details with Nitrogen flow data as the basis for customized models. The simulation tools developed by implementation of this technique have the singular advantage of being applicable across flow regimes. Thus the error-prone process of identifying compatible correlations is eliminated. Equally importantly, compressibility and chocking effects can be incorporated in the same model. The outcome is a standalone correlation that provides accurate predictions, regardless of any particular fluid or flow regime. Thereby, exploratory investigations for capillary tube design and optimization are greatly simplified. Bahman Abbasi, Ph.D., is Lead Advanced Systems Engineer at General Electric Appliances in Louisville, KY. He conducts research projects across disciplines in the household refrigeration industry.

  2. Cross-Roll Flow Forming of ODS Alloy Heat Exchanger Tubes for Hoop Creep Enhancement

    SciTech Connect

    Bimal K. Kad

    2006-04-10

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. The research program outlined here is iterative in nature and is intended to systematically (1) examine and identify post-extrusion forming methodologies to create hoop strengthened tubes, which will be (2) evaluated at ''in-service'' loads at service temperatures and environments. This research program is being conducted in collaboration with the DOE's Oak Ridge National Laboratory and the vested

  3. A theoretical computerized study for the electrical conductivity of arterial pulsatile blood flow by an elastic tube model.

    PubMed

    Shen, Hua; Zhu, Yong; Qin, Kai-Rong

    2016-12-01

    The electrical conductivity of pulsatile blood flow in arteries is an important factor for the application of the electrical impedance measurement system in clinical settings. The electrical conductivity of pulsatile blood flow depends not only on blood-flow-induced red blood cell (RBC) orientation and deformation but also on artery wall motion. Numerous studies have investigated the conductivity of pulsatile blood based on a rigid tube model, in which the effects of wall motion on blood conductivity are not considered. In this study, integrating Ling and Atabek's local flow theory and Maxwell-Fricke theory, we develop an elastic tube model to explore the effects of wall motion as well as blood flow velocity on blood conductivity. The simulation results suggest that wall motion, rather than blood flow velocity, is the primary factor that affects the conductivity of flowing blood in arteries.

  4. Experimental investigation of a bioartificial capsule flowing in a narrow tube

    NASA Astrophysics Data System (ADS)

    Risso, Frédéric; Collé-Paillot, Fabienne; Zagzoule, Mokhtar

    This work is an experimental study of the motion and deformation of a bioartificial capsule flowing in a tube of 4 mm diameter. The capsules, initially designed for medical applications, are droplets of salt water surrounded by a thin polymeric membrane. They are immersed in a very viscous Newtonian silicone oil that flows through a tube in the Stokes regime. The properties of the capsules were carefully determined. Two previous experimental papers were devoted to their characterization by osmotic swelling and compression between two plates. The present work also provides a series of tests that allows an accurate definition of the experimental model under investigation. The capsules are buoyant and initially quasi-spherical. Nevertheless, buoyancy and small departures from sphericity are shown to have no significant effects, provided the flowing velocity is large enough for the viscous stress to become predominant. The capsules are also initially slightly over-inflated, but there is no mass transfer through the membrane during the present experiments. Their volume therefore remains constant. The membrane can be described as an elastic two-dimensional material, the elastic moduli of which are independent of the deformation. Far from the tube ends, the capsule reaches a steady state that depends on two parameters: the capillary number, Ca; and the ratio of the radius of the capsule to that of the tube, a/R. The capillary number, which compares the hydrodynamic stresses to the elastic tensions in the membrane, was varied between 0 and 0.125. The radius ratio, which measures the magnitude of the confinement, was varied from 0.75 to 0.95. In the range investigated, the membrane material always remains in the elastic domain. At fixed a/R, the capsule is stretched in the axial direction when Ca is increased. The process of deformation involves two main stages. At small to moderate Ca, the lateral dimension of the capsule decreases whereas its axial length increases. The

  5. Analysis of Signal Propagation in an Elastic-Tube Flow Model

    NASA Astrophysics Data System (ADS)

    Waggy, Scott; Akman, Ozgur; Biringen, Sedat

    2009-11-01

    We combine linear and nonlinear signal analysis techniques to investigate the transmission of pressure signals along a one-dimensional model of fluid flow in an elastic tube. We derive a simple measure for the robustness of a simulated vessel against in vivo fluctuations in the pressure, based on quantifying the degree of synchronization between proximal and distal pressure pulses. The practical use of this measure will be in its application to simulated pulses generated in response to a stochastic forcing term mimicking biological variations of root pressure in arterial blood flow. Using spectral analysis methods based on synchronization theory, we introduce a novel nonlinear index for measuring the robustness of the model against fluctuations in the forcing signal, based on a general scheme for deriving low-dimensional measures of (biological) performance from higher-dimensional systems of equations.

  6. Physical hydrodynamic propulsion model study on creeping viscous flow through a ciliated porous tube

    NASA Astrophysics Data System (ADS)

    Akbar, Noreen Sher; Butt, Adil Wahid; Tripathi, Dharmendra; Bég, O. Anwar

    2017-03-01

    The present investigation focusses on a mathematical study of creeping viscous flow induced by metachronal wave propagation in a horizontal ciliated tube containing porous media. Creeping flow limitations are imposed, i.e. inertial forces are small compared to viscous forces and therefore a very low Reynolds number (Re ≪ 1) is taken into account. The wavelength of metachronal wave is also considered to be very large for cilia movement. The physical problem is linearized and exact solutions are developed for the differential equation problem. Mathematica software is used to compute and illustrate numerical results. The influence of slip parameter and Darcy number on velocity profile, pressure gradient and trapping of bolus are discussed with the aid of graphs. It is found that with increasing magnitude of the slip parameter, the trapped bolus inside the streamlines increases in size. The study is relevant to biological propulsion of medical micromachines in drug delivery.

  7. Study of blood viscosity at low shear rate and its flow through viscoelastic tubes and ducts

    NASA Astrophysics Data System (ADS)

    Misra, N.; Sarkar, A.; Srinivas, A.; Kapusetti, G.

    2012-02-01

    A nonlinear mathematical model is developed analytically to study the flow characteristics of visco-elastic fluid through a visco-elastic pipe when it is subjected to external body acceleration. The equations governing the motion of the system are solved analytically with the use of appropriate boundary conditions. For the present scope of study the flow of visco-elastic fluid (blood) in smaller artery which is visco-elastic in nature has been taken. The artery is assumed to be a flexible cylindrical tube containing a non-Newtonian fluid. The unsteady flow mechanism in the artery is subjected to a pulsatile pressure gradient arising from the normal functioning of the heart and also the external body acceleration. Numerical models have finally been developed for Newtonian and Non-Newtonian fluid in order to have a thorough quantitative measure of the effects of body acceleration on the flow velocity, volume flow rate and the wall shear stress of blood in normal human artery and when the artery gets stiffer, just to validate the applicability of the present mathematical model.

  8. Effects of oil on boiling of replacement refrigerants flowing normal to a tube bundle -- Part 1: R-123

    SciTech Connect

    Tatara, R.A.; Payvar, P.

    2000-07-01

    Local experimental heat transfer coefficients have been obtained for boiling refrigerant flowing up and across a tube bundle segment representing a full flooded evaporator tube bundle. R-123 data with a structured enhanced boiling tube are available.The refrigerant enters at 15% vapor quality and exits at nearly 100% vapor in order to simulate an actual flooded evaporator bundle. Both heat flux, 2,607 to 10,427 Btu/h{center_dot}ft{sup 2} (8,224 to 32,893 W/m{sup 2}), and oil content, 0--15% (by weight), are varied; the mass flux is not varied independently but set by the heat flux. Local tube and bulk fluid temperatures are measured directly, by thermocouples, to calculate the refrigerant-side heat transfer coefficients. The bundle segment saturation temperature set point (taken at the top of the tube bundle) is 40 F (4.4 C).

  9. Numerical simulation of swirling flow in complex hydroturbine draft tube using unsteady statistical turbulence models

    SciTech Connect

    Paik, Joongcheol; Sotiropoulos, Fotis; Sale, Michael J

    2005-06-01

    A numerical method is developed for carrying out unsteady Reynolds-averaged Navier-Stokes (URANS) simulations and detached-eddy simulations (DESs) in complex 3D geometries. The method is applied to simulate incompressible swirling flow in a typical hydroturbine draft tube, which consists of a strongly curved 90 degree elbow and two piers. The governing equations are solved with a second-order-accurate, finite-volume, dual-time-stepping artificial compressibility approach for a Reynolds number of 1.1 million on a mesh with 1.8 million nodes. The geometrical complexities of the draft tube are handled using domain decomposition with overset (chimera) grids. Numerical simulations show that unsteady statistical turbulence models can capture very complex 3D flow phenomena dominated by geometry-induced, large-scale instabilities and unsteady coherent structures such as the onset of vortex breakdown and the formation of the unsteady rope vortex downstream of the turbine runner. Both URANS and DES appear to yield the general shape and magnitude of mean velocity profiles in reasonable agreement with measurements. Significant discrepancies among the DES and URANS predictions of the turbulence statistics are also observed in the straight downstream diffuser.

  10. Attenuation of hydrogen radicals traveling under flowing gas conditions through tubes of different materials

    SciTech Connect

    Grubbs, R.K.; George, S.M.

    2006-05-15

    Hydrogen radical concentrations traveling under flowing gas conditions through tubes of different materials were measured using a dual thermocouple probe. The source of the hydrogen radicals was a toroidal radio frequency plasma source operating at 2.0 and 3.3 kW for H{sub 2} pressures of 250 and 500 mTorr, respectively. The dual thermocouple probe was comprised of exposed and covered Pt/Pt13%Rh thermocouples. Hydrogen radicals recombined efficiently on the exposed thermocouple and the energy of formation of H{sub 2} heated the thermocouple. The second thermocouple was covered by glass and was heated primarily by the ambient gas. The dual thermocouple probe was translated and measured temperatures at different distances from the hydrogen radical source. These temperature measurements were conducted at H{sub 2} flow rates of 35 and 75 SCCM (SCCM denotes cubic centimeter per minute at STP) inside cylindrical tubes made of stainless steel, aluminum, quartz, and Pyrex. The hydrogen radical concentrations were obtained from the temperatures of the exposed and covered thermocouples. The hydrogen concentration decreased versus distance from the plasma source. After correcting for the H{sub 2} gas flow using a reference frame transformation, the hydrogen radical concentration profiles yielded the atomic hydrogen recombination coefficient, {gamma}, for the four materials. The methodology of measuring the hydrogen radical concentrations, the analysis of the results under flowing gas conditions, and the determination of the atomic hydrogen recombination coefficients for various materials will help facilitate the use of hydrogen radicals for thin film growth processes.

  11. The effect of organic aerosol material on aerosol reactivity towards ozone

    NASA Astrophysics Data System (ADS)

    Batenburg, Anneke; Gaston, Cassandra; Thornton, Joel; Virtanen, Annele

    2015-04-01

    After aerosol particles are formed or emitted into the atmosphere, heterogeneous reactions with gaseous oxidants cause them to 'age'. Aging can change aerosol properties, such as the hygroscopicity, which is an important parameter in how the particles scatter radiation and form clouds. Conversely, heterogeneous reactions on aerosol particles play a significant role in the cycles of various atmospheric trace gases. Organic compounds, a large part of the total global aerosol matter, can exist in liquid or amorphous (semi)solid physical phases. Different groups have shown that reactions with ozone (O3) can be limited by bulk diffusion in organic aerosol, particularly in viscous, (semi)solid materials, and that organic coatings alter the surface interactions between gas and aerosol particles. We aim to better understand and quantify how the viscosity and phase of organic aerosol matter affect gas-particle interactions. We have chosen the reaction of O3 with particles composed of a potassium iodide (KI) core and a variable organic coating as a model system. The reaction is studied in an aerosol flow reactor that consists of a laminar flow tube and a movable, axial injector for the injection of O3. The aerosol-containing air is inserted at the tube's top. The interaction length (and therefore time), between the particles and the O3 can be varied by moving the injector. Alternatively, the production of aerosol particles can be modulated. The remaining O3 concentration is monitored from the bottom of the tube and particle concentrations are measured simultaneously, which allows us to calculate the reactive uptake coefficient γ. We performed exploratory experiments with internally mixed KI and polyethylene glycol (PEG) particles at the University of Washington (UW) in a setup with a residence time around 50 s. Aerosol particles were generated in an atomizer from solutions with varying concentrations of KI and PEG and inserted into the flow tube after they were diluted and

  12. Smooth- and enhanced-tube heat transfer and pressure drop : Part II. The role of transition to turbulent flow.

    SciTech Connect

    Obot, N. T.; Das, L.; Rabas, T. J.

    2000-11-14

    The objectives of this presentation are two-fold: first, to demonstrate the connection between the attainable coefficients and transition to turbulent flow by using the transition-based corresponding states method to generalize results obtained with smooth tubes and enhanced tubes, and second, to provide guidelines on the calculation of heat transfer coefficients from pressure-drop data and vice versa by using the transition concept or the functional law of corresponding states.

  13. Length and time for development of laminar flow in tubes following a step increase of volume flux

    NASA Astrophysics Data System (ADS)

    Chaudhury, Rafeed A.; Herrmann, Marcus; Frakes, David H.; Adrian, Ronald J.

    2015-01-01

    Laminar flows starting up from rest in round tubes are relevant to numerous industrial and biomedical applications. The two most common types are flows driven by an abruptly imposed constant pressure gradient or by an abruptly imposed constant volume flux. Analytical solutions are available for transient, fully developed flows, wherein streamwise development over the entrance length is absent (Szymanski in J de Mathématiques Pures et Appliquées 11:67-107, 1932; Andersson and Tiseth in Chem Eng Commun 112(1):121-133, 1992, respectively). They represent the transient responses of flows in tubes that are very long compared with the entrance length, a condition that is seldom satisfied in biomedical tube networks. This study establishes the entrance (development) length and development time of starting laminar flow in a round tube of finite length driven by a piston pump that produces a step change from zero flow to a constant volume flux for Reynolds numbers between 500 and 3,000. The flows are examined experimentally, using stereographic particle image velocimetry and computationally using computational fluid dynamics, and are then compared with the known analytical solutions for fully developed flow conditions in infinitely long tubes. Results show that step function volume flux start-up flows reach steady state and fully developed flow five times more quickly than those driven by a step function pressure gradient, a 500 % change when compared with existing estimates. Based on these results, we present new, simple guidelines for achieving experimental flows that are fully developed in space and time in realistic (finite) tube geometries. To a first approximation, the time to achieve steady spatially developing flow is nearly equal to the time needed to achieve steady, fully developed flow. Conversely, the entrance length needed to achieve fully developed transient flow is approximately equal to the length needed to achieve fully developed steady flow. Beyond this

  14. An experimental study of subcooled choked flow through steam generator tube cracks

    NASA Astrophysics Data System (ADS)

    Vadlamani, Ram Anand

    The Work conducted in this Research involved the simulation of Pressurized Water Reactor Conditions of Steam Generators to study the complex phenomenon of Subcooled Choked Flow or two-phase critical flow that occurs when water leaks from the primary side of a steam generator into the secondary side, thus making it highly relevant to Reactor Safety and Probabilistic Risk assessment methods. Slits of small L/D ratio were manufactured and tested on the Facility for Leak Rate Testing at pressures (6.89 MPa) and high temperatures (280°C) relevant to Pressurized Water Reactors over a range of subcooling. Small flow channel length was used (1.3mm) equivalent to steam generator tube thickness with the study of a variety of geometries with differences in surface roughness. Unique to literature, the samples had very small L/Ds and the study was a controlled parametric study of choked flow. The effect of L/D was examined, compared to recent studies conducted at Purdue University by Wolf and Revankar while contrasting with others in literature. Analytical models were applied highlighting the importance of non-equilibrium effects and contrasted with other studies of different L/Ds. RELAP5, a well developed code widely utilized in industry was studied to analyze its predictive capabilities and conditions for best estimate. L/D effects on mass fluxes were studied and it was observed that mass fluxes were affected to a very small degree by subcooling.

  15. Prediction of friction factor of pure water flowing inside vertical smooth and microfin tubes by using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Çebi, A.; Akdoğan, E.; Celen, A.; Dalkilic, A. S.

    2016-06-01

    An artificial neural network (ANN) model of friction factor in smooth and microfin tubes under heating, cooling and isothermal conditions was developed in this study. Data used in ANN was taken from a vertically positioned heat exchanger experimental setup. Multi-layered feed-forward neural network with backpropagation algorithm, radial basis function networks and hybrid PSO-neural network algorithm were applied to the database. Inputs were the ratio of cross sectional flow area to hydraulic diameter, experimental condition number depending on isothermal, heating, or cooling conditions and mass flow rate while the friction factor was the output of the constructed system. It was observed that such neural network based system could effectively predict the friction factor values of the flows regardless of their tube types. A dependency analysis to determine the strongest parameter that affected the network and database was also performed and tube geometry was found to be the strongest parameter of all as a result of analysis.

  16. Prediction of friction factor of pure water flowing inside vertical smooth and microfin tubes by using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Çebi, A.; Akdoğan, E.; Celen, A.; Dalkilic, A. S.

    2017-02-01

    An artificial neural network (ANN) model of friction factor in smooth and microfin tubes under heating, cooling and isothermal conditions was developed in this study. Data used in ANN was taken from a vertically positioned heat exchanger experimental setup. Multi-layered feed-forward neural network with backpropagation algorithm, radial basis function networks and hybrid PSO-neural network algorithm were applied to the database. Inputs were the ratio of cross sectional flow area to hydraulic diameter, experimental condition number depending on isothermal, heating, or cooling conditions and mass flow rate while the friction factor was the output of the constructed system. It was observed that such neural network based system could effectively predict the friction factor values of the flows regardless of their tube types. A dependency analysis to determine the strongest parameter that affected the network and database was also performed and tube geometry was found to be the strongest parameter of all as a result of analysis.

  17. Vibration analysis of shell-and-tube heat exchangers: an overview-Part 1: flow, damping, fluidelastic instability

    NASA Astrophysics Data System (ADS)

    Pettigrew, M. J.; Taylor, C. E.

    2003-11-01

    Design guidelines were developed to prevent tube failures due to excessive flow-induced vibration in shell-and-tube heat exchangers. An overview of vibration analysis procedures and recommended design guidelines is presented in this paper. This paper pertains to liquid, gas and two-phase heat exchangers such as nuclear steam generators, reboilers, coolers, service water heat exchangers, condensers, and moisture-separator-reheaters. Generally, a heat exchanger vibration analysis consists of the following steps: (i) flow distribution calculations, (ii) dynamic parameter evaluation (i.e. damping, effective tube mass, and dynamic stiffness), (iii) formulation of vibration excitation mechanisms, (iv) vibration response prediction, and (v) resulting damage assessment (i.e., comparison against allowables). The requirements applicable to each step are outlined in this paper. Part 1 of this paper covers flow calculations, dynamic parameters and fluidelastic instability.

  18. Prototyping of poly(dimethylsiloxane) interfaces for flow gating, reagent mixing, and tubing connection in capillary electrophoresis.

    PubMed

    Zhang, Qiyang; Gong, Maojun

    2014-01-10

    Integrated microfluidic systems coupled with electrophoretic separations have broad application in biologic and chemical analysis. Interfaces for the connection of various functional parts play a major role in the performance of a system. Here, we developed a rapid prototyping method to fabricate monolithic poly(dimethylsiloxane) (PDMS) interfaces for flow-gated injection, online reagent mixing, and tube-to-tube connection in an integrated capillary electrophoresis (CE) system. The basic idea was based on the properties of PDMS: elasticity, transparency, and suitability for prototyping. The molds for these interfaces were prepared by using commercially available stainless steel wires and nylon lines or silica capillaries. A steel wire was inserted through the diameter of a nylon line and a cross format was obtained as the mold for PDMS casting of flow gates and 4-way mixers. These interfaces accommodated tubing connection through PDMS elasticity and provided easy visual trouble shooting. The flow gate used smaller channel diameters, thus reducing flow rate by 25-fold for effective gating compared with mechanically machined counterparts. Both PDMS mixers and the tube-to-tube connectors could minimize the sample dead volume by using an appropriate capillary configuration. As a whole, the prototyped PDMS interfaces are reusable, inexpensive, convenient for connection, and robust when integrated with the CE detection system. Therefore, these interfaces could see potential applications in CE and CE-coupled systems.

  19. Numerical heat and mass transfer analysis of a cross-flow indirect evaporative cooler with plates and flat tubes

    NASA Astrophysics Data System (ADS)

    Chua, K. J.; Xu, J.; Cui, X.; Ng, K. C.; Islam, M. R.

    2016-09-01

    In this study the performance of an indirect evaporative cooling system (IECS) of cross-flow configuration is numerically investigated. Considering the variation of water film temperature along the flowing path and the wettability of the wet channel, a two-dimensional theoretical model is developed to comprehensively describe the heat and mass transfer process involved in the system. After comparing the simulation results with available experimental data from literature, the deviation within ±5 % proves the accuracy and reliability of the proposed mathematical model. The simulation results of the plate type IECS indicate that the important parameters, such as dimension of plates, air properties, and surface wettability play a great effect on the cooling performance. The investigation of flow pattern shows that cross-flow configuration of primary air with counter-flow of secondary air and water film has a better cooling performance than that of the parallel-flow pattern. Furthermore, the performance of a novel flat tube working as the separating medium is numerically investigated. Simulation results for this novel geometry indicate that the tube number, tube long axis and short axis length as well as tube length remarkably affect its cooling performance.

  20. Influence of the Runner Gap on the Flow Field in the Draft Tube of a Low Head Turbine

    NASA Astrophysics Data System (ADS)

    Junginger, Bernd; Riedelbauch, Stefan

    2016-11-01

    The gap flow of axial turbines is usually neglected in the design process of hydraulic machines, although it can lead to a stabilization of the draft tube flow. Though, this negligence of the gap can falsify the flow field in the draft tube. Presented in this paper are simulations of an axial propeller turbine operated at Δγ = Δγ BEP with Q > Qbep . Simulations of four gap sizes, using a mesh with about 15 million elements for the entire machine, are performed. Additionally, two turbulence models are applied, the k-ω-SST and the SAS-SST model. At the evaluated operating point a full load vortex develops. Depending on the turbulence model the developing vortex rope can either arise from the hub in a straight shape or in a shape resembling a corkscrew. Integral quantities such as head and torque are compared with experimental model test results performed in the laboratory of the Institute. Flow field simulation results are evaluated for different gap widths. Furthermore, the impact of the gap flow respectively the gap size can be observed in velocity profiles evaluated at different positions downstream the runner until to the end of the draft tube cone. Moreover, the pressure signals recorded at the beginning of the draft tube cone are also affected by the gap flow.

  1. Dissipative particle dynamics simulations of deformation and aggregation of healthy and diseased red blood cells in a tube flow

    SciTech Connect

    Ye, Ting; Phan-Thien, Nhan Khoo, Boo Cheong; Lim, Chwee Teck

    2014-11-15

    In this paper, we report simulation results assessing the deformation and aggregation of mixed healthy and malaria-infected red blood cells (RBCs) in a tube flow. A three dimensional particle model based on Dissipative Particle Dynamics (DPD) is developed to predict the tube flow containing interacting cells. The cells are also modelled by DPD, with a Morse potential to characterize the cell-cell interaction. As validation tests, a single RBC in a tube flow and two RBCs in a static flow are simulated to examine the cell deformation and intercellular interaction, respectively. The study of two cells, one healthy and the other malaria-infected RBCs in a tube flow demonstrates that the malaria-infected RBC (in the leading position along flow direction) has different effects on the healthy RBC (in the trailing position) at the different stage of parasite development or at the different capillary number. With parasitic development, the malaria-infected RBC gradually loses its deformability, and in turn the corresponding trailing healthy RBC also deforms less due to the intercellular interaction. With increasing capillary number, both the healthy and malaria-infected RBCs are likely to undergo an axisymmetric motion. The minimum intercellular distance becomes small enough so that rouleaux is easily formed, i.e., the healthy and malaria-infected RBCs are difficultly disaggregated.

  2. System and method having multi-tube fuel nozzle with differential flow

    DOEpatents

    Hughes, Michael John; Johnson, Thomas Edward; Berry, Jonathan Dwight; York, William David

    2017-01-03

    A system includes a multi-tube fuel nozzle with a fuel nozzle body and a plurality of tubes. The fuel nozzle body includes a nozzle wall surrounding a chamber. The plurality of tubes extend through the chamber, wherein each tube of the plurality of tubes includes an air intake portion, a fuel intake portion, and an air-fuel mixture outlet portion. The multi-tube fuel nozzle also includes a differential configuration of the air intake portions among the plurality of tubes.

  3. Columbia University flow instability experimental program: Volume 7. Single tube tests, critical heat flux test program

    SciTech Connect

    Dougherty, T.; Maciuca, C.; McAssey, E.V. Jr.; Reddy, D.G.; Yang, B.W.

    1992-09-01

    This report deals with critical heat flux (CHF) measurements in vertical down flow of water at low pressures in a round Inconel tube, 96 inches long and 0.62 inch inside diameter. A total of 28 CHF points were obtained. These data were found to correlate linearly with the single variable q, defined as the heat flux required to raise the enthalpy from the inlet value to the saturation value. These results were compared to the published results of Swedish investigators for vertical upflow of water at low pressures in round tubes of similar diameters and various lengths. The parameter q depends on the inlet enthalpy and is a nonlocal variable, thus this correlation is nonlocal unless the coefficients depend upon tube length in a particular prescribed manner. For the low pressure Swedish data, the coefficients are practically independent of length and hence the correlation is nonlocal. In the present investigation only one length was employed, so it is not possible to determine whether the correlation for these data is local or nonlocal, although there is reason to believe that it is local. The same correlation was applied to a large data base (thousands of CHF points) compiled from the published data of a number of groups and found to apply, with reasonable accuracy over a wide range of conditions, yielding sometimes local and sometimes nonlocal correlations. The basic philosophy of data analysis here was not to generate a single correlation which would reproduce all data, but to search for correlations which apply adequately over some range and which might have some mechanistic significance. The tentative conclusion is that at least two mechanisms appear operative, leading to two types of correlations, one local, the other nonlocal.

  4. Halogen-induced organic aerosol (XOA) formation and decarboxylation of carboxylic acids by reactive halogen species - a time-resolved aerosol flow-reactor study

    NASA Astrophysics Data System (ADS)

    Ofner, Johannes; Zetzsch, Cornelius

    2013-04-01

    Reactive halogen species (RHS) are released to the atmosphere from various sources like photo-activated sea-salt aerosol and salt lakes. Recent studies (Cai et al., 2006 and 2008, Ofner et al., 2012) indicate that RHS are able to interact with SOA precursors similarly to common atmospheric oxidizing gases like OH radicals and ozone. The reaction of RHS with SOA precursors like terpenes forms so-called halogen-induced organic aerosol (XOA). On the other hand, RHS are also able to change the composition of functional groups, e.g. to initiate the decarboxylation of carboxylic acids (Ofner et al., 2012). The present study uses a 50 cm aerosol flow-reactor, equipped with a solar simulator to investigate the time-resolved evolution and transformation of vibrational features in the mid-infrared region. The aerosol flow-reactor is coupled to a home-made multi-reflection cell (Ofner et al., 2010), integrated into a Bruker IFS 113v FTIR spectrometer. The reactor is operated with an inlet feed (organic compound) and a surrounding feed (reactive halogen species). The moveable inlet of the flow reactor allows us to vary reaction times between a few seconds and up to about 3 minutes. Saturated vapours of different SOA precursors and carboxylic acids were fed into the flow reactor using the moveable inlet. The surrounding feed inside the flow reactor was a mixture of zero air with molecular chlorine as the precursor for the formation of reactive halogen species. Using this setup, the formation of halogen-induced organic aerosol could be monitored with a high time resolution using FTIR spectroscopy. XOA formation is characterized by hydrogen-atom abstraction, carbon-chlorine bond formation and later, even formation of carboxylic acids. Several changes of the entire structure of the organic precursor, caused by the reaction of RHS, are visible. While XOA formation is a very fast process, the decarboxylation of carboxylic acids, induced by RHS is rather slow. However, XOA formation

  5. Numerical study of the transient flow in the driven tube and the nozzle section of a shock tunnel

    NASA Technical Reports Server (NTRS)

    Tokarcik-Polsky, Susan; Cambier, Jean-Luc

    1993-01-01

    The initial flow in a shock tunnel was examined numerically using computational fluid dynamics (CFD). A finite-volume total variation diminishing (TVD) scheme was used to calculate the transient flow in a shock tunnel. Both viscous and inviscid, chemically nonreacting flows were studied. The study consisted of two parts, the first dealt with the transient flow in the driven-tube/nozzle interface region (inviscid calculations). The effects of varying the geometry in this region was examined. The second part of the study examined the transient flow in the nozzle (viscous calculations). The results were compared to experimental data.

  6. Measurement of the flow properties within a copper tube containing a deflagrating explosive

    SciTech Connect

    Hill, Larry G; Morris, John S; Jackson, Scott I

    2009-01-01

    We report on the propagation of deflagration waves in the high explosive (HE) PBX 9501 (95 wt % HMX, 5 wt% binder). Our test configuration, which we call the def1agration cylinder test (DFCT), is fashioned after the detonation cylinder test (DTCT) that is used to calibrate the JWL detonation product equation of state (EOS). In the DFCT, the HE is heated to a uniform slightly subcritical temperature, and is ignited at one end by a hot wire. For some configurations and initial conditions, we observe a quasi-steady wave that flares the tube into a funnel shape, stretching it to the point of rupture. This behavior is qualitatively like the DTCT, such that, by invoking certain additional approximations that we discuss, its behavior can be analyzed by the same methods. We employ an analysis proposed by G.I. Taylor to infer the pressure-volume curve for the burning, expanding flow. By comparing this result to the EOS of HMX product gas alone. we infer that only {approx}20 wt% of the HMX has burned at tube rupture. This result confirms pre-existing observations about the role of convective burning in HMX cookoff explosions.

  7. Microfilament Orientation Constrains Vesicle Flow and Spatial Distribution in Growing Pollen Tubes

    PubMed Central

    Kroeger, Jens H.; Daher, Firas Bou; Grant, Martin; Geitmann, Anja

    2009-01-01

    Abstract The dynamics of cellular organelles reveals important information about their functioning. The spatio-temporal movement patterns of vesicles in growing pollen tubes are controlled by the actin cytoskeleton. Vesicle flow is crucial for morphogenesis in these cells as it ensures targeted delivery of cell wall polysaccharides. Remarkably, the target region does not contain much filamentous actin. We model the vesicular trafficking in this area using as boundary conditions the expanding cell wall and the actin array forming the apical actin fringe. The shape of the fringe was obtained by imposing a steady state and constant polymerization rate of the actin filaments. Letting vesicle flux into and out of the apical region be determined by the orientation of the actin microfilaments and by exocytosis was sufficient to generate a flux that corresponds in magnitude and orientation to that observed experimentally. This model explains how the cytoplasmic streaming pattern in the apical region of the pollen tube can be generated without the presence of actin microfilaments. PMID:19804712

  8. Non-spherical aerosol transport under oscillatory shear flows at low-Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Shachar Berman, Lihi; Delorme, Yann; Hofemeier, Philipp; Frankel, Steven; Sznitman, Josue

    2014-11-01

    Most airborne particles are intrinsically non-spherical. In particular, non-spherical particles with high aspect ratios, such as fibers, are acknowledged to be more hazardous than their spherical counterparts due to their ability to penetrate into deeper lung regions, causing serious pulmonary diseases. Not only do particle properties such as size, shape, and density have a major impact on particle transport, for non-spherical aerosols, their orientations also greatly influence particle trajectories due to modified lift and drag characteristics. Until present, however, most of our understanding of the dynamics of inhaled particles in the deep airways of the lungs has been limited to spherical particles only. In the present work, we seek to quantify through numerical simulations the transport of non-spherical airborne particles and their deposition under oscillatory shear flows at low Reynolds numbers, characteristic of acinar airways. Here, the Euler-Lagrangian model is used to solve the translational movement of a fiber, whereas the Eulerian rotational equations are introduced and solved to predict detailed unsteady fiber orientations. Overall, our efforts provide new insight into realistic dynamics of inhaled non-spherical aerosols under characteristic breathing motions.

  9. The Effect of Compressibility on the Pressure Reading of a Prandtl Pitot Tube at Subsonic Flow Velocity

    NASA Technical Reports Server (NTRS)

    Walchner, O

    1939-01-01

    Errors arising from yawed flow were also determined up to 20 degrees angle of attack. In axial flow, the Prandtl pitot tube begins at w/a approx. = 0.8 to give an incorrect static pressure reading, while it records the tank pressure correctly, as anticipated, up to sonic velocity. Owing to the compressibility of the air, the Prandtl pitot tube manifests compression shocks when the air speed approaches velocity of sound. This affects the pressure reading of the instrument. Because of the increasing importance of high speed in aviation, this compressibility effect is investigated in detail.

  10. Investigations of Internal Flow Fields of Constant-Area Mixing-Tubes under Starting-Limit Conditions

    NASA Astrophysics Data System (ADS)

    Kitamura, Eijiro; Tomioka, Sadatake; Sakuranaka, Noboru; Watanabe, Syuichi; Masuya, Goro

    Flow fields in the constant-area mixing tubes of ejector jets were investigated under the starting-limit conditions of an aerodynamic choking mode by performing numerical simulations and cold flow experiments. Pressure recovery was almost completed in the shock-train region. The length of the shock-train region (Lst) was measured under various conditions. Lst was proportional to the mass flow rate ratio of the secondary flow to the primary flow when this ratio was less than 0.15. On the other hand, Lst became almost constant when the mass flow rate ratio exceeded 0.15. Numerical studies showed that this change was caused by the difference in the mechanism of the flow fields. In the cases with low air mass flow rates, the primary and secondary flows almost mixed in a region between the inlets of the mixing tubes and the choking points. The pressure was recovered by a pseudo-shock-wave generated downstream of the choking point. On the other hand, when the mass flow rate ratio was higher than 0.15, the primary and secondary flows were clearly separated at the choking point. The pressure recovery was achieved by the mixing between the primary and secondary flows downstream of the choking point.

  11. Transition to disorder: the effects of elasticity on thin film flow inside a tube

    NASA Astrophysics Data System (ADS)

    Olander, Jeffrey; Camassa, Roberto; Forest, G. M.; Ogrosky, H. Reed

    2013-11-01

    Previous studies of non-Newtonian flows driven up a tube by a high volume flux flow of air have suggested that a transition to disordered core-annular wave dynamics occurs when the liquid becomes elastic. Understanding this transition may shed light on the behavior of mucus in the human trachea. We present results from experiments of thin-film liquid flows of a Newtonian fluid and a non-Newtonian, dilute mixture of oligomers. These so-called Boger fluids are elastic, non-thixotropic liquid solutions made by dissolving a non-Newtonian solute in a Newtonian base. We compare, through video analysis, the wave dynamics of the Boger fluid to those of its Newtonian base under identical inflow conditions. We describe observed differences between the Newtonian and non-Newtonian cases. Finally, quantitative comparisons of wave properties and liquid mass transport are discussed. We would like to thank the National Science Foundation (DMS grants 0509423, 1009750, RTG -0943851) and the National Institutes of Health (NIEHS 534197-3411) for supporting this study.

  12. Film stability in a vertical rotating tube with a core-gas flow.

    NASA Technical Reports Server (NTRS)

    Sarma, G. S. R.; Lu, P. C.; Ostrach, S.

    1971-01-01

    The linear hydrodynamic stability of a thin-liquid layer flowing along the inside wall of a vertical tube rotating about its axis in the presence of a core-gas flow is examined. The stability problem is formulated under the conditions that the liquid film is thin, the density and viscosity ratios of gas to liquid are small and the relative (axial) pressure gradient in the gas is of the same order as gravity. The resulting eigenvalue problem is first solved by a perturbation method appropriate to axisymmetric long-wave disturbances. The damped nature (to within the thin-film and other approximations made) of the nonaxisymmetric and short-wave disturbances is noted. In view of the limitations on a truncated perturbation solution when the disturbance wavenumber is not small, an initial value method using digital computer is presented. Stability characteristics of neutral, growing, and damped modes are presented showing the influences of rotation, surface tension, and the core-gas flow. Energy balance in a neutral mode is also illustrated.

  13. Reactions of Ions with Ionic Liquid Vapors by Selected-Ion Flow Tube Mass Spectrometry.

    PubMed

    Chambreau, Steven D; Boatz, Jerry A; Vaghjiani, Ghanshyam L; Friedman, Jeffrey F; Eyet, Nicole; Viggiano, A A

    2011-04-21

    Room-temperature ionic liquids exert vanishingly small vapor pressures under ambient conditions. Under reduced pressure, certain ionic liquids have demonstrated volatility, and they are thought to vaporize as intact cation-anion ion pairs. However, ion pair vapors are difficult to detect because their concentration is extremely low under these conditions. In this Letter, we report the products of reacting ions such as NO(+), NH4(+), NO3(-), and O2(-) with vaporized aprotic ionic liquids in their intact ion pair form. Ion pair fragmentation to the cation or anion as well as ion exchange and ion addition processes are observed by selected-ion flow tube mass spectrometry. Free energies of the reactions involving 1-ethyl-3-methylimidazolium bis-trifluoromethylsulfonylimide determined by ab initio quantum mechanical calculations indicate that ion exchange or ion addition are energetically more favorable than charge-transfer processes, whereas charge-transfer processes can be important in reactions involving 1-butyl-3-methylimidazolium dicyanamide.

  14. Spectropolarimetric Evidence for a Siphon Flow along an Emerging Magnetic Flux Tube

    NASA Astrophysics Data System (ADS)

    Requerey, Iker S.; Ruiz Cobo, B.; Del Toro Iniesta, J. C.; Orozco Suárez, D.; Blanco Rodríguez, J.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; van Noort, M.; Schmidt, W.; Martínez Pillet, V.; Knölker, M.

    2017-03-01

    We study the dynamics and topology of an emerging magnetic flux concentration using high spatial resolution spectropolarimetric data acquired with the Imaging Magnetograph eXperiment on board the sunrise balloon-borne solar observatory. We obtain the full vector magnetic field and the line of sight (LOS) velocity through inversions of the Fe i line at 525.02 nm with the SPINOR code. The derived vector magnetic field is used to trace magnetic field lines. Two magnetic flux concentrations with different polarities and LOS velocities are found to be connected by a group of arch-shaped magnetic field lines. The positive polarity footpoint is weaker (1100 G) and displays an upflow, while the negative polarity footpoint is stronger (2200 G) and shows a downflow. This configuration is naturally interpreted as a siphon flow along an arched magnetic flux tube.

  15. Structural isomers of C2N(+) - A selected-ion flow tube study

    NASA Technical Reports Server (NTRS)

    Knight, J. S.; Petrie, S. A. H.; Freeman, C. G.; Mcewan, M. J.; Mclean, A. D.

    1988-01-01

    Reactivities of the structural isomers CCN(+) and CNC(+) were examined in a selected-ion flow tube at 300 + or - 5 K. The less reactive CNC(+) isomer was identified as the product of the reactions of C(+) + HCN and C(+) + C2N2; in these reactions only CNC(+) can be produced because of energy constraints. Rate coefficients and branching ratios are reported for the reactions of each isomer with H2, CH4, NH3, H2O, C2H2, HCN, N2, O2, N2O, and CO2. Ab initio calculations are presented for CCN(+) and CNC(+); a saddle point for the reaction CCN(+) yielding CNC(+) is calculated to be 195 kJ/mol above CNC(+). The results provide evidence that the more reactive CCN(+) isomer is unlikely to be present in measurable densities in interstellar clouds.

  16. Status of selected ion flow tube MS: accomplishments and challenges in breath analysis and other areas.

    PubMed

    Smith, David; Španěl, Patrik

    2016-06-01

    This article reflects our observations of recent accomplishments made using selected ion flow tube MS (SIFT-MS). Only brief descriptions are given of SIFT-MS as an analytical method and of the recent extensions to the underpinning analytical ion chemistry required to realize more robust analyses. The challenge of breath analysis is given special attention because, when achieved, it renders analysis of other air media relatively straightforward. Brief overviews are given of recent SIFT-MS breath analyses by leading research groups, noting the desirability of detection and quantification of single volatile biomarkers rather than reliance on statistical analyses, if breath analysis is to be accepted into clinical practice. A 'strengths, weaknesses, opportunities and threats' analysis of SIFT-MS is made, which should help to increase its utility for trace gas analysis.

