Science.gov

Sample records for aerosol formation processes

  1. Aerosol effect on the warm rain formation process: Satellite observations and modeling

    NASA Astrophysics Data System (ADS)

    Suzuki, Kentaroh; Stephens, Graeme L.; Lebsock, Matthew D.

    2013-01-01

    This study demonstrates how aerosols influence the liquid precipitation formation process. This demonstration is provided by the combined use of satellite observations and global high-resolution model simulations. Methodologies developed to examine the warm cloud microphysical processes are applied to both multi-sensor satellite observations and aerosol-coupled global cloud-resolving model (GCRM) results to illustrate how the warm rain formation process is modulated under different aerosol conditions. The observational analysis exhibits process-scale signatures of rain suppression due to increased aerosols, providing observational evidence of the aerosol influence on precipitation. By contrast, the corresponding statistics obtained from the model show a much faster rain formation even for polluted aerosol conditions and much weaker reduction of precipitation in response to aerosol increase. It is then shown that this reduced sensitivity points to a fundamental model bias in the warm rain formation process that in turn biases the influence of aerosol on precipitation. A method of improving the model bias is introduced in the context of a simplified single-column model (SCM) that represents the cloud-to-rain water conversion process in a manner similar to the original GCRM. Sensitivity experiments performed by modifying the model assumptions in the SCM and their comparisons to satellite statistics both suggest that the auto-conversion scheme has a critical role in determining the precipitation response to aerosol perturbations and also provide a novel way of constraining key parameters in the auto-conversion schemes of global models.

  2. Formation of Mesostructured Nanoparticles through Self-Assembly and Aerosol Process

    SciTech Connect

    Brinker, C. Jeffrey; Fan, Hongyou; Lu, Yunfeng; Rieker, Thomas; Stump, Arron; Ward, Timothy L.

    1999-05-07

    Silica nanoparticles exhibiting hexagonal, cubic, and vesicular mesostructures have been prepared using aerosol assisted, self-assembled process. This process begins with homogennous aerosol droplets containing silica source, water, ethanol, and surfactant, in which surfactant concentration is far below the critical micelle concentration (cmc). Solvent evaporation enriches silica and surfactant inducing interfacial self-assembly confined to a spherical aerosol droplet and results in formation of completely solid, ordered spherical particles with stable hexagonal, cubic, or vesicular mesostructures.

  3. Secondary organic aerosol formation through fog processing of VOCs

    NASA Astrophysics Data System (ADS)

    Herckes, P.; Hutchings, J. W.

    2010-07-01

    Volatile Organic Compounds (VOCs) including benzene, toluene, ethylbenzene and xylenes (BTEX) have been determined in highly concentrated amounts (>1 ug/L) in intercepted clouds in northern Arizona (USA). These VOCs are found in concentrations much higher than predicted by partitioning alone. The reactivity of BTEX in the fog/cloud aqueous phase was investigated through laboratory studies. BTEX species showed fast degradation in the aqueous phase in the presence of peroxides and light. Observed half-lives ranged from three and six hours, substantially shorter than the respective gas phase half-lives (several days). The observed reaction rates were on the order of 1 ppb/min but decreased substantially with increasing concentrations of organic matter (TOC). The products of BTEX oxidation reactions were analyzed using HPLC-UV and LCMS. The first generation of products identified included phenol and cresols which correspond to the hydroxyl-addition reaction to benzene and toluene. Upon investigating of multi-generational products, smaller, less volatile species are predominant although a large variety of products is found. Most reaction products have substantially lower vapor pressure and will remain in the particle phase upon droplet evaporation. The SOA generation potential of cloud and fog processing of BTEX was evaluated using simple calculations and showed that in ideal situations these reactions could add up to 9% of the ambient aerosol mass. In more conservative scenarios, the contribution of the processing of BTEX was around 1% of ambient aerosol concentrations. Overall, cloud processing of VOC has the potential to contribute to the atmospheric aerosol mass. However, the contribution will depend upon many factors such as the irradiation, organic matter content in the droplets and droplet lifetime.

  4. Satellite observations and EMAC model calculations of sulfate aerosols from Kilauea: a study of aerosol formation, processing, and loss

    NASA Astrophysics Data System (ADS)

    Penning de Vries, Marloes; Beirle, Steffen; Brühl, Christoph; Dörner, Steffen; Pozzer, Andrea; Wagner, Thomas

    2016-04-01

    The currently most active volcano on Earth is Mount Kilauea on Hawaii, as it has been in a state of continuous eruption since 1983. The opening of a new vent in March 2008 caused half a year of strongly increased SO2 emissions, which in turn led to the formation of a sulfate plume with an extent of at least two thousand kilometers. The plume could be clearly identified from satellite measurements from March to November, 2008. The steady trade winds in the region and the lack of interfering sources allowed us to determine the life time of SO2 from Kilauea using only satellite-based measurements (no a priori or model information). The current investigation focuses on sulfate aerosols: their formation, processing and subsequent loss. Using space-based aerosol measurements by MODIS, we study the evolution of aerosol optical depth, which first increases as a function of distance from the volcano due to aerosol formation from SO2 oxidation, and subsequently decreases as aerosols are deposited to the surface. The outcome is compared to results from calculations using the EMAC (ECHAM/MESSy Atmospheric Chemistry) model to test the state of understanding of the sulfate aerosol life cycle. For this comparison, a particular focus is on the role of clouds and wet removal processes.

  5. Processes influencing secondary aerosol formation in the San Joaquin Valley during winter

    SciTech Connect

    Frederick W. Lurmann; Steven G. Brown; Michael C. McCarthy; Paul T. Roberts

    2006-12-15

    Air quality data collected in the California Regional PM10/PM2.5 Air Quality Study (CRPAQS) are analyzed to qualitatively assess the processes affecting secondary aerosol formation in the San Joaquin Valley (SJV). This region experiences some of the highest fine particulate matter (PM2.5) mass concentrations in California ({le} 188 {mu}g/m{sup 3} 24-hr average), and secondary aerosol components (as a group) frequently constitute over half of the fine aerosol mass in winter. The analyses are based on 15 days of high-frequency filter and canister measurements and several months of wintertime continuous gas and aerosol measurements. The phase-partitioning of nitrogen oxide (NOx)-related nitrogen species and carbonaceous species shows that concentrations of gaseous precursor species are far more abundant than measured secondary aerosol nitrate or estimated secondary organic aerosols. Comparisons of ammonia and nitric acid concentrations indicate that ammonium nitrate formation is limited by the availability of nitric acid rather than ammonia. Time-resolved aerosol nitrate data collected at the surface and on a 90-m tower suggest that both the daytime and nighttime nitric acid formation pathways are active, and entrainment of aerosol nitrate formed aloft at night may explain the spatial homogeneity of nitrate in the SJV. NOx and volatile organic compound (VOC) emissions plus background O{sub 3} levels are expected to determine NOx oxidation and nitric acid production rates, which currently control the ammonium nitrate levels in the SJV. Secondary organic aerosol formation is significant in winter, especially in the Fresno urban area. Formation of secondary organic aerosol is more likely limited by the rate of VOC oxidation than the availability of VOC precursors in winter. 59 refs., 11 figs., 1 tab.

  6. Numerical analysis of the formation process of aerosols in the alveoli

    NASA Astrophysics Data System (ADS)

    Haslbeck, Karsten; Seume, Jörg R.

    2008-11-01

    For a successful diagnosis of lung diseases through an analysis of non-volatile molecules in the exhaled breath, an exact understanding of the aerosol formation process is required. This process is modeled using Computational Fluid Dynamics (CFD). The model shows the interaction of the boundary surface between the streamed airway and the local epithelial liquid layer. A 2-D volume mesh of an alveolus is generated by taking into account the connection of the alveoli with the sacculi alveolares (SA). The Volume of Fluid (VOF) Method is used to model the interface between the gas and the liquid film. The non-Newtonian flow is modeled by the implementation of the Ostwald de Waele model. Surface tension is a function of the surfactant concentration. The VOF-Method allows the distribution of the concentration of the epithelial liquid layer at the surface to be traced in a transient manner. The simulations show the rupturing of the liquid film through the drop formation. Aerosol particles are ejected into the SA and do not collide with the walls. The quantity, the geometrical size as well as the velocity distributions of the generated aerosols are determined. The data presented in the paper provide the boundary conditions for future CFD analysis of the aerosol transport through the airways up to exhalation.

  7. Cloud processing of organic compounds: Secondary organic aerosol and nitrosamine formation

    NASA Astrophysics Data System (ADS)

    Hutchings, James W., III

    Cloud processing of atmospheric organic compounds has been investigated through field studies, laboratory experiments, and numerical modeling. Observational cloud chemistry studies were performed in northern Arizona and fog studies in central Pennsylvania. At both locations, the cloud and fogs showed low acidity due to neutralization by soil dust components (Arizona) and ammonia (Pennsylvania). The field observations showed substantial concentrations (20-5500 ng•L -1) of volatile organic compounds (VOC) in the cloud droplets. The potential generation of secondary organic aerosol mass through the processing of these anthropogenic VOCs was investigated through laboratory and modeling studies. Under simulated atmospheric conditions, in idealized solutions, benzene, toluene, ethylbenzene, and xylene (BTEX) degraded quickly in the aqueous phase with half lives of approximately three hours. The degradation process yielded less volatile products which would contribute to new aerosol mass upon cloud evaporation. However, when realistic cloud solutions containing natural organic matter were used in the experiments, the reaction kinetics decreased with increasing organic carbon content, resulting in half lives of approximately 7 hours. The secondary organic aerosol (SUA) mass formation potential of cloud processing of BTEX was evaluated. SOA mass formation by cloud processing of BTEX, while strongly dependent on the atmospheric conditions, could contribute up to 9% of the ambient atmospheric aerosol mass, although typically ˜1% appears realistic. Field observations also showed the occurrence of N-nitrosodimethylamine (NDMA), a potent carcinogen, in fogs and clouds (100-340 ng•L -1). Laboratory studies were conducted to investigate the formation of NDMA from nitrous acid and dimethylamine in the homogeneous aqueous phase within cloud droplets. While NDMA was produced in the cloud droplets, the low yields (<1%) observed could not explain observational concentrations

  8. Modeling of the Process of Welding Aerosol Formation Taking Place During Mining Equipment Fabrication

    NASA Astrophysics Data System (ADS)

    Grishagin, V. M.; Filonov, A. V.; Kiselev, S. V.

    2016-04-01

    In the paper the authors formulate the thermodynamic model of welding aerosol formation. The thermodynamic parameters of chemical compounds and aerosol phases are calculated. The authors develop a program for numerical calculation of various elements emission under varied parameters changing the welding conditions.

  9. FORMATION OF PHOTOCHEMICAL AEROSOLS

    EPA Science Inventory

    The objective was to develop a better understanding of smog aerosol formation with particular reference to haze in the Southern California area. This study combined laboratory work with ambient air studies. Counting of particles by light scattering was the principle physical tech...

  10. Pampre : a new laboratory experiment to better understand the physico-chemical processes of Titan aerosols formation and growth

    NASA Astrophysics Data System (ADS)

    Szopa, C.; Cernogora, G.; Boufendi, L.; Correia, J. J.; Coll, P.

    2003-04-01

    Titan s atmosphere contains aerosols issued from the organic chemistry induced by the photochemistry of N2 and CH4, the major gaseous atmospheric compounds. These organic aerosols are important as they : i) have a significant influence on the properties of the atmosphere, linked to their optical properties; ii) represent the best known example of transition from the gaseous to the solid phase by chemistry; iii) represent the most complex organics produced in Titan s atmosphere, making them particularly interesting from an exo/astrobiological point of view. However, few direct information are available about them, and their processes of formation and growth are not well understood. In order to bring answers to these questions, we developed a new type of laboratory simulation which is dedicated to better understand the physico-chemical processes involved in the formation and growth of the aerosols. The main originality of this experiment (named PAMPRE) comes from its ability to produce aerosols in volume, as they are maintained in levitation thanks to an electric force compensating gravity, whereas the other similar experiments produce tholins on the reactors walls. Thus, one should produce analogs of Titan s aerosols within representative conditions. Moreover, beyond the ex-situ analyses generally led to characterize the aerosols properties with conventional techniques (MEB, GC-MS), the experimental set-up allows to operate in situ studies of the reactive plasma by UV-vis spectroscopy, in order to deduce the electron energy distribution function which have to be compared with the sun spectrum. Beyond the characterization of the aerosols properties and formation, this experiment will also provide information and materials that will be used to operate the calibrations of the Aerosol and Collector Pyrolyser and Gas Chromatograph-Mass Spectrometer experiments of the Cassini-Huygens mission, and to develop the ICAPS-IMPF facility which should be present in the ISS within

  11. Laboratory photochemical processing of aqueous aerosols: formation and degradation of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls

    NASA Astrophysics Data System (ADS)

    Pavuluri, C. M.; Kawamura, K.; Mihalopoulos, N.; Swaminathan, T.

    2015-07-01

    To better understand the photochemical processing of dicarboxylic acids and related polar compounds, we conducted batch UV irradiation experiments on two types of aerosol samples collected from India, which represent anthropogenic (AA) and biogenic (BA) aerosols, for time periods of 0.5 to 120 h. The irradiated samples were analyzed for molecular compositions of diacids, oxoacids and α-dicarbonyls. The results show that photochemical degradation of oxalic (C2), malonic (C3) and other C8-C12 diacids overwhelmed their production in aqueous aerosols, whereas succinic acid (C4) and C5-C7 diacids showed a significant increase (ca. 10 times) during the course of irradiation experiments. The photochemical formation of oxoacids and α-dicarbonyls overwhelmed their degradation during the early stages of experiment except for ω-oxooctanoic acid (ωC8), which showed a similar pattern to that of C4. We also found a gradual decrease in the relative abundance of C2 to total diacids and an increase in the relative abundance of C4 during prolonged experiment. Based on the changes in concentrations and mass ratios of selected species with the irradiation time, we hypothesize that iron-catalyzed photolysis of C2 and C3 diacids controls their concentrations in Fe-rich atmospheric waters, whereas photochemical formation of C4 diacid (via ωC8) is enhanced with photochemical processing of aqueous aerosols in the atmosphere. This study demonstrates that the ambient aerosols contain abundant precursors that produce diacids, oxoacids and α-dicarbonyls, although some species such as oxalic acid decompose extensively during an early stage of photochemical processing.

  12. Molecular composition of organic aerosols formed in the α-pinene/O3 reaction: Implications for new particle formation processes

    NASA Astrophysics Data System (ADS)

    Hoffmann, Thorsten; Bandur, Rolf; Marggraf, Ulrich; Linscheid, Michael

    1998-10-01

    The molecular composition of particle phase ozonolysis products of α-pinene is investigated to comprehend the aerosol formation process following the VOC oxidation, focusing on an understanding of new particle formation. Two analytical approaches are applied to identify low-volatile oxidation products in the particle phase; off-line investigations using preconcentration on Tenax TA© followed by solvent extraction and liquid chromatography/mass spectrometry as well as an on-line technique, in which the organic aerosols are introduced directly into the ion source of a mass spectrometer (atmospheric pressure chemical ionization / mass spectrometry (APCI/MS)). Both techniques showed the formation of difunctional carboxylic acids, compounds whose physico-chemical properties will govern most of their mass into the particle phase. Furthermore, stable binary diacid adducts could be identified by MSn-experiments. These observations might give insight into the process of new particle formation by heteromolecular homogeneous nucleation, indicating that the initial cluster formation cannot be described by macroscopic properties of single oxidation products. Instead, strong intermolecular forces between different diacids might play a key role in the formation of initial nuclei and their subsequent growth.

  13. Seasonality of ultrafine and sub-micron aerosols and the inferences on particle formation processes

    NASA Astrophysics Data System (ADS)

    Cheung, H. C.; Chou, C. C.-K.; Chen, M.-J.; Huang, W.-R.; Huang, S.-H.; Tsai, C.-Y.; Lee, C. S.-L.

    2015-08-01

    The aim of this study is to investigate the seasonal variations in the physicochemical properties of atmospheric ultrafine particles (UFPs, d ≤ 100nm) and submicron particles (PM1, d ≤ 1 μm) in an East-Asian urban area, which are hypothesized to be affected by the interchange of summer and winter monsoons. An observation experiment was conducted at the TARO, an urban aerosol station in Taipei, Taiwan, from October 2012 to August 2013. The measurements included the mass concentration and chemical composition of UFPs and PM1, as well as the particle number concentration (PNC) and size distribution (PSD) with size range of 4-736 nm. The results indicate that the mass concentration of PM1 was elevated during cold seasons with peak level of 18.5 μg m-3 in spring, whereas the highest UFPs concentration was measured in summertime with a seasonal mean of 1.62 μg m-3. Moreover, chemical analysis revealed that the UFPs and PM1 were characterized by distinct composition; UFPs were composed mostly of organics, whereas ammonium and sulfate were the major constituents in PM1. The seasonal median of total PNCs ranged from 13.9 × 103 cm-3 in autumn to 19.4 × 103 cm-3 in spring. The PSD information retrieved from the corresponding PNC measurements indicates that the nucleation mode PNC (N4-25) peaked at 11.6 × 103 cm-3 in winter, whereas the Aitken mode (N25-100) and accumulation mode (N100-736) exhibited summer maxima at 6.0 × 103 and 3.1 × 103 cm-3, respectively. The shift in PSD during summertime is attributed to the enhancement in the photochemical production of condensable organic matter that, in turn, contributes to the growth of aerosol particles in the atmosphere. In addition, remarkable photochemical production of particles was observed in spring and summer seasons, which was characterized with averaged particle growth and formation rates of 4.3 ± 0.8 nm h-1 and 1.6 ± 0.8 cm-3 s-1, respectively. The prevalence of new particle formation (NPF) in summer is

  14. RACORO aerosol data processing

    SciTech Connect

    Elisabeth Andrews

    2011-10-31

    The RACORO aerosol data (cloud condensation nuclei (CCN), condensation nuclei (CN) and aerosol size distributions) need further processing to be useful for model evaluation (e.g., GCM droplet nucleation parameterizations) and other investigations. These tasks include: (1) Identification and flagging of 'splash' contaminated Twin Otter aerosol data. (2) Calculation of actual supersaturation (SS) values in the two CCN columns flown on the Twin Otter. (3) Interpolation of CCN spectra from SGP and Twin Otter to 0.2% SS. (4) Process data for spatial variability studies. (5) Provide calculated light scattering from measured aerosol size distributions. Below we first briefly describe the measurements and then describe the results of several data processing tasks that which have been completed, paving the way for the scientific analyses for which the campaign was designed. The end result of this research will be several aerosol data sets which can be used to achieve some of the goals of the RACORO mission including the enhanced understanding of cloud-aerosol interactions and improved cloud simulations in climate models.

  15. Using stable isotopes to trace sources and formation processes of sulfate aerosols from Beijing, China

    PubMed Central

    Han, Xiaokun; Guo, Qingjun; Liu, Congqiang; Fu, Pingqing; Strauss, Harald; Yang, Junxing; Hu, Jian; Wei, Lianfang; Ren, Hong; Peters, Marc; Wei, Rongfei; Tian, Liyan

    2016-01-01

    Particulate pollution from anthropogenic and natural sources is a severe problem in China. Sulfur and oxygen isotopes of aerosol sulfate (δ34Ssulfate and δ18Osulfate) and water-soluble ions in aerosols collected from 2012 to 2014 in Beijing are being utilized to identify their sources and assess seasonal trends. The mean δ34S value of aerosol sulfate is similar to that of coal from North China, indicating that coal combustion is a significant contributor to atmospheric sulfate. The δ34Ssulfate and δ18Osulfate values are positively correlated and display an obvious seasonality (high in winter and low in summer). Although an influence of meteorological conditions to this seasonality in isotopic composition cannot be ruled out, the isotopic evidence suggests that the observed seasonality reflects temporal variations in the two main contributions to Beijing aerosol sulfate, notably biogenic sulfur emissions in the summer and the increasing coal consumption in winter. Our results clearly reveal that a reduction in the use of fossil fuels and the application of desulfurization technology will be important for effectively reducing sulfur emissions to the Beijing atmosphere. PMID:27435991

  16. Using stable isotopes to trace sources and formation processes of sulfate aerosols from Beijing, China.

    PubMed

    Han, Xiaokun; Guo, Qingjun; Liu, Congqiang; Fu, Pingqing; Strauss, Harald; Yang, Junxing; Hu, Jian; Wei, Lianfang; Ren, Hong; Peters, Marc; Wei, Rongfei; Tian, Liyan

    2016-01-01

    Particulate pollution from anthropogenic and natural sources is a severe problem in China. Sulfur and oxygen isotopes of aerosol sulfate (δ(34)Ssulfate and δ(18)Osulfate) and water-soluble ions in aerosols collected from 2012 to 2014 in Beijing are being utilized to identify their sources and assess seasonal trends. The mean δ(34)S value of aerosol sulfate is similar to that of coal from North China, indicating that coal combustion is a significant contributor to atmospheric sulfate. The δ(34)Ssulfate and δ(18)Osulfate values are positively correlated and display an obvious seasonality (high in winter and low in summer). Although an influence of meteorological conditions to this seasonality in isotopic composition cannot be ruled out, the isotopic evidence suggests that the observed seasonality reflects temporal variations in the two main contributions to Beijing aerosol sulfate, notably biogenic sulfur emissions in the summer and the increasing coal consumption in winter. Our results clearly reveal that a reduction in the use of fossil fuels and the application of desulfurization technology will be important for effectively reducing sulfur emissions to the Beijing atmosphere. PMID:27435991

  17. Using stable isotopes to trace sources and formation processes of sulfate aerosols from Beijing, China

    NASA Astrophysics Data System (ADS)

    Han, Xiaokun; Guo, Qingjun; Liu, Congqiang; Fu, Pingqing; Strauss, Harald; Yang, Junxing; Hu, Jian; Wei, Lianfang; Ren, Hong; Peters, Marc; Wei, Rongfei; Tian, Liyan

    2016-07-01

    Particulate pollution from anthropogenic and natural sources is a severe problem in China. Sulfur and oxygen isotopes of aerosol sulfate (δ34Ssulfate and δ18Osulfate) and water-soluble ions in aerosols collected from 2012 to 2014 in Beijing are being utilized to identify their sources and assess seasonal trends. The mean δ34S value of aerosol sulfate is similar to that of coal from North China, indicating that coal combustion is a significant contributor to atmospheric sulfate. The δ34Ssulfate and δ18Osulfate values are positively correlated and display an obvious seasonality (high in winter and low in summer). Although an influence of meteorological conditions to this seasonality in isotopic composition cannot be ruled out, the isotopic evidence suggests that the observed seasonality reflects temporal variations in the two main contributions to Beijing aerosol sulfate, notably biogenic sulfur emissions in the summer and the increasing coal consumption in winter. Our results clearly reveal that a reduction in the use of fossil fuels and the application of desulfurization technology will be important for effectively reducing sulfur emissions to the Beijing atmosphere.

  18. Marine aerosol formation from biogenic iodine emissions.

    PubMed

    O'Dowd, Colin D; Jimenez, Jose L; Bahreini, Roya; Flagan, Richard C; Seinfeld, John H; Hämeri, Kaarle; Pirjola, Liisa; Kulmala, Markku; Jennings, S Gerard; Hoffmann, Thorsten

    2002-06-01

    The formation of marine aerosols and cloud condensation nuclei--from which marine clouds originate--depends ultimately on the availability of new, nanometre-scale particles in the marine boundary layer. Because marine aerosols and clouds scatter incoming radiation and contribute a cooling effect to the Earth's radiation budget, new particle production is important in climate regulation. It has been suggested that sulphuric acid derived from the oxidation of dimethyl sulphide is responsible for the production of marine aerosols and cloud condensation nuclei. It was accordingly proposed that algae producing dimethyl sulphide play a role in climate regulation, but this has been difficult to prove and, consequently, the processes controlling marine particle formation remains largely undetermined. Here, using smog chamber experiments under coastal atmospheric conditions, we demonstrate that new particles can form from condensable iodine-containing vapours, which are the photolysis products of biogenic iodocarbons emitted from marine algae. Moreover, we illustrate, using aerosol formation models, that concentrations of condensable iodine-containing vapours over the open ocean are sufficient to influence marine particle formation. We suggest therefore that marine iodocarbon emissions have a potentially significant effect on global radiative forcing. PMID:12050661

  19. Impact of Aerosol Processing on Orographic Clouds

    NASA Astrophysics Data System (ADS)

    Pousse-Nottelmann, Sara; Zubler, Elias M.; Lohmann, Ulrike

    2010-05-01

    Aerosol particles undergo significant modifications during their residence time in the atmosphere. Physical processes like coagulation, coating and water uptake, and aqueous surface chemistry alter the aerosol size distribution and composition. At this, clouds play a primary role as physical and chemical processing inside cloud droplets contributes considerably to the changes in aerosol particles. A previous study estimates that on global average atmospheric particles are cycled three times through a cloud before being removed from the atmosphere [1]. An explicit and detailed treatment of cloud-borne particles has been implemented in the regional weather forecast and climate model COSMO-CLM. The employed model version includes a two-moment cloud microphysical scheme [2] that has been coupled to the aerosol microphysical scheme M7 [3] as described by Muhlbauer and Lohmann, 2008 [4]. So far, the formation, transfer and removal of cloud-borne aerosol number and mass were not considered in the model. Following the parameterization for cloud-borne particles developed by Hoose et al., 2008 [5], distinction between in-droplet and in-crystal particles is made to more physically account for processes in mixed-phase clouds, such as the Wegener-Bergeron-Findeisen process and contact and immersion freezing. In our model, this approach has been extended to allow for aerosol particles in five different hydrometeors: cloud droplets, rain drops, ice crystals, snow flakes and graupel. We account for nucleation scavenging, freezing and melting processes, autoconversion, accretion, aggregation, riming and selfcollection, collisions between interstitial aerosol particles and hydrometeors, ice multiplication, sedimentation, evaporation and sublimation. The new scheme allows an evaluation of the cloud cycling of aerosol particles by tracking the particles even when scavenged into hydrometeors. Global simulations of aerosol processing in clouds have recently been conducted by Hoose et al

  20. Constraining Predicted Secondary Organic Aerosol Formation and Processing Using Real-Time Observations of Aging Urban Emissions in an Oxidation Flow Reactor

    NASA Astrophysics Data System (ADS)

    Ortega, A. M.; Palm, B. B.; Hayes, P. L.; Day, D. A.; Cubison, M.; Brune, W. H.; Hu, W.; Graus, M.; Warneke, C.; Gilman, J.; De Gouw, J. A.; Jimenez, J. L.

    2014-12-01

    To investigate atmospheric processing of urban emissions, we deployed an oxidation flow reactor with measurements of size-resolved chemical composition of submicron aerosol during CalNex-LA, a field study investigating air quality and climate change at a receptor site in the Los Angeles Basin. The reactor produces OH concentrations up to 4 orders of magnitude higher than in ambient air, achieving equivalent atmospheric aging of hours to ~2 weeks in 5 minutes of processing. The OH exposure (OHexp) was stepped every 20 min to survey the effects of a range of oxidation exposures on gases and aerosols. This approach is a valuable tool for in-situ evaluation of changes in organic aerosol (OA) concentration and composition due to photochemical processing over a range of ambient atmospheric conditions and composition. Combined with collocated gas-phase measurements of volatile organic compounds, this novel approach enables the comparison of measured SOA to predicted SOA formation from a prescribed set of precursors. Results from CalNex-LA show enhancements of OA and inorganic aerosol from gas-phase precursors. The OA mass enhancement from aging was highest at night and correlated with trimethylbenzene, indicating the importance of relatively short-lived VOC (OH lifetime of ~12 hrs or less) as SOA precursors in the LA Basin. Maximum net SOA production is observed between 3-6 days of aging and decreases at higher exposures. Aging in the reactor shows similar behavior to atmospheric processing; the elemental composition of ambient and reactor measurements follow similar slopes when plotted in a Van Krevelen diagram. Additionally, for air processed in the reactor, oxygen-to-carbon ratios (O/C) of aerosol extended over a larger range compared to ambient aerosol observed in the LA Basin. While reactor aging always increases O/C, often beyond maximum observed ambient levels, a transition from net OA production to destruction occurs at intermediate OHexp, suggesting a transition

  1. Organic Aerosol Formation Photoenhanced by the Formation of Secondary Photo-sensitizers in ageing Aerosols

    NASA Astrophysics Data System (ADS)

    Aregahegn, Kifle; Nozière, Barbara; George, Christian

    2013-04-01

    Humankind is facing a changing environment possibly due to anthropogenic stress on the atmosphere. In this context, aerosols play a key role by affecting the radiative climate forcing, hydrological cycle, and by their adverse effect on health. The role of organic compounds in these processes is however still poorly understood because of their massive chemical complexity and numerous transformations. This is particularly true for Secondary Organic Aerosol (SOA), which are produced in the atmosphere by organic gases. Traditionally, the driving forces for SOA growth is believed to be the partitioning onto aerosol seeds of condensable gases, either emitted primarily or resulting from the gas phase oxidation of organic gases. However, even the most up-to-date models based on such mechanisms can not account for the SOA mass observed in the atmosphere, suggesting the existence of other, yet unknown formation processes. The present study shows experimental evidence that particulate phase chemistry produces photo-sensitizers that lead to photo-induced formation and growth of secondary organic aerosol in the near UV and the presence of volatile organic compounds (VOC) such as terpenes. By means of an aerosol flow tube reactor equipped with Scanning Mobility Particle Sizer (SMPS) having Kr-85 source aerosol neutralizer, Differential Mobility Analyser (DMA) and Condensation Particle Sizer (CPC), we identified that traces of the aerosol phase product of glyoxal chemistry as is explained in Gallway et al., and Yu et al., namely imidazole-2-carboxaldehyde (IC) is a strong photo-sensitizer when irradiated by near-UV in the presence of volatile organic compounds such as terpenes. Furthermore, the influence of pH, type and concentration of VOCs, composition of seed particles, relative humidity and irradiation intensity on particle growth were studied. This novel photo-sensitizer contributed to more than 30% of SOA growth in 19min irradiation time in the presence of terpenes in the

  2. Characterizing the formation of secondary organic aerosols

    SciTech Connect

    Lunden, Melissa; Black, Douglas; Brown, Nancy

    2004-02-01

    Organic aerosol is an important fraction of the fine particulate matter present in the atmosphere. This organic aerosol comes from a variety of sources; primary organic aerosol emitted directly from combustion process, and secondary aerosol formed in the atmosphere from condensable vapors. This secondary organic aerosol (SOA) can result from both anthropogenic and biogenic sources. In rural areas of the United States, organic aerosols can be a significant part of the aerosol load in the atmosphere. However, the extent to which gas-phase biogenic emissions contribute to this organic load is poorly understood. Such an understanding is crucial to properly apportion the effect of anthropogenic emissions in these rural areas that are sometimes dominated by biogenic sources. To help gain insight on the effect of biogenic emissions on particle concentrations in rural areas, we have been conducting a field measurement program at the University of California Blodgett Forest Research Facility. The field location includes has been used to acquire an extensive suite of measurements resulting in a rich data set, containing a combination of aerosol, organic, and nitrogenous species concentration and meteorological data with a long time record. The field location was established in 1997 by Allen Goldstein, a professor in the Department of Environmental Science, Policy and Management at the University of California at Berkeley to study interactions between the biosphere and the atmosphere. The Goldstein group focuses on measurements of concentrations and whole ecosystem biosphere-atmosphere fluxes for volatile organic compounds (VOC's), oxygenated volatile organic compounds (OVOC's), ozone, carbon dioxide, water vapor, and energy. Another important collaborator at the Blodgett field location is Ronald Cohen, a professor in the Chemistry Department at the University of California at Berkeley. At the Blodgett field location, his group his group performs measurements of the

  3. Formation of halogen-induced secondary organic aerosol (XOA)

    NASA Astrophysics Data System (ADS)

    Kamilli, Katharina; Ofner, Johannes; Zetzsch, Cornelius; Held, Andreas

    2013-04-01

    bromine with α-pinene. This work was funded by German Research Foundation (DFG) under grants HE 5214/5-1 and ZE792/5-2. References: Cai, X., and Griffin, R. J.: Secondary aerosol formation from the oxidation of biogenic hydrocarbons by chlorine atoms, J. Geophys. Res., 111, D14206/14201-D14206/14214, 2006. Ofner, J. Balzer, N., Buxmann, J., Grothe, H., Schmitt-Kopplin, Ph., Platt, U., and Zetzsch, C., Halogenation processes of secondary organic aerosol and implications on halogen release mechanisms, Atmos. Chem. Phys. Discuss. 12, 2975-3017, 2012.

  4. Microphysical processing of aerosol particles in orographic clouds

    NASA Astrophysics Data System (ADS)

    Pousse-Nottelmann, S.; Zubler, E. M.; Lohmann, U.

    2015-08-01

    An explicit and detailed treatment of cloud-borne particles allowing for the consideration of aerosol cycling in clouds has been implemented into COSMO-Model, the regional weather forecast and climate model of the Consortium for Small-scale Modeling (COSMO). The effects of aerosol scavenging, cloud microphysical processing and regeneration upon cloud evaporation on the aerosol population and on subsequent cloud formation are investigated. For this, two-dimensional idealized simulations of moist flow over two bell-shaped mountains were carried out varying the treatment of aerosol scavenging and regeneration processes for a warm-phase and a mixed-phase orographic cloud. The results allowed us to identify different aerosol cycling mechanisms. In the simulated non-precipitating warm-phase cloud, aerosol mass is incorporated into cloud droplets by activation scavenging and released back to the atmosphere upon cloud droplet evaporation. In the mixed-phase cloud, a first cycle comprises cloud droplet activation and evaporation via the Wegener-Bergeron-Findeisen (WBF) process. A second cycle includes below-cloud scavenging by precipitating snow particles and snow sublimation and is connected to the first cycle via the riming process which transfers aerosol mass from cloud droplets to snowflakes. In the simulated mixed-phase cloud, only a negligible part of the total aerosol mass is incorporated into ice crystals. Sedimenting snowflakes reaching the surface remove aerosol mass from the atmosphere. The results show that aerosol processing and regeneration lead to a vertical redistribution of aerosol mass and number. Thereby, the processes impact the total aerosol number and mass and additionally alter the shape of the aerosol size distributions by enhancing the internally mixed/soluble Aitken and accumulation mode and generating coarse-mode particles. Concerning subsequent cloud formation at the second mountain, accounting for aerosol processing and regeneration increases

  5. Sulfate aerosols and polar stratospheric cloud formation

    SciTech Connect

    Tolbert, M.A. )

    1994-04-22

    Before the discovery of the Antarctic ozone hole, it was generally assumed that gas-phase chemical reactions controlled the abundance of stratospheric ozone. However, the massive springtime ozone losses over Antarctica first reported by Farman et al in 1985 could not be explained on the basis of gas-phase chemistry alone. In 1986, Solomon et al suggested that chemical reactions occurring on the surfaces of polar stratospheric clouds (PSCs) could be important for the observed ozone losses. Since that time, an explosion of laboratory, field, and theoretical research in heterogeneous atmospheric chemistry has occurred. Recent work has indicated that the most important heterogeneous reaction on PSCs is ClONO[sub 2] + HCl [yields] Cl[sub 2] + HNO[sub 3]. This reaction converts inert chlorine into photochemically active Cl[sub 2]. Photolysis of Cl[sub 2] then leads to chlorine radicals capable of destroying ozone through very efficient catalytic chain reactions. New observations during the second Airborne Arctic Stratospheric Expedition found stoichiometric loss of ClONO[sub 2] and HCl in air processed by PSCs in accordance with reaction 1. Attention is turning toward understanding what kinds of aerosols form in the stratospheric, their formation mechanism, surface area, and specific chemical reactivity. Some of the latest findings, which underline the importance of aerosols, were presented at a recent National Aeronautics and Space Administration workshop in Boulder, Colorado.

  6. Organosulfate Formation in Biogenic Secondary Organic Aerosol

    EPA Science Inventory

    Organosulfates of isoprene, α-pinene, and β-pinene have recently been identified in both laboratory-generated and ambient secondary organic aerosol (SOA). In this study, the mechanism and ubiquity of organosulfate formation in biogenic SOA is investigated by a comprehensive seri...

  7. FORMATION OF SECONDARY ORGANIC AEROSOL

    EPA Science Inventory

    (1) Gas-phase chemistry. With the clear and profound effect of the VOC/NOx ratio on SOA formation, we will augment gas-phase VOC oxidation mechanisms in atmospheric models to account for the effect of NOx level on the mechanism of SOA formation; (2) Revis...

  8. Dicarboxylic acids, ω-oxocarboxylic acids, α-dicarbonyls, WSOC, OC, EC, and inorganic ions in wintertime size-segregated aerosols from central India: Sources and formation processes.

    PubMed

    Deshmukh, Dhananjay K; Kawamura, Kimitaka; Deb, Manas K

    2016-10-01

    The size distributions of aerosols can provide evidences for their sources and formation processes in the atmosphere. Size-segregated aerosols (9-sizes) were collected in urban site (Raipur: 21.2°N and 82.3°E) in central India during winter of 2012-2013. The samples were analyzed for dicarboxylic acids (C2-C12), ω-oxocarboxylic acids (ωC2-ωC9), pyruvic acid and α-dicarbonyls (C2-C3) as well as elemental carbon (EC), organic carbon (OC), water-soluble OC (WSOC) and inorganic ions. Diacids showed a predominance of oxalic acid (C2) followed by succinic and azelaic acid whereas ω-oxoacids exhibited a predominance of glyoxylic acid and glyoxal was more abundant than methylglyoxal in all the sizes. Diacids, ω-oxoacids and α-dicarbonyls showed bimodal size distribution with peaks in fine and coarse modes. High correlations of fine mode diacids and related compounds with potassium and levoglucosan suggest that they were presumably due to a substantial contribution of primary emission from biomass burning and secondary production from biomass burning derived precursors. High correlations of C2 with higher carbon number diacids (C3-C9) suggest that they have similar sources and C2 may be produced via the decay of its higher homologous diacids in fine mode. Considerable portions of diacids and related compounds in coarse mode suggest that they were associated with mineral dust particles by their adsorption and photooxidation of anthropogenic and biogenic precursors via heterogeneous reaction on dust surface. This study demonstrates that biomass burning and dust particles are two major factors to control the size distribution of diacids and related compounds in the urban aerosols from central India. PMID:27414241

  9. Formation of nitrogenated organic aerosols in the Titan upper atmosphere

    PubMed Central

    Imanaka, Hiroshi; Smith, Mark A.

    2010-01-01

    Many aspects of the nitrogen fixation process by photochemistry in the Titan atmosphere are not fully understood. The recent Cassini mission revealed organic aerosol formation in the upper atmosphere of Titan. It is not clear, however, how much and by what mechanism nitrogen is incorporated in Titan’s organic aerosols. Using tunable synchrotron radiation at the Advanced Light Source, we demonstrate the first evidence of nitrogenated organic aerosol production by extreme ultraviolet–vacuum ultraviolet irradiation of a N2/CH4 gas mixture. The ultrahigh-mass-resolution study with laser desorption ionization-Fourier transform-ion cyclotron resonance mass spectrometry of N2/CH4 photolytic solid products at 60 and 82.5 nm indicates the predominance of highly nitrogenated compounds. The distinct nitrogen incorporations at the elemental abundances of H2C2N and HCN, respectively, are suggestive of important roles of H2C2N/HCCN and HCN/CN in their formation. The efficient formation of unsaturated hydrocarbons is observed in the gas phase without abundant nitrogenated neutrals at 60 nm, and this is confirmed by separately using 13C and 15N isotopically labeled initial gas mixtures. These observations strongly suggest a heterogeneous incorporation mechanism via short lived nitrogenated reactive species, such as HCCN radical, for nitrogenated organic aerosol formation, and imply that substantial amounts of nitrogen is fixed as organic macromolecular aerosols in Titan’s atmosphere. PMID:20616074

  10. Characterization of key aerosol, trace gas and meteorological properties and particle formation and growth processes dependent on air mass origins in coastal Southern Spain

    NASA Astrophysics Data System (ADS)

    Diesch, J.; Drewnick, F.; Sinha, V.; Williams, J.; Borrmann, S.

    2011-12-01

    The chemical composition and concentration of aerosols at a certain site can vary depending on season, the air mass source region and distance from sources. Regardless of the environment, new particle formation (NPF) events are one of the major sources for ultrafine particles which are potentially hazardous to human health. Grown particles are optically active and efficient CCN resulting in important implications for visibility and climate (Zhang et al., 2004). The study presented here is intended to provide information about various aspects of continental, urban and marine air masses reflected by wind patterns of the air arriving at the measurement site. Additionally we will be focusing on NPF events associated with different types of air masses affecting their emergence and temporal evolution. Measurements of the ambient aerosol, various trace gases and meteorological parameters were performed within the framework of the DOMINO (Diel Oxidant Mechanisms In relation to Nitrogen Oxides) project. The field campaign took place from mid-November to mid-December 2008 at the atmospheric research station "El Arenosillo" located at the interface between a natural park, industrial cities (Huelva, Seville) and the Atlantic Ocean. Number and mass as well as PAH and black carbon concentrations were measured in PM1 and size distribution instruments covered the size range 6 nm up to 32 μm. The chemical composition of the non-refractory submicron aerosol was measured by means of an Aerosol Mass Spectrometer (AMS). In order to evaluate the characteristics of different air masses linking local and regional sources as well as NPF processes, characteristic air mass types were classified dependent on backwards trajectory pathways and local meteorology. Large nuclei mode concentrations in the number size distribution were found within continental and urban influenced air mass types due to frequently occurring NPF events. Exploring individual production and sink variables, sulfuric

  11. Aerosol Measurement and Processing System (AMAPS)

    Atmospheric Science Data Center

    2016-03-22

    Description:  Access aerosol data from MISR and MODIS Subset Level-2 MISR granules by parameter and by space/time region Extract MISR aerosol data for overflights of specific geographic regions or ground site ... or concerns. Details:  Aerosol Measurement and Processing System (AMAPS) Screenshot:  ...

  12. Aerosol particles and the formation of advection fog

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Liaw, G. S.; Vaughan, O. H., Jr.

    1979-01-01

    A study of numerical simulation of the effects of concentration, particle size, mass of nuclei, and chemical composition on the dynamics of warm fog formation, particularly the formation of advection fog, is presented. This formation is associated with the aerosol particle characteristics, and both macrophysical and microphysical processes are considered. In the macrophysical model, the evolution of wind components, water vapor content, liquid water content, and potential temperature under the influences of vertical turbulent diffusion, turbulent momentum, and turbulent energy transfers are taken into account. In the microphysical model, the supersaturation effect is incorporated with the surface tension and hygroscopic material solution. It is shown that the aerosol particles with the higher number density, larger size nuclei, the heavier nuclei mass, and the higher ratio of the Van't Hoff factor to the molecular weight favor the formation of the lower visibility advection fogs with stronger vertical energy transfer during the nucleation and condensation time period.

  13. Observational insights into aerosol formation from isoprene.

    PubMed

    Worton, David R; Surratt, Jason D; Lafranchi, Brian W; Chan, Arthur W H; Zhao, Yunliang; Weber, Robin J; Park, Jeong-Hoo; Gilman, Jessica B; de Gouw, Joost; Park, Changhyoun; Schade, Gunnar; Beaver, Melinda; Clair, Jason M St; Crounse, John; Wennberg, Paul; Wolfe, Glenn M; Harrold, Sara; Thornton, Joel A; Farmer, Delphine K; Docherty, Kenneth S; Cubison, Michael J; Jimenez, Jose-Luis; Frossard, Amanda A; Russell, Lynn M; Kristensen, Kasper; Glasius, Marianne; Mao, Jingqiu; Ren, Xinrong; Brune, William; Browne, Eleanor C; Pusede, Sally E; Cohen, Ronald C; Seinfeld, John H; Goldstein, Allen H

    2013-10-15

    Atmospheric photooxidation of isoprene is an important source of secondary organic aerosol (SOA) and there is increasing evidence that anthropogenic oxidant emissions can enhance this SOA formation. In this work, we use ambient observations of organosulfates formed from isoprene epoxydiols (IEPOX) and methacrylic acid epoxide (MAE) and a broad suite of chemical measurements to investigate the relative importance of nitrogen oxide (NO/NO2) and hydroperoxyl (HO2) SOA formation pathways from isoprene at a forested site in California. In contrast to IEPOX, the calculated production rate of MAE was observed to be independent of temperature. This is the result of the very fast thermolysis of MPAN at high temperatures that affects the distribution of the MPAN reservoir (MPAN / MPA radical) reducing the fraction that can react with OH to form MAE and subsequently SOA (F(MAE formation)). The strong temperature dependence of F(MAE formation) helps to explain our observations of similar concentrations of IEPOX-derived organosulfates (IEPOX-OS; ~1 ng m(-3)) and MAE-derived organosulfates (MAE-OS; ~1 ng m(-3)) under cooler conditions (lower isoprene concentrations) and much higher IEPOX-OS (~20 ng m(-3)) relative to MAE-OS (<0.0005 ng m(-3)) at higher temperatures (higher isoprene concentrations). A kinetic model of IEPOX and MAE loss showed that MAE forms 10-100 times more ring-opening products than IEPOX and that both are strongly dependent on aerosol water content when aerosol pH is constant. However, the higher fraction of MAE ring opening products does not compensate for the lower MAE production under warmer conditions (higher isoprene concentrations) resulting in lower formation of MAE-derived products relative to IEPOX at the surface. In regions of high NOx, high isoprene emissions and strong vertical mixing the slower MPAN thermolysis rate aloft could increase the fraction of MPAN that forms MAE resulting in a vertically varying isoprene SOA source. PMID:24004194

  14. Chemistry of secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Yee, Lindsay Diana

    The photooxidation of volatile organic compounds (VOCs) in the atmosphere can lead to the formation of secondary organic aerosol (SOA), a major component of fine particulate matter. Improvements to air quality require insight into the many reactive intermediates that lead to SOA formation, of which only a small fraction have been measured at the molecular level. This thesis describes the chemistry of secondary organic aerosol (SOA) formation from several atmospherically relevant hydrocarbon precursors. Photooxidation experiments of methoxyphenol and phenolic compounds and C12 alkanes were conducted in the Caltech Environmental Chamber. These experiments include the first photooxidation studies of these precursors run under sufficiently low NOx levels, such that RO2 + HO2 chemistry dominates, an important chemical regime in the atmosphere. Using online Chemical Ionization Mass Spectrometery (CIMS), key gas-phase intermediates that lead to SOA formation in these systems were identified. With complementary particle-phase analyses, chemical mechanisms elucidating the SOA formation from these compounds are proposed. Three methoxyphenol species (phenol, guaiacol, and syringol) were studied to model potential photooxidation schemes of biomass burning intermediates. SOA yields (ratio of mass of SOA formed to mass of primary organic reacted) exceeding 25% are observed. Aerosol growth is rapid and linear with the organic conversion, consistent with the formation of essentially non-volatile products. Gas and aerosol-phase oxidation products from the guaiacol system show that the chemical mechanism consists of highly oxidized aromatic species in the particle phase. Syringol SOA yields are lower than that of phenol and guaiacol, likely due to unique chemistry dependent on methoxy group position. The photooxidation of several C12 alkanes of varying structure n-dodecane, 2-methylundecane, cyclododecane, and hexylcyclohexane) were run under extended OH exposure to investigate the

  15. Aerosol processing of materials: Aerosol dynamics and microstructure evolution

    NASA Astrophysics Data System (ADS)

    Gurav, Abhijit Shankar

    ) via vapor condensation at 400-650sp°C using Nsb2 carrier gas. In general, during laboratory-scale aerosol processing of materials containing a volatile component, significant evaporative losses and formation of new ultrafine particles were observed at synthesis temperatures at which the saturation vapor pressure of the volatile species exceeded about 0.1-0.5 mTorr. Spray calcination synthesis of pigment-size titania from titanium hydrolysate (TiOsb{x}(SOsb4)sb{y}(OH)sb{z}) using fuel additives such as ethyl alcohol, sugar and urea was also investigated. When pure water was used as a medium of suspension, agglomerates of 0.5 to 1.5 mum were produced by spray calcination. Use of pure ethanol as a solvent as well as small amounts (5-10 wt.%) urea additions to the suspension of Ti-hydrolysate in water were successful in producing predominantly unagglomerated, single crystalline titania particles of 0.1 to 0.3 mum size. Such additions of fuels such as alcohols, sugar and urea to suspensions and solutions used in spray processes are promising for making powders having smaller sizes and unagglomerated, denser morphologies.

  16. Enhancement of aerosol responses to changes in emissions over East Asia by gas-oxidant-aerosol coupling and detailed aerosol processes

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Koike, M.

    2016-06-01

    We quantify the responses of aerosols to changes in emissions (sulfur dioxide, black carbon (BC), primary organic aerosol, nitrogen oxides (NOx), and volatile organic compounds) over East Asia by using simulations including gas-oxidant-aerosol coupling, organic aerosol (OA) formation, and BC aging processes. The responses of aerosols to NOx emissions are complex and are dramatically changed by simulating gas-phase chemistry and aerosol processes online. Reduction of NOx emissions by 50% causes a 30-40% reduction of oxidant (hydroxyl radical and ozone) concentrations and slows the formation of sulfate and OA by 20-30%. Because the response of OA to changes in NOx emissions is sensitive to the treatment of emission and oxidation of semivolatile and intermediate volatility organic compounds, reduction of the uncertainty in these processes is necessary to evaluate gas-oxidant-aerosol coupling accurately. Our simulations also show that the sensitivity of aerosols to changes in emissions is enhanced by 50-100% when OA formation and BC aging processes are resolved in the model. Sensitivity simulations show that the increase of NOx emissions from 1850 to 2000 explains 70% (40%) of the enhancement of aerosol mass concentrations (direct radiative effects) over East Asia during that period through enhancement of oxidant concentrations and that this estimation is sensitive to the representation of OA formation and BC aging processes. Our results demonstrate the importance of simultaneous simulation of gas-oxidant-aerosol coupling and detailed aerosol processes. The impact of NOx emissions on aerosol formation will be a key to formulating effective emission reduction strategies such as BC mitigation and aerosol reduction policies in East Asia.

  17. New Particle Formation and Secondary Organic Aerosol in Beijing

    NASA Astrophysics Data System (ADS)

    Hu, M.; Yue, D.; Guo, S.; Hu, W.; Huang, X.; He, L.; Wiedensohler, A.; Zheng, J.; Zhang, R.

    2011-12-01

    Air pollution in Beijing has been a major concern due to being a mega-city and green Olympic Games requirements. Both long term and intensive field measurements have been conducted at an Urban Air Quality Monitoring Station in the campus of Peking University since 2004. Aerosol characteristics vary seasonally depending on meteorological conditions and source emissions. Secondary compositions of SNA (sum of sulfate, nitrate, and ammonium) and SOA (secondary organic aerosol) become major fraction of fine particles, which may enhance aerosol impacts on visibility and climate change. The transformation processes of new particle formation (NPF) and secondary organic aerosol have been focused on. It was found that gaseous sulfuric acid, ammonia, and organic compounds are important precursors to NPF events in Beijing and H2SO4-NH3-H2O ternary nucleation is one of the important mechanisms. The contributions of condensation and neutralization of sulfuric acid, coagulation, and organics to the growth of the new particles are estimated as 45%, 34%, and 21%, respectively. Tracer-based method to estimate biogenic and anthropogenic SOA was established by using gas chromatography-mass spectrometry. Secondary organic tracers derived from biogenic (isoprene, α-pinene, β-caryophyllene) and anthropogenic (toluene) contributed 32% at urban site and 35% at rural site, respectively. Other source apportionment techniques were also used to estimate secondary organic aerosols, including EC tracer method, water soluble organic carbon content, chemical mass balance model, and AMS-PMF method.

  18. Secondary Organic Aerosol Formation by Cloud Processing: Accretion Reactions Involving Glyoxal and Methylglyoxal in Evaporating Cloud Droplets

    NASA Astrophysics Data System (ADS)

    de Haan, D. O.; Hastings, W. P.; Corrigan, A. L.; Lee, F. E.; Hanley, S. W.

    2006-12-01

    Glyoxal and methyl glyoxal are dicarbonyl compounds found in atmospheric cloud and fog water, typically at low micromolar concentrations. These two compounds are known to form copolymers under certain industrial conditions by the nucleophilic addition of S, N and O-containing molecules. We report ambient FTIR-ATR and particle chamber data on a range of reactions between glyoxal and S, N and O-containing molecules found in cloudwater, some of which are triggered by droplet evaporation. Liquid-phase formation of adducts between glyoxal and S(IV) is seen to halt sulfur oxidation during droplet drying on the ATR crystal. Formation of glyoxal / S(VI) adducts, however, are not observed by ATR. At neutral or acidic pH, droplet evaporation triggers a reaction between glyoxal and amino acids in the residue left behind, forming imines. Glyoxal reacts under similar conditions with glycol compounds, forming cyclic acetals, but not with sugars, perhaps due to a lack of conformational freedom. Glyoxal is not observed to react with carboxylic acids, either in particle chambers or while drying on an ATR crystal.

  19. Aerosol and Trace Gas Processing by Clouds During the Cumulus Humilis Aerosol Processing Study (CHAPS)

    NASA Astrophysics Data System (ADS)

    Yu, X.; Berg, L.; Berkowitz, C.; Alexander, L.; Lee, Y.; Ogren, J.; Andrews, B.

    2008-12-01

    Clouds play an active role in the processing and cycling of atmospheric constituents. Gases and particles can partition to cloud droplets by absorption and condensation as well as activation and pact scavenging. The Cumulus Humilis Aerosol Processing Study (CHAPS) aimed at characterizing freshly emitted aerosols above, within and below fields of cumulus humilis (or fair-weather cumulus) in the vicinity of Oklahoma City. The experiment took place in June 2007. Evolution of aerosol and cloud properties downwind of the Oklahoma City is of particular interest in this project. These observations of a mid-size and mid-latitude city can be used in the development and evaluation of regional-scale and global climate model cumulus parameterizations that describes the transport and transformations of these aerosols by fair-weather cumulus. The Department of Energy (DOE) G-1 aircraft was one of the main platforms used in CHAPS. It carried a suite of instruments to measure properties of interstitial aerosols behind an isokinetic inlet and a set of duplicate instruments to determine properties of activated particles behind a counter-flow virtual impactor (CVI). The sampling line to the Aerodyne Aerosol Mass Spectrometer was switched between the isokinetic inlet and the CVI to allow characterization of interstitial particles out of clouds in contrast to particles activated in clouds. Trace gases including ozone, carbon monoxide, sulfur dioxide, and a series of volatile organic compounds (VOCs) were also measured as were key meteorological state parameters including liquid water content, cloud drop size, and dew point temperature were measured. This presentation will focus on results related to the transformation and transport of aerosols and trace gases observed in fair-weather cumulus and compare these results with concurrent observations made outside these clouds. Our interest will focus on the differences in particle size and composition under varying conditions. The role of

  20. Formation and deposition of volcanic sulfate aerosols on Mars

    NASA Technical Reports Server (NTRS)

    Settle, M.

    1979-01-01

    The paper considers the formation and deposition of volcanic sulfate aerosols on Mars. The rate limiting step in sulfate aerosol formation on Mars is the gas phase oxidation of SO2 by chemical reactions with O, OH, and HO2; submicron aerosol particles would circuit Mars and then be removed from the atmosphere by gravitational forces, globally dispersed, and deposited over a range of equatorial and mid-latitudes. Volcanic sulfate aerosols on Mars consist of liquid droplets and slurries containing sulfuric acid; aerosol deposition on a global or hemispheric scale could account for the similar concentrations of sulfur within surficial soils at the two Viking lander sites.

  1. Secondary Organic Aerosol Formation from Glyoxal: photochemical versus dark uptake and reversible versus irreversible SOA formation

    NASA Astrophysics Data System (ADS)

    Waxman, E.; Slowik, J.; Kampf, C.; Timkovsky, J.; Noziere, B.; Praplan, A.; Pffafenberger, L.; Holzinger, R.; Hoffmann, T.; Dommen, J.; Prevot, A.; Baltensperger, U.; Volkamer, R.

    2012-04-01

    Glyoxal forms secondary organic aerosol (SOA) by partitioning to the aerosol aqueous phase according to Henry's law. The subsequent processing by heterogeneous and multiphase reactions shifts the partitioning towards aerosols. Currently it is not well understood whether these reactions result in reversible or irreversible SOA formation, and what parameters influence the rate limiting step of multiphase processing. We conducted a series of simulation chamber experiments at PSI in April and May 2011 to investigate processing under dark conditions, UV and/or visible light irradiated conditions, and in the presence and absence of OH radicals. Experiments used ammonium sulfate or ammonium sulfate/fulvic acid mixtures as seed aerosols, and were conducted between 50% and 85% relative humidity at approximately constant RH over the course of any given experiment. Glyoxal was produced photochemically from acetylene, using HONO photolysis as the OH radical source. Gas-phase glyoxal was measured by the CU LED-Cavity Enhanced-DOAS. The Thermal-Desorption Proton-Transfer-Reaction Mass Spectrometer (TD-PTR-MS) and Ion Chromatography Mass Spectrometer (IC-MS) monitored both gas and aerosol-phase organic reaction products. Particle composition was monitored by High-Resolution Time-of-Flight Aerosol Mass Spectrometry (HR-ToF-AMS), and HPLC-ESI MS/MS and LC-MS analysis of filter samples.

  2. Secondary Organic Aerosol Formation from Glyoxal: photochemical versus dark uptake and reversible versus irreversible SOA formation

    NASA Astrophysics Data System (ADS)

    Waxman, E.; Slowik, J. G.; Kampf, C. J.; Timkovsky, J.; Noziere, B.; Praplan, A. P.; Pfaffenberger, L.; Holzinger, R.; Hoffmann, T.; Dommen, J.; Prevot, A. S.; Baltensperger, U.; Volkamer, R.

    2011-12-01

    Glyoxal forms secondary organic aerosol (SOA) by partitioning to the aerosol aqueous phase according to Henry's law. The subsequent processing by heterogeneous and multiphase reactions shifts the partitioning towards aerosols. Currently it is not well understood whether these reactions result in reversible or irreversible SOA formation, and what parameters influence the rate limiting step of multiphase processing. We conducted a series of simulation chamber experiments at PSI in April and May 2011 to investigate processing under dark conditions, UV and/or visible light irradiated conditions, and in the presence and absence of OH radicals. Experiments used ammonium sulfate or ammonium sulfate/fulvic acid mixtures as seed aerosols, and were conducted between 50% and 85% relative humidity at approximately constant RH over the course of any given experiment. Glyoxal was produced photochemically from acetylene, using HONO photolysis as the OH radical source. Gas-phase glyoxal was measured by the CU LED-Cavity Enhanced-DOAS. The Thermal-Desorption Proton-Transfer-Reaction Mass Spectrometer (TD-PTR-MS) and Ion Chromatography Mass Spectrometer (IC-MS) monitored both gas and aerosol-phase organic reaction products. Particle composition was monitored by High-Resolution Time-of-Flight Aerosol Mass Spectrometry (HR-ToF-AMS), and HPLC-ESI MS/MS and LC-MS analysis of filter samples.

  3. Aqueous phase processing of secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Liu, Yao; Tritscher, T.; Praplan, A. P.; Decarlo, P. F.; Temime-Roussel, B.; Quivet, E.; Marchand, N.; Dommen, J.; Baltensperger, U.; Monod, A.

    2011-07-01

    The aging of secondary organic aerosol (SOA) by photooxidation in the aqueous phase was experimentally investigated. To simulate multiphase processes, the following experiments were sequentially performed in a smog chamber and in an aqueous phase photoreactor: (1) Gas-phase photooxidation of three different volatile organic compounds (VOC): isoprene, α-pinene, and 1,3,5-trimethylbenzene (TMB) in the presence of NOx, leading to the formation of SOA which was subjected to on-line physical and chemical analysis; (2) particle-to-liquid transfer of water soluble species of SOA using filter sampling and aqueous extraction; (3) aqueous-phase photooxidation of the obtained water extracts; and (4) nebulization of the solutions for a repetition of the on-line characterization. SOA concentrations in the chamber measured with a scanning mobility particle sizer (SMPS) were higher than 200 μg m-3, as the experiments were conducted under high initial concentrations of volatile organic compounds (VOC) and NOx. The aging of SOA through aqueous phase processing was investigated by measuring the physical and chemical properties of the particles online before and after processing using a high resolution time-of-flight aerosol mass spectrometer (AMS) and a hygroscopicity tandem differential mobility analyzer (H-TDMA). It was shown that, after aqueous phase processing, the particles were significantly more hygroscopic, and contained more fragmentation ions at m/z = 44 and less ions at m/z = 43, thus showing a significant impact on SOA aging for the three different precursors. Additionally, the particles were analyzed with a thermal desorption atmospheric pressure ionization aerosol mass spectrometer (TD-API-AMS). Comparing the smog chamber SOA composition and non processed nebulized aqueous extracts with this technique revealed that sampling, extraction and/or nebulization did not significantly impact the chemical composition of SOA formed from isoprene and α-pinene, whereas it

  4. An explicit study of aerosol mass conversion and its parameterization in warm rain formation of cumulus clouds

    NASA Astrophysics Data System (ADS)

    Sun, J.; Fen, J.; Ungar, R. K.

    2013-10-01

    The life time of atmospheric aerosols is highly affected by in-cloud scavenging processes. Aerosol mass conversion from aerosols embedded in cloud droplets into aerosols embedded in raindrops is a pivotal pathway for wet removal of aerosols in clouds. The aerosol mass conversion rate in the bulk microphysics parameterizations is always assumed to be linearly related to the precipitation production rate, which includes the cloud water autoconversion rate and the cloud water accretion rate. The ratio of the aerosol mass concentration conversion rate to the cloud aerosol mass concentration has typically been considered to be the same as the ratio of the precipitation production rate to the cloud droplet mass concentration. However, the mass of an aerosol embedded in a cloud droplet is not linearly proportional to the mass of the cloud droplet. A simple linear relationship cannot be drawn between the precipitation production rate and the aerosol mass concentration conversion rate. In this paper, we studied the evolution of aerosol mass concentration conversion rates in a warm rain formation process with a 1.5-dimensional non-hydrostatic convective cloud and aerosol interaction model in the bin microphysics. We found that the ratio of the aerosol mass conversion rate to the cloud aerosol mass concentration can be statistically expressed by the ratio of the precipitation production rate to the cloud droplet mass concentration with an exponential function. We further gave some regression equations to determine aerosol conversions in the warm rain formation under different threshold radii of raindrops and different aerosol size distributions.

  5. Secondary organic aerosol formation of primary, secondary and tertiary Amines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amines have been widely identified in ambient aerosol in both urban and rural environments and they are potential precursors for formation of nitrogen-containing secondary organic aerosols (SOA). However, the role of amines in SOA formation has not been well studied. In this wrok, we use UC-Riversid...

  6. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds.

    PubMed

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H; Rudich, Yinon

    2013-12-17

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges. PMID:24297908

  7. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds

    PubMed Central

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H.; Rudich, Yinon

    2013-01-01

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges. PMID:24297908

  8. Influence of Aerosol Acidity on the Formation of Secondary Organic Aerosol from Biogenic Precursor Hydrocarbons

    EPA Science Inventory

    Secondary organic aerosol (SOA) formation and dynamics may be important factors for the role of aerosols in adverse health effects, visibility and climate change. Formation of SOA occurs when a parent volatile organic compound is oxidized to create products that form in a conden...

  9. Properties of aerosol processed by ice clouds

    NASA Astrophysics Data System (ADS)

    Rudich, Y.; Adler, G.; Moise, T.; Erlick-Haspel, C.

    2012-12-01

    We suggest that highly porous aerosol (HPA) can form in the upper troposphere/lower stratosphere when ice particles encounter sub-saturation leading to ice sublimation similar to freeze drying. This process can occur at the lower layers of cirrus clouds (few km), at anvils of high convective clouds and thunderstorms, in clouds forming in atmospheric gravitational waves, in contrails and in high convective clouds injecting to the stratosphere. A new experimental system that simulates freeze drying of proxies for atmospheric aerosol at atmospheric pressure was constructed and various proxies for atmospheric soluble aerosol were studied. The properties of resulting HPA were characterized by various methods. It was found that the resulting aerosol have larger sizes (extent depends on substance and mixing), lower density (largevoid fraction), lower optical extinction and higher CCN activity and IN activity. Implication of HPA's unique properties and their atmospheric consequences to aerosol processing in ice clouds and to cloud cycles will be discussed.

  10. A pathway analysis of global aerosol processes

    NASA Astrophysics Data System (ADS)

    Schutgens, Nick; Stier, Philip

    2014-05-01

    Although budgets for aerosol emission and deposition (macrophysical fluxes) have been studied before, much less is known about the budgets of processes e.g. nucleation, coagulation and condensation. A better understanding of their relative importance would improve our understanding of the aerosol system and help model development and evaluation. Aerosols are not only emitted from and deposited to the Earth's surface but are modified during their transport. The processes for these modifications include nucleation of H2SO4 gas into new aerosol, coagulation with other aerosol and condensation of H2SO4 unto existing aerosol. As a result of these processes, aerosol grow in size and change their chemical composition, often becoming hydrophilic where they were hydrophobic before. This affects their characteristics for various deposition processes (sedimentation, dry or wet deposition) as well as their radiative properties and hence climate forcing by aerosol. We present a complete budget of all aerosol processes in the aerosol-climate model ECHAM-HAM including the M7 microphysics. This model treats aerosol as 7 distinct but interacting two-moment modes of mixed species (soot, organic carbons, sulfate, sea salt and dust). We will show both global budgets as well as regional variations in dominant processes. Some of our conclusions are: condensation of H2SO4 gas onto pre-existing particles is an important process, dominating the growth of small particles in the nucleation mode to the Aitken mode and the ageing of hydrophobic matter. Together with in-cloud production of H2SO4, it significantly contributes to (and often dominates) the mass burden (and hence composition) of the hydrophilic Aitken and accumulation mode particles. Particle growth itself is the leading source of number densities in the hydrophilic Aitken and accumulation modes, with their hydrophobic counterparts contributing (even locally) relatively little. However, the coarse mode is mostly decoupled from the

  11. Development of an aerosol microphysical module: Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS)

    SciTech Connect

    Matsui, H.; Koike, Makoto; Kondo, Yutaka; Fast, Jerome D.; Takigawa, M.

    2014-09-30

    Number concentrations, size distributions, and mixing states of aerosols are essential parameters for accurate estimation of aerosol direct and indirect effects. In this study, we developed an aerosol module, designated Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS), that can represent these parameters explicitly by considering new particle formation (NPF), black carbon (BC) aging, and secondary organic aerosol (SOA) processes. A two-dimensional bin representation is used for particles with dry diameters from 40 nm to 10 µm to resolve both aerosol size (12 bins) and BC mixing state (10 bins) for a total of 120 bins. The particles with diameters from 1 to 40 nm are resolved using an additional 8 size bins to calculate NPF. The ATRAS module was implemented in the WRF-chem model and applied to examine the sensitivity of simulated mass, number, size distributions, and optical and radiative parameters of aerosols to NPF, BC aging and SOA processes over East Asia during the spring of 2009. BC absorption enhancement by coating materials was about 50% over East Asia during the spring, and the contribution of SOA processes to the absorption enhancement was estimated to be 10 – 20% over northern East Asia and 20 – 35% over southern East Asia. A clear north-south contrast was also found between the impacts of NPF and SOA processes on cloud condensation nuclei (CCN) concentrations: NPF increased CCN concentrations at higher supersaturations (smaller particles) over northern East Asia, whereas SOA increased CCN concentrations at lower supersaturations (larger particles) over southern East Asia. Application of ATRAS to East Asia also showed that the impact of each process on each optical and radiative parameter depended strongly on the process and the parameter in question. The module can be used in the future as a benchmark model to evaluate the accuracy of simpler aerosol models and examine interactions between NPF, BC aging, and SOA

  12. Water-soluble dicarboxylic acids and ω-oxocarboxylic acids in size-segregated aerosols over northern Japan during spring: sources and formation processes

    NASA Astrophysics Data System (ADS)

    Deshmukh, Dhananjay Kumar; Kawamura, Kimitaka; Kobayashi, Minoru; Gowda, Divyavani

    2016-04-01

    Seven sets (AF01-AF07) of size-segregated aerosol (12-sizes) samples were collected using a Micro-Orifice Uniform Deposit Impactor (MOUDI) in Sapporo, Japan during the spring of 2001 to understand the sources and atmospheric processes of water-soluble organic aerosols in the outflow region of Asian dusts. The samples were analyzed for dicarboxylic acids (C2-C12) and ω-oxocarboxylic acids as well as inorganic ions. The molecular distribution of diacids showed the predominance of oxalic acid (C2) followed by malonic and succinic acids whereas ω-oxoacids showed the predominance of glyoxylic acid (ωC2) in size-segregated aerosols. SO42- and NH4+ are enriched in submicron mode whereas NO3- and Ca2+ are in supermicron mode. Most of diacids and ω-oxoacids are enriched in supermicron mode in the samples (AF01-AF03) influenced by the long-range transport of mineral dusts whereas enhanced presence in submicron mode was observed in other sample sets. The strong correlations of C2 with Ca2+ (r = 0.95-0.99) and NO3- (r = 0.96-0.98) in supermicron mode in the samples AF01-AF03 suggest the adsorption or production of C2 diacid via heterogeneous reaction on the surface of mineral dust during long-range atmospheric transport. The preferential enrichment of diacids and ω-oxoacids in mineral dust has important implications for the solubility and cloud nucleation properties of the dominant fraction of water-soluble organic aerosols. This study demonstrates that biofuel and biomass burning and mineral dust originated in East Asia are two major factors to control the size distribution of diacids and related compounds over northern Japan.

  13. Numerical simulation of advection fog formation on multi-disperse aerosols due to combustion-related pollutants

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Liaw, G. S.

    1980-01-01

    The effects of multi-disperse distribution of the aerosol population are presented. Single component and multi-component aerosol species on the condensation/nucleation processes which affect the reduction in visibility are described. The aerosol population with a high particle concentration provided more favorable conditions for the formation of a denser fog than the aerosol population with a greater particle size distribution when the value of the mass concentration of the aerosols was kept constant. The results were used as numerical predictions of fog formation. Two dimensional observations in horizontal and vertical coordinates, together with time-dependent measurements were needed as initial values for the following physical parameters: (1)wind profiles; (2) temperature profiles; (3) humidity profiles; (4) mass concentration of aerosol particles; (5) particle size distribution of aerosols; and (6) chemical composition of aerosols. Formation and dissipation of advection fog, thus, can be forecasted numerically by introducing initial values obtained from the observations.

  14. Organic aerosol formation photo-enhanced by the formation of secondary photosensitizers in aerosols.

    PubMed

    Aregahegn, Kifle Z; Nozière, Barbara; George, Christian

    2013-01-01

    Secondary organic aerosols (SOA), which are produced by the transformations of volatile organic compounds in the atmosphere, play a central role in air quality, public health, visibility and climate, but their formation and aging remain poorly characterized. This study evidences a new mechanism for SOA formation based on photosensitized particulate-phase chemistry. Experiments were performed with a horizontal aerosol flow reactor where the diameter growth of the particles was determined as a function of various parameters. In the absence of gas-phase oxidant, experiments in which ammonium sulfate seeds containing glyoxal were exposed to gas-phase limonene and UV light exhibited a photo-induced SOA growth. Further experiments showed that this growth was due to traces of imidazole-2-carboxaldehyde (IC) in the seeds, a condensation product of glyoxal acting as an efficient photosensitizer. Over a 19 min irradiation time, 50 nm seed particles containing this compound were observed to grow between 3.5 and 30 +/- 3% in the presence of either limonene, isoprene, alpha-pinene, beta-pinene, or toluene in concentrations between 1.8 and 352 ppmv. The other condensation products of glyoxal, imidazole (IM) and 2,2-bi1H-imidazole (BI), also acted as photosensitizer but with much less efficiency under the same conditions. In the atmosphere, glyoxal and potentially other gas precursors would thus produce efficient photosensitizers in aerosol and autophotocatalyze SOA growth. PMID:24601000

  15. Chemistry of organic aerosol formation in urban atmospheres. Final report

    SciTech Connect

    Seinfeld, J.H.; Flagan, R.C.

    1994-04-04

    Aerosol formation from the photooxidation of A-pinene/NOx and B-pinene/NOx mixtures has been investigated in a series of outdoor smog chamber experiments. Both hydrocarbons are potent aerosol formers and in areas containing significant vegetation, terpenes are estimated to be a significant contributor to secondary organic aerosol formation. To model organic aerosol formation, estimates of the vapor pressures of the condensable species are needed. To measure the vapor pressures of the low volatility species characteristic of organic aerosols the Tandem Differential Mobility Analyzer (TDMA) method introduced by Liu and McMurray has been further developed for this task. Initial experiments with compounds of known vapor pressure confirm the usefulness of the method.

  16. EFFECT OF ACIDITY ON SECONDARY ORGANIC AEROSOL FORMATION FROM ISOPRENE

    EPA Science Inventory

    The effect of particle-phase acidity on secondary organic aerosol (SOA) formation from isoprene is investigated in a laboratory chamber study, in which the acidity of the inorganic seed aerosol was controlled systematically. The observed enhancement in SOA mass concentration is c...

  17. Aerosol cloud processing with the global model ECHAM5-HAM-SALSA

    NASA Astrophysics Data System (ADS)

    Bergman, T.; Korhonen, H.; Zubair, M.; Romakkaniemi, S.; Lehtinen, K.; Kokkola, H.

    2012-04-01

    Atmospheric aerosols and their interactions with clouds constitute the largest uncertainty in the radiative forcing of the Earth's atmosphere. Increasing aerosol number concentrations increases the cloud droplet concentration and droplet surface and hence the cloud albedo. This mechanism is called the aerosol indirect effect on climate. Understanding the changes in cloud droplet number concentrations and size by anthropogenic aerosols are the key factors in the study of future climate change. Therefore the aerosols' formation and growth from nanoparticles to cloud condensation nuclei (CCN) must be described accurately. The formation and growth of aerosols are shown to be described more accurately with sectional representations than with bulk (total aerosol mass only), modal (lognormal modes describing mass and number size distribution) or moment (processes tied to different moments of particle number size distribution) approaches. Recently the sectional aerosol models have been implemented to global climate models. However, the resolution of sectional models must be optimised to reduce the computational cost. We have implemented the sectional aerosol model SALSA in ECHAM5-HAM. SALSA describes the aerosol population with 20 size sections. The dynamics are optimised for large scale applications and the model includes an improved moving center sectional method. The particulate mass consists of five compounds: sulphate, organic carbon, black carbon, sea salt and dust. The aerosol processing has been studied extensively and there are many numerical models used to predict CCN number concentrations. However, due to computational limitations many of them are not suitable for utilisation in global climate models. Therefore in most global climate studies on aerosol activation to CCN is examined using cloud activation parameterisations. We study the aerosol cloud processing and its affect on transport of aerosols using Abdul-Razzak-Ghan aerosol cloud activation

  18. Seasonal variations of ultra-fine and submicron aerosols in Taipei, Taiwan: implications for particle formation processes in a subtropical urban area

    NASA Astrophysics Data System (ADS)

    Cheung, H. C.; Chou, C. C.-K.; Chen, M.-J.; Huang, W.-R.; Huang, S.-H.; Tsai, C.-Y.; Lee, C. S. L.

    2016-02-01

    The aim of this study is to investigate the seasonal variations in the physicochemical properties of atmospheric ultra-fine particles (UFPs, d ≤ 100 nm) and submicron particles (PM1, d ≤ 1 µm) in an east Asian urban area, which are hypothesized to be affected by the interchange of summer and winter monsoons. An observation experiment was conducted at TARO (Taipei Aerosol and Radiation Observatory), an urban aerosol station in Taipei, Taiwan, from October 2012 to August 2013. The measurements included the mass concentration and chemical composition of UFPs and PM1, as well as the particle number concentration (PNC) and the particle number size distribution (PSD) with size range of 4-736 nm. The results indicated that the mass concentration of PM1 was elevated during cold seasons with a peak level of 18.5 µg m-3 in spring, whereas the highest concentration of UFPs was measured in summertime with a mean of 1.64 µg m-3. Moreover, chemical analysis revealed that the UFPs and PM1 were characterized by distinct composition; UFPs were composed mostly of organics, whereas ammonium and sulfate were the major constituents of PM1. The seasonal median of total PNCs ranged from 13.9 × 103 cm-3 in autumn to 19.4 × 103 cm-3 in spring. Median concentrations for respective size distribution modes peaked in different seasons. The nucleation-mode PNC (N4 - 25) peaked at 11.6 × 103 cm-3 in winter, whereas the Aitken-mode (N25 - 100) and accumulation-mode (N100 - 736) PNC exhibited summer maxima at 6.0 × 103 and 3.1 × 103 cm-3, respectively. The change in PSD during summertime was attributed to the enhancement in the photochemical production of condensable organic matter that, in turn, contributed to the growth of aerosol particles in the atmosphere. In addition, clear photochemical production of particles was observed, mostly in the summer season, which was characterized by average particle growth and formation rates of 4.0 ± 1.1 nm h-1 and 1.4 ± 0.8 cm-3 s-1

  19. Reversible and irreversible processing of biogenic olefins on acidic aerosols

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Li, S.-M.

