Science.gov

Sample records for aerosol formation processes

  1. Aerosol effect on the warm rain formation process: Satellite observations and modeling

    NASA Astrophysics Data System (ADS)

    Suzuki, Kentaroh; Stephens, Graeme L.; Lebsock, Matthew D.

    2013-01-01

    This study demonstrates how aerosols influence the liquid precipitation formation process. This demonstration is provided by the combined use of satellite observations and global high-resolution model simulations. Methodologies developed to examine the warm cloud microphysical processes are applied to both multi-sensor satellite observations and aerosol-coupled global cloud-resolving model (GCRM) results to illustrate how the warm rain formation process is modulated under different aerosol conditions. The observational analysis exhibits process-scale signatures of rain suppression due to increased aerosols, providing observational evidence of the aerosol influence on precipitation. By contrast, the corresponding statistics obtained from the model show a much faster rain formation even for polluted aerosol conditions and much weaker reduction of precipitation in response to aerosol increase. It is then shown that this reduced sensitivity points to a fundamental model bias in the warm rain formation process that in turn biases the influence of aerosol on precipitation. A method of improving the model bias is introduced in the context of a simplified single-column model (SCM) that represents the cloud-to-rain water conversion process in a manner similar to the original GCRM. Sensitivity experiments performed by modifying the model assumptions in the SCM and their comparisons to satellite statistics both suggest that the auto-conversion scheme has a critical role in determining the precipitation response to aerosol perturbations and also provide a novel way of constraining key parameters in the auto-conversion schemes of global models.

  2. Secondary organic aerosol formation through fog processing of VOCs

    NASA Astrophysics Data System (ADS)

    Herckes, P.; Hutchings, J. W.

    2010-07-01

    Volatile Organic Compounds (VOCs) including benzene, toluene, ethylbenzene and xylenes (BTEX) have been determined in highly concentrated amounts (>1 ug/L) in intercepted clouds in northern Arizona (USA). These VOCs are found in concentrations much higher than predicted by partitioning alone. The reactivity of BTEX in the fog/cloud aqueous phase was investigated through laboratory studies. BTEX species showed fast degradation in the aqueous phase in the presence of peroxides and light. Observed half-lives ranged from three and six hours, substantially shorter than the respective gas phase half-lives (several days). The observed reaction rates were on the order of 1 ppb/min but decreased substantially with increasing concentrations of organic matter (TOC). The products of BTEX oxidation reactions were analyzed using HPLC-UV and LCMS. The first generation of products identified included phenol and cresols which correspond to the hydroxyl-addition reaction to benzene and toluene. Upon investigating of multi-generational products, smaller, less volatile species are predominant although a large variety of products is found. Most reaction products have substantially lower vapor pressure and will remain in the particle phase upon droplet evaporation. The SOA generation potential of cloud and fog processing of BTEX was evaluated using simple calculations and showed that in ideal situations these reactions could add up to 9% of the ambient aerosol mass. In more conservative scenarios, the contribution of the processing of BTEX was around 1% of ambient aerosol concentrations. Overall, cloud processing of VOC has the potential to contribute to the atmospheric aerosol mass. However, the contribution will depend upon many factors such as the irradiation, organic matter content in the droplets and droplet lifetime.

  3. Satellite observations and EMAC model calculations of sulfate aerosols from Kilauea: a study of aerosol formation, processing, and loss

    NASA Astrophysics Data System (ADS)

    Penning de Vries, Marloes; Beirle, Steffen; Brühl, Christoph; Dörner, Steffen; Pozzer, Andrea; Wagner, Thomas

    2016-04-01

    The currently most active volcano on Earth is Mount Kilauea on Hawaii, as it has been in a state of continuous eruption since 1983. The opening of a new vent in March 2008 caused half a year of strongly increased SO2 emissions, which in turn led to the formation of a sulfate plume with an extent of at least two thousand kilometers. The plume could be clearly identified from satellite measurements from March to November, 2008. The steady trade winds in the region and the lack of interfering sources allowed us to determine the life time of SO2 from Kilauea using only satellite-based measurements (no a priori or model information). The current investigation focuses on sulfate aerosols: their formation, processing and subsequent loss. Using space-based aerosol measurements by MODIS, we study the evolution of aerosol optical depth, which first increases as a function of distance from the volcano due to aerosol formation from SO2 oxidation, and subsequently decreases as aerosols are deposited to the surface. The outcome is compared to results from calculations using the EMAC (ECHAM/MESSy Atmospheric Chemistry) model to test the state of understanding of the sulfate aerosol life cycle. For this comparison, a particular focus is on the role of clouds and wet removal processes.

  4. Numerical analysis of the formation process of aerosols in the alveoli

    NASA Astrophysics Data System (ADS)

    Haslbeck, Karsten; Seume, Jörg R.

    2008-11-01

    For a successful diagnosis of lung diseases through an analysis of non-volatile molecules in the exhaled breath, an exact understanding of the aerosol formation process is required. This process is modeled using Computational Fluid Dynamics (CFD). The model shows the interaction of the boundary surface between the streamed airway and the local epithelial liquid layer. A 2-D volume mesh of an alveolus is generated by taking into account the connection of the alveoli with the sacculi alveolares (SA). The Volume of Fluid (VOF) Method is used to model the interface between the gas and the liquid film. The non-Newtonian flow is modeled by the implementation of the Ostwald de Waele model. Surface tension is a function of the surfactant concentration. The VOF-Method allows the distribution of the concentration of the epithelial liquid layer at the surface to be traced in a transient manner. The simulations show the rupturing of the liquid film through the drop formation. Aerosol particles are ejected into the SA and do not collide with the walls. The quantity, the geometrical size as well as the velocity distributions of the generated aerosols are determined. The data presented in the paper provide the boundary conditions for future CFD analysis of the aerosol transport through the airways up to exhalation.

  5. Formation and Processing of Secondary Organic Aerosol from Catechol as a Model for Atmospheric HULIS

    NASA Astrophysics Data System (ADS)

    Ofner, Johannes; Krüger, Heinz-Ulrich; Grothe, Hinrich; Zetzsch, Cornelius

    2010-05-01

    A particular fraction of the secondary organic aerosol (SOA) termed HUmic Like Substances (HULIS) attracted attention only recently in atmospheric aerosol, initiating a discourse about their aromaticity and other properties, such as reactivity and hygroscopicity. A major portion of HULIS originates from volatile organic compounds, which are formed by abiotic oxidation reactions involving mainly OH radicals, ozone, nitrogen oxides and possibly halogens. Subsequently, the particles provide surface for heterogeneous reactions with atmospheric trace gases. Thus, aerosol smog-chamber studies with appropriate precursors are needed to generate SOA with HULIS qualities in situ inside the smog chamber and study their possible interactions. Catechol and guaiacol were chosen as aromatic precursors for synthetic HULIS production. The SOA was produced in a 700 L aerosol smog chamber, equipped with a solar simulator. SOA formation from each precursor was investigated at simulated environmental conditions (humidity, light, and presence of oxidizers) and characterized with respect to HULIS properties by particle classifiers, Fourier Transform IR spectroscopy (by long-path absorption and attenuated total reflection), UV/VIS spectroscopy, high-resolution mass-spectroscopy and temperature-programmed-desorption mass-spectrometry. High-resolution imaging was obtained using Field Emission Gun Scanning Electron Microscopy (FEGSEM). After HULIS formation the aerosol particles were exposed to atmospheric halogen species to study their processing with those trace gases, released by sea salt-activation. Those investigations show that aromatic precursors like catechol and guaiacol are suitable to form synthetic HULIS for laboratory-scale measurements with physical and chemical properties described in literature. However, sunlight and relative humidity play a major role in particle production and composition of functional groups, which are the anchor points for heterogeneous atmospheric

  6. Cloud processing of organic compounds: Secondary organic aerosol and nitrosamine formation

    NASA Astrophysics Data System (ADS)

    Hutchings, James W., III

    Cloud processing of atmospheric organic compounds has been investigated through field studies, laboratory experiments, and numerical modeling. Observational cloud chemistry studies were performed in northern Arizona and fog studies in central Pennsylvania. At both locations, the cloud and fogs showed low acidity due to neutralization by soil dust components (Arizona) and ammonia (Pennsylvania). The field observations showed substantial concentrations (20-5500 ng•L -1) of volatile organic compounds (VOC) in the cloud droplets. The potential generation of secondary organic aerosol mass through the processing of these anthropogenic VOCs was investigated through laboratory and modeling studies. Under simulated atmospheric conditions, in idealized solutions, benzene, toluene, ethylbenzene, and xylene (BTEX) degraded quickly in the aqueous phase with half lives of approximately three hours. The degradation process yielded less volatile products which would contribute to new aerosol mass upon cloud evaporation. However, when realistic cloud solutions containing natural organic matter were used in the experiments, the reaction kinetics decreased with increasing organic carbon content, resulting in half lives of approximately 7 hours. The secondary organic aerosol (SUA) mass formation potential of cloud processing of BTEX was evaluated. SOA mass formation by cloud processing of BTEX, while strongly dependent on the atmospheric conditions, could contribute up to 9% of the ambient atmospheric aerosol mass, although typically ˜1% appears realistic. Field observations also showed the occurrence of N-nitrosodimethylamine (NDMA), a potent carcinogen, in fogs and clouds (100-340 ng•L -1). Laboratory studies were conducted to investigate the formation of NDMA from nitrous acid and dimethylamine in the homogeneous aqueous phase within cloud droplets. While NDMA was produced in the cloud droplets, the low yields (<1%) observed could not explain observational concentrations

  7. Formation and Processing of Organic Aerosols Measured by a Time of Flight Aerosol Mass Spectrometer during TexAQS/GoMACCS 2006

    NASA Astrophysics Data System (ADS)

    Bahreini, R.; Middlebrook, A. M.; Decarlo, P. F.; Denlea, E.; Jimenez, J. L.; Brock, C. A.; Degouw, J. A.; Flocke, F.; Gallar, C.; Holloway, J. S.; Neuman, J. A.; Ryerson, T. B.; Schwarz, J. P.; Spackman, J. R.; Trainer, M. K.; Warneke, C.; Wollny, A. G.; Zhang, W.; Fehsenfeld, F. C.

    2007-12-01

    Formation of particulate matter is common in areas with high emissions of volatile organic compounds (VOCs), NOx, and SO2. These particles have lifetimes of days to weeks, and thus can have both local and regional effects on visibility, air quality, and human health as well as direct and indirect effects on climate. During TexAQS 2006, mass concentrations of non-refractory inorganic species (sulfate, ammonium, and nitrate) and total organics in submicron aerosols were measured by a Compact Time of Flight Aerosol Mass Spectrometer (C-ToF-AMS) onboard the NOAA WP-3D aircraft. In this presentation, we analyze composition changes of organic aerosols in different air masses. We examine organic mass spectra along with simultaneous measurements of VOCs and their oxidation products in order to determine the contribution of anthropogenic and biogenic sources to the aerosol organic mass. These measurements were performed in plumes intercepted during the daytime north of Houston where large isoprene emissions were observed. Furthermore, the fresh hydrocarbon-like (HOA) and processed oxygenated-like organics (OOA) fractions of the total organic aerosol mass in several plumes transected during daytime and nighttime are presented and compared. We will also discuss differences in correlations between organic aerosol composition markers and primary or secondary gas-phase species in different plumes.

  8. Organic Aerosol Formation and Processing in the Los Angeles Basin: Role of Gasoline vs. Diesel Emissions

    NASA Astrophysics Data System (ADS)

    Bahreini, R.; Middlebrook, A. M.; De Gouw, J. A.; Warneke, C.; Trainer, M.; Brown, S. S.; Dube, B.; Holloway, J. S.; Perring, A. E.; Schwarz, J. P.; Spackman, J. R.; Stark, H.; Wagner, N.; Parrish, D. D.

    2011-12-01

    During the CalNex-2010 field project in May-June 2010, the NOAA WP-3D aircraft performed flights up- and down-wind of metropolitan, industrial, agricultural and animal feeding sites in central-southern California. Here airborne data on organic aerosol (OA) properties as measured by a compact time-of-flight aerosol mass spectrometer along with measurements of trace gases affecting secondary production of aerosols in the Los Angeles Basin are presented. The analysis presented indicates that the ratio of organic aerosol to carbon monoxide (OA/CO) is significantly higher than the previously observed ratios of primary OA/CO downwind of urban areas, indicating that even on short time scales of transport within the basin, there is significant production of secondary organic aerosol (SOA). The increase in the ratio of OA/CO is also accompanied by an increase in the fraction of oxygenated species of OA, providing evidence for production of more oxidized SOA as air masses are photochemically processed. Despite a smaller contribution from Diesel vehicles to traffic on weekends, analysis of the weekend vs. weekday data indicates that similar values of ΔOA/ΔCO are observed on the weekends compared to weekdays, for air masses with similar degrees of photochemical processing. This indicates that emissions of gas phase organic species from Diesel vehicles are not significant for OA production in the LA Basin. Our calculated steady-state concentrations of hydroxyl radical (OH) indicate that OH concentrations at mid-day are substantially higher on weekends compared to weekdays, indicating faster chemical processing of air masses during a fixed length of time on the weekends compared to weekdays.

  9. Laboratory photochemical processing of aqueous aerosols: formation and degradation of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls

    NASA Astrophysics Data System (ADS)

    Pavuluri, C. M.; Kawamura, K.; Mihalopoulos, N.; Swaminathan, T.

    2015-01-01

    To better understand the photochemical processing of dicarboxylic acids and related polar compounds, we conducted batch UV irradiation experiments on two types of aerosol samples collected from India, which represent anthropogenic (AA) and biogenic aerosols (BA), for time periods of 0.5 to 120 h. The irradiated samples were analyzed for molecular compositions of diacids, oxoacids and α-dicarbonyls. The results show that photochemical degradation of oxalic (C2) and malonic (C3) and other C8-C12 diacids overwhelmed their production in aqueous aerosols whereas succinic acid (C4) and C5-C7 diacids showed a significant increase (ca. 10 times) during the course of irradiation experiments. The photochemical formation of oxoacids and α-dicarbonyls overwhelmed their degradation during the early stages of experiment, except for ω-oxooctanoic acid (ωC8) that showed a similar pattern to that of C4. We also found a gradual decrease in the relative abundance of C2 to total diacids and an increase in the relative abundance of C4 during prolonged experiment. Based on the changes in concentrations and mass ratios of selected species with the irradiation time, we hypothesize that iron-catalyzed photolysis of C2 and C3 diacids dominates their concentrations in Fe-rich atmospheric waters, whereas photochemical formation of C4 diacid (via ωC8) is enhanced with photochemical processing of aqueous aerosols in the atmosphere. This study demonstrates that the ambient aerosols contain abundant precursors that produce diacids, oxoacids and α-dicarbonyls, although some species such as oxalic acid decompose extensively during an early stage of photochemical processing.

  10. Laboratory photochemical processing of aqueous aerosols: formation and degradation of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls

    NASA Astrophysics Data System (ADS)

    Pavuluri, C. M.; Kawamura, K.; Mihalopoulos, N.; Swaminathan, T.

    2015-07-01

    To better understand the photochemical processing of dicarboxylic acids and related polar compounds, we conducted batch UV irradiation experiments on two types of aerosol samples collected from India, which represent anthropogenic (AA) and biogenic (BA) aerosols, for time periods of 0.5 to 120 h. The irradiated samples were analyzed for molecular compositions of diacids, oxoacids and α-dicarbonyls. The results show that photochemical degradation of oxalic (C2), malonic (C3) and other C8-C12 diacids overwhelmed their production in aqueous aerosols, whereas succinic acid (C4) and C5-C7 diacids showed a significant increase (ca. 10 times) during the course of irradiation experiments. The photochemical formation of oxoacids and α-dicarbonyls overwhelmed their degradation during the early stages of experiment except for ω-oxooctanoic acid (ωC8), which showed a similar pattern to that of C4. We also found a gradual decrease in the relative abundance of C2 to total diacids and an increase in the relative abundance of C4 during prolonged experiment. Based on the changes in concentrations and mass ratios of selected species with the irradiation time, we hypothesize that iron-catalyzed photolysis of C2 and C3 diacids controls their concentrations in Fe-rich atmospheric waters, whereas photochemical formation of C4 diacid (via ωC8) is enhanced with photochemical processing of aqueous aerosols in the atmosphere. This study demonstrates that the ambient aerosols contain abundant precursors that produce diacids, oxoacids and α-dicarbonyls, although some species such as oxalic acid decompose extensively during an early stage of photochemical processing.

  11. Seasonality of ultrafine and sub-micron aerosols and the inferences on particle formation processes

    NASA Astrophysics Data System (ADS)

    Cheung, H. C.; Chou, C. C.-K.; Chen, M.-J.; Huang, W.-R.; Huang, S.-H.; Tsai, C.-Y.; Lee, C. S.-L.

    2015-08-01

    The aim of this study is to investigate the seasonal variations in the physicochemical properties of atmospheric ultrafine particles (UFPs, d ≤ 100nm) and submicron particles (PM1, d ≤ 1 μm) in an East-Asian urban area, which are hypothesized to be affected by the interchange of summer and winter monsoons. An observation experiment was conducted at the TARO, an urban aerosol station in Taipei, Taiwan, from October 2012 to August 2013. The measurements included the mass concentration and chemical composition of UFPs and PM1, as well as the particle number concentration (PNC) and size distribution (PSD) with size range of 4-736 nm. The results indicate that the mass concentration of PM1 was elevated during cold seasons with peak level of 18.5 μg m-3 in spring, whereas the highest UFPs concentration was measured in summertime with a seasonal mean of 1.62 μg m-3. Moreover, chemical analysis revealed that the UFPs and PM1 were characterized by distinct composition; UFPs were composed mostly of organics, whereas ammonium and sulfate were the major constituents in PM1. The seasonal median of total PNCs ranged from 13.9 × 103 cm-3 in autumn to 19.4 × 103 cm-3 in spring. The PSD information retrieved from the corresponding PNC measurements indicates that the nucleation mode PNC (N4-25) peaked at 11.6 × 103 cm-3 in winter, whereas the Aitken mode (N25-100) and accumulation mode (N100-736) exhibited summer maxima at 6.0 × 103 and 3.1 × 103 cm-3, respectively. The shift in PSD during summertime is attributed to the enhancement in the photochemical production of condensable organic matter that, in turn, contributes to the growth of aerosol particles in the atmosphere. In addition, remarkable photochemical production of particles was observed in spring and summer seasons, which was characterized with averaged particle growth and formation rates of 4.3 ± 0.8 nm h-1 and 1.6 ± 0.8 cm-3 s-1, respectively. The prevalence of new particle formation (NPF) in summer is

  12. RACORO aerosol data processing

    SciTech Connect

    Elisabeth Andrews

    2011-10-31

    The RACORO aerosol data (cloud condensation nuclei (CCN), condensation nuclei (CN) and aerosol size distributions) need further processing to be useful for model evaluation (e.g., GCM droplet nucleation parameterizations) and other investigations. These tasks include: (1) Identification and flagging of 'splash' contaminated Twin Otter aerosol data. (2) Calculation of actual supersaturation (SS) values in the two CCN columns flown on the Twin Otter. (3) Interpolation of CCN spectra from SGP and Twin Otter to 0.2% SS. (4) Process data for spatial variability studies. (5) Provide calculated light scattering from measured aerosol size distributions. Below we first briefly describe the measurements and then describe the results of several data processing tasks that which have been completed, paving the way for the scientific analyses for which the campaign was designed. The end result of this research will be several aerosol data sets which can be used to achieve some of the goals of the RACORO mission including the enhanced understanding of cloud-aerosol interactions and improved cloud simulations in climate models.

  13. Aqueous aerosol SOA formation: impact on aerosol physical properties.

    PubMed

    Woo, Joseph L; Kim, Derek D; Schwier, Allison N; Li, Ruizhi; McNeill, V Faye

    2013-01-01

    Organic chemistry in aerosol water has recently been recognized as a potentially important source of secondary organic aerosol (SOA) material. This SOA material may be surface-active, therefore potentially affecting aerosol heterogeneous activity, ice nucleation, and CCN activity. Aqueous aerosol chemistry has also been shown to be a potential source of light-absorbing products ("brown carbon"). We present results on the formation of secondary organic aerosol material in aerosol water and the associated changes in aerosol physical properties from GAMMA (Gas-Aerosol Model for Mechanism Analysis), a photochemical box model with coupled gas and detailed aqueous aerosol chemistry. The detailed aerosol composition output from GAMMA was coupled with two recently developed modules for predicting a) aerosol surface tension and b) the UV-Vis absorption spectrum of the aerosol, based on our previous laboratory observations. The simulation results suggest that the formation of oligomers and organic acids in bulk aerosol water is unlikely to perturb aerosol surface tension significantly. Isoprene-derived organosulfates are formed in high concentrations in acidic aerosols under low-NO(x) conditions, but more experimental data are needed before the potential impact of these species on aerosol surface tension may be evaluated. Adsorption of surfactants from the gas phase may further suppress aerosol surface tension. Light absorption by aqueous aerosol SOA material is driven by dark glyoxal chemistry and is highest under high-NO(x) conditions, at high relative humidity, in the early morning hours. The wavelength dependence of the predicted absorption spectra is comparable to field observations and the predicted mass absorption efficiencies suggest that aqueous aerosol chemistry can be a significant source of aerosol brown carbon under urban conditions.

  14. Formation of Epoxide Derived SOA and Gas-Phase Acids through Aqueous Aerosol Processing in the Southeastern United States during SOAS

    NASA Astrophysics Data System (ADS)

    Skog, K.; Teng, A.; Nguyen, T. B.; Nguyen, K.; Suda, S. R.; Xu, L.; Isaacman-VanWertz, G. A.; Feiner, P. A.; Zhang, L.; Olson, K. F.; Koss, A.; Wild, R. J.; St Clair, J.; Crounse, J.; Baumann, K.; Wennberg, P. O.; Petters, M.; Carlton, A. M. G.; Ng, N. L.; Brune, W. H.; De Gouw, J. A.; Goldstein, A. H.; Brown, S. S.; Edgerton, E. S.; McNeill, V. F.; Keutsch, F. N.

    2015-12-01

    Secondary organic aerosol (SOA) contributes to climate and adversely affects human health, but the formation of SOA is poorly understood. Recent studies have proposed that aqueous processing of water-soluble compounds like glyoxal and IEPOX can help explain the abundance of organosulfates, higher oxygen to carbon ratios, and SOA abundance. A comprehensive set of ambient gas- and aerosol-phase data was collected during June and July of 2013 as part of the Southern Oxidant and Aerosol Study (SOAS) at the Centreville, AL ground site. Both gas-phase photochemistry and aqueous-phase aerosol chemistry were modeled using a zero-dimensional box model. While it has been suggested that glyoxal can contribute to aqueous aerosol through the formation of acids and higher-molecular-weight compounds, it did not produce enhanced aqSOA concentrations. Instead, processing of aqueous glyoxal resulted in the production of gas-phase acids. AqSOA consisted almost entirely of epoxide processing products, mainly from the processing of IEPOX to methyl tetrol, and the organosulfate. In addition, the pinene oxides contributed to the formation of aqSOA, through the formation of organosulfates, diols, and organonitrates. These data are consistent with the abundance of IEPOX and pinene oxide organonitrate derived SOA seen at this site.

  15. Using stable isotopes to trace sources and formation processes of sulfate aerosols from Beijing, China

    NASA Astrophysics Data System (ADS)

    Han, Xiaokun; Guo, Qingjun; Liu, Congqiang; Fu, Pingqing; Strauss, Harald; Yang, Junxing; Hu, Jian; Wei, Lianfang; Ren, Hong; Peters, Marc; Wei, Rongfei; Tian, Liyan

    2016-07-01

    Particulate pollution from anthropogenic and natural sources is a severe problem in China. Sulfur and oxygen isotopes of aerosol sulfate (δ34Ssulfate and δ18Osulfate) and water-soluble ions in aerosols collected from 2012 to 2014 in Beijing are being utilized to identify their sources and assess seasonal trends. The mean δ34S value of aerosol sulfate is similar to that of coal from North China, indicating that coal combustion is a significant contributor to atmospheric sulfate. The δ34Ssulfate and δ18Osulfate values are positively correlated and display an obvious seasonality (high in winter and low in summer). Although an influence of meteorological conditions to this seasonality in isotopic composition cannot be ruled out, the isotopic evidence suggests that the observed seasonality reflects temporal variations in the two main contributions to Beijing aerosol sulfate, notably biogenic sulfur emissions in the summer and the increasing coal consumption in winter. Our results clearly reveal that a reduction in the use of fossil fuels and the application of desulfurization technology will be important for effectively reducing sulfur emissions to the Beijing atmosphere.

  16. Using stable isotopes to trace sources and formation processes of sulfate aerosols from Beijing, China

    PubMed Central

    Han, Xiaokun; Guo, Qingjun; Liu, Congqiang; Fu, Pingqing; Strauss, Harald; Yang, Junxing; Hu, Jian; Wei, Lianfang; Ren, Hong; Peters, Marc; Wei, Rongfei; Tian, Liyan

    2016-01-01

    Particulate pollution from anthropogenic and natural sources is a severe problem in China. Sulfur and oxygen isotopes of aerosol sulfate (δ34Ssulfate and δ18Osulfate) and water-soluble ions in aerosols collected from 2012 to 2014 in Beijing are being utilized to identify their sources and assess seasonal trends. The mean δ34S value of aerosol sulfate is similar to that of coal from North China, indicating that coal combustion is a significant contributor to atmospheric sulfate. The δ34Ssulfate and δ18Osulfate values are positively correlated and display an obvious seasonality (high in winter and low in summer). Although an influence of meteorological conditions to this seasonality in isotopic composition cannot be ruled out, the isotopic evidence suggests that the observed seasonality reflects temporal variations in the two main contributions to Beijing aerosol sulfate, notably biogenic sulfur emissions in the summer and the increasing coal consumption in winter. Our results clearly reveal that a reduction in the use of fossil fuels and the application of desulfurization technology will be important for effectively reducing sulfur emissions to the Beijing atmosphere. PMID:27435991

  17. Formation and growth of photochemical aerosols in Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Cabane, M.; Chassefiere, E.; Israel, Guy

    1992-04-01

    Recent development in the understanding of the morphology of haze aerosols in Titan's atmosphere, aggregate particles, and their associated optical properties are considered in the flight of a microphysical model of aerosols. Two different phases of the formation process are identified: initial growth of aerosols near the formation altitude by accretion of very small elementary particles; and (2) settling during which particles of about the same size stock together, leading to the formation of aggregates which contain some tens to several hundred monomers. The first phase leads to the formation of nearly spherical 'monomers' (radius approximately equal to 0.05 micrometers). An eulerian microphysical model is used. It is shown that the monomer radius is extremely sensitive to the altitude where aerosols are created. The formation altitude of aerosols is found to lie in the range from 350 to 400 km.

  18. The influence of metallurgy on the formation of welding aerosols.

    PubMed

    Zimmer, Anthony T

    2002-10-01

    Recent research has indicated that insoluble ultrafine aerosols (ie., particles whose physical diameters are less than 100 nm) may cause adverse health effects due to their small size, and that toxicological response may be more appropriately represented by particle number or particle surface area. Unfortunately, current exposure criteria and the associated air-sampling techniques are primarily mass-based. Welding processes are high-temperature operations that generate substantial number concentrations of ultrafine aerosols. Welding aerosols are formed primarily through the nucleation of metal vapors followed by competing growth mechanisms such as coagulation and condensation. Experimental results and mathematical tools are presented to illustrate how welding metallurgy influences the chemical aspects and dynamic processes that initiate and evolve the resultant aerosol. This research suggests that a fundamental understanding of metallurgy and aerosol physics can be exploited to suppress the formation of undesirable chemical species as well as the amount of aerosol generated during a welding process.

  19. Impact of Aerosol Processing on Orographic Clouds

    NASA Astrophysics Data System (ADS)

    Pousse-Nottelmann, Sara; Zubler, Elias M.; Lohmann, Ulrike

    2010-05-01

    Aerosol particles undergo significant modifications during their residence time in the atmosphere. Physical processes like coagulation, coating and water uptake, and aqueous surface chemistry alter the aerosol size distribution and composition. At this, clouds play a primary role as physical and chemical processing inside cloud droplets contributes considerably to the changes in aerosol particles. A previous study estimates that on global average atmospheric particles are cycled three times through a cloud before being removed from the atmosphere [1]. An explicit and detailed treatment of cloud-borne particles has been implemented in the regional weather forecast and climate model COSMO-CLM. The employed model version includes a two-moment cloud microphysical scheme [2] that has been coupled to the aerosol microphysical scheme M7 [3] as described by Muhlbauer and Lohmann, 2008 [4]. So far, the formation, transfer and removal of cloud-borne aerosol number and mass were not considered in the model. Following the parameterization for cloud-borne particles developed by Hoose et al., 2008 [5], distinction between in-droplet and in-crystal particles is made to more physically account for processes in mixed-phase clouds, such as the Wegener-Bergeron-Findeisen process and contact and immersion freezing. In our model, this approach has been extended to allow for aerosol particles in five different hydrometeors: cloud droplets, rain drops, ice crystals, snow flakes and graupel. We account for nucleation scavenging, freezing and melting processes, autoconversion, accretion, aggregation, riming and selfcollection, collisions between interstitial aerosol particles and hydrometeors, ice multiplication, sedimentation, evaporation and sublimation. The new scheme allows an evaluation of the cloud cycling of aerosol particles by tracking the particles even when scavenged into hydrometeors. Global simulations of aerosol processing in clouds have recently been conducted by Hoose et al

  20. Organic Aerosol Formation Photoenhanced by the Formation of Secondary Photo-sensitizers in ageing Aerosols

    NASA Astrophysics Data System (ADS)

    Aregahegn, Kifle; Nozière, Barbara; George, Christian

    2013-04-01

    Humankind is facing a changing environment possibly due to anthropogenic stress on the atmosphere. In this context, aerosols play a key role by affecting the radiative climate forcing, hydrological cycle, and by their adverse effect on health. The role of organic compounds in these processes is however still poorly understood because of their massive chemical complexity and numerous transformations. This is particularly true for Secondary Organic Aerosol (SOA), which are produced in the atmosphere by organic gases. Traditionally, the driving forces for SOA growth is believed to be the partitioning onto aerosol seeds of condensable gases, either emitted primarily or resulting from the gas phase oxidation of organic gases. However, even the most up-to-date models based on such mechanisms can not account for the SOA mass observed in the atmosphere, suggesting the existence of other, yet unknown formation processes. The present study shows experimental evidence that particulate phase chemistry produces photo-sensitizers that lead to photo-induced formation and growth of secondary organic aerosol in the near UV and the presence of volatile organic compounds (VOC) such as terpenes. By means of an aerosol flow tube reactor equipped with Scanning Mobility Particle Sizer (SMPS) having Kr-85 source aerosol neutralizer, Differential Mobility Analyser (DMA) and Condensation Particle Sizer (CPC), we identified that traces of the aerosol phase product of glyoxal chemistry as is explained in Gallway et al., and Yu et al., namely imidazole-2-carboxaldehyde (IC) is a strong photo-sensitizer when irradiated by near-UV in the presence of volatile organic compounds such as terpenes. Furthermore, the influence of pH, type and concentration of VOCs, composition of seed particles, relative humidity and irradiation intensity on particle growth were studied. This novel photo-sensitizer contributed to more than 30% of SOA growth in 19min irradiation time in the presence of terpenes in the

  1. Characterizing the formation of secondary organic aerosols

    SciTech Connect

    Lunden, Melissa; Black, Douglas; Brown, Nancy

    2004-02-01

    Organic aerosol is an important fraction of the fine particulate matter present in the atmosphere. This organic aerosol comes from a variety of sources; primary organic aerosol emitted directly from combustion process, and secondary aerosol formed in the atmosphere from condensable vapors. This secondary organic aerosol (SOA) can result from both anthropogenic and biogenic sources. In rural areas of the United States, organic aerosols can be a significant part of the aerosol load in the atmosphere. However, the extent to which gas-phase biogenic emissions contribute to this organic load is poorly understood. Such an understanding is crucial to properly apportion the effect of anthropogenic emissions in these rural areas that are sometimes dominated by biogenic sources. To help gain insight on the effect of biogenic emissions on particle concentrations in rural areas, we have been conducting a field measurement program at the University of California Blodgett Forest Research Facility. The field location includes has been used to acquire an extensive suite of measurements resulting in a rich data set, containing a combination of aerosol, organic, and nitrogenous species concentration and meteorological data with a long time record. The field location was established in 1997 by Allen Goldstein, a professor in the Department of Environmental Science, Policy and Management at the University of California at Berkeley to study interactions between the biosphere and the atmosphere. The Goldstein group focuses on measurements of concentrations and whole ecosystem biosphere-atmosphere fluxes for volatile organic compounds (VOC's), oxygenated volatile organic compounds (OVOC's), ozone, carbon dioxide, water vapor, and energy. Another important collaborator at the Blodgett field location is Ronald Cohen, a professor in the Chemistry Department at the University of California at Berkeley. At the Blodgett field location, his group his group performs measurements of the

  2. Formation of halogen-induced secondary organic aerosol (XOA)

    NASA Astrophysics Data System (ADS)

    Kamilli, Katharina; Ofner, Johannes; Zetzsch, Cornelius; Held, Andreas

    2013-04-01

    bromine with α-pinene. This work was funded by German Research Foundation (DFG) under grants HE 5214/5-1 and ZE792/5-2. References: Cai, X., and Griffin, R. J.: Secondary aerosol formation from the oxidation of biogenic hydrocarbons by chlorine atoms, J. Geophys. Res., 111, D14206/14201-D14206/14214, 2006. Ofner, J. Balzer, N., Buxmann, J., Grothe, H., Schmitt-Kopplin, Ph., Platt, U., and Zetzsch, C., Halogenation processes of secondary organic aerosol and implications on halogen release mechanisms, Atmos. Chem. Phys. Discuss. 12, 2975-3017, 2012.

  3. Microphysical processing of aerosol particles in orographic clouds

    NASA Astrophysics Data System (ADS)

    Pousse-Nottelmann, S.; Zubler, E. M.; Lohmann, U.

    2015-01-01

    An explicit and detailed treatment of cloud-borne particles allowing for the consideration of aerosol cycling in clouds has been implemented in the regional weather forecast and climate model COSMO. The effects of aerosol scavenging, cloud microphysical processing and regeneration upon cloud evaporation on the aerosol population and on subsequent cloud formation are investigated. For this, two-dimensional idealized simulations of moist flow over two bell-shaped mountains were carried out varying the treatment of aerosol scavenging and regeneration processes for a warm-phase and a mixed-phase orographic cloud. The results allowed to identify different aerosol cycling mechanisms. In the simulated non-precipitating warm-phase cloud, aerosol mass is incorporated into cloud droplets by activation scavenging and released back to the atmosphere upon cloud droplet evaporation. In the mixed-phase cloud, a first cycle comprises cloud droplet activation and evaporation via the Wegener-Bergeron-Findeisen process. A second cycle includes below-cloud scavenging by precipitating snow particles and snow sublimation and is connected to the first cycle via the riming process which transfers aerosol mass from cloud droplets to snow flakes. In the simulated mixed-phase cloud, only a negligible part of the total aerosol mass is incorporated into ice crystals. Sedimenting snow flakes reaching the surface remove aerosol mass from the atmosphere. The results show that aerosol processing and regeneration lead to a vertical redistribution of aerosol mass and number. However, the processes not only impact the total aerosol number and mass, but also the shape of the aerosol size distributions by enhancing the internally mixed/soluble accumulation mode and generating coarse mode particles. Concerning subsequent cloud formation at the second mountain, accounting for aerosol processing and regeneration increases the cloud droplet number concentration with possible implications for the ice

  4. Microphysical processing of aerosol particles in orographic clouds

    NASA Astrophysics Data System (ADS)

    Pousse-Nottelmann, S.; Zubler, E. M.; Lohmann, U.

    2015-08-01

    An explicit and detailed treatment of cloud-borne particles allowing for the consideration of aerosol cycling in clouds has been implemented into COSMO-Model, the regional weather forecast and climate model of the Consortium for Small-scale Modeling (COSMO). The effects of aerosol scavenging, cloud microphysical processing and regeneration upon cloud evaporation on the aerosol population and on subsequent cloud formation are investigated. For this, two-dimensional idealized simulations of moist flow over two bell-shaped mountains were carried out varying the treatment of aerosol scavenging and regeneration processes for a warm-phase and a mixed-phase orographic cloud. The results allowed us to identify different aerosol cycling mechanisms. In the simulated non-precipitating warm-phase cloud, aerosol mass is incorporated into cloud droplets by activation scavenging and released back to the atmosphere upon cloud droplet evaporation. In the mixed-phase cloud, a first cycle comprises cloud droplet activation and evaporation via the Wegener-Bergeron-Findeisen (WBF) process. A second cycle includes below-cloud scavenging by precipitating snow particles and snow sublimation and is connected to the first cycle via the riming process which transfers aerosol mass from cloud droplets to snowflakes. In the simulated mixed-phase cloud, only a negligible part of the total aerosol mass is incorporated into ice crystals. Sedimenting snowflakes reaching the surface remove aerosol mass from the atmosphere. The results show that aerosol processing and regeneration lead to a vertical redistribution of aerosol mass and number. Thereby, the processes impact the total aerosol number and mass and additionally alter the shape of the aerosol size distributions by enhancing the internally mixed/soluble Aitken and accumulation mode and generating coarse-mode particles. Concerning subsequent cloud formation at the second mountain, accounting for aerosol processing and regeneration increases

  5. Dicarboxylic acids and water-soluble organic carbon in aerosols in New Delhi, India, in winter: Characteristics and formation processes

    NASA Astrophysics Data System (ADS)

    Miyazaki, Yuzo; Aggarwal, Shankar G.; Singh, Khem; Gupta, Prabhat K.; Kawamura, Kimitaka

    2009-10-01

    Day- and nighttime aerosol samples were collected at an urban site in New Delhi, India, in winter 2006-2007. They were studied for low molecular weight dicarboxylic acids and related compounds, as well as total water-soluble organic carbon (TWSOC). High concentrations of diacids (up to 6.03 μg m-3), TWSOC, and OC were obtained, which are substantially higher than those previously observed at other urban sites in Asia. Daytime TWSOC/OC ratio (37%) was on average higher than that in nighttime (25%). In particular, more water-soluble OC (M-WSOC) to TWSOC ratio in daytime (50%) was twice higher than in nighttime (27%), suggesting that aerosols in New Delhi are photochemically more processed in daytime to result in more water-soluble organic compounds. Oxalic acid (C2) was found as the most abundant dicarboxylic acid, followed by succinic (C4) and malonic (C3) acids. Contributions of C2 to M-WSOC were greater (av. 8%) in nighttime than daytime (av. 3%). Positive correlations of C2 with malic acid (hC4), glyoxylic acid (ωC2), and relative humidity suggest that secondary production of C2 probably in aqueous phase is important in nighttime via the oxidation of both longer-chain diacids and ωC2. C2 also showed a positive correlation with potassium (K+) in nighttime, suggesting that the enhanced C2 concentrations are associated with biomass/biofuel burning. More tight, positive correlation between less water-soluble OC (L-WSOC) and K+ was found in both day- and nighttime, suggesting that L-WSOC, characterized by longer chain and/or higher molecular weight compounds, is significantly influenced by primary emissions from biomass/biofuel burning.

  6. Photochemical organonitrate formation in wet aerosols

    NASA Astrophysics Data System (ADS)

    Lim, Yong Bin; Kim, Hwajin; Kim, Jin Young; Turpin, Barbara J.

    2016-10-01

    Water is the most abundant component of atmospheric fine aerosol. However, despite rapid progress, multiphase chemistry involving wet aerosols is still poorly understood. In this work, we report results from smog chamber photooxidation of glyoxal- and OH-containing ammonium sulfate or sulfuric acid particles in the presence of NOx and O3 at high and low relative humidity. Particles were analyzed using ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). During the 3 h irradiation, OH oxidation products of glyoxal that are also produced in dilute aqueous solutions (e.g., oxalic acids and tartaric acids) were formed in both ammonium sulfate (AS) aerosols and sulfuric acid (SA) aerosols. However, the major products were organonitrogens (CHNO), organosulfates (CHOS), and organonitrogen sulfates (CHNOS). These were also the dominant products formed in the dark chamber, indicating non-radical formation. In the humid chamber (> 70 % relative humidity, RH), two main products for both AS and SA aerosols were organonitrates, which appeared at m / z- 147 and 226. They were formed in the aqueous phase via non-radical reactions of glyoxal and nitric acid, and their formation was enhanced by photochemistry because of the photochemical formation of nitric acid via reactions of peroxy radicals, NOx and OH during the irradiation.