  17. Analysis of heat transfer and fluid flow through a spirally fluted tube using a porous substrate approach

    SciTech Connect

    Srinivasan, V.; Vafai, K.; Christensen, R.N. )

    1994-08-01

    An innovative approach was opted for modeling the flow and heat transfer through spirally fluted tubes. The model divided the flow domain into two regions. The flutes were modeled as a porous substrate with direction-dependent permeabilities. This enabled modeling the swirl component in the fluted tube. The properties of the porous substrate such as its thickness, porosity, and ratio of the direction-dependent permeabilities were obtained from the geometry of the fluted tube. Experimental data on laminar Nusselt numbers and friction factors for different types of fluted tubes representing a broad range of flute geometry were available. Experimental data from a few of the tubes tested were used to propose a relationship between the permeability of the porous substrate and the flute parameters, particularly the flute spacing. The governing equations were discretized using the Finite Element Method. The model was verified and applied to the other tubes in the test matrix. Very good agreement was found between the numerical predictions and the experimental data. 20 refs., 13 figs., 4 tabs.

  18. Influence of Reynolds number on coalescence of droplets with particle in flow through a tube at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Muraoka, Masahiro; Yatagawa, Yuta; Kumagai, Yuki

    2016-07-01

    The coalescence of droplets in flow through a tube at low Reynolds number is potentially useful for different purposes including the handling of fluids, control of chemical reaction, and in drug delivery systems. The phenomenon is also the basis for analyzing the flow of multiphase fluids through porous media such as in enhanced oil recovery and the breaking of emulsions in porous coalescers. With regard to examples of studies on the creeping motion of droplets in a flow through a tube, Hetsroni G. et al.[1] theoretically examined the motion of a spherical droplet or bubble with small d/D, where d is the undeformed diameter of the droplet or bubble, and D is the tube diameter. Higdon J.J.L. and Muldowney G.P. [2] numerically obtained the resistance functions for a spherical particle, droplet, and bubble. Olbricht, W.L. and Kung D.M.[3] and Aul R.W. and Olbricht, W.L.[4] mainly investigated the coalescence time of droplets. Aul R.W. and Olbricht W.L. proposed a semi-theoretical formula of the coalescence time. Based on the formula by them, Muraoka, M. et al.[5] proposed other semi-theoretical formulas of the coalescence time in terms of the resistance experienced by the liquid droplet in creeping flow through a tube. The latter formulas take the eccentricity of the following droplets into consideration. In the present study, a glass tube of inner diameter 2.0mm, outer diameter 7.0mm, and length 1500 mm was used as the test tube. Silicon oil with a kinematic viscosity of 3000cSt was employed as the test fluid of the droplet. A mixture of glycerol and pure water was used as the surrounding fluid of the creeping flow through a tube. A large volumetric syringe pump was used to maintain steady flow through the tube at a designated average velocity. The test tube was immersed in temperature-controlled water contained in a tank to maintain constant temperature of the system. The droplets were injected into the test tube. The behaviors of the droplets were monitored by a

  19. Effects of oil on boiling R-123 and R-134a flowing normal to an integral-finned tube bundle

    SciTech Connect

    Tatara, R.A.; Payvar, P.

    1999-07-01

    Local, experimental heat transfer coefficients have been measured for boiling refrigerant flowing up and across a tube bundle segment representing a full flooded evaporator tube bundle. R-123 and R-134a data with 26 fins per inch (1,024 fins per meter) tubes have been obtained. The refrigerant enters at 15% vapor quality and exits at nearly 100% vapor in order to simulate an actual flooded evaporator bundle. The nominal area heat flux was varied from 2,607 to 10,427 Btu/h{center{underscore}dot}ft{sup 2} (8,224 to 32,893 W/m{sup 2}) as the tube bundle oil content ranged from 0 to 15% (by weight) for each refrigerant/tube combination. The performance of R-22 without oil has also been determined. Local tube and bulk fluid temperatures were measured directly by thermocouples to calculate the refrigerant-side heat transfer coefficients. The bundle segment saturation temperature set point (taken at the top of the tube bundle) is 40 F (4.4 C).

  20. Direct simulation Monte Carlo-based expressions for the gas mass flow rate and pressure profile in a microscale tube

    NASA Astrophysics Data System (ADS)

    Gallis, M. A.; Torczynski, J. R.

    2012-01-01

    The direct simulation Monte Carlo (DSMC) method of Bird is used to develop simple closed-form expressions for the mass flow rate and the pressure profile for the steady isothermal flow of an ideal gas through a microscale tube connecting two infinite reservoirs at different pressures but at the temperature of the tube wall. Gas molecules reflect from the tube wall according to the Maxwell model (a linear combination of specular and diffuse reflections at the wall temperature) with a unity or sub-unity value of the accommodation coefficient (the probability that molecules reflect diffusely from the wall). The DSMC-based expressions have four parameters. Two parameters are specified so that the mass flow rate reduces to the known expression in the free-molecular regime. One parameter was previously determined by comparison to DSMC simulations in the slip regime. The remaining parameter is determined by comparison to DSMC simulations for pressures spanning the transition regime with several values of the accommodation coefficient. The expressions for the mass flow rate and the pressure profile agree well with the DSMC simulations (rms and maximum differences of 2% and 5% for all cases examined), with other more complicated expressions and with recent experiments involving microscale tubes and channels for all flow regimes.

  1. Fast laser-induced aerosol formation for visualization of gas flows

    NASA Technical Reports Server (NTRS)

    Hassa, C.; Hanson, R. K.

    1985-01-01

    A technique for aerosol seeding of gas flows by laser-induced particle formation is demonstrated using a pulsed Nd:YAG laser (1.06 microns) for optical breakdown of a mixture of SF6 and H2 in an inert carrier gas. It is noted that, contrary to the smoke-wire approach, the laser-induced particles form first in zones of high turbulence, since mixing enhances coagulation. The method also allows seeding to be performed in locations hardly accessible otherwise and is mechanically nonintrusive. Finally, a study of the mixture and the breakdown effects indicates that for H2:SF6 ratios between 3:1 and 15:1 the particle formation is only limited by the physics of the gas/particle conversion.

  2. Preparation of polymeric nanoparticles containing corticosteroid by a novel aerosol flow reactor method.

    PubMed

    Eerikäinen, Hannele; Kauppinen, Esko I

    2003-09-16

    Polymeric drug-containing nanoparticles were prepared using a novel aerosol flow reactor method. The polymeric drug-containing nanoparticles prepared consist of a poorly water soluble corticosteroid, beclomethasone dipropionate, and polymeric materials Eudragit E 100 or Eudragit L 100. The novel method used in this study allows synthesis of nanoparticles directly as dry powders. The nanoparticles can contain various ratios of drug and polymer, and the use of any additional stabilisation materials is avoided. In this study, nanoparticles with different drug-to-polymer ratios were prepared. Particle size and morphology, crystallinity, and thermal behaviour were determined as a function of particle composition. It was found that all the nanoparticles produced, regardless of particle composition, had geometric number mean diameters of approximately 90 nm, and were spherical showing smooth surfaces. The drug was molecularly dispersed in the amorphous polymeric matrix of the nanoparticles, and drug crystallisation was not observed when the ambient temperature was below the glass transition temperature of the polymer.

  3. Influence of lubricant oil on heat transfer performance of refrigerant flow boiling inside small diameter tubes. Part II: Correlations

    SciTech Connect

    Wei, Wenjian; Ding, Guoliang; Hu, Haitao; Wang, Kaijian

    2007-10-15

    The predictive ability of the available state-of-the-art heat transfer correlations of refrigerant-oil mixture is evaluated with the present experiment data of small tubes with inside diameter of 6.34 mm and 2.50 mm. Most of these correlations can be used to predict the heat transfer coefficient of 6.34 mm tube, but none of them can predict heat transfer coefficient of 2.50 mm tube satisfactorily. A new correlation of two-phase heat transfer multiplier with local properties of refrigerant-oil mixture is developed. This correlation approaches the actual physical mechanism of flow boiling heat transfer of refrigerant-oil mixture and can reflect the actual co-existing conditions of refrigerant and lubricant oil. More than 90% of the experiment data of both test tubes have less than {+-}20% deviation from the prediction values of the new correlations. (author)

  4. Technical design and assessment of tube equipment using two-phase flow for cleaning and disinfection.

    PubMed

    Reinemann, D J

    1996-12-01

    Most pipeline systems in dairy and food processing plants are cleaned by circulating cleaning solutions under pressure with a liquid pump. The flow of the circulated solutions is single-phase or flooded flow. Milking system pipelines are subject to special requirements which distinguish them from those in dairy and other food processing plants. Milking system pipelines are considerably larger in diameter than product lines in dairy plants because they must carry both milk and air in a stratified flow condition during the milking process. Milking machine Clean-In-Place (CIP) systems have historically used flooded flow to circulate cleaning solutions. The force to move liquid, however, is typically the vacuum provided by the same vacuum pump used during milking, rather than a positive pressure liquid pump. As the size and complexity of milking machines has increased in recent years, flooded flow CIP systems have become inadequate. The amount of water required to fully flood a milking system becomes impractical with very long and/or large diameter pipelines. The power available to achieve adequate flow velocity is also limited. Air admission has been used to produce two-phase (air/water) slug flow and overcome some of the limitations of fully flooded CIP. Cycled air admission can reduce the amount of water required for circulation and increase flow velocities and thus enhance mechanical cleaning action. Cycled air admission has been implemented in the field largely through trial and error methods. There has been a lack of fundamental design information and testing protocols for air-injected milking machine CIP systems. This has resulted in mixed success in the application of air injected systems. This paper summarizes both laboratory and field research conducted at the University of Wisconsin Milking Research and Instruction lab to provide basic information for the design of air injected CIP systems and methods for field assessment of these systems. Just as properly

  5. Critical heat-flux characteristics of R-113 boiling two-phase flow in twisted-tape-inserted tubes

    SciTech Connect

    Lee, Sangryoul; Inoue, Akira; Takahashi, Minoru

    1996-07-01

    This paper presents experimental data on the critical heat flux (CHF) in twisted-tape-inserted tubes over a wide quality range of {minus}0.25 to 0.8. The influences of quality, twist ratio, mass velocity, and clearance between the twisted tape and tube inner wall on CHF were investigated. In the subcooled region, it was observed, using an infrared thermoviewer, that CHF was initiated locally at the wall near the twisted tape. Consequently, twisted tape insertion with small tape-well clearance decreased CHF to below the value of the empty tubes at a low flow rate. This decrease was found to be avoidable by adjusting the clearance. In the net quality region, CHF of the twisted-tape-inserted tubes increased with increasing flow rate contrary to the case of the empty tubes. However, CHF in the net quality region was also decreased by insertion of twisted tapes with high twist ratio (loosely twisted tapes) at a very low flow rate.

  6. Acoustic radiation from a fluid-filled, subsurface vascular tube with internal turbulent flow due to a constriction.

    PubMed

    Yazicioglu, Yigit; Royston, Thomas J; Spohnholtz, Todd; Martin, Bryn; Loth, Francis; Bassiouny, Hisham S

    2005-08-01

    The vibration of a thin-walled cylindrical, compliant viscoelastic tube with internal turbulent flow due to an axisymmetric constriction is studied theoretically and experimentally. Vibration of the tube is considered with internal fluid coupling only, and with coupling to internal-flowing fluid and external stagnant fluid or external tissue-like viscoelastic material. The theoretical analysis includes the adaptation of a model for turbulence in the internal fluid and its vibratory excitation of and interaction with the tube wall and surrounding viscoelastic medium. Analytical predictions are compared with experimental measurements conducted on a flow model system using laser Doppler vibrometry to measure tube vibration and the vibration of the surrounding viscoelastic medium. Fluid pressure within the tube was measured with miniature hydrophones. Discrepancies between theory and experiment, as well as the coupled nature of the fluid-structure interaction, are described. This study is relevant to and may lead to further insight into the patency and mechanisms of vascular failure, as well as diagnostic techniques utilizing noninvasive acoustic measurements.

  7. Steady and transient forced convection heat transfer for water flowing in small tubes with exponentially increasing heat inputs

    NASA Astrophysics Data System (ADS)

    Shibahara, M.; Fukuda, K.; Liu, Q. S.; Hata, K.

    2017-03-01

    Steady and transient heat transfer coefficients for water flowing in small tubes with exponentially increasing heat inputs were measured. Platinum tubes with inner diameters of 1.0 and 2.0 mm were used as test tubes, which were mounted vertically in the experimental water loop. In the experiment, the upward flow velocity ranged from 2 to 16 m/s, and the corresponding Reynolds numbers ranged from 4.77 × 103 to 9.16 × 104 at the inlet liquid temperatures ranged from 298 to 343 K. The heat generation rate exponentially increased with the function. The period of the heat generation rate ranged from 24 ms to 17.5 s. Experimental results indicate that steady heat transfer coefficients decreased with the increase in the inner diameter of the small tube. Moreover, the ratio of bulk viscosity to near-wall viscosity of water increased with the rise in surface temperature of the vertical tube. From the experimental data, correlations of steady-state heat transfer for inner diameters of 1.0 and 2.0 mm were obtained. The heat transfer coefficient increased with decreasing the period of the heat generation rate as the flow velocity decreased. Moreover, the Nusselt number under the transient condition was affected by the Fourier number and the Reynolds number.

  8. [Use of laser flow-type fluorescence aerosol particle counter to evaluate the concentration of microbes in the surface air under high dust content].

    PubMed

    Kalinin, Iu T; Vorob'ev, S A; Khramov, E N; Vorob'eva, E A; Kuznetsov, A P; Kiselev, O S

    2000-01-01

    The paper deals with the use of a laser flow-type fluorescence aerosol particle counter to evaluate the concentrations of microbes in the surface air under high dust content. Various circuits of flow-type optic aerosol recorders are analyzed. Flow spectral luminescence analysis of some particles flow while exciting the fourth harmonics of a pulse laser on yttrium-aluminium garnet with neodymium by ultraviolet radiation is shown to be the most optimum method for indication of individual aerosol particles. Experiments were conducted on the authors' model of a pilot plant based on this method. The model of a laser flow-type optic analyzer was developed for experimental studies that give a clear display of biological aerosols in complex aerosols. The laser flow-type analyzer-based unit developed may provide a fluorescence signal of aerosol particles in the flow of a sample and that light diffusion signal from them at an exciting light wavelength of 266 nm. Experiments with BVC aerosols and soil dust particles were conducted in different regions of Russia. They showed it possible to detect and to rapidly calculate soil microorganisms by laser flow-type fluorescence assay of individual particles when excited by ultraviolet radiation.

  9. Real-time analysis of ambient organic aerosols using aerosol flowing atmospheric-pressure afterglow mass spectrometry (AeroFAPA-MS)

    NASA Astrophysics Data System (ADS)

    Brüggemann, Martin; Karu, Einar; Stelzer, Torsten; Hoffmann, Thorsten

    2015-04-01

    Organic aerosol accounts for a major fraction of atmospheric aerosols and has implications on the earth's climate and human health. However, due to the chemical complexity its measurement remains a major challenge for analytical instrumentation.1 Here, we present the development, characterization and application of a new soft ionization technique that allows mass spectrometric real-time detection of organic compounds in ambient aerosols. The aerosol flowing atmospheric-pressure afterglow (AeroFAPA) ion source utilizes a helium glow discharge plasma to produce excited helium species and primary reagent ions. Ionization of the analytes occurs in the afterglow region after thermal desorption and results mainly in intact molecular ions, facilitating the interpretation of the acquired mass spectra. In the past, similar approaches were used to detect pesticides, explosives or illicit drugs on a variety of surfaces.2,3 In contrast, the AeroFAPA source operates 'online' and allows the detection of organic compounds in aerosols without a prior precipitation or sampling step. To our knowledge, this is the first application of an atmospheric-pressure glow discharge ionization technique to ambient aerosol samples. We illustrate that changes in aerosol composition and concentration are detected on the time scale of seconds and in the ng-m-3 range. Additionally, the successful application of AeroFAPA-MS during a field study in a mixed forest region in Central Europe is presented. Several oxidation products of monoterpenes were clearly identified using the possibility to perform tandem MS experiments. The acquired data are in agreement with previous studies and demonstrate that AeroFAPA-MS is a suitable tool for organic aerosol analysis. Furthermore, these results reveal the potential of this technique to enable new insights into aerosol formation, growth and transformation in the atmosphere. References: 1) IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The

  10. A study of the influence of mean flow on the acoustic performance of Herschel-Quincke tubes

    PubMed

    Torregrosa; Broatch; Payri

    2000-04-01

    In this paper, a simple flow model is used in order to assess the influence of mean flow and dissipation on the acoustic performance of the classical two-duct Herschel-Quincke tube. First, a transfer matrix is obtained for the system, which depends on the values of the Mach number in the two branches. These Mach numbers are then estimated separately by means of an incompressible flow calculation. Finally, both calculations are used to study the way in which mean flow affects the position and value of the characteristic attenuation and resonances of the system. The results indicate the nontrivial character of the influence observed.

  11. A program for calculating expansion-tube flow quantities for real-gas mixtures and comparison with experimental results

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III

    1972-01-01

    A computer program written in FORTRAN 4 language is presented which determines expansion-tube flow quantities for real test gases CO2 N2, O2, Ar, He, and H2, or mixtures of these gases, in thermochemical equilibrium. The effects of dissociation and first and second ionization are included. Flow quantities behind the incident shock into the quiescent test gas are determined from the pressure and temperature of the quiescent test gas in conjunction with: (1) incident-shock velocity, (2) static pressure immediately behind the incident shock, or (3) pressure and temperature of the driver gas (imperfect hydrogen or helium). The effect of the possible existence of a shock reflection at the secondary diaphragm of the expansion tube is included. Expansion-tube test-section flow conditions are obtained by performing an isentropic unsteady expansion from the conditions behind the incident shock or reflected shock to either the test-region velocity or the static pressure. Both a thermochemical-equilibrium expansion and a frozen expansion are included. Flow conditions immediately behind the bow shock of a model positioned at the test section are also determined. Results from the program are compared with preliminary experimental data obtained in the Langley 6-inch expansion tube.

  12. Dependency of the Reynolds number on the water flow through the perforated tube

    NASA Astrophysics Data System (ADS)

    Závodný, Zdenko; Bereznai, Jozef; Urban, František

    2016-06-01

    Safe and effective loading of nuclear reactor fuel assemblies demands qualitative and quantitative analysis of the relationship between the coolant temperature in the fuel assembly outlet, measured by the thermocouple, and the mean coolant temperature profile in the thermocouple plane position. It is not possible to perform the analysis directly in the reactor, so it is carried out using measurements on the physical model, and the CFD fuel assembly coolant flow models. The CFD models have to be verified and validated in line with the temperature and velocity profile obtained from the measurements of the cooling water flowing in the physical model of the fuel assembly. Simplified physical model with perforated central tube and its validated CFD model serve to design of the second physical model of the fuel assembly of the nuclear reactor VVER 440. Physical model will be manufactured and installed in the laboratory of the Institute of Energy Machines, Faculty of Mechanical Engineering of the Slovak University of Technology in Bratislava.

  13. Towards depth profiling of organic aerosols in real time using aerosol flowing atmospheric-pressure afterglow mass spectrometry (AeroFAPA-MS)

    NASA Astrophysics Data System (ADS)

    Brüggemann, Martin; Hoffmann, Thorsten

    2014-05-01

    Organic aerosol accounts for a substantial fraction of tropospheric aerosol and has implications on the earth's climate and human health. However, the characterization of its chemical composition and transformations remain a major challenge and is still connected to large uncertainties (IPCC, 2013). Recent measurements revealed that organic aerosol particles may reside in an amorphous or semi-solid phase state which impedes the diffusion within the particles (Virtanen et al., 2010; Shiraiwa et al., 2011). This means that reaction products which are formed on the surface of a particle, e.g. by OH, NO3 or ozone chemistry, cannot diffuse into the particle's core and remain at the surface. Eventually, this leads to particles with a core/shell structure. In the particles' cores the initial compounds are preserved whereas the shells contain mainly the oxidation products. By analyzing the particles' cores and shells separately, thus, it is possible to obtain valuable information on the formation and evolution of the aerosols' particle and gas phase. Here we present the development of the aerosol flowing atmospheric-pressure afterglow (AeroFAPA) technique which allows the mass spectrometric analysis of organic aerosols in real time. The AeroFAPA is an ion source based on a helium glow discharge at atmospheric pressure. The plasma produces excited helium species and primary reagent ions which are transferred into the afterglow region where the ionization of the analytes takes place. Due to temperatures of only 80 ° C to 150 ° C and ambient pressure in the afterglow region, the ionization is very soft and almost no fragmentation of organic molecules is observed. Thus, the obtained mass spectra are easy to interpret and no extensive data analysis procedure is necessary. Additionally, first results of a combination of the AeroFAPA-MS with a scanning mobility particle sizer (SMPS) suggest that it is not only possible to analyze the entire particle phase but rather that a

  14. Oscillatory fluid flow in deformable tubes: Implications for pore-scale hydromechanics from comparing experimental observations with theoretical predictions.

    PubMed

    Kurzeja, Patrick; Steeb, Holger; Strutz, Marc A; Renner, Jörg

    2016-12-01

    Oscillatory flow of four fluids (air, water, two aqueous sodium-tungstate solutions) was excited at frequencies up to 250 Hz in tubes of two materials (steel, silicone) covering a wide range in length, diameter, and thickness. The hydrodynamical response was characterized by phase shift and amplitude ratio between pressures in an upstream (pressure excitation) and a downstream reservoir connected by the tubes. The resulting standing flow waves reflect viscosity-controlled diffusive behavior and inertia-controlled wave behavior for oscillation frequencies relatively low and high compared to Biot's critical frequency, respectively. Rigid-tube theories correspond well with the experimental results for steel tubes filled with air or water. The wave modes observed for silicone tubes filled with the rather incompressible liquids or air, however, require accounting for the solid's shear and bulk modulus to correctly predict speed of pressure propagation and deformation mode. The shear mode may be responsible for significant macroscopic attenuation in porous materials with effective frame-shear moduli lower than the bulk modulus of the pore fluid. Despite notable effects of the ratio of densities and of acoustic and shear velocity of fluid and solid, Biot's frequency remains an approximate indicator of the transition from the viscosity to the inertia controlled regime.

  15. Effects of oil on boiling of replacement refrigerants flowing normal to a tube bundle -- Part 2: R-134a

    SciTech Connect

    Tatara, R.A.; Payvar, P.

    2000-07-01

    Local, experimental heat transfer coefficients have been obtained for boiling refrigerant flowing up and across a tube bundle segment representing a full flooded evaporator tube bundle. R-134a data with a structured enhanced boiling tube are available. This tube has reentrant cavities designed for higher saturation pressure of refrigerants. The refrigerant enters at 15% vapor quality and exits at nearly 100% vapor in order to simulate an actual evaporator bundle. Both heat flux, 2,607 to 10,427 Btu/h{center_dot}f{sup 2} (8,224 to 32,893 W/m{sup 2}), and oil content, 0--12% (by weight), are varied; the mass flux is not an independent variable but determined by the heat flux. Local tube and bulk fluid temperatures are measured directly, by thermocouples, to calculate the refrigerant-side heat transfer coefficients. The bundle segment saturation temperature setpoint (taken at the top of the tube bundle) is 40 F (4.4 C).

  16. Molecular transformations accompanying the aging of laboratory secondary organic aerosol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aging of fresh secondary organic aerosol, generated by alpha-pinene ozonolysis in a flow tube reactor, was studied by passing it through a second reaction chamber where hydroxyl radicals were generated. Two types of experiments were performed: plug injection experiments where the particle mass a...

  17. a Numerical Study of Unsteady Fluid Flow in In-Line and Staggered Tube Banks

    NASA Astrophysics Data System (ADS)

    Beale, S. B.; Spalding, D. B.

    1999-08-01

    This paper is concerned with the results of numerical calculations for transient flow in in-line-square and rotated-square tube banks with a pitch-to-diameter ratio of 2:1, in the Reynolds number range of 30-3000. Transient-periodic behaviour is induced by the consideration of two or more modules, with a sinusoidal span-wise perturbation being applied in the upstream module. There is a triode-like effect, whereby the downstream response to the stimulus is amplified, and there is a net gain in the crosswise flow component. When an appropriate feedback mechanism is provided, a stable transient behaviour is obtained, with alternate vortices being shed from each cylinder. Flow visualization studies of the results of the calculations are presented together with quantitative details of pressure drop, lift, drag and heat transfer. For the staggered bank, a wake-switching or Coanda effect was observed as the serpentine-shaped wake attached to alternate sides of the downstream cylinder. The induced response is independent of the amplitude and frequency of the applied disturbance, including the case of spontaneous behaviour with no excitation mechanism. For the in-line case where each cylinder is in the shadow of the previous one, the motion is less pronounced; however, a shear-layer instability associated with the alternating spin of shed vortices was observed. In this case, the response was found to be somewhat dependent on the frequency of the applied disturbance, and a transient motion could not be induced spontaneously in the absence of an explicit feedback mechanism. Calculated Strouhal numbers were in fair agreement with experimental data: for the staggered geometry, they had values of between 0.26 and 0.35, or from -21 to +6% higher than measured values, while for the in-line geometry, the Strouhal numbers ranged between 0.09 and 0.12, or about 20-40% lower than experimental values.

  18. In situ infrared aerosol spectroscopy for a variety of nerve agent simulants using flow-through photoacoustics

    NASA Astrophysics Data System (ADS)

    Gurton, Kristan P.; Felton, Melvin; Dahmani, Rachid; Ligon, David

    2007-09-01

    We present newly measured results of an ongoing experimental program established to measure optical cross sections in the mid- and long-wave infrared for a variety of chemically and biologically based aerosols. For this study we consider only chemically derived aerosols, and in particular, a group of chemical compounds often used as simulants for the detection of extremely toxic organophosphorus nerve agents. These materials include: diethyl methylphosphonate (DEMP), dimethyl methylphosphonate (DMMP), diisopropyl methylphosphonate (DIMP), and diethyl phthalate (DEP). As reported in a prior study [Appl. Opt. 44, 4001 (2005)], we combine two optical techniques well suited for aerosol spectroscopy [i.e., flow-through photoacoustics and Fourier transform infrared (FTIR) emission spectroscopy], to measure in situ the absolute extinction and absorption cross sections over a variety of wavelengths spanning the IR spectral region from 3 to 13 μm. Aerosol size distribution(s), particle number density, and dosimetric measurements are recorded simultaneously in order to present optical cross sections that are aerosol mass normalized, i.e., m2/gram. Photoacoustic results, conducted at a series of CO2 laser lines, compare well with measured broadband FTIR spectral extinction. Both FTIR and photoacoustic data also compare well with Mie theory calculations based on measured size distributions and previously published complex indices of refraction.

  19. Removal of bio-aerosols by water flow on surfaces in health-care settings

    NASA Astrophysics Data System (ADS)

    Yu, Han; Li, Yuguo

    2016-11-01

    Hand hygiene is one of the most important and efficient measures to prevent infections, however the compliance with hand hygiene remains poor especially for health-care workers. To improve this situation, the mechanisms of hand cleansing need to be explored and a detailed study on the adhesion interactions for bio-aerosols on hand surfaces and the process during particles removal by flow is significant for more efficient methods to decrease infections. The first part of presentation will focus on modelling adhesion interactions between particles, like bacteria and virus, and hand surfaces with roughness in water environment. The model presented is based on the DLVO and its extended theories. The removal process comes next, which will put forward a new model to describe the removal of particles by water flow. In this model, molecular dynamics is combined with particle motion and the results by the model will be compared with experiment results and existed models (RnR, Rock & Roll). Finally, possible improvement of the study and future design of experiments will be discussed.

  20. Flow and heat transfer characteristics of graphene oxide nanofluids in a horizontal tube

    NASA Astrophysics Data System (ADS)

    Nunna, Maheshwar Rao

    This thesis presents a fundamental study conducted on heat transfer and decrease in flow through a straight copper tube of a graphene oxide (GO) nanofluid developed in-house. The GO particles were synthesized using the modified Hummers method. The physicochemical properties of the fabricated GO were characterized using X-ray diffraction analysis (XRD), a scanning electron microscope (SEM), and UV-Vis spectrophotometry, and the particle size distribution was investigated using dynamic light scattering. GO nanofluids of 0.01 wt. % and 0.1 wt. % were prepared by dispersing GO sheets in de-ionized water. Thermo-physical properties of GO nanofluids were also measured at different temperatures. An experimental setup was developed to find the heat transfer characteristics and pressure drop of nanofluids in the test section. A flexible heater was used to provide the constant heat flux condition at the wall of the tube for all the experiments. In this study, the experimental investigations of flow regime, flowrates, pressure drop and heat transfer characteristics were performed by considering three different heat flux conditions (7.38 kW/m2, 9.08 kW/m2, and 12.55 kW/m2) at three different set points of variable frequency drive (VFD), 15, 20, and 25, connected to the pump. Due to the increase in viscosity, there was a decrease in flowrate and Reynolds number from 0.01 wt. % to 0.1 wt. % of GO nanofluids at constant pump frequency. Experimental data obtained for water was validated with available data from the literature, and the correlations were formulated for the Nusselt number and Reynolds number by considering the multiple regression analysis. Convective heat transfer coefficient and dimensionless wall temperature for water and GO nanofluids were investigated. A rise in dimensionless wall temperature with the increase of velocity and particle concentration was observed. The convective heat transfer coefficient for GO 0.01 wt. % was higher when compared to GO 0.1 wt

  1. Secondary flow morphologies due to model stent-induced perturbations in a 180° curved tube during systolic deceleration

    NASA Astrophysics Data System (ADS)

    Bulusu, Kartik V.; Plesniak, Michael W.

    2013-03-01

    Morphological changes in secondary flow structures due to a stent model were investigated under physiological inflow conditions. The stent model was inserted upstream of a 180° curved tube artery model. A carotid artery flow rate with its characteristic systolic and diastolic phases was supplied by a pump to drive a blood-analog working fluid. Phase-averaged, two-component, two-dimensional (2C-2D) particle image velocimeter measurements revealed the changing morphologies of these secondary flow structures. Continuous wavelet transforms provided an enhanced means to detect coherent secondary flow structures in this bio-inspired experimental study. A two-dimensional Ricker wavelet was used, and the optimal wavelet scale was determined using Shannon entropy as a measure of randomness in the wavelet-transformed vorticity fields. Planar secondary flow vortical structures at the 90° location in the curved tube were observed to exhibit distinct spatio-temporal characteristics different than the baseline flow without the stent. Flow patterns observed at the systolic peak comprised of early Lyne-type, along with a deformed Dean-type pair of ordered, coherent, high-circulation and counter-rotating vortical structures. Systolic deceleration was marked by the breakdown of large-scale coherent vortices into multiple, disordered, low-circulation, coherent vortical structures, indicating new transitional secondary flow morphologies. These multi-scale secondary flow morphologies arise due to the combination of imbalances in centrifugal and pressure forces, and stent-induced flow perturbations. The detailed flow physics associated with the formation of Dean and Lyne vortices are described in previous publications that have been cited in the manuscript. The secondary flow structures reported here are driven by similar fundamental mechanisms, but additionally contain more complicated effects, such as asymmetry and multiple strengths, that cannot be predicted from simple theories.

  2. Enhancement of CHF water subcooled flow boiling in tubes using helically coiled wires

    NASA Astrophysics Data System (ADS)

    Celata, G. P.; Cumo, M.; Mariani, A.

    1994-01-01

    The present paper reports the results of an experimental investigation about the occurrence of the critical heat flux (CHF) in subcooled flow boiling of water, carried out to ascertain the influence of thermal hydraulic parameters on CHF under conditions typical of themronuclear fusion divertor thermal hydraulic design. Helically coiled wires were used as turbulence promoters to enhance the CHF with respect to the smooth channel. Geometric characteristics of stainless steel 304 Type test sections were: 6.0 and 8.0 mm i.d., 0.25 mm wal thickness, 0.1 and 0.15 m heated length, horizontal and vertical (upflow) position. Test sections were uniformly heated using d.c. current. A maximum CHF of about 30 MW/sq m was reached with smooth tubes under the following conditions: T(sub in) = 30 C, p = 4.6 MPa, u = 10 m/s, D = 8.0 mm, L = 0.1 m. Helically coiled wires (d = 1.0 mm, pitch = 20.0 mm) allowed an increase of the CHF up to 50%, with reference to smooth channels, coupled with a moderate increase of pressure drop (down to 25%). Pressure revealed a negative effect on the efficiency of turbulence promoters. No observable influence of the channel orientation was detected.

  3. Measurement of breath acetone concentrations by selected ion flow tube mass spectrometry in type 2 diabetes.

    PubMed

    Storer, Malina; Dummer, Jack; Lunt, Helen; Scotter, Jenny; McCartin, Fiona; Cook, Julie; Swanney, Maureen; Kendall, Deborah; Logan, Florence; Epton, Michael

    2011-12-01

    Selected ion flow tube-mass spectrometry (SIFT-MS) can measure volatile compounds in breath on-line in real time and has the potential to provide accurate breath tests for a number of inflammatory, infectious and metabolic diseases, including diabetes. Breath concentrations of acetone in type 2 diabetic subjects undertaking a long-term dietary modification programme were studied. Acetone concentrations in the breath of 38 subjects with type 2 diabetes were determined by SIFT-MS. Anthropomorphic measurements, dietary intake and medication use were recorded. Blood was analysed for beta hydroxybutyrate (a ketone body), HbA1c (glycated haemoglobin) and glucose using point-of-care capillary (fingerprick) testing. All subjects were able to undertake breath manoeuvres suitable for analysis. Breath acetone varied between 160 and 862 ppb (median 337 ppb) and was significantly higher in men (median 480 ppb versus 296 ppb, p = 0.01). In this cross-sectional study, no association was observed between breath acetone and either dietary macronutrients or point-of-care capillary blood tests. Breath analysis by SIFT-MS offers a rapid, reproducible and easily performed measurement of acetone concentration in ambulatory patients with type 2 diabetes. The high inter-individual variability in breath acetone concentration may limit its usefulness in cross-sectional studies. Breath acetone may nevertheless be useful for monitoring metabolic changes in longitudinal metabolic studies, in a variety of clinical and research settings.

  4. Numerical Investigation on Trapezoidal Cavity Receiver Used In LFR with Water Flow in Absorber Tubes

    NASA Astrophysics Data System (ADS)

    Duggal, Rohit; Jilte, Ravindra

    2017-03-01

    In the present study, numerical three dimensional model of trapezoidal cavity used in LFR was analysed. Results are presented in the form of Thermal losses occurring from the receiver operating with an absorber tube temperature from 350-550 K in step of 50 K and emissivity varied from 0.5-1.0. Effect of wind blowing below lower glass plate (cavity aperture) were also analysed considering the heat transfer coefficient from 5 to 25 W/m2K. At lower absorber temperature (350 K) convective losses is found to be 43% of the total heat loss whereas radiative losses accounted 57%. For higher absorber temperature radiative losses are dominant (77%) and convective losses are reduced to 23%. The air temperature gradient in the horizontal direction (parallel to lower glass plate) is found to be negligible whereas it is varied significantly in vertical direction (normal to lower glass plate). The average cavity air temperature is observed to be 480 K for low wind flow (h=5 W/m2K) and it reduces to 360 K for h=25 W/m2K. This has resulted in increased convective losses (27% higher).

  5. Heat transfer deterioration in tubes caused by bulk flow acceleration due to thermal and frictional influences

    SciTech Connect

    Jackson, J. D.

    2012-07-01

    Severe deterioration of forced convection heat transfer can be encountered with compressible fluids flowing through strongly heated tubes of relatively small bore as the flow accelerates and turbulence is reduced because of the fluid density falling (as the temperature rises and the pressure falls due to thermal and frictional influence). The model presented here throws new light on how the dependence of density on both temperature and pressure can affect turbulence and heat transfer and it explains why the empirical equations currently available for calculating effectiveness of forced convection heat transfer under conditions of strong non-uniformity of fluid properties sometimes fail to reproduce observed behaviour. It provides a criterion for establishing the conditions under which such deterioration of heat transfer might be encountered and enables heat transfer coefficients to be determined when such deterioration occurs. The analysis presented here is for a gaseous fluid at normal pressure subjected strong non-uniformity of fluid properties by the application of large temperature differences. Thus the model leads to equations which describe deterioration of heat transfer in terms of familiar parameters such as Mach number, Reynolds number and Prandtl number. It is applicable to thermal power plant systems such as rocket engines, gas turbines and high temperature gas-cooled nuclear reactors. However, the ideas involved apply equally well to fluids at supercritical pressure. Impairment of heat transfer under such conditions has become a matter of growing interest with the active consideration now being given to advanced water-cooled nuclear reactors designed to operate at pressures above the critical value. (authors)

  6. Numerical simulation of fluid flow and heat transfer in enhanced copper tube

    NASA Astrophysics Data System (ADS)

    Rahman, M. M.; Zhen, T.; Kadir, A. K.

    2013-06-01

    Inner grooved tube is enhanced with grooves by increasing the inner surface area. Due to its high efficiency of heat transfer, it is used widely in power generation, air conditioning and many other applications. Heat exchanger is one of the example that uses inner grooved tube to enhance rate heat transfer. Precision in production of inner grooved copper tube is very important because it affects the tube's performance due to various tube parameters. Therefore, it is necessary to carry out analysis in optimizing tube performance prior to production in order to avoid unnecessary loss. The analysis can be carried out either through experimentation or numerical simulation. However, experimental study is too costly and takes longer time in gathering necessary information. Therefore, numerical simulation is conducted instead of experimental research. Firstly, the model of inner grooved tube was generated using SOLIDWORKS. Then it was imported into GAMBIT for healing, followed by meshing, boundary types and zones settings. Next, simulation was done in FLUENT where all the boundary conditions are set. The simulation results were observed and compared with published experimental results. It showed that heat transfer enhancement in range of 649.66% to 917.22% of inner grooved tube compared to plain tube.

  7. Steady Secondary Flows Generated by Periodic Compression and Expansion of an Ideal Gas in a Pulse Tube

    NASA Technical Reports Server (NTRS)

    Lee, Jeffrey M.

    1999-01-01

    This study establishes a consistent set of differential equations for use in describing the steady secondary flows generated by periodic compression and expansion of an ideal gas in pulse tubes. Also considered is heat transfer between the gas and the tube wall of finite thickness. A small-amplitude series expansion solution in the inverse Strouhal number is proposed for the two-dimensional axisymmetric mass, momentum and energy equations. The anelastic approach applies when shock and acoustic energies are small compared with the energy needed to compress and expand the gas. An analytic solution to the ordered series is obtained in the strong temperature limit where the zeroth-order temperature is constant. The solution shows steady velocities increase linearly for small Valensi number and can be of order I for large Valensi number. A conversion of steady work flow to heat flow occurs whenever temperature, velocity or phase angle gradients are present. Steady enthalpy flow is reduced by heat transfer and is scaled by the Prandtl times Valensi numbers. Particle velocities from a smoke-wire experiment were compared with predictions for the basic and orifice pulse tube configurations. The theory accurately predicted the observed steady streaming.

  8. Phase transition behaviour of sodium oleate aerosol particles

    NASA Astrophysics Data System (ADS)

    Nájera, Juan J.

    Field measurements have shown that organic surfactants are significant components of atmospheric aerosols. While fatty acids, among other surfactants, are prevalent in the atmosphere, the influence of these species on the chemical and physical properties of atmospheric aerosols remains not fully characterized. In order to assess the phase in which particles may exist, a detailed study of the deliquescence of a model surfactant aerosol has been carried out. Sodium oleate was chosen as a surfactant proxy relevant in atmospheric aerosol. Sodium oleate micelle aerosol particles were generated nebulizing a sodium oleate aqueous solution. In this study, the water uptake and phase transition of sodium oleate aerosol particles have been studied in a room temperature aerosol flow tube system (AFT) using Fourier transform infrared (FTIR) spectroscopy. Aerosol morphology and elemental composition were also analysed using scanning electron microscopy/energy dispersive X-ray analysis (SEM/EDX) techniques. The particles are homogeneously distributed as ellipsoidal-shape aggregates of micelles particles with an average size of ˜1.1 μm. The deliquescence by the sodium oleate aerosol particles was monitored by infrared extinction spectroscopy, where the dried aerosol particles were exposed to increasing relative humidity as they passed through the AFT. Observations of the infrared absorption features of condensed phase liquid water enable to determine the sodium oleate deliquescence phase transition at 88±2%.