    2008-04-01

    Recent evidence has suggested that heterogeneous chemistry of oxygenated hydrocarbons, primarily carbonyls, plays a role in the formation of secondary organic aerosol (SOA); however, evidence is emerging that direct uptake of alkenes on acidic aerosols does occur and can contribute to SOA formation. In the present study, significant uptake of monoterpenes, oxygenated monoterpenes and sesquiterpenes to acidic sulfate aerosols is found under various conditions in a reaction chamber. Proton transfer mass spectrometry is used to quantify the organic gases, while an aerosol mass spectrometer is used to quantify the organic mass uptake and obtain structural information for heterogeneous products. Aerosol mass spectra are consistent with several mechanisms including acid catalyzed olefin hydration, cationic polymerization and organic ether formation, while measurable decreases in the sulfate mass on a per particle basis suggest that the formation of organosulfate compounds is also likely. A portion of the heterogeneous reactions appears to be reversible, consistent with reversible olefin hydration reactions. A slow increase in the organic mass after a fast initial uptake is attributed to irreversible reactions, consistent with polymerization and organosulfate formation. Uptake coefficients (γ) were estimated for a fast initial uptake governed by the mass accommodation coefficient (α) and ranged from 1×10-6-2.5×10-2. Uptake coefficients for a subsequent slower reactive uptake ranged from 1×10-7-1×10-4. These processes may potentially lead to a considerable amount of SOA from the various biogenic hydrocarbons under acidic conditions, which can be highly significant for freshly nucleated aerosols, particularly given the large array of atmospheric olefins.

  20. Implementation of warm-cloud processes in a source-oriented WRF/Chem model to study the effect of aerosol mixing state on fog formation in the Central Valley of California

    NASA Astrophysics Data System (ADS)

    Lee, H.-H.; Chen, S.-H.; Kleeman, M. J.; Zhang, H.; DeNero, S. P.; Joe, D. K.

    2015-11-01

    The source-oriented Weather Research and Forecasting chemistry model (SOWC) was modified to include warm cloud processes and applied to investigate how aerosol mixing states influence fog formation and optical properties in the atmosphere. SOWC tracks a 6-dimensional chemical variable (X, Z, Y, Size Bins, Source Types, Species) through an explicit simulation of atmospheric chemistry and physics. A source-oriented cloud condensation nuclei module was implemented into the SOWC model to simulate warm clouds using the modified two-moment Purdue Lin microphysics scheme. The Goddard shortwave and longwave radiation schemes were modified to interact with source-oriented aerosols and cloud droplets so that aerosol direct and indirect effects could be studied. The enhanced SOWC model was applied to study a fog event that occurred on 17 January 2011, in the Central Valley of California. Tule fog occurred because an atmospheric river effectively advected high moisture into the Central Valley and nighttime drainage flow brought cold air from mountains into the valley. The SOWC model produced reasonable liquid water path, spatial distribution and duration of fog events. The inclusion of aerosol-radiation interaction only slightly modified simulation results since cloud optical thickness dominated the radiation budget in fog events. The source-oriented mixture representation of particles reduced cloud droplet number relative to the internal mixture approach that artificially coats hydrophobic particles with hygroscopic components. The fraction of aerosols activating into CCN at a supersaturation of 0.5 % in the Central Valley decreased from 94 % in the internal mixture model to 80 % in the source-oriented model. This increased surface energy flux by 3-5 W m-2 and surface temperature by as much as 0.25 K in the daytime.

  1. Implementation of warm-cloud processes in a source-oriented WRF/Chem model to study the effect of aerosol mixing state on fog formation in the Central Valley of California

    NASA Astrophysics Data System (ADS)

    Lee, Hsiang-He; Chen, Shu-Hua; Kleeman, Michael J.; Zhang, Hongliang; DeNero, Steven P.; Joe, David K.

    2016-07-01

    The source-oriented Weather Research and Forecasting chemistry model (SOWC) was modified to include warm cloud processes and was applied to investigate how aerosol mixing states influence fog formation and optical properties in the atmosphere. SOWC tracks a 6-D chemical variable (X, Z, Y, size bins, source types, species) through an explicit simulation of atmospheric chemistry and physics. A source-oriented cloud condensation nuclei module was implemented into the SOWC model to simulate warm clouds using the modified two-moment Purdue Lin microphysics scheme. The Goddard shortwave and long-wave radiation schemes were modified to interact with source-oriented aerosols and cloud droplets so that aerosol direct and indirect effects could be studied. The enhanced SOWC model was applied to study a fog event that occurred on 17 January 2011, in the Central Valley of California. Tule fog occurred because an atmospheric river effectively advected high moisture into the Central Valley and nighttime drainage flow brought cold air from mountains into the valley. The SOWC model produced reasonable liquid water path, spatial distribution and duration of fog events. The inclusion of aerosol-radiation interaction only slightly modified simulation results since cloud optical thickness dominated the radiation budget in fog events. The source-oriented mixture representation of particles reduced cloud droplet number relative to the internal mixture approach that artificially coats hydrophobic particles with hygroscopic components. The fraction of aerosols activating into cloud condensation nuclei (CCN) at a supersaturation of 0.5 % in the Central Valley decreased from 94 % in the internal mixture model to 80 % in the source-oriented model. This increased surface energy flux by 3-5 W m-2 and surface temperature by as much as 0.25 K in the daytime.

  2. Application of a coupled aerosol formation: Radiative transfer model to climatic studies of aerosols

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Pollack, J. B.

    1979-01-01

    A sophisticated one dimensional physical-chemical model of the formation and evolution of stratospheric aerosols was used to predict the size and number concentration of the stratospheric aerosols as functions of time and altitude following: a large volcanic eruption; increased addition of carbonyl sulfide (OCS) or sulfur dioxide (SO2) to the troposphere; increased supersonic aircraft (SST) flights in the stratosphere; and, large numbers of space shuttle (SS) flights through the stratosphere. A radiative-convective one dimensional climate sensitivity study, using the results of the aerosol formation model, was performed to assess the ground level climatic significance of these perturbations to the stratospheric aerosol layer. Volcanic eruptions and large OCS or SO2 increases could cause significant climatic changes. Currently projected SS launches and moderate fleets of SST's are unlikely to upset the stratospheric aerosol layer enough to significantly impact climate.

  3. Volcanic sulfate aerosol formation in the troposphere

    NASA Astrophysics Data System (ADS)

    Martin, Erwan; Bekki, Slimane; Ninin, Charlotte; Bindeman, Ilya

    2014-11-01

    The isotopic composition of volcanic sulfate provides insights into the atmospheric chemical processing of volcanic plumes. First, mass-independent isotopic anomalies quantified by Δ17O and to a lesser extent Δ33S and Δ36S in sulfate depend on the relative importance of different oxidation mechanisms that generate sulfate aerosols. Second, the isotopic composition of sulfate (δ34S and δ18O) could be an indicator of fractionation (distillation/condensation) processes occurring in volcanic plumes. Here we present analyses of O- and S isotopic compositions of volcanic sulfate absorbed on very fresh volcanic ash from nine moderate historical eruptions in the Northern Hemisphere. Most of our volcanic sulfate samples, which are thought to have been generated in the troposphere or in the tropopause region, do not exhibit any significant mass-independent fractionation (MIF) isotopic anomalies, apart from those from an eruption of a Mexican volcano. Coupled to simple chemistry model calculations representative of the background atmosphere, our data set suggests that although H2O2 (a MIF-carrying oxidant) is thought to be by far the most efficient sulfur oxidant in the background atmosphere, it is probably quickly consumed in large dense tropospheric volcanic plumes. We estimate that in the troposphere, at least, more than 90% of volcanic secondary sulfate is not generated by MIF processes. Volcanic S-bearing gases, mostly SO2, appear to be oxidized through channels that do not generate significant isotopically mass-independent sulfate, possibly via OH in the gas phase and/or transition metal ion catalysis in the aqueous phase. It is also likely that some of the sulfates sampled were not entirely produced by atmospheric oxidation processes but came out directly from volcanoes without any MIF anomalies.

  4. Microphysical processes affecting stratospheric aerosol particles

    NASA Technical Reports Server (NTRS)

    Hamill, P.; Toon, O. B.; Kiang, C. S.

    1977-01-01

    Physical processes which affect stratospheric aerosol particles include nucleation, condensation, evaporation, coagulation and sedimentation. Quantitative studies of these mechanisms to determine if they can account for some of the observed properties of the aerosol are carried out. It is shown that the altitude range in which nucleation of sulfuric acid-water solution droplets can take place corresponds to that region of the stratosphere where the aerosol is generally found. Since heterogeneous nucleation is the dominant nucleation mechanism, the stratospheric solution droplets are mainly formed on particles which have been mixed up from the troposphere or injected into the stratosphere by volcanoes or meteorites. Particle growth by heteromolecular condensation can account for the observed increase in mixing ratio of large particles in the stratosphere. Coagulation is important in reducing the number of particles smaller than 0.05 micron radius. Growth by condensation, applied to the mixed nature of the particles, shows that available information is consistent with ammonium sulfate being formed by liquid phase chemical reactions in the aerosol particles. The upper altitude limit of the aerosol layer is probably due to the evaporation of sulfuric acid aerosol particles, while the lower limit is due to mixing across the tropopause.

  5. A one-dimensional model describing aerosol formation and evolution in the stratosphere. I - Physical processes and mathematical analogs. II - Sensitivity studies and comparison with observations

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Hamill, P.; Toon, O. B.; Whitten, R. C.; Kiang, C. S.

    1979-01-01

    A new time-dependent one-dimensional model of the stratospheric sulfate aerosol layer is developed. The model treats atmospheric photochemistry and aerosol physics in detail and includes the interaction between gases and particles explicitly. It is shown that the numerical algorithms used in the model are quite precise. Sensitivity studies and comparison with observations are made. The simulated aerosol physics generates a particle layer with most of the observed properties. The sensitivity of the calculated properties to changes in a large number of aeronomic aerosol parameters is discussed in some detail. The sensitivity analysis reveals areas where the aerosol model is most uncertain. New observations are suggested that might help resolve important questions about the origin of the stratospheric aerosol layer.

  6. Reversible and irreversible processing of biogenic olefins on acidic aerosols

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Li, S.-M.

    2007-08-01

    Recent evidence has suggested that heterogeneous chemistry of oxygenated hydrocarbons, primarily carbonyls, plays a role in the formation of secondary organic aerosol (SOA); however, evidence is emerging that direct uptake of alkenes on acidic aerosols does occur and can contribute to SOA formation. In the present study, significant uptake of monoterpenes, oxygenated monoterpenes and sesquiterpenes to acidic sulfate aerosols is found under various conditions in a reaction chamber. Proton transfer mass spectrometry is used to quantify the organic gases, while an aerosol mass spectrometer is used to quantify the organic mass uptake and obtain structural information for heterogeneous products. Aerosol mass spectra are consistent with several mechanisms including acid catalyzed olefin hydration, cationic polymerization and organic ester formation, while measurable decreases in the sulfate mass on a per particle basis suggest that the formation of organosulfate compounds is also likely. A portion of the heterogeneous reactions appears to be reversible, consistent with reversible olefin hydration reactions. A slow increase in the organic mass after a fast initial uptake is attributed to irreversible reactions, consistent with polymerization and organosulfate formation. Uptake coefficients (γ) were estimated for a fast initial uptake governed by the mass accommodation coefficient (α) and ranged from 1×10-6-2.5×10-2. Uptake coefficients for a subsequent slower reactive uptake ranged from 1×10-7-1×10-4. These processes are estimated to potentially produce greater than 2.5 μg m-3 of SOA from the various biogenic hydrocarbons under atmospheric conditions, which can be highly significant given the large array of atmospheric olefins.

  7. Physico-chemical properties of aerosols in Sao Paulo, Brazil and mechanisms of secondary organic aerosol formation.

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Ferreira de Brito, Joel; Varanda Rizzo, Luciana; Luiza Godoy, Maria; Godoy, Jose Marcus

    2013-04-01

    Megacities emissions are increasingly becoming a global issue, where emissions from the transportation sector play an increasingly important role. Sao Paulo is a megacity with a population of about 18 million people, 7 million cars and large-scale industrial emissions. As a result of the vehicular and industrial emissions, the air quality in Sao Paulo is bellow WMO standards for aerosol particles and ozone. Many uncertainties are found on gas- and particulate matter vehicular emission factors and their following atmospheric processes, e.g. secondary organic aerosol formation. Due to the uniqueness of the vehicular fuel in Brazil, largely based on ethanol use, such characterization currently holds further uncertainties. To improve the understanding of the role of this unique emission characteristics, we are running a source apportionment study in Sao Paulo focused on the mechanisms of organic aerosol formation. One of the goals of this study is a quantitative aerosol source apportionment focused on vehicular emissions, including ethanol and gasohol (both fuels used by light-duty vehicles). This study comprises four sampling sites with continuous measurements for one year, where trace elements and organic aerosol are being measured for PM2.5 and PM10 along with real-time NOx, O3, PM10 and CO measurements. Aerosol optical properties and size distribution are being measured on a rotation basis between sampling stations. Furthermore, a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS) and an Aerosol Chemical Speciation Monitor (ACSM) are used to measure in real time VOCs and aerosol composition, respectively. Trace elements were measured using XRF and OC/EC analysis was determined with a Sunset OC/EC instrument. A TSI Nephelometer with 3 wavelengths measure light scattering and a MAAP measure black carbon. Results show aerosol number concentrations ranging between 10,000 and 35,000 cm-3, mostly concentrated in the nucleation and Aitken modes, with a peak in size at 80

  8. Formation of highly oxygenated organic aerosol in the atmosphere: Insights from the Finokalia Aerosol Measurement Experiments

    NASA Astrophysics Data System (ADS)

    Hildebrandt, Lea; Kostenidou, Evangelia; Mihalopoulos, Nikos; Worsnop, Douglas R.; Donahue, Neil M.; Pandis, Spyros N.

    2010-12-01

    Aged organic aerosol (OA) was measured at a remote coastal site on the island of Crete, Greece during the Finokalia Aerosol Measurement Experiments (FAME-08 and FAME-09), which were part of the EUCAARI intensive campaigns. Quadrupole aerosol mass spectrometers (Q-AMSs) were employed to measure the size-resolved chemical composition of non-refractory submicron aerosol (NR-PM1), and to estimate the extent of oxidation of the OA. The experiments provide unique insights into ambient oxidation of aerosol by measuring at the same site but under different photochemical conditions. NR-PM1 concentrations were about a factor of three lower during FAME-09 (winter) than during FAME-08 (summer). The OA sampled was significantly less oxidized and more variable in composition during the winter than during the early summer. Lower OH concentrations in the winter were the main difference between the two campaigns, suggesting that atmospheric formation of highly oxygenated OA is associated with homogeneous photochemical aging.

  9. Oxidation enhancement of submicron organic aerosols by fog processing

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Ge, X.; Collier, S.; Setyan, A.; Xu, J.; Sun, Y.

    2011-12-01

    During 2010 wintertime, a measurement study was carried out at Fresno, California, using an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) combined with a Scanning Mobility Particle Sizer (SMPS). Four fog events occurred during the first week of the campaign. While ambient aerosol was sampled into the HR-ToF-AMS, fog water samples were collected, and were later aerosolized and analyzed via HR-TOF-AMS in the laboratory. We performed Positive Matrix Factorization (PMF) on the AMS ambient organic mass spectra, and identified four OA factors: hydrocarbon-like OA (HOA) likely from vehicle emissions, cooking influenced OA (COA), biomass burning OA (BBOA) representing residential wood combustion, and an oxygenated OA (OOA) that has an average O/C ratio of 0.42. The time series of the OOA factor correlates best with that of sulfate (R2 =0.54 ) during fog events, suggesting that aqueous phase processing may have strongly affected OOA production during wintertime in Fresno. We further investigate the OOA compositions and elemental ratios before, during, and after the fog events, as well as those of dissolved organic matter (DOM) in fog waters to study the influence of aqueous phase processing on OA compositions. Results of fog sample analysis shows an enhancement of oxidation of DOM in 11 separate fog samples. Further factor analysis of the fog DOM data will elucidate the possible mechanisms by which fog processing enhances oxidation of aerosol. In addition, in order to investigate the influence of aqueous processing on OA, we used the Extended Aerosol Inorganic Model (E-AIM) (http://www.aim.env.uea.ac.uk/aim/aim.php) to estimate aerosol phase water contents based on the AMS measured aerosol composition. The predicted water content has a good correlation with sulfate and OOA . We will further explore the correlations between particle phase water with organic aerosol characteristics to discuss the influence of aqueous phase processing on

  10. New Photosensitized Processes at Aerosol and Ocean Surfaces

    NASA Astrophysics Data System (ADS)

    Rossignol, S.; Aregahegn, K. Z.; Ciuraru, R.; Bernard, F.; Tinel, L.; Fine, L.; George, C.

    2014-12-01

    From a few years now, there is a growing body of evidence that photoinduced processes could be of great importance for the tropospheric chemistry. Here, we would like to present two additional outcomes of this new area of research, firstly the photosensitized direct VOC uptake by aerosols and, secondly, the photoinduced chemical formation of unsaturated VOC from marine microlayer proxy. It was recently shown that the chemistry of glyoxal toward ammonium ions into droplets and wet aerosols leads to the formation of light-absorbing compounds. Among them, we found that imidazole-2-carboxaldehyde (IC) acts as a photosensitizer and is able to initiate the growth of organic aerosols via the uptake of VOC, such as limonene. Given its potential importance, the mechanism of this photoinduced uptake was investigated thanks to aerosol flow tube experiments and UPLC-ESI-HRMS analysis. Results reveal hydrogen abstraction on the VOC molecule by the triplet state of IC leading to the VOC oxidation without any traditional oxidant. As well as aerosol, the sea-surface microlayer, known to be enriched in light-absorbing organics, is largely impacted by photochemical processes. Recent studies have pointed out for example the role of photosentitized processes in the loss of NO2 and ozone at water surfaces containing photoactive compounds such as chlorophyll. In order to go further, we worked from sea-surface microlayer proxy containing humic acids as photoactive material and organic acids as surfactants. Beside oxidation processes, we monitored by high resolution PTR-MS the release in the gas phase of unsaturated compounds, including C5 dienes (isoprene ?). A strong correlation between the measured surface tension and the C5 diene concentration in the gas phase was evidenced, clearly pointing toward an interfacial process. This contribution will highlight the similarities between both systems and will attempt to present a general chemical scheme for photosensitized chemistry at

  11. Novel Approach for Evaluating Secondary Organic Aerosol from Aromatic Hydrocarbons: Unified Method for Predicting Aerosol Composition and Formation.

    PubMed

    Li, Lijie; Tang, Ping; Nakao, Shunsuke; Kacarab, Mary; Cocker, David R

    2016-06-21

    Innovative secondary organic aerosol (SOA) composition analysis methods normalizing aerosol yield and chemical composition on an aromatic ring basis are developed and utilized to explore aerosol formation from oxidation of aromatic hydrocarbons. SOA yield and chemical composition are revisited using 15 years of University of California, Riverside/CE-CERT environmental chamber data on 17 aromatic hydrocarbons with HC:NO ranging from 11.1 to 171 ppbC:ppb. SOA yield is redefined in this work by normalizing the molecular weight of all aromatic precursors to the molecular weight of the aromatic ring [Formula: see text], where i is the aromatic hydrocarbon precursor. The yield normalization process demonstrates that the amount of aromatic rings present is a more significant driver of aerosol formation than the vapor pressure of the precursor aromatic. Yield normalization also provided a basis to evaluate isomer impacts on SOA formation. Further, SOA elemental composition is explored relative to the aromatic ring rather than on a classical mole basis. Generally, four oxygens per aromatic ring are observed in SOA, regardless of the alkyl substitutes attached to the ring. Besides the observed SOA oxygen to ring ratio (O/R ∼ 4), a hydrogen to ring ratio (H/R) of 6 + 2n is observed, where n is the number of nonaromatic carbons. Normalization of yield and composition to the aromatic ring clearly demonstrates the greater significance of aromatic ring carbons compared with alkyl carbon substituents in determining SOA formation and composition. PMID:27177154

  12. Secondary Organic Aerosol Formation from Glyoxal: Effects of Seed Aerosol on Particle Composition

    NASA Astrophysics Data System (ADS)

    Slowik, Jay; Waxman, Eleanor; Coburn, Sean; Klein, Felix; Koenig, Theodore; Krapf, Manuel; Kumar, Nivedita; Wang, Siyuan; Baltensperger, Urs; Dommen, Josef; Prévôt, Andre; Volkamer, Rainer

    2014-05-01

    Conventional models of secondary organic aerosol (SOA) production neglect aqueous-phase processing mechanisms, thereby excluding potentially important SOA formation pathways. These missing pathways may be an important factor in the inability of current models to fully explain SOA yields and oxidation states. Molecules identified as important precursors to SOA generated through aqueous-phase include glyoxal, which is an oxidation product of numerous organic gases. Glyoxal SOA formation experiments were conducted in the PSI smog chamber as a function of seed composition, relative humidity (RH, 60 to 85%), and the presence/absence of gaseous ammonia, affecting particle acidity. In a typical experiment, the chamber was filled with the selected seed aerosol (NaCl, (NH4)2SO4, NaNO3, or K2SO4), after which glyoxal was generated by the brief (i.e. a few minutes) exposure of acetylene to UV light. The experiment was then allowed to proceed undisturbed for several hours. Each experiment consisted of several UV exposures, followed by a dilution phase at constant RH to investigate the gas/particle partitioning behavior of the generated SOA. Gas-phase glyoxal was monitored by an LED-CE-DOAS system, while the particle composition was measured using online aerosol mass spectrometry (Aerodyne HR-ToF-AMS) and offline analysis of collected filter samples. SOA composition was observed to depend strongly on seed type, with increased imidazole formation evident during experiments with (NH4)2SO¬4 and K2SO4 seeds relative to those with NaCl and NaNO3. Additionally, experiments conducted in the presence of ammonia showed large enhancements in both imidazole content and total SOA yield. Analysis of mass spectral markers indicates reversible uptake of glyoxal but irreversible particle-phase production of the imidazole-containing SOA. Positive matrix factorization (PMF) using the Multilinear Engine (ME-2) was applied to the AMS mass spectral time series to quantify factors related to

  13. Detailed Chemical Characterization of Unresolved Complex Mixtures (UCM) inAtmospheric Organics: Insights into Emission Sources, Atmospheric Processing andSecondary Organic Aerosol Formation

    EPA Science Inventory

    Recent studies suggest that semivolatile organic compounds (SVOCs) are important precursors to secondary organic aerosol (SOA) in urban atmospheres. However, knowledge of the chemical composition of SVOCs is limited by current analytical techniques, which are typically unable to...

  14. Heavy Ion Formation in Titan's Ionosphere: Magnetospheric Introduction of Free Oxygen and Source of Titan's Aerosols?

    NASA Technical Reports Server (NTRS)

    Sittler, E. C., Jr.; Hartle, R. E.; Cooper, J. F.; Johnson, R. E.; Coates, A.; dePater, imke; Strom, Daphne; Simoes, F.; Steele, A.; Robb, F.

    2007-01-01

    With the recent discovery of heavy ions, positive and negative, by the Cassini Plasma Spectrometer (CAPS) instrument in Titan's ionosphere, it reveals new possibilities for aerosol formation at Titan and the introduction of free oxygen to the aerosol chemistry from Saturn's magnetosphere with Enceladus as the primary oxygen source. One can estimate whether the heavy ions in the ionosphere are of sufficient number to account for all the aerosols, under what conditions are favorable for heavy ion formation and how they are introduced as seed particles deeper in Titan's atmosphere where the aerosols form and eventually find themselves on Titan's surface where unknown chemical processes can take place. Finally, what are the possibilities with regard to their chemistry on the surface with some free oxygen present in their seed particles?

  15. Secondary Organic Aerosol Formation in the Captive Aerosol Growth and Evolution (CAGE) Chambers during the Southern Oxidant and Aerosol Study (SOAS) in Centreville, AL

    NASA Astrophysics Data System (ADS)

    Leong, Y.; Karakurt Cevik, B.; Hernandez, C.; Griffin, R. J.; Taylor, N.; Matus, J.; Collins, D. R.

    2013-12-01

    Secondary organic aerosol (SOA) represents a large portion of sub-micron particulate matter on a global scale. The composition of SOA and its formation processes are heavily influenced by anthropogenic and biogenic activity. Volatile organic compounds (VOCs) that are emitted naturally from forests or from human activity serve as precursors to SOA formation. Biogenic SOA (BSOA) is formed from biogenic VOCs and is prevalent in forested regions like the Southeastern United States. The formation and enhancement of BSOA under anthropogenic influences such as nitrogen oxides (NOx), sulfur dioxide (SO2), and oxygen radicals are still not well understood. The lack of information on anthropogenic BSOA enhancement and the reversibility of SOA formation could explain the underprediction of SOA in current models. To address some of these gaps in knowledge, this study was conducted as part of the Southern Oxidant and Aerosol Study (SOAS) in Centreville, AL during the summer of 2013. SOA growth experiments were conducted in two Captive Aerosol Growth and Evolution (CAGE) outdoor chambers located at the SEARCH site. Ambient trace gas concentrations were maintained in these chambers using semi-permeable gas-exchange membranes, while studying the growth of injected monodisperse seed aerosol. The control chamber was operated under ambient conditions; the relative humidity and oxidant and NOx levels were perturbed in the second chamber. This design allows experiments to capture the natural BSOA formation processes in the southeastern atmosphere and to study the influence of anthropogenic activity on aerosol chemistry. Chamber experiments were periodically monitored with physical and chemical instrumentation including a scanning mobility particle sizer (SMPS), a cloud condensation nuclei counter (CCNC), a humidified tandem differential mobility analyzer (H-TDMA), and an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The CAGE experiments focused on SOA

  16. New aerosol particles formation in the Sao Paulo Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Vela, Angel; Andrade, Maria de Fatima; Ynoue, Rita

    2016-04-01

    The Sao Paulo Metropolitan Area (SPMA), in the southeast region of Brazil, is considered a megalopolis comprised of Sao Paulo city and more 38 municipalities. The air pollutant emissions in the SPMA are related to the burning of the fuels: etanol, gasohol (gasoline with 25% ethanol) and diesel. According to CETESB (2013), the road vehicles contributed up to about 97, 87, and 80% of CO, VOCs and NOx emissions in 2012, respectively, being most of NOx associated to diesel combustion and most of CO and VOCs from gasohol and ethanol combustion. Studies conducted on ambient air pollution in the SPMA have shown that black carbon (BC) explains 21% of mass concentration of PM2.5 compared with 40% of organic carbon (OC), 20% of sulfates, and 12% of soil dust (Andrade et al., 2012). Most of the observed ambient PM2.5 mass concentration usually originates from precursors gases such as sulphur dioxide (SO2), ammonia (NH3), nitrogen oxides (NOx) and VOCs as well as through the physico-chemical processes such as the oxidation of low volatile hydrocarbons transferring to the condensed phase (McMurry et al., 2004). The Weather Research and Forecasting with Chemistry model (WRF-Chem; Grell et al. 2005), configured with three nested grid cells: 75, 15, and 3 km, is used as photochemical modeling to describe the physico-chemical processes leading to evolution of particles number and mass size distribution from a vehicular emission model developed by the IAG-USP laboratory of Atmospheric Processes and based on statistical information of vehicular activity. The spatial and temporal distributions of emissions in the finest grid cell are based on road density products compiled by the OpenStreetMap project and measurements performed inside tunnels in the SPMA, respectively. WRF-Chem simulation with coupled primary aerosol (dust and sea-salt) and biogenic emission modules and aerosol radiative effects turned on is conducted as the baseline simulation (Case_0) to evaluate the model

  17. An interfacial mechanism for cloud droplet formation on organic aerosols

    NASA Astrophysics Data System (ADS)

    Ruehl, Christopher R.; Davies, James F.; Wilson, Kevin R.

    2016-03-01

    Accurate predictions of aerosol/cloud interactions require simple, physically accurate parameterizations of the cloud condensation nuclei (CCN) activity of aerosols. Current models assume that organic aerosol species contribute to CCN activity by lowering water activity. We measured droplet diameters at the point of CCN activation for particles composed of dicarboxylic acids or secondary organic aerosol and ammonium sulfate. Droplet activation diameters were 40 to 60% larger than predicted if the organic was assumed to be dissolved within the bulk droplet, suggesting that a new mechanism is needed to explain cloud droplet formation. A compressed film model explains how surface tension depression by interfacial organic molecules can alter the relationship between water vapor supersaturation and droplet size (i.e., the Köhler curve), leading to the larger diameters observed at activation.

  18. An interfacial mechanism for cloud droplet formation on organic aerosols.

    PubMed

    Ruehl, Christopher R; Davies, James F; Wilson, Kevin R

    2016-03-25

    Accurate predictions of aerosol/cloud interactions require simple, physically accurate parameterizations of the cloud condensation nuclei (CCN) activity of aerosols. Current models assume that organic aerosol species contribute to CCN activity by lowering water activity. We measured droplet diameters at the point of CCN activation for particles composed of dicarboxylic acids or secondary organic aerosol and ammonium sulfate. Droplet activation diameters were 40 to 60% larger than predicted if the organic was assumed to be dissolved within the bulk droplet, suggesting that a new mechanism is needed to explain cloud droplet formation. A compressed film model explains how surface tension depression by interfacial organic molecules can alter the relationship between water vapor supersaturation and droplet size (i.e., the Köhler curve), leading to the larger diameters observed at activation. PMID:27013731

  19. Study of the CCN formation as a function of aerosol components

    NASA Astrophysics Data System (ADS)

    Fanourgakis, George S.; Myriokefalitakis, Stelios; Kanakidou, Maria

    2016-04-01

    Understanding the role of aerosols in Earth's climate through direct and indirect effects has attracted a lot of attention over the last years. Due to the chemical complexity of aerosols along with the variety of the primary emissions sources and the conversions from gas to particle in atmosphere, accurate predictions for the aerosols impact on a regional and global scale still remains a challenging problem. In this study, we examine the relative contribution of directly emitted particles in the atmosphere (primary particles) and particles formed from gas-to-particle conversion (secondary particles) to the global aerosols and to the cloud condensation nuclei (CCN) formation. The Chemistry Transport Model v4.0 (TM4-ECPL) coupled with an extended version of the aerosol micro-physics model M7, which describes microphysical processes (nucleation, coagulation, condensation of gas-phase species) for sulfate, black carbon, organic carbon sea salt, dust and various secondary organic aerosols, is here used. A systematic analysis on the CCN production as a function of the aerosol chemical composition is performed. The sensitivity of the results to physical parameters that affect the CCN formation and cannot be accurately determined, such as hygroscopicity, is investigated based on a detailed sensitivity analysis. This work has been supported by the European FP7 collaborative project BACCHUS (Impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding).

  20. Halogen-induced organic aerosol (XOA): a study on ultra-fine particle formation and time-resolved chemical characterization.

    PubMed

    Ofner, Johannes; Kamilli, Katharina A; Held, Andreas; Lendl, Bernhard; Zetzsch, Cornelius

    2013-01-01

    The concurrent presence of high values of organic SOA precursors and reactive halogen species (RHS) at very low ozone concentrations allows the formation of halogen-induced organic aerosol, so-called XOA, in maritime areas where high concentrations of RHS are present, especially at sunrise. The present study combines aerosol smog-chamber and aerosol flow-reactor experiments for the characterization of XOA. XOA formation yields from alpha-pinene at low and high concentrations of chlorine as reactive halogen species (RHS) were determined using a 700 L aerosol smog-chamber with a solar simulator. The chemical transformation of the organic precursor during the aerosol formation process and chemical aging was studied using an aerosol flow-reactor coupled to an FTIR spectrometer. The FTIR dataset was analysed using 2D correlation spectroscopy. Chlorine induced homogeneous XOA formation takes place at even 2.5 ppb of molecular chlorine, which was photolysed by the solar simulator. The chemical pathway of XOA formation is characterized by the addition of chlorine and abstraction of hydrogen atoms, causing simultaneous carbon-chlorine bond formation. During further steps of the formation process, carboxylic acids are formed, which cause a SOA-like appearance of XOA. During the ozone-free formation of secondary organic aerosol with RHS a special kind of particulate matter (XOA) is formed, which is afterwards transformed to SOA by atmospheric aging or degradation pathways. PMID:24601001

  1. Secondary organic aerosol formation by self-reactions of methylglyoxal and glyoxal in evaporating droplets.

    PubMed

    De Haan, David O; Corrigan, Ashley L; Tolbert, Margaret A; Jimenez, Jose L; Wood, Stephanie E; Turley, Jacob J

    2009-11-01

    Glyoxal and methylglyoxal are scavenged by clouds, where a fraction of these compounds are oxidized during the lifetime of the droplet. As a cloud droplet evaporates, the remaining glyoxal and methylglyoxal must either form low-volatility compounds such as oligomers and remain in the aerosol phase, or transfer back to the gas phase. A series of experiments on evaporating aqueous aerosol droplets indicates that over the atmospherically relevant concentration range for clouds and fog (4-1000 microM), 33 +/- 11% of glyoxal and 19 +/- 13% of methylglyoxal remains in the aerosol phase while the remainder evaporates. Measurements of aerosol density and time-dependent AMS signal changes are consistent with the formation of oligomers by each compound during the drying process. Unlike glyoxal, which forms acetal oligomers, exact mass AMS data indicates that the majority of methylglyoxal oligomers are formed by aldol condensation reactions, likely catalyzed by pyruvic acid, formed from methylglyoxal disproportionation. Our measurements of evaporation fractions can be used to estimate the global aerosol formation potential of glyoxal and methylglyoxal via self-reactions at 1 and 1.6 Tg C yr(-1), respectively. This is a factor of 4 less than the SOA formed by these compounds if their uptake is assumed to be irreversible. However, these estimates are likely lower limits for their total aerosol formation potential because oxidants and amines will also react with glyoxal and methylglyoxal to form additional low-volatility products. PMID:19924942

  2. Factors determining the formation of secondary inorganic aerosol: a case study in the Po Valley (Italy)

    NASA Astrophysics Data System (ADS)

    Squizzato, S.; Masiol, M.; Brunelli, A.; Pistollato, S.; Tarabotti, E.; Rampazzo, G.; Pavoni, B.

    2012-07-01

    Physicochemical properties of aerosol were investigated by analyzing the inorganic water soluble content in PM2.5 samples collected in the eastern part of the Po Valley (Italy). In this area the EU limits for many air pollutants are frequently exceeded as a consequence of local sources and regional-scale transport of secondary inorganic aerosol precursors. Nine PM2.5-bound major inorganic ions (F-, Cl-, NO3-, SO42-, Na+, NH4+, K+, Mg2+, Ca2+) were monitored over one year in three sites categorized as semi-rural background, urban background and industrial. The acidic properties of the PM2.5 were studied by applying the recently developed E-AIM thermodynamic model 4. The experimental data were also examined in relation to the levels of gaseous precursors of SIA (SO2, NOx, NO, NO2) and on the basis of some environmental conditions having an effect on the secondary aerosols generation processes. A chemometric procedure using cluster analysis on experimental [NH4+]/[SO42-] molar ratio and NO3- concentration has been applied to determine the conditions needed for ammonium nitrate formation in different chemical environments. Finally, some considerations on the secondary inorganic aerosol formation and the most relevant weather conditions concerning the sulfate-nitrate-ammonium system were also discussed. The methods used can be easily applied to other environments to evaluate the physicochemical characteristics of aerosols and the climatic conditions necessary for the formation of ammonium sulfate and ammonium nitrate aerosols.

  3. SECONDARY ORGANIC AEROSOL FORMATION FROM THE OXIDATION OF AROMATIC HYDROCARBONS IN THE PRESENCE OF DRY SUBMICRON AMMONIUM SULFATE AEROSOL

    EPA Science Inventory

    A laboratory study was conducted to examine formation of secondary organic aerosols. A smog chamber system was developed for studying gas-aerosol interactions in a dynamic flow reactor. These experiments were conducted to investigate the fate of gas and aerosol phase compounds ...

  4. Puerto Rico - 2002 : field studies to resolve aerosol processes.

    SciTech Connect

    Gaffney, J. S.; Marley, N. A.; Ravelo, R.

    1999-10-05

    A number of questions remain concerning homogeneous aerosol formation by natural organics interacting with anthropogenic pollutants. For example, chlorine has been proposed as a potential oxidant in the troposphere because of its very high reactivity with a wide range of organics (Finlayson-Pitts, 1993). Indeed, sea salt aerosol in the presence of ozone has been shown to produce chlorine atoms in heterogeneous photochemical reactions under laboratory conditions. Whether chlorine can initiate oxidation of natural organics such as monoterpene hydrocarbons and can generate homogeneous nucleation or condensable material that contributes to aerosol loadings needs to be assessed. The nighttime reactions of ozone and nitrate radical can also result in monoterpene reactions that contribute to aerosol mass. We are currently planning field studies in Puerto Rico to assess these aerosol issues and other atmospheric chemistry questions. Puerto Rico has a number of key features that make it very attractive for a field study of this sort. The principal feature is the island's very regular meteorology and its position in the Caribbean Sea relative to the easterly trade winds. This meteorology and the island's rectangular shape (100 x 35 miles) make it highly suitable for simplification of boundary layer conditions. In addition, the long stretch between Puerto Rico and the nearest pollution sources in Africa and southern Europe make the incoming background air relatively clean and constant. Furthermore, Puerto Rico has approximately 3.5 million people with a very well defined source region and a central area of rain forest vegetation. These features make Puerto Rico an ideal locale for assessing aerosol processes. The following sections describe specific areas of atmospheric chemistry that can be explored during the proposed field study.

  5. Investigation of formation and ageing of biogenic secondary aerosols by soft ionization aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Müller, Lars; Reinnig, Marc-Christopher; Vogel, Alexander; Mentel, Thomas; Tillmann, Ralf; Schlosser, E.; Wahner, Andreas; Donahue, Neil; Saathoff, Harald; Hoffmann, Thorsten

    2010-05-01

    The knowledge of the chemical composition of secondary organic aerosol is one essential key to understand the significance and fate of SOA in the atmosphere. However, the chemical evolution of SOA, from the very first condensing/nucleating molecules to the final oxidation products is still insufficiently understood and object of current research [1-3]. Consequently, the formation and photochemical ageing of secondary organic aerosol (SOA) was investigated in a series of reaction chamber experiments by applying on-line aerosol mass spectrometry (atmospheric pressure chemical ionization mass spectrometry (APCI/MS)) as well as off-line high performance liquid chromatography mass spectrometry (HPLC-MS). In a set of experiments, performed in the large outdoor reaction chamber SAPHIR (Jülich, Germany), SOA was generated from a boreal mixture of biogenic VOCs. During a two-day experiment the generated biogenic SOA was exposed to OH-radicals and the temporal evolution of the chemical composition was characterized. The applied on-line MS method not only provides highly time resolved chemical information (such as an AMS) but also allows molecular identification/quantification of specific marker compounds. Several first and higher generation BSOA products were identified. Among the higher generation products, especially a tricarboxylic acid (3-methyl-1,2,3-butanetricarboxylic acid) [2] was observed as an eye-catching oxidative processing marker. A more detailed investigation of hydroxyl radical induced SOA aging at the AIDA chamber facility in Karlsruhe, again using terpenes as SOA precursors, clearly showed that the formation of the tricarboxylic acid takes place in the gas phase by the reaction of semivolatile first generation products and hydroxyl radicals. Actually, there were no indications for OH induced oxidation of compounds in the condensed phase. The consequences of these results will be discussed in the contribution. 1. Rudich, Y., N.M. Donahue, and T.F. Mentel

  6. Laboratory Investigation of Organic Aerosol Formation from Aromatic Hydrocarbons

    DOE R&D Accomplishments Database

    Molina, Luisa T.; Molina, Mario J.; Zhang, Renyi

    2006-08-23

    Our work for this DOE funded project includes: (1) measurements of the kinetics and mechanism of the gas-phase oxidation reactions of the aromatic hydrocarbons initiated by OH; (2) measurements of aerosol formation from the aromatic hydrocarbons; and (3) theoretical studies to elucidate the OH-toluene reaction mechanism using quantum-chemical and rate theories.

  7. The Role of Aerosols on Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, X.; Khain, A.; Simpson, S.

    2006-01-01

    Cloud physics is inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distribution below the clouds. Therefore, the size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, a detailed spectral--bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e., pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e., 33 bins). Atmospheric aerosols are also described using number density size-distribution functions.

  8. Secondary Aerosol: Precursors and Formation Mechanisms. Technical Report on Grant

    SciTech Connect

    Weinstein-Lloyd, Judith B

    2009-05-04

    This project focused on studying trace gases that participate in chemical reactions that form atmospheric aerosols. Ammonium sulfate is a major constituent of these tiny particles, and one important pathway to sulfate formation is oxidation of dissolved sulfur dioxide by hydrogen peroxide in cloud, fog and rainwater. Sulfate aerosols influence the number and size of cloud droplets, and since these factors determine cloud radiative properties, sulfate aerosols also influence climate. Peroxide measurements, in conjunction with those of other gaseous species, can used to distinguish the contribution of in-cloud reaction to new sulfate aerosol formation from gas-phase nucleation reactions. This will lead to more reliable global climate models. We constructed and tested a new 4-channel fluorescence detector for airborne detection of peroxides. We integrated the instrument on the G-1 in January, 2006 and took a test flight in anticipation of the MAX-Mex field program, where we planned to fly under pressurized conditions for the first time. We participated in the 2006 Megacity Initiative: Local and Global Research Observations (MILAGRO) - Megacity Aerosol EXperiment Mexico City (MAX-Mex) field measurement campaign. Peroxide instrumentation was deployed on the DOE G-1 research aircraft based in Veracruz, and at the surface site at Tecamac University.

  9. Titan Aerosol Formation as a Sink for Stable Carbon and Nitrogen Isotopes

    NASA Astrophysics Data System (ADS)

    Trainer, Melissa G.; Stern, Jennifer C.; Sebree, Joshua A.; Gautier, Thomas J.; Fuentes, Javier A.; Domagal-Goldman, Shawn D.; Mandt, Kathleen E.

    2015-11-01

    Stable isotope ratios of major elements can be used to infer much about local- and global-scale processes on a planet. On Titan, aerosol production is a significant sink of carbon and nitrogen in the atmosphere, and isotopic fractionation of these elements may be introduced during the advanced organic chemistry that leads to the condensed phase products. Several stable isotope pairs, including 12C/13C and 14N/15N, have been measured in situ or probed spectroscopically by Cassini-borne instruments, space telescopes, or through ground-based observations. However, the effect of a potentially critical pathway for isotopic fractionation - organic aerosol formation and subsequent deposition onto the surface of Titan - has not been considered due to insufficient data regarding fractionation during aerosol formation. To better understand the nature of this process, we have measured the isotopic fractionation associated with the formation of Titan aerosol analogs via far-UV irradiation of several methane (CH4) and nitrogen (N2) mixtures.Our initial results probed the fractionation of the aerosol product, relative to the reactant gases, as a function of CH4 abundance [1]. Our results show that the direction of carbon isotope fractionation during aerosol formation is in contrast to the expected result if the source of the fractionation is a kinetic isotope effect. The resultant fractionation in nitrogen favored the light (14N) isotope in the aerosol, with N/C ratios varying from 0.13 - 0.31. Ongoing work includes probing the effects of pressure and temperature on the direction and magnitude of the stable isotope fractionation. We will present results alongside interpretation of the driving processes, as well as implications for Titan if similar fractionation occurred during aerosol formation in the atmosphere.[1] Sebree, J.A., Stern, J.C., Mandt, K.E., Domagal-Goldman, S.D., and Trainer, M.G.: 13C and 15N Fractionation of CH4/N2 Mixtures during Photochemical Aerosol Formation

  10. Contributions of Acid-Catalysed Processes to Secondary Organic Aerosol Mass - A Modelling pproach

    NASA Astrophysics Data System (ADS)

    Ervens, B.; Feingold, G.; Kreidenweis, S. M.

    2005-12-01

    A significant fraction of secondary organic aerosol (SOA) mass is formed by chemical and/or physical processes. However, the amount of organic material found in ambient organic aerosols cannot be explained with current models. Recently, several laboratory studies have been published which suggest that also acid-catalyzed processes that occur either in particles or at their surfaces (heterogeneous) might contribute significantly to mass formation. However, to date there is no general conclusion about the efficiency of such processes due to the great diversity of species and experimental conditions. We present a compilation of literature data (thermodynamic and kinetic) of these processes. The aerosol yields of (i) additional species which are thought previously not contribute to SOA formation (e.g. isoprene, aliphatic aldehydes) and (ii) species which form apparently higher SOA masses on acidic seed aerosols are reported and compared to input data of previous SOA models. Available kinetic data clearly exclude aldol condensation as a significant process for SOA formation on a time scale of typical aerosol life times. Using aerosol size distributions and gas phase concentrations measured during NEAQS2002 as model input data, we show that (even under assumption of equilibrium conditions) these additional processes only contribute a minor fraction to the organic aerosol mass.

  11. Investigating secondary aerosol formation from agricultural amines and reduced sulfur compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gas phase amines and reduced sulfur compounds are often co-emitted from agricultural processes. Amines have been recently recognized as potentially major sources of agricultural aerosol formation, while the reduced sulfur compounds are largely ignored. There is a severe lack of knowledge and under...

  12. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds

    NASA Astrophysics Data System (ADS)

    Rudich, Yinon; Adler, Gabriela; Koop, Thomas; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven; Haspel, Carynelisa

    2014-05-01

    In cold high altitude cirrus clouds and anvils of high convective clouds in the tropics and mid-latitudes, ice partciles that are exposed to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. In this talk we will describe experiements that simulate the atmospheric freeze-drying cycle of aerosols. We find that aerosols with high organic content can form highly porous particles (HPA) with a larger diameter and a lower density than the initial homogenous aerosol following ice subliation. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure follwoing ice sublimation. We find that the highly porous aerosol scatter solar light less efficiently than non-porous aerosol particles. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges.

  13. Design of Nanomaterial Synthesis by Aerosol Processes

    PubMed Central

    Buesser, Beat; Pratsinis, Sotiris E.

    2013-01-01

    Aerosol synthesis of materials is a vibrant field of particle technology and chemical reaction engineering. Examples include the manufacture of carbon blacks, fumed SiO2, pigmentary TiO2, ZnO vulcanizing catalysts, filamentary Ni, and optical fibers, materials that impact transportation, construction, pharmaceuticals, energy, and communications. Parallel to this, development of novel, scalable aerosol processes has enabled synthesis of new functional nanomaterials (e.g., catalysts, biomaterials, electroceramics) and devices (e.g., gas sensors). This review provides an access point for engineers to the multiscale design of aerosol reactors for the synthesis of nanomaterials using continuum, mesoscale, molecular dynamics, and quantum mechanics models spanning 10 and 15 orders of magnitude in length and time, respectively. Key design features are the rapid chemistry; the high particle concentrations but low volume fractions; the attainment of a self-preserving particle size distribution by coagulation; the ratio of the characteristic times of coagulation and sintering, which controls the extent of particle aggregation; and the narrowing of the aggregate primary particle size distribution by sintering. PMID:22468598

  14. Formation and growth of indoor air aerosol particles as a result of D-limonene oxidation

    NASA Astrophysics Data System (ADS)

    Vartiainen, E.; Kulmala, M.; Ruuskanen, T. M.; Taipale, R.; Rinne, J.; Vehkamäki, H.

    Oxidation of D-limonene, which is a common monoterpene, can lead to new aerosol particle formation in indoor environments. Thus, products containing D-limonene, such as citrus fruits, air refresheners, household cleaning agents, and waxes, can act as indoor air aerosol particle sources. We released D-limonene into the room air by peeling oranges and measured the concentration of aerosol particles of three different size ranges. In addition, we measured the concentration of D-limonene, the oxidant, and the concentration of ozone, the oxidizing gas. Based on the measurements we calculated the growth rate of the small aerosol particles, which were 3-10 nm in diameter, to be about 6300nmh-1, and the losses of the aerosol particles that were due to the coagulation and condensation processes. From these, we further approximated the concentration of the condensable vapour and its source rate and then calculated the formation rate of the small aerosol particles. For the final result, we calculated the nucleation rate and the maximum number of molecules in a critical cluster. The nucleation rate was in the order of 105cm-3s-1 and the number of molecules in a critical-sized cluster became 1.2. The results were in agreement with the activation theory.

  15. Secondary Organic Aerosol Formation in Aerosol Water by Photochemical Reactions of Gaseous Mixture of Monoterpene and Hydrogen Peroxide

    NASA Astrophysics Data System (ADS)

    Lim, H.; Yi, S.; Park, J.; Cho, H.; Jung, K.

    2011-12-01

    There exist large uncertainties in model predictions for climate change and regional air quality. It could be caused by incomplete integration of secondary organic aerosol (SOA) formation in atmospheric chemical models. Recent laboratory studies have found SOA formation through chemical reactions on aerosol surface and in aerosol water. Water soluble organics formed by photochemical degradation of biogenic organics including isoprene and anthropogenic aromatics are predicted to form substantial amount of SOA through the newly found pathways. Although SOA formation in bulk aqueous solution was reported for laboratory experiments of various precursors (e.g., water soluble carbonyls and phenols), little is known for SOA formation in real aerosol water. In this study, photochemical reactions of the gaseous mixture of monoterpene and hydrogen peroxide were examined to investigate SOA formation through reactions in real aerosol phase water. SOA formation was conducted using a flow tube reactor (ID 30 cm x L 150 cm, FEP) and a smog chamber using FEP film in the presence of dry and wet seed particles. Acidity and chemical composition of seed aerosol were also controlled as important parameters influencing SOA formation. Particle size distribution and aerosol composition were analyzed to account for differences in SOA formation mechanisms and yields for dry and wet particles. The differences might be mainly associated with SOA formation in aerosol phase water. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2011-0000221).

  16. Aerosol patterns and aerosol-cloud-interactions off the West African Coast based on the A-train formation

    NASA Astrophysics Data System (ADS)

    Fuchs, Julia; Bendix, Jörg; Cermak, Jan

    2013-04-01

    ). Satellite data from the A-train formation, including the Aqua, CloudSat and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) are used to analyze aerosol-cloud-interactions in detail, along with re-analysis data to constrain by meteorological conditions. Information about the vertical and geographical distribution of different aerosol types and cloud parameters will lead to a process-oriented understanding of these issues on a regional scale. Ackerman, A., Kirkpatrick, M., Stevens, D., & Toon, O. (2004). The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature, 432(December), 1014-1017. doi:10.1038/nature03137.1. Feingold, G. (2003). First measurements of the Twomey indirect effect using ground-based remote sensors. Geophysical Research Letters, 30(6), 1287. doi:10.1029/2002GL016633 IPCC. (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working group I to the Fourth Assessment Report of the Interfovernmental Panel on climate Change. Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Kaufman, Y. J., Koren, I., Remer, L. A., Tanré, D., Ginoux, P., & Fan, S. (2005). Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean. Journal of Geophysical Research, 110(D10), 1-16. doi:10.1029/2003JD004436 McFiggans, G., Artaxo, P., Baltensperger, U., Coe, H., Facchini, M. C., Feingold, G., Fuzzi, S., et al. (2006). The effect of physical and chemical aerosol properties on warm cloud droplet activation. Atmospheric Chemistry and Physics, 6(9), 2593-2649. doi:10.5194/acp-6-2593-2006

  17. Natural Radionuclides and Isotopic Signatures for Determining Carbonaceous Aerosol Sources, Aerosol Lifetimes, and Washout Processes

    SciTech Connect

    Gaffney, Jeffrey

    2012-12-12

    This is the final technical report. The project description is as follows: to determine the role of aerosol radiative forcing on climate, the processes that control their atmospheric concentrations must be understood, and aerosol sources need to be determined for mitigation. Measurements of naturally occurring radionuclides and stable isotopic signatures allow the sources, removal and transport processes, as well as atmospheric lifetimes of fine carbonaceous aerosols, to be evaluated.

  18. Formation of secondary organic aerosol from isoprene oxidation over Europe

    NASA Astrophysics Data System (ADS)

    Karl, M.; Tsigaridis, K.; Vignati, E.; Dentener, F.

    2009-01-01

    The role of isoprene as a precursor to secondary organic aerosol (SOA) over Europe is studied with the two-way nested global chemistry transport model TM5. The inclusion of the formation of SOA from isoprene oxidation in our model almost doubles the atmospheric burden of SOA over Europe compared to SOA formation from terpenes and aromatics. The reference simulation, which considers SOA formation from isoprene, terpenes and aromatics, predicts a yearly European production rate of 1.0 Tg SOA yr-1 and an annual averaged atmospheric burden of about 50 Gg SOA over Europe. A fraction of 35% of the SOA produced in the boundary layer over Europe is transported to higher altitudes or to other world regions. Summertime measurements of particulate organic matter (POM) during the extensive EMEP OC/EC campaign 2002/2003 are better reproduced when SOA formation from isoprene is taken into account, reflecting also the strong seasonality of isoprene and other biogenic volatile organic compounds (BVOC) emissions from vegetation. However, during winter, our model strongly underestimates POM, likely caused by missing wood burning in the emission inventories. Uncertainties in the parameterisation of isoprene SOA formation have been investigated. Maximum SOA production is found for irreversible sticking (non-equilibrium partitioning) of condensable vapours on particles, with tropospheric SOA production over Europe increased by a factor of 4 in summer compared to the reference case. Completely neglecting SOA formation from isoprene results in the lowest estimate (0.51 Tg SOA yr-1). The amount and the nature of the absorbing matter are shown to be another key uncertainty when predicting SOA levels. Tropospheric isoprene SOA production over Europe in summer more than doubles when, in addition to pre-existing carbonaceous aerosols, condensation of semi volatile vapours on ammonium and sulphate aerosols is considered. Consequently, smog chamber experiments on SOA formation should be

  19. Secondary organic aerosol formation initiated from reactions between ozone and surface-sorbed squalene

    NASA Astrophysics Data System (ADS)

    Wang, Chunyi; Waring, Michael S.

    2014-02-01

    Previous research has shown that ozone reactions on surface-sorbed D-limonene can promote gas phase secondary organic aerosol (SOA) formation indoors. In this work, we conducted 13 steady state chamber experiments to measure the SOA formation entirely initiated by ozone reactions with squalene sorbed to glass, at chamber ozone of 57-500 ppb for two relative humidity (RH) conditions of 21% and 51%, in the absence of seed particles. Squalene is a nonvolatile compound that is a component of human skin oil and prevalent on indoor surfaces and in settled dust due to desquamation. The size distributions, mass and number secondary emission rates (SER), aerosol mass fractions (AMF), and aerosol number fractions (ANF) of formed SOA were quantified. The surface AMF and ANF are defined as the change in SOA mass or number formed, respectively, per ozone mass consumed by ozone-squalene reactions. All experiments but one exhibited nucleation and mass formation. Mass formation was relatively small in magnitude and increased with ozone, most notably for the RH = 51% experiments. The surface AMF was a function of the chamber aerosol concentration, and a multi-product model was fit using the 'volatility basis set' framework. Number formation was relatively strong at low ozone and low RH conditions. Though we cannot extrapolate our results because experiments were conducted at high air exchange rates, we speculate that this process may enhance particle number more than mass concentrations indoors.

  20. Novel insight on photochemistry at interfaces: potential impact on Seconday Aerosol Formation?

    NASA Astrophysics Data System (ADS)

    Rossignol, S.; George, C.; Aregahegn, K.

    2014-12-01

    Traditionally, the driving forces for SOA growth is believed to be the partitioning onto aerosol seeds of condensable gases, either emitted primarily or resulting from the gas phase oxidation of organic gases. However, even the most up-to-date models based on such mechanisms cannot account for the SOA mass observed in the atmosphere, suggesting the existence of other, yet unknown formation processes. The present study shows experimental evidence that particulate phase chemistry produces photo-sensitizers that lead to photo-induced formation and growth of secondary organic aerosol in the near UV and the presence of volatile organic compounds (VOC) such as terpenes. By means of an aerosol flow tube reactor equipped with Scanning Mobility Particle Sizer (SMPS), Differential Mobility Analyzer (DMA) and Condensation Particle Sizer (CPC), we identified that traces in the aerosol phase of glyoxal chemistry products, namely imidazole-2-carboxaldehyde (IC) are strong photo-sensitizers when irradiated with near-UV. In the presence of volatile organic compounds such as terpenes, this chemistry leads to a fast aerosol growth. Given the potential importance of this new photosensitized growth pathway for ambient OA, the related reaction mechanism was investigated at a molecular level. Bulk and flow tube experiments were performed to identify major products of the reaction of limonene with the triplet state of IC by direct (+/-)ESI-HRMS and UPLC/(+/-)HESI-HRMS analysis. Detection of recombination products of IC with limonene or with itself, in bulk and flow tube experiment ts, showed that IC is able to initiate a radical chemistry in the aerosol phase under realistic irradiation conditions. Furthermore, highly oxygenated limonene reaction products were detected, clearly explaining the observed OA growth. The chemistry of peroxy radicals derived from limonene upon addition of oxygen explains the formation of such low-volatile compounds without any traditional gas phase oxidant

  1. Factors determining the formation of secondary inorganic aerosol: a case study in the Po Valley (Italy)

    NASA Astrophysics Data System (ADS)

    Squizzato, S.; Masiol, M.; Brunelli, A.; Pistollato, S.; Tarabotti, E.; Rampazzo, G.; Pavoni, B.

    2013-02-01

    Physicochemical properties of aerosol were investigated by analyzing the inorganic water soluble content in PM2.5 samples collected in the eastern part of the Po Valley (Italy). In this area the EU limits for many air pollutants are frequently exceeded as a consequence of local sources and regional-scale transport of secondary inorganic aerosol precursors. Nine PM2.5-bound major inorganic ions (F-, Cl-, NO3-, SO42-, Na+, NH4+, K+, Mg2+, Ca2+) were monitored over one year in three sites categorized as semi-rural background, urban background and industrial. The acidic properties of the PM2.5 were studied by applying the recently developed E-AIM thermodynamic model 4 (Extended Aerosol Thermodynamics Model). The experimental data were also examined in relation to the levels of gaseous precursors of secondary inorganic aerosol (SO2, NOx, NO, NO2) and on the basis of some environmental conditions having an effect on the secondary aerosols generation processes. A chemometric procedure using cluster analysis on experimental [NH4+]/[SO42-] molar ratio and NO3- concentration has been applied to determine the conditions needed for ammonium nitrate formation in different chemical environments. Finally, some considerations on the secondary inorganic aerosol formation and the most relevant weather conditions concerning the sulfate-nitrate-ammonium system were also discussed. The obtained results and discussion can help in understanding the secondary aerosol formation dynamics in the Po Valley, which is one of the most critical regions for air pollution in southern Europe.

  2. Unique airborne measurements at the tropopause of Fukushima Xe-133, aerosol, and aerosol precursors indicate aerosol formation via homogeneous and cosmic ray induced nucleation

    NASA Astrophysics Data System (ADS)

    Schlager, Hans; Arnold, Frank; Aufmhoff, Heinfried; Minikin, Andreas; Baumann, Robert; Simgen, Hardy; Lindemann, Stefan; Rauch, Ludwig; Kaether, Frank; Pirjola, Liisa; Schumann, Ulrich

    2014-05-01

    We report unique airborne measurements, at the tropopause, of the Fukushima radio nuclide Xe-133, aerosol particles (size, shape, number concentration, volatility), aerosol precursor gases (particularly SO2, HNO3, H2O). Our measurements and accompanying model simulations indicate homogeneous and cosmic ray induced aerosol formation at the tropopause. Using an extremely sensitive detection method, we managed to detect Fukushima Xe-133, an ideal transport tracer, at and even above the tropopause. To our knowledge, these airborne Xe-133 measurements are the only of their kind. Our investigations represent a striking example how a pioneering measurement of a Fukshima radio nuclide, employing an extremely sensitive method, can lead to new insights into an important atmospheric process. After the Fukushima accidential Xe-133 release (mostly during 11-15 March 2011), we have conducted two aircraft missions, which took place over Central Europe, on 23 March and 11 April 2011. In the air masses, encountered by the research aircraft on 23 March, we have detected Fukushima Xe-133 by an extremely sensitive method, at and even above the tropopause. Besides increased concentrations of Xe-133, we have detected also increased concentrations of the gases SO2, HNO3, and H2O. The Xe-133 data and accompanying transport model simulations indicate that a West-Pacific Warm Conveyor Belt (WCB) lifted East-Asian planetary boundary layer air to and even above the tropopause, followed by relatively fast quasi-horizontal advection to Europe. Along with Xe-133, anthropogenic SO2, NOx (mostly released from East-Asian ground-level combustion sources), and warer vapour were also lifted by the WCB. After the lift, SO2 and NOx experienced efficient solar UV-radiation driven conversion to the important aerosol precursors gases H2SO4 and HNO3. Our investigations indicate that, increased concentrations of the gases SO2, HNO3, and H2O promoted homogeneous and cosmic ray induced aerosol formation at and

  3. Modeling Secondary Organic Aerosol Formation From Emissions of Combustion Sources

    NASA Astrophysics Data System (ADS)

    Jathar, Shantanu Hemant

    Atmospheric aerosols exert a large influence on the Earth's climate and cause adverse public health effects, reduced visibility and material degradation. Secondary organic aerosol (SOA), defined as the aerosol mass arising from the oxidation products of gas-phase organic species, accounts for a significant fraction of the submicron atmospheric aerosol mass. Yet, there are large uncertainties surrounding the sources, atmospheric evolution and properties of SOA. This thesis combines laboratory experiments, extensive data analysis and global modeling to investigate the contribution of semi-volatile and intermediate volatility organic compounds (SVOC and IVOC) from combustion sources to SOA formation. The goals are to quantify the contribution of these emissions to ambient PM and to evaluate and improve models to simulate its formation. To create a database for model development and evaluation, a series of smog chamber experiments were conducted on evaporated fuel, which served as surrogates for real-world combustion emissions. Diesel formed the most SOA followed by conventional jet fuel / jet fuel derived from natural gas, gasoline and jet fuel derived from coal. The variability in SOA formation from actual combustion emissions can be partially explained by the composition of the fuel. Several models were developed and tested along with existing models using SOA data from smog chamber experiments conducted using evaporated fuel (this work, gasoline, fischertropschs, jet fuel, diesels) and published data on dilute combustion emissions (aircraft, on- and off-road gasoline, on- and off-road diesel, wood burning, biomass burning). For all of the SOA data, existing models under-predicted SOA formation if SVOC/IVOC were not included. For the evaporated fuel experiments, when SVOC/IVOC were included predictions using the existing SOA model were brought to within a factor of two of measurements with minor adjustments to model parameterizations. Further, a volatility

  4. Evaluation of secondary organic aerosol formation in winter

    NASA Astrophysics Data System (ADS)

    Strader, Ross; Lurmann, Fred; Pandis, Spyros N.

    Three different methods are used to predict secondary organic aerosol (SOA) concentrations in the San Joaquin Valley of California during the winter of 1995-1996 [Integrated Monitoring Study, (IMS95)]. The first of these methods estimates SOA by using elemental carbon as a tracer of primary organic carbon. The second method relies on a Lagrangian trajectory model that simulates the formation, transport, and deposition of secondary organic aerosol. The model includes a recently developed gas-particle partitioning mechanism. Results from both methods are in good agreement with the chemical speciation of organic aerosol during IMS95 and suggest that most of the OC measured during IMS95 is of primary origin. Under suitable conditions (clear skies, low winds, low mixing heights) as much as 15-20 μg C m -3 of SOA can be produced, mainly due to oxidation of aromatics. The low mixing heights observed during the winter in the area allow accumulation of SOA precursors and the acceleration of SOA formation. Clouds and fog slow down the production of secondary compounds, reducing their concentrations by a factor of two or three from the above maximum levels. In addition, it appears that there is significant diurnal variation of SOA concentration. A strong dependence of SOA concentrations on temperature is observed, along with the existence of an optimal temperature for SOA formation.

  5. Stratospheric Aerosol--Observations, Processes, and Impact on Climate

    NASA Technical Reports Server (NTRS)

    Kresmer, Stefanie; Thomason, Larry W.; von Hobe, Marc; Hermann, Markus; Deshler, Terry; Timmreck, Claudia; Toohey, Matthew; Stenke, Andrea; Schwarz, Joshua P.; Weigel, Ralf; Fueglistaler, Stephan; Prata, Fred J.; Vernier, Jean-Paul; Schlager, Hans; Barnes, John E.; Antuna-Marrero, Juan-Carlos; Fairlie, Duncan; Palm, Mathias; Mahieu, Emmanuel; Notholt, Justus; Rex, Markus; Bingen, Christine; Vanhellemont, Filip; Bourassa, Adam; Plane, John M. C.; Klocke, Daniel; Carn, Simon A.; Clarisse, Lieven; Trickl, Thomas; Neeley, Ryan; James, Alexander D.; Rieger, Landon; Wilson, James C.; Meland, Brian

    2016-01-01

    Interest in stratospheric aerosol and its role in climate have increased over the last decade due to the observed increase in stratospheric aerosol since 2000 and the potential for changes in the sulfur cycle induced by climate change. This review provides an overview about the advances in stratospheric aerosol research since the last comprehensive assessment of stratospheric aerosol was published in 2006. A crucial development since 2006 is the substantial improvement in the agreement between in situ and space-based inferences of stratospheric aerosol properties during volcanically quiescent periods. Furthermore, new measurement systems and techniques, both in situ and space based, have been developed for measuring physical aerosol properties with greater accuracy and for characterizing aerosol composition. However, these changes induce challenges to constructing a long-term stratospheric aerosol climatology. Currently, changes in stratospheric aerosol levels less than 20% cannot be confidently quantified. The volcanic signals tend to mask any nonvolcanically driven change, making them difficult to understand. While the role of carbonyl sulfide as a substantial and relatively constant source of stratospheric sulfur has been confirmed by new observations and model simulations, large uncertainties remain with respect to the contribution from anthropogenic sulfur dioxide emissions. New evidence has been provided that stratospheric aerosol can also contain small amounts of nonsulfatematter such as black carbon and organics. Chemistry-climate models have substantially increased in quantity and sophistication. In many models the implementation of stratospheric aerosol processes is coupled to radiation and/or stratospheric chemistry modules to account for relevant feedback processes.

  6. Prominence Formation Processes

    NASA Astrophysics Data System (ADS)

    Welsch, B. T.; DeVore, C. R.; Antiochos, S. K.

    2005-01-01

    Martens and Zwaan (ApJ v. 558 872) have proposed a prominence/ filament formation model in which differential rotation drives reconnection between two initially unconnected active regions to form helical field lines that support mass and are held down by overlying field. Using an MHD solver with adaptive refinement we simulated this process by imposing a shear flow meant to mimic differential rotation on two bipolar flux distributions meant to mimic distinct active regions. In some runs the flux systems are initially potential while in others they have been twisted by footpoint rotation to inject helicity prior to imposing the shear flow. The resulting structures are studied to understand the role of helicity in the formation of prominence-like structures.

  7. Effects of stratospheric aerosol surface processes on the LLNL two-dimensional zonally averaged model

    NASA Technical Reports Server (NTRS)

    Connell, Peter S.; Kinnison, Douglas E.; Wuebbles, Donald J.; Burley, Joel D.; Johnston, Harold S.

    1994-01-01

    We have investigated the effects of incorporating representations of heterogeneous chemical processes associated with stratospheric sulfuric acid aerosol into the LLNL two-dimensional, zonally averaged, model of the troposphere and stratosphere. Using distributions of aerosol surface area and volume density derived from SAGE II satellite observations, we were primarily interested in changes in partitioning within the Cl- and N- families in the lower stratosphere, compared to a model including only gas phase photochemical reactions. We have considered the heterogeneous hydrolysis reactions N2O5 + H2O(aerosol) yields 2 HNO3 and ClONO2 + H2O(aerosol) yields HOCl + HNO3 alone and in combination with the proposed formation of nitrosyl sulfuric acid (NSA) in the aerosol and its reaction with HCl. Inclusion of these processes produces significant changes in partitioning in the NO(y) and ClO(y) families in the middle stratosphere.

  8. Predicting secondary organic aerosol formation rates in southeast Texas

    NASA Astrophysics Data System (ADS)

    Russell, Matthew; Allen, David T.

    2005-04-01

    Rates of secondary organic aerosol (SOA) formation, due to the reactions of aromatics and monoterpenes, were estimated for southeast Texas by incorporating a modified version of the Statewide Air Pollution Research Center's chemical mechanism (SAPRC99) into the Comprehensive Air Quality Model with extensions (CAMx version 3.10). The model included explicit representation of the reactions of five SOA precursors (α-pinene, β-pinene, sabinene, d-limonene, and Δ3-carene). Reactions of each SOA precursor with O3, OH radical, and NO3 radical were included. The model also included separate reactions for low- and high-SOA-yield aromatic groups with the OH radical. SOA yields in the mechanisms were estimated using compound-specific yield information (ΔSOA/ΔHC) derived from smog chamber experiments conducted by J. R. Odum and colleagues and R. J. Griffin and colleagues. The form of the SOA yield model was based on the work of J. R. Odum and colleagues and is a function of existing organic aerosol concentrations. Existing organic aerosol concentrations were estimated on the basis of ambient measurements of total organic carbon in southeast Texas. The reactions of monoterpenes (predominantly α-pinene and β-pinene) with ozone led to the most regional SOA formation, followed by monoterpenes with the nitrate radical. Aromatic-OH reactions led to less regional SOA formation compared to monoterpenes; however, this formation occurs close to the urban and industrial areas of Houston. In contrast, SOA formation due to the reactions of monoterpenes occurred in the forested areas north of the urban area. The results of this study are in qualitative agreement with estimates of SOA formation based on ambient data from the same time period.

  9. Limited Effect of Anthropogenic Nitrogen Oxides on Secondary Organic Aerosol Formation

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Unger, N.; Hodzic, A.; Knote, C. J.; Tilmes, S.; Emmons, L. K.; Lamarque, J. F.; Yu, P.

    2014-12-01

    Globally secondary organic aerosol (SOA) is mostly formed from biogenic vegetation emissions and as such is regarded as natural aerosol that cannot be reduced by emission control legislation. However, recent research implies that human activities facilitate SOA formation by affecting the amount of precursor emission, the chemical processing and the partitioning into the aerosol phase. Among the multiple human influences, nitrogen oxides (NO + NO2 = NOx) have been assumed to play a critical role in the chemical formation of low volatile compounds. The goal of this study is to improve the SOA scheme in the global NCAR Community Atmospheric Model version 4 with chemistry (CAM4-Chem) by implementing an updated 4-product Volatility Basis Set (VBS) scheme, and apply it to investigate the impact of anthropogenic NOx on SOA. We first compare three different SOA parameterizations: a 2-product model and the updated VBS model both with and without a SOA aging parameterization. Secondly we evaluate predicted organic aerosol amounts against surface measurement from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network and Aerosol Mass Spectrometer (AMS) measurements from 13 aircraft-based field campaigns. We then perform sensitivity experiments to examine how the SOA loading responds to a 50% reduction in anthropogenic NOx in different regions. We find limited SOA reductions of -2.3%, -5.6% and -4.0% for global, southeastern U.S. and Amazon NOx perturbations, respectively. To investigate the chemical processes in more detail, we also use a simplified box model with the same gas-phase chemistry and gas-aerosol partitioning mechanism as in CAM4-Chem to examine the SOA yields dependence on initial precursor emissions and background NOx level. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to buffering in chemical pathways (low- versus high-NOx pathways, OH versus NO3-initiated oxidation) and to offsetting

  10. SECONDARY ORGANIC AEROSOL FORMATION FROM THE IRRADIATION OF SIMULATED AUTOMOBILE EXHAUST

    EPA Science Inventory

    A laboratory study was conducted to evaluate the potential for secondary organic aerosol formation from emissions from automotive exhaust. The goal was to determine to what extent photochemical oxidation products of these hydrocarbons contribute to secondary organic aerosol (SO...

  11. Evaluating Aerosol Process Modules within the Framework of the Aerosol Modeling Testbed

    NASA Astrophysics Data System (ADS)

    Fast, J. D.; Velu, V.; Gustafson, W. I.; Chapman, E.; Easter, R. C.; Shrivastava, M.; Singh, B.

    2012-12-01

    Factors that influence predictions of aerosol direct and indirect forcing, such as aerosol mass, composition, size distribution, hygroscopicity, and optical properties, still contain large uncertainties in both regional and global models. New aerosol treatments are usually implemented into a 3-D atmospheric model and evaluated using a limited number of measurements from a specific case study. Under this modeling paradigm, the performance and computational efficiency of several treatments for a specific aerosol process cannot be adequately quantified because many other processes among various modeling studies (e.g. grid configuration, meteorology, emission rates) are different as well. The scientific community needs to know the advantages and disadvantages of specific aerosol treatments when the meteorology, chemistry, and other aerosol processes are identical in order to reduce the uncertainties associated with aerosols predictions. To address these issues, an Aerosol Modeling Testbed (AMT) has been developed that systematically and objectively evaluates new aerosol treatments for use in regional and global models. The AMT consists of the modular Weather Research and Forecasting (WRF) model, a series testbed cases for which extensive in situ and remote sensing measurements of meteorological, trace gas, and aerosol properties are available, and a suite of tools to evaluate the performance of meteorological, chemical, aerosol process modules. WRF contains various parameterizations of meteorological, chemical, and aerosol processes and includes interactive aerosol-cloud-radiation treatments similar to those employed by climate models. In addition, the physics suite from the Community Atmosphere Model version 5 (CAM5) have also been ported to WRF so that they can be tested at various spatial scales and compared directly with field campaign data and other parameterizations commonly used by the mesoscale modeling community. Data from several campaigns, including the 2006

  12. Evidence for the role of organics in aerosol particle formation under atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Baltensperger, Urs

    2010-05-01

    New particle formation in the atmosphere is an important parameter in governing the radiative forcing of atmospheric aerosols. However, detailed nucleation mechanisms remain still ambiguous, as laboratory data have so far not been successful in explaining atmospheric nucleation. We investigated the formation of new particles in a smog chamber simulating the photochemical formation of H2SO4 and organic condensable species. Nucleation occurs at H2SO4 concentrations similar to the ones found in the ambient atmosphere during nucleation events. The measured particle formation rates are proportional to the product of the concentrations of H2SO4 and an organic molecule. This suggests that only one H2SO4 molecule and one organic molecule are involved in the rate limiting step of the observed nucleation process. Parameterizing this process in a global aerosol model results in substantially better agreement with ambient observations compared to control runs. Reference: Axel Metzger, Bart Verheggen, Josef Dommen, Jonathan Duplissy, Andre S. H. Prevot, Ernest Weingartner, Ilona Riipinen, Markku Kulmala, Dominick V. Spracklen, Kenneth S. Carslaw, and Urs Baltensperger, Evidence for the role of organics in aerosol particle formation under atmospheric conditions, Proc. Natl. Acad. Sci. USA, 107 (2010), www.pnas.org/cgi/doi/10.1073/pnas.0911330107.

  13. Aerosol Size Distribution Response to Anthropogenically Driven Historical Changes in Biogenic Secondary Organic Aerosol Formation

    NASA Astrophysics Data System (ADS)

    Pierce, J. R.; D'Andrea, S.; Acosta Navarro, J. C.; Farina, S.; Scott, C.; Farmer, D. K.; Spracklen, D. V.; Riipinen, I.

    2014-12-01

    Emissions of biological volatile organic compounds (BVOC) have changed in the past millennium due to changes in land use, temperature and CO2 concentrations. A recent model reconstruction of BVOC emissions over the past millennium predicted the changes in the three dominant secondary organic aerosol (SOA) producing BVOC classes (isoprene, monoterpenes and sesquiterpenes). The reconstruction predicted that in global averages isoprene emissions have decreased (land-use changes to crop/grazing land dominate the reduction), while monoterpene and sesquiterpene emissions have increased (temperature increases dominate the increases); however, all three show both increases and decreases in certain regions due to competition between the various influencing factors. These BVOC changes have largely been anthropogenic in nature, and land-use change was shown to have the most dramatic effect by decreasing isoprene emissions. We use these modeled estimates of these three dominant BVOC classes' emissions from the years 1000 to 2000 to test the effect of anthropogenic changes to BVOC emissions on SOA formation and global aerosol size distributions using the GEOS-Chem-TOMAS global aerosol microphysics model. With anthropogenic emissions (e.g. SO2, NOx, primary aerosols) held at present day values and BVOC emissions changed from year 1000 to year 2000 values, decreases in the number concentration of particles of size Dp > 80 nm (N80) of >25% in year 2000 relative to year 1000 were predicted in regions with extensive land-use changes since year 1000. This change in N80 was predominantly driven by a shift towards crop/grazing land that produces less BVOC than the natural vegetation. Similar sensitivities to year 1000 vs. year 2000 BVOC emissions exist when anthropogenic emissions are turned off. This large decrease in N80 could be a largely overlooked and important anthropogenic aerosol effect on regional climates.

  14. The formation, properties and impact of secondary organic aerosol: current and emerging issues

    NASA Astrophysics Data System (ADS)

    Hallquist, M.; Wenger, J. C.; Baltensperger, U.; Rudich, Y.; Simpson, D.; Claeys, M.; Dommen, J.; Donahue, N. M.; George, C.; Goldstein, A. H.; Hamilton, J. F.; Herrmann, H.; Hoffmann, T.; Iinuma, Y.; Jang, M.; Jenkin, M.; Jimenez, J. L.; Kiendler-Scharr, A.; Maenhaut, W.; McFiggans, G.; Mentel, Th. F.; Monod, A.; Prévôt, A. S. H.; Seinfeld, J. H.; Surratt, J. D.; Szmigielski, R.; Wildt, J.