  7. Organosulfate Formation in Biogenic Secondary Organic Aerosol

    EPA Science Inventory

    Organosulfates of isoprene, α-pinene, and β-pinene have recently been identified in both laboratory-generated and ambient secondary organic aerosol (SOA). In this study, the mechanism and ubiquity of organosulfate formation in biogenic SOA is investigated by a comprehensive seri...

  8. Formation of nitrogenated organic aerosols in the Titan upper atmosphere

    PubMed Central

    Imanaka, Hiroshi; Smith, Mark A.

    2010-01-01

    Many aspects of the nitrogen fixation process by photochemistry in the Titan atmosphere are not fully understood. The recent Cassini mission revealed organic aerosol formation in the upper atmosphere of Titan. It is not clear, however, how much and by what mechanism nitrogen is incorporated in Titan’s organic aerosols. Using tunable synchrotron radiation at the Advanced Light Source, we demonstrate the first evidence of nitrogenated organic aerosol production by extreme ultraviolet–vacuum ultraviolet irradiation of a N2/CH4 gas mixture. The ultrahigh-mass-resolution study with laser desorption ionization-Fourier transform-ion cyclotron resonance mass spectrometry of N2/CH4 photolytic solid products at 60 and 82.5 nm indicates the predominance of highly nitrogenated compounds. The distinct nitrogen incorporations at the elemental abundances of H2C2N and HCN, respectively, are suggestive of important roles of H2C2N/HCCN and HCN/CN in their formation. The efficient formation of unsaturated hydrocarbons is observed in the gas phase without abundant nitrogenated neutrals at 60 nm, and this is confirmed by separately using 13C and 15N isotopically labeled initial gas mixtures. These observations strongly suggest a heterogeneous incorporation mechanism via short lived nitrogenated reactive species, such as HCCN radical, for nitrogenated organic aerosol formation, and imply that substantial amounts of nitrogen is fixed as organic macromolecular aerosols in Titan’s atmosphere. PMID:20616074

  9. Dicarboxylic acids, ω-oxocarboxylic acids, α-dicarbonyls, WSOC, OC, EC, and inorganic ions in wintertime size-segregated aerosols from central India: Sources and formation processes.

    PubMed

    Deshmukh, Dhananjay K; Kawamura, Kimitaka; Deb, Manas K

    2016-10-01

    The size distributions of aerosols can provide evidences for their sources and formation processes in the atmosphere. Size-segregated aerosols (9-sizes) were collected in urban site (Raipur: 21.2°N and 82.3°E) in central India during winter of 2012-2013. The samples were analyzed for dicarboxylic acids (C2-C12), ω-oxocarboxylic acids (ωC2-ωC9), pyruvic acid and α-dicarbonyls (C2-C3) as well as elemental carbon (EC), organic carbon (OC), water-soluble OC (WSOC) and inorganic ions. Diacids showed a predominance of oxalic acid (C2) followed by succinic and azelaic acid whereas ω-oxoacids exhibited a predominance of glyoxylic acid and glyoxal was more abundant than methylglyoxal in all the sizes. Diacids, ω-oxoacids and α-dicarbonyls showed bimodal size distribution with peaks in fine and coarse modes. High correlations of fine mode diacids and related compounds with potassium and levoglucosan suggest that they were presumably due to a substantial contribution of primary emission from biomass burning and secondary production from biomass burning derived precursors. High correlations of C2 with higher carbon number diacids (C3-C9) suggest that they have similar sources and C2 may be produced via the decay of its higher homologous diacids in fine mode. Considerable portions of diacids and related compounds in coarse mode suggest that they were associated with mineral dust particles by their adsorption and photooxidation of anthropogenic and biogenic precursors via heterogeneous reaction on dust surface. This study demonstrates that biomass burning and dust particles are two major factors to control the size distribution of diacids and related compounds in the urban aerosols from central India.

  10. Biomass Burning Aerosol Impact on Orographic Cloud Formation on Kilimanjaro

    NASA Astrophysics Data System (ADS)

    Nair, U. S.; Wu, Y.; Christopher, S. A.

    2014-12-01

    In addition to large scale climate change impacts, regional climate forcing due to land cover and land use change and biomass burning aerosols may also be relevant in understanding observed changes at Kilimanjaro. Analysis of satellite detected fires conducted for 2007 show substantial biomass burning in the vicinity of Kilimanjaro and maximum mid visible MODIS retrieved aerosol optical depth over Kilimanjaro during the month of July. For selected case days in 2007, numerical simulations were conducted using WRF Chem to assess the impact of biomass burning aerosols on orographic cloud formation on Kilimanjaro. Numerical modeling experiments with and without smoke emissions were conducted. Satellite derived smoke emissions are utilized in numerical model experiments considering biomass burning aerosol effects. Nested grid configuration was used in the experiments to establish a fine grid of 100 km x 100 km domain and 1 km grid spacing over the complex terrain of Kilimanjaro. For case days considered, numerical model simulations show substantial impact of biomass burning aerosols on orographic cloud formation. There is a net increase in cloud liquid water path with maximum increase in excess of 10%. Orographic precipitation also show increase in rainfall of up to 10% at higher elevations. Whereas there is average reduction in downwelling solar radiation 18 Wm-2 up to elevations of 5000m, impacts at the mountain peaks are minimal. Processes leading to the differences in cloud formation and results from numerical simulations are conducted for additional case study days during other seasons and will be discussed

  11. Characterization of key aerosol, trace gas and meteorological properties and particle formation and growth processes dependent on air mass origins in coastal Southern Spain

    NASA Astrophysics Data System (ADS)

    Diesch, J.; Drewnick, F.; Sinha, V.; Williams, J.; Borrmann, S.

    2011-12-01

    The chemical composition and concentration of aerosols at a certain site can vary depending on season, the air mass source region and distance from sources. Regardless of the environment, new particle formation (NPF) events are one of the major sources for ultrafine particles which are potentially hazardous to human health. Grown particles are optically active and efficient CCN resulting in important implications for visibility and climate (Zhang et al., 2004). The study presented here is intended to provide information about various aspects of continental, urban and marine air masses reflected by wind patterns of the air arriving at the measurement site. Additionally we will be focusing on NPF events associated with different types of air masses affecting their emergence and temporal evolution. Measurements of the ambient aerosol, various trace gases and meteorological parameters were performed within the framework of the DOMINO (Diel Oxidant Mechanisms In relation to Nitrogen Oxides) project. The field campaign took place from mid-November to mid-December 2008 at the atmospheric research station "El Arenosillo" located at the interface between a natural park, industrial cities (Huelva, Seville) and the Atlantic Ocean. Number and mass as well as PAH and black carbon concentrations were measured in PM1 and size distribution instruments covered the size range 6 nm up to 32 μm. The chemical composition of the non-refractory submicron aerosol was measured by means of an Aerosol Mass Spectrometer (AMS). In order to evaluate the characteristics of different air masses linking local and regional sources as well as NPF processes, characteristic air mass types were classified dependent on backwards trajectory pathways and local meteorology. Large nuclei mode concentrations in the number size distribution were found within continental and urban influenced air mass types due to frequently occurring NPF events. Exploring individual production and sink variables, sulfuric

  12. Organosulfate formation in biogenic secondary organic aerosol.

    PubMed

    Surratt, Jason D; Gómez-González, Yadian; Chan, Arthur W H; Vermeylen, Reinhilde; Shahgholi, Mona; Kleindienst, Tadeusz E; Edney, Edward O; Offenberg, John H; Lewandowski, Michael; Jaoui, Mohammed; Maenhaut, Willy; Claeys, Magda; Flagan, Richard C; Seinfeld, John H

    2008-09-11

    Organosulfates of isoprene, alpha-pinene, and beta-pinene have recently been identified in both laboratory-generated and ambient secondary organic aerosol (SOA). In this study, the mechanism and ubiquity of organosulfate formation in biogenic SOA is investigated by a comprehensive series of laboratory photooxidation (i.e., OH-initiated oxidation) and nighttime oxidation (i.e., NO3-initiated oxidation under dark conditions) experiments using nine monoterpenes (alpha-pinene, beta-pinene, d-limonene, l-limonene, alpha-terpinene, gamma-terpinene, terpinolene, Delta(3)-carene, and beta-phellandrene) and three monoterpenes (alpha-pinene, d-limonene, and l-limonene), respectively. Organosulfates were characterized using liquid chromatographic techniques coupled to electrospray ionization combined with both linear ion trap and high-resolution time-of-flight mass spectrometry. Organosulfates are formed only when monoterpenes are oxidized in the presence of acidified sulfate seed aerosol, a result consistent with prior work. Archived laboratory-generated isoprene SOA and ambient filter samples collected from the southeastern U.S. were reexamined for organosulfates. By comparing the tandem mass spectrometric and accurate mass measurements collected for both the laboratory-generated and ambient aerosol, previously uncharacterized ambient organic aerosol components are found to be organosulfates of isoprene, alpha-pinene, beta-pinene, and limonene-like monoterpenes (e.g., myrcene), demonstrating the ubiquity of organosulfate formation in ambient SOA. Several of the organosulfates of isoprene and of the monoterpenes characterized in this study are ambient tracer compounds for the occurrence of biogenic SOA formation under acidic conditions. Furthermore, the nighttime oxidation experiments conducted under highly acidic conditions reveal a viable mechanism for the formation of previously identified nitrooxy organosulfates found in ambient nighttime aerosol samples. We estimate

  13. Aerosol particles and the formation of advection fog

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Liaw, G. S.; Vaughan, O. H., Jr.

    1979-01-01

    A study of numerical simulation of the effects of concentration, particle size, mass of nuclei, and chemical composition on the dynamics of warm fog formation, particularly the formation of advection fog, is presented. This formation is associated with the aerosol particle characteristics, and both macrophysical and microphysical processes are considered. In the macrophysical model, the evolution of wind components, water vapor content, liquid water content, and potential temperature under the influences of vertical turbulent diffusion, turbulent momentum, and turbulent energy transfers are taken into account. In the microphysical model, the supersaturation effect is incorporated with the surface tension and hygroscopic material solution. It is shown that the aerosol particles with the higher number density, larger size nuclei, the heavier nuclei mass, and the higher ratio of the Van't Hoff factor to the molecular weight favor the formation of the lower visibility advection fogs with stronger vertical energy transfer during the nucleation and condensation time period.

  14. Aerosol processing of materials: Aerosol dynamics and microstructure evolution

    NASA Astrophysics Data System (ADS)

    Gurav, Abhijit Shankar

    ) via vapor condensation at 400-650sp°C using Nsb2 carrier gas. In general, during laboratory-scale aerosol processing of materials containing a volatile component, significant evaporative losses and formation of new ultrafine particles were observed at synthesis temperatures at which the saturation vapor pressure of the volatile species exceeded about 0.1-0.5 mTorr. Spray calcination synthesis of pigment-size titania from titanium hydrolysate (TiOsb{x}(SOsb4)sb{y}(OH)sb{z}) using fuel additives such as ethyl alcohol, sugar and urea was also investigated. When pure water was used as a medium of suspension, agglomerates of 0.5 to 1.5 mum were produced by spray calcination. Use of pure ethanol as a solvent as well as small amounts (5-10 wt.%) urea additions to the suspension of Ti-hydrolysate in water were successful in producing predominantly unagglomerated, single crystalline titania particles of 0.1 to 0.3 mum size. Such additions of fuels such as alcohols, sugar and urea to suspensions and solutions used in spray processes are promising for making powders having smaller sizes and unagglomerated, denser morphologies.

  15. Enhancement of aerosol responses to changes in emissions over East Asia by gas-oxidant-aerosol coupling and detailed aerosol processes

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Koike, M.

    2016-06-01

    We quantify the responses of aerosols to changes in emissions (sulfur dioxide, black carbon (BC), primary organic aerosol, nitrogen oxides (NOx), and volatile organic compounds) over East Asia by using simulations including gas-oxidant-aerosol coupling, organic aerosol (OA) formation, and BC aging processes. The responses of aerosols to NOx emissions are complex and are dramatically changed by simulating gas-phase chemistry and aerosol processes online. Reduction of NOx emissions by 50% causes a 30-40% reduction of oxidant (hydroxyl radical and ozone) concentrations and slows the formation of sulfate and OA by 20-30%. Because the response of OA to changes in NOx emissions is sensitive to the treatment of emission and oxidation of semivolatile and intermediate volatility organic compounds, reduction of the uncertainty in these processes is necessary to evaluate gas-oxidant-aerosol coupling accurately. Our simulations also show that the sensitivity of aerosols to changes in emissions is enhanced by 50-100% when OA formation and BC aging processes are resolved in the model. Sensitivity simulations show that the increase of NOx emissions from 1850 to 2000 explains 70% (40%) of the enhancement of aerosol mass concentrations (direct radiative effects) over East Asia during that period through enhancement of oxidant concentrations and that this estimation is sensitive to the representation of OA formation and BC aging processes. Our results demonstrate the importance of simultaneous simulation of gas-oxidant-aerosol coupling and detailed aerosol processes. The impact of NOx emissions on aerosol formation will be a key to formulating effective emission reduction strategies such as BC mitigation and aerosol reduction policies in East Asia.

  16. A Study on the Aqueous Formation of Secondary Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Sinclair, K.; Tsigaridis, K.

    2013-12-01

    The effect aerosols have on radiative forcing in the atmosphere is recognized as one of the largest uncertainties in the radiation budget. About 80% of organic aerosol mass in the atmosphere is estimated to be created though secondary processes. Recently, the aqueous formation of secondary organic aerosols (SOA) has become recognized as important when considering the source, transformation and radiative impacts of SOA. This work focuses on implementing a mechanism for aqueous SOA formation that can be used in atmospheric chemistry and models of all scales, from box to global. A box model containing a simplified chemical mechanism for the aqueous production of precursors of aqueous SOA (Myriokefalitakis et al. (2011) is coupled to gas-phase chemistry which uses the carbon bond mechanism (CBM) IV is presented. The model implements aqueous chemistry of soluble gases, both in-cloud and aerosol water, including organic compounds such as glyoxal and methylglyoxal, which have been shown as potentially significant sources for dissolved secondary organic aerosols. This mechanism implements aqueous phase mass transfer and molecular dissociation. The model's performance is evaluated against previous box model studies from the literature. A comparison is conducted between the detailed GAMMA model (McNeill et al., 2012), which is constrained with chamber experiments and the one developed here. The model output under different atmospheric conditions is explored and differences and sensitivities are assessed. The objective of this work is to create a robust framework for simulating aqueous phase formation of SOA and maximizing the computational efficiency of the model, while maintaining accuracy, in order to later use the exact mechanism in global climate simulations.

  17. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds.

    PubMed

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H; Rudich, Yinon

    2013-12-17

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges.

  18. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds

    PubMed Central

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H.; Rudich, Yinon

    2013-01-01

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges. PMID:24297908

  19. Properties of aerosol processed by ice clouds

    NASA Astrophysics Data System (ADS)

    Rudich, Y.; Adler, G.; Moise, T.; Erlick-Haspel, C.

    2012-12-01

    We suggest that highly porous aerosol (HPA) can form in the upper troposphere/lower stratosphere when ice particles encounter sub-saturation leading to ice sublimation similar to freeze drying. This process can occur at the lower layers of cirrus clouds (few km), at anvils of high convective clouds and thunderstorms, in clouds forming in atmospheric gravitational waves, in contrails and in high convective clouds injecting to the stratosphere. A new experimental system that simulates freeze drying of proxies for atmospheric aerosol at atmospheric pressure was constructed and various proxies for atmospheric soluble aerosol were studied. The properties of resulting HPA were characterized by various methods. It was found that the resulting aerosol have larger sizes (extent depends on substance and mixing), lower density (largevoid fraction), lower optical extinction and higher CCN activity and IN activity. Implication of HPA's unique properties and their atmospheric consequences to aerosol processing in ice clouds and to cloud cycles will be discussed.

  20. Secondary organic aerosol formation of primary, secondary and tertiary Amines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amines have been widely identified in ambient aerosol in both urban and rural environments and they are potential precursors for formation of nitrogen-containing secondary organic aerosols (SOA). However, the role of amines in SOA formation has not been well studied. In this wrok, we use UC-Riversid...

  1. Modeling global organic aerosol formation and growth

    NASA Astrophysics Data System (ADS)

    Tsimpidi, Alexandra; Karydis, Vlasios; Pandis, Spyros; Lelieveld, Jos

    2014-05-01

    A computationally efficient framework for the description of organic aerosol (OA)-gas partitioning and chemical aging has been developed and implemented into the EMAC atmospheric chemistry-climate model. This model simulates the formation of primary (POA) and secondary organic aerosols (SOA) from semi-volatile (SVOC), intermediate-volatile (IVOC) and volatile organic compounds (VOC). POA are divided in two groups with saturation concentrations at 298 K 0.1, 10, 1000, 100000 µg m-3: OA from fossil fuel combustion and biomass burning. The first 2 surrogate species from each group represent the SVOC while the other surrogate species represent the IVOC. Photochemical reactions that change the volatility of the organics in the gas phase are taken into account. The oxidation products from each group of precursors (SVOC, IVOC, and VOC) are lumped into an additional set of oxidized surrogate species (S-SOA, I-SOA, and V-SOA, respectively) in order to track their source of origin. This model is used to i) estimate the relative contributions of SOA and POA to total OA, ii) determine how SOA concentrations are affected by biogenic and anthropogenic emissions, and iii) evaluate the effect of photochemical aging and long-range transport on OA budget over specific regions.

  2. Influence of Aerosol Acidity on the Formation of Secondary Organic Aerosol from Biogenic Precursor Hydrocarbons

    EPA Science Inventory

    Secondary organic aerosol (SOA) formation and dynamics may be important factors for the role of aerosols in adverse health effects, visibility and climate change. Formation of SOA occurs when a parent volatile organic compound is oxidized to create products that form in a conden...

  3. Recent Studies Investigating Secondary Organic Aerosol Formation

    NASA Astrophysics Data System (ADS)

    Weber, R. J.

    2009-05-01

    The metropolitan areas of Mexico City and Atlanta have very different emissions and meteorology, yet in both cities secondary organic aerosol (SOA) comprises a significant fraction of fine particle mass. SOA in Mexico City is predominately from anthropogenic emissions and a number of studies have investigated the role of dicarbonyl partitioning to aerosol liquid water as a SOA formation route [Volkamer et al., 2006; 2007]. Hennigan et al. [2008] noted a high correlation between SOA (measured as water-soluble organic carbon) and fine particle nitrate in Mexico City and used this to estimate the volatility of both species during periods of rapidly decreasing RH in late morning. Secondary aerosol may also form when particles are much drier. In Mexico City, both nitrate and SOA were also frequently observed and highly correlated in late afternoon when RH was below 30 percent. A thermodynamic model could reproduce the observed morning nitrate under high RH when equilibrium was between nitric acid and dissolved nitrate, whereas equilibrium between vapor and crystalline ammonium nitrate was predicted in the afternoon [Fountoukis et al., 2007]. By analogy, these results may suggest two different SOA partitioning mechanisms in Mexico City, occurring at different times of the day. In contrast, measurements suggest that SOA in the southeastern United States is largely from biogenic precursors, and there is evidence that liquid water also plays a role. The stability of dissolved organic aerosol in response to loss of liquid water is currently being investigated and preliminary data suggest that like Mexico City, there is some degree of volatility. Recent experiments comparing data from rural-urban sites shows that there are periods when anthropogenic emissions also substantially contribute to SOA in the Atlanta metropolitan region. However, the mechanisms, or organic precursors involved, are yet to be determined. Results from these various ongoing studies will be presented

  4. Development of an aerosol microphysical module: Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS)

    SciTech Connect

    Matsui, H.; Koike, Makoto; Kondo, Yutaka; Fast, Jerome D.; Takigawa, M.

    2014-09-30

    Number concentrations, size distributions, and mixing states of aerosols are essential parameters for accurate estimation of aerosol direct and indirect effects. In this study, we developed an aerosol module, designated Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS), that can represent these parameters explicitly by considering new particle formation (NPF), black carbon (BC) aging, and secondary organic aerosol (SOA) processes. A two-dimensional bin representation is used for particles with dry diameters from 40 nm to 10 µm to resolve both aerosol size (12 bins) and BC mixing state (10 bins) for a total of 120 bins. The particles with diameters from 1 to 40 nm are resolved using an additional 8 size bins to calculate NPF. The ATRAS module was implemented in the WRF-chem model and applied to examine the sensitivity of simulated mass, number, size distributions, and optical and radiative parameters of aerosols to NPF, BC aging and SOA processes over East Asia during the spring of 2009. BC absorption enhancement by coating materials was about 50% over East Asia during the spring, and the contribution of SOA processes to the absorption enhancement was estimated to be 10 – 20% over northern East Asia and 20 – 35% over southern East Asia. A clear north-south contrast was also found between the impacts of NPF and SOA processes on cloud condensation nuclei (CCN) concentrations: NPF increased CCN concentrations at higher supersaturations (smaller particles) over northern East Asia, whereas SOA increased CCN concentrations at lower supersaturations (larger particles) over southern East Asia. Application of ATRAS to East Asia also showed that the impact of each process on each optical and radiative parameter depended strongly on the process and the parameter in question. The module can be used in the future as a benchmark model to evaluate the accuracy of simpler aerosol models and examine interactions between NPF, BC aging, and SOA

  5. Development of an aerosol microphysical module: Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS)

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Koike, M.; Kondo, Y.; Fast, J. D.; Takigawa, M.

    2014-09-01

    Number concentrations, size distributions, and mixing states of aerosols are essential parameters for accurate estimations of aerosol direct and indirect effects. In this study, we develop an aerosol module, designated the Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS), that can explicitly represent these parameters by considering new particle formation (NPF), black carbon (BC) aging, and secondary organic aerosol (SOA) processes. A two-dimensional bin representation is used for particles with dry diameters from 40 nm to 10 μm to resolve both aerosol sizes (12 bins) and BC mixing states (10 bins) for a total of 120 bins. The particles with diameters between 1 and 40 nm are resolved using additional eight size bins to calculate NPF. The ATRAS module is implemented in the WRF-Chem model and applied to examine the sensitivity of simulated mass, number, size distributions, and optical and radiative parameters of aerosols to NPF, BC aging, and SOA processes over East Asia during the spring of 2009. The BC absorption enhancement by coating materials is about 50% over East Asia during the spring, and the contribution of SOA processes to the absorption enhancement is estimated to be 10-20% over northern East Asia and 20-35% over southern East Asia. A clear north-south contrast is also found between the impacts of NPF and SOA processes on cloud condensation nuclei (CCN) concentrations: NPF increases CCN concentrations at higher supersaturations (smaller particles) over northern East Asia, whereas SOA increases CCN concentrations at lower supersaturations (larger particles) over southern East Asia. The application of ATRAS in East Asia also shows that the impact of each process on each optical and radiative parameter depends strongly on the process and the parameter in question. The module can be used in the future as a benchmark model to evaluate the accuracy of simpler aerosol models and examine interactions between NPF, BC aging, and SOA

  6. Development of an aerosol microphysical module: Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS)

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Koike, M.; Kondo, Y.; Fast, J. D.; Takigawa, M.

    2014-04-01

    Number concentrations, size distributions, and mixing states of aerosols are essential parameters for accurate estimation of aerosol direct and indirect effects. In this study, we develop an aerosol module, designated Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS), that can represent these parameters explicitly by considering new particle formation (NPF), black carbon (BC) aging, and secondary organic aerosol (SOA) processes. A two-dimensional bin representation is used for particles with dry diameters from 40 nm to 10 μm to resolve both aerosol size (12 bins) and BC mixing state (10 bins) for a total of 120 bins. The particles with diameters from 1 to 40 nm are resolved using an additional 8 size bins to calculate NPF. The ATRAS module is implemented in the WRF-chem model and applied to examine the sensitivity of simulated mass, number, size distributions, and optical and radiative parameters of aerosols to NPF, BC aging and SOA processes over East Asia during the spring of 2009. BC absorption enhancement by coating materials is about 50% over East Asia during the spring, and the contribution of SOA processes to the absorption enhancement is estimated to be 10-20% over northern East Asia and 20-35% over southern East Asia. A clear north-south contrast is also found between the impacts of NPF and SOA processes on cloud condensation nuclei (CCN) concentrations: NPF increases CCN concentrations at higher supersaturations (smaller particles) over northern East Asia, whereas SOA increases CCN concentrations at lower supersaturations (larger particles) over southern East Asia. Application of ATRAS to East Asia also shows that the impact of each process on each optical and radiative parameter depends strongly on the process and the parameter in question. The module can be used in the future as a benchmark model to evaluate the accuracy of simpler aerosol models and examine interactions between NPF, BC aging, and SOA processes under

  7. The use of aerosol formation, flammability, and explosion information for heat-transfer fluid selection.

    PubMed

    Krishna, Kiran; Rogers, William J; Mannan, M Sam

    2003-11-14

    The devastating consequences of aerosol/mist explosions have been widely documented, and there are currently efforts to understand the mechanisms of formation and explosion of aerosols. Heat-transfer fluids (HTFs) are particularly susceptible to these hazards, because they are utilized under high pressures and below their flash points, making them more prone to leaking as aerosols. In fact, there is a critical need during design stages for a perception of explosion risks associated with the selection of HTFs. This paper discusses a novel scheme to integrate the knowledge of HTF aerosol formation from leaks in process equipment into the selection of HTFs during the design process. Hazards of aerosols formed from leaks are classified qualitatively using process pressure and droplet sizes.

  8. Numerical simulation of advection fog formation on multi-disperse aerosols due to combustion-related pollutants

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Liaw, G. S.

    1980-01-01

    The effects of multi-disperse distribution of the aerosol population are presented. Single component and multi-component aerosol species on the condensation/nucleation processes which affect the reduction in visibility are described. The aerosol population with a high particle concentration provided more favorable conditions for the formation of a denser fog than the aerosol population with a greater particle size distribution when the value of the mass concentration of the aerosols was kept constant. The results were used as numerical predictions of fog formation. Two dimensional observations in horizontal and vertical coordinates, together with time-dependent measurements were needed as initial values for the following physical parameters: (1)wind profiles; (2) temperature profiles; (3) humidity profiles; (4) mass concentration of aerosol particles; (5) particle size distribution of aerosols; and (6) chemical composition of aerosols. Formation and dissipation of advection fog, thus, can be forecasted numerically by introducing initial values obtained from the observations.

  9. Water-soluble dicarboxylic acids and ω-oxocarboxylic acids in size-segregated aerosols over northern Japan during spring: sources and formation processes

    NASA Astrophysics Data System (ADS)

    Deshmukh, Dhananjay Kumar; Kawamura, Kimitaka; Kobayashi, Minoru; Gowda, Divyavani

    2016-04-01

    Seven sets (AF01-AF07) of size-segregated aerosol (12-sizes) samples were collected using a Micro-Orifice Uniform Deposit Impactor (MOUDI) in Sapporo, Japan during the spring of 2001 to understand the sources and atmospheric processes of water-soluble organic aerosols in the outflow region of Asian dusts. The samples were analyzed for dicarboxylic acids (C2-C12) and ω-oxocarboxylic acids as well as inorganic ions. The molecular distribution of diacids showed the predominance of oxalic acid (C2) followed by malonic and succinic acids whereas ω-oxoacids showed the predominance of glyoxylic acid (ωC2) in size-segregated aerosols. SO42- and NH4+ are enriched in submicron mode whereas NO3- and Ca2+ are in supermicron mode. Most of diacids and ω-oxoacids are enriched in supermicron mode in the samples (AF01-AF03) influenced by the long-range transport of mineral dusts whereas enhanced presence in submicron mode was observed in other sample sets. The strong correlations of C2 with Ca2+ (r = 0.95-0.99) and NO3- (r = 0.96-0.98) in supermicron mode in the samples AF01-AF03 suggest the adsorption or production of C2 diacid via heterogeneous reaction on the surface of mineral dust during long-range atmospheric transport. The preferential enrichment of diacids and ω-oxoacids in mineral dust has important implications for the solubility and cloud nucleation properties of the dominant fraction of water-soluble organic aerosols. This study demonstrates that biofuel and biomass burning and mineral dust originated in East Asia are two major factors to control the size distribution of diacids and related compounds over northern Japan.

  10. Aerosol cloud processing with the global model ECHAM5-HAM-SALSA

    NASA Astrophysics Data System (ADS)

    Bergman, T.; Korhonen, H.; Zubair, M.; Romakkaniemi, S.; Lehtinen, K.; Kokkola, H.

    2012-04-01

    Atmospheric aerosols and their interactions with clouds constitute the largest uncertainty in the radiative forcing of the Earth's atmosphere. Increasing aerosol number concentrations increases the cloud droplet concentration and droplet surface and hence the cloud albedo. This mechanism is called the aerosol indirect effect on climate. Understanding the changes in cloud droplet number concentrations and size by anthropogenic aerosols are the key factors in the study of future climate change. Therefore the aerosols' formation and growth from nanoparticles to cloud condensation nuclei (CCN) must be described accurately. The formation and growth of aerosols are shown to be described more accurately with sectional representations than with bulk (total aerosol mass only), modal (lognormal modes describing mass and number size distribution) or moment (processes tied to different moments of particle number size distribution) approaches. Recently the sectional aerosol models have been implemented to global climate models. However, the resolution of sectional models must be optimised to reduce the computational cost. We have implemented the sectional aerosol model SALSA in ECHAM5-HAM. SALSA describes the aerosol population with 20 size sections. The dynamics are optimised for large scale applications and the model includes an improved moving center sectional method. The particulate mass consists of five compounds: sulphate, organic carbon, black carbon, sea salt and dust. The aerosol processing has been studied extensively and there are many numerical models used to predict CCN number concentrations. However, due to computational limitations many of them are not suitable for utilisation in global climate models. Therefore in most global climate studies on aerosol activation to CCN is examined using cloud activation parameterisations. We study the aerosol cloud processing and its affect on transport of aerosols using Abdul-Razzak-Ghan aerosol cloud activation

  11. EFFECT OF ACIDITY ON SECONDARY ORGANIC AEROSOL FORMATION FROM ISOPRENE

    EPA Science Inventory

    The effect of particle-phase acidity on secondary organic aerosol (SOA) formation from isoprene is investigated in a laboratory chamber study, in which the acidity of the inorganic seed aerosol was controlled systematically. The observed enhancement in SOA mass concentration is c...

  12. Reversible and irreversible processing of biogenic olefins on acidic aerosols

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Li, S.-M.

    2008-04-01

    Recent evidence has suggested that heterogeneous chemistry of oxygenated hydrocarbons, primarily carbonyls, plays a role in the formation of secondary organic aerosol (SOA); however, evidence is emerging that direct uptake of alkenes on acidic aerosols does occur and can contribute to SOA formation. In the present study, significant uptake of monoterpenes, oxygenated monoterpenes and sesquiterpenes to acidic sulfate aerosols is found under various conditions in a reaction chamber. Proton transfer mass spectrometry is used to quantify the organic gases, while an aerosol mass spectrometer is used to quantify the organic mass uptake and obtain structural information for heterogeneous products. Aerosol mass spectra are consistent with several mechanisms including acid catalyzed olefin hydration, cationic polymerization and organic ether formation, while measurable decreases in the sulfate mass on a per particle basis suggest that the formation of organosulfate compounds is also likely. A portion of the heterogeneous reactions appears to be reversible, consistent with reversible olefin hydration reactions. A slow increase in the organic mass after a fast initial uptake is attributed to irreversible reactions, consistent with polymerization and organosulfate formation. Uptake coefficients (γ) were estimated for a fast initial uptake governed by the mass accommodation coefficient (α) and ranged from 1×10-6-2.5×10-2. Uptake coefficients for a subsequent slower reactive uptake ranged from 1×10-7-1×10-4. These processes may potentially lead to a considerable amount of SOA from the various biogenic hydrocarbons under acidic conditions, which can be highly significant for freshly nucleated aerosols, particularly given the large array of atmospheric olefins.

  13. The Effect of Aerosol Formation on Stable Isotopes Ratio in Titan's Atmosphere

    NASA Astrophysics Data System (ADS)

    Gautier, Thomas; Trainer, Melissa G.; Sebree, Joshua; Wold, Allison; Stern, Jennifer

    2016-10-01

    The formation of large amounts of aerosol in Titan atmosphere induces a significant sink for carbon and nitrogen in the atmosphere. Due to the high complexity of the chemistry leading to aerosol formation, there may be isotopic fractionation along the formation pathways of the aerosol. So far several stable isotopes have been measured in Titan atmosphere including the 13C/12C, 15N/14N and D/H ratios for different gaseous species. However, the fractionation effect of the aerosol formation and its impact on atmospheric stable isotope ratios has yet to be fully understood. Two experimental studies were recently published on the stable carbon [1] and nitrogen [1,2] isotope fractionation during aerosol formation in N2-CH4 reactant mixture. To better constrain the fractionation effect of aerosol formation on the Titan atmosphere we have measured the isotopic fractionation induced in laboratory aerosol analogues produced exploring the space of parameters that are expected to have an effect on fractionation processes. Parameters studied include pressure and temperature of aerosol formation and the reactant gas phase composition, including the standard "Titan" mixture of CH4/N2 as well as other trace species such as benzene (C6H6).[1] Sebree, J.A., Stern, J.C., Mandt, K.E., Domagal-Goldman, S.D., and Trainer, M.G.: C and N Fractionation of CH /N Mixtures during Photochemical Aerosol Formation: Relevance to Titan, (2016) Icarus 270:421-428[2] Kuga, M., Carrasco, N., Marty, B., Marrochi, Y., Bernard, S., Rigaudier, T., Fleury, B., Tissandier, L.: Nitrogen isotopic fractionation during abiotic synthesis of organic solid particles, (2014) EPSL 393:2-13

  14. Seasonal variations of ultra-fine and submicron aerosols in Taipei, Taiwan: implications for particle formation processes in a subtropical urban area

    NASA Astrophysics Data System (ADS)

    Cheung, H. C.; Chou, C. C.-K.; Chen, M.-J.; Huang, W.-R.; Huang, S.-H.; Tsai, C.-Y.; Lee, C. S. L.

    2016-02-01

    The aim of this study is to investigate the seasonal variations in the physicochemical properties of atmospheric ultra-fine particles (UFPs, d ≤ 100 nm) and submicron particles (PM1, d ≤ 1 µm) in an east Asian urban area, which are hypothesized to be affected by the interchange of summer and winter monsoons. An observation experiment was conducted at TARO (Taipei Aerosol and Radiation Observatory), an urban aerosol station in Taipei, Taiwan, from October 2012 to August 2013. The measurements included the mass concentration and chemical composition of UFPs and PM1, as well as the particle number concentration (PNC) and the particle number size distribution (PSD) with size range of 4-736 nm. The results indicated that the mass concentration of PM1 was elevated during cold seasons with a peak level of 18.5 µg m-3 in spring, whereas the highest concentration of UFPs was measured in summertime with a mean of 1.64 µg m-3. Moreover, chemical analysis revealed that the UFPs and PM1 were characterized by distinct composition; UFPs were composed mostly of organics, whereas ammonium and sulfate were the major constituents of PM1. The seasonal median of total PNCs ranged from 13.9 × 103 cm-3 in autumn to 19.4 × 103 cm-3 in spring. Median concentrations for respective size distribution modes peaked in different seasons. The nucleation-mode PNC (N4 - 25) peaked at 11.6 × 103 cm-3 in winter, whereas the Aitken-mode (N25 - 100) and accumulation-mode (N100 - 736) PNC exhibited summer maxima at 6.0 × 103 and 3.1 × 103 cm-3, respectively. The change in PSD during summertime was attributed to the enhancement in the photochemical production of condensable organic matter that, in turn, contributed to the growth of aerosol particles in the atmosphere. In addition, clear photochemical production of particles was observed, mostly in the summer season, which was characterized by average particle growth and formation rates of 4.0 ± 1.1 nm h-1 and 1.4 ± 0.8 cm-3 s-1

  15. simpleGAMMA - a reduced model of secondary organic aerosol formation in the aqueous aerosol phase (aaSOA)

    NASA Astrophysics Data System (ADS)

    Woo, J. L.; McNeill, V. F.

    2015-01-01

    There is increasing evidence that the uptake and aqueous processing of water-soluble volatile organic compounds (VOCs) by wet aerosols or cloud droplets is an important source of secondary organic aerosol (SOA). We recently developed GAMMA (Gas-Aerosol Model for Mechanism Analysis), a zero-dimensional kinetic model that couples gas-phase and detailed aqueous-phase atmospheric chemistry for speciated prediction of SOA and organosulfate formation in cloudwater or aqueous aerosols. Results from GAMMA simulations of SOA formation in aerosol water (McNeill et al., 2012) indicate that it is dominated by two pathways: isoprene epoxydiol (IEPOX) uptake followed by ring-opening chemistry (under low-NOx conditions) and glyoxal uptake. This suggested that it is possible to model the majority of aqueous aerosol phase SOA mass using a highly simplified reaction scheme. We have therefore developed a reduced version of GAMMA, simpleGAMMA. Close agreement in predicted aaSOA mass is observed between simpleGAMMA and GAMMA under all conditions tested (between pH 1-4 and RH 40-80%) after 12 h of simulation. simpleGAMMA is computationally efficient and suitable for coupling with larger-scale atmospheric chemistry models.

  16. Implementation of warm-cloud processes in a source-oriented WRF/Chem model to study the effect of aerosol mixing state on fog formation in the Central Valley of California

    NASA Astrophysics Data System (ADS)

    Lee, H.-H.; Chen, S.-H.; Kleeman, M. J.; Zhang, H.; DeNero, S. P.; Joe, D. K.

    2015-11-01

    The source-oriented Weather Research and Forecasting chemistry model (SOWC) was modified to include warm cloud processes and applied to investigate how aerosol mixing states influence fog formation and optical properties in the atmosphere. SOWC tracks a 6-dimensional chemical variable (X, Z, Y, Size Bins, Source Types, Species) through an explicit simulation of atmospheric chemistry and physics. A source-oriented cloud condensation nuclei module was implemented into the SOWC model to simulate warm clouds using the modified two-moment Purdue Lin microphysics scheme. The Goddard shortwave and longwave radiation schemes were modified to interact with source-oriented aerosols and cloud droplets so that aerosol direct and indirect effects could be studied. The enhanced SOWC model was applied to study a fog event that occurred on 17 January 2011, in the Central Valley of California. Tule fog occurred because an atmospheric river effectively advected high moisture into the Central Valley and nighttime drainage flow brought cold air from mountains into the valley. The SOWC model produced reasonable liquid water path, spatial distribution and duration of fog events. The inclusion of aerosol-radiation interaction only slightly modified simulation results since cloud optical thickness dominated the radiation budget in fog events. The source-oriented mixture representation of particles reduced cloud droplet number relative to the internal mixture approach that artificially coats hydrophobic particles with hygroscopic components. The fraction of aerosols activating into CCN at a supersaturation of 0.5 % in the Central Valley decreased from 94 % in the internal mixture model to 80 % in the source-oriented model. This increased surface energy flux by 3-5 W m-2 and surface temperature by as much as 0.25 K in the daytime.

  17. Implementation of warm-cloud processes in a source-oriented WRF/Chem model to study the effect of aerosol mixing state on fog formation in the Central Valley of California

    NASA Astrophysics Data System (ADS)

    Lee, Hsiang-He; Chen, Shu-Hua; Kleeman, Michael J.; Zhang, Hongliang; DeNero, Steven P.; Joe, David K.