  9. Improved solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1988-07-19

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  10. Solid aerosol generator

    DOEpatents

    Prescott, Donald S.; Schober, Robert K.; Beller, John

    1992-01-01

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates.

  11. Solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1992-03-17

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration is disclosed. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  12. Controllable preparation of microscale tubes with multiphase co-laminar flow in a double co-axial microdevice.

    PubMed

    Lan, Wenjie; Li, Shaowei; Lu, Yangcheng; Xu, Jianhong; Luo, Guangsheng

    2009-11-21

    This article describes a simple method for the fabrication of microscale polymer tubes. A double co-axial microchannel device was designed and fabricated. Liquid/liquid/liquid multiphase co-laminar flows were realized in a microchannel by choosing working systems. Three kinds of polymeric solutions were selected as the middle phase while a polyethyleneglycol aqueous solution was used as the inner and outer phases in the microfluidic process. The outer and inner phases acted as extractants of the polymer solvent. A stable double core-annular flow was formed by optimizing the composition of the outer and inner phases, and highly uniform tubes were successfully fabricated by the solvent extraction method. Both the outer diameter of the tubes and the wall thickness could be adjusted from 300 microm to 900 microm and from 40 microm to 150 microm by varying the flux of the fluids and the rolling velocity of the collection roller. In addition, titanium dioxide (TiO2) nanoparticles were successfully encapsulated into the polymer tubes with this technique. This technology has the potential to generate hollow fiber membranes for applications in separation and reaction processes.

  13. Draft tube discharge fluctuation during self-sustained pressure surge: fluorescent particle image velocimetry in two-phase flow

    NASA Astrophysics Data System (ADS)

    Müller, A.; Dreyer, M.; Andreini, N.; Avellan, F.

    2013-04-01

    Hydraulic machines play an increasingly important role in providing a secondary energy reserve for the integration of renewable energy sources in the existing power grid. This requires a significant extension of their usual operating range, involving the presence of cavitating flow regimes in the draft tube. At overload conditions, the self-sustained oscillation of a large cavity at the runner outlet, called vortex rope, generates violent periodic pressure pulsations. In an effort to better understand the nature of this unstable behavior and its interaction with the surrounding hydraulic and mechanical system, the flow leaving the runner is investigated by means of particle image velocimetry. The measurements are performed in the draft tube cone of a reduced scale model of a Francis turbine. A cost-effective method for the in-house production of fluorescent seeding material is developed and described, based on off-the-shelf polyamide particles and Rhodamine B dye. Velocity profiles are obtained at three streamwise positions in the draft tube cone, and the corresponding discharge variation in presence of the vortex rope is calculated. The results suggest that 5-10 % of the discharge in the draft tube cone is passing inside the vortex rope.

  14. Mode shift of an inhaled aerosol bolus is correlated with flow sequencing in the human lung

    NASA Technical Reports Server (NTRS)

    Mills, Christopher N.; Darquenne, Chantal; Prisk, G. Kim; West, J. B. (Principal Investigator)

    2002-01-01

    We studied the effects on aerosol bolus inhalations of small changes in convective inhomogeneity induced by posture change from upright to supine in nine normal subjects. Vital capacity single-breath nitrogen washout tests were used to determine ventilatory inhomogeneity change between postures. Relative to upright, supine phase III slope was increased 33 +/- 11% (mean +/- SE, P < 0.05) and phase IV height increased 25 +/- 11% (P < 0.05), consistent with an increase in convective inhomogeneity likely due to increases in flow sequencing. Subjects also performed 0.5-microm-particle bolus inhalations to penetration volumes (V(p)) between 150 and 1,200 ml during a standardized inhalation from residual volume to 1 liter above upright functional residual capacity. Mode shift (MS) in supine posture was more mouthward than upright at all V(p), changing by 11.6 ml at V(p) = 150 ml (P < 0.05) and 38.4 ml at V(p) = 1,200 ml (P < 0.05). MS and phase III slope changes correlated positively at deeper V(p). Deposition did not change at any V(p), suggesting that deposition did not cause the MS change. We propose that the MS change results from increased sequencing in supine vs. upright posture.

  15. Effect of Some Factors on Critical Condition of Ice Formation for Flowing Supercooled Organic Water Solution in Cooled Circular Tube

    NASA Astrophysics Data System (ADS)

    Inaba, Hideo; Miyahara, Satoshi; Takeya, Kengo

    Supercooling characteristics of three kinds of organic water solutions (D-Sorbitol, Glycerol, Glucose) in a forced flow were investigated experimentally. The critical condition of ice nucleation in a cooled circular tube was examined for concentration of water solution and cooling temperature under various Reynolds numbers. It was found that the flow velocity and cooling temperature conditions in a laminar flow region. However, in a turbulent flow region, the critical degree of supercooling was influenced by the flow velocity and cooling temperature. As a result, non-dimensional correlation equations for the critical condition of ice formation were derived in the laminar and turbulent flow region as a function of some non-dimensional parameters. While the ice making efficiency of D-Sorbitol water solution was measured under various Reynolds numbers and cooling temperature conditions on the stable supercooling condition. The ice making efficiency of supercooled organic water solution was influenced by the degree of the supercooling based on the mixed organic water solution temperature at the outlet of the inner tube.

  16. Columbia University flow instability experimental program: Volume 2. Single tube uniformly heated tests -- Part 2: Uncertainty analysis and data

    SciTech Connect

    Dougherty, T.; Maciuca, C.; McAssey, E.V. Jr.; Reddy, D.G.; Yang, B.W.

    1990-05-01

    In June 1988, Savannah River Laboratory requested that the Heat Transfer Research Facility modify the flow excursion program, which had been in progress since November 1987, to include testing of single tubes in vertical down-flow over a range of length to diameter (L/D) ratios of 100 to 500. The impetus for the request was the desire to obtain experimental data as quickly as possible for code development work. In July 1988, HTRF submitted a proposal to SRL indicating that by modifying a facility already under construction the data could be obtained within three to four months. In January 1990, HTFR issued report CU-HTRF-T4, part 1. This report contained the technical discussion of the results from the single tube uniformly heated tests. The present report is part 2 of CU-HTRF-T4 which contains further discussion of the uncertainty analysis and the complete set of data.

  17. Detection of volatile compounds produced by microbial growth in urine by selected ion flow tube mass spectrometry (SIFT-MS).

    PubMed

    Storer, Malina K; Hibbard-Melles, Kim; Davis, Brett; Scotter, Jenny

    2011-10-01

    Selected ion flow tube-mass spectrometry has been used to measure the volatile compounds occurring in the headspace of urine samples inoculated with common urinary tract infection (UTI)-causing microbes Escherichia coli, Proteus vulgaris, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, Klebsiella pneumoniae, Enterococcus faecalis, or Candida albicans. This technique has the potential to offer rapid and simple diagnosis of the causative agent of UTIs.

  18. Ensemble phase averaging equations for multiphase flows in porous media, part I: the bundle-of-tubes model

    SciTech Connect

    Yang, Dali; Zhang, Duan; Currier, Robert

    2008-01-01

    A bundle-of-tubes construct is used as a model system to study ensemble averaged equations for multiphase flow in a porous material. Momentum equations for the fluid phases obtained from the method are similar to Darcy's law, but with additional terms. We study properties of the additional terms, and the conditions under which the averaged equations can be approximated by the diffusion model or the extended Darcy's law as often used in models for multiphase flows in porous media. Although the bundle-of-tubes model is perhaps the simplest model for a porous material, the ensemble averaged equation technique developed in this paper assumes the very same form in more general treatments described in Part 2 of the present work (Zhang 2009). Any model equation system intended for the more general cases must be understood and tested first using simple models. The concept of ensemble phase averaging is dissected here in physical terms, without involved mathematics through its application to the idealized bundle-of-tubes model for multiphase flow in porous media.

  19. On-line analysis of diesel engine exhaust gases by selected ion flow tube mass spectrometry.

    PubMed

    Smith, David; Spanĕl, Patrik; Dabill, David; Cocker, John; Rajan, Bob

    2004-01-01

    Selected ion flow tube mass spectrometry (SIFT-MS) has been used to analyse on-line and in real time the exhaust gas emissions from a Caterpillar 3304 diesel engine under different conditions of load (idle and 50% of rated load) and speed (910, 1500 and 2200 rpm) using three types of fuel: an ultra-low-sulphur diesel, a rapeseed methyl ester and gas oil. SIFT-MS analyses of the alkanes, alkenes and aromatic hydrocarbons in the headspace of these fuels were also performed, but the headspace of the rapeseed methyl ester consists mainly of methanol and a compound with the molecular formula C4H8O. The exhaust gases were analysed for NO and NO2 using O2+* reagent ions and for HNO2 using H3O+ reagent ions. The following aldehydes and ketones in the exhaust gases were quantified by using the combination of H3O+ and NO+ reagent ions: formaldehyde, acetaldehyde, propenal, propanal, acetone, butanal, pentanal, butanone and pentanone. Formaldehyde, acetaldehyde and pentenal, all known respiratory irritants associated with sensitisation to asthma of workers exposed to diesel exhaust, are variously present within the range 100-2000 ppb. Hydrocarbons in the exhaust gases accessible to SIFT-MS analyses were also quantified as total concentrations of the various isomers of C3H4, C3H6, C4H6, C5H8, C5H10, C6H8, C6H10, C7H14, C6H6, C7H8, C8H10 and C9H12.

  20. Chaotic and mode-locked interactions between flow-induced collapsible-tube oscillation and pulsatile upstream forcing

    NASA Astrophysics Data System (ADS)

    Bertram, C. D.; She, Jianwei

    2000-02-01

    Interactions were examined between the otherwise periodic self-excited oscillation of a pneumatically compressed flexible tube conveying an aqueous flow, and pulsations induced by connecting the output of a hydraulically controlled piston pump executing sinusoidal piston displacements in parallel with the steady flow-driving head. Depending on pump amplitude and frequency, the oscillatory interaction consisted of either resonance, periodic entrainment or aperiodicity. Despite limitations imposed by intrinsic turbulent noise, aperiodic interactions were shown to exhibit characteristics of a low-dimensional chaotic attractor.

  1. Flow sheet development for the dissolution of unirradiated Mark 42 fuel tubes in F-Canyon, Part II

    SciTech Connect

    Murray, A.M.

    1999-09-20

    Two dissolution flow sheets were tested for the desorption of unirradiated Mark 42 fuel tubes. Both the aluminum (from the can, cladding, and fuel core) and the plutonium oxide (PuO{sub 2}) are dissolved simultaneously, i.e., a co-dissolution flow sheet. In the first series of tests, 0.15 and 0.20 molar (M) potassium fluoride (KF) solutions were used and the dissolution extended over several days. In the other series of tests, solutions with higher concentrations of fluoride (0.25 to 0.30 M) were used. Calcium fluoride (CaF{sub 2}) was used in those tests as the fluoride source.

  2. The micro-flow reaction system featured the liquid-liquid interface created with ternary mixed carrier solvents in a capillary tube.

    PubMed

    Masuhara, Yuji; Jinno, Naoya; Hashimoto, Masahiko; Tsukagoshi, Kazuhiko

    2012-01-01

    A micro-flow reaction system was developed in which liquid-liquid interface was created based on the tube radial distribution of ternary mixed carrier solvents. The system was constructed from double capillary tubes having different inner diameters (100 and 250 µm i.d.). The smaller tube was inserted into the larger one through a T-type joint. The reaction of a protein with a fluorescence derivatizing reagent was adopted as a model. A water-acetonitrile mixture (3:1 volume ratio) including bovine serum albumin (hydrophilic) was delivered into the large tube from the inside through the small tube and an acetonitrile-ethyl acetate mixture (7:4 volume ratio) containing fluorescamine (hydrophobic) as a derivatizing reagent was delivered from the outside through the joint. Solutions were mixed through the double capillary tubes to promote ternary mixed carrier solvents (water-acetonitrile-ethyl acetate; 1:2:1 volume ratio). The liquid-liquid interface was created based on the tube radial distribution of ternary solvents in the larger tube. The derivatization reaction was performed in the larger, or reaction, tube in the micro-flow system. The fluorescence intensity of the fluorescamine-derivatized bovine serum albumin obtained by the system, which specifically included the kinetic liquid-liquid interface in the tube, was greater than that obtained through a batch reaction using a homogeneous solution of water-acetonitrile (1:2 volume ratio).

  3. Design and Evaluation of Modifications to the NASA Langley Flow Impedance Tube

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Watson, Willie R.; Parrott, Tony L.; Smith, Charles D.

    2004-01-01

    The need to minimize fan noise radiation from commercial aircraft engine nacelles continues to provide an impetus for developing new acoustic liner concepts. If the full value of such concepts is to be attained, an understanding of grazing flow effects is crucial. Because of this need for improved understanding of grazing flow effects, the NASA Langley Research Center Liner Physics Group has invested a large effort over the past decade into the development of a 2-D finite element method that characterizes wave propagation through a lined duct. The original test section in the Langley Grazing IncidenceTube was used to acquire data needed for implementation of this finite element method. This test section employed a stepper motor-driven axial-traversing bar, embedded in the wall opposite the test liner, to position a flush-mounted microphone at pre-selected locations. Complex acoustic pressure data acquired with this traversing microphone were used to educe the acoustic impedance of test liners using this 2-D finite element method and a local optimization technique. Results acquired in this facility have been extensively reported, and were compared with corresponding results from various U.S. aeroacoustics laboratories in the late 1990 s. Impedance data comparisons acquired from this multi-laboratory study suggested that it would be valuable to incorporate more realistic 3-D aeroacoustic effects into the impedance eduction methodology. This paper provides a description of modifications that have been implemented to facilitate studies of 3-D effects. The two key features of the modified test section are (1) the replacement of the traversing bar and its flush-mounted microphone with an array of 95 fixed-location microphones that are flush-mounted in all four walls of the duct, and (2) the inclusion of a suction device to modify the boundary layer upstream of the lined portion of the duct. The initial results achieved with the modified test section are provided in this

  4. Estimation of volume flow in curved tubes based on analytical and computational analysis of axial velocity profiles

    NASA Astrophysics Data System (ADS)

    Verkaik, A. C.; Beulen, B. W. A. M. M.; Bogaerds, A. C. B.; Rutten, M. C. M.; van de Vosse, F. N.

    2009-02-01

    To monitor biomechanical parameters related to cardiovascular disease, it is necessary to perform correct volume flow estimations of blood flow in arteries based on local blood velocity measurements. In clinical practice, estimates of flow are currently made using a straight-tube assumption, which may lead to inaccuracies since most arteries are curved. Therefore, this study will focus on the effect of curvature on the axial velocity profile for flow in a curved tube in order to find a new volume flow estimation method. The study is restricted to steady flow, enabling the use of analytical methods. First, analytical approximation methods for steady flow in curved tubes at low Dean numbers (Dn) and low curvature ratios (δ) are investigated. From the results a novel volume flow estimation method, the cos θ-method, is derived. Simulations for curved tube flow in the physiological range (1≤Dn≤1000 and 0.01≤δ≤0.16) are performed with a computational fluid dynamics (CFD) model. The asymmetric axial velocity profiles of the analytical approximation methods are compared with the velocity profiles of the CFD model. Next, the cos θ-method is validated and compared with the currently used Poiseuille method by using the CFD results as input. Comparison of the axial velocity profiles of the CFD model with the approximations derived by Topakoglu [J. Math. Mech. 16, 1321 (1967)] and Siggers and Waters [Phys. Fluids 17, 077102 (2005)] shows that the derived velocity profiles agree very well for Dn≤50 and are fair for 50100), no analytical approximation method exists. In the position of the maximum axial velocity, a shift toward the inside of the curve is observed for low Dean numbers, while for high Dean numbers, the position of the maximum velocity is located at the outer curve. When the position of

  5. On the relation between coronal heating, flux tube divergence, and the solar wind proton flux and flow speed

    NASA Technical Reports Server (NTRS)

    Sandbaek, Onulf; Leer, Egil; Hansteen, Viggo H.

    1994-01-01

    A one-fluid solar wind model is used to investigate some relations between coronal heating, the flux tube divergence near the Sun, and the solar wind proton flux and flow speed. The effects of energy addition to the supersonic region of the flow are also studied. We allow for a mechanical energy flux that heats the corona, and an Alfven wave energy flux that adds energy, mainly to the supersonic flow, both as momentum and as heat. We find that the mechanical energy flux determines the solar wind mass flux, and in order to keep an almost constant proton flux at the orbit of Earth with changing flow geometry, that the mechanical energy flux must vary linearly with the magnetic field in the inner corona. This thermally driven wind generally has a low asymptotic flow speed. When Alfven waves are added to the thermally driven flow, the asymptotic flow speed is increased and is determined by the ratio of the Alfven wave and the mechanical energy fluxes at the coronal base. Flow speeds characteristic of recurrent high-speed solar wind streams can be obtained only when the Alfven wave energy flux, deposited in the supersonic flow, is larger than the mechanical energy flux heating the corona.

  6. In situ measurement of the infrared absorption and extinction of chemical and biologically derived aerosols using flow-through photoacoustics

    NASA Astrophysics Data System (ADS)

    Gurton, Kristan P.; Dahmani, Rachid; Ligon, David; Bronk, Burt V.

    2005-07-01

    In an effort to establish a more reliable set of optical cross sections for a variety of chemical and biological aerosol simulants, we have developed a flow-through photoacoustic system that is capable of measuring absolute, mass-normalized extinction and absorption cross sections. By employing a flow-through design we avoid issues associated with closed aerosol photoacoustic systems and improve sensitivity. Although the results shown here were obtained for the tunable CO2 laser waveband region, i.e., 9.20-10.80 μm, application to other wavelengths is easily achievable. The aerosols considered are categorized as biological, chemical, and inorganic in origin, i.e., Bacillus atrophaeus endospores, dimethicone silicone oil (SF-96 grade 50), and kaolin clay powder (alumina and silicate), respectively. Results compare well with spectral extinction measured previously by Fourier-transform infrared spectroscopy. Comparisons with Mie theory calculations based on previously published complex indices of refraction and measured size distributions are also presented.

  7. Drift flux model as approximation of two fluid model for two phase dispersed and slug flow in tube

    SciTech Connect

    Nigmatulin, R.I.

    1995-09-01

    The analysis of one-dimensional schematizing for non-steady two-phase dispersed and slug flow in tube is presented. Quasi-static approximation, when inertia forces because of the accelerations of the phases may be neglected, is considered. Gas-liquid bubbly and slug vertical upward flows are analyzed. Non-trivial theoretical equations for slip velocity for these flows are derived. Juxtaposition of the derived equations for slip velocity with the famous Zuber-Findlay correlation as cross correlation coefficients is criticized. The generalization of non-steady drift flux Wallis theory taking into account influence of wall friction on the bubbly or slug flows for kinematical waves is considered.

  8. Laboratory Experiments and Modeling for Interpreting Field Studies of Secondary Organic Aerosol Formation Using an Oxidation Flow Reactor

    SciTech Connect

    Jimenez, Jose-Luis

    2016-02-01

    This grant was originally funded for deployment of a suite of aerosol instrumentation by our group in collaboration with other research groups and DOE/ARM to the Ganges Valley in India (GVAX) to study aerosols sources and processing. Much of the first year of this grant was focused on preparations for GVAX. That campaign was cancelled due to political reasons and with the consultation with our program manager, the research of this grant was refocused to study the applications of oxidation flow reactors (OFRs) for investigating secondary organic aerosol (SOA) formation and organic aerosol (OA) processing in the field and laboratory through a series of laboratory and modeling studies. We developed a gas-phase photochemical model of an OFR which was used to 1) explore the sensitivities of key output variables (e.g., OH exposure, O3, HO2/OH) to controlling factors (e.g., water vapor, external reactivity, UV irradiation), 2) develop simplified OH exposure estimation equations, 3) investigate under what conditions non-OH chemistry may be important, and 4) help guide design of future experiments to avoid conditions with undesired chemistry for a wide range of conditions applicable to the ambient, laboratory, and source studies. Uncertainties in the model were quantified and modeled OH exposure was compared to tracer decay measurements of OH exposure in the lab and field. Laboratory studies using OFRs were conducted to explore aerosol yields and composition from anthropogenic and biogenic VOC as well as crude oil evaporates. Various aspects of the modeling and laboratory results and tools were applied to interpretation of ambient and source measurements using OFR. Additionally, novel measurement methods were used to study gas/particle partitioning. The research conducted was highly successful and details of the key results are summarized in this report through narrative text, figures, and a complete list of publications acknowledging this grant.

  9. High-fin staggered tube banks: Heat transfer and pressure drop for turbulent single phase gas flow

    NASA Astrophysics Data System (ADS)

    1986-10-01

    This Data Item ESDU 86022 is an addition to the Heat Transfer Sub-series. New correlations are presented for external heat transfer coefficient and static pressure loss for single phase flow over plain circular fins of either retangular or tapered cross section on round tubes. The correlations were derived by a regression analysis of experimental results extracted from the literature for a wide range of tube bundle configurations. Fin densities of 4 to 11 per inch (equivalent to fin pitches of 6.4 to 2.3 mm) tube outside diameters of 3/8 to 2 inch (10 to 51 mm), fin heights of 1/4 to 5/8 inch (6 to 16 mm), and ratios of fin tip to fin root diameter of 1.2 to 2.4 were covered. For heat transfer the range of Reynolds number based on tube outer diameter was from 2,000 to 40,000 and for pressure drop from 5,000 to 50,000. Comparison of the prediction with experiment shows that for heat transfer 85% of the data points were within 10% of estimated and for pressure drop 72% were within 10%. A comprehensive worked example showing the use of the method for an air cooled heat exchanger bundle is included. The applicability of this method to nonintegral fins is considered and factors influencing the thermal resistance of the interface are discussed. Effects of fouling are also briefly covered.

  10. An experimental investigation of heat transfer in a spiral-coil tube with pulsating turbulent water flow

    NASA Astrophysics Data System (ADS)

    Kharvani, H. Ramezani; Doshmanziari, F. Ilami; Zohir, A. E.; Jalali-Vahid, D.

    2016-09-01

    In this study, in order to increase the heat transfer rate in a spiral-coil tube by an active method, a rotating ball valve was mounted downstream/upstream of the spiral-coil tube and used as a pulse generator. Influence of pulsation on heat transfer in the spiral-coil tube was experimentally investigated. Cold water was used as a working fluid inside the spiral-coil that was immersed horizontally in a hot water reservoir tank. The Average temperature of the hot water bath was kept constant at 60 °C to establish a uniform temperature. All experiments for both pulsator locations (upstream and downstream pulsation) were performed at fixed pulsation amplitude. Reynolds number was ranged from 6220 to 16,300 while pulsation frequency was varied from 0 to 20 Hz. It can be clearly observed from heat transfer results that the overall average heat transfer coefficient was enhanced up to 26 % for pulsating flow compared to steady flow without pulsation at all pulsation frequencies. It is also clear that the relative overall average heat transfer coefficient is strongly affected by Reynolds number. Finally, it was obtained that the upstream pulsation heat transfer coefficient has better heat transfer results than the corresponding ones of downstream pulsation in the studied range of Reynolds number.

  11. An LES study and comparison with experimental measurements of turbulent flows over an in-line tube-banks

    NASA Astrophysics Data System (ADS)

    Reeks, Michael; Chunyu, Jin; Potts, Ian

    2016-11-01

    Turbulent flows across in-line tube banks with transverse and longitudinal pitch P/D = 2.67 and 2.31,respectively, have been simulated successfully by Large Eddy Simulation (LES) based on the dynamic Smagorinsky subgrid scale model (SGS), in which a wall-layer model is used to reduce the computational cost. We examine the flow structures across the tube bank through the normalized Q criterion. The surface pressure characteristics from the middle cylinder within each column of cylinders are found to agree well with the existing experimental data. The drag and lift coefficients from the simulation are compared well with the experimental measurements. These results indicate that cylinders from the second column experience the minimum drag force and maximum lift force fluctuation. Spectral analyses are performed for velocity signals sampled behind each middle cylinder axis, which show that the dominant vortex shedding frequency does not show variations across the tube-bank. On this basis, we also examined the shear layer instability. Finally, we report auto-correlation functions for streamwise and cross velocity fluctuations as a function of the spanwise length We wish to acknowledge the support of British Energy (Part of EDF).

  12. The limit of the film extraction technique for annular two-phase flow in a small tube

    SciTech Connect

    Helm, D.E.; Lopez de Bertodano, M.; Beus, S.G.

    1999-07-01

    The limit of the liquid film extraction technique was identified in air-water and Freon-113 annular two-phase flow loops. The purpose of this research is to find the limit of the entrainment rate correlation obtained by Lopez de Bertodano et. al. (1998). The film extraction technique involves the suction of the liquid film through a porous tube and has been widely used to obtain annular flow entrainment and entrainment rate data. In these experiments there are two extraction probes. After the first extraction the entrained droplets in the gas core deposit on the tube wall. A new liquid film develops entirely from liquid deposition and a second liquid film extraction is performed. While it is assumed that the entire liquid film is removed after the first extraction unit, this is not true for high liquid flow. At high liquid film flows the interfacial structure of the film becomes frothy. Then the entire liquid film cannot be removed at the first extraction unit, but continues on and is extracted at the second extraction unit. A simple model to characterize the limit of the extraction technique was obtained based on the hypothesis that the transition occurs due to a change in the wave structure. The resulting dimensionless correlation agrees with the data.

  13. The novel selected-ion flow tube approach to trace gas analysis of air and breath.

    PubMed

    Smith, D; Spanel, P

    1996-01-01

    We present an overview of the development and use of our selected-ion flow tube (SIFT) technique as a sensitive, quantitative method for the rapid, real-time analysis of the trace gas content of atmospheric air and human breath, presenting some pilot data from various research areas in which this method will find valuable application. We show that it is capable of detecting and quantifying trace gases, in complex mixtures such as breath, which are present at partial pressures down to about 10 parts per billion. Following discussions of the principles involved in this SIFT method of analysis, of the experiments which we have carried out to establish its quantitative validity, and of the air and breath sampling techniques involved, we present sample data on the detection and quantification of trace gases on the breath of healthy people and of patients suffering from renal failure and diabetes. We also show how breath ammonia can be accurately quantified from a single breath exhalation and used as an indicator of the presence in the stomach of the bacterium Helicobacter pylori. Health and safety applications are exemplified by analyses of the gases of the gases of cigarette smoke and on the breath of smokers. The value of this analytical method in environmental science is demonstrated by the analyses of petrol vapour, car exhaust emissions and the trace organic vapours detected in town air near a busy road. Final examples of the value of this analytical method are the detection and quantification of the gases emitted from crushed garlic and from breath following the chewing of a mint, which demonstrate its potential in food and flavour research. Throughout the paper we stress the advantages of this SIFT method compared to conventional mass spectrometry for trace gas analysis of complex mixtures, emphasizing its selectivity, sensitivity and real-time analysis capability. Finally, we note that whilst the current SIFT is strictly laboratory based, both transportable and

  14. Heat Transfer Enhancement in a Helically Coiled Tube with Al2O3/WATER Nanofluid Under Laminar Flow Condition

    NASA Astrophysics Data System (ADS)

    Kumar, P. C. Mukesh; Kumar, J.; Suresh, S.; Babu, K. Praveen

    2012-10-01

    In this experimental investigation, the heat transfer coefficients of a shell and helically coiled tube heat exchanger using Al2O3/water nanofluid under laminar flow condition were studied. The Al2O3 nanoparticles were characterized by X-Ray diffraction (XRD). The Al2O3/water nanofluid at 0.1%, 0.4% and 0.8% particle volume concentration were prepared by using two step method. The prepared nanofluid was characterized by scanning electron microscope (SEM). It is observed that the overall heat transfer coefficient, inner heat transfer coefficient and experimental inner Nusselt number increase while increasing particle volume concentration and increasing inner Dean number. The enhancement of overall heat transfer coefficient was found to be 7%, 16.9% and 24.2% at 0.1%, 0.4% and 0.8% Al2O3/water nanofluid respectively when compared with water. The enhancement of tube side experimental Nusselt number was found to be 17%, 22.9% and 28% at 0.1%, 0.4% and 0.8% particle volume concentration of Al2O3/water nanofluid respectively when compared with water at fixed Dean number. The tests were conducted in the range of 1600 < De < 2700, and 5200 < Re < 8600 under laminar flow condition and counter flow configuration. These enhancements are due to higher thermal conductivity of nanofluid while increasing particle volume concentration and Brownian motion of nanoparticles. It is studied that there is no negative impact on formation of secondary flow and mixing of fluid when nanofluid passes through the helically coiled tube.

  15. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    NASA Astrophysics Data System (ADS)

    Palm, Brett B.; Campuzano-Jost, Pedro; Ortega, Amber M.; Day, Douglas A.; Kaser, Lisa; Jud, Werner; Karl, Thomas; Hansel, Armin; Hunter, James F.; Cross, Eben S.; Kroll, Jesse H.; Peng, Zhe; Brune, William H.; Jimenez, Jose L.

    2016-03-01

    An oxidation flow reactor (OFR) is a vessel inside which the concentration of a chosen oxidant can be increased for the purpose of studying SOA formation and aging by that oxidant. During the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen-Rocky Mountain Biogenic Aerosol Study) field campaign, ambient pine forest air was oxidized by OH radicals in an OFR to measure the amount of SOA that could be formed from the real mix of ambient SOA precursor gases, and how that amount changed with time as precursors changed. High OH concentrations and short residence times allowed for semicontinuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative timescales of condensation of low-volatility organic compounds (LVOCs) onto particles; condensational loss to the walls; and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 3 µg m-3 when LVOC fate corrected) compared to daytime (average 0.9 µg m-3 when LVOC fate corrected), with maximum formation observed at 0.4-1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene+p-cymene concentrations, including a substantial increase just after sunrise at 07:00 local time. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254-70), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small oxidized organic

  16. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    DOE PAGES

    Palm, Brett B.; Campuzano-Jost, Pedro; Ortega, Amber M.; ...

    2016-03-08

    An oxidation flow reactor (OFR) is a vessel inside which the concentration of a chosen oxidant can be increased for the purpose of studying SOA formation and aging by that oxidant. During the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen–Rocky Mountain Biogenic Aerosol Study) field campaign, ambient pine forest air was oxidized by OH radicals in an OFR to measure the amount of SOA that could be formed from the real mix of ambient SOA precursor gases, and how that amount changed with time as precursors changed. High OH concentrations and short residence times allowed formore » semicontinuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative timescales of condensation of low-volatility organic compounds (LVOCs) onto particles; condensational loss to the walls; and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 3 µg m−3 when LVOC fate corrected) compared to daytime (average 0.9 µg m−3 when LVOC fate corrected), with maximum formation observed at 0.4–1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene+p-cymene concentrations, including a substantial increase just after sunrise at 07:00 local time. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254-70), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of

  17. Numerical investigation of forced convection of nano fluid flow in horizontal U-longitudinal finned tube heat exchanger

    NASA Astrophysics Data System (ADS)

    Qasim, S. M.; Sahar, A. F. A.; Firas, A. A.

    2015-11-01

    A numerical study has been carried out to investigate the heat transfer by laminar forced convection of nanofluid taking Titania (TiO2) and Alumina (Al2O3) as nanoparticles and the water as based fluid in a three dimensional plain and U-longitudinal finned tube heat exchanger. A Solid WORKS PREMIUM 2012 is used to draw the geometries of plain tube heat exchanger or U-longitudinal copper finned tube heat exchanger. Four U-longitudinal copper fins have 100 cm long, 3.8cm height and 1mm thickness are attached to a straight copper tube of 100 cm length, 2.2 cm inner diameter and 2.39 cm outer diameter. The governing equations which used as continuity, momentum and energy equations under assumptions are utilized to predict the flow field, temperature distribution, and heat transfer of the heat exchanger. The finite volume approach is used to obtain all the computational results using commercial ANSYS Fluent copy package 14.0 with assist of solid works and Gambit software program. The effect of various parameters on the performance of heat exchanger are investigated numerically such as Reynolds' number (ranging from 270 to 1900), volume consternation of nanoparticles (0.2%, 0.4%, 0.6%, 0.8%), type of nanoparticles, and mass flow rate of nanofluid in the hot region of heat exchanger. For 0.8% consternation of nanoparticles, heat transfer has significant enhancement in both nanofluids. It can be found about 7.3% for TiO2 and about 7.5% for Al2O3 compared with the water only as a working fluid.

  18. Two-phase flow characteristics of liquid nitrogen in vertically upward 0.5 and 1.0 mm micro-tubes: Visualization studies

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Fu, X.

    2009-10-01

    Application of liquid nitrogen to cooling is widely employed in many fields, such as cooling of the high temperature superconducting devices, cryosurgery and so on, in which liquid nitrogen is generally forced to flow inside very small passages to maintain good thermal performance and stability. In order to have a full understanding of the flow and heat transfer characteristics of liquid nitrogen in micro-tube, high-speed digital photography was employed to acquire the typical two-phase flow patterns of liquid nitrogen in vertically upward micro-tubes of 0.531 and 1.042 mm inner diameters. It was found from the experimental results that the flow patterns were mainly bubbly flow, slug flow, churn flow and annular flow. And the confined bubble flow, mist flow, bubble condensation and flow oscillation were also observed. These flow patterns were characterized in different types of flow regime maps. The surface tension force and the size of the diameter were revealed to be the major factors affecting the flow pattern transitions. It was found that the transition boundaries of the slug/churn flow and churn/annular flow of the present experiment shifted to lower superficial vapor velocity; while the transition boundary of the bubbly/slug flow shifted to higher superficial vapor velocity compared to the results of the room-temperature fluids in the tubes with the similar hydraulic diameters. The corresponding transition boundaries moved to lower superficial velocity when reducing the inner diameter of the micro-tubes. Time-averaged void fraction and heat transfer characteristics for individual flow patterns were presented and special attention was paid to the effect of the diameter on the variation of void fraction.

  19. Secondary organic aerosol formation and primary organic aerosol oxidation from biomass-burning smoke in a flow reactor during FLAME-3

    NASA Astrophysics Data System (ADS)

    Ortega, A. M.; Day, D. A.; Cubison, M. J.; Brune, W. H.; Bon, D.; de Gouw, J. A.; Jimenez, J. L.

    2013-11-01

    We report the physical and chemical effects of photochemically aging dilute biomass-burning smoke. A "potential aerosol mass" (PAM) flow reactor was used with analysis by a high-resolution aerosol mass spectrometer and a proton-transfer-reaction ion-trap mass spectrometer during the FLAME-3 campaign. Hydroxyl (OH) radical concentrations in the reactor reached up to ~1000 times average tropospheric levels, producing effective OH exposures equivalent to up to 5 days of aging in the atmosphere, and allowing for us to extend the investigation of smoke aging beyond the oxidation levels achieved in traditional smog chambers. Volatile organic compound (VOC) observations show aromatics and terpenes decrease with aging, while formic acid and other unidentified oxidation products increase. Unidentified gas-phase oxidation products, previously observed in atmospheric and laboratory measurements, were observed here, including evidence of multiple generations of photochemistry. Substantial new organic aerosol (OA) mass ("net SOA"; secondary OA) was observed from aging biomass-burning smoke, resulting in total OA average of 1.42 ± 0.36 times the initial primary OA (POA) after oxidation. This study confirms that the net-SOA-to-POA ratio of biomass-burning smoke is far lower on average than that observed for urban emissions. Although most fuels were very reproducible, significant differences were observed among the biomasses, with some fuels resulting in a doubling of the OA mass, while for others a very small increase or even a decrease was observed. Net SOA formation in the photochemical reactor increased with OH exposure (OHexp), typically peaking around three days of equivalent atmospheric photochemical age (OHexp~3.9 × 1011 molecules cm-3 s), then leveling off at higher exposures. The amount of additional OA mass added from aging is positively correlated with initial POA concentration, but not with the total VOC concentration or the concentration of known SOA precursors

  20. Flow structure of natural dehumidification over a horizontal finned-tube

    NASA Astrophysics Data System (ADS)

    Hirbodi, Kamran; Yaghoubi, Mahmood

    2016-08-01

    In the present study, structure of water drops formation, growth, coalescence and departure over a horizontal finned-tube during natural dehumidification is investigated experimentally. Starting time of repelling the drops as well as heat transfer rate and the rate of dripping condensates in quasi-steady-state conditions are presented. Furthermore, cold airflow pattern around the horizontal finned-tube is visualized by using smoke generation scheme during natural dehumidification process. The finned-tube has a length of 300 mm, and inner and outer fin diameters, fin thickness and fin spacing are 25.4, 56, 0.4 and 2 mm, respectively. The tests are conducted in an insulated control room with dimensions of 5.8 m × 3 m × 4 m. Ambient air temperature, relative humidity and fin base temperature are selected from 25 to 35 °C, from 40 to 70 % and from 4 to 8 °C, respectively. Observations show that natural condensation from humid air over the test case is completely dropwise. Droplets only form on the edge of the fin and lateral fin surfaces remain almost dry. Dehumidification process over the tested finned-tube is divided into four stages; nucleation, formation, growth and departure of drops. It is also observed that the condensate inundation leaves the tube bottom in the form of droplets. Smoke visualization depicts that humid airflows downward around the cold finned-tube surface without noticeable turbulence and separation in the initial stages of dehumidification process. But the airflow has some disturbances in the intermediate stage and especially during drop departure on the edge of the fins.

  1. Experimental investigation of inclination effect on subcritical and supercritical water flows heat transfer in an internally ribbed tube

    NASA Astrophysics Data System (ADS)

    Taklifi, Alireza; Akhavan-Behabadi, Mohammad Ali; Hanafizadeh, Pedram; Aliabadi, Abbas

    2017-02-01

    The effect of various inclination angles on heat transfer of water at subcritical and supercritical operating pressures is investigated experimentally. The test section was a SA213T12 steel six-headed internally ribbed tube with minimum inner diameter of 19.5 mm. The operating test pressures were 15, 21.5, 22.5, 25 and 28 MPa, the mass flux was 800 kg/m2 s and the heat flux was 400 kW/m2. To keep the mass flux to heat flux ratio equal to 2 kg/kJ. These operating conditions covered subcritical, near critical and supercritical water flows and also refers to low mass flux conditions. The inclination angles were 5, 20, 30, 45 and 90 (vertical) degrees respecting to horizontal plane. The heat flux was kept constant along the test tube by controlling of electric heating. As a result the inner wall temperature and convective heat transfer coefficient variations with respect to heated length and bulk enthalpy of fluid were considered in order to study the heat transfer characteristics of various flows at different inclinations. The corresponding correlation for heat transfer coefficient was developed which is applicable for wide range of inclination angles. The heat transfer enhancement was obvious for inclination angles other than 90°, however, this effect was more obvious in 5° and 20° in some operating conditions. It was also concluded that the effect of inclination on heat transfer of water was more considerable in subcritical flow conditions than supercritical ones. Also, it was observed that angle of 20° seems to be the best for subcritical flows from heat transfer point of view, but for supercritical flows 5 or 45 seem to be more advantageous. These differences could be related to different heat transfer mechanisms of subcritical and supercritical flows.

  2. The effects of geometry and adjacent regenerators on shell-and-tube heat exchangers in oscillating flows

    NASA Astrophysics Data System (ADS)

    Brady, John Feurman

    An experimental study into the effects of geometry and the presence of adjacent screens on the acoustic impedances and heat transfer performance of shell-and-tube heat exchangers in oscillating flow was conducted. Measurements of linear and nonlinear acoustic impedances were conducted simultaneously with heat transfer measurements. The results showed that rounded tube-ends produce less nonlinear resistance than flat tube-ends. A stack of screens placed adjacent to an exchanger results in nonlinear resistances that are within 5% of those that result when no adjacent screens are used. The screens also act to reduce the drop in the inertance of the exchanger at higher displacements. The length of the exchanger was found to influence the amount of nonlinear acoustic resistance. Correlations for this effect were found, but the cause is unknown. Heat transfer measurements showed that the aspect ratio of the exchanger tubes (the ratio of length to diameter) is an important parameter in predicting heat transfer. The presence of adjacent screens increases this effect. Correlations including these effects were found. It was found that when screens were placed adjacent to an exchanger, the heat transfer effectiveness dropped by as much as 20%. Likewise, when the ends of the exchanger tubes were rounded (instead of flat) effectiveness dropped by as much as 25% again. Sudden increases in effectiveness were observed at higher frequencies and displacements. It was found that these increases correspond to the onset of turbulent bursts during velocity peaks. Application of the Chilton and Colburn-J Factor analogy to oscillating flows was also investigated. It was found that at higher friction factors the analogy did not hold. Some agreement may exist at lower friction factors; however, there is insufficient data within this range to derive reliable correlations. Comparisons between measurements and the heat exchanger model in the TX segment of the DeltaEC software package were made

  3. Single tube, six-color flow cytometric analysis is a sensitive and cost-effective technique for assaying clonal plasma cells.