    2009-02-01

    Secondary organic aerosol (SOA) accounts for a significant fraction of ambient tropospheric aerosol and a detailed knowledge of the formation, properties and transformation of SOA is therefore required to evaluate its impact on atmospheric processes, climate and human health. The chemical and physical processes associated with SOA formation are complex and varied, and, despite considerable progress in recent years, a quantitative and predictive understanding of SOA formation does not exist and therefore represents a major research challenge in atmospheric science. This review begins with a description of the current state of knowledge on the global SOA budget and the atmospheric degradation mechanisms for SOA precursors. The topic of gas-particle partitioning theory is followed by an account of the analytical techniques used to determine the chemical composition of SOA. A survey of recent laboratory, field and modeling studies is also presented. The following topical and emerging issues are highlighted and discussed in detail; molecular characterization of biogenic SOA constituents, condensed phase reactions and oligomerization, the interaction of atmospheric organic components with sulfuric acid, the chemical and photochemical processing of organics in the atmospheric aqueous phase, aerosol formation from real plant emissions, interaction of atmospheric organic components with water, thermodynamics and mixtures in atmospheric models. Finally, the major challenges ahead in laboratory, field and modeling studies of SOA are discussed and recommendations for future research directions are proposed.

  15. The formation, properties and impact of secondary organic aerosol: current and emerging issues

    NASA Astrophysics Data System (ADS)

    Hallquist, M.; Wenger, J. C.; Baltensperger, U.; Rudich, Y.; Simpson, D.; Claeys, M.; Dommen, J.; Donahue, N. M.; George, C.; Goldstein, A. H.; Hamilton, J. F.; Herrmann, H.; Hoffmann, T.; Iinuma, Y.; Jang, M.; Jenkin, M. E.; Jimenez, J. L.; Kiendler-Scharr, A.; Maenhaut, W.; McFiggans, G.; Mentel, Th. F.; Monod, A.; Prévôt, A. S. H.; Seinfeld, J. H.; Surratt, J. D.; Szmigielski, R.; Wildt, J.

    2009-07-01

    Secondary organic aerosol (SOA) accounts for a significant fraction of ambient tropospheric aerosol and a detailed knowledge of the formation, properties and transformation of SOA is therefore required to evaluate its impact on atmospheric processes, climate and human health. The chemical and physical processes associated with SOA formation are complex and varied, and, despite considerable progress in recent years, a quantitative and predictive understanding of SOA formation does not exist and therefore represents a major research challenge in atmospheric science. This review begins with an update on the current state of knowledge on the global SOA budget and is followed by an overview of the atmospheric degradation mechanisms for SOA precursors, gas-particle partitioning theory and the analytical techniques used to determine the chemical composition of SOA. A survey of recent laboratory, field and modeling studies is also presented. The following topical and emerging issues are highlighted and discussed in detail: molecular characterization of biogenic SOA constituents, condensed phase reactions and oligomerization, the interaction of atmospheric organic components with sulfuric acid, the chemical and photochemical processing of organics in the atmospheric aqueous phase, aerosol formation from real plant emissions, interaction of atmospheric organic components with water, thermodynamics and mixtures in atmospheric models. Finally, the major challenges ahead in laboratory, field and modeling studies of SOA are discussed and recommendations for future research directions are proposed.

  16. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation.

    PubMed

    Shiraiwa, Manabu; Yee, Lindsay D; Schilling, Katherine A; Loza, Christine L; Craven, Jill S; Zuend, Andreas; Ziemann, Paul J; Seinfeld, John H

    2013-07-16

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process. PMID:23818634

  17. 13C and 15N fractionation of CH4/N2 mixtures during photochemical aerosol formation: Relevance to Titan

    NASA Astrophysics Data System (ADS)

    Sebree, Joshua A.; Stern, Jennifer C.; Mandt, Kathleen E.; Domagal-Goldman, Shawn D.; Trainer, Melissa G.

    2016-05-01

    The ratios of the stable isotopes that comprise each chemical species in Titan's atmosphere provide critical information towards understanding the processes taking place within its modern and ancient atmosphere. Several stable isotope pairs, including 12C/13C and 14N/15N, have been measured in situ or probed spectroscopically by Cassini-borne instruments, space telescopes, or through ground-based observations. Current attempts to model the observed isotope ratios incorporate fractionation resulting from atmospheric diffusion, hydrodynamic escape, and primary photochemical processes. However, the effect of a potentially critical pathway for isotopic fractionation - organic aerosol formation and subsequent deposition onto the surface of Titan - has not been considered due to insufficient data regarding fractionation during aerosol formation. To better understand the nature of this process, we have conducted a laboratory study to measure the isotopic fractionation associated with the formation of Titan aerosol analogs, commonly referred to as 'tholins', via far-UV irradiation of several methane (CH4) and dinitrogen (N2) mixtures. Analysis of the δ13C and δ15N isotopic signatures of the photochemical aerosol products using an isotope ratio mass spectrometer (IRMS) show that fractionation direction and magnitude are dependent on the initial bulk composition of the gas mixture. In general, the aerosols showed enrichment in 13C and 14N, and the observed fractionation trends can provide insight into the chemical mechanisms controlling photochemical aerosol formation.

  18. A Study of Cloud Processing of Organic Aerosols Using Models and CHAPS Data

    SciTech Connect

    Ervens, Barbara

    2012-01-17

    The main theme of our work has been the identification of parameters that mostly affect the formation and modification of aerosol particles and their interaction with water vapor. Our detailed process model studies led to simplifications/parameterizations of these effects that bridge detailed aerosol information from laboratory and field studies and the need for computationally efficient expressions in complex atmospheric models. One focus of our studies has been organic aerosol mass that is formed in the atmosphere by physical and/or chemical processes (secondary organic aerosol, SOA) and represents a large fraction of atmospheric particulate matter. Most current models only describe SOA formation by condensation of low volatility (or semivolatile) gas phase products and neglect processes in the aqueous phase of particles or cloud droplets that differently affect aerosol size and vertical distribution and chemical composition (hygroscopicity). We developed and applied models of aqueous phase SOA formation in cloud droplets and aerosol particles (aqSOA). Placing our model results into the context of laboratory, model and field studies suggests a potentially significant contribution of aqSOA to the global organic mass loading. The second focus of our work has been the analysis of ambient data of particles that might act as cloud condensation nuclei (CCN) at different locations and emission scenarios. Our model studies showed that the description of particle chemical composition and mixing state can often be greatly simplified, in particular in aged aerosol. While over the past years many CCN studies have been successful performed by using such simplified composition/mixing state assumptions, much more uncertainty exists in aerosol-cloud interactions in cold clouds (ice or mixed-phase). Therefore we extended our parcel model that describes warm cloud formation by ice microphysics and explored microphysical parameters that determine the phase state and lifetime of

  19. Formation of secondary organic aerosol from isoprene oxidation over Europe

    NASA Astrophysics Data System (ADS)

    Karl, M.; Tsigaridis, K.; Vignati, E.; Dentener, F.

    2009-09-01

    The role of isoprene as a precursor to secondary organic aerosol (SOA) over Europe is studied with the two-way nested global chemistry transport model TM5. The inclusion of the formation of SOA from isoprene oxidation in our model almost doubles the atmospheric burden of SOA over Europe compared to SOA formation from terpenes and aromatics. The reference simulation, which considers SOA formation from isoprene, terpenes and aromatics, predicts a yearly European production rate of 1.0 Tg SOA yr-1 and an annual averaged atmospheric burden of about 50 Gg SOA over Europe. A fraction of 35% of the SOA produced in the boundary layer over Europe is transported to higher altitudes or to other world regions. Summertime measurements of organic matter (OM) during the extensive EMEP OC/EC campaign 2002/2003 are better reproduced when SOA formation from isoprene is taken into account, reflecting also the strong seasonality of isoprene and other biogenic volatile organic compounds (BVOC) emissions from vegetation. However, during winter, our model strongly underestimates OM, likely caused by missing wood burning in the emission inventories. Uncertainties in the parameterisation of isoprene SOA formation have been investigated. Maximum SOA production is found for irreversible sticking (non-equilibrium partitioning) of condensable vapours on particles, with tropospheric SOA production over Europe increased by a factor of 4 in summer compared to the reference case. Completely neglecting SOA formation from isoprene results in the lowest estimate (0.51 Tg SOA yr-1). The amount and the nature of the absorbing matter are shown to be another key uncertainty when predicting SOA levels. Consequently, smog chamber experiments on SOA formation should be performed with different types of seed aerosols and without seed aerosols in order to derive an improved treatment of the absorption of SOA in the models. Consideration of a number of recent insights in isoprene SOA formation mechanisms

  20. Secondary Organic Aerosol (SOA) Formation from Hydroxyl Radical Oxidation and Ozonolysis of Monoterpenes

    NASA Astrophysics Data System (ADS)

    Zhao, Defeng; Kaminski, Martin; Schlag, Patrick; Fuchs, Hendrik; Acir, Ismail-Hakki; Bohn, Birger; Haeseler, Rolf; Kiendler-Scharr, Astrid; Rohrer, Franz; Tillmann, Ralf; Wang, Mingjin; Wegner, Robert; Wahner, Andreas; Mentel, Thomas

    2014-05-01

    Hydroxyl radical (OH) oxidation and ozonolysis are the two major pathways of daytime biogenic volatile organic compounds (VOCs) oxidation and secondary organic aerosol (SOA) formation. The pure OH oxidation of monoterpenes, an important biogenic VOC class, has seldom been investigated. In order to elucidate the importance of the reaction pathyways of the OH oxidation and ozonolysis and their roles in particle formation and growth, we investigated the particle formation of several common monoterpenes (alpha-pinene, beta-pinene, and limonene) in the large atmosphere simulation chamber SAPHIR in Juelich, Germany. The experiments were conducted for both OH dominant and pure ozonolysis case (in the presence of CO as OH scavenger) at ambient relevant conditions (low OA, low VOC and low NOx concentration). OH and ozone (O3) concentrations were measured so that the oxidation rates of OH and O3 with precursors were quantified. The particle formation and growth, aerosol yield, multi-generation reaction process and aerosol composition were analyzed. Pure ozonolysis generated a large amount of particles indicating ozonolysis plays an important role in particle formation as well as OH oxidation. In individual experiments, particle growth rates did not necessarily correlate with OH or O3 oxidation rates. However, comparing the growth rates at similar OH or O3 oxidation rates shows that generally, OH oxidation and ozonolysis have similar efficiency in particle growth. Multi-generation products are shown to be important in the OH oxidation experiment based on aerosol yield "growth curve" (Ng et al., 2006). The reaction process of OH oxidation experiments was analyzed as a function of OH dose to elucidate the role of functionalization and fragmentation. A novel analysis was developed to link the particle formation with the reaction with OH, which was also used to examine the role of functionalization and fragmentation in the particle formation by OH oxidation. These analyses show

  1. Organic photolysis reactions in tropospheric aerosols: effect on secondary organic aerosol formation and lifetime

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Madronich, S.; Kasibhatla, P. S.; Tyndall, G.; Aumont, B.; Jimenez, J. L.; Lee-Taylor, J.; Orlando, J.

    2015-08-01

    This study presents the first modeling estimates of the potential effect of gas- and particle-phase organic photolysis reactions on the formation and lifetime of secondary organic aerosols (SOAs). Typically only photolysis of smaller organic molecules (e.g., formaldehyde) for which explicit data exist is included in chemistry-climate models. Here, we specifically examine the photolysis of larger molecules that actively partition between the gas and particle phases. The chemical mechanism generator GECKO-A is used to explicitly model SOA formation from α-pinene, toluene, and C12 and C16 n-alkane reactions with OH at low and high NOx. Simulations are conducted for typical mid-latitude conditions and a solar zenith angle of 45° (permanent daylight). The results show that after 4 days of chemical aging under those conditions (equivalent to 8 days in the summer mid-latitudes), gas-phase photolysis leads to a moderate decrease in SOA yields, i.e., ~15 % (low NOx) to ~45 % (high NOx) for α-pinene, ~15 % for toluene, ~25 % for C12 n-alkane, and ~10 % for C16 n-alkane. The small effect of gas-phase photolysis on low-volatility n-alkanes such as C16 n-alkane is due to the rapid partitioning of early-generation products to the particle phase, where they are protected from gas-phase photolysis. Minor changes are found in the volatility distribution of organic products and in oxygen to carbon ratios. The decrease in SOA mass is increasingly more important after a day of chemical processing, suggesting that most laboratory experiments are likely too short to quantify the effect of gas-phase photolysis on SOA yields. Our results also suggest that many molecules containing chromophores are preferentially partitioned into the particle phase before they can be photolyzed in the gas phase. Given the growing experimental evidence that these molecules can undergo in-particle photolysis, we performed sensitivity simulations using an empirically estimated SOA photolysis rate of JSOA

  2. Organic photolysis reactions in tropospheric aerosols: effect on secondary organic aerosol formation and lifetime

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Madronich, S.; Kasibhatla, P. S.; Tyndall, G.; Aumont, B.; Jimenez, J. L.; Lee-Taylor, J.; Orlando, J.

    2015-03-01

    This study presents the first modeling estimates of the potential effect of gas- and particle-phase organic photolysis reactions on the formation and lifetime of secondary organic aerosols (SOA). Typically only photolysis of smaller organic molecules (e.g. formaldehyde) for which explicit data exist is included in chemistry-climate models. Here, we specifically examine the photolysis of larger molecules that actively partition between the gas and particle phases. The chemical mechanism generator GECKO-A is used to explicitly model SOA formation from α-pinene, toluene, and C12 and C16 n-alkane reactions with OH at low- and high-NOx. Simulations are conducted for typical mid-latitude conditions and a solar zenith angle of 45° (permanent daylight). The results show that after four days of chemical aging under those conditions (equivalent to eight days in the summer mid-latitudes), gas-phase photolysis leads to a moderate decrease in SOA yields i.e ~15% (low-NOx) to ~45% (high-NOx) for α-pinene, ~15% for toluene, ~25% for C12-alkane, and ~10% for C16-alkane. The small effect on low volatility n-alkanes such as C16-alkane is due to the rapid partitioning of early-generation products to the particle phase where they are assumed to be protected from gas-phase photolysis. Minor changes are found in the volatility distribution of organic products and in oxygen to carbon ratios. The decrease in SOA mass seems increasingly more important after a day of chemical processing, suggesting that most laboratory experiments are likely too short to quantify the effect of gas-phase photolysis on SOA yields. Our results also suggest that many molecules containing chromophores are preferentially partitioned into the particle phase before they can be photolyzed in the gas-phase. Given the growing experimental evidence that these molecules can undergo in-particle photolysis, we performed sensitivity simulations using an estimated SOA photolysis rate of JSOA=4 x 10-4JNO2. Modeling

  3. Nonequilibrium atmospheric secondary organic aerosol formation and growth.

    PubMed

    Perraud, Véronique; Bruns, Emily A; Ezell, Michael J; Johnson, Stanley N; Yu, Yong; Alexander, M Lizabeth; Zelenyuk, Alla; Imre, Dan; Chang, Wayne L; Dabdub, Donald; Pankow, James F; Finlayson-Pitts, Barbara J

    2012-02-21

    Airborne particles play critical roles in air quality, health effects, visibility, and climate. Secondary organic aerosols (SOA) formed from oxidation of organic gases such as α-pinene account for a significant portion of total airborne particle mass. Current atmospheric models typically incorporate the assumption that SOA mass is a liquid into which semivolatile organic compounds undergo instantaneous equilibrium partitioning to grow the particles into the size range important for light scattering and cloud condensation nuclei activity. We report studies of particles from the oxidation of α-pinene by ozone and NO(3) radicals at room temperature. SOA is primarily formed from low-volatility ozonolysis products, with a small contribution from higher volatility organic nitrates from the NO(3) reaction. Contrary to expectations, the particulate nitrate concentration is not consistent with equilibrium partitioning between the gas phase and a liquid particle. Rather the fraction of organic nitrates in the particles is only explained by irreversible, kinetically determined uptake of the nitrates on existing particles, with an uptake coefficient that is 1.6% of that for the ozonolysis products. If the nonequilibrium particle formation and growth observed in this atmospherically important system is a general phenomenon in the atmosphere, aerosol models may need to be reformulated. The reformulation of aerosol models could impact the predicted evolution of SOA in the atmosphere both outdoors and indoors, its role in heterogeneous chemistry, its projected impacts on air quality, visibility, and climate, and hence the development of reliable control strategies. PMID:22308444

  4. Nonequilibrium atmospheric secondary organic aerosol formation and growth

    PubMed Central

    Perraud, Véronique; Bruns, Emily A.; Ezell, Michael J.; Johnson, Stanley N.; Yu, Yong; Alexander, M. Lizabeth; Zelenyuk, Alla; Imre, Dan; Chang, Wayne L.; Dabdub, Donald; Pankow, James F.; Finlayson-Pitts, Barbara J.

    2012-01-01

    Airborne particles play critical roles in air quality, health effects, visibility, and climate. Secondary organic aerosols (SOA) formed from oxidation of organic gases such as α-pinene account for a significant portion of total airborne particle mass. Current atmospheric models typically incorporate the assumption that SOA mass is a liquid into which semivolatile organic compounds undergo instantaneous equilibrium partitioning to grow the particles into the size range important for light scattering and cloud condensation nuclei activity. We report studies of particles from the oxidation of α-pinene by ozone and NO3 radicals at room temperature. SOA is primarily formed from low-volatility ozonolysis products, with a small contribution from higher volatility organic nitrates from the NO3 reaction. Contrary to expectations, the particulate nitrate concentration is not consistent with equilibrium partitioning between the gas phase and a liquid particle. Rather the fraction of organic nitrates in the particles is only explained by irreversible, kinetically determined uptake of the nitrates on existing particles, with an uptake coefficient that is 1.6% of that for the ozonolysis products. If the nonequilibrium particle formation and growth observed in this atmospherically important system is a general phenomenon in the atmosphere, aerosol models may need to be reformulated. The reformulation of aerosol models could impact the predicted evolution of SOA in the atmosphere both outdoors and indoors, its role in heterogeneous chemistry, its projected impacts on air quality, visibility, and climate, and hence the development of reliable control strategies. PMID:22308444

  5. Ozone and secondary aerosol formation — Analysis of particle observations in the 2009 SHARP campaign

    NASA Astrophysics Data System (ADS)

    Cowin, J.; Yu, X.; Laulainen, N.; Iedema, M.; Lefer, B. L.; Anderson, D.; Pernia, D.; Flynn, J. H.

    2010-12-01

    Particulate matters (PM) play important roles in the formation and transformation of ozone. Although photooxidation of volatile organic compounds with respect to ozone formation in the gas phase is well understood, many unknowns still exist in heterogeneous mechanisms that process soot, secondary aerosols (both inorganic and organic), and key radical precursors such as formaldehyde and nitrous acid. Our main objective is to answer two key science questions: 1) will reduction of fine PM reduce ozone formation? 2) What sources of PM are most culpable? Are they from local chemistry or long-range transport? The field data collected in the 2009 Study of Houston Atmospheric Radical Precursors (SHARP) by our group at the Moody Tower consist of 1) real-time photolysis rates of ozone precursors, 2) particle size distributions, 3) organic carbon and elemental carbon, and 4) an archive of single particle samples taken with the Time Resolved Aerosol Collector (TRAC) sampler. The time resolution of the TRAC sampler is 30 minutes for routine measurements, and 15 minutes during some identified “events” (usually in the mid-afternoon) of high ozone and secondary organic or sulfate particle formation. The latter events last typically about an hour. Five ozone exceedance days occurred during the 6 weeks of deployment. Strong correlation between photochemical activities and organic carbon was observed. Initial data analysis indicates that secondary organic aerosol is a major component of the carbonaceous aerosols observed in Houston. Soot, secondary sulfate, seal salt, and mineral dust particles are determined from single particle analysis using scanning electron microscope and transmission electron microcopy coupled with energy dispersive X-ray spectroscopy. Compared with observations in 2000, the mass percentage of organics is higher (60 vs. 30%), and lower for sulfate (20% vs. 32%). On-going data analysis will focus on the composition, sources, and transformation of primary and

  6. Formation characteristics of aerosol particles from pulverized coal pyrolysis in high-temperature environments

    SciTech Connect

    Wei-Hsin Chen; Shan-Wen Du; Hsi-Hsien Yang; Jheng-Syun Wu

    2008-05-15

    The formation characteristics of aerosol particles from pulverized coal pyrolysis in high temperatures are studied experimentally. By conducting a drop-tube furnace, fuel pyrolysis processes in industrial furnaces are simulated in which three different reaction temperatures of 1000, 1200, and 1400{sup o}C are considered. Experimental observations indicate that when the reaction temperature is 1000{sup o}C, submicron particles are produced, whereas the particle size is dominated by nanoscale for the temperature of 1400{sup o}C. Thermogravimetric analysis of the aerosol particles stemming from the pyrolysis temperature of 1000{sup o}C reveals that the thermal behavior of the aerosol is characterized by a three-stage reaction with increasing heating temperature: (1) a volatile-reaction stage, (2) a weak-reaction stage, and (3) a soot-reaction stage. However, with the pyrolysis temperature of 1400{sup o}C, the volatile- and weak-reaction stages almost merge together and evolve into a chemical-frozen stage. The submicron particles (i.e., 1000{sup o}C) are mainly composed of volatiles, tar, and soot, with the main component of the nanoscale particles (i.e., 1400{sup o}C) being soot. The polycyclic aromatic hydrocarbons (PAHs) contained in the aerosols are also analyzed. It is found that the PAH content in generated aerosols decreases dramatically as the pyrolysis temperature increases. 31 refs., 9 figs., 1 tab.

  7. Nucleation and growth processes of atmospheric aerosols and clouds

    SciTech Connect

    Schwartz, S.E.; McGraw, R.L.

    1995-11-01

    This project seeks to gain enhanced understanding of the rate of formation and growth of new particles and of cloud droplets as a function of pertinent controlling atmospheric variables, thereby permitting accurate representation of these processes in climate models. Aerosol size distributions are shaped by complex nucleation and growth and mixing processes that are difficult to represent in models, due to the need to accurately represent the evaporation/growth kinetics for each of the billions of discrete cluster sizes in the growth sequence, ranging from molecular clusters to particles of radius of several tenths of a micrometer or greater. A potentially very powerful means of solving this problem may be given by the method of moments (MOM), which tracks the time dependence of just the lower-order radial moments of the size distribution without requiring knowledge of the distribution itself.

  8. Vertical transport and processing of aerosols in a mixed-phase convective cloud and the feedback on cloud development

    NASA Astrophysics Data System (ADS)

    Yin, Y.; Carslaw, K. S.; Feingold, G.

    2005-01-01

    A modelling study of vertical transport and processing of sulphate aerosol by a mixed-phase convective cloud, and the feedback of the cloud-processed aerosols on the development of cloud microphysical properties and precipitation is presented. An axisymmetric dynamic cloud model with bin-resolved microphysics and aqueousphase chemistry is developed and is used to examine the relative importance of microphysical and chemical processes on the aerosol budget, the fate of the aerosol material inside hydrometeors, and the size distributions of cloud-processed sulphate aerosols. Numerical simulations are conducted for a moderately deep convective cloud observed during the Cooperative Convective Precipitation Experiments. The results show that aerosol particles that have been transported from the boundary layer, detrained, and then re-entrained at midcloud levels account for a large fraction of the aerosol inside hydrometeors (~40% by mass). Convective transport by the simulated cloud enhances upper-tropospheric aerosol number and mass concentrations by factors of 2-3 and 3-4, respectively. Sensitivity studies suggest that, for the simulated case, aqueous chemistry does not modify the evolution of the cloud significantly. Finally, ice-phase hydrometeor development is very sensitive to aerosol concentrations at midcloud levels. The latter result suggests that the occurrence of mid-tropospheric aerosol layers that have been advected through long-range transport could strongly affect cloud microphysical processes and precipitation formation.

  9. Periodic Microstructures Formation on Plastic Plate by Aerosol Beam Irradiation

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Masahiro; Abe, Nobuyuki; Morimoto, Junji; Akedo, Jun

    Technology of periodic microstructures formation on plastic plate, the polyethylene terephthalate (PET) plate, was developed with an aerosol beam. The beam was composed of submicron-size anatase titania (TiO2) particles. Formation mechanism depended on an incident angle of the beam to the PET plate. At an incident angles in the range of 0 to 30°C, a TiO2 films were fabricated on the PET plate. Deposition rate of the film decreased as incident angle increased in the range of 0 to 30°C. The film was not produced at 40°C. At 50 and 60°C, the PET plate was etched by the beam irradiation. In the etching area, periodic microstructures were self-organized, whose grooves’ direction was perpendicular to the beam incidence direction.

  10. Composition and formation of organic aerosol particles in the Amazon

    NASA Astrophysics Data System (ADS)

    Pöhlker, C.; Wiedemann, K.; Sinha, B.; Shiraiwa, M.; Gunthe, S. S.; Artaxo, P.; Gilles, M. K.; Kilcoyne, A. L. D.; Moffet, R. C.; Smith, M.; Weigand, M.; Martin, S. T.; Pöschl, U.; Andreae, M. O.

    2012-04-01

    We applied scanning transmission X-ray microscopy with near edge X-ray absorption fine structure (STXM-NEXAFS) analysis to investigate the morphology and chemical composition of aerosol samples from a pristine tropical environment, the Amazon Basin. The samples were collected in the Amazonian rainforest during the rainy season and can be regarded as a natural background aerosol. The samples were found to be dominated by secondary organic aerosol (SOA) particles in the fine and primary biological aerosol particles (PBAP) in the coarse mode. Lab-generated SOA-samples from isoprene and terpene oxidation as well as pure organic compounds from spray-drying of aqueous solution were measured as reference samples. The aim of this study was to investigate the microphysical and chemical properties of a tropical background aerosol in the submicron size range and its internal mixing state. The lab-generated SOA and pure organic compounds occurred as spherical and mostly homogenous droplet-like particles, whereas the Amazonian SOA particles comprised a mixture of homogeneous droplets and droplets having internal structures due to atmospheric aging. In spite of the similar morphological appearance, the Amazon samples showed considerable differences in elemental and functional group composition. According to their NEXAFS spectra, three chemically distinct types of organic material were found and could be assigned to the following three categories: (1) particles with a pronounced carboxylic acid (COOH) peak similar to those of laboratory-generated SOA particles from terpene oxidation; (2) particles with a strong hydroxy (COH) signal similar to pure carbohydrate particles; and (3) particles with spectra resembling a mixture of the first two classes. In addition to the dominant organic component, the NEXAFS spectra revealed clearly resolved potassium (K) signals for all analyzed particles. During the rainy season and in the absence of anthropogenic influence, active biota is

  11. Carbon and nitrogen isotope fractionation during possible organic aerosol formation in Titan and the early Earth

    NASA Astrophysics Data System (ADS)

    Imanaka, H.

    2012-12-01

    Abiotic formation of complex organic macromolecule aerosols is important not only for the potential for prebiotic chemical evolution, but also in the global elemental cycle. The direct clues of the habitable environment and biosphere on the early Earth are mostly obtained from geological records, such as isotope signatures and biomarkers in the ancient organic sediments. The recent Cassini-Huygens mission revealed the generation of complex organic aerosols in Titan's upper atmosphere, and similar processes could have lead to the formation of organic aerosols in the early Earth atmosphere. Understanding the formation reaction network and accompanying isotope fractionation processes of the organic aerosols is necessary to constrain the active organic environment on the early Earth from the available geological evidence. We have investigated the abiotic formation of organic aerosols in simulated atmospheres of Titan and the early, with particular focus on carbon and nitrogen isotope fractionation. Laboratory aerosol analogues, termed tholins, are generated with cold plasma irradiation of reduced gas mixtures, such as N2/CH4 and N2/H2/CO. Stable isotopic ratios of 15N/14N and 13C/12C for the generated tholins are measured with an elemental analysis-isotope ratio mass spectrometer (EA-IR-MS). Our preliminary data for tholins generated from an equivalent N2/CH4 (=90/10) gas mixture at various pressures suggests the 15N isotopic fractionation up to δ15N = -20~25 permil during tholin formation, while 13C isotopic fractionation seems almost negligible. This negative δ15N is even lighter than those observed in kerogens in the Archean sediments (Beaumont and Robert, 1999; Pinti et al., 2001), and the organic haze could have contributed to the source of 15N-depleted kerogens. Furthermore, the δ15N vary with deposition pressure. Previous works demonstrated that the resulted two types of tholin are very different in chemical structure and optical properties (Imanaka et al

  12. The Aerosol Modeling Testbed: A community tool to objectively evaluate aerosol process modules

    SciTech Connect

    Fast, Jerome D.; Gustafson, William I.; Chapman, Elaine G.; Easter, Richard C.; Rishel, Jeremy P.; Zaveri, Rahul A.; Grell, Georg; Barth, Mary

    2011-03-02

    This study describes a new modeling paradigm that significantly advances how the third activity is conducted while also fully exploiting data and findings from the first two activities. The Aerosol Modeling Testbed (AMT) is a computational framework for the atmospheric sciences community that streamlines the process of testing and evaluating aerosol process modules over a wide range of spatial and temporal scales. The AMT consists of a fully-coupled meteorology-chemistry-aerosol model, and a suite of tools to evaluate the performance of aerosol process modules via comparison with a wide range of field measurements. The philosophy of the AMT is to systematically and objectively evaluate aerosol process modules over local to regional spatial scales that are compatible with most field campaigns measurement strategies. The performance of new treatments can then be quantified and compared to existing treatments before they are incorporated into regional and global climate models. Since the AMT is a community tool, it also provides a means of enhancing collaboration and coordination among aerosol modelers.

  13. Aerosol processing in stratiform clouds in ECHAM6-HAM

    NASA Astrophysics Data System (ADS)

    Neubauer, David; Lohmann, Ulrike; Hoose, Corinna

    2013-04-01

    Aerosol processing in stratiform clouds by uptake into cloud particles, collision-coalescence, chemical processing inside the cloud particles and release back into the atmosphere has important effects on aerosol concentration, size distribution, chemical composition and mixing state. Aerosol particles can act as cloud condensation nuclei. Cloud droplets can take up further aerosol particles by collisions. Atmospheric gases may also be transferred into the cloud droplets and undergo chemical reactions, e.g. the production of atmospheric sulphate. Aerosol particles are also processed in ice crystals. They may be taken up by homogeneous freezing of cloud droplets below -38° C or by heterogeneous freezing above -38° C. This includes immersion freezing of already immersed aerosol particles in the droplets and contact freezing of particles colliding with a droplet. Many clouds do not form precipitation and also much of the precipitation evaporates before it reaches the ground. The water soluble part of the aerosol particles concentrates in the hydrometeors and together with the insoluble part forms a single, mixed, larger particle, which is released. We have implemented aerosol processing into the current version of the general circulation model ECHAM6 (Stevens et al., 2013) coupled to the aerosol module HAM (Stier et al., 2005). ECHAM6-HAM solves prognostic equations for the cloud droplet number and ice crystal number concentrations. In the standard version of HAM, seven modes are used to describe the total aerosol. The modes are divided into soluble/mixed and insoluble modes and the number concentrations and masses of different chemical components (sulphate, black carbon, organic carbon, sea salt and mineral dust) are prognostic variables. We extended this by an explicit representation of aerosol particles in cloud droplets and ice crystals in stratiform clouds similar to Hoose et al. (2008a,b). Aerosol particles in cloud droplets are represented by 5 tracers for the

  14. Simulating SAL formation and aerosol size distribution during SAMUM-I

    NASA Astrophysics Data System (ADS)

    Khan, Basit; Stenchikov, Georgiy; Weinzierl, Bernadett; Kalenderski, Stoitchko; Osipov, Sergey

    2015-04-01

    To understand the formation mechanisms of Saharan Air Layer (SAL), we combine model simulations and dust observations collected during the first stage of the Saharan Mineral Dust Experiment (SAMUM-I), which sampled dust events that extended from Morocco to Portugal, and investigated the spatial distribution and the microphysical, optical, chemical, and radiative properties of Saharan mineral dust. We employed the Weather Research Forecast model coupled with the Chemistry/Aerosol module (WRF-Chem) to reproduce the meteorological environment and spatial and size distributions of dust. The experimental domain covers northwest Africa including the southern Sahara, Morocco and part of the Atlantic Ocean with 5 km horizontal grid spacing and 51 vertical layers. The experiments were run from 20 May to 9 June 2006, covering the period of most intensive dust outbreaks. Comparisons of model results with available airborne and ground-based observations show that WRF-Chem reproduces observed meteorological fields as well as aerosol spatial distribution across the entire region and along the airplane's tracks. We evaluated several aerosol uplift processes and found that orographic lifting, aerosol transport through the land/sea interface with steep gradients of meteorological characteristics, and interaction of sea breezes with the continental outflow are key mechanisms that form a surface-detached aerosol plume over the ocean. Comparisons of simulated dust size distributions with airplane and ground-based observations are generally good, but suggest that more detailed treatment of microphysics in the model is required to capture the full-scale effect of large aerosol particles.

  15. The Roles of Mineral Dusts and Coastal Aerosol in Cold and Warm Cloud Formation

    NASA Astrophysics Data System (ADS)

    Yakobi-Hancock, Jacqueline

    The indirect effect of atmospheric aerosol is one of the largest uncertainties in determining the Earth's radiative budget. This uncertainty has been attributed to our lack of understanding of processes leading to cloud formation. Consequently, this thesis investigates the abilities of two main types of aerosol to form warm and mixed-phase clouds. To study the mixed-phase cloud formation properties of 24 atmospherically-relevant minerals, their deposition ice nucleation properties were studied using a single experimental method. From a set of minerals present in mineral dusts it was found that feldspars were the most efficient ice nuclei. In addition, the warm cloud formation properties, or hygroscopicity (e), of coastal ambient aerosol and its organic components were investigated in Ucluelet, BC. While the e of 50 nm and 100 nm particles exhibited a wide size-independent variation (0.14 - 1.08), the e of its organic fraction was estimated to be between 0.3 and 0.5.

  16. Formation and evolution of molecular products in α-pinene secondary organic aerosol.

    PubMed

    Zhang, Xuan; McVay, Renee C; Huang, Dan D; Dalleska, Nathan F; Aumont, Bernard; Flagan, Richard C; Seinfeld, John H

    2015-11-17

    Much of our understanding of atmospheric secondary organic aerosol (SOA) formation from volatile organic compounds derives from laboratory chamber measurements, including mass yield and elemental composition. These measurements alone are insufficient to identify the chemical mechanisms of SOA production. We present here a comprehensive dataset on the molecular identity, abundance, and kinetics of α-pinene SOA, a canonical system that has received much attention owing to its importance as an organic aerosol source in the pristine atmosphere. Identified organic species account for ∼58-72% of the α-pinene SOA mass, and are characterized as semivolatile/low-volatility monomers and extremely low volatility dimers, which exhibit comparable oxidation states yet different functionalities. Features of the α-pinene SOA formation process are revealed for the first time, to our knowledge, from the dynamics of individual particle-phase components. Although monomeric products dominate the overall aerosol mass, rapid production of dimers plays a key role in initiating particle growth. Continuous production of monomers is observed after the parent α-pinene is consumed, which cannot be explained solely by gas-phase photochemical production. Additionally, distinct responses of monomers and dimers to α-pinene oxidation by ozone vs. hydroxyl radicals, temperature, and relative humidity are observed. Gas-phase radical combination reactions together with condensed phase rearrangement of labile molecules potentially explain the newly characterized SOA features, thereby opening up further avenues for understanding formation and evolution mechanisms of α-pinene SOA. PMID:26578760

  17. Sources and formation pathways of organic aerosol in a subtropical metropolis during summer

    NASA Astrophysics Data System (ADS)

    Tsai, I.-Chun; Chen, Jen-Ping; Lung, Candice Shi-Chun; Li, Nan; Chen, Wei-Nai; Fu, Tzung-May; Chang, Chih-Chung; Hwang, Gong-Do

    2015-09-01

    A field campaign combined with numerical simulations was designed to better understand the emission sources and formation processes of organic aerosols (OA) in a subtropical environment. The field campaign measured total and water soluble organic carbon (OC) in aerosol, as well as its precursor gases in the Taipei metropolis and a nearby rural forest during the summer of 2011. A regional air-quality model modified with an additional secondary organic aerosol (SOA) formation pathway was used to decipher the observed variations in OA, with focus on various formation pathways and the relative contributions from anthropogenic and biogenic sources. According to the simulations, biogenic sources contributed to 60% and 72% of total OA production at the NTU (urban) and HL (rural) sites. The simulated fractions of SOA in total OA were 67% and 79% near the surface of NTU and HL, respectively, and these fractions increased with height and reach over 90% at the 1-km altitude. Estimated from the simulation results, aqueous-phase dicarbonyl uptake was responsible of 51% of OA production in the urban area, while the primary emissions, reversible partitioning of semi-volatile oxidation products, oligomerization of semi-volatile SOA in the particulate phase and acid-enhanced oxidation contributed to 33%, 10%, 5% and 1% respectively; in the rural area, the percentages were 59%, 21%, 13%, 7% and 1%, respectively. Meteorological factors, including large-scale wind direction, local circulation and planetary boundary layer height, all have strong influences on the source contributions and diurnal variations of OA concentration.

  18. Formation of the Aerosol of Space Origin in Earth's Atmosphere

    NASA Technical Reports Server (NTRS)

    Kozak, P. M.; Kruchynenko, V. G.

    2011-01-01

    The problem of formation of the aerosol of space origin in Earth s atmosphere is examined. Meteoroids of the mass range of 10-18-10-8 g are considered as a source of its origin. The lower bound of the mass range is chosen according to the data presented in literature, the upper bound is determined in accordance with the theory of Whipple s micrometeorites. Basing on the classical equations of deceleration and heating for small meteor bodies we have determined the maximal temperatures of the particles, and altitudes at which they reach critically low velocities, which can be called as velocities of stopping . As a condition for the transformation of a space particle into an aerosol one we have used the condition of non-reaching melting temperature of the meteoroid. The simplified equation of deceleration without earth gravity and barometric formula for the atmosphere density are used. In the equation of heat balance the energy loss for heating is neglected. The analytical solution of the simplified equations is used for the analysis.

  19. Modeling Gas-phase Glyoxal and Associated Secondary Organic Aerosol Formation in a Megacity using WRF/Chem

    NASA Astrophysics Data System (ADS)

    Wang, K.; Hodzic, A.; Barth, M. C.; Jimenez, J. L.; Volkamer, R.; Ervens, B.; Zhang, Y.

    2011-12-01

    Organic aerosol (OA) as one of a major fine particulate matter in the atmosphere plays an important role in air pollution, human health, and climate forcing. OA is composed of directly emitted primary organic aerosol and chemically produced secondary organic aerosols (SOA). Despite much recent progress in understanding SOA formation, current air quality models cannot explain the magnitude and growth of atmospheric SOA, due to high uncertainties in sources, properties, and chemical reactions of precursors and formation pathways of SOA. Recent laboratory and modeling studies showed that glyoxal may serve as an important SOA precursor in the condensed solution of inorganic or organic aerosol particles (e.g., ammonium sulfate, fulvic acid, and amino acids). In this study, the Weather Research and Forecasting model with chemistry (WRF/Chem) is modified to account for the latest observed gas-phase yields of glyoxal from various volatile organic compounds (VOCs) and the associated SOA formation in the aqueous aerosol phase. The SOA formation in the aqueous aerosol phase is implemented using two approaches. In the first approach, two simplified parameterizations are used to represent the lumped particle-phase chemical processes under dark conditions and photochemical surface uptake. In the second approach, more detailed kinetic glyoxal reactions such as reversible glyoxal uptake, dimer formation of glyoxal, and oligomerization are treated and resolved explicitly. The updated WRF/Chem is assessed over the Mexico City and the surrounding region during March 2006 using the MILAGRO campaign data. Various observations such as organic matter from Aerodyne Aerosol Mass Spectrometer and VOCs from Proton-transfer Ion Trap Mass Spectrometry were compared. The preliminary results showed that the addition of the SOA formation from glyoxal in aqueous particles brings SOA predictions into a better agreement with field observations, in particular in presence of high relative humidity

  20. Laboratory Studies of Processing of Carbonaceous Aerosols by Atmospheric Oxidants/Hygroscopicity and CCN Activity of Secondary & Processed Primary Organic Aerosols

    SciTech Connect

    Ziemann, P.J.; Arey, J.; Atkinson, R.; Kreidenweis, S.M.; Petters, M.D.

    2012-06-13

    The atmosphere is composed of a complex mixture of gases and suspended microscopic aerosol particles. The ability of these particles to take up water (hygroscopicity) and to act as nuclei for cloud droplet formation significantly impacts aerosol light scattering and absorption, and cloud formation, thereby influencing air quality, visibility, and climate in important ways. A substantial, yet poorly characterized component of the atmospheric aerosol is organic matter. Its major sources are direct emissions from combustion processes, which are referred to as primary organic aerosol (POA), or in situ processes in which volatile organic compounds (VOCs) are oxidized in the atmosphere to low volatility reaction products that subsequent condense to form particles that are referred to as secondary organic aerosol (SOA). POA and VOCs are emitted to the atmosphere from both anthropogenic and natural (biogenic) sources. The overall goal of this experimental research project was to conduct laboratory studies under simulated atmospheric conditions to investigate the effects of the chemical composition of organic aerosol particles on their hygroscopicity and cloud condensation nucleation (CCN) activity, in order to develop quantitative relationships that could be used to more accurately incorporate aerosol-cloud interactions into regional and global atmospheric models. More specifically, the project aimed to determine the products, mechanisms, and rates of chemical reactions involved in the processing of organic aerosol particles by atmospheric oxidants and to investigate the relationships between the chemical composition of organic particles (as represented by molecule sizes and the specific functional groups that are present) and the hygroscopicity and CCN activity of oxidized POA and SOA formed from the oxidation of the major classes of anthropogenic and biogenic VOCs that are emitted to the atmosphere, as well as model hydrocarbons. The general approach for this project was

  1. Processes controlling the annual cycle of Arctic aerosol number and size distributions

    NASA Astrophysics Data System (ADS)

    Croft, Betty; Martin, Randall V.; Leaitch, W. Richard; Tunved, Peter; Breider, Thomas J.; D'Andrea, Stephen D.; Pierce, Jeffrey R.

    2016-03-01

    Measurements at high-Arctic sites (Alert, Nunavut, and Mt. Zeppelin, Svalbard) during the years 2011 to 2013 show a strong and similar annual cycle in aerosol number and size distributions. Each year at both sites, the number of aerosols with diameters larger than 20 nm exhibits a minimum in October and two maxima, one in spring associated with a dominant accumulation mode (particles 100 to 500 nm in diameter) and a second in summer associated with a dominant Aitken mode (particles 20 to 100 nm in diameter). Seasonal-mean aerosol effective diameter from measurements ranges from about 180 in summer to 260 nm in winter. This study interprets these annual cycles with the GEOS-Chem-TOMAS global aerosol microphysics model. Important roles are documented for several processes (new-particle formation, coagulation scavenging in clouds, scavenging by precipitation, and transport) in controlling the annual cycle in Arctic aerosol number and size. Our simulations suggest that coagulation scavenging of interstitial aerosols in clouds by aerosols that have activated to form cloud droplets strongly limits the total number of particles with diameters less than 200 nm throughout the year. We find that the minimum in total particle number in October can be explained by diminishing new-particle formation within the Arctic, limited transport of pollution from lower latitudes, and efficient wet removal. Our simulations indicate that the summertime-dominant Aitken mode is associated with efficient wet removal of accumulation-mode aerosols, which limits the condensation sink for condensable vapours. This in turn promotes new-particle formation and growth. The dominant accumulation mode during spring is associated with build up of transported pollution from outside the Arctic coupled with less-efficient wet-removal processes at colder temperatures. We recommend further attention to the key processes of new-particle formation, interstitial coagulation, and wet removal and their delicate

  2. Preliminary numerical study on the cumulus-stratus transition induced by the increase of formation rate of aerosols

    NASA Astrophysics Data System (ADS)

    Shima, Shin-ichiro; Hasegawa, Koichi; Kusano, Kanya

    2015-04-01

    The influence of aerosol-cloud interactions on the steady state of marine stratocumulus is investigated through a series of numerical simulations of an idealized meteorological system in which aerosols are formed constantly. We constructed the system by modifying the set-up based on the RICO composite case defined in van Zanten et al. (2011). The super-droplet method (SDM) (Shima, 2008; Shima et al., 2009) is used for the simulation of cloud microphysical processes. The SDM is a particle-based and probabilistic method, with which the time evolution of aerosol/cloud/precipitation particles are calculated in a unified and accurate manner. For the simulation of atmospheric fluid dynamical processes, the cloud resolving model CReSS (Tsuboki, 2008) is used, in which the quasi-compressible approximation and the sound mode splitting method are applied. The steady states of the system are compared changing the aerosol nucleation rate and the initial number density of aerosols. It is observed that the system gradually evolves to reach its final steady state in a few days, which is irrelevant to the initial number density of aerosols. A transition of the final steady state from cumuli to strati occurs when the aerosol formation rate is increased. Chemical reactions in the gas phase and the liquid phase are not yet incorporated in the model, and the numerical simulations are performed in two dimensions. For these limitations, the results obtained are still preliminary.

  3. Key parameters controlling OH-initiated formation of secondary organic aerosol in the aqueous phase (aqSOA)

    NASA Astrophysics Data System (ADS)

    Ervens, Barbara; Sorooshian, Armin; Lim, Yong B.; Turpin, Barbara J.

    2014-04-01

    Secondary organic aerosol formation in the aqueous phase of cloud droplets and aerosol particles (aqSOA) might contribute substantially to the total SOA burden and help to explain discrepancies between observed and predicted SOA properties. In order to implement aqSOA formation in models, key processes controlling formation within the multiphase system have to be identified. We explore parameters affecting phase transfer and OH(aq)-initiated aqSOA formation as a function of OH(aq) availability. Box model results suggest OH(aq)-limited photochemical aqSOA formation in cloud water even if aqueous OH(aq) sources are present. This limitation manifests itself as an apparent surface dependence of aqSOA formation. We estimate chemical OH(aq) production fluxes, necessary to establish thermodynamic equilibrium between the phases (based on Henry's law constants) for both cloud and aqueous particles. Estimates show that no (currently known) OH(aq) source in cloud water can remove this limitation, whereas in aerosol water, it might be feasible. Ambient organic mass (oxalate) measurements in stratocumulus clouds as a function of cloud drop surface area and liquid water content exhibit trends similar to model results. These findings support the use of parameterizations of cloud-aqSOA using effective droplet radius rather than liquid water volume or drop surface area. Sensitivity studies suggest that future laboratory studies should explore aqSOA yields in multiphase systems as a function of these parameters and at atmospherically relevant OH(aq) levels. Since aerosol-aqSOA formation significantly depends on OH(aq) availability, parameterizations might be less straightforward, and oxidant (OH) sources within aerosol water emerge as one of the major uncertainties in aerosol-aqSOA formation.

  4. The role of anthropogenic species in Biogenic aerosol formation

    EPA Science Inventory

    Isoprene is a widely recognized source of organic aerosol in the southeastern United States. Models have traditionally represented isoprene-derived aerosol as semivolatile species formed from the initial isoprene + OH reaction. Recent laboratory and field studies indicate later g...

  5. A case study of aerosol processing and evolution in summer in New York City

    NASA Astrophysics Data System (ADS)

    Sun, Y. L.; Zhang, Q.; Schwab, J. J.; Chen, W. N.; Bae, M. S.; Lin, Y. C.; Hung, H. M.; Demerjian, K. L.

    2011-09-01

    We have investigated an aerosol processing and evolution event from 21-22 July during the summer 2009 Field Intensive Study at Queens College in New York City (NYC). The evolution processes are characterized by three consecutive stages: (1) aerosol wet scavenging, (2) nighttime nitrate formation, and (3) photochemical production and evolution of secondary aerosol species. Our results suggest that wet scavenging of aerosol species tends to be strongly related to their hygroscopicities and also mixing states. The scavenging leads to a significant change in bulk aerosol composition and average carbon oxidation state because of scavenging efficiencies in the following order: sulfate > low-volatility oxygenated organic aerosol (LV-OOA) > semi-volatile OOA (SV-OOA) > hydrocarbon-like OA (HOA). The second stage involves a quick formation of nitrate from heterogeneous reactions at nighttime. During the third stage, simultaneous increases of sulfate and SV-OOA were observed shortly after sunrise, indicating secondary aerosol formation. Organic aerosol particles become highly oxidized in ~half day as the result of photochemical processing, consistent with previously reported results from the CO-tracer method (OA/ΔCO). The photochemical reactions appear to progress gradually associated with a transformation of semi-volatile OOA to low-volatility species based on the evolution trends of oxygen-to-carbon (O/C) ratio, relationship between f44 (fraction of m/z 44 in OA) and f43 (fraction of m/z 43 in OA), and size evolution of OOA and HOA. Aerosols appear to become more internally mixed during the processing. Our results suggest that functionalization by incorporation of both C and O plays a major role in the early period of OA oxidation (O/C <0.5). Our results also show that photochemical production of LV-OOA during this event is approximately a few hours behind of sulfate production, which might explain the sometimes lack of correlations between LV-OOA and sulfate, two

  6. A case study of aerosol processing and evolution in summer in New York City

    NASA Astrophysics Data System (ADS)

    Sun, Y. L.; Zhang, Q.; Schwab, J. J.; Chen, W. N.; Bae, M. S.; Lin, Y. C.; Hung, H. M.; Demerjian, K. L.

    2011-12-01

    We have investigated an aerosol processing and evolution event from 21-22 July during the summer 2009 Field Intensive Study at Queens College in New York City (NYC). The evolution processes are characterized by three consecutive stages: (1) aerosol wet scavenging, (2) nighttime nitrate formation, and (3) photochemical production and evolution of secondary aerosol species. Our results suggest that wet scavenging of aerosol species tends to be strongly related to their hygroscopicities and also mixing states. The scavenging leads to a significant change in bulk aerosol composition and average carbon oxidation state because of scavenging efficiencies in the following order: sulfate > low-volatility oxygenated organic aerosol (LV-OOA) > semi-volatile OOA (SV-OOA) > hydrocarbon-like OA (HOA). The second stage involves a quick formation of nitrate from heterogeneous reactions at nighttime. During the third stage, simultaneous increases of sulfate and SV-OOA were observed shortly after sunrise, indicating secondary aerosol formation. Organic aerosols become highly oxidized in ~ half day as the result of photochemical processing, consistent with previously reported results from the CO-tracer method (OA/ΔCO). The photochemical reactions appear to progress gradually associated with a transformation of SV- OOA to low-volatility species based on the evolution trends of oxygen-to-carbon (O/C) ratio, relationship between f44 (fraction of m/z 44 in OA) and f43 (fraction of m/z 43 in OA), and size evolution of OOA and HOA. Aerosols appear to become more internally mixed during the processing. Our results suggest that functionalization by incorporation of both C and O plays a major role in the early period of OA oxidation (O/C < 0.5). Our results also show that photochemical production of LV-OOA during this event is approximately 2-3 h behind of sulfate production, which might explain, sometimes, the lack of correlations between LV-OOA and sulfate, two secondary aerosol species

  7. Kinetics, products, and mechanisms of secondary organic aerosol formation.

    PubMed

    Ziemann, Paul J; Atkinson, Roger

    2012-10-01

    Secondary organic aerosol (SOA) is formed in the atmosphere when volatile organic compounds (VOCs) emitted from anthropogenic and biogenic sources are oxidized by reactions with OH radicals, O(3), NO(3) radicals, or Cl atoms to form less volatile products that subsequently partition into aerosol particles. Once in particles, these organic compounds can undergo heterogenous/multiphase reactions to form more highly oxidized or oligomeric products. SOA comprises a large fraction of atmospheric aerosol mass and can have significant effects on atmospheric chemistry, visibility, human health, and climate. Previous articles have reviewed the kinetics, products, and mechanisms of atmospheric VOC reactions and the general chemistry and physics involved in SOA formation. In this article we present a detailed review of VOC and heterogeneous/multiphase chemistry as they apply to SOA formation, with a focus on the effects of VOC molecular structure on the kinetics of initial reactions with the major atmospheric oxidants, the subsequent reactions of alkyl, alkyl peroxy, and alkoxy radical intermediates, and the composition of the resulting products. Structural features of reactants and products discussed include compound carbon number; linear, branched, and cyclic configurations; the presence of C[double bond, length as m-dash]C bonds and aromatic rings; and functional groups such as carbonyl, hydroxyl, ester, hydroxperoxy, carboxyl, peroxycarboxyl, nitrate, and peroxynitrate. The intention of this review is to provide atmospheric chemists with sufficient information to understand the dominant pathways by which the major classes of atmospheric VOCs react to form SOA products, and the further reactions of these products in particles. This will allow reasonable predictions to be made, based on molecular structure, about the kinetics, products, and mechanisms of VOC and heterogeneous/multiphase reactions, including the effects of important variables such as VOC, oxidant, and NO

  8. Concentration Effects and Ion Properties Controlling the Fractionation of Halides during Aerosol Formation

    NASA Technical Reports Server (NTRS)

    Guzman, Marcelo I.; Athalye, Richa R.; Rodriguez, Jose M.

    2012-01-01

    During the aerosolization process at the sea surface, halides are incorporated into aerosol droplets, where they may play an important role in tropospheric ozone chemistry. Although this process may significantly contribute to the formation of reactive gas phase molecular halogens, little is known about the environmental factors that control how halides selectively accumulate at the air-water interface. In this study, the production of sea spray aerosol is simulated using electrospray ionization (ESI) of 100 nM equimolar solutions of NaCl, NaBr, NaI, NaNO2, NaNO3, NaClO4, and NaIO4. The microdroplets generated are analyzed by mass spectrometry to study the comparative enrichment of anions (f (Isub x-)) and their correlation with ion properties. Although no correlation exists between f (sub x-) and the limiting equivalent ionic conductivity, the correlation coefficient of the linear fit with the size of the anions R(sub x-), dehydration free-energy ?Gdehyd, and polarizability alpha, follows the order: (R(sub x-)(exp -2)) > (R(sub x-)(exp -1)) >(R(sub x-) > delta G(sub dehyd) > alpha. The same pure physical process is observed in H2O and D2O. The factor f (sub x-) does not change with pH (6.8-8.6), counterion (Li+, Na+, K+, and Cs+) substitution effects, or solvent polarity changes in methanol - and ethanol-water mixtures (0 <= xH2O <= 1). Sodium polysorbate 20 surfactant is used to modify the structure of the interface. Despite the observed enrichment of I- on the air-water interface of equimolar solutions, our results of seawater mimic samples agree with a model in which the interfacial composition is increasingly enriched in I- < Br- < Cl- over the oceanic boundary layer due to concentration effects in sea spray aerosol formation.

  9. Dicarboxylic acids, oxoacids, benzoic acid, α-dicarbonyls, WSOC, OC, and ions in spring aerosols from Okinawa Island in the western North Pacific Rim: size distributions and formation processes

    NASA Astrophysics Data System (ADS)

    Deshmukh, D. K.; Kawamura, K.; Lazaar, M.; Kunwar, B.; Boreddy, S. K. R.

    2015-09-01

    Size-segregated aerosols (9-stages from < 0.43 to > 11.3 μm in diameter) were collected at Cape Hedo, Okinawa in spring 2008 and analyzed for water-soluble diacids (C2-C12), ω-oxoacids (ωC2-ωC9), pyruvic acid, benzoic acid and α-dicarbonyls (C2-C3) as well as water-soluble organic carbon (WSOC), organic carbon (OC) and major ions. In all the size-segregated aerosols, oxalic acid (C2) was found as the most abundant species followed by malonic and succinic acids whereas glyoxylic acid (ωC2) was the dominant oxoacid and glyoxal (Gly) was more abundant than methylglyoxal. Diacids (C2-C5), ωC2 and Gly as well as WSOC and OC peaked at 0.65-1.1 μm in fine mode whereas azelaic (C9) and 9-oxononanoic (ωC9) acids peaked at 3.3-4.7 μm in coarse mode. Sulfate and ammonium are enriched in fine mode whereas sodium and chloride are in coarse mode. These results imply that water-soluble species in the marine aerosols could act as cloud condensation nuclei (CCN) to develop the cloud cover over the western North Pacific Rim. The organic species are likely produced by a combination of gas-phase photooxidation, and aerosol-phase or in-cloud processing during long-range transport. The coarse mode peaks of malonic and succinic acids were obtained in the samples with marine air masses, suggesting that they may be associated with the reaction on sea salt particles. Bimodal size distributions of longer-chain diacid (C9) and oxoacid (ωC9) with a major peak in the coarse mode suggest their production by photooxidation of biogenic unsaturated fatty acids via heterogeneous reactions on sea salt particles.

  10. Characteristics of biological aerosols in dairy processing plants.

    PubMed

    Kang, Y J; Frank, J F

    1990-03-01

    The viable aerosol in dairy processing plant environments was characterized by using an Andersen six-stage sieve sampler and a Reuter centrifugal sampler. Artificially introduced Serratia marcescens were detected in the air during drain flooding and after rinsing the floor with a pressured water hose, thus illustrating the ability of a specific microorganism to be disseminated from drains and wet surfaces via physical disruption activities often observed in food plants. Once a high concentration of wet viable aerosol was generated, it took 40 or more min to return to the background level in the absence of forced ventilation or other activity. The greatest reduction in viable particles occurred during the first 10 min. Estimated mean aerosol particle sizes were decreased from approximately 4.6 to 3.2 mu with time lapse. The estimated mean aerosol particle sizes from actual dairy processing plant environments ranged from approximately 4.3 to 5.3 mu. In addition, a more heavily contaminated dairy processing environment contained larger aerosol particles. These results indicate that the RCS sampler will often overestimate the true aerosol concentration in highly contaminated air, because mean particle sizes are over 4 mu in diameter. PMID:2187913

  11. Photochemistry at interfaces: a source of radicals impacting on aerosol formation and properties

    NASA Astrophysics Data System (ADS)

    George, C.; D'anna, B.; Monge, M.; Dupart, Y.

    2011-12-01

    Recent findings confirm the presence of light absorbing organic material (HULIS, biomass burning particles, PAHs) in atmospheric aerosols... but also at the air/ocean interface. The presence of such light absorbing material allows photosensitised processes to occur. The latter may be sources of radicals in the troposphere that may alter its oxidation capacity (as for instance through the formation of HONO) or change the pathways leading to particle formation and ageing. We will exemplify such processes by presenting new data on the generation of radicals from dust particles or at the air/sea interface leading to particle formation in presence of SO2. These are recent findings that are questioning our current understanding of tropospheric photochemistry.

  12. Overview of the Cumulus Humilis Aerosol Processing Study.

    SciTech Connect

    Berg, L. K.; Berkowitz, C. M.; Ogren, J. A.; Hostetler, C. A.; Ferrare, R. A.; Dubey, M.; Andrews, E.; Coulter, R. L.; Hair, J. W.; Hubbe, J. M.Lee, Y. N.; Mazzoleni, C; Olfert, J; Springston, SR; Environmental Science Division; PNNL; NOAA Earth System Research Lab.; NASA Langley Research Center; LANL; BNL; Univ.of Alberta; Univ. of Colorado

    2009-11-01

    Aerosols influence climate directly by scattering and absorbing radiation and indirectly through their influence on cloud microphysical and dynamical properties. The Intergovernmental Panel on Climate Change (IPCC) concluded that the global radiative forcing due to aerosols is large and in general cools the planet. But the uncertainties in these estimates are also large due to our poor understanding of many of the important processes related to aerosols and clouds. To address this uncertainty an integrated strategy for addressing issues related to aerosols and aerosol processes was proposed. Using this conceptual framework, the Cumulus Humilis Aerosol Processing Study (CHAPS) is a stage 1 activity, that is, a detailed process study. The specific focus of CHAPS was to provide concurrent observations of the chemical composition of the activated [particles that are currently serving as cloud condensation nuclei (CCN)] and nonactivated aerosols, the scattering and extinction profiles, and detailed aerosol and droplet size spectra in the vicinity of Oklahoma City, Oklahoma, during June 2007. Numerous campaigns have examined aerosol properties downwind from large pollution sources, including the Megacity Initiative: Local and Global Research Observations (MILAGRO) campaign and the two of the three Aerosol Characterization Experiments, ACE-2 and ACE-Asia. Other studies conducted near cities have examined changes in both aerosols and clouds downwind of urban areas. For example wintertime stratiform clouds associated with the urban plumes of Denver, Colorado, and Kansas City, Missouri, have a larger number concentration and smaller median volume diameter of droplets than clouds that had not been affected by the urban plume. Likewise, a decrease in precipitation in polluted regions along the Front Range of the Rocky Mountains was discovered. In a modeling study, it was found that precipitation downwind of urban areas may be influenced by changes in aerosols as well as the

  13. Secondary organic aerosol formation from m-xylene photooxidation: The role of the phenolic product

    NASA Astrophysics Data System (ADS)

    Nakao, S.; Qi, L.; Clark, C.; Sato, K.; Tang, P.; Cocker, D.

    2009-12-01

    Aromatic hydrocarbons comprise a significant fraction of volatile organic compounds in the urban atmosphere and their importance as precursors to secondary organic aerosols (SOA) has been widely recognized. However, SOA formation from aromatics is one of the least understood processes among all the classes of volatile organic compounds (VOCs) due to its complex multi-generation reactions. Phenolic compounds have been identified as one of the significant products from OH-initiated reaction of aromatic hydrocarbons and are suggested to have a very high potential of SOA formation (e.g., cresol isomers having SOA yield 9~42%, Henry et al., Atmos. Environ., 2008). We examined the effect of extent of oxidation of m-xylene on chemical composition and physical properties using m-xylene and xylenol as reactants in environmental chamber experiments. Chemical composition of SOA was investigated by Liquid Chromatography / Time of Flight Mass Spectrometer (LC/ToF-MS), and Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). Physical properties of SOA such as density, volatility, and hygroscopicity were investigated by Aerosol Particle Mass Analyzer - Scanning Mobility Particle Sizer (APM-SMPS), Hygroscopicity/Volatility - Tandem Differential Mobility Analyzer (H/V-TDMA), respectively. Also SOA yields were obtained to evaluate the importance of xylenol as an intermediate product.

  14. Global aerosol formation and revised radiative forcing based on CERN CLOUD data

    NASA Astrophysics Data System (ADS)

    Gordon, H.; Carslaw, K. S.; Sengupta, K.; Dunne, E. M.; Kirkby, J.

    2015-12-01

    New particle formation in the atmosphere accounts for 40-70% of global cloud condensation nuclei (CCN). It is a complex process involving many precursors: sulphuric acid, ions, ammonia, and a wide range of natural and anthropogenic organic molecules. The CLOUD laboratory chamber experiment at CERN allows the contributions of different compounds to be disentangled in a uniquely well-controlled environment. To date, CLOUD has measured over 500 formation rates (Riccobono 2014, Kirkby 2015, Dunne 2015), under conditions representative of the planetary boundary layer and free troposphere. To understand the sensitivity of the climate to anthropogenic atmospheric aerosols, we must quantify historical aerosol radiative forcing. This requires an understanding of pre-industrial aerosol sources. Here we show pre-industrial nucleation over land usually involves organic molecules in the very first steps of cluster formation. The complexity of the organic vapors is a major challenge for theoretical approaches. Furthermore, with fewer sulphuric acid and ammonia molecules available to stabilize nucleating clusters in the pre-industrial atmosphere, ions from radon or galactic cosmic rays were probably more important than they are today. Parameterizations of particle formation rates determined in CLOUD as a function of precursor concentrations, temperature and ions are being used to refine the GLOMAP aerosol model (Spracklen 2005). The model simulates the growth, transport and loss of particles, translating nucleation rates to CCN concentrations. This allows us to better understand the effects of pre-industrial and present-day particle formation. I will present new results on global CCN based on CLOUD data, including estimates of anthropogenic aerosol radiative forcing, currently the most uncertain driver of climate change (IPCC 2013). References: Riccobono, F. et al, Science 344 717 (2014); Kirkby, J. et al, in review; Dunne, E. et al, in preparation; Spracklen, D. et al, Atmos

  15. Hydrocarbon nucleation and aerosol formation in Neptune's atmosphere.

    PubMed

    Moses, J I; Allen, M; Yung, Y L

    1992-10-01

    Photodissociation of methane at high altitude levels in Neptune's atmosphere leads to the production of complex hydrocarbon species such as acetylene (C2H2), ethane (C2H6), methylacetylene (CH3C2H), propane (C3H8), diacetylene (C4H2), and butane (C4H8). These gases diffuse to the lower stratosphere where temperatures are low enough to initiate condensation. Particle formation may not occur readily, however, as the vapor species become supersaturated. We present a theoretical analysis of particle formation mechanisms at conditions relevant to Neptune's troposphere and stratosphere and show that hydrocarbon nucleation is very inefficient under Neptunian conditions: saturation ratios much greater than unity are required for aerosol formation by either homogeneous, heterogeneous, or ion-induced nucleation. Homogeneous nucleation will not be important for any of the hydrocarbon species considered; however, both heterogeneous and ion-induced nucleation should be possible on Neptune for most of the above species. The relative effectiveness of heterogeneous and ion-induced nucleation depends on the physical and thermodynamic properties of the particular species, the abundance of the condensable species, the temperature at which the vapor becomes supersaturated, and the number and type of condensation nuclei or ions available. Typical saturation ratios required for observable particle formation rates on Neptune range from approximately 3 for heterogeneous nucleation of methane in the upper troposphere to greater than 1000 for heterogeneous nucleation of methylacetylene, diacetylene, and butane in the lower stratosphere. Thus, methane clouds may form slightly above, and stratospheric hazes far below, their saturation levels. When used in conjunction with the results of detailed models of atmospheric photochemistry, our nucleation models place realistic constraints on the altitude levels at which we expect hydrocarbon hazes or clouds to form on Neptune. PMID:11538166

  16. The stratospheric sulfate aerosol layer - Processes, models, observations, and simulations

    NASA Technical Reports Server (NTRS)

    Whitten, R. C.; Toon, O. B.; Turco, R. P.

    1980-01-01

    After briefly reviewing the observational data on the stratospheric sulfate aerosol layer, the chemical and physical processes that are likely to fix the properties of the layer are discussed. We present appropriate continuity equations for aerosol particles, and show how to solve the equations on a digital computer. Simulations of the unperturbed aerosol layer by various published models are discussed and the sensitivity of layer characteristics to variations in several aerosol model parameters is studied. We discuss model applications to anthropogenic pollution problems and demonstrate that moderate levels of aerospace activity (supersonic transport and Space Shuttle operations) will probably have only a negligible effect on global climate. Finally, we evaluate the possible climatic effect of a ten-fold increase in the atmospheric abundance of carbonyl sulfide.

  17. Aerosol size distribution and radiative forcing response to anthropogenically driven historical changes in biogenic secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    D'Andrea, S. D.; Acosta Navarro, J. C.; Farina, S. C.; Scott, C. E.; Rap, A.; Farmer, D. K.; Spracklen, D. V.; Riipinen, I.; Pierce, J. R.

    2015-03-01

    Emissions of biogenic volatile organic compounds (BVOCs) have changed in the past millennium due to changes in land use, temperature, and CO2 concentrations. Recent reconstructions of BVOC emissions have predicted that global isoprene emissions have decreased, while monoterpene and sesquiterpene emissions have increased; however, all three show regional variability due to competition between the various influencing factors. In this work, we use two modeled estimates of BVOC emissions from the years 1000 to 2000 to test the effect of anthropogenic changes to BVOC emissions on secondary organic aerosol (SOA) formation, global aerosol size distributions, and radiative effects using the GEOS-Chem-TOMAS (Goddard Earth Observing System; TwO-Moment Aerosol Sectional) global aerosol microphysics model. With anthropogenic emissions (e.g., SO2, NOx, primary aerosols) turned off and BVOC emissions changed from year 1000 to year 2000 values, decreases in the number concentration of particles of size Dp > 80 nm (N80) of > 25% in year 2000 relative to year 1000 were predicted in regions with extensive land-use changes since year 1000 which led to regional increases in the combined aerosol radiative effect (direct and indirect) of > 0.5 W m-2 in these regions. We test the sensitivity of our results to BVOC emissions inventory, SOA yields, and the presence of anthropogenic emissions; however, the qualitative response of the model to historic BVOC changes remains the same in all cases. Accounting for these uncertainties, we estimate millennial changes in BVOC emissions cause a global mean direct effect of between +0.022 and +0.163 W m-2 and the global mean cloud-albedo aerosol indirect effect of between -0.008 and -0.056 W m-2. This change in aerosols, and the associated radiative forcing, could be a largely overlooked and important anthropogenic aerosol effect on regional climates.

  18. Evolution of stratospheric sulfate aerosol from the 1991 Pinatubo eruption: Roles of aerosol microphysical processes

    NASA Astrophysics Data System (ADS)

    Sekiya, T.; Sudo, K.; Nagai, T.

    2016-03-01

    This study investigates the role of aerosol microphysics in stratospheric sulfate aerosol changes after the 1991 Mount Pinatubo eruption using an atmospheric general circulation model that is coupled interactively with a chemistry module and a modal aerosol microphysical module with three modes. Our model can reproduce the global mean stratospheric aerosol optical depth (SAOD) observed by the Stratospheric Aerosol and Gas Experiment (SAGE) II during June 1991 to January 1993. The model underestimates the observed SAOD before the eruption and after January 1993. The model also underestimates the integrated backscatter coefficient observed by ground-based lidar at Tsukuba, Naha, and Lauder. The modeled effective radius becomes larger (about 0.5 μm) and agrees with the balloon-borne measurements at Laramie, Wyoming (41°N, 105°W). We further investigate effects of the inclusion of evaporation along with the condensation processes and the inclusion of van der Waals and viscous forces in the coagulation processes. The inclusion of evaporation along with the condensation processes reduces the global mean effective radius by up to 0.04 μm and increases the global burden of stratospheric sulfate aerosols (about 15% in late 1993). The inclusion of van der Waals and viscous forces in the coagulation processes increases the global mean effective radius by up to 0.06-0.07 μm and decreases the global burden (15-30% in late 1993). The effects of van der Waals and viscous forces differ between two schemes. However, we do not conclude which simulation is superior because all simulations fall within error bars.

  19. Organic nitrate aerosol formation via NO3 + biogenic volatile organic compounds in the southeastern United States

    NASA Astrophysics Data System (ADS)

    Ayres, B. R.; Allen, H. M.; Draper, D. C.; Brown, S. S.; Wild, R. J.; Jimenez, J. L.; Day, D. A.; Campuzano-Jost, P.; Hu, W.; de Gouw, J.; Koss, A.; Cohen, R. C.; Duffey, K. C.; Romer, P.; Baumann, K.; Edgerton, E.; Takahama, S.; Thornton, J. A.; Lee, B. H.; Lopez-Hilfiker, F. D.; Mohr, C.; Wennberg, P. O.; Nguyen, T. B.; Teng, A.; Goldstein, A. H.; Olson, K.; Fry, J. L.

    2015-12-01

    Gas- and aerosol-phase measurements of oxidants, biogenic volatile organic compounds (BVOCs) and organic nitrates made during the Southern Oxidant and Aerosol Study (SOAS campaign, Summer 2013) in central Alabama show that a nitrate radical (NO3) reaction with monoterpenes leads to significant secondary aerosol formation. Cumulative losses of NO3 to terpenes are correlated with increase in gas- and aerosol-organic nitrate concentrations made during the campaign. Correlation of NO3 radical consumption to organic nitrate aerosol formation as measured by aerosol mass spectrometry and thermal dissociation laser-induced fluorescence suggests a molar yield of aerosol-phase monoterpene nitrates of 23-44 %. Compounds observed via chemical ionization mass spectrometry (CIMS) are correlated to predicted nitrate loss to BVOCs and show C10H17NO5, likely a hydroperoxy nitrate, is a major nitrate-oxidized terpene product being incorporated into aerosols. The comparable isoprene product C5H9NO5 was observed to contribute less than 1 % of the total organic nitrate in the aerosol phase and correlations show that it is principally a gas-phase product from nitrate oxidation of isoprene. Organic nitrates comprise between 30 and 45 % of the NOy budget during SOAS. Inorganic nitrates were also monitored and showed that during incidents of increased coarse-mode mineral dust, HNO3 uptake produced nitrate aerosol mass loading at a rate comparable to that of organic nitrate produced via NO3 + BVOCs.

  20. Introduction of the aerosol feedback process in the model BOLCHEM

    NASA Astrophysics Data System (ADS)

    Russo, Felicita; Maurizi, Alberto; D'Isidoro, Massimo; Tampieri, Francesco

    2010-05-01

    The effect of aerosols on the climate is still one of the least understood processes in the atmospheric science. The use of models to simulate the interaction between aerosols and climate can help understanding the physical processes that rule this interaction and hopefully predicting the future effects of anthropogenic aerosols on climate. In particular regional models can help study the effect of aerosols on the atmospheric dynamics on a local scale. In the work performed here we studied the feedback of aerosols in the radiative transfer calculation using the regional model BOLCHEM. The coupled meteorology-chemistry model BOLCHEM is based on the BOLAM meteorological model. The BOLAM dynamics is based on hydrostatic primitive equations, with wind components u and v, potential temperature ?, specific humidity q, surface pressure ps, as dependent variables. The vertical coordinate σ is terrain-following with variables distributed on a non-uniformly spaced staggered Lorentz grid. In the standard configuration of the model a collection of climatological aerosol optical depth values for each aerosol species is used for the radiative transfer calculation. In the feedback exercise presented here the aerosol optical depth was calculated starting from the modeled aerosol concentrations using an approximate Mie formulation described by Evans and Fournier (Evans, B.T.N. and G.R. Fournier, Applied Optics, 29, 1990). The calculation was done separately for each species and aerosol size distribution. The refractive indexes for the different species were taken from P. Stier's work (P. Stier et al., Atmos. Chem. Phys., 5, 2005) and the aerosol extinction obtained by Mie calculation were compared with the results reported by OPAC (M. Hess et al., Bull. Am. Met. Soc., 79, 1998). Two model runs, with and without the aerosol feedback, were performed to study the effects of the feedback on meteorological parameters. As a first setup of the model runs we selected a domain over the

  1. Comprehensive Mapping and Characteristic Regimes of Aerosol Effects on the Formation and Evolution of Pyro-Convective Clouds

    SciTech Connect

    Chang, Di; Cheng, Yafang; Reutter, Philipp; Trentmann, Jrg; Burrows, Susannah M.; Spichtinger, Peter; Nordmann, Stephan; Andreae, M. O.; Poschl, U.; Su, Hang

    2015-09-21

    A recent parcel model study (Reutter et al., 2009) showed three deterministic regimes of initial cloud droplet formation characterized by ratios of aerosol concentrations (NCN) to updraft velocities. This analysis, however, did not reveal how these regimes evolve during the subsequent development of clouds. To address this issue, we employed the Active Tracer High Resolution Atmospheric Model with full microphysics and extended the model simulation from the cloud base to the entire column of a single pyro-convective mixed-phase cloud. A series of 2-D simulations (over 1000) were performed over a wide range of NCN and dynamic conditions. The integrated concentration of hydrometeors over the full spatial and temporal scales was used to evaluate the aerosol and dynamic effects. The results show that: (1) the three regimes for cloud condensation nuclei (CCN) activation in the parcel model (namely aerosol-limited, updraft-limited, and transitional regimes) still exist within our simulations, but the net production of raindrops and frozen particles occurs mostly within the updraft-limited regime. (2) Generally, elevated aerosols enhance the formation of cloud droplets and frozen particles. The response of raindrops and precipitation to aerosols is more complicated and can be either positive or negative as a function of aerosol concentrations. The most negative effect was found for a value of NCN of ~1000 to 3000 cm-3. (3) The employment of nonlinear (dynamic and microphysical) processes leads to a more complicated and unstable response of clouds to aerosol perturbation compared with the parcel model results. Therefore, conclusions drawn from limited case studies might require caveats regarding their representativeness, and high-resolution sensitivity studies over a wide range of aerosol concentrations and updraft velocities are highly recommended.

  2. Isotopic mass independent signature of black crusts: a proxy for atmospheric aerosols formation in the Paris area (France).