    2016-07-01

    The source-oriented Weather Research and Forecasting chemistry model (SOWC) was modified to include warm cloud processes and was applied to investigate how aerosol mixing states influence fog formation and optical properties in the atmosphere. SOWC tracks a 6-D chemical variable (X, Z, Y, size bins, source types, species) through an explicit simulation of atmospheric chemistry and physics. A source-oriented cloud condensation nuclei module was implemented into the SOWC model to simulate warm clouds using the modified two-moment Purdue Lin microphysics scheme. The Goddard shortwave and long-wave radiation schemes were modified to interact with source-oriented aerosols and cloud droplets so that aerosol direct and indirect effects could be studied. The enhanced SOWC model was applied to study a fog event that occurred on 17 January 2011, in the Central Valley of California. Tule fog occurred because an atmospheric river effectively advected high moisture into the Central Valley and nighttime drainage flow brought cold air from mountains into the valley. The SOWC model produced reasonable liquid water path, spatial distribution and duration of fog events. The inclusion of aerosol-radiation interaction only slightly modified simulation results since cloud optical thickness dominated the radiation budget in fog events. The source-oriented mixture representation of particles reduced cloud droplet number relative to the internal mixture approach that artificially coats hydrophobic particles with hygroscopic components. The fraction of aerosols activating into cloud condensation nuclei (CCN) at a supersaturation of 0.5 % in the Central Valley decreased from 94 % in the internal mixture model to 80 % in the source-oriented model. This increased surface energy flux by 3-5 W m-2 and surface temperature by as much as 0.25 K in the daytime.

  18. Volcanic sulfate aerosol formation in the troposphere

    NASA Astrophysics Data System (ADS)

    Martin, Erwan; Bekki, Slimane; Ninin, Charlotte; Bindeman, Ilya

    2014-11-01

    The isotopic composition of volcanic sulfate provides insights into the atmospheric chemical processing of volcanic plumes. First, mass-independent isotopic anomalies quantified by Δ17O and to a lesser extent Δ33S and Δ36S in sulfate depend on the relative importance of different oxidation mechanisms that generate sulfate aerosols. Second, the isotopic composition of sulfate (δ34S and δ18O) could be an indicator of fractionation (distillation/condensation) processes occurring in volcanic plumes. Here we present analyses of O- and S isotopic compositions of volcanic sulfate absorbed on very fresh volcanic ash from nine moderate historical eruptions in the Northern Hemisphere. Most of our volcanic sulfate samples, which are thought to have been generated in the troposphere or in the tropopause region, do not exhibit any significant mass-independent fractionation (MIF) isotopic anomalies, apart from those from an eruption of a Mexican volcano. Coupled to simple chemistry model calculations representative of the background atmosphere, our data set suggests that although H2O2 (a MIF-carrying oxidant) is thought to be by far the most efficient sulfur oxidant in the background atmosphere, it is probably quickly consumed in large dense tropospheric volcanic plumes. We estimate that in the troposphere, at least, more than 90% of volcanic secondary sulfate is not generated by MIF processes. Volcanic S-bearing gases, mostly SO2, appear to be oxidized through channels that do not generate significant isotopically mass-independent sulfate, possibly via OH in the gas phase and/or transition metal ion catalysis in the aqueous phase. It is also likely that some of the sulfates sampled were not entirely produced by atmospheric oxidation processes but came out directly from volcanoes without any MIF anomalies.

  19. Electromagnetic launcher studies of breakup and aerosol formation in molten uranium alloy

    SciTech Connect

    Benson, D.A.; Rader, D.J.

    1990-03-01

    An understanding of dispersal of nuclear materials from an explosive event is needed to support design studies of weapon storage and transportation. Assessing the consequences and requirements for cleanup of a fire or nonnuclear detonation of a system containing nuclear material requires knowledge of the aerosol formation process. Information about the aerosol chemical composition, the physical size and shape of the particulates, as well as the efficiency of aerosol formation ate needed to conduct meaningful assessments. This report describes laboratory tests to study aerosol from materials of interest. An electromagnetic launcher is used to heat and propel molten metallic samples under energetic high-velocity conditions. We describe the apparatus and first results from tests using uranium-molybdenum alloy samples. Contained laboratory-scale measurements are described that determine aerosol morphology, chemical composition, and aerosol formation efficiency under high-velocity conditions. Data from the launcher tests describe (1) the aerodynamic breakup process of high-velocity molten liquid into droplets, and (2) the formation of still finer aerosols by combustion of these droplets at high velocity. The measurements show efficient aerosol production in air that is dominated by the formation of fine chain-agglomerate combustion aerosol. Particle morphology information for both the chain agglomerate and the less common liquid breakup products is described. The aerodynamic breakup of the liquid sample material is described. Lognormal distributions are shown to accurately represent the data. The geometric mean diameter is related to the mass mean diameter and maximum stable droplet diameter for the distributions. 28 refs., 27 figs., 3 tabs.

  20. Aerosol formation yields from the reaction of catechol with ozone

    NASA Astrophysics Data System (ADS)

    Coeur-Tourneur, Cécile; Tomas, Alexandre; Guilloteau, Angélique; Henry, Françoise; Ledoux, Frédéric; Visez, Nicolas; Riffault, Véronique; Wenger, John C.; Bedjanian, Yuri

    The formation of secondary organic aerosol from the gas-phase reaction of catechol (1,2-dihydroxybenzene) with ozone has been studied in two smog chambers. Aerosol production was monitored using a scanning mobility particle sizer and loss of the precursor was determined by gas chromatography and infrared spectroscopy, whilst ozone concentrations were measured using a UV photometric analyzer. The overall organic aerosol yield ( Y) was determined as the ratio of the suspended aerosol mass corrected for wall losses ( Mo) to the total reacted catechol concentrations, assuming a particle density of 1.4 g cm -3. Analysis of the data clearly shows that Y is a strong function of Mo and that secondary organic aerosol formation can be expressed by a one-product gas-particle partitioning absorption model. The aerosol formation is affected by the initial catechol concentration, which leads to aerosol yields ranging from 17% to 86%. The results of this work are compared to similar studies reported in the literature.

  1. Reversible and irreversible processing of biogenic olefins on acidic aerosols

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Li, S.-M.

    2007-08-01

    Recent evidence has suggested that heterogeneous chemistry of oxygenated hydrocarbons, primarily carbonyls, plays a role in the formation of secondary organic aerosol (SOA); however, evidence is emerging that direct uptake of alkenes on acidic aerosols does occur and can contribute to SOA formation. In the present study, significant uptake of monoterpenes, oxygenated monoterpenes and sesquiterpenes to acidic sulfate aerosols is found under various conditions in a reaction chamber. Proton transfer mass spectrometry is used to quantify the organic gases, while an aerosol mass spectrometer is used to quantify the organic mass uptake and obtain structural information for heterogeneous products. Aerosol mass spectra are consistent with several mechanisms including acid catalyzed olefin hydration, cationic polymerization and organic ester formation, while measurable decreases in the sulfate mass on a per particle basis suggest that the formation of organosulfate compounds is also likely. A portion of the heterogeneous reactions appears to be reversible, consistent with reversible olefin hydration reactions. A slow increase in the organic mass after a fast initial uptake is attributed to irreversible reactions, consistent with polymerization and organosulfate formation. Uptake coefficients (γ) were estimated for a fast initial uptake governed by the mass accommodation coefficient (α) and ranged from 1×10-6-2.5×10-2. Uptake coefficients for a subsequent slower reactive uptake ranged from 1×10-7-1×10-4. These processes are estimated to potentially produce greater than 2.5 μg m-3 of SOA from the various biogenic hydrocarbons under atmospheric conditions, which can be highly significant given the large array of atmospheric olefins.

  2. Physico-chemical properties of aerosols in Sao Paulo, Brazil and mechanisms of secondary organic aerosol formation.

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Ferreira de Brito, Joel; Varanda Rizzo, Luciana; Luiza Godoy, Maria; Godoy, Jose Marcus

    2013-04-01

    Megacities emissions are increasingly becoming a global issue, where emissions from the transportation sector play an increasingly important role. Sao Paulo is a megacity with a population of about 18 million people, 7 million cars and large-scale industrial emissions. As a result of the vehicular and industrial emissions, the air quality in Sao Paulo is bellow WMO standards for aerosol particles and ozone. Many uncertainties are found on gas- and particulate matter vehicular emission factors and their following atmospheric processes, e.g. secondary organic aerosol formation. Due to the uniqueness of the vehicular fuel in Brazil, largely based on ethanol use, such characterization currently holds further uncertainties. To improve the understanding of the role of this unique emission characteristics, we are running a source apportionment study in Sao Paulo focused on the mechanisms of organic aerosol formation. One of the goals of this study is a quantitative aerosol source apportionment focused on vehicular emissions, including ethanol and gasohol (both fuels used by light-duty vehicles). This study comprises four sampling sites with continuous measurements for one year, where trace elements and organic aerosol are being measured for PM2.5 and PM10 along with real-time NOx, O3, PM10 and CO measurements. Aerosol optical properties and size distribution are being measured on a rotation basis between sampling stations. Furthermore, a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS) and an Aerosol Chemical Speciation Monitor (ACSM) are used to measure in real time VOCs and aerosol composition, respectively. Trace elements were measured using XRF and OC/EC analysis was determined with a Sunset OC/EC instrument. A TSI Nephelometer with 3 wavelengths measure light scattering and a MAAP measure black carbon. Results show aerosol number concentrations ranging between 10,000 and 35,000 cm-3, mostly concentrated in the nucleation and Aitken modes, with a peak in size at 80

  3. One-Step Formation of Silicon-Graphene Composites from Silicon Sludge Waste and Graphene Oxide via Aerosol Process for Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Kim, Sun Kyung; Kim, Hyekyoung; Chang, Hankwon; Cho, Bong-Gyoo; Huang, Jiaxing; Yoo, Hyundong; Kim, Hansu; Jang, Hee Dong

    2016-09-01

    Over 40% of high-purity silicon (Si) is consumed as sludge waste consisting of Si, silicon carbide (SiC) particles and metal impurities from the fragments of cutting wire mixed in ethylene glycol based cutting fluid during Si wafer slicing in semiconductor fabrication. Recovery of Si from the waste Si sludge has been a great concern because Si particles are promising high-capacity anode materials for Li ion batteries. In this study, we report a novel one-step aerosol process that not only extracts Si particles but also generates Si-graphene (GR) composites from the colloidal mixture of waste Si sludge and graphene oxide (GO) at the same time by ultrasonic atomization-assisted spray pyrolysis. This process supports many advantages such as eco-friendly, low-energy, rapid, and simple method for forming Si-GR composite. The morphology of the as-formed Si-GR composites looked like a crumpled paper ball and the average size of the composites varied from 0.6 to 0.8 μm with variation of the process variables. The electrochemical performance was then conducted with the Si-GR composites for Lithium Ion Batteries (LIBs). The Si-GR composites exhibited very high performance as Li ion battery anodes in terms of capacity, cycling stability, and Coulombic efficiency.

  4. One-Step Formation of Silicon-Graphene Composites from Silicon Sludge Waste and Graphene Oxide via Aerosol Process for Lithium Ion Batteries

    PubMed Central

    Kim, Sun Kyung; Kim, Hyekyoung; Chang, Hankwon; Cho, Bong-Gyoo; Huang, Jiaxing; Yoo, Hyundong; Kim, Hansu; Jang, Hee Dong

    2016-01-01

    Over 40% of high-purity silicon (Si) is consumed as sludge waste consisting of Si, silicon carbide (SiC) particles and metal impurities from the fragments of cutting wire mixed in ethylene glycol based cutting fluid during Si wafer slicing in semiconductor fabrication. Recovery of Si from the waste Si sludge has been a great concern because Si particles are promising high-capacity anode materials for Li ion batteries. In this study, we report a novel one-step aerosol process that not only extracts Si particles but also generates Si-graphene (GR) composites from the colloidal mixture of waste Si sludge and graphene oxide (GO) at the same time by ultrasonic atomization-assisted spray pyrolysis. This process supports many advantages such as eco-friendly, low-energy, rapid, and simple method for forming Si-GR composite. The morphology of the as-formed Si-GR composites looked like a crumpled paper ball and the average size of the composites varied from 0.6 to 0.8 μm with variation of the process variables. The electrochemical performance was then conducted with the Si-GR composites for Lithium Ion Batteries (LIBs). The Si-GR composites exhibited very high performance as Li ion battery anodes in terms of capacity, cycling stability, and Coulombic efficiency. PMID:27646853

  5. One-Step Formation of Silicon-Graphene Composites from Silicon Sludge Waste and Graphene Oxide via Aerosol Process for Lithium Ion Batteries.

    PubMed

    Kim, Sun Kyung; Kim, Hyekyoung; Chang, Hankwon; Cho, Bong-Gyoo; Huang, Jiaxing; Yoo, Hyundong; Kim, Hansu; Jang, Hee Dong

    2016-09-20

    Over 40% of high-purity silicon (Si) is consumed as sludge waste consisting of Si, silicon carbide (SiC) particles and metal impurities from the fragments of cutting wire mixed in ethylene glycol based cutting fluid during Si wafer slicing in semiconductor fabrication. Recovery of Si from the waste Si sludge has been a great concern because Si particles are promising high-capacity anode materials for Li ion batteries. In this study, we report a novel one-step aerosol process that not only extracts Si particles but also generates Si-graphene (GR) composites from the colloidal mixture of waste Si sludge and graphene oxide (GO) at the same time by ultrasonic atomization-assisted spray pyrolysis. This process supports many advantages such as eco-friendly, low-energy, rapid, and simple method for forming Si-GR composite. The morphology of the as-formed Si-GR composites looked like a crumpled paper ball and the average size of the composites varied from 0.6 to 0.8 μm with variation of the process variables. The electrochemical performance was then conducted with the Si-GR composites for Lithium Ion Batteries (LIBs). The Si-GR composites exhibited very high performance as Li ion battery anodes in terms of capacity, cycling stability, and Coulombic efficiency.

  6. Secondary Organic Aerosol Formation in the Captive Aerosol Growth and Evolution (CAGE) Chambers during the Southern Oxidant and Aerosol Study (SOAS) in Centreville, AL

    NASA Astrophysics Data System (ADS)

    Leong, Y.; Karakurt Cevik, B.; Hernandez, C.; Griffin, R. J.; Taylor, N.; Matus, J.; Collins, D. R.

    2013-12-01

    Secondary organic aerosol (SOA) represents a large portion of sub-micron particulate matter on a global scale. The composition of SOA and its formation processes are heavily influenced by anthropogenic and biogenic activity. Volatile organic compounds (VOCs) that are emitted naturally from forests or from human activity serve as precursors to SOA formation. Biogenic SOA (BSOA) is formed from biogenic VOCs and is prevalent in forested regions like the Southeastern United States. The formation and enhancement of BSOA under anthropogenic influences such as nitrogen oxides (NOx), sulfur dioxide (SO2), and oxygen radicals are still not well understood. The lack of information on anthropogenic BSOA enhancement and the reversibility of SOA formation could explain the underprediction of SOA in current models. To address some of these gaps in knowledge, this study was conducted as part of the Southern Oxidant and Aerosol Study (SOAS) in Centreville, AL during the summer of 2013. SOA growth experiments were conducted in two Captive Aerosol Growth and Evolution (CAGE) outdoor chambers located at the SEARCH site. Ambient trace gas concentrations were maintained in these chambers using semi-permeable gas-exchange membranes, while studying the growth of injected monodisperse seed aerosol. The control chamber was operated under ambient conditions; the relative humidity and oxidant and NOx levels were perturbed in the second chamber. This design allows experiments to capture the natural BSOA formation processes in the southeastern atmosphere and to study the influence of anthropogenic activity on aerosol chemistry. Chamber experiments were periodically monitored with physical and chemical instrumentation including a scanning mobility particle sizer (SMPS), a cloud condensation nuclei counter (CCNC), a humidified tandem differential mobility analyzer (H-TDMA), and an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The CAGE experiments focused on SOA

  7. New aerosol particles formation in the Sao Paulo Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Vela, Angel; Andrade, Maria de Fatima; Ynoue, Rita

    2016-04-01

    The Sao Paulo Metropolitan Area (SPMA), in the southeast region of Brazil, is considered a megalopolis comprised of Sao Paulo city and more 38 municipalities. The air pollutant emissions in the SPMA are related to the burning of the fuels: etanol, gasohol (gasoline with 25% ethanol) and diesel. According to CETESB (2013), the road vehicles contributed up to about 97, 87, and 80% of CO, VOCs and NOx emissions in 2012, respectively, being most of NOx associated to diesel combustion and most of CO and VOCs from gasohol and ethanol combustion. Studies conducted on ambient air pollution in the SPMA have shown that black carbon (BC) explains 21% of mass concentration of PM2.5 compared with 40% of organic carbon (OC), 20% of sulfates, and 12% of soil dust (Andrade et al., 2012). Most of the observed ambient PM2.5 mass concentration usually originates from precursors gases such as sulphur dioxide (SO2), ammonia (NH3), nitrogen oxides (NOx) and VOCs as well as through the physico-chemical processes such as the oxidation of low volatile hydrocarbons transferring to the condensed phase (McMurry et al., 2004). The Weather Research and Forecasting with Chemistry model (WRF-Chem; Grell et al. 2005), configured with three nested grid cells: 75, 15, and 3 km, is used as photochemical modeling to describe the physico-chemical processes leading to evolution of particles number and mass size distribution from a vehicular emission model developed by the IAG-USP laboratory of Atmospheric Processes and based on statistical information of vehicular activity. The spatial and temporal distributions of emissions in the finest grid cell are based on road density products compiled by the OpenStreetMap project and measurements performed inside tunnels in the SPMA, respectively. WRF-Chem simulation with coupled primary aerosol (dust and sea-salt) and biogenic emission modules and aerosol radiative effects turned on is conducted as the baseline simulation (Case_0) to evaluate the model

  8. Detailed Chemical Characterization of Unresolved Complex Mixtures (UCM) inAtmospheric Organics: Insights into Emission Sources, Atmospheric Processing andSecondary Organic Aerosol Formation

    EPA Science Inventory

    Recent studies suggest that semivolatile organic compounds (SVOCs) are important precursors to secondary organic aerosol (SOA) in urban atmospheres. However, knowledge of the chemical composition of SVOCs is limited by current analytical techniques, which are typically unable to...

  9. Synergetic formation of secondary inorganic and organic aerosol: effect of SO2 and NH3 on particle formation and growth

    NASA Astrophysics Data System (ADS)

    Chu, Biwu; Zhang, Xiao; Liu, Yongchun; He, Hong; Sun, Yele; Jiang, Jingkun; Li, Junhua; Hao, Jiming

    2016-11-01

    The effects of SO2 and NH3 on secondary organic aerosol formation have rarely been investigated together, while the interactive effects between inorganic and organic species under highly complex pollution conditions remain uncertain. Here we studied the effects of SO2 and NH3 on secondary aerosol formation in the photooxidation system of toluene/NOx in the presence or absence of Al2O3 seed aerosols in a 2 m3 smog chamber. The presence of SO2 increased new particle formation and particle growth significantly, regardless of whether NH3 was present. Sulfate, organic aerosol, nitrate, and ammonium were all found to increase linearly with increasing SO2 concentrations. The increases in these four species were more obvious under NH3-rich conditions, and the generation of nitrate, ammonium, and organic aerosol increased more significantly than sulfate with respect to SO2 concentration, while sulfate was the most sensitive species under NH3-poor conditions. The synergistic effects between SO2 and NH3 in the heterogeneous process contributed greatly to secondary aerosol formation. Specifically, the generation of NH4NO3 was found to be highly dependent on the surface area concentration of suspended particles, and increased most significantly with SO2 concentration among the four species under NH3-rich conditions. Meanwhile, the absorbed NH3 might provide a liquid surface layer for the absorption and subsequent reaction of SO2 and organic products and, therefore, enhance sulfate and secondary organic aerosol (SOA) formation. This effect mainly occurred in the heterogeneous process and resulted in a significantly higher growth rate of seed aerosols compared to without NH3. By applying positive matrix factorisation (PMF) analysis to the AMS data, two factors were identified for the generated SOA. One factor, assigned to less-oxidised organic aerosol and some oligomers, increased with increasing SO2 under NH3-poor conditions, mainly due to the well-known acid catalytic effect of

  10. Puerto Rico - 2002 : field studies to resolve aerosol processes.

    SciTech Connect

    Gaffney, J. S.; Marley, N. A.; Ravelo, R.

    1999-10-05

    A number of questions remain concerning homogeneous aerosol formation by natural organics interacting with anthropogenic pollutants. For example, chlorine has been proposed as a potential oxidant in the troposphere because of its very high reactivity with a wide range of organics (Finlayson-Pitts, 1993). Indeed, sea salt aerosol in the presence of ozone has been shown to produce chlorine atoms in heterogeneous photochemical reactions under laboratory conditions. Whether chlorine can initiate oxidation of natural organics such as monoterpene hydrocarbons and can generate homogeneous nucleation or condensable material that contributes to aerosol loadings needs to be assessed. The nighttime reactions of ozone and nitrate radical can also result in monoterpene reactions that contribute to aerosol mass. We are currently planning field studies in Puerto Rico to assess these aerosol issues and other atmospheric chemistry questions. Puerto Rico has a number of key features that make it very attractive for a field study of this sort. The principal feature is the island's very regular meteorology and its position in the Caribbean Sea relative to the easterly trade winds. This meteorology and the island's rectangular shape (100 x 35 miles) make it highly suitable for simplification of boundary layer conditions. In addition, the long stretch between Puerto Rico and the nearest pollution sources in Africa and southern Europe make the incoming background air relatively clean and constant. Furthermore, Puerto Rico has approximately 3.5 million people with a very well defined source region and a central area of rain forest vegetation. These features make Puerto Rico an ideal locale for assessing aerosol processes. The following sections describe specific areas of atmospheric chemistry that can be explored during the proposed field study.

  11. SECONDARY ORGANIC AEROSOL FORMATION FROM THE OXIDATION OF AROMATIC HYDROCARBONS IN THE PRESENCE OF DRY SUBMICRON AMMONIUM SULFATE AEROSOL

    EPA Science Inventory

    A laboratory study was conducted to examine formation of secondary organic aerosols. A smog chamber system was developed for studying gas-aerosol interactions in a dynamic flow reactor. These experiments were conducted to investigate the fate of gas and aerosol phase compounds ...

  12. Laboratory Investigation of Organic Aerosol Formation from Aromatic Hydrocarbons

    DOE R&D Accomplishments Database

    Molina, Luisa T.; Molina, Mario J.; Zhang, Renyi

    2006-08-23

    Our work for this DOE funded project includes: (1) measurements of the kinetics and mechanism of the gas-phase oxidation reactions of the aromatic hydrocarbons initiated by OH; (2) measurements of aerosol formation from the aromatic hydrocarbons; and (3) theoretical studies to elucidate the OH-toluene reaction mechanism using quantum-chemical and rate theories.

  13. Secondary Aerosol: Precursors and Formation Mechanisms. Technical Report on Grant

    SciTech Connect

    Weinstein-Lloyd, Judith B

    2009-05-04

    This project focused on studying trace gases that participate in chemical reactions that form atmospheric aerosols. Ammonium sulfate is a major constituent of these tiny particles, and one important pathway to sulfate formation is oxidation of dissolved sulfur dioxide by hydrogen peroxide in cloud, fog and rainwater. Sulfate aerosols influence the number and size of cloud droplets, and since these factors determine cloud radiative properties, sulfate aerosols also influence climate. Peroxide measurements, in conjunction with those of other gaseous species, can used to distinguish the contribution of in-cloud reaction to new sulfate aerosol formation from gas-phase nucleation reactions. This will lead to more reliable global climate models. We constructed and tested a new 4-channel fluorescence detector for airborne detection of peroxides. We integrated the instrument on the G-1 in January, 2006 and took a test flight in anticipation of the MAX-Mex field program, where we planned to fly under pressurized conditions for the first time. We participated in the 2006 Megacity Initiative: Local and Global Research Observations (MILAGRO) - Megacity Aerosol EXperiment Mexico City (MAX-Mex) field measurement campaign. Peroxide instrumentation was deployed on the DOE G-1 research aircraft based in Veracruz, and at the surface site at Tecamac University.

  14. Design of Nanomaterial Synthesis by Aerosol Processes

    PubMed Central

    Buesser, Beat; Pratsinis, Sotiris E.

    2013-01-01

    Aerosol synthesis of materials is a vibrant field of particle technology and chemical reaction engineering. Examples include the manufacture of carbon blacks, fumed SiO2, pigmentary TiO2, ZnO vulcanizing catalysts, filamentary Ni, and optical fibers, materials that impact transportation, construction, pharmaceuticals, energy, and communications. Parallel to this, development of novel, scalable aerosol processes has enabled synthesis of new functional nanomaterials (e.g., catalysts, biomaterials, electroceramics) and devices (e.g., gas sensors). This review provides an access point for engineers to the multiscale design of aerosol reactors for the synthesis of nanomaterials using continuum, mesoscale, molecular dynamics, and quantum mechanics models spanning 10 and 15 orders of magnitude in length and time, respectively. Key design features are the rapid chemistry; the high particle concentrations but low volume fractions; the attainment of a self-preserving particle size distribution by coagulation; the ratio of the characteristic times of coagulation and sintering, which controls the extent of particle aggregation; and the narrowing of the aggregate primary particle size distribution by sintering. PMID:22468598

  15. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds

    NASA Astrophysics Data System (ADS)

    Rudich, Yinon; Adler, Gabriela; Koop, Thomas; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven; Haspel, Carynelisa

    2014-05-01

    In cold high altitude cirrus clouds and anvils of high convective clouds in the tropics and mid-latitudes, ice partciles that are exposed to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. In this talk we will describe experiements that simulate the atmospheric freeze-drying cycle of aerosols. We find that aerosols with high organic content can form highly porous particles (HPA) with a larger diameter and a lower density than the initial homogenous aerosol following ice subliation. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure follwoing ice sublimation. We find that the highly porous aerosol scatter solar light less efficiently than non-porous aerosol particles. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges.

  16. Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation

    NASA Astrophysics Data System (ADS)

    Gordon, Hamish; Sengupta, Kamalika; Rap, Alexandru; Duplissy, Jonathan; Frege, Carla; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K.; Wagner, Robert; Dunne, Eimear M.; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill S.; Dias, Antonio; Ehrhart, Sebastian; Fischer, Lukas; Flagan, Richard C.; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R.; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Monks, Sarah A.; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P.; Pringle, Kirsty J.; Richards, Nigel A. D.; Rissanen, Matti P.; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Scott, Catherine E.; Seinfeld, John H.; Sharma, Sangeeta; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander Lucas; Wagner, Andrea C.; Wagner, Paul E.; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M.; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Dommen, Josef; Donahue, Neil M.; Worsnop, Douglas R.; Baltensperger, Urs; Kulmala, Markku; Curtius, Joachim; Carslaw, Kenneth S.

    2016-10-01

    The magnitude of aerosol radiative forcing caused by anthropogenic emissions depends on the baseline state of the atmosphere under pristine preindustrial conditions. Measurements show that particle formation in atmospheric conditions can occur solely from biogenic vapors. Here, we evaluate the potential effect of this source of particles on preindustrial cloud condensation nuclei (CCN) concentrations and aerosol-cloud radiative forcing over the industrial period. Model simulations show that the pure biogenic particle formation mechanism has a much larger relative effect on CCN concentrations in the preindustrial atmosphere than in the present atmosphere because of the lower aerosol concentrations. Consequently, preindustrial cloud albedo is increased more than under present day conditions, and therefore the cooling forcing of anthropogenic aerosols is reduced. The mechanism increases CCN concentrations by 20-100% over a large fraction of the preindustrial lower atmosphere, and the magnitude of annual global mean radiative forcing caused by changes of cloud albedo since 1750 is reduced by 0.22 W m-2 (27%) to -0.60 W m-2. Model uncertainties, relatively slow formation rates, and limited available ambient measurements make it difficult to establish the significance of a mechanism that has its dominant effect under preindustrial conditions. Our simulations predict more particle formation in the Amazon than is observed. However, the first observation of pure organic nucleation has now been reported for the free troposphere. Given the potentially significant effect on anthropogenic forcing, effort should be made to better understand such naturally driven aerosol processes.

  17. Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation.

    PubMed

    Gordon, Hamish; Sengupta, Kamalika; Rap, Alexandru; Duplissy, Jonathan; Frege, Carla; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K; Wagner, Robert; Dunne, Eimear M; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill S; Dias, Antonio; Ehrhart, Sebastian; Fischer, Lukas; Flagan, Richard C; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Monks, Sarah A; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P; Pringle, Kirsty J; Richards, Nigel A D; Rissanen, Matti P; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Scott, Catherine E; Seinfeld, John H; Sharma, Sangeeta; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander Lucas; Wagner, Andrea C; Wagner, Paul E; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Dommen, Josef; Donahue, Neil M; Worsnop, Douglas R; Baltensperger, Urs; Kulmala, Markku; Curtius, Joachim; Carslaw, Kenneth S

    2016-10-25

    The magnitude of aerosol radiative forcing caused by anthropogenic emissions depends on the baseline state of the atmosphere under pristine preindustrial conditions. Measurements show that particle formation in atmospheric conditions can occur solely from biogenic vapors. Here, we evaluate the potential effect of this source of particles on preindustrial cloud condensation nuclei (CCN) concentrations and aerosol-cloud radiative forcing over the industrial period. Model simulations show that the pure biogenic particle formation mechanism has a much larger relative effect on CCN concentrations in the preindustrial atmosphere than in the present atmosphere because of the lower aerosol concentrations. Consequently, preindustrial cloud albedo is increased more than under present day conditions, and therefore the cooling forcing of anthropogenic aerosols is reduced. The mechanism increases CCN concentrations by 20-100% over a large fraction of the preindustrial lower atmosphere, and the magnitude of annual global mean radiative forcing caused by changes of cloud albedo since 1750 is reduced by [Formula: see text] (27%) to [Formula: see text] Model uncertainties, relatively slow formation rates, and limited available ambient measurements make it difficult to establish the significance of a mechanism that has its dominant effect under preindustrial conditions. Our simulations predict more particle formation in the Amazon than is observed. However, the first observation of pure organic nucleation has now been reported for the free troposphere. Given the potentially significant effect on anthropogenic forcing, effort should be made to better understand such naturally driven aerosol processes.

  18. Investigating secondary aerosol formation from agricultural amines and reduced sulfur compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gas phase amines and reduced sulfur compounds are often co-emitted from agricultural processes. Amines have been recently recognized as potentially major sources of agricultural aerosol formation, while the reduced sulfur compounds are largely ignored. There is a severe lack of knowledge and under...

  19. Formation and growth of indoor air aerosol particles as a result of D-limonene oxidation

    NASA Astrophysics Data System (ADS)

    Vartiainen, E.; Kulmala, M.; Ruuskanen, T. M.; Taipale, R.; Rinne, J.; Vehkamäki, H.

    Oxidation of D-limonene, which is a common monoterpene, can lead to new aerosol particle formation in indoor environments. Thus, products containing D-limonene, such as citrus fruits, air refresheners, household cleaning agents, and waxes, can act as indoor air aerosol particle sources. We released D-limonene into the room air by peeling oranges and measured the concentration of aerosol particles of three different size ranges. In addition, we measured the concentration of D-limonene, the oxidant, and the concentration of ozone, the oxidizing gas. Based on the measurements we calculated the growth rate of the small aerosol particles, which were 3-10 nm in diameter, to be about 6300nmh-1, and the losses of the aerosol particles that were due to the coagulation and condensation processes. From these, we further approximated the concentration of the condensable vapour and its source rate and then calculated the formation rate of the small aerosol particles. For the final result, we calculated the nucleation rate and the maximum number of molecules in a critical cluster. The nucleation rate was in the order of 105cm-3s-1 and the number of molecules in a critical-sized cluster became 1.2. The results were in agreement with the activation theory.

  20. Aerosol patterns and aerosol-cloud-interactions off the West African Coast based on the A-train formation

    NASA Astrophysics Data System (ADS)

    Fuchs, Julia; Bendix, Jörg; Cermak, Jan

    2013-04-01

    ). Satellite data from the A-train formation, including the Aqua, CloudSat and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) are used to analyze aerosol-cloud-interactions in detail, along with re-analysis data to constrain by meteorological conditions. Information about the vertical and geographical distribution of different aerosol types and cloud parameters will lead to a process-oriented understanding of these issues on a regional scale. Ackerman, A., Kirkpatrick, M., Stevens, D., & Toon, O. (2004). The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature, 432(December), 1014-1017. doi:10.1038/nature03137.1. Feingold, G. (2003). First measurements of the Twomey indirect effect using ground-based remote sensors. Geophysical Research Letters, 30(6), 1287. doi:10.1029/2002GL016633 IPCC. (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working group I to the Fourth Assessment Report of the Interfovernmental Panel on climate Change. Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Kaufman, Y. J., Koren, I., Remer, L. A., Tanré, D., Ginoux, P., & Fan, S. (2005). Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean. Journal of Geophysical Research, 110(D10), 1-16. doi:10.1029/2003JD004436 McFiggans, G., Artaxo, P., Baltensperger, U., Coe, H., Facchini, M. C., Feingold, G., Fuzzi, S., et al. (2006). The effect of physical and chemical aerosol properties on warm cloud droplet activation. Atmospheric Chemistry and Physics, 6(9), 2593-2649. doi:10.5194/acp-6-2593-2006

  1. Natural Radionuclides and Isotopic Signatures for Determining Carbonaceous Aerosol Sources, Aerosol Lifetimes, and Washout Processes

    SciTech Connect

    Gaffney, Jeffrey

    2012-12-12

    This is the final technical report. The project description is as follows: to determine the role of aerosol radiative forcing on climate, the processes that control their atmospheric concentrations must be understood, and aerosol sources need to be determined for mitigation. Measurements of naturally occurring radionuclides and stable isotopic signatures allow the sources, removal and transport processes, as well as atmospheric lifetimes of fine carbonaceous aerosols, to be evaluated.

  2. Formation mechanisms of water-soluble organic compounds in atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Huang, Xiaofeng

    Water-soluble organic compounds (WSOCs) are abundant in atmospheric aerosols, typically accounting for 20˜80% of particulate organic matter mass. Due to their affinity for water, WSOCs play an active role in aerosol-water interaction, and thus influence hygroscopic properties of aerosols, which in turn affect cloud formation processes and earth's radiation balance. Despite their abundance and significance, the sources of WSOCs are not well understood. Some primary sources (e.g., biomass burning) are known to emit WSOCs. It is also known from smog chamber experiments that photochemical oxidation of volatile organic compounds lead to less volatile oxygenated compounds that reside in the aerosol phase and are water-soluble because of the presence of polar functional groups. More recent work points to in-cloud/fog processes as a potentially important source for WSOCs. Work in this thesis aims to improve our understanding of the sources and formation mechanisms of WSOCs in atmospheric aerosols. Multiple approaches have been taken, including field measurements and controlled laboratory experiments. The thesis consists of the following four parts: (1) The formation mechanism of the most abundant WSOC species, oxalate, was investigated by synthesizing field measurement data obtained by our group and those available in the literature. Our measurements of aerosol sulfate and oxalate across a wide geographical span in the East Asia region, up to Beijing in the north and down to Hong Kong in the south, indicated that the two species were highly correlated. This good correlation was also found in measurements made elsewhere in the world by other researchers. Through a detailed analysis of factors influencing ambient oxalate, it can be argued that a common dominant formation pathway, likely in-cloud processing, explains the close tracking of the two chemically distinct species. This result also highlights the potential importance of in-cloud processing as a pathway leading to

  3. Secondary Organic Aerosol Production from Cloud Processing of Glycolaldehyde

    NASA Astrophysics Data System (ADS)

    Perri, M. J.; Seitzinger, S.; Turpin, B. J.

    2008-12-01

    Organic particulate matter (PM) formed in the atmosphere (secondary organic aerosol; SOA) is a substantial yet poorly understood contributor to atmospheric PM. Cloud processing is a newly recognized SOA formation pathway. This study investigates the potential for aqueous glycolaldehyde oxidation to produce low volatility products that are retained in the particle phase upon cloud droplet evaporation, increasing PM concentrations aloft. To our knowledge, this is the first confirmation that aqueous oxidation of glycolaldehyde via the hydroxyl radical forms glyoxal and glycolic acid, as previously assumed. Subsequent reactions form formic acid, glyoxylic acid, and oxalic acid as expected. Unexpected products include malonic acid, succinic acid, and higher molecular weight compounds, including oligomers. Predictions of aerosol yields based on these bulk aqueous experiments are presented. Due to (1) the large source strength of glycolaldehyde from precursors such as isoprene and ethene, (2) its water solubility, and (3) the aqueous formation of low volatility products, we predict that cloud processing of glycolaldehyde is an important source of SOA and that incorporation of this SOA formation pathway in chemical transport models will help explain the current under- prediction of organic PM concentrations.

  4. Secondary organic aerosol formation initiated from reactions between ozone and surface-sorbed squalene

    NASA Astrophysics Data System (ADS)

    Wang, Chunyi; Waring, Michael S.

    2014-02-01

    Previous research has shown that ozone reactions on surface-sorbed D-limonene can promote gas phase secondary organic aerosol (SOA) formation indoors. In this work, we conducted 13 steady state chamber experiments to measure the SOA formation entirely initiated by ozone reactions with squalene sorbed to glass, at chamber ozone of 57-500 ppb for two relative humidity (RH) conditions of 21% and 51%, in the absence of seed particles. Squalene is a nonvolatile compound that is a component of human skin oil and prevalent on indoor surfaces and in settled dust due to desquamation. The size distributions, mass and number secondary emission rates (SER), aerosol mass fractions (AMF), and aerosol number fractions (ANF) of formed SOA were quantified. The surface AMF and ANF are defined as the change in SOA mass or number formed, respectively, per ozone mass consumed by ozone-squalene reactions. All experiments but one exhibited nucleation and mass formation. Mass formation was relatively small in magnitude and increased with ozone, most notably for the RH = 51% experiments. The surface AMF was a function of the chamber aerosol concentration, and a multi-product model was fit using the 'volatility basis set' framework. Number formation was relatively strong at low ozone and low RH conditions. Though we cannot extrapolate our results because experiments were conducted at high air exchange rates, we speculate that this process may enhance particle number more than mass concentrations indoors.

  5. Novel insight on photochemistry at interfaces: potential impact on Seconday Aerosol Formation?

    NASA Astrophysics Data System (ADS)

    Rossignol, S.; George, C.; Aregahegn, K.

    2014-12-01

    Traditionally, the driving forces for SOA growth is believed to be the partitioning onto aerosol seeds of condensable gases, either emitted primarily or resulting from the gas phase oxidation of organic gases. However, even the most up-to-date models based on such mechanisms cannot account for the SOA mass observed in the atmosphere, suggesting the existence of other, yet unknown formation processes. The present study shows experimental evidence that particulate phase chemistry produces photo-sensitizers that lead to photo-induced formation and growth of secondary organic aerosol in the near UV and the presence of volatile organic compounds (VOC) such as terpenes. By means of an aerosol flow tube reactor equipped with Scanning Mobility Particle Sizer (SMPS), Differential Mobility Analyzer (DMA) and Condensation Particle Sizer (CPC), we identified that traces in the aerosol phase of glyoxal chemistry products, namely imidazole-2-carboxaldehyde (IC) are strong photo-sensitizers when irradiated with near-UV. In the presence of volatile organic compounds such as terpenes, this chemistry leads to a fast aerosol growth. Given the potential importance of this new photosensitized growth pathway for ambient OA, the related reaction mechanism was investigated at a molecular level. Bulk and flow tube experiments were performed to identify major products of the reaction of limonene with the triplet state of IC by direct (+/-)ESI-HRMS and UPLC/(+/-)HESI-HRMS analysis. Detection of recombination products of IC with limonene or with itself, in bulk and flow tube experiment ts, showed that IC is able to initiate a radical chemistry in the aerosol phase under realistic irradiation conditions. Furthermore, highly oxygenated limonene reaction products were detected, clearly explaining the observed OA growth. The chemistry of peroxy radicals derived from limonene upon addition of oxygen explains the formation of such low-volatile compounds without any traditional gas phase oxidant

  6. Stratospheric Aerosol--Observations, Processes, and Impact on Climate

    NASA Technical Reports Server (NTRS)

    Kresmer, Stefanie; Thomason, Larry W.; von Hobe, Marc; Hermann, Markus; Deshler, Terry; Timmreck, Claudia; Toohey, Matthew; Stenke, Andrea; Schwarz, Joshua P.; Weigel, Ralf; Fueglistaler, Stephan; Prata, Fred J.; Vernier, Jean-Paul; Schlager, Hans; Barnes, John E.; Antuna-Marrero, Juan-Carlos; Fairlie, Duncan; Palm, Mathias; Mahieu, Emmanuel; Notholt, Justus; Rex, Markus; Bingen, Christine; Vanhellemont, Filip; Bourassa, Adam; Plane, John M. C.; Klocke, Daniel; Carn, Simon A.; Clarisse, Lieven; Trickl, Thomas; Neeley, Ryan; James, Alexander D.; Rieger, Landon; Wilson, James C.; Meland, Brian

    2016-01-01

    Interest in stratospheric aerosol and its role in climate have increased over the last decade due to the observed increase in stratospheric aerosol since 2000 and the potential for changes in the sulfur cycle induced by climate change. This review provides an overview about the advances in stratospheric aerosol research since the last comprehensive assessment of stratospheric aerosol was published in 2006. A crucial development since 2006 is the substantial improvement in the agreement between in situ and space-based inferences of stratospheric aerosol properties during volcanically quiescent periods. Furthermore, new measurement systems and techniques, both in situ and space based, have been developed for measuring physical aerosol properties with greater accuracy and for characterizing aerosol composition. However, these changes induce challenges to constructing a long-term stratospheric aerosol climatology. Currently, changes in stratospheric aerosol levels less than 20% cannot be confidently quantified. The volcanic signals tend to mask any nonvolcanically driven change, making them difficult to understand. While the role of carbonyl sulfide as a substantial and relatively constant source of stratospheric sulfur has been confirmed by new observations and model simulations, large uncertainties remain with respect to the contribution from anthropogenic sulfur dioxide emissions. New evidence has been provided that stratospheric aerosol can also contain small amounts of nonsulfatematter such as black carbon and organics. Chemistry-climate models have substantially increased in quantity and sophistication. In many models the implementation of stratospheric aerosol processes is coupled to radiation and/or stratospheric chemistry modules to account for relevant feedback processes.