    PubMed

    Marsee, Derek K; Li, Betty; Dorfman, David M

    2010-05-01

    Bone marrow flow cytometric analysis is a powerful and rapid tool for evaluating plasma cell myeloma. By using a noncontrolled patient population in various stages of diagnosis and treatment, we compared 6-color (single-tube) and 4-color (multiple-tube) flow cytometric immunophenotyping protocols. Prospective comparison in 52 cases demonstrated improved ability to detect clonal plasma cells or identical diagnoses in 100% of the cases using 6-color, single-tube analysis. In cases in which 6-color flow cytometric analysis improved detection of a clonal population, concurrent biopsy showed less than 5% involvement by plasma cell myeloma, suggesting that 6-color flow cytometry has an advantage in patients with a low disease burden. In addition, the simplification of the procedure resulted in substantial savings in technologist time and reagent costs. Taken together, this study demonstrates that 6-color flow cytometry is an excellent, cost-effective means to assay for clonal plasma cells in a noncontrolled patient population.

  4. Detection and quantification of chemical warfare agent precursors and surrogates by selected ion flow tube mass spectrometry.

    PubMed

    Francis, Gregory J; Milligan, Daniel B; McEwan, Murray J

    2009-11-01

    The rate coefficients and branching ratios of 15 chemical warfare agent precursor and surrogate compounds reacting with H(3)O(+), NO(+), and O(2)(+) have been measured in the laboratory using the selected ion flow tube (SIFT) technique. Measurement of the relevant kinetic parameters for these agents has enabled quantitative monitoring using the SIFT-MS analytical technique. Thirteen of the 15 compounds studied were found to have real-time detection limits in the parts-per-trillion-by-volume concentration range when measured on a standard commercial Voice100 instrument, with specific compounds having detection limits below 100 parts-per-trillion-by-volume.

  5. Combined effect of couple stresses and heat and mass transfer on peristaltic flow with slip conditions in a tube.

    PubMed

    Sobh, Ayman M

    2013-10-01

    In this article, the influence of heat and mass transfer on peristaltic transport of a couple stress fluid in a uniform tube with slip conditions on the wall is studied. The problem can model the blood flow in living creatures. Under long wavelength approximation and zero Reynolds number, exact solutions for the axial velocity component, pressure gradient, and both temperature and concentration fields are derived. The pressure rise is computed numerically and explained graphically. Moreover, effects of various physical parameters of the problem on temperature distribution, concentration field, and trapping are studied and discussed graphically.

  6. Copper oxide nanoparticles analysis with water as base fluid for peristaltic flow in permeable tube with heat transfer.

    PubMed

    Akbar, Noreen Sher; Raza, M; Ellahi, R

    2016-07-01

    The peristaltic flow of a copper oxide water fluid investigates the effects of heat generation and magnetic field in permeable tube is studied. The mathematical formulation is presented, the resulting equations are solved exactly. The obtained expressions for pressure gradient, pressure rise, temperature, velocity profile are described through graphs for various pertinent parameters. It is found that pressure gradient is reduce with enhancement of particle concentration and velocity profile is upturn, beside it is observed that temperature increases as more volume fraction of copper oxide. The streamlines are drawn for some physical quantities to discuss the trapping phenomenon.

  7. Measurement and prediction of two-phase flow patterns for new refrigerants inside horizontal tubes

    SciTech Connect

    Kattan, N.; Favrat, D.; Thome, J.R.

    1995-12-31

    Two-phase flow pattern data were obtained with 12-mm-bore sight glasses for five refrigerants: R-123, R-134a, R-502, R-402A, and R-404A. The existing flow pattern maps of Taitel and Dukler (1976) and Hashizume (1983) poorly represented the data, while, with the exception of mist flows, the VDI map identified the flow patterns successfully. Methods used in horizontal flow boiling correlations to determine the threshold between all wet wall and partially wet wall flows were shown to be unreliable.

  8. Theoretical and experimental studies of churn flow in vertical tubes. Final technical report

    SciTech Connect

    Not Available

    1986-01-27

    The pattern known as churn flow is a highly unsteady pattern with stochastic features and is extremely complex. However, calculations show that for many geothermal wells the condition of churn flow consists over much of the length of the two phase zone. Furthermore, it frequently exists at the surface so that design of separation equipment and surface piping depends on the accurate modelling of this type of flow. It has been the long term purpose of this project to develop physically based models for churn flow which can be used as a basis for predicting holdup, frictional loss and heat transfer rates for this flow pattern in geothermal systems. To achieve this end, it was necessary to develop new methods for measuring the time dependent characteristics of the flow and thus be able to uncover the basic physics of the flow. Models can then be developed based on this understanding which characterizes the flow and equations for holdup, friction and heat transfer evolved.

  9. Performance of High Flow Rate Personal Respirable Samplers When Challenged with Mineral Aerosols of Different Particle Size Distributions

    PubMed Central

    Stacey, Peter; Thorpe, Andrew; Echt, Alan

    2016-01-01

    It is thought that the performance of respirable samplers may vary when exposed to dust aerosols with different particle sizes and wind speeds. This study investigated the performance of the GK 4.16 (RASCAL), GK 2.69, PPI 8, and FSP 10, high flow rate personal samplers when exposed to aerosols of mineral dust in a wind tunnel at two different wind speeds (1 and 2 m s−1) and orientations (towards and side-on to the source of emission). The mass median aerodynamic diameter of four aerosolized test dusts ranged from 8 to 25 µm with geometric standard deviations from 1.6 to 2 µm. The performance of each sampler type was compared with that of the SIMPEDS (Higgins–Dewell design) sampler. There was slight evidence to suggest that the performance of the FSP 10 is affected by the direction of the inlet relative to the air flow, although this was not significant when most respirable dust concentrations were compared, possibly due to the variability of paired dust concentration results. The GK 2.69, RASCAL, and PPI 8 samplers had similar performances, although the results when side-on to the emission source were generally slightly lower than the SIMPEDS. Despite slight differences between respirable dust concentrations the respirable crystalline silica values were not significantly different from the SIMPEDS. The GK family of cyclones obtained most precise results and more closely matched the SIMPEDS. A comparison with dust concentration results from previous calm air chamber studies (where wind speeds were < 0.4 m s−1) found that the relative performance between samplers was similar to those observed in this work indicating consistent performance relative to the SIMPEDS in both calm and moving air. PMID:26865560

  10. Define and Quantify the Physics of Air Flow, Pressure Drop and Aerosol Collection in Nuclear Grade HEPA Filters

    SciTech Connect

    Moore, Murray E.

    2015-02-23

    Objective: Develop a set of peer-review and verified analytical methods to adjust HEPA filter performance to different flow rates, temperatures and altitudes. Experimental testing will measure HEPA filter flow rate, pressure drop and efficiency to verify the analytical approach. Nuclear facilities utilize HEPA (High Efficiency Particulate Air) filters to purify air flow for workspace ventilation. However, the ASME AG-1 technical standard (Code on Nuclear Air and Gas Treatment) does not adequately describe air flow measurement units for HEPA filter systems. Specifically, the AG-1 standard does not differentiate between volumetric air flow in ACFM (actual cubic feet per minute)compared to mass flow measured in SCFM (standard cubic feet per minute). More importantly, the AG-1 standard has an overall deficiency for using HEPA filter devices at different air flow rates, temperatures, and altitudes. Technical Approach: The collection efficiency and pressure drops of 18 different HEPA filters will be measured over a range of flow rates, temperatures and altitudes. The experimental results will be compared to analytical scoping calculations. Three manufacturers have allocated six HEPA filters each for this effort. The 18 filters will be tested at two different flow rates, two different temperatures and two different altitudes. The 36 total tests will be conducted at two different facilities: the ATI Test facilities (Baltimore MD) and the Los Alamos National Laboratory (Los Alamos NM). The Radiation Protection RP-SVS group at Los Alamos has an aerosol wind tunnel that was originally designed to evaluate small air samplers. In 2010, modifications were started to convert the wind tunnel for HEPA filter testing. (Extensive changes were necessary for the required aerosol generators, HEPA test fixtures, temperature control devices and measurement capabilities.) To this date, none of these modification activities have been funded through a specific DOE or NNSA program. This is

  11. The effect of residence time on the dynamics of a condensating aerosol in a Hiemenz-type stagnation flow

    NASA Astrophysics Data System (ADS)

    Alshaarawi, Amjad; Zhou, Kun; Scribano, Gianfranco; Attili, Antonio; Bisetti, Fabrizio; Clean Combustion Research Center Team

    2013-11-01

    The effect of residence time on the formation and growth of a condensating aerosol is simulated in a Hiemenz-type stagnation flow setup, for which a unique and well-defined time scale characterizes the velocity field. In this configuration, a hot stream saturated with dibutyle phthalate (DBP) vapor mixes with a cold dry stream. A mixing layer forms at the stagnation plane triggering supersaturation and droplets are generated by homogeneous nucleation. Aerosol dynamics are simulated using the Quadrature Method of Moments (QMOM). Two regimes related to the flow residence time are observed, i.e., a nucleation regime and a condensation regime. The nucleation regime, at short residence times, is characterized by the consumption of DBP vapor into droplets having a negligible effect on the vapor phase. In this regime, both the number density and volume fraction of droplets increase with residence time. In the condensation regime, at long residence times, vapor condensation consumes the vapor phase considerably. For longer residence times, more vapor is consumed, resulting in lower number densities due to the lower nucleation rates, whereas the volume fraction saturates.

  12. Chronic air-flow limitation does not increase respiratory epithelial permeability assessed by aerosolized solute, but smoking does

    SciTech Connect

    Huchon, G.J.; Russell, J.A.; Barritault, L.G.; Lipavsky, A.; Murray, J.F.

    1984-09-01

    To determine the separate influences of smoking and severe air-flow limitation on aerosol deposition and respiratory epithelial permeability, we studied 26 normal nonsmokers, 12 smokers without airway obstruction, 12 nonsmokers with chronic obstructive pulmonary disease (COPD), and 11 smokers with COPD. We aerosolized 99mTc-labeled diethylene triamine pentaacetic acid to particles approximately 1 micron activity median aerodynamic diameter. Levels of radioactivity were plotted semilogarithmically against time to calculate clearance as percent per minute. The distribution of radioactivity was homogeneous in control subjects and in smokers, but patchy in both groups with COPD. No difference was found between clearances of the control group (1.18 +/- 0.31% min-1), and nonsmoker COPD group (1.37 +/- 0.82% min-1), whereas values in smokers without COPD (4.00 +/- 1.70% min-1) and smokers with COPD (3.62 +/- 2.88% min-1) were significantly greater than in both nonsmoking groups. We conclude that (1) small particles appear to deposit peripherally, even with severe COPD; (2) respiratory epithelial permeability is normal in nonsmokers with COPD; (3) smoking increases permeability by a mechanism unrelated to air-flow limitation.

  13. Numerical investigation on boiling flow of liquid nitrogen in a vertical tube using bubble number density approach

    NASA Astrophysics Data System (ADS)

    Shao, Xuefeng; Li, Xiangdong; Wang, Rongshun

    2016-04-01

    An average bubble number density (ABND) model was formulated and numerically resolved for the subcooled flow boiling of liquid nitrogen. The effects of bubble coalescence and breakup were taken into account. Some new closure correlations describing bubble nucleation and departure on the heating surface were selected as well. For the purpose of comparison, flow boiling of liquid nitrogen was also numerically simulated using a modified two-fluid model. The results show that the simulations performed by using the ABND model achieve encouraging improvement in accuracy in predicting heat flux and wall temperature of a vertical tube. Moreover, the influence of the bubble coalescence and breakup is shown to be great on predicting overall pressure beyond the transition point.

  14. Enhancement of heat transfer and entropy generation analysis of nanofluids turbulent convection flow in square section tubes

    PubMed Central

    2011-01-01

    In this article, developing turbulent forced convection flow of a water-Al2O3 nanofluid in a square tube, subjected to constant and uniform wall heat flux, is numerically investigated. The mixture model is employed to simulate the nanofluid flow and the investigation is accomplished for particles size equal to 38 nm. An entropy generation analysis is also proposed in order to find the optimal working condition for the given geometry under given boundary conditions. A simple analytical procedure is proposed to evaluate the entropy generation and its results are compared with the numerical calculations, showing a very good agreement. A comparison of the resulting Nusselt numbers with experimental correlations available in literature is accomplished. To minimize entropy generation, the optimal Reynolds number is determined. PMID:21711785

  15. Asymptotic theory of two-phase gas-solid flow through a vertical tube at moderate pressure gradient

    NASA Astrophysics Data System (ADS)

    Sergeev, Y. A.; Zhurov, A. I.

    1997-02-01

    Based on the equations, constitutive relations and boundary conditions of the kinetic theory of colliding particles in a gas-solid suspension, the approximate theory of the steady, developed vertical flow of a gas-particulate mixture is developed for the case of moderate gas pressure gradient in a vertical tube. The basic equations and boundary conditions show a singular behaviour of the solution of the problem at the wall. The method of matched asymptotic expansions is applied to develop a boundary layer-type theory for the flow parameters of the particulate phase. The basic equations in the bulk flow are reduced to a system of two ordinary integrodifferential equations for the particle-phase concentration and mean kinetic energy of particle velocity fluctuations (particle-phase pseudotemperature). The distributions of the particle concentration and velocity are found in both the bulk and the boundary layer. The solutions shows the bifurcation of flow parameters, and an explicit criterion is derived to identify a range of the given macroscopic parameters corresponding to upward or downward particulate flow. The integrated parameters (total fluxes of the gas and particle phase) are calculated.

  16. Yielding and flow of solutions of thermoresponsive surfactant tubes: tuning macroscopic rheology by supramolecular assemblies.

    PubMed

    Fameau, Anne-Laure; Saint-Jalmes, Arnaud

    2014-05-28

    In this article, we show that stimuli-induced microscopic transformations of self-assembled surfactant structures can be used to tune the macroscopic bulk and interfacial rheological properties. Previously, we had described the formation of micron-sized 12-hydroxystearic acid tubes having a temperature-tunable diameter in the bulk, and also adsorbing at the air-water interface. We report now a detailed study of the bulk and interfacial rheological properties of this solution of thermoresponsive tubes as a function of temperature. In the bulk, the structural modifications of tubes with temperature lead to sharp and non-monotonous changes of rheological behavior. As well, at the air-water interface, the interfacial layer is shifted several times from rigid-like to fluid-like as the temperature is increased, due to morphological changes of the adsorbed interfacial layer. The temperature-induced variations in the fatty acid supramolecular organization and the richness in structural transitions at this microscopic level lead to unique rheological responses in comparison with conventional surfactant systems. Also, this study provides new insights into the required packing conditions for the jamming of anisotropic soft objects and highlights the fact that this system becomes glassy under heating. Due to these unique macroscopic properties both in the bulk and at the interface, this simple system with stimuli-responsive viscoelasticity is of interest for their potential applications in pharmacology or cosmetic formulations.

  17. Secondary Organic Aerosol Formation and Aging in a Flow Reactor in the Forested Southeast US during SOAS

    NASA Astrophysics Data System (ADS)

    Hu, W.; Palm, B. B.; Hacker, L.; Campuzano Jost, P.; Day, D. A.; Simoes de Sa, S.; Fry, J.; Ayres, B. R.; Draper, D. C.; Ortega, A. M.; Kiendler-Scharr, A.; Panujoka, A.; Virtanen, A.; Miettinen, P.; Krechmer, J.; Canagaratna, M. R.; Thompson, S.; Yatavelli, L. R.; Stark, H.; Worsnop, D. R.; Lechner, M.; Martin, S. T.; Farmer, D.; Brown, S. S.; Jimenez, J. L.

    2013-12-01

    A major field campaign (Southern Oxidant and Aerosol Study, SOAS) was conducted in summer 2013 in a forested area (Centreville Supersite) in the southeast U.S. To investigate secondary organic aerosol (SOA) formation from biogenic volatile organic compounds (BVOCs), 3 flow reactors (potential aerosol mass, PAM) were used to expose ambient air to oxidants and their output was analyzed by state-of-art gas and aerosol instruments including a High-Resolution Aerosol Mass Spectrometer (HR-AMS), a High-Resolution Proton-Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-TOFMS), and for the first time, two different High-Resolution Time-of-Flight Chemical Ionization Mass Spectrometers (HRToF-CIMS), and an SMPS. Ambient air was exposed 24/7 to variable concentrations of each of the 3 main atmospheric oxidants (OH, O3 and NO3) to investigate SOA formation and aging. The OH exposure was estimated by 3 different methods (empirical parameterization, carbon monoxide consumption, and chemical box model). Effective OH exposures up to 7e12 molec cm-3 s were achieved, which is equivalent to over a month of aging in the atmosphere. High SOA formation of up to 12 μg m-3 above ambient concentrations of 5 μg m-3 was observed under intermediate OH exposures, while very high OH exposures led to destruction of ambient OA by ≈ 30%, indicating shifting contributions of functionalization vs. fragmentation, which is similar to previous results from urban and terpene-dominated environments. The highest SOA enhancements were 3-4 times higher than the ambient OA. More SOA is typically formed during nighttime when terpenes are higher and lower during daytime when isoprene is higher. SOA formation is also observed after exposure of ambient air to O3 or NO3, although the amount and oxidation was lower than for OH exposure. Formation of organic nitrates in the NO3 reaction will be discussed. High SOA formation (above 40 μg m-3) and a large number of CIMS ions, indicating many different

  18. Coupling an electrospray source and a solids probe/chemical ionization source to a selected ion flow tube apparatus

    SciTech Connect

    Melko, Joshua J.; Ard, Shaun G.; Shuman, Nicholas S.; Viggiano, Albert A.; Pedder, Randall E.; Taormina, Christopher R.

    2015-08-15

    A new ion source region has been constructed and attached to a variable temperature selected ion flow tube. The source features the capabilities of electron impact, chemical ionization, a solids probe, and electrospray ionization. The performance of the instrument is demonstrated through a series of reactions from ions created in each of the new source regions. The chemical ionization source is able to create H{sub 3}O{sup +}, but not as efficiently as similar sources with larger apertures. The ability of this source to support a solids probe, however, greatly expands our capabilities. A variety of rhenium cations and dications are created from the solids probe in sufficient abundance to study in the flow tube. The reaction of Re{sup +} with O{sub 2} proceeds with a rate constant that agrees with the literature measurements, while the reaction of Re{sub 2}{sup 2+} is found to charge transfer with O{sub 2} at about 60% of the collision rate; we have also performed calculations that support the charge transfer pathway. The electrospray source is used to create Ba{sup +}, which is reacted with N{sub 2}O to create BaO{sup +}, and we find a rate constant that agrees with the literature.

  19. A Study of the Flow Patterns of Expanding Impurity Aerosol Following a Disruption Event in a Fusion Reactor

    NASA Astrophysics Data System (ADS)

    Majumdar, Rudrodip

    The current study focuses on the adiabatic expansion of aerosol impurity in the post-disruption and thermal quench scenario inside the vacuum chamber of a fusion reactor. A pulsed electrothermal plasma (ET) capillary source has been used as a source term simulating the surface ablation of the divertor or other interior critical components of a tokamak fusion reactor under hard disruption-like conditions. The capillary source generates particulates from wall evaporation by depositing transient radiant high heat flux onto the inner liner of the capillary. The particulates form a plasma jet moving towards the capillary exit at high speed and high pressure. The first chapter discusses briefly the relevance of the study pertaining to the impurities in a fusion reactor based on the work available in the form of published literature. The second chapter discusses briefly the operating principle of a pulsed electrothermal plasma source (PEPS), the virtual integration of PEPS with 1-D electrothermal plasma flow solver ETFLOW and the use of capillary plasma sources in various industrial applications. The third chapter discusses about primitive computational work, backed by the data from actual electrothermal source experiments from the in-house facility "PIPE" (Plasma Interactions with Propellants Experiment), that shows the supersonic bulk flow patterns for the temperature, density, pressure, bulk velocity and the flow Mach number of the impurity particulates as they get ejected as a high-pressure, high-temperature and hyper-velocity jet from the simulated source term. It also shows the uniform steady-state subsonic expansion of bulk aerosol inside the expansion chamber. The fourth chapter discusses scaling laws in 1-D for the aforesaid bulk plasma parameters for ranges of axial length traversed by the flow, so that one can retrieve the flow parameters at some preferred locations. The fifth chapter discusses the effect of temperature and the non--linearity of the adiabatic

  20. Characterizing pressure issues due to turbulent flow in tubing, in ultra-fast chiral supercritical fluid chromatography at up to 580bar.

    PubMed

    Berger, Terry A

    2016-12-02

    It has been widely suggested that the outlet pressure be changed to maintain constant density ("isopycnic" conditions) when comparing the kinetic performance of different columns in supercritical fluid chromatography (SFC). However, at high flow rates, flow in the tubing is turbulent, causing large extra-column pressure drops that limit options for changing outlet pressure. Some of these pressure drops occur before and some after the column, obscuring the actual column inlet and outlet pressures. In this work, a 4.6×100mm, 1.8μm R,R-Whelk-O1 column was used with low dispersion LD (120μm) plumbing to generate sub-1min chiral separations. However, the optimum, or near optimum, flow rate was 5mL-min(-1), producing a system pressure of 580bar (with 40% methanol, outlet pressure 120bar). Both the flow rate and pump pressure required were near the limits of the instrument, and significantly exceeded the capability of many other SFC's. Extra-column pressure drops (ΔPec) were as high as 200bar, caused mostly by turbulent flow in the tubing. The ΔPec increased by more than the square of the flow rate. Reynolds Numbers (Re) were calculated for tubing as a function of flow rate between 100 and 400bar and 5-20% methanol in CO2, and 40°-60°C. This represents the most extensive analysis of turbulence in tubing in the SFC literature. Flow in 120μm ID tubing was calculated to be laminar below 1.0mL-min(-1), mostly transitional up to 2.5mL-min(-1) and virtually always turbulent at 3mL-min(-1) and higher. Flow in 170μm tubing is turbulent at lower flows but generates half the ΔPec due to the lower mobile phase linear velocity. The results suggest that, while sub-minute chromatograms are easily generated, 4.6mm columns are not very user friendly for use with sub-2μm packings. The high flow rates required just to reach optimum result in high ΔPec generated by the tubing, causing uncertainty in the true column inlet, outlet, and average column pressure/density. When

  1. A direct method for e-cigarette aerosol sample collection.

    PubMed

    Olmedo, Pablo; Navas-Acien, Ana; Hess, Catherine; Jarmul, Stephanie; Rule, Ana

    2016-08-01

    E-cigarette use is increasing in populations around the world. Recent evidence has shown that the aerosol produced by e-cigarettes can contain a variety of toxicants. Published studies characterizing toxicants in e-cigarette aerosol have relied on filters, impingers or sorbent tubes, which are methods that require diluting or extracting the sample in a solution during collection. We have developed a collection system that directly condenses e-cigarette aerosol samples for chemical and toxicological analyses. The collection system consists of several cut pipette tips connected with short pieces of tubing. The pipette tip-based collection system can be connected to a peristaltic pump, a vacuum pump, or directly to an e-cigarette user for the e-cigarette aerosol to flow through the system. The pipette tip-based system condenses the aerosol produced by the e-cigarette and collects a liquid sample that is ready for analysis without the need of intermediate extraction solutions. We tested a total of 20 e-cigarettes from 5 different brands commercially available in Maryland. The pipette tip-based collection system condensed between 0.23 and 0.53mL of post-vaped e-liquid after 150 puffs. The proposed method is highly adaptable, can be used during field work and in experimental settings, and allows collecting aerosol samples from a wide variety of e-cigarette devices, yielding a condensate of the likely exact substance that is being delivered to the lungs.

  2. Production of Inhalable Submicrometer Aerosols from Conventional Mesh Nebulizers for Improved Respiratory Drug Delivery.

    PubMed

    Longest, P Worth; Spence, Benjamin M; Holbrook, Landon T; Mossi, Karla M; Son, Yoen-Ju; Hindle, Michael

    2012-09-01

    Submicrometer and nanoparticle aerosols may significantly improve the delivery efficiency, dissolution characteristics, and bioavailability of inhaled pharmaceuticals. The objective of this study was to explore the formation of submicrometer and nanometer aerosols from mesh nebulizers suitable for respiratory drug delivery using experiments and computational fluid dynamics (CFD) modeling. Mesh nebulizers were coupled with add-on devices to promote aerosol drying and the formation of submicrometer particles, as well as to control the inhaled aerosol temperature and relative humidity. Cascade impaction experiments were used to determine the initial mass median aerodynamic diameters of 0.1% albuterol aerosols produced by the AeroNeb commercial (4.69 μm) and lab (3.90 μm) nebulizers and to validate the CFD model in terms of droplet evaporation. Through an appropriate selection of flow rates, nebulizers, and model drug concentrations, submicrometer and nanometer aerosols could be formed with the three devices considered. Based on CFD simulations, a wire heated design was shown to overheat the airstream producing unsafe conditions for inhalation if the aerosol was not uniformly distributed in the tube cross-section or if the nebulizer stopped producing droplets. In comparison, a counter-flow heated design provided sufficient thermal energy to produce submicrometer particles, but also automatically limited the maximum aerosol outlet temperature based on the physics of heat transfer. With the counter-flow design, submicrometer aerosols were produced at flow rates of 5, 15, and 30 LPM, which may be suitable for various forms of oral and nasal aerosol delivery. Thermodynamic conditions of the aerosol stream exiting the counter-flow design were found be in a range of 21-45 °C with relative humidity greater than 40% in some cases, which was considered safe for direct inhalation and advantageous for condensational growth delivery.

  3. Production of Inhalable Submicrometer Aerosols from Conventional Mesh Nebulizers for Improved Respiratory Drug Delivery

    PubMed Central

    Longest, P. Worth; Spence, Benjamin M.; Holbrook, Landon T.; Mossi, Karla M.; Son, Yoen-Ju; Hindle, Michael

    2012-01-01

    Submicrometer and nanoparticle aerosols may significantly improve the delivery efficiency, dissolution characteristics, and bioavailability of inhaled pharmaceuticals. The objective of this study was to explore the formation of submicrometer and nanometer aerosols from mesh nebulizers suitable for respiratory drug delivery using experiments and computational fluid dynamics (CFD) modeling. Mesh nebulizers were coupled with add-on devices to promote aerosol drying and the formation of submicrometer particles, as well as to control the inhaled aerosol temperature and relative humidity. Cascade impaction experiments were used to determine the initial mass median aerodynamic diameters of 0.1% albuterol aerosols produced by the AeroNeb commercial (4.69 μm) and lab (3.90 μm) nebulizers and to validate the CFD model in terms of droplet evaporation. Through an appropriate selection of flow rates, nebulizers, and model drug concentrations, submicrometer and nanometer aerosols could be formed with the three devices considered. Based on CFD simulations, a wire heated design was shown to overheat the airstream producing unsafe conditions for inhalation if the aerosol was not uniformly distributed in the tube cross-section or if the nebulizer stopped producing droplets. In comparison, a counter-flow heated design provided sufficient thermal energy to produce submicrometer particles, but also automatically limited the maximum aerosol outlet temperature based on the physics of heat transfer. With the counter-flow design, submicrometer aerosols were produced at flow rates of 5, 15, and 30 LPM, which may be suitable for various forms of oral and nasal aerosol delivery. Thermodynamic conditions of the aerosol stream exiting the counter-flow design were found be in a range of 21-45 °C with relative humidity greater than 40% in some cases, which was considered safe for direct inhalation and advantageous for condensational growth delivery. PMID:22707794

  4. Experimental Investigation of Average Heat-Transfer and Friction Coefficients for Air Flowing in Circular Tubes Having Square-Thread-Type Roughness

    NASA Technical Reports Server (NTRS)

    Sams, E. W.

    1952-01-01

    An investigation of forced-convection heat transfer and associated pressure drops was conducted with air flowing through electrically heated Inconel tubes having various degrees of square-thread-type roughness, an inside diameter of 1/2 inch, and a length of 24 inches. were obtained for tubes having conventional roughness ratios (height of thread/radius of tube) of 0 (smooth tube), 0.016, 0.025, and 0.037 over ranges of bulk Reynolds numbers up to 350,000, average inside-tube-wall temperatures up to 1950deg R, and heat-flux densities up to 115,000 Btu per hour per square foot. Data The experimental data showed that both heat transfer and friction increased with increase in surface roughness, becoming more pronounced with increase in Reynolds number; for a given roughness, both heat transfer and friction were also influenced by the tube wall-to-bulk temperature ratio. Good correlation of the heat-transfer data for all the tubes investigated was obtained by use of a modification of the conventional Nusselt correlation parameters wherein the mass velocity in the Reynolds number was replaced by the product of air density evaluated at the average film temperature and the so-called friction velocity; in addition, the physical properties of air were evaluated at the average film temperature. The isothermal friction data for the rough tubes, when plotted in the conventional manner, resulted in curves similar to those obtained by other investigators; that is, the curve for a given roughness breaks away from the Blasius line (representing turbulent flow in smooth tubes) at some value of Reynolds number, which decreases with increase in surface roughness, and then becomes a horizontal line (friction coefficient independent of Reynolds number). A comparison of the friction data for the rough tubes used herein indicated that the conventional roughness ratio is not an adequate measure of relative roughness for tubes having a square-thread-type element. The present data, as well

  5. Enhancement of critical heat flux for subcooled flow boiling of water in tubes with a twisted tape and with a helically coiled wire

    SciTech Connect

    Kabata, Y.; Nakajima, R.; Shioda, K.

    1996-08-01

    This paper reports results of an experimental investigation for critical heat flux (CHF) up to 30 MW/m{sup 2} in subcooled flow boiling of water in tubes with a twisted tape and with a helically coiled wire. Experiments were carried out using uniformly heated horizontal tubes with inner diameters of 8 and 12 mm, and with a heated length of 50 mm. Although the CHF of tubes with and without the twisted tape depends on velocity and exit subcooling of water, no observable influence of the tube diameter is detected. As for the CHF enhancement ratio of the tubes with the tape, it is at least 40% higher than the case without the tape, and increases as the exit water subcooling decreases. In the case of the helically coiled wire, the CHF increases as the wire diameter becomes larger and as the coil pitch smaller. The increase of the CHF by the coil, which is the wire diameter of 1.0 mm and the coil pitch of 12 mm, is higher than that by the twisted tape. The CHF model for the smooth tube developed by Celata et al. was applied to the swirl tube by modifying for the calculation of the friction factor, and the radial temperature and velocity distribution in the liquid. Prediction using the modified Celata model accounts for almost all available experimental data for the swirl tube within {+-}25%. This study is relevant for the development of fusion reactors.

  6. Co- and counter-current spontaneous imbibition into groups of capillary tubes with lateral connections permitting cross-flow.

    PubMed

    Unsal, E; Mason, G; Ruth, D W; Morrow, N R

    2007-11-01

    A model for co- and counter-current imbibition through independent capillaries has already been developed and experiments conducted to verify the theory [E. Unsal, G. Mason, N.R. Morrow, D.W. Ruth, J. Colloid Interface Sci. 306 (2007) 105]. In this paper, the work is extended to capillaries which are connected laterally and in which cross-flow can take place. The fundamental pore geometry is a rod in an angled round-bottomed slot with a gap between the rod and a capping glass plate. The surfaces of the slot, rod and plate form capillaries and interconnecting passages which have non-axisymmetric cross-sections. Depending on the gap size either (i) a large single meniscus, (ii) two menisci one on each side of the rod, or (iii) three menisci, one between the rod and the glass additional to the ones on each side can be formed. A viscous refined oil was applied to one end of the capillaries and co-current and counter-current spontaneous imbibition experiments were performed. The opposite end was left open to the atmosphere for co-current experiments. When the gap between the rod and the plate was large, the imbibing oil advanced into the tubes with the meniscus in the largest capillary always lagging behind the two menisci in the other two smaller capillaries. For counter-current imbibition experiments the open end was sealed and connected to a sensitive pressure transducer. In some experiments, the oil imbibed into the smaller capillaries and expelled air as a series of bubbles from the end of the largest capillary. In other experiments, the oil was allowed to imbibe part way into the tubes before counter-current imbibition was started. The meniscus curvatures of the capillaries have been calculated using the Mayer and Stowe-Princen method for different cell slot angles and gap sizes using a value of zero for the contact angle. These values have been compared with actual values by measuring the capillary rise in the tubes; agreement was very close. A model for co

  7. Investigation on internal flow of draft tube at overload condition in low specific speed Francis turbine

    NASA Astrophysics Data System (ADS)

    Tamura, Yuta; Tani, Kiyohito

    2016-11-01

    The cavitating vortices causes the unsteady phenomena like the pressure fluctuation, the noise and the vibration in the draft tube at the overload condition which is the far operating point from the design point. Because the full load was normally near the design point, there were few troubles due to cavitating vortices at the full load. Today, however, the design point is sometimes set to lower load to achieve the high efficiency from the partial load to the full load in low specific speed Francis turbines, which have good performance to a change in a discharge. Then, the full load is relatively further from the design point. As the result, the potential for the cavitating vortices at the full load is increased. To control of the unsteady phenomena at the full load, the study focused on the cavitating vortices at the overload condition is important. This paper presents the unsteady behavior of the cavitating vortices at the overload condition with the scaled model of specific speed NQE=0.083. On the experimental approach, the pressure pulsation in the upper draft tube was measured and the unsteady behavior of cavitating vortices was taken movies with a high speed camera. On the numerical approach, Computational Fluid Dynamics (CFD) adopting a two-phase unsteady analysis was carried out. The pressure fluctuation and the velocity distribution of two runners, an original and a newly designed, were compared.

  8. Studies on fluid dynamics of the flow field and gas transfer in orbitally shaken tubes.

    PubMed

    Zhu, Li-Kuan; Song, Bo-Yan; Wang, Zhen-Long; Monteil, Dominique T; Shen, Xiao; Hacker, David L; De Jesus, Maria; Wurm, Florian M

    2017-01-01

    Orbitally shaken cylindrical bioreactors [OrbShake bioreactors (OSRs)] without an impeller or sparger are increasingly being used for the suspension cultivation of mammalian cells. Among small volume OSRs, 50-mL tubes with a ventilated cap (OSR50), originally derived from standard laboratory centrifuge tubes with a conical bottom, have found many applications including high-throughput screening for the optimization of cell cultivation conditions. To better understand the fluid dynamics and gas transfer rates at the liquid surface in OSR50, we established a three-dimensional simulation model of the unsteady liquid forms (waves) in this vessel. The studies verified that the operating conditions have a large effect on the interfacial surface. The volumetric mass transfer coefficient (kL a) was determined experimentally and from simulations under various working conditions. We also determined the liquid-phase mass transfer coefficient (kL ) and the specific interfacial area (a) under different conditions to demonstrate that the value of a affected the gas transfer rate more than did the value of kL . High oxygen transfer rates, sufficient for supporting the high-density culture of mammalian cells, were found. Finally, the average axial velocity of the liquid was identified to be an important parameter for maintaining cells in suspension. Overall these studies provide valuable insights into the preferable operating conditions for the OSR50, such as those needed for cell cultures requiring high oxygen levels. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:192-200, 2017.

  9. T91 cladding tubes with and without modified FeCrAlY coatings exposed in LBE at different flow, stress and temperature conditions

    NASA Astrophysics Data System (ADS)

    Weisenburger, A.; Heinzel, A.; Müller, G.; Muscher, H.; Rousanov, A.

    2008-06-01

    Corrosion tests of 2000 h duration are conducted on tubes consisting of the steel T91 in liquid metal loops containing eutectic lead-bismuth melt with 10 -6 wt% oxygen in solution. The experiments include tests at temperatures of 480-600° C, at liquid metal flow velocities of 1, 2 and 3 m/s and under mechanical stress due to an internal pressure of 15 MPa. The surface of tubes exposed to 600 °C and to different flow velocities are coated with a FeCrAlY alloy to examine its suitability as a protective coating for high loaded parts like cladding tubes. The coating was remelted by an electron pulse of GESA to homogenize the coating and improve its bonding to the bulk material. In all of the tests no liquid metal attack was observed. As received steel specimens developed multilayer oxide scales of a thickness increasing with temperature and internal pressure, while coated tubes had a thin protective alumina scale. Flow velocities above 2 m/s permanently removed formed magnetite at 550 °C. No influence of the flow velocity was observed for the coated surfaces which keep their stable thin alumina scale. The internal pressure of 15 MPa caused a strain of 0.7% in the tube wall, which obviously increases iron diffusion and enhances magnetite formation.

  10. Magnetic field effect on blood flow of Casson fluid in axisymmetric cylindrical tube: A fractional model

    NASA Astrophysics Data System (ADS)

    Ali, Farhad; Sheikh, Nadeem Ahmad; Khan, Ilyas; Saqib, Muhammad

    2017-02-01

    The effects of magnetohydrodynamics on the blood flow when blood is represented as a Casson fluid, along with magnetic particles in a horizontal cylinder is studied. The flow is due to an oscillating pressure gradient. The Laplace and finite Hankel transforms are used to obtain the closed form solutions of the fractional partial differential equations. Effects of various parameters on the flow of both blood and magnetic particles are shown graphically. The analysis shows that, the model with fractional order derivatives bring a remarkable changes as compared to the ordinary model. The study highlights that applied magnetic field reduces the velocities of both the blood and magnetic particles.

  11. Uptake of HO2 Radicals Onto Dust Aerosols

    NASA Astrophysics Data System (ADS)

    Matthews, P. S.; Whalley, L. K.; Baeza-Romero, M. T.; Heard, D. E.

    2013-12-01

    OH and HO2 radicals play an important role in the troposphere by controlling its oxidative capacity and therefore the concentration of many trace species. Several field studies have observed significantly lower concentrations of HO2 radicals than predicted using box models (1,2). HO2 loss onto aerosols has been suggested as a possible sink. Mineral dust has an estimated annual flux of 2000 Tg year-1 (3). However, there has only been one study of HO2 uptake onto Arizona Test Dust (ATD) surfaces (4) and there are currently no published studies for dust aerosols. Therefore, the aim of this study was to measure the HO2 uptake coefficient onto ATD aerosols over a range of humidities and for different HO2 concentrations, as well as investigating the uptake as a function of the exposure time to the aerosol, for which a dependence had been observed for aqueous salt aerosols (5). Uptake coefficients were measured for ATD aerosols at atmospheric pressure and at 291 K using a Fluorescence Assay by Gas Expansion (FAGE) detector combined with a flow tube. HO2 was formed from the photolysis of water vapour and was injected into the flow tube using a moveable injector, which was placed in six different positions along the flow tube. The non stable aerosol output was produced by stirring ATD in a bottle producing a dust cloud which was entrained into a flow. The aerosol number concentration was measured using a Condensation Particle Counter (CPC) and was converted into a surface area using the average radius of one aerosol. The uptake coefficient was then able to be calculated by assuming first order kinetics. The HO2 uptake coefficient was measured at a relative humidity of between 6 and 75% and at initial HO2 concentrations of ~ 0.3 - 1 × 10^9 molecule cm-3. Average uptake coefficients of 0.018 × 0.006 and 0.031 × 0.008 were measured for the higher and lower HO2 concentrations respectively, and the impact investigated using a constrained box model. A time dependence was also

  12. Aerosol flow reactor production of fine Y1Ba2Cu3O7 powder: Fabrication of superconducting ceramics

    NASA Astrophysics Data System (ADS)

    Kodas, T. T.; Engler, E. M.; Lee, V. Y.; Jacowitz, R.; Baum, T. H.; Roche, K.; Parkin, S. S. P.; Young, W. S.; Hughes, S.; Kleder, J.; Auser, W.

    1988-05-01

    An aerosol flow reactor operating at 900-1000 °C is used to prepare high-purity Y1Ba2Cu3O7 powders with a uniform chemical composition and a submicron to micron average particle size by thermally decomposing aerosol droplets of a solution consisting of the nitrate salts of Y, Ba, and Cu in a 1:2:3 ratio. The powders were at least 99% reacted based on thermogravimetric analysis, and the x-ray diffraction pattern is essentially that of Y1Ba2Cu3O7. Magnetic susceptibility measurements showed the powders to be superconducting with a transition at 90 K even for average reactor residence times as short as 20 s. Sintering cold-pressed pellets between 900 and 1000 °C provides dense, fine grained (average size on the order of 1 μm) superconducting ceramics with sharp 90 K transitions. The grain size and shape of a final sintered part could be varied depending on powder production, processing, and sintering conditions.