    NASA Astrophysics Data System (ADS)

    Genot, Isabelle; Martin, Erwan; Yang, David Au; De Rafelis, Marc; Cartigny, Pierre; Wing, Boswell; Le Gendre, Erwann; Bekki, Slimane

    2016-04-01

    In view of the negative forcing of the sulfate aerosols on climate, a more accurate understanding of the formation of these particles is crucial. Indeed, despite the knowledge of their effects, uncertainties remain regarding the formation of sulfate aerosols, particularly the oxidation processes of S-bearing gases. Since the discovery of oxygen and sulfur mass independent fractionation (O- and S-MIF) processes on Earth, the sulfate isotopic composition became essential to investigate the atmospheric composition evolution and its consequences on the climate and the biosphere. Large amount of S-bearing compounds (SO2 mainly) is released into the atmosphere by anthropogenic and natural sources. Their oxidation in the atmosphere generates sulfate aerosols, H2SO4, which precipitate on the earth surface mainly as acid rain. One consequence of this precipitation is the formation of black crust on buildings made of carbonate stones. Indeed the chemical alteration of CaCO3 by H2SO4 leads to gypsum (CaSO4·2H2O) concretions on building walls. Associated to other particles, gypsum forms black-crusts. Therefore, black crusts acts as 'sulfate aerosol traps', meaning that their isotopic composition reveals the composition and thus the source and formation processes of sulfate aerosols in the atmosphere in a specific region. In this study we collected 37 black crusts on a 300km NW-SE profile centered on Paris (France). In our samples, sulfate represent 40wt.% and other particles 60wt.% of the black crusts. After sulfate extraction from each samples we measured their O- and S-isotopes composition. Variations of about 10‰ in δ18O and δ34S are observed and both O-MIF (Δ17O from 0 to 1.4‰) and S-MIF (Δ33S from 0 to -0.3‰) compositions have been measured. In regards to these compositions we can discuss the source and formation (oxidation pathways) of the sulfate aerosols in troposphere above the Paris region that covers urban, rural and coastal environments. Furthermore

  3. Representing Cloud Processing of Aerosol in Numerical Models

    SciTech Connect

    Mechem, D.B.; Kogan, Y.L.

    2005-03-18

    The satellite imagery in Figure 1 provides dramatic examples of how aerosol influences the cloud field. Aerosol from ship exhaust can serve as nucleation centers in otherwise cloud-free regions, forming ship tracks (top image), or can enhance the reflectance/albedo in already cloudy regions. This image is a demonstration of the first indirect effect, in which changes in aerosol modulate cloud droplet radius and concentration, which influences albedo. It is thought that, through the effects it has on precipitation (drizzle), aerosol can also affect the structure and persistence of planetary boundary layer (PBL) clouds. Regions of cellular convection, or open pockets of cloudiness (bottom image) are thought to be remnants of strongly drizzling PBL clouds. Pockets of Open Cloudiness (POCs) (Stevens et al. 2005) or Albrecht's ''rifts'' are low cloud fraction regions characterized by anomalously low aerosol concentrations, implying they result from precipitation. These features may in fact be a demonstration of the second indirect effect. To accurately represent these clouds in numerical models, we have to treat the coupled cloud-aerosol system. We present the following series of mesoscale and large eddy simulation (LES) experiments to evaluate the important aspects of treating the coupled cloud-aerosol problem. 1. Drizzling and nondrizzling simulations demonstrate the effect of drizzle on a mesoscale forecast off the California coast. 2. LES experiments with explicit (bin) microphysics gauge the relative importance of the shape of the aerosol spectrum on the 3D dynamics and cloud structure. 3. Idealized mesoscale model simulations evaluate the relative roles of various processes, sources, and sinks.

  4. Aqueous phase processing of secondary organic aerosol from isoprene photooxidation

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Monod, A.; Tritscher, T.; Praplan, A. P.; DeCarlo, P. F.; Temime-Roussel, B.; Quivet, E.; Marchand, N.; Dommen, J.; Baltensperger, U.

    2012-07-01

    Transport of reactive air masses into humid and wet areas is highly frequent in the atmosphere, making the study of aqueous phase processing of secondary organic aerosol (SOA) very relevant. We have investigated the aqueous phase processing of SOA generated from gas-phase photooxidation of isoprene using a smog chamber. The SOA collected on filters was extracted by water and subsequently oxidized in the aqueous phase either by H2O2 under dark conditions or by OH radicals in the presence of light, using a photochemical reactor. Online and offline analytical techniques including SMPS, HR-AMS, H-TDMA, TD-API-AMS, were employed for physical and chemical characterization of the chamber SOA and nebulized filter extracts. After aqueous phase processing, the particles were significantly more hygroscopic, and HR-AMS data showed higher signal intensity at m/z 44 and a lower signal intensity at m/z 43, thus showing the impact of aqueous phase processing on SOA aging, in good agreement with a few previous studies. Additional offline measurement techniques (IC-MS, APCI-MS2 and HPLC-APCI-MS) permitted the identification and quantification of sixteen individual chemical compounds before and after aqueous phase processing. Among these compounds, small organic acids (including formic, glyoxylic, glycolic, butyric, oxalic and 2,3-dihydroxymethacrylic acid (i.e. 2-methylglyceric acid)) were detected, and their concentrations significantly increased after aqueous phase processing. In particular, the aqueous phase formation of 2-methylglyceric acid and trihydroxy-3-methylbutanal was correlated with the consumption of 2,3-dihydroxy-2-methyl-propanal, and 2-methylbutane-1,2,3,4-tetrol, respectively, and an aqueous phase mechanism was proposed accordingly. Overall, the aging effect observed here was rather small compared to previous studies, and this limited effect could possibly be explained by the lower liquid phase OH concentrations employed here, and/or the development of oligomers

  5. Primary and secondary aerosols in Beijing in winter: sources, variations and processes

    NASA Astrophysics Data System (ADS)

    Sun, Yele; Du, Wei; Fu, Pingqing; Wang, Qingqing; Li, Jie; Ge, Xinlei; Zhang, Qi; Zhu, Chunmao; Ren, Lujie; Xu, Weiqi; Zhao, Jian; Han, Tingting; Worsnop, Douglas R.; Wang, Zifa

    2016-07-01

    Winter has the worst air pollution of the year in the megacity of Beijing. Despite extensive winter studies in recent years, our knowledge of the sources, formation mechanisms and evolution of aerosol particles is not complete. Here we have a comprehensive characterization of the sources, variations and processes of submicron aerosols that were measured by an Aerodyne high-resolution aerosol mass spectrometer from 17 December 2013 to 17 January 2014 along with offline filter analysis by gas chromatography/mass spectrometry. Our results suggest that submicron aerosols composition was generally similar across the winter of different years and was mainly composed of organics (60 %), sulfate (15 %) and nitrate (11 %). Positive matrix factorization of high- and unit-mass resolution spectra identified four primary organic aerosol (POA) factors from traffic, cooking, biomass burning (BBOA) and coal combustion (CCOA) emissions as well as two secondary OA (SOA) factors. POA dominated OA, on average accounting for 56 %, with CCOA being the largest contributor (20 %). Both CCOA and BBOA showed distinct polycyclic aromatic hydrocarbons (PAHs) spectral signatures, indicating that PAHs in winter were mainly from coal combustion (66 %) and biomass burning emissions (18 %). BBOA was highly correlated with levoglucosan, a tracer compound for biomass burning (r2 = 0.93), and made a considerable contribution to OA in winter (9 %). An aqueous-phase-processed SOA (aq-OOA) that was strongly correlated with particle liquid water content, sulfate and S-containing ions (e.g. CH2SO2+) was identified. On average aq-OOA contributed 12 % to the total OA and played a dominant role in increasing oxidation degrees of OA at high RH levels (> 50 %). Our results illustrate that aqueous-phase processing can enhance SOA production and oxidation states of OA as well in winter. Further episode analyses highlighted the significant impacts of meteorological parameters on aerosol composition, size

  6. Secondary organic aerosol formation from road vehicle emissions

    NASA Astrophysics Data System (ADS)

    Pieber, Simone M.; Platt, Stephen M.; El Haddad, Imad; Zardini, Alessandro A.; Suarez-Bertoa, Ricardo; Slowik, Jay G.; Huang, Ru-Jin; Hellebust, Stig; Temime-Roussel, Brice; Marchand, Nicolas; Drinovec, Luca; Mocnik, Grisa; Baltensperger, Urs; Astorga, Covadogna; Prévôt, André S. H.

    2014-05-01

    Organic aerosol particles (OA) are a major fraction of the submicron particulate matter. OA consists of directly emitted primary (POA) and secondary OA (SOA). SOA is formed in-situ in the atmosphere via the reaction of volatile organic precursors. The partitioning of SOA species depends not only on the exposure to oxidants, but for instance also on temperature, relative humidity (RH), and the absorptive mass chemical composition (presence of inorganics) and concentration. Vehicle exhaust is a known source of POA and likely contributes to SOA formation in urban areas [1;2]. This has recently been estimated by (i) analyzing ambient data from urban areas combined with fuel consumption data [3], (ii) by examining the chemical composition of raw fuels [4], or (iii) smog chamber studies [5, 6]. Contradictory and thus somewhat controversial results in the relative quantity of SOA from diesel vs. gasoline vehicle exhaust were observed. In order to elucidate the impact of variable ambient conditions on the potential SOA formation of vehicle exhaust, and its relation to the emitted gas phase species, we studied SOA formed from the exhaust of passenger cars and trucks as a function of fuel and engine type (gasoline, diesel) at different temperatures (T 22 vs. -7oC) and RH (40 vs. 90%), as well as with different levels of inorganic salt concentrations. The exhaust was sampled at the tailpipe during regulatory driving cycles on chassis dynamometers, diluted (200 - 400x) and introduced into the PSI mobile smog chamber [6], where the emissions were subjected to simulated atmospheric ageing. Particle phase instruments (HR-ToF-AMS, aethalometers, CPC, SMPS) and gas phase instruments (PTR-TOF-MS, CO, CO2, CH4, THC, NH3 and other gases) were used online during the experiments. We found that gasoline emissions, because of cold starts, were generally larger than diesel, especially during cold temperatures driving cycles. Gasoline vehicles also showed the highest SOA formation

  7. FERMENTATION PROCESS MONITORING THROUGH MEASUREMENT OF AEROSOL RELEASE

    EPA Science Inventory

    Fermentation involves many complex biological processes some of which are sometimes difficult to monitor. n this study, aerosol measurement was explored as an additional technique for monitoring a batch aerobic fermentation process using Escherichia coli strain W3110. sing this t...

  8. Monte Carlo simulation of two-component aerosol processes

    NASA Astrophysics Data System (ADS)

    Huertas, Jose Ignacio

    Aerosol processes have been extensively used for production of nanophase materials. However when temperatures and number densities are high, particle agglomeration is a serious drawback for these techniques. This problem can be addressed by encapsulating the particles with a second material before they agglomerate. These particles will agglomerate but the primary particles within them will not. When the encapsulation is later removed, the resulting powder will contain only weakly agglomerated particles. To demonstrate the applicability of the particle encapsulation method for the production of high purity unagglomerated nanosize materials, tungsten (W) and tungsten titanium alloy (W-Ti) particles were synthesized in a sodium/halide flame. The particles were characterized by XRD, SEM, TEM and EDAX. The particles appeared unagglomerated, cubic and hexagonal in shape, and had a size of 30-50 nm. No contamination was detected even after extended exposure to atmospheric conditions. The nanosized W and W-Ti particles were consolidated into pellets of 6 mm diameter and 6-8 mm long. Hardness measurements indicate values 4 times that of conventional tungsten. 100% densification was achieved by hipping the samples. To study the particle encapsulation method, a code to simulate particle formation in two component aerosols was developed. The simulation was carried out using a Monte Carlo technique. This approach allowed for the treatment of both probabilistic and deterministic events. Thus, the coagulation term of the general dynamic equation (GDE) was Monte Carlo simulated, and the condensation term was solved analytically and incorporated into the model. The model includes condensation, coagulation, sources, and sinks for two-component aerosol processes. The Kelvin effect has been included in the model as well. The code is general and does not suffer from problems associated with mass conservation, high rates of condensation and approximations on particle composition. It has

  9. Secondary organic aerosols - formation and ageing studies in the SAPHIR chamber

    NASA Astrophysics Data System (ADS)

    Spindler, Christian; Müller, Lars; Trimborn, Achim; Mentel, Thomas; Hoffmann, Thorsten

    2010-05-01

    Secondary organic aerosol (SOA) formation from oxidation products of biogenic volatile organic compounds (BVOC) constitutes an important coupling between vegetation, atmospheric chemistry, and climate change. Such secondary organic aerosol components play an important role in particle formation in Boreal regions ((Laaksonen et al., 2008)), where biogenic secondary organic aerosols contribute to an overall negative radiative forcing, thus a negative feed back between vegetation and climate warming (Spracklen et al., 2008). Within the EUCAARI project we investigated SOA formation from mixtures of monoterpenes (and sesquiterpenes) as emitted typically from Boreal tree species in Southern Finland. The experiments were performed in the large photochemical reactor SAPHIR in Juelich at natural light and oxidant levels. Oxidation of the BVOC mixtures and SOA formation was induced by OH radicals and O3. The SOA was formed on the first day and then aged for another day. The resulting SOA was characterized by HR-ToF-AMS, APCI-MS, and filter samples with subsequent H-NMR, GC-MS and HPLC-MS analysis. The chemical evolution of the SOA is characterized by a fast increase of the O/C ratio during the formation process on the first day, stable O/C ratio during night, and a distinctive increase of O/C ratio at the second day. The increase of the O/C ratio on the second day is highly correlated to the OH dose and is accompanied by condensational growth of the particles. We will present simultaneous factor analysis of AMS times series (PMF, Ulbrich et al., 2009 ) and direct measurements of individual chemical species. We found that four factors were needed to represent the time evolution of the SOA composition (in the mass spectra) if oxidation by OH plays a mayor role. Corresponding to these factors we observed individual, representative molecules with very similar time behaviour. The correlation between tracers and AMS factors is astonishingly good as the molecular tracers

  10. Halogen-induced organic aerosol (XOA) formation and decarboxylation of carboxylic acids by reactive halogen species - a time-resolved aerosol flow-reactor study

    NASA Astrophysics Data System (ADS)

    Ofner, Johannes; Zetzsch, Cornelius

    2013-04-01

    Reactive halogen species (RHS) are released to the atmosphere from various sources like photo-activated sea-salt aerosol and salt lakes. Recent studies (Cai et al., 2006 and 2008, Ofner et al., 2012) indicate that RHS are able to interact with SOA precursors similarly to common atmospheric oxidizing gases like OH radicals and ozone. The reaction of RHS with SOA precursors like terpenes forms so-called halogen-induced organic aerosol (XOA). On the other hand, RHS are also able to change the composition of functional groups, e.g. to initiate the decarboxylation of carboxylic acids (Ofner et al., 2012). The present study uses a 50 cm aerosol flow-reactor, equipped with a solar simulator to investigate the time-resolved evolution and transformation of vibrational features in the mid-infrared region. The aerosol flow-reactor is coupled to a home-made multi-reflection cell (Ofner et al., 2010), integrated into a Bruker IFS 113v FTIR spectrometer. The reactor is operated with an inlet feed (organic compound) and a surrounding feed (reactive halogen species). The moveable inlet of the flow reactor allows us to vary reaction times between a few seconds and up to about 3 minutes. Saturated vapours of different SOA precursors and carboxylic acids were fed into the flow reactor using the moveable inlet. The surrounding feed inside the flow reactor was a mixture of zero air with molecular chlorine as the precursor for the formation of reactive halogen species. Using this setup, the formation of halogen-induced organic aerosol could be monitored with a high time resolution using FTIR spectroscopy. XOA formation is characterized by hydrogen-atom abstraction, carbon-chlorine bond formation and later, even formation of carboxylic acids. Several changes of the entire structure of the organic precursor, caused by the reaction of RHS, are visible. While XOA formation is a very fast process, the decarboxylation of carboxylic acids, induced by RHS is rather slow. However, XOA formation

  11. Organosulfate formation during the uptake of pinonaldehyde on acidic sulfate aerosols

    NASA Astrophysics Data System (ADS)

    Liggio, John; Li, Shao-Meng

    2006-07-01

    Organosulfates are observed in studies of pinonaldehyde reactions with acidic sulfate aerosols using aerosol mass spectrometry, during which a significant fraction of the pinonaldehyde reaction products were found to consist of organosulfate compounds that account for 6-51% of the initial SO4= mass. Resultant aerosol mass spectra were consistent with proposed sulfate ester mechanisms, which likely form stable products. The existence of organosulfates was also confirmed in studies of the reaction system in bulk solution. The formation of organosulfates suggests that conventional inorganic SO4= chemical analysis may underestimate total SO4= mass in ambient aerosols.

  12. Atmospheric Aerosol Nucleation: Formation of Sub-3 nm Particles and Their Subsequent Growth

    NASA Astrophysics Data System (ADS)

    Lee, S.

    2012-12-01

    Aerosol nucleation is an important step in the chain reaction that lead to cloud formation but the nucleation mechanisms are poorly understand. Most of the previous aerosol nucleation studies were based on measurements of particles, typically larger than 3 nm, so it was unclear how gas phase molecules nucleate to form clusters and how they further grow to become aerosol particles. In this presentation, we will show recent results of aerosol nucleation based on direct measurements of sub-3 nm particles. We will show laboratory studies of multicomponent nucleation involving sulfuric acid, ammonia, and organic amines and atmospheric observations made in various atmospheric conditions (biogenic, marine, and less polluted continental atmosphere).

  13. Secondary Organic Aerosol formation from the gas-phase ozonolysis of 3-methylcatechol and 4-methylcatechol

    NASA Astrophysics Data System (ADS)

    Coeur-Tourneur, Cécile; Foulon, Valentine; Laréal, Michel; Cassez, Andy; Zhao, Weixiong

    2010-05-01

    Secondary Organic Aerosol (SOA) formation during the ozonolysis of 3-methylcatechol (3-methyl-1,2-dihydroxybenzene) and 4-methylcatechol (3-methyl-1,2-dihydroxybenzene) was investigated using a simulation chamber (8 m3) at atmospheric pressure, room temperature (294 ± 2 K) and low relative humidity (5-10%). The initial mixing ratios were as follows (in ppb): 3-methylcatechol (194-1059), 4-methylcatechol (204-1188) and ozone (93-531). The ozone and methylcatechol concentrations were followed by UV photometry and GC-FID (Gas Chromatography - Flame ionization detector), respectively and the aerosol production was monitored using a SMPS (Scanning Mobility Particle Sizer). The SOA yields (Y) were determined as the ratio of the suspended aerosol mass corrected for wall losses (Mo) to the total reacted methylcatechol concentrations assuming a particle density of 1.4 g cm-3. The aerosol formation yield increases as the initial methylcatechol concentration increases, and leads to aerosol yields ranging from 32% to 67% and from 30% to 64% for 3-methylcatechol and 4-methylcatechol, respectively. Y is a strong function of Mo and the organic aerosol formation can be expressed by a one-product gas/particle partitioning absorption model. These data are comparable to those published in a recent study on secondary organic aerosol formation from catechol ozonolysis. To our knowledge, this work represents the first investigation of SOA formation from the ozone reaction with methylcatechols.

  14. Organic nitrate aerosol formation via NO3 + BVOC in the Southeastern US

    NASA Astrophysics Data System (ADS)

    Ayres, B. R.; Allen, H. M.; Draper, D. C.; Brown, S. S.; Wild, R. J.; Jimenez, J. L.; Day, D. A.; Campuzano-Jost, P.; Hu, W.; de Gouw, J.; Koss, A.; Cohen, R. C.; Duffey, K. C.; Romer, P.; Baumann, K.; Edgerton, E.; Takahama, S.; Thornton, J. A.; Lee, B. H.; Lopez-Hilfiker, F. D.; Mohr, C.; Goldstein, A. H.; Olson, K.; Fry, J. L.

    2015-06-01

    Gas- and aerosol-phase measurements of oxidants, biogenic volatile organic compounds (BVOC) and organic nitrates made during the Southern Oxidant and Aerosol Study (SOAS campaign, Summer 2013) in central Alabama show that nitrate radical (NO3) reaction with monoterpenes leads to significant secondary aerosol formation. Cumulative losses of NO3 to terpenes are calculated and correlated to gas and aerosol organic nitrate concentrations made during the campaign. Correlation of NO3 radical consumption to organic nitrate aerosol as measured by Aerosol Mass Spectrometry (AMS) and Thermal Dissociation - Laser Induced Fluorescence (TD-LIF) suggests a range of molar yield of aerosol phase monoterpene nitrates of 23-44 %. Compounds observed via chemical ionization mass spectrometry (CIMS) are correlated to predicted nitrate loss to terpenes and show C10H17NO5, likely a hydroperoxy nitrate, is a major nitrate oxidized terpene product being incorporated into aerosols. The comparable isoprene product C5H9NO5 was observed to contribute less than 0.5 % of the total organic nitrate in the aerosol-phase and correlations show that it is principally a gas-phase product from nitrate oxidation of isoprene. Organic nitrates comprise between 30 and 45 % of the NOy budget during SOAS. Inorganic nitrates were also monitored and showed that during incidents of increased coarse-mode mineral dust, HNO3 uptake produced nitrate aerosol mass loading comparable to that of organic nitrate produced via NO3 + BVOC.

  15. Rural continental aerosol properties and processes observed during the Hohenpeissenberg Aerosol Characterization Experiment (HAZE2002)

    NASA Astrophysics Data System (ADS)

    Hock, N.; Schneider, J.; Borrmann, S.; Römpp, A.; Moortgat, G.; Franze, T.; Schauer, C.; Pöschl, U.; Plass-Dülmer, C.; Berresheim, H.

    2007-06-01

    particles. The average ratio of OM1 to OC2.5 was 2, indicating a high proportion of heteroelements in the organic fraction of the sampled rural aerosol. This is consistent with the high ratio of oxygenated organic aerosol (OOA) over hydrocarbon-like organic aerosol (HOA) inferred from the AMS results (4:1), and also with the high abundance of proteins (~3%) indicating a high proportion of primary biological material (~30%) in PM2.5. Moreover, the low abundance of PAHs (<1 ng m-3) and EC (<1 μg m-3) in PM2.5 confirm a low contribution of combustion emissions, which are usually also major sources for HOA. Slightly enhanced HOA concentrations indicating fresh anthropogenic emissions were observed during a period when air masses were advected from the densely populated Po Valley, Italy. Detection of several secondary organic aerosol compounds (dicarboxylic acids) and their precursors (monoterpenes) confirmed the finding that secondary aerosol from natural sources was an important aerosol constituent. A sharp decrease of the short lived monoterpenes indicated that during night-time the measurement station was isolated from ground emission sources by a stable inversion layer. Nighttime values can therefore be regarded to represent regional or long range transport. New particle formation was observed almost every day with particle number concentrations exceeding 104 cm-3 (nighttime background level 1000-2000 cm-3). Closer inspection of two major events indicated that ternary H2SO4/H2O/NH3 nucleation triggered particle formation and that condensation of both organic and inorganic species contributed to particle growth.

  16. Real-Time Secondary Aerosol Formation Measurements using a Photooxidation Reactor (PAM) and AMS in Urban Air and Biomass Smoke

    NASA Astrophysics Data System (ADS)

    Ortega, A. M.; Cubison, M.; Hayes, P. L.; Brune, W. H.; Hu, W.; Flynn, J. H.; Grossberg, N.; Lefer, B. L.; Alvarez, S. L.; Rappenglueck, B.; Bon, D.; Graus, M.; Warneke, C.; Gilman, J. B.; Kuster, W. C.; De Gouw, J. A.; Sullivan, A. P.; Jimenez, J. L.

    2011-12-01

    Recent field studies reveal large formation of secondary organic aerosol (SOA) under urban polluted ambient conditions, while SOA formation in biomass burning smoke appears to be variable but sometimes substantial. To study this formation in real-time, a Potential Aerosol Mass (PAM) photooxidation reactor was deployed with submicron aerosol size and chemical composition measurements during two studies: FLAME-3, a biomass-burning study at USDA Fire Sciences Laboratory in Missoula in 2009, MT and CalNex-LA in Pasadena, CA in 2010. A high-resolution aerosol mass spectrometer (HR-AMS) and a scanning mobility particle sizer (SMPS) alternated sampling unprocessed and PAM-processed aerosol. The PAM reactor produces OH concentrations up to 4 orders of magnitude higher than in ambient air, achieving equivalent aging of ~2 weeks in 5 minutes of processing. The OH intensity was also scanned every 20 min. in both field studies. Results show the value of PAM-AMS as a tool for in-situ evaluation of changes in OA concentration and composition due to SOA formation and POA oxidation. In FLAME-3, net SOA formation was variable among smokes from different biomasses; however, OA oxidation was always observed. The average SOA enhancement factor was 1.7 +/- 0.5 of the initial POA. Reactive VOCs such as toluene, monoterpenes, and acetaldehyde, as measured from a PIT-MS, decreased with increased PAM processing; however, formic acid, acetone, and some unidentified OVOCs increased after significant exposure to high oxidant levels suggesting multigenerational chemistry. Results from CalNex-LA show enhancement of SOA and inorganic aerosol from gas-phase precursors. This enhanced OA mass increase from PAM processing is maximum at night and correlates with trimethylbenzene concentrations, which indicates the dominance of short-lived SOA precursors in the LA Basin. A traditional SOA model with mostly aromatic precursors underpredicts the amount of SOA formed by about an order-of-magnitude, which

  17. Secondary organic aerosol formation from the irradiation of simulated automobile exhaust.

    PubMed

    Kleindienst, T E; Corse, E W; Li, W; McIver, C D; Conver, T S; Edney, E O; Driscoll, D J; Speer, R E; Weathers, W S; Tejada, S B

    2002-03-01

    A laboratory study was conducted to evaluate the potential for secondary organic aerosol formation from emissions from automotive exhaust. The goal was to determine to what extent photochemical oxidation products of these hydrocarbons contribute to secondary organic aerosol (SOA) and how well their formation is described by recently developed models for SOA formation. The quality of a surrogate was tested by comparing its reactivity with that from irradiations of authentic automobile exhaust. Experiments for secondary particle formation using the surrogate were conducted in a fixed volume reactor operated in a dynamic mode. The mass concentration of the aerosol was determined from measurements of organic carbon collected on quartz filters and was corrected for the presence of hydrogen, nitrogen, and oxygen atoms in the organic species. A functional group analysis of the aerosol made by Fourier transform infrared (FTIR) spectroscopy indicated PMID:11924857

  18. Mechanisms of Formation of Secondary Organic Aerosols and Implications for Global Radiative Forcing

    SciTech Connect

    John H. Seinfeld

    2011-12-08

    Organic material constitutes about 50% of global atmospheric aerosol mass, and the dominant source of organic aerosol is the oxidation of volatile hydrocarbons, to produce secondary organic aerosol (SOA). Understanding the formation of SOA is crucial to predicting present and future climate effects of atmospheric aerosols. The goal of this program is to significantly increase our understanding of secondary organic aerosol (SOA) formation in the atmosphere. Ambient measurements indicate that the amount of SOA in the atmosphere exceeds that predicted in current models based on existing laboratory chamber data. This would suggest that either the SOA yields measured in laboratory chambers are understated or that all major organic precursors have not been identified. In this research program we are systematically exploring these possibilities.

  19. Potential source regions and processes of aerosol in the summer Arctic

    NASA Astrophysics Data System (ADS)

    Heintzenberg, J.; Leck, C.; Tunved, P.

    2015-06-01

    Sub-micrometer particle size distributions measured during four summer cruises of the Swedish icebreaker Oden 1991, 1996, 2001, and 2008 were combined with dimethyl sulfide gas data, back trajectories, and daily maps of pack ice cover in order to investigate source areas and aerosol formation processes of the boundary layer aerosol in the central Arctic. With a clustering algorithm, potential aerosol source areas were explored. Clustering of particle size distributions together with back trajectories delineated five potential source regions and three different aerosol types that covered most of the Arctic Basin: marine, newly formed and aged particles over the pack ice. Most of the pack ice area with < 15% of open water under the trajectories exhibited the aged aerosol type with only one major mode around 40 nm. For newly formed particles to occur, two conditions had to be fulfilled over the pack ice: the air had spent 10 days while traveling over ever more contiguous ice and had traveled over less than 30% open water during the last 5 days. Additionally, the air had experienced more open water (at least twice as much as in the cases of aged aerosol) during the last 4 days before arrival in heavy ice conditions at Oden. Thus we hypothesize that these two conditions were essential factors for the formation of ultrafine particles over the central Arctic pack ice. In a comparison the Oden data with summer size distribution data from Alert, Nunavut, and Mt. Zeppelin, Spitsbergen, we confirmed the Oden findings with respect to particle sources over the central Arctic. Future more frequent broken-ice or open water patches in summer will spur biological activity in surface water promoting the formation of biological particles. Thereby low clouds and fogs and subsequently the surface energy balance and ice melt may be affected.

  20. Dicarboxylic acids, oxoacids, benzoic acid, α-dicarbonyls, WSOC, OC, and ions in spring aerosols from Okinawa Island in the western North Pacific Rim: size distributions and formation processes

    NASA Astrophysics Data System (ADS)

    Deshmukh, Dhananjay K.; Kawamura, Kimitaka; Lazaar, Manuel; Kunwar, Bhagawati; Boreddy, Suresh K. R.

    2016-04-01

    Size-segregated aerosols (nine stages from < 0.43 to > 11.3 µm in diameter) were collected at Cape Hedo, Okinawa, in spring 2008 and analyzed for water-soluble diacids (C2-C12), ω-oxoacids (ωC2-ωC9), pyruvic acid, benzoic acid, and α-dicarbonyls (C2-C3) as well as water-soluble organic carbon (WSOC), organic carbon (OC), and major ions (Na+, NH4+, K+, Mg2+, Ca2+, Cl-, NO3-, SO42-, and MSA-). In all the size-segregated aerosols, oxalic acid (C2) was found to be the most abundant species, followed by malonic and succinic acids, whereas glyoxylic acid (ωC2) was the dominant oxoacid and glyoxal (Gly) was more abundant than methylglyoxal. Diacids (C2-C5), ωC2, and Gly as well as WSOC and OC peaked at fine mode (0.65-1.1 µm) whereas azelaic (C9) and 9-oxononanoic (ωC9) acids peaked at coarse mode (3.3-4.7 µm). Sulfate and ammonium were enriched in fine mode, whereas sodium and chloride were in coarse mode. Strong correlations of C2-C5 diacids, ωC2 and Gly with sulfate were observed in fine mode (r = 0.86-0.99), indicating a commonality in their secondary formation. Their significant correlations with liquid water content in fine mode (r = 0.82-0.95) further suggest an importance of the aqueous-phase production in Okinawa aerosols. They may also have been directly emitted from biomass burning in fine mode as supported by strong correlations with potassium (r = 0.85-0.96), which is a tracer of biomass burning. Bimodal size distributions of longer-chain diacid (C9) and oxoacid (ωC9) with a major peak in the coarse mode suggest that they were emitted from the sea surface microlayers and/or produced by heterogeneous oxidation of biogenic unsaturated fatty acids on sea salt particles.

  1. Importance of Physico-Chemical Properties of Aerosols in the Formation of Arctic Ice Clouds

    NASA Astrophysics Data System (ADS)

    Keita, S. A.; Girard, E.

    2014-12-01

    Ice clouds play an important role in the Arctic weather and climate system but interactions between aerosols, clouds and radiation are poorly understood. Consequently, it is essential to fully understand their properties and especially their formation process. Extensive measurements from ground-based sites and satellite remote sensing reveal the existence of two Types of Ice Clouds (TICs) in the Arctic during the polar night and early spring. TIC-1 are composed by non-precipitating very small (radar-unseen) ice crystals whereas TIC-2 are detected by both sensors and are characterized by a low concentration of large precipitating ice crystals. It is hypothesized that TIC-2 formation is linked to the acidification of aerosols, which inhibit the ice nucleating properties of ice nuclei (IN). As a result, the IN concentration is reduced in these regions, resulting to a smaller concentration of larger ice crystals. Over the past 10 years, several parameterizations of homogeneous and heterogeneous ice nucleation have been developed to reflect the various physical and chemical properties of aerosols. These parameterizations are derived from laboratory studies on aerosols of different chemical compositions. The parameterizations are also developed according to two main approaches: stochastic (that nucleation is a probabilistic process, which is time dependent) and singular (that nucleation occurs at fixed conditions of temperature and humidity and time-independent). This research aims to better understand the formation process of TICs using a newly-developed ice nucleation parameterizations. For this purpose, we implement some parameterizations (2 approaches) into the Limited Area version of the Global Multiscale Environmental Model (GEM-LAM) and use them to simulate ice clouds observed during the Indirect and Semi-Direct Arctic Cloud (ISDAC) in Alaska. We use both approaches but special attention is focused on the new parameterizations of the singular approach. Simulation

  2. Dissipative processes in galaxy formation.

    PubMed Central

    Silk, J

    1993-01-01

    A galaxy commences its life in a diffuse gas cloud that evolves into a predominantly stellar aggregation. Considerable dissipation of gravitational binding energy occurs during this transition. I review here the dissipative processes that determine the critical scales of luminous galaxies and the generation of their morphology. The universal scaling relations for spirals and ellipticals are shown to be sensitive to the history of star formation. Semiphenomenological expressions are given for star-formation rates in protogalaxies and in starbursts. Implications are described for elliptical galaxy formation and for the evolution of disk galaxies. PMID:11607396

  3. Secondary Aerosol Formation in the planetary boundary layer observed by aerosol mass spectrometry on a Zeppelin NT

    NASA Astrophysics Data System (ADS)

    Rubach, Florian; Trimborn, Achim; Mentel, Thomas; Wahner, Andreas; Zeppelin Pegasos-Team 2012

    2014-05-01

    The airship Zeppelin NT is an airborne platform capable of flying at low speed throughout the entire planetary boundary layer (PBL). In combination with the high scientific payload of more than 1 ton, the Zeppelin is an ideal platform to study regional processes in the lowest layers of the atmosphere with high spatial resolution. Atmospheric aerosol as a medium long lived tracer substance is of particular interest due to its influence on the global radiation budget. Due its lifetime of up to several days secondaray aerosol at a certain location can result from local production or from transport processes. For aerosol measurements on a Zeppelin, a High-Resolution Time-of-Flight Aerosol Mass spectrometer (DeCarlo et al, 2006) was adapted to the requirements posed by an airborne platform. A weight reduction of over 20 % compared to the commercial instrument was achieved, while space occupation and footprint were each reduced by over 25 %. Within the PEGASOS project, the instrument was part of 10 measurement flight days over the course of seven weeks. Three flights were starting from Rotterdam, NL, seven flights were starting from Ozzano in the Po Valley, IT. Flight patterns included vertical profiles to study the dynamics of the PBL and cross sections through regions of interest to shed light on local production and transport processes. Analysis of data from transects between the Apennin and San Pietro Capofiume in terms of "residence time of air masses in the Po valley" indicates that aerosol nitrate has only local sources while aerosol sulfate is dominated by transport. The organic aerosol component has significant contributions of both processes. The local prodcution yields are commensurable with imultaneously observed precursor concentrations and oxidant levels. The PEGASOS project is funded by the European Commission under the Framework Programme 7 (FP7-ENV-2010-265148). DeCarlo, P.F. et al (2006), Anal. Chem., 78, 8281-8289.

  4. Study of atmospheric aerosol processing using confocal Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Laskina, O.; Grassian, V. H.

    2012-12-01

    Aerosols undergo aging and heterogeneous chemistry as they are transported through the atmosphere. This leads to changes in their properties and their effects on climate, biogeochemistry and human health. Chemical imaging of individual particles may be used to directly investigate the heterogeneity of composition within atmospheric aerosol particles. Single-particle Raman microspectroscopy is a powerful method for chemical imaging and non-destructive physico-chemical characterization of aerosol particles. In this study we investigate the effect of chemical processing on the distribution of chemical species in single particles of mineral dust aerosol using Raman spectral imaging. Raman mapping was used to show the distribution of humic substances and organic acids on some major components of mineral dust (quartz, clays and calcium carbonate). It was shown that humic materials form coating on the surface of particles, whereas interactions of calcium carbonate with organic acids (oxalic and acetic acids) lead to reactions that cause a heterogeneous distribution of components within the reacted particle. Additionally, in a newly designed flow system aerosol can be equilibrated at different relative humidities to study hygroscopicity and phase transitions within these particles. These types of studies are important as the distribution of species in a single particle determines its reactivity, water uptake, and optical properties and thus defines its impact on climate and environment.

  5. Present-day to 21st century projections of secondary organic aerosol (SOA) from a global climate-aerosol model with an explicit SOA formation scheme

    NASA Astrophysics Data System (ADS)

    Lin, G.; Penner, J. E.; Zhou, C.

    2014-12-01

    Secondary organic aerosol (SOA) has been shown to be an important component of non-refractory submicron aerosol in the atmosphere. The presence of SOA can influence the earth's radiative balance by contributing to the absorption and scattering of radiation and by altering the properties of clouds. Globally, a large fraction of SOA originates from biogenic volatile organic compounds (BVOCs), emissions of which depend on vegetation cover and climate. Temperature, CO2 concentration, and land use and land cover change have been shown to be major drivers of global isoprene emission changes in future climates. Additionally, the SOA concentration in the atmosphere not only depends on BVOC emissions, but is also controlled by anthropogenic emissions, temperature, precipitation and the oxidative capacity of the atmosphere. To project the change in SOA concentrations in the future requires a model that fully couples a BVOC emission model that represents these BVOC emission drivers, together with a sophisticated atmospheric model of SOA formation and properties. Recent studies have suggested that traditional parameterized SOA formation mechanisms that are tuned to fit smog chamber data do not fully account for the complexity and dynamics of real SOA system, calling into the question of the validity and completeness of previous SOA projections. In this study, we investigate the response of SOA mass to future physical climate change, to land cover and land use change, to changes in BVOCs emissions, and to changes in anthropogenic aerosol and gas species emissions for the year 2100, utilizing a global climate-aerosol model (CAM5-IMPACT): the NCAR Community Atmospheric Model (CAM5) coupled with a global aerosol model (IMPACT). The IMPACT model has sophisticated detailed process-based mechanisms describing aerosol microphysics and SOA formation through both gas phase and multiphase reactions. We perform sensitivity tests to isolate the relative roles of individual global change

  6. Predicting the Mineral Composition of Dust Aerosols. Part 1; Representing Key Processes

    NASA Technical Reports Server (NTRS)

    Perlwitz, J. P.; Garcia-Pando, C. Perez; Miller, R. L.

    2015-01-01

    Soil dust aerosols created by wind erosion are typically assigned globally uniform physical and chemical properties within Earth system models, despite known regional variations in the mineral content of the parent soil. Mineral composition of the aerosol particles is important to their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, heterogeneous formation of sulfates and nitrates, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Here, aerosol mineral composition is derived by extending a method that provides the composition of a wet-sieved soil. The extension accounts for measurements showing significant differences between the mineral fractions of the wetsieved soil and the emitted aerosol concentration. For example, some phyllosilicate aerosols are more prevalent at silt sizes, even though they are nearly absent at these diameters in a soil whose aggregates are dispersed by wet sieving. We calculate the emitted mass of each mineral with respect to size by accounting for the disintegration of soil aggregates during wet sieving. These aggregates are emitted during mobilization and fragmentation of the original undispersed soil that is subject to wind erosion. The emitted aggregates are carried far downwind from their parent soil. The soil mineral fractions used to calculate the aggregates also include larger particles that are suspended only in the vicinity of the source. We calculate the emitted size distribution of these particles using a normalized distribution derived from aerosol measurements. In addition, a method is proposed for mixing minerals with small impurities composed of iron oxides. These mixtures are important for transporting iron far from the dust source, because pure iron oxides are more dense and vulnerable to gravitational removal than most minerals comprising dust aerosols. A limited comparison to

  7. Incremental Reactivity Effects on Secondary Organic Aerosol Formation in Urban Atmospheres with and without Biogenic Influence

    NASA Astrophysics Data System (ADS)

    Kacarab, Mary; Li, Lijie; Carter, William P. L.; Cocker, David R., III

    2016-04-01

    Two different surrogate mixtures of anthropogenic and biogenic volatile organic compounds (VOCs) were developed to study secondary organic aerosol (SOA) formation at atmospheric reactivities similar to urban regions with varying biogenic influence levels. Environmental chamber simulations were designed to enable the study of the incremental aerosol formation from select anthropogenic (m‑Xylene, 1,2,4-Trimethylbenzene, and 1-Methylnaphthalene) and biogenic (α-pinene) precursors under the chemical reactivity set by the two different surrogate mixtures. The surrogate reactive organic gas (ROG) mixtures were based on that used to develop the maximum incremental reactivity (MIR) factors for evaluation of O3 forming potential. Multiple incremental aerosol formation experiments were performed in the University of California Riverside (UCR) College of Engineering Center for Environmental Research and Technology (CE-CERT) dual 90m3 environmental chambers. Incremental aerosol yields were determined for each of the VOCs studied and compared to yields found from single precursor studies. Aerosol physical properties of density, volatility, and hygroscopicity were monitored throughout experiments. Bulk elemental chemical composition from high-resolution time of flight aerosol mass spectrometer (HR-ToF-AMS) data will also be presented. Incremental yields and SOA chemical and physical characteristics will be compared with data from previous single VOC studies conducted for these aerosol precursors following traditional VOC/NOx chamber experiments. Evaluation of the incremental effects of VOCs on SOA formation and properties are paramount in evaluating how to best extrapolate environmental chamber observations to the ambient atmosphere and provides useful insights into current SOA formation models. Further, the comparison of incremental SOA from VOCs in varying surrogate urban atmospheres (with and without strong biogenic influence) allows for a unique perspective on the impacts

  8. Emissions of biogenic volatile organic compounds and subsequent formation of secondary organic aerosols in a Larix kaempferi forest

    NASA Astrophysics Data System (ADS)

    Mochizuki, T.; Miyazaki, Y.; Ono, K.; Wada, R.; Takahashi, Y.; Saigusa, N.; Kawamura, K.; Tani, A.

    2015-04-01

    the importance of intra-canopy processes that promote biogenic SOA formation in the presence of significant inflow of anthropogenic aerosols and their precursors.

  9. Rural continental aerosol properties and processes observed during the Hohenpeissenberg Aerosol Characterization Experiment (HAZE2002)

    NASA Astrophysics Data System (ADS)

    Hock, N.; Schneider, J.; Borrmann, S.; Römpp, A.; Moortgat, G.; Franze, T.; Schauer, C.; Pöschl, U.; Plass-Dülmer, C.; Berresheim, H.

    2008-02-01

    Detailed investigations of the chemical and microphysical properties of rural continental aerosols were performed during the HAZE2002 experiment, which was conducted in May 2002 at the Meteorological Observatory Hohenpeissenberg (DWD) in Southern Germany. Online measurements included: Size-resolved chemical composition of submicron particles; total particle number concentrations and size distributions over the diameter range of 3 nm to 9 μm; gas-phase concentration of monoterpenes, CO, O3, OH, and H2SO4. Filter sampling and offline analytical techniques were used to determine: Fine particle mass (PM2.5), organic, elemental and total carbon in PM2.5 (OC2.5, EC2.5, TC2.5), and selected organic compounds (dicarboxylic acids, polycyclic aromatic hydrocarbons, proteins). Overall, the non-refractory components of submicron particles detected by aerosol mass spectrometry (PM1, 6.6±5.4 μg m-3, arithmetic mean and standard deviation) accounted for ~62% of PM2.5 determined by filter gravimetry (10.6±4.7 μg m-3). The relative proportions of non-refractory submicron particle components were: (23±39)% ammonium nitrate, (27±23)% ammonium sulfate, and (50±40)% organics (OM1). OM1 was closely correlated with PM1 (r2=0.9) indicating a near-constant ratio of non-refractory organics and inorganics. The average ratio of OM1 to OC2.5 was 2.1±1.4, indicating a high proportion of heteroelements in the organic fraction of the sampled rural aerosol. This is consistent with the high ratio of oxygenated organic aerosol (OOA) over hydrocarbon-like organic aerosol (HOA) inferred from the AMS results (4:1), and also with the high abundance of proteins (~3%) indicating a high proportion of primary biological material (~30%) in PM2.5. This finding was confirmed by low abundance of PAHs (<1 ng m-3) and EC (<1 μg m-3) in PM2.5 and detection of several secondary organic aerosol compounds (dicarboxylic acids) and their precursors (monoterpenes). New particle formation was observed almost

  10. Formation and Growth of New Organic Aerosol Particles over the Deepwater Horizon Oil Spill

    NASA Astrophysics Data System (ADS)

    Brock, C. A.; Murphy, D. M.; Bahreini, R.; Middlebrook, A. M.; De Gouw, J. A.

    2011-12-01

    Aerosol size distributions were measured in June 2010 downwind of the surface oil slick produced by the Deepwater Horizon oil spill in the Gulf of Mexico. Rapid condensation of partially oxidized hydrocarbons was responsible for formation of a plume of secondary organic aerosol downwind of the spill region. New particles were nucleated upwind of the freshest surface oil but downwind of oil that surfaced less than 100 hours previously. These new particles grew by condensation at rates of ~20 nm hr-1; preexisting accumulation mode particles grew by ~10 nm hr-1. The gas-phase concentration of a condensing species necessary to support the observed growth rate assuming irreversible adsorption with unit accommodation coefficient is estimated to be ~0.04-0.09 μg m-3 (~3-8 pptv). The ratio of growth rates for newly formed particles to accumulation mode particles was consistent within error limits with irreversible condensation. Because new particle formation did not occur in areas away from the <100 hr-old oil slick, these results indicate that the oxidation products of VOC species, probably C14-C16 compounds, were directly involved in the growth of the new particles. While a unique and extreme environment, the oil spill plume provides insight into similar processes that may occur in urban and industrial areas where petrochemical products are produced and consumed.

  11. Modeling the influence of alkane molecular structure on secondary organic aerosol formation.

    PubMed

    Aumont, Bernard; Camredon, Marie; Mouchel-Vallon, Camille; La, Stéphanie; Ouzebidour, Farida; Valorso, Richard; Lee-Taylor, Julia; Madronich, Sasha

    2013-01-01

    Secondary Organic Aerosols (SOA) production and ageing is a multigenerational oxidation process involving the formation of successive organic compounds with higher oxidation degree and lower vapor pressure. Intermediate Volatility Organic Compounds (IVOC) emitted to the atmosphere are expected to be a substantial source of SOA. These emitted IVOC constitute a complex mixture including linear, branched and cyclic alkanes. The explicit gas-phase oxidation mechanisms are here generated for various linear and branched C10-C22 alkanes using the GECKO-A (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere) and SOA formation is investigated for various homologous series. Simulation results show that both the size and the branching of the carbon skeleton are dominant factors driving the SOA yield. However, branching appears to be of secondary importance for the particle oxidation state and composition. The effect of alkane molecular structure on SOA yields appears to be consistent with recent laboratory observations. The simulated SOA composition shows, however, an unexpected major contribution from multifunctional organic nitrates. Most SOA contributors simulated for the oxidation of the various homologous series are far too reduced to be categorized as highly oxygenated organic aerosols (OOA). On a carbon basis, the OOA yields never exceeded 10% regardless of carbon chain length, molecular structure or ageing time. This version of the model appears clearly unable to explain a large production of OOA from alkane precursors. PMID:24600999

  12. Enhancement in Secondary Organic Aerosol Formation in the Presence of Preexisting Organic Particle.

    PubMed

    Ye, Jianhuai; Gordon, Catherine A; Chan, Arthur W H

    2016-04-01

    Atmospheric models of secondary organic aerosol (SOA) typically assume organic species form a well-mixed phase. As a result, partitioning of semivolatile oxidation products into the particle phase to form SOA is thought to be enhanced by preexisting organic particles. In this work, the physicochemical properties that govern such enhancement in SOA yield were examined. SOA yields from α-pinene ozonolysis were measured in the presence of a variety of organic seeds which were chosen based on polarity and phase state at room temperature. Yield enhancement was only observed with seeds of medium polarities (tetraethylene glycol and citric acid). Solid hexadecanol seed was observed to enhance SOA yields only in chamber experiments with longer mixing time scales, suggesting that the mixing process for SOA and hexadecanol may be kinetically limited at shorter time scales. Our observations indicate that, in addition to kinetic limitations, intermolecular interactions also play a significant role in determining SOA yields. Here we propose for the first time to use the Hansen solubility framework to determine aerosol miscibility and predict SOA yield enhancement. These results highlight that current models may overestimate SOA formation, and parametrization of intermolecular forces is needed for accurate predictions of SOA formation. PMID:26963686

  13. The effect of aerosol on the formation and radar-measurement of precipitation

    NASA Astrophysics Data System (ADS)

    Steiner, M.; Phillips, V. T. J.

    2003-04-01

    The concentrations of cloud condensation nuclei (CCN) and ice nuclei (IN) have a significant effect on the formation of precipitation, particularly the former on warm-rain processes. This effect is visualized through comparison of numerical simulations of precipitating clouds that are evolving within an environment of (low) maritime and (high) continental background aerosol concentrations, respectively. Maritime clouds may generate surface rainfall sooner than continental clouds, however, the latter produce more intense instantaneous rain rates. Rainfall from maritime and continental clouds differs significantly in the average size of raindrops, which needs to be accounted for when measuring rainfall by radar. The present study is designed to highlight the effect of aerosol on the formation of precipitation and the resulting raindrop size distribution. Four different scenarios are investigated, involving low (maritime) and high (continental) concentrations of CNN/IN, and low (stratiform) and high (convective) updraft strengths. The derived rainfall and radar reflectivity patterns will be analyzed in terms of changes in the drop size-dependent relationship between reflectivity and rain rate as a function of storm type, but also in terms of variability with a given storm.

  14. Modeled aerosol nitrate formation pathways during wintertime in the Great Lakes region of North America

    NASA Astrophysics Data System (ADS)

    Kim, Yoo Jung; Spak, Scott N.; Carmichael, Gregory R.; Riemer, Nicole; Stanier, Charles O.

    2014-11-01

    Episodic wintertime particle pollution by ammonium nitrate is an important air quality concern across the Midwest U.S. Understanding and accurately forecasting PM2.5 episodes are complicated by multiple pathways for aerosol nitrate formation, each with uncertain rate parameters. Here, the Community Multiscale Air Quality model (CMAQ) simulated regional atmospheric nitrate budgets during the 2009 LADCO Winter Nitrate Study, using integrated process rate (IPR) and integrated reaction rate (IRR) tools to quantify relevant processes. Total nitrate production contributing to PM2.5 episodes is a regional phenomenon, with peak production over the Ohio River Valley and southern Great Lakes. Total nitrate production in the lower troposphere is attributed to three pathways, with 57% from heterogeneous conversion of N2O5, 28% from the reaction of OH and NO2, and 15% from homogeneous conversion of N2O5. TNO3 formation rates varied day-to-day and on synoptic timescales. Rate-limited production does not follow urban-rural gradients and NOx emissions due, to counterbalancing of urban enhancement in daytime HNO3 production with nocturnal reductions. Concentrations of HNO3 and N2O5 and nighttime TNO3 formation rates have maxima aloft (100-500 m), leading to net total nitrate vertical flux during episodes, with substantial vertical gradients in nitrate partitioning. Uncertainties in all three pathways are relevant to wintertime aerosol modeling and highlight the importance of interacting transport and chemistry processes during ammonium nitrate episodes, as well as the need for additional constraint on the system through field and laboratory experiments.

  15. Laboratory experiments on the formation and recoil jet transport of aerosol by laser ablation

    NASA Astrophysics Data System (ADS)

    Hirooka, Yoshi; Tanaka, Kazuo A.; Imamura, Keisuke; Okazaki, Katsuya

    2016-05-01

    In a high-repetition rate inertial fusion reactor, the first wall will be subjected to repeated ablation along with pellet implosions, which then leads to the formation of aerosol to scatter and/or deflect laser beams for the subsequent implosion, affecting the overall reactor performance. Proposed in the present work is a method of in-situ directed transport of aerosol particles by the use of laser ablation-induced jet recoil momenta. Lithium and carbon are used as the primary ablation targets, the former of which is known to form aerosol in the form of droplet, and the latter of which tends to form carbon nanotubes. Laboratory-scale experiments have been conducted to irradiate airborne aerosol particles with high-intensity laser to produce ablation-induced jet. Data have indicated a change in aerosol flow direction, but only in the case of lithium.

  16. Secondary Organic Aerosol (SOA) formation from hydroxyl radical oxidation and ozonolysis of monoterpenes

    NASA Astrophysics Data System (ADS)

    Zhao, D. F.; Kaminski, M.; Schlag, P.; Fuchs, H.; Acir, I.-H.; Bohn, B.; Häseler, R.; Kiendler-Scharr, A.; Rohrer, F.; Tillmann, R.; Wang, M. J.; Wegener, R.; Wildt, J.; Wahner, A.; Mentel, T. F.

    2014-05-01

    Oxidation by hydroxyl radical (OH) and ozonolysis are the two major pathways of daytime biogenic volatile organic compounds (VOCs) oxidation and secondary organic aerosol (SOA) formation. In this study, we investigated the particle formation of several common monoterpenes (α-pinene, β-pinene, and limonene) by OH dominated oxidation, which has seldom been investigated. OH oxidation experiments were carried out in the SAPHIR chamber in Jülich, Germany, at low NOx (0.01-1 ppbV) and low ozone (O3) concentration. OH concentration and OH reactivity were measured directly so that the overall reaction rates of organic compounds with OH were quantified. Multi-generation reaction process, particle growth, new particle formation, particle yield, and chemical composition were analyzed and compared with that of monoterpene ozonolysis. Multi-generation products were found to be important in OH dominated SOA formation. The relative role of functionalization and fragmentation in the reaction process of OH oxidation was analyzed by examining the particle mass and the particle size as a function of OH dose. We developed a novel method which quantitatively links particle growth to the reaction of OH with organics in a reaction system. This method was also used to analyze the evolution of functionalization and fragmentation of organics in the particle formation by OH oxidation. It shows that functionalization of organics was dominant in the beginning of the reaction (within two lifetimes of the monoterpene) and fragmentation started to be dominant after that. We compared particle formation from OH oxidation with that from pure ozonolysis. In individual experiments, growth rates of the particle size did not necessarily correlate with the reaction rate of monoterpene with OH and O3. Comparing the size growth rates at the similar reaction rates of monoterpene with OH or O3 indicates that generally, OH oxidation and ozonolysis had similar efficiency in particle growth. The SOA yield of

  17. Secondary organic aerosol formation from hydroxyl radical oxidation and ozonolysis of monoterpenes

    NASA Astrophysics Data System (ADS)

    Zhao, D. F.; Kaminski, M.; Schlag, P.; Fuchs, H.; Acir, I.-H.; Bohn, B.; Häseler, R.; Kiendler-Scharr, A.; Rohrer, F.; Tillmann, R.; Wang, M. J.; Wegener, R.; Wildt, J.; Wahner, A.; Mentel, Th. F.

    2015-01-01

    Oxidation by hydroxyl radical (OH) and ozonolysis are the two major pathways of daytime biogenic volatile organic compound (BVOC) oxidation and secondary organic aerosol (SOA) formation. In this study, we investigated the particle formation of several common monoterpenes (α-pinene, β-pinene and limonene) by OH-dominated oxidation, which has seldom been investigated. OH oxidation experiments were carried out in the SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction) chamber in Jülich, Germany, at low NOx (0.01 ~ 1 ppbV) and low ozone (O3) concentration (< 20 ppbV). OH concentration and total OH reactivity (kOH) were measured directly, and through this the overall reaction rate of total organics with OH in each reaction system was quantified. Multi-generation reaction process, particle growth, new particle formation (NPF), particle yield and chemical composition were analyzed and compared with that of monoterpene ozonolysis. Multi-generation products were found to be important in OH-dominated SOA formation. The relative role of functionalization and fragmentation in the reaction process of OH oxidation was analyzed by examining the particle mass and the particle size as a function of OH dose. We developed a novel method which quantitatively links particle growth to the reaction rate of OH with total organics in a reaction system. This method was also used to analyze the evolution of functionalization and fragmentation of organics in the particle formation by OH oxidation. It shows that functionalization of organics was dominant in the beginning of the reaction (within two lifetimes of the monoterpene) and fragmentation started to play an important role after that. We compared particle formation from OH oxidation with that from pure ozonolysis. In individual experiments, growth rates of the particle size did not necessarily correlate with the reaction rate of monoterpene with OH and O3. Comparing the size growth rates at the similar reaction rates

  18. Integrated Analyses of Multiple Worldwide Aerosol Mass Spectrometer Datasets for Improved Understanding of Aerosol Sources and Processes and for Comparison with Global Models

    SciTech Connect

    Zhang, Qi; Jose, Jimenez Luis

    2014-04-28

    composition, concentration, size distribution and (inferred) shape and mixing state in various environments and their regional and seasonal variations within the context of regional and global modeling; and 4) to quantitatively evaluate important processes in various atmospheric environments and during different seasons, focusing on acid-catalyzed SOA formation, new particle growth, and photochemical processes of atmospheric organic aerosols (i.e., SOA production and POA oxidation). We will also examine the correlations and compile the ratios between important pairs of aerosol and gas phase species using region-specific and season-specific correlations and as a function of photochemical age and compare them with the ratios produced by various models. To enable our collaborations with the modelers, we will supply (via a public web interface) AMS data and our analysis results for use in model testing and validation and facilitate the use of the AMS information to constrain calculations of radiative forcing. Model output and AMS measurements and derived parameters will be compared with a focus on regional variability of model/measurement discrepancies and their causes. Finally we will share results, insights and data mining algorithms through peer-reviewed publications, presentations/tutorials at conferences/workshops, and web dissemination of analysis results and in-house developed software packages.

  19. Solar thermal aerosol flow reaction process

    DOEpatents

    Weimer, Alan W.; Dahl, Jaimee K.; Pitts, J. Roland; Lewandowski, Allan A.; Bingham, Carl; Tamburini, Joseph R.

    2005-03-29

    The present invention provides an environmentally beneficial process using concentrated sunlight to heat radiation absorbing particles to carry out highly endothermic gas phase chemical reactions ultimately resulting in the production of hydrogen or hydrogen synthesis gases.

  20. Secondary Organic Aerosol Formation from m-Xylene in the Absence of NOx

    SciTech Connect

    Song, Chen; Na, Kwangsam; Warren, Bethany; Malloy, Quentin; Cocker, David R.

    2007-11-01

    Formation of secondary organic aerosol (SOA) from m-xylene photoxidation in the absence of NOx was investigated in a series of smog chamber experiments. Experiments were performed in dry air and in the absence of seed aerosol with H2O2 photolysis providing a stable hydroxyl radical (OH radical) source. SOA formation from this study is exceptionally higher than experiments with existence of NOx. The experiments with elevated HO2 levels indicate that organic hydroperoxide compounds should contribute to SOA formation. Nitrogen oxide (NO) is shown to reduce aerosol formation; the constant aerosol formation rate obtained before addition of NO and after consumption of NO strongly suggests that aerosol formation is mainly through reactions with OH and HO2 radicals. In addition, a density of 1.40 ± 0.1 g cm-3 for the SOA from the photooxidation of m-xylene in the absence of NOx has been measured, which is significantly higher than the currently used unit density.

  1. Formation of hydroxyl radicals from photolysis of secondary organic aerosol material

    NASA Astrophysics Data System (ADS)

    Badali, K. M.; Zhou, S.; Aljawhary, D.; Antiñolo, M.; Chen, W. J.; Lok, A.; Mungall, E.; Wong, J. P. S.; Zhao, R.; Abbatt, J. P. D.

    2015-07-01

    This paper demonstrates that OH radicals are formed by photolysis of secondary organic aerosol (SOA) material formed by terpene ozonolysis. The SOA is collected on filters, dissolved in water containing a radical trap (benzoic acid), and then exposed to ultraviolet light in a photochemical reactor. The OH formation rates, which are similar for both α-pinene and limonene SOA, are measured from the formation rate of p-hydroxybenzoic acid as measured using offline HPLC analysis. To evaluate whether the OH is formed by photolysis of H2O2 or organic hydroperoxides (ROOH), the peroxide content of the SOA was measured using the horseradish peroxidase-dichlorofluorescein (HRP-DCF) assay, which was calibrated using H2O2. The OH formation rates from SOA are 5 times faster than from the photolysis of H2O2 solutions whose concentrations correspond to the peroxide content of the SOA solutions, assuming that the HRP-DCF signal arises from H2O2 alone. The higher rates of OH formation from SOA are likely due to ROOH photolysis, but we cannot rule out a contribution from secondary processes as well. This result is substantiated by photolysis experiments conducted with t-butyl hydroperoxide and cumene hydroperoxide which produce over 3 times more OH than photolysis of equivalent concentrations of H2O2. Relative to the peroxide level in the SOA and assuming that the peroxides drive most of the ultraviolet absorption, the quantum yield for OH generation from α-pinene SOA is 0.8 ± 0.4. This is the first demonstration of an efficient photolytic source of OH in SOA, one that may affect both cloud water and aerosol chemistry.

  2. Incremental Reactivity Effects of Anthropogenic and Biogenic Volatile Organic Compounds on Secondary Organic Aerosol Formation

    NASA Astrophysics Data System (ADS)

    Kacarab, M.; Li, L.; Carter, W. P. L.; Cocker, D. R., III

    2015-12-01

    Two surrogate reactive organic gas (ROG) mixtures were developed to create a controlled reactivity environment simulating different urban atmospheres with varying levels of anthropogenic (e.g. Los Angeles reactivity) and biogenic (e.g. Atlanta reactivity) influences. Traditional chamber experiments focus on the oxidation of one or two volatile organic compound (VOC) precursors, allowing the reactivity of the system to be dictated by those compounds. Surrogate ROG mixtures control the overall reactivity of the system, allowing for the incremental aerosol formation from an added VOC to be observed. The surrogate ROG mixtures were developed based on that used to determine maximum incremental reactivity (MIR) scales for O3 formation from VOC precursors in a Los Angeles smog environment. Environmental chamber experiments were designed to highlight the incremental aerosol formation in the simulated environment due to the addition of an added anthropogenic (aromatic) or biogenic (terpene) VOC. All experiments were conducted in the UC Riverside/CE-CERT dual 90m3 environmental chambers. It was found that the aerosol precursors behaved differently under the two altered reactivity conditions, with more incremental aerosol being formed in the anthropogenic ROG system than in the biogenic ROG system. Further, the biogenic reactivity condition inhibited the oxidation of added anthropogenic aerosol precursors, such as m-xylene. Data will be presented on aerosol properties (density, volatility, hygroscopicity) and bulk chemical composition in the gas and particle phases (from a SYFT Technologies selected ion flow tube mass spectrometer, SIFT-MS, and Aerodyne high resolution time of flight aerosol mass spectrometer, HR-ToF-AMS, respectively) comparing the two controlled reactivity systems and single precursor VOC/NOx studies. Incremental aerosol yield data at different controlled reactivities provide a novel and valuable insight in the attempt to extrapolate environmental chamber

  3. Simulations of aerosols and their effects on photolysis and ozone formation in Mexico City

    NASA Astrophysics Data System (ADS)

    Li, G.; Zavala, M.; Lei, W.; Karydis, V. A.; Tsimpidi, A. P.; Pandis, S.; Molina, L. T.

    2009-04-01

    Atmospheric aerosols, formed from natural and anthropogenic sources, are believed to be associated with adverse human effects at high levels in polluted urban areas. They also play a key role in climate through direct and indirect effects. Therefore, accurate simulations of aerosol composition and distribution in the atmospheric models are important in evaluating their impact on environment and climate. In the present study, a flexible gas phase chemical module with SAPRC mechanism and the CMAQ/models3 aerosol module developed by EPA have been implemented into the WRF-CHEM model. Additionally, to further improve the aerosol, especially the secondary organic aerosol (SOA) simulations, an advanced SOA module [Tsimpidi et al., 2009] has been incorporated into the WRF-CHEM model. The new SOA module is based on the volatility basis-set approach in which both primary and secondary organic components are assumed to be semivolatile and photochemically reactive [Lane et al., 2008]. Gas phase species and aerosol simulation results are compared with the available measurements obtained during the MILAGRO 2006 campaign. When the advanced SOA mechanism is employed, the SOA simulations are significantly improved. Furthermore, the aerosol impacts on the photochemistry in Mexico City have been evaluated using the FTUV [Tie et al., 2005]. Aerosol optical properties are calculated using the Mie theory and compared with available observations in Mexico City [Paredes-Miranda et al., 2008]. Aerosols, principally black carbon, reduce the photolysis frequencies of J[O3(1D)] and J[NO2] in the planetary boundary layer and hence decrease the ground-level ozone concentration. Our study demonstrates that the impact of aerosols on photochemistry is significant in polluted urban atmosphere. References: Lane, T. E., N. M. Donahue, and S. N. Pandis (2008), Simulating secondary organic aerosol formation using the volatility basis-set approach in a chemical transport model, PMCAMx, Atmos. Environ

  4. Constraining condensed-phase formation kinetics of secondary organic aerosol components from isoprene epoxydiols

    NASA Astrophysics Data System (ADS)

    Riedel, T. P.; Lin, Y.-H.; Zhang, Z.; Chu, K.; Thornton, J. A.; Vizuete, W.; Gold, A.; Surratt, J. D.

    2015-10-01

    Isomeric epoxydiols from isoprene photooxidation (IEPOX) have been shown to produce substantial amounts of secondary organic aerosol (SOA) mass and are therefore considered a major isoprene-derived SOA precursor. Heterogeneous reactions of IEPOX on atmospheric aerosols form various aerosol-phase components or "tracers" that contribute to the SOA mass burden. A limited number of the reaction rate constants for these acid-catalyzed aqueous-phase tracer formation reactions have been constrained through bulk laboratory measurements. We have designed a chemical box model with multiple experimental constraints to explicitly simulate gas- and aqueous-phase reactions during chamber experiments of SOA growth from IEPOX uptake onto acidic sulfate aerosol. The model is constrained by measurements of the IEPOX reactive uptake coefficient, IEPOX and aerosol chamber wall-losses, chamber-measured aerosol mass and surface area concentrations, aerosol thermodynamic model calculations, and offline filter-based measurements of SOA tracers. By requiring the model output to match the SOA growth and offline filter measurements collected during the chamber experiments, we derive estimates of the tracer formation reaction rate constants that have not yet been measured or estimated for bulk solutions.

  5. Constraining condensed-phase formation kinetics of secondary organic aerosol components from isoprene epoxydiols

    NASA Astrophysics Data System (ADS)

    Riedel, T. P.; Lin, Y.-H.; Zhang, Z.; Chu, K.; Thornton, J. A.; Vizuete, W.; Gold, A.; Surratt, J. D.

    2016-02-01

    Isomeric epoxydiols from isoprene photooxidation (IEPOX) have been shown to produce substantial amounts of secondary organic aerosol (SOA) mass and are therefore considered a major isoprene-derived SOA precursor. Heterogeneous reactions of IEPOX on atmospheric aerosols form various aerosol-phase components or "tracers" that contribute to the SOA mass burden. A limited number of the reaction rate constants for these acid-catalyzed aqueous-phase tracer formation reactions have been constrained through bulk laboratory measurements. We have designed a chemical box model with multiple experimental constraints to explicitly simulate gas- and aqueous-phase reactions during chamber experiments of SOA growth from IEPOX uptake onto acidic sulfate aerosol. The model is constrained by measurements of the IEPOX reactive uptake coefficient, IEPOX and aerosol chamber wall losses, chamber-measured aerosol mass and surface area concentrations, aerosol thermodynamic model calculations, and offline filter-based measurements of SOA tracers. By requiring the model output to match the SOA growth and offline filter measurements collected during the chamber experiments, we derive estimates of the tracer formation reaction rate constants that have not yet been measured or estimated for bulk solutions.

  6. Organic aggregate formation in aerosols and its impact on the physicochemical properties of atmospheric particles

    NASA Astrophysics Data System (ADS)

    Tabazadeh, Azadeh

    Fatty acid salts and "humic" materials, found in abundance in atmospheric particles, are both anionic surfactants. Such materials are known to form organic aggregates or colloids in solution at very low aqueous concentrations. In a marine aerosol, micelle aggregates can form at a low fatty acid salt molality of ˜10 -3 m. In other types of atmospheric particles, such as biomass burning, biogenic, soil dust, and urban aerosols, "humic-like" materials exist in sufficient quantities to form micelle-like aggregates in solution. I show micelle formation limits the ability of surface-active organics in aerosols to reduce the surface tension of an atmospheric particle beyond about 10 dyne cm -1. A general phase diagram is presented for anionic surfactants to explain how surface-active organics can change the water uptake properties of atmospheric aerosols. Briefly such molecules can enhance and reduce water uptake by atmospheric aerosols at dry and humid conditions, respectively. This finding is consistent with a number of unexplained field and laboratory observations. Dry electron microscope images of atmospheric particles often indicate that organics may coat the surface of particles in the atmosphere. The surfactant phase diagram is used to trace the particle path back to ambient conditions in order to determine whether such coatings can exist on wet ambient aerosols. Finally, I qualitatively highlight how organic aggregate formation in aerosols may change the optical properties and chemical reactivity of atmospheric particles.

  7. Aerosol size distribution and radiative forcing response to anthropogenically driven historical changes in biogenic secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    D'Andrea, S. D.; Acosta Navarro, J. C.; Farina, S. C.; Scott, C. E.; Rap, A.; Farmer, D. K.; Spracklen, D. V.; Riipinen, I.; Pierce, J. R.

    2014-10-01

    Emissions of biogenic volatile organic compounds (BVOC) have changed in the past millennium due to changes in land use, temperature and CO2 concentrations. Recent model reconstructions of BVOC emissions over the past millennium predicted changes in dominant secondary organic aerosol (SOA) producing BVOC classes (isoprene, monoterpenes and sesquiterpenes). The reconstructions predicted that global isoprene emissions have decreased (land-use changes to crop/grazing land dominate the reduction), while monoterpene and sesquiterpene emissions have increased (temperature increases dominate the increases); however, all three show regional variability due to competition between the various influencing factors. These BVOC changes have largely been anthropogenic in nature, and land-use change was shown to have the most dramatic effect by decreasing isoprene emissions. In this work, we use two modeled estimates of BVOC emissions from the years 1000 to 2000 to test the effect of anthropogenic changes to BVOC emissions on SOA formation, global aerosol size distributions, and radiative effects using the GEOS-Chem-TOMAS global aerosol microphysics model. With anthropogenic emissions (e.g. SO2, NOx, primary aerosols) held at present day values and BVOC emissions changed from year 1000 to year 2000 values, decreases in the number concentration of particles of size Dp > 80 nm (N80) of >25% in year 2000 relative to year 1000 were predicted in regions with extensive land-use changes since year 1000 which led to regional increases in direct plus indirect aerosol radiative effect of >0.5 W m-2 in these regions. We test the sensitivity of our results to BVOC emissions inventory, SOA yields and the presence of anthropogenic emissions; however, the qualitative response of the model to historic BVOC changes remains the same in all cases. Accounting for these uncertainties, we estimate millennial changes in BVOC emissions cause a global mean direct effect of between +0.022 and +0.163 W m-2

  8. Evaluation of aerosol processes between roadside and neighbourhood scale

    NASA Astrophysics Data System (ADS)

    Karl, Matthias; Kukkonen, Jaakko; Pirjola, Liisa; Keuken, Menno P.

    2015-04-01

    Particle emissions from road transport include vehicle exhaust emissions, tire/brake wear and re-suspension of road dust. Vehicle exhaust emissions usually constitute the most significant source of ultrafine particles (UFP), i.e. particles with diameters <100 nm, in urban environments. Several toxicological studies have concluded that UFP are more toxic than larger particles with the same chemical composition and at the same mass concentration. Since UFP contribute negligibly to the mass concentration of PM10 and PM2.5, they should be described in terms of particle number (PN) concentration. However, only PM10 and PM2.5 are regulated by current air pollution legislation. UFP emitted from road traffic are subject to complex dilution and transformation processes in the urban environment. This model study evaluates the influence of aerosol processes on PN concentration on the spatial and temporal range between the roadside, typically represented by measurements at a traffic monitoring site, and the neighbourhood scale, extending from several hundred meters to several kilometres. Several dispersion scenarios for the cities Oslo, Helsinki and Rotterdam were simulated using the multicomponent aerosol dynamics process model MAFOR, approximating dilution by a power-law function. Aerosol processes considered in this study were condensation/evaporation of n-alkanes, coagulation and the dry deposition of particles. Under typical dispersion conditions dilution clearly dominated the change of total PN on the neighbourhood scale. Dry deposition and coagulation of particles were identified to be the most important aerosol dynamical processes controlling the removal of particles from emitted from vehicular exhaust on urban time scales. The effect of condensation/evaporation of organic vapours emitted by vehicles on particle numbers and on particle size distributions was examined. A simplified parameterization for the implementation of coagulation and dry deposition of particles in

  9. Coupling Aerosol-Cloud-Radiative Processes in the WRF-Chem Model: Investigating the Radiative Impact of Elevated Point Sources

    SciTech Connect

    Chapman, Elaine G.; Gustafson, William I.; Easter, Richard C.; Barnard, James C.; Ghan, Steven J.; Pekour, Mikhail S.; Fast, Jerome D.

    2009-02-01

    The local and regional influence of elevated point sources on summertime aerosol forcing and cloud-aerosol interactions in northeastern North America was investigated using the WRF-Chem community model. The direct effects of aerosols on incoming solar radiation were simulated using existing modules to relate aerosol sizes and chemical composition to aerosol optical properties. Indirect effects were simulated by adding a prognostic treatment of cloud droplet number and adding modules that activate aerosol particles to form cloud droplets, simulate aqueous phase chemistry, and tie a two-moment treatment of cloud water (cloud water mass and cloud droplet number) to an existing radiation scheme. Fully interactive feedbacks thus were created within the modified model, with aerosols affecting cloud droplet number and cloud radiative properties, and clouds altering aerosol size and composition via aqueous processes, wet scavenging, and gas-phase-related photolytic processes. Comparisons of a baseline simulation with observations show that the model captured the general temporal cycle of aerosol optical depths (AODs) and produced clouds of comparable thickness to observations at approximately the proper times and places. The model slightly overpredicted SO2 mixing ratios and PM2.5 mass, but reproduced the range of observed SO2 to sulfate aerosol ratios, suggesting that atmospheric oxidation processes leading to aerosol sulfate formation are captured in the model. The baseline simulation was compared to a sensitivity simulation in which all emissions at model levels above the surface layer were set to zero, thus removing stack emissions. Instantaneous, site-specific differences for aerosol and cloud related properties between the two simulations could be quite large, as removing above-surface emission sources influenced when and where clouds formed within the modeling domain. When summed spatially over the finest resolution model domain (the extent of which corresponds to

  10. METAL AEROSOL FORMATION IN A LABORATORY SWIRL FLAME INCINERATOR

    EPA Science Inventory

    The paper describes experiments performed using an 82 kW (280,000 Btu/hr) refractory-lined horizontal tunnel combustor to examine the aerosol particle size distribution (PSD) produced by simulated nickel, cadmium, and lead wastes injected into an incineration environment. Metal c...

  11. EVALUATION OF SECONDARY ORGANIC AEROSOL FORMATION IN WINTER. (R823514)

    EPA Science Inventory

    Three different methods are used to predict secondary organic aerosol (SOA)
    concentrations in the San Joaquin Valley of California during the winter of 1995-1996 [Integrated
    Monitoring Study, (IMS95)]. The first of these methods estimates SOA by using elemental carbon as

  12. Quantifying compositional impacts of ambient aerosol on cloud droplet formation

    NASA Astrophysics Data System (ADS)

    Lance, Sara

    It has been historically assumed that most of the uncertainty associated with the aerosol indirect effect on climate can be attributed to the unpredictability of updrafts. In Chapter 1, we analyze the sensitivity of cloud droplet number density, to realistic variations in aerosol chemical properties and to variable updraft velocities using a 1-dimensional cloud parcel model in three important environmental cases (continental, polluted and remote marine). The results suggest that aerosol chemical variability may be as important to the aerosol indirect effect as the effect of unresolved cloud dynamics, especially in polluted environments. We next used a continuous flow streamwise thermal gradient Cloud Condensation Nuclei counter (CCNc) to study the water-uptake properties of the ambient aerosol, by exposing an aerosol sample to a controlled water vapor supersaturation and counting the resulting number of droplets. In Chapter 2, we modeled and experimentally characterized the heat transfer properties and droplet growth within the CCNc. Chapter 3 describes results from the MIRAGE field campaign, in which the CCNc and a Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) were deployed at a ground-based site during March, 2006. Size-resolved CCN activation spectra and growth factor distributions of the ambient aerosol in Mexico City were obtained, and an analytical technique was developed to quantify a probability distribution of solute volume fractions for the CCN in addition to the aerosol mixing-state. The CCN were shown to be much less CCN active than ammonium sulfate, with water uptake properties more consistent with low molecular weight organic compounds. The pollution outflow from Mexico City was shown to have CCN with an even lower fraction of soluble material. "Chemical Closure" was attained for the CCN, by comparing the inferred solute volume fraction with that from direct chemical measurements. A clear diurnal pattern was observed for the CCN solute

  13. Secondary organic aerosol formation from biomass burning intermediates: phenol and methoxyphenols

    NASA Astrophysics Data System (ADS)

    Yee, L. D.; Kautzman, K. E.; Loza, C. L.; Schilling, K. A.; Coggon, M. M.; Chhabra, P. S.; Chan, M. N.; Chan, A. W. H.; Hersey, S. P.; Crounse, J. D.; Wennberg, P. O.; Flagan, R. C.; Seinfeld, J. H.