  7. Unique airborne measurements at the tropopause of Fukushima Xe-133, aerosol, and aerosol precursors indicate aerosol formation via homogeneous and cosmic ray induced nucleation

    NASA Astrophysics Data System (ADS)

    Schlager, Hans; Arnold, Frank; Aufmhoff, Heinfried; Minikin, Andreas; Baumann, Robert; Simgen, Hardy; Lindemann, Stefan; Rauch, Ludwig; Kaether, Frank; Pirjola, Liisa; Schumann, Ulrich

    2014-05-01

    We report unique airborne measurements, at the tropopause, of the Fukushima radio nuclide Xe-133, aerosol particles (size, shape, number concentration, volatility), aerosol precursor gases (particularly SO2, HNO3, H2O). Our measurements and accompanying model simulations indicate homogeneous and cosmic ray induced aerosol formation at the tropopause. Using an extremely sensitive detection method, we managed to detect Fukushima Xe-133, an ideal transport tracer, at and even above the tropopause. To our knowledge, these airborne Xe-133 measurements are the only of their kind. Our investigations represent a striking example how a pioneering measurement of a Fukshima radio nuclide, employing an extremely sensitive method, can lead to new insights into an important atmospheric process. After the Fukushima accidential Xe-133 release (mostly during 11-15 March 2011), we have conducted two aircraft missions, which took place over Central Europe, on 23 March and 11 April 2011. In the air masses, encountered by the research aircraft on 23 March, we have detected Fukushima Xe-133 by an extremely sensitive method, at and even above the tropopause. Besides increased concentrations of Xe-133, we have detected also increased concentrations of the gases SO2, HNO3, and H2O. The Xe-133 data and accompanying transport model simulations indicate that a West-Pacific Warm Conveyor Belt (WCB) lifted East-Asian planetary boundary layer air to and even above the tropopause, followed by relatively fast quasi-horizontal advection to Europe. Along with Xe-133, anthropogenic SO2, NOx (mostly released from East-Asian ground-level combustion sources), and warer vapour were also lifted by the WCB. After the lift, SO2 and NOx experienced efficient solar UV-radiation driven conversion to the important aerosol precursors gases H2SO4 and HNO3. Our investigations indicate that, increased concentrations of the gases SO2, HNO3, and H2O promoted homogeneous and cosmic ray induced aerosol formation at and

  8. Evaluating Aerosol Process Modules within the Framework of the Aerosol Modeling Testbed

    NASA Astrophysics Data System (ADS)

    Fast, J. D.; Velu, V.; Gustafson, W. I.; Chapman, E.; Easter, R. C.; Shrivastava, M.; Singh, B.

    2012-12-01

    Factors that influence predictions of aerosol direct and indirect forcing, such as aerosol mass, composition, size distribution, hygroscopicity, and optical properties, still contain large uncertainties in both regional and global models. New aerosol treatments are usually implemented into a 3-D atmospheric model and evaluated using a limited number of measurements from a specific case study. Under this modeling paradigm, the performance and computational efficiency of several treatments for a specific aerosol process cannot be adequately quantified because many other processes among various modeling studies (e.g. grid configuration, meteorology, emission rates) are different as well. The scientific community needs to know the advantages and disadvantages of specific aerosol treatments when the meteorology, chemistry, and other aerosol processes are identical in order to reduce the uncertainties associated with aerosols predictions. To address these issues, an Aerosol Modeling Testbed (AMT) has been developed that systematically and objectively evaluates new aerosol treatments for use in regional and global models. The AMT consists of the modular Weather Research and Forecasting (WRF) model, a series testbed cases for which extensive in situ and remote sensing measurements of meteorological, trace gas, and aerosol properties are available, and a suite of tools to evaluate the performance of meteorological, chemical, aerosol process modules. WRF contains various parameterizations of meteorological, chemical, and aerosol processes and includes interactive aerosol-cloud-radiation treatments similar to those employed by climate models. In addition, the physics suite from the Community Atmosphere Model version 5 (CAM5) have also been ported to WRF so that they can be tested at various spatial scales and compared directly with field campaign data and other parameterizations commonly used by the mesoscale modeling community. Data from several campaigns, including the 2006

  9. Limited Effect of Anthropogenic Nitrogen Oxides on Secondary Organic Aerosol Formation

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Unger, N.; Hodzic, A.; Knote, C. J.; Tilmes, S.; Emmons, L. K.; Lamarque, J. F.; Yu, P.

    2014-12-01

    Globally secondary organic aerosol (SOA) is mostly formed from biogenic vegetation emissions and as such is regarded as natural aerosol that cannot be reduced by emission control legislation. However, recent research implies that human activities facilitate SOA formation by affecting the amount of precursor emission, the chemical processing and the partitioning into the aerosol phase. Among the multiple human influences, nitrogen oxides (NO + NO2 = NOx) have been assumed to play a critical role in the chemical formation of low volatile compounds. The goal of this study is to improve the SOA scheme in the global NCAR Community Atmospheric Model version 4 with chemistry (CAM4-Chem) by implementing an updated 4-product Volatility Basis Set (VBS) scheme, and apply it to investigate the impact of anthropogenic NOx on SOA. We first compare three different SOA parameterizations: a 2-product model and the updated VBS model both with and without a SOA aging parameterization. Secondly we evaluate predicted organic aerosol amounts against surface measurement from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network and Aerosol Mass Spectrometer (AMS) measurements from 13 aircraft-based field campaigns. We then perform sensitivity experiments to examine how the SOA loading responds to a 50% reduction in anthropogenic NOx in different regions. We find limited SOA reductions of -2.3%, -5.6% and -4.0% for global, southeastern U.S. and Amazon NOx perturbations, respectively. To investigate the chemical processes in more detail, we also use a simplified box model with the same gas-phase chemistry and gas-aerosol partitioning mechanism as in CAM4-Chem to examine the SOA yields dependence on initial precursor emissions and background NOx level. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to buffering in chemical pathways (low- versus high-NOx pathways, OH versus NO3-initiated oxidation) and to offsetting

  10. SECONDARY ORGANIC AEROSOL FORMATION FROM THE IRRADIATION OF SIMULATED AUTOMOBILE EXHAUST

    EPA Science Inventory

    A laboratory study was conducted to evaluate the potential for secondary organic aerosol formation from emissions from automotive exhaust. The goal was to determine to what extent photochemical oxidation products of these hydrocarbons contribute to secondary organic aerosol (SO...

  11. Aerosol Formation In The Free Troposphere: Aircraft and Laboratory Measurements of Ionic and Gaseous Aerosol Precursors

    NASA Astrophysics Data System (ADS)

    Arnold, F.

    Aerosol formation seems to be very efficient in the upper troposphere (UT) as in- dicated by the frequent presence of numerous very small and therefore very young aerosol particles. Aersosol formation proceeds via nucleation of supersaturated low volatility trace gases (LVG) involving either a homogeneous (HONU) or an ion- induced (INU) mechanism. LVG experience rapid removal by condenstation on prefer- ably pre-existing aerosol particles and therefore LVG must be formed locally in the UT by photochemical conversion of precursor gases. A prominent example is gaseous sulfuric acid which is formed from SO2. This SO2 originates at least in the northern hemisphere mostly from fossil fuel combustion at ground-level and to some part origi- nates also from jet aircraft cruising in the UT. Other conceivable LVG's are low volatil- ity organic compounds. After formation by nucleation new particles may experience condensational growth involving LVG. Alternatively new particles may experience scavenging by attachment to pre-existing larger particles. The LVG-concentration has a strong influence on the growth-rate of new particles and thereby on the possibil- ity for growth to the size of a cloud condensation nucleus. Unfortunately present knowledge on free tropospheric LVG is rather poor. Here will be reported free tropo- spheric aircraft-based measurements of ionic and gaseous aerosol-precursors. These include both measurements in the "background" FT as well as measurements in ex- haust plumes of jet aircraft cruising in the UT. Furthermore accompanying new labo- ratory investigations of INU and measurements behind aircraft jet engines at ground- level will also be adressed.

  12. Secondary Organic Aerosol Formation from the Photooxidation of Naphthalene

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Chen, Y.; Wenger, J.

    2009-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous air pollutants that are released into the atmosphere as a by-product of combustion processes. The gas-phase PAHs can be chemically transformed via reaction with the hydroxyl radical to produce a range of oxidised organic compounds and other pollutants such as ozone and secondary organic aerosol (SOA). Epidemiological studies have established that exposure to this type of air pollution is associated with damaging effects on the respiratory and cardiovascular systems, and can lead to asthma, oxidative stress, health deterioration and even death. The major anthropogenic source of SOA in urban areas is believed to be aromatic hydrocarbons, which are present in automobile fuels and are used as solvents. As a result, research is currently being performed on the characterisation of SOA produced from aromatic hydrocarbons such as toluene, the xylenes and trimethylbenzenes. However, significant amounts of PAHs are also released into urban areas from automobile emissions and the combustion of fossil fuels for home heating. Naphthalene is regularly cited as the most abundant PAH in polluted urban air, with typical ambient air concentrations of 0.05 - 0.20 parts per billion (ppbV) in European cities, comparable to the xylenes. Since naphthalene reacts in an analogous manner to monocyclic aromatic compounds then it is also expected to make a significant contribution to ambient SOA. However, the yield and chemical composition of SOA produced from the atmospheric degradation of naphthalene is not well known. In this presentation, the effects of NOx level and relative humidity on the SOA formation from the phootooixdation of naphthalene will be presented. A series of experiments has been performed in a large atmospheric simulation chamber equipped with a gas chromatograph and analyzers for monitoring nitrogen oxides (NOx) and ozone. SOA formation from the photooxidation of naphthalene was measured using a scanning mobility

  13. Overview of the Cumulus Humilis Aerosol Processing Study

    SciTech Connect

    Berg, Larry K.; Berkowitz, Carl M.; Ogren, John A.; Hostetler, Chris A.; Ferrare, Richard; Dubey, Manvendra K.; Andrews, Elizabeth; Coulter, Richard L.; Hair, John; Hubbe, John M.; Lee, Yin-Nan; Mazzoleni, Claudio; Olfert, Jason N.; Springston, Stephen R.

    2009-11-30

    The primary goal of the Cumulus Humilis Aerosol Processing Study (CHAPS) was to characterize and contrast freshly emitted aerosols below, above, and within fields of cumuli, and to study changes to the cloud microphysical structure within these same cloud fields. The CHAPS is one of very few studies that have had an Aerosol Mass Spectrometer (AMS) sampling downstream of a counter-flow virtual impactor (CVI) inlet on an aircraft, allowing the examination of the chemical composition of the nucleated aerosols within the cumuli. The results from the CHAPS will provide insights into changes in the aerosol chemical and optical properties as aerosols move through shallow cumuli downwind of a moderately sized city. Three instrument platforms were employed during the CHAPS, including the U.S. Department of Energy Gulfstream-1 aircraft, which was equipped for in situ sampling of aerosol optical and chemical properties; the NASA-Langley King Air B200, which carried the downward looking NASA Langley High Spectral Resolution Lidar (HSRL) to measure profiles of aerosol backscatter, extinction, and depolarization between the King Air and the surface; and a surface site equipped for continuous in situ measurements of aerosol properties, profiles of aerosol backscatter, and meteorological conditions including total sky cover and thermodynamic profiles of the atmosphere. In spite of record precipitation over central Oklahoma, a total of eight research flights were made by the G-1, and eighteen by the B200, including special satellite verification flights timed to coincide with NASA satellite A-Train overpasses.

  14. Secondary Organic Aerosol Formation from the Ozonolysis of Cycloalkenes

    NASA Astrophysics Data System (ADS)

    Keywood, M.; Varutbangkul, V.; Gao, S.; Brechtel, F.; Bahreini, R.; Flagan, R. C.; Seinfeld, J. H.

    2003-12-01

    Secondary organic aerosol (SOA) is ubiquitous in the atmosphere being present in both urban and remote locations and exerting influence on human health, visibility and climate. Despite its importance, our understanding of SOA formation still lacks essential elements, limiting our understanding of the effect of SOA on climate forcing. While there do exist experimental data on SOA yields from both biogenic and anthropogenic precursor compounds, it is difficult to extend these results to predict the aerosol-forming potential of precursor compounds not yet studied. In response to this, a series of chamber experiments were carried out in the Caltech Indoor Chamber Facility, where compounds from the cycloalkene and methyl-substituted cycloalkene families were oxidized by ozone in the dark. The reactions were carried out in dual 28 m3 teflon chambers at 20oC and relative humidity below 5%, in the presence of ammonium sulfate seed aerosol. Cyclohexane was used as a scavenger to prevent side oxidation reactions with OH radicals, generated during ozonolysis of the cycloalkene. While cycloalkenes may not be important precursors for SOA formation in the ambient atmosphere, the system was chosen for its simplicity relative to atmospherically relevant SOA precursors such as the biogenic monoterpenes and sesquiterpenes. Cycloalkenes may be seen as the simplified structures on which these more complicated compounds are based. The compounds reacted included the cycloalkenes: cyclopentene, cyclohexene, cycloheptene and cyclooctene, the methyl-substituted cycloalkenes: 1-methyl-1-cyclohexene, 3-methyl-1-cyclohexene, 1-methy-1-cycloheptene and1-methyl-1-cylopentene, and other related classes of hydrocarbons: methylene cyclohexane and terpinolene. Data collected include aerosol yield, chemical composition and hygroscopic behaviour. The effect of the precursor hydrocarbon structure on these properties of the SOA will be discussed.

  15. A Study of Cloud Processing of Organic Aerosols Using Models and CHAPS Data

    SciTech Connect

    Ervens, Barbara

    2012-01-17

    The main theme of our work has been the identification of parameters that mostly affect the formation and modification of aerosol particles and their interaction with water vapor. Our detailed process model studies led to simplifications/parameterizations of these effects that bridge detailed aerosol information from laboratory and field studies and the need for computationally efficient expressions in complex atmospheric models. One focus of our studies has been organic aerosol mass that is formed in the atmosphere by physical and/or chemical processes (secondary organic aerosol, SOA) and represents a large fraction of atmospheric particulate matter. Most current models only describe SOA formation by condensation of low volatility (or semivolatile) gas phase products and neglect processes in the aqueous phase of particles or cloud droplets that differently affect aerosol size and vertical distribution and chemical composition (hygroscopicity). We developed and applied models of aqueous phase SOA formation in cloud droplets and aerosol particles (aqSOA). Placing our model results into the context of laboratory, model and field studies suggests a potentially significant contribution of aqSOA to the global organic mass loading. The second focus of our work has been the analysis of ambient data of particles that might act as cloud condensation nuclei (CCN) at different locations and emission scenarios. Our model studies showed that the description of particle chemical composition and mixing state can often be greatly simplified, in particular in aged aerosol. While over the past years many CCN studies have been successful performed by using such simplified composition/mixing state assumptions, much more uncertainty exists in aerosol-cloud interactions in cold clouds (ice or mixed-phase). Therefore we extended our parcel model that describes warm cloud formation by ice microphysics and explored microphysical parameters that determine the phase state and lifetime of

  16. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation.

    PubMed

    Shiraiwa, Manabu; Yee, Lindsay D; Schilling, Katherine A; Loza, Christine L; Craven, Jill S; Zuend, Andreas; Ziemann, Paul J; Seinfeld, John H

    2013-07-16

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process.

  17. Aerosol composition, sources and processes during wintertime in Beijing, China

    NASA Astrophysics Data System (ADS)

    Sun, Y. L.; Wang, Z. F.; Fu, P. Q.; Yang, T.; Jiang, Q.; Dong, H. B.; Li, J.; Jia, J. J.

    2013-05-01

    Air pollution is a major environmental concern during all seasons in the megacity of Beijing, China. Here we present the results from a winter study that was conducted from 21 November 2011 to 20 January 2012 with an Aerodyne Aerosol Chemical Speciation Monitor (ACSM) and various collocated instruments. The non-refractory submicron aerosol (NR-PM1) species vary dramatically with clean periods and pollution episodes alternating frequently. Compared to summer, wintertime submicron aerosols show much enhanced organics and chloride, which on average account for 52% and 5%, respectively, of the total NR-PM1 mass. All NR-PM1 species show quite different diurnal behaviors between summer and winter. For example, the wintertime nitrate presents a gradual increase during daytime and correlates well with secondary organic aerosol (OA), indicating a dominant role of photochemical production over gas-particle partitioning. Positive matrix factorization was performed on ACSM OA mass spectra, and identified three primary OA (POA) factors, i.e., hydrocarbon-like OA (HOA), cooking OA (COA), and coal combustion OA (CCOA), and one secondary factor, i.e., oxygenated OA (OOA). The POA dominates OA during wintertime, contributing 69%, with the other 31% being SOA. Further, all POA components show pronounced diurnal cycles with the highest concentrations occurring at nighttime. CCOA is the largest primary source during the heating season, on average accounting for 33% of OA and 17% of NR-PM1. CCOA also plays a significant role in chemically resolved particulate matter (PM) pollution as its mass contribution increases linearly as a function of NR-PM1 mass loadings. The SOA, however, presents a reverse trend, which might indicate the limited SOA formation during high PM pollution episodes in winter. The effects of meteorology on PM pollution and aerosol processing were also explored. In particular, the sulfate mass is largely enhanced during periods with high humidity because of fog

  18. Prominence Formation Processes

    NASA Astrophysics Data System (ADS)

    Welsch, B. T.; DeVore, C. R.; Antiochos, S. K.

    2005-01-01

    Martens and Zwaan (ApJ v. 558 872) have proposed a prominence/ filament formation model in which differential rotation drives reconnection between two initially unconnected active regions to form helical field lines that support mass and are held down by overlying field. Using an MHD solver with adaptive refinement we simulated this process by imposing a shear flow meant to mimic differential rotation on two bipolar flux distributions meant to mimic distinct active regions. In some runs the flux systems are initially potential while in others they have been twisted by footpoint rotation to inject helicity prior to imposing the shear flow. The resulting structures are studied to understand the role of helicity in the formation of prominence-like structures.

  19. Secondary Organic Aerosol (SOA) Formation from Hydroxyl Radical Oxidation and Ozonolysis of Monoterpenes

    NASA Astrophysics Data System (ADS)

    Zhao, Defeng; Kaminski, Martin; Schlag, Patrick; Fuchs, Hendrik; Acir, Ismail-Hakki; Bohn, Birger; Haeseler, Rolf; Kiendler-Scharr, Astrid; Rohrer, Franz; Tillmann, Ralf; Wang, Mingjin; Wegner, Robert; Wahner, Andreas; Mentel, Thomas

    2014-05-01

    Hydroxyl radical (OH) oxidation and ozonolysis are the two major pathways of daytime biogenic volatile organic compounds (VOCs) oxidation and secondary organic aerosol (SOA) formation. The pure OH oxidation of monoterpenes, an important biogenic VOC class, has seldom been investigated. In order to elucidate the importance of the reaction pathyways of the OH oxidation and ozonolysis and their roles in particle formation and growth, we investigated the particle formation of several common monoterpenes (alpha-pinene, beta-pinene, and limonene) in the large atmosphere simulation chamber SAPHIR in Juelich, Germany. The experiments were conducted for both OH dominant and pure ozonolysis case (in the presence of CO as OH scavenger) at ambient relevant conditions (low OA, low VOC and low NOx concentration). OH and ozone (O3) concentrations were measured so that the oxidation rates of OH and O3 with precursors were quantified. The particle formation and growth, aerosol yield, multi-generation reaction process and aerosol composition were analyzed. Pure ozonolysis generated a large amount of particles indicating ozonolysis plays an important role in particle formation as well as OH oxidation. In individual experiments, particle growth rates did not necessarily correlate with OH or O3 oxidation rates. However, comparing the growth rates at similar OH or O3 oxidation rates shows that generally, OH oxidation and ozonolysis have similar efficiency in particle growth. Multi-generation products are shown to be important in the OH oxidation experiment based on aerosol yield "growth curve" (Ng et al., 2006). The reaction process of OH oxidation experiments was analyzed as a function of OH dose to elucidate the role of functionalization and fragmentation. A novel analysis was developed to link the particle formation with the reaction with OH, which was also used to examine the role of functionalization and fragmentation in the particle formation by OH oxidation. These analyses show

  20. Organic photolysis reactions in tropospheric aerosols: effect on secondary organic aerosol formation and lifetime

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Madronich, S.; Kasibhatla, P. S.; Tyndall, G.; Aumont, B.; Jimenez, J. L.; Lee-Taylor, J.; Orlando, J.

    2015-08-01

    This study presents the first modeling estimates of the potential effect of gas- and particle-phase organic photolysis reactions on the formation and lifetime of secondary organic aerosols (SOAs). Typically only photolysis of smaller organic molecules (e.g., formaldehyde) for which explicit data exist is included in chemistry-climate models. Here, we specifically examine the photolysis of larger molecules that actively partition between the gas and particle phases. The chemical mechanism generator GECKO-A is used to explicitly model SOA formation from α-pinene, toluene, and C12 and C16 n-alkane reactions with OH at low and high NOx. Simulations are conducted for typical mid-latitude conditions and a solar zenith angle of 45° (permanent daylight). The results show that after 4 days of chemical aging under those conditions (equivalent to 8 days in the summer mid-latitudes), gas-phase photolysis leads to a moderate decrease in SOA yields, i.e., ~15 % (low NOx) to ~45 % (high NOx) for α-pinene, ~15 % for toluene, ~25 % for C12 n-alkane, and ~10 % for C16 n-alkane. The small effect of gas-phase photolysis on low-volatility n-alkanes such as C16 n-alkane is due to the rapid partitioning of early-generation products to the particle phase, where they are protected from gas-phase photolysis. Minor changes are found in the volatility distribution of organic products and in oxygen to carbon ratios. The decrease in SOA mass is increasingly more important after a day of chemical processing, suggesting that most laboratory experiments are likely too short to quantify the effect of gas-phase photolysis on SOA yields. Our results also suggest that many molecules containing chromophores are preferentially partitioned into the particle phase before they can be photolyzed in the gas phase. Given the growing experimental evidence that these molecules can undergo in-particle photolysis, we performed sensitivity simulations using an empirically estimated SOA photolysis rate of JSOA

  1. Organic photolysis reactions in tropospheric aerosols: effect on secondary organic aerosol formation and lifetime

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Madronich, S.; Kasibhatla, P. S.; Tyndall, G.; Aumont, B.; Jimenez, J. L.; Lee-Taylor, J.; Orlando, J.

    2015-03-01

    This study presents the first modeling estimates of the potential effect of gas- and particle-phase organic photolysis reactions on the formation and lifetime of secondary organic aerosols (SOA). Typically only photolysis of smaller organic molecules (e.g. formaldehyde) for which explicit data exist is included in chemistry-climate models. Here, we specifically examine the photolysis of larger molecules that actively partition between the gas and particle phases. The chemical mechanism generator GECKO-A is used to explicitly model SOA formation from α-pinene, toluene, and C12 and C16 n-alkane reactions with OH at low- and high-NOx. Simulations are conducted for typical mid-latitude conditions and a solar zenith angle of 45° (permanent daylight). The results show that after four days of chemical aging under those conditions (equivalent to eight days in the summer mid-latitudes), gas-phase photolysis leads to a moderate decrease in SOA yields i.e ~15% (low-NOx) to ~45% (high-NOx) for α-pinene, ~15% for toluene, ~25% for C12-alkane, and ~10% for C16-alkane. The small effect on low volatility n-alkanes such as C16-alkane is due to the rapid partitioning of early-generation products to the particle phase where they are assumed to be protected from gas-phase photolysis. Minor changes are found in the volatility distribution of organic products and in oxygen to carbon ratios. The decrease in SOA mass seems increasingly more important after a day of chemical processing, suggesting that most laboratory experiments are likely too short to quantify the effect of gas-phase photolysis on SOA yields. Our results also suggest that many molecules containing chromophores are preferentially partitioned into the particle phase before they can be photolyzed in the gas-phase. Given the growing experimental evidence that these molecules can undergo in-particle photolysis, we performed sensitivity simulations using an estimated SOA photolysis rate of JSOA=4 x 10-4JNO2. Modeling

  2. Explicit Simulation of Aerosol Physics in a Cloud-Resolving Model: Aerosol Transport and Processing in the Free Troposphere.

    NASA Astrophysics Data System (ADS)

    Ekman, Annica M. L.; Wang, Chien; Ström, Johan; Krejci, Radovan

    2006-02-01

    Large concentrations of small aerosols have been previously observed in the vicinity of anvils of convective clouds. A 3D cloud-resolving model (CRM) including an explicit size-resolving aerosol module has been used to examine the origin of these aerosols. Five different types of aerosols are considered: nucleation mode sulfate aerosols (here defined by 0 d 5.84 nm), Aitken mode sulfate aerosols (here defined by 5.84 nm d 31.0 nm), accumulation mode sulfate aerosols (here defined by d 31.0 nm), mixed aerosols, and black carbon aerosols.The model results suggest that approximately 10% of the initial boundary layer number concentration of Aitken mode aerosols and black carbon aerosols are present at the top of the convective cloud as the cloud reaches its decaying state. The simulated average number concentration of Aitken mode aerosols in the cloud anvil (1.6 × 104 cm-3) is in the same order of magnitude as observations. Thus, the model results strongly suggest that vertical convective transport, particularly during the active period of the convection, is responsible for a major part of the appearance of high concentrations of small aerosols (corresponding to the Aitken mode in the model) observed in the vicinity of cloud anvils.There is some formation of new aerosols within the cloud, but the formation is small. Nucleation mode aerosols are also efficiently scavenged through impaction scavenging by precipitation. Accumulation mode and mixed mode aerosols are efficiently scavenged through nucleation scavenging and their concentrations in the cloud anvil are either very low (mixed mode) or practically zero (accumulation mode).In addition to the 3D CRM, a box model, including important features of the aerosol module of the 3D model, has been used to study the formation of new aerosols after the cloud has evaporated. The possibility of these aerosols to grow to suitable cloud condensation or ice nuclei size is also examined. Concentrations of nucleation mode aerosols

  3. Aerosol physical properties and their impact on climate change processes

    NASA Astrophysics Data System (ADS)

    Strzalkowska, Agata; Zielinski, Tymon; Petelski, Tomasz; Makuch, Przemyslaw; Pakszys, Paulina; Markuszewski, Piotr; Piskozub, Jacek; Drozdowska, Violetta; Gutowska, Dorota; Rozwadowska, Anna

    2013-04-01

    Characterizing aerosols involves the specification of not only their spatial and temporal distributions but their multi-component composition, particle size distribution and physical properties as well. Due to their light attenuation and scattering properties, aerosols influence radiance measured by satellite for ocean color remote sensing. Studies of marine aerosol production and transport are important for many earth sciences such as cloud physics, atmospheric optics, environmental pollution studies, and interaction between ocean and atmosphere. It was one of the reasons for the growth in the number of research programs dealing with marine aerosols. Sea salt aerosols are among the most abundant components of the atmospheric aerosol, and thus it exerts a strong influence on radiation, cloud formation, meteorology and chemistry of the marine atmosphere. An accurate understanding and description of these mechanisms is crucial to modeling climate and climate change. This work provides information on combined aerosol studies made with lidars and sun photometers onboard the ship and in different coastal areas. We concentrate on aerosol optical thickness and its variations with aerosol advections into the study area. We pay special attention to the problem of proper data collection and analyses techniques. We showed that in order to detect the dynamics of potential aerosol composition changes it is necessary to use data from different stations where measurements are made using the same techniques. The combination of such information with air mass back-trajectories and data collected at stations located on the route of air masses provides comprehensive picture of aerosol variations in the study area both vertically and horizontally. Acknowledgements: The support for this study was provided by the project Satellite Monitoring of the Baltic Sea Environment - SatBałtyk founded by European Union through European Regional Development Fund contract No. POIG 01

  4. Formation characteristics of aerosol particles from pulverized coal pyrolysis in high-temperature environments.

    PubMed

    Chen, Wei-Hsin; Du, Shan-Wen; Yang, Hsi-Hsien; Wu, Jheng-Syun

    2008-05-01

    The formation characteristics of aerosol particles from pulverized coal pyrolysis in high temperatures are studied experimentally. By conducting a drop-tube furnace, fuel pyrolysis processes in industrial furnaces are simulated in which three different reaction temperatures of 1000, 1200, and 1400 degrees C are considered. Experimental observations indicate that when the reaction temperature is 1000 degrees C, submicron particles are produced, whereas the particle size is dominated by nanoscale for the temperature of 1400 degrees C. Thermogravimetric analysis of the aerosol particles stemming from the pyrolysis temperature of 1000 degrees C reveals that the thermal behavior of the aerosol is characterized by a three-stage reaction with increasing heating temperature: (1) a volatile-reaction stage, (2) a weak-reaction stage, and (3) a soot-reaction stage. However, with the pyrolysis temperature of 1400 degrees C, the volatile- and weak-reaction stages almost merge together and evolve into a chemical-frozen stage. The submicron particles (i.e., 1000 degrees C) are mainly composed of volatiles, tar, and soot, with the main component of the nanoscale particles (i.e., 1400 degrees C) being soot. The polycyclic aromatic hydrocarbons (PAHs) contained in the aerosols are also analyzed. It is found that the PAH content in generated aerosols decreases dramatically as the pyrolysis temperature increases.

  5. Formation of secondary organic aerosols from the ozonolysis of dihydrofurans

    NASA Astrophysics Data System (ADS)

    Diaz-de-Mera, Yolanda; Aranda, Alfonso; Bracco, Larisa; Rodriguez, Diana; Rodriguez, Ana

    2017-02-01

    In this work we report the study of the ozonolysis of 2,5-dihydrofuran and 2,3-dihydrofuran and the reaction conditions leading to the formation of secondary organic aerosols. The reactions have been carried out in a Teflon chamber filled with synthetic air mixtures at atmospheric pressure and room temperature. The ozonolysis only produced particles in the presence of SO2. Rising relative humidity from 0 to 40 % had no effect on the production of secondary organic aerosol in the case of 2,5-dihydrofuran, while it reduced the particle number and particle mass concentrations from the 2,3-dihydrofuran ozonolysis. The water-to-SO2 rate constant ratio for the 2,3-dihydrofuran Criegee intermediate was derived from the secondary organic aerosol (SOA) yields in experiments with different relative humidity values, kH2O/kSO2 = (9.8 ± 3.7) × 10-5. The experimental results show that SO3 may not be the only intermediate involved in the formation or growth of new particles in contrast to the data reported for other Criegee intermediate-SO2 reactions. For the studied reactions, SO2 concentrations remained constant during the experiments, behaving as a catalyst in the production of condensable products. Computational calculations also show that the stabilised Criegee intermediates from the ozonolysis reaction of both 2,5-dihydrofuran and 2,3-dihydrofuran may react with SO2, resulting in the regeneration of SO2 and the formation of low-volatility organic acids.

  6. Nucleation and growth processes of atmospheric aerosols and clouds

    SciTech Connect

    Schwartz, S.E.; McGraw, R.L.

    1995-11-01

    This project seeks to gain enhanced understanding of the rate of formation and growth of new particles and of cloud droplets as a function of pertinent controlling atmospheric variables, thereby permitting accurate representation of these processes in climate models. Aerosol size distributions are shaped by complex nucleation and growth and mixing processes that are difficult to represent in models, due to the need to accurately represent the evaporation/growth kinetics for each of the billions of discrete cluster sizes in the growth sequence, ranging from molecular clusters to particles of radius of several tenths of a micrometer or greater. A potentially very powerful means of solving this problem may be given by the method of moments (MOM), which tracks the time dependence of just the lower-order radial moments of the size distribution without requiring knowledge of the distribution itself.

  7. Plume Mechanics and Aerosol Growth Processes.

    DTIC Science & Technology

    1987-07-01

    UNIT ELEMENT NO. NO NO ACCESSION NO %. Aberdeen Proving Ground, MD 21010-5423 II 11 TITLE (include Security Classification) Plume Mechanics and...formulation and a finite element sc hem e ......... ..................... 192 c. Diffusion of aerosols in laminar flow in a cylindrical tube...The principal elements are the liquid oil and carrier gas metering systems, the oil vaporizer, coaxial jet system, and the sampling and aerosol

  8. The Aerosol Modeling Testbed: A community tool to objectively evaluate aerosol process modules

    SciTech Connect

    Fast, Jerome D.; Gustafson, William I.; Chapman, Elaine G.; Easter, Richard C.; Rishel, Jeremy P.; Zaveri, Rahul A.; Grell, Georg; Barth, Mary

    2011-03-02

    This study describes a new modeling paradigm that significantly advances how the third activity is conducted while also fully exploiting data and findings from the first two activities. The Aerosol Modeling Testbed (AMT) is a computational framework for the atmospheric sciences community that streamlines the process of testing and evaluating aerosol process modules over a wide range of spatial and temporal scales. The AMT consists of a fully-coupled meteorology-chemistry-aerosol model, and a suite of tools to evaluate the performance of aerosol process modules via comparison with a wide range of field measurements. The philosophy of the AMT is to systematically and objectively evaluate aerosol process modules over local to regional spatial scales that are compatible with most field campaigns measurement strategies. The performance of new treatments can then be quantified and compared to existing treatments before they are incorporated into regional and global climate models. Since the AMT is a community tool, it also provides a means of enhancing collaboration and coordination among aerosol modelers.

  9. Aerosol processing in stratiform clouds in ECHAM6-HAM

    NASA Astrophysics Data System (ADS)

    Neubauer, David; Lohmann, Ulrike; Hoose, Corinna

    2013-04-01

    Aerosol processing in stratiform clouds by uptake into cloud particles, collision-coalescence, chemical processing inside the cloud particles and release back into the atmosphere has important effects on aerosol concentration, size distribution, chemical composition and mixing state. Aerosol particles can act as cloud condensation nuclei. Cloud droplets can take up further aerosol particles by collisions. Atmospheric gases may also be transferred into the cloud droplets and undergo chemical reactions, e.g. the production of atmospheric sulphate. Aerosol particles are also processed in ice crystals. They may be taken up by homogeneous freezing of cloud droplets below -38° C or by heterogeneous freezing above -38° C. This includes immersion freezing of already immersed aerosol particles in the droplets and contact freezing of particles colliding with a droplet. Many clouds do not form precipitation and also much of the precipitation evaporates before it reaches the ground. The water soluble part of the aerosol particles concentrates in the hydrometeors and together with the insoluble part forms a single, mixed, larger particle, which is released. We have implemented aerosol processing into the current version of the general circulation model ECHAM6 (Stevens et al., 2013) coupled to the aerosol module HAM (Stier et al., 2005). ECHAM6-HAM solves prognostic equations for the cloud droplet number and ice crystal number concentrations. In the standard version of HAM, seven modes are used to describe the total aerosol. The modes are divided into soluble/mixed and insoluble modes and the number concentrations and masses of different chemical components (sulphate, black carbon, organic carbon, sea salt and mineral dust) are prognostic variables. We extended this by an explicit representation of aerosol particles in cloud droplets and ice crystals in stratiform clouds similar to Hoose et al. (2008a,b). Aerosol particles in cloud droplets are represented by 5 tracers for the

  10. Composition and formation of organic aerosol particles in the Amazon

    NASA Astrophysics Data System (ADS)

    Pöhlker, C.; Wiedemann, K.; Sinha, B.; Shiraiwa, M.; Gunthe, S. S.; Artaxo, P.; Gilles, M. K.; Kilcoyne, A. L. D.; Moffet, R. C.; Smith, M.; Weigand, M.; Martin, S. T.; Pöschl, U.; Andreae, M. O.

    2012-04-01

    We applied scanning transmission X-ray microscopy with near edge X-ray absorption fine structure (STXM-NEXAFS) analysis to investigate the morphology and chemical composition of aerosol samples from a pristine tropical environment, the Amazon Basin. The samples were collected in the Amazonian rainforest during the rainy season and can be regarded as a natural background aerosol. The samples were found to be dominated by secondary organic aerosol (SOA) particles in the fine and primary biological aerosol particles (PBAP) in the coarse mode. Lab-generated SOA-samples from isoprene and terpene oxidation as well as pure organic compounds from spray-drying of aqueous solution were measured as reference samples. The aim of this study was to investigate the microphysical and chemical properties of a tropical background aerosol in the submicron size range and its internal mixing state. The lab-generated SOA and pure organic compounds occurred as spherical and mostly homogenous droplet-like particles, whereas the Amazonian SOA particles comprised a mixture of homogeneous droplets and droplets having internal structures due to atmospheric aging. In spite of the similar morphological appearance, the Amazon samples showed considerable differences in elemental and functional group composition. According to their NEXAFS spectra, three chemically distinct types of organic material were found and could be assigned to the following three categories: (1) particles with a pronounced carboxylic acid (COOH) peak similar to those of laboratory-generated SOA particles from terpene oxidation; (2) particles with a strong hydroxy (COH) signal similar to pure carbohydrate particles; and (3) particles with spectra resembling a mixture of the first two classes. In addition to the dominant organic component, the NEXAFS spectra revealed clearly resolved potassium (K) signals for all analyzed particles. During the rainy season and in the absence of anthropogenic influence, active biota is

  11. Role of Aerosol Liquid Water in Secondary Organic Aerosol Formation from Volatile Organic Compounds.

    PubMed

    Faust, Jennifer A; Wong, Jenny P S; Lee, Alex K Y; Abbatt, Jonathan P D

    2017-02-07

    A key mechanism for atmospheric secondary organic aerosol (SOA) formation occurs when oxidation products of volatile organic compounds condense onto pre-existing particles. Here, we examine effects of aerosol liquid water (ALW) on relative SOA yield and composition from α-pinene ozonolysis and the photooxidation of toluene and acetylene by OH. Reactions were conducted in a room-temperature flow tube under low-NOx conditions in the presence of equivalent loadings of deliquesced (∼20 μg m(-3) ALW) or effloresced (∼0.2 μg m(-3) ALW) ammonium sulfate seeds at exactly the same relative humidity (RH = 70%) and state of wall conditioning. We found 13% and 19% enhancements in relative SOA yield for the α-pinene and toluene systems, respectively, when seeds were deliquesced rather than effloresced. The relative yield doubled in the acetylene system, and this enhancement was partially reversible upon drying the prepared SOA, which reduced the yield by 40% within a time scale of seconds. We attribute the high relative yield of acetylene SOA on deliquesced seeds to aqueous partitioning and particle-phase reactions of the photooxidation product glyoxal. The observed range of relative yields for α-pinene, toluene, and acetylene SOA on deliquesced and effloresced seeds suggests that ALW plays a complicated, system-dependent role in SOA formation.

  12. Model of lidar return from remote aerosol formation

    NASA Astrophysics Data System (ADS)

    Bryukhanova, V. V.; Samokhvalov, I. V.; Konoshonkin, A. V.