  13. Experimental investigation of heat transfer and pressure drop of turbulent flow inside tube with inserted helical coils

    NASA Astrophysics Data System (ADS)

    Sharafeldeen, M. A.; Berbish, N. S.; Moawed, M. A.; Ali, R. K.

    2016-08-01

    The heat transfer and pressure drop were experimentally investigated in a coiled wire inserted tube in turbulent flow regime in the range of Reynolds number of 14,400 ≤ Re ≤ 42,900. The present work aims to extend the experimental data available on wire coil inserts to cover wire diameter ratio of 0.044 ≤ e/d ≤ 0.133 and coil pitch ratio of 1 ≤ p/d ≤ 5. Uniform heat flux was applied to the external surface of the tube and air was selected as fluid. The effects of Reynolds number and wire diameter and coil pitch ratios on the Nusselt number and friction factor were studied. The enhancement efficiency and performance criteria ranges are of (46.9-82.6 %) and (100.1-128 %) within the investigated range of the different parameters, respectively. Correlations are obtained for the average Nusselt number and friction factor utilizing the present measurements within the investigated range of geometrical parameters and Re. The maximum deviation between correlated and experimental values for Nusselt number and friction factor are ±5 and ±6 %, respectively.

  14. R1234yf vs. R134a Flow Boiling Heat Transfer Inside a 3.4 mm ID Microfin Tube

    NASA Astrophysics Data System (ADS)

    Diani, A.; Mancin, S.; Rossetto, L.

    2014-11-01

    The refrigerant charge minimization as well as the use of eco-friendly fluids can be considered two of the most important targets for these applications to cope with the new environmental challenges. This paper compares the R1234yf and R134a flow boiling heat transfer and pressure drop measurements inside a small microfin tube with internal diameter at the fin tip of 3.4 mm. This study is carried out in an experimental facility built at the Dipartimento di Ingegneria Industriale of the University of Padova especially designed to study both single and two phase heat transfer processes. The microfin tube is brazed inside a copper plate and electrically heated from the bottom. Several T -type thermocouples are inserted in the wall to measure the temperature distribution during the phase change process. In particular, the experimental measurements were carried out at constant saturation temperature of 30 °C, by varying the refrigerant mass velocity between 190 kg m-2 s-1 and 940 kg m-2 s-1, the vapour quality from 0.2 to 0.99, at different imposed heat fluxes. The two refrigerants are compared considering the values of the two-phase heat transfer coefficient and pressure drop.

  15. Investigations of unsteady flow in the draft tube of the pump- turbine model using laser Doppler anemometry

    NASA Astrophysics Data System (ADS)

    Kaznacheev, A.; Kuznetsov, I.

    2014-03-01

    The measurements and video observation of unsteady flow in the draft tube cone of the pump-turbine model were conducted in the Laboratory of Water Turbines, property of OJSC "Power machines" - "LMZ". The prototype head was about 250 m. The experiments were performed for the turbine mode of operation. Measurements were taken for the unit speed value n11 corresponding to rated head in the generating mode of operation, for a wide range of guide vanes openings at loads ranging from partial to maximum value. The researches of the velocity field in function of the Thoma number were carried out in some operating conditions. The mean values and RMS deviations of the velocity components were the results of laser measurements. The curves of the intensity of the vortex versus the guide vane opening and the Thoma number were plotted. The energy velocity spectra were presented for the points at which the most pronounced frequency precession of the helical axial vortex was observed. Video recording and laser Doppler anemometry were made in the operating conditions of the developed cavitation. Based on the results of video observations and energy spectra obtained via LDA, vortex frequencies were determined i.e. the frequencies of the vortex precession under the runner in the draft tube cone.

  16. Low power acoustic harvesting of aerosols

    SciTech Connect

    Kaduchak, G.; Sinha, D. N.

    2001-01-01

    A new acoustic device for levitation and/or concentration of aerosols and sniall liquid/solid samples (up to several millimeters in diameter) in air has been developed. The device is inexpensive, low-power, and, in its simplest embodiment, does not require accurate alignmen1 of a resonant cavity. It is constructed from a cylindrical PZT tube of outside diameter D = 19.0 mm and thickness-to-radius ratio h/a - 0.03. The lowest-order breathing mode of the tube is tuned to match a resonant mode of the interior air-filled cylindrical cavity. A high Q cavity results that can be driven efficiently. An acoustic standing wave is created in the inteirior cavity of the cylindrical shell where particle concrmtration takes place at the nodal planes of the field. It is shown that drops of water in excess of 1 mm in diameter may be levitated against the force of gravity for approxirnately 100 mW of input electrical power. The main objective of the research is to implement this lowpower device to concentrate and harvest aerosols in a flowing system. Several different cavity geonietries iwe presented for efficient collection of 1 he conaartratetl aerosols. Concentraiion factors greater than 40 iue demonstrated for particles of size 0.7 1.1 in a flow volume of 50 L/minute.

  17. Nonlinear analysis of oscillatory flow in the annulus of an elastic tube: Application to catheterized artery

    NASA Astrophysics Data System (ADS)

    Sarkar, A.; Jayaraman, G.

    2001-10-01

    The changed flow pattern of pulsatile blood flow in an annulus with elastic outer wall has been studied through a mathematical model. The main objective is to apply the model to study the combined effect of introduction of the catheter and elastic properties of the arterial wall on the pulsatile nature of the blood flow. The diameter variation of the wall is considered small for the perturbation analysis to be valid. The steady streaming effect brings into focus the existence of a nonzero mean pressure gradient in addition to the one predicted by the linear theory—a fact overlooked by previous authors. Thus, our results are intended to provide a correction to the "mean pressure gradient-flow rate relationship" usually calculated by neglecting the nonlinear inertia terms. This correction depends on the amplitude of the diameter variation, flow rate wave forms, and the phase difference between them. The calculations based on the geometry and the flow conditions representing a real physiological situation as closely as possible suggest that mean pressure gradient changes with catheter size for any frequency parameter. The results obtained for arbritrary frequency parameter and for small steady streaming Reynolds number, Rst, show that the geometry of the wall plays an important role in the dynamics of the flow even for small catheter radius. The interaction of the amplitude of catheter oscillation and the amplitude of the wall movement is first manifested through the induced mean pressure gradient and induced mean velocity. Further, the results are sensitive to the elastic nature of the wall reflected by the phase difference between the diameter variation and the flow rate. Interesting streamline patterns depict distinct boundary layer characteristics both at artery wall and catheter wall. Depending upon the material properties, a thin catheter experiencing small oscillations due to the flow conditions is likely to have a similar influence to a thicker catheter

  18. Solar thermal decomposition of zinc oxide in aerosol flow for renewable hydrogen production

    NASA Astrophysics Data System (ADS)

    Perkins, Christopher Michael

    Hydrogen could be a clean replacement for fossil fuels. The Zn/ZnO solar thermochemical water-splitting cycle provides a renewable path to this fuel. Thermodynamic simulations showed that the Zn/ZnO cycle has the lowest temperature of all two-step metal oxide cycles, and the prediction of relatively high efficiency based on its lower temperature and number of steps led to its selection for further study. A rapid aerosol configuration for ZnO decomposition was chosen based on expectation of high reaction rates and small product particle production, and proof-of-concept experiments confirmed this assumption. Thermogravimetric studies of the thermal decomposition kinetics of ZnO showed that the rate followed a 2/3 order L'vov kinetic expression. The activation energy was found to be 353 +/- 25.9 kJ/mol, and a simple electrostatic model was used to describe the reaction mechanism. The pre-exponential factor was found, as expected, to vary inversely with the distance to a product concentration sink. Investigation of the aerosol decomposition of ZnO showed high forward conversion (˜60%) but low net yield (18%) of zinc due to recombination of product oxygen with nucleated zinc particles. Products that were initially converted had high surface area (15.5 +/- 0.13 g/m2), small particle size (5-70 nm), and relatively spherical morphology, properties desirable when considering the hydrolysis step of the water-splitting cycle. Rates in the aerosol reactor were found to be three orders of magnitude greater than those in a stationary configuration. Computational fluid dynamics (CFD) simulations of the aerosol reaction showed rapid particle heating and high forward conversion (>90%) in short residence times (<1.5s). Results could be used to scale a commercial size reactor, and the recommended particle size based on conversion and handling considerations was 1 mum. Reactor materials sensitive to oxidation were shown to be inappropriate for application due to high corrosion rates

  19. Heat Transfer Enhancement of Laminar Nanofluids Flow in a Circular Tube Fitted with Parabolic-Cut Twisted Tape Inserts

    PubMed Central

    Salman, Sami D.; Kadhum, Abdul Amir H.; Takriff, Mohd S.; Mohamad, Abu Bakar

    2014-01-01

    Numerical investigation has been carried out on heat transfer and friction factor characteristics of copper-water nanofluid flow in a constant heat-fluxed tube with the existence of new configuration of vortex generator using Computational Fluid Dynamics (CFD) simulation. Two types of swirl flow generator: Classical twisted tape (CTT) and Parabolic-cut twisted tape (PCT) with a different twist ratio (y = 2.93, 3.91 and 4.89) and different cut depth (w = 0.5, 1.0 and 1.5 cm) with 2% and 4% volume concentration of CuO nanofluid were used for simulation. The effect of different parameters such as flow Reynolds number, twist ratio, cut depth and nanofluid were considered. The results show that the enhancement of heat transfer rate and the friction factor induced by the Classical (CTT) and Parabolic-cut (PCT) inserts increases with twist ratio and cut depth decreases. The results also revealed that the heat transfer enhancement increases with an increase in the volume fraction of the CuO nanoparticle. Furthermore, the twisted tape with twist ratio (y = 2.93) and cut depth w = 0.5 cm offered 10% enhancement of the average Nusselt number with significant increases in friction factor than those of Classical twisted tape. PMID:24605055

  20. Heat transfer enhancement of laminar nanofluids flow in a circular tube fitted with parabolic-cut twisted tape inserts.

    PubMed

    Salman, Sami D; Kadhum, Abdul Amir H; Takriff, Mohd S; Mohamad, Abu Bakar

    2014-01-01

    Numerical investigation has been carried out on heat transfer and friction factor characteristics of copper-water nanofluid flow in a constant heat-fluxed tube with the existence of new configuration of vortex generator using Computational Fluid Dynamics (CFD) simulation. Two types of swirl flow generator: Classical twisted tape (CTT) and Parabolic-cut twisted tape (PCT) with a different twist ratio (y = 2.93, 3.91 and 4.89) and different cut depth (w = 0.5, 1.0 and 1.5 cm) with 2% and 4% volume concentration of CuO nanofluid were used for simulation. The effect of different parameters such as flow Reynolds number, twist ratio, cut depth and nanofluid were considered. The results show that the enhancement of heat transfer rate and the friction factor induced by the Classical (CTT) and Parabolic-cut (PCT) inserts increases with twist ratio and cut depth decreases. The results also revealed that the heat transfer enhancement increases with an increase in the volume fraction of the CuO nanoparticle. Furthermore, the twisted tape with twist ratio (y = 2.93) and cut depth w = 0.5 cm offered 10% enhancement of the average Nusselt number with significant increases in friction factor than those of Classical twisted tape.

  1. Synchrotron-based double imaging photoelectron/photoion coincidence spectroscopy of radicals produced in a flow tube: OH and OD

    SciTech Connect

    Garcia, Gustavo A.; Tang, Xiaofeng; Gil, Jean -Francois; Nahon, Laurent; Ward, Michael; Batut, Sebastien; Fittschen, Christa; Taatjes, Craig A.; Osborn, David L.; Loison, Jean -Christophe

    2015-04-23

    In this study, we present a microwave discharge flow tube coupled with a double imaging electron/ion coincidence device and vacuum ultraviolet (VUV) synchrotron radiation. The system has been applied to the study of the photoelectron spectroscopy of the well-known radicals OH and OD. The coincidence imaging scheme provides a high selectivity and yields the spectra of the pure radicals, removing the ever-present contributions from excess reactants, background, or secondary products, and therefore obviating the need for a prior knowledge of all possible byproducts. The photoelectron spectra encompassing the X3Σ ground state of the OH+ and OD+ cations have been extracted and the vibrational constants compared satisfactorily to existing literature values. Future advantages of this approach include measurement of high resolution VUV spectroscopy of radicals, their absolute photoionization cross section, and species/isomer identification in chemical reactions as a function of time.

  2. Synchrotron-based double imaging photoelectron/photoion coincidence spectroscopy of radicals produced in a flow tube: OH and OD

    SciTech Connect

    Garcia, Gustavo A.; Tang, Xiaofeng; Gil, Jean-François; Nahon, Laurent; Ward, Michael; Batut, Sebastien; Fittschen, Christa; Taatjes, Craig A.; Osborn, David L.; Loison, Jean-Christophe

    2015-04-28

    We present a microwave discharge flow tube coupled with a double imaging electron/ion coincidence device and vacuum ultraviolet (VUV) synchrotron radiation. The system has been applied to the study of the photoelectron spectroscopy of the well-known radicals OH and OD. The coincidence imaging scheme provides a high selectivity and yields the spectra of the pure radicals, removing the ever-present contributions from excess reactants, background, or secondary products, and therefore obviating the need for a prior knowledge of all possible byproducts. The photoelectron spectra encompassing the X{sup 3}Σ{sup −} ground state of the OH{sup +} and OD{sup +} cations have been extracted and the vibrational constants compared satisfactorily to existing literature values. Future advantages of this approach include measurement of high resolution VUV spectroscopy of radicals, their absolute photoionization cross section, and species/isomer identification in chemical reactions as a function of time.

  3. Synchrotron-based double imaging photoelectron/photoion coincidence spectroscopy of radicals produced in a flow tube: OH and OD

    DOE PAGES

    Garcia, Gustavo A.; Tang, Xiaofeng; Gil, Jean -Francois; ...

    2015-04-23

    In this study, we present a microwave discharge flow tube coupled with a double imaging electron/ion coincidence device and vacuum ultraviolet (VUV) synchrotron radiation. The system has been applied to the study of the photoelectron spectroscopy of the well-known radicals OH and OD. The coincidence imaging scheme provides a high selectivity and yields the spectra of the pure radicals, removing the ever-present contributions from excess reactants, background, or secondary products, and therefore obviating the need for a prior knowledge of all possible byproducts. The photoelectron spectra encompassing the X3Σ– ground state of the OH+ and OD+ cations have been extractedmore » and the vibrational constants compared satisfactorily to existing literature values. Future advantages of this approach include measurement of high resolution VUV spectroscopy of radicals, their absolute photoionization cross section, and species/isomer identification in chemical reactions as a function of time.« less

  4. MARTINS: A foam/film flow model for molten material relocation in HWRs with U-Al-fueled multi-tube assemblies

    SciTech Connect

    Kalimullah

    1994-03-01

    Some special purpose heavy-water reactors (EM) are made of assemblies consisting of a number of coaxial aluminum-clad U-Al alloy fuel tubes and an outer Al sleeve surrounding the fuel tubes. The heavy water coolant flows in the annular gaps between the circular tubes. Analysis of severe accidents in such reactors requires a model for predicting the behavior of the fuel tubes as they melt and disrupt. This paper describes a detailed, mechanistic model for fuel tube heatup, melting, freezing, and molten material relocation, called MARTINS (Melting and Relocation of Tubes in Nuclear subassembly). The paper presents the modeling of the phenomena in MARTINS, and an application of the model to analysis of a reactivity insertion accident. Some models are being developed to compute gradual downward relocation of molten material at decay-heat power levels via candling along intact tubes, neglecting coolant vapor hydrodynamic forces on molten material. These models are inadequate for high power accident sequences involving significant hydrodynamic forces. These forces are included in MARTINS.

  5. Counter-current flow in a vertical to horizontal tube with obstructions

    SciTech Connect

    Tye, P.; Matuszkiewicz, A.; Teyssedou, A.

    1995-09-01

    This paper presents experimental results on counter-current flow and flooding in an elbow between a vertical and a horizontal run. The experimental technique used allowed not only the flooding limit to be determined, but also the entire partial delivery region to be studied as well. The influence that various size orifices placed in the horizontal run have on both the delivered liquid flow rates and on the flooding limits is also examined. It is observed that both the flooding limits and the delivered liquid flow rates decrease with decreasing orifice size. Further, it is also observed that the mechanisms that govern the partial delivery of the liquid are significantly different when an orifice is present in the horizontal leg as compared to the case when no orifice is present.

  6. Inter-comparison of laboratory smog chamber and flow reactor systems on organic aerosol yield and composition

    NASA Astrophysics Data System (ADS)

    Bruns, E. A.; El Haddad, I.; Keller, A.; Klein, F.; Kumar, N. K.; Pieber, S. M.; Corbin, J. C.; Slowik, J. G.; Brune, W. H.; Baltensperger, U.; Prévôt, A. S. H.

    2015-06-01

    A variety of tools are used to simulate atmospheric aging, including smog chambers and flow reactors. Traditional, large-scale smog chambers age emissions over the course of hours to days, whereas flow reactors rapidly age emissions using high oxidant concentrations to reach higher degrees of oxygenation than typically attained in smog chamber experiments. The atmospheric relevance of the products generated under such rapid oxidation warrants further study. However, no previously published studies have compared the yields and chemical composition of products generated in flow reactors and smog chambers from the same starting mixture. The yields and composition of the organic aerosol formed from the photo-oxidation of α-pinene and of wood-combustion emissions in a smog chamber (SC) and two flow reactors: a potential aerosol mass reactor (PAM) and a micro-smog chamber (MSC), were determined using aerosol mass spectrometry. Reactants were sampled from the SC and aged in the MSC and the PAM using a range of hydroxyl radical (OH) concentrations and then photo-chemically aged in the SC. The chemical composition, as well as the maximum yields and emission factors, of the products in both the α-pinene and wood-combustion systems determined with the PAM and the SC agreed reasonably well. High OH exposures have been shown previously to lower yields by breaking carbon-carbon bonds and forming higher volatility species, which reside largely in the gas phase; however, fragmentation in the PAM was not observed. The yields determined using the PAM for the α-pinene system were slightly lower than in the SC, possibly from increased wall losses of gas phase species due to the higher surface area to volume ratios in the PAM, even when offset with better isolation of the sampled flow from the walls. The α-pinene SOA results for the MSC were not directly comparable, as particles were smaller than the optimal AMS transmission range. The higher supersaturation in the flow reactors

  7. An investigation of a model of the flow pattern transition mechanism in relation to the identification of annular flow of R134a in a vertical tube using various void fraction models and flow regime maps

    SciTech Connect

    Dalkilic, A.S.; Wongwises, S.

    2010-09-15

    In the present study, new experimental data are presented for literature on the prediction of film thickness and identification of flow regime during the co-current downward condensation in a vertical smooth copper tube having an inner diameter of 8.1 mm and a length of 500 mm. R134a and water are used as working fluids in the tube side and annular side of a double tube heat exchanger, respectively. Condensation experiments are done at mass fluxes of 300 and 515 kg m{sup -2} s{sup -1}. The condensing temperatures are between 40 and 50 C; heat fluxes are between 12.65 and 66.61 kW m{sup -2}. The average experimental heat transfer coefficient of the refrigerant HFC-134a is calculated by applying an energy balance based on the energy transferred from the test section. A mathematical model by Barnea et al. based on the momentum balance of liquid and vapor phases is used to determine the condensation film thickness of R134a. The comparative film thickness values are determined indirectly using relevant measured data together with various void fraction models and correlations reported in the open literature. The effects of heat flux, mass flux, and condensation temperature on the film thickness and condensation heat transfer coefficient are also discussed for the laminar and turbulent flow conditions. There is a good agreement between the film thickness results obtained from the theoretical model and those obtained from six of 35 void fraction models in the high mass flux region of R134a. In spite of their different valid conditions, six well-known flow regime maps from the literature are found to be predictive for the annular flow conditions in the test tube in spite of their different operating conditions. (author)

  8. Resonant behaviour of MHD waves on magnetic flux tubes. III - Effect of equilibrium flow

    NASA Technical Reports Server (NTRS)

    Goossens, Marcel; Hollweg, Joseph V.; Sakurai, Takashi

    1992-01-01

    The Hollweg et al. (1990) analysis of MHD surface waves in a stationary equilibrium is extended. The conservation laws and jump conditions at Alfven and slow resonance points obtained by Sakurai et al. (1990) are generalized to include an equilibrium flow, and the assumption that the Eulerian perturbation of total pressure is constant is recovered as the special case of the conservation law for an equilibrium with straight magnetic field lines and flow along the magnetic field lines. It is shown that the conclusions formulated by Hollweg et al. are still valid for the straight cylindrical case. The effect of curvature is examined.

  9. Flow Tube Studies of Gas Phase Chemical Processes of Atmospheric Importance

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.

    1997-01-01

    The objective of this project is to conduct measurements of elementary reaction rate constants and photochemistry parameters for processes of importance in the atmosphere. These measurements are being carried out under temperature and pressure conditions covering those applicable to the stratosphere and upper troposphere, using the chemical ionization mass spectrometry turbulent flow technique developed in our laboratory.

  10. Secondary Organic Aerosol Formation and Aging in a Flow Reactor in the Forested Southeast US during SOAS

    NASA Astrophysics Data System (ADS)

    Hu, W.; Palm, B. B.; Hacker, L.; Campuzano Jost, P.; Day, D. A.; de Sá, S. S.; Ayres, B. R.; Draper, D.; Fry, J.; Ortega, A. M.; Kiendler-Scharr, A.; Pajunoja, A.; Virtanen, A.; Krechmer, J.; Canagaratna, M. R.; Thompson, S.; Yatavelli, R. L. N.; Stark, H.; Worsnop, D. R.; Martin, S. T.; Farmer, D.; Brown, S. S.; Jimenez, J. L.

    2015-12-01

    A major field campaign (Southern Oxidant and Aerosol Study, SOAS) was conducted in summer 2013 in a forested area in Centreville Supersite, AL (SEARCH network) in the southeast U.S. To investigate secondary organic aerosol (SOA) formation from biogenic volatile organic compounds (BVOCs), 3 oxidation flow reactors (OFR) were used to expose ambient air to oxidants and their output was analyzed by state-of-the-art gas and aerosol instruments including a High-Resolution Aerosol Mass Spectrometer (HR-AMS), a HR Proton-Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-TOFMS), and Two HR-TOF Chemical Ionization Mass Spectrometers (HRToF-CIMS). Ambient air was exposed 24/7 to variable concentrations of each of the 3 main atmospheric oxidants (OH, NO3 radicals and O3) to investigate the oxidation of BVOCs (including isoprene derived epoxydiols, IEPOX) and SOA formation and aging. Effective OH exposures up to 1×1013 molec cm-3 s were achieved, equivalent to over a month of aging in the atmosphere. Multiple oxidation products from isoprene and monoterpenes including small gas-phase acids were observed in OH OFR. High SOA formation of up to 12 μg m-3 above ambient concentrations of 5 μg m-3 was observed under intermediate OH exposures, while very high OH exposures led to destruction of ~30% of ambient OA, indicating shifting contributions of functionalization vs. fragmentation, consistent with results from urban and terpene-dominated environments. The highest SOA enhancements were 3-4 times higher than ambient OA. More SOA is typically formed during nighttime when terpenes are higher and photochemistry is absent, and less during daytime when isoprene is higher, although the IEPOX pathway is suppressed in the OFR. SOA is also observed after exposure of ambient air to O3 or NO3, although the amounts and oxidation levels were lower than for OH. Formation of organic nitrates in the NO3 reaction will also be discussed.A major field campaign (Southern Oxidant and Aerosol

  11. Highly stable aerosol generator

    SciTech Connect

    DeFord, Henry S.; Clark, Mark L.

    1981-01-01

    An improved compressed air nebulizer has been developed such that a uniform aerosol particle size and concentration may be produced over long time periods. This result is achieved by applying a vacuum pressure to the makeup assembly and by use of a vent tube between the atmosphere and the makeup solution. By applying appropriate vacuum pressures to the makeup solution container and by proper positioning of the vent tube, a constant level of aspirating solution may be maintained within the aspirating assembly with aspirating solution continuously replaced from the makeup solution supply. This device may also be adapted to have a plurality of aerosol generators and only one central makeup assembly.

  12. Highly stable aerosol generator

    DOEpatents

    DeFord, H.S.; Clark, M.L.

    1981-11-03

    An improved compressed air nebulizer has been developed such that a uniform aerosol particle size and concentration may be produced over long time periods. This result is achieved by applying a vacuum pressure to the makeup assembly and by use of a vent tube between the atmosphere and the makeup solution. By applying appropriate vacuum pressures to the makeup solution container and by proper positioning of the vent tube, a constant level of aspirating solution may be maintained within the aspirating assembly with aspirating solution continuously replaced from the makeup solution supply. This device may also be adapted to have a plurality of aerosol generators and only one central makeup assembly. 2 figs.

  13. Design and characterization of a device to quantify the magnetic drug targeting efficiency of magnetic nanoparticles in a tube flow phantom by magnetic particle spectroscopy

    NASA Astrophysics Data System (ADS)

    Radon, Patricia; Löwa, Norbert; Gutkelch, Dirk; Wiekhorst, Frank

    2017-04-01

    The aim of magnetic drug targeting (MDT) is to transfer a therapeutic drug coupled to magnetic nanoparticles (MNP) to desired disease locations (e.g. tumor region) with the help of magnetic field gradients. To transfer the MDT approach into clinical practice a number of important issues remain to be solved. We developed and characterized an in-vitro flow phantom to provide a defined and reproducible MDT environment. The tube system of the flow phantom is directed through the detection coil of a magnetic particle spectroscopy (MPS) device to determine the targeting efficiency. MPS offers an excellent temporal resolution of seconds and an outstanding specific sensitivity of some nanograms of iron. In the flow phantom different MNP types, magnet geometries and tube materials can be employed to vary physical parameters like diameter, flow rate, magnetic targeting gradient, and MNP properties.

  14. A quiet flow Ludwieg tube for study of transition in compressible boundary layers: Design and feasibility

    NASA Technical Reports Server (NTRS)

    Schneider, Steven P.

    1991-01-01

    Laminar-turbulent transition in high speed boundary layers is a complicated problem which is still poorly understood, partly because of experimental ambiguities caused by operating in noisy wind tunnels. The NASA Langley experience with quiet tunnel design has been used to design a quiet flow tunnel which can be constructed less expensively. Fabrication techniques have been investigated, and inviscid, boundary layer, and stability computer codes have been adapted for use in the nozzle design. Construction of such a facility seems feasible, at a reasonable cost. Two facilities have been proposed: a large one, with a quiet flow region large enough to study the end of transition, and a smaller and less expensive one, capable of studying low Reynolds number issues such as receptivity. Funding for either facility remains to be obtained, although key facility elements have been obtained and are being integrated into the existing Purdue supersonic facilities.

  15. Numerical study of a flat-tube high power density solid oxide fuel cell. Part I. Heat/mass transfer and fluid flow

    NASA Astrophysics Data System (ADS)

    Lu, Yixin; Schaefer, Laura; Li, Peiwen

    The flat-tube high power density (HPD) solid oxide fuel cell (SOFC) is a new design developed by Siemens Westinghouse, based on their formerly developed tubular type SOFC. It has increased power density, but still maintains the beneficial feature of secure sealing of a tubular SOFC. In this paper, a three-dimensional numerical model to simulate the steady state heat/mass transfer and fluid flow of a flat-tube HPD-SOFC is developed. In the numerical computation, governing equations for continuity, momentum, mass, and energy conservation are solved simultaneously. The highly coupled temperature, concentration and flow fields of the air stream and the fuel stream inside and outside the different chambers of a flat-tube HPD-SOFC are investigated. The variation of the temperature, concentration and flow fields with the current output is studied. The heat/mass transfer and fluid flow modeling and results will be used to simulate the overall performance of a flat-tube HPD-SOFC, and to help optimize the design and operation of a SOFC stack in practical applications.

  16. Heat transfer, pressure drop and void fraction in two- phase, two-component flow in a vertical tube

    NASA Astrophysics Data System (ADS)

    Sujumnong, Manit

    1998-09-01

    There are very few data existing in two-phase, two- component flow where heat transfer, pressure drop and void fraction have all been measured under the same conditions. Such data are very valuable for two-phase heat-transfer model development and for testing existing heat-transfer models or correlations requiring frictional pressure drop (or wall shear stress) and/or void fraction. An experiment was performed which adds markedly to the available data of the type described in terms of the range of gas and liquid flow rates and liquid Prandtl number. Heat transfer and pressure drop measurements were taken in a vertical 11.68-mm i.d. tube for two-phase (gas-liquid) flows covering a wide range of conditions. Mean void fraction measurements were taken, using quick- closing valves, in a 12.7-mm i.d. tube matching very closely pressures, temperatures, gas-phase superficial velocities and liquid-phase superficial velocities to those used in the heat-transfer and pressure-drop experiments. The gas phase was air while water and two aqueous solutions of glycerine (59 and 82% by mass) were used as the liquid phase. In the two-phase experiments the liquid Prandtl number varied from 6 to 766, the superficial liquid velocity from 0.05 to 8.5 m/s, and the superficial gas velocity from 0.02 to 119 m/s. The measured two-phase heat-transfer coefficients varied by a factor of approximately 1000, the two-phase frictional pressure drop ranged from small negative values (in slug flow) to 93 kPa and the void fraction ranged from 0.01 to 0.99; the flow patterns observed included bubble, slug, churn, annular, froth, the various transitions and annular-mist. Existing heat-transfer models or correlations requiring frictional pressure drop (or wall shear stress) and/or void fraction were: tested against the present data for mean heat-transfer coefficients. It was found that the methods with more restrictions (in terms of the applicable range of void fraction, liquid Prandtl number or liquid

  17. Modeling air-driven flow of a viscous film coating the interior of a rigid, vertical tube

    NASA Astrophysics Data System (ADS)

    Ogrosky, Reed; Camassa, Roberto; Forest, Greg; Olander, Jeffrey

    2013-11-01

    The upwards, air-driven flow of a viscous fluid film coating the interior of a rigid, vertical tube is studied theoretically and numerically. The free surface of the film develops instabilities due to the interplay between interfacial stress from the airflow and surface tension from azimuthal curvature. Simple closure models for turbulent airflow coupled to long-wave asymptotic models for the liquid film have been shown to reproduce qualitatively the dynamics of the instabilities past initial transients observed in experiments. However, quantitative agreement requires improving the turbulent airflow modeling beyond leading order theories of free surface stress. An attempt in this direction is described here; the resulting model is compared with others in the literature and with experiments, for the case where the free surface is replaced by a rigid, wavy wall. This comparison is made for both wavy pipe and wavy channel flows, and the mean stress is seen to be out of phase with the wavy wall itself by a phase shift dependent on both the Reynolds number and the amplitude of the wall modulations. The free surface model is then studied through linear stability analysis and numerical solutions, both of which show improved agreement with experiments. We gratefully acknowledge support from NSF RTG DMS-0943851 and NIEHS 534197-3411.

  18. Effect of poly(aspartic acid) on calcium phosphate removal from stainless steel tubing under turbulent flow conditions

    NASA Astrophysics Data System (ADS)

    Littlejohn, Felicia

    Calcium phosphate deposition causes cleaning problems in a number of situations including water treatment, dairy processing, and dental applications. This problem is exacerbated by the limited choices of cleaning chemicals that meet environmental regulations. To promote the development of biodegradable, non-toxic alternatives, this research examines the removal of calcium phosphate deposits consisting of brushite (dicalcium phosphate dihydrate; DCPD) and a mixture of hydroxyapatite (HAP) and DCPD from stainless steel in the presence of poly(aspartic acid) and its sodium salt (PASP). The effects of solvent pH, PASP concentration, and flow rate on the calcium phosphate removal rates are measured from stainless steel tubing under turbulent flow conditions using a solid scintillation detection technique. A mechanistic evaluation of the cleaning data in the absence of PASP indicates that DCPD removal is dominated by shear while HAP/DCPD deposit removal is limited by a combination of mass transfer and interfacial processes. Although the removal mechanisms differ, the results conclusively show that PASP promotes calcium phosphate removal under conditions that favor calcium sequestration in both cases. An in-depth study of DCPD removal in the presence of PASP reveals that this additive is most effective under conditions where calcium sequestration and phosphate protonation occur simultaneously.

  19. Self-organized criticality in a two-dimensional cellular automaton model of a magnetic flux tube with background flow

    NASA Astrophysics Data System (ADS)

    Dănilă, B.; Harko, T.; Mocanu, G.

    2015-11-01

    We investigate the transition to self-organized criticality in a two-dimensional model of a flux tube with a background flow. The magnetic induction equation, represented by a partial differential equation with a stochastic source term, is discretized and implemented on a two-dimensional cellular automaton. The energy released by the automaton during one relaxation event is the magnetic energy. As a result of the simulations, we obtain the time evolution of the energy release, of the system control parameter, of the event lifetime distribution and of the event size distribution, respectively, and we establish that a self-organized critical state is indeed reached by the system. Moreover, energetic initial impulses in the magnetohydrodynamic flow can lead to one-dimensional signatures in the magnetic two-dimensional system, once the self-organized critical regime is established. The applications of the model for the study of gamma-ray bursts (GRBs) is briefly considered, and it is shown that some astrophysical parameters of the bursts, like the light curves, the maximum released energy and the number of peaks in the light curve can be reproduced and explained, at least on a qualitative level, by working in a framework in which the systems settles in a self-organized critical state via magnetic reconnection processes in the magnetized GRB fireball.

  20. Analyses of exergy efficiency for forced convection heat transfer in a tube with CNT nanofluid under laminar flow conditions

    NASA Astrophysics Data System (ADS)

    Hazbehian, Mohammad; Mohammadiun, Mohammad; Maddah, Heydar; Alizadeh, Mostafa

    2016-09-01

    In the present study, the theoretical and experimental results of the second law analysis on the performance of a uniform heat flux tube using are presented in the laminar flow regime. For this purpose, carbon nanotube/water nanofluids is considered as the base fluid. The experimental investigations were undertaken in the Reynolds number range from 800 to 2600, volume concentrations of 0.1-1 %. Results are verified with well-known correlations. The focus will be on the entrance region under the laminar flow conditions for SWCNT nanofluid. The results showed that the Nu number increased about 90-270 % with the enhancement of nanoparticles volume concentration compared to water. The enhancement was particularly significant in the entrance region. Based on the exergy analysis, the results show that exergetic heat transfer effectiveness is increased by 22-67 % employing nanofluids. The exergetic efficiency is increase with increase in nanoparticles concentration. On the other hand, exergy loss was reduced by 23-43 % employing nanofluids as a heat transfer medium with comparing to conventional fluid. In addition, the empirical correlation for exergetic efficiency has also been developed. The consequential results obtained from the correlation are found to be in good agreement with the experimental results within ±5 % variation.

  1. An investigation of condensation from steam-gas mixtures flowing downward inside a vertical tube

    SciTech Connect

    Kuhn, S.Z.; Schrock, V.E.; Peterson, P.F.

    1995-09-01

    Previous experiments have been carried out by Vierow, Ogg, Kageyama and Siddique for condensation from steam/gas mixtures in vertical tubes. In each case the data scatter relative to the correlation was large and there was not close agreement among the three investigations. A new apparatus has been designed and built using the lessons learned from the earlier studies. Using the new apparatus, an extensive new data base has been obtained for pure steam, steam-air mixtures and steam-helium mixtures. Three different correlations, one implementing the degradation method initially proposed by Vierow and Schrock, a second diffusion layer theory initially proposed by Peterson, and third mass transfer conductance model are presented in this paper. The correlation using the simple degradation factor method has been shown, with some modification, to give satisfactory engineering accuracy when applied to the new data. However, this method is based on very simplified arguments that do not fully represent the complex physical phenomena involved. Better representation of the data has been found possible using modifications of the more complex and phenomenologically based method which treats the heat transfer conductance of the liquid film in series with the conductance on the vapor-gas side with the latter comprised of mass transfer and sensible heat transfer conductance acting in parallel. The mechanistic models, based on the modified diffusion layer theory or classical mass transfer theory for mass transfer conductance with transpiration successfully correlate the data for the heat transfer of vapor-gas side. Combined with the heat transfer of liquid film model proposed by Blangetti, the overall heat transfer coefficients predicted by the correlations from mechanistic models are in close agreement with experimental values.

  2. Flow cytometry immunophenotyping in integrated diagnostics of patients with newly diagnosed cytopenia: one tube 10-color 14-antibody screening panel and 3-tube extensive panel for detection of MDS-related features.

    PubMed

    Porwit, A; Rajab, A

    2015-05-01

    Acute leukemia, myelodysplastic syndromes (MDS), myeloproliferative neoplasms and lymphomas are the most prevalent diagnoses in adults presenting with new onset cytopenia. Here, we describe two 10-color panels of surface markers (screening and comprehensive panel) applied at the Flow Cytometry Laboratory, University Health Network, Toronto, ON, Canada. A 10-color flow cytometry is applied using the stain-lyse-wash sample preparation method. In patients with <10% blasts and no clear involvement by hematological malignancy based on cytomorphological evaluation of bone marrow (BM) smear, the recently published one-tube 10-color 14-antibody screening panel is applied. This panel allows detection of major B- and T-cell abnormalities, enumeration of cells in blast region (CD45 dim), and gives insight into myeloid BM compartment, including calculation of four-parameter score for MDS-related abnormalities. In patients who present with ≥10 - <20% blasts in blood or BM smears, a comprehensive three-tube panel of surface markers is used up front. The analysis is focused on the detection of abnormal antigen expression patterns not seen in normal/reactive BM, according to the guidelines developed by International/European LeukemiaNet Working Group for Flow Cytometry in MDS. In patients with ≥20% blasts, an additional tube is added to allow the detection of cytoplasmic markers necessary to diagnose mixed phenotype acute leukemia.

  3. Potential Aerosol Mass (PAM) flow reactor measurements of SOA formation in a Ponderosa Pine forest in the southern Rocky Mountains during BEACHON-RoMBAS

    NASA Astrophysics Data System (ADS)

    Palm, B. B.; Ortega, A. M.; Campuzano Jost, P.; Day, D. A.; Kaser, L.; Karl, T.; Jud, W.; Hansel, A.; Fry, J.; Brown, S. S.; Zarzana, K. J.; Dube, W. P.; Wagner, N.; Draper, D.; Brune, W. H.; Jimenez, J. L.

    2012-12-01

    A Potential Aerosol Mass (PAM) photooxidation flow reactor was used in combination with an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer to characterize biogenic secondary organic aerosol (SOA) formation in a terpene-dominated forest during the July-August 2011 Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen - Rocky Mountain Biogenic Aerosol Study (BEACHON-RoMBAS) field campaign at the U.S. Forest Service Manitou Forest Observatory, Colorado, as well as in corresponding laboratory experiments. In the PAM reactor, a chosen oxidant (OH, O3, or NO3) was generated and controlled over a range of values up to 10,000 times ambient levels. High oxidant concentrations accelerated the gas-phase, heterogeneous, and possibly aqueous oxidative aging of volatile organic compounds (VOCs), inorganic gases, and existing aerosol, which led to repartitioning into the aerosol phase. PAM oxidative processing represented from a few hours up to ~20 days of equivalent atmospheric aging during the ~3 minute reactor residence time. During BEACHON-RoMBAS, PAM photooxidation enhanced SOA at intermediate OH exposure (1-10 equivalent days) but resulted in net loss of OA at long OH exposure (10-20 equivalent days), demonstrating the competing effects of functionalization vs. fragmentation (and possibly photolysis) as aging increased. PAM oxidation also resulted in f44 vs. f43 and Van Krevelen diagram (H/C vs. O/C) slopes similar to ambient oxidation, suggesting the PAM reactor employs oxidation pathways similar to ambient air. Single precursor aerosol yields were measured using the PAM reactor in the laboratory as a function of organic aerosol concentration and reacted hydrocarbon amounts. When applying the laboratory PAM yields with complete consumption of the most abundant VOCs measured at the forest site (monoterpenes, sesquiterpenes, MBO, and toluene), a simple model underpredicted the amount of SOA formed in the PAM reactor in the

  4. The relationship between absolute vorticity flux along the main flow and convection heat transfer in a tube inserting a twisted tape

    NASA Astrophysics Data System (ADS)

    Lin, Zhi-Min; Sun, Dong-Liang; Wang, Liang-Bi

    2009-09-01

    As passive enhancement devices, twisted tape insert has been used for almost a century, the most dominant heat transfer enhancement mechanism of circular tube fitted with twisted tape is the secondary flow generated by the tape. There is a parameter to specify the intensity of secondary flow, but this parameter cannot be applied to more general cases. Here cross-averaged absolute vorticity flux in the main flow direction is used to specify the intensity of secondary flow produced by twisted tape inserted in a tube. The relationship between the intensity of secondary flow and the intensity of laminar convective heat transfer is studied using a numerical method. The results reveal that the cross-averaged absolute vorticity flux in the main flow direction can reflect the intensity of secondary flow and a significant relationship between this cross-averaged absolute vorticity flux and Nusselt number exists for studied cases. The presented results validate that the cross-averaged absolute vorticity flux in the main flow direction is a general specifying of the intensity of secondary flow and can be used in other cases.