    2013-02-01

    The formation of secondary organic aerosol from oxidation of phenol, guaiacol (2-methoxyphenol), and syringol (2,6-dimethoxyphenol), major components of biomass burning, is described. Photooxidation experiments were conducted in the Caltech laboratory chambers under low-NOx (<10 ppb) conditions using H2O2 as the OH source. Secondary organic aerosol (SOA) yields (ratio of mass of SOA formed to mass of primary organic reacted) greater than 25% are observed. Aerosol growth is rapid and linear with the primary organic conversion, consistent with the formation of essentially non-volatile products. Gas- and aerosol-phase oxidation products from the guaiacol system provide insight into the chemical mechanisms responsible for SOA formation. Syringol SOA yields are lower than those of phenol and guaiacol, likely due to novel methoxy group chemistry that leads to early fragmentation in the gas-phase photooxidation. Atomic oxygen to carbon (O:C) ratios calculated from high-resolution-time-of-flight Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS) measurements of the SOA in all three systems are ~0.9, which represent among the highest such ratios achieved in laboratory chamber experiments and are similar to that of aged atmospheric organic aerosol. The global contribution of SOA from intermediate volatility and semivolatile organic compounds has been shown to be substantial (Pye and Seinfeld, 2010). An approach to representing SOA formation from biomass burning emissions in atmospheric models could involve one or more surrogate species for which aerosol formation under well-controlled conditions has been quantified. The present work provides data for such an approach.

  14. Secondary organic aerosol formation from biomass burning intermediates: phenol and methoxyphenols

    NASA Astrophysics Data System (ADS)

    Yee, L. D.; Kautzman, K. E.; Loza, C. L.; Schilling, K. A.; Coggon, M. M.; Chhabra, P. S.; Chan, M. N.; Chan, A. W. H.; Hersey, S. P.; Crounse, J. D.; Wennberg, P. O.; Flagan, R. C.; Seinfeld, J. H.

    2013-08-01

    The formation of secondary organic aerosol from oxidation of phenol, guaiacol (2-methoxyphenol), and syringol (2,6-dimethoxyphenol), major components of biomass burning, is described. Photooxidation experiments were conducted in the Caltech laboratory chambers under low-NOx (< 10 ppb) conditions using H2O2 as the OH source. Secondary organic aerosol (SOA) yields (ratio of mass of SOA formed to mass of primary organic reacted) greater than 25% are observed. Aerosol growth is rapid and linear with the primary organic conversion, consistent with the formation of essentially non-volatile products. Gas- and aerosol-phase oxidation products from the guaiacol system provide insight into the chemical mechanisms responsible for SOA formation. Syringol SOA yields are lower than those of phenol and guaiacol, likely due to novel methoxy group chemistry that leads to early fragmentation in the gas-phase photooxidation. Atomic oxygen to carbon (O : C) ratios calculated from high-resolution-time-of-flight Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS) measurements of the SOA in all three systems are ~ 0.9, which represent among the highest such ratios achieved in laboratory chamber experiments and are similar to that of aged atmospheric organic aerosol. The global contribution of SOA from intermediate volatility and semivolatile organic compounds has been shown to be substantial (Pye and Seinfeld, 2010). An approach to representing SOA formation from biomass burning emissions in atmospheric models could involve one or more surrogate species for which aerosol formation under well-controlled conditions has been quantified. The present work provides data for such an approach.

  15. Rapid gas hydrate formation process

    SciTech Connect

    Brown, Thomas D.; Taylor, Charles E.; Unione, Alfred J.

    2013-01-15

    The disclosure provides a method and apparatus for forming gas hydrates from a two-phase mixture of water and a hydrate forming gas. The two-phase mixture is created in a mixing zone which may be wholly included within the body of a spray nozzle. The two-phase mixture is subsequently sprayed into a reaction zone, where the reaction zone is under pressure and temperature conditions suitable for formation of the gas hydrate. The reaction zone pressure is less than the mixing zone pressure so that expansion of the hydrate-forming gas in the mixture provides a degree of cooling by the Joule-Thompson effect and provides more intimate mixing between the water and the hydrate-forming gas. The result of the process is the formation of gas hydrates continuously and with a greatly reduced induction time. An apparatus for conduct of the method is further provided.

  16. Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility

    NASA Astrophysics Data System (ADS)

    Blando, James D.; Turpin, Barbara J.

    This paper investigates the hypothesis that cloud and fog processes produce fine organic particulate matter in the atmosphere. The evidence provided suggests that cloud and fog processes could be important contributors to secondary organic aerosol formation, and the contribution of this formation pathway should be further investigated. This conclusion is based on the following observations: (1) many organic vapors present in the atmosphere are sorbed by suspended droplets and have been measured in cloud and fog water, (2) organics participate in aqueous-phase reactions, and (3) organic particulate matter is sometimes found in the size mode attributed to cloud processing (i.e. the droplet mode). Specific compounds identified as potential precursors include aldehydes (e.g. formaldehyde, acetaldehyde, and propionaldehyde), acetone, alcohols (e.g. methanol, ethanol, 2-propanol, and phenol), monocarboxylic acids, and organic peroxides. Carboxylic acids (e.g. diacids and oxo-acids), glyoxal, esters, organosulfur compounds, polyols, amines and amino acids are potential products of cloud and fog processing.

  17. Photochemical processing of organic aerosol at nearby continental sites: contrast between urban plumes and regional aerosol

    NASA Astrophysics Data System (ADS)

    Slowik, J. G.; Brook, J.; Chang, R. Y.-W.; Evans, G. J.; Hayden, K.; Jeong, C.-H.; Li, S.-M.; Liggio, J.; Liu, P. S. K.; McGuire, M.; Mihele, C.; Sjostedt, S.; Vlasenko, A.; Abbatt, J. P. D.

    2011-03-01

    As part of the BAQS-Met 2007 field campaign, Aerodyne time-of-flight aerosol mass spectrometers (ToF-AMS) were deployed at two sites in southwestern Ontario from 17 June to 11 July 2007. One instrument was located at Harrow, ON, a rural, agriculture-dominated area approximately 40 km southeast of the Detroit/Windsor/Windsor urban area and 5 km north of Lake Erie. The second instrument was located at Bear Creek, ON, a rural site approximately 70 km northeast of the Harrow site and 50 km east of Detroit/Windsor. Positive matrix factorization analysis of the combined organic mass spectral dataset yields factors related to secondary organic aerosol (SOA), direct emissions, and a factor tentatively attributed to the reactive uptake of isoprene and/or condensation of its early generation reaction products. This is the first application of PMF to simultaneous AMS measurements at different sites, an approach which allows for self-consistent, direct comparison of the datasets. Case studies are utilized to investigate processing of SOA from (1) fresh emissions from Detroit/Windsor and (2) regional aerosol during periods of inter-site flow. A strong correlation is observed between SOA/excess CO and photochemical age as represented by the NOx/NOy ratio for Detroit/Windsor outflow. Although this correlation is not evident for more aged air, measurements at the two sites during inter-site transport nevertheless show evidence of continued atmospheric processing by SOA production. However, the rate of SOA production decreases with airmass age from an initial value of ~10.1 μg m-3 ppmvCO-1 h-1 for the first ~10 h of plume processing to near-zero in an aged airmass (i.e. after several days). The initial SOA production rate is comparable to the observed rate in Mexico City over similar timescales.

  18. Secondary aerosol formation from stress-induced biogenic emissions and possible climate feedbacks

    NASA Astrophysics Data System (ADS)

    Mentel, Th. F.; Kleist, E.; Andres, S.; Maso, M. D.; Hohaus, T.; Kiendler-Scharr, A.; Rudich, Y.; Springer, M.; Tillmann, R.; Uerlings, R.; Wahner, A.; Wildt, J.

    2013-03-01

    Atmospheric aerosols impact climate by scattering and absorbing solar radiation and by acting as ice and cloud condensation nuclei. Secondary organic aerosols (SOA) comprise an important component of atmospheric aerosols. Biogenic volatile organic compounds (BVOC) emitted by vegetation are a major source of SOA. Pathogens and insect attacks, heat waves and droughts can induce stress to plants that may impact their BVOC emissions, and hence the yield and type of formed SOA, and possibly their climatic effects. This raises questions whether stress-induced changes in SOA formation may attenuate or amplify effects of climate change. In this study we assess the potential impact of stress-induced BVOC emissions on SOA formation for tree species typical for mixed deciduous and Boreal Eurasian forests. We studied the photochemical SOA formation for infested plants in a laboratory setup under well-controlled conditions and applied in addition heat and drought stress. The results indicate that stress conditions substantially modify SOA formation. While sesquiterpenes, methyl salicylate, and C17-BVOC increase SOA yield, green leaf volatiles suppress SOA formation. By classifying emission types, stressors and SOA formation potential, we propose possible climatic feedbacks regarding aerosol effects. We conclude that stress situations for plants due to climate change should be considered in climate-vegetation feedback mechanisms.

  19. Effect of NOx level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes

    NASA Astrophysics Data System (ADS)

    Ng, N. L.; Chhabra, P. S.; Chan, A. W. H.; Surratt, J. D.; Kroll, J. H.; Kwan, A. J.; McCabe, D. C.; Wennberg, P. O.; Sorooshian, A.; Murphy, S. M.; Dalleska, N. F.; Flagan, R. C.; Seinfeld, J. H.

    2007-10-01

    Secondary organic aerosol (SOA) formation from the photooxidation of one monoterpene (α-pinene) and two sesquiterpenes (longifolene and aromadendrene) is investigated in the Caltech environmental chambers. The effect of NOx on SOA formation for these biogenic hydrocarbons is evaluated by performing photooxidation experiments under varying NOx conditions. The NOx dependence of α-pinene SOA formation follows the same trend as that observed previously for a number of SOA precursors, including isoprene, in which SOA yield (defined as the ratio of the mass of organic aerosol formed to the mass of parent hydrocarbon reacted) decreases as NOx level increases. The NOx dependence of SOA yield for the sesquiterpenes, longifolene and aromadendrene, however, differs from that determined for isoprene and α-pinene; the aerosol yield under high-NOx conditions substantially exceeds that under low-NOx conditions. The reversal of the NOx dependence of SOA formation for the sesquiterpenes is consistent with formation of relatively low-volatility organic nitrates, and/or the isomerization of large alkoxy radicals leading to less volatile products. Analysis of the aerosol chemical composition for longifolene confirms the presence of organic nitrates under high-NOx conditions. Consequently the formation of SOA from certain biogenic hydrocarbons such as sesquiterpenes (and possibly large anthropogenic hydrocarbons as well) may be more efficient in polluted air.

  20. Secondary aerosol formation from stress-induced biogenic emissions and possible climate feedbacks

    NASA Astrophysics Data System (ADS)

    Mentel, Th. F.; Kleist, E.; Andres, S.; Dal Maso, M.; Hohaus, T.; Kiendler-Scharr, A.; Rudich, Y.; Springer, M.; Tillmann, R.; Uerlings, R.; Wahner, A.; Wildt, J.

    2013-09-01

    Atmospheric aerosols impact climate by scattering and absorbing solar radiation and by acting as ice and cloud condensation nuclei. Biogenic secondary organic aerosols (BSOAs) comprise an important component of atmospheric aerosols. Biogenic volatile organic compounds (BVOCs) emitted by vegetation are the source of BSOAs. Pathogens and insect attacks, heat waves and droughts can induce stress to plants that may impact their BVOC emissions, and hence the yield and type of formed BSOAs, and possibly their climatic effects. This raises questions of whether stress-induced changes in BSOA formation may attenuate or amplify effects of climate change. In this study we assess the potential impact of stress-induced BVOC emissions on BSOA formation for tree species typical for mixed deciduous and Boreal Eurasian forests. We studied the photochemical BSOA formation for plants infested by aphids in a laboratory setup under well-controlled conditions and applied in addition heat and drought stress. The results indicate that stress conditions substantially modify BSOA formation and yield. Stress-induced emissions of sesquiterpenes, methyl salicylate, and C17-BVOCs increase BSOA yields. Mixtures including these compounds exhibit BSOA yields between 17 and 33%, significantly higher than mixtures containing mainly monoterpenes (4-6% yield). Green leaf volatiles suppress SOA formation, presumably by scavenging OH, similar to isoprene. By classifying emission types, stressors and BSOA formation potential, we discuss possible climatic feedbacks regarding aerosol effects. We conclude that stress situations for plants due to climate change should be considered in climate-vegetation feedback mechanisms.

  1. Program Abstracts: Formation and Growth of Atmospheric Aerosols

    SciTech Connect

    Peter H. McMurry; Markku Kulmala

    2006-09-07

    DOE provided $11,000 to sponsor the Workshop on New Particle Formation in the Atmosphere, which was held at The Riverwood Inn and Conference Center near Minneapolis, MN from September 7 to 9, 2006. Recent work has shown that new particle formation is an important atmospheric process that must be better understood due to its impact on cloud cover and the Earth's radiation balance. The conference was an informal gathering of atmospheric and basic scientists with expertise pertinent to this topic. The workshop included discussions of: • atmospheric modeling; • computational chemistry pertinent to clustering; • ions and ion induced nucleation; • basic laboratory and theoretical studies of nucleation; • studies on neutral molecular clusters; • interactions of organic compounds and sulfuric acid; • composition of freshly nucleated particles. Fifty six scientists attended the conference. They included 27 senior scientists, 9 younger independent scientists (assistant professor or young associate professor level), 7 postdocs, 13 graduate students, 10 women, 35 North Americans (34 from the U.S.), 1 Asian, and 20 Europeans. This was an excellent informal workshop on an important topic. An effort was made to include individuals from communities that do not regularly interact. A number of participants have provided informal feedback indicating that the workshop led to research ideas and possible future collaborations.

  2. Research highlights: laboratory studies of the formation and transformation of atmospheric organic aerosols.

    PubMed

    Borduas, Nadine; Lin, Vivian S

    2016-04-20

    Atmospheric particles are emitted from a variety of anthropogenic and natural precursors and have direct impacts on climate, by scattering solar irradiation and nucleating clouds, and on health, by causing oxidative stress in the lungs when inhaled. They may also form from gaseous precursors, creating complex mixtures of organic and inorganic material. The chemical composition and the physical properties of aerosols will evolve during their one-week lifetime which will consequently change their impact on climate and health. The heterogeneity of aerosols is difficult to model and thus atmospheric aerosol research strives to characterize the mechanisms involved in nucleating and transforming particles in the atmosphere. Recent advances in four laboratory studies of aerosol formation and aging are highlighted here. PMID:27050080

  3. Size-resolved aerosol water-soluble ionic compositions in the summer of Beijing: implication of regional secondary formation

    NASA Astrophysics Data System (ADS)

    Guo, S.; Hu, M.; Wang, Z. B.; Slanina, J.; Zhao, Y. L.

    2010-02-01

    To characterize aerosol pollution in Beijing, size-resolved aerosols were collected by MOUDIs during CAREBEIJING-2006 field campaign at Peking University (urban site) and Yufa (upwind rural site). Fine particle concentrations (PM1.8 by MOUDI) were 99.8±77.4 μg/m3 and 78.2±58.4 μg/m3, with PM1.8/PM10 ratios of 0.64±0.08 and 0.76±0.08 at PKU and Yufa, respectively, and secondary compounds accounted for more than 50% in fine particles. PMF model analysis was used to resolve the particle modes. Three modes were resolved at Yufa, representing condensation, droplet and coarse mode. However, one more droplet mode with bigger size was resolved, which was considered probably from regional transport. Condensation mode accounted for 10%-60% of the total mass at both sites, indicating that the gas-to-particle condensation process was important in summer. The formation of sulfate was mainly attributed to in-cloud or aerosol droplet process (PKU 80%, Yufa 70%) and gas condensation process (PKU 14%, Yufa 22%). According to the thermodynamic instability of NH4NO3, size distributions of nitrate were classified as three categories by RH. The existence of Ca(NO3)2 in droplet mode indicated the reaction of HNO3 with crustal particles was also important in fine particles. A rough estimation was given that 69% of the PM10 and 87% of the PM1.8 in Beijing urban were regional contributions. Sulfate, ammonium and oxalate were formed regionally, with the regional contributions of 90%, 87% and 95% to PM1.8. Nitrate formation was local dominant. In summary regional secondary formation led to aerosol pollution in the summer of Beijing.

  4. The remarkable effect of FeSO4 seed aerosols on secondary organic aerosol formation from photooxidation of α-pinene/NOx and toluene/NOx

    NASA Astrophysics Data System (ADS)

    Chu, Biwu; Hao, Jiming; Takekawa, Hideto; Li, Junhua; Wang, Kun; Jiang, Jingkun

    2012-08-01

    To investigate the effects of Fe(II) and Fe(III) ions on secondary organic aerosol (SOA) formation, we conducted a series of photooxidation experiments with α-pinene and toluene in the presence of nitric oxides (NOx) with/without FeSO4 or Fe2(SO4)3 seed aerosols. The FeSO4 seed aerosols suppressed SOA formation, while Fe2(SO4)3 seed aerosols did not display a noticeable effect on SOA formation. We did not observe effects of FeSO4 and Fe2(SO4)3 seed aerosols on gas phase compounds, including ozone, NOx, and hydrocarbons (HCs). The negative effect of Fe(II)-containing seed aerosols on SOA formation due to the reduction of condensable compounds (CCs) generated from hydrocarbon oxidation is discussed. The mean molecular weight of CCs reduced by Fe(II) is tentatively estimated to be larger than 300, indicating a possibility that many of the CCs reduced by Fe(II) are oligomers. Reduction of oligomer precursors may interrupt the oligomerization of other aldehyde products. If Fe(II) regeneration from photoreduction of Fe(III) is considered, the estimated mean molecular weight of the CCs reduced would be smaller. However, the negligible effect of Fe(III)-containing seed aerosols on SOA formation indicates that Fe(III) photoreduction is negligible in our experiments.

  5. Photolytic processing of secondary organic aerosols dissolved in cloud droplets.

    PubMed

    Bateman, Adam P; Nizkorodov, Sergey A; Laskin, Julia; Laskin, Alexander

    2011-07-14

    The effect of UV irradiation on the molecular composition of aqueous extracts of secondary organic aerosol (SOA) was investigated. SOA was prepared by the dark reaction of ozone and d-limonene at 0.05-1 ppm precursor concentrations and collected with a particle-into-liquid sampler (PILS). The PILS extracts were photolyzed by 300-400 nm radiation for up to 24 h. Water-soluble SOA constituents were analyzed using high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) at different stages of photolysis for all SOA precursor concentrations. Exposure to UV radiation increased the average O/C ratio and decreased the average double bond equivalent (DBE) of the dissolved SOA compounds. Oligomeric compounds were significantly decreased by photolysis relative to the monomeric compounds. Direct pH measurements showed that acidic compounds increased in abundance upon photolysis. Methanol reactivity analysis revealed significant photodissociation of molecules containing carbonyl groups and the formation of carboxylic acids. Aldehydes, such as limononaldehyde, were almost completely removed. The removal of carbonyls was further confirmed by the UV/Vis absorption spectroscopy of the SOA extracts where the absorbance in the carbonyl n→π* band decreased significantly upon photolysis. The effective quantum yield (the number of carbonyls destroyed per photon absorbed) was estimated as ∼0.03. The total concentration of peroxides did not change significantly during photolysis as quantified with an iodometric test. Although organic peroxides were photolyzed, the likely end products of photolysis were smaller peroxides, including hydrogen peroxide, resulting in a no net change in the peroxide content. Photolysis of dry limonene SOA deposited on substrates was investigated in a separate set of experiments. The observed effects on the average O/C and DBE were similar to the aqueous photolysis, but the extent of chemical change was smaller in dry SOA. Our results suggest

  6. Secondary organic aerosol (trans)formation through aqueous phase guaiacol photonitration: chemical characterization of the products

    NASA Astrophysics Data System (ADS)

    Grgić, Irena; Kitanovski, Zoran; Kroflič, Ana; Čusak, Alen

    2014-05-01

    One of the largest primary sources of organic aerosol in the atmosphere is biomass burning (BB) (Laskin et al. 2009); in Europe its contribution to annual mean of PM10 is between 3 and 14 % (Maenhaut et al. 2012). During the process of wood burning many different products are formed via thermal degradation of wood lignin. Hardwood burning produces mainly syringol (2,6-dimetoxyphenol) derivatives, while softwood burning exclusively guaiacol (2-methoxyphenol) and its derivatives. Taking into account physical properties of methoxyphenols only, their concentrations in atmospheric waters might be underestimated. So, their aqueous phase reactions can be an additional source of SOA, especially in regions under significant influence of wood combustion. An important class of compounds formed during physical and chemical aging of the primary BBA in the atmosphere is nitrocatechols, known as strong absorbers of UV and Vis light (Claeys et al. 2012). Very recently, methyl-nitrocatechols were proposed as suitable markers for highly oxidized secondary BBA (Iinuma et al. 2010, Kitanovski et al. 2012). In the present work, the formation of SOA through aqueous phase photooxidation and nitration of guaiacol was examined. The key objective was to chemically characterize the main low-volatility products and further to check their possible presence in the urban atmospheric aerosols. The aqueous phase reactions were performed in a thermostated reactor under simulated sunlight in the presence of H2O2 and nitrite. Guaiacol reaction products were first concentrated by solid-phase extraction (SPE) and then subjected to semi-preparative liquid chromatography.The main product compounds were fractionated and isolated as pure solids and their structure was further elucidated by using nuclear magnetic resonance spectroscopy (1H, 13C and 2D NMR) and direct infusion negative ion electro-spray ionization tandem mass spectrometry (( )ESI-MS/MS). The main photonitration products of guaiacol (4

  7. Organic aerosol formation from biogenic compounds over the Ponderosa pine forest in Colorado

    NASA Astrophysics Data System (ADS)

    Roux, Alma Hodzic; Lee-Taylor, Julia; Cui, Yuyan; Madronich, Sasha

    2013-05-01

    The secondary organic aerosol (SOA) formation and regional growth from biogenic precursors is of particular interest given their abundance in the atmosphere, and has been investigated during the Rocky Mountain Biogenic Aerosol field Study in 2011 in the pine forest canopy (dominated by terpene emissions) using both WRF/Chem 4km simulations and the GECKO-A explicit chemistry box-model runs. We have quantified the relative contribution of different biogenic precursors to SOA levels that were measured by the aerosol mass spectrometer at the site, and investigated the relative contribution of OH, O3 and NO3 chemistry to the formed SOA mass during day-and nighttime. Although, the local production and mass concentrations of submicron organic aerosols at the site seem relatively modest ˜1-2 ug/m3, we show that the optically active regional mass is increased as the SOA formation continues for several days in the background forest air. We investigate whether the simplified SOA parameterizations used in 3D models can capture this growth. In addition, preliminary comparisons of the number concentrations and the composition of ultrafine particles (8 - 30nm) from WRF/Chem simulations and TD-CIMS measurements are also discussed, and the contribution of organic aerosols to CCN formation is quantified.

  8. Organic peroxide and OH formation in aerosol and cloud water: laboratory evidence for this aqueous chemistry

    NASA Astrophysics Data System (ADS)

    Lim, Y. B.; Turpin, B. J.

    2015-06-01

    Aqueous chemistry in atmospheric waters (e.g., cloud droplets or wet aerosols) is well accepted as an atmospheric pathway to produce secondary organic aerosol (SOAaq). Water-soluble organic compounds with small carbon numbers (C2-C3) are precursors for SOAaq and products include organic acids, organic sulfates, and high molecular weight compounds/oligomers. Fenton reactions and the uptake of gas-phase OH radicals are considered to be the major oxidant sources for aqueous organic chemistry. However, the sources and availability of oxidants in atmospheric waters are not well understood. The degree to which OH is produced in the aqueous phase affects the balance of radical and non-radical aqueous chemistry, the properties of the resulting aerosol, and likely its atmospheric behavior. This paper demonstrates organic peroxide formation during aqueous photooxidation of methylglyoxal using ultra high resolution Fourier Transform Ion Cyclotron Resonance electrospray ionization mass spectrometry (FTICR-MS). Organic peroxides are known to form through gas-phase oxidation of volatile organic compounds. They contribute secondary organic aerosol (SOA) formation directly by forming peroxyhemiacetals, and epoxides, and indirectly by enhancing gas-phase oxidation through OH recycling. We provide simulation results of organic peroxide/peroxyhemiacetal formation in clouds and wet aerosols and discuss organic peroxides as a source of condensed-phase OH radicals and as a contributor to aqueous SOA.

  9. Secondary organic aerosol formation from the photo-oxidation of benzene

    NASA Astrophysics Data System (ADS)

    Borrás, Esther; Tortajada-Genaro, Luis Antonio

    2012-02-01

    The production of condensate compounds from the degradation of benzene by OH radical chemistry was studied. Secondary organic aerosol (SOA) formation was investigated in the EUPHORE ( European Photoreactor) simulation chambers. Experiments were performed under different OH-production conditions - addition of H 2O 2, NO or HONO -, in a high-volume reactor, with natural light and in the absence of seed aerosols. The consumption of precursor/reagents, the formation of gas-phase and particulate-phase products and the temporal evolution of aerosol were monitored. Several aerosol physical properties - mass concentration, overall aerosol yield, particle size distribution and density - were determined and found to be clearly dependent on OH radical production and NO x concentrations. Furthermore, the use of one and/or two products gas-particle partitioning absorption models allowed us to determine the aerosol yield curves. The SOA yield ranged from 1.6 to 9.7 %, with higher SOA formation under low-NO x conditions. Chemical characterization of the SOA was carried out, determining multi-oxygenated condensed organic compounds by a method based on the gas chromatography-mass spectrometry technique. Several ring-retaining and ring-cleavage products were identified and quantified. The compounds with the highest percentage contribution to the total aerosol mass were 4-nitrobenzene-1,2-diol, butenedioic acid, succinic acid and trans-trans-muconic. In addition, a multigenerational study was performed comparing with the photo-oxidations of phenol and catechol. The results showed that although the mass concentration of SOA produced was different, the physical and chemical properties were quite similar. Finally, we suggest a general mechanism to describe how changes in benzene degradation pathways - rate of OH generation and concentration of NO x - could justify the variation in SOA production and properties.

  10. The role of low volatile organics on secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Kokkola, H.; Yli-Pirilä, P.; Vesterinen, M.; Korhonen, H.; Keskinen, H.; Romakkaniemi, S.; Hao, L.; Kortelainen, A.; Joutsensaari, J.; Worsnop, D. R.; Virtanen, A.; Lehtinen, K. E. J.

    2014-02-01

    Large-scale atmospheric models, which typically describe secondary organic aerosol (SOA) formation based on chamber experiments, tend to systematically underestimate observed organic aerosol burdens. Since SOA constitutes a significant fraction of atmospheric aerosol, this discrepancy translates into an underestimation of SOA contribution to radiative forcing of atmospheric aerosol. Here we show that the underestimation of SOA yields can be partly explained by wall losses of SOA forming compounds during chamber experiments. We present a chamber experiment where α-pinene and ozone are injected into a Teflon chamber. When these two compounds react, we observe rapid formation and growth of new particles. Theoretical analysis of this formation and growth event indicates rapid formation of oxidized volatile organic compounds (OVOC) of very low volatility in the chamber. If these oxidized organic compounds form in the gas phase, their wall losses will have significant implications on their partitioning between the gas and particle phase. Although these OVOCs of very low volatility contribute to the growth of new particles, their mass will almost completely be depleted to the chamber walls during the experiment, while the depletion of OVOCs of higher volatilities is less efficient. According to our model simulations, the volatilities of OVOC contributing to the new particle formation event can be of the order of 10-5 μg m-3.

  11. Insights into secondary organic aerosol formation mechanisms from measured gas/particle partitioning of specific organic tracer compounds.

    PubMed

    Zhao, Yunliang; Kreisberg, Nathan M; Worton, David R; Isaacman, Gabriel; Weber, Robin J; Liu, Shang; Day, Douglas A; Russell, Lynn M; Markovic, Milos Z; VandenBoer, Trevor C; Murphy, Jennifer G; Hering, Susanne V; Goldstein, Allen H

    2013-04-16

    In situ measurements of organic compounds in both gas and particle phases were made with a thermal desorption aerosol gas chromatography (TAG) instrument. The gas/particle partitioning of phthalic acid, pinonaldehyde, and 6,10,14-trimethyl-2-pentadecanone is discussed in detail to explore secondary organic aerosol (SOA) formation mechanisms. Measured fractions in the particle phase (f(part)) of 6,10,14-trimethyl-2-pentadecanone were similar to those expected from the absorptive gas/particle partitioning theory, suggesting that its partitioning is dominated by absorption processes. However, f(part) of phthalic acid and pinonaldehyde were substantially higher than predicted. The formation of low-volatility products from reactions of phthalic acid with ammonia is proposed as one possible mechanism to explain the high f(part) of phthalic acid. The observations of particle-phase pinonaldehyde when inorganic acids were fully neutralized indicate that inorganic acids are not required for the occurrence of reactive uptake of pinonaldehyde on particles. The observed relationship between f(part) of pinonaldehyde and relative humidity suggests that the aerosol water plays a significant role in the formation of particle-phase pinonaldehyde. Our results clearly show it is necessary to include multiple gas/particle partitioning pathways in models to predict SOA and multiple SOA tracers in source apportionment models to reconstruct SOA. PMID:23448102

  12. FUNDAMENTAL STUDY OF SULFATE AEROSOL FORMATION, CONDENSATION, AND GROWTH

    EPA Science Inventory

    The report gives results of a study of the formation and growth of sulfate particles. Existing theoretical models on acid particle formation and growth were reviewed and evaluated. The formation and growth of sulfate particles during slow cooling, rapid cooling, and dilution cool...

  13. Size-resolved aerosol water-soluble ionic compositions in the summer of Beijing: implication of regional secondary formation

    NASA Astrophysics Data System (ADS)

    Guo, S.; Hu, M.; Wang, Z. B.; Slanina, J.; Zhao, Y. L.

    2009-11-01

    To characterize aerosol pollution in Beijing, size-resolved aerosols were collected by MOUDIs during CAREBEIJING-2006 field campaign at Peking University (urban site) and Yufa (upwind rural site). Fine particle concentrations (PM1.8 by MOUDI) were 99.8±77.4 μg/m3 and 78.2±58.4 μg/m3, with PM1.8/PM10 ratios of 0.64±0.08 and 0.76±0.08 at PKU and Yufa, respectively, and secondary compounds accounted for more than 50% in fine particles. PMF model was used to resolve the particle modes. Three modes were resolved at Yufa, representing condensation, droplet and coarse mode. However, one more droplet mode with bigger size was resolved, which was considered probably from regional transport. Condensation mode accounted for 10%-60% of the total mass at both sites, indicating it must be taken into account in summer. The formation of sulfate was mainly attributed to in-cloud or aerosol droplet process (PKU 80%, Yufa 70%) and gas condensation process (PKU 14%, Yufa 22%). According to the thermodynamic instability of NH4NO3, size distributions of nitrate were classified as three categories by RH. The existence of Ca(NO3)2 in droplet mode indicated the reaction of HNO3 with crustal particles was also important in fine particles. Linear regression gave a rough estimation that 69% of the PM10 and 87% of the PM1.8 at PKU were regional contributions. Sulfate, ammonium and oxalate were formed regionally, with the regional contributions of 90%, 87% and 95% to PM1.8. Nitrate formation was local dominant. In summary regional secondary formation led to aerosol pollution in the summer of Beijing.

  14. Simulation of semi-explicit mechanisms of SOA formation from glyoxal in aerosol in a 3-D model

    NASA Astrophysics Data System (ADS)

    Knote, C.; Hodzic, A.; Jimenez, J. L.; Volkamer, R.; Orlando, J. J.; Baidar, S.; Brioude, J.; Fast, J.; Gentner, D. R.; Goldstein, A. H.; Hayes, P. L.; Knighton, W. B.; Oetjen, H.; Setyan, A.; Stark, H.; Thalman, R.; Tyndall, G.; Washenfelder, R.; Waxman, E.; Zhang, Q.

    2014-06-01

    New pathways to form secondary organic aerosol (SOA) have been postulated recently. Glyoxal, the smallest dicarbonyl, is one of the proposed precursors. It has both anthropogenic and biogenic sources, and readily partitions into the aqueous phase of cloud droplets and deliquesced particles where it undergoes both reversible and irreversible chemistry. In this work we extend the regional scale chemistry transport model WRF-Chem to include detailed gas-phase chemistry of glyoxal formation as well as a state-of-the-science module describing its partitioning and reactions in the aerosol aqueous-phase. A comparison of several proposed mechanisms is performed to quantify the relative importance of different formation pathways and their regional variability. The CARES/CalNex campaigns over California in summer 2010 are used as case studies to evaluate the model against observations. A month-long simulation over the continental United States (US) enables us to extend our results to the continental scale. In all simulations over California, the Los Angeles (LA) basin was found to be the hot spot for SOA formation from glyoxal, which contributes between 1% and 15% of the model SOA depending on the mechanism used. Our results indicate that a mechanism based only on a reactive (surface limited) uptake coefficient leads to higher SOA yields from glyoxal compared to a more detailed description that considers aerosol phase state and chemical composition. In the more detailed simulations, surface uptake is found to give the highest SOA mass yields compared to a volume process and reversible formation. We find that the yields of the latter are limited by the availability of glyoxal in aerosol water, which is in turn controlled by an increase in the Henry's law constant depending on salt concentrations ("salting-in"). A time dependence in this increase prevents substantial partitioning of glyoxal into aerosol water at high salt concentrations. If this limitation is removed, volume

  15. Effects of temperature on the formation of secondary organic aerosol from amine precursors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerosol formation is directly influenced by meteorological properties such as temperature and relative humidity. Temperature, for example, directly affects the gas-to-particle partitioning of amine salts and semi-volatile organic amine products. These salts are formed in areas with high agricultur...

  16. Secondary Organic Aerosol Formation and Aging in a Flow Reactor in the Forested Southeast US during SOAS

    NASA Astrophysics Data System (ADS)

    Hu, W.; Palm, B. B.; Hacker, L.; Campuzano Jost, P.; Day, D. A.; Simoes de Sa, S.; Fry, J.; Ayres, B. R.; Draper, D. C.; Ortega, A. M.; Kiendler-Scharr, A.; Panujoka, A.; Virtanen, A.; Miettinen, P.; Krechmer, J.; Canagaratna, M. R.; Thompson, S.; Yatavelli, L. R.; Stark, H.; Worsnop, D. R.; Lechner, M.; Martin, S. T.; Farmer, D.; Brown, S. S.; Jimenez, J. L.

    2013-12-01

    A major field campaign (Southern Oxidant and Aerosol Study, SOAS) was conducted in summer 2013 in a forested area (Centreville Supersite) in the southeast U.S. To investigate secondary organic aerosol (SOA) formation from biogenic volatile organic compounds (BVOCs), 3 flow reactors (potential aerosol mass, PAM) were used to expose ambient air to oxidants and their output was analyzed by state-of-art gas and aerosol instruments including a High-Resolution Aerosol Mass Spectrometer (HR-AMS), a High-Resolution Proton-Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-TOFMS), and for the first time, two different High-Resolution Time-of-Flight Chemical Ionization Mass Spectrometers (HRToF-CIMS), and an SMPS. Ambient air was exposed 24/7 to variable concentrations of each of the 3 main atmospheric oxidants (OH, O3 and NO3) to investigate SOA formation and aging. The OH exposure was estimated by 3 different methods (empirical parameterization, carbon monoxide consumption, and chemical box model). Effective OH exposures up to 7e12 molec cm-3 s were achieved, which is equivalent to over a month of aging in the atmosphere. High SOA formation of up to 12 μg m-3 above ambient concentrations of 5 μg m-3 was observed under intermediate OH exposures, while very high OH exposures led to destruction of ambient OA by ≈ 30%, indicating shifting contributions of functionalization vs. fragmentation, which is similar to previous results from urban and terpene-dominated environments. The highest SOA enhancements were 3-4 times higher than the ambient OA. More SOA is typically formed during nighttime when terpenes are higher and lower during daytime when isoprene is higher. SOA formation is also observed after exposure of ambient air to O3 or NO3, although the amount and oxidation was lower than for OH exposure. Formation of organic nitrates in the NO3 reaction will be discussed. High SOA formation (above 40 μg m-3) and a large number of CIMS ions, indicating many different

  17. Emission of sunscreen salicylic esters from desert vegetation and their contribution to aerosol formation

    NASA Astrophysics Data System (ADS)

    Matsunaga, S. N.; Guenther, A. B.; Potosnak, M. J.; Apel, E. C.

    2008-12-01

    Biogenic volatile organic compounds (BVOC) produced by plants are known to have an important role in atmospheric chemistry. However, our knowledge of the range of BVOCs produced by different plant processes is still expanding, and there remain poorly understood categories of BVOCs. In this study, emissions of a novel class of BVOC emissions were investigated in a desert region. Our study considered 8 species of common desert plants: blackbrush (Coleogyne ramosissima), desert willow (Chilopsis linearis), mesquite (Prosopis glandulosa), mondel pine (Pinus eldarica), pinyon pine (Pinus monophylla), cottonwood (Populus deltoides), saguaro cactus (Carnegiea gigantea) and yucca (Yucca baccata). The measurements focused on BVOCs with relatively high molecular weight (>C15) and/or an oxygenated functional group. Significantly high emission rates of two salicylic esters were found for blackbrush, desert willow and mesquite with emission rates of 3.1, 1.0 and 4.8μgC dwg-1 h-1, respectively (dwg; dry weight of the leaves in gram). The salicylic esters were identified as 2-ethylhexenyl salicylate (2-EHS) and 3,3,5-trimethylcyclohexenyl salicylate (homosalate) and are known as effective ultraviolet (UV) absorbers. We propose that the plants derive a protective benefit against UV radiation from the salicylic esters and that the emission process is driven by the physical evaporation of the salicylic esters due to the high ambient temperatures. In addition, the salicylic esters are predicted to be an effective precursor of secondary organic aerosol (SOA) because they probably produce oxidation products that can condense onto the aerosol phase. We estimated the contribution of the sunscreen esters themselves and their oxidation products on the SOA formation for the Las Vegas area using a BVOC emission model. The contribution was estimated to reach 50% of the biogenic terpenoid emission in the landscapes dominated by desert willow and mesquite and 13% in the Las Vegas area. The

  18. Processing of aerosol particles within the Habshan pollution plume

    NASA Astrophysics Data System (ADS)

    Semeniuk, T. A.; Bruintjes, R.; Salazar, V.; Breed, D.; Jensen, T.; Buseck, P. R.

    2015-03-01

    The Habshan industrial site in the United Arab Emirates produces a regional-scale pollution plume associated with oil and gas processing, discharging high loadings of sulfates and chlorides into the atmosphere, which interact with the ambient aerosol population. Aerosol particles and trace gas chemistry at this site were studied on two flights in the summer of 2002. Measurements were collected along vertical plume profiles to show changes associated with atmospheric processing of particle and gas components. Close to the outlet stack, particle concentrations were over 10,000 cm-3, dropping to <2000 cm-3 in more dilute plume around 1500 m above the stack. Particles collected close to the stack and within the dilute plume were individually measured for size, morphology, composition, and mixing state using transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy. Close to the stack, most coarse particles consisted of mineral dust and NaCl crystals from burning oil brines, while sulfate droplets dominated the fine mode. In more dilute plume, at least 1500 m above the stack, the particle spectrum was more diverse, with a significant increase in internally mixed particle types. Dilute plume samples consisted of coarse NaCl/silicate aggregates or NaCl-rich droplets, often with a sulfate component, while fine-fraction particles were of mixed cation sulfates, also internally mixed with nanospherical soot or silicates. Thus, both chloride and sulfate components of the pollution plume rapidly reacted with ambient mineral dust to form coated and aggregate particles, enhancing particle size, hygroscopicity, and reactivity of the coarse mode. The fine-fraction sulfate-bearing particles formed in the plume contribute to regional transport of sulfates, while coarse sulfate-bearing fractions locally reduced the SO2 loading through sedimentation. The chloride- and sulfate-bearing internally mixed particles formed in the plume markedly changed the

  19. Aerosolization, Chemical Characterization, Hygroscopicity and Ice Formation of Marine Biogenic Particles

    NASA Astrophysics Data System (ADS)

    Alpert, P. A.; Radway, J.; Kilthau, W.; Bothe, D.; Knopf, D. A.; Aller, J. Y.

    2013-12-01

    The oceans cover the majority of the earth's surface, host nearly half the total global primary productivity and are a major source of atmospheric aerosol particles. However, effects of biological activity on sea spray generation and composition, and subsequent cloud formation are not well understood. Our goal is to elucidate these effects which will be particularly important over nutrient rich seas, where microorganisms can reach concentrations of 10^9 per mL and along with transparent exopolymer particles (TEP) can become aerosolized. Here we report the results of mesocosm experiments in which bubbles were generated by two methods, either recirculating impinging water jets or glass frits, in natural or artificial seawater containing bacteria and unialgal cultures of three representative phytoplankton species, Thalassiosira pseudonana, Emiliania huxleyi, and Nannochloris atomus. Over time we followed the size distribution of aerosolized particles as well as their hygroscopicity, heterogeneous ice nucleation potential, and individual physical-chemical characteristics. Numbers of cells and the mass of dissolved and particulate organic carbon (DOC, POC), TEP (which includes polysaccharide-containing microgels and nanogels >0.4 μm in diameter) were determined in the bulk water, the surface microlayer, and aerosolized material. Aerosolized particles were also impacted onto substrates for ice nucleation and water uptake experiments, elemental analysis using computer controlled scanning electron microscopy and energy dispersive analysis of X-rays (CCSEM/EDX), and determination of carbon bonding with scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Regardless of bubble generation method, the overall concentration of aerosol particles, TEP, POC and DOC increased as concentrations of bacterial and phytoplankton cells increased, stabilized, and subsequently declined. Particles <100 nm generated by means of jets

  20. Ambient measurements of chemical and physical properties of organic aerosols: Insights into formation, growth, and heterogeneous chemistry

    NASA Astrophysics Data System (ADS)

    Ziemba, Luke D.

    Organic aerosols are a ubiquitous component of the troposphere, from heavily polluted cities to the remote Arctic. In Chapters II, III, and V of this dissertation, the formation of organic aerosol through observations of ambient size distributions is addressed. Chapter IV presents a new pathway for the formation of nitrous acid (HONO) in the urban atmosphere. In Chapter II, the size-resolved chemical composition of sub-micron aerosol was measured at a suburban forested site in North Carolina. Two events were identified in which particle growth, presumably by gas-to-particle conversion, was dominated by accumulation of organic aerosol mass. Growth rates between 1.2 nm hr-1 and 4.9 nm hr-1 were observed. Using a mass-spectral deconvolution method coupled with linear regression analysis, the sub-micron organic aerosol mass observed during the campaign, and during events, was determined to have been influenced by both local and regional secondary processes with only a minor influence from combustion sources. In Chapter III, the chemical characteristics of sub-10-micron aerosol were explored as a function of ambient particle size at a coastal and inland site in New England. Average organic carbon (OC) concentrations of 4.9 microg C m-3 and 3.4 microg C m-3 were observed at the coastal site at the Isles of Shoals (IOS) and at the slightly inland site at Thompson Farm (TF), respectively. An average of 84 and 72% of OC was found to be water-soluble at IOS and TF, respectively. Size distributions indicate that the formation of dicarboxylic acids, especially oxalic acid, is driven by aqueous-phase reactions. A chemical fingerprint analysis suggests that all water-soluble OC at IOS resembles secondary organic aerosol (SOA), while WSOC at TF appears to result from mixed sources. In Chapter IV, a newly identified formation pathway for nitrous acid (HONO) is presented. HONO is an important precursor to hydroxyl radicals in the troposphere and thus contributes to the oxidative

  1. The kinetics of aerosol particle formation and removal in NPP severe accidents

    NASA Astrophysics Data System (ADS)

    Zatevakhin, Mikhail A.; Arefiev, Valentin K.; Semashko, Sergey E.; Dolganov, Rostislav A.

    2016-06-01

    Severe Nuclear Power Plant (NPP) accidents are accompanied by release of a massive amount of energy, radioactive products and hydrogen into the atmosphere of the NPP containment. A valid estimation of consequences of such accidents can only be carried out through the use of the integrated codes comprising a description of the basic processes which determine the consequences. A brief description of a coupled aerosol and thermal-hydraulic code to be used for the calculation of the aerosol kinetics within the NPP containment in case of a severe accident is given. The code comprises a KIN aerosol unit integrated into the KUPOL-M thermal-hydraulic code. Some features of aerosol behavior in severe NPP accidents are briefly described.

  2. Formation of secondary aerosols from gasoline vehicle exhaust when mixing with SO2

    NASA Astrophysics Data System (ADS)

    Liu, T.; Wang, X.; Hu, Q.; Deng, W.; Zhang, Y.; Ding, X.; Fu, X.; Bernard, F.; Zhang, Z.; Lü, S.; He, Q.; Bi, X.; Chen, J.; Sun, Y.; Yu, J.; Peng, P.; Sheng, G.; Fu, J.

    2016-01-01

    Sulfur dioxide (SO2) can enhance the formation of secondary aerosols from biogenic volatile organic compounds (VOCs), but its influence on secondary aerosol formation from anthropogenic VOCs, particularly complex mixtures like vehicle exhaust, remains uncertain. Gasoline vehicle exhaust (GVE) and SO2, a typical pollutant from coal burning, are directly co-introduced into a smog chamber, in this study, to investigate the formation of secondary organic aerosols (SOA) and sulfate aerosols through photooxidation. New particle formation was enhanced, while substantial sulfate was formed through the oxidation of SO2 in the presence of high concentration of SO2. Homogenous oxidation by OH radicals contributed a negligible fraction to the conversion of SO2 to sulfate, and instead the oxidation by stabilized Criegee intermediates (sCIs), formed from alkenes in the exhaust reacting with ozone, dominated the conversion of SO2. After 5 h of photochemical aging, GVE's SOA production factor revealed an increase by 60-200 % in the presence of high concentration of SO2. The increase could principally be attributed to acid-catalyzed SOA formation as evidenced by the strong positive linear correlation (R2 = 0.97) between the SOA production factor and in situ particle acidity calculated by the AIM-II model. A high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) resolved OA's relatively lower oxygen-to-carbon (O : C) (0.44 ± 0.02) and higher hydrogen-to-carbon (H : C) (1.40 ± 0.03) molar ratios for the GVE / SO2 mixture, with a significantly lower estimated average carbon oxidation state (OSc) of -0.51 ± 0.06 than -0.19 ± 0.08 for GVE alone. The relative higher mass loading of OA in the experiments with SO2 might be a significant explanation for the lower SOA oxidation degree.

  3. Formation of secondary aerosols from gasoline vehicle exhausts when mixing with SO2

    NASA Astrophysics Data System (ADS)

    Liu, T.; Wang, X.; Hu, Q.; Deng, W.; Zhang, Y.; Ding, X.; Fu, X.; Bernard, F.; Zhang, Z.; Lü, S.; He, Q.; Bi, X.; Chen, J.; Sun, Y.; Yu, J.; Peng, P.; Sheng, G.; Fu, J.

    2015-09-01

    Sulfur dioxide (SO2) can enhance the formation of secondary aerosols from biogenic volatile organic compounds (VOCs), but its influence on secondary aerosol formation from anthropogenic VOCs, particularly complex mixtures like vehicle exhausts, is still poorly understood. Here we directly co-introduced gasoline vehicles exhausts (GVE) and SO2, a typical pollutant from coal burning, into a smog chamber to investigate the formation of secondary organic aerosols (SOA) and sulfate aerosols through photooxidation. In the presence of high concentration of SO2, new particle formation was enhanced while substantial sulfate was formed through the oxidation of SO2. The homogenous oxidation by OH radicals contributed a negligible fraction to the conversion of SO2 to sulfate, and instead the oxidation by stabilized Criegee intermediates (sCIs), formed from alkenes in the exhaust reacting with ozone, dominated the conversion of SO2. After 5 h of photochemical aging, GVE's SOA production factor revealed an increase by 60-200 % in the presence of high concentration of SO2. This increase could largely be attributed to acid-catalyzed SOA formation, which was evidenced by the strong positive linear correlation (R2 = 0.97) between the SOA production factor and in-situ particle acidity calculated by AIM-II model. A high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) resolved OA's relatively lower oxygen-to-carbon (O : C) and higher hydrogen-to-carbon (H : C) molar ratios for the GVE/SO2 mixture, with a much lower estimated average carbon oxidation state (OSc) of -0.51 ± 0.06 than that of -0.19 ± 0.08 for GVE alone. The relative higher mass loading of OA in the experiments with SO2 might be the major reason for the lower oxidation degree of SOA.

  4. Insights into the molecular level composition, sources, and formation mechanisms of dissolved organic matter in aerosols and precipitation

    NASA Astrophysics Data System (ADS)

    Altieri, Katye Elisabeth

    Atmospheric aerosols scatter and absorb light influencing the global radiation budget and climate, and are associated with adverse effects on human health. Precipitation is an important removal mechanism for atmospheric dissolved organic matter (DOM), and a potentially important input for receiving ecosystems. However, the sources, formation, and composition of atmospheric DOM in aerosols and precipitation are not well understood. This dissertation investigates the composition and formation mechanisms of secondary organic aerosol (SOA) formed through cloud processing reactions, elucidates the composition and sources of DOM in rainwater, and provides links connecting the two. Photochemical batch aqueous-phase reactions of organics with both biogenic and anthropogenic sources (i.e., methylglyoxal, pyruvic acid) and OH radical were performed to simulate cloud processing. The composition of products formed through cloud processing experiments and rainwater collected in New Jersey, USA was investigated using a combination of electrospray ionization mass spectrometry techniques, including ultra-high resolution Fourier transform ion cyclotron resonance mass spectrometry. This dissertation has resulted in the first evidence that oligomers form through cloud processing reactions, the first detailed chemical mechanism of aqueous phase oligomerization, the first identification of oligomers, organosulfates, and nitrooxy organosulfates in precipitation, and the first molecular level chemical characterization of organic nitrogen in precipitation. The formation of oligomers in SOA helps to explain the presence of large multifunctional compounds and humic like substances (HULIS) that dominate particulate organic mass. Oligomers have low vapor pressures and remain in the particle phase after cloud evaporation, enhancing SOA. The chemical properties of the oligomers suggest that they are less hygroscopic than the monomeric reaction products (i.e., organic acids). Their elemental

  5. Combined effects of organic aerosol loading and fog processing on organic aerosols oxidation and composition

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhishek; Tripathi, Sachchida; Gupta, Tarun

    2016-04-01

    Fog is a natural meteorological phenomenon that occurs throughout the world, it contains substantial quantity of liquid water and generally seen as a natural cleansing agent but it also has the potential to form highly oxidized secondary organic aerosols (SOA) via aqueous processing of ambient aerosols. On the other hand higher organic aerosols (OA) loading tend to decrease the overall oxidation level (O/C) of the particle phase organics, due to enhanced partitioning of less oxidized organics from gas to particle phase. However, combined impact of these two parameters; aqueous oxidation and OA loading, on the overall oxidation ratio (O/C) of ambient OA has never been studied. To assess this, real time ambient sampling using HR-ToF-AMS was carried out at Kanpur, India from 15 December 2014 - 10 February 2015. In first 3 weeks of this campaign, very high OA loading is (134 ± 42 μg/m3) observed (termed as high loading or HL period) while loading is substantially reduced from 2nd January, 2016 (56 ± 20 μg/m3, termed as low loading or LL period) . However, both the loading period was affected by several fog episodes (10 in HL and 7 in LL), thus providing the opportunity of studying the combined effects of fog and OA loading on OA oxidation. It is found that O/C ratio is very strongly anti-correlated with OA loading in both the loading period, however, slope of this ant-correlation is much steep during HL period than in LL period. Source apportionment of OA revealed that there is drastic change in the types of OA from HL to LL period, clearly indicating difference in OA composition from HL to LL period. During foggy night continuous oxidation of OA is observed from early evening to early morning with 15-20% enhancement in O/C ratio, while the same is absent during non-foggy period, clearly indicating the efficient fog processing of ambient OA. It is also found that night time fog aqueous oxidation can be as effective as daytime photo chemistry in oxidation of OA. Fog

  6. Secondary Aerosol Formation from Oxidation of Aromatics Hydrocarbons by Cl atoms

    NASA Astrophysics Data System (ADS)

    Cai, X.; Griffin, R.

    2006-12-01

    Aerosol Formation From the Oxidation of Aromatic Hydrocarbons by Chlorine Atmospheric secondary organic aerosol (SOA) affects regional and global air quality. The formation mechanisms of SOA via the oxidation of volatile organic compounds by hydroxyl radicals, ozone, and nitrate radicals have been studied intensively during the last decade. Chlorine atoms (Cl) also have been hypothesized to be effective oxidants in marine and industrially influenced areas. Recent work by the authors has indicated that significant amounts of SOA are formed from the oxidation of monoterpenes by Cl. Aromatic hydrocarbons are important for generation of both SOA and ozone in urban areas because of their large emission rates and high reactivity. The goal of this work was to quantify the SOA formation potentials of two representative aromatic hydrocarbons through laboratory chamber experiments in which oxidation was initiated by Cl. The system constructed for this study includes an experimental chamber, a gas chromatograph for quantification of aromatic mixing ratios, a Scanning Mobility Particle Spectrometer to measure SOA size distributions, a zero air generator, and an illuminating system. The model aromatic hydrocarbons chosen for this study are toluene and m-xylene. Aerosol yields are estimated based on measured aerosol volume concentration, the concentration of consumed hydrocarbon, and estimation of wall loss of the newly formed aerosol. Toluene and m-xylene exhibit similar SOA yields from the oxidation initiated by Cl. The toluene SOA yield from Cl-initiated oxidation, however, depends on the ratio between the mixing ratios of the initial chlorine source and toluene in the chamber. For toluene experiments with higher such ratios, SOA yields vary from 0.05 to 0.079 for generated aerosol ranging from 4.2 to12.0 micrograms per cubic meter. In the lower ratio experiments, SOA yields are from 0.033 to 0.064, corresponding to generated aerosol from 3.0 to 11.0 micrograms per cubic

  7. Aqueous-Phase Reactions of Isoprene with Sulfoxy Radical Anions as a way of Wet Aerosol Formation in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Kuznietsova, I.; Rudzinski, K. J.; Szmigielski, R.; Laboratory of the Environmental Chemistry

    2011-12-01

    Atmospheric aerosols exhibit an important role in the environment. They have implications on human health and life, and - in the larger scale - on climate, the Earth's radiative balance and the cloud's formation. Organic matter makes up a significant fraction of atmospheric aerosols (~35% to ~90%) and may originate from direct emissions (primary organic aerosol, POA) or result from complex physico-chemical processes of volatile organic compounds (secondary organic aerosol, SOA). Isoprene (2-methyl-buta-1,3-diene) is one of the relevant volatile precursor of ambient SOA in the atmosphere. It is the most abundant non-methane hydrocarbon emitted to the atmosphere as a result of living vegetation. According to the recent data, the isoprene emission rate is estimated to be at the level of 500 TgC per year. While heterogeneous transformations of isoprene have been well documented, aqueous-phase reactions of this hydrocarbon with radical species that lead to the production of new class of wet SOA components such as polyols and their sulfate esters (organosulfates), are still poorly recognized. The chain reactions of isoprene with sulfoxy radical-anions (SRA) are one of the recently researched route leading to the formation of organosulfates in the aqueous phase. The letter radical species originate from the auto-oxidation of sulfur dioxide in the aqueous phase and are behind the phenomenon of atmospheric acid rain formation. This is a complicated chain reaction that is catalyzed by transition metal ions, such as manganese(II), iron(III) and propagated by sulfoxy radical anions . The presented work addresses the chemical interaction of isoprene with sulfoxy radical-anions in the water solution in the presence of nitrite ions and nitrous acid, which are important trace components of the atmosphere. We showed that nitrite ions and nitrous acid significantly altered the kinetics of the auto-oxidation of SO2 in the presence of isoprene at different solution acidity from 2 to 8

  8. Emissions of biogenic volatile organic compounds and subsequent formation of secondary organic aerosols in a Larix kaempferi forest

    NASA Astrophysics Data System (ADS)

    Mochizuki, T.; Miyazaki, Y.; Ono, K.; Wada, R.; Takahashi, Y.; Saigusa, N.; Kawamura, K.; Tani, A.

    2015-10-01

    highlights the importance of intra-canopy processes that promote biogenic SOA formation in the presence of significant inflow of oxidants together with anthropogenic aerosols and their precursors.

  9. Direct evidence of atmospheric secondary organic aerosol formation in forest atmosphere through heteromolecular nucleation.

    PubMed

    Kavouras, Ilias G; Stephanou, Euripides G

    2002-12-01

    Atmospheric aerosols play a central role in climate and atmospheric chemistry. Organic matter frequently composes aerosol major fraction over continental areas. Reactions of natural volatile organic compounds, with atmospheric oxidants, are a key formation pathway of fine particles. The gas and particle atmospheric concentration of organic compounds directly emitted from conifer leaf epicuticular wax and of those formed through the photooxidation of alpha- and beta-pinene were simultaneously collected and measured in a conifer forest by using elaborated sampling and GC/ MS techniques. The saturation concentrations of acidic and carbonyl photooxidation products were estimated, by taking into consideration primary gas- and particle-phase organic species. Primary organic aerosol components represented an important fraction of the atmospheric gas-phase organic content Consequently, saturation concentrations of photooxidation products have been lowered facilitating new particle formation between molecules of photooxidation products and semi-volatile organic compounds. From the measured concentrations of the above-mentioned compounds, saturation concentrations (Csat,i) of alpha- and beta-pinene photooxidation products were calculated for nonideal conditions using a previously developed absorptive model. The results of these calculations indicated that primarily emitted organic species and ambient temperature play a crucial role in secondary organic aerosol formation. PMID:12523424

  10. Secondary aerosol formation from the oxidation of biogenic hydrocarbons by chlorine atoms

    NASA Astrophysics Data System (ADS)

    Cai, Xuyi; Griffin, Robert J.

    2006-07-01

    The chlorine atom (Cl) is a potential oxidant of volatile organic compounds (VOCs) in the atmosphere and is hypothesized to lead to secondary organic aerosol (SOA) formation in coastal and industrialized areas. The purpose of this paper is to test this hypothesis and to quantify the SOA formation potentials of the common monoterpenes α-pinene, β-pinene, and d-limonene when oxidized by Cl in laboratory chamber experiments. Results indicate that the oxidation of these monoterpenes generates significant amounts of aerosol. The SOA yields of α-pinene, β-pinene, and d-limonene in this study are comparable to those when they are oxidized by ozone, by nitrate radical, and in photooxidation scenarios. For aerosol mass up to 30.0 μg m-3, their yields reach approximately 0.20, 0.20, and 0.30, respectively. For d-limonene, data indicate two yield curves that depend on the initial concentration ratio of Cl precursor to d-limonene. It is argued theoretically that multiple SOA yield curves may be common for VOCs, depending on the initial concentration ratio of oxidant to VOC. SOA formation from the three typical monoterpenes when oxidized by Cl in the marine boundary layer, coastal areas, and inland industrialized areas could be a source of organic aerosol in the early morning.

  11. Impact of NOx on secondary organic aerosol (SOA) formation from β-pinene photooxidation

    NASA Astrophysics Data System (ADS)

    Sarrafzadeh, Mehrnaz; Pullinen, Iida; Springer, Monika; Kleist, Einhard; Tillmann, Ralf; Mentel, Thomas F.; Kiendler-Scharr, Astrid; Hastie, Donald R.; Wildt, Jürgen

    2016-04-01

    Secondary organic aerosols (SOA) generated from atmospheric oxidation of volatile organics contributes substantially to the global aerosol load. It has been shown that odd nitrogen (NOx) has a significant influence on the formation of this SOA. In this study, we investigated SOA formation from β-pinene photooxidation in the Jülich Plant Atmosphere Chamber (JPAC) under varying NOx conditions. At higher-NOx levels, the SOA yield was significantly suppressed by increasing the NOx concentration. However at lower-NOx levels the opposite trend, an increase in SOA with increasing NOx concentration, was observed. This increase was likely due to the increased OH concentration in the stirred flow reactor. By holding the OH concentration constant for all experiments we removed the potential effect of OH concentration on SOA mass growth. In this case increasing the NOx concentration only decreased the SOA yield. In addition, the impact of NOx on SOA formation was explored in the presence of ammonium sulfate seed aerosols. This suggested that SOA yield was only slightly suppressed under increasing NOx concentrations when seed aerosol was present.

  12. Substantial secondary organic aerosol formation in a coniferous forest: observations of both day- and nighttime chemistry

    NASA Astrophysics Data System (ADS)

    Lee, Alex K. Y.; Abbatt, Jonathan P. D.; Leaitch, W. Richard; Li, Shao-Meng; Sjostedt, Steve J.; Wentzell, Jeremy J. B.; Liggio, John; Macdonald, Anne Marie

    2016-06-01

    Substantial biogenic secondary organic aerosol (BSOA) formation was investigated in a coniferous forest mountain region in Whistler, British Columbia. A largely biogenic aerosol growth episode was observed, providing a unique opportunity to investigate BSOA formation chemistry in a forested environment with limited influence from anthropogenic emissions. Positive matrix factorization of aerosol mass spectrometry (AMS) measurement identified two types of BSOA (BSOA-1 and BSOA-2), which were primarily generated by gas-phase oxidation of monoterpenes and perhaps sesquiterpenes. The temporal variations of BSOA-1 and BSOA-2 can be explained by gas-particle partitioning in response to ambient temperature and the relative importance of different oxidation mechanisms between day and night. While BSOA-1 arises from gas-phase ozonolysis and nitrate radical chemistry at night, BSOA-2 is likely less volatile than BSOA-1 and consists of products formed via gas-phase oxidation by OH radical and ozone during the day. Organic nitrates produced through nitrate radical chemistry can account for 22-33 % of BSOA-1 mass at night. The mass spectra of BSOA-1 and BSOA-2 have higher values of the mass fraction of m/z 91 (f91) compared to the background organic aerosol. Using f91 to evaluate BSOA formation pathways in this unpolluted, forested region, heterogeneous oxidation of BSOA-1 is a minor production pathway of BSOA-2.

  13. High-temperature aerosol formation in wood pellets flames: Spatially resolved measurements

    SciTech Connect

    Wiinikka, Henrik; Gebart, Rikard; Boman, Christoffer; Bostroem, Dan; Nordin, Anders; OEhman, Marcus

    2006-12-15

    The formation and evolution of high-temperature aerosols during fixed bed combustion of wood pellets in a realistic combustion environment were investigated through spatially resolved experiments. The purpose of this work was to investigate the various stages of aerosol formation from the hot flame zone to the flue gas channel. The investigation is important both for elucidation of the formation mechanisms and as a basis for development and validation of particle formation models that can be used for design optimization. Experiments were conducted in an 8-kW-updraft fired-wood-pellets combustor. Particle samples were withdrawn from the centerline of the combustor through 10 sampling ports by a rapid dilution sampling probe. The corresponding temperatures at the sampling positions were in the range 200-1450{sup o}C. The particle sample was size-segregated in a low-pressure impactor, allowing physical and chemical resolution of the fine particles. The chemical composition of the particles was investigated by SEM/EDS and XRD analysis. Furthermore, the experimental results were compared to theoretical models for aerosol formation processes. The experimental data show that the particle size distribution has two peaks, both of which are below an aerodynamic diameter of 2.5 {mu}m (PM{sub 2.5}). The mode diameters of the fine and coarse modes in the PM{sub 2.5} region were {approx}0.1 and {approx}0.8 {mu}m, respectively. The shape of the particle size distribution function continuously changes with position in the reactor due to several mechanisms. Early, in the flame zone, both the fine mode and the coarse mode in the PM{sub 2.5} region were dominated by particles from incomplete combustion, indicated by a significant amount of carbon in the particles. The particle concentrations of both the fine and the coarse mode decrease rapidly in the hot oxygen-rich flame due to oxidation of the carbon-rich particles. After the hot flame, the fine mode concentration and particle

  14. Oligomerization as a potential mechanism for Secondary Organic Aerosol (SOA) formation in clouds

    NASA Astrophysics Data System (ADS)

    Yasmeen, F.; Sauret, N.; Claeys, M.; Maria, P. C.; Massi, L.

    2009-04-01

    Electrospray ionization - mass spectrometry (ESI-MS) has been used to investigate oligomer formation in dark chamber experiments designed to study the polymerization conditions of common atmospheric photooxidation products without photochemical action. Methylglyoxal has been selected as the monomer considering, it is a gas-phase product from the atmospheric oxidation of isoprene and terpenes (biogenic sources) as well as of aromatic compounds (anthropogenic sources). Aqueous-phase oligomer formation of methylglyoxal has been investigated in a simulated cloud matrix, under dark conditions in view of its short life time (~1.6 hrs). A mechanistic pathway for the growth of oligomers via aldol condensation under cloud conditions and in the absence of UV-light and the OH radical is proposed here for the first time. Soluble oligomers (n=1-12) formed in the course of acid-catalyzed aldol condensation have been detected and identified by positive and negative ion ESI-MS, while their relative abundance is estimated from the full-scan mass spectra. In particular, oligomer abundances and their adduct formation was considered with special emphasis on the structural elucidation of these oligomers and their corresponding adduct products. The oligomer series starts with a β-hydroxy ketone via aldol condensation and oligomers are formed by multiple addition of C3H4O2 units (72 Da) to the parent β-hydroxy ketone. MS2 ion trap experiments have been performed to structurally characterize the oligomers. Oligomers could form under conditions encountered in clouds even at micromolar concentrations and thus could significantly result in secondary organic aerosol (SOA) after cloud droplet evaporation. Therefore, it is proposed that oligomer formation does not only occur during droplet evaporation when the concentrations of products increase but could as well be an in-cloud process and substantially enhance in-cloud SOA yields.

  15. SOA Formation from Glyoxal in the Aerosol Aqueous Phase: A case study from Mexico City using an explicit laboratory-based model

    NASA Astrophysics Data System (ADS)

    Waxman, E.; Dzepina, K.; Lee-Taylor, J.; Ervens, B.; Volkamer, R.

    2012-04-01

    Glyoxal is an important contributor to secondary organic aerosol (SOA) formation via aerosol aqueous phase processing. This work takes a glyoxal-SOA model parameterization based on laboratory data and applies the box model to ambient measurements. For the Mexico City Metropolitan Area (MCMA) case study on April 9, 2003 the aerosol uptake and processing of glyoxal in aerosol water is investigated, and found able to rationalize the previously observed gas phase glyoxal imbalance (Volkamer et al., 2007) for the first time based on laboratory data. Our aerosol size distribution resolving model is constrained with time resolved distributions of aerosol chemical composition, and supports a surface limited uptake mechanism of glyoxal in Mexico City. We compare the AMS-measured OOA to SOA predictions using our glyoxal model combined with background aerosol, traditional VOC precursor (e.g., aromatics) SOA, and three parameterizations for SOA formation from S/IVOC, i.e., based on (1) Robinson et al., 2007, (2) Grieshop et al., 2009, and (3) GECKO-A (Lee-Taylor et al., 2011), which account for the bulk of SOA mass, but give very different results for the O/C ratio of predicted SOA. This presents to our knowledge the first comparison of a molecular perspective of S/IVOC ageing with empirical parameterizations. We compare the mass weighted O/C ratio from these different SOA sources to AMS-measured O/C ratios, in an attempt to use the rapidly increasing O/C to test for closure, and advance our understanding of aerosol ageing in Mexico City.

  16. Aerosol-radiation-cloud and precipitation processes during dust events (Invited)

    NASA Astrophysics Data System (ADS)

    Kallos, G. B.; Solomos, S.; Kushta, J.; Mitsakou, C.; Athanasiadis, P.; Spyrou, C.; Tremback, C.

    2010-12-01

    In places like the Mediterranean region where anthropogenic aerosols coexist with desert dust the aerosol-radiation-cloud processes are rather complicated. The mixture of different age of air pollutants of anthropogenic origin with Saharan dust and sea salt may lead to the formation of other particles with different characteristics. The mixture of the aerosols and gases from anthropogenic and natural origin (desert dust and sea salt) results in the formation of new types of PM with different physico-chemical properties and especially hygroscopicity (e.g. inside clouds or within the marine boundary layer) through heterogeneous processes. The new particle formation has different characteristics and therefore they have different impacts on cloud formation and precipitation. In an attempt to better understand links and feedbacks between air pollution and climate the new Integrated Community Limited Area Modeling System - ICLAMS has been developed. ICLAMS is an enhanced version of RAMS.v6 modeling system. It includes sub-models for the dust and sea salt cycles, gas and aqueous phase chemistry, gas to particle conversion and heterogeneous chemistry processes. All these processes are directly coupled with meteorology. RAMS has an explicit cloud microphysical scheme with eight categories of hydrometeors. The cloud droplets spectrum is explicitly calculated from model meteorology and prognostic CCN and IN properties (total number concentration, size distribution properties and chemical composition). Sulphate coated dust particles are efficient CCN because of their increased hygroscopicity while uncoated dust particles are efficient IN. The photochemical processes are directly linked to the RAMS radiative transfer scheme, which in the new model is RRTM. Absorption of short wave solar radiation from airborne dust leads to heating of the dust layer which can also affect the cloud processes. Mid and low tropospheric warming by dust is one of the new features that the model can

  17. Nonequilibrium Atmospheric Secondary Organic Aerosol Formation and Growth

    SciTech Connect

    Perraud, Veronique M.; Bruns, Emily A.; Ezell, Michael J.; Johnson, Stanley N.; Yu, Yong; Alexander, M. L.; Zelenyuk, Alla; Imre, D.; Chang, W. L.; Dabdub, Donald; Pankow, James F.; Finlayson-Pitts, Barbara J.

    2012-02-21

    Airborne particles play a critical role in air quality, human health effects, visibility and climate. Secondary organic aerosols (SOA) account for a significant portion of total airborne particles. They are formed in reactions of organic gases that produce low volatility and semi-volatile organic compounds (SVOCs). Current atmospheric models assume that SOA are liquids into which SVOCs undergo equilibrium partitioning and grow the particles. However a large discrepancy between model predictions and field measurements of SOA is commonly observed. We report here laboratory studies of the oxidation of a-pinene by ozone and nitrate radicals and show that particle composition is actually consistent with a kinetically determined growth mechanism, and not with equilibrium partitioning between the gas phase and liquid particles. If this is indeed a general phenomenon in air, the formulation of atmospheric SOA models will have to be revised to reflect this new paradigm. This will have significant impacts on quantifying the role of SOA in air quality, visibility, and climate.

  18. A modeling perspective of the ChArMEx intensive campaign: origin of photo-oxidant and organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Cholakian, Arineh; Beekmann, Matthias; Siour, Guillaume; Coll, Isabelle; Colette, Augustin; Gros, Valerie; Marchand, Nicolas; Sciare, Jean; Colomb, Aurélie; Gheusi, François; Sauvage, Stéphane

    2016-04-01

    During the summers of 2013 and 2014, two three-week intensive campaigns took place over the western Mediterranean in order to investigate the origins of photo-oxidants as well as the sources and processes of formation of organic aerosols in this region. Within the frame of the MISTRAL/ChArMEx program, an extensive number of chemical compounds were investigated by means of ground-based and also airborne measurements. In this paper, a modeling perspective of the 2013 campaign is given, using the CHIMERE chemistry-transport model, dealing with two aspects: 1) representativeness of the simulations with respect to the complex orography of Cape Corsica, 2) evaluation of secondary organic aerosol simulations in the western Mediterranean region with different model configurations using a variety of experimental data. The model has been configured in a way to fit the specificities of this unique region. The base simulations are performed in a domain covering the entire Europe as well as the northern Africa with a low resolution (30 km). In order to take into account the orographic complexity of the area where the ground-based measurements were performed (Ersa, Cape Corsica), nested simulations with a high resolution (1km horizontal resolution) focused on this site were performed with the goal of increasing the representativeness of the simulations. Still, this resolution does not allow to correctly represent the altitude of the Cape Corsica measurement site (533 m asl). To solve this problem, a large number of grid cells in the vicinity of the measurements site, all having different altitudes, were used to find the extrapolated concentration of an indicative list of species towards the exact altitude of the aforementioned site and to estimate an orographic representativeness error, which was shown to be less important for organic aerosols among said species. Alongside the base simulations, other series of simulations using multiple configurations of the Volatility Basis Set

  19. Apartment Compartmentalization With an Aerosol-Based Sealing Process

    SciTech Connect

    Maxwell, S.; Berger, D.; Harrington, C.

    2015-03-01

    Air sealing of building enclosures is a difficult and time-consuming process. Current methods in new construction require laborers to physically locate small and sometimes large holes in multiple assemblies and then manually seal each of them. The innovation demonstrated under this research study was the automated air sealing and compartmentalization of buildings through the use of an aerosolized sealant, developed by the Western Cooling Efficiency Center at University of California Davis. CARB sought to demonstrate this new technology application in a multifamily building in Queens, NY. The effectiveness of the sealing process was evaluated by three methods: air leakage testing of overall apartment before and after sealing, point-source testing of individual leaks, and pressure measurements in the walls of the target apartment during sealing.

  20. Secondary organic aerosol formation from ozone-initiated reactions with nicotine and secondhand tobacco smoke

    NASA Astrophysics Data System (ADS)

    Sleiman, Mohamad; Destaillats, Hugo; Smith, Jared D.; Liu, Chen-Lin; Ahmed, Musahid; Wilson, Kevin R.; Gundel, Lara A.

    2010-11-01

    We used controlled laboratory experiments to evaluate the aerosol-forming potential of ozone reactions with nicotine and secondhand smoke. Special attention was devoted to real-time monitoring of the particle size distribution and chemical composition of SOA as they are believed to be key factors determining the toxicity of SOA. The experimental approach was based on using a vacuum ultraviolet photon ionization time-of-flight aerosol mass spectrometer (VUV-AMS), a scanning mobility particle sizer (SMPS) and off-line thermal desorption coupled to mass spectrometry (TD-GC-MS) for gas-phase byproducts analysis. Results showed that exposure of SHS to ozone induced the formation of ultrafine particles (<100 nm) that contained high molecular weight nitrogenated species ( m/ z 400-500), which can be due to accretion/acid-base reactions and formation of oligomers. In addition, nicotine was found to contribute significantly (with yields 4-9%) to the formation of secondary organic aerosol through reaction with ozone. The main constituents of the resulting SOA were tentatively identified and a reaction mechanism was proposed to elucidate their formation. These findings identify a new component of thirdhand smoke that is associated with the formation of ultrafine particles (UFP) through oxidative aging of secondhand smoke. The significance of this chemistry for indoor exposure and health effects is highlighted.

  1. Formation of secondary organic aerosols from biogenic precursors: A case study over an Isoprene emitting forest.

    NASA Astrophysics Data System (ADS)

    Freney, Evelyn; Sellegri, Karine; Borbon, Agnès; Colomb, Aurelie; Delon, Claire; Jambert, Corinne; Durand, Pierre; Bourianne, Thierry; Gaimoz, Cecile; Feron, Anais; Triquette, Sylvain; Beekmann, Matthias; Sartelet, Karine; Dulcac, Francois

    2015-04-01

    Characterising the sources and formation patterns of atmospheric aerosols is fundamental to understanding the impact of anthropogenic emissions on the composition and physical properties of the atmosphere. Although, the contribution of urban anthropogenic aerosol particles is important (10 Tg C yr-1), the contribution of biogenic aerosols has been estimated to be as much as 90 Tg C yr-1 (Hallquist et al., 2009.). This large difference highlights the importance of understanding the formation mechanisms and sources of the biogenic aerosol in the atmosphere. An increasing number of studies have shown that the submicron aerosol mass concentration is dominated by organic aerosols in both rural and urban environments. In addition, there have been several studies showing that the combined emissions of both biogenic and anthropogenic VOC emissions can result in a higher yield of secondary organic aerosol (SOA) formation. Biogenic SOA is formed from the oxidation of biogenic volatile organic compounds that are emitted naturally from terrestrial vegetation. The most commonly emitted BVOCs include isoprene and monoterpenes (Kesslmeier and Staudt, 1999, Arneth et al., 2008). Despite their importance, the characterisation of BSOA from laboratory and field experiments is still poor and it is only recently that advances in measurement techniques providing more detailed analysis of these species is being provided. One of the reasons for the difficulty in characterising the abundance of these species, is their high temporal and spatial scales. As part of the ChArMEx (the Chemistry-Aerosol Mediterranean Experiment, http://charmex.lsce.ipsl.fr) experiment (SOP2a/SAFMED+) in July 2014, a number of research flights were performed over two forested areas in the south of France. These forested areas had different characteristics where one has mainly isoprene emitting vegetation, and the other is known to have more monoterpene emitting vegetation. The aims of these research flights were

  2. The Formation of Sulfate and Elemental Sulfur Aerosols Under Varying Laboratory Conditions: Implications for Early Earth

    NASA Technical Reports Server (NTRS)

    DeWitt, H. Langley; Hasenkopf, Christa A.; Trainer, Melissa G.; Farmer, Delphine K.; Jimenez, Jose L.; McKay, Christopher P.; Toon, Owen B.; Tolbert, Margaret A.