    2016-10-01

    Although the fact that lidars are used more than half a century, so many of the technical and methodological problem of the laser sensing has not been resolved. Laser sensing of optically dense aerosol formations (such as clouds or fog) belongs to the need of careful study. This is because the lidar signal from such formations is due not only single, but also multiple scattering, which significantly affects both the intensity value and the state of polarization of the received radiation. We have obtained an analytical expression for the time delay of the lidar return from the cloud layer due to multiple scattering. It is shown that the value of this lidar return is determined by the lower boundary, the microstructure and the thickness of the cloud layer, and a field-of-view of lidar receiving system.

  13. On the Physicochemical Processes Controlling Organic Aerosol Hygroscopicity

    NASA Astrophysics Data System (ADS)

    Petters, Sarah Suda

    Aerosol particles in the atmosphere can influence air quality and climate through their interaction with water. Aerosols are an important factor in cloud formation because they serve as cloud condensation nuclei (CCN). Organic compounds contribute a large fraction of the atmospheric aerosol mass but their ability to serve as CCN is less certain relative to inorganic compounds. Limitations of the measurement techniques and theoretical gaps in understanding have prevented agreement between predicted and measured CCN. One way to quantify a compound's CCN activity is by the hygroscopicity parameter, kappa. This dissertation presents research towards constraining the variability of organic aerosol kappa at the process level using three approaches: developing a measurement technique; measuring the dependence of kappa on molecular functional groups; and measuring the effect of surface active molecules on kappa for mixtures. Chapter 2 presents a Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) instrument to measure aerosol water uptake at high relative humidity (RH). Measurements up to 99% RH were achieved by improving the precision of aerosol sizing, actively controlling temperature, and calibrating RH between measurements. Osmotic coefficients were obtained within +/-20% for organic aerosols sized between 30 and 200 nanometers. These results may improve water uptake models by providing accurate data at high RH. Chapter 3 presents a study of the sensitivity of kappa to changes in molecular functional group composition for pure compounds. Molecules were synthesized via gas and liquidphase reactions varying the type and location of functional groups, purified by High Performance Liquid Chromatography (HPLC), and routed for CCN measurement. The hydroxyl (-OH) and carbon chain length (-CH2-) changed kappa most, where hydroxyl groups increase kappa and longer carbon chains decrease kappa. This suggests that hydroxyl groups and molecular size dominate the

  14. Laboratory Studies of Processing of Carbonaceous Aerosols by Atmospheric Oxidants/Hygroscopicity and CCN Activity of Secondary & Processed Primary Organic Aerosols

    SciTech Connect

    Ziemann, P.J.; Arey, J.; Atkinson, R.; Kreidenweis, S.M.; Petters, M.D.

    2012-06-13

    The atmosphere is composed of a complex mixture of gases and suspended microscopic aerosol particles. The ability of these particles to take up water (hygroscopicity) and to act as nuclei for cloud droplet formation significantly impacts aerosol light scattering and absorption, and cloud formation, thereby influencing air quality, visibility, and climate in important ways. A substantial, yet poorly characterized component of the atmospheric aerosol is organic matter. Its major sources are direct emissions from combustion processes, which are referred to as primary organic aerosol (POA), or in situ processes in which volatile organic compounds (VOCs) are oxidized in the atmosphere to low volatility reaction products that subsequent condense to form particles that are referred to as secondary organic aerosol (SOA). POA and VOCs are emitted to the atmosphere from both anthropogenic and natural (biogenic) sources. The overall goal of this experimental research project was to conduct laboratory studies under simulated atmospheric conditions to investigate the effects of the chemical composition of organic aerosol particles on their hygroscopicity and cloud condensation nucleation (CCN) activity, in order to develop quantitative relationships that could be used to more accurately incorporate aerosol-cloud interactions into regional and global atmospheric models. More specifically, the project aimed to determine the products, mechanisms, and rates of chemical reactions involved in the processing of organic aerosol particles by atmospheric oxidants and to investigate the relationships between the chemical composition of organic particles (as represented by molecule sizes and the specific functional groups that are present) and the hygroscopicity and CCN activity of oxidized POA and SOA formed from the oxidation of the major classes of anthropogenic and biogenic VOCs that are emitted to the atmosphere, as well as model hydrocarbons. The general approach for this project was

  15. Combined effects of organic aerosol loading and fog processing on organic aerosols oxidation, composition, and evolution.

    PubMed

    Chakraborty, Abhishek; Gupta, Tarun; Tripathi, S N

    2016-12-15

    Chemical characterization of ambient non-refractory submicron aerosols (NR-PM1) was carried out in real time at Kanpur, India. The measurements were performed during the winter (December 2014 to February 2015), and comprised of two very distinct high and low aerosol loading periods coupled with prevalent foggy conditions. The average non-refractory submicron aerosol loading varied significantly from high (HL, ~240μg/m(3)) to low loading (LL, ~100μg/m(3)) period and was dominated by organic aerosols (OA) which contributed more than half (~60%) of the measured aerosol mass. OA source apportionment via positive matrix factorization (PMF) showed drastic changes in the composition of OA from HL to LL period. Overall, O/C (oxygen to carbon) ratios also varied significantly from HL (=0.59) to LL (=0.69) period. Fog episodes (n=17) studied here seem to be reducing the magnitude of the negative impact of OA loading on O/C ratio (OA loading and O/C ratio are anti-correlated, as higher OA loading allows gas to particle partitioning of relatively less oxidized organics) by 60% via aqueous processing. This study provided new insights into the combined effects of OA loading and fog aqueous processing on the evolution of ambient organic aerosols (OA) for the first time.

  16. simpleGAMMA v1.0 - a reduced model of secondary organic aerosol formation in the aqueous aerosol phase (aaSOA)

    NASA Astrophysics Data System (ADS)

    Woo, J. L.; McNeill, V. F.

    2015-06-01

    There is increasing evidence that the uptake and aqueous processing of water-soluble volatile organic compounds (VOCs) by wet aerosols or cloud droplets is an important source of secondary organic aerosol (SOA). We recently developed GAMMA (Gas-Aerosol Model for Mechanism Analysis), a zero-dimensional kinetic model that couples gas-phase and detailed aqueous-phase atmospheric chemistry for speciated prediction of SOA and organosulfate formation in cloud water or aqueous aerosols. Results from GAMMA simulations of SOA formation in aerosol water (aaSOA) (McNeill et al., 2012) indicate that it is dominated by two pathways: isoprene epoxydiol (IEPOX) uptake followed by ring-opening chemistry (under low-NOx conditions) and glyoxal uptake. This suggested that it is possible to model the majority of aaSOA mass using a highly simplified reaction scheme. We have therefore developed a reduced version of GAMMA, simpleGAMMA. Close agreement in predicted aaSOA mass is observed between simpleGAMMA and GAMMA under all conditions tested (between pH 1-4 and RH 40-80 %) after 12 h of simulation. simpleGAMMA is computationally efficient and suitable for coupling with larger-scale atmospheric chemistry models or analyzing ambient measurement data.

  17. Modeling Gas-phase Glyoxal and Associated Secondary Organic Aerosol Formation in a Megacity using WRF/Chem

    NASA Astrophysics Data System (ADS)

    Wang, K.; Hodzic, A.; Barth, M. C.; Jimenez, J. L.; Volkamer, R.; Ervens, B.; Zhang, Y.

    2011-12-01

    Organic aerosol (OA) as one of a major fine particulate matter in the atmosphere plays an important role in air pollution, human health, and climate forcing. OA is composed of directly emitted primary organic aerosol and chemically produced secondary organic aerosols (SOA). Despite much recent progress in understanding SOA formation, current air quality models cannot explain the magnitude and growth of atmospheric SOA, due to high uncertainties in sources, properties, and chemical reactions of precursors and formation pathways of SOA. Recent laboratory and modeling studies showed that glyoxal may serve as an important SOA precursor in the condensed solution of inorganic or organic aerosol particles (e.g., ammonium sulfate, fulvic acid, and amino acids). In this study, the Weather Research and Forecasting model with chemistry (WRF/Chem) is modified to account for the latest observed gas-phase yields of glyoxal from various volatile organic compounds (VOCs) and the associated SOA formation in the aqueous aerosol phase. The SOA formation in the aqueous aerosol phase is implemented using two approaches. In the first approach, two simplified parameterizations are used to represent the lumped particle-phase chemical processes under dark conditions and photochemical surface uptake. In the second approach, more detailed kinetic glyoxal reactions such as reversible glyoxal uptake, dimer formation of glyoxal, and oligomerization are treated and resolved explicitly. The updated WRF/Chem is assessed over the Mexico City and the surrounding region during March 2006 using the MILAGRO campaign data. Various observations such as organic matter from Aerodyne Aerosol Mass Spectrometer and VOCs from Proton-transfer Ion Trap Mass Spectrometry were compared. The preliminary results showed that the addition of the SOA formation from glyoxal in aqueous particles brings SOA predictions into a better agreement with field observations, in particular in presence of high relative humidity

  18. Formation and evolution of molecular products in α-pinene secondary organic aerosol.

    PubMed

    Zhang, Xuan; McVay, Renee C; Huang, Dan D; Dalleska, Nathan F; Aumont, Bernard; Flagan, Richard C; Seinfeld, John H

    2015-11-17

    Much of our understanding of atmospheric secondary organic aerosol (SOA) formation from volatile organic compounds derives from laboratory chamber measurements, including mass yield and elemental composition. These measurements alone are insufficient to identify the chemical mechanisms of SOA production. We present here a comprehensive dataset on the molecular identity, abundance, and kinetics of α-pinene SOA, a canonical system that has received much attention owing to its importance as an organic aerosol source in the pristine atmosphere. Identified organic species account for ∼58-72% of the α-pinene SOA mass, and are characterized as semivolatile/low-volatility monomers and extremely low volatility dimers, which exhibit comparable oxidation states yet different functionalities. Features of the α-pinene SOA formation process are revealed for the first time, to our knowledge, from the dynamics of individual particle-phase components. Although monomeric products dominate the overall aerosol mass, rapid production of dimers plays a key role in initiating particle growth. Continuous production of monomers is observed after the parent α-pinene is consumed, which cannot be explained solely by gas-phase photochemical production. Additionally, distinct responses of monomers and dimers to α-pinene oxidation by ozone vs. hydroxyl radicals, temperature, and relative humidity are observed. Gas-phase radical combination reactions together with condensed phase rearrangement of labile molecules potentially explain the newly characterized SOA features, thereby opening up further avenues for understanding formation and evolution mechanisms of α-pinene SOA.

  19. Formation and evolution of molecular products in α-pinene secondary organic aerosol

    PubMed Central

    Zhang, Xuan; McVay, Renee C.; Huang, Dan D.; Dalleska, Nathan F.; Aumont, Bernard; Flagan, Richard C.; Seinfeld, John H.

    2015-01-01

    Much of our understanding of atmospheric secondary organic aerosol (SOA) formation from volatile organic compounds derives from laboratory chamber measurements, including mass yield and elemental composition. These measurements alone are insufficient to identify the chemical mechanisms of SOA production. We present here a comprehensive dataset on the molecular identity, abundance, and kinetics of α-pinene SOA, a canonical system that has received much attention owing to its importance as an organic aerosol source in the pristine atmosphere. Identified organic species account for ∼58–72% of the α-pinene SOA mass, and are characterized as semivolatile/low-volatility monomers and extremely low volatility dimers, which exhibit comparable oxidation states yet different functionalities. Features of the α-pinene SOA formation process are revealed for the first time, to our knowledge, from the dynamics of individual particle-phase components. Although monomeric products dominate the overall aerosol mass, rapid production of dimers plays a key role in initiating particle growth. Continuous production of monomers is observed after the parent α-pinene is consumed, which cannot be explained solely by gas-phase photochemical production. Additionally, distinct responses of monomers and dimers to α-pinene oxidation by ozone vs. hydroxyl radicals, temperature, and relative humidity are observed. Gas-phase radical combination reactions together with condensed phase rearrangement of labile molecules potentially explain the newly characterized SOA features, thereby opening up further avenues for understanding formation and evolution mechanisms of α-pinene SOA. PMID:26578760

  20. Identifying precursors and aqueous organic aerosol formation pathways during the SOAS campaign

    NASA Astrophysics Data System (ADS)

    Sareen, Neha; Carlton, Annmarie G.; Surratt, Jason D.; Gold, Avram; Lee, Ben; Lopez-Hilfiker, Felipe D.; Mohr, Claudia; Thornton, Joel A.; Zhang, Zhenfa; Lim, Yong B.; Turpin, Barbara J.

    2016-11-01

    Aqueous multiphase chemistry in the atmosphere can lead to rapid transformation of organic compounds, forming highly oxidized, low-volatility organic aerosol and, in some cases, light-absorbing (brown) carbon. Because liquid water is globally abundant, this chemistry could substantially impact climate, air quality, and health. Gas-phase precursors released from biogenic and anthropogenic sources are oxidized and fragmented, forming water-soluble gases that can undergo reactions in the aqueous phase (in clouds, fogs, and wet aerosols), leading to the formation of secondary organic aerosol (SOAAQ). Recent studies have highlighted the role of certain precursors like glyoxal, methylglyoxal, glycolaldehyde, acetic acid, acetone, and epoxides in the formation of SOAAQ. The goal of this work is to identify additional precursors and products that may be atmospherically important. In this study, ambient mixtures of water-soluble gases were scrubbed from the atmosphere into water at Brent, Alabama, during the 2013 Southern Oxidant and Aerosol Study (SOAS). Hydroxyl (OH⚫) radical oxidation experiments were conducted with the aqueous mixtures collected from SOAS to better understand the formation of SOA through gas-phase followed by aqueous-phase chemistry. Total aqueous-phase organic carbon concentrations for these mixtures ranged from 92 to 179 µM-C, relevant for cloud and fog waters. Aqueous OH-reactive compounds were primarily observed as odd ions in the positive ion mode by electrospray ionization mass spectrometry (ESI-MS). Ultra high-resolution Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) spectra and tandem MS (MS-MS) fragmentation of these ions were consistent with the presence of carbonyls and tetrols. Products were observed in the negative ion mode and included pyruvate and oxalate, which were confirmed by ion chromatography. Pyruvate and oxalate have been found in the particle phase in many locations (as salts and complexes). Thus

  1. Secondary organic aerosol formation from gasoline vehicle emissions in a new mobile environmental reaction chamber

    NASA Astrophysics Data System (ADS)

    Platt, S. M.; El Haddad, I.; Zardini, A. A.; Clairotte, M.; Astorga, C.; Wolf, R.; Slowik, J. G.; Temime-Roussel, B.; Marchand, N.; Ježek, I.; Drinovec, L.; Močnik, G.; Möhler, O.; Richter, R.; Barmet, P.; Bianchi, F.; Baltensperger, U.; Prévôt, A. S. H.

    2013-09-01

    We present a new mobile environmental reaction chamber for the simulation of the atmospheric aging of different emission sources without limitation from the instruments or facilities available at any single site. Photochemistry is simulated using a set of 40 UV lights (total power 4 KW). Characterisation of the emission spectrum of these lights shows that atmospheric aging of emissions may be simulated over a range of temperatures (-7 to 25 °C). A photolysis rate of NO2, JNO2, of (8.0 ± 0.7) × 10-3 s-1 was determined at 25 °C. We demonstrate the utility of this new system by presenting results on the aging (OH = 12 × 106 cm-3 h) of emissions from a modern (Euro 5) gasoline car operated during a driving cycle (New European Driving Cycle, NEDC) on a chassis dynamometer in a vehicle test cell. Emissions from the entire NEDC were sampled and aged in the chamber. Total organic aerosol (OA; primary organic aerosol (POA) emission + secondary organic aerosol (SOA) formation) was (369.8-397.5)10-3 g kg-1 fuel, or (13.2-15.4) × 10-3 g km-1, after aging, with aged OA/POA in the range 9-15. A thorough investigation of the composition of the gas phase emissions suggests that the observed SOA is from previously unconsidered precursors and processes. This large enhancement in particulate matter mass from gasoline vehicle aerosol emissions due to SOA formation, if it occurs across a wider range of gasoline vehicles, would have significant implications for our understanding of the contribution of on-road gasoline vehicles to ambient aerosols.

  2. Oxidant supply and aqueous photochemical SOA formation in cloud droplets and aqueous aerosol

    NASA Astrophysics Data System (ADS)

    Turpin, B. J.; Ervens, B.; Lim, Y. B.

    2012-12-01

    Many recent laboratory, field and model studies point to significant contributions to the total secondary organic aerosol (SOA) budget from aqueous phase reactions in cloud droplets and aqueous aerosol particles. Laboratory studies of the photochemical oxidation of glyoxal and methylglyoxal in the aqueous phase show a strong dependence on the initial concentration of dissolved organics, with preferential formation of large molecules (dimers, oligomers) at the high concentrations found in ambient deliquesced aerosol particles. In such experimental studies OH radicals are produced in the aqueous phase (via hydrogen peroxide photolysis) and OH radical is assumed to be the major oxidant. An explicit aqueous photooxidation mechanism has been validated, in part, based on the observed temporal evolution of organic intermediates and products in these experiments. In this work, this mechanism was incorporated into multiphase process models (box, cloud parcel) in order to further explore aqueous SOA formation in dilute cloud droplets and concentrated aerosol particles. We found that the predicted SOA mass in both aqueous phases can be comparable despite the much lower liquid water content in aerosols, where oligomer formation is favored. Direct uptake from the gas phase was the largest source of OH radicals in the aqueous phase. In-situ production through the Fenton reaction (Fe), hydrogen peroxide and nitrate photolysis were minor sources. Since phase transfer is slower than the OH(aq) consumption by organics, modeled OH(aq) concentrations were smaller by 1-2 orders of magnitude than predicted based on thermodynamic equilibrium. Our model studies suggest that, unless there are substantial additional sources of OH radical in the aqueous phase, aqueous SOA formation will be oxidant limited. Since the phase transfer rate is a function of the drop (or particle) surface area, aqueous SOA formation may occur preferentially at or near the drop/particle surface (e.g., be surface

  3. Preliminary numerical study on the cumulus-stratus transition induced by the increase of formation rate of aerosols

    NASA Astrophysics Data System (ADS)

    Shima, Shin-ichiro; Hasegawa, Koichi; Kusano, Kanya

    2015-04-01

    The influence of aerosol-cloud interactions on the steady state of marine stratocumulus is investigated through a series of numerical simulations of an idealized meteorological system in which aerosols are formed constantly. We constructed the system by modifying the set-up based on the RICO composite case defined in van Zanten et al. (2011). The super-droplet method (SDM) (Shima, 2008; Shima et al., 2009) is used for the simulation of cloud microphysical processes. The SDM is a particle-based and probabilistic method, with which the time evolution of aerosol/cloud/precipitation particles are calculated in a unified and accurate manner. For the simulation of atmospheric fluid dynamical processes, the cloud resolving model CReSS (Tsuboki, 2008) is used, in which the quasi-compressible approximation and the sound mode splitting method are applied. The steady states of the system are compared changing the aerosol nucleation rate and the initial number density of aerosols. It is observed that the system gradually evolves to reach its final steady state in a few days, which is irrelevant to the initial number density of aerosols. A transition of the final steady state from cumuli to strati occurs when the aerosol formation rate is increased. Chemical reactions in the gas phase and the liquid phase are not yet incorporated in the model, and the numerical simulations are performed in two dimensions. For these limitations, the results obtained are still preliminary.

  4. Secondary organic aerosol formation from reaction of tertiary amines with nitrate radical

    NASA Astrophysics Data System (ADS)

    Erupe, M. E.; Price, D. J.; Silva, P. J.; Malloy, Q. G. J.; Qi, L.; Warren, B.; Cocker, D. R., III

    2008-09-01

    Secondary organic aerosol formation from the reaction of tertiary amines with nitrate radical was investigated in an indoor environmental chamber. Particle chemistry was monitored using a high resolution aerosol mass spectrometer while gas-phase species were detected using a proton transfer reaction mass spectrometer. Trimethylamine, triethylamine and tributylamine were studied. Results indicate that tributylamine forms the most aerosol mass followed by trimethylamine and triethylamine respectively. Spectra from the aerosol mass spectrometer indicate the formation of complex non-salt aerosol products. We propose a reaction mechanism that proceeds via abstraction of a proton by nitrate radical followed by RO2 chemistry. Rearrangement of the aminyl alkoxy radical through hydrogen shift leads to the formation of hydroxylated amides, which explain most of the higher mass ions in the mass spectra. These experiments show that oxidation of tertiary amines by nitrate radical may be an important night-time source of secondary organic aerosol.

  5. Key parameters controlling OH-initiated formation of secondary organic aerosol in the aqueous phase (aqSOA)

    NASA Astrophysics Data System (ADS)

    Ervens, Barbara; Sorooshian, Armin; Lim, Yong B.; Turpin, Barbara J.

    2014-04-01

    Secondary organic aerosol formation in the aqueous phase of cloud droplets and aerosol particles (aqSOA) might contribute substantially to the total SOA burden and help to explain discrepancies between observed and predicted SOA properties. In order to implement aqSOA formation in models, key processes controlling formation within the multiphase system have to be identified. We explore parameters affecting phase transfer and OH(aq)-initiated aqSOA formation as a function of OH(aq) availability. Box model results suggest OH(aq)-limited photochemical aqSOA formation in cloud water even if aqueous OH(aq) sources are present. This limitation manifests itself as an apparent surface dependence of aqSOA formation. We estimate chemical OH(aq) production fluxes, necessary to establish thermodynamic equilibrium between the phases (based on Henry's law constants) for both cloud and aqueous particles. Estimates show that no (currently known) OH(aq) source in cloud water can remove this limitation, whereas in aerosol water, it might be feasible. Ambient organic mass (oxalate) measurements in stratocumulus clouds as a function of cloud drop surface area and liquid water content exhibit trends similar to model results. These findings support the use of parameterizations of cloud-aqSOA using effective droplet radius rather than liquid water volume or drop surface area. Sensitivity studies suggest that future laboratory studies should explore aqSOA yields in multiphase systems as a function of these parameters and at atmospherically relevant OH(aq) levels. Since aerosol-aqSOA formation significantly depends on OH(aq) availability, parameterizations might be less straightforward, and oxidant (OH) sources within aerosol water emerge as one of the major uncertainties in aerosol-aqSOA formation.

  6. The role of anthropogenic species in Biogenic aerosol formation

    EPA Science Inventory

    Isoprene is a widely recognized source of organic aerosol in the southeastern United States. Models have traditionally represented isoprene-derived aerosol as semivolatile species formed from the initial isoprene + OH reaction. Recent laboratory and field studies indicate later g...

  7. Influence of Aerosol Chemical Composition on Heterogeneous Ice Formation under Mid-Upper Troposphere Conditions

    NASA Astrophysics Data System (ADS)

    Kanji, Z. A.; Niemand, M.; Saathoff, H.; Möhler, O.; Chou, C.; Abbatt, J.; Stetzer, O.

    2011-12-01

    T and lowest RH required for ice formation. The particles investigated were classified into three categories, mineral dust aerosols, hygroscopic and non-hygroscopic particles which included organic and inorganic salts and/or coatings. In addition results ice formation results from ozone aged mineral particles will be presented. It is observed that changing functional groups on the surface of the particles can inhibit ice formation in the deposition mode. The ice forming efficiency of mineral aerosols was observed to be the highest, requiring RH with respect to ice as low as 105% at 233 K. Hydrophobic particles were comparatively weaker at forming ice and required RH close to or above water saturation for ice formation via deposition/condensation mode freezing. The high ice nucleation activity of mineral aerosols suggest that they could play an important role in ice forming and therefore precipitation processes in the troposphere and may have in impact on global and regional climate.

  8. Concentration Effects and Ion Properties Controlling the Fractionation of Halides during Aerosol Formation

    NASA Technical Reports Server (NTRS)

    Guzman, Marcelo I.; Athalye, Richa R.; Rodriguez, Jose M.

    2012-01-01

    During the aerosolization process at the sea surface, halides are incorporated into aerosol droplets, where they may play an important role in tropospheric ozone chemistry. Although this process may significantly contribute to the formation of reactive gas phase molecular halogens, little is known about the environmental factors that control how halides selectively accumulate at the air-water interface. In this study, the production of sea spray aerosol is simulated using electrospray ionization (ESI) of 100 nM equimolar solutions of NaCl, NaBr, NaI, NaNO2, NaNO3, NaClO4, and NaIO4. The microdroplets generated are analyzed by mass spectrometry to study the comparative enrichment of anions (f (Isub x-)) and their correlation with ion properties. Although no correlation exists between f (sub x-) and the limiting equivalent ionic conductivity, the correlation coefficient of the linear fit with the size of the anions R(sub x-), dehydration free-energy ?Gdehyd, and polarizability alpha, follows the order: (R(sub x-)(exp -2)) > (R(sub x-)(exp -1)) >(R(sub x-) > delta G(sub dehyd) > alpha. The same pure physical process is observed in H2O and D2O. The factor f (sub x-) does not change with pH (6.8-8.6), counterion (Li+, Na+, K+, and Cs+) substitution effects, or solvent polarity changes in methanol - and ethanol-water mixtures (0 <= xH2O <= 1). Sodium polysorbate 20 surfactant is used to modify the structure of the interface. Despite the observed enrichment of I- on the air-water interface of equimolar solutions, our results of seawater mimic samples agree with a model in which the interfacial composition is increasingly enriched in I- < Br- < Cl- over the oceanic boundary layer due to concentration effects in sea spray aerosol formation.

  9. Kinetics, products, and mechanisms of secondary organic aerosol formation.

    PubMed

    Ziemann, Paul J; Atkinson, Roger

    2012-10-07

    Secondary organic aerosol (SOA) is formed in the atmosphere when volatile organic compounds (VOCs) emitted from anthropogenic and biogenic sources are oxidized by reactions with OH radicals, O(3), NO(3) radicals, or Cl atoms to form less volatile products that subsequently partition into aerosol particles. Once in particles, these organic compounds can undergo heterogenous/multiphase reactions to form more highly oxidized or oligomeric products. SOA comprises a large fraction of atmospheric aerosol mass and can have significant effects on atmospheric chemistry, visibility, human health, and climate. Previous articles have reviewed the kinetics, products, and mechanisms of atmospheric VOC reactions and the general chemistry and physics involved in SOA formation. In this article we present a detailed review of VOC and heterogeneous/multiphase chemistry as they apply to SOA formation, with a focus on the effects of VOC molecular structure on the kinetics of initial reactions with the major atmospheric oxidants, the subsequent reactions of alkyl, alkyl peroxy, and alkoxy radical intermediates, and the composition of the resulting products. Structural features of reactants and products discussed include compound carbon number; linear, branched, and cyclic configurations; the presence of C[double bond, length as m-dash]C bonds and aromatic rings; and functional groups such as carbonyl, hydroxyl, ester, hydroxperoxy, carboxyl, peroxycarboxyl, nitrate, and peroxynitrate. The intention of this review is to provide atmospheric chemists with sufficient information to understand the dominant pathways by which the major classes of atmospheric VOCs react to form SOA products, and the further reactions of these products in particles. This will allow reasonable predictions to be made, based on molecular structure, about the kinetics, products, and mechanisms of VOC and heterogeneous/multiphase reactions, including the effects of important variables such as VOC, oxidant, and NO

  10. Overview of the Cumulus Humilis Aerosol Processing Study.

    SciTech Connect

    Berg, L. K.; Berkowitz, C. M.; Ogren, J. A.; Hostetler, C. A.; Ferrare, R. A.; Dubey, M.; Andrews, E.; Coulter, R. L.; Hair, J. W.; Hubbe, J. M.Lee, Y. N.; Mazzoleni, C; Olfert, J; Springston, SR; Environmental Science Division; PNNL; NOAA Earth System Research Lab.; NASA Langley Research Center; LANL; BNL; Univ.of Alberta; Univ. of Colorado

    2009-11-01

    Aerosols influence climate directly by scattering and absorbing radiation and indirectly through their influence on cloud microphysical and dynamical properties. The Intergovernmental Panel on Climate Change (IPCC) concluded that the global radiative forcing due to aerosols is large and in general cools the planet. But the uncertainties in these estimates are also large due to our poor understanding of many of the important processes related to aerosols and clouds. To address this uncertainty an integrated strategy for addressing issues related to aerosols and aerosol processes was proposed. Using this conceptual framework, the Cumulus Humilis Aerosol Processing Study (CHAPS) is a stage 1 activity, that is, a detailed process study. The specific focus of CHAPS was to provide concurrent observations of the chemical composition of the activated [particles that are currently serving as cloud condensation nuclei (CCN)] and nonactivated aerosols, the scattering and extinction profiles, and detailed aerosol and droplet size spectra in the vicinity of Oklahoma City, Oklahoma, during June 2007. Numerous campaigns have examined aerosol properties downwind from large pollution sources, including the Megacity Initiative: Local and Global Research Observations (MILAGRO) campaign and the two of the three Aerosol Characterization Experiments, ACE-2 and ACE-Asia. Other studies conducted near cities have examined changes in both aerosols and clouds downwind of urban areas. For example wintertime stratiform clouds associated with the urban plumes of Denver, Colorado, and Kansas City, Missouri, have a larger number concentration and smaller median volume diameter of droplets than clouds that had not been affected by the urban plume. Likewise, a decrease in precipitation in polluted regions along the Front Range of the Rocky Mountains was discovered. In a modeling study, it was found that precipitation downwind of urban areas may be influenced by changes in aerosols as well as the

  11. Laboratory studies on secondary organic aerosol formation from terpenes.

    PubMed

    Iinuma, Yoshiteru; Böge, Olaf; Miao, Yunkun; Sierau, Berko; Gnauk, Thomas; Herrmann, Hartmut

    2005-01-01

    The formation of secondary organic aerosol (SOA) following the ozonolysis of terpene has been investigated intensively in recent years. The enhancement of SOA yields from the acid catalysed reactions of organics on aerosol surfaces or in the bulk particle phase has been receiving great attention. Recent studies show that the presence of acidic seed particles increases the SOA yield significantly (M. S. Jang and R. M. Kamens, Environ. Sci. Technol., 2001, 35, 4758, ref. 1; M. S. Jang, N. M. Czoschke, S. Lee and R. M. Kamens, Science, 2002, 298, 814, ref. 2; N. M. Czoschke, M. Jang and R. M. Kamens, Atmos. Environ., 2003, 37, 4287, ref. 3; M. S. Jang, B. Carroll, B. Chandramouli and R. M. Kamens, Environ. Sci. Technol., 2003, 37, 3828, ref. 4; Y. Iinuma, O. Böge, T. Gnauk and H. Herrmann, Atmos. Environ., 2004, 38, 761, ref. 5; S. Gao, M. Keywood, N. L. Ng, J. Surratt, V. Varutbangkul, R. Bahreini, R. C. Flagan and J. H. Seinfeld, J. Phys. Chem. A, 2004, 108, 10147, ref. 6). More detailed studies report the formation of higher molecular weight products in SOA (refs. 5 and 6; M. P. Tolocka, M. Jang, J. M. Ginter, F. J. Cox, R. M. Kamens and M. V. Johnston, Environ. Sci. Technol., 2004, 38, 1428, ref. 7; S. Gao, N. L. Ng, M. Keywood, V. Varutbangkul, R. Bahreini, A. Nenes, J. He, K. Y. Yoo, J. L. Beauchamp, R. P. Hodyss, R. C. Flagan and J. H. Seinfeld, Environ. Sci. Technol., 2004, 38, 6582, ref. 8) which could result in a non-reversible uptake of organics into the particle phase. Most of the past studies concentrated on the characterisation of the yields of enhanced SOA and its composition from ozonolysis of terpenes in the presence or absence of acidic and neutral seed particles. Recent findings from cyclohexene ozonolysis show that the presence of OH scavengers can also significantly influence the SOA yield. Our new results from the IfT chemistry department aerosol chamber on terpene ozonolysis in the presence of OH scavengers show that the presence of hydroxyl

  12. Size-resolved aerosol composition at an urban and a rural site in the Po Valley in summertime: implications for secondary aerosol formation

    NASA Astrophysics Data System (ADS)

    Sandrini, Silvia; van Pinxteren, Dominik; Giulianelli, Lara; Herrmann, Hartmut; Poulain, Laurent; Facchini, Maria Cristina; Gilardoni, Stefania; Rinaldi, Matteo; Paglione, Marco; Turpin, Barbara J.; Pollini, Francesca; Bucci, Silvia; Zanca, Nicola; Decesari, Stefano

    2016-09-01

    The aerosol size-segregated chemical composition was analyzed at an urban (Bologna) and a rural (San Pietro Capofiume) site in the Po Valley, Italy, during June and July 2012, by ion-chromatography (major water-soluble ions and organic acids) and evolved gas analysis (total and water-soluble carbon), to investigate sources and mechanisms of secondary aerosol formation during the summer. A significant enhancement of secondary organic and inorganic aerosol mass was observed under anticyclonic conditions with recirculation of planetary boundary layer air but with substantial differences between the urban and the rural site. The data analysis, including a principal component analysis (PCA) on the size-resolved dataset of chemical concentrations, indicated that the photochemical oxidation of inorganic and organic gaseous precursors was an important mechanism of secondary aerosol formation at both sites. In addition, at the rural site a second formation process, explaining the largest fraction (22 %) of the total variance, was active at nighttime, especially under stagnant conditions. Nocturnal chemistry in the rural Po Valley was associated with the formation of ammonium nitrate in large accumulation-mode (0.42-1.2 µm) aerosols favored by local thermodynamic conditions (higher relative humidity and lower temperature compared to the urban site). Nocturnal concentrations of fine nitrate were, in fact, on average 5 times higher at the rural site than in Bologna. The water uptake by this highly hygroscopic compound under high RH conditions provided the medium for increased nocturnal aerosol uptake of water-soluble organic gases and possibly also for aqueous chemistry, as revealed by the shifting of peak concentrations of secondary compounds (water-soluble organic carbon (WSOC) and sulfate) toward the large accumulation mode (0.42-1.2 µm). Contrarily, the diurnal production of WSOC (proxy for secondary organic aerosol) by photochemistry was similar at the two sites but

  13. Dicarboxylic acids, oxoacids, benzoic acid, α-dicarbonyls, WSOC, OC, and ions in spring aerosols from Okinawa Island in the western North Pacific Rim: size distributions and formation processes

    NASA Astrophysics Data System (ADS)

    Deshmukh, D. K.; Kawamura, K.; Lazaar, M.; Kunwar, B.; Boreddy, S. K. R.

    2015-09-01

    Size-segregated aerosols (9-stages from < 0.43 to > 11.3 μm in diameter) were collected at Cape Hedo, Okinawa in spring 2008 and analyzed for water-soluble diacids (C2-C12), ω-oxoacids (ωC2-ωC9), pyruvic acid, benzoic acid and α-dicarbonyls (C2-C3) as well as water-soluble organic carbon (WSOC), organic carbon (OC) and major ions. In all the size-segregated aerosols, oxalic acid (C2) was found as the most abundant species followed by malonic and succinic acids whereas glyoxylic acid (ωC2) was the dominant oxoacid and glyoxal (Gly) was more abundant than methylglyoxal. Diacids (C2-C5), ωC2 and Gly as well as WSOC and OC peaked at 0.65-1.1 μm in fine mode whereas azelaic (C9) and 9-oxononanoic (ωC9) acids peaked at 3.3-4.7 μm in coarse mode. Sulfate and ammonium are enriched in fine mode whereas sodium and chloride are in coarse mode. These results imply that water-soluble species in the marine aerosols could act as cloud condensation nuclei (CCN) to develop the cloud cover over the western North Pacific Rim. The organic species are likely produced by a combination of gas-phase photooxidation, and aerosol-phase or in-cloud processing during long-range transport. The coarse mode peaks of malonic and succinic acids were obtained in the samples with marine air masses, suggesting that they may be associated with the reaction on sea salt particles. Bimodal size distributions of longer-chain diacid (C9) and oxoacid (ωC9) with a major peak in the coarse mode suggest their production by photooxidation of biogenic unsaturated fatty acids via heterogeneous reactions on sea salt particles.

  14. Global aerosol formation and revised radiative forcing based on CERN CLOUD data

    NASA Astrophysics Data System (ADS)

    Gordon, H.; Carslaw, K. S.; Sengupta, K.; Dunne, E. M.; Kirkby, J.

    2015-12-01

    New particle formation in the atmosphere accounts for 40-70% of global cloud condensation nuclei (CCN). It is a complex process involving many precursors: sulphuric acid, ions, ammonia, and a wide range of natural and anthropogenic organic molecules. The CLOUD laboratory chamber experiment at CERN allows the contributions of different compounds to be disentangled in a uniquely well-controlled environment. To date, CLOUD has measured over 500 formation rates (Riccobono 2014, Kirkby 2015, Dunne 2015), under conditions representative of the planetary boundary layer and free troposphere. To understand the sensitivity of the climate to anthropogenic atmospheric aerosols, we must quantify historical aerosol radiative forcing. This requires an understanding of pre-industrial aerosol sources. Here we show pre-industrial nucleation over land usually involves organic molecules in the very first steps of cluster formation. The complexity of the organic vapors is a major challenge for theoretical approaches. Furthermore, with fewer sulphuric acid and ammonia molecules available to stabilize nucleating clusters in the pre-industrial atmosphere, ions from radon or galactic cosmic rays were probably more important than they are today. Parameterizations of particle formation rates determined in CLOUD as a function of precursor concentrations, temperature and ions are being used to refine the GLOMAP aerosol model (Spracklen 2005). The model simulates the growth, transport and loss of particles, translating nucleation rates to CCN concentrations. This allows us to better understand the effects of pre-industrial and present-day particle formation. I will present new results on global CCN based on CLOUD data, including estimates of anthropogenic aerosol radiative forcing, currently the most uncertain driver of climate change (IPCC 2013). References: Riccobono, F. et al, Science 344 717 (2014); Kirkby, J. et al, in review; Dunne, E. et al, in preparation; Spracklen, D. et al, Atmos

  15. Aerosol size distribution and radiative forcing response to anthropogenically driven historical changes in biogenic secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    D'Andrea, S. D.; Acosta Navarro, J. C.; Farina, S. C.; Scott, C. E.; Rap, A.; Farmer, D. K.; Spracklen, D. V.; Riipinen, I.; Pierce, J. R.

    2015-03-01

    Emissions of biogenic volatile organic compounds (BVOCs) have changed in the past millennium due to changes in land use, temperature, and CO2 concentrations. Recent reconstructions of BVOC emissions have predicted that global isoprene emissions have decreased, while monoterpene and sesquiterpene emissions have increased; however, all three show regional variability due to competition between the various influencing factors. In this work, we use two modeled estimates of BVOC emissions from the years 1000 to 2000 to test the effect of anthropogenic changes to BVOC emissions on secondary organic aerosol (SOA) formation, global aerosol size distributions, and radiative effects using the GEOS-Chem-TOMAS (Goddard Earth Observing System; TwO-Moment Aerosol Sectional) global aerosol microphysics model. With anthropogenic emissions (e.g., SO2, NOx, primary aerosols) turned off and BVOC emissions changed from year 1000 to year 2000 values, decreases in the number concentration of particles of size Dp > 80 nm (N80) of > 25% in year 2000 relative to year 1000 were predicted in regions with extensive land-use changes since year 1000 which led to regional increases in the combined aerosol radiative effect (direct and indirect) of > 0.5 W m-2 in these regions. We test the sensitivity of our results to BVOC emissions inventory, SOA yields, and the presence of anthropogenic emissions; however, the qualitative response of the model to historic BVOC changes remains the same in all cases. Accounting for these uncertainties, we estimate millennial changes in BVOC emissions cause a global mean direct effect of between +0.022 and +0.163 W m-2 and the global mean cloud-albedo aerosol indirect effect of between -0.008 and -0.056 W m-2. This change in aerosols, and the associated radiative forcing, could be a largely overlooked and important anthropogenic aerosol effect on regional climates.