  5. New flow boiling heat transfer model for hydrocarbons evaporating inside horizontal tubes

    SciTech Connect

    Chen, G. F.; Gong, M. Q.; Wu, J. F.; Zou, X.; Wang, S.

    2014-01-29

    Hydrocarbons have high thermodynamic performances, belong to the group of natural refrigerants, and they are the main components in mixture Joule-Thomson low temperature refrigerators (MJTR). New evaluations of nucleate boiling contribution and nucleate boiling suppression factor in flow boiling heat transfer have been proposed for hydrocarbons. A forced convection heat transfer enhancement factor correlation incorporating liquid velocity has also been proposed. In addition, the comparisons of the new model and other classic models were made to evaluate its accuracy in heat transfer prediction.

  6. A Hybrid Vortex Method for Two-Dimensional Flow Over Tube Bundles

    SciTech Connect

    Strickland, J.H.; Wolfe, W.P.

    1998-11-13

    A hybrid vortex method is presented for computing flows about objects that accurately resolves the boundary layer details while keeping the number of free vortices at a reasonable level. The method uses a wall layer model close to the body surface and discrete vortex blobs in the free wake. Details of the wall layer implementation are presented, and results of sample calculations are compared with known analytical solutions and with calculations from other vortex codes. These results show that the computed boundary layer details are accurate to approximately 0.3 percent of analytical solutions while using three orders of magnitude fewer vortices than other vortex simulations.

  7. Flow Tube Studies of Gas Phase Chemical Processes of Atmospheric Importance

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.

    1998-01-01

    The objective of this project is to conduct measurements of elementary reaction rate constants and photochemical parameters for processes of importance in the atmosphere. These measurements are being carried out under temperature and pressure conditions covering those applicable to the stratosphere and upper troposphere, using the chemical ionization mass spectrometry turbulent flow technique developed in our laboratory. The next section summarizes our research activities during the first year of the project, and the section that follows consists of the statement of work for the third year. Additional details concerning the projects listed in the statement of work were described in our original proposal.

  8. Tube support

    DOEpatents

    Mullinax, Jerry L.

    1988-01-01

    A tube support for supporting horizontal tubes from an inclined vertical support tube passing between the horizontal tubes. A support button is welded to the vertical support tube. Two clamping bars or plates, the lower edges of one bearing on the support button, are removably bolted to the inclined vertical tube. The clamping bars provide upper and lower surface support for the horizontal tubes.

  9. Exergy analysis of a counter flow Ranque-Hilsch vortex tube for different cold orifice diameters, L/D ratios and exit valve angles

    NASA Astrophysics Data System (ADS)

    Devade, Kiran D.; Pise, Ashok T.

    2016-12-01

    An experimental investigation is made to find out the effects of the cold end orifice diameters, length to diameter ratio and exit valve angles on the heating and cooling performance of the counter flow Ranque-Hilsch vortex tube with air as a working fluid. The tube and cold end orifices used at these experiments are made of brass. Three cold end orifices (5, 6 and 7 mm) have been manufactured and are used five different L/D ratios (15 plain tube, 15-18 with 4° divergence angle) and exit valve angles (30°-90°). Inlet pressures were adjusted from 200 to 600 kPa with 100 kPa increments, and the exergy loss, exergy efficiency was determined. As a result of the experimental study, it is determined that the exergy loss between the hot and cold fluid is decreased with increasing of the cold end orifice diameter. Exergy efficiency decreases with increase in L/D ratio. It is also concluded that diverging vortex tube produces lower exergy loss as compared to plain tube. Valve angles have significant effect on hot end exergy loss of the vortex tube.

  10. How does the tubular embryonic heart work? Looking for the physical mechanism generating unidirectional blood flow in the valveless embryonic heart tube.

    PubMed

    Männer, Jörg; Wessel, Armin; Yelbuz, T Mesud

    2010-04-01

    The heart is the first organ to function in vertebrate embryos. The human heart, for example, starts beating around the 21st embryonic day. During the initial phase of its pumping action, the embryonic heart is seen as a pulsating blood vessel that is built up by (1) an inner endothelial tube lacking valves, (2) a middle layer of extracellular matrix, and (3) an outer myocardial tube. Despite the absence of valves, this tubular heart generates unidirectional blood flow. This fact poses the question how it works. Visual examination of the pulsating embryonic heart tube shows that its pumping action is characterized by traveling mechanical waves sweeping from its venous to its arterial end. These traveling waves were traditionally described as myocardial peristaltic waves. It has, therefore, been speculated that the tubular embryonic heart works as a technical peristaltic pump. Recent hemodynamic data from living embryos, however, have shown that the pumping function of the embryonic heart tube differs in several respects from that of a technical peristaltic pump. Some of these data suggest that embryonic heart tubes work as valveless "Liebau pumps." In the present study, a review is given on the evolution of the two above-mentioned theories of early cardiac pumping mechanics. We discuss pros and cons for both of these theories. We show that the tubular embryonic heart works neither as a technical peristaltic pump nor as a classic Liebau pump. The question regarding how the embryonic heart tube works still awaits an answer.

  11. An experimental investigation of pressure drop of aqueous foam in laminar tube flow

    SciTech Connect

    Blackwell, B.F.; Sobolik, K.B.

    1987-04-01

    This report is the first of two detailing pressure-drop and heat-transfer measurements made at the Foam Flow Heat Transfer Loop. The work was motivated by a desire to extend the application of aqueous foam from petroleum drilling to geothermal drilling. Pressure-drop measurements are detailed in this report; a forthcoming report (SAND85-1922) will describe the heat-transfer measurements. The pressure change across a 2.4-m (8-ft) length of the 2.588-cm (1.019-in.) ID test section was measured for liquid volume fractions between 0.05 and 0.35 and average velocities between 0.12 and 0.80 m/s (0.4 and 2.6 ft/s). The resulting pressure-drop/flow-rate data were correlated to a theoretical model for a Bingham plastic. Simple expressions for the dynamic viscosity and the yield stress as a function of liquid volume fraction were estimated.

  12. Development of ITER Divertor Vertical Target with Annular Flow Concept - I: Thermal-Hydraulic Characteristics of Annular Swirl Tube

    SciTech Connect

    Ezato, K.; Dairaku, M.; Taniguchi, M.; Sato, K.; Suzuki, S.; Akiba, M.; Ibbott, C.; Tivey, R.

    2004-12-15

    Thermal-hydraulic tests for pressurized water in an annular tube with a twist fin have been performed to examine its applicability to high-heat-flux components of the International Thermonuclear Experimental Reactor (ITER) divertor. The annular swirl tube consists of two concentric tubes: an outer smooth tube and an inner tube with an external twist fin to enhance heat transfer of the cooling water in the annulus section between the outer and the inner tubes. Critical heat flux (CHF) tests under one-sided-heating conditions show that the annular swirl tube has as high removal limitation as the conventional swirl tube, the dimensions of which are similar to those of the outer tube of the annular swirl tube. A minimum axial velocity of 7.1 m/s is required for 28 MW/m{sup 2}, the ITER design value. Pressure drops in the annulus section and the end return have been measured. The applicability of the existing correlations for heat transfer and CHF to the annular swirl tube has also been examined.

  13. Novel insight on photochemistry at interfaces: potential impact on Seconday Aerosol Formation?

    NASA Astrophysics Data System (ADS)

    Rossignol, S.; George, C.; Aregahegn, K.

    2014-12-01

    Traditionally, the driving forces for SOA growth is believed to be the partitioning onto aerosol seeds of condensable gases, either emitted primarily or resulting from the gas phase oxidation of organic gases. However, even the most up-to-date models based on such mechanisms cannot account for the SOA mass observed in the atmosphere, suggesting the existence of other, yet unknown formation processes. The present study shows experimental evidence that particulate phase chemistry produces photo-sensitizers that lead to photo-induced formation and growth of secondary organic aerosol in the near UV and the presence of volatile organic compounds (VOC) such as terpenes. By means of an aerosol flow tube reactor equipped with Scanning Mobility Particle Sizer (SMPS), Differential Mobility Analyzer (DMA) and Condensation Particle Sizer (CPC), we identified that traces in the aerosol phase of glyoxal chemistry products, namely imidazole-2-carboxaldehyde (IC) are strong photo-sensitizers when irradiated with near-UV. In the presence of volatile organic compounds such as terpenes, this chemistry leads to a fast aerosol growth. Given the potential importance of this new photosensitized growth pathway for ambient OA, the related reaction mechanism was investigated at a molecular level. Bulk and flow tube experiments were performed to identify major products of the reaction of limonene with the triplet state of IC by direct (+/-)ESI-HRMS and UPLC/(+/-)HESI-HRMS analysis. Detection of recombination products of IC with limonene or with itself, in bulk and flow tube experiment ts, showed that IC is able to initiate a radical chemistry in the aerosol phase under realistic irradiation conditions. Furthermore, highly oxygenated limonene reaction products were detected, clearly explaining the observed OA growth. The chemistry of peroxy radicals derived from limonene upon addition of oxygen explains the formation of such low-volatile compounds without any traditional gas phase oxidant

  14. The uptake of HO2 radicals to organic aerosols

    NASA Astrophysics Data System (ADS)

    Matthews, Pascale; Krapf, Manuel; Dommen, Josef; George, Ingrid; Whalley, Lisa; Ingham, Trevor; Baeza-Romero, Maria Teresa; Ammann, Markus; Heard, Dwayne

    2014-05-01

    HOx (OH + HO2) radicals are responsible for the majority of the oxidation in the troposphere and control the concentrations of many trace species in the atmosphere. There have been many field studies where the measured HO2 concentrations have been smaller than the concentration predicted by model calculations [1,2]. The difference has often been attributed to HO2 uptake by aerosols. Organics are a major component of aerosols accounting for 10 - 70 % of their mass [3]. However, there have been very few laboratory studies measuring HO2 uptake onto organic aerosols [4]. Uptake coefficients (γ) were measured for a range of aerosols using a Fluorescence Assay By Gas Expansion (FAGE) detector combined with an aerosol flow tube. HO2 was injected into the flow tube using a moveable injector which allowed first order HO2 decays to be measured along the flow tube both with and without aerosols. Laboratory generated aerosols were made using an atomiser or by homogeneous nucleation. Secondary organic aerosols (SOA) were made using the Paul Scherrer Institute smog chamber and also by means of a Potential Aerosol Mass (PAM) chamber. The total aerosol surface area was then measured using a Scanning Mobility Particle Sizer (SMPS). Experiments were carried out on aerosols containing glutaric acid, glyoxal, malonic acid, stearic acid, oleic acid and squalene. The HO2 uptake coefficients for these species were measured in the range of γ < 0.004 to γ = 0.008 ± 0.004. Humic acid was also studied, however, much larger uptake coefficients (γ = 0.007 - 0.09) were measured, probably due to the fact that these aerosols contained elevated levels of transition metal ions. For humic acid the uptake coefficient was highly dependent on humidity and this may be explained by the liquid water content of the aerosols. Measurements were also performed on copper doped aerosols containing different organics. An uptake coefficient of 0.23 ± 0.07 was measured for copper doped ammonium sulphate

  15. A computational model of wall shear and residence time of particles conveyed by steady flow in a curved tube

    NASA Astrophysics Data System (ADS)

    Thiriet, M.; Graham, J. M. R.; Issa, R. I.

    1993-01-01

    A finite-volume model of steady flow of an incompressible viscous fluid has been carried out in a smooth rigid 90° bend of circular cross-section. The inlet boundary conditions for laminar flow are either an entry Poiseuille regime or a constant injection velocity for a range of Dean number 140 leq De leq 430. A numerical test of turbulent flow was performed for De sim 22 100 with a flat velocity profile at the model entry. The lower the role played by the viscous forces, the larger the distance necessary to set an outer shift of the peak axial velocity. The axial velocity of laminar flow depends not only on the value of the Dean number, but also on separate effects of the Reynolds number and of the tube curvature. The larger the laminar boundary layer at the bend inlet, the nearer from the entry the bend segment where the strongest secondary motion is located. With increasing Reynolds number, the secondary flow develops over a longer bend region and the wall shear rises. Upstream and downstream effect of the bend on the shear stress, as well as flow disturbances induced by very small curvature, were observed. The residence time of conveyed particles is enhanced by the presence of a curved section in the conduit with respect to a straight pipe only at the inner edge of the straight section located downstream from the bend. When the Reynolds number rises, the flow regime remaining laminar, the residence time is smaller in the whole pipe. However for turbulent flow, the residence time, which has much smaller values, takes its highest values in the exit straight section. Les équations de conservation de la masse et de la quantité de mouvement ont été résolues pour un écoulement stationnaire d'un fluide incompressible visqueux dans un coude (angle de 90°), de parois lisses et rigides et de section droite uniforme et circulaire, par la méthode des volumes finis. Les conditions limites en entrée pour l'écoulement laminaire sont soit un profil parabolique, soit

  16. Shock shapes on blunt bodies in hypersonic-hypervelocity helium, air, and CO2 flows, and calibration results in Langley 6-inch expansion tube

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III

    1975-01-01

    Shock shape results for flat-faced cylinders, spheres, and spherically blunted cones in various test gases, along with preliminary results from a calibration study performed in the Langley 6-inch expansion tube are presented. Free-stream velocities from 5 to 7 km/sec are generated at hypersonic conditions with helium, air, and CO2, resulting in normal shock density ratios from 4 to 19. Ideal-gas shock shape predictions, in which an effective ratio of specific heats is used as input, are compared with the measured results. The effect of model diameter is examined to provide insight to the thermochemical state of the flow in the shock layer. The regime for which equilibrium exists in the shock layer for the present air and CO2 test conditions is defined. Test core flow quality, test repeatability, and comparison of measured and predicted expansion-tube flow quantities are discussed.

  17. Development, construction, and use of pneumometric tubes for measurement of steam flow in the steam lines of PVG-1000 at NPP

    SciTech Connect

    Gorbunov, Yu. S.; Ageev, A. G.; Vasil'eva, R. V.; Korol'kov, B. M.

    2007-05-15

    A system for the direct measurement of steam flow in steam lines after a steam generator, which utilizes a special design of pneumometric tubes and a computing unit that accounts for variation in steam pressure, has been developed to improve the quality of water-level regulation in the steam generators of VVER-1000 power-generating units in the stationary and transitional modes. The advantage of the pneumometric tubes consists in their structural simplicity, high erosion resistance, and absence of irrevocable losses during measurement of steam flow. A similar measurement system is used at foreign NPP. The measurement system in question has been placed in experimental service at the No. 3 unit of the Balakovo NPP, and has demonstrated its worthiness. This measurement system can also be used to determine steam flow in the steam lines of NPP units with VVER-1000 and VVER-440 reactors, and PBMK-1000 power-generating units.

  18. Ear Tubes

    MedlinePlus

    ... Marketplace Find an ENT Doctor Near You Ear Tubes Ear Tubes Patient Health Information News media interested ... throat specialist) may be considered. What are ear tubes? Ear tubes are tiny cylinders placed through the ...

  19. Loss of efficiency of polymeric drag reducers induced by high Reynolds number flows in tubes with imposed pressure

    NASA Astrophysics Data System (ADS)

    Soares, Edson J.; Sandoval, Gustavo A. B.; Silveira, Lucas; Pereira, Anselmo S.; Trevelin, Renata; Thomaz, Fabricio

    2015-12-01

    This paper studies the loss of efficiency of polymeric drag reducers induced by high Reynolds number flows in tubes. The overall pressure was fixed and the apparatus was built so as to minimize the polymer degradation. We used three kinds of polymers: two flexible and one rigid. We conducted our tests to take into account the drag reduction (DR) for a wide range of concentrations of each polymer. The main results are displayed for the DR as a function of the number of passes through the apparatus. The mechanism of the loss of efficiency for the Xanthan Gum (XG) solutions (the rigid one) seems to be completely different from that observed for Poly (ethylene oxide) (PEO) and Polyacrylamide (PAM) (the flexible materials). While the PEO and PAM mechanically degrade by the action of the turbulent flow, the XG seems to remain intact, even after many passes through the pipe flow apparatus. From the practical point of view, it is worth noting that the PAM solutions are clearly more efficient than the PEO and XG. Another practical point that deserves attention is concerned with the asymptotic drag reduction found for XG. Although its maximum DR was significantly smaller than that found for PEO, the final value for both polymers were quite the same, which is obviously related to the intensified mechanical molecule scission in the PEO solutions. Our results for the relative drag reduction (the current value of DR divided by its maximum obtained at the first pass) was quite well fitted by the decay function proposed in our previous paper [A. S. Pereira and E. J. Soares, "Polymer degradation of dilute solutions in turbulent drag reducing flows in a cylindrical double gap rheometer device," J. Non-Newtonian Fluid Mech. 179, 9-22 (2012)], in which a rotating apparatus was used. This strongly suggests that the physical mechanism that governs the degradation phenomenon is independent of the geometry. We also used a degradation model for PEO proposed by Vonlanthen and Monkewitz

  20. Statistical simulation of the flow of vibrationally preexcited hydrogen in a shock tube and the possibility of physical detonation

    NASA Astrophysics Data System (ADS)

    Kulikov, S. V.; Chervonnaya, N. A.; Ternovaya, O. N.

    2016-08-01

    The direct simulation Monte Carlo method is used to numerically simulate the problem of the shock wave front in vibrationally excited hydrogen flowing in the low-pressure channel of a shock tube. It is assumed that the vibrational temperature of the hydrogen equals 3000 K. The cases of partially and completely excited hydrogen are considered. Equilibrium hydrogen is applied as a pusher gas, but its concentration is 50 times higher than the hydrogen concentration in the low-pressure channel. In addition, the strength of the shock wave is varied by heating the pusher gas. It has been shown that, if the prestored vibrational energy is weakly converted to translational energy, the shock wave slows down over time. If the energy conversion is sufficiently intense, when the pusher gas is warm and only completely vibrationally excited hydrogen is in the low-pressure channel, the wave gains speed over time (its velocity increases roughly by a factor of 1.5). This causes physical detonation, in which case the parameters of the wave become dependent on the vibrational-to-thermal energy conversion and independent of the way of its initiation.

  1. Quantification of character-impacting compounds in Ocimum basilicum and 'Pesto alla Genovese' with selected ion flow tube mass spectrometry.

    PubMed

    Amadei, Gianluca; Ross, Brian M

    2012-02-15

    Basil (Ocimum basilicum) is an important flavourant plant which constitutes the major ingredient of the pasta sauce 'Pesto alla Genovese'. The characteristic smell of basil stems mainly from a handful of terpenoids (methyl cinnamate, eucalyptol, linalool and estragole), the concentration of which varies according to basil cultivars. The simple and rapid analysis of the terpenoid constituents of basil would be useful as a means to optimise harvesting times and to act as a quality control process for basil-containing foodstuffs. Classical analytical techniques such as gas chromatography/mass spectrometry (GC/MS) are, however, slow, technically demanding and therefore less suitable for routine analysis. A new chemical ionisation technique which allows real-time quantification of traces gases, Selected Ion Flow Tube Mass Spectrometry (SIFT-MS), was therefore utilised to determine its usefulness for the assay of terpenoid concentrations in basil and pesto sauce headspace. Trace gas analysis was performed using the NO(+) precursor ion which minimised interference from other compounds. Character-impacting compound concentration was measured in basil headspace with good reproducibility and statistically significant differences were observed between cultivars. Quantification of linalool in pesto sauce headspace proved more difficult due to the presence of interfering compounds. This was resolved by careful selection of reaction product ions which allowed us to detect differences between various commercial brands of pesto. We conclude that SIFT-MS may be a valid tool for the fast and reproducible analysis of flavourant terpenoids in basil and basil-derived foodstuffs.

  2. Interference of chlorofluorocarbon (CFC)-containing inhalers with measurements of volatile compounds using selected ion flow tube mass spectrometry.

    PubMed

    Epton, Michael J; Ledingham, Katherine; Dummer, Jack; Hu, Wan-Ping; Rhodes, Bronwen; Senthilmohan, Senti T; Scotter, Jennifer M; Allardyce, Randall; Cook, Julie; Swanney, Maureen P

    2009-02-01

    Selected ion flow tube mass spectrometry (SIFT-MS) is a sensitive technique capable of measuring volatile compounds (VCs) in complex gas mixtures in real time; it is now being applied to breath analysis. We investigated the effect of inhalers containing chlorofluorocarbons (CFCs) on the detection and measurement of haloamines in human breath. SIFT-MS mass scans (MS) and selected ion monitoring (SIM) scans were performed on three healthy non-smoking volunteers before and after inhalation of the following medications: Combiventtrade mark metered-dose inhaler (MDI) (CFC-containing); Ventolintrade mark MDI (CFC-free); Atroventtrade mark MDI (CFC-free), Beclazonetrade mark MDI (CFC-containing); Duolintrade mark nebuliser. In addition, the duration of the persistence of the mass/charge ratios was measured for 20 h. Inhalers containing CFCs generated large peaks at m/z 85, 87, 101, 103 and 105 in vitro and in vivo, consistent with the predicted product ions of CFCs 12, 114 and 11. No such peaks were seen with Duolintrade mark via nebuliser, or CFC-free MDIs. We conclude that measurement of VCs, such as haloamines, with product ions of similar m/z values to the ions found for CFCs would be significantly affected by the presence of CFCs in inhalers. This issue needs to be accounted for prior to the measurement of VCs in breath in people using inhalers containing CFCs.

  3. Turbulent heat transfer enhancement by counter/co-swirling flow in a tube fitted with twin twisted tapes

    SciTech Connect

    Eiamsa-ard, S.; Thianpong, C.; Eiamsa-ard, P.

    2010-01-15

    In the present study, the influences of twin-counter/co-twisted tapes (counter/co-swirl tape) on heat transfer rate (Nu), friction factor (f) and thermal enhancement index ({eta}) are experimentally determined. The twin counter twisted tapes (CTs) are used as counter-swirl flow generators while twin co-twisted tapes (CoTs) are used as co-swirl flow generators in a test section. The tests are conducted using the CTs and CoTs with four different twist ratios (y/w = 2.5, 3.0, 3.5 and 4.0) for Reynolds numbers range between 3700 and 21,000 under uniform heat flux conditions. The experiments using the single twisted tape (ST) are also performed under similar operation test conditions, for comparison. The experimental results demonstrate that Nusselt number (Nu), friction factor (f) and thermal enhancement index ({eta}) increase with decreasing twist ratio (y/w). The results also show that the CTs are more efficient than the CoTs for heat transfer enhancement. In the range of the present work, heat transfer rates in the tube fitted with the CTs are around 12.5-44.5% and 17.8-50% higher than those with the CoTs and ST, respectively. The maximum thermal enhancement indices ({eta}) obtained at the constant pumping power by the CTs with y/w = 2.5, 3.0, 3.5 and 4.0, are 1.39, 1.24, 1.12 and 1.03, respectively, while those obtained by using the CoTs with the same range of y/w are 1.1, 1.03, 0.97 and 0.92, respectively. In addition, the empirical correlations of the heat transfer (Nu), friction factor (f) and thermal enhancement index ({eta}) are also reported. (author)

  4. Experimental studies on heat transfer and friction factor characteristics of CuO/water nanofluid under laminar flow in a helically dimpled tube

    NASA Astrophysics Data System (ADS)

    Suresh, S.; Chandrasekar, M.; Selvakumar, P.

    2012-04-01

    An experimental investigation on the convective heat transfer and friction factor characteristics in the plain and dimpled tube under laminar flow with constant heat flux is carried out with distilled water and CuO/water nanofluids. For this, CuO nanoparticles with an average size of 15.3 nm were synthesized by sol-gel method. The nanoparticles are then dispersed in distilled water to form stable suspension of CuO/water nanofluid containing 0.1, 0.2 and 0.3% volume concentration of nanoparticles. It is found that the experimental Nusselt numbers for 0.1, 0.2 and 0.3% volume concentration of CuO nanoparticles are about 6, 9.9 and 12.6%, respectively higher than those obtained with distilled water in plain tube. However, the experimental Nusselt numbers for 0.1, 0.2 and 0.3% volume concentration of CuO nanoparticles are about 3.4, 6.8 and 12%, respectively higher than those obtained with distilled water in dimpled tube. The friction factor of CuO/water nanofluid is also increased due to the inclusion of nanoparticles and found to increase with nanoparticle volume concentration. The experimental results show that there exists a difference in the enhancement levels of Nusselt numbers obtained with nanofluids in plain tube and dimpled tube. Hence it is proposed that the mechanism of heat transfer enhancement obtained with nanofluids is due to particle migration from the core of fluid flow to tube wall.

  5. Modeling of Aerosols in Post-Combustor Flow Path and Sampling System

    NASA Technical Reports Server (NTRS)

    Wey, Thomas; Liu, Nan-Suey

    2006-01-01

    The development and application of a multi-dimensional capability for modeling and simulation of aviation-sourced particle emissions and their precursors are elucidated. Current focus is on the role of the flow and thermal environments. The cases investigated include a film cooled turbine blade, the first-stage of a high-pressure turbine, the sampling probes, the sampling lines, and a pressure reduction chamber.

  6. Revisiting the Münch pressure-flow hypothesis for long-distance transport of carbohydrates: modelling the dynamics of solute transport inside a semipermeable tube.

    PubMed

    Henton, S M; Greaves, A J; Piller, G J; Minchin, P E H

    2002-06-01

    A mathematical model of the Münch pressure-flow hypothesis for long-distance transport of carbohydrates via sieve tubes is constructed using the Navier-Stokes equation for the motion of a viscous fluid and the van't Hoff equation for osmotic pressure. Assuming spatial dimensions that are appropriate for a sieve tube and ensuring suitable initial profiles of the solute concentration and solution velocity lets the model become mathematically tractable and concise. In the steady-state case, it is shown via an analytical expression that the solute flux is diffusion-like with the apparent diffusivity coefficient being proportional to the local solute concentration and around seven orders of magnitude greater than a diffusivity coefficient for sucrose in water. It is also shown that, in the steady-state case, the hydraulic conductivity over one metre can be calculated explicitly from the tube radius and physical constants and so can be compared with experimentally determined values. In the time-dependent case, it is shown via numerical simulations that the solute (or water) can simultaneously travel in opposite directions at different locations along the tube and, similarly, change direction of travel over time at a particular location along the tube.

  7. Comparison of spectral and finite element methods applied to the study of the core-annular flow in an undulating tube

    NASA Astrophysics Data System (ADS)

    Kouris, Charalampos; Dimakopoulos, Yannis; Georgiou, Georgios; Tsamopoulos, John

    2002-05-01

    A Galerkin/finite element and a pseudo-spectral method, in conjunction with the primitive (velocity-pressure) and streamfunction-vorticity formulations, are tested for solving the two-phase flow in a tube, which has a periodically varying, circular cross section. Two immiscible, incompressible, Newtonian fluids are arranged so that one of them is around the axis of the tube (core fluid) and the other one surrounds it (annular fluid). The physical and flow parameters are such that the interface between the two fluids remains continuous and single-valued. This arrangement is usually referred to as Core-Annular flow. A non-orthogonal mapping is used to transform the uneven tube shape and the unknown, time dependent interface to fixed, cylindrical surfaces. With both methods and formulations, steady states are calculated first using the Newton-Raphson method. The most dangerous eigenvalues of the related linear stability problem are calculated using the Arnoldi method, and dynamic simulations are carried out using the implicit Euler method. It is shown that with a smooth tube shape the pseudo-spectral method exhibits exponential convergence, whereas the finite element method exhibits algebraic convergence, albeit of higher order than expected from the relevant theory. Thus the former method, especially when coupled with the streamfunction-vorticity formulation, is much more efficient. The finite element method becomes more advantageous when the tube shape contains a cusp, in which case the convergence rate of the pseudo-spectral method deteriorates exhibiting algebraic convergence with the number of the axial spectral modes, whereas the convergence rate of the finite element method remains unaffected. Copyright

  8. ANALYSIS OF FLOW THROUGH A HUMAN ORAL MODEL FOR USE IN INHALATION TOXICOLOGY AND AEROSOL THERAPY PROTOCOLS

    EPA Science Inventory


    RATIONALE
    Understanding the transport and deposition of inhaled aerosols is of fundamental importance to inhalation toxicology and aerosol therapy. Herein, we focus on the development of a computer based oral morphology and related computational fluid dynamics (CFD) studi...

  9. Investigating the Uptake Mechanisms of Hydrogen Peroxide to Single and Polycrystalline Ice with a Novel Flow Tube System

    NASA Astrophysics Data System (ADS)

    Hong, Angela; Ammann, Markus; Bartels-Rausch, Thorsten

    2016-04-01

    Air-ice chemical interactions are important for describing the distribution and subsequent chemical fate of trace atmospheric gases within ice and snow and determining the oxidative capacities of these environments. The nature of this interaction is governed by a compound's physicochemical properties as well as ice microstructure. Hydrogen peroxide (H2O2), a reservoir of HOx radicals in the atmosphere and an important chromophore in snow and ice, is a trace gas that demonstrates complex uptake behaviour to frozen aqueous media by the reversible, fast adsorption to the air-ice interface, aggregation, and lateral interactions, and a slower process, ostensibly via uptake into the bulk. However, the exact mechanism and kinetics for the slow uptake of H2O2 and the size of this reservoir is unknown. It is important to describe and quantify this loss term, over environmentally-relevant timescales, accommodation of H2O2 into the bulk may be the dominant process which controls the composition and chemistry of the snow and overlying atmosphere. We hypothesize that the slow uptake of H2O2 occurs by diffusion into the grain boundaries of ice. To provide mechanistic insight to the macroscopic phenomenon of atmospheric gas uptake to ice, and discern various mechanisms including adsorption to air-ice interface and accommodation into the bulk through uptake into grain boundaries, we design, machine, and validate a novel flow reactor system featuring a Drilled Ice Flow Tube (DIFT). Our flow reactor system is uniquely suited to testing these uptake mechanisms: by controlling the degree of grain boundaries present in the DIFT (ie. monocrystalline or polycrystalline), we can directly observe the effect of the ice microstructure on the adsorptive and bulk uptake of trace atmospheric gases over long timescales (eg. on the order of hours). Here, we describe method development of the DIFT and demonstrate using polarised microscopy imagery that our experimental set-up allows for the direct

  10. Secondary Organic Aerosol Formation from Ambient Air in an Oxidation Flow Reactor at GoAmazon2014/5

    NASA Astrophysics Data System (ADS)

    Palm, Brett B.; de Sa, Suzane S.; Campuzano-Jost, Pedro; Day, Douglas A.; Hu, Weiwei; Seco, Roger; Park, Jeong-Hoo; Guenther, Alex; Kim, Saewung; Brito, Joel; Wurm, Florian; Artaxo, Paulo; Yee, Lindsay; Isaacman-VanWertz, Gabrial; Goldstein, Allen; Newburn, Matt K.; Lizabeth Alexander, M.; Martin, Scot T.; Brune, William H.; Jimenez, Jose L.

    2016-04-01

    During GoAmazon2014/5, ambient air was exposed to controlled concentrations of OH or O3 in situ using an oxidation flow reactor (OFR). Oxidation ranged from hours-several weeks of aging. Oxidized air was sampled by several instruments (e.g., HR-AMS, ACSM, PTR-TOF-MS, SMPS, CCN) at both the T3 site (IOP1: Feb 1-Mar 31, 2014, and IOP2: Aug 15-Oct 15, 2014) and T2 site (between IOPs and into 2nd IOP). The oxidation of ambient air in the OFR led to substantial and variable secondary organic aerosol (SOA) formation from any SOA-precursor gases, known and unknown, that entered the OFR. In general, more SOA was produced during the nighttime than daytime, suggesting that SOA-precursor gases were found in relatively higher concentrations at night. Similarly, more SOA was formed in the dry season (IOP2) than wet season (IOP1). The maximum amount of SOA produced during nighttime from OH oxidation ranged from less than 1 μg/m3 on some nights to greater than 10 μg/m3 on other nights. O3 oxidation of ambient air also led to SOA formation, although several times less than from OH oxidation. The amount of SOA formation sometimes, but not always, correlated with measured gas-phase biogenic and/or anthropogenic SOA precursors (e.g., SV-TAG sesquiterpenes, PTR-TOFMS aromatics, isoprene, and monoterpenes). The SOA mass formed in the OFR from OH oxidation was up to an order of magnitude larger than could be explained from aerosol yields of measured primary VOCs. This along with measurements from previous campaigns suggests that most SOA was formed from intermediate S/IVOC sources (e.g., VOC oxidation products, evaporated POA, or direct emissions). To verify the SOA yields of VOCs under OFR experimental conditions, atmospherically-relevant concentrations of several VOCs were added individually into ambient air in the OFR and oxidized by OH or O3. SOA yields in the OFR were similar to published chamber yields. Preliminary PMF factor analysis showed production of secondary factors in

  11. Analytic study of developing flows in a tube laden with non-evaporating and evaporating drops via a modified linearization of the two-phase momentum equations

    NASA Astrophysics Data System (ADS)

    Khosid, S.; Tambour, Y.

    A novel modification of the classical Langhaar linearization of the mutually coupled momentum equations for developing two-phase flows in circular ducts is presented. This modification enables us to treat: (i) flows developing from spatially periodic initial velocity distributions without the presence of droplets, and (ii) two-phase flows in which monosize, non-evaporating and evaporating droplets suspended in a developing gas flow of an initially uniform velocity distribution exchange momentum with the host-gas flow. New solutions are presented for the downstream evolution in the velocity profiles which develop from spatially periodic initial velocity distributions that eventually reach the fully developed Poiseuille velocity profile. These solutions are validated by employing known numerical procedures, providing strong support for the physical underpinnings of the present modified linearization. New solutions are also presented for the evolution in drop velocities and vapour spatial distributions for evaporating droplets suspended in an initially uniform velocity profile of the host gas. Asymptotic solutions are presented for the flow region which lies very close to the inlet of the tube, where the relative velocity between the droplets and the host gas is high, and thus the velocity fields of the two phases are mutually coupled. These solutions provide new explicit formulae for the droplet velocity field as a function of the initial conditions and droplet diameter (relative to the tube diameter) for non-evaporating drops, and also as a function of evaporation rate for evaporating drops.

  12. Thermohydraulic investigation of turbulent flow through a round tube equipped with twisted tapes consisting of centre wings and alternate-axes

    SciTech Connect

    Eiamsa-ard, S.; Wongcharee, K.; Eiamsa-ard, P.; Thianpong, C.

    2010-11-15

    The effects of the twisted tapes consisting of centre wings and alternate-axes (WT-A) on thermohydraulic properties in a round tube, were investigated. The effects of other three types of twisted tapes including: (1) the twisted tape with wings alone (WT), (2) the twisted tape with alternate axes alone (T-A), and (3) the typical twisted tape (TT), were also studied for comparison. All twisted tapes used were twisted at constant twist length (y) of 57 mm, corresponding to a constant twist ratio (y/W) of 3.0. The wings were generated along the centre line of the tape with three different angles of attack, ({beta} = 43 , 53 and 74 ). Test runs were conducted using water as a testing fluid with Reynolds number range between 5200 and 22,000. Under the similar condition, the heat transfer rate in the tube fitted with the WT-A was consistently higher than those in the tube equipped the WT, T-A and plain tube. It is also found that the heat transfer rate increased with increasing angle of attack. Over the range studied, the use of WT-A at {beta} = 74 was found to be the most effective for heat transfer enhancement, giving thermal performance factor of up to 1.4. Mean values of Nusselt number (Nu), friction factor (f), thermal performance factor ({eta}) provided by the WT-A (at {beta} = 74 ) were respectively, 17.7%, 30.6% and 7.8% higher than those in the tube with WT (at {beta} = 74 ), 20.8%, 53% and 4.9% higher than those in the tube with T-A, and 62%, 123% and 24% higher than those in the tube with TT. The superior performance of the WT-A over those of the other tapes could be attributed to the combined effects of the following actions: (1) a common swirling flow by the twisted tape (2) a vortex generated by the wing (3) a strong collision of the recombined streams behind each alternate point. For a better understanding on flow phenomena, flow-visualization by smoke wire technique is also presented. In addition, the experimental correlations of Nusselt number, friction

  13. Detection of changes in the nuclear phase and evaluation of male germ units by flow cytometry during in vitro pollen tube growth in Alstroemeria aurea.

    PubMed

    Hirano, Tomonari; Hoshino, Yoichiro

    2009-03-01

    This study aimed to analyze male gamete behavior from mature pollen to pollen tube growth in the bicellular pollen species Alstroemeria aurea. For mature pollen, pollen protoplasts were examined using flow cytometry. The protoplasts showed two peaks of DNA content at 1C and 1.90C. Flow cytometry at different developmental stages of pollen tubes cultured in vitro revealed changes in the nuclear phase at 9 and 18 h after culture. Sperm cell formation occurred at 6-9 h after culture, indicating that the first change was due to the division of the generative cells into sperm cells. After sperm cell formation, the number of vegetative nucleus associations with sperm cells showed a tendency to increase. This association was suggested as the male germ unit (MGU). When sperm cells, vegetative nuclei, and partial MGUs were collected separately from pollen tubes cultured for 18 h and analyzed using a flow cytometer, the sperm cells and vegetative nuclei contained 1C DNA, while the DNA content of partial MGUs was counted as 2C. Therefore, the second change in the nuclear phase, which results in an increase in 2C nuclei, is possibly related to the formation of MGUs.

  14. Analysis of petrol and diesel vapour and vehicle engine exhaust gases using selected ion flow tube mass spectrometry.

    PubMed

    Smith, David; Cheng, Ping; Spanel, Patrik

    2002-01-01

    We have used selected ion flow tube mass spectrometry (SIFT-MS) to analyse the vapours emitted by petrol and diesel fuels and the exhaust gases from petrol (spark ignition) and diesel (compression ignition) engine vehicles fitted with catalytic converters. Only those components of these media that have significant vapour pressures at ambient temperatures were analysed and thus particulates were obviously not detected. These media have been analysed using the full scope of SIFT-MS, i.e., with the three available precursor ions H3O+, NO+ and O2+. The combination of the H3O+ and NO+ analyses is seen to be essential to distinguish between different product ions at the same mass-to-charge ratio (m/z) especially in identifying aldehydes in the exhaust gases. The O2+ precursor ions are used to detect and quantify the large amount of nitric oxide present in the exhaust gases from both engine types. The petrol and diesel vapours consist almost exclusively of aliphatic alkanes, alkenes and alkynes (and dienes) and aromatic hydrocarbons. Some of these compounds appear in the exhaust gases together with several aldehydes, viz. formaldehyde, acetaldehyde, pentanal, pentenal (acrolein), butenal, and also methanol and ethanol. Acetone, nitric oxide and ammonia are also present, acetone and nitric oxide being much more abundant in the diesel exhaust gas than in the petrol exhaust gas. These data were obtained from samples collected into pre-evacuated stainless steel vessels. Trapping of the volatile compounds from the gas samples is not required and analysis was completed a few minutes later. All the above compounds are detected simultaneously, which demonstrates the value of SIFT-MS in this area of research.

  15. Heat transfer and flow characteristics of fin-tube bundles with and without winglet-type vortex generators

    NASA Astrophysics Data System (ADS)

    Kwak, K. M.; Torii, K.; Nishino, K.