    2010-01-01

    The presence of sulfur mass-independent fractionation (S-MIF) in sediments more than 2.45 x 10(exp 9) years old is thought to be evidence for an early anoxic atmosphere. Photolysis of sulfur dioxide (SO2) by UV light with lambda < 220 nm has been shown in models and some initial laboratory studies to create a S-MIF; however, sulfur must leave the atmosphere in at least two chemically different forms to preserve any S-MIF signature. Two commonly cited examples of chemically different sulfur species that could have exited the atmosphere are elemental sulfur (S8) and sulfuric acid (H2S04) aerosols. Here, we use real-time aerosol mass spectrometry to directly detect the sulfur-containing aerosols formed when SO2 either photolyzes at wavelengths from 115 to 400 nm, to simulate the UV solar spectrum, or interacts with high-energy electrons, to simulate lightning. We found that sulfur-containing aerosols form under all laboratory conditions. Further, the addition of a reducing gas, in our experiments hydrogen (H2) or methane (CH4), increased the formation of S8. With UV photolysis, formation of S8 aerosols is highly dependent on the initial SO2 pressure; and S8 is only formed at a 2% SO2 mixing ratio and greater in the absence of a reductant, and at a 0.2% SO2 mixing ratio and greater in the presence of 1000 ppmv CH4. We also found that organosulfur compounds are formed from the photolysis of CH4 and moderate amounts of SO2, The implications for sulfur aerosols on early Earth are discussed.

  3. Modeling aerosol formation in opposed-flow diffusion flames.

    PubMed

    Violi, Angela; D'Anna, Andrea; D'Alessio, Antonio; Sarofim, Adel F

    2003-06-01

    The microstructures of atmospheric pressure, counter-flow, sooting, flat, laminar ethylene diffusion flames have been studied numerically by using a new kinetic model developed for hydrocarbon oxidation and pyrolysis. Modeling results are in reasonable agreement with experimental data in terms of concentration profiles of stable species and gas-phase aromatic compounds. Modeling results are used to analyze the controlling steps of aromatic formation and soot growth in counter-flow configurations. The formation of high molecular mass aromatics in diffusion controlled conditions is restricted to a narrow area close to the flame front where these species reach a molecular weight of about 1000 u. Depending on the flame configuration, soot formation is controlled by the coagulation of nanoparticles or by the addition of PAH to soot nuclei. PMID:12718969

  4. Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States

    PubMed Central

    Xu, Lu; Guo, Hongyu; Boyd, Christopher M.; Klein, Mitchel; Bougiatioti, Aikaterini; Cerully, Kate M.; Hite, James R.; Kreisberg, Nathan M.; Knote, Christoph; Olson, Kevin; Koss, Abigail; Goldstein, Allen H.; Hering, Susanne V.; de Gouw, Joost; Baumann, Karsten; Lee, Shan-Hu; Nenes, Athanasios; Weber, Rodney J.; Ng, Nga Lee

    2015-01-01

    Secondary organic aerosol (SOA) constitutes a substantial fraction of fine particulate matter and has important impacts on climate and human health. The extent to which human activities alter SOA formation from biogenic emissions in the atmosphere is largely undetermined. Here, we present direct observational evidence on the magnitude of anthropogenic influence on biogenic SOA formation based on comprehensive ambient measurements in the southeastern United States (US). Multiple high-time-resolution mass spectrometry organic aerosol measurements were made during different seasons at various locations, including urban and rural sites in the greater Atlanta area and Centreville in rural Alabama. Our results provide a quantitative understanding of the roles of anthropogenic SO2 and NOx in ambient SOA formation. We show that isoprene-derived SOA is directly mediated by the abundance of sulfate, instead of the particle water content and/or particle acidity as suggested by prior laboratory studies. Anthropogenic NOx is shown to enhance nighttime SOA formation via nitrate radical oxidation of monoterpenes, resulting in the formation of condensable organic nitrates. Together, anthropogenic sulfate and NOx can mediate 43–70% of total measured organic aerosol (29–49% of submicron particulate matter, PM1) in the southeastern US during summer. These measurements imply that future reduction in SO2 and NOx emissions can considerably reduce the SOA burden in the southeastern US. Updating current modeling frameworks with these observational constraints will also lead to more accurate treatment of aerosol formation for regions with substantial anthropogenic−biogenic interactions and consequently improve air quality and climate simulations. PMID:25535345

  5. Characterizing Atmospheric Processing of Aerosols from Forest Fires at the Mt. Bachelor Observatory during BBOP

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Collier, S.; Hee, J.; Wigder, N. L.; Jaffe, D. A.; Zhang, Q.

    2014-12-01

    This study investigates the physical and chemical characteristics and atmospheric processing of aerosols from uncontrolled forest fires across the Pacific Northwest. The measurements were made at the Mt. Bachelor Observatory (MBO) located at the summit of Mt. Bachelor in central Oregon (43.9794° N, 121.6885° W, 2,763 m asl) in summer 2013 during the DOE sponsored Biomass Burning Observation Project (BBOP) field campaign. We utilized an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) coupled with a thermodenuder. Observations during periods affected by biomass burning (BB) pollution showed elevated non-refractory submicron aerosol (NR-PM1) concentration up to 140 μg/m3. NR-PM1 correlated well with PM light scattering (up to ~ 600 Mm-1 at 550 nm) and gas phase CO (up to ~0.4 ppmv). The AMS BB tracer, f60, i.e., fraction of organic signals at m/z = 60, was also enhanced with a maximum of ~ 2%. Organic aerosol (OA) dominated the PM composition in BB plumes (94.1% of the NR-PM1 mass) with an average concentration of 13.9 μg/m3. Three distinctive BBOA factors were identified by Positive Matrix Factorization (PMF): a fresh BBOA-I factor (O/C=0.27, H/C=1.52, f60 = 2.26%) that correlates well with ammonium nitrate; an intermediately oxidized BBOA-II (O/C=0.52, H/C=1.47, f60 = 1.05%), and a highly oxidized BBOA-III (O/C=0.95, H/C=1.02) with a low f60 (< 0.01%) and enhanced tracer ions for carboxylic acids (e.g., CHO2+). During persistent BB plume events from fixed fire sources, fresh BBOA-I initially dominated the OA composition, but decreased as the more oxidized BBOA-II increased while BBOA-III remained unchanged. These events shed light on the chemical transformation of BB aerosol during atmospheric aging. We will examine the enhancement of different BBOA factors relative to CO to investigate secondary organic aerosol (SOA) formation processes in BB plumes.

  6. Aerosol and cloud condensation nuclei formation at Mt. Kleiner Feldberg, Germany

    NASA Astrophysics Data System (ADS)

    Kohl, R.; Bonn, B.; Bourtsoukidis, S.; Wex, H.; Stratmann, F.; Bingemer, H.; Haunold, W.; Jacobi, S.

    2012-04-01

    New particle formation in number and mass is a quite ubiquous phenomenon in the atmospheric boundary layer. However, different locations provide different mechanisms for the initial particle production steps. Investigating the formation aims usually in explaining two aspects, the initial formation process and the contribution to cloud condensation nuclei production. In this study we focus on the latter. Once these particles are formed they grow further on until they reach cloud effective sizes. This is the size, where those particles can affect local climate via the indirect aerosol effect. This study deals with the processes mentioned at Mt. Kleiner Feldberg (810 m a.s.l.) about 50 km northwest of Frankfurt activation diameters. We have been determined using a CCN-counter (DMT, Boulder, U.S.) [Roberts and Nenes, 2005] and a SMPS (TSI 3936) with a long DMA (TSI 3081) and a UCPC (TSI 3025A). Particles were assumed to be equal in chemical composition since the vast majority of particles were smaller than 300 nm in diameter, i.e. secondary of nature. Therefore, measured CCN concentrations were intercompared with section wise integrated particle number concentrations starting at the largest size towards the smaller ones. The best match of integrated and CCN concentration was assumed to be the activation diameter (Dp,active). With this set-up the activation diameters were determined for five supersaturations (0.1, 0.2 0.3, 0.4 and 0.6%) during a two weeks period. This resulted in the expected detcrease in activation size with increasing supersaturation from about 130±10 nm at 0.1% to 70±5 nm at 0.6% supersaturation. The empirically fitted kappa-value [Petters and Kreidenweis, 2007] was obtained as 0.16±0.03 indicating aerosols of lower water-solubility. Second, measurements of ice nuclei [Klein et al., 2010] were conducted once per day during the same time period, which indicate that IN concentrations, were about one per mill of the CCN. Interestingly the cross

  7. Simulating the formation of carbonaceous aerosol in a European Megacity (Paris) during the MEGAPOLI summer and winter campaigns

    NASA Astrophysics Data System (ADS)

    Fountoukis, Christos; Megaritis, Athanasios G.; Skyllakou, Ksakousti; Charalampidis, Panagiotis E.; Denier van der Gon, Hugo A. C.; Crippa, Monica; Prévôt, André S. H.; Fachinger, Friederike; Wiedensohler, Alfred; Pilinis, Christodoulos; Pandis, Spyros N.

    2016-03-01

    We use a three-dimensional regional chemical transport model (PMCAMx) with high grid resolution and high-resolution emissions (4 × 4 km2) over the Paris greater area to simulate the formation of carbonaceous aerosol during a summer (July 2009) and a winter (January/February 2010) period as part of the MEGAPOLI (megacities: emissions, urban, regional, and global atmospheric pollution and climate effects, and Integrated tools for assessment and mitigation) campaigns. Model predictions of carbonaceous aerosol are compared against Aerodyne aerosol mass spectrometer and black carbon (BC) high time resolution measurements from three ground sites. PMCAMx predicts BC concentrations reasonably well reproducing the majority (70 %) of the hourly data within a factor of two during both periods. The agreement for the summertime secondary organic aerosol (OA) concentrations is also encouraging (mean bias = 0.1 µg m-3) during a photochemically intense period. The model tends to underpredict the summertime primary OA concentrations in the Paris greater area (by approximately 0.8 µg m-3) mainly due to missing primary OA emissions from cooking activities. The total cooking emissions are estimated to be approximately 80 mg d-1 per capita and have a distinct diurnal profile in which 50 % of the daily cooking OA is emitted during lunch time (12:00-14:00 LT) and 20 % during dinner time (20:00-22:00 LT). Results also show a large underestimation of secondary OA in the Paris greater area during wintertime (mean bias = -2.3 µg m-3) pointing towards a secondary OA formation process during low photochemical activity periods that is not simulated in the model.

  8. Simulating the formation of carbonaceous aerosol in a European Megacity (Paris) during the MEGAPOLI summer and winter campaigns

    NASA Astrophysics Data System (ADS)

    Fountoukis, C.; Megaritis, A. G.; Skyllakou, K.; Charalampidis, P. E.; Denier van der Gon, H. A. C.; Crippa, M.; Prévôt, A. S. H.; Freutel, F.; Wiedensohler, A.; Pilinis, C.; Pandis, S. N.

    2015-09-01

    We use a three dimensional regional chemical transport model (PMCAMx) with high grid resolution and high resolution emissions (4 km × 4 km) over the Paris greater area to simulate the formation of carbonaceous aerosol during a summer (July 2009) and a winter (January/February 2010) period as part of the MEGAPOLI (Megacities: Emissions, urban, regional, and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation) campaigns. Model predictions of carbonaceous aerosol are compared against Aerodyne aerosol mass spectrometer and black carbon (BC) high time resolution measurements from three ground sites. PMCAMx predicts BC concentrations reasonably well reproducing the majority (70 %) of the hourly data within a factor of two during both periods. The agreement for the summertime secondary organic aerosol (OA) concentrations is also encouraging (mean bias = 0.1 μg m-3) during a photochemically intense period. The model tends to underpredict the summertime primary OA concentrations in the Paris greater area (by approximately 0.8 μg m-3) mainly due to missing primary OA emissions from cooking activities. The total cooking emissions are estimated to be approximately 80 mg d-1 per capita and have a distinct diurnal profile in which 50 % of the daily cooking OA is emitted during lunch time (12:00-14:00 LT) and 20 % during dinner time (20:00-22:00 LT). Results also show a large underestimation of secondary OA in the Paris greater area during wintertime (mean bias = -2.3 μg m-3) pointing towards a secondary OA formation process during low photochemical activity periods that is not simulated in the model.

  9. Carbonaceous aerosols observed at Ieodo Ocean Research Station and implication for the role of secondary aerosols in fog formation

    NASA Astrophysics Data System (ADS)

    Han, J.; Shin, B.; Hwang, G.; Kim, J.; Lee, M.; Shim, J.

    2014-12-01

    Carbonaceous components and soluble ions of PM2.5 were measured at Ieodo Ocean Research Station (IORS) from December 2004 to June 2008. IORS is a 40-m research tower and located in the East China Sea (32.07°N, 125.10°E). As IORS is distanced equally from South Korea, China, and Japan, it is an ideal place to monitor Asian outflows with the least influence of local emissions. The mean concentration of PM2.5 mass was 21.8 ± 14.9 μg/m3 with the maximum of 35.3 μg/m3 (March) and the minimum of 11.2 μg/m3 (September). The monthly variation of PM2.5 mass was similar to that of O3 due to meteorological conditions, which determines the degree of influence from nearby lands. Chinese outflows were mostly responsible for the enhancement of mass and major constituents of PM2.5 such as sulfate, OC, and EC. Their concentrations were the lowest in summer when aged marine air masses were dominant. It is noteworthy that sulfate was also enhanced when air mass passed through Japan, even though its concentration was not as high as that of Chinese outflows. In June, OC concentration was distinctively high with high OC/EC ratio of ~9.5. At IORS, June is characterized by the most frequent occurrence of fog and the lowest visibility with the highest relative humidity. In China, the clearing fire of agricultural residues is the major source of fine aerosols in June, leading to severe haze (e.g., Cheng et al., 2014). In addition, the aerosol optical depth was also observed to be the maximum over northeast Asia in June (Kim et al., 2007). Consequently, our results suggest that organic aerosol played a critical role in fog formation in the study region. References Cheng, Z., et al. (2014) Impact of biomass burning on haze pollution in the Yangtze River delta, China: a case study in summer 2011, Atmos. Chem. Phys., 14, 4573-4585, doi:10.5194/acp-14-4573-2014. Kim, S.-W., et al. (2007) Seasonal and monthly variations of columnar aerosol optical properties over east Asia determined from

  10. Impact of new particle formation on the concentrations of aerosol number and cloud condensation nuclei around Beijing

    SciTech Connect

    Matsui, H.; Koike, Makoto; Kondo, Yutaka; Takegawa, Nobuyuki; Wiedensohler, A.; Fast, Jerome D.; Zaveri, Rahul A.

    2011-10-13

    New particle formation (NPF) is one of the most important processes in controlling the concentrations of aerosol number (condensation nuclei, CN) and cloud condensation nuclei (CCN) in the atmosphere. In this study, we introduced a new aerosol model representation with 20 size bins between 1 nm and 10 {mu}m and activation-type and kinetic nucleation parameterizations into the WRF-chem model (called NPF-explicit WRF-chem). Model calculations were conducted in the Beijing region in China for the periods during the CARE-Beijing 2006 campaign conducted in August and September 2006. Model calculations successfully reproduced the timing of NPF and no-NPF days in the measurements (21 of 26 days). Model calculations also reproduced the subsequent rapid growth of new particles with a time scale of half a day. These results suggest that once a reasonable nucleation rate at a diameter of 1 nm is given, explicit calculations of condensation and coagulation processes can reproduce the clear contrast between NPF and no-NPF days as well as further growth up to several tens nanometers. With this reasonable representation of the NPF process, we show that NPF contributed 20-30% of CN concentrations (> 10 nm in diameter) in and around Beijing on average. We also show that NPF increases CCN concentrations at higher supersaturations (S > 0.2%), while it decreases them at lower supersaturations (S < 0.1%). This is likely because NPF suppresses the increases in both the size and hygroscopicity of pre-existing particles through the competition of condensable gases between new particles and pre-existing particles. Sensitivity calculations show that a reduction of primary aerosol emissions, such as black carbon (BC), would not necessarily decrease CCN concentrations because of an increase in NPF. Sensitivity calculations also suggest that the reduction ratio of primary aerosol and SO2 emissions will be key in enhancing or damping the BC mitigation effect.

  11. Carbon in southeastern U.S. aerosol particles: Empirical estimates of secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Blanchard, Charles L.; Hidy, George M.; Tanenbaum, Shelley; Edgerton, Eric; Hartsell, Benjamin; Jansen, John

    Fine particles in the southeastern United States are rich in carbon: Southeastern Aerosol Research and Characterization (SEARCH) network measurements from 2001 through 2004 indicate that fine particles less than 2.5 μm aerodynamic diameter (PM 2.5) at two inland urban sites, Atlanta, GA and Birmingham, AL, contain 9 and 11% black carbon (BC) by mass, respectively, on average. For neighboring rural or urban Gulf Coast sites, the range is 4-7% BC. Organic carbon (OC) ranges from 25 to 27% in the inland cities, and 19-24% at the rural or Gulf Coast locations. Evidence in the literature suggests that a substantial fraction of the OC found in the Southeast is produced by atmospheric chemical reactions of volatile organic compounds (VOCs). Estimation of the fraction of OC from primary and secondary sources is difficult from first principles, because the chemistry is complex and incompletely understood, and the emission sources are both anthropogenic and natural. As an alternative, measurement-based models can be used to estimate empirically the primary and secondary source contributions. Three complementary empirical models are described and applied using the SEARCH database. The methods include (a) a multiple regression model employing markers for primary and secondary carbon using gas and particle data, (b) a carbon mass balance using carbon and CO data, along with certain assumptions about the OC/CO ratios in primary emissions for different urban and rural conditions, and (c) exploitation of isotopic measurements of carbon along with the BC and OC data. Secondary organic carbon (SOC) represents ˜20-60% of mean OC, depending upon location and season. The results are sensitive to estimates of emissions of primary OC and BC.

  12. The dependence of aerosol formation in a plant chamber on temperature, UV radiation and relative humidity

    NASA Astrophysics Data System (ADS)

    Dal Maso, M.; Hohaus, T.; Kiendler-Scharr, A.; Kleist, E.; Mentel, Th. F.; Tillmann, R.; Wildt, J.

    2009-04-01

    The ongoing climate change is expected to raise air temperatures; this will have an effect on the vegetation and its emission pattern. Biogenic VOC emissions are temperature dependent, with increasing temperatures causing increasing emissions. Increased temperatures could also lead to increased occurrences of heat stress in plants, inducing changes in plant emission patterns. This has given rise to propositions for a feedback between vegetation and climate, with increasing temperatures causing increased aerosol loading, which in turn has a cooling effect. We have investigated the dependence on the aerosol production from plant emissions on various environmental factors, such as temperature, RH or UV intensity in the Jülich Aerosol Atmosphere Plant Chamber setup (JPAC). Higher temperatures in the plant chamber lead to higher emissions; this also lead to higher particle number production as well as increased growth rates. Relative humidity and UV irradiation were also shown to influence particle formation; the possible chemical and physical pathways causing this will be discussed. We will also discuss the relative roles of formation rate and growth rate enhancements in producing cloud condensation nuclei utilising a simple aerosol dynamics modelling approach.

  13. Secondary organic aerosol formation and composition from the photo-oxidation of methyl chavicol (estragole)

    NASA Astrophysics Data System (ADS)

    Pereira, K. L.; Hamilton, J. F.; Rickard, A. R.; Bloss, W. J.; Alam, M. S.; Camredon, M.; Muñoz, A.; Vásquez, M.; Borrás, E.; Ródenas, M.

    2013-12-01

    The increasing demand for palm oil for uses in biofuel and food products is leading to rapid expansion of oil palm agriculture. Methyl chavicol (also known as estragole and 1-allyl-4-methoxybenzene) is an oxygenated biogenic volatile organic compound that was recently identified as the main floral emission from an oil palm plantation in Malaysian Borneo. The emissions of methyl chavicol observed may impact regional atmospheric chemistry, but little is known of its ability to form secondary organic aerosol (SOA). The photo-oxidation of methyl chavicol was investigated at the European Photoreactor chamber as a part of the atmospheric chemistry of methyl chavicol (ATMECH) project. Aerosol samples were collected using a particle into liquid sampler (PILS) and analysed offline using an extensive range of instruments including; high performance liquid chromatography mass spectrometry (HPLC-ITMS), high performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-QTOFMS) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The SOA yield was determined as 18-29% depending on initial precursor (VOC : NOx) mixing ratios. In total, 59 SOA compounds were observed and the structures of 10 compounds have been identified using high resolution tandem mass spectrometry. The addition of hydroxyl and/or nitro functional groups to the aromatic ring appears to be an important mechanistic pathway for aerosol formation. This results in the formation of compounds with both low volatility and high O : C ratios, where functionalisation rather than fragmentation is mainly observed as a~result of the stability of the ring. The SOA species observed can be characterized as semi-volatile to low volatile oxygenated organic aerosol (SVOOA and LVOOA) components and therefore may be important in aerosol formation and growth.

  14. Secondary organic aerosol formation and composition from the photo-oxidation of methyl chavicol (estragole)

    NASA Astrophysics Data System (ADS)

    Pereira, K. L.; Hamilton, J. F.; Rickard, A. R.; Bloss, W. J.; Alam, M. S.; Camredon, M.; Muñoz, A.; Vázquez, M.; Borrás, E.; Ródenas, M.

    2014-06-01

    The increasing demand for palm oil for uses in biofuel and food products is leading to rapid expansion of oil palm agriculture. Methyl chavicol (also known as estragole and 1-allyl-4-methoxybenzene) is an oxygenated biogenic volatile organic compound (VOC) that was recently identified as the main floral emission from an oil palm plantation in Malaysian Borneo. The emissions of methyl chavicol observed may impact regional atmospheric chemistry, but little is known of its ability to form secondary organic aerosol (SOA). The photo-oxidation of methyl chavicol was investigated at the European Photoreactor chamber as a part of the atmospheric chemistry of methyl chavicol (ATMECH) project. Aerosol samples were collected using a particle into liquid sampler (PILS) and analysed offline using an extensive range of instruments including; high-performance liquid chromatography mass spectrometry (HPLC-ITMS), high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-QTOFMS) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The SOA yield was determined as 18 and 29% for an initial VOC mixing ratio of 212 and 460 ppbv (parts per billion by volume) respectively; using a VOC:NOx ratio of ~5:1. In total, 59 SOA compounds were observed and the structures of 10 compounds have been identified using high-resolution tandem mass spectrometry. The addition of hydroxyl and/or nitro-functional groups to the aromatic ring appears to be an important mechanistic pathway for aerosol formation. This results in the formation of compounds with both low volatility and high O:C ratios, where functionalisation rather than fragmentation is mainly observed as a result of the stability of the ring. The SOA species observed can be characterised as semi-volatile to low-volatility oxygenated organic aerosol (SVOOA and LVOOA) components and therefore may be important in aerosol formation and growth.

  15. Quantifying the ionic reaction channels in the Secondary Organic Aerosol formation from glyoxal

    NASA Astrophysics Data System (ADS)

    Maxut, Aurelia; Nozière, Barbara; Rossignol, Stéphanie; George, Christian; Waxman, Eleanor Marie; Laskin, Alexander; Slowik, Jay; Dommen, Josef; Prévôt, André; Baltensperger, Urs; Volkamer, Rainer

    2014-05-01

    Glyoxal, a common organic gas in the atmosphere, has been identified in recent years as an important Secondary Organic Aerosol (SOA) precursor (Volkamer et al., 2007). But, unlike with other precursors, the SOA is largely produced by particle-phase reactions (Volkamer et al., 2009) and equilibria (Kampf et al. 2013) that are still not entirely characterized. Since 2009 series of smog chamber experiments have been performed within the Eurochamp program at the Paul Scherrer Institute, Switzerland, to investigate SOA formation from glyoxal. In these experiments, glyoxal was produced by the gas-phase oxidation of acetylene in the presence of seeds, the seed composition and other conditions being varied. The 2011 campaign resulted in the identification of salting processes controlling the glyoxal partitioning in the seeds (Kampf et al. 2013). This presentation will report results of the 2013 campaign focusing on the identification of the various reactions (ionic or photo-induced) contributing to the SOA mass. In particular, the contribution of the ionic reactions, i.e. mediated by NH4+, were investigated by quantifying the formation of imidazoles (imidazole, imidazole-2-carboxaldehyde, 2,2'-biimidazole) from the small condensation channel of glyoxal with ammonia. For this, the SOA produced were collected on quartz filters and analyzed by Orbitrap LC/MS (Q-Exactive Thermo Fisher). The formation of other products such as organic acids was also investigated to determine potential competing reactions. Time-resolved MOUDI sampling coupled with nano-DESY/ESI-MS/MS analysis was also used to identify nitrogen- and sulphur-containing products from all the reactions. The results obtained for a range of conditions will be presented and compared with recent mechanistic information on the ionic reaction channels (Nozière et al., in preparation, 2013). The implementation of all this new information into a glyoxal-SOA model will be discussed.

  16. Rapid Formation of Molecular Bromine from Deliquesced NaBr Aerosol in the Presence of Ozone and UV Light

    EPA Science Inventory

    The formation of gas-phase bromine from aqueous sodium bromide aerosols is investigated through a combination of chamber experiments and chemical kinetics modeling. Experiments show that Br2(g) is produced rapidly from deliquesced NaBr aerosols in the presence of OH radicals prod...

  17. Assessing the Performance of Computationally Simple and Complex Representations of Aerosol Processes using a Testbed Methodology

    NASA Astrophysics Data System (ADS)

    Fast, J. D.; Ma, P.; Easter, R. C.; Liu, X.; Zaveri, R. A.; Rasch, P.

    2012-12-01

    Predictions of aerosol radiative forcing in climate models still contain large uncertainties, resulting from a poor understanding of certain aerosol processes, the level of complexity of aerosol processes represented in models, and the ability of models to account for sub-grid scale variability of aerosols and processes affecting them. In addition, comparing the performance and computational efficiency of new aerosol process modules used in various studies is problematic because different studies often employ different grid configurations, meteorology, trace gas chemistry, and emissions that affect the temporal and spatial evolution of aerosols. To address this issue, we have developed an Aerosol Modeling Testbed (AMT) to systematically and objectively evaluate aerosol process modules. The AMT consists of the modular Weather Research and Forecasting (WRF) model, a series of testbed cases for which extensive in situ and remote sensing measurements of meteorological, trace gas, and aerosol properties are available, and a suite of tools to evaluate the performance of meteorological, chemical, aerosol process modules. WRF contains various parameterizations of meteorological, chemical, and aerosol processes and includes interactive aerosol-cloud-radiation treatments similar to those employed by climate models. In addition, the physics suite from a global climate model, Community Atmosphere Model version 5 (CAM5), has also been ported to WRF so that these parameterizations can be tested at various spatial scales and compared directly with field campaign data and other parameterizations commonly used by the mesoscale modeling community. In this study, we evaluate simple and complex treatments of the aerosol size distribution and secondary organic aerosols using the AMT and measurements collected during three field campaigns: the Megacities Initiative Local and Global Observations (MILAGRO) campaign conducted in the vicinity of Mexico City during March 2006, the

  18. Multiphase processing of organic hydroxynitrates in secondary organic aerosol from the radical-initiated oxidation of multi-olefinic monoterpenes

    NASA Astrophysics Data System (ADS)

    Slade, J. H.; Lee, L. S.; Shepson, P. B.; De Perre, C.

    2015-12-01

    One of the greatest challenges facing atmospheric and climate science is understanding the impacts human activities have on the natural environment and atmospheric chemistry. The production of condensable organic compounds due to interactions between atmospheric oxidants, nitrogenous pollutants, and biogenic volatile organic compounds (BVOCs) emitted from the terrestrial biosphere can contribute significantly to the formation and growth of secondary organic aerosol (SOA). Aerosol particles influence atmospheric radiative transfer, cloud formation, and thus atmospheric temperatures. Due to their solubility in water and adsorptive nature, hydroxylated organic nitrates (HORONO2) may contribute significantly to the formation and chemical aging of SOA, and serve as an important sink for NOx (NO+NO2). We recently observed that a monoterpene β-hydroxy-organic nitrate (C10H17NO4), produced from the OH oxidation of α-pinene in the presence of NOx, undergoes rapid processing in the aerosol phase via an acid-catalyzed and pH-dependent hydrolysis mechanism, potentially impacting SOA growth and molecular composition. Further processing in the aerosol phase via polymerization and formation of organosulfates is expected, yet studies related to product identification and their formation mechanisms are limited. In this presentation, I will discuss recent laboratory-based reaction chamber studies of gas-phase organic nitrate production, SOA formation, and acidity-dependent aerosol-phase processing of organic nitrates produced from the NO3 oxidation of γ-terpinene. This BVOC is a diolefin, which as modeling studies suggest, may be an important nighttime organic nitrate precursor. Gas-phase organic nitrate compounds resulting from NO3 oxidation were qualitatively identified applying I- chemical ionization mass spectrometry (CIMS) and quantified via calibration using synthetic standards generated in our laboratory. Aerosol-phase analysis was carried out employing Fourier transform

  19. Optically thin ice clouds in Arctic; Formation processes

    NASA Astrophysics Data System (ADS)

    Jouan, Caroline; Pelon, Jacques; Girard, Eric; Blanchet, Jean-Pierre; Wobrock, Wolfram; Gayet, Jean-Franćois; Schwarzenböck, Alfons; Gultepe, Ismail; Delanoë, Julien; Mioche, Guillaume

    2010-05-01

    Arctic ice cloud formation during winter is poorly understood mainly due to lack of observations and the remoteness of this region. Yet, their influence on Northern Hemisphere weather and climate is of paramount importance, and the modification of their properties, linked to aerosol-cloud interaction processes, needs to be better understood. Large concentration of aerosols in the Arctic during winter is associated to long-range transport of anthropogenic aerosols from the mid-latitudes to the Arctic. Observations show that sulphuric acid coats most of these aerosols. Laboratory and in-situ measurements show that at cold temperature (< -30°C), acidic coating lowers the freezing point and deactivates ice nuclei (IN). Therefore, the IN concentration is reduced in these regions and there is less competition for the same available moisture. As a result, large ice crystals form in relatively small concentrations. It is hypothesized that the observed low concentration of large ice crystals in thin ice clouds is linked to the acidification of aerosols. To check this, it is necessary to analyse cloud properties in the Arctic. Extensive measurements from ground-based sites and satellite remote sensing (CloudSat and CALIPSO) reveal the existence of two types of extended optically thin ice clouds (TICs) in the Arctic during the polar night and early spring. The first type (TIC-1) is seen only by the lidar, but not the radar, and is found in pristine environment whereas the second type (TIC-2) is detected by both sensors, and is associated with high concentration of aerosols, possibly anthropogenic. TIC-2 is characterized by a low concentration of ice crystals that are large enough to precipitate. To further investigate the interactions between TICs clouds and aerosols, in-situ, airborne and satellite measurements of specific cases observed during the POLARCAT and ISDAC field experiments are analyzed. These two field campaigns took place respectively over the North Slope of

  20. Formation of HNO 2 on aerosol surfaces during foggy periods in the presence of NO and NO 2

    NASA Astrophysics Data System (ADS)

    Notholt, J.; Hjorth, J.; Raes, F.

    A commercial Differential Optical Absorption Spectrometer (DOAS), measuring trace gases absorbing in the u.v./vis region was used for obtaining information on aerosol parameters (e.g. total surface) based on the observed Mie scattering. This procedure allows simultaneous measurements of trace gas concentrations and aerosol parameters within the same air volume. A series of measurements of HNO 2, NO 2, NO, SO 2 and aerosol parameters was performed at Ispra in northern Italy. The observations show a rapid formation of gaseous HNO 2 during foggy episodes and give direct evidence of an important contribution of reactions on wet aerosols to the transformation of tropospheric NO x into HNO 2.

  1. Aerosol Processing in Mixed-Phase Clouds in ECHAM5-HAM: Comparison of Single-Column Model Simulations to Observations

    NASA Astrophysics Data System (ADS)

    Hoose, C.; Lohmann, U.; Stier, P.; Verheggen, B.; Weingartner, E.; Herich, H.

    2007-12-01

    The global aerosol-climate model ECHAM5-HAM (Stier et al., 2005) has been extended by an explicit treatment of cloud-borne particles. Two additional modes for in-droplet and in-crystal particles are introduced, which are coupled to the number of cloud droplet and ice crystal concentrations simulated by the ECHAM5 double-moment cloud microphysics scheme (Lohmann et al., 2007). Transfer, production and removal of cloud-borne aerosol number and mass by cloud droplet activation, collision scavenging, aqueous-phase sulfate production, freezing, melting, evaporation, sublimation and precipitation formation are taken into account. The model performance is demonstrated and validated with observations of the evolution of total and interstitial aerosol concentrations and size distributions during three different mixed-phase cloud events at the alpine high-altitude research station Jungfraujoch (Switzerland) (Verheggen et al, 2007). Although the single-column simulations can not be compared one-to-one with the observations, the governing processes in the evolution of the cloud and aerosol parameters are captured qualitatively well. High scavenged fractions are found during the presence of liquid water, while the release of particles during the Bergeron-Findeisen process results in low scavenged fractions after cloud glaciation. The observed coexistence of liquid and ice, which might be related to cloud heterogeneity at subgrid scales, can only be simulated in the model when forcing non-equilibrium conditions. References: U. Lohmann et al., Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM, Atmos. Chem. Phys. 7, 3425-3446 (2007) P. Stier et al., The aerosol-climate model ECHAM5-HAM, Atmos. Chem. Phys. 5, 1125-1156 (2005) B. Verheggen et al., Aerosol partitioning between the interstitial and the condensed phase in mixed-phase clouds, Accepted for publication in J. Geophys. Res. (2007)

  2. Simulation Chamber Investigations of Secondary Organic Aerosol Formation From Boreal Tree Emissions: Dependence on VOC Classes

    NASA Astrophysics Data System (ADS)

    Kiendler-Scharr, A.; Mentel, T. F.; Kleist, E.; Hohaus, T.; Mensah, A.; Spindler, C.; Tillmann, R.; Uerlings, R.; Dal Maso, M.; Rudich, Y.; Juergen, W.

    2008-12-01

    A considerable fraction of the organic aerosol component is of secondary origin, meaning it is formed through oxidation of volatile organic compounds (VOCs). Plant emissions, e.g. monoterpenes and sesquiterpenes, are a major source of VOCs in the troposphere. So far most laboratory and simulation chamber investigations on the potential to form secondary organic aerosols (SOA) from plant emissions focused on single VOCs such as a-pinene. In this study we investigated the formation and growth of SOA by ozonolysis and/or photo-oxidation of the VOCs emitted by several tree species such as spruce, pine and birch. The experiments were performed in the Plant chamber of the ICG-3 in Jülich under well defined conditions for the plant. VOC emissions were transferred to a reaction chamber which was operated as a continuously stirred tank reactor. SOA formation from the VOCs was initiated by an excess of ozone and OH radicals. The results are compared to a reference study with a-pinene as the only SOA precursor. Our results indicate that the general laboratory approach of studying the formation of SOA from single components can lead to a bias in both the mass yields and the mass spectral signatures observed. Plots of maximum SOA volumes versus the total amount of carbon fed into the reaction chamber led to approximately linear relationships. The intercepts of these plots were seen as threshold for SOA formation. It was observed that this threshold was lower for the mixture of VOCs emitted from spruce, pine, and birch than for a-pinene as single compound. We therefore conclude that the threshold for SOA formation from real plant mixtures may be much lower than the threshold obtained from laboratory experiments that were focussed on single VOCs. SOA formation from stress induced VOCs will be compared to non stress induced emissions. Possible feedbacks of climate change to VOC emissions and aerosol formation will be discussed based on our experimental observations.

  3. Biotic stress accelerates formation of climate-relevant aerosols in boreal forests

    NASA Astrophysics Data System (ADS)

    Joutsensaari, J.; Yli-Pirilä, P.; Korhonen, H.; Arola, A.; Blande, J. D.; Heijari, J.; Kivimäenpää, M.; Mikkonen, S.; Hao, L.; Miettinen, P.; Lyytikäinen-Saarenmaa, P.; Faiola, C. L.; Laaksonen, A.; Holopainen, J. K.

    2015-04-01

    Boreal forests are a major source of climate-relevant biogenic secondary organic aerosols (SOA) and will be greatly influenced by increasing temperature. Global warming is predicted to increase emissions of reactive biogenic volatile organic compounds (BVOC) from vegetation directly, but will also induce large-scale insect outbreaks, which significantly increase emissions of reactive BVOC. Thus, climate change factors could substantially accelerate the formation of biogenic SOA in the troposphere. In this study, we have combined results from field and laboratory experiments, satellite observations and global scale modelling in order to evaluate the effects of insect herbivory and large-scale outbreaks on SOA formation and the Earth's climate. Field measurements demonstrated 11-fold and 20-fold increases in monoterpene and sesquiterpene emissions, respectively, from damaged trees during a pine sawfly (Neodiprion sertifer) outbreak in eastern Finland. Laboratory chamber experiments showed that feeding by pine weevils (Hylobius abietis) increased VOC emissions from Scots pine and Norway spruce seedlings by 10-50 fold resulting in 200-1000 fold increases in SOA masses formed via ozonolysis. The influence of insect damage on aerosol concentrations in boreal forests was studied with a global chemical transport model GLOMAP and MODIS satellite observations. Global scale modelling was performed using a 10-fold increase in monoterpene emission rates and assuming 10% of the boreal forest area was experiencing outbreak. Results showed a clear increase in total particulate mass (local max. 480%) and cloud condensation nuclei concentrations (45%). Satellite observations indicated a two-fold increase in aerosol optical depth (AOD) over western Canada's pine forests in August during a bark beetle outbreak. These results suggest that more frequent insect outbreaks in a warming climate could result in substantial increase in biogenic SOA formation in the boreal zone and, thus

  4. Biotic stress accelerates formation of climate-relevant aerosols in boreal forests

    NASA Astrophysics Data System (ADS)

    Joutsensaari, J.; Yli-Pirilä, P.; Korhonen, H.; Arola, A.; Blande, J. D.; Heijari, J.; Kivimäenpää, M.; Mikkonen, S.; Hao, L.; Miettinen, P.; Lyytikäinen-Saarenmaa, P.; Faiola, C. L.; Laaksonen, A.; Holopainen, J. K.

    2015-11-01

    Boreal forests are a major source of climate-relevant biogenic secondary organic aerosols (SOAs) and will be greatly influenced by increasing temperature. Global warming is predicted to not only increase emissions of reactive biogenic volatile organic compounds (BVOCs) from vegetation directly but also induce large-scale insect outbreaks, which significantly increase emissions of reactive BVOCs. Thus, climate change factors could substantially accelerate the formation of biogenic SOAs in the troposphere. In this study, we have combined results from field and laboratory experiments, satellite observations and global-scale modelling in order to evaluate the effects of insect herbivory and large-scale outbreaks on SOA formation and the Earth's climate. Field measurements demonstrated 11-fold and 20-fold increases in monoterpene and sesquiterpene emissions respectively from damaged trees during a pine sawfly (Neodiprion sertifer) outbreak in eastern Finland. Laboratory chamber experiments showed that feeding by pine weevils (Hylobius abietis) increased VOC emissions from Scots pine and Norway spruce seedlings by 10-50 fold, resulting in 200-1000-fold increases in SOA masses formed via ozonolysis. The influence of insect damage on aerosol concentrations in boreal forests was studied with a global chemical transport model GLOMAP and MODIS satellite observations. Global-scale modelling was performed using a 10-fold increase in monoterpene emission rates and assuming 10 % of the boreal forest area was experiencing outbreak. Results showed a clear increase in total particulate mass (local max. 480 %) and cloud condensation nuclei concentrations (45 %). Satellite observations indicated a 2-fold increase in aerosol optical depth over western Canada's pine forests in August during a bark beetle outbreak. These results suggest that more frequent insect outbreaks in a warming climate could result in substantial increase in biogenic SOA formation in the boreal zone and, thus

  5. FY 2010 Fourth Quarter Report: Evaluation of the Dependency of Drizzle Formation on Aerosol Properties

    SciTech Connect

    Lin, W; McGraw, R; Liu, Y; Wang, J; Vogelmann, A; Daum, PH

    2010-10-01

    Metric for Quarter 4: Report results of implementation of composite parameterization in single-column model (SCM) to explore the dependency of drizzle formation on aerosol properties. To better represent VOCALS conditions during a test flight, the Liu-Duam-McGraw (LDM) drizzle parameterization is implemented in the high-resolution Weather Research and Forecasting (WRF) model, as well as in the single-column Community Atmosphere Model (CAM), to explore this dependency.

  6. Aged Organic Aerosol in the Upper Troposphere: Aging of boundary layer aerosol during and after convective transport and in-situ SOA formation during DC3. (Invited)

    NASA Astrophysics Data System (ADS)

    Campuzano Jost, P.; Palm, B. B.; Day, D. A.; Ortega, A. M.; Hayes, P. L.; Jimenez, J. L.; Hodzic, A.; Bela, M. M.; Barth, M. C.; Olson, J. R.; Crawford, J. H.; Brune, W. H.; Pollack, I. B.; Ryerson, T. B.; Blake, D. R.; Wisthaler, A.; Mikoviny, T.

    2013-12-01

    While aerosol scavenging in deep convection is efficient (comparable to soluble species like formaldehyde), significant transport of submicron aerosol was observed repeatedly during storms targeted in the course of the DC3 (Deep Convective Clouds and Chemistry ) campaign. The lofted aerosol was mostly organic, and even in fresh outflow was significantly more oxidized than the aerosol sampled in the source region of the convection. Organic aerosol (OA) sampled in both day-old outflow as well as in the background continental UT was in general significantly more oxidized than OA observed both in the fresh outflow, and in most lower tropospheric aerosol. This suggests either fast oxidative chemistry, and/or long residence times in the UT. Some of the potential factors contributing to this fast oxidation will be explored in this talk. A second source of UT OA was observed during several flights where gas-phase organics in the presence of NOx lead to the formation of secondary OA (SOA), including particulate organic nitrate. Most observations of this UT SOA during DC3 were made in fresh outflow. However, a unique opportunity to study the chemistry of this SOA formation in more detail with a box model presented itself in the flight on July 21st, 2012; here an initially near-particle-free UT airmass originating in the wake of a dissolving nighttime mesoscale convective system (MCS) was observed over several hours until new particle growth dominated by OA and particulate nitrate was measured.

  7. Insights into aerosol formation chemistry from comprehensive gas-phase precursor measurement in the TRAPOZ chamber experiments; an overview

    NASA Astrophysics Data System (ADS)

    Carr, Timo; Wyche, Kevin; Monks, Paul S.; Camredon, Marie; Alam, Mohammed S.; Bloss, William J.; Rickard, Andrew R.

    2010-05-01

    Aerosols have a profound affect on the environment on local, regional and even global levels, with impacts including adverse health effects, (Alfarra, Paulsen et al. 2006) visibility reduction, cloud formation, direct radiative forcing (Charlson, Schwartz et al. 1992) and an important role in influencing the climate due to their contribution to important atmospheric processes (Baltensperger, Kalberer et al. 2005; Alfarra, Paulsen et al. 2006). The Total Radical Production from the OZonolysis of alkenes (TRAPOZ) project was used to study the gas phase and radical chemistry along with secondary organic aerosol (SOA) formation for a number of different alkenes and terpenes. In order to better the scientific knowledge regarding the oxidation mechanisms of terpene and alkene species along with radical and SOA formation, the experiments were conducted under varying conditions controlled and monitored by the EUropean PHOto REactor (EUPHORE) simulation chamber in Valencia, Spain. A vast number of instruments enabled a detailed examination of the chemistry within oxidation of each precursor. However the work here will focus on the results obtained from the University of Leicester Chemical Ionisation Reaction Time-of-Flight Mass Spectrometer (CIR-TOF-MS). With regard to the gas phase chemistry an analysis of the degradation of the precursor Volatile Organic Compounds (VOCs) and evolution of certain gas phase species in each experiment has been presented and discussed.

  8. The Effects of Ferrous and other Ions on the Abiotic Formation of Biomolecules using Aqueous Aerosols and Spark Discharges

    NASA Astrophysics Data System (ADS)

    Ruiz-Bermejo, M.; Menor-Salván, C.; Osuna-Esteban, S.; Veintemillas-Verdaguer, S.

    2007-12-01

    It has been postulated that the oceans on early Earth had a salinity of 1.5 to 2 times the modern value and a pH between 4 and 10. Moreover, the presence of the banded iron formations shows that Fe+2 was present in significant concentrations in the primitive oceans. Assuming the hypotheses above, in this work we explore the effects of Fe+2 and other ions in the generation of biomolecules in prebiotic simulation experiments using spark discharges and aqueous aerosols. These aerosols have been prepared using different sources of Fe+2, such as FeS, FeCl2 and FeCO3, and other salts (alkaline and alkaline earth chlorides and sodium bicarbonate at pH = 5.8). In all these experiments, we observed the formation of some amino acids, carboxylic acids and heterocycles, involved in biological processes. An interesting consequence of the presence of soluble Fe+2 was the formation of Prussian Blue, Fe4[Fe(CN)6]3, which has been suggested as a possible reservoir of HCN in the initial prebiotic conditions on the Earth.

  9. A Computational Approach to Understanding Aerosol Formation and Oxidant Chemistry in the Troposphere

    SciTech Connect

    Francisco, Joseph S.; Kathmann, Shawn M.; Schenter, Gregory K.; Dang, Liem X.; Xantheas, Sotiris S.; Garrett, Bruce C.; Du, Shiyu; Dixon, David A.; Bianco, Roberto; Wang, Shuzhi; Hynes, James T.; Morita, Akihiro; Peterson, Kirk A.

    2006-04-18

    An understanding of the mechanisms and kinetics of aerosol formation and ozone production in the troposphere is currently a high priority because these phenomena are recognized as two major effects of energy-related air pollution. Atmospheric aerosols are of concern because of their effect on visibility, climate, and human health. Equally important, aerosols can change the chemistry of the atmosphere, in dramatic fashion, by providing new chemical pathways (in the condensed phase) unavailable in the gas phase. The oxidation of volatile organic compounds (VOCs) and inorganic compounds (e.g., sulfuric acid, ammonia, nitric acid, ions, and mineral) can produce precursor molecules that act as nucleation seeds. The U.S. Department of Energy (DOE) Atmospheric Chemistry Program (ACP) has identified the need to evaluate the causes of variations in tropospheric aerosol chemical composition and concentrations, including determining the sources of aerosol particles and the fraction of such that are of primary and secondary origin. In particular, the ACP has called for a deeper understanding into aerosol formation because nucleation creates substantial concentrations of fresh particles that, via growth and coagulation, influence the Earth's radiation budget. Tropospheric ozone is also of concern primarily because of its impact on human health. Ozone levels are controlled by NOx and by VOCs in the lower troposphere. The VOCs can be either from natural emissions from such sources as vegetation and phytoplankton or from anthropogenic sources such as automobiles and oil-fueled power production plants. The major oxidant for VOCs in the atmosphere is the OH radical. With the increase in VOC emissions, there is rising concern regarding the available abundance of HOx species needed to initiate oxidation. Over the last five years, there have been four field studies aimed at initial measurements of HOx species (OH and HO? radicals). These measurements revealed HOx levels that are two to

  10. Laboratory studies on secondary organic aerosol formation from crude oil vapors.

    PubMed

    Li, R; Palm, B B; Borbon, A; Graus, M; Warneke, C; Ortega, A M; Day, D A; Brune, W H; Jimenez, J L; de Gouw, J A

    2013-01-01

    Airborne measurements of aerosol composition and gas phase compounds over the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico in June 2010 indicated the presence of high concentrations of secondary organic aerosol (SOA) formed from organic compounds of intermediate volatility. In this work, we investigated SOA formation from South Louisiana crude oil vapors reacting with OH in a Potential Aerosol Mass flow reactor. We use the dependence of evaporation time on the saturation concentration (C*) of the SOA precursors to separate the contribution of species of different C* to total SOA formation. This study shows consistent results with those at the DWH oil spill: (1) organic compounds of intermediate volatility with C* = 10(5)-10(6) μg m(-3) contribute the large majority of SOA mass formed, and have much larger SOA yields (0.37 for C* = 10(5) and 0.21 for C* = 10(6) μg m(-3)) than more volatile compounds with C*≥10(7) μg m(-3), (2) the mass spectral signature of SOA formed from oxidation of the less volatile compounds in the reactor shows good agreement with that of SOA formed at DWH oil spill. These results also support the use of flow reactors simulating atmospheric SOA formation and aging. PMID:24088179

  11. Real-Time Observations of Secondary Aerosol Formation and Aging from Different Emission Sources and Environments

    NASA Astrophysics Data System (ADS)

    Ortega, A. M.; Palm, B. B.; Hayes, P. L.; Day, D. A.; Cubison, M.; Brune, W. H.; Hu, W.; Flynn, J. H.; Grossberg, N.; Lefer, B. L.; Rappenglueck, B.; Bon, D.; Graus, M.; Warneke, C.; Gilman, J.; Kuster, W.; De Gouw, J. A.; Jimenez, J. L.

    2013-12-01

    To investigate atmospheric processing of direct urban and wildfire emissions, we deployed a photochemical flow reactor (Potential Aerosol Mass, PAM) with submicron aerosol size and chemical composition measurements during FLAME-3, a biomass-burning study at USDA Fire Sciences Laboratory in Missoula, MT, and CalNex, a field study investigating the nexus of air quality and climate change at a receptor site in the LA-Basin at Pasadena, CA. The reactor produces OH concentrations up to 4 orders of magnitude higher than in ambient air, achieving equivalent aging of ~2 weeks in 5 minutes of processing. The OH exposure (OHexp) was stepped every 20 min in both field studies. Results show the value of this approach as a tool for in-situ evaluation of changes in OA concentration and composition due to photochemical processing. In FLAME-3, the average OA enhancement factor was 1.42 × 0.36 of the initial POA. Reactive VOCs, such as toluene, monoterpenes, and acetaldehyde, decreased with increased OHexp; however, formic acid, acetone, and some unidentified OVOCs increased after significant exposure. Net SOA formation in the photochemical reactor increased with OHexp, typically peaking around 3 days of equivalent atmospheric photochemical age (OHexp ~3.9e11 molecules cm-3 s), then leveling off at higher exposures. Unlike other studies, no decrease in OA is observed at high exposure, likely due to lower max OHexp in this study due to very high OH reactivity. The amount of additional OA mass added from aging is positively correlated with initial POA concentration, but not with the total VOC concentration or the concentration of known SOA precursors. The mass of SOA formed often exceeded the mass of the known VOC precursors, indicating the likely importance of primary semivolatile/intermediate volatility species, and possibly of unidentified VOCs as SOA precursors in biomass burning smoke. Results from CalNex show enhancement of OA and inorganic aerosol from gas-phase precursors

  12. Halogenation processes of secondary organic aerosol and implications on halogen release mechanisms

    NASA Astrophysics Data System (ADS)

    Ofner, J.; Balzer, N.; Buxmann, J.; Grothe, H.; Schmitt-Kopplin, P.; Platt, U.; Zetzsch, C.

    2012-01-01

    Reactive halogen species (RHS), such as X·, X2 and HOX containing X = chlorine and/or bromine, are released by various sources like photo-activated sea-salt aerosol or from salt pans, and salt lakes. Despite many studies of RHS reactions, the potential of RHS reacting with secondary organic aerosol (SOA) and organic aerosol derived from biomass-burning (BBOA) has been neglected. Such reactions can constitute sources of gaseous organohalogen compounds or halogenated organic matter in the tropospheric boundary layer and can influence physicochemical properties of atmospheric aerosols. Model SOA from α-pinene, catechol, and guaiacol was used to study heterogeneous interactions with RHS. Particles were exposed to molecular chlorine and bromine in an aerosol smog-chamber in the presence of UV/VIS irradiation and to RHS released from simulated natural halogen sources like salt pans. Subsequently the aerosol was characterized in detail using a variety of physicochemical and spectroscopic methods. Fundamental features were correlated with heterogeneous halogenation, which result in new functional groups, changed UV/VIS absorption, or aerosol size distribution. However, the halogen release mechanisms were also found to be affected by the presence of organic aerosol. Those interaction processes, changing chemical and physical properties of the aerosol are likely to influence e.g. the ability of the aerosol to act as cloud condensation nuclei, its potential to adsorb other gases with low-volatility, or its contribution to radiative forcing and ultimately the Earth's radiation balance.

  13. Aerosol formation by ozonolysis of α- and β-pinene with initial concentrations below 1 ppb

    NASA Astrophysics Data System (ADS)

    Saathoff, Harald; Naumann, Karl-Heinz; Möhler, Ottmar

    2014-05-01

    Secondary organic aerosols (SOA) from the oxidation of biogenic volatile organic compounds (BVOC) are a large fraction of the tropospheric aerosol especially over tropical continental regions. The dominant SOA forming compounds are monoterpenes of which pinene is the most abundant. The reactions of monoterpenes with OH radicals, NO3 radicals, and ozone yield secondary organic aerosol mass in highly variable yields. Despite the various studies on SOA formation the influence of temperature and precursor concentrations on SOA yields are still major uncertainties in tropospheric aerosol models. In previous studies we observed a negative temperature dependence of SOA yields for SOA from ozonolysis α-pinene and limonene (Saathoff et al., 2009). However, this study as well as most of the literature data for measured SOA yields is limited to terpene concentrations of several ppb and higher (e.g. Bernard et al., 2012), hence about an order of magnitude higher than terpene concentrations even near their sources. Monoterpene concentrations in and above tropical or boral forests reach values up to a few tenth of a ppb during daytime decreasing rapidly with altitude in the boundary layer (Kesselmeier et al. 2000; Boy et al., 2004). Therefore we investigated the yield of SOA material from the ozonolysis of α- and β-pinene under simulated tropospheric conditions in the large aerosol chamber AIDA on time scales of several hours and for terpene concentrations between 0.1 and 1 ppb. The temperatures investigated were 243, 274, and 296 K with relative humidities ranging from 25% to 41%. The organic aerosol was generated by controlled oxidation with an excess of ozone (220-930 ppb) and the aerosol yield is calculated from size distributions measured with differential mobility analysers (SMPS, TSI, 3071 & 3080N) in the size range between 2 and 820 nm. On the basis of the measured initial particle size distribution, particle number concentration (CPC, TSI, 3775, 3776, 3022), and

  14. Characterization of vehicle emissions in São Paulo and the impacts on atmospheric chemistry and secondary aerosol formation

    NASA Astrophysics Data System (ADS)

    Ferreira De Brito, J.; Godoy, M.; Godoy, J.; Varanda Rizzo, L.; Artaxo, P.

    2012-12-01

    Megacities emissions are increasingly becoming a global issue, where emissions from the transportation sector play an important role. São Paulo, located in Southeast of Brazil, is a megacity with a population of 18 million people, 7 million cars and large-scale industrial emissions. As a result of the vehicular and industrial emissions, the air quality in São Paulo is considered one of the worst worldwide. Despite the large impact on human health and atmospheric chemistry/dynamics, many uncertainties are found on gas- and particulate matter vehicular emission factors and their following atmospheric processes, e.g. secondary organic aerosol formation. Due to the uniqueness of the vehicular fuel in Brazil, largely based on ethanol use, such characterization currently holds further uncertainties. To improve the understanding of the role of this unique emission pattern, we are running a source apportionment study in São Paulo. One of the goals of this study is a quantitative aerosol source apportionment focused on vehicular emissions, including ethanol and gasohol (both fuels used by light-duty vehicles) and diesel (heavy-duty vehicles). Whereas the latter shows usually much higher emission factors compared with ethanol or gasohol, heavy-duty vehicles have increasingly limited access within the São Paulo city limits, thus increasing the importance of light duty vehicles on air quality degradation. This study comprises four sampling sites, where trace elements and organic aerosol are being measured for PM2.5 and PM10 along with real-time NOx, ozone, PM10 and CO measurements. Aerosol optical properties and size distribution are being measured on a rotation basis between sampling stations. Furthermore, a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS) and an Aerosol Chemical Speciation Monitor (ACSM) are used to real-time VOC analysis and aerosol composition, respectively. Results show aerosol number concentrations ranging between 10^4 and 3.10^4 cm-3, mostly

  15. Secondary organic aerosol formation and primary organic aerosol oxidation from biomass burning smoke in a flow reactor during FLAME-3

    NASA Astrophysics Data System (ADS)

    Ortega, A. M.; Day, D. A.; Cubison, M. J.; Brune, W. H.; Bon, D.; de Gouw, J. A.; Jimenez, J. L.

    2013-05-01

    We report the physical and chemical effects of photochemically aging dilute biomass-burning smoke. A potential aerosol mass "PAM" flow reactor was used with analysis by a high-resolution aerosol mass spectrometer and a proton-transfer reaction ion-trap mass spectrometer during the FLAME-3 campaign. Hydroxyl (OH) radical concentrations in the reactor reached up to ~ 1000 times average tropospheric levels, producing effective OH exposures equivalent to up to 5 days aging in the atmosphere. VOC observations show aromatics and terpenes decrease with aging, while formic acid and other unidentified oxidation products increase. Unidentified gas-phase oxidation products, previously observed in atmospheric and laboratory measurements, were observed here, including evidence of multiple generations of photochemistry. Substantial new organic aerosol (OA) mass ("net SOA"; secondary OA) was observed from aging biomass-burning smoke, resulting in an total OA average of 1.42 ± 0.36 times the initial primary OA (POA) after oxidation. This study confirms that the net SOA to POA ratio of biomass burning smoke is far lower on average than that observed for urban emissions. Although most fuels were very reproducible, significant differences were observed among the biomasses, with some fuels resulting in a doubling of the OA mass, while for others a very small increase or even a decrease was observed. Net SOA formation in the photochemical reactor increased with OH exposure (OHexp), typically peaking around three days of equivalent atmospheric photochemical age (OHexp ~ 3.9 × 1011 molecules cm-3 s-1), then leveling off at higher exposures. The amount of additional OA mass added from aging is positively correlated with initial POA concentration, but not with the total VOC concentration or the concentration of known SOA precursors. The mass of SOA formed often exceeds the mass of the known VOC precursors, indicating the likely importance of primary semivolatile/intermediate volatility

  16. Understanding the Processes Controlling Aerosol-Cloud Interactions in the Arctic Marine Boundary Layer

    NASA Astrophysics Data System (ADS)

    Browse, J.; Carslaw, K. S.; Pringle, K.; Mann, G.; Reddington, C.; Brooks, I. M.; Mulcahy, J.; Young, G.; Allan, J. D.; Liu, D.; Trembath, J.; Dean, A.; Yoshioka, M.

    2015-12-01

    Here we use multiple configurations of the UKCA chemistry and aerosol scheme in a global climate model, capable of simulating cloud condensation nuclei (CCN) and cloud droplet number, to understand the processes controlling aerosol-cloud interactions in the marine Arctic boundary layer. Evaluation against an unprecedented number of aerosol and cloud observations made available through the Global Aerosol Synthesis and Science Project (GASSP), International Arctic Systems for Observing the Atmosphere (IASOA) and the 2013 ACCACIA campaign, suggest that Arctic summertime CCN is well represented in the model. Sensitivity studies indicate that DMS derived nucleation events are the primary source of Arctic summertime aerosol increasing mean (median) surface CCN concentrations north of 70N from 21(14) cm-3 to 46(33) cm-3. However, evaluation against observed aerosol size distributions suggests that UKCA overestimates nucleation mode (~10nm) particle concentrations either due to overestimation of boundary layer nucleation rates or underestimation of the Arctic marine boundary layer condensation sink.

  17. A Classroom Demonstration of the Formation of Aerosols from Biogenic Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Andino, Jean M.; Wallington, Timothy J.; Hurley, Michael D.; Wayne, Richard P.

    2000-12-01

    A demonstration that illustrates the formation of particulate matter from a biogenic source is described. Ozone is allowed to react with the terpenes present in an orange peel. Products formed from the ozone-terpene reaction condense to form aerosols that scatter light from a laser pointer source. This demonstration has been used for high school students as well as college-level students to explain the reactions of ozone in the troposphere, the formation of secondary particulate matter (gas-to-particle conversion mechanisms), and degradation of visibility.

  18. Fine ash morphology and aerosol formation: A comparison of coal and biomass fuels

    NASA Astrophysics Data System (ADS)

    Chenevert, Blake Charles

    1998-12-01

    Modeling and experimental methods were used to investigate ash formation mechanisms of four industrially significant high-alkali biomass (sawdust/sanderdust) fuels. Alkali minerals tend to vaporize and recondense to form sub-micron aerosol, which poses health risks and causes special operational problems for industrial combustors. Sawdust/sanderdust was burned in a 15 kW natural gas-fired tunnel furnace. The resulting ash was collected by a water-cooled probe, and size sorted by cascade impaction and Electrical Aerosol Size Analysis. Scanning Electron Microscopy and Energy Dispersive X-Ray Spectroscopy techniques were used to determine morphology and composition by size cut. Three ash modes were present: (1) A residual mode composed primarily of porous calcium structures with a scale length of 8 microns and larger. This mode was likely the result of direct oxide and carbonate formation. (2) A secondary residual mode near 2 microns composed of fluxed and fragmented calcium, but also containing significant amounts of Si, Fe, Mn and Al. This mode appeared to be composed of eutectic melts separated from the parent ash particle. (3) An aerosol mode composed of Na and K with Cl anion, or sulfate anion when Cl was not present. The aerosol mode diameter was found to be a function of initial nucleate number density and coagulation time. Long coagulation time or high initial number density resulted in an aerosol mode diameter near 0.1 micron. Modeling was composed of three elements: (1) Equilibrium modeling---These calculations validated experimental evidence for alkali vaporization and condensation, predicting all alkali to enter the vapor phase as NaCl or KCl when Cl is available, or NaOH and KOH otherwise. (2) Condensation modeling---This model was used to determine the partitioning of alkali metal between homogeneous particulate matter formation (self-nucleation) and deposition on existing residual particles. It was shown that vaporized alkali can be collected on the

  19. Fast Airborne Size Distribution Measurements of an Aerosol Processes and Aging

    NASA Astrophysics Data System (ADS)

    Kapustin, V.; Clarke, A. D.; Zhou, J.; Brekhovskikh, V.; McNaughton, C. S.; Howell, S.

    2009-12-01

    During MILAGRO/INTEX experiment the Hawaii Group for Environmental Aerosol Research (HIGEAR) deployed a wide range of aerosol instrumentation aboard NSF C-130 and NASA DC-8. These were designed to provide rapid information on aerosol composition, state of mixing (internal or external), spectral optical properties (scattering and absorption), the humidity dependence of light scattering - f(RH), and the role of condensed species in changing the absorption properties of black carbon (BC) and inferred properties of organic carbon (OC). We also flew the Fast Mobility Particle Spectrometer (FMPS, TSI Inc.) to measure aerosol size distributions in a range 5.6 - 560 nm. For all our flights around Mexico City, an aerosol number concentration usually was well above the nominal FMPS sensitivity (from ~100 particles/cc @ Dp = 5.6 nm to 1 part/cc @ 560nm), providing us with reliable size distributions even at 1 sec resolution. FMPS measurements revealed small scale structure of an aerosol and allowed us to examine size distributions varying over space and time associated with mixing processes previously unresolved. These 1-Hz measurements during aircraft profiles captured variations in size distributions within shallow layers. Other dynamic processes observed included orography induced aerosol layers and evolution of the nanoparticles formed by nucleation. We put FMPS high resolution size distribution data in a context of aerosol evolution and aging, using a range of established (for MIRAGE/INTEX) chemical, aerosol and transport aging parameters.

  20. The role of biogenic, biomass burning and urban pollution aerosol particles in controlling key atmospheric processes in Amazonia

    NASA Astrophysics Data System (ADS)

    Artaxo, P.; Ferreira De Brito, J.; Barbosa, H. M.; Rizzo, L. V.; Sena, E. T.; Cirino, G.; Arana, A.; Yanez-Serrano, A. M.

    2013-05-01

    As part of the LBA (The Large Scale Biosphere Atmosphere Experiment in Amazonia) experiment, a research program run in the last 10 years had help to understand critical atmospheric processes in Amazonia. The vegetation in Amazonia is a direct source of aerosol particles to the atmosphere as well as a source of biogenic trace gases that generates particles trough gas-to-particle conversion. Biomass burning is also a large source of particles and trace gases to the atmosphere. Over the last 10 years, the LBA experiment has unveiled several key processes that control Amazonian composition and influence regional climate. A significant fraction (60-80%) of airborne particles can act as Cloud Condensation Nuclei (CCN), influencing cloud formation and development. The radiation balance is strongly influenced by biomass burning particles, and surface radiative forcing up to -250 w/m2 is measured. A network of 8 sites with AERONET sunphotometers measures aerosol optical depth (AOD) and derive aerosol size distribution and optical properties. Aerosols are composed of more than 70% of organic material, with significant absorption characteristics. The aerosol radiative forcing during the biomass burning season can reach very high values, and the increase in diffuse radiation increases the carbon uptake by the forest for AOD values smaller than 1.2 at 500nm. For large AOD, the solar flux is strongly reduced making the carbon uptake approach zero for AOD larger than 3.0. The composition of aerosols is mostly organic, with contribution of K, Ca, Si, and other trace elements. The aerosol has high capability to serve as Cloud Condensation Nuclei (CCN), contributing with high water vapor amounts to the significant cloud cover over the region. In the last 20 years, an urbanization process took over for most of the Amazonian region, increasing urban pollution that interacts with forest emissions to produce a quite unique pattern of aerosols and pollutants around large urban areas such

  1. Aerosol and CCN properties at Princess Elisabeth station, East Antarctica: seasonality, new particle formation events and properties around precipitation events

    NASA Astrophysics Data System (ADS)

    Mangold, Alexander; Laffineur, Quentin; De Backer, Hugo; Herenz, Paul; Wex, Heike; Gossart, Alexandra; Souverijns, Niels; Gorodetskaya, Irina; Van Lipzig, Nicole

    2016-04-01

    Since 2010, several complementary ground-based instruments for measuring the aerosol composition of the Antarctic atmosphere have been operated at the Belgian Antarctic research station Princess Elisabeth, in Dronning Maud Land, East Antarctica (71.95° S, 23.35° E, 1390 m asl.). In addition, three ground-based remote sensing instruments for cloud and precipitation observations have been installed for continuous operation, including a ceilometer (cloud base height, type, vertical extent), a 24 Ghz micro-rain radar (vertical profiles of radar effective reflectivity and Doppler velocity), and a pyrometer (cloud base temperature). The station is inhabited from November to end of February and operates under remote control during the other months. In this contribution, the general aerosol and cloud condensation nuclei (CCN) properties will be described with a special focus on new particle formation events and around precipitation events. New particle formation events are important for the atmospheric aerosol budget and they also show that aerosols are not only transported to Antarctica but are also produced there, also inland. Aerosols are essential for cloud formation and therefore also for precipitation, which is the only source for mass gain of the Antarctic ice sheet. Measured aerosol properties comprise size distribution, total number, total mass concentration, mass concentration of light-absorbing aerosol and absorption coefficient and total scattering coefficient. In addition, a CCN counter has been operated during austral summers 2013/14, 2014/15 and 2015/16. The baseline total number concentration N-total was around some hundreds of particles/cm3. During new particle formation events N-total increased to some thousands of particles/cm3. Simultaneous measurements of N-total, size distribution and CCN number revealed that mostly the number of particles smaller than 100 nm increased and that the concentration of cloud condensation nuclei increased only very

  2. Formation of anthropogenic secondary organic aerosol (SOA) and its influence on biogenic SOA properties

    NASA Astrophysics Data System (ADS)

    Emanuelsson, E. U.; Hallquist, M.; Kristensen, K.; Glasius, M.; Bohn, B.; Fuchs, H.; Kammer, B.; Kiendler-Scharr, A.; Nehr, S.; Rubach, F.; Tillmann, R.; Wahner, A.; Wu, H.-C.; Mentel, Th. F.

    2013-03-01

    Secondary organic aerosol (SOA) formation from mixed anthropogenic and biogenic precursors has been studied exposing reaction mixtures to natural sunlight in the SAPHIR chamber in Jülich, Germany. In this study aromatic compounds served as examples of anthropogenic volatile organic compound (VOC) and a mixture of α-pinene and limonene as an example for biogenic VOC. Several experiments with exclusively aromatic precursors were performed to establish a relationship between yield and organic aerosol mass loading for the atmospheric relevant range of aerosol loads of 0.01 to 10 μg m-3. The yields (0.5 to 9%) were comparable to previous data and further used for the detailed evaluation of the mixed biogenic and anthropogenic experiments. For the mixed experiments a number of different oxidation schemes were addressed. The reactivity, the sequence of addition, and the amount of the precursors influenced the SOA properties. Monoterpene oxidation products, including carboxylic acids and dimer esters were identified in the aged aerosol at levels comparable to ambient air. OH radicals were measured by Laser Induced Fluorescence, which allowed for establishing relations of aerosol properties and composition to the experimental OH dose. Furthermore, the OH measurements in combination with the derived yields for aromatic SOA enabled application of a simplified model to calculate the chemical turnover of the aromatic precursor and corresponding anthropogenic contribution to the mixed aerosol. The estimated anthropogenic contributions were ranging from small (≈8%) up to significant fraction (>50%) providing a suitable range to study the effect of aerosol composition on the aerosol volatility (volume fraction remaining (VFR) at 343 K: 0.86-0.94). The aromatic aerosol had higher oxygen to carbon ratio O/C and was less volatile than the biogenic fraction. However, in order to produce significant amount of aromatic SOA the reaction mixtures needed a higher OH dose that also

  3. Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multilayer model ADCHAM

    SciTech Connect

    Roldin, P.; Eriksson, A. C.; Nordin, E. Z.; Hermansson, E.; Mogensen, Ditte; Rusanen, A.; Boy, Michael; Swietlicki, E.; Svenningsson, Birgitta; Zelenyuk, Alla; Pagels, J.

    2014-08-11

    We have developed the novel Aerosol Dynamics, gas- and particle- phase chemistry model for laboratory CHAMber studies (ADCHAM). The model combines the detailed gas phase Master Chemical Mechanism version 3.2, an aerosol dynamics and particle phase chemistry module (which considers acid catalysed oligomerization, heterogeneous oxidation reactions in the particle phase and non-ideal interactions between organic compounds, water and inorganic ions) and a kinetic multilayer module for diffusion limited transport of compounds between the gas phase, particle surface and particle bulk phase. In this article we describe and use ADCHAM to study: 1) the mass transfer limited uptake of ammonia (NH3) and formation of organic salts between ammonium (NH4+) and carboxylic acids (RCOOH), 2) the slow and almost particle size independent evaporation of α-pinene secondary organic aerosol (SOA) particles, and 3) the influence of chamber wall effects on the observed SOA formation in smog chambers.

  4. Interpretation of Secondary Organic Aerosol Formation from Diesel Exhaust Photooxidation in an Environmental Chamber

    SciTech Connect

    Nakao, Shunsuke; Shrivastava, ManishKumar B.; Nguyen, Anh; Jung, Hee-Jung; Cocker, David R.

    2011-04-14

    Secondary organic aerosol (SOA) formation from diesel exhaust in a smog chamber was investigated. Particle volume measurement based on mobility diameter is shown to underestimate SOA formation from diesel exhaust due to the external void space of agglomerate particles, in which case mass-based measurement technique is necessary. Rapid determination of particle effective density as a function of particle mass was performed by an Aerosol Particle Mass analyzer – Scanning Mobility Particle Sizer (APM-SMPS) to obtain particle mass concentration and fractal dimension. Continuous aging of aerosol was observed in terms of atomic ratio (O/C), from 0.05 to 0.25 in 12 hours, underscoring the importance of multi-generational oxidation of low-volatile organic vapors emitted from diesel engine as the significant source of oxygenated SOA. Experimental conditions possibly have strong impacts on physical evolution of diesel particulates in a smog chamber. Higher particle effective densities were observed when raw exhaust was injected into a full bag as opposed to filling a bag with diluted exhaust using an ejector diluter. When longer transfer line was used for injecting diesel exhaust into the smog chamber, rapid particle coagulation was observed, leading to increasing particle volume concentration in dark while its mass concentration is decreasing.

  5. Airborne Measurements of Secondary Organic Aerosol Formation in the Oil Sands Region of Alberta

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Hayden, K.; Liu, P.; Leithead, A.; Moussa, S. G.; Staebler, R. M.; Gordon, M.; O'brien, J.; Li, S. M.

    2014-12-01

    The Alberta oil sands (OS) region represents a strategic natural resource and is a key driver of economic development. Its rapid expansion has led to a need for a more comprehensive understanding of the associated potential cumulative environmental impacts. In summer 2013, airborne measurements of various gaseous and particulate substances were made in the Athabasca oil sands region between August 13 and Sept 7, 2013. In particular, organic aerosol mass and composition measurements were performed with a High Resolution Time of flight Aerosol Mass Spectrometer (HR-ToF-AMS) supported by gaseous measurements of organic aerosol precursors with Proton Transfer Reaction (PTR) and Chemical Ionization (CI) mass spectrometers. These measurement data on selected flights were used to estimate the potential for local anthropogenic OS emissions to form secondary organic aerosol (SOA) downwind of precursor sources, and to investigate the importance of the surrounding biogenic emissions to the overall SOA burden in the region. The results of several flights conducted to investigate these transformations demonstrate that multiple distinct plumes were present downwind of OS industrial sources, each with differing abilities to form SOA depending upon factors such as NOx level, precursor VOC composition, and oxidant concentration. The results indicate that approximately 100 km downwind of an OS industrial source most of the measured organic aerosol (OA) was secondary in nature, forming at rates of ~6.4 to 13.6 μgm-3hr-1. Positive matrix factor (PMF) analysis of the HR-ToF-AMS data suggests that the SOA was highly oxidized (O/C~0.6) resulting in a measured ΔOA (difference above regional background OA) of approximately 2.5 - 3 despite being 100 km away from sources. The relative contribution of biogenic SOA to the total SOA and the factors affecting SOA formation during a number of flights in the OS region will be described.

  6. New tracer compounds for secondary organic aerosol formation from β-caryophyllene oxidation

    NASA Astrophysics Data System (ADS)

    van Eijck, Anna; Opatz, Till; Taraborrelli, Domenico; Sander, Rolf; Hoffmann, Thorsten

    2013-12-01

    Five products from β-caryophyllene oxidation (β-caryophyllonic acid (I), 3,3-dimethyl-2-(3-oxobutyl)cyclobutanecarboxylic acid (βCA198) (II), β-nocaryophyllonic acid (III), β-caryophyllinic acid (IV), and 2-(2-carboxyethyl)-3,3-dimethylcyclobutanecarboxylic acid (βCA200) (V)) were synthesized and their structures confirmed by nuclear magnetic resonance spectroscopy. Reaction chamber experiments with β-caryophyllene at two different ozone mixing ratios were performed and the carboxylic acid oxidation products in the particle phase were characterized by APCI-MS and HPLC-ESI-MS. All five synthesized acids were found as β-caryophyllene oxidation products in the reaction chamber aerosol. The main oxidation products of the reaction chamber experiments were β-14-hydroxynocaryophyllonic acid, β-nocaryophyllonic acid (III) and βCA198 (II). Product yields of the acids were estimated based on the chamber experiments and the application of the atmospheric chemistry box model CAABA/MECCA. Finally, ambient aerosol samples taken during the HUMPPA campaign in Hyytiälä, Finland in summer 2010 were analysed for the carboxylic acid β-caryophyllene oxidation products. All five synthesized compounds were detected and were quantified in the ambient aerosol samples. The major β-caryophyllene carboxylic acid oxidation products in the ambient air samples were β-nocaryophyllonic acid (III) and βCA198 (II) with concentrations in the range of about 0.2-14 ng m-3 and 0.8-6.8 ng m-3. The fact that the concentrations of these two acids in ambient aerosol are generally higher than the concentration of β-caryophyllinic acid (IV) (often used in previous studies as oxidation tracer) with a concentration of about 0.16 ng m-3 leads to the conclusion that these two acids are better suited as tracer compounds for β-caryophyllene secondary organic aerosol formation.

  7. Calculating Equilibrium Phase Distribution during the Formation of Secondary Organic Aerosol Using COSMOtherm.

    PubMed

    Wang, Chen; Goss, Kai-Uwe; Lei, Ying Duan; Abbatt, Jonathan P D; Wania, Frank

    2015-07-21

    Challenges in the parametrization of compound distribution between the gas and particle phase contribute significantly to the uncertainty in the prediction of secondary organic aerosol (SOA) formation and are rooted in the complexity and variability of atmospheric condensed matter, which includes water, salts, and a multitude of organic oxidation products, often in two separated phases. Here, we explore the use of the commercial quantum-chemistry-based software COSMOtherm to predict equilibrium partitioning and Setchenow coefficients of a suite of oxidation products of α-pinene ozonolysis in an aerosol that is assumed to separate into an organic-enriched phase and an electrolyte-enriched aqueous phase. The predicted coefficients are used to estimate the phase distribution of the organic compounds, water and ammonium sulfate, the resulting phase composition, and the SOA yield. Four scenarios that differ in terms of organic loading, liquid water content, and chemical aging are compared. The organic compounds partition preferentially to the organic phase rather than the aqueous phase for the studied aerosol scenarios, partially due to the salting-out effect. Extremely low volatile organic compounds are predicted to be the dominant species in the organic aerosols at low loadings and an important component at higher loadings. The highest concentration of oxidation products in the condensed phase is predicted for a scenario assuming the presence of non-phase-separated cloud droplets. Partitioning into an organic aerosol phase composed of the oxidation products is predicted to be similar to partitioning into a phase composed of a single organic surrogate molecule, suggesting that the calculation procedure can be simplified without major loss of accuracy. COSMOtherm is shown to produce results that are comparable to those obtained using group contribution methods. COSMOtherm is likely to have a much larger application domain than those group contribution methods because

  8. Metals and Rare Earth Elements in polar aerosol as specific markers of natural and anthropogenic aerosol sources areas and atmospheric transport processes

    NASA Astrophysics Data System (ADS)

    Giardi, Fabio; Becagli, Silvia; Caiazzo, Laura; Cappelletti, David; Grotti, Marco; Malandrino, Mery; Salzano, Roberto; Severi, Mirko; Traversi, Rita; Udisti, Roberto

    2016-04-01

    Metals and Rare Earth Elements (REEs) in the aerosol have conservative properties from the formation to the deposition and can be useful to identify and quantify their natural and anthropic sources and to study the atmospheric transport processes. In spite of their importance relatively little is known about metals and especially REEs in the Artic atmosphere due to their low concentration in such environment. The present work reports the first attempt to determine and interpret the behaviour of metals and REEs in polar aerosol at high temporal resolution. Daily PM10 samples of arctic atmospheric particulate were collected on Teflon filters, during six spring-summer campaigns, since 2010, in the laboratory of Gruvebadet in Ny Ålesund (78°56' N, 11°56' E, Svalbard Islands, Norway). Chemical analyses were carried out through Inductively Coupled Plasma Mass Spectrometer provided with a desolvation nebulizer inlet system, allowing to reduce isobaric interferences and thus to quantify trace and ultra-trace metals in very low concentration in the Arctic aerosol samples. The results are useful in order to study sources areas, transport processes and depositional effects of natural and anthropic atmospheric particulate reaching the Arctic from southern industrialized areas; moreover, the observed seasonal trends give information about the different impact of natural and anthropic emissions driven by phenomena such as the Arctic Haze and the melting of the snow. In particular Rare Earth Elements (often in the ppt range) can be considered as soil's fingerprints of the particulate source areas and their determination, together with air-mass backtrajectory analysis, allow to identify dust source areas for the arctic mineral aerosol.