  16. Introduction of the aerosol feedback process in the model BOLCHEM

    NASA Astrophysics Data System (ADS)

    Russo, Felicita; Maurizi, Alberto; D'Isidoro, Massimo; Tampieri, Francesco

    2010-05-01

    The effect of aerosols on the climate is still one of the least understood processes in the atmospheric science. The use of models to simulate the interaction between aerosols and climate can help understanding the physical processes that rule this interaction and hopefully predicting the future effects of anthropogenic aerosols on climate. In particular regional models can help study the effect of aerosols on the atmospheric dynamics on a local scale. In the work performed here we studied the feedback of aerosols in the radiative transfer calculation using the regional model BOLCHEM. The coupled meteorology-chemistry model BOLCHEM is based on the BOLAM meteorological model. The BOLAM dynamics is based on hydrostatic primitive equations, with wind components u and v, potential temperature ?, specific humidity q, surface pressure ps, as dependent variables. The vertical coordinate σ is terrain-following with variables distributed on a non-uniformly spaced staggered Lorentz grid. In the standard configuration of the model a collection of climatological aerosol optical depth values for each aerosol species is used for the radiative transfer calculation. In the feedback exercise presented here the aerosol optical depth was calculated starting from the modeled aerosol concentrations using an approximate Mie formulation described by Evans and Fournier (Evans, B.T.N. and G.R. Fournier, Applied Optics, 29, 1990). The calculation was done separately for each species and aerosol size distribution. The refractive indexes for the different species were taken from P. Stier's work (P. Stier et al., Atmos. Chem. Phys., 5, 2005) and the aerosol extinction obtained by Mie calculation were compared with the results reported by OPAC (M. Hess et al., Bull. Am. Met. Soc., 79, 1998). Two model runs, with and without the aerosol feedback, were performed to study the effects of the feedback on meteorological parameters. As a first setup of the model runs we selected a domain over the

  17. Processes Controlling the Seasonal Cycle of Arctic Aerosol Number and Size Distributions

    NASA Astrophysics Data System (ADS)

    Wentworth, G.; Croft, B.; Martin, R.; Leaitch, W. R.; Tunved, P.; Breider, T. J.; D'Andrea, S.; Pierce, J. R.; Murphy, J. G.; Kodros, J.; Abbatt, J.

    2015-12-01

    Measurements at high-Arctic sites show a strong seasonal cycle in aerosol number and size. The number of aerosols with diameters larger than 20 nm exhibits a maximum in late spring associated with a dominant accumulation mode, and a second maximum in the summer associated with a dominant Aitken mode. Seasonal-mean aerosol effective diameter ranges from about 160 nm in summer to 250 nm in winter. This study interprets these seasonal cycles with the GEOS-Chem-TOMAS global aerosol microphysics model. We find improved agreement with in situ measurements (SMPS) of aerosol size at both Alert, Nunavut, and Mt. Zeppelin, Svalbard following model developments: 1) increase the efficiency of wet scavenging in the Arctic summer and 2) represent coagulation between interstitial aerosols and aerosols activated to form cloud droplets. Our simulations indicate that the dominant summer-time Aitken mode is associated with increased efficiency of wet removal, which limits the number of larger aerosols and promotes local new-aerosol formation. We also find an important role of interstitial coagulation in clouds in the Arctic, which limits the number of Aitken-mode aerosols in the non-summer seasons when direct wet removal of these aerosols is inefficient. The summertime Arctic atmosphere is particularly pristine and strongly influenced by natural regional emissions which have poorly understood climate impacts. Especially influenced are the climatic roles of atmospheric particles and clouds. Here we present evidence that ammonia (NH3) emissions from migratory-seabird guano (dung) are the primary contributor to summertime free ammonia levels recently measured in the Canadian Arctic atmosphere. These findings suggest that ammonia from seabird guano is a key factor contributing to bursts of new-particle formation, which are observed every summer in the near-surface atmosphere at Alert, Canada. Chemical transport model simulations show that these newly formed particles can grow by vapour

  18. Organic nitrate aerosol formation via NO3 + biogenic volatile organic compounds in the southeastern United States

    NASA Astrophysics Data System (ADS)

    Ayres, B. R.; Allen, H. M.; Draper, D. C.; Brown, S. S.; Wild, R. J.; Jimenez, J. L.; Day, D. A.; Campuzano-Jost, P.; Hu, W.; de Gouw, J.; Koss, A.; Cohen, R. C.; Duffey, K. C.; Romer, P.; Baumann, K.; Edgerton, E.; Takahama, S.; Thornton, J. A.; Lee, B. H.; Lopez-Hilfiker, F. D.; Mohr, C.; Wennberg, P. O.; Nguyen, T. B.; Teng, A.; Goldstein, A. H.; Olson, K.; Fry, J. L.

    2015-12-01

    Gas- and aerosol-phase measurements of oxidants, biogenic volatile organic compounds (BVOCs) and organic nitrates made during the Southern Oxidant and Aerosol Study (SOAS campaign, Summer 2013) in central Alabama show that a nitrate radical (NO3) reaction with monoterpenes leads to significant secondary aerosol formation. Cumulative losses of NO3 to terpenes are correlated with increase in gas- and aerosol-organic nitrate concentrations made during the campaign. Correlation of NO3 radical consumption to organic nitrate aerosol formation as measured by aerosol mass spectrometry and thermal dissociation laser-induced fluorescence suggests a molar yield of aerosol-phase monoterpene nitrates of 23-44 %. Compounds observed via chemical ionization mass spectrometry (CIMS) are correlated to predicted nitrate loss to BVOCs and show C10H17NO5, likely a hydroperoxy nitrate, is a major nitrate-oxidized terpene product being incorporated into aerosols. The comparable isoprene product C5H9NO5 was observed to contribute less than 1 % of the total organic nitrate in the aerosol phase and correlations show that it is principally a gas-phase product from nitrate oxidation of isoprene. Organic nitrates comprise between 30 and 45 % of the NOy budget during SOAS. Inorganic nitrates were also monitored and showed that during incidents of increased coarse-mode mineral dust, HNO3 uptake produced nitrate aerosol mass loading at a rate comparable to that of organic nitrate produced via NO3 + BVOCs.

  19. Detection of Free Tropospheric Air Masses With High So2 and Aerosol Concentrations: Evidence For New Aerosol Particle Formation By H2so4/h2o Nucleation

    NASA Astrophysics Data System (ADS)

    Katragkou, E.; Wilhelm, S.; Kiendler, A.; Arnold, F.; Minikin, A.; Schlager, H.; van Velthoven, P.

    Sulfur dioxide and aerosol measurements were performed in the free troposphere (FT) and the Planetary Boundary Layer (PBL) above continental Europe. The measure- ments took place on board of the German research aircraft "Falcon" in 18 April 2001 as a part of the SCAVEX campaign. A novel aircraft based CIMS (Chemical Ion- ization Mass Spectrometry) instrument equipped with an ion trap mass spectrometer (ITMS) with a low detection limit (50pptv) and a high time resolution (1.3s) operated by MPI-K was used to perform the SO2 measurements. For the aerosol measurements DLR-IPA operated a Condensation Particle Size Analyzer, detecting particles with diameters d > 4, 7, 9 and 20nm and a PCASP-100X aerosol spectrometer probe (d > 100nm). In the measurements made mostly around 5000m altitude SO2 rich air masses were occasionally observed with SO2 VMR of up to 2900pptv. The strong SO2 pollu- tion was due to fast vertical transport of polluted continental PBL air and small-scale deep convection, as indicated by the 5-day backward 3D trajectories. These observa- tions of strong SO2 pollution have interesting implications for aerosol processes, in- cluding efficient formation of gaseous sulfuric acid (GSA) and new aerosol particles. They also imply fast growth of freshly nucleated aerosol particles, which increases the chance for new particles to grow to the size of a CCN. Our analysis indicates the occurrence of new particle formation by H2SO4/H2O nucleation and fast new particle growth by H2SO4/H2O condensation and self-coagulation in the different air masses encountered during the flight.

  20. Representing Cloud Processing of Aerosol in Numerical Models

    SciTech Connect

    Mechem, D.B.; Kogan, Y.L.

    2005-03-18

    The satellite imagery in Figure 1 provides dramatic examples of how aerosol influences the cloud field. Aerosol from ship exhaust can serve as nucleation centers in otherwise cloud-free regions, forming ship tracks (top image), or can enhance the reflectance/albedo in already cloudy regions. This image is a demonstration of the first indirect effect, in which changes in aerosol modulate cloud droplet radius and concentration, which influences albedo. It is thought that, through the effects it has on precipitation (drizzle), aerosol can also affect the structure and persistence of planetary boundary layer (PBL) clouds. Regions of cellular convection, or open pockets of cloudiness (bottom image) are thought to be remnants of strongly drizzling PBL clouds. Pockets of Open Cloudiness (POCs) (Stevens et al. 2005) or Albrecht's ''rifts'' are low cloud fraction regions characterized by anomalously low aerosol concentrations, implying they result from precipitation. These features may in fact be a demonstration of the second indirect effect. To accurately represent these clouds in numerical models, we have to treat the coupled cloud-aerosol system. We present the following series of mesoscale and large eddy simulation (LES) experiments to evaluate the important aspects of treating the coupled cloud-aerosol problem. 1. Drizzling and nondrizzling simulations demonstrate the effect of drizzle on a mesoscale forecast off the California coast. 2. LES experiments with explicit (bin) microphysics gauge the relative importance of the shape of the aerosol spectrum on the 3D dynamics and cloud structure. 3. Idealized mesoscale model simulations evaluate the relative roles of various processes, sources, and sinks.

  1. Primary and secondary aerosols in Beijing in winter: sources, variations and processes

    NASA Astrophysics Data System (ADS)

    Sun, Yele; Du, Wei; Fu, Pingqing; Wang, Qingqing; Li, Jie; Ge, Xinlei; Zhang, Qi; Zhu, Chunmao; Ren, Lujie; Xu, Weiqi; Zhao, Jian; Han, Tingting; Worsnop, Douglas R.; Wang, Zifa

    2016-07-01

    Winter has the worst air pollution of the year in the megacity of Beijing. Despite extensive winter studies in recent years, our knowledge of the sources, formation mechanisms and evolution of aerosol particles is not complete. Here we have a comprehensive characterization of the sources, variations and processes of submicron aerosols that were measured by an Aerodyne high-resolution aerosol mass spectrometer from 17 December 2013 to 17 January 2014 along with offline filter analysis by gas chromatography/mass spectrometry. Our results suggest that submicron aerosols composition was generally similar across the winter of different years and was mainly composed of organics (60 %), sulfate (15 %) and nitrate (11 %). Positive matrix factorization of high- and unit-mass resolution spectra identified four primary organic aerosol (POA) factors from traffic, cooking, biomass burning (BBOA) and coal combustion (CCOA) emissions as well as two secondary OA (SOA) factors. POA dominated OA, on average accounting for 56 %, with CCOA being the largest contributor (20 %). Both CCOA and BBOA showed distinct polycyclic aromatic hydrocarbons (PAHs) spectral signatures, indicating that PAHs in winter were mainly from coal combustion (66 %) and biomass burning emissions (18 %). BBOA was highly correlated with levoglucosan, a tracer compound for biomass burning (r2 = 0.93), and made a considerable contribution to OA in winter (9 %). An aqueous-phase-processed SOA (aq-OOA) that was strongly correlated with particle liquid water content, sulfate and S-containing ions (e.g. CH2SO2+) was identified. On average aq-OOA contributed 12 % to the total OA and played a dominant role in increasing oxidation degrees of OA at high RH levels (> 50 %). Our results illustrate that aqueous-phase processing can enhance SOA production and oxidation states of OA as well in winter. Further episode analyses highlighted the significant impacts of meteorological parameters on aerosol composition, size

  2. Processing of Ambient Aerosols During Fog Events: Role of Acidity

    NASA Astrophysics Data System (ADS)

    Chakraborty, A.; Gupta, T.; Tripathi, S. N.; Bhattu, D.

    2013-12-01

    Fog is a major processing and removal agent of ambient aerosols. Enhanced secondary organic aerosol (SOA) production has been reported during fog events indicating major role of aqueous processing. Present study was carried out in a heavily polluted city of Kanpur situated in Indo-Gangetic plain of India,from 02- 18 Nov, 2012 and then from 22 Dec, 2012 to 10 January, 2013. 12 fog events were identified from 22 Dec to 10 January based on low visibility (< 300 m) with high liquid water content (~ 0.04 g/m3) and termed as foggy period while remaining as non-foggy period. Foggy period typically showed very high RH (~95%), low temperatures (~2-6°C) compared to non-foggy period. An array of instruments were deployed during this campaign for real time measurement of aerosol physico-chemical properties - High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS), Scanning Mobility Particle Sizer (SMPS), Cloud Combination Probe (CCP), Cloud Condensation Nuclei counter (CCN), fog water collector and Vaisala RH & T sensor. Average aerosol loading during foggy period was 104×44 μg/m3, much higher than 73×49 μg/m3of non-foggy period, but during actual fog events the loading reduced to 85×23 μg/m3 indicating overall aerosol removal by fog. Overall aerosol composition during both the period was dominated by organics which constitutes about 60-70% of the total AMS mass followed by nitrate, but during foggy period sulfate was found to be increased many fold.HR analysis of AMS data revealed noticeable differences in the diurnal average values of O:C ratio between foggy and non -foggy period. Although diurnal O:C ratio was highest around noontime for both period but during fog events, night to early morning O:C ratio was 0.51×0.04, higher than that of non-foggy period 0.44×0.07, clearly indicating enhanced oxidation. AMS data also showed that mode size of all the species specially of organics and sulphate had shifted to a higher diameter during foggy period, an

  3. Aqueous phase processing of secondary organic aerosol from isoprene photooxidation

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Monod, A.; Tritscher, T.; Praplan, A. P.; DeCarlo, P. F.; Temime-Roussel, B.; Quivet, E.; Marchand, N.; Dommen, J.; Baltensperger, U.

    2012-07-01

    Transport of reactive air masses into humid and wet areas is highly frequent in the atmosphere, making the study of aqueous phase processing of secondary organic aerosol (SOA) very relevant. We have investigated the aqueous phase processing of SOA generated from gas-phase photooxidation of isoprene using a smog chamber. The SOA collected on filters was extracted by water and subsequently oxidized in the aqueous phase either by H2O2 under dark conditions or by OH radicals in the presence of light, using a photochemical reactor. Online and offline analytical techniques including SMPS, HR-AMS, H-TDMA, TD-API-AMS, were employed for physical and chemical characterization of the chamber SOA and nebulized filter extracts. After aqueous phase processing, the particles were significantly more hygroscopic, and HR-AMS data showed higher signal intensity at m/z 44 and a lower signal intensity at m/z 43, thus showing the impact of aqueous phase processing on SOA aging, in good agreement with a few previous studies. Additional offline measurement techniques (IC-MS, APCI-MS2 and HPLC-APCI-MS) permitted the identification and quantification of sixteen individual chemical compounds before and after aqueous phase processing. Among these compounds, small organic acids (including formic, glyoxylic, glycolic, butyric, oxalic and 2,3-dihydroxymethacrylic acid (i.e. 2-methylglyceric acid)) were detected, and their concentrations significantly increased after aqueous phase processing. In particular, the aqueous phase formation of 2-methylglyceric acid and trihydroxy-3-methylbutanal was correlated with the consumption of 2,3-dihydroxy-2-methyl-propanal, and 2-methylbutane-1,2,3,4-tetrol, respectively, and an aqueous phase mechanism was proposed accordingly. Overall, the aging effect observed here was rather small compared to previous studies, and this limited effect could possibly be explained by the lower liquid phase OH concentrations employed here, and/or the development of oligomers

  4. Monte Carlo simulation of two-component aerosol processes

    NASA Astrophysics Data System (ADS)

    Huertas, Jose Ignacio

    Aerosol processes have been extensively used for production of nanophase materials. However when temperatures and number densities are high, particle agglomeration is a serious drawback for these techniques. This problem can be addressed by encapsulating the particles with a second material before they agglomerate. These particles will agglomerate but the primary particles within them will not. When the encapsulation is later removed, the resulting powder will contain only weakly agglomerated particles. To demonstrate the applicability of the particle encapsulation method for the production of high purity unagglomerated nanosize materials, tungsten (W) and tungsten titanium alloy (W-Ti) particles were synthesized in a sodium/halide flame. The particles were characterized by XRD, SEM, TEM and EDAX. The particles appeared unagglomerated, cubic and hexagonal in shape, and had a size of 30-50 nm. No contamination was detected even after extended exposure to atmospheric conditions. The nanosized W and W-Ti particles were consolidated into pellets of 6 mm diameter and 6-8 mm long. Hardness measurements indicate values 4 times that of conventional tungsten. 100% densification was achieved by hipping the samples. To study the particle encapsulation method, a code to simulate particle formation in two component aerosols was developed. The simulation was carried out using a Monte Carlo technique. This approach allowed for the treatment of both probabilistic and deterministic events. Thus, the coagulation term of the general dynamic equation (GDE) was Monte Carlo simulated, and the condensation term was solved analytically and incorporated into the model. The model includes condensation, coagulation, sources, and sinks for two-component aerosol processes. The Kelvin effect has been included in the model as well. The code is general and does not suffer from problems associated with mass conservation, high rates of condensation and approximations on particle composition. It has

  5. Isotopic mass independent signature of black crusts: a proxy for atmospheric aerosols formation in the Paris area (France).

    NASA Astrophysics Data System (ADS)

    Genot, Isabelle; Martin, Erwan; Yang, David Au; De Rafelis, Marc; Cartigny, Pierre; Wing, Boswell; Le Gendre, Erwann; Bekki, Slimane

    2016-04-01

    In view of the negative forcing of the sulfate aerosols on climate, a more accurate understanding of the formation of these particles is crucial. Indeed, despite the knowledge of their effects, uncertainties remain regarding the formation of sulfate aerosols, particularly the oxidation processes of S-bearing gases. Since the discovery of oxygen and sulfur mass independent fractionation (O- and S-MIF) processes on Earth, the sulfate isotopic composition became essential to investigate the atmospheric composition evolution and its consequences on the climate and the biosphere. Large amount of S-bearing compounds (SO2 mainly) is released into the atmosphere by anthropogenic and natural sources. Their oxidation in the atmosphere generates sulfate aerosols, H2SO4, which precipitate on the earth surface mainly as acid rain. One consequence of this precipitation is the formation of black crust on buildings made of carbonate stones. Indeed the chemical alteration of CaCO3 by H2SO4 leads to gypsum (CaSO4·2H2O) concretions on building walls. Associated to other particles, gypsum forms black-crusts. Therefore, black crusts acts as 'sulfate aerosol traps', meaning that their isotopic composition reveals the composition and thus the source and formation processes of sulfate aerosols in the atmosphere in a specific region. In this study we collected 37 black crusts on a 300km NW-SE profile centered on Paris (France). In our samples, sulfate represent 40wt.% and other particles 60wt.% of the black crusts. After sulfate extraction from each samples we measured their O- and S-isotopes composition. Variations of about 10‰ in δ18O and δ34S are observed and both O-MIF (Δ17O from 0 to 1.4‰) and S-MIF (Δ33S from 0 to -0.3‰) compositions have been measured. In regards to these compositions we can discuss the source and formation (oxidation pathways) of the sulfate aerosols in troposphere above the Paris region that covers urban, rural and coastal environments. Furthermore

  6. Molecular-scale evidence of aerosol particle formation via sequential addition of HIO3

    NASA Astrophysics Data System (ADS)

    Sipilä, Mikko; Sarnela, Nina; Jokinen, Tuija; Henschel, Henning; Junninen, Heikki; Kontkanen, Jenni; Richters, Stefanie; Kangasluoma, Juha; Franchin, Alessandro; Peräkylä, Otso; Rissanen, Matti P.; Ehn, Mikael; Vehkamäki, Hanna; Kurten, Theo; Berndt, Torsten; Petäjä, Tuukka; Worsnop, Douglas; Ceburnis, Darius; Kerminen, Veli-Matti; Kulmala, Markku; O'Dowd, Colin

    2016-09-01

    Homogeneous nucleation and subsequent cluster growth leads to the formation of new aerosol particles in the atmosphere. The nucleation of sulfuric acid and organic vapours is thought to be responsible for the formation of new particles over continents, whereas iodine oxide vapours have been implicated in particle formation over coastal regions. The molecular clustering pathways that are involved in atmospheric particle formation have been elucidated in controlled laboratory studies of chemically simple systems, but direct molecular-level observations of nucleation in atmospheric field conditions that involve sulfuric acid, organic or iodine oxide vapours have yet to be reported. Here we present field data from Mace Head, Ireland, and supporting data from northern Greenland and Queen Maud Land, Antarctica, that enable us to identify the molecular steps involved in new particle formation in an iodine-rich, coastal atmospheric environment. We find that the formation and initial growth process is almost exclusively driven by iodine oxoacids and iodine oxide vapours, with average oxygen-to-iodine ratios of 2.4 found in the clusters. On the basis of this high ratio, together with the high concentrations of iodic acid (HIO3) observed, we suggest that cluster formation primarily proceeds by sequential addition of HIO3, followed by intracluster restructuring to I2O5 and recycling of water either in the atmosphere or on dehydration. Our study provides ambient atmospheric molecular-level observations of nucleation, supporting the previously suggested role of iodine-containing species in the formation of new aerosol particles, and identifies the key nucleating compound.

  7. Molecular-scale evidence of aerosol particle formation via sequential addition of HIO3.

    PubMed

    Sipilä, Mikko; Sarnela, Nina; Jokinen, Tuija; Henschel, Henning; Junninen, Heikki; Kontkanen, Jenni; Richters, Stefanie; Kangasluoma, Juha; Franchin, Alessandro; Peräkylä, Otso; Rissanen, Matti P; Ehn, Mikael; Vehkamäki, Hanna; Kurten, Theo; Berndt, Torsten; Petäjä, Tuukka; Worsnop, Douglas; Ceburnis, Darius; Kerminen, Veli-Matti; Kulmala, Markku; O'Dowd, Colin

    2016-09-22

    Homogeneous nucleation and subsequent cluster growth leads to the formation of new aerosol particles in the atmosphere. The nucleation of sulfuric acid and organic vapours is thought to be responsible for the formation of new particles over continents, whereas iodine oxide vapours have been implicated in particle formation over coastal regions. The molecular clustering pathways that are involved in atmospheric particle formation have been elucidated in controlled laboratory studies of chemically simple systems, but direct molecular-level observations of nucleation in atmospheric field conditions that involve sulfuric acid, organic or iodine oxide vapours have yet to be reported. Here we present field data from Mace Head, Ireland, and supporting data from northern Greenland and Queen Maud Land, Antarctica, that enable us to identify the molecular steps involved in new particle formation in an iodine-rich, coastal atmospheric environment. We find that the formation and initial growth process is almost exclusively driven by iodine oxoacids and iodine oxide vapours, with average oxygen-to-iodine ratios of 2.4 found in the clusters. On the basis of this high ratio, together with the high concentrations of iodic acid (HIO3) observed, we suggest that cluster formation primarily proceeds by sequential addition of HIO3, followed by intracluster restructuring to I2O5 and recycling of water either in the atmosphere or on dehydration. Our study provides ambient atmospheric molecular-level observations of nucleation, supporting the previously suggested role of iodine-containing species in the formation of new aerosol particles, and identifies the key nucleating compound.

  8. Halogen-induced organic aerosol (XOA) formation and decarboxylation of carboxylic acids by reactive halogen species - a time-resolved aerosol flow-reactor study

    NASA Astrophysics Data System (ADS)

    Ofner, Johannes; Zetzsch, Cornelius

    2013-04-01

    Reactive halogen species (RHS) are released to the atmosphere from various sources like photo-activated sea-salt aerosol and salt lakes. Recent studies (Cai et al., 2006 and 2008, Ofner et al., 2012) indicate that RHS are able to interact with SOA precursors similarly to common atmospheric oxidizing gases like OH radicals and ozone. The reaction of RHS with SOA precursors like terpenes forms so-called halogen-induced organic aerosol (XOA). On the other hand, RHS are also able to change the composition of functional groups, e.g. to initiate the decarboxylation of carboxylic acids (Ofner et al., 2012). The present study uses a 50 cm aerosol flow-reactor, equipped with a solar simulator to investigate the time-resolved evolution and transformation of vibrational features in the mid-infrared region. The aerosol flow-reactor is coupled to a home-made multi-reflection cell (Ofner et al., 2010), integrated into a Bruker IFS 113v FTIR spectrometer. The reactor is operated with an inlet feed (organic compound) and a surrounding feed (reactive halogen species). The moveable inlet of the flow reactor allows us to vary reaction times between a few seconds and up to about 3 minutes. Saturated vapours of different SOA precursors and carboxylic acids were fed into the flow reactor using the moveable inlet. The surrounding feed inside the flow reactor was a mixture of zero air with molecular chlorine as the precursor for the formation of reactive halogen species. Using this setup, the formation of halogen-induced organic aerosol could be monitored with a high time resolution using FTIR spectroscopy. XOA formation is characterized by hydrogen-atom abstraction, carbon-chlorine bond formation and later, even formation of carboxylic acids. Several changes of the entire structure of the organic precursor, caused by the reaction of RHS, are visible. While XOA formation is a very fast process, the decarboxylation of carboxylic acids, induced by RHS is rather slow. However, XOA formation

  9. Secondary organic aerosol formation from road vehicle emissions

    NASA Astrophysics Data System (ADS)

    Pieber, Simone M.; Platt, Stephen M.; El Haddad, Imad; Zardini, Alessandro A.; Suarez-Bertoa, Ricardo; Slowik, Jay G.; Huang, Ru-Jin; Hellebust, Stig; Temime-Roussel, Brice; Marchand, Nicolas; Drinovec, Luca; Mocnik, Grisa; Baltensperger, Urs; Astorga, Covadogna; Prévôt, André S. H.

    2014-05-01

    Organic aerosol particles (OA) are a major fraction of the submicron particulate matter. OA consists of directly emitted primary (POA) and secondary OA (SOA). SOA is formed in-situ in the atmosphere via the reaction of volatile organic precursors. The partitioning of SOA species depends not only on the exposure to oxidants, but for instance also on temperature, relative humidity (RH), and the absorptive mass chemical composition (presence of inorganics) and concentration. Vehicle exhaust is a known source of POA and likely contributes to SOA formation in urban areas [1;2]. This has recently been estimated by (i) analyzing ambient data from urban areas combined with fuel consumption data [3], (ii) by examining the chemical composition of raw fuels [4], or (iii) smog chamber studies [5, 6]. Contradictory and thus somewhat controversial results in the relative quantity of SOA from diesel vs. gasoline vehicle exhaust were observed. In order to elucidate the impact of variable ambient conditions on the potential SOA formation of vehicle exhaust, and its relation to the emitted gas phase species, we studied SOA formed from the exhaust of passenger cars and trucks as a function of fuel and engine type (gasoline, diesel) at different temperatures (T 22 vs. -7oC) and RH (40 vs. 90%), as well as with different levels of inorganic salt concentrations. The exhaust was sampled at the tailpipe during regulatory driving cycles on chassis dynamometers, diluted (200 - 400x) and introduced into the PSI mobile smog chamber [6], where the emissions were subjected to simulated atmospheric ageing. Particle phase instruments (HR-ToF-AMS, aethalometers, CPC, SMPS) and gas phase instruments (PTR-TOF-MS, CO, CO2, CH4, THC, NH3 and other gases) were used online during the experiments. We found that gasoline emissions, because of cold starts, were generally larger than diesel, especially during cold temperatures driving cycles. Gasoline vehicles also showed the highest SOA formation

  10. Secondary organic aerosols - formation and ageing studies in the SAPHIR chamber

    NASA Astrophysics Data System (ADS)

    Spindler, Christian; Müller, Lars; Trimborn, Achim; Mentel, Thomas; Hoffmann, Thorsten

    2010-05-01

    Secondary organic aerosol (SOA) formation from oxidation products of biogenic volatile organic compounds (BVOC) constitutes an important coupling between vegetation, atmospheric chemistry, and climate change. Such secondary organic aerosol components play an important role in particle formation in Boreal regions ((Laaksonen et al., 2008)), where biogenic secondary organic aerosols contribute to an overall negative radiative forcing, thus a negative feed back between vegetation and climate warming (Spracklen et al., 2008). Within the EUCAARI project we investigated SOA formation from mixtures of monoterpenes (and sesquiterpenes) as emitted typically from Boreal tree species in Southern Finland. The experiments were performed in the large photochemical reactor SAPHIR in Juelich at natural light and oxidant levels. Oxidation of the BVOC mixtures and SOA formation was induced by OH radicals and O3. The SOA was formed on the first day and then aged for another day. The resulting SOA was characterized by HR-ToF-AMS, APCI-MS, and filter samples with subsequent H-NMR, GC-MS and HPLC-MS analysis. The chemical evolution of the SOA is characterized by a fast increase of the O/C ratio during the formation process on the first day, stable O/C ratio during night, and a distinctive increase of O/C ratio at the second day. The increase of the O/C ratio on the second day is highly correlated to the OH dose and is accompanied by condensational growth of the particles. We will present simultaneous factor analysis of AMS times series (PMF, Ulbrich et al., 2009 ) and direct measurements of individual chemical species. We found that four factors were needed to represent the time evolution of the SOA composition (in the mass spectra) if oxidation by OH plays a mayor role. Corresponding to these factors we observed individual, representative molecules with very similar time behaviour. The correlation between tracers and AMS factors is astonishingly good as the molecular tracers

  11. Organic nitrate aerosol formation via NO3 + BVOC in the Southeastern US

    NASA Astrophysics Data System (ADS)

    Ayres, B. R.; Allen, H. M.; Draper, D. C.; Brown, S. S.; Wild, R. J.; Jimenez, J. L.; Day, D. A.; Campuzano-Jost, P.; Hu, W.; de Gouw, J.; Koss, A.; Cohen, R. C.; Duffey, K. C.; Romer, P.; Baumann, K.; Edgerton, E.; Takahama, S.; Thornton, J. A.; Lee, B. H.; Lopez-Hilfiker, F. D.; Mohr, C.; Goldstein, A. H.; Olson, K.; Fry, J. L.

    2015-06-01

    Gas- and aerosol-phase measurements of oxidants, biogenic volatile organic compounds (BVOC) and organic nitrates made during the Southern Oxidant and Aerosol Study (SOAS campaign, Summer 2013) in central Alabama show that nitrate radical (NO3) reaction with monoterpenes leads to significant secondary aerosol formation. Cumulative losses of NO3 to terpenes are calculated and correlated to gas and aerosol organic nitrate concentrations made during the campaign. Correlation of NO3 radical consumption to organic nitrate aerosol as measured by Aerosol Mass Spectrometry (AMS) and Thermal Dissociation - Laser Induced Fluorescence (TD-LIF) suggests a range of molar yield of aerosol phase monoterpene nitrates of 23-44 %. Compounds observed via chemical ionization mass spectrometry (CIMS) are correlated to predicted nitrate loss to terpenes and show C10H17NO5, likely a hydroperoxy nitrate, is a major nitrate oxidized terpene product being incorporated into aerosols. The comparable isoprene product C5H9NO5 was observed to contribute less than 0.5 % of the total organic nitrate in the aerosol-phase and correlations show that it is principally a gas-phase product from nitrate oxidation of isoprene. Organic nitrates comprise between 30 and 45 % of the NOy budget during SOAS. Inorganic nitrates were also monitored and showed that during incidents of increased coarse-mode mineral dust, HNO3 uptake produced nitrate aerosol mass loading comparable to that of organic nitrate produced via NO3 + BVOC.

  12. Secondary Organic Aerosol formation from the gas-phase ozonolysis of 3-methylcatechol and 4-methylcatechol

    NASA Astrophysics Data System (ADS)

    Coeur-Tourneur, Cécile; Foulon, Valentine; Laréal, Michel; Cassez, Andy; Zhao, Weixiong

    2010-05-01

    Secondary Organic Aerosol (SOA) formation during the ozonolysis of 3-methylcatechol (3-methyl-1,2-dihydroxybenzene) and 4-methylcatechol (3-methyl-1,2-dihydroxybenzene) was investigated using a simulation chamber (8 m3) at atmospheric pressure, room temperature (294 ± 2 K) and low relative humidity (5-10%). The initial mixing ratios were as follows (in ppb): 3-methylcatechol (194-1059), 4-methylcatechol (204-1188) and ozone (93-531). The ozone and methylcatechol concentrations were followed by UV photometry and GC-FID (Gas Chromatography - Flame ionization detector), respectively and the aerosol production was monitored using a SMPS (Scanning Mobility Particle Sizer). The SOA yields (Y) were determined as the ratio of the suspended aerosol mass corrected for wall losses (Mo) to the total reacted methylcatechol concentrations assuming a particle density of 1.4 g cm-3. The aerosol formation yield increases as the initial methylcatechol concentration increases, and leads to aerosol yields ranging from 32% to 67% and from 30% to 64% for 3-methylcatechol and 4-methylcatechol, respectively. Y is a strong function of Mo and the organic aerosol formation can be expressed by a one-product gas/particle partitioning absorption model. These data are comparable to those published in a recent study on secondary organic aerosol formation from catechol ozonolysis. To our knowledge, this work represents the first investigation of SOA formation from the ozone reaction with methylcatechols.

  13. Secondary Organic Aerosol formation from the gas-phase reaction of catechol with ozone

    NASA Astrophysics Data System (ADS)

    Coeur-Tourneur, C.; Tomas, A.; Guilloteau, A.; Henry, F.; Ledoux, F.; Visez, N.; Riffault, V.; Wenger, J. C.; Bedjanian, Y.; Foulon, V.

    2009-04-01

    The formation of secondary organic aerosol from the gas-phase reaction of catechol (1,2-dihydroxybenzene) with ozone has been studied in two smog chambers (at the LPCA in France and at the CRAC in Ireland). Aerosol production was monitored using a scanning mobility particle sizer. The overall organic aerosol yield (Y) was determined as the ratio of the suspended aerosol mass corrected for wall losses (Mo) to the total reacted catechol concentrations, assuming a particle density of 1.4 g cm-3. Analysis of the data clearly shows that Y is a strong function of Mo and that secondary organic aerosol formation can be expressed by a one-product gas/particle partitioning absorption model. The aerosol formation is affected by the initial catechol concentration, which leads to aerosol yields ranging from 17% to 86%. The aerosol yields determined in the LPCA and CRAC smog chambers were comparable and were also in accordance with those determined in a previous study performed in EUPHORE (EUropean PHOto REactor, Spain).

  14. The role of sulfate aerosol in the formation of cloudiness over the sea

    NASA Astrophysics Data System (ADS)

    Aloyan, A. E.; Yermakov, A. N.; Arutyunyan, V. O.

    2016-07-01

    We estimate the impact of sulfate aerosols on cloudiness formation over the sea in the middle troposphere and the involvement of these particles in the formation of polar stratospheric clouds (PSCs) in the lower stratosphere. The first of these problems is solved using a combined model of moist convection and the formation of cloudiness and sulfate aerosols in the troposphere and lower stratosphere over the sea, incorporating natural emissions of sulfur-containing compounds. We have found that a significant source of condensation nuclei in the troposphere is the photochemical transformation of biogenic dimethyl sulfide (in addition to NaCl). The results of numerical experiments indicate that the absence of sulfate aerosols hinders the cloudiness formation over the sea in the middle and upper troposphere. The problem of sulfate aerosol involvement in the formation of supercooled ternary solutions (STSs) (PSC Type Ib) in the lower stratosphere is solved using a mathematical model of global transport of multicomponent gas pollutants and aerosols in the atmosphere. Using the combined model, numerical experiments were performed for the winter season in both hemispheres. Sulfate aerosols were found to really participate in the formation of STS particles. Without their participation, the formation of STS particles in the lower stratosphere would be hindered. We present the results of numerical calculations and discuss the distribution of concentrations of gaseous nitric and sulfuric acids, as well as mass concentrations of these components in STS particles.

  15. Real-Time Secondary Aerosol Formation Measurements using a Photooxidation Reactor (PAM) and AMS in Urban Air and Biomass Smoke

    NASA Astrophysics Data System (ADS)

    Ortega, A. M.; Cubison, M.; Hayes, P. L.; Brune, W. H.; Hu, W.; Flynn, J. H.; Grossberg, N.; Lefer, B. L.; Alvarez, S. L.; Rappenglueck, B.; Bon, D.; Graus, M.; Warneke, C.; Gilman, J. B.; Kuster, W. C.; De Gouw, J. A.; Sullivan, A. P.; Jimenez, J. L.

    2011-12-01

    Recent field studies reveal large formation of secondary organic aerosol (SOA) under urban polluted ambient conditions, while SOA formation in biomass burning smoke appears to be variable but sometimes substantial. To study this formation in real-time, a Potential Aerosol Mass (PAM) photooxidation reactor was deployed with submicron aerosol size and chemical composition measurements during two studies: FLAME-3, a biomass-burning study at USDA Fire Sciences Laboratory in Missoula in 2009, MT and CalNex-LA in Pasadena, CA in 2010. A high-resolution aerosol mass spectrometer (HR-AMS) and a scanning mobility particle sizer (SMPS) alternated sampling unprocessed and PAM-processed aerosol. The PAM reactor produces OH concentrations up to 4 orders of magnitude higher than in ambient air, achieving equivalent aging of ~2 weeks in 5 minutes of processing. The OH intensity was also scanned every 20 min. in both field studies. Results show the value of PAM-AMS as a tool for in-situ evaluation of changes in OA concentration and composition due to SOA formation and POA oxidation. In FLAME-3, net SOA formation was variable among smokes from different biomasses; however, OA oxidation was always observed. The average SOA enhancement factor was 1.7 +/- 0.5 of the initial POA. Reactive VOCs such as toluene, monoterpenes, and acetaldehyde, as measured from a PIT-MS, decreased with increased PAM processing; however, formic acid, acetone, and some unidentified OVOCs increased after significant exposure to high oxidant levels suggesting multigenerational chemistry. Results from CalNex-LA show enhancement of SOA and inorganic aerosol from gas-phase precursors. This enhanced OA mass increase from PAM processing is maximum at night and correlates with trimethylbenzene concentrations, which indicates the dominance of short-lived SOA precursors in the LA Basin. A traditional SOA model with mostly aromatic precursors underpredicts the amount of SOA formed by about an order-of-magnitude, which

  16. Aerosols

    Atmospheric Science Data Center

    2013-04-17

    ... article title:  Aerosols over Central and Eastern Europe     View Larger Image ... last weeks of March 2003, widespread aerosol pollution over Europe was detected by several satellite-borne instruments. The Multi-angle ...

  17. Secondary organic aerosol formation from the irradiation of simulated automobile exhaust.

    PubMed

    Kleindienst, T E; Corse, E W; Li, W; McIver, C D; Conver, T S; Edney, E O; Driscoll, D J; Speer, R E; Weathers, W S; Tejada, S B

    2002-03-01

    A laboratory study was conducted to evaluate the potential for secondary organic aerosol formation from emissions from automotive exhaust. The goal was to determine to what extent photochemical oxidation products of these hydrocarbons contribute to secondary organic aerosol (SOA) and how well their formation is described by recently developed models for SOA formation. The quality of a surrogate was tested by comparing its reactivity with that from irradiations of authentic automobile exhaust. Experiments for secondary particle formation using the surrogate were conducted in a fixed volume reactor operated in a dynamic mode. The mass concentration of the aerosol was determined from measurements of organic carbon collected on quartz filters and was corrected for the presence of hydrogen, nitrogen, and oxygen atoms in the organic species. A functional group analysis of the aerosol made by Fourier transform infrared (FTIR) spectroscopy indicated

  18. Mechanisms of Formation of Secondary Organic Aerosols and Implications for Global Radiative Forcing

    SciTech Connect

    Seinfeld, John H.

    2011-12-02

    Organic material constitutes about 50% of global atmospheric aerosol mass, and the dominant source of organic aerosol is the oxidation of volatile hydrocarbons, to produce secondary organic aerosol (SOA). Understanding the formation of SOA is crucial to predicting present and future climate effects of atmospheric aerosols. The goal of this program is to significantly increase our understanding of secondary organic aerosol (SOA) formation in the atmosphere. Ambient measurements indicate that the amount of SOA in the atmosphere exceeds that predicted in current models based on existing laboratory chamber data. This would suggest that either the SOA yields measured in laboratory chambers are understated or that all major organic precursors have not been identified. In this research program we are systematically exploring these possibilities.