    2002-08-01

    The objective of this research is to investigate the effect of longitudinal vortices that can be applied to the heat transfer enhancement for fin-tube heat exchangers such as air-cooled condensers. A multichannel test core was designed and fabricated for the determination of overall heat transfer and pressure loss with circular tubes and winglet vortex generators. Heat transfer results were obtained using a transient method referred to as the modified single-blow method. For a three-row tube bundle in an in-line arrangement without winglets, the heat transfer and the pressure loss were 72% and 210% higher, respectively, than for a multichannel test core without any built-in tube or winglet. These increases were caused by vortices around the tube banks. The corresponding increases for a staggered tube bundle are 95% and 310%, respectively. The triangular winglets recommended by the previous studies in a fin-tube bundle in an in-line arrangement increase the overall heat transfer 10-25% and the pressure loss 20-35% for the Reynolds numbers ranging from 300 to 2700.

  16. In situ microscopy reveals reversible cell wall swelling in kelp sieve tubes: one mechanism for turgor generation and flow control?

    PubMed

    Knoblauch, Jan; Tepler Drobnitch, Sarah; Peters, Winfried S; Knoblauch, Michael

    2016-08-01

    Kelps, brown algae (Phaeophyceae) of the order Laminariales, possess sieve tubes for the symplasmic long-distance transport of photoassimilates that are evolutionarily unrelated but structurally similar to the tubes in the phloem of vascular plants. We visualized sieve tube structure and wound responses in fully functional, intact Bull Kelp (Nereocystis luetkeana [K. Mertens] Postels & Ruprecht 1840). In injured tubes, apparent slime plugs formed but were unlikely to cause sieve tube occlusion as they assembled at the downstream side of sieve plates. Cell walls expanded massively in the radial direction, reducing the volume of the wounded sieve elements by up to 90%. Ultrastructural examination showed that a layer of the immediate cell wall characterized by circumferential cellulose fibrils was responsible for swelling and suggested that alginates, abundant gelatinous polymers of the cell wall matrix, were involved. Wall swelling was rapid, reversible and depended on intracellular pressure, as demonstrated by pressure-injection of silicon oil. Our results revive the concept of turgor generation and buffering by swelling cell walls, which had fallen into oblivion over the last century. Because sieve tube transport is pressure-driven and controlled physically by tube diameter, a regulatory role of wall swelling in photoassimilate distribution is implied in kelps.

  17. Transport of pollution to a remote coastal site during gap flow from California's interior: impacts on aerosol composition, clouds, and radiative balance

    NASA Astrophysics Data System (ADS)

    Martin, Andrew C.; Cornwell, Gavin C.; Atwood, Samuel A.; Moore, Kathryn A.; Rothfuss, Nicholas E.; Taylor, Hans; DeMott, Paul J.; Kreidenweis, Sonia M.; Petters, Markus D.; Prather, Kimberly A.

    2017-01-01

    During the CalWater 2015 field campaign, ground-level observations of aerosol size, concentration, chemical composition, and cloud activity were made at Bodega Bay, CA, on the remote California coast. A strong anthropogenic influence on air quality, aerosol physicochemical properties, and cloud activity was observed at Bodega Bay during periods with special weather conditions, known as Petaluma Gap flow, in which air from California's interior is transported to the coast. This study applies a diverse set of chemical, cloud microphysical, and meteorological measurements to the Petaluma Gap flow phenomenon for the first time. It is demonstrated that the sudden and often dramatic change in aerosol properties is strongly related to regional meteorology and anthropogenically influenced chemical processes in California's Central Valley. In addition, it is demonstrated that the change in air mass properties from those typical of a remote marine environment to properties of a continental regime has the potential to impact atmospheric radiative balance and cloud formation in ways that must be accounted for in regional climate simulations.

  18. Influences of peripherally-cut twisted tape insert on heat transfer and thermal performance characteristics in laminar and turbulent tube flows

    SciTech Connect

    Eiamsa-ard, Smith; Seemawute, Panida; Wongcharee, Khwanchit

    2010-09-15

    Effects of peripherally-cut twisted tape insert on heat transfer, friction loss and thermal performance factor characteristics in a round tube were investigated. Nine different peripherally-cut twisted tapes with constant twist ratio (y/W = 3.0) and different three tape depth ratios (DR = d/W = 0.11, 0.22 and 0.33), each with three different tape width ratios (WR = w/W = 0.11, 0.22 and 0.33) were tested. Besides, one typical twisted tape was also tested for comparison. The measurement of heat transfer rate was conducted under uniform heat flux condition while that of friction factor was performed under isothermal condition. Tests were performed with Reynolds number in a range from 1000 to 20,000, using water as a working fluid. The experimental results revealed that both heat transfer rate and friction factor in the tube equipped with the peripherally-cut twisted tapes were significantly higher than those in the tube fitted with the typical twisted tape and plain tube, especially in the laminar flow regime. The higher turbulence intensity of fluid in the vicinity of the tube wall generated by the peripherally-cut twisted tape compared to that induced by the typical twisted tape is referred as the main reason for achieved results. The obtained results also demonstrated that as the depth ratio increased and width ratio decreased, the heat transfer enhancement increased. Over the range investigated, the peripherally-cut twisted tape enhanced heat transfer rates in term of Nusselt numbers up to 2.6 times (turbulent regime) and 12.8 times (laminar regime) of that in the plain tube. These corresponded to the maximum performance factors of 1.29 (turbulent regime) and 4.88 (laminar regime). (author)

  19. Measurements of the HO2 uptake coefficient onto aqueous salt and organic aerosols and interpretation using the kinetic multi-layer model of aerosol surface and bulk chemistry (KM-SUB)

    NASA Astrophysics Data System (ADS)

    Matthews, P. S. J.; Berkemeier, T.; George, I. J.; Whalley, L. K.; Moon, D. R.; Ammann, M.; Baeza-Romero, M. T.; Poeschl, U.; Shiraiwa, M.; Heard, D. E.

    2014-12-01

    HO2 is closely coupled with OH which is responsible for the majority of the oxidation in the troposphere. Therefore, it is important to be able to accurately predict OH and HO2 concentrations. However, many studies have reported a large discrepancy between HO2 radical concentrations measured during field campaigns and predicted by constrained box models using detailed chemical mechanisms (1,2). However, there have been very few laboratory studies (3,4) on HO2 uptake by aerosols and the rates and mechanism is still uncertain. The HO2 uptake coefficients were measured for deliquesced ammonium nitrate and sodium chloride aerosols and copper doped sucrose aerosols. The measurements were performed using an aerosol flow tube coupled to a Fluorescence Assay by Gas Expansion (FAGE) detector. By either placing the HO2 injector in set positions and varying the aerosol concentration or by moving it along the flow tube at given aerosol concentrations, uptake coefficients could be measured. The aerosols were generated using an atomiser and the total aerosol surface area was measured using a SMPS. Larger uptake coefficients were measured at shorter times and lower HO2 concentrations for aqueous salt aerosols. The time dependence was able to be modelled by the KM-SUB model (5) as the HO2 concentration decreases along the flow tube and the HO2 uptake mechanism is known to be a second order reaction. Measurements have shown that at higher HO2 concentrations there was also more H2O2 exiting the injector which could convert back to HO2 if trace amounts of metals are present within the aerosol via Fenton reactions. Preliminary results have shown that the inclusion of a Fenton-like reaction within the KM-SUB model has the potential to explain the apparent HO2 concentration dependence. Finally, the KM-SUB model has been used to demonstrate that the increase in uptake coefficient observed when increasing the relative humidity for copper doped sucrose aerosols could be explained by an

  20. Experimental investigation for fluid flow and heat transfer in a rotating tube with twisted-tape inserts

    SciTech Connect

    Muralidhara Rao, M.; Sastri, V.M.K.

    1995-04-01

    Experimental investigation was carried out for friction factor and heat transfer coefficient in the case of a rotating tube with a twisted-tape insert for heat transfer augmentation. The data obtained were compared with existing data for a stationary tube with a twisted-tape insert. It has been observed that the enhancement in heat transfer offsets the rise in friction factor due to rotation, with respect to a plain tube under stationary conditions. A correlation has been proposed for the data obtained.

  1. Characterization of the Changes in Hygroscopicity of Ambient Organic Aerosol due to Oxidation by Gas Phase OH

    NASA Astrophysics Data System (ADS)

    Wong, J. P.; McWhinney, R. D.; Slowik, J. G.; Abbatt, J.

    2011-12-01

    Despite the ubiquitous nature of organic aerosols and their importance in climate forcing, the influence of chemical processes on their ability to act as cloud condensation nuclei (CCN) in the atmosphere remains uncertain. Changes to the hygroscopicity of ambient organic aerosol due to OH oxidation were explored at a remote forested (Whistler, British Columbia) and an urban (Toronto, Ontario) site. Organic aerosol was exposed to controlled levels of OH radicals in a portable flow tube reactor, the Toronto Photo-Oxidation Tube (TPOT). An Aerodyne Aerosol Mass Spectrometer (AMS) monitored the changes in the chemical composition due to OH-initiated oxidation. The CCN activity of size-selected particles was measured with a DMT Cloud Condensation Nuclei Counter (CCNc) to determine the hygroscopicity parameter, κ. Preliminary results suggest that gas phase OH oxidation increases the degree of oxygenation of organic aerosol, leading to increases in hygroscopicity. These results yield insights into the mechanism by which oxidation affects the hygroscopicity of ambient aerosol of various sources, and to constrain the main aging process that leads to the observation of increasing hygroscopicity with increasing oxidation of organic aerosol.

  2. Structural dynamics and fluid flow in shell-and-tube heat exchangers. Summary and overview of a DOE/ECUT-sponsored research program

    NASA Astrophysics Data System (ADS)

    Wambsganss, M. W.; Halle, H.; Mulcahy, T. M.

    1985-12-01

    Objective of the research program is to contribute to the design and development of energy-efficient, reliable, and cost-competitive industrial shell-and-tube heat exchangers. This report highlights the many technical contributions of the DOE/ECUT-sponsored program, reviews industry's use of the program results, and identifies research needs. Vibration excitation mechanisms, fluid/structure coupling, and flow distribution are briefly reviewed to provide background information. To date, the program has focused on the development of data bases of tube vibration and pressure drop information, derived from tests of a specially designed industrial-size heat exchanger. The development of an improved prediction method for fluid-elastic instability thresholds and the numerical simulation and measurement of flow distribution have also been addressed. Gas and two-phase flow testing is among the future research needs identified; such testing would require substantial modifications to the existing Heat Exchanger Test Facility. Industrial support, leading to a DOE/industry co-sponsored research pr ogram, is sought to allow for required modifications to the test facility, subsequent gas and two-phase flow testing, and expansion of the program to include further development of vibration and flow distribution prediction methods and related research.

  3. Newly observed several peroxides from the gas phase ozonolysis of isoprene using a flow tube reactor and the water vapor effect on their formation and decomposition

    NASA Astrophysics Data System (ADS)

    Huang, D.; Chen, Z.; Zhao, Y.

    2012-12-01

    In recent years, one has been paying more and more attention to the formation of hydrogen peroxide and organic peroxides in the oxidation of volatile organic compounds (VOCs) because peroxides play important roles, such as reservoir of OH, HO2 and RO2 radicals, intermediate of Criegee radical chemistry and contributor to secondary organic aerosol. However, to the best of our knowledge, in the reaction of ozone with VOCs, only several small peroxides such as hydrogen peroxide (H2O2), hydroxymethyl hydroperoxide (HMHP), and methyl hydroperoxide (MHP) were separately identified, and their yields varied widely between different studies. Moreover, the information on the formation mechanism of peroxides in the ozonolysis of VOCs was mostly from a speculation rather than experimental evidence. Notably, a static chamber was employed in most of the previous studies, potentially resulting in the decomposition and heterogeneous reaction of peroxides on the chamber walls within an experiment time of tens of minutes to several hours, and possibly missing the details about the generation of peroxides. In the present study, we have used a flow quartz tube reactor to investigate the formation of peroxides in the ozonolysis of isoprene at various relative humidities (RH). A variety of peroxides have been detected on the tens of seconds of time scale using an online high performance liquid chromatography coupled with post-column derivatization using p-hydroxyphenylacetic acid and fluorescence detection. Our experimental results show that in addition to the three peroxides mentioned previously, more four ones, those are peroxyacetic acid (PAA) and three unknown peroxides, have been found. Furthermore, the total yield of the three small peroxides (H2O2, HMHP and MHP) is found to be similar to the result of literature; while for PAA and three unknown peroxides, they highlight a combined molar yield, for example, ~ 40% at 5% RH, much higher than that of the three small peroxides

  4. A unifying model for elongational flow of polymer melts and solutions based on the interchain tube pressure concept

    NASA Astrophysics Data System (ADS)

    Wagner, Manfred Hermann; Rolón-Garrido, Víctor Hugo

    2015-04-01

    An extended interchain tube pressure model for polymer melts and concentrated solutions is presented, based on the idea that the pressures exerted by a polymer chain on the walls of an anisotropic confinement are anisotropic (M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Oxford University Press, New York, 1986). In a tube model with variable tube diameter, chain stretch and tube diameter reduction are related, and at deformation rates larger than the inverse Rouse time τR, the chain is stretched and its confining tube becomes increasingly anisotropic. Tube diameter reduction leads to an interchain pressure in the lateral direction of the tube, which is proportional to the 3rd power of stretch (G. Marrucci and G. Ianniruberto. Macromolecules 37, 3934-3942, 2004). In the extended interchain tube pressure (EIP) model, it is assumed that chain stretch is balanced by interchain tube pressure in the lateral direction, and by a spring force in the longitudinal direction of the tube, which is linear in stretch. The scaling relations established for the relaxation modulus of concentrated solutions of polystyrene in oligomeric styrene (M. H. Wagner, Rheol. Acta 53, 765-777, 2014, M. H. Wagner, J. Non-Newtonian Fluid Mech. http://dx.doi.org/10.1016/j.jnnfm.2014.09.017, 2014) are applied to the solutions of polystyrene (PS) in diethyl phthalate (DEP) investigated by Bhattacharjee et al. (P. K. Bhattacharjee et al., Macromolecules 35, 10131-10148, 2002) and Acharya et al. (M. V. Acharya et al. AIP Conference Proceedings 1027, 391-393, 2008). The scaling relies on the difference ΔTg between the glass-transition temperatures of the melt and the glass-transition temperatures of the solutions. ΔTg can be inferred from the reported zero-shear viscosities, and the BSW spectra of the solutions are obtained from the BSW spectrum of the reference melt with good accuracy. Predictions of the EIP model are compared to the steady-state elongational viscosity data of PS

  5. Experimental sizing and assessment of two-phase pressure drop correlations for a capillary tube with transcritical and subcritical carbon dioxide flow

    NASA Astrophysics Data System (ADS)

    Trinchieri, R.; Boccardi, G.; Calabrese, N.; Celata, G. P.; Zummo, G.

    2014-04-01

    In the last years, CO2 was proposed as an alternative refrigerant for different refrigeration applications (automotive air conditioning, heat pumps, refrigerant plants, etc.) In the case of low power refrigeration applications, as a household refrigerator, the use of too expensive components is not economically sustainable; therefore, even if the use of CO2 as the refrigerant is desired, it is preferable to use conventional components as much as possible. For these reasons, the capillary tube is frequently proposed as expansion system. Then, it is necessary to characterize the capillary in terms of knowledge of the evolving mass flow rate and the associate pressure drop under all possible operative conditions. For this aim, an experimental campaign has been carried out on the ENEA test loop "CADORE" to measure the performance of three capillary tubes having same inner diameter (0.55 mm) but different lengths (4, 6 and 8 meters). The test range of inlet pressure is between about 60 and 110 bar, whereas external temperatures are between about 20 to 42 °C. The two-phase pressure drop through the capillary tube is detected and experimental values are compared with the predictions obtained with the more widely used correlations available in the literature. Correlations have been tested over a wide range of variation of inlet flow conditions, as a function of different inlet parameters.

  6. TUBE TESTER

    DOEpatents

    Gittings, H.T. Jr.; Kalbach, J.F.

    1958-01-14

    This patent relates to tube testing, and in particular describes a tube tester for automatic testing of a number of vacuum tubes while in service and as frequently as may be desired. In it broadest aspects the tube tester compares a particular tube with a standard tube tarough a difference amplifier. An unbalanced condition in the circuit of the latter produced by excessive deviation of the tube in its characteristics from standard actuates a switch mechanism stopping the testing cycle and indicating the defective tube.

  7. The quantification of carbon dioxide in humid air and exhaled breath by selected ion flow tube mass spectrometry.

    PubMed

    Smith, David; Pysanenko, Andriy; Spanel, Patrik

    2009-05-01

    The reactions of carbon dioxide, CO(2), with the precursor ions used for selected ion flow tube mass spectrometry, SIFT-MS, analyses, viz. H(3)O(+), NO(+) and O(2) (+), are so slow that the presence of CO(2) in exhaled breath has, until recently, not had to be accounted for in SIFT-MS analyses of breath. This has, however, to be accounted for in the analysis of acetaldehyde in breath, because an overlap occurs of the monohydrate of protonated acetaldehyde and the weakly bound adduct ion, H(3)O(+)CO(2), formed by the slow association reaction of the precursor ion H(3)O(+) with CO(2) molecules. The understanding of the kinetics of formation and the loss rates of the relevant ions gained from experimentation using the new generation of more sensitive SIFT-MS instruments now allows accurate quantification of CO(2) in breath using the level of the H(3)O(+)CO(2) adduct ion. However, this is complicated by the rapid reaction of H(3)O(+)CO(2) with water vapour molecules, H(2)O, that are in abundance in exhaled breath. Thus, a study has been carried out of the formation of this adduct ion by the slow three-body association reaction of H(3)O(+) with CO(2) and its rapid loss in the two-body reaction with H(2)O molecules. It is seen that the signal level of the H(3)O(+)CO(2) adduct ion is sensitively dependent on the humidity (H(2)O concentration) of the sample to be analysed and a functional form of this dependence has been obtained. This has resulted in an appropriate extension of the SIFT-MS software and kinetics library that allows accurate measurement of CO(2) levels in air samples, ranging from very low percentage levels (0.03% typical of tropospheric air) to the 6% level that is about the upper limit in exhaled breath. Thus, the level of CO(2) can be traced through single time exhalation cycles along with that of water vapour, also close to the 6% level, and of trace gas metabolites that are present at only a few parts-per-billion. This has added a further dimension to

  8. Heat transfer characteristics of decaying swirl flow through a circular tube with co/counter dual twisted-tape swirl generators

    NASA Astrophysics Data System (ADS)

    Changcharoen, W.; Samruaisin, P.; Eiamsa-ard, P.; Eiamsa-ard, S.

    2016-07-01

    The influence of co/counter dual-twisted tapes (CoT/CT) on heat transfer rate in a circular tube has been investigated experimentally. In the experiment, the dual-twisted tapes are placed at the entry of the test tube in two arrangements: (1) each of dual twisted tape was twisted in the same direction that can produce co-swirl flow at the entry and (2) each of dual twisted tape was twisted in the opposite direction that can produce counter-swirl flow. Dual tapes were twisted in three different twist ratios ( y/w = 3, 4, and 5) for generating different swirl intensities at the entry of the test section while the single twisted tape (ST) was also the test for comparison. The aim at using the dual twisted tapes is to create co/counter-rotating swirl flows having a significant influence on the flow turbulence intensity at the entry section leading to higher heat transfer enhancement. Average Nusselt numbers of CoT/CT are determined and also compared with those obtained from other similar cases, i.e., ST. The experimental results on the heat transfer rates indicated that the tubes with the dual twisted tapes (CoT/CT) are higher than those with the single tape at the entry section ( x/D = 0 to 10). The heat transfer rates at longer distance became lower due to high interaction of each swirl. In addition, the mean Nusselt number and friction factor for the swirl generator created by the CT is nearly similar to CoT results.

  9. Pulse Tube Refrigerator

    NASA Astrophysics Data System (ADS)

    Matsubara, Yoichi

    The pulse tube refrigerator is one of the regenerative cycle refrigerators such as Stirling cycle or Gifford-McMahon cycle which gives the cooling temperature below 150 K down to liquid helium temperature. In 1963, W. E. Gifford invented a simple refrigeration cycle which is composed of compressor, regenerator and simple tube named as pulse tube which gives a similar function of the expander in Stirling or Gifford-McMahon cycle. The thermodynamically performance of this pulse tube refrigerator is inferior to that of other regenerative cycles. In 1984, however, Mikulin and coworkers made a significant advance in pulse tube configuration called as orifice pulse tube. After this, several modifications of the pulse tube hot end configuration have been developed. With those modifications, the thermodynamic performance of the pulse tube refrigerator became the same order to that of Stirling and Gifford-McMahon refrigerator. This article reviews the brief history of the pulse tube refrigerator development in the view point of its thermodynamically efficiency. Simplified theories of the energy flow in the pulse tube have also been described.

  10. Results from the University of Toronto continuous flow diffusion chamber at ICIS 2007: instrument intercomparison and ice onsets for different aerosol types

    NASA Astrophysics Data System (ADS)

    Kanji, Z. A.; Demott, P. J.; Möhler, O.; Abbatt, J. P. D.

    2011-01-01

    The University of Toronto continuous flow diffusion chamber (UT-CFDC) was used to study heterogeneous ice nucleation at the International Workshop on Comparing Ice Nucleation Measuring Systems (ICIS 2007) which also represented the 4-th ice nucleation workshop, on 14-28 September 2007. One goal of the workshop was to inter-compare different ice nucleation measurement techniques using the same aerosol sample source and preparation method. The aerosol samples included four types of desert mineral dust, graphite soot particles, and live and dead bacterial cells (Snomax®). This paper focuses on the UT-CFDC results, with a comparison to techniques of established heritage including the Colorado State CFDC and the AIDA expansion chamber. Good agreement was found between the different instruments with a few specific differences, especially at low temperatures, perhaps due to the variation in how onset of ice formation is defined between the instruments and the different inherent residence times. It was found that when efficiency of ice formation is based on the lowest onset relative humidity, Snomax® particles were most efficient followed by the desert dusts and then soot. For all aerosols, deposition mode freezing was only observed for T<45 K except for the dead bacteria where freezing occurred below water saturation as warm as 263 K.

  11. Laminar flow heat transfer and pressure drop characteristics of power-law fluids inside tubes with varying width twisted tape inserts

    SciTech Connect

    Patil, A.G.

    2000-02-01

    Results of an experimental investigation of heat transfer and flow friction of a generalized power-law fluid in tape generated swirl flow inside a 25.0 mm i.d. circular tube, are presented. In order to reduce excessive pressure drops associated with full width twisted tapes, with less corresponding reduction in heat transfer coefficients, reduced width twisted tapes of widths ranging from 11.0 to 23.8 mm, which are lower than the tube inside diameter are used. Reduced width twisted tape inserts give 18%--56% lower isothermal friction factors than the full width tapes. Uniform wall temperature Nusselt numbers decrease only slightly by 5%--25%, for tape widths of 19.7 and 11.0 mm, respectively. Based on the constant pumping power criterion, the tapes of width 19.7 mm perform more or less like full width tapes. Correlations are presented for isothermal and heating friction factors and Nusselt numbers (under uniform wall temperature condition) for a fully developed laminar swirl flow, which are applicable to full width as well as reduced width twisted tapes, using a modified twist ratio as pitch to width ratio of the tape. The reduced width tapes offer 20%--50% savings in the tape material as compared to the full width tapes.

  12. Two-phase flow boiling frictional pressure drop of liquid nitrogen in horizontal circular mini-tubes: Experimental investigation and comparison with correlations

    NASA Astrophysics Data System (ADS)

    Chen, Xingya; Chen, Shuangtao; Chen, Jun; Li, Jiapeng; Liu, Xiufang; Chen, Liang; Hou, Yu

    2017-04-01

    The two-phase flow boiling characteristics of liquid nitrogen (LN2) in horizontal circular mini-tubes were experimentally studied. Experiments were performed in a wide range of flow conditions, e.g. inlet pressure from 0.17 to 0.35 MPa, mass flux from 140 to 330 kg/m2 s, heat flux from 0.5 to 69.4 kW/m2 and tube diameters of 2.92 mm and 3.96 mm. The influences of mass flux, heat flux, and inlet pressure on the pressure drop were discussed. The results indicated that the pressure drop increases with the increasing mass flux and heat flux but decreases with the increasing inlet pressure. But the influence of heat flux on the frictional pressure drop of LN2 was weaker than mass flux and inlet pressure. The frictional pressure drop of two-phase flow of LN2 was compared with homogeneous model and several semi-empirical correlations. An improved correlation based on the Lockhart-Martinelli model, which used coefficient C as a function of Reynolds number and Weber number was proposed.

  13. Sampling Artifacts from Conductive Silicone Tubing

    SciTech Connect

    Timko, Michael T.; Yu, Zhenhong; Kroll, Jesse; Jayne, John T.; Worsnop, Douglas R.; Miake-Lye, Richard C.; Onasch, Timothy B.; Liscinsky, David; Kirchstetter, Thomas W.; Destaillats, Hugo; Holder, Amara L.; Smith, Jared D.; Wilson, Kevin R.

    2009-05-15

    We report evidence that carbon impregnated conductive silicone tubing used in aerosol sampling systems can introduce two types of experimental artifacts: 1) silicon tubing dynamically absorbs carbon dioxide gas, requiring greater than 5 minutes to reach equilibrium and 2) silicone tubing emits organic contaminants containing siloxane that adsorb onto particles traveling through it and onto downstream quartz fiber filters. The consequence can be substantial for engine exhaust measurements as both artifacts directly impact calculations of particulate mass-based emission indices. The emission of contaminants from the silicone tubing can result in overestimation of organic particle mass concentrations based on real-time aerosol mass spectrometry and the off-line thermal analysis of quartz filters. The adsorption of siloxane contaminants can affect the surface properties of aerosol particles; we observed a marked reduction in the water-affinity of soot particles passed through conductive silicone tubing. These combined observations suggest that the silicone tubing artifacts may have wide consequence for the aerosol community and should, therefore, be used with caution. Gentle heating, physical and chemical properties of the particle carriers, exposure to solvents, and tubing age may influence siloxane uptake. The amount of contamination is expected to increase as the tubing surface area increases and as the particle surface area increases. The effect is observed at ambient temperature and enhanced by mild heating (<100 oC). Further evaluation is warranted.

  14. Heterogeneous Uptake of HO2 Radicals onto Submicron Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Matthews, P. S.; George, I. J.; Brooks, B.; Whalley, L. K.; Baeza-Romero, M. T.; Heard, D. E.

    2012-12-01

    OH and HO2 (HOx) radicals are closely coupled and OH is responsible for the majority of the oxidation in the troposphere and controls the concentrations of many trace species. Therefore, it is important to be able to accurately predict HOx concentrations. However, some field measurement studies have reported significantly lower HO2 radical concentrations than calculated by constrained box models using detailed chemical mechanisms. Although the inclusion of halogen chemistry into the mechanisms can explain much of the differences in the marine boundary layer (MBL) (1,2), HO2 uptake by aerosols has been suggested as a possible sink in the MBL (2), the Arctic troposphere (3) and the upper troposphere (4). There have been very few laboratory studies (5,6) on HO2 uptake by aerosols and the rates and mechanism is still uncertain. The HO2 uptake coefficients were measured for a variety of atmospherically relevant inorganic and organic aerosols. The measurements were performed using an aerosol flow tube combined with a Fluorescence Assay by Gas Expansion (FAGE) detector. The sensitive FAGE cell allowed low HO2 concentrations (108-109 molecule cm-3) to be injected into the flow tube using a moveable injector. By moving the injector along the flow tube, position dependent HO2 decays were able to be recorded which when plotted against the total aerosol surface area allowed an uptake coefficient to be obtained. The aerosols were generated using an atomiser or by homogeneous nucleation and the total aerosol surface area was measured using a Scanning Mobility Particle Sizer. The HO2 uptake coefficient (γ) was measured at room temperature for dry inorganic salts and dry organics (γ< 0.004), wet inorganic salts and wet organics (γ= 0.002-0.005), wet copper doped ammonium sulfate aerosols (γ= 0.28± 0.05) and ammonium sulfate aerosols doped with different molar amounts of iron (γ= 0.003-0.06). The pH dependence of the HO2 uptake coefficient was investigated, however no

  15. Optical monitoring of the concentration profile of submicron latex particles in flow through a translucent water-permeable tube: demonstration of flow-dependent concentration polarization of plasma proteins at a blood/endothelium boundary

    NASA Astrophysics Data System (ADS)

    Wada, Shigeo; Iwai, Toshiaki; Karino, Takeshi

    1999-05-01

    It is well accepted that hemodynamics plays an important role in atherogenesis in man. However, the precise mechanisms have not been elucidated yet. Recently, Karino and his coworkers hypothesized that flow-dependent concentration polarization of low-density lipoproteins (LDL: a carrier of cholesterol) may occur at a blood/endothelium boundary, leading to a high risk of atherogenesis in regions of slow flow and low wall shear rate where the concentration of LDL builds up. In this study, we attempted to confirm experimentally their predictions by measuring optically the concentration profile of polystyrene microspheres (used as a model of LDL) flowing in steady flow through a dialyses tube (used as a model of an artery) by transversing a laser beam across the tube and detecting the intensity of the transmitted light. It was found that surface concentration of the microsphere certainly increases with decreasing the flow rate (hence wall shear rate) and it occurs even under the conditions of a very low water filtration velocity encountered in normal arteries in vivo, thus giving a strong support to the hypothesis proposed by Karino et al.

  16. Flow-through polymerase chain reaction inside a seamless 3D helical microreactor fabricated utilizing a silicone tube and a paraffin mold.

    PubMed

    Wu, Wenming; Trinh, Kieu The Loan; Lee, Nae Yoon

    2015-03-07

    We introduce a new strategy for fabricating a seamless three-dimensional (3D) helical microreactor utilizing a silicone tube and a paraffin mold. With this method, various shapes and sizes of 3D helical microreactors were fabricated, and a complicated and laborious photolithographic process, or 3D printing, was eliminated. With dramatically enhanced portability at a significantly reduced fabrication cost, such a device can be considered to be the simplest microreactor, developed to date, for performing the flow-through polymerase chain reaction (PCR).

  17. Heterogeneous Uptake of HO2 Radicals onto Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    George, I. J.; Matthews, P. S.; Brooks, B.; Goddard, A.; Whalley, L. K.; Baeza-Romero, M. T.; Heard, D. E.

    2011-12-01

    The hydroxyl (OH) and hydroperoxyl (HO2) radicals, together known as HOx, play a vital role in atmospheric chemistry by controlling the oxidative capacity of the troposphere. The atmospheric lifetime and concentrations of many trace reactive species, such as volatile organic compounds (VOCs), are determined by HOx radical levels. Therefore, the ability to accurately predict atmospheric HOx concentrations from a detailed knowledge of their sources and sinks is a very useful diagnostic tool to assess our current understanding of atmospheric chemistry. Several recent field studies have observed significantly lower concentrations of HO2 radicals than predicted using box models, where HO2 loss onto aerosols was suggested as a possible missing sink [1, 2]. However, the mechanism on HO2 uptake onto aerosols and its impact on ambient HOx levels are currently not well understood. To improve our understanding of this process, we have conducted laboratory experiments to measure HO2 uptake coefficients onto submicron aerosol particles. The FAGE (Fluorescence Assay by Gas Expansion) technique, a highly sensitive laser induced fluorescence based detection method, was used to monitor HO2 uptake kinetics onto aerosol particles in an aerosol flow tube. The application of the FAGE technique allowed for kinetic experiments to be performed under low HO2 concentrations, i.e. [HO2] < 109 molecules cm-3. HO2 radicals were produced by the photolysis of water vapour in the presence of O2 and aerosol particles were produced either by atomizing dilute salt solutions or by homogeneous nucleation. HO2 uptake coefficients (γ) have been measured for single-component solid and aqueous inorganic salt and organic aerosol particles with a wide range of hygroscopicities. HO2 uptake coefficients on solid particles were below the detection limit (γ < 0.001), whereas on aqueous aerosols uptake coefficients were somewhat larger (γ = 0.001 - 0.008). HO2 uptake coefficients were highest on aerosols

  18. Thermal Analysis on Mono-Block Type Divertor Based on Subcooled Flow Boiling Critical Heat Flux Data against Inlet Subcooling in Short Vertical Tube

    NASA Astrophysics Data System (ADS)

    Hata, Koichi; Shiotsu, Masahiro; Noda, Nobuaki

    The subcooled flow boiling critical heat fluxes (CHFs) and the heat transfer coefficients (HTCs) data for the tube length, L, of 49, 99 and 149 mm with 9-mm inner diameter were applied to thermal analysis on the Mono-block type divertor of LHD. Incident CHFs for the divertor with the cooling tube diameter, d, of 10 mm and the carbon armor outer diameter, D, of 26 and 33 mm were numerically analyzed based on the measured CHFs and HTCs at the inlet pressure of around 800 kPa. The numerical solutions were also compared with those for the Flat-plate type divertor, which were numerically analyzed for the divertor with the cooling tube diameter d=10 mm and the divertor width, w, ranging from 16 to 30 mm. It is confirmed that the ratio of the one-side heating CHF data, qcr,inc, to the uniform heating CHF data, qcr,sub, can be represented as the simple equation based on the numerical solutions. The values of the qcr,inc for L=50, 100 and 150 mm were estimated with various D/d and w/d at higher pressures.

  19. Multistage pH-responsive mucoadhesive nanocarriers prepared by aerosol flow reactor technology: A controlled dual protein-drug delivery system.

    PubMed

    Shrestha, Neha; Shahbazi, Mohammad-Ali; Araújo, Francisca; Mäkilä, Ermei; Raula, Janne; Kauppinen, Esko I; Salonen, Jarno; Sarmento, Bruno; Hirvonen, Jouni; Santos, Hélder A

    2015-11-01

    Nanotechnology based drug delivery systems are anticipated to overcome the persistent challenges in oral protein and peptide administration, and lead to the development of long awaited non-invasive therapies. Herein, an advanced single-step aerosol flow reactor based technology was used to develop a multifunctional site specific dual protein-drug delivery nanosystem. For this purpose, mucoadhesive porous silicon (PSi) nanoparticles encapsulated into a pH-responsive polymeric nanomatrix was developed for advanced oral type 2 diabetes mellitus therapy with an antidiabetic peptide, glucagon like peptide-1 (GLP-1), and the enzyme inhibitor, dipeptidyl peptidase-4 (DPP4). Chitosan surface modification inherited the mucoadhesiveness to the nanosystem which led to enhanced cellular interactions and increased cellular compatibility. An advanced aerosol flow reactor technology was used to encapsulate the chitosan modified nanoparticles into an enteric polymeric nanomatrix. The pH-sensitive polymeric matrix simultaneously prevented the gastric degradation of the encapsulated peptide and also preserved the mucoadhesive functionality of the chitosan-modified PSi nanoparticles in the harsh stomach environment. The multidrug loaded nanosystem showed augmented intestinal permeability of GLP-1, evaluated in an in vitro cell-based intestinal epithelium model, attributed to the permeation enhancer effect of chitosan and inhibition of GLP-1 degradation by the DPP4 inhibitor. The applied technology resulted in the development of a dual-drug delivery nanosystem that synergizes the antidiabetic effect of the loaded peptide and the enzyme inhibitor, thereby indicating high clinical potential of the system and preparation technique.

  20. Photosensitized Heterogeneous Oxidation Reactions of Organic Biomass Burning Aerosol Surrogates by Ozone Using a Novel Irradiation-Permitting Rectangular Channel Flow Reactor

    NASA Astrophysics Data System (ADS)

    Forrester, S. M.; Knopf, D. A.

    2012-12-01

    Organic aerosol particles are ubiquitous in the atmosphere and can influence the climate both directly through scattering and absorption of radiation and indirectly through modification of cloud properties. Biomass burning is a major source of organic aerosol particles to the atmosphere. Source apportionment of biomass burning plumes relies heavily on biomolecular markers such as levoglucosan. However, these compounds can react heterogeneously with trace gases, which may cause source strength underestimation. The presence of light absorbing material known as photosensitizers can cause biomolecular markers to react more efficiently with trace gases when exposed to radiation. In this study, the heterogeneous kinetics between ozone and compounds typical of organic biomass burning aerosol particles are determined in the absence and presence of a photosensitizing compound. The effect of visible or UV radiation on the heterogeneous kinetics is investigated. Levoglucosan and nitroguaiacol serve as surrogates for organic biomass burning aerosol and Pahokee peat serves as a surrogate for HuLIS (humic-like substances). The latter is known to be a photosensitizer and can be found in biomass burning aerosol particles. The reactive uptake experiments are conducted with a newly designed rectangular channel flow reactor that allows controlled visible and UV irradiation of the organic substrates. The absolute irradiance of the visible and UV light sources is characterized using a calibrated fiber optic spectrometer. Reactive uptake coefficients are determined by monitoring the gas-phase loss of ozone to the organic substrate using a custom-built chemical ionization mass spectrometer (CIMS). The heterogeneous kinetics are derived in the presence of atmospherically relevant O3 and O2 concentrations and total pressure is about 2-3 hPa, ensuring negligible diffusion limitations. Reactive uptake experiments are also performed as a function of total incoming photon flux and ozone

  1. Numerical heat transfer analysis of transcritical hydrocarbon fuel flow in a tube partially filled with porous media

    NASA Astrophysics Data System (ADS)

    Jiang, Yuguang; Feng, Yu; Zhang, Silong; Qin, Jiang; Bao, Wen

    2016-01-01

    Hydrocarbon fuel has been widely used in air-breathing scramjets and liquid rocket engines as coolant and propellant. However, possible heat transfer deterioration and threats from local high heat flux area in scramjet make heat transfer enhancement essential. In this work, 2-D steady numerical simulation was carried out to study different schemes of heat transfer enhancement based on a partially filled porous media in a tube. Both boundary and central layouts were analyzed and effects of gradient porous media were also compared. The results show that heat transfer in the transcritical area is enhanced at least 3 times with the current configuration compared to the clear tube. Besides, the proper use of gradient porous media also enhances the heat transfer compared to homogenous porous media, which could help to avoid possible over-temperature in the thermal protection.

  2. The Combined Application of Impinger System and Permeation Tube for the Generation of Volatile Organic Compound Standard Gas Mixtures at Varying Diluent Flow Rates

    PubMed Central

    Kim, Ki-Hyun; Susaya, Janice; Cho, Jinwoo; Parker, David

    2012-01-01

    Commercial standard gas generators are often complex and expensive devices. The objective of this research was to assess the performance of a simplified glass impinger system for standard gas generation from a permeation tube (PT) device. The performance of the impinger standard gas generation system was assessed for four aromatic VOCs (benzene, toluene, ethylbenzene, and m-xylene; BTEX) at varying flow rates (FR) of 50 to 800 mL·min−1. Because actual permeation rate (APR) values deviated from those computed by the manufacturer's formula (MPR), new empirical relationships were developed to derive the predicted PR (PPR) of the target components. Experimental results corrected by such a formula indicate that the compatibility between the APR and MPR generally increased with low FR, while the reproducibility was generally reduced with decreasing flow rate. Although compatibility between different PRs is at a relatively small and narrow FR range, the use of correction formula is recommendable for the accurate use of PT. PMID:23112641

  3. Convective heat transfer to CO{sub 2} at a supercritical pressure flowing vertically upward in tubes and an annular channel

    SciTech Connect

    Bae, Yoon-Yeong; Kim, Hwan-Yeol

    2009-01-15

    The Super-Critical Water-Cooled Reactor (SCWR) has been chosen by the Generation IV International Forum as one of the candidates for the next generation nuclear reactors. Heat transfer to water from a fuel assembly may deteriorate at certain supercritical pressure flow conditions and its estimation at degraded conditions as well as in normal conditions is very important to the design of a safe and reliable reactor core. Extensive experiments on a heat transfer to a vertically upward flowing CO{sub 2} at a supercritical pressure in tubes and an annular channel have been performed. The geometries of the test sections include tubes of an internal diameter (ID) of 4.4 and 9.0 mm and an annular channel (8 x 10 mm). The heat transfer coefficient (HTC) and Nusselt numbers were derived from the inner wall temperature converted by using the outer wall temperature measured by adhesive K-type thermocouples and a direct (tube) or indirect (annular channel) electric heating power. From the test results, a correlation, which covers both a deteriorated and a normal heat transfer regime, was developed. The developed correlation takes different forms in each interval divided by the value of parameter Bu. The parameter Bu (referred to as Bu hereafter), a function of the Grashof number, the Reynolds number and the Prandtl number, was introduced since it is known to be a controlling factor for the occurrence of a heat transfer deterioration due to a buoyancy effect. The developed correlation predicted the HTCs for water and HCFC-22 fairly well. (author)

  4. Consideration of Inner and Outer Phase Configuration in Tube Radial Distribution Phenomenon Based on Viscous Dissipation in a Microfluidic Flow Using Various Types of Mixed Solvent Solutions.