  9. Secondary organic aerosol formation of relevance to the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Cai, Xuyi

    The chlorine atom (Cl) is a potential oxidant of volatile organic compounds (VOCs) in the atmosphere and is hypothesized to lead to secondary organic aerosol (SOA) formation in coastal areas. The purpose of this dissertation is to test this hypothesis and quantify the SOA formation potentials of some representative biogenic and anthropogenic hydrocarbons when oxidized by Cl in laboratory chamber experiments. The chosen model compounds for biogenic and anthropogenic hydrocarbons in this study are three monoterpenes (alpha-pinene, beta-pinene, and d-limonene) and two aromatics (m-xylene and toluene), respectively. Results indicate that the oxidation of these monoterpenes and aromatics generates significant amounts of aerosol. The SOA yields of alpha-pinene, beta-pinene, and d-limonene obtained in this study are comparable to those when they are oxidized by ozone, by nitrate radical, and in photooxidation scenarios. For aerosol mass up to 30.0 mug m-3, their yields reach approximately 0.20, 0.20, and 0.30, respectively. The SOA yields for m-xylene and toluene are found to be in the range of 0.035 to 0.12 for aerosol concentrations up to 19 mug m-3. For d-limonene and toluene, data indicate two yield curves that depend on the initial concentration ratios of Cl precursor to hydrocarbon hydrocarbon. Zero-dimensional calculations based on these yields show that SOA formation from the five model compounds when oxidized by Cl in the marine boundary layer could be a significant source of SOA in the early morning. In addition, the mechanistic reaction pathways for Cl oxidation of alpha-pinene, beta-pinene, d-limonene, and toluene with Cl have been developed within the framework of the Caltech Atmospheric Chemistry Mechanisms (CACM). Output from the developed mechanisms is combined with an absorptive partitioning model to predict precursor decay curves and time-dependent SOA concentrations in experiments. Model calculations are able to match (in general within general +/- 50

  10. Processes and problems in secondary star formation

    SciTech Connect

    Klein, R.I.; Whitaker, R.W.; Sandford M.T. II

    1984-03-01

    Recent developments relating the conditions in molecular clouds to star formation triggered by a prior stellar generation are reviewed. Primary processes are those that lead to the formation of a first stellar generation. The secondary processes that produce stars in response to effects caused by existing stars are compared and evaluated in terms of the observational data presently available. We discuss the role of turbulence to produce clumpy cloud structures and introduce new work on colliding inter-cloud gas flows leading to non-linear inhomogeneous cloud structures in an intially smooth cloud. This clumpy morphology has important consequences for secondary formation. The triggering processes of supernovae, stellar winds, and H II regions are discussed with emphasis on the consequences for radiation driven implosion as a promising secondary star formation mechanism. Detailed two-dimensional, radiation-hydrodynamic calculations of radiation driven implosion are discussed. This mechanism is shown to be highly efficient in synchronizing the formation of new stars in congruent to 1-3 x 10/sup 4/ years and could account for the recent evidence for new massive star formation in several UCHII regions. It is concluded that, while no single theory adequately explains the variety of star formation observed, a uniform description of star formation is likely to involve several secondary processes. Advances in the theory of star formation will require multiple dimensional calculations of coupled processes. The important non-linear interactions include hydrodynamics, radiation transport, and magnetic fields.

  11. Emission of sunscreen salicylic esters from desert vegetation and their contribution to aerosol formation

    NASA Astrophysics Data System (ADS)

    Matsunaga, S. N.; Guenther, A. B.; Potosnak, M. J.; Apel, E. C.

    2008-07-01

    Biogenic volatile organic compounds (BVOC) produced by plants are known to have an important role in atmospheric chemistry. However, our knowledge of the range of BVOCs produced by different plant processes is still expanding, and there remain poorly understood categories of BVOCs. In this study, emissions of a novel class of BVOC emissions were investigated in a desert region. Our study considered 8 species of common desert plants: blackbrush (Coleogyne ramosissima), desert willow (Chilopsis linearis), mesquite (Prosopis glandulosa), mondel pine (Pinus eldarica), pinyon pine (Pinus monophylla), cottonwood (Populus deltoides), saguaro cactus (Carnegiea gigantea) and yucca (Yucca baccata). The measurements focused on BVOCs with relatively high molecular weight (>C15) and/or an oxygenated functional group. Significantly high emission rates of two salicylic esters were found for blackbrush, desert willow and mesquite with emission rates of 1.4, 2.1 and 0.46 μgC dwg-1 h-1, respectively. The salicylic esters were identified as 2-ethylhexenyl salicylate (2-EHS) and 3,3,5-trimethylcyclohexenyl salicylate (homosalate) and are known as effective ultraviolet (UV) absorbers. We propose that the plants derive a protective benefit against UV radiation from the salicylic esters and that the emission process is driven by the physical evaporation of the salicylic esters due to the high ambient temperatures. In addition, the salicylic esters are predicted to be an effective precursor of secondary organic aerosol (SOA) because of their low vapor pressure due to a high number of carbon atoms (15 or 16) and the presence of three oxygen atoms. We estimated the contribution of the sunscreen esters themselves and their oxidation products on the SOA formation for the Las Vegas region using a BVOC emission model. The contribution was estimated to reach 90% of the biogenic SOA in the landscapes dominated by desert willow and mesquite and 25% in Las Vegas area.

  12. Characterization of new particle and secondary aerosol formation during summertime in Beijing, China

    NASA Astrophysics Data System (ADS)

    Zhang, Y. M.; Zhang, X. Y.; Sun, J. Y.; Lin, W. L.; Gong, S. L.; Shen, X. J.; Yang, S.

    2011-07-01

    Size-resolved aerosol number and mass concentrations and the mixing ratios of O3 and various trace gases were continuously measured at an urban station before and during the Beijing Olympic and Paralympic Games (5 June to 22 September, 2008). 23 new particle formation (NPF) events were identified; these usually were associated with changes in wind direction and/or rising concentrations of gas-phase precursors or after precipitation events. Most of the NPF events started in the morning and continued to noon as particles in the nucleation mode grew into the Aitken mode. From noon to midnight, the aerosols grew into the accumulation mode through condensation and coagulation. Ozone showed a gradual rise starting around 10:00 local time, reached its peak around 15:00 and then declined as the organics increased. The dominant new particle species were organics (40-75% of PM1) and sulphate; nitrate and ammonium were more minor contributors.

  13. Evidence of aqueous secondary organic aerosol formation from biogenic emissions in the North American Sonoran Desert

    PubMed Central

    Youn, Jong-Sang; Wang, Zhen; Wonaschütz, Anna; Arellano, Avelino; Betterton, Eric A.; Sorooshian, Armin

    2013-01-01

    This study examines the role of aqueous secondary organic aerosol formation in the North American Sonoran Desert as a result of intense solar radiation, enhanced moisture, and biogenic volatile organic compounds (BVOCs). The ratio of water-soluble organic carbon (WSOC) to organic carbon (OC) nearly doubles during the monsoon season relative to other seasons of the year. When normalized by mixing height, the WSOC enhancement during monsoon months relative to preceding dry months (May–June) exceeds that of sulfate by nearly a factor of 10. WSOC:OC and WSOC are most strongly correlated with moisture parameters, temperature, and concentrations of O3 and BVOCs. No positive relationship was identified between WSOC or WSOC:OC and anthropogenic tracers such as CO over a full year. This study points at the need for further work to understand the effect of BVOCs and moisture in altering aerosol properties in understudied desert regions. PMID:24115805

  14. Secondary organic aerosol formation from the gas phase reaction of hydroxyl radicals with m-, o- and p-cresol

    NASA Astrophysics Data System (ADS)

    Henry, Françoise; Coeur-Tourneur, Cecile; Ledoux, Frédéric; Tomas, Alexandre; Menu, Dominique

    Secondary organic aerosol (SOA) formation during the atmospheric oxidation of cresols was investigated using a large smog chamber (8000 L), at atmospheric pressure, 294±2 K and low relative humidity (6-10%). Cresol oxidation was initiated by irradiation of cresol/CH 3ONO/NO/air mixtures. The cresol loss was measured by gas chromatography with a flame ionization detector (GC-FID) and the temporal evolution of the aerosol was monitored using a scanning mobility particle sizer (SMPS). The overall organic aerosol yield ( Y) was determined as the ratio of the suspended aerosol mass corrected for wall losses ( Mo) to the total reacted cresol concentrations assuming a particle density of 1.4 g cm -3. Analysis of the data clearly show that Y is a strong function of Mo and that SOA formation can be expressed by a one-product gas/particle partitioning absorption model. The aerosol formation is affected by the initial cresol concentration, which leads to aerosol yields from 9% to 42%. These results are in good agreement with a recent study performed on SOA formation from the photo-oxidation of o-cresol in a smog chamber. To our knowledge, the present work represents the first investigation of SOA formation from OH reaction with m- and p-cresol.

  15. Electrospray neutralization process and apparatus for generation of nano-aerosol and nano-structured materials

    DOEpatents

    Bailey, Charles L.; Morozov, Victor; Vsevolodov, Nikolai N.

    2010-08-17

    The claimed invention describes methods and apparatuses for manufacturing nano-aerosols and nano-structured materials based on the neutralization of charged electrosprayed products with oppositely charged electrosprayed products. Electrosprayed products include molecular ions, nano-clusters and nano-fibers. Nano-aerosols can be generated when neutralization occurs in the gas phase. Neutralization of electrospan nano-fibers with molecular ions and charged nano-clusters may result in the formation of fibrous aerosols or free nano-mats. Nano-mats can also be produced on a suitable substrate, forming efficient nano-filters.

  16. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, Xiaowen; Khain, Alexander; Matsui, Toshihisa; Lang, Stephen; Simpson, Joanne

    2008-01-01

    Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds [NRC, 2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path [Twomey, 1977] and the "semi-direct" effect on cloud coverage [e.g., Ackerman et al ., 2001]." Enhanced aerosol concentrations can also suppress warm rain processes by producing a narrow droplet spectrum that inhibits collision and coalescence processes [e.g., Squires and Twomey, 1961; Warner and Twomey, 1967; Warner, 1968; Rosenfeld, 19991. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect [Albrecht, 1989], is even more complex, especially for mixed-phase convective clouds. Table 1 summarizes the key observational studies identifying the microphysical properties, cloud characteristics, thermodynamics and dynamics associated with cloud systems from high-aerosol continental environments. For example, atmospheric aerosol concentrations can influence cloud droplet size distributions, warm-rain process, cold-rain process, cloud-top height, the depth of the mixed phase region, and occurrence of lightning. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing an enhanced source of cloud condensation nuclei (CCN). Hypotheses have been developed to explain the effect of urban regions on convection and precipitation [van den Heever and Cotton, 2007 and Shepherd, 2005

  17. Potential Aerosol Mass (PAM) flow reactor measurements of SOA formation in a Ponderosa Pine forest in the southern Rocky Mountains during BEACHON-RoMBAS

    NASA Astrophysics Data System (ADS)

    Palm, B. B.; Ortega, A. M.; Campuzano Jost, P.; Day, D. A.; Kaser, L.; Karl, T.; Jud, W.; Hansel, A.; Fry, J.; Brown, S. S.; Zarzana, K. J.; Dube, W. P.; Wagner, N.; Draper, D.; Brune, W. H.; Jimenez, J. L.

    2012-12-01

    A Potential Aerosol Mass (PAM) photooxidation flow reactor was used in combination with an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer to characterize biogenic secondary organic aerosol (SOA) formation in a terpene-dominated forest during the July-August 2011 Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen - Rocky Mountain Biogenic Aerosol Study (BEACHON-RoMBAS) field campaign at the U.S. Forest Service Manitou Forest Observatory, Colorado, as well as in corresponding laboratory experiments. In the PAM reactor, a chosen oxidant (OH, O3, or NO3) was generated and controlled over a range of values up to 10,000 times ambient levels. High oxidant concentrations accelerated the gas-phase, heterogeneous, and possibly aqueous oxidative aging of volatile organic compounds (VOCs), inorganic gases, and existing aerosol, which led to repartitioning into the aerosol phase. PAM oxidative processing represented from a few hours up to ~20 days of equivalent atmospheric aging during the ~3 minute reactor residence time. During BEACHON-RoMBAS, PAM photooxidation enhanced SOA at intermediate OH exposure (1-10 equivalent days) but resulted in net loss of OA at long OH exposure (10-20 equivalent days), demonstrating the competing effects of functionalization vs. fragmentation (and possibly photolysis) as aging increased. PAM oxidation also resulted in f44 vs. f43 and Van Krevelen diagram (H/C vs. O/C) slopes similar to ambient oxidation, suggesting the PAM reactor employs oxidation pathways similar to ambient air. Single precursor aerosol yields were measured using the PAM reactor in the laboratory as a function of organic aerosol concentration and reacted hydrocarbon amounts. When applying the laboratory PAM yields with complete consumption of the most abundant VOCs measured at the forest site (monoterpenes, sesquiterpenes, MBO, and toluene), a simple model underpredicted the amount of SOA formed in the PAM reactor in the

  18. Ozonolysis of a series of biogenic organic volatile compounds and secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Bernard, François; Quilgars, Alain; Cazaunau, Mathieu; Grosselin, Benoît.; Daele, Véronique; Mellouki, Abdelwahid; Winterhalter, Richard; Moortgat, Geert K.

    2010-05-01

    Secondary organic aerosols are formed via nucleation of atmospheric organic vapours on pre-existing particles observed in various rural environments where the organic fraction represents the major part of the observed nano-particle (Kavouras and Stephanou, 2002; Kulmala et al., 2004a). However, nucleation of organic vapors appears to be unlikely thermodynamically in relevant atmospheric conditions (Kulmala et al., 2004b). In this work, a systematic study has been conducted to investigate the aerosol formation through the ozonolysis of a series of monotepenes using a newly developed aerosol flow reactor and the ICARE indoor simulation chamber. The nucleation thresholds have been determined for SOA formed through the reaction of ozone with a-Pinene, sabinene, myrcene and limonene in absence of any observable existing particles. The measurements were performed using the flow reactor combined to a particle counter (CPC 3022). Number concentrations of SOA have been measured for different concentration of consumed monoterpenes. The data obtained allow us to estimate the nucleation threshold for a range of 0.2 - 45 ppb of consumed monoterpenes. The nucleation threshold values obtained here (≤ 1 ppb of the consumed monoterpenes) have been found to be lower than the previously reported ones (Berndt et al., 2003; Bonn and Moortgat, 2003; Koch et al., 2000; Lee and Kamens, 2005). The ICARE simulation chamber has been used to study the mechanism of the reaction of ozone with various acyclic terpenes (myrcene, ocimene, linalool and a-farnesene) and to derive the SOA mass formation yield. The time-concentration profiles of reactants and products in gas-phase were obtained using in-situ Fourier Transform Infrared Spectroscopy. In addition, the number and mass concentrations of SOA have been monitored with a Scanning Mobility Particle Sizer. The chemical composition of the SOA formed has been tentatively characterised using Liquid Chromatography - Mass Spectrometry. The results

  19. A simplified model of aerosol removal by natural processes in reactor containments

    SciTech Connect

    Powers, D.A.; Washington, K.E.; Sprung, J.L.; Burson, S.B.

    1996-07-01

    Simplified formulae are developed for estimating the aerosol decontamination that can be achieved by natural processes in the containments of pressurized water reactors and in the drywells of boiling water reactors under severe accident conditions. These simplified formulae were derived by correlation of results of Monte Carlo uncertainty analyses of detailed models of aerosol behavior under accident conditions. Monte Carlo uncertainty analyses of decontamination by natural aerosol processes are reported for 1,000, 2,000, 3,000, and 4,000 MW(th) pressurized water reactors and for 1,500, 2,500, and 3,500 MW(th) boiling water reactors. Uncertainty distributions for the decontamination factors and decontamination coefficients as functions of time were developed in the Monte Carlo analyses by considering uncertainties in aerosol processes, material properties, reactor geometry and severe accident progression. Phenomenological uncertainties examined in this work included uncertainties in aerosol coagulation by gravitational collision, Brownian diffusion, turbulent diffusion and turbulent inertia. Uncertainties in aerosol deposition by gravitational settling, thermophoresis, diffusiophoresis, and turbulent diffusion were examined. Electrostatic charging of aerosol particles in severe accidents is discussed. Such charging could affect both the coagulation and deposition of aerosol particles. Electrostatic effects are not considered in most available models of aerosol behavior during severe accidents and cause uncertainties in predicted natural decontamination processes that could not be taken in to account in this work. Median (50%), 90 and 10% values of the uncertainty distributions for effective decontamination coefficients were correlated with time and reactor thermal power. These correlations constitute a simplified model that can be used to estimate the decontamination by natural aerosol processes at 3 levels of conservatism. Applications of the model are described.

  20. Secondary Organic Aerosol Formation by Reactive Condensation of Glyoxal and Water Vapor

    NASA Astrophysics Data System (ADS)

    Hastings, W. P.; Koehler, C. A.; de Haan, D. O.

    2004-05-01

    The formation of secondary organic aerosol particles by particle-phase reactions is currently of great interest. Glyoxal has been identified as a significant component in the particle phase in recent smog chamber aromatic oxidation studies. This is surprising because glyoxal has a high vapor pressure and phase partitioning theory would predict that it remain almost entirely in the gas phase. Growth of inorganic seed aerosol in a particle chamber was monitored by scanning mobility particle sizing during addition of gas-phase glyoxal and small amounts of water vapor. Glyoxal was observed to condense on inorganic seed aerosol at concentrations that are at least 100 times below its vapor pressure. This behavior can be explained by a chemical reaction: glyoxal is known to polymerize when exposed to water vapor. This polymerization may be a general mechanism for secondary aerosol formation by alpha-dicarbonyl compounds. The reactivity of hydrated and polymerized forms of glyoxal during analysis by gas chromatography was assessed. Hydrated glyoxal was found to convert to glyoxal at even slightly elevated temperatures in GC injection ports. We then showed that breakdown of solid-phase glyoxal trimer dihydrate, forming gas phase glyoxal and water vapor, occurs at temperatures just above 50 *C, the boiling point of glyoxal. These observations suggest that reports of particle-phase glyoxal are likely caused by GC sampling artifacts, and that the actual particulate species are instead polymerized forms of glyoxal. It does not appear that chemical derivatization protects glyoxal polymers from thermal breakdown during GC analysis. The existence in the particle phase of glyoxal polymers with negligable vapor pressures, rather than volatile glyoxal, is consistent with phase partitioning theory.

  1. Photolytic processing of secondary organic aerosols dissolved in cloud droplets

    SciTech Connect

    Bateman, Adam P; Nizkorodov, Serguei; Laskin, Julia; Laskin, Alexander

    2011-05-26

    The effect of UV irradiation on the molecular composition of aqueous extracts of secondary organic aerosol (SOA) was investigated. SOA was prepared by the dark reaction of ozone and d-limonene at 0.05 - 1 ppm precursor concentrations and collected with a particle-into-liquid sampler (PILS). The PILS extracts were photolyzed by 300 - 400 nm radiation for up to 24 hours. Water-soluble SOA constituents were analyzed using high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) at different stages of photolysis for all SOA precursor concentrations. Exposure to UV radiation increased the average O/C ratio and decreased the average double bond equivalent (DBE) of the dissolved SOA compounds. Oligomeric compounds were significantly reduced by photolysis relative to the monomeric compounds. Direct pH measurements showed that compounds containing carboxylic acids increased upon photolysis. Methanol reactivity analysis revealed significant photodissociation of molecules containing carbonyl groups and formation of carboxylic acids. Aldehydes, such as limononaldehyde, were almost completely removed. The removal of carbonylswas confirmed by the UV-Vis absorption spectroscopy of the SOA extracts where the absorbance in the carbonyl n→π* band decreased significantly upon photolysis. The effective quantum yield (the number of carbonyls destroyed per photon absorbed) was estimated as ~ 0.03. The concentration of peroxides did not change significantly during photolysis as quantified with an iodometric test. Although organic peroxides were photolyzed, the likely end products of photolysis were smaller peroxides, including hydrogen peroxide, resulting in a no net change in the peroxide content.

  2. Formation and growth of organic aerosols downwind of the Deepwater Horizon oil spill

    NASA Astrophysics Data System (ADS)

    Brock, Charles A.; Murphy, Daniel M.; Bahreini, Roya; Middlebrook, Ann M.

    2011-09-01

    Aerosol size distributions were measured in June 2010 downwind of the surface oil slick produced by the Deepwater Horizon oil spill in the Gulf of Mexico. Previous work has shown that rapid condensation of partially oxidized hydrocarbons was responsible for formation of a plume of secondary organic aerosol downwind of the spill region. Here we examine new particle formation and growth kinetics. New particles were formed upwind of the freshest oil but downwind of oil that surfaced less than about 100 hours previously. Four nm particles formed at a rate of ˜3 cm-3 s-1 and subsequently grew by condensation at a rate of ˜20 nm hr-1 preexisting accumulation mode particles grew by ˜10 nm hr-1. The gas-phase concentration of a condensing species necessary to support irreversible growth with unit accommodation coefficient is estimated to be ˜0.04-0.09 μg m-3 (˜3-8 pptv). Gas-phase concentrations may have been higher if condensation were limited by volatility. The ratio of growth rates for newly formed particles to accumulation mode particles was consistent within error limits with irreversible condensation. The absence of new particle formation away from the <100 hr-old oil slick indicates that the oxidation products of gas-phase hydrocarbon species were directly involved in the formation and growth of new particles.

  3. Salting Constants of Small Organic Molecules in Aerosol-Relevant Salts and Application to Aerosol Formation in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Waxman, E.; Carlton, A. M. G.; Ziemann, P. J.; Volkamer, R. M.

    2014-12-01

    Secondary organic aerosol (SOA) formation from small water-soluble molecules such as glyoxal and methyl glyoxal is a topic of emerging interest. Results from recent field campaigns, e.g. Waxman et al. (2013, GRL) and Knote et al. (2014, ACP), show that these molecules can form significant SOA mass as a result of 'salting-in'. Salting-in happens when a molecule's solubility increases with salt concentration and salting-out is the reverse. Salting effects modify the solubility exponentially with increasing salt concentration, and thus the effective Henry's law constant can strongly modify partitioning, and multiphase chemical reaction rates in aerosol water. Moreover, the solubility in aerosol water cannot easily inferred based on the solubility in cloud water, as the salting effects could change the solubility by a factor of 104 or more. In this work, we have devised and applied a novel experimental setup to measure salting constants using an ion trap mass spectrometer. We focus on small, water soluble molecules like methyl glyoxal and similar compounds and measure salting constants for aerosol-relevant salts including ammonium sulfate, ammonium nitrate, and sodium chloride. The Setschenow salting-constant values are then used to parameterize the effects of salting in CMAQ. We present a series of sensitivity studies of the effects that inorganic aerosols have on the SOA formation from small soluble molecules in the southeastern United States.

  4. Formation of hydroxyl radicals from photolysis of secondary organic aerosol material

    NASA Astrophysics Data System (ADS)

    Badali, K. M.; Zhou, S.; Aljawhary, D.; Antiñolo, M.; Chen, W. J.; Lok, A.; Mungall, E.; Wong, J. P. S.; Zhao, R.; Abbatt, J. P. D.

    2015-02-01

    This paper demonstrates that OH radicals are formed by photolysis of secondary organic aerosol (SOA) material formed by terpene ozonolysis. The SOA aerosol is collected on filters, dissolved in water containing a radical trap (benzoic acid), and then exposed to ultraviolet light in a photochemical reactor. The OH formation rates, which are similar for both α-pinene and limonene SOA, are measured from the formation rate of p-hydroxybenzoic acid as measured using offline HPLC analysis. To evaluate whether the OH is formed by photolysis of H2O2 or organic hydroperoxides (ROOH), the peroxide content of the SOA was measured using the horseradish peroxidase-dichlorofluorescein (HRP-DCF) assay, which was calibrated using H2O2. The OH formation rates from SOA are five times faster than from the photolysis of H2O2 solutions whose concentrations correspond to the peroxide content of the SOA solutions assuming that the HRP-DCF signal arises from H2O2 alone. The higher rates of OH formation from SOA are likely due to ROOH photolysis. This result is substantiated by photolysis experiments conducted with t-butyl hydroperoxide and cumene hydroperoxide which produce over three times more OH than photolysis of equivalent concentrations of H2O2. Relative to the peroxide level in the SOA, the quantum yield for OH generation from α-pinene SOA is 0.8 ± 0.4. This is the first demonstration of an efficient photolytic source of OH in SOA, one that may affect both cloudwater and aerosol chemistry.

  5. Optically thin ice clouds in Arctic : Formation processes

    NASA Astrophysics Data System (ADS)

    Jouan, C.; Girard, E.; Pelon, J.; Blanchet, J.; Wobrock, W.; Gultepe, I.; Gayet, J.; Delanoë, J.; Mioche, G.; Adam de Villiers, R.

    2010-12-01

    Arctic ice cloud formation during winter is poorly understood mainly due to lack of observations and the remoteness of this region. Their influence on Northern Hemisphere weather and climate is of paramount importance, and the modification of their properties, linked to aerosol-cloud interaction processes, needs to be better understood. Large concentration of aerosols in the Arctic during winter is associated to long-range transport of anthropogenic aerosols from the mid-latitudes to the Arctic. Observations show that sulphuric acid coats most of these aerosols. Laboratory and in-situ measurements show that at cold temperature (<-30°C), acidic coating lowers the freezing point and deactivates ice nuclei (IN). Therefore, the IN concentration is reduced in these regions and there is less competition for the same available moisture. As a result, large ice crystals form in relatively small concentrations. It is hypothesized that the observed low concentration of large ice crystals in thin ice clouds is linked to the acidification of aerosols. Extensive measurements from ground-based sites and satellite remote sensing (CloudSat and CALIPSO) reveal the existence of two types of extended optically thin ice clouds (TICs) in the Arctic during the polar night and early spring. The first type (TIC-1) is seen only by the lidar, but not the radar, and is found in pristine environment whereas the second type (TIC-2) is detected by both sensors, and is associated with high concentration of aerosols, possibly anthropogenic. TIC-2 is characterized by a low concentration of ice crystals that are large enough to precipitate. To further investigate the interactions between TICs clouds and aerosols, in-situ, airborne and satellite measurements of specific cases observed during the POLARCAT and ISDAC field experiments are analyzed. These two field campaigns took place respectively over the North Slope of Alaska and Northern part of Sweden in April 2008. Analysis of cloud type can be

  6. Organic Aerosol Formation in the Humid, Photochemically-Active Southeastern US: SOAS Experiments and Simulations

    NASA Astrophysics Data System (ADS)

    Sareen, N.; Lim, Y. B.; Carlton, A. G.; Turpin, B. J.

    2013-12-01

    Aqueous multiphase chemistry in the atmosphere can lead to rapid transformation of organic compounds, forming highly oxidized low volatility organic aerosol and, in some cases, light absorbing (brown) carbon. Because liquid water is globally abundant, this chemistry could substantially impact climate, air quality, health, and the environment. Gas-phase precursors released from biogenic and anthropogenic sources are oxidized and fragmented forming water-soluble gases that can undergo reactions in the aqueous phase (in clouds, fogs, and wet aerosols) leading to the formation of secondary organic aerosol (SOAAQ). Recent studies have highlighted the role of certain precursors like glyoxal, methylglyoxal, glycolaldehyde, acetic acid, acetone, and epoxides in the formation of SOAAQ. The goal of this work is to identify other precursors that are atmospherically important. In this study, ambient mixtures of water-soluble gases were scrubbed from the atmosphere at Brent, Alabama during the Southern Oxidant and Aerosol Study (SOAS). Four mist chambers in parallel collected ambient gases in a DI water medium at 20-25 LPM with a 4 hr collection time. Total organic carbon (TOC) values in daily composited samples were 64-180 μM. Aqueous OH radical oxidation experiments were conducted with these mixtures in a newly designed cuvette chamber to understand the formation of SOA through gas followed by aqueous chemistry. OH radicals (3.5E-2 μM [OH] s-1) were formed in-situ in the chamber, continuously by H2O2 photolysis. Precursors and products of these aqueous OH experiments were characterized using ion chromatography (IC), electrospray ionization mass spectrometry (ESI-MS), and IC-ESI-MS. ESI-MS results from a June 12th, 2013 sample showed precursors to be primarily odd, positive mode ions, indicative of the presence of non-nitrogen containing alcohols, aldehydes, organic peroxides, or epoxides. Products were seen in the negative mode and included organic acid ions like pyruvate

  7. A comparison between the processing of Titan aerosols analogs by ionizing photons and energetic cosmic rays.

    NASA Astrophysics Data System (ADS)

    De Araujo Vasconcelos, Fredson; Pilling, Sergio; Boduch, Philippe; Alexandre Souza Bergantini, M.; Ding, M. Jingjie J.; Rothard, Hermann; Robson Rocha, Will

    Titan, the largest satellite of Saturn, has an atmosphere mainly made of N_{2} and CH_{4} and includes traces of several simple organic compounds. This atmosphere also partly consists of haze and erosol particles which during the last 4.5 gigayears have been processed by electric discharges, ions, and ionizing photons, being slowly deposited over Titańs surface. In this work, we investigate the possible effects produced by ionizing photons (vacuum ultraviolet and soft X-rays) and cosmic ray analogs (15.7 MeV (16) O (+5) ) on Titan aerosol analogs in an attempt to simulate some prebiotic photochemistry. For photons, the experiments have been performed using a high vacuum portable chamber from the Laboratorio de Astroquimica e Astrobiologia (LASA/UNIVAP) coupled to the the Brazilian Synchrotron Light Source (LNLS) in Campinas, Brazil. For ions, the investigation was performed at the Grand Accelerateur National d’Ions Lourds (GANIL) Caen, France. In-situ sample analyses were performed by a Fourier transform infrared spectrometer at different fluences. During the sample processing, the infrared spectra have presented several new organic molecules, including nitriles, HCN and aromatic CN compounds. The processing of the sample by fast ions has enhanced the formation of daughter species in the Titan aerosol sample when compared with the products from the employing VUV and soft X-rays photons. The destruction cross section of the parent species was determined, as well as, the formation cross section for some selected daughter species. Molecular Half-lives were extrapolated to the Titańs environment. This investigation confirms previous results which showed that the organic chemistry on frozen moons inside Solar system can be very complex and extremely rich in prebiotic compounds. Authors would like to tanks the agencies FAPESP (JP-2009/18304-0), CAPES-Cofecub (569/2007), INCT-A and CNPq for the financial support.

  8. Effect of hydrophilic organic seed aerosols on secondary organic aerosol formation from ozonolysis of α-pinene.

    PubMed

    Song, Chen; Zaveri, Rahul A; Shilling, John E; Alexander, M Lizabeth; Newburn, Matt

    2011-09-01

    Gas-particle partitioning theory is widely used in atmospheric models to predict organic aerosol loadings. This theory predicts that secondary organic aerosol (SOA) yield of an oxidized volatile organic compound product will increase as the mass loading of preexisting organic aerosol increases. In a previous work, we showed that the presence of model hydrophobic primary organic aerosol (POA) had no detectable effect on the SOA yields from ozonolysis of α-pinene, suggesting that the condensing SOA compounds form a separate phase from the preexisting POA. However, a substantial faction of atmospheric aerosol is composed of polar, hydrophilic organic compounds. In this work, we investigate the effects of model hydrophilic organic aerosol (OA) species such as fulvic acid, adipic acid, and citric acid on the gas-particle partitioning of SOA from α-pinene ozonolysis. The results show that only citric acid seed significantly enhances the absorption of α-pinene SOA into the particle-phase. The other two seed particles have a negligible effect on the α-pinene SOA yields, suggesting that α-pinene SOA forms a well-mixed organic aerosol phase with citric acid and a separate phase with adipic acid and fulvic acid. This finding highlights the need to improve the thermodynamics treatment of organics in current aerosol models that simply lump all hydrophilic organic species into a single phase, thereby potentially introducing an erroneous sensitivity of SOA mass to emitted OA species. PMID:21790137

  9. Aerosol processing in mixed-phase clouds in ECHAM5-HAM: Model description and comparison to observations

    NASA Astrophysics Data System (ADS)

    Hoose, C.; Lohmann, U.; Stier, P.; Verheggen, B.; Weingartner, E.

    2008-04-01

    The global aerosol-climate model ECHAM5-HAM has been extended by an explicit treatment of cloud-borne particles. Two additional modes for in-droplet and in-crystal particles are introduced, which are coupled to the number of cloud droplet and ice crystal concentrations simulated by the ECHAM5 double-moment cloud microphysics scheme. Transfer, production, and removal of cloud-borne aerosol number and mass by cloud droplet activation, collision scavenging, aqueous-phase sulfate production, freezing, melting, evaporation, sublimation, and precipitation formation are taken into account. The model performance is demonstrated and validated with observations of the evolution of total and interstitial aerosol concentrations and size distributions during three different mixed-phase cloud events at the alpine high-altitude research station Jungfraujoch (Switzerland). Although the single-column simulations cannot be compared one-to-one with the observations, the governing processes in the evolution of the cloud and aerosol parameters are captured qualitatively well. High scavenged fractions are found during the presence of liquid water, while the release of particles during the Bergeron-Findeisen process results in low scavenged fractions after cloud glaciation. The observed coexistence of liquid and ice, which might be related to cloud heterogeneity at subgrid scales, can only be simulated in the model when assuming nonequilibrium conditions.

  10. Collaborative research. Study of aerosol sources and processing at the GVAX Pantnagar Supersite

    SciTech Connect

    Worsnop, Doug; Volkamer, Rainer

    2012-08-13

    during TCAP, and conducted laboratory experiments to quantify for the first time the Setschenow salting constant, KS, of glyoxal in sulfate aerosols. Knowledge about KS is prerequisite to predict how increasing sulfate concentrations since pre-industrial times have modified the formation of SOA from biogenic gases in atmospheric models.

  11. Organic aerosol formation from the reactive uptake of isoprene epoxydiols (IEPOX) onto non-acidified inorganic seeds

    NASA Astrophysics Data System (ADS)

    Nguyen, T. B.; Coggon, M. M.; Bates, K. H.; Zhang, X.; Schwantes, R. H.; Schilling, K. A.; Loza, C. L.; Flagan, R. C.; Wennberg, P. O.; Seinfeld, J. H.

    2014-04-01

    The reactive partitioning of cis and trans β-IEPOX was investigated on hydrated inorganic seed particles, without the addition of acids. No organic aerosol (OA) formation was observed on dry ammonium sulfate (AS); however, prompt and efficient OA growth was observed for the cis and trans β-IEPOX on AS seeds at liquid water contents of 40-75% of the total particle mass. OA formation from IEPOX is a kinetically limited process, thus the OA growth continues if there is a reservoir of gas-phase IEPOX. There appears to be no differences, within error, in the OA growth or composition attributable to the cis / trans isomeric structures. Reactive uptake of IEPOX onto hydrated AS seeds with added base (NaOH) also produced high OA loadings, suggesting the pH dependence for OA formation from IEPOX is weak for AS particles. No OA formation, after particle drying, was observed on seed particles where Na+ was substituted for NH4+. The Henry's Law partitioning of IEPOX was measured on NaCl particles (ionic strength ~9 M) to be 3 × 107 M atm-1 (-50 / +100%). A small quantity of OA was produced when NH4+ was present in the particles, but the chloride (Cl-) anion was substituted for sulfate (SO42-), possibly suggesting differences in nucleophilic strength of the anions. Online time-of-flight aerosol mass spectrometry and offline filter analysis provide evidence of oxygenated hydrocarbons, organosulfates, and amines in the particle organic composition. The results are consistent with weak correlations between IEPOX-derived OA and particle acidity or liquid water observed in field studies, as the chemical system is nucleophile-limited and not limited in water or catalyst activity.

  12. Formation and aging of secondary organic aerosol from toluene: changes in chemical composition, volatility, and hygroscopicity

    DOE PAGESBeta

    Hildebrandt Ruiz, L.; Paciga, A. L.; Cerully, K. M.; Nenes, A.; Donahue, N. M.; Pandis, S. N.

    2015-07-24

    Secondary organic aerosol (SOA) is transformed after its initial formation, but this chemical aging of SOA is poorly understood. Experiments were conducted in the Carnegie Mellon environmental chamber to form secondary organic aerosol (SOA) from the photo-oxidation of toluene and other small aromatic volatile organic compounds (VOCs) in the presence of NOx under different oxidizing conditions. The effects of the oxidizing condition on organic aerosol (OA) composition, mass yield, volatility, and hygroscopicity were explored. Higher exposure to the hydroxyl radical resulted in different OA composition, average carbon oxidation state (OSc), and mass yield. The OA oxidation state generally increased duringmore » photo-oxidation, and the final OA OSc ranged from -0.29 to 0.16 in the performed experiments. The volatility of OA formed in these different experiments varied by as much as a factor of 30, demonstrating that the OA formed under different oxidizing conditions can have a significantly different saturation concentration. There was no clear correlation between hygroscopicity and oxidation state for this relatively hygroscopic SOA.« less

  13. Remote Sensing of Glyoxal as a New Atmospheric Tracer for VOC Chemistry and Secondary Organic Aerosol Formation in the Mexico City Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Volkamer, R.; Molina, L. T.; Molina, M. J.; Shirley, T.; Lesher, R.; Brune, W.; Dzepina, K.; Jimenez, J.

    2004-12-01

    Air pollution in the Mexico City Metropolitan Area (MCMA) is intimately linked with the photochemical transformation of primary pollutants like VOC (volatile organic compounds) and NOx, which gives rise to the formation of secondary pollutants such as ozone and secondary organic aerosol (SOA) and their associated adverse effects on human health. As part of the field campaign held in the MCMA in April/May 2003, state-of-the-art measurement techniques including open-path Differential Optical Absorption Spectroscopy (DOAS), spectroradiometry, Aerosol Mass Spectrometry (AMS) and Laser Induced Fluorescence (LIF) were located at the National Center for Environmental Research and Training (CENICA) in Mexico City to characterize the gas-phase and aerosol-phase composition of relevance to the formation of ozone and SOA. A first-ever spectroscopic detection of glyoxal (DOAS) in the atmosphere is described. Glyoxal is shown to be a very useful new photochemical tracer for the chemistry of VOC. The time-resolved glyoxal measurements reveal a very efficient VOC oxidation process during morning hours, which is found to be relevant for overall smog formation later in the day. In combination with measurements of the radical precursor substances HONO, HCHO, ozone (DOAS), their respective J-values (spectroradiometry), OH- and HO2-radical concentrations (LIF), speciated aromatic hydrocarbons (DOAS) and chemical composition of the aerosol phase (AMS), the glyoxal data enables assessment of the role of VOC oxidation in the formation of secondary pollutants in the gas- and aerosol-phase by placing a lower limit on the extend of VOC turnover.

  14. Chemical composition, sources and evolution processes of aerosol at an urban site in Yangtze River Delta, China during wintertime

    NASA Astrophysics Data System (ADS)

    Zhang, Yunjiang; Tang, Lili; Yu, Hongxia; Wang, Zhuang; Sun, Yele; Qin, Wei; Chen, Wentai; Chen, Changhong; Ding, Aijun; Wu, Jing; Ge, Shun; Chen, Cheng; Zhou, Hong-cang

    2015-12-01

    To investigate the composition, sources and evolution processes of submicron aerosol during wintertime, a field experiment was conducted during December 1-31, 2013 in urban Nanjing, a megacity in Yangtze River Delta of China. Non-refractory submicron aerosol (NR-PM1) species were measured with an Aerodyne Aerosol Chemical Speciation Monitor. NR-PM1 is dominated by secondary inorganic aerosol (55%) and organic aerosol (OA, 42%) during haze periods. Six OA components were identified by positive matrix factorization of the OA mass spectra. The hydrocarbon-like OA and cooking-related OA represent the local traffic and cooking sources, respectively. A highly oxidized factor related to biomass burning OA accounted for 15% of the total OA mass during haze periods. Three types of oxygenated OA (OOA), i.e., a less-oxidized OOA (LO-OOA), a more-oxidized OOA (MO-OOA), and a low-volatility OOA (LV-OOA), were identified. LO-OOA is likely associated with fresh urban secondary OA. MO-OOA likely represents photochemical products showing a similar diurnal cycle to nitrate with a pronounced noon peak. LV-OOA appears to be a more oxidized factor with a pronounced noon peak. The OA composition is dominated by secondary species, especially during haze events. LO-OOA, MO-OOA and LV-OOA on average account for 11%, (18%), 24% (21%) and 23% (18%) of the total OA mass for the haze (clean) periods respectively. Analysis of meteorological influence suggested that regional transport from the northern and southeastern areas of the city is responsible for large secondary and low-volatility aerosol formation.

  15. Impacts of Sulfate Seed Acidity and Water Content on Isoprene Secondary Organic Aerosol Formation.

    PubMed

    Wong, Jenny P S; Lee, Alex K Y; Abbatt, Jonathan P D

    2015-11-17

    The effects of particle-phase water and the acidity of pre-existing sulfate seed particles on the formation of isoprene secondary organic aerosol (SOA) was investigated. SOA was generated from the photo-oxidation of isoprene in a flow tube reactor at 70% relative humidity (RH) and room temperature in the presence of three different sulfate seeds (effloresced and deliquesced ammonium sulfate and ammonium bisulfate) under low NOx conditions. High OH exposure conditions lead to little isoprene epoxydiol (IEPOX) SOA being generated. The primary result is that particle-phase water had the largest effect on the amount of SOA formed, with 60% more SOA formation occurring with deliquesced ammonium sulfate seeds as compared to that on effloresced ones. The additional organic material was highly oxidized. Although the amount of SOA formed did not exhibit a dependence on the range of seed particle acidity examined, perhaps because of the low amount of IEPOX SOA, the levels of high-molecular-weight material increased with acidity. While the uptake of organics was partially reversible under drying, the results nevertheless indicate that particle-phase water enhanced the amount of organic aerosol material formed and that the RH cycling of sulfate particles may mediate the extent of isoprene SOA formation in the atmosphere. PMID:26460477

  16. Formation of Secondary Particulate Matter by Reactions of Gas Phase Hexanal with Sulfate Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Zhang, J.

    2003-12-01

    The formation of secondary particulate matter from the atmospheric oxidation of organic compounds can significantly contribute to the particulate burden, but the formation of organic secondary particulate matter is poorly understood. One way of producing organic secondary particulate matter is the oxidation of hydrocarbons with seven or more carbon atoms to get products with low vapor pressure. However, several recent reports suggest that relatively low molecular weight carbonyls can enter the particle phase by undergoing heterogeneous reactions. This may be a very important mechanism for the formation of organic secondary particulate matter. Atmospheric aldehydes are important carbonyls in the gas phase, which form via the oxidation of hydrocarbons emitted from anthropogenic and biogenic sources. In this poster, we report the results on particle growth by the heterogeneous reactions of hexanal. A 5 L Continuous Stirred Tank Reactor (CSTR) is set up to conduct the reactions in the presence of seed aerosol particles of deliquesced ammonia bisulfate. Hexanal is added into CSTR by syringe pump, meanwhile the concentrations of hexanal are monitored with High Pressure Liquid Chromatograph (HPLC 1050). A differential Mobility Analyzer (TSI 3071) set to an appropriate voltage is employed to obtain monodisperse aerosols, and another DMA associated with a Condensation Nuclear Counter (TSI 7610) is used to measure the secondary particle size distribution by the reaction in CSTR. This permits the sensitive determination of particle growth due to the heterogeneous reaction, very little growth occurs when hexanal added alone. Results for the simultaneous addition of hexanal and alcohols will also be presented.

  17. Use of stratospheric aerosol properties as diagnostics of Antarctic vortex processes

    NASA Technical Reports Server (NTRS)

    Thomason, Larry W.; Poole, Lamont R.

    1993-01-01

    Physical properties of the stratospheric aerosol population are inferred from cloud-free SAGE II multiwavelength extinction measurements in the Antarctic during late summer (February/March) and spring (September/October, November). Seasonal changes in these properties are used to infer physical processes occurring in the Antarctic stratosphere over the course of the winter. The analysis suggests that the apparent springtime cleansing of the Antarctic stratosphere is the result of aerosol redistribution through subsidence of the polar vortex air mass and sedimentation of large polar stratospheric cloud particles. The analysis also suggests that vortex processes are responsible for a significant downward transport of aerosol through the tropopause.

  18. Secondary organic aerosol formation from gasoline vehicle emissions in a new mobile environmental reaction chamber

    NASA Astrophysics Data System (ADS)

    Platt, S. M.; El Haddad, I.; Zardini, A. A.; Clairotte, M.; Astorga, C.; Wolf, R.; Slowik, J. G.; Temime-Roussel, B.; Marchand, N.; Ježek, I.; Drinovec, L.; Močnik, G.; Möhler, O.; Richter, R.; Barmet, P.; Bianchi, F.; Baltensperger, U.; Prévôt, A. S. H.

    2012-10-01

    We present a new mobile environmental reaction chamber for the simulation of the atmospheric aging of aerosols from different emissions sources without limitation from the instruments or facilities available at any single site. The chamber can be mounted on a trailer for transport to host facilities or for mobile measurements. Photochemistry is simulated using a set of 40 UV lights (total power 4 KW). Characterisation of the emission spectrum of these lights shows that atmospheric photochemistry can be accurately simulated over a range of temperatures from -7-25 °C. A photolysis rate of NO2, JNO2, of (8.0 ± 0.7) × 10-3 molecules cm-3 s-1 was determined at 25 °C. Further, we present the first application of the mobile chamber and demonstrate its utility by quantifying primary organic aerosol (POA) emission and secondary organic aerosol (SOA) production from a Euro 5 light duty gasoline vehicle. Exhaust emissions were sampled during the New European Driving Cycle (NEDC), the standard driving cycle for European regulatory purposes, and injected into the chamber. The relative concentrations of oxides of nitrogen (NOx) and total hydrocarbon (THC) during the aging of emissions inside the chamber were controlled using an injection system developed as a part of the new mobile chamber set up. Total OA (POA + SOA) emission factors of (370 ± 18) × 10-3 g kg-1 fuel, or (14.6 ± 0.8) × 10-3 g km-1, after aging, were calculated from concentrations measured inside the smog chamber during two experiments. The average SOA/POA ratio for the two experiments was 15.1, a much larger increase than has previously been seen for diesel vehicles, where smog chamber studies have found SOA/POA ratios of 1.3-1.7. Due to this SOA formation, carbonaceous particulate matter (PM) emissions from a gasoline vehicle may approach those of a diesel vehicle of the same class. Furthermore, with the advent of emission controls requiring the use of diesel particle filters, gasoline vehicle emissions

  19. Effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events

    SciTech Connect

    Quan, Jiannong; Liu, Yangang; Liu, Quan; Li, Xia; Gao, Yang; Jia, Xingcan; Sheng, Jiujiang

    2015-09-30

    In this study, the effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events was investigated by analysis of comprehensive measurements of aerosol composition and concentrations [e.g., particular matters (PM2.5), nitrate (NO3), sulfate (SO4), ammonium (NH4)], gas-phase precursors [e.g., nitrogen oxides (NOx), sulfur dioxide (SO2), and ozone (O3)], and relevant meteorological parameters [e.g., visibility and relative humidity (RH)]. The measurements were conducted in Beijing, China from Sep. 07, 2012 to Jan. 16, 2013. The results show that the conversion ratios of N from NOx to nitrate (Nratio) and S from SO2 to sulfate (Sratio) both significantly increased in haze events, suggesting enhanced conversions from NOx and SO2 to their corresponding particle phases in the late haze period. Further analysis shows that Nratio and Sratio increased with increasing RH, with Nratio and Sratio being only 0.04 and 0.03, respectively, when RH < 40%, and increasing up to 0.16 and 0.12 when RH reached 60–80%, respectively. The enhanced conversion ratios of N and S in the late haze period is likely due to heterogeneous aqueous reactions, because solar radiation and thus the photochemical capacity are reduced by the increases in aerosols and RH. This point was further affirmed by the relationships of Nratio and Sratio to O3: the conversion ratios increase with decreasing O3 concentration when O3 concentration is lower than <15 ppb but increased with increasing O3 when O3 concentration is higher than 15 ppb. The results suggest that heterogeneous aqueous reactions likely changed aerosols and their precursors during the haze events: in the beginning of haze events, the precursor gases accumulated quickly

  20. Effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events

    DOE PAGESBeta

    Quan, Jiannong; Liu, Yangang; Liu, Quan; Li, Xia; Gao, Yang; Jia, Xingcan; Sheng, Jiujiang

    2015-09-30

    In this study, the effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events was investigated by analysis of comprehensive measurements of aerosol composition and concentrations [e.g., particular matters (PM2.5), nitrate (NO3), sulfate (SO4), ammonium (NH4)], gas-phase precursors [e.g., nitrogen oxides (NOx), sulfur dioxide (SO2), and ozone (O3)], and relevant meteorological parameters [e.g., visibility and relative humidity (RH)]. The measurements were conducted in Beijing, China from Sep. 07, 2012 to Jan. 16, 2013. The results show that the conversion ratios of N from NOx to nitrate (Nratio) and S from SO2 to sulfate (Sratio) bothmore » significantly increased in haze events, suggesting enhanced conversions from NOx and SO2 to their corresponding particle phases in the late haze period. Further analysis shows that Nratio and Sratio increased with increasing RH, with Nratio and Sratio being only 0.04 and 0.03, respectively, when RH < 40%, and increasing up to 0.16 and 0.12 when RH reached 60–80%, respectively. The enhanced conversion ratios of N and S in the late haze period is likely due to heterogeneous aqueous reactions, because solar radiation and thus the photochemical capacity are reduced by the increases in aerosols and RH. This point was further affirmed by the relationships of Nratio and Sratio to O3: the conversion ratios increase with decreasing O3 concentration when O3 concentration is lower than <15 ppb but increased with increasing O3 when O3 concentration is higher than 15 ppb. The results suggest that heterogeneous aqueous reactions likely changed aerosols and their precursors during the haze events: in the beginning of haze events, the precursor gases accumulated quickly due to high emission and low reaction rate; the occurrence of heterogeneous aqueous reactions in the late haze period, together with the accumulated high concentrations of precursor gases such as SO2 and NOx, accelerated the

  1. Humidity effects on photochemical aerosol formation in the SO 2-NO-C 3H 6-air system

    NASA Astrophysics Data System (ADS)

    Izumi, Katsuyuki; Mizuochi, Motoyuki; Murano, Kentaro; Fukuyama, Tsutomu

    In order to investigate the effects of humidity on the gas-phase oxidation of SO 2 in polluted air and on the subsequent aerosol formation process, photoirradiation experiments were carried out by means of a 4-m 3 chamber, in which mixtures containing SO 2, NO and C 3H 6 with concentrations in the ppm range were exposed to simulated solar radiation in different relative humidity (r.h.) conditions. The total amount of oxidized SO 2 was quantified from the SO 42- yield determined by the chemical analysis of the aerosol product, and a part due to the oxidation by the OH radical was evaluated by estimating the OH concentration from the decay rate of C 3H 6. The remaining part was assigned to the oxidation by the Criegee intermediate, as it had a good correlation with the progress of the O 3 + C 3H 6 reaction. The contributions of the two oxidizing species to the total conversion and the oxidation rate of SO 2 were measured as functions of r.h. As a result, experimental evidence was obtained for the prediction of Calvert and Stockwell's (1983, Envir. Sci. Technol. 17, 428A-443A) simulation that the oxidation due to the Criegee intermediate was retarded by the increase in humidity. The OH contribution, on the other hand, was almost independent of r.h. It was observed consequently that the total oxidized amount of SO 2 considerably decreased as r.h. was higher. The humidity effect on the aerosol formation process was found to be more complicated than the effect on the gas-phase chemistry. The maximum rate of increase in the particle number concentration rose linearly with increasing r.h., but the number concentration itself measured at its maximum or at the end of the irradiation reached a ceiling value around r.h. = 30% and went down for higher r.h. The average panicle size in the final stage of the reaction showed a minimum around the same r.h. at which the number concentration was maximum. The H 2SO 4 concentration in the mist particles, however, decreased

  2. Secondary Organic Aerosol formation from isoprene photooxidation during cloud condensation-evaporation cycles

    NASA Astrophysics Data System (ADS)

    Brégonzio-Rozier, L.; Giorio, C.; Siekmann, F.; Pangui, E.; Morales, S. B.; Temime-Roussel, B.; Gratien, A.; Michoud, V.; Cazaunau, M.; DeWitt, H. L.; Tapparo, A.; Monod, A.; Doussin, J.-F.

    2015-07-01

    The impact of cloud events on isoprene secondary organic aerosol (SOA) formation has been studied from an isoprene/NOx/light system in an atmospheric simulation chamber. It was shown that the presence of a liquid water cloud leads to a faster and higher SOA formation than under dry conditions. When a cloud is generated early in the photooxidation reaction, before any SOA formation has occurred, a fast SOA formation is observed with mass yields ranging from 0.002 to 0.004. These yields are two and four times higher than those observed under dry conditions. When the cloud is generated at a later photooxidation stage, after isoprene SOA is stabilized at its maximum mass concentration, a rapid increase (by a factor of two or higher) of the SOA mass concentration is observed. The SOA chemical composition is influenced by cloud generation: the additional SOA formed during cloud events is composed of both organics and nitrate containing species. This SOA formation can be linked to water soluble volatile organic compounds (VOCs) dissolution in the aqueous phase and to further aqueous phase reactions. Cloud-induced SOA formation is experimentally demonstrated in this study, thus highlighting the importance of aqueous multiphase systems in atmospheric SOA formation estimations.

  3. Secondary organic aerosol formation from isoprene photooxidation during cloud condensation-evaporation cycles

    NASA Astrophysics Data System (ADS)

    Brégonzio-Rozier, L.; Giorio, C.; Siekmann, F.; Pangui, E.; Morales, S. B.; Temime-Roussel, B.; Gratien, A.; Michoud, V.; Cazaunau, M.; DeWitt, H. L.; Tapparo, A.; Monod, A.; Doussin, J.-F.

    2016-02-01

    The impact of cloud events on isoprene secondary organic aerosol (SOA) formation has been studied from an isoprene / NOx / light system in an atmospheric simulation chamber. It was shown that the presence of a liquid water cloud leads to a faster and higher SOA formation than under dry conditions. When a cloud is generated early in the photooxidation reaction, before any SOA formation has occurred, a fast SOA formation is observed with mass yields ranging from 0.002 to 0.004. These yields are 2 and 4 times higher than those observed under dry conditions. When the cloud is generated at a later photooxidation stage, after isoprene SOA is stabilized at its maximum mass concentration, a rapid increase (by a factor of 2 or higher) of the SOA mass concentration is observed. The SOA chemical composition is influenced by cloud generation: the additional SOA formed during cloud events is composed of both organics and nitrate containing species. This SOA formation can be linked to the dissolution of water soluble volatile organic compounds (VOCs) in the aqueous phase and to further aqueous phase reactions. Cloud-induced SOA formation is experimentally demonstrated in this study, thus highlighting the importance of aqueous multiphase systems in atmospheric SOA formation estimations.

  4. Effect of Hydrophilic Organic Seed Aerosols on Secondary Organic Aerosol Formation from Ozonolysis of α-Pinene

    SciTech Connect

    Song, Chen; Zaveri, Rahul A.; Shilling, John E.; Alexander, M. L.; Newburn, Matthew K.

    2011-07-26

    Gas-particle partitioning theory is widely used in atmospheric models to predict organic aerosol loadings. This theory predicts that secondary organic aerosol (SOA) yield of an oxidized VOC product will increase as the mass loading of preexisting organic aerosol increases. In a previous study, we showed that the presence of model hydrophobic primary organic aerosol (POA) had no detectable effect on the secondary organic aerosol (SOA) yields from ozonolysis of {alpha}-pinene, suggesting that the condensing SOA compounds form a separate phase from the preexisting POA. However, non-polar, hydrophobic POA may gradually become polar and hydrophilic as it undergoes oxidative aging while POA formed from biomass burning is already somewhat polar and hydrophilic. In this study, we investigate the effects of model hydrophilic POA such as fulvic acid, adipic acid and citric acid on the gas-particle partitioning of SOA from {alpha}-pinene ozonolysis. The results show that only citric acid seed significantly enhances the absorption of {alpha}-pinene SOA into the particle-phase. The other two POA seed particles have negligible effect on the {alpha}-pinene SOA yields, suggesting that {alpha}-pinene SOA forms a well-mixed organic aerosol phase with citric acid while a separate phase with adipic acid and fulvic acid. This finding highlights the need to improve the thermodynamics treatment of organics in current aerosol models that simply lump all hydrophilic organic species into a single phase, thereby potentially introducing an erroneous sensitivity of SOA mass to emitted POA.

  5. Reactions of SIV species with organic compounds: formation mechanisms of organo-sulfur derivatives in atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Passananti, Monica; Shang, Jing; Dupart, Yoan; Perrier, Sébastien; George, Christian

    2015-04-01

    Secondary organic aerosol (SOA) have an important impact on climate, air quality and human health. However the chemical reactions involved in their formation and growth are not fully understood or well-constrained in climate models. It is well known that inorganic sulfur (mainly in oxidation states (+IV) and (+VI)) plays a key role in aerosol formation, for instance sulfuric acid is known to be a good nucleating gas. In addition, acid-catalyzed heterogeneous reactions of organic compounds has shown to produce new particles, with a clear enhancement in the presence of ozone (Iinuma 2013). Organosulfates have been detected in tropospheric particles and aqueous phases, which suggests they are products of secondary organic aerosol formation process (Tolocka 2012). Originally, the production of organosulfates was explained by the esterification reaction of alcohols, but this reaction in atmosphere is kinetically negligible. Other formation pathways have been suggested such as hydrolysis of peroxides and reaction of organic matter with sulfite and sulfate radical anions (SO3-, SO4-) (Nozière 2010), but it remains unclear if these can completely explain atmospheric organo-sulfur aerosol loading. To better understand the formation of organo-sulfur compounds, we started to investigate the reactivity of SIV species (SO2 and SO32-) with respect to specific functional groups (organic acids and double bonds) on atmospherically relevant carboxylic acids and alkenes. The experiments were carried out in the homogeneous aqueous phase and at the solid-gas interface. A custom built coated-wall flow tube reactor was developed to control relativity humidity, SO2 concentration, temperature and gas flow rate. Homogeneous and heterogeneous reaction kinetics were measured and resulting products were identified using liquid chromatography coupled with an orbitrap mass spectrometer (LC-HR-MS). The experiments were performed with and without the presence of ozone in order to evaluate any

  6. Process evaluation of sea salt aerosol concentrations at remote marine locations

    NASA Astrophysics Data System (ADS)

    Struthers, H.; Ekman, A. M.; Nilsson, E. D.

    2011-12-01

    Sea salt, an important natural aerosol, is generated by bubbles bursting at the surface of the ocean. Sea salt aerosol contributes significantly to the global aerosol burden and radiative budget and are a significant source of cloud condensation nuclei in remote marine areas (Monahan et al., 1986). Consequently, changes in marine aerosol abundance is expected to impact on climate forcing. Estimates of the atmospheric burden of sea salt aerosol mass derived from chemical transport and global climate models vary greatly both in the global total and the spatial distribution (Texor et al. 2006). This large uncertainty in the sea salt aerosol distribution in turn contributes to the large uncertainty in the current estimates of anthropogenic aerosol climate forcing (IPCC, 2007). To correctly attribute anthropogenic climate change and to veraciously project future climate, natural aerosols including sea salt must be understood and accurately modelled. In addition, the physical processes that determine the sea salt aerosol concentration are susceptible to modification due to climate change (Carslaw et al., 2010) which means there is the potential for feedbacks within the climate/aerosol system. Given the large uncertainties in sea salt aerosol modelling, there is an urgent need to evaluate the process description of sea salt aerosols in global models. An extremely valuable source of data for model evaluation is the long term measurements of PM10 sea salt aerosol mass available from a number of remote marine observation sites around the globe (including the GAW network). Sea salt aerosol concentrations at remote marine locations depend strongly on the surface exchange (emission and deposition) as well as entrainment or detrainment to the free troposphere. This suggests that the key parameters to consider in any analysis include the sea surface water temperature, wind speed, precipitation rate and the atmospheric stability. In this study, the sea salt aerosol observations

  7. Aerosol Properties and Processes: A Path from Field and Laboratory Measurements to Global Climate Models

    SciTech Connect

    Ghan, Steven J.; Schwartz, Stephen E.

    2007-07-01

    Aerosols exert a substantial influence on climate and climate change through a variety of complex mechanisms. Consequently there is a need to represent aerosol effects in global climate models, and models have begun to include representations of these effects. However, the treatment of aerosols in current global climate models is presently highly simplified, omitting many important processes and feedbacks. Consequently there is need for substantial improvement. Here we describe the U. S. Department of Energy strategy for improving the treatment of aerosol properties and processes in global climate models. The strategy begins with a foundation of field and laboratory measurements that provide the basis for modules of selected aerosol properties and processes. These modules are then integrated in regional aerosol models, which are evaluated by comparing with field measurements. Issues of scale are then addressed so that the modules can be applied to global aerosol models, which are evaluated by comparing with global satellite measurements. Finally, the validated set of modules are applied to global climate models for multi-century simulations. This strategy can be applied to successive generations of global climate models.

  8. Potential Organic Aerosol Formation from Biogenic Compounds: Model and Measurement analysis of the BEACHON-RoMBAS 2011 field data

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Lee-Taylor, J.; Aumont, B.; Madronich, S.; Palm, B. B.; Campuzano Jost, P.; Day, D. A.; Jimenez, J. L.; Karl, T.; Apel, E. C.; Kaser, L.; Hansel, A.

    2012-12-01

    The scientific understanding of the formation of organic aerosols (OA) from biogenic precursors and their ageing, especially in the presence of anthropogenic pollution, is still limited. The Rocky Mountain Biogenic Aerosol field Study (RoMBAS) took place in summer 2011 at the Manitou Forest Observatory in the Colorado Front Range as part of the NCAR Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen (BEACHON) project with the specific objective of characterizing the formation and growth of biogenic particles in the forest canopy that is dominated by terpene and MBO biogenic emissions. Here we present the results of the box model Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) that was applied at the measurement site to study local production of secondary OA (SOA), as well as the results of the 3D regional Weather Research and Forecasting model with chemistry (WRF/Chem) that was run at 4km horizontal resolution to simulate the regional transport and chemistry. First, we quantify the relative contribution of various biogenic and anthropogenic precursors to SOA levels that were measured by the Aerosol Mass Spectrometer (AMS). The GECKO-A model is initialized from measured VOC concentrations, and uses MEGAN biogenic emissions and WRF/Chem meteorological forcing. The predicted SOA daytime levels at the site of ~0.7-1.0 microg/m3 are consistent with the observations. The SOA production in GECKO from individual VOC precursors is estimated and compared with WRF/Chem predictions which are based on simplified two-product parameterizations as commonly used in regional models. The sensitivity of the SOA formation to the deposition of semi-volatile vapors, and to an increase in NOx and NO3 levels is also discussed for this site that is frequently influenced by advection of the anthropogenic plumes from Denver. Second, we examine how the organic vapors age after several days of atmospheric processing by

  9. New particle formation and ultrafine charged aerosol climatology at a high altitude site in the Alps (Jungfraujoch, 3580 m a.s.l., Switzerland)

    NASA Astrophysics Data System (ADS)

    Boulon, J.; Sellegri, K.; Venzac, H.; Picard, D.; Weingartner, E.; Wehrle, G.; Baltensperger, U.; Laj, P.

    2010-04-01

    Aerosol nucleation is an important source of atmospheric particles which have an effect both on the climatic system and on human health. The new particle formation (NPF) process is an ubiquitous phenomenon, yet poorly understood despite the many studies performed on this topic using various approaches (observation, experimentation in smog chambers and modeling). In this work, we investigate the formation of secondary charged aerosols and its climatology at Jungfraujoch, a high altitude site in Swiss Alps (3580 m a.s.l.). Charged particles and clusters (0.5-1.8 nm) were measured within the EUCAARI program from April 2008 to April 2009 and allowed the detection of nucleation events. We found that the aerosol concentration, which is dominated by cluster size class, shows a strong diurnal pattern and that the aerosol size distribution and concentration are strongly influenced by the presence of clouds either during daytime or nighttime conditions. New particle formation events have been investigated and it appears that new particle formation occurs 17.5% of measured days and that the nucleation frequency is strongly linked to air mass origin and path and negatively influenced by cloud presence. In fact, we show that NPF events depend on the occurrence of high concentration VOCs air masses which allowed clusters growing by condensation of organic vapors rather than nucleation of new clusters. Furthermore, the contribution of ions to nucleation process was studied and we found that ion-mediated nucleation (IMN) contribute to 26% of the total nucleation so that ions play an important role in the new particle formation and growth at Jungfraujoch.

  10. Aerosol and CCN over the Southern Ocean: Sources, Sinks and Processes

    NASA Astrophysics Data System (ADS)

    Clarke, A. D.; Freitag, S.; Howell, S. G.; Snider, J. R.; Kazil, J.; Feingold, G.; McNaughton, C. S.; Brekhovskikh, V.; Kapustin, V.; Campos, T. L.; Shank, L.

    2013-12-01

    Aerosol able to activate as cloud condensation nuclei (CCN) in marine stratus play an important role in cloud properties and processes. The 2008 VOCALS experiment (http://www.eol.ucar.edu/projects/vocals/) explored the aerosol cloud system over the South East Pacific (SEP). There, marine boundary layer (MBL) air from the Southern Ocean is directed north parallel to the South American coast and exposed to continental emissions. During this transport the initial clean MBL aerosol is modified in response to production, processing, entrainment, mixing, and removal. Here we discuss how the aerosol, the CCN and the clouds over the SEP are coupled by these processes. VOCALS data along 20S indicated cleanest air offshore and west of about 78W. However, some of the cleanest air (lowest CO concentrations) over the SEP were present in pockets of open cells (POC's). This suggests POC's are favored in places where remnants of Southern Ocean MBL air experienced the least mixing with higher CO sources during transport, either coastal or via entrainment of free troposphere air. Entrainment from the free troposphere (FT) was found to be an important source of marine boundary layer (MBL) aerosol in both near-shore and off-shore regions while direct advection of continental aerosol tended to influence aerosol and CCN closer to the coast. Entrainment from the FT included diverse sources from South America as well as long range transport from the western Pacific. Entrainment of FT aerosol can resupply the MBL with CCN and this process appears greatly enhanced when patchy 'rivers' of pollution lie directly above the inversion. This process was evident both offshore and near the coast. Production of CCN from sea spray aerosol (SSA) were found to increase with wind speed but atmospheric concentrations did not generally increase in the higher wind offshore regions because these regions had greater drizzle removal that compensated for increased production. Generally SSA larger than 60 nm

  11. Modelling and measurements of urban aerosol processes on the neighborhood scale in Rotterdam, Oslo and Helsinki

    NASA Astrophysics Data System (ADS)

    Karl, M.; Kukkonen, J.; Keuken, M. P.; Lützenkirchen, S.; Pirjola, L.; Hussein, T.

    2015-12-01

    This study evaluates the influence of aerosol processes on the particle number (PN) concentrations in three major European cities on the temporal scale of one hour, i.e. on the neighborhood and city scales. We have used selected measured data of particle size distributions from previous campaigns in the cities of Helsinki, Oslo and Rotterdam. The aerosol transformation processes were evaluated using an aerosol dynamics model MAFOR, combined with a simplified treatment of roadside and urban atmospheric dispersion. We have compared the model predictions of particle number size distributions with the measured data, and conducted sensitivity analyses regarding the influence of various model input variables. We also present a simplified parameterization for aerosol processes, which is based on the more complex aerosol process computations; this simple model can easily be implemented to both Gaussian and Eulerian urban dispersion models. Aerosol processes considered in this study were (i) the coagulation of particles, (ii) the condensation and evaporation of n-alkanes, and (iii) dry deposition. The chemical transformation of gas-phase compounds was not taken into account. It was not necessary to model the nucleation of gas-phase vapors, as the computations were started with roadside conditions. Dry deposition and coagulation of particles were identified to be the most important aerosol dynamic processes that control the evolution and removal of particles. The effect of condensation and evaporation of organic vapors emitted by vehicles on particle numbers and on particle size distributions was examined. Under inefficient dispersion conditions, condensational growth contributed significantly to the evolution of PN from roadside to the neighborhood scale. The simplified parameterization of aerosol processes can predict particle number concentrations between roadside and the urban background with an inaccuracy of ∼ 10 %, compared to the fully size-resolved MAFOR model.

  12. Impact of clouds and precipitation on atmospheric aerosol

    NASA Astrophysics Data System (ADS)

    Andronache, Constantin

    2015-04-01

    Aerosols have a significant impact on the dynamics and microphysics of continental mixed-phase convective clouds. High aerosol concentrations provide enhanced cloud condensation nuclei that can lead to the invigoration of convection and increase of surface rainfall. Such effects are dependent on environmental conditions and aerosol properties. Clouds are not only affected by aerosol, they also alter aerosol properties by various processes. Cloud processing of aerosol includes: convective redistribution, modification in the number and size of aerosol particles, chemical processing, new particle formation around clouds, and aerosol removal by rainfall to the surface. Among these processes, the wet removal during intense rain events, in polluted continental regions, can lead to spikes in acidic deposition into environment. In this study, we address the effects of clouds and precipitation on the aerosol distribution in cases of convective precipitation events in eastern US. We examine the effects of clouds and precipitation on various aerosol species, as well as their temporal and spatial variability.

  13. A Systematic Evaluation of the Extent of Photochemical Processing in Different Types of Secondary Organic Aerosols in the Aqueous Phase

    NASA Astrophysics Data System (ADS)

    Romonosky, D.; Lee, H.; Epstein, S. A.; Nizkorodov, S.; Laskin, J.; Laskin, A.

    2013-12-01

    A significant fraction of atmospheric organic compounds are predominantly found in condensed phases, such as organic phase in aerosol particles or aqueous phase in cloud droplets. The oxidation of VOCs followed by the condensation of products into particles was thought to be the main mechanism of organic aerosol (OA) formation. However, in the last several years, scientists have realized that a large fraction, if not the majority of organic particles, is produced through cloud and fog photochemical processes. Many of these organic compounds are photolabile, and can degrade through direct photolysis or indirect photooxidation processes on time scales that are comparable to the typical lifetimes of droplets (hours) and particles (days). We previously reported that compounds in secondary organic aerosol (SOA) from ozonolysis of d-limonene efficiently photodegrade in both organic (Walser et al., 2007) and aqueous phases (Bateman et al., 2011). Significant photolysis was also observed in an aqueous extract of SOA from high-NOx photooxidation of isoprene (Nguyen et al., 2012). More recent experiments studying the response to irradiation of complex aqueous mixtures (as opposed to solutions of isolated compounds) found surprising resilience to photodegradation in aqueous extracts of SOA prepared by photooxidation of alpha-pinene (Romonosky et al., unpublished). We present a systematic investigation of the extent of photochemical processing in different types of SOA from various biogenic and anthropogenic precursors. Chamber- or flowtube-generated SOA is collected on an inert substrate, extracted in a methanol/water solution (70:30), photolyzed in the aqueous solution, and the extent of change in the molecular level composition of the material is assessed with high-resolution mass spectrometry (HR-MS). The outcome of this study will be improved understanding of the role of condensed-phase photochemistry in chemical aging of aerosol particles and cloud droplets. Bateman et

  14. Instantaneous nitric oxide effect on secondary organic aerosol formation from m-xylene photooxidation

    NASA Astrophysics Data System (ADS)

    Li, Lijie; Tang, Ping; Cocker, David R.

    2015-10-01

    Secondary organic aerosol (SOA) formation from aromatic hydrocarbon photooxidation is highly sensitive to NO concentration. The instantaneous effect of NO on SOA formation from m-xylene photooxidation is investigated in this work by data mining 10 years of aromatic hydrocarbon chamber experiments conducted in the UC Riverside/CE-CERT chamber. First, the effect of sub-ppb NO concentrations on SOA formation is explored. The relationship of SOA growth rate to 1) NO2/NO ratio; 2) instantaneous HC/NO; 3) absolute NO concentration; 4) peroxy radical reaction branching ratio and 5) hydroxyl radical concentration are illustrated. Second, continuous and stepwise NO, NO2 and HONO injection are applied to m-xylene photooxidation experiments to simulate continuous NO sources in an urban area. The influence of these reaction scenarios on radical concentrations and SOA formation is explored. [HO2rad ]/[RO2rad ] shows a strong correlation with SOA yields in addition to [rad OH]/[HO2rad ], [rad OH], [HO2rad ] and [RO2rad ]. Enhanced SOA formation is observed when low NO levels (<1 ppb) are artificially maintained by continuous or step-wise injection; consistent with earlier research, SOA formation is observed to be suppressed by large initial NO injections. It is proposed that NO at sub-ppb level enhances rad OH formation increasing HO2rad and RO2rad and therefore promoting SOA formation. Further, two NO pathways (one promoting and one suppressing SOA formation) and one extremely low NO phase (NO "free") are used to demonstrate the evolution of NO impact on SOA formation during photooxidation. This study implies that SOA yields from aromatic hydrocarbon and low NOx photooxidation is previously underestimated due to differences between traditional environmental chamber experiments and atmospheric reactivity.

  15. Effect of Hydrophobic Primary Organic Aerosols on Secondary Organic Aerosol Formation from Ozonolysis of α-Pinene

    SciTech Connect

    Song, Chen; Zaveri, Rahul A.; Alexander, M. Lizabeth; Thornton, Joel A.; Madronich, Sasha; Ortega, John V.; Zelenyuk, Alla; Yu, Xiao-Ying; Laskin, Alexander; Maughan, A. D.

    2007-10-16

    Semi-empirical secondary organic aerosol (SOA) models typically assume a well-mixed organic aerosol phase even in the presence of hydrophobic primary organic aerosols (POA). This assumption significantly enhances the modeled SOA yields as additional organic mass is made available to absorb greater amounts of oxidized secondary organic gases than otherwise. We investigate the applicability of this critical assumption by measuring SOA yields from ozonolysis of α-pinene (a major biogenic SOA precursor) in a smog chamber in the absence and in the presence of dioctyl phthalate (DOP) and lubricating oil seed aerosol. These particles serve as surrogates for urban hydrophobic POA. The results show that these POA did not enhance the SOA yields. If these results are found to apply to other biogenic SOA precursors, then the semi-empirical models used in many global models would predict significantly less biogenic SOA mass and display reduced sensitivity to anthropogenic POA emissions than previously thought.

  16. Limited effect of anthropogenic nitrogen oxides on secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Unger, N.; Hodzic, A.; Emmons, L.; Knote, C.; Tilmes, S.; Lamarque, J.-F.; Yu, P.

    2015-12-01

    Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but it can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NOx = NO + NO2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR (National Center for Atmospheric Research) Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product volatility basis set (VBS) scheme, including NOx-dependent SOA yields and aging parameterizations. Small differences are found for the no-aging VBS and 2-product schemes; large increases in SOA production and the SOA-to-OA ratio are found for the aging scheme. The predicted organic aerosol amounts capture both the magnitude and distribution of US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of 2 compared to aerosol mass spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different regions and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9-5.6, 6.4-12.0 and 0.9-2.8 % for global, southeast US and Amazon NOx perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to a limited shift in chemical regime, to buffering in chemical pathways (low- and high-NOx pathways, O3 versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.

  17. Limited effect of anthropogenic nitrogen oxides on secondary organic aerosol formation

    DOE PAGESBeta

    Zheng, Y.; Unger, N.; Hodzic, A.; Emmons, L.; Knote, C.; Tilmes, S.; Lamarque, J.-F.; Yu, P.