  19. Secondary Aerosol Formation in the planetary boundary layer observed by aerosol mass spectrometry on a Zeppelin NT

    NASA Astrophysics Data System (ADS)

    Rubach, Florian; Trimborn, Achim; Mentel, Thomas; Wahner, Andreas; Zeppelin Pegasos-Team 2012

    2014-05-01

    The airship Zeppelin NT is an airborne platform capable of flying at low speed throughout the entire planetary boundary layer (PBL). In combination with the high scientific payload of more than 1 ton, the Zeppelin is an ideal platform to study regional processes in the lowest layers of the atmosphere with high spatial resolution. Atmospheric aerosol as a medium long lived tracer substance is of particular interest due to its influence on the global radiation budget. Due its lifetime of up to several days secondaray aerosol at a certain location can result from local production or from transport processes. For aerosol measurements on a Zeppelin, a High-Resolution Time-of-Flight Aerosol Mass spectrometer (DeCarlo et al, 2006) was adapted to the requirements posed by an airborne platform. A weight reduction of over 20 % compared to the commercial instrument was achieved, while space occupation and footprint were each reduced by over 25 %. Within the PEGASOS project, the instrument was part of 10 measurement flight days over the course of seven weeks. Three flights were starting from Rotterdam, NL, seven flights were starting from Ozzano in the Po Valley, IT. Flight patterns included vertical profiles to study the dynamics of the PBL and cross sections through regions of interest to shed light on local production and transport processes. Analysis of data from transects between the Apennin and San Pietro Capofiume in terms of "residence time of air masses in the Po valley" indicates that aerosol nitrate has only local sources while aerosol sulfate is dominated by transport. The organic aerosol component has significant contributions of both processes. The local prodcution yields are commensurable with imultaneously observed precursor concentrations and oxidant levels. The PEGASOS project is funded by the European Commission under the Framework Programme 7 (FP7-ENV-2010-265148). DeCarlo, P.F. et al (2006), Anal. Chem., 78, 8281-8289.

  20. Formation of Secondary Organic Aerosol from Non-traditional Intermediate Volatility Organic Compounds

    NASA Astrophysics Data System (ADS)

    Donahue, N. M.; Presto, A. A.; Robinson, A. L.; Kroll, J. H.; Worsnop, D. R.

    2009-04-01

    Secondary organic aerosol (SOA) formation from 'traditional' precursors such as monoterpenes and alkylbenzenes has received substantial attention for the past decade. These traditional sources have relatively high emissions into the atmosphere, but they are also relatively volatile. As a consequence, the oxidation products from those precursors must be more than one million times less volatile in order to form SOA. We have recently begun to investigate the role of 'nontraditional' SOA precursors with much lower volatility than the traditional precursors. These intermediate volatility organic compounds (IVOC) are typically co-emitted with traditional primary organic aerosol (POA) sources at elevated temperatures, including biomass burning and internal combustion processes. While their emissions are much lower than the traditional precursors, the volatility reduction required of the reaction products is much less drastic, making high-yield SOA formation much more likely. Here we describe the formation of SOA from two precursors in the CMU environmental chamber - heptadecane and pentacosane - under high- and low-NOx conditions. Analysis of the resulting SOA with a high-resolution aerosol mass spectrometer coupled to a thermodenuder allows us to asses the oxidation state and volatility distribution of the condensible products, revealing a high degree of oxidation under high-NOx conditions where most of the organics remain in the vapor phase for at least 2 generations of oxidation chemistry, but a lower (though progressive) degree of oxidation under other conditions. These results will be place in context using a two-dimensional volatility basis set that incorporates both the volatility distribution and oxidation state of complex organic mixtures.

  1. Importance of Physico-Chemical Properties of Aerosols in the Formation of Arctic Ice Clouds

    NASA Astrophysics Data System (ADS)

    Keita, S. A.; Girard, E.

    2014-12-01

    Ice clouds play an important role in the Arctic weather and climate system but interactions between aerosols, clouds and radiation are poorly understood. Consequently, it is essential to fully understand their properties and especially their formation process. Extensive measurements from ground-based sites and satellite remote sensing reveal the existence of two Types of Ice Clouds (TICs) in the Arctic during the polar night and early spring. TIC-1 are composed by non-precipitating very small (radar-unseen) ice crystals whereas TIC-2 are detected by both sensors and are characterized by a low concentration of large precipitating ice crystals. It is hypothesized that TIC-2 formation is linked to the acidification of aerosols, which inhibit the ice nucleating properties of ice nuclei (IN). As a result, the IN concentration is reduced in these regions, resulting to a smaller concentration of larger ice crystals. Over the past 10 years, several parameterizations of homogeneous and heterogeneous ice nucleation have been developed to reflect the various physical and chemical properties of aerosols. These parameterizations are derived from laboratory studies on aerosols of different chemical compositions. The parameterizations are also developed according to two main approaches: stochastic (that nucleation is a probabilistic process, which is time dependent) and singular (that nucleation occurs at fixed conditions of temperature and humidity and time-independent). This research aims to better understand the formation process of TICs using a newly-developed ice nucleation parameterizations. For this purpose, we implement some parameterizations (2 approaches) into the Limited Area version of the Global Multiscale Environmental Model (GEM-LAM) and use them to simulate ice clouds observed during the Indirect and Semi-Direct Arctic Cloud (ISDAC) in Alaska. We use both approaches but special attention is focused on the new parameterizations of the singular approach. Simulation

  2. Present-day to 21st century projections of secondary organic aerosol (SOA) from a global climate-aerosol model with an explicit SOA formation scheme

    NASA Astrophysics Data System (ADS)

    Lin, G.; Penner, J. E.; Zhou, C.

    2014-12-01

    Secondary organic aerosol (SOA) has been shown to be an important component of non-refractory submicron aerosol in the atmosphere. The presence of SOA can influence the earth's radiative balance by contributing to the absorption and scattering of radiation and by altering the properties of clouds. Globally, a large fraction of SOA originates from biogenic volatile organic compounds (BVOCs), emissions of which depend on vegetation cover and climate. Temperature, CO2 concentration, and land use and land cover change have been shown to be major drivers of global isoprene emission changes in future climates. Additionally, the SOA concentration in the atmosphere not only depends on BVOC emissions, but is also controlled by anthropogenic emissions, temperature, precipitation and the oxidative capacity of the atmosphere. To project the change in SOA concentrations in the future requires a model that fully couples a BVOC emission model that represents these BVOC emission drivers, together with a sophisticated atmospheric model of SOA formation and properties. Recent studies have suggested that traditional parameterized SOA formation mechanisms that are tuned to fit smog chamber data do not fully account for the complexity and dynamics of real SOA system, calling into the question of the validity and completeness of previous SOA projections. In this study, we investigate the response of SOA mass to future physical climate change, to land cover and land use change, to changes in BVOCs emissions, and to changes in anthropogenic aerosol and gas species emissions for the year 2100, utilizing a global climate-aerosol model (CAM5-IMPACT): the NCAR Community Atmospheric Model (CAM5) coupled with a global aerosol model (IMPACT). The IMPACT model has sophisticated detailed process-based mechanisms describing aerosol microphysics and SOA formation through both gas phase and multiphase reactions. We perform sensitivity tests to isolate the relative roles of individual global change

  3. Aerosol chemistry in Titan's ionosphere: simultaneous growth and etching processes

    NASA Astrophysics Data System (ADS)

    Carrasco, Nathalie; Cernogora, Guy; Jomard, François; Etcheberry, Arnaud; Vigneron, Jackie

    2016-10-01

    Since the Cassini-CAPS measurements, organic aerosols are known to be present and formed at high altitudes in the diluted and partially ionized medium that is Titan's ionosphere [1]. This unexpected chemistry can be further investigated in the laboratory with plasma experiments simulating the complex ion-neutral chemistry starting from N2-CH4 [2]. Two sorts of solid organic samples can be produced in laboratory experiments simulating Titan's atmospheric reactivity: grains in the volume and thin films on the reactor walls. We expect that grains are more representative of Titan's atmospheric aerosols, but films are used to provide optical indices for radiative models of Titan's atmosphere.The aim of the present study is to address if these two sorts of analogues are chemically equivalent or not, when produced in the same N2-CH4 plasma discharge. The chemical compositions of both these materials are measured by using elemental analysis, XPS analysis and Secondary Ion Mass Spectrometry. We find that films are homogeneous but significantly less rich in nitrogen and hydrogen than grains produced in the same experimental conditions. This surprising difference in their chemical compositions is explained by the efficient etching occurring on the films, which stay in the discharge during the whole plasma duration, whereas the grains are ejected after a few minutes [3]. The impact for our understanding of Titan's aerosols chemical composition is important. Our study shows that chemical growth and etching process are simultaneously at stake in Titan's ionosphere. The more the aerosols stay in the ionosphere, the more graphitized they get through etching process. In order to infer Titan's aerosols composition, our work highlights a need for constraints on the residence time of aerosols in Titan's ionosphere. [1] Waite et al. (2009) Science , 316, p. 870[2] Szopa et al. (2006) PSS, 54, p. 394[3] Carrasco et al. (2016) PSS, 128, p. 52

  4. Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere

    NASA Astrophysics Data System (ADS)

    Kroll, Jesse H.; Seinfeld, John H.

    2008-05-01

    Secondary organic aerosol (SOA), particulate matter composed of compounds formed from the atmospheric transformation of organic species, accounts for a substantial fraction of tropospheric aerosol. The formation of low-volatility (semivolatile and possibly nonvolatile) compounds that make up SOA is governed by a complex series of reactions of a large number of organic species, so the experimental characterization and theoretical description of SOA formation presents a substantial challenge. In this review we outline what is known about the chemistry of formation and continuing transformation of low-volatility species in the atmosphere. The primary focus is chemical processes that can change the volatility of organic compounds: (1) oxidation reactions in the gas phase, (2) reactions in the particle phase, and (3) continuing chemistry (in either phase) over several generations. Gas-phase oxidation reactions can reduce volatility by the addition of polar functional groups or increase it by the cleavage of carbon-carbon bonds; key branch points that control volatility are the initial attack of the oxidant, reactions of alkylperoxy (RO2) radicals, and reactions of alkoxy (RO) radicals. Reactions in the particle phase include oxidation reactions as well as accretion reactions, non-oxidative processes leading to the formation of high-molecular-weight species. Organic carbon in the atmosphere is continually subject to reactions in the gas and particle phases throughout its atmospheric lifetime (until lost by physical deposition or oxidized to CO or CO2), implying continual changes in volatility over the timescales of several days. The volatility changes arising from these chemical reactions must be parameterized and included in models in order to gain a quantitative and predictive understanding of SOA formation.

  5. Dicarboxylic acids, oxoacids, benzoic acid, α-dicarbonyls, WSOC, OC, and ions in spring aerosols from Okinawa Island in the western North Pacific Rim: size distributions and formation processes

    NASA Astrophysics Data System (ADS)

    Deshmukh, Dhananjay K.; Kawamura, Kimitaka; Lazaar, Manuel; Kunwar, Bhagawati; Boreddy, Suresh K. R.

    2016-04-01

    Size-segregated aerosols (nine stages from < 0.43 to > 11.3 µm in diameter) were collected at Cape Hedo, Okinawa, in spring 2008 and analyzed for water-soluble diacids (C2-C12), ω-oxoacids (ωC2-ωC9), pyruvic acid, benzoic acid, and α-dicarbonyls (C2-C3) as well as water-soluble organic carbon (WSOC), organic carbon (OC), and major ions (Na+, NH4+, K+, Mg2+, Ca2+, Cl-, NO3-, SO42-, and MSA-). In all the size-segregated aerosols, oxalic acid (C2) was found to be the most abundant species, followed by malonic and succinic acids, whereas glyoxylic acid (ωC2) was the dominant oxoacid and glyoxal (Gly) was more abundant than methylglyoxal. Diacids (C2-C5), ωC2, and Gly as well as WSOC and OC peaked at fine mode (0.65-1.1 µm) whereas azelaic (C9) and 9-oxononanoic (ωC9) acids peaked at coarse mode (3.3-4.7 µm). Sulfate and ammonium were enriched in fine mode, whereas sodium and chloride were in coarse mode. Strong correlations of C2-C5 diacids, ωC2 and Gly with sulfate were observed in fine mode (r = 0.86-0.99), indicating a commonality in their secondary formation. Their significant correlations with liquid water content in fine mode (r = 0.82-0.95) further suggest an importance of the aqueous-phase production in Okinawa aerosols. They may also have been directly emitted from biomass burning in fine mode as supported by strong correlations with potassium (r = 0.85-0.96), which is a tracer of biomass burning. Bimodal size distributions of longer-chain diacid (C9) and oxoacid (ωC9) with a major peak in the coarse mode suggest that they were emitted from the sea surface microlayers and/or produced by heterogeneous oxidation of biogenic unsaturated fatty acids on sea salt particles.

  6. Self-assembly of silica nanoparticles into hollow spheres via a microwave-assisted aerosol process

    SciTech Connect

    Li, Shan; Wang, Fei; Dai, Hongqi; Jiang, Xingmao; Ye, Chunhong; Min, Jianzhong

    2016-02-15

    Highlights: • The silica hollow spheres were fabricated via a microwave-assisted aerosol process. • The formation of the hollow spheres was obtained through a one-step process. • The spheres indicated the remarkable sustained release of potassium persulfate. - Abstract: In this work, a simple and efficient strategy for fabrication of silica hollow spheres (SHSs) has been successfully introduced with a one-step microwave-assisted aerosol process using silica nanoparticles (SiO{sub 2}, 12–50 nm) and NH{sub 4}HCO{sub 3} as precursor materials. This approach combines the merits of microwave radiation and the aerosol technique. And the formation of SHSs is ascribed to solvent evaporation and the as-generated gas from NH{sub 4}HCO{sub 3} decomposition in the microwave reactor. The morphology of the SHSs can be easily tuned by varying the residence time, amount of NH{sub 4}HCO{sub 3} and silica sources. The formation mechanism of SHSs was also investigated by structure analysis. In addition, the hollow spheres exhibited remarkable sustained release of potassium persulfate, by loading it into the porous structures. The results provide new sights into the fabrication of inorganic hollow spheres via a one-step process.

  7. Predicting the mineral composition of dust aerosols - Part 1: Representing key processes

    NASA Astrophysics Data System (ADS)

    Perlwitz, J. P.; Pérez García-Pando, C.; Miller, R. L.

    2015-10-01

    Soil dust aerosols created by wind erosion are typically assigned globally uniform physical and chemical properties within Earth system models, despite known regional variations in the mineral content of the parent soil. Mineral composition of the aerosol particles is important to their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, heterogeneous formation of sulfates and nitrates, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Here, aerosol mineral composition is derived by extending a method that provides the composition of a wet-sieved soil. The extension accounts for measurements showing significant differences between the mineral fractions of the wet-sieved soil and the emitted aerosol concentration. For example, some phyllosilicate aerosols are more prevalent at silt sizes, even though they are nearly absent at these diameters in a soil whose aggregates are dispersed by wet sieving. We calculate the emitted mass of each mineral with respect to size by accounting for the disintegration of soil aggregates during wet sieving. These aggregates are emitted during mobilization and fragmentation of the original undispersed soil that is subject to wind erosion. The emitted aggregates are carried far downwind from their parent soil. The soil mineral fractions used to calculate the aggregates also include larger particles that are suspended only in the vicinity of the source. We calculate the emitted size distribution of these particles using a normalized distribution derived from aerosol measurements. In addition, a method is proposed for mixing minerals with small impurities composed of iron oxides. These mixtures are important for transporting iron far from the dust source, because pure iron oxides are more dense and vulnerable to gravitational removal than most minerals comprising dust aerosols. A limited comparison to

  8. Predicting the Mineral Composition of Dust Aerosols. Part 1; Representing Key Processes

    NASA Technical Reports Server (NTRS)

    Perlwitz, J. P.; Garcia-Pando, C. Perez; Miller, R. L.

    2015-01-01

    Soil dust aerosols created by wind erosion are typically assigned globally uniform physical and chemical properties within Earth system models, despite known regional variations in the mineral content of the parent soil. Mineral composition of the aerosol particles is important to their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, heterogeneous formation of sulfates and nitrates, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Here, aerosol mineral composition is derived by extending a method that provides the composition of a wet-sieved soil. The extension accounts for measurements showing significant differences between the mineral fractions of the wetsieved soil and the emitted aerosol concentration. For example, some phyllosilicate aerosols are more prevalent at silt sizes, even though they are nearly absent at these diameters in a soil whose aggregates are dispersed by wet sieving. We calculate the emitted mass of each mineral with respect to size by accounting for the disintegration of soil aggregates during wet sieving. These aggregates are emitted during mobilization and fragmentation of the original undispersed soil that is subject to wind erosion. The emitted aggregates are carried far downwind from their parent soil. The soil mineral fractions used to calculate the aggregates also include larger particles that are suspended only in the vicinity of the source. We calculate the emitted size distribution of these particles using a normalized distribution derived from aerosol measurements. In addition, a method is proposed for mixing minerals with small impurities composed of iron oxides. These mixtures are important for transporting iron far from the dust source, because pure iron oxides are more dense and vulnerable to gravitational removal than most minerals comprising dust aerosols. A limited comparison to

  9. Boundary layer aerosol chemistry during TexAQS/GoMACCS 2006: Insights into aerosol sources and transformation processes

    NASA Astrophysics Data System (ADS)

    Bates, T. S.; Quinn, P. K.; Coffman, D.; Schulz, K.; Covert, D. S.; Johnson, J. E.; Williams, E. J.; Lerner, B. M.; Angevine, W. M.; Tucker, S. C.; Brewer, W. A.; Stohl, A.

    2008-04-01

    The air quality and climate forcing impacts of atmospheric aerosols in a metropolitan region depend on the amount, composition, and size of the aerosol transported into the region; the input and removal of aerosols and aerosol precursors within the region; and the subsequent chemical processing in the atmosphere. These factors were studied in the Houston-Galveston-Gulf of Mexico region, aboard the NOAA R/V Ronald H. Brown during the Texas Air Quality Study and Gulf of Mexico Atmospheric Composition and Climate Study (TexAQS/GoMACCS 2006). The aerosol measured in the Gulf of Mexico during onshore flow (low radon concentrations indicating no contact with land for several days) was highly impacted by Saharan dust and what appear to be ship emissions (acidic sulfate and nitrate). Mean (median) mass concentrations of the total submicrometer and supermicrometer aerosol were 6.5 (4.6) μg m-3 and 17.2 (8.7) μg m-3, respectively. These mass loadings of "background" aerosol are much higher than typically observed in the marine atmosphere and thus have a substantial impact on the radiative energy balance over the Gulf of Mexico and particulate matter (PM) loadings (air quality) in the Houston-Galveston area. As this background aerosol moved onshore, local urban and industrial sources added an organic rich submicrometer component (66% particulate organic matter (POM), 20% sulfate, 14% elemental carbon) but no significant supermicrometer aerosol. The resulting aerosol had mean (median) mass concentrations of the total submicrometer and supermicrometer aerosol of 10.0 (9.1) μg m-3 and 16.8 (11.2) μg m-3, respectively. These air masses, with minimal processing of urban emissions contained the highest SO2/(SO2 + SO4=) ratios and the highest hydrocarbon-like organic aerosol to total organic aerosol ratios (HOA/POM). In contrast, during periods of offshore flow, the aerosol was more processed and, therefore, much richer in oxygenated organic aerosol (OOA). Mean (median) mass

  10. Formation and occurrence of dimer esters of pinene oxidation products in atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Kristensen, K.; Enggrob, K. L.; King, S. M.; Worton, D. R.; Platt, S. M.; Mortensen, R.; Rosenoern, T.; Surratt, J. D.; Bilde, M.; Goldstein, A. H.; Glasius, M.

    2013-04-01

    The formation of carboxylic acids and dimer esters from α-pinene oxidation was investigated in a smog chamber and in ambient aerosol samples collected during the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX). Chamber experiments of α-pinene ozonolysis in dry air and at low NOx concentrations demonstrated formation of two dimer esters, pinyl-diaterpenyl (MW 358) and pinonyl-pinyl dimer ester (MW 368), under both low- and high-temperature conditions. Concentration levels of the pinyl-diaterpenyl dimer ester were lower than the assumed first-generation oxidation products cis-pinic and terpenylic acids, but similar to the second-generation oxidation products 3-methyl-1,2,3-butane tricarboxylic acid (MBTCA) and diaterpenylic acid acetate (DTAA). Dimer esters were observed within the first 30 min, indicating rapid production simultaneous to their structural precursors. However, the sampling time resolution precluded conclusive evidence regarding formation from gas- or particle-phase processes. CCN activities of the particles formed in the smog chamber displayed a modest variation during the course of experiments, with κ values in the range 0.06-0.09 (derived at a supersaturation of 0.19%). The pinyl-diaterpenyl dimer ester was also observed in ambient aerosol samples collected above a ponderosa pine forest in the Sierra Nevada Mountains of California during two seasonally distinct field campaigns in September 2007 and July 2009. The pinonyl-pinyl ester was observed for the first time in ambient air during the 2009 campaign, and although present at much lower concentrations, it was correlated with the abundance of the pinyl-diaterpenyl ester, suggesting similarities in their formation. The maximum concentration of the pinyl-diaterpenyl ester was almost 10 times higher during the warmer 2009 campaign relative to 2007, while the concentration of cis-pinic acid was approximately the same during both periods, and lack of correlation with levels of

  11. Ice cloud processing of ultra-viscous/glassy aerosol particles leads to enhanced ice nucleation ability

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Skrotzki, J.; Leisner, T.; Wilson, T. W.; Malkin, T. L.; Murray, B. J.

    2012-09-01

    The ice nucleation potential of airborne glassy aqueous aerosol particles has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 247 and 216 K. Four different solutes were used as proxies for oxygenated organic matter found in the atmosphere: raffinose, 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA), levoglucosan, and a multi-component mixture of raffinose with five dicarboxylic acids and ammonium sulphate. Similar to previous experiments with citric acid aerosols, all particles were found to nucleate ice heterogeneously before reaching the homogeneous freezing threshold provided that the freezing cycles were started well below the respective glass transition temperatures of the compounds; this is discussed in detail in a separate article. In this contribution, we identify a further mechanism by which glassy aerosols can promote ice nucleation below the homogeneous freezing limit. If the glassy aerosol particles are probed in freezing cycles started only a few degrees below their respective glass transition temperatures, they enter the liquid regime of the state diagram upon increasing relative humidity (moisture-induced glass-to-liquid transition) before being able to act as heterogeneous ice nuclei. Ice formation then only occurs by homogeneous freezing at elevated supersaturation levels. When ice forms the remaining solution freeze concentrates and re-vitrifies. If these ice cloud processed glassy aerosol particles are then probed in a second freezing cycle at the same temperature, they catalyse ice formation at a supersaturation threshold between 5 and 30% with respect to ice. By analogy with the enhanced ice nucleation ability of insoluble ice nuclei like mineral dusts after they nucleate ice once, we refer to this phenomenon as pre-activation. We propose a number of possible explanations for why glassy aerosol particles that have re-vitrified in contact

  12. Ice cloud processing of ultra-viscous/glassy aerosol particles leads to enhanced ice nucleation ability

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Skrotzki, J.; Leisner, T.; Wilson, T. W.; Malkin, T. L.; Murray, B. J.

    2012-04-01

    The ice nucleation potential of airborne glassy aqueous aerosol particles has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 247 and 216 K. Four different solutes were used as proxies for oxygenated organic matter found in the atmosphere: raffinose, 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA), levoglucosan, and a multi-component mixture of raffinose with five dicarboxylic acids and ammonium sulphate. Similar to previous experiments with citric acid aerosols, all particles were found to nucleate ice heterogeneously before reaching the homogeneous freezing threshold provided that the freezing cycles were started well below the respective glass transition temperatures of the compounds; this is discussed in detail in a separate article. In this contribution, we identify a further mechanism by which glassy aerosols can promote ice nucleation below the homogeneous freezing limit. If the glassy aerosol particles are probed in freezing cycles started only a few degrees below their respective glass transition temperatures, they enter the liquid regime of the state diagram upon increasing relative humidity (moisture-induced glass-to-liquid transition) before being able to act as heterogeneous ice nuclei. Ice formation then only occurs by homogeneous freezing at elevated supersaturation levels. When ice forms the remaining solution freeze concentrates and re-vitrifies. If these ice cloud processed glassy aerosol particles are then probed in a second freezing cycle at the same temperature, they catalyse ice formation at a supersaturation threshold between 5 and 30% with respect to ice. By analogy with the enhanced ice nucleation ability of insoluble ice nuclei like mineral dusts after they nucleate ice once, we refer to this phenomenon as pre-activation. We propose a number of possible explanations for why glassy aerosols that have re-vitrified in contact with the

  13. Emissions of biogenic volatile organic compounds and subsequent formation of secondary organic aerosols in a Larix kaempferi forest

    NASA Astrophysics Data System (ADS)

    Mochizuki, T.; Miyazaki, Y.; Ono, K.; Wada, R.; Takahashi, Y.; Saigusa, N.; Kawamura, K.; Tani, A.

    2015-04-01

    the importance of intra-canopy processes that promote biogenic SOA formation in the presence of significant inflow of anthropogenic aerosols and their precursors.

  14. Incremental Reactivity Effects on Secondary Organic Aerosol Formation in Urban Atmospheres with and without Biogenic Influence

    NASA Astrophysics Data System (ADS)

    Kacarab, Mary; Li, Lijie; Carter, William P. L.; Cocker, David R., III

    2016-04-01

    Two different surrogate mixtures of anthropogenic and biogenic volatile organic compounds (VOCs) were developed to study secondary organic aerosol (SOA) formation at atmospheric reactivities similar to urban regions with varying biogenic influence levels. Environmental chamber simulations were designed to enable the study of the incremental aerosol formation from select anthropogenic (m-Xylene, 1,2,4-Trimethylbenzene, and 1-Methylnaphthalene) and biogenic (α-pinene) precursors under the chemical reactivity set by the two different surrogate mixtures. The surrogate reactive organic gas (ROG) mixtures were based on that used to develop the maximum incremental reactivity (MIR) factors for evaluation of O3 forming potential. Multiple incremental aerosol formation experiments were performed in the University of California Riverside (UCR) College of Engineering Center for Environmental Research and Technology (CE-CERT) dual 90m3 environmental chambers. Incremental aerosol yields were determined for each of the VOCs studied and compared to yields found from single precursor studies. Aerosol physical properties of density, volatility, and hygroscopicity were monitored throughout experiments. Bulk elemental chemical composition from high-resolution time of flight aerosol mass spectrometer (HR-ToF-AMS) data will also be presented. Incremental yields and SOA chemical and physical characteristics will be compared with data from previous single VOC studies conducted for these aerosol precursors following traditional VOC/NOx chamber experiments. Evaluation of the incremental effects of VOCs on SOA formation and properties are paramount in evaluating how to best extrapolate environmental chamber observations to the ambient atmosphere and provides useful insights into current SOA formation models. Further, the comparison of incremental SOA from VOCs in varying surrogate urban atmospheres (with and without strong biogenic influence) allows for a unique perspective on the impacts

  15. Integrated Analyses of Multiple Worldwide Aerosol Mass Spectrometer Datasets for Improved Understanding of Aerosol Sources and Processes and for Comparison with Global Models

    SciTech Connect

    Zhang, Qi; Jose, Jimenez Luis

    2014-04-28

    composition, concentration, size distribution and (inferred) shape and mixing state in various environments and their regional and seasonal variations within the context of regional and global modeling; and 4) to quantitatively evaluate important processes in various atmospheric environments and during different seasons, focusing on acid-catalyzed SOA formation, new particle growth, and photochemical processes of atmospheric organic aerosols (i.e., SOA production and POA oxidation). We will also examine the correlations and compile the ratios between important pairs of aerosol and gas phase species using region-specific and season-specific correlations and as a function of photochemical age and compare them with the ratios produced by various models. To enable our collaborations with the modelers, we will supply (via a public web interface) AMS data and our analysis results for use in model testing and validation and facilitate the use of the AMS information to constrain calculations of radiative forcing. Model output and AMS measurements and derived parameters will be compared with a focus on regional variability of model/measurement discrepancies and their causes. Finally we will share results, insights and data mining algorithms through peer-reviewed publications, presentations/tutorials at conferences/workshops, and web dissemination of analysis results and in-house developed software packages.

  16. Formation and aging of secondary organic aerosol from isoprene photooxidation during cloud condensation-evaporation cycles

    NASA Astrophysics Data System (ADS)

    Giorio, C.; Siekmann, F.; Bregonzio, L.; Temime-Roussel, B.; Ravier, S.; Tapparo, A.; Kalberer, M.; Doussin, J.; Monod, A.

    2013-12-01

    Biogenic volatile organic compounds (BVOCs) can be oxidized in the gas phase to form more water-soluble compounds which could partition into atmospheric water droplets. Oxidation processes in the liquid phase could produce high molecular weight and less volatile compounds which can partly remain in the particle phase after water evaporation (Ervens et al., 2011). This work investigates the formation and composition of secondary organic aerosol (SOA) from the photooxidation of isoprene (the most abundant BVOC) and methacrolein (its main first-generation oxidation product). The experiments were performed during the CUMULUS (CloUd MULtiphase chemistry of organic compoUndS in the troposphere) campaigns at the 4.2 m3 stainless steel CESAM chamber at LISA, specifically designed to investigate multiphase processes (Wang et al., 2011). In each experiment, 500/1000 ppb of isoprene or methacrolein were injected in the chamber together with HONO before irradiation. Gas phase oxidation products have been analyzed on-line by a Proton Transfer Reaction Mass Spectrometer (PTR-MS) and a Fourier Transform Infrared Spectrometer (FTIR) together with NOx and O3 analyzers. SOA formation and composition has been followed on-line with a Scanning Mobility Particle Sizer (SMPS) and an Aerodyne High Resolution Time-Of-Flight Aerosol Mass Spectrometer (HR-TOF-AMS). Particular attention has been focused on the study of SOA formation and aging during cloud condensation-evaporation cycles simulated in the smog chamber. In all experiments, we noted that water soluble gas-phase oxidation products readily partition into cloud droplets accompanied by a prompt SOA production during cloud formation which partly persists after cloud evaporation. Ervens, B. et al. (2011) Atmos. Chem. Phys. 11, 11069 11102. Wang, J. et al. (2011) Atmos. Measur. Tech. 4, 2465 2494.

  17. Formation and Growth of New Organic Aerosol Particles over the Deepwater Horizon Oil Spill

    NASA Astrophysics Data System (ADS)

    Brock, C. A.; Murphy, D. M.; Bahreini, R.; Middlebrook, A. M.; De Gouw, J. A.

    2011-12-01

    Aerosol size distributions were measured in June 2010 downwind of the surface oil slick produced by the Deepwater Horizon oil spill in the Gulf of Mexico. Rapid condensation of partially oxidized hydrocarbons was responsible for formation of a plume of secondary organic aerosol downwind of the spill region. New particles were nucleated upwind of the freshest surface oil but downwind of oil that surfaced less than 100 hours previously. These new particles grew by condensation at rates of ~20 nm hr-1; preexisting accumulation mode particles grew by ~10 nm hr-1. The gas-phase concentration of a condensing species necessary to support the observed growth rate assuming irreversible adsorption with unit accommodation coefficient is estimated to be ~0.04-0.09 μg m-3 (~3-8 pptv). The ratio of growth rates for newly formed particles to accumulation mode particles was consistent within error limits with irreversible condensation. Because new particle formation did not occur in areas away from the <100 hr-old oil slick, these results indicate that the oxidation products of VOC species, probably C14-C16 compounds, were directly involved in the growth of the new particles. While a unique and extreme environment, the oil spill plume provides insight into similar processes that may occur in urban and industrial areas where petrochemical products are produced and consumed.

  18. Modeling the influence of alkane molecular structure on secondary organic aerosol formation.

    PubMed

    Aumont, Bernard; Camredon, Marie; Mouchel-Vallon, Camille; La, Stéphanie; Ouzebidour, Farida; Valorso, Richard; Lee-Taylor, Julia; Madronich, Sasha

    2013-01-01

    Secondary Organic Aerosols (SOA) production and ageing is a multigenerational oxidation process involving the formation of successive organic compounds with higher oxidation degree and lower vapor pressure. Intermediate Volatility Organic Compounds (IVOC) emitted to the atmosphere are expected to be a substantial source of SOA. These emitted IVOC constitute a complex mixture including linear, branched and cyclic alkanes. The explicit gas-phase oxidation mechanisms are here generated for various linear and branched C10-C22 alkanes using the GECKO-A (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere) and SOA formation is investigated for various homologous series. Simulation results show that both the size and the branching of the carbon skeleton are dominant factors driving the SOA yield. However, branching appears to be of secondary importance for the particle oxidation state and composition. The effect of alkane molecular structure on SOA yields appears to be consistent with recent laboratory observations. The simulated SOA composition shows, however, an unexpected major contribution from multifunctional organic nitrates. Most SOA contributors simulated for the oxidation of the various homologous series are far too reduced to be categorized as highly oxygenated organic aerosols (OOA). On a carbon basis, the OOA yields never exceeded 10% regardless of carbon chain length, molecular structure or ageing time. This version of the model appears clearly unable to explain a large production of OOA from alkane precursors.

  19. Photochemical aerosol formation in planetary atmospheres: A comparison between Pluto and Titan

    NASA Astrophysics Data System (ADS)

    Lavvas, Panayotis; Strobel, Darrell F.; Lellouch, Emmanuel; Gurwell, Mark A.; Cheng, Andrew F.; Summers, Michael; Gladstone, Randy

    2016-10-01

    The New Horizons mission observations have revealed us that Pluto's atmosphere is rich in photochemical hazes that extend to high altitudes above its surface [1], apparently similar to those observed in Titan's atmosphere [2].We use detailed models combining photochemistry and microphysics in order to simulate the aerosol formation and growth in Pluto's atmosphere, as performed for Titan's atmosphere [3]. Here we discuss the possible mechanisms leading to the formation of haze particles in Pluto's atmosphere, and we evaluate the contribution of different growth processes (e.g. coagulation vs. condensation) to the resulting particle properties.Moreover we investigate the role of these particles in the radiative balance of Pluto's atmosphere and we compare the resulting particle properties, with those retrieved for Titan's upper atmosphere based on Cassini observations [4]. We discuss the similarities and difference between Pluto's and Titan's aerosols.[1] Gladstone et al., 2016, Science, 351, 6271[2] West et al., 2015, Titan's Haze, in Titan, Interior, Surface, Atmosphere and Space environment, Cambridge University Press[3] Lavvas et al., 2013, PNAS, pnas.1217059110[4] Lavvas et al., 2015, DPS47, id.205.08

  20. Timescales of aerosol formation and depletion: a case study for the Kilauea volcano

    NASA Astrophysics Data System (ADS)

    Penning de Vries, Marloes; Beirle, Steffen; Wagner, Thomas

    2014-05-01

    Satellite observations of atmospheric trace gases have revolutionized our insights regarding the location and amount of various pollutants. In addition, it has been demonstrated recently that atmospheric lifetimes can be derived by analyzing the downwind decay of the pollution plumes from point sources. Here we present an analysis of the downwind evolution of the SO2 (GOME-2) and the aerosol (MODIS) plume from the Kilauea volcano (Hawaii) during a period of strongly enhanced passive degassing in March-October 2008. The SO2 and AOD patterns observed from space and the wind fields according to ECMWF stay rather stable over several months, making this an ideal case for such kind of process study. Using a relatively simple mathematical analysis, an e-folding lifetime of SO2 and the total release of SO2 can be estimated simultaneously on the basis of monthly mean SO2 maps and wind fields. We estimate the lifetime of volcanic SO2 from Kilauea to be about 1-2 days. By assuming first order time constants for both the AOD formation and depletion, the observed downwind pattern of AOD can be described, and the AOD formation can be clearly related to the SO2 depletion. For the aerosol depletion, a time-constant of 2-6 days was estimated.

  1. Efficient Isoprene Secondary Organic Aerosol Formation from a Non-IEPOX Pathway

    SciTech Connect

    Liu, Jiumeng; D’Ambro, Emma L.; Lee, Ben H.; Lopez-Hilfiker, Felipe D.; Zaveri, Rahul A.; Rivera-Rios, Jean C.; Keutsch, Frank N.; Iyer, Siddharth; Kurten, Theo; Zhang, Zhenfa; Gold, Avram; Surratt, Jason D.; Shilling, John E.; Thornton, Joel A.

    2016-09-20

    With a large global emission rate and high reactivity, isoprene has a profound effect upon atmospheric chemistry and composition. The atmospheric pathways by which isoprene converts to secondary organic aerosol (SOA) and how anthropogenic pollutants such as nitrogen oxides and sulfur affect this process are a subject of intense research because particles affect Earth’s climate and local air quality. In the absence of both nitrogen oxides and reactive aqueous seed particles, we measure SOA mass yields from isoprene photochemical oxidation of up to 15%, which are factors of 2, or more, higher than those typically used in coupled chemistry-climate models. SOA yield is initially constant with the addition of increasing amounts of nitric oxide (NO) but then sharply decreases for input concentrations above 10 ppbv. Online measurements of aerosol molecular composition show that the fate of second-generation RO2 radicals is key to understanding the efficient SOA formation and the NOx dependent yields described here and in the literature. These insights allow for improved quantitative estimates of SOA formation in the pre-industrial atmosphere and in biogenic-rich regions with limited anthropogenic impacts and suggest a more complex representation of NOx dependent SOA yields may be important in models.

  2. Modeling and analysis of aerosol processes in an interactive chemistry general circulation model

    NASA Astrophysics Data System (ADS)

    Verma, Sunita; Boucher, O.; Reddy, M. S.; Upadhyaya, H. C.; Le van, P.; Binkowski, F. S.; Sharma, O. P.

    2007-02-01

    An "online" aerosol dynamics and chemistry module is included in the Laboratoire de Météorologie Dynamique general circulation model (LMDZ), so that the chemical species are advected at each dynamical time step and evolve through chemical and physical processes that have been parameterized consistently with the meteorology. These processes include anthropogenic and biogenic emissions, over 50 gas/aqueous phase chemical reactions, transport due to advection, vertical diffusion and convection, dry deposition and wet scavenging. We have introduced a size-resolved representation of aerosols which undergo various processes such as coagulation, nucleation and dry and wet scavenging. The model considers 16 prognostic tracers: water vapor, liquid water, dimethyl sulfide (DMS), hydrogen sulfide (H2S), dimethyl sulphoxide (DMSO), methanesulphonic acid (MSA), sulfur dioxide (SO2), nitrogen oxides (NOX), carbon monoxide (CO), nitric acid (HNO3), ozone (O3), hydrogen peroxide (H2O2), sulfate mass and number for Aitken and accumulation modes. The scheme accounts for two-way interactions between tropospheric chemistry and aerosols. The oxidants and chemical species fields that represent the sulfate aerosol formation are evolved interactively with the model dynamics. A detailed description on the coupled climate-chemistry interactive module is presented with the evaluation of chemical species in winter and summer seasons. Aqueous phase reactions in cloud accounted for 71% of sulfate production rate, while only 45% of the sulfate burden in the troposphere is derived from in-cloud oxidation.

  3. Secondary Organic Aerosol Formation from the Photooxidation of p- and o-Xylene

    SciTech Connect

    Song, Chen; Na, Kwangsam; Warren, Bethany; Malloy, Quentin; Cocker, David R.

    2007-11-01

    The formation of secondary organic aerosol (SOA) from the photooxidation of xylene isomers (m-, p-, and o-xylenes) has been extensively investigated. The dependence of SOA aerosol formation on the structure of xylene isomers in the presence of NO was confirmed. Generally, SOA formation of p-xylene was less than that ofm- and o-xylenes. This discrepancy varies significantly with initial NOx levels. In a NOx-free environment, the difference of aerosol formation between o- and p-xylenes becomes insignificant. Several chemical pathways for the SOA dependence on structure and NOx are explored, with the experimental findings indicating that organic peroxides may be a major key to explaining SOA formation from aromatic hydrocarbons.

  4. Solar thermal aerosol flow reaction process

    DOEpatents

    Weimer, Alan W.; Dahl, Jaimee K.; Pitts, J. Roland; Lewandowski, Allan A.; Bingham, Carl; Tamburini, Joseph R.

    2005-03-29

    The present invention provides an environmentally beneficial process using concentrated sunlight to heat radiation absorbing particles to carry out highly endothermic gas phase chemical reactions ultimately resulting in the production of hydrogen or hydrogen synthesis gases.

  5. Potential of Aerosol Liquid Water to Facilitate Organic Aerosol Formation: Assessing Knowledge Gaps about Precursors and Partitioning.