    PubMed

    Fujinaga, Satoshi; Hashimoto, Masahiko; Tsukagoshi, Kazuhiko; Mizushima, Jiro

    2016-01-01

    When mixed solvent solutions, such as ternary water-hydrophilic/hydrophobic organic solvents, water-surfactant, and water-ionic liquid, are delivered into a microspace under laminar flow conditions, the solvent molecules radially distribute in the microspace, generating inner and outer phases. This specific fluidic behavior is termed "tube radial distribution phenomenon", and has been used in separation technologies such as chromatography and extraction. The factors influencing the configuration of the inner and outer phases in "tube radial distribution phenomenon" using the above-mentioned mixed solvent solutions were considered from the viewpoint of viscous dissipation in fluidic flows. When the difference in the viscosity between the two phases was large (approximately >0.73 mPa·s), the phase with the higher viscosity formed as an inner phase regardless of the volume ratio. The distribution pattern of the solvents was supported by the viscous dissipation principle. Contrarily, when the difference was small (approximately <0.49 mPa·s), the phase with the larger volume formed as the inner phase. The distribution pattern of the solvents did not always correspond to the viscous dissipation principle. The current findings are expected to be useful in analytical science including microflow analysis research.

  5. A general unified non-equilibrium model for predicting saturated and subcooled critical two-phase flow rates through short and long tubes

    SciTech Connect

    Fraser, D.W.H.; Abdelmessih, A.H.

    1995-09-01

    A general unified model is developed to predict one-component critical two-phase pipe flow. Modelling of the two-phase flow is accomplished by describing the evolution of the flow between the location of flashing inception and the exit (critical) plane. The model approximates the nonequilibrium phase change process via thermodynamic equilibrium paths. Included are the relative effects of varying the location of flashing inception, pipe geometry, fluid properties and length to diameter ratio. The model predicts that a range of critical mass fluxes exist and is bound by a maximum and minimum value for a given thermodynamic state. This range is more pronounced at lower subcooled stagnation states and can be attributed to the variation in the location of flashing inception. The model is based on the results of an experimental study of the critical two-phase flow of saturated and subcooled water through long tubes. In that study, the location of flashing inception was accurately controlled and adjusted through the use of a new device. The data obtained revealed that for fixed stagnation conditions, the maximum critical mass flux occurred with flashing inception located near the pipe exit; while minimum critical mass fluxes occurred with the flashing front located further upstream. Available data since 1970 for both short and long tubes over a wide range of conditions are compared with the model predictions. This includes test section L/D ratios from 25 to 300 and covers a temperature and pressure range of 110 to 280{degrees}C and 0.16 to 6.9 MPa. respectively. The predicted maximum and minimum critical mass fluxes show an excellent agreement with the range observed in the experimental data.

  6. Organic Aerosol Formation Photoenhanced by the Formation of Secondary Photo-sensitizers in ageing Aerosols

    NASA Astrophysics Data System (ADS)

    Aregahegn, Kifle; Nozière, Barbara; George, Christian

    2013-04-01

    Humankind is facing a changing environment possibly due to anthropogenic stress on the atmosphere. In this context, aerosols play a key role by affecting the radiative climate forcing, hydrological cycle, and by their adverse effect on health. The role of organic compounds in these processes is however still poorly understood because of their massive chemical complexity and numerous transformations. This is particularly true for Secondary Organic Aerosol (SOA), which are produced in the atmosphere by organic gases. Traditionally, the driving forces for SOA growth is believed to be the partitioning onto aerosol seeds of condensable gases, either emitted primarily or resulting from the gas phase oxidation of organic gases. However, even the most up-to-date models based on such mechanisms can not account for the SOA mass observed in the atmosphere, suggesting the existence of other, yet unknown formation processes. The present study shows experimental evidence that particulate phase chemistry produces photo-sensitizers that lead to photo-induced formation and growth of secondary organic aerosol in the near UV and the presence of volatile organic compounds (VOC) such as terpenes. By means of an aerosol flow tube reactor equipped with Scanning Mobility Particle Sizer (SMPS) having Kr-85 source aerosol neutralizer, Differential Mobility Analyser (DMA) and Condensation Particle Sizer (CPC), we identified that traces of the aerosol phase product of glyoxal chemistry as is explained in Gallway et al., and Yu et al., namely imidazole-2-carboxaldehyde (IC) is a strong photo-sensitizer when irradiated by near-UV in the presence of volatile organic compounds such as terpenes. Furthermore, the influence of pH, type and concentration of VOCs, composition of seed particles, relative humidity and irradiation intensity on particle growth were studied. This novel photo-sensitizer contributed to more than 30% of SOA growth in 19min irradiation time in the presence of terpenes in the

  7. Feeding Tubes

    MedlinePlus

    ... Feeding Tubes Health Information Sheet Q & A with Experts Patient Stories Social Security Disability Application Process For Kids ... Feeding Tubes Health Information Sheet Q & A with Experts Patient Stories Social Security Disability Application Process For Kids ...

  8. Organic aerosols

    SciTech Connect

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN.

  9. Influence of inspiratory flow rate, particle size, and airway caliber on aerosolized drug delivery to the lung.

    PubMed

    Dolovich, M A

    2000-06-01

    A number of studies in the literature support the use of fine aerosols of drug, inhaled at low IFRs to target peripheral airways, with the objective of improving clinical responses to inhaled therapy (Fig. 8). Attempts have been made to separate response due to changes in total administered dose or the surface concentration of the dose from response due to changes in site of deposition--both are affected by the particle size of the aerosol, with IFR additionally influencing the latter. The tools for measuring dose and distribution have improved over the last 10-15 years, and thus we should expect greater accuracy in these measurements for assessing drug delivery to the lung. There are still issues, though, in producing radiolabeled (99m)technetium aerosols that are precise markers for the pharmaceutical product being tested and in quantitating absolute doses deposited in the lung. PET isotopes may provide the means for directly labelling a drug and perhaps can offer an alternative for making these measurements in the future, but deposition measurements should not be used in isolation; protocols should incorporate clinical tests to provide parallel therapeutic data in response to inhalation of the drug by the various patient populations being studied.

  10. Maintaining the Social Flow of Evidence-Informed Palliative Care: Use and Misuse of YouTube

    PubMed Central

    Jamwal, Nisha Rani; Kumar, Senthil Paramasivam

    2016-01-01

    This review article is aimed to explore the use of the social media website YouTube (www.youtube.com) as an evidence resource in palliative care, for patients and caregivers, students and professionals, and providers and policy-makers in developing countries’ settings. The reviewed evidence reiterated the role of this social media website in palliative care practice, education and research in the area of cancer. Efficacy studies on impact of such media on palliative care delivery in developing countries are still lacking. PMID:26962290

  11. Maintaining the Social Flow of Evidence-Informed Palliative Care: Use and Misuse of YouTube.

    PubMed

    Jamwal, Nisha Rani; Kumar, Senthil Paramasivam

    2016-01-01

    This review article is aimed to explore the use of the social media website YouTube (www.youtube.com) as an evidence resource in palliative care, for patients and caregivers, students and professionals, and providers and policy-makers in developing countries' settings. The reviewed evidence reiterated the role of this social media website in palliative care practice, education and research in the area of cancer. Efficacy studies on impact of such media on palliative care delivery in developing countries are still lacking.

  12. Incremental Reactivity Effects of Anthropogenic and Biogenic Volatile Organic Compounds on Secondary Organic Aerosol Formation

    NASA Astrophysics Data System (ADS)

    Kacarab, M.; Li, L.; Carter, W. P. L.; Cocker, D. R., III

    2015-12-01

    Two surrogate reactive organic gas (ROG) mixtures were developed to create a controlled reactivity environment simulating different urban atmospheres with varying levels of anthropogenic (e.g. Los Angeles reactivity) and biogenic (e.g. Atlanta reactivity) influences. Traditional chamber experiments focus on the oxidation of one or two volatile organic compound (VOC) precursors, allowing the reactivity of the system to be dictated by those compounds. Surrogate ROG mixtures control the overall reactivity of the system, allowing for the incremental aerosol formation from an added VOC to be observed. The surrogate ROG mixtures were developed based on that used to determine maximum incremental reactivity (MIR) scales for O3 formation from VOC precursors in a Los Angeles smog environment. Environmental chamber experiments were designed to highlight the incremental aerosol formation in the simulated environment due to the addition of an added anthropogenic (aromatic) or biogenic (terpene) VOC. All experiments were conducted in the UC Riverside/CE-CERT dual 90m3 environmental chambers. It was found that the aerosol precursors behaved differently under the two altered reactivity conditions, with more incremental aerosol being formed in the anthropogenic ROG system than in the biogenic ROG system. Further, the biogenic reactivity condition inhibited the oxidation of added anthropogenic aerosol precursors, such as m-xylene. Data will be presented on aerosol properties (density, volatility, hygroscopicity) and bulk chemical composition in the gas and particle phases (from a SYFT Technologies selected ion flow tube mass spectrometer, SIFT-MS, and Aerodyne high resolution time of flight aerosol mass spectrometer, HR-ToF-AMS, respectively) comparing the two controlled reactivity systems and single precursor VOC/NOx studies. Incremental aerosol yield data at different controlled reactivities provide a novel and valuable insight in the attempt to extrapolate environmental chamber

  13. Methods and Tools to allow molecular flow simulations to be coupled to higher level continuum descriptions of flows in porous/fractured media and aerosol/dust dynamics

    SciTech Connect

    Loyalka, Sudarshan

    2015-04-09

    The purpose of this project was to develop methods and tools that will aid in safety evaluation of nuclear fuels and licensing of nuclear reactors relating to accidents.The objectives were to develop more detailed and faster computations of fission product transport and aerosol evolution as they generally relate to nuclear fuel and/or nuclear reactor accidents. The two tasks in the project related to molecular transport in nuclear fuel and aerosol transport in reactor vessel and containment. For both the tasks, explorations of coupling of Direct Simulation Monte Carlo with Navier-Stokes solvers or the Sectional method were not successful. However, Mesh free methods for the Direct Simulation Monte Carlo method were successfully explored.These explorations permit applications to porous and fractured media, and arbitrary geometries.The computations were carried out in Mathematica and are fully parallelized. The project has resulted in new computational tools (algorithms and programs) that will improve the fidelity of computations to actual physics, chemistry and transport of fission products in the nuclear fuel and aerosol in reactor primary and secondary containments.

  14. Useful Scaling Parameters for the Pulse Tube

    NASA Technical Reports Server (NTRS)

    Lee, J. M.; Kittel, P.; Timmerhaus, K. D.; Radebaugh, R.; Cheng, Pearl L. (Technical Monitor)

    1995-01-01

    A set of eight non-dimensional scaling parameters for use in evaluating the performance of Pulse Tube Refrigerators is presented. The parameters result after scaling the mass, momentum and energy conservation equations for an axisymmetric, two-dimensional system. The physical interpretation of the parameters are described, and their usefulness is outlined for the enthalpy flow tube (open tube of the pulse tube). The scaling parameters allow the experimentalist to characterize three types of transport: enthalpy flow, mass streaming and heat transfer between the gas and the tube. Also reported are the results from a flow visualization experiment in which steady mass streaming in compressible oscillating flow is observed.

  15. Heterogeneous photochemistry of imidazole-2-carboxaldehyde: HO2 radical formation and aerosol growth

    NASA Astrophysics Data System (ADS)

    González Palacios, Laura; Corral Arroyo, Pablo; Aregahegn, Kifle Z.; Steimer, Sarah S.; Bartels-Rausch, Thorsten; Nozière, Barbara; George, Christian; Ammann, Markus; Volkamer, Rainer

    2016-09-01

    The multiphase chemistry of glyoxal is a source of secondary organic aerosol (SOA), including its light-absorbing product imidazole-2-carboxaldehyde (IC). IC is a photosensitizer that can contribute to additional aerosol ageing and growth when its excited triplet state oxidizes hydrocarbons (reactive uptake) via H-transfer chemistry. We have conducted a series of photochemical coated-wall flow tube (CWFT) experiments using films of IC and citric acid (CA), an organic proxy and H donor in the condensed phase. The formation rate of gas-phase HO2 radicals (PHO2) was measured indirectly by converting gas-phase NO into NO2. We report on experiments that relied on measurements of NO2 formation, NO loss and HONO formation. PHO2 was found to be a linear function of (1) the [IC] × [CA] concentration product and (2) the photon actinic flux. Additionally, (3) a more complex function of relative humidity (25 % < RH < 63 %) and of (4) the O2 / N2 ratio (15 % < O2 / N2 < 56 %) was observed, most likely indicating competing effects of dilution, HO2 mobility and losses in the film. The maximum PHO2 was observed at 25-55 % RH and at ambient O2 / N2. The HO2 radicals form in the condensed phase when excited IC triplet states are reduced by H transfer from a donor, CA in our system, and subsequently react with O2 to regenerate IC, leading to a catalytic cycle. OH does not appear to be formed as a primary product but is produced from the reaction of NO with HO2 in the gas phase. Further, seed aerosols containing IC and ammonium sulfate were exposed to gas-phase limonene and NOx in aerosol flow tube experiments, confirming significant PHO2 from aerosol surfaces. Our results indicate a potentially relevant contribution of triplet state photochemistry for gas-phase HO2 production, aerosol growth and ageing in the atmosphere.

  16. Tracheostomy tubes.

    PubMed

    Hess, Dean R; Altobelli, Neila P

    2014-06-01

    Tracheostomy tubes are used to administer positive-pressure ventilation, to provide a patent airway, and to provide access to the lower respiratory tract for airway clearance. They are available in a variety of sizes and styles from several manufacturers. The dimensions of tracheostomy tubes are given by their inner diameter, outer diameter, length, and curvature. Differences in dimensions between tubes with the same inner diameter from different manufacturers are not commonly appreciated but may have important clinical implications. Tracheostomy tubes can be cuffed or uncuffed and may be fenestrated. Some tracheostomy tubes are designed with an inner cannula. It is important for clinicians caring for patients with a tracheostomy tube to appreciate the nuances of various tracheostomy tube designs and to select a tube that appropriately fits the patient. The optimal frequency of changing a chronic tracheostomy tube is controversial. Specialized teams may be useful in managing patients with a tracheostomy. Speech can be facilitated with a speaking valve in patients with a tracheostomy tube who are breathing spontaneously. In mechanically ventilated patients with a tracheostomy, a talking tracheostomy tube, a deflated cuff technique with a speaking valve, or a deflated cuff technique without a speaking valve can be used to facilitate speech.

  17. Forced and mixed convection heat transfer to supercritical CO{sub 2} vertically flowing in a uniformly-heated circular tube

    SciTech Connect

    Bae, Yoon-Yeong; Kim, Hwan-Yeol; Kang, Deog-Ji

    2010-11-15

    An experiment of heat transfer to CO{sub 2}, which flows upward and downward in a circular tube with an inner diameter of 6.32 mm, was carried out with mass flux of 285-1200 kg/m{sup 2} s and heat flux of 30-170 kW/m{sup 2} at pressures of 7.75 and 8.12 MPa, respectively. The corresponding Reynolds number at the tube test section inlet ranges from 1.8 x 10{sup 4} to 3.8 x 10{sup 5}. The tube inner diameter corresponds to the equivalent hydraulic diameter of the fuel assembly sub-channel, which is being studied at KAERI. Among the tested correlations, the Bishop correlation predicted the experimental data most accurately, but only 66.9% of normal heat transfer data were predicted within {+-}30% error range. The Watts and Chou correlation, which is claimed to be valid for both the normal and deteriorated heat transfer regime, showed unsatisfactory performance. A significant decrease in Nusselt number was observed in the range of 10{sup -6}

  18. The boiling point of stratospheric aerosols.

    NASA Technical Reports Server (NTRS)

    Rosen, J. M.

    1971-01-01

    A photoelectric particle counter was used for the measurement of aerosol boiling points. The operational principle involves raising the temperature of the aerosol by vigorously heating a portion of the intake tube. At or above the boiling point, the particles disintegrate rather quickly, and a noticeable effect on the size distribution and concentration is observed. Stratospheric aerosols appear to have the same volatility as a solution of 75% sulfuric acid. Chemical analysis of the aerosols indicates that there are other substances present, but that the sulfate radical is apparently the major constituent.

  19. A two-stage cyclone using microcentrifuge tubes for personal bioaerosol sampling.

    PubMed

    Lindsley, William G; Schmechel, Detlef; Chen, Bean T

    2006-11-01

    Personal aerosol samplers are widely used to monitor human exposure to airborne materials. For bioaerosols, interest is growing in analyzing samples using molecular and immunological techniques. This paper presents a personal sampler that uses a two-stage cyclone to collect bioaerosols into disposable 1.5 ml Eppendorf-type microcentrifuge tubes. Samples can be processed in the tubes for polymerase chain reaction (PCR) or immunoassays, and the use of multiple stages fractionates aerosol particles by aerodynamic diameter. The sampler was tested using fluorescent microspheres and aerosolized fungal spores. The sampler had first and second stage cut-off diameters of 2.6 microm and 1.6 microm at 2 l min(-1)(geometric standard deviation, GSD = 1.45 and 1.75), and 1.8 microm and 1 microm at 3.5 l min(-1)(GSD = 1.42 and 1.55). The sampler aspiration efficiency was >or=98% at both flow rates for particles with aerodynamic diameters of 3.1 microm or less. For 6.2 microm particles, the aspiration efficiency was 89% at 2 l min(-1) and 96% at 3.5 l min(-1). At 3.5 l min(-1), the sampler collected 92% of aerosolized Aspergillus versicolor and Penicillium chrysogenum spores inside the two microcentrifuge tubes, with less than 0.4% of the spores collecting on the back-up filter. The design and techniques given here are suitable for personal bioaerosol sampling, and could also be adapted to design larger aerosol samplers for longer-term atmospheric and indoor air quality sampling.

  20. An Analysis of Peristaltic Flow of Finitely Extendable Nonlinear Elastic- Peterlin Fluid in Two-Dimensional Planar Channel and Axisymmetric Tube

    NASA Astrophysics Data System (ADS)

    Ali, Nasir; Asghar, Zaheer

    2014-09-01

    We have investigated the peristaltic motion of a non-Newtonian fluid characterized by the finitely extendable nonlinear elastic-Peterlin (FENE-P) fluid model. A background for the development of the differential constitutive equation of this model has been provided. The flow analysis is carried out both for two-dimensional planar channel and axisymmetric tube. The governing equations have been simplified under the widely used assumptions of long wavelength and low Reynolds number in a frame of reference that moves with constant wave speed. An exact solution is obtained for the stream function and longitudinal pressure gradient with no slip condition. We have portrayed the effects of Deborah number and extensibility parameter on velocity profile, trapping phenomenon, and normal stress. It is observed that normal stress is an increasing function of Deborah number and extensibility parameter. As far as the velocity at the channel (tube) center is concerned, it decreases (increases) by increasing Deborah number (extensibility parameter). The non-Newtonian rheology also affect the size of trapped bolus in a sense that it decreases (increases) by increasing Deborah number (extensibility parameter). Further, it is observed through numerical integration that both Deborah number and extensibility parameter have opposite effects on pressure rise per wavelength and frictional forces at the wall. Moreover, it is shown that the results for the Newtonian model can be deduced as a special case of the FENE-P model

  1. Experimental investigation on thermo-physical properties and overall performance of MWCNT-water nanofluid flow inside horizontal coiled wire inserted tubes

    NASA Astrophysics Data System (ADS)

    Akhavan-Behabadi, M. A.; Shahidi, Mohamad; Aligoodarz, M. R.; Ghazvini, Mohammad

    2017-01-01

    The present study is aimed to measure and analyze the thermo-physical properties and overall performance of MWCNT-water nanofluid in turbulent flow regimes under constant heat flux conditions inside horizontal coiled wire inserted tubes. For this purpose, stable MWCNT-water nanofluids with different particle weight fractions of 0.05, 0.1 and 0.2 % as well as deionized water were utilized as the working fluids. It was found that the existing theoretical models could not predict the thermo-physical property values accurately, especially in case of specific heat capacity. Therefore, new empirical correlations are presented based on the obtained experimental results to predict such properties for the nanofluids. In addition, the overall performance of heat transfer techniques considered in this paper was evaluated based on thermal performance factor. The results revealed that thermal performance factor for all cases are greater than unity which indicate that simultaneous usage of nanofluids and wire coil inserts enhances the heat transfer without huge penalty in pumping power. Hence, using nanofluids as the working fluid in combination with coiled wire inserted tubes can be considered for some practical applications.

  2. Correlation of transonic-cone Preston-tube data and skin friction. [characterizing the flow quality of a transonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Reed, T. D.

    1981-01-01

    The distribution of Preston tube pressures within turbulent boundary layers along the surface of a sharp-nosed, ten degree cone was correlated with theoretical values of turbulent skin friction for freestream Mach numbers less than one. The mini-basic computer code, the Wu and Lock computer code, and the STAN-5 computer code were used to analyze the data and to solve the boundary layer conservation equations. The skin friction which results from using Preston tube pressures in the correlation equation, has a rms error of 1.125 percent. It was found that the effective center of the probe is not a constant but increases as the surface distance increases. For a specified unit Reynolds number, the effective center of the probe decreases as the Mach number increases. The variation of the fluid (air) properties across the face of the probe may be neglected for subsonic flows. The possible transverse errors caused by the use of the concept of a virtual origin for the turbulent boundary layer were investigated and found to be negligible.

  3. Experimental studies on heat transfer and friction factor characteristics of laminar flow through a circular tube fitted with regularly spaced helical screw-tape inserts

    SciTech Connect

    Sivashanmugam, P.; Suresh, S.

    2007-02-15

    Experimental investigation of heat transfer and friction factor characteristics of circular tube fitted with full-length helical screw element of different twist ratio, and helical screw inserts with spacer length 100, 200, 300 and 400mm have been studied with uniform heat flux under laminar flow condition. The experimental data obtained are verified with those obtained from plain tube published data. The effect of spacer length on heat transfer augmentation and friction factor, and the effect of twist ratio on heat transfer augmentation and friction factor have been presented separately. The decrease in Nusselt number for the helical twist with spacer length is within 10% for each subsequent 100mm increase in spacer length. The decrease in friction factor is nearly two times lower than the full length helical twist at low Reynolds number, and four times lower than the full length helical twist at high Reynolds number for all twist ratio. The regularly spaced helical screw inserts can safely be used for heat transfer augmentation without much increase in pressure drop than full length helical screw inserts. (author)

  4. Two-phase heat transfer and pressure drop of LNG during saturated flow boiling in a horizontal tube

    NASA Astrophysics Data System (ADS)

    Chen, Dongsheng; Shi, Yumei

    2013-12-01

    Two-phase heat transfer and pressure drop of LNG (liquefied natural gas) have been measured in a horizontal smooth tube with an inner diameter of 8 mm. The experiments were conducted at inlet pressures from 0.3 to 0.7 MPa with a heat flux of 8-36 kW m-2, and mass flux of 49.2-201.8 kg m-2 s-1. The effect of vapor quality, inlet pressure, heat flux and mass flux on the heat transfer characteristic are discussed. The comparisons of the experimental data with the predicted value by existing correlations are analyzed. Zou et al. (2010) correlation shows the best accuracy with 24.1% RMS deviation among them. Moreover four frictional pressure drop methods are also chosen to compare with the experimental database.

  5. Superheater/intermediate temperature air heater tube corrosion tests in the MHD coal fired flow facility (Montana Rosebud POC tests)

    SciTech Connect

    White, M.

    1996-01-01

    Nineteen alloys have been exposed for approximately 1000 test hours as candidate superheater and intermediate temperature air heater tubes in a U.S. DOE facility dedicated to demonstrating Proof of Concept for the bottoming or heat and seed recovery portion of coal fired magnetohydrodynamic (MHD) electrical power generating plants. Corrosion data have been obtained from a test series utilizing a western United States sub-bituminous coal, Montana Rosebud. The test alloys included a broad range of compositions ranging from carbon steel to austenitic stainless steels to high chromium nickel-base alloys. The tubes, coated with K{sub 2}SO-containing deposits, developed principally, oxide scales by an oxidation/sulfidation mechanism. In addition to being generally porous, these scales were frequently spalled and/or non-compact due to a dispersed form of outward growth by oxide precipitation in the adjacent deposit. Austenitic alloys generally had internal penetration as trans Tranular and/or intergranular oxides and sulfides. While only two of the alloys had damage visible without magnification as a result of the relatively short exposure, there was some concern about Iona-term corrosion performance owing to the relatively poor quality scales formed. Comparison of data from these tests to those from a prior series of tests with Illinois No. 6, a high sulfur bituminous coal, showed less corrosion in the present test series with the lower sulfur coal. Although K{sub 2}SO{sub 4}was the principal corrosive agent as the supplier of sulfur, which acted to degrade alloy surface scales, tying up sulfur as K{sub 2}SO{sub 4} prevented the occurrence of complex alkali iron trisulfates responsible for severe or catastrophic corrosion in conventional power plants with certain coals and metal temperatures.

  6. Measurements of average heat-transfer and friction coefficients for subsonic flow of air in smooth tubes at high surface and fluid temperatures

    NASA Technical Reports Server (NTRS)

    Humble, Leroy V; Lowdermilk, Warren H; Desmon, Leland G

    1951-01-01

    An investigation of forced-convection heat transfer and associated pressure drops was conducted with air flowing through smooth tubes for an over-all range of surface temperature from 535 degrees to 3050 degrees r, inlet-air temperature from 535 degrees to 1500 degrees r, Reynolds number up to 500,000, exit Mach number up to 1, heat flux up to 150,000 btu per hour per square foot, length-diameter ratio from 30 to 120, and three entrance configurations. Most of the data are for heat addition to the air; a few results are included for cooling of the air. The over-all range of surface-to-air temperature ratio was from 0.46 to 3.5.

  7. Experimental study on heat transfer enhancement of laminar ferrofluid flow in horizontal tube partially filled porous media under fixed parallel magnet bars

    NASA Astrophysics Data System (ADS)

    Sheikhnejad, Yahya; Hosseini, Reza; Saffar Avval, Majid

    2017-02-01

    In this study, steady state laminar ferroconvection through circular horizontal tube partially filled with porous media under constant heat flux is experimentally investigated. Transverse magnetic fields were applied on ferrofluid flow by two fixed parallel magnet bar positioned on a certain distance from beginning of the test section. The results show promising notable enhancement in heat transfer as a consequence of partially filled porous media and magnetic field, up to 2.2 and 1.4 fold enhancement were observed in heat transfer coefficient respectively. It was found that presence of both porous media and magnetic field simultaneously can highly improve heat transfer up to 2.4 fold. Porous media of course plays a major role in this configuration. Virtually, application of Magnetic field and porous media also insert higher pressure loss along the pipe which again porous media contribution is higher that magnetic field.

  8. Development of the aerosol generation system for simulating the dry deposition behavior of radioaerosol emitted by the accident of FDNPP

    NASA Astrophysics Data System (ADS)

    Zhang, Z.

    2015-12-01

    A large amount of radioactivity was discharged by the accident of FDNPP. The long half-life radionuclide, 137Cs was transported through the atmosphere mainly as the aerosol form and deposited to the forests in Fukushima prefecture. After the dry deposition of the 137Cs, the foliar uptake process would occur. To evaluate environmental transfer of radionuclides, the dry deposition and following foliar uptake is very important. There are some pioneering studies for radionuclide foliar uptake with attaching the solution containing stable target element on the leaf, however, cesium oxide aerosols were used for these deposition study [1]. In the FDNPP case, 137Cs was transported in sulfate aerosol form [2], so the oxide aerosol behaviors could not represent the actual deposition behavior in this accident. For evaluation of whole behavior of 137Cs in vegetation system, fundamental data for deposition and uptake process of sulfate aerosol was desired. In this study, we developed aerosol generation system for simulating the dry deposition and the foliar uptake behaviors of aerosol in the different chemical constitutions. In this system, the method of aerosol generation based on the spray drying. Solution contained 137Cs was send to a nozzle by a syringe pump and spraying with a high speed air flow. The sprayed mist was generated in a chamber in the relatively high temperature. The solution in the mist was dried quickly, and micro size solid aerosols consisting 137Cs were generated. The aerosols were suctioned by an ejector and transported inside a tube by the dry air flow, then were directly blown onto the leaves. The experimental condition, such as the size of chamber, chamber temperature, solution flow rate, air flow rate and so on, were optimized. In the deposition experiment, the aerosols on leaves were observed by a SEM/EDX system and the deposition amount was evaluated by measuring the stable Cs remaining on leaf. In the presentation, we will discuss the detail

  9. Integrated structure vacuum tube

    NASA Technical Reports Server (NTRS)

    Dimeff, J.; Kerwin, W. J. (Inventor)

    1976-01-01

    High efficiency, multi-dimensional thin film vacuum tubes suitable for use in high temperature, high radiation environments are described. The tubes are fabricated by placing thin film electrode members in selected arrays on facing interior wall surfaces of an alumina substrate envelope. Cathode members are formed using thin films of triple carbonate. The photoresist used in photolithography aids in activation of the cathodes by carbonizing and reacting with the reduced carbonates when heated in vacuum during forming. The finely powdered triple carbonate is mixed with the photoresist used to delineate the cathode locations in the conventional solid state photolithographic manner. Anode and grid members are formed using thin films of refractory metal. Electron flow in the tubes is between grid elements from cathode to anode as in a conventional three-dimensional tube.

  10. FLOWTRAN benchmarking with onset of flow instability data from 1988 Columbia University single-tube OFI experiment

    SciTech Connect

    Chen, K.; Paul, P.K.; Barbour, K.L.

    1990-06-01

    Benchmarking FLOWTRAN, Version 16.2, with an Onset of Significant Voiding (OSV) criterion against measured Onset of Flow Instability (OFI) data from the 1988--89 Columbia University downflow tests has shown that FLOWTRAN with OSV is a conservative OFI predictor. Calculated limiting flow rates based on the Savannah River Site (SRS) OSV criterion were always higher than the measured flow rates at OFI. This work supplements recent FLOWTRAN benchmarking against 1963 downflow tests at Columbia University and 1988 downflow tests at the Heat Transfer Laboratory. These studies provide confidence that using FLOWTRAN with an OSV based criterion for SRS reactor limits analyses will generate operating limits that are conservative with respect to OFI, the criterion selected to prevent fuel damage.

  11. General chemical kinetics computer program for static and flow reactions, with application to combustion and shock-tube kinetics

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.; Scullin, V. J.

    1972-01-01

    A general chemical kinetics program is described for complex, homogeneous ideal-gas reactions in any chemical system. Its main features are flexibility and convenience in treating many different reaction conditions. The program solves numerically the differential equations describing complex reaction in either a static system or one-dimensional inviscid flow. Applications include ignition and combustion, shock wave reactions, and general reactions in a flowing or static system. An implicit numerical solution method is used which works efficiently for the extreme conditions of a very slow or a very fast reaction. The theory is described, and the computer program and users' manual are included.

  12. Tubing for augmented heat transfer

    SciTech Connect

    Yampolsky, J.S.; Pavlics, P.

    1983-08-01

    The objectives of the program reported were: to determine the heat transfer and friction characteristics on the outside of spiral fluted tubing in single phase flow of water, and to assess the relative cost of a heat exchanger constructed with spiral fluted tubing with one using conventional smooth tubing. An application is examined where an isolation water/water heat exchanger was used to transfer the heat from a gaseous diffusion plant to an external system for energy recovery. (LEW)

  13. Optimal Control of Shock Tube Flow via Water Addition with Application to Ignition Overpressure Mitigation in Launch Vehicles

    NASA Astrophysics Data System (ADS)

    Moshman, Nathan

    2009-11-01

    Ignition Overpressure (IOP) in launch vehicles occurs at the start of ignition when a steep rise in pressure propagates outward from the rocket nozzle. It is crucial to minimize the overpressure so as to decrease risk of damage to the rocket body. Currently, CFD studies exist on this situation but there are no optimization studies of the water addition as a means to suppress the IOP. The proposed dissertation will use a numerical method to compute an approximate solution for an optimal control problem constrained by the one-dimensional Euler PDEs of fluid dynamics as well as volume fraction conservation. A model for inter-phase transport of mass momentum and energy and fluid interface quantities will be given. The control will be water addition from external nozzles. The adjoint system of equations will be derived and discretized. Necessary optimal conditions will be derived. An SQP method will solve an optimal situation. Predictions will be validated against shock tube experiments at the NPS rocket lab.

  14. Feeding tube insertion - gastrostomy

    MedlinePlus

    ... tube insertion; G-tube insertion; PEG tube insertion; Stomach tube insertion; Percutaneous endoscopic gastrostomy tube insertion ... and down the esophagus, which leads to the stomach. After the endoscopy tube is inserted, the skin ...

  15. Uptake of 13N-labeled N2O5 to citric acid aerosol particles

    NASA Astrophysics Data System (ADS)

    Grzinic, Goran; Bartels-Rausch, Thorsten; Birrer, Mario; Türler, Andreas; Ammann, Markus

    2013-04-01

    Dinitrogen pentoxide is a significant reactive intermediate in the night time chemistry of nitrogen oxides. Depending on atmospheric conditions it can act either as a NO3 radical reservoir or as a major NOx sink by heterogeneous hydrolysis on aerosol surfaces. As such, it can influence tropospheric ozone production and therefore the oxidative capacity of the atmosphere. Furthermore it's suspected of being a non negligible source of tropospheric Cl, even over continental areas [1,2]. We used the short-lived radioactive tracer 13N delivered by PSI's PROTRAC facility [3] in conjunction with an aerosol flow tube reactor in order to study N2O5 uptake kinetics on aerosol particles. 13NO is mixed with non labeled NO and O3 in a gas reactor where N2O5 is synthesized under dry conditions to prevent hydrolysis on the reactor walls. The resulting N2O5 flow is fed into an aerosol flow tube reactor together with a humidified aerosol flow. By using movable inlets we can vary the length of the aerosol flow tube and thus the reaction time. The gas feed from the reactor is then directed into a narrow parallel plate diffusion denuder system that allows for selective separation of the gaseous species present in the gas phase. Aerosol particles are trapped on a particle filter placed at the end of the denuder system. The activity of 13N labeled species trapped on the denuder plates and in the particle filter can be monitored via scintillation counters. Aerosol uptake measurements were performed with citric acid aerosols in a humidity range of 27-61.5% RH. The results obtained from our measurements have shown that the uptake coefficient increases with humidity from 1.65±0.3x10-3 (~27% RH) to 1.25±0.3x10-2 (45% RH) and 2.00±0.3x10-2 (61.5% RH). Comparison to literature data shows that this is similar to values reported for some polycarboxylic acids (like malonic acid), while being higher than some others [4]. The increase is likely related to the increasing amount of water associated

  16. Heat and Momentum Transfer to Internal Turbulent Flow of Helium-Argon Mixtures in Circular Tubes. Revision

    DTIC Science & Technology

    1978-01-03

    internal convective flow with large property variations, Ph.D. dissertation, Univ. of Arizona (1968). 33. A. H. Shapiro, The Dynamics and Thermodynamics ...numbers for fully developed, constant property conditions are predicted within ±5.0 percent., An empirical equation that correlates the,helium-argon...data within ±15 ,prent,",and includes entrance and variable .,Codes/0.j.. ad /or Dis . . . . property effects is presented. Using a recently developed

  17. Wind-tunnel calibration of a combined pitot-static tube and vane-type flow-angularity indicator at Mach numbers of 1.61 and 2.01

    NASA Technical Reports Server (NTRS)

    Sinclair, Archibald R; Mace, William D

    1956-01-01

    A limited calibration of a combined pitot-static tube and vane-type flow-angularity indicator has been made in the Langley 4- by 4-foot supersonic pressure tunnel at Mach numbers of 1.61 and 2.01. The results indicated that the angle-of-yaw indications were affected by unsymmetric shock effects at low angles of attack.

  18. Analyses of turbulent flow fields and aerosol dynamics of diesel engine exhaust inside two dilution sampling tunnels using the CTAG model.

    PubMed

    Wang, Yan Jason; Yang, Bo; Lipsky, Eric M; Robinson, Allen L; Zhang, K Max

    2013-01-15

    Experimental results from laboratory emission testing have indicated that particulate emission measurements are sensitive to the dilution process of exhaust using fabricated dilution systems. In this paper, we first categorize the dilution parameters into two groups: (1) aerodynamics (e.g., mixing types, mixing enhancers, dilution ratios, residence time); and (2) mixture properties (e.g., temperature, relative humidity, particle size distributions of both raw exhaust and dilution gas). Then we employ the Comprehensive Turbulent Aerosol Dynamics and Gas Chemistry (CTAG) model to investigate the effects of those parameters on a set of particulate emission measurements comparing two dilution tunnels, i.e., a T-mixing lab dilution tunnel and a portable field dilution tunnel with a type of coaxial mixing. The turbulent flow fields and aerosol dynamics of particles are simulated inside two dilution tunnels. Particle size distributions under various dilution conditions predicted by CTAG are evaluated against the experimental data. It is found that in the area adjacent to the injection of exhaust, turbulence plays a crucial role in mixing the exhaust with the dilution air, and the strength of nucleation dominates the level of particle number concentrations. Further downstream, nucleation terminates and the growth of particles by condensation and coagulation continues. Sensitivity studies reveal that a potential unifying parameter for aerodynamics, i.e., the dilution rate of exhaust, plays an important role in new particle formation. The T-mixing lab tunnel tends to favor the nucleation due to a larger dilution rate of the exhaust than the coaxial mixing field tunnel. Our study indicates that numerical simulation tools can be potentially utilized to develop strategies to reduce the uncertainties associated with dilution samplings of emission sources.

  19. Light Scattering Study of Titania Aerosols

    NASA Astrophysics Data System (ADS)

    Oh, Choonghoon; Sorensen, Chris

    1997-03-01

    We studied the fractal morphology of titania aerosols by light scattering. Titania aerosols were generated by the thermal decomposition of titanium tetraisopropoxide (TTIP) in a silica tube furnace. TTIP was evaporated at temperatures up to 80^circC and its vapor was carried by dry nitrogen to a furnace with temperature in the range of 400 - 600^circC. A TEM analysis of the generated particles showed a typical DLCA structure with a monomer diameter about 50 nm. The particles were then made to flow through a narrow outlet as a laminar stream. The light scattering from these particles was measured using a He-Ne laser as a light source. The measured structure factor clearly showed the Rayleigh, Guinier, and fractal regimes. The fractal morphological parameters, such as the cluster radius of gyration, the fractal dimension, and the fractal prefactor were studied from the structure factor as a function of particle generation conditions. The cluster radius of gyration was about 1 μm and showed a modest dependency on the generation conditions. The fractal dimension was about 1.7 in all cases. These results are in good agreement with the TEM analysis.

  20. Gastrostomy Tube (G-Tube)

    MedlinePlus

    ... warmth at the tube site; discharge that's yellow, green, or foul-smelling; fever) excessive bleeding or drainage from the tube site severe abdominal pain persistent vomiting or diarrhea trouble passing gas or having a bowel movement pink-red tissue (called granulation tissue) coming out ...

  1. Parallel flow diffusion battery

    DOEpatents

    Yeh, Hsu-Chi; Cheng, Yung-Sung

    1984-08-07

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  2. Parallel flow diffusion battery

    DOEpatents

    Yeh, H.C.; Cheng, Y.S.

    1984-01-01

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  3. Heat Transfer from High-Temperature Surfaces to Fluids. III - Correlation of Heat-Transfer Data for Air Flowing in Silicon Carbide Tube with Rounded Entrance, Inside Diameter of 3/4 Inch, and Effective Length of 12 Inches. Part 3; Correlation of Heat-Transfer Data for Air Flowing in Silicon Carbide Tube with Rounded Entrance, Inside Diameter of 3/4 Inch, and Effective Length of 12 Inches

    NASA Technical Reports Server (NTRS)

    Sams, Eldon W.; Desmon, Leland G.

    1949-01-01

    A heat-transfer investigation was conducted with air flowing through an electrically heated silicon carbide tube with a rounded entrance, an inside diameter of 3/4 inch, and an effective heat-transfer length of 12 inches over a range of Reynolds numbers up to 300,000 and a range of average inside-tube-wall temperature up to 2500 R. The highest corresponding local outside-tube-wall temperature was 3010 R. Correlation of the heat-transfer data using the conventional Nueselt relation wherein physical properties of the fluid were evaluated at average bulk tem