    2015-12-08

    Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but it can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NOx = NO + NO2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR (National Center for Atmospheric Research) Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product volatility basis set (VBS) scheme, including NOx-dependent SOA yields and aging parameterizations. Small differences are found for themore » no-aging VBS and 2-product schemes; large increases in SOA production and the SOA-to-OA ratio are found for the aging scheme. The predicted organic aerosol amounts capture both the magnitude and distribution of US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of 2 compared to aerosol mass spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different regions and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9–5.6, 6.4–12.0 and 0.9–2.8 % for global, southeast US and Amazon NOx perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to a limited shift in chemical regime, to buffering in chemical pathways (low- and high-NOx pathways, O3 versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.« less

  18. Limited effect of anthropogenic nitrogen oxides on Secondary Organic Aerosol formation

    DOE PAGESBeta

    Zheng, Y.; Unger, N.; Hodzic, A.; Emmons, L.; Knote, C.; Tilmes, S.; Lamarque, J.-F.; Yu, P.

    2015-08-28

    Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NOx = NO + NO2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product Volatility Basis Set (VBS) scheme, including NOx-dependent SOA yields and aging parameterizations. The predicted organic aerosol amounts capture both the magnitude and distribution ofmore » US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of two compared to Aerosol Mass Spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different region and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9 to 5.6, 6.4 to 12.0 and 0.9 to 2.8 % for global, the southeast US and the Amazon NOx perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to buffering in chemical pathways (low- and high-NOx pathways, O3 versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.« less

  19. Formation of secondary organic aerosol in the Paris pollution plume and its impact on surrounding regions

    NASA Astrophysics Data System (ADS)

    Zhang, Q. J.; Beekmann, M.; Freney, E.; Sellegri, K.; Pichon, J. M.; Schwarzenboeck, A.; Colomb, A.; Bourrianne, T.; Michoud, V.; Borbon, A.

    2015-03-01

    Secondary pollutants such as ozone, secondary inorganic aerosol, and secondary organic aerosol formed in the plume of megacities can affect regional air quality. In the framework of the FP7/EU MEGAPOLI project, an intensive campaign was launched in the Greater Paris Region in July 2009. The major objective was to quantify different sources of organic aerosol (OA) within a megacity and in its plume. In this study, we use airborne measurements aboard the French ATR-42 aircraft to evaluate the regional chemistry-transport model CHIMERE within and downwind the Paris region. Slopes of the plume OA levels vs. Ox (= O3 + NO2) show secondary OA (SOA) formation normalized with respect to photochemical activity and are used for specific evaluation of the OA scheme in the model. Simulated and observed slopes are in good agreement, when the most realistic "high-NOx" yields are used in the Volatility-Basis-Set scheme implemented into the model. In addition, these slopes are relatively stable from one day to another, which suggest that they are characteristic for the given megacity plume environment. Since OA within the plume is mainly formed from anthropogenic precursors (VOC and primary OA, POA), this work allows a specific evaluation of anthropogenic SOA and SOA formed from primary semi-volatile and intermediate volatile VOCs (SI-SOA) formation scheme in a model. For specific plumes, this anthropogenic OA build-up can reach about 10 μg m-3. For the average of the month of July 2009, maximum increases occur close to the agglomeration for primary OA are noticed at several tens (for POA) to hundred (for SI-SOA) kilometers of distance from the Paris agglomeration.

  20. Limited effect of anthropogenic nitrogen oxides on Secondary Organic Aerosol formation

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Unger, N.; Hodzic, A.; Emmons, L.; Knote, C.; Tilmes, S.; Lamarque, J.-F.; Yu, P.

    2015-08-01

    Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NOx = NO + NO2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product Volatility Basis Set (VBS) scheme, including NOx-dependent SOA yields and aging parameterizations. The predicted organic aerosol amounts capture both the magnitude and distribution of US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of two compared to Aerosol Mass Spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different region and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9 to 5.6, 6.4 to 12.0 and 0.9 to 2.8 % for global, the southeast US and the Amazon NOx perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to buffering in chemical pathways (low- and high-NOx pathways, O3 versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.

  1. Transmission Electron Microscopy Analysis of Tarball Formation and Volatility from Biomass-burning Aerosol Particles during the 2013 BBOP Campaign

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Adachi, K.; Chand, D.; Kleinman, L. I.; Sedlacek, A. J., III

    2014-12-01

    Tar balls, a subset of organic aerosol that is characterized by spherical shape and amorphous composition, are presumed to be brown-carbon (BrC) particles that contribute to light absorption in the atmosphere. Because of their distinctive shapes, compositions, and lack of crystallinity, tar balls are uniquely identifiable using transmission electron microscopy (TEM). Using samples collected during BBOP, we performed a detailed investigation of their compositions, formation processes, and occurrence. They primarily originated from wildfires and are most abundant in relatively aged plumes (>several hours from emission). Their features are similar to those from Mexico measured during the 2006 MILAGRO campaign, but their number fractions are more abundant in the Idaho, Oregon, and Washington samples of BBOP. In order to determine the TB robustness with respect to heating, an experiment was carried out on a TEM grid containing a mixture of organic particles, nanosphere soot, and TBs during which the sample temperature was ramped from ~30 to 650 ºC. The TEM results collected at 30 and 600 ºC, the latter representing the filament temperature used by the AMS, indicate that material of lower volatility is lost by 600 ºC. Although there was some loss of material during the 15-minute temperature ramp, TBs were still present at the higher temperature. These preliminary findings suggest that the efficiency of AMS detection of TBs may be significantly less than unity and potentially translate to an underreporting of the aerosol mass for wildfire plumes. If tar balls have low AMS detection efficiencies, an underestimate in organic aerosol mass will result.

  2. Impact of chamber wall loss of gaseous organic compounds on secondary organic aerosol formation: explicit modeling of SOA formation from alkane and alkene oxidation

    NASA Astrophysics Data System (ADS)

    La, Y. S.; Camredon, M.; Ziemann, P. J.; Valorso, R.; Matsunaga, A.; Lannuque, V.; Lee-Taylor, J.; Hodzic, A.; Madronich, S.; Aumont, B.

    2016-02-01

    Recent studies have shown that low volatility gas-phase species can be lost onto the smog chamber wall surfaces. Although this loss of organic vapors to walls could be substantial during experiments, its effect on secondary organic aerosol (SOA) formation has not been well characterized and quantified yet. Here the potential impact of chamber walls on the loss of gaseous organic species and SOA formation has been explored using the Generator for Explicit Chemistry and Kinetics of the Organics in the Atmosphere (GECKO-A) modeling tool, which explicitly represents SOA formation and gas-wall partitioning. The model was compared with 41 smog chamber experiments of SOA formation under OH oxidation of alkane and alkene series (linear, cyclic and C12-branched alkanes and terminal, internal and 2-methyl alkenes with 7 to 17 carbon atoms) under high NOx conditions. Simulated trends match observed trends within and between homologous series. The loss of organic vapors to the chamber walls is found to affect SOA yields as well as the composition of the gas and the particle phases. Simulated distributions of the species in various phases suggest that nitrates, hydroxynitrates and carbonylesters could substantially be lost onto walls. The extent of this process depends on the rate of gas-wall mass transfer, the vapor pressure of the species and the duration of the experiments. This work suggests that SOA yields inferred from chamber experiments could be underestimated up a factor of 2 due to the loss of organic vapors to chamber walls.

  3. Impact of chamber wall loss of gaseous organic compounds on secondary organic aerosol formation: explicit modeling of SOA formation from alkane and alkene oxidation

    NASA Astrophysics Data System (ADS)

    La, Y. S.; Camredon, M.; Ziemann, P. J.; Valorso, R.; Matsunaga, A.; Lannuque, V.; Lee-Taylor, J.; Hodzic, A.; Madronich, S.; Aumont, B.

    2015-09-01

    Recent studies have shown that low volatility gas-phase species can be lost onto the smog chamber wall surfaces. Although this loss of organic vapors to walls could be substantial during experiments, its effect on secondary organic aerosol (SOA) formation has not been well characterized and quantified yet. Here the potential impact of chamber walls on the loss of gaseous organic species and SOA formation has been explored using the Generator for Explicit Chemistry and Kinetics of the Organics in the Atmosphere (GECKO-A) modeling tool which explicitly represents SOA formation and gas/wall partitioning. The model was compared with 41 smog chamber experiments of SOA formation under OH oxidation of alkane and alkene series (linear, cyclic and C12-branched alkanes and terminal, internal and 2-methyl alkenes with 7 to 17 carbon atoms) under high NOx conditions. Simulated trends match observed trends within and between homologous series. The loss of organic vapors to the chamber walls is found to affect SOA yields as well as the composition of the gas and the particle phases. Simulated distributions of the species in various phases suggest that nitrates, hydroxynitrates and carbonylesters could substantially be lost onto walls. The extent of this process depends on the rate of gas/wall mass transfer, the vapor pressure of the species and the duration of the experiments. This work suggests that SOA yields inferred from chamber experiments could be underestimated up to 0.35 yield unit due to the loss of organic vapors to chamber walls.

  4. Halogenation processes of secondary organic aerosol and implications on halogen release mechanisms

    NASA Astrophysics Data System (ADS)

    Ofner, J.; Balzer, N.; Buxmann, J.; Grothe, H.; Schmitt-Kopplin, Ph.; Platt, U.; Zetzsch, C.

    2012-07-01

    Reactive halogen species (RHS), such as X·, X2 and HOX containing X = chlorine and/or bromine, are released by various sources like photo-activated sea-salt aerosol or from salt pans, and salt lakes. Despite many studies of RHS reactions, the potential of RHS reacting with secondary organic aerosol (SOA) and organic aerosol derived from biomass-burning (BBOA) has been neglected. Such reactions can constitute sources of gaseous organohalogen compounds or halogenated organic matter in the tropospheric boundary layer and can influence physicochemical properties of atmospheric aerosols. Model SOA from α-pinene, catechol, and guaiacol was used to study heterogeneous interactions with RHS. Particles were exposed to molecular chlorine and bromine in an aerosol smog-chamber in the presence of UV/VIS irradiation and to RHS, released from simulated natural halogen sources like salt pans. Subsequently, the aerosol was characterized in detail using a variety of physicochemical and spectroscopic methods. Fundamental features were correlated with heterogeneous halogenation, which results in new functional groups (FTIR spectroscopy), changes UV/VIS absorption, chemical composition (ultrahigh resolution mass spectroscopy (ICR-FT/MS)), or aerosol size distribution. However, the halogen release mechanisms were also found to be affected by the presence of organic aerosol. Those interaction processes, changing chemical and physical properties of the aerosol are likely to influence e.g. the ability of the aerosol to act as cloud condensation nuclei, its potential to adsorb other gases with low-volatility, or its contribution to radiative forcing and ultimately the Earth's radiation balance.

  5. Organic Nitrate Contribution to New Particle Formation and Growth in Secondary Organic Aerosols from α-Pinene Ozonolysis.

    PubMed

    Berkemeier, Thomas; Ammann, Markus; Mentel, Thomas F; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-06-21

    The chemical kinetics of organic nitrate production during new particle formation and growth of secondary organic aerosols (SOA) were investigated using the short-lived radioactive tracer (13)N in flow-reactor studies of α-pinene oxidation with ozone. Direct and quantitative measurements of the nitrogen content indicate that organic nitrates accounted for ∼40% of SOA mass during initial particle formation, decreasing to ∼15% upon particle growth to the accumulation-mode size range (>100 nm). Experiments with OH scavengers and kinetic model results suggest that organic peroxy radicals formed by α-pinene reacting with secondary OH from ozonolysis are key intermediates in the organic nitrate formation process. The direct reaction of α-pinene with NO3 was found to be less important for particle-phase organic nitrate formation. The nitrogen content of SOA particles decreased slightly upon increase of relative humidity up to 80%. The experiments show a tight correlation between organic nitrate content and SOA particle-number concentrations, implying that the condensing organic nitrates are among the extremely low volatility organic compounds (ELVOC) that may play an important role in the nucleation and growth of atmospheric nanoparticles. PMID:27219077

  6. Heterogeneous Chemistry of Carbonyls and Alcohols With Sulfuric Acid: Implications for Secondary Organic Aerosol Formation

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Levitt, N.; Zhang, R.

    2006-12-01

    Recent environmental chamber studies have suggested that acid-catalyzed particle-phase reactions of organic carbonyls lead to multifold increases in secondary organic aerosol (SOA) mass and acid-catalyzed reactions between alcohols and aldehydes in the condensed phase lead to the formation of hemiacetals and acetals, also enhancing secondary organic aerosol growth. The kinetics and mechanism of the heterogeneous chemistry of carbonyls and alcohols with sulfuric acid, however, remain largely uncertain. In this talk, we present measurements of heterogeneous uptake of several carbonyls and alcohols on liquid H2SO4 in a wide range of acid concentrations and temperatures. The results indicate that uptake of larger carbonyls is explained by aldol condensation. For small dicarbonyls, heterogeneous reactions are shown to decrease with acidity and involve negligible formation of sulfate esters. Hydration and polymerization likely explain the measured uptake of such small dicarbonyls on H2SO4 and the measurements do not support an acid- catalyzed uptake. Atmospheric implications from our findings will be discussed.

  7. Lidar Observation of Aerosol and Temperature Stratification over Urban Area During the Formation of a Stable Atmospheric PBL

    NASA Technical Reports Server (NTRS)

    Kolev, I.; Parvanov, O.; Kaprielov, B.; Mitev, V.; Simeonov, V.; Grigorov, I.

    1992-01-01

    In recent years, the processes in the atmospheric planetary boundary layer (PBL) over urban areas were intensely investigated, due to ecological problems related to the air, soil, and water pollution. New pollution sources in new residential districts, when in contradiction to the microclimate and topography requirements of that region, create a number of considerable hazards and problems. The present study is a continuation of our preceding investigations and aims at revealing the aerosol structure and stratification during the transition after sunset as measured by two lidars. Such observation of the nocturnal, stable PBL formation over an urban area in Bulgaria has not been reported before. The lidars' high time and spatial resolutions allow the changes of the internal structure of the PBL's part located above the surface layer to be observed.

  8. The NASA-AMES Research Center Stratospheric Aerosol Model. 1. Physical Processes and Computational Analogs

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Hamill, P.; Toon, O. B.; Whitten, R. C.; Kiang, C. S.

    1979-01-01

    A time-dependent one-dimensional model of the stratospheric sulfate aerosol layer is presented. In constructing the model, a wide range of basic physical and chemical processes are incorporated in order to avoid predetermining or biasing the model predictions. The simulation, which extends from the surface to an altitude of 58 km, includes the troposphere as a source of gases and condensation nuclei and as a sink for aerosol droplets. The size distribution of aerosol particles is resolved into 25 categories with particle radii increasing geometrically from 0.01 to 2.56 microns such that particle volume doubles between categories.

  9. Advection fog formation and aerosols produced by combustion-originated air pollution

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Liaw, G. S.; Vaughan, O. H., Jr.

    1980-01-01

    The way in which pollutants produced by the photochemical reaction of NO(X) and SO(X) affect the quality of the human environment through such phenomena as the formation of advection fog is considered. These pollutants provide the major source of condensation nuclei for the formation of fog in highways, airports and seaports. Results based on the monodisperse, multicomponent aerosol model show that: (1) condensation nuclei can grow and form a dense fog without the air having attained supersaturation; (2) the mass concentration range for NO(X) is one-third that of SO(X); and (3) the greater the mass concentration, the particle concentration, and the radius of condensation nuclei, the denser the fog that is formed.

  10. Impacts of Combustion Conditions and Photochemical Processing on the Light Absorption of Biomass Combustion Aerosol.

    PubMed

    Martinsson, J; Eriksson, A C; Nielsen, I Elbæk; Malmborg, V Berg; Ahlberg, E; Andersen, C; Lindgren, R; Nyström, R; Nordin, E Z; Brune, W H; Svenningsson, B; Swietlicki, E; Boman, C; Pagels, J H

    2015-12-15

    The aim was to identify relationships between combustion conditions, particle characteristics, and optical properties of fresh and photochemically processed emissions from biomass combustion. The combustion conditions included nominal and high burn rate operation and individual combustion phases from a conventional wood stove. Low temperature pyrolysis upon fuel addition resulted in "tar-ball" type particles dominated by organic aerosol with an absorption Ångström exponent (AAE) of 2.5-2.7 and estimated Brown Carbon contributions of 50-70% to absorption at the climate relevant aethalometer-wavelength (520 nm). High temperature combustion during the intermediate (flaming) phase was dominated by soot agglomerates with AAE 1.0-1.2 and 85-100% of absorption at 520 nm attributed to Black Carbon. Intense photochemical processing of high burn rate flaming combustion emissions in an oxidation flow reactor led to strong formation of Secondary Organic Aerosol, with no or weak absorption. PM1 mass emission factors (mg/kg) of fresh emissions were about an order of magnitude higher for low temperature pyrolysis compared to high temperature combustion. However, emission factors describing the absorption cross section emitted per kg of fuel consumed (m(2)/kg) were of similar magnitude at 520 nm for the diverse combustion conditions investigated in this study. These results provide a link between biomass combustion conditions, emitted particle types, and their optical properties in fresh and processed plumes which can be of value for source apportionment and balanced mitigation of biomass combustion emissions from a climate and health perspective. PMID:26561964

  11. Formation of secondary aerosols from biomass burning plumes: chamber simulation study

    NASA Astrophysics Data System (ADS)

    Wang, X.; Hu, Q.; Fang, Z.; Deng, W.

    2015-12-01

    Biomass burning contributed substantially to carbonaceous aerosols in China's ambient air, even in its highly industrialized megacities, based on recent source attributions by receptor modeling or by molecular and isotopic tracers. Although chemical evolution of biomass burning plumes in the ambient is a vital issue for the study of climatic and health effects, the understanding of secondary pollutants formation during the aging of biomass burning plumes is far from complete. Here we collected typical agriculture residues and forest plant branches in the Pearl River Delta in south China, and got them burned in laboratory-controlled conditions and introduced the plumes from burning these biomass directly into the GIGCAS indoor smog chamber with a reactor of 30 m3 to investigate the photochemical aging of the plumes. The inorganic trace gases, including SO2, NOx, NH3 and O3, were monitored online with chemiluminescence gas analyzers, precursor volatile organic compounds (VOCs) were monitor online with a PTR-ToF-MS and offline by a preconcentrator coupled with a gas chromatography-mass selective detector/flame ionization detector/electron capture detector (GC-MSD/FID/ECD), particle number concentrations and size distributions were obtained using a scanning mobility particle sizer (SMPS), and a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) was used to measure the chemical compositions and evolutions of submicron aerosols and to trace the change in the average element ratios of organics, like H/C, O/C, and N/C. The results from the study were summarized in the following aspects: 1) primary emission factors of gaseous and particulate pollutants from burning of typical biomass including agricultural remains and forest wood plants; 2) yields of secondary pollutants, including secondary inorganic and organic aerosols and gaseous products (like O3) during photochemical aging of biomass burning plumes; 3) relationship between the formed secondary

  12. The importance of aerosol composition and mixing state on predicted CCN concentration and the variation of the importance with atmospheric processing of aerosol

    SciTech Connect

    Wang, J.; Cubison, M.; Aiken, A.; Jimenez, J.; Collins, D.; Gaffney, J.; Marley, N.

    2010-03-15

    -independent particle composition leads to substantial overestimation of CCN concentration for freshly emitted aerosols in early morning, but can reasonably predict the CCN concentration after the aerosols underwent atmospheric processing for several hours. This analysis employing various simplifications provides insights into the essential information of particle chemical composition that needs to be represented in models to adequately predict CCN concentration and cloud microphysics.

  13. Fuel composition and secondary organic aerosol formation: gas-turbine exhaust and alternative aviation fuels.

    PubMed

    Miracolo, Marissa A; Drozd, Greg T; Jathar, Shantanu H; Presto, Albert A; Lipsky, Eric M; Corporan, Edwin; Robinson, Allen L

    2012-08-01

    A series of smog chamber experiments were performed to investigate the effects of fuel composition on secondary particulate matter (PM) formation from dilute exhaust from a T63 gas-turbine engine. Tests were performed at idle and cruise loads with the engine fueled on conventional military jet fuel (JP-8), Fischer-Tropsch synthetic jet fuel (FT), and a 50/50 blend of the two fuels. Emissions were sampled into a portable smog chamber and exposed to sunlight or artificial UV light to initiate photo-oxidation. Similar to previous studies, neat FT fuel and a 50/50 FT/JP-8 blend reduced the primary particulate matter emissions compared to neat JP-8. After only one hour of photo-oxidation at typical atmospheric OH levels, the secondary PM production in dilute exhaust exceeded primary PM emissions, except when operating the engine at high load on FT fuel. Therefore, accounting for secondary PM production should be considered when assessing the contribution of gas-turbine engine emissions to ambient PM levels. FT fuel substantially reduced secondary PM formation in dilute exhaust compared to neat JP-8 at both idle and cruise loads. At idle load, the secondary PM formation was reduced by a factor of 20 with the use of neat FT fuel, and a factor of 2 with the use of the blend fuel. At cruise load, the use of FT fuel resulted in no measured formation of secondary PM. In every experiment, the secondary PM was dominated by organics with minor contributions from sulfate when the engine was operated on JP-8 fuel. At both loads, FT fuel produces less secondary organic aerosol than JP-8 because of differences in the composition of the fuels and the resultant emissions. This work indicates that fuel reformulation may be a viable strategy to reduce the contribution of emissions from combustion systems to secondary organic aerosol production and ultimately ambient PM levels. PMID:22732009

  14. Secondary organic aerosol formation from the ozonolysis of 2-carene and 3-carene

    NASA Astrophysics Data System (ADS)

    Mellouki, A.; Chen, H.; Bernard, F.; Cazaunau, M.; Grosselin, B.; Daele, V.; Chen, J.

    2013-12-01

    The atmospheric degradation of terpenes in the remote areas such as those with coniferous forests is known to lead to the formation and growth of atmospheric new particles. 2-carene and 3-carene have been reported to be present in number of such areas. Hence, their oxidation may represent an important source of secondary organic aerosols in some specific regions. 2-carene and 3-carene possess a structure of endocyclic double bonds which make them reactive toward ozone under atmospheric conditions. We have conducted a study on the reactions of ozone with 2-carene and 3-carene using a flow reactor dedicated to the investigation of secondary organic aerosol (SOA) formation. The reactor is equipped with an ozone generator and a movable injector which allows the reaction to occur within a short time range (typically 17 - 48 seconds). This enables us to investigate the initial steps of the SOA formation. In a first series of experiments, we have determined the rate constant for the reaction of ozone with 3-carene under pseudo-first-order conditions. The rate constant value measured was 3.8 x 10-17 molecule-1s-1, at 298 K, in agreement with the literatures and simulation chamber experiments. We have then investigated the SOA formation from the ozonolysis of 2-carene and 3-carene. By adjusting the residence time and initial concentration of carenes and ozone, number concentration of SOA have been measured for short reactions times and low concentrations of reactants. Nucleation thresholds of 2-carene and 3-carene were extracted from the plots of log N = f(Δ[Carenes]).

  15. Sources and source processes of organic nitrogen aerosols in the atmosphere

    NASA Astrophysics Data System (ADS)

    Erupe, Mark E.

    The research in this dissertation explored the sources and chemistry of organic nitrogen aerosols in the atmosphere. Two approaches were employed: field measurements and laboratory experiments. In order to characterize atmospheric aerosol, two ambient studies were conducted in Cache Valley in Northern Utah during strong winter inversions of 2004 and 2005. The economy of this region is heavily dependent on agriculture. There is also a fast growing urban population. Urban and agricultural emissions, aided by the valley geography and meteorology, led to high concentrations of fine particles that often exceeded the national ambient air quality standards. Aerosol composition was dominated by ammonium nitrate and organic species. Mass spectra from an aerosol mass spectrometer revealed that the organic ion peaks were consistent with reduced organic nitrogen compounds, typically associated with animal husbandry practices. Although no direct source characterization studies have been undertaken in Cache Valley with an aerosol mass spectrometer, spectra from a study at a swine facility in Ames, Iowa, did not show any evidence of reduced organic nitrogen species. This, combined with temporal and diurnal characteristics of organic aerosol peaks, was a pointer that the organic nitrogen species in Cache Valley likely formed from secondary chemistry. Application of multivariate statistical analyses to the organic aerosol spectra further supported this hypothesis. To quantify organic nitrogen signals observed in ambient studies as well as understand formation chemistry, three categories of laboratory experiments were performed. These were calibration experiments, smog chamber studies, and an analytical method development. Laboratory calibration experiments using standard calibrants indicated that quantifying the signals from organic nitrogen species was dependent on whether they formed through acid-base chemistry or via secondary organic aerosol pathway. Results from smog chamber

  16. Isoprene Epoxydiols as Precursors to Secondary Organic Aerosol Formation: Acid-Catalyzed Reactive Uptake Studies with Authentic Compounds

    PubMed Central

    Lin, Ying-Hsuan; Zhang, Zhenfa; Docherty, Kenneth S.; Zhang, Haofei; Budisulistiorini, Sri Hapsari; Rubitschun, Caitlin L.; Shaw, Stephanie L.; Knipping, Eladio M.; Edgerton, Eric S.; Kleindienst, Tadeusz E.; Gold, Avram; Surratt, Jason D.

    2011-01-01

    Isoprene epoxydiols (IEPOX), formed from the photooxidation of isoprene under low-NOx conditions, have recently been proposed as precursors of secondary organic aerosol (SOA) on the basis of mass spectrometric evidence. In the present study, IEPOX isomers were synthesized in high purity (> 99%) to investigate their potential to form SOA via reactive uptake in a series of controlled dark chamber studies followed by reaction product analyses. IEPOX-derived SOA was substantially observed only in the presence of acidic aerosols, with conservative lower-bound yields of 4.7–6.4% for β-IEPOX and 3.4–5.5% for δ-IEPOX, providing direct evidence for IEPOX isomers as precursors to isoprene SOA. These chamber studies demonstrate that IEPOX uptake explains the formation of known isoprene SOA tracers found in ambient aerosols, including 2-methyltetrols, C5-alkene triols, dimers, and IEPOX-derived organosulfates. Additionally, we show reactive uptake on the acidified sulfate aerosols supports a previously unreported acid-catalyzed intramolecular rearrangement of IEPOX to cis- and trans-3-methyltetrahydrofuran-3,4-diols (3-MeTHF-3,4-diols) in the particle phase. Analysis of these novel tracer compounds by aerosol mass spectrometry (AMS) suggests that they contribute to a unique factor resolved from positive matrix factorization (PMF) of AMS organic aerosol spectra collected from low-NOx, isoprene-dominated regions influenced by the presence of acidic aerosols. PMID:22103348

  17. Effects of Transport and Processing on Aerosol Chemical and Optical Properties Across the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Quinn, P.; Bates, T.; Baynard, T.; Onasch, T.; Coffman, D.; Covert, D.; Worsnop, D.; Goldan, P.; Kuster, B.; Degouw, J.; Stohl, A.

    2005-12-01

    NEAQS-ITCT 2004 took place in July and August to study natural and anthropogenic emissions from North America including the processing of gas and particle phase species during transport over the North Atlantic and the resulting impact on air quality and climate. During the experiment, measurements were made onboard the NOAA RV Ronald H. Brown with a ship track that extended from the coast along Cape Cod, MA, Boston, MA and Portland, ME, east into the Gulf of Maine and out to Chebogue Point, Nova Scotia. Although measurements on the ship were not made in a true Lagrangian sense, they reveal information about the effects of transport and processing on aerosol chemical and optical properties. Photochemical age based on measured toluene to benzene ratios can be used in this region to indicate 'younger' versus 'older' aerosol. This approach, coupled with FLEXPART estimates of source contributions and age, reveals that continental aerosol becomes more acidic as it ages with transport over the Gulf of Maine. The increasing acidity is due to the conversion of SO2 to SO4= with no further significant input of NH3 in the well-capped marine boundary layer to neutralize the aerosol. In addition, as the aerosol ages, the organic mass fraction decreases while the organics that are present become more oxidized. These same chemical features were observed in aerosol transported from the Ohio River Valley and beyond. In contrast, recently formed aerosol from urban centers along the Eastern Seaboard are neutralized, have a higher organic content, and the organics are less oxidized. The impact of the observed range of aerosol acidity, organic mass fraction, and degree of oxidation of the organic matter on the f(RH) of the aerosol will be described. Here, f(RH) refers to the dependence of light extinction on relative humidity.

  18. Photosensitized Formation of Secondary Organic Aerosols above the Air/Water Interface.

    PubMed

    Bernard, F; Ciuraru, R; Boréave, A; George, C

    2016-08-16

    In this study, we evaluated photosensitized chemistry at the air-sea interface as a source of secondary organic aerosols (SOA). Our results show that, in addition to biogenic emissions, abiotic processes could also be important in the marine boundary layer. Photosensitized production of marine secondary organic aerosol was studied in a custom-built multiphase atmospheric simulation chamber. The experimental chamber contained water, humic acid (1-10 mg L(-1)) as a proxy for dissolved organic matter, and nonanoic acid (0.1-10 mM), a fatty acid proxy which formed an organic film at the air-water interface. Dark secondary reaction with ozone after illumination resulted in SOA particle concentrations in excess of 1000 cm(-3), illustrating the production of unsaturated compounds by chemical reactions at the air-water interface. SOA numbers via photosensitization alone and in the absence of ozone did not exceed background levels. From these results, we derived a dependence of SOA numbers on nonanoic acid surface coverage and dissolved organic matter concentration. We present a discussion on the potential role of the air-sea interface in the production of atmospheric organic aerosol from photosensitized origins. PMID:27434860

  19. Process for recovering oil from subterranean formations

    SciTech Connect

    Volz, H.; Schnepel, F.M.

    1986-05-20

    A process is described for reducing the loss of relatively high molecular weight polymers to a subterranean formation containing high salinity connate water during an enhanced oil recovery operation in a formation penetrated by at least one injection well and at least one production well, which comprises: injecting into the formation a sacrificial agent in solution selected from the group consisting of polyethylene glycol, polypropylene glycol, a mixture of polyethylene glycol and polypropylene glycol, and ethylene oxide/propylene oxide copolymer; the sacrificial agent having an average molecular weight between about 600 and about 1200.

  20. Observations on the formation, growth and chemical composition of aerosols in an urban environment.

    PubMed

    Crilley, Leigh R; Jayaratne, E Rohan; Ayoko, Godwin A; Miljevic, Branka; Ristovski, Zoran; Morawska, Lidia

    2014-06-17

    The charge and chemical composition of ambient particles in an urban environment were determined using a neutral particle and air ion spectrometer and an aerodyne compact time-of-flight aerosol mass spectrometer. Particle formation and growth events were observed on 20 of the 36 days of sampling, with eight of these events classified as strong. During these events, peaks in the concentration of intermediate and large ions were followed by peaks in the concentration of ammonium and sulfate, which were not observed in the organic fraction. Comparison of days with and without particle formation events revealed that ammonium and sulfate were the dominant species on particle formation days while high concentrations of biomass burning OA inhibited particle growth. Analyses of the degree of particle neutralization lead us to conclude that an excess of ammonium enabled particle formation and growth. In addition, the large ion concentration increased sharply during particle growth, suggesting that during nucleation the neutral gaseous species ammonia and sulfuric acid react to form ammonium and sulfate ions. Overall, we conclude that the mechanism of particle formation and growth involved ammonia and sulfuric acid, with limited input from organics. PMID:24847803

  1. Electron-molecule chemistry and charging processes on organic ices and Titan's icy aerosol surrogates

    NASA Astrophysics Data System (ADS)

    Pirim, C.; Gann, R. D.; McLain, J. L.; Orlando, T. M.

    2015-09-01

    Electron-induced polymerization processes and charging events that can occur within Titan's atmosphere or on its surface were simulated using electron irradiation and dissociative electron attachment (DEA) studies of nitrogen-containing organic condensates. The DEA studies probe the desorption of H- from hydrogen cyanide (HCN), acetonitrile (CH3CN), and aminoacetonitrile (NH2CH2CN) ices, as well as from synthesized tholin materials condensed or deposited onto a graphite substrate maintained at low temperature (90-130 K). The peak cross sections for H- desorption during low-energy (3-15 eV) electron irradiation were measured and range from 3 × 10-21 to 2 × 10-18 cm2. Chemical and structural transformations of HCN ice upon 2 keV electron irradiation were investigated using X-ray photoelectron and Fourier-transform infrared spectroscopy techniques. The electron-beam processed materials displayed optical properties very similar to tholins produced by conventional discharge methods. Electron and negative ion trapping lead to 1011 charges cm-2 on a flat surface which, assuming a radius of 0.05 μm for Titan aerosols, is ∼628 charges/radius (in μm). The facile charge trapping indicates that electron interactions with nitriles and complex tholin-like molecules could affect the conductivity of Titan's atmosphere due to the formation of large negative ion complexes. These negatively charged complexes can also precipitate onto Titan's surface and possibly contribute to surface reactions and the formation of dunes.

  2. Quantification of Semi-Volatile gas-phase Organic Compounds (SVOCs) & Organic Aerosol species and the role of SVOCs in Secondary Organic Aerosol formation

    NASA Astrophysics Data System (ADS)

    Khan, M. H.; Holzinger, R.

    2013-12-01

    A Thermal-Desorption Proton-Transfer-Reaction Mass-Spectrometer (TD-PTR-MS) with different sampling systems (multi-stage denuder for gas phase and impact on a collector for aerosol phase) has been deployed in summer 2013 during the Southern Oxidant and Aerosol Study (SOAS) at the SEARCH ground site, Centreville, Alabama for in-situ gas phase and aerosol measurements on an hourly time resolution. A bunch of DB-1 column (0.53 mm x 5.0 μm) is used in the denuder for capturing the bulk of SVOCs and a collection-thermal-desorption (CTD) cell is used for collecting aerosol particles. Several hundreds semivolatile organic compounds (SVOCs) in gas phase and aerosol phases have been detected. The high mass resolution capabilities of ~5000, low detection limit (<0.05 pptv for gas species, <0.01 ng m-3 for aerosol species) and good physical and chemical characterization of SVOCs with the TD-PTR-MS allows constraining both, the quantity and the chemical composition. The SEARCH site was highly impacted by Biogenic Volatile Organic Compounds (BVOCs) and occasionally influenced by anthropogenic pollution. BVOCs and their oxidation products are capable of partitioning into the particle phase, so their simultaneous quantification in both phases has been used to determine the gas/particle-phase partitioning. Our results show the expected diurnal variation based on the changes of air temperature for many species. The results from this study give valuable insights into sources and processing of Secondary Organic Aerosols (SOAs) that can be used to improve parameterization algorithms in regional and global climate models.

  3. Secondary organic aerosol formation from isoprene photo-oxidation during cloud condensation-evaporation cycles (CUMULUS project)

    NASA Astrophysics Data System (ADS)

    Brégonzio-Rozier, Lola; Siekmann, Frank; Giorio, Chiara; Temime-Roussel, Brice; Pangui, Edouard; Morales, Sébastien; Gratien, Aline; Ravier, Sylvain; Monod, Anne; Doussin, Jean-Francois

    2014-05-01

    It is acknowledged that atmospheric photo-oxidation of Volatile Organic Compounds (VOC) leads to the formation of less volatile oxidized species. These compounds can undergo gas-to-particle conversion, leading to the formation of Secondary Organic Aerosols (SOA) in the atmosphere. Nevertheless, some of these oxidized species are water soluble and could also partition into cloud droplets. Higher molecular weight and less volatile compounds could be produced in the aqueous phase and remain in the particle phase after water evaporation (Ervens et al., 2011). The aim of the present work is to study SOA formation in the presence of cloud droplets during isoprene photo-oxidation. To this end, an original multiphase approach in a simulation chamber was set up in order to investigate the chemistry occurring in the gaseous, particulate and aqueous phases, and the exchange between these phases. Experiments were performed, within the CUMULUS project (CloUd MULtiphase chemistry of organic compoUndS in the troposphere), in the CESAM chamber (Wang et al., 2011). This chamber was designed to investigate multiphase processes under realistic actinic flux, and accurate control of both temperature and relative humidity. A specific protocol was set up to produce cloud events in the simulation chamber exhibiting a significant lifetime in the presence of light (10-12 minutes). By using this protocol, many clouds could be generated in a single experiment. In each experiment, around 800 ppb of isoprene was injected in the chamber together with HONO under dry conditions before irradiation. A Fourier Transform Infrared Spectrometer (FTIR), a Proton Transfer Reaction Mass Spectrometer (PTR-TOF-MS) and NOx and O3 analyzers were used to analyze gas-phase composition. Dried SOA size distributions and total concentrations were measured by a Scanning Mobility Particle Sizer (SMPS). An Aerodyne High Resolution Time-Of-Flight Aerosol Mass Spectrometer (HR-TOF-AMS) was also used to investigate

  4. Non-refractory Submicron Aerosol Aging Processes in the Rural Southeastern United States

    NASA Astrophysics Data System (ADS)

    Karakurt Cevik, B.; Leong, Y. J.; Hernandez, C.; Griffin, R. J.

    2014-12-01

    The Southern Oxidant and Aerosol Study (SOAS) took place over a six-week period and included ground and elevated measurements that aimed to improve the understanding of biosphere-atmosphere interactions and their impacts on air quality and climate. As part of SOAS, an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed at the rural ground site in Centreville, AL, from 1 June to 15 July 2013. The HR-ToF-AMS provided quantitative measurement of non-refractory submicron aerosol composition and size distribution with high temporal resolution. Time series of mass concentrations of organic material, sulfate, ammonium, and nitrate (in order of average relative importance) and the changes in the concentrations of each component with respect to a photochemical airmass age metric (based on oxidation of nitrogen oxides) are reported. The relative importance of secondary ammonium and sulfate increases with values of the airmass age metric. While the contributions of organic and nitrate aerosol to total particle concentration decrease with increasing airmass age, organic aerosol concentration normalized by carbon monoxide (CO) constantly increases with age. However, the nitrate concentration normalized by CO appears relatively independent of the age metric. For a better understanding of organic aerosol processing, atomic ratio (oxygen/carbon and hydrogen/carbon) and carbon oxidation state (OSc) analyses of bulk organic aerosol are investigated.

  5. Examining the effects of anthropogenic emissions on isoprene-derived secondary organic aerosol formation during the 2013 Southern Oxidant and Aerosol Study (SOAS) at the Look Rock, Tennessee ground site

    NASA Astrophysics Data System (ADS)

    Budisulistiorini, S. H.; Li, X.; Bairai, S. T.; Renfro, J.; Liu, Y.; Liu, Y. J.; McKinney, K. A.; Martin, S. T.; McNeill, V. F.; Pye, H. O. T.; Nenes, A.; Neff, M. E.; Stone, E. A.; Mueller, S.; Knote, C.; Shaw, S. L.; Zhang, Z.; Gold, A.; Surratt, J. D.

    2015-08-01

    carbon (BC ~ 0.2 μg m-3). Particle-phase sulfate is fairly correlated (r2 ~ 0.3) with both methacrylic acid epoxide (MAE)/hydroxymethyl-methyl-α-lactone (HMML)- (henceforth called methacrolein (MACR)-derived SOA tracers) and IEPOX-derived SOA tracers, and more strongly correlated (r2 ~ 0.6) with the IEPOX-OA factor, in sum suggesting an important role of sulfate in isoprene SOA formation. Moderate correlation between the MACR-derived SOA tracer 2-methylglyceric acid with sum of reactive and reservoir nitrogen oxides (NOy; r2 = 0.38) and nitrate (r2 = 0.45) indicates the potential influence of anthropogenic emissions through long-range transport. Despite the lack of a clear association of IEPOX-OA with locally estimated aerosol acidity and liquid water content (LWC), box model calculations of IEPOX uptake using the simpleGAMMA model, accounting for the role of acidity and aerosol water, predicted the abundance of the IEPOX-derived SOA tracers 2-methyltetrols and the corresponding sulfates with good accuracy (r2 ~ 0.5 and ~ 0.7, respectively). The modeling and data combined suggest an anthropogenic influence on isoprene-derived SOA formation through acid-catalyzed heterogeneous chemistry of IEPOX in the southeastern US. However, it appears that this process was not limited by aerosol acidity or LWC at Look Rock during SOAS. Future studies should further explore the extent to which acidity and LWC as well as aerosol viscosity and morphology becomes a limiting factor of IEPOX-derived SOA, and their modulation by anthropogenic emissions.

  6. BEHAVIOR OF CONSTANT RATE AEROSOL REACTORS (JOURNAL VERSION)

    EPA Science Inventory

    An aerosol reactor is a gaseous system in which fine particles are formed by chemical reaction in either a batch or flow process. Such reactors are used to study the aerosol formation process, as in a smog reactor, or to generate a product such as a pigment or a catalytic aerosol...

  7. Wintertime Secondary Organic Aerosol (SOA) Formation from Oxidation of Volatile Organic Compounds (VOCs) Associated with Oil and Gas Extraction

    NASA Astrophysics Data System (ADS)

    Murphy, S. M.; Soltis, J.; Field, R. A.; Bates, T. S.; Quinn, P.; De Gouw, J. A.; Veres, P. R.; Warneke, C.; Graus, M.; Gilman, J.; Lerner, B. M.; Koss, A.

    2013-12-01

    The Uintah Basin is located in a lightly populated area of Northeastern Utah near Dinosaur National Monument. Oil and gas extraction activities in the basin have dramatically increased in recent years due to the application of hydraulic fracturing. The Uintah Basin has experienced numerous high-ozone events during the past several winters with concentrations often exceeding 100 ppb. PM 2.5 monitoring by the city of Vernal, located at the edge of the basin, have shown wintertime concentrations in excess of the EPA 8-hour national standard, though the source and composition of particulates during these events is unclear. The Energy and Environment - Uintah Basin Winter Ozone Study (E&E UBWOS) was conducted during the winters of 2012 and 2013. During the study, intensive measurements of aerosol composition and speciated VOCs were made at a monitoring site near oil and gas extraction activities. Organic aerosol was found to be a major component of PM 2.5 and organic aerosol formation was highly correlated with the production of secondary VOC's. This correlation suggests that the organic aerosol is secondary in nature even though O:C ratios suggest a less oxidized aerosol than often observed in summertime SOA. The ozone levels and organic aerosol mass during 2012 were much lower than those observed in 2013. Calculations of the aerosol yield during both years will be presented along with an analysis of how well observed yields match predictions based on smog-chamber data. The potential for additional aerosol formation in the system will also be discussed.

  8. Role of secondary aerosols in haze formation in summer in the Megacity Beijing.

    PubMed

    Han, Tingting; Liu, Xingang; Zhang, Yuanhang; Qu, Yu; Zeng, Limin; Hu, Min; Zhu, Tong

    2015-05-01

    A field experiment from 18 August to 8 September 2006 in Beijing, China, was carried out. A hazy day was defined as visibilityaerosol) concentrations. The average values with standard deviation of SO4(2-), NO3-, NH4+ and SOA were 49.8 (±31.6), 31.4 (±22.3), 25.8 (±16.6) and 8.9 (±4.1)μg/m3, respectively, during the haze episodes, which were 4.3, 3.4, 4.1, and 1.7 times those in the non-haze days. The SO4(2-), NO3-, NH4+, and SOA accounted for 15.8%, 8.8%, 7.3%, and 6.0% of the total mass concentration of PM10 during the non-haze days. The respective contributions of SNA species to PM10 rose to about 27.2%, 15.9%, and 13.9% during the haze days, while the contributions of SOA maintained the same level with a slight decrease to about 4.9%. The observed mass concentrations of SNA and SOA increased with the increase of PM10 mass concentration, however, the rate of increase of SNA was much faster than that of the SOA. The SOR (sulfur oxidation ratio) and NOR (nitrogen oxidation ratio) increased from non-haze days to hazy days, and increased with the increase of RH. High concentrations of aerosols and water vapor favored the conversion of SO2 to SO4(2-) and NO2 to NO3-, which accelerated the accumulation of the aerosols and resulted in the formation of haze in Beijing. PMID:25968258

  9. Reactive uptake of ammonia to secondary organic aerosols: kinetics of organonitrogen formation

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Liggio, J.; Staebler, R.; Li, S.-M.

    2015-06-01

    As a class of brown carbon, organonitrogen compounds originating from the heterogeneous uptake of NH3 by secondary organic aerosol (SOA) have received significant attention recently. In the current work, particulate organonitrogen formation during the ozonolysis of α-pinene and the OH oxidation of m-xylene in the presence of ammonia (34-125 ppb) is studied in a smog chamber equipped with a High Resolution Time-of-Flight Aerosol Mass Spectrometer and a Quantum Cascade Laser instrument. A large diversity of nitrogen containing organic (NOC) fragments was observed which were consistent with the reaction of ammonia with carbonyl containing SOA. The uptake coefficients of NH3 to SOA leading to organonitrogen compounds are reported for the first time and were in the range of ∼ 10-3-10-2, decreasing significantly to < 10-5 after 6 h of reaction. At the end of experiments (∼ 6 h) the NOC mass contributed 8.9 ± 1.7 and 31.5 ± 4.4 wt% to the total α-pinene and m-xylene derived SOA, and 4-15 wt% of the total nitrogen in the system. Uptake coefficients were also found to be positively correlated with particle acidity and negatively correlated with NH3 concentration, indicating that heterogeneous reactions were responsible for the observed NOC mass, possibly limited by liquid phase diffusion. Under these conditions, the data also indicate that the formation of NOC can compete kinetically with inorganic acid neutralization. The formation of NOC in this study suggests that a significant portion of the ambient particle associated N may be derived from NH3 heterogeneous reactions with SOA. NOC from such a mechanism may be an important and unaccounted for source of PM associated nitrogen, and a mechanism for medium or long-range transport and dry/wet deposition of atmospheric nitrogen.

  10. Reactive uptake of ammonia to secondary organic aerosols: kinetics of organonitrogen formation

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Liggio, J.; Staebler, R.; Li, S.-M.

    2015-12-01

    As a class of brown carbon, organonitrogen compounds originating from the heterogeneous uptake of NH3 by secondary organic aerosol (SOA) have received significant attention recently. In the current work, particulate organonitrogen formation during the ozonolysis of α-pinene and the OH oxidation of m-xylene in the presence of ammonia (34-125 ppb) was studied in a smog chamber equipped with a high resolution time-of-flight aerosol mass spectrometer and a quantum cascade laser instrument. A large diversity of nitrogen-containing organic (NOC) fragments was observed which were consistent with the reactions between ammonia and carbonyl-containing SOA. Ammonia uptake coefficients onto SOA which led to organonitrogen compounds were reported for the first time, and were in the range of ∼ 10-3-10-2, decreasing significantly to < 10-5 after 6 h of reaction. At the end of experiments (~ 6 h) the NOC mass contributed 8.9 ± 1.7 and 31.5 ± 4.4 wt % to the total α-pinene- and m-xylene-derived SOA, respectively, and 4-15 wt % of the total nitrogen in the system. Uptake coefficients were also found to be positively correlated with particle acidity and negatively correlated with NH3 concentration, indicating that heterogeneous reactions were responsible for the observed NOC mass, possibly limited by liquid phase diffusion. Under these conditions, the data also indicate that the formation of NOC can compete kinetically with inorganic acid neutralization. The formation of NOC in this study suggests that a significant portion of the ambient particle associated N may be derived from NH3 heterogeneous reactions with SOA. NOC from such a mechanism may be an important and unaccounted for source of PM associated nitrogen. This mechanism may also contribute to the medium or long-range transport and wet/dry deposition of atmospheric nitrogen.

  11. Aqueous photooxidation of ambient Po Valley Italy air samples: Insights into secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Kirkland, J. R.; Lim, Y. B.; Sullivan, A. P.; Decesari, S.; Facchini, C.; Collett, J. L.; Keutsch, F. N.; Turpin, B. J.

    2012-12-01

    In this work, we conducted aqueous photooxidation experiments with ambient samples in order to develop insights concerning the formation of secondary organic aerosol through gas followed by aqueous chemistry (SOAaq). Water-soluble organics (e.g., glyoxal, methylglyoxal, glycolaldehyde, acetic acid, acetone) are formed through gas phase oxidation of alkene and aromatic emissions of anthropogenic and biogenic origin. Their further oxidation in clouds, fogs and wet aerosols can form lower volatility products (e.g., oligomers, organic acids) that remain in the particle phase after water evaporation, thus producing SOA. The aqueous OH radical oxidation of several individual potentially important precursors has been studied in the laboratory. In this work, we used a mist-chamber apparatus to collect atmospheric mixtures of water-soluble gases from the ambient air at San Pietro Capofiume, Italy during the PEGASOS field campaign. We measured the concentration dynamics after addition of OH radicals, in order to develop new insights regarding formation of SOA through aqueous chemistry. Specifically, batch aqueous reactions were conducted with 33 ml mist-chamber samples (TOC ~ 50-100μM) and OH radicals (~10-12M) in a new low-volume aqueous reaction vessel. OH radicals were formed in-situ, continuously by H2O2 photolysis. Products were analyzed by ion chromatography (IC), electrospray ionization mass spectrometry (ESI-MS +/-), and ESI-MS with IC pre-separation (IC/ESI-MS-). Reproducible formation of pyruvate and oxalate were observed both by IC and ESI-MS. These compounds are known to form from aldehyde oxidation in the aqueous phase. New insights regarding the aqueous chemistry of these "more atmospherically-realistic" experiments will be discussed.

  12. Modeling the formation of polar stratospheric clouds with allowance for kinetic and heterogeneous processes

    NASA Astrophysics Data System (ADS)

    Aloyan, A. E.; Yermakov, A. N.; Arutyunyan, V. O.

    2015-05-01

    A new mathematical model of global transport of multicomponent gaseous admixtures and aerosols in the atmosphere and the formation of polar stratospheric clouds (PSC) in both hemispheres has been constructed. Two types of PSCs are considered: type Ia, nitric acid trihydrate (NAT), and type Ib, supercooled ternary solutions of H2SO4/HNO3/H2O (STS). New equations are used to describe the variation in gas- and condensed-phase components on the basis of their thermodynamic properties. The formation of PSCs is coupled with sulfate aerosols generated in the upper troposphere and lower stratosphere, and with chemical and kinetic transformation processes (photochemistry, nucleation, condensation/evaporation, and coagulation). Using this coupled model, numerical experiments were performed to reproduce the spatial and temporal variability of PSCs in winter in both hemispheres. First, the formation of primary sulfate aerosols in the atmosphere is considered and then these aerosols are incorporated to the PSC model. The results of the numerical experiments are analyzed.

  13. Organic molecular composition of marine aerosols over the Arctic Ocean in summer: contributions of primary emission and secondary aerosol formation

    NASA Astrophysics Data System (ADS)

    Fu, P. Q.; Kawamura, K.; Chen, J.; Charrière, B.; Sempéré, R.

    2013-02-01

    Organic molecular composition of marine aerosol samples collected during the MALINA cruise in the Arctic Ocean was investigated by gas chromatography/mass spectrometry. More than 110 individual organic compounds were determined in the samples and were grouped into different compound classes based on the functionality and sources. The concentrations of total quantified organics ranged from 7.3 to 185 ng m-3 (mean 47.6 ng m-3), accounting for 1.8-11.0% (4.8%) of organic carbon in the marine aerosols. Primary saccharides were found to be dominant organic compound class, followed by secondary organic aerosol (SOA) tracers formed from the oxidation of biogenic volatile organic compounds (VOCs) such as isoprene, α-pinene and β-caryophyllene. Mannitol, the specific tracer for airborne fungal spores, was detected as the most abundant organic species in the samples with a concentration range of 0.052-53.3 ng m-3 (9.2 ng m-3), followed by glucose, arabitol, and the isoprene oxidation products of 2-methyltetrols. Biomass burning tracers such as levoglucosan are evident in all samples with trace levels. On the basis of the tracer-based method for the estimation of fungal-spore OC and biogenic secondary organic carbon (SOC), we estimate that an average of 10.7% (up to 26.2%) of the OC in the marine aerosols was due to the contribution of fungal spores, followed by the contribution of isoprene SOC (mean 3.8%) and α-pinene SOC (2.9%). In contrast, only 0.19% of the OC was due to the photooxidation of β-caryophyllene. This study indicates that primary organic aerosols from biogenic emissions, both from long-range transport of mid-latitude aerosols and from sea-to-air emission of marine organics, as well as secondary organic aerosols formed from the photooxidation of biogenic VOCs are important factors controlling the organic chemical composition of marine aerosols in the Arctic Ocean.

  14. Organic molecular composition of marine aerosols over the Arctic Ocean in summer: contributions of primary emission and secondary aerosol formation

    NASA Astrophysics Data System (ADS)

    Fu, P. Q.; Kawamura, K.; Chen, J.; Charrière, B.; Sempéré, R.

    2012-08-01

    Organic molecular composition of marine aerosol samples collected during the MALINA cruise in the Arctic Ocean was investigated by gas chromatography/mass spectrometry. More than 110 individual organic compounds were determined in the samples and were grouped into different compound classes based on the functionality and sources. The concentrations of total quantified organics ranged from 7.3 to 185 ng m-3 (mean 47.6 ng m-3), accounting for 1.8-11.0% (4.8%) of organic carbon in the marine aerosols. Primary saccharides were found to be dominant organic compound class, followed by secondary organic aerosol (SOA) tracers formed from the oxidation of biogenic volatile organic compounds (VOCs) such as isoprene, α-pinene and β-caryophyllene. Mannitol, the specific tracer for airborne fungal spores, was detected as the most abundant organic species in the samples with a concentration range of 0.052-53.3 ng m-3 (9.2 ng m-3), followed by glucose, arabitol, and the isoprene oxidation products of 2-methyltetrols. Biomass burning tracers such as levoglucosan are evident in all samples with trace levels. On the basis of the tracer-based method for the estimation of fungal-spore OC and biogenic secondary organic carbon (SOC), we estimate that an average of 10.7% (up to 26.2%) of the OC in the marine aerosols was due to the contribution of fungal spores, followed by the contribution of isoprene SOC (mean 3.8%) and α-pinene SOC (2.9%). In contrast, only 0.19% of the OC was due to the photooxidation of β-caryophyllene. This study indicates that primary organic aerosols from biogenic emissions, both from long-range transport of mid-latitude aerosols and from sea-to-air emission of marine organics, as well as secondary organic aerosols formed from the photooxidation of biogenic VOCs are important factors controlling the organic chemical composition of marine aerosols in the Arctic Ocean.

  15. Investigation of aerosol formation and sulfur speciation in subsonic jet aircraft engines

    NASA Astrophysics Data System (ADS)

    Durlak, Susan Kaye

    1997-12-01

    Combustion-related atmospheric pollutants, both gaseous and particulate, can contribute to short-term health risks, as well as long-term climate change. While aircraft engine emissions may present short-term health risks near airports, aircraft are uniquely able to impact long-term climate change due to their insertion of anthropogenic pollutants in the upper troposphere and lower stratosphere. Aircraft emissions can impact the climate either directly, via emissions of light- scattering particulates, or indirectly, via emission of cloud condensation nuclei (CCN) particulates which influence cloud formation, or through heterogeneous reactions in the atmosphere. Carbonaceous aerosol emissions from aircraft engines can directly impact the climate, whereas speciation of sulfur emissions from aircraft engines can indirectly impact the climate by forming submicron, sulfuric acid particles which then form CCN. The number, size and composition of carbonaceous aerosol, and speciation of sulfur in the exhaust, are the main parameters influencing these emissions' fate in the environment and impact on the climate. However, little is understood about the formation of these pollutants within aircraft engines, due in part to the complexity and cost involved in testing these highly engineered machines. This study examines the feasibility of using a miniature working jet aircraft engine (Sophia J450 Model Jet Engine) to perform lab-scale, controlled tests to explore the formation of aircraft engine emissions. The miniature engine was run at a variety of power levels, and emissions were sampled at the exhaust. Two types of jet fuel (JP-5 and Jet A) and one other fuel (White Gas, or Coleman Fuel) were combusted in the engine. Engine performance is characterized and exhaust carbonaceous aerosol size distribution measurements are compared to full-scale turbojet engines. Measurements were made of sulfur speciation in the exhaust of the miniature jet engine burning Jet A and JP-5 with

  16. The effects of increasing atmospheric ozone on biogenic monoterpene profiles and the formation of secondary aerosols

    NASA Astrophysics Data System (ADS)

    Pinto, Delia M.; Tiiva, Päivi; Miettinen, Pasi; Joutsensaari, Jorma; Kokkola, Harri; Nerg, Anne-Marja; Laaksonen, Ari; Holopainen, Jarmo K.

    Monoterpenes are biogenic volatile organic compounds (BVOCs) which play an important role in plant adaptation to stresses, atmospheric chemistry, plant-plant and plant-insect interactions. In this study, we determined whether ozonolysis can influence the monoterpenes in the headspace of cabbage. The monoterpenes were mixed with an air-flow enriched with 100, 200 or 400 ppbv of ozone (O 3) in a Teflon chamber. The changes in the monoterpene and O 3 concentrations, and the formation of secondary organic aerosols (SOA) were determined during ozonolysis. Furthermore, the monoterpene reactions with O 3 and OH were modelled using reaction kinetics equations. The results showed that all of the monoterpenes were unequally affected: α-thujene, sabinene and D-limonene were affected to the greatest extend, whereas the 1,8-cineole concentration did not change. In addition, plant monoterpene emissions reduced the O 3 concentration by 12-24%. The SOA formation was dependent on O 3 concentration. At 100 ppbv of O 3, virtually no new particles were formed but clear SOA formation was observed at the higher ozone concentrations. The modelled results showed rather good agreements for α-pinene and 1,8-cineole, whereas the measured concentrations were clearly lower compared to modelled values for sabinene and limonene. In summary, O 3-quenching by monoterpenes occurs beyond the boundary layer of leaves and results in a decreased O 3 concentration, altered monoterpene profiles and SOA formation.

  17. Formation of Brown Aqueous Secondary Organic Aerosol during Multiphase Cloud Simulations using the CESAM Chamber Facility

    NASA Astrophysics Data System (ADS)

    Hawkins, L. N.; Welsh, H.; De Haan, D. O.; Doussin, J. F.; Pednekar, R.; Caponi, L.; Pangui, E.; Gratien, A.; Cazaunau, M.; Formenti, P.; Pajunoja, A.

    2015-12-01

    We investigated the formation of aqueous brown carbon (aqBrC) from methylglyoxal and methylamine in multiphase reactions using the CESAM chamber facility at the University Paris-Est Creteil. Following reaction in the chamber, droplets and particles were sampled with a Particle-Into-Liquid-Sampler (PILS), a capillary waveguide cell for UV/visible spectroscopy, and a total organic carbon analyzer (TOC). Particle size distributions were measured with a scanning mobility particle sizer and used to determine the mass absorption coefficient (a normalized absorbance measurement). Absorption spectra were recorded while aerosol or gas phase aqBrC precursors were introduced into the humid chamber. Sampling was continuous during and after cloud events. The events lasted 5-10 minutes and produced measurable brown carbon signal at 365 nm. When lights were used, absorbance at 365 nm decreased steadily indicating photobleaching of aqBrC products or preferential formation of different, non-absorbing products. Although absorptivity increases prior to cloud formation, cloud events produce sharp increased in aqBrC absorptivity. While measurable absorbance at 365 nm indicates aqBrC formation, very little absorbance was recorded beyond 450 nm indicating that the products were not as oligomerized as products observed in prior work in multi-day, bulk phase simulations.

  18. Formation of secondary organic aerosol and oligomers from the ozonolysis of enol ethers

    NASA Astrophysics Data System (ADS)

    Sadezky, A.; Chaimbault, P.; Mellouki, A.; Römpp, A.; Winterhalter, R.; Le Bras, G.; Moortgat, G. K.

    2006-06-01

    Formation of secondary organic aerosol has been observed in the gas phase ozonolysis of a series of enol ethers, among them several alkyl vinyl ethers (AVE, ROCH=CH2), such as ethyl, propyl, n-butyl, iso-butyl, t-butyl vinyl ether, and ethyl propenyl ether (EPE, C2H5OCH=CHCH3). The ozonolysis has been studied in a 570 l spherical glass reactor at atmospheric pressure (730 Torr) and temperature (296 K). Gas phase reaction products were investigated by in-situ FTIR spectroscopy, and secondary organic aerosol (SOA) formation was monitored by a scanning mobility particle sizer (SMPS). The chemical composition of the formed SOA was analysed by a hybrid mass spectrometer using electrospray ionization (ESI). The main stable gas phase reaction product is the respective alkyl formate ROC(O)H, formed with yields of 60 to 80%, implying that similar yields of the corresponding Criegee Intermediates (CI) CH2O2 for the AVE and CH3CHO2 for EPE are generated. Measured SOA yields are between 2 to 4% for all enol ethers. Furthermore, SOA formation is strongly reduced or suppressed by the presence of an excess of formic acid, which acts as an efficient CI scavenger. Chemical analysis of the formed SOA by ESI(+)/MS-TOF allows to identify oligomeric compounds in the mass range 200 to 800 u as its major constituents. Repetitive chain units are identified as CH2O2 (mass 46) for the AVE and C2H4O2 (mass 60) for EPE and thus have the same chemical compositions as the respective major Criegee Intermediates formed during ozonolysis of these ethers. The oligomeric structure and chain unit identity are confirmed by HPLC/ESI(+)/MS-TOF and ESI(+)/MS/MS-TOF experiments, whereby successive and systematic loss of a fragment with mass 46 for the AVE (and mass 60 for EPE) is observed. It is proposed that the oligomer has the following basic structure of an oligoperoxide, -[CH(R)-O-O]n-, where R=H for the AVE and R=CH3 for the EPE. Oligoperoxide formation is thus suggested to be another, so far

  19. Formation of secondary organic aerosol and oligomers from the ozonolysis of enol ethers

    NASA Astrophysics Data System (ADS)

    Sadezky, A.; Chaimbault, P.; Mellouki, A.; Römpp, A.; Winterhalter, R.; Le Bras, G.; Moortgat, G. K.

    2006-10-01

    Formation of secondary organic aerosol has been observed in the gas phase ozonolysis of a series of enol ethers, among them several alkyl vinyl ethers (AVE, ROCH=CH2), such as ethyl, propyl, n-butyl, iso-butyl, t-butyl vinyl ether, and ethyl propenyl ether (EPE, C2H5OCH=CHCH3). The ozonolysis has been studied in a 570 l spherical glass reactor at ambient pressure (730 Torr) and room temperature (296 K). Gas phase reaction products were investigated by in-situ FTIR spectroscopy, and secondary organic aerosol (SOA) formation was monitored by a scanning mobility particle sizer (SMPS). The chemical composition of the formed SOA was analysed by a hybrid mass spectrometer using electrospray ionization (ESI). The main stable gas phase reaction product is the respective alkyl formate ROC(O)H, formed with yields of 60 to 80%, implying that similar yields of the corresponding excited Criegee Intermediates (CI) CH2O2 for the AVE and CH3CHO2 for EPE are generated. Measured SOA yields are between 2 to 4% for all enol ethers. Furthermore, SOA formation is strongly reduced or suppressed by the presence of an excess of formic acid, which acts as an efficient CI scavenger. Chemical analysis of the formed SOA by ESI(+)/MS-TOF allows to identify oligomeric compounds in the mass range 200 to 800 u as its major constituents. Repetitive chain units are identified as CH2O2 (mass 46) for the AVE and C2H4O2 (mass 60) for EPE and thus have the same chemical compositions as the respective major Criegee Intermediates formed during ozonolysis of these ethers. The oligomeric structure and chain unit identity are confirmed by HPLC/ESI(+)/MS-TOF and ESI(+)/MS/MS-TOF experiments, whereby successive and systematic loss of a fragment with mass 46 for the AVE (and mass 60 for EPE) is observed. It is proposed that the oligomer has the following basic structure of an oligoperoxide, -[CH(R)-O-O]n-, where R=H for the AVE and R=CH3 for the EPE. Oligoperoxide formation is thus suggested to be another, so

  20. Instabilities and structure formation in laser processing

    SciTech Connect

    Baeuerle, D.; Arenholz, E.; Arnold, N.; Heitz, J.; Kargl, P.B.

    1996-12-31

    This paper gives an overview on different types of instabilities and structure formation in various fields of laser processing. Among the examples discussed in detail are non-coherent structures observed in laser-induced chemical vapor deposition (LCVD), in laser-induced surface modifications, and in laser ablation of polymers.

  1. Oxidative Aging and Secondary Organic Aerosol Formation from Simulated Wildfire Emissions

    NASA Astrophysics Data System (ADS)

    Hennigan, C. J.; Miracolo, M. A.; Engelhart, G. J.; May, A. A.; Wold, C. E.; Hao, W. M.; Lee, T.; Sullivan, A. P.; Gilman, J. B.; Kuster, W. C.; de Gouw, J. A.; Collett, J. L.; Kreidenweis, S. M.; Robinson, A. L.

    2010-12-01

    Wildfires are a significant fraction of global biomass burning and a major source of trace gas and particle emissions in the atmosphere. Understanding the air quality and climate implications of wildfires is difficult since the emissions undergo complex transformations due to aging processes during transport away from the source. As part of the third Fire Lab at Missoula Experiment (FLAME III), we investigated the oxidative aging of smoke from combustion of 12 different types of vegetation commonly burned in North American wildfires. In these photochemical chamber experiments, we quantified the evolution of reactive trace gases and particles, with a focus on the chemistry contributing to changes in the organic aerosol (OA) concentration. Factors such as precursor VOC concentrations, oxidant exposure, and the role of NOx were considered. The results illustrate the complex and variable nature of biomass burning emissions, since none of these factors alone account for the wide range of OA enhancements that were observed. For example, in some experiments, a net decrease of up to 30% in the OA concentration was observed, while in others, the OA concentration increased by a factor of three over the course of aging due to secondary OA (SOA) production. Despite this variability, all experiments showed significant physical (e.g., changes in aerosol volatility) and chemical (e.g., changes in oxidation) transformations in the OA due to oxidation. Overall, the results demonstrate that traditional definitions of POA and SOA continue to blur in many systems, and that processes like partitioning and heterogeneous chemistry can have the most significant effect on the evolution of biomass burning aerosol.

  2. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    NASA Astrophysics Data System (ADS)

    Palm, Brett B.; Campuzano-Jost, Pedro; Ortega, Amber M.; Day, Douglas A.; Kaser, Lisa; Jud, Werner; Karl, Thomas; Hansel, Armin; Hunter, James F.; Cross, Eben S.; Kroll, Jesse H.; Peng, Zhe; Brune, William H.; Jimenez, Jose L.

    2016-03-01

    An oxidation flow reactor (OFR) is a vessel inside which the concentration of a chosen oxidant can be increased for the purpose of studying SOA formation and aging by that oxidant. During the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen-Rocky Mountain Biogenic Aerosol Study) field campaign, ambient pine forest air was oxidized by OH radicals in an OFR to measure the amount of SOA that could be formed from the real mix of ambient SOA precursor gases, and how that amount changed with time as precursors changed. High OH concentrations and short residence times allowed for semicontinuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative timescales of condensation of low-volatility organic compounds (LVOCs) onto particles; condensational loss to the walls; and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 3 µg m-3 when LVOC fate corrected) compared to daytime (average 0.9 µg m-3 when LVOC fate corrected), with maximum formation observed at 0.4-1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene+p-cymene concentrations, including a substantial increase just after sunrise at 07:00 local time. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254-70), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small oxidized organic

  3. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    DOE PAGESBeta

    Palm, Brett B.; Campuzano-Jost, Pedro; Ortega, Amber M.; Day, Douglas A.; Kaser, Lisa; Jud, Werner; Karl, Thomas; Hansel, Armin; Hunter, James F.; Cross, Eben S.; et al

    2016-03-08

    An oxidation flow reactor (OFR) is a vessel inside which the concentration of a chosen oxidant can be increased for the purpose of studying SOA formation and aging by that oxidant. During the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen–Rocky Mountain Biogenic Aerosol Study) field campaign, ambient pine forest air was oxidized by OH radicals in an OFR to measure the amount of SOA that could be formed from the real mix of ambient SOA precursor gases, and how that amount changed with time as precursors changed. High OH concentrations and short residence times allowed formore » semicontinuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative timescales of condensation of low-volatility organic compounds (LVOCs) onto particles; condensational loss to the walls; and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 3 µg m–3 when LVOC fate corrected) compared to daytime (average 0.9 µg m–3 when LVOC fate corrected), with maximum formation observed at 0.4–1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene+p-cymene concentrations, including a substantial increase just after sunrise at 07:00 local time. Higher photochemical aging (>10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254-70), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small

  4. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    DOE PAGESBeta

    Palm, Brett B.; Campuzano-Jost, Pedro; Ortega, Amber M.; Day, Douglas A.; Kaser, Lisa; Jud, Werner; Karl, Thomas; Hansel, Armin; Hunter, James F.; Cross, Eben S.; et al

    2016-03-08

    An oxidation flow reactor (OFR) is a vessel inside which the concentration of a chosen oxidant can be increased for the purpose of studying SOA formation and aging by that oxidant. During the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen–Rocky Mountain Biogenic Aerosol Study) field campaign, ambient pine forest air was oxidized by OH radicals in an OFR to measure the amount of SOA that could be formed from the real mix of ambient SOA precursor gases, and how that amount changed with time as precursors changed. High OH concentrations and short residence times allowed formore » semicontinuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative timescales of condensation of low-volatility organic compounds (LVOCs) onto particles; condensational loss to the walls; and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 3 µg m−3 when LVOC fate corrected) compared to daytime (average 0.9 µg m−3 when LVOC fate corrected), with maximum formation observed at 0.4–1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene+p-cymene concentrations, including a substantial increase just after sunrise at 07:00 local time. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254-70), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of

  5. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    SciTech Connect

    Palm, Brett B.; Campuzano-Jost, Pedro; Ortega, Amber M.; Day, Douglas A.; Kaser, Lisa; Jud, Werner; Karl, Thomas; Hansel, Armin; Hunter, James F.; Cross, Eben S.; Kroll, Jesse H.; Peng, Zhe; Brune, William H.; Jimenez, Jose L.

    2016-01-01

    An oxidation flow reactor (OFR) is a vessel inside which the concentration of a chosen oxidant can be increased for the purpose of studying SOA formation and aging by that oxidant. During the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen–Rocky Mountain Biogenic Aerosol Study) field campaign, ambient pine forest air was oxidized by OH radicals in an OFR to measure the amount of SOA that could be formed from the real mix of ambient SOA precursor gases, and how that amount changed with time as precursors changed. High OH concentrations and short residence times allowed for semicontinuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative timescales of condensation of low-volatility organic compounds (LVOCs) onto particles; condensational loss to the walls; and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 3 µg m−3 when LVOC fate corrected) compared to daytime (average 0.9 µg m−3 when LVOC fate corrected), with maximum formation observed at 0.4–1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene+p-cymene concentrations, including a substantial increase just after sunrise at 07:00 local time. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254-70), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the

  6. Simulating the SOA formation of isoprene from partitioning and aerosol phase reactions in the presence of inorganics

    NASA Astrophysics Data System (ADS)

    Beardsley, R. L.; Jang, M.

    2015-11-01

    The secondary organic aerosol (SOA) produced by the photooxidation of isoprene with and without inorganic seed is simulated using the Unified Partitioning Aerosol Phase Reaction (UNIPAR) model. Recent work has found the SOA formation of isoprene to be sensitive to both aerosol acidity ([H+]) and aerosol liquid water content (LWC) with the presence of either leading to significant aerosol phase organic mass generation and large growth in SOA yields (YSOA). Classical partitioning models alone are insufficient to predict isoprene SOA formation due to the high volatility of the photooxidation products and the sensitivity of their mass yields to variations in inorganic aerosol composition. UNIPAR utilizes the chemical structures provided by a near-explicit chemical mechanism to estimate the thermodynamic properties of the gas phase products, which are lumped based on their calculated vapor pressure (8 groups) and aerosol phase reactivity (6 groups). UNIPAR then determines the SOA formation of each lumping group from both partitioning and aerosol phase reactions (oligomerization, acid catalyzed reactions, and organosulfate formation) assuming a single homogeneously mixed organic-inorganic phase as a function of inorganic composition and VOC / NOx. The model is validated using isoprene photooxidation experiments performed in the dual, outdoor UF APHOR chambers. UNIPAR is able to predict the experimental SOA formation of isoprene without seed, with H2SO4 seed gradually titrated by ammonia, and with the acidic seed generated by SO2 oxidation. Oligomeric mass is predicted to account for more than 65 % of the total OM formed in all cases and over 85 % in the presence of strongly acidic seed. The model is run to determine the sensitivity of YSOA to [H+], LWC, and VOC / NOx, and it is determined that the SOA formation of isoprene is most strongly related to [H+] but is dynamically related to all three parameters. For VOC / NOx > 10, with increasing NOx both experimental and

  7. Simulating the SOA formation of isoprene from partitioning and aerosol phase reactions in the presence of inorganics

    NASA Astrophysics Data System (ADS)

    Beardsley, Ross L.; Jang, Myoseon

    2016-05-01

    The secondary organic aerosol (SOA) produced by the photooxidation of isoprene with and without inorganic seed is simulated using the Unified Partitioning Aerosol Phase Reaction (UNIPAR) model. Recent work has found the SOA formation of isoprene to be sensitive to both aerosol acidity ([H+], mol L-1) and aerosol liquid water content (LWC) with the presence of either leading to significant aerosol phase organic mass generation and large growth in SOA yields (YSOA). Classical partitioning models alone are insufficient to predict isoprene SOA formation due to the high volatility of photooxidation products and sensitivity of their mass yields to variations in inorganic aerosol composition. UNIPAR utilizes the chemical structures provided by a near-explicit chemical mechanism to estimate the thermodynamic properties of the gas phase products, which are lumped based on their calculated vapor pressure (eight groups) and aerosol phase reactivity (six groups). UNIPAR then determines the SOA formation of each lumping group from both partitioning and aerosol phase reactions (oligomerization, acid-catalyzed reactions and organosulfate formation) assuming a single homogeneously mixed organic-inorganic phase as a function of inorganic composition and VOC / NOx (VOC - volatile organic compound). The model is validated using isoprene photooxidation experiments performed in the dual, outdoor University of Florida Atmospheric PHotochemical Outdoor Reactor (UF APHOR) chambers. UNIPAR is able to predict the experimental SOA formation of isoprene without seed, with H2SO4 seed gradually titrated by ammonia, and with the acidic seed generated by SO2 oxidation. Oligomeric mass is predicted to account for more than 65 % of the total organic mass formed in all cases and over 85 % in the presence of strongly acidic seed. The model is run to determine the sensitivity of YSOA to [H+], LWC and VOC / NOx, and it is determined that the SOA formation of isoprene is most strongly related to [H

  8. AEROSOL GROWTH IN A STEADY-STATE, CONTINUOUS FLOW CHAMBER: APPLICATION TO STUDIES OF SECONDARY AEROSOL FORMATION

    EPA Science Inventory

    An analytical solution for the steady-state aerosol size distribution achieved in a steady-state, continuous flow chamber is derived, where particle growth is occurring by gas-to-particle conversion and particle loss is occurring by deposition to the walls of the chamber. The s...

  9. Developing a model system for studying the ozone processing of atmospheric aerosols by following changes in surface properties

    NASA Astrophysics Data System (ADS)

    Gonzalez-Labrada, Erick

    Atmospheric aerosols have a significant organic composition as determined by field measurement studies. This organic material is released to the atmosphere from both natural and anthropogenic sources, such as wind bursting of the ocean surface, car exhausts, and meat cooking, among others. An inverted micelle model has been proposed in order to explain the high concentration of organic compounds in aerosol particles. The model describes an organic film coating the air-liquid interface of an aqueous aerosol core. Chemical processing of this organic film by atmospheric oxidants (such as OH radicals, O3, and NO3) through heterogeneous and multiphase reactions can activate the aerosol to participate in atmospheric chemistry. After reaction, the particle has an increased role in the absorption and scattering of incoming solar radiation and cloud formation. Another consequence of this oxidation is the decrease of the atmospheric budget of gas-phase trace species, as well as the formation of volatile products. Several studies have proposed that the ozonolysis of organic films in aerosols takes place mainly at the surface. Therefore, the objective of this research was to develop a suitable model system for following the reaction through quantitative changes of a property inherent to the surface. Several attempts were made to examine the ozonolysis of organic monolayers at either solid or liquid surfaces. The studied monolayers contained unsaturated organic compounds as the only component or as part of a binary mixture with saturated compounds. The study of the ozone processing of monolayers deposited on solid substrates revealed information about changes in the hydrophobic character of the surface that occurred because of the reaction. On the other hand, the processing of a monolayer spread on a pendant drop allowed a real-time monitoring of surface pressure changes. This permitted a kinetic study of the reaction that yielded parameters related exclusively to processes

  10. Investigation of a Particle into Liquid Sampler to Study the Formation & Ageing of Secondary Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Pereira, K. L.; Hamilton, J. F.; Rickard, A. R.; Bloss, W. J.; Alam, M. S.; Camredon, M.; Munoz, A.; Vazquez, M.; Rodenas, M.; Vera, T.; Borrás, E.

    2012-12-01

    The atmospheric oxidation of Volatile Organic Compounds (VOCs) in the presence of NOx results in the formation of tropospheric ozone and Secondary Organic Aerosol (SOA) [Hallquist et al., 2009]. Whilst SOA is known to affect both climate and human health, the VOC oxidation pathways leading to SOA formation are poorly understood [Solomon et al., 2007]. This is in part due to the vast number and the low concentration of SOA species present