    PubMed

    Sareen, Neha; Waxman, Eleanor M; Turpin, Barbara J; Volkamer, Rainer; Carlton, Annmarie G

    2017-03-06

    Isoprene epoxydiol (IEPOX), glyoxal, and methylglyoxal are ubiquitous water-soluble organic gases (WSOGs) that partition to aerosol liquid water (ALW) and clouds to form aqueous secondary organic aerosol (aqSOA). Recent laboratory-derived Setschenow (or salting) coefficients suggest glyoxal's potential to form aqSOA is enhanced by high aerosol salt molality, or "salting-in". In the southeastern U.S., aqSOA is responsible for a significant fraction of ambient organic aerosol, and correlates with sulfate mass. However, the mechanistic explanation for this correlation remains elusive, and an assessment of the importance of different WSOGs to aqSOA is currently missing. We employ EPA's CMAQ model to the continental U.S. during the Southern Oxidant and Aerosol Study (SOAS) to compare the potential of glyoxal, methylglyoxal, and IEPOX to partition to ALW, as the initial step toward aqSOA formation. Among these three studied compounds, IEPOX is a dominant contributor, ∼72% on average in the continental U.S., to potential aqSOA mass due to Henry's Law constants and molecular weights. Glyoxal contributes significantly, and application of the Setschenow coefficient leads to a greater than 3-fold model domain average increase in glyoxal's aqSOA mass potential. Methylglyoxal is predicted to be a minor contributor. Acid or ammonium - catalyzed ring-opening IEPOX chemistry as well as sulfate-driven ALW and the associated molality may explain positive correlations between SOA and sulfate during SOAS and illustrate ways in which anthropogenic sulfate could regulate biogenic aqSOA formation, ways not presently included in atmospheric models but relevant to development of effective control strategies.

  6. Coupling Aerosol-Cloud-Radiative Processes in the WRF-Chem Model: Investigating the Radiative Impact of Elevated Point Sources

    SciTech Connect

    Chapman, Elaine G.; Gustafson, William I.; Easter, Richard C.; Barnard, James C.; Ghan, Steven J.; Pekour, Mikhail S.; Fast, Jerome D.

    2009-02-01

    The local and regional influence of elevated point sources on summertime aerosol forcing and cloud-aerosol interactions in northeastern North America was investigated using the WRF-Chem community model. The direct effects of aerosols on incoming solar radiation were simulated using existing modules to relate aerosol sizes and chemical composition to aerosol optical properties. Indirect effects were simulated by adding a prognostic treatment of cloud droplet number and adding modules that activate aerosol particles to form cloud droplets, simulate aqueous phase chemistry, and tie a two-moment treatment of cloud water (cloud water mass and cloud droplet number) to an existing radiation scheme. Fully interactive feedbacks thus were created within the modified model, with aerosols affecting cloud droplet number and cloud radiative properties, and clouds altering aerosol size and composition via aqueous processes, wet scavenging, and gas-phase-related photolytic processes. Comparisons of a baseline simulation with observations show that the model captured the general temporal cycle of aerosol optical depths (AODs) and produced clouds of comparable thickness to observations at approximately the proper times and places. The model slightly overpredicted SO2 mixing ratios and PM2.5 mass, but reproduced the range of observed SO2 to sulfate aerosol ratios, suggesting that atmospheric oxidation processes leading to aerosol sulfate formation are captured in the model. The baseline simulation was compared to a sensitivity simulation in which all emissions at model levels above the surface layer were set to zero, thus removing stack emissions. Instantaneous, site-specific differences for aerosol and cloud related properties between the two simulations could be quite large, as removing above-surface emission sources influenced when and where clouds formed within the modeling domain. When summed spatially over the finest resolution model domain (the extent of which corresponds to

  7. Incremental Reactivity Effects of Anthropogenic and Biogenic Volatile Organic Compounds on Secondary Organic Aerosol Formation

    NASA Astrophysics Data System (ADS)

    Kacarab, M.; Li, L.; Carter, W. P. L.; Cocker, D. R., III

    2015-12-01

    Two surrogate reactive organic gas (ROG) mixtures were developed to create a controlled reactivity environment simulating different urban atmospheres with varying levels of anthropogenic (e.g. Los Angeles reactivity) and biogenic (e.g. Atlanta reactivity) influences. Traditional chamber experiments focus on the oxidation of one or two volatile organic compound (VOC) precursors, allowing the reactivity of the system to be dictated by those compounds. Surrogate ROG mixtures control the overall reactivity of the system, allowing for the incremental aerosol formation from an added VOC to be observed. The surrogate ROG mixtures were developed based on that used to determine maximum incremental reactivity (MIR) scales for O3 formation from VOC precursors in a Los Angeles smog environment. Environmental chamber experiments were designed to highlight the incremental aerosol formation in the simulated environment due to the addition of an added anthropogenic (aromatic) or biogenic (terpene) VOC. All experiments were conducted in the UC Riverside/CE-CERT dual 90m3 environmental chambers. It was found that the aerosol precursors behaved differently under the two altered reactivity conditions, with more incremental aerosol being formed in the anthropogenic ROG system than in the biogenic ROG system. Further, the biogenic reactivity condition inhibited the oxidation of added anthropogenic aerosol precursors, such as m-xylene. Data will be presented on aerosol properties (density, volatility, hygroscopicity) and bulk chemical composition in the gas and particle phases (from a SYFT Technologies selected ion flow tube mass spectrometer, SIFT-MS, and Aerodyne high resolution time of flight aerosol mass spectrometer, HR-ToF-AMS, respectively) comparing the two controlled reactivity systems and single precursor VOC/NOx studies. Incremental aerosol yield data at different controlled reactivities provide a novel and valuable insight in the attempt to extrapolate environmental chamber

  8. Secondary Organic Aerosol (SOA) formation from hydroxyl radical oxidation and ozonolysis of monoterpenes

    NASA Astrophysics Data System (ADS)

    Zhao, D. F.; Kaminski, M.; Schlag, P.; Fuchs, H.; Acir, I.-H.; Bohn, B.; Häseler, R.; Kiendler-Scharr, A.; Rohrer, F.; Tillmann, R.; Wang, M. J.; Wegener, R.; Wildt, J.; Wahner, A.; Mentel, T. F.

    2014-05-01

    Oxidation by hydroxyl radical (OH) and ozonolysis are the two major pathways of daytime biogenic volatile organic compounds (VOCs) oxidation and secondary organic aerosol (SOA) formation. In this study, we investigated the particle formation of several common monoterpenes (α-pinene, β-pinene, and limonene) by OH dominated oxidation, which has seldom been investigated. OH oxidation experiments were carried out in the SAPHIR chamber in Jülich, Germany, at low NOx (0.01-1 ppbV) and low ozone (O3) concentration. OH concentration and OH reactivity were measured directly so that the overall reaction rates of organic compounds with OH were quantified. Multi-generation reaction process, particle growth, new particle formation, particle yield, and chemical composition were analyzed and compared with that of monoterpene ozonolysis. Multi-generation products were found to be important in OH dominated SOA formation. The relative role of functionalization and fragmentation in the reaction process of OH oxidation was analyzed by examining the particle mass and the particle size as a function of OH dose. We developed a novel method which quantitatively links particle growth to the reaction of OH with organics in a reaction system. This method was also used to analyze the evolution of functionalization and fragmentation of organics in the particle formation by OH oxidation. It shows that functionalization of organics was dominant in the beginning of the reaction (within two lifetimes of the monoterpene) and fragmentation started to be dominant after that. We compared particle formation from OH oxidation with that from pure ozonolysis. In individual experiments, growth rates of the particle size did not necessarily correlate with the reaction rate of monoterpene with OH and O3. Comparing the size growth rates at the similar reaction rates of monoterpene with OH or O3 indicates that generally, OH oxidation and ozonolysis had similar efficiency in particle growth. The SOA yield of

  9. Secondary organic aerosol formation from hydroxyl radical oxidation and ozonolysis of monoterpenes

    NASA Astrophysics Data System (ADS)

    Zhao, D. F.; Kaminski, M.; Schlag, P.; Fuchs, H.; Acir, I.-H.; Bohn, B.; Häseler, R.; Kiendler-Scharr, A.; Rohrer, F.; Tillmann, R.; Wang, M. J.; Wegener, R.; Wildt, J.; Wahner, A.; Mentel, Th. F.

    2015-01-01

    Oxidation by hydroxyl radical (OH) and ozonolysis are the two major pathways of daytime biogenic volatile organic compound (BVOC) oxidation and secondary organic aerosol (SOA) formation. In this study, we investigated the particle formation of several common monoterpenes (α-pinene, β-pinene and limonene) by OH-dominated oxidation, which has seldom been investigated. OH oxidation experiments were carried out in the SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction) chamber in Jülich, Germany, at low NOx (0.01 ~ 1 ppbV) and low ozone (O3) concentration (< 20 ppbV). OH concentration and total OH reactivity (kOH) were measured directly, and through this the overall reaction rate of total organics with OH in each reaction system was quantified. Multi-generation reaction process, particle growth, new particle formation (NPF), particle yield and chemical composition were analyzed and compared with that of monoterpene ozonolysis. Multi-generation products were found to be important in OH-dominated SOA formation. The relative role of functionalization and fragmentation in the reaction process of OH oxidation was analyzed by examining the particle mass and the particle size as a function of OH dose. We developed a novel method which quantitatively links particle growth to the reaction rate of OH with total organics in a reaction system. This method was also used to analyze the evolution of functionalization and fragmentation of organics in the particle formation by OH oxidation. It shows that functionalization of organics was dominant in the beginning of the reaction (within two lifetimes of the monoterpene) and fragmentation started to play an important role after that. We compared particle formation from OH oxidation with that from pure ozonolysis. In individual experiments, growth rates of the particle size did not necessarily correlate with the reaction rate of monoterpene with OH and O3. Comparing the size growth rates at the similar reaction rates

  10. Secondary Organic Aerosol Formation from m-Xylene in the Absence of NOx

    SciTech Connect

    Song, Chen; Na, Kwangsam; Warren, Bethany; Malloy, Quentin; Cocker, David R.

    2007-11-01

    Formation of secondary organic aerosol (SOA) from m-xylene photoxidation in the absence of NOx was investigated in a series of smog chamber experiments. Experiments were performed in dry air and in the absence of seed aerosol with H2O2 photolysis providing a stable hydroxyl radical (OH radical) source. SOA formation from this study is exceptionally higher than experiments with existence of NOx. The experiments with elevated HO2 levels indicate that organic hydroperoxide compounds should contribute to SOA formation. Nitrogen oxide (NO) is shown to reduce aerosol formation; the constant aerosol formation rate obtained before addition of NO and after consumption of NO strongly suggests that aerosol formation is mainly through reactions with OH and HO2 radicals. In addition, a density of 1.40 ± 0.1 g cm-3 for the SOA from the photooxidation of m-xylene in the absence of NOx has been measured, which is significantly higher than the currently used unit density.

  11. Constraining condensed-phase formation kinetics of secondary organic aerosol components from isoprene epoxydiols

    NASA Astrophysics Data System (ADS)

    Riedel, T. P.; Lin, Y.-H.; Zhang, Z.; Chu, K.; Thornton, J. A.; Vizuete, W.; Gold, A.; Surratt, J. D.

    2016-02-01

    Isomeric epoxydiols from isoprene photooxidation (IEPOX) have been shown to produce substantial amounts of secondary organic aerosol (SOA) mass and are therefore considered a major isoprene-derived SOA precursor. Heterogeneous reactions of IEPOX on atmospheric aerosols form various aerosol-phase components or "tracers" that contribute to the SOA mass burden. A limited number of the reaction rate constants for these acid-catalyzed aqueous-phase tracer formation reactions have been constrained through bulk laboratory measurements. We have designed a chemical box model with multiple experimental constraints to explicitly simulate gas- and aqueous-phase reactions during chamber experiments of SOA growth from IEPOX uptake onto acidic sulfate aerosol. The model is constrained by measurements of the IEPOX reactive uptake coefficient, IEPOX and aerosol chamber wall losses, chamber-measured aerosol mass and surface area concentrations, aerosol thermodynamic model calculations, and offline filter-based measurements of SOA tracers. By requiring the model output to match the SOA growth and offline filter measurements collected during the chamber experiments, we derive estimates of the tracer formation reaction rate constants that have not yet been measured or estimated for bulk solutions.

  12. Formation of hydroxyl radicals from photolysis of secondary organic aerosol material

    NASA Astrophysics Data System (ADS)

    Badali, K. M.; Zhou, S.; Aljawhary, D.; Antiñolo, M.; Chen, W. J.; Lok, A.; Mungall, E.; Wong, J. P. S.; Zhao, R.; Abbatt, J. P. D.

    2015-07-01

    This paper demonstrates that OH radicals are formed by photolysis of secondary organic aerosol (SOA) material formed by terpene ozonolysis. The SOA is collected on filters, dissolved in water containing a radical trap (benzoic acid), and then exposed to ultraviolet light in a photochemical reactor. The OH formation rates, which are similar for both α-pinene and limonene SOA, are measured from the formation rate of p-hydroxybenzoic acid as measured using offline HPLC analysis. To evaluate whether the OH is formed by photolysis of H2O2 or organic hydroperoxides (ROOH), the peroxide content of the SOA was measured using the horseradish peroxidase-dichlorofluorescein (HRP-DCF) assay, which was calibrated using H2O2. The OH formation rates from SOA are 5 times faster than from the photolysis of H2O2 solutions whose concentrations correspond to the peroxide content of the SOA solutions, assuming that the HRP-DCF signal arises from H2O2 alone. The higher rates of OH formation from SOA are likely due to ROOH photolysis, but we cannot rule out a contribution from secondary processes as well. This result is substantiated by photolysis experiments conducted with t-butyl hydroperoxide and cumene hydroperoxide which produce over 3 times more OH than photolysis of equivalent concentrations of H2O2. Relative to the peroxide level in the SOA and assuming that the peroxides drive most of the ultraviolet absorption, the quantum yield for OH generation from α-pinene SOA is 0.8 ± 0.4. This is the first demonstration of an efficient photolytic source of OH in SOA, one that may affect both cloud water and aerosol chemistry.

  13. Secondary organic aerosol formation and source apportionment in Southeast Texas

    NASA Astrophysics Data System (ADS)

    Zhang, Hongliang; Ying, Qi

    2011-06-01

    The latest version of US EPA's Community Multi-scale Air Quality (CMAQ v4.7) model with the most recent update on secondary organic aerosol (SOA) formation pathways was adapted into a source-oriented modeling framework to determine the contributions of different emission sources to SOA concentrations from a carbon source perspective in Southeast Texas during the 2000 Texas Air Quality Study (TexAQS 2000) from August 25 to September 5, 2000. A comparison of the VOC and SOA predictions with observations shows that anthropogenic emissions of long chain alkanes and aromatics are likely underestimated in the EPA's Clean Air Interstate Rule (CAIR) inventory and the current SOA mechanism in CMAQ still under-predicts SOA. The peak SOA concentrations measured at La Porte are more accurately predicted by increasing the emissions of the anthropogenic SOA precursors by a factor of 5 although the overall precursor concentrations are better predicted by increasing the emissions by a factor of 2. A linear correlation between SOA and odd oxygen (ΔSOA/ΔOx = 23.0-28.4 μg m-3/ppm Ox) can be found when they are formed simultaneously in the air masses passing the urban Houston area on high SOA days. Based on the adjusted emissions (a factor of 2 increase in the alkane and aromatics precursor emissions), approximately 20% of the total SOA in the Houston-Galveston Bay area is due to anthropogenic sources. Solvent utilization and gasoline engines are the main anthropogenic sources. SOA from alkanes and aromatics accounts for approximately 2-4% and 5-9% of total SOA, respectively. The predicted overall anthropogenic SOA concentrations are not sensitive to the half-life time used to calculate the conversion rate of semi-volatile organic compounds to non-volatile oligomers in the particle phase. The main precursors of biogenic SOA are sesquiterpenes, which contribute to approximately 12-35% of total SOA. Monoterpenes contribute to 3-14% and isoprene accounts for approximately 6-9% of the

  14. Model analysis of secondary organic aerosol formation by glyoxal in laboratory studies: the case for photoenhanced chemistry.

    PubMed

    Sumner, Andrew J; Woo, Joseph L; McNeill, V Faye

    2014-10-21

    The reactive uptake of glyoxal by atmospheric aerosols is believed to be a significant source of secondary organic aerosol (SOA). Several recent laboratory studies have been performed with the goal of characterizing this process, but questions remain regarding the effects of photochemistry on SOA growth. We applied GAMMA (McNeill et al. Environ. Sci. Technol. 2012, 46, 8075-8081), a photochemical box model with coupled gas-phase and detailed aqueous aerosol-phase chemistry, to simulate aerosol chamber studies of SOA formation by the uptake of glyoxal by wet aerosol under dark and irradiated conditions (Kroll et al. J. Geophys. Res. 2005, 110 (D23), 1-10; Volkamer et al. Atmos. Chem. Phys. 2009, 9, 1907-1928; Galloway et al. Atmos. Chem. Phys. 2009, 9, 3331- 306 3345 and Geophys. Res. Lett. 2011, 38, L17811). We find close agreement between simulated SOA growth and the results of experiments conducted under dark conditions using values of the effective Henry's Law constant of 1.3-5.5 × 10(7) M atm(-1). While irradiated conditions led to the production of some organic acids, organosulfates, and other oxidation products via well-established photochemical mechanisms, these additional product species contribute negligible aerosol mass compared to the dark uptake of glyoxal. Simulated results for irradiated experiments therefore fell short of the reported SOA mass yield by up to 92%. This suggests a significant light-dependent SOA formation mechanism that is not currently accounted for by known bulk photochemistry, consistent with recent laboratory observations of SOA production via photosensitizer chemistry.

  15. Marine boundary layer cloud regimes and POC formation in an LES coupled to a bulk aerosol scheme

    NASA Astrophysics Data System (ADS)

    Berner, A. H.; Bretherton, C. S.; Wood, R.; Muhlbauer, A.

    2013-07-01

    A large-eddy simulation (LES) coupled to a new bulk aerosol scheme is used to study long-lived regimes of aerosol-boundary layer cloud-precipitation interaction and the development of pockets of open cells (POCs) in subtropical stratocumulus cloud layers. The aerosol scheme prognoses mass and number concentration of a single log-normal accumulation mode with surface and entrainment sources, evolving subject to processing of activated aerosol and scavenging of dry aerosol by cloud and rain. The LES with the aerosol scheme is applied to a range of steadily-forced simulations idealized from a well-observed POC case. The long-term system evolution is explored with extended two-dimensional simulations of up to 20 days, mostly with diurnally-averaged insolation. One three-dimensional two-day simulation confirms the initial development of the corresponding two-dimensional case. With weak mean subsidence, an initially aerosol-rich mixed layer deepens, the capping stratocumulus cloud slowly thickens and increasingly depletes aerosol via precipitation accretion, then the boundary layer transitions within a few hours into an open-cell regime with scattered precipitating cumuli, in which entrainment is much weaker. The inversion slowly collapses for several days until the cumulus clouds are too shallow to efficiently precipitate. Inversion cloud then reforms and radiatively drives renewed entrainment, allowing the boundary layer to deepen and become more aerosol-rich, until the stratocumulus layer thickens enough to undergo another cycle of open-cell formation. If mean subsidence is stronger, the stratocumulus never thickens enough to initiate drizzle and settles into a steady state. With lower initial aerosol concentrations, this system quickly transitions into open cells, collapses, and redevelops into a different steady state with a shallow, optically thin cloud layer. In these steady states, interstitial scavenging by cloud droplets is the main sink of aerosol number. The

  16. EVALUATION OF SECONDARY ORGANIC AEROSOL FORMATION IN WINTER. (R823514)

    EPA Science Inventory

    Three different methods are used to predict secondary organic aerosol (SOA)
    concentrations in the San Joaquin Valley of California during the winter of 1995-1996 [Integrated
    Monitoring Study, (IMS95)]. The first of these methods estimates SOA by using elemental carbon as

  17. METAL AEROSOL FORMATION IN A LABORATORY SWIRL FLAME INCINERATOR

    EPA Science Inventory

    The paper describes experiments performed using an 82 kW (280,000 Btu/hr) refractory-lined horizontal tunnel combustor to examine the aerosol particle size distribution (PSD) produced by simulated nickel, cadmium, and lead wastes injected into an incineration environment. Metal c...

  18. SECONDARY ORGANIC AEROSOL FORMATION FROM MIXTURES OF BIOGENIC HYDROCARBONS

    EPA Science Inventory

    In this work the influence of hydrocarbon mixtures on the overall Secondary Organic Aerosol yield is investigated. Photochemical reaction experiments were conducted using mixtures of a-pinene, isoprene and propene in the presence of NOx. Results of the experiments show...

  19. Quantifying compositional impacts of ambient aerosol on cloud droplet formation

    NASA Astrophysics Data System (ADS)

    Lance, Sara

    It has been historically assumed that most of the uncertainty associated with the aerosol indirect effect on climate can be attributed to the unpredictability of updrafts. In Chapter 1, we analyze the sensitivity of cloud droplet number density, to realistic variations in aerosol chemical properties and to variable updraft velocities using a 1-dimensional cloud parcel model in three important environmental cases (continental, polluted and remote marine). The results suggest that aerosol chemical variability may be as important to the aerosol indirect effect as the effect of unresolved cloud dynamics, especially in polluted environments. We next used a continuous flow streamwise thermal gradient Cloud Condensation Nuclei counter (CCNc) to study the water-uptake properties of the ambient aerosol, by exposing an aerosol sample to a controlled water vapor supersaturation and counting the resulting number of droplets. In Chapter 2, we modeled and experimentally characterized the heat transfer properties and droplet growth within the CCNc. Chapter 3 describes results from the MIRAGE field campaign, in which the CCNc and a Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) were deployed at a ground-based site during March, 2006. Size-resolved CCN activation spectra and growth factor distributions of the ambient aerosol in Mexico City were obtained, and an analytical technique was developed to quantify a probability distribution of solute volume fractions for the CCN in addition to the aerosol mixing-state. The CCN were shown to be much less CCN active than ammonium sulfate, with water uptake properties more consistent with low molecular weight organic compounds. The pollution outflow from Mexico City was shown to have CCN with an even lower fraction of soluble material. "Chemical Closure" was attained for the CCN, by comparing the inferred solute volume fraction with that from direct chemical measurements. A clear diurnal pattern was observed for the CCN solute

  20. Field Observation of Heterogeneous Formation of Secondary Organic Aerosols on Asian Mineral Dust Surfaces

    NASA Astrophysics Data System (ADS)

    Wang, G.

    2014-12-01

    This study investigated the heterogeneous formation mechanism of secondary organic aerosols (SOA) on dust surfaces by characterizing molecular compositions and size distributions of dicarboxylic acids, keto-carboxylic acids, a-dicarbonyls and inorganic ions in size-segregated aerosols (9-stages) in the urban atmosphere of Xi'an, China during dust storm periods and comparing with those in non-dust storm periods. In the presence of a dust storm, all the above mentioned SOA species in Xi'an are predominantly enriched on coarse particles (>2.1 µm). Oxalic acid well correlated with NO3- (r2=0.72, p<0.01) rather than SO42-. This phenomenon differs greatly from the observed particles during a non-dust storm period, which is characterized by an enrichment of the SOA on fine particles (<2.1 µm) with a strong correlation between C2 and SO42-. We propose a three-step formation pathway to explain these observations as follows. First, nitric acid and nitrogen oxides react with dust to form a liquid film on the surface via water vapor-absorption of calcium nitrate. Second, gaseous Gly and mGly partition into the aqueous-phase. Finally, the aqueous-phase Gly and mGly oxidize into glyoxylic acid (wC2), followed by a further oxidation into C2. To the best of our knowledge, we found for the first time the enrichments of glyoxal (Gly) and methylglyoxal (mGly) on dust surfaces. Our data indicate a more critical role of nitrate than sulfate in the heterogeneous formation process of SOA on dust surfaces. Mass ratio of C2 to wC2 was found to be higher in coarse particles than in fine particles during the dust storm events, which is due to low acidity condition of large particles that is favorable for conversion of wC2 to C2.

  1. Secondary organic aerosol formation from cyclohexene ozonolysis in the presence of water vapor and dissolved salts

    NASA Astrophysics Data System (ADS)

    Warren, Bethany; Malloy, Quentin G. J.; Yee, Lindsay D.; Cocker, David R.

    A series of 90 experiments were conducted in the UC Riverside/CE-CERT environmental chamber to evaluate the impact of water vapor and dissolved salts on secondary organic aerosol formation for cyclohexene ozonolysis. Water vapor (low - 30 ± 2% RH, medium - 46 ± 2% RH, high - 63 ± 2% RH) was found to directly participate in the atmospheric chemistry altering the composition of the condensing species, thus increasing total organic aerosol formation by ˜22% as compared to the system under dry (<0.1% RH) conditions. Hygroscopicity measurements also indicate that the organic aerosol composition is altered in the presence of gaseous water. These results are consistent with water vapor reacting with the crigee intermediate in the gas phase resulting in increased aldehyde formation. The addition of dissolved salts ((NH 4) 2SO 4, NH 4HSO 4, CaCl 2, NaCl) had minimal effect; only the (NH 4) 2SO 4 and NaCl were found to significantly impact the system with ˜10% increase in total organic aerosol formation. These results indicate that the organics may be partitioning to an outer organic shell as opposed to into the aqueous salt. Hygroscopicity measurements indicate that the addition of salts does not alter the aerosol composition for the dry or water vapor system.

  2. Properties of aerosols and formation mechanisms over southern China during the monsoon season

    NASA Astrophysics Data System (ADS)

    Chen, Weihua; Wang, Xuemei; Blake Cohen, Jason; Zhou, Shengzhen; Zhang, Zhisheng; Chang, Ming; Chan, Chuen-Yu

    2016-10-01

    Measurements of size-resolved aerosols from 0.25 to 18 µm were conducted at three sites (urban, suburban and background sites) and used in tandem with an atmospheric transport model to study the size distribution and formation of atmospheric aerosols in southern China during the monsoon season (May-June) in 2010. The mass distribution showed the majority of chemical components were found in the smaller size bins (< 2.5 µm). Sulfate was found to be strongly correlated with aerosol water and anticorrelated with atmospheric SO2, hinting at aqueous-phase reactions being the main formation pathway. Nitrate was the only major species that showed a bimodal distribution at the urban site and was dominated by the coarse mode in the other two sites, suggesting that an important component of nitrate formation is chloride depletion of sea salt transported from the South China Sea. In addition to these aqueous-phase reactions and interactions with sea salt aerosols, new particle formation, chemical aging, and long-range transport from upwind urban or biomass burning regions was also found to be important in at least some of the sites on some of the days. This work therefore summarizes the different mechanisms that significantly impact the aerosol chemical composition during the monsoon over southern China.

  3. Understanding the Effect of Aerosol Properties on Cloud Droplet Formation during TCAP Field Campaign Report

    SciTech Connect

    Cziczo, Daniel

    2016-05-01

    The formation of clouds is an essential element in understanding the Earth’s radiative budget. Liquid water clouds form when the relative humidity exceeds saturation and condensedphase water nucleates on atmospheric particulate matter. The effect of aerosol properties such as size, morphology, and composition on cloud droplet formation has been studied theoretically as well as in the laboratory and field. Almost without exception these studies have been limited to parallel measurements of aerosol properties and cloud formation or collection of material after the cloud has formed, at which point nucleation information has been lost. Studies of this sort are adequate when a large fraction of the aerosol activates, but correlations and resulting model parameterizations are much more uncertain at lower supersaturations and activated fractions.

  4. Research highlights: laboratory studies of the formation and transformation of atmospheric organic aerosols.

    PubMed

    Borduas, Nadine; Lin, Vivian S

    2016-04-01

    Atmospheric particles are emitted from a variety of anthropogenic and natural precursors and have direct impacts on climate, by scattering solar irradiation and nucleating clouds, and on health, by causing oxidative stress in the lungs when inhaled. They may also form from gaseous precursors, creating complex mixtures of organic and inorganic material. The chemical composition and the physical properties of aerosols will evolve during their one-week lifetime which will consequently change their impact on climate and health. The heterogeneity of aerosols is difficult to model and thus atmospheric aerosol research strives to characterize the mechanisms involved in nucleating and transforming particles in the atmosphere. Recent advances in four laboratory studies of aerosol formation and aging are highlighted here.

  5. The use of ambient measurements to identify which precursor species limit aerosol nitrate formation.

    PubMed

    Blanchard, C L; Roth, P M; Tanenbaum, S J; Ziman, S D; Seinfeld, J H

    2000-12-01

    A thermodynamic equilibrium model was used to investigate the response of aerosol NO3 to changes in concentrations of HNO3, NH3, and H2SO4. Over a range of temperatures and relative humidities (RHs), two parameters provided sufficient information for indicating the qualitative response of aerosol NO3. The first was the excess of aerosol NH4+ plus gas-phase NH3 over the sum of HNO3, particulate NO3, and particulate SO4(2-) concentrations. The second was the ratio of particulate to total NO3 concentrations. Computation of these quantities from ambient measurements provides a means to rapidly analyze large numbers of samples and identify cases in which inorganic aerosol NO3 formation is limited by the availability of NH3. Example calculations are presented using data from three field studies. The predictions of the indicator variables and the equilibrium model are compared.

  6. Characterisation of aerosol combustible mixtures generated using condensation process

    NASA Astrophysics Data System (ADS)

    Saat, Aminuddin; Dutta, Nilabza; Wahid, Mazlan A.

    2012-06-01

    An accidental release of a liquid flammable substance might be formed as an aerosol (droplet and vapour mixture). This phenomenon might be due to high pressure sprays, pressurised liquid leaks and through condensation when hot vapour is rapidly cooled. Such phenomena require a fundamental investigation of mixture characterisation prior to any subsequent process such as evaporation and combustion. This paper describes characterisation study of droplet and vapour mixtures generated in a fan stirred vessel using condensation technique. Aerosol of isooctane mixtures were generated by expansion from initially a premixed gaseous fuel-air mixture. The distribution of droplets within the mixture was characterised using laser diagnostics. Nearly monosized droplet clouds were generated and the droplet diameter was defined as a function of expansion time. The effect of changes in pressure, temperature, fuel-air fraction and expansion ratio on droplet diameter was evaluated. It is shown that aerosol generation by expansion was influenced by the initial pressure and temperature, equivalence ratio and expansion rates. All these parameters affected the onset of condensation which in turn affected the variation in droplet diameter.

  7. Secondary aerosol formation from stress-induced biogenic emissions and possible climate feedbacks

    NASA Astrophysics Data System (ADS)

    Mentel, Th. F.; Kleist, E.; Andres, S.; Dal Maso, M.; Hohaus, T.; Kiendler-Scharr, A.; Rudich, Y.; Springer, M.; Tillmann, R.; Uerlings, R.; Wahner, A.; Wildt, J.

    2013-09-01

    Atmospheric aerosols impact climate by scattering and absorbing solar radiation and by acting as ice and cloud condensation nuclei. Biogenic secondary organic aerosols (BSOAs) comprise an important component of atmospheric aerosols. Biogenic volatile organic compounds (BVOCs) emitted by vegetation are the source of BSOAs. Pathogens and insect attacks, heat waves and droughts can induce stress to plants that may impact their BVOC emissions, and hence the yield and type of formed BSOAs, and possibly their climatic effects. This raises questions of whether stress-induced changes in BSOA formation may attenuate or amplify effects of climate change. In this study we assess the potential impact of stress-induced BVOC emissions on BSOA formation for tree species typical for mixed deciduous and Boreal Eurasian forests. We studied the photochemical BSOA formation for plants infested by aphids in a laboratory setup under well-controlled conditions and applied in addition heat and drought stress. The results indicate that stress conditions substantially modify BSOA formation and yield. Stress-induced emissions of sesquiterpenes, methyl salicylate, and C17-BVOCs increase BSOA yields. Mixtures including these compounds exhibit BSOA yields between 17 and 33%, significantly higher than mixtures containing mainly monoterpenes (4-6% yield). Green leaf volatiles suppress SOA formation, presumably by scavenging OH, similar to isoprene. By classifying emission types, stressors and BSOA formation potential, we discuss possible climatic feedbacks regarding aerosol effects. We conclude that stress situations for plants due to climate change should be considered in climate-vegetation feedback mechanisms.

  8. Secondary aerosol formation from stress-induced biogenic emissions and possible climate feedbacks

    NASA Astrophysics Data System (ADS)

    Mentel, Th. F.; Kleist, E.; Andres, S.; Maso, M. D.; Hohaus, T.; Kiendler-Scharr, A.; Rudich, Y.; Springer, M.; Tillmann, R.; Uerlings, R.; Wahner, A.; Wildt, J.

    2013-03-01

    Atmospheric aerosols impact climate by scattering and absorbing solar radiation and by acting as ice and cloud condensation nuclei. Secondary organic aerosols (SOA) comprise an important component of atmospheric aerosols. Biogenic volatile organic compounds (BVOC) emitted by vegetation are a major source of SOA. Pathogens and insect attacks, heat waves and droughts can induce stress to plants that may impact their BVOC emissions, and hence the yield and type of formed SOA, and possibly their climatic effects. This raises questions whether stress-induced changes in SOA formation may attenuate or amplify effects of climate change. In this study we assess the potential impact of stress-induced BVOC emissions on SOA formation for tree species typical for mixed deciduous and Boreal Eurasian forests. We studied the photochemical SOA formation for infested plants in a laboratory setup under well-controlled conditions and applied in addition heat and drought stress. The results indicate that stress conditions substantially modify SOA formation. While sesquiterpenes, methyl salicylate, and C17-BVOC increase SOA yield, green leaf volatiles suppress SOA formation. By classifying emission types, stressors and SOA formation potential, we propose possible climatic feedbacks regarding aerosol effects. We conclude that stress situations for plants due to climate change should be considered in climate-vegetation feedback mechanisms.

  9. Secondary Organic Aerosol formation from isoprene photooxidation under dry conditions (CUMULUS project)

    NASA Astrophysics Data System (ADS)

    Brégonzio-Rozier, Lola; Siekmann, Frank; Giorio, Chiara; Temime-Roussel, Brice; Pangui, Edouard; Morales, Sébastien; Gratien, Aline; Ravier, Sylvain; Monod, Anne; Doussin, Jean-Francois

    2014-05-01

    Isoprene (2-methyl-1,3-butadiene, C5H8) is one of the most abundant non-methane hydrocarbons emitted into the troposphere. Its annual global emission has recently been estimated in the range of 440 to 660 TgC (Guenther et al., 2006). Because of its large concentrations and high reactivity with the hydroxyl radical (OH), isoprene can have a strong influence on tropospheric photochemistry. It has been determined recently that isoprene also plays a role in secondary organic aerosol (SOA) formation in the ambient atmosphere even if isoprene leads to low SOA yields. The aim of the present work was to study isoprene photo-oxidation with OH radical in order to investigate its oxidation products and resulting aerosol production. A special care was taken to the realism of the experiment: light source, NOx and OH levels and aging time (around 10 hours). Experiments were performed in the CESAM chamber (Wang et al., 2011) which was designed to investigate multiphase processes under realistic actinic flux, and accurate control of temperature. In each experiment, around 800 ppb of isoprene was injected in the chamber together with the OH source under dry conditions (<5 %RH) before irradiation. Gas-phase composition was analyzed in-situ by a Fourier Transform Infrared Spectrometer (FTIR), a Proton Transfer Reaction Mass Spectrometer (PTR-TOF-MS) and NOx and ozone analyzers. A Scanning Mobility Particle Sizer (SMPS) and an Aerodyne High Resolution Time-Of-Flight Aerosol Mass Spectrometer (HR-TOF-AMS) were also used to investigate SOA formation and composition. In all experiments, we noted a SOA production at the end of isoprene oxidation i.e. exhibiting a clear secondary products type growth. Several results (including SOA densities and yields, and O/C ratios) were obtained using SMPS and AMS data allowing us to characterize SOA formation and composition during the experiments. The characterization of the gaseous and particulate phases will be presented. While the SOA yields in

  10. Photolytic processing of secondary organic aerosols dissolved in cloud droplets.

    PubMed

    Bateman, Adam P; Nizkorodov, Sergey A; Laskin, Julia; Laskin, Alexander

    2011-07-14

    The effect of UV irradiation on the molecular composition of aqueous extracts of secondary organic aerosol (SOA) was investigated. SOA was prepared by the dark reaction of ozone and d-limonene at 0.05-1 ppm precursor concentrations and collected with a particle-into-liquid sampler (PILS). The PILS extracts were photolyzed by 300-400 nm radiation for up to 24 h. Water-soluble SOA constituents were analyzed using high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) at different stages of photolysis for all SOA precursor concentrations. Exposure to UV radiation increased the average O/C ratio and decreased the average double bond equivalent (DBE) of the dissolved SOA compounds. Oligomeric compounds were significantly decreased by photolysis relative to the monomeric compounds. Direct pH measurements showed that acidic compounds increased in abundance upon photolysis. Methanol reactivity analysis revealed significant photodissociation of molecules containing carbonyl groups and the formation of carboxylic acids. Aldehydes, such as limononaldehyde, were almost completely removed. The removal of carbonyls was further confirmed by the UV/Vis absorption spectroscopy of the SOA extracts where the absorbance in the carbonyl n→π* band decreased significantly upon photolysis. The effective quantum yield (the number of carbonyls destroyed per photon absorbed) was estimated as ∼0.03. The total concentration of peroxides did not change significantly during photolysis as quantified with an iodometric test. Although organic peroxides were photolyzed, the likely end products of photolysis were smaller peroxides, including hydrogen peroxide, resulting in a no net change in the peroxide content. Photolysis of dry limonene SOA deposited on substrates was investigated in a separate set of experiments. The observed effects on the average O/C and DBE were similar to the aqueous photolysis, but the extent of chemical change was smaller in dry SOA. Our results suggest

  11. Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multi-layer model ADCHAM

    NASA Astrophysics Data System (ADS)

    Roldin, P.; Eriksson, A. C.; Nordin, E. Z.; Hermansson, E.; Mogensen, D.; Rusanen, A.; Boy, M.; Swietlicki, E.; Svenningsson, B.; Zelenyuk, A.; Pagels, J.

    2014-01-01

    We have developed the novel Aerosol Dynamics, gas- and particle-phase chemistry model for laboratory CHAMber studies (ADCHAM). The model combines the detailed gas phase Master Chemical Mechanism version 3.2, an aerosol dynamics and particle phase chemistry module (which considers acid catalysed oligomerization, heterogeneous oxidation reactions in the particle phase and non-ideal interactions between organic compounds, water and inorganic ions) and a kinetic multilayer module for diffusion limited transport of compounds between the gas phase, particle surface and particle bulk phase. In this article we describe and use ADCHAM to study: (1) the mass transfer limited uptake of ammonia (NH3) and formation of organic salts between ammonium (NH4+) and carboxylic acids (RCOOH), (2) the slow and almost particle size independent evaporation of α-pinene secondary organic aerosol (SOA) particles, and (3) the influence of chamber wall effects on the observed SOA formation in smog chambers. ADCHAM is able to capture the observed α-pinene SOA mass increase in the presence of NH3(g). Organic salts of ammonium and carboxylic acids predominantly form during the early stage of SOA formation. These salts contribute substantially to the initial growth of the homogeneously nucleated particles. The model simulations of evaporating α-pinene SOA particles support the recent experimental findings that these particles have a semi-solid tar like amorphous phase state. ADCHAM is able to reproduce the main features of the observed slow evaporation rates if low-volatility and viscous oligomerized SOA material accumulates in the particle surface layer upon evaporation. The evaporation rate is mainly governed by the reversible decomposition of oligomers back to monomers. Finally, we demonstrate that the mass transfer limited uptake of condensable organic compounds onto wall deposited particles or directly onto the Teflon chamber walls of smog chambers can have profound influence on the

  12. Secondary organic aerosol (trans)formation through aqueous phase guaiacol photonitration: chemical characterization of the products

    NASA Astrophysics Data System (ADS)

    Grgić, Irena; Kitanovski, Zoran; Kroflič, Ana; Čusak, Alen

    2014-05-01

    One of the largest primary sources of organic aerosol in the atmosphere is biomass burning (BB) (Laskin et al. 2009); in Europe its contribution to annual mean of PM10 is between 3 and 14 % (Maenhaut et al. 2012). During the process of wood burning many different products are formed via thermal degradation of wood lignin. Hardwood burning produces mainly syringol (2,6-dimetoxyphenol) derivatives, while softwood burning exclusively guaiacol (2-methoxyphenol) and its derivatives. Taking into account physical properties of methoxyphenols only, their concentrations in atmospheric waters might be underestimated. So, their aqueous phase reactions can be an additional source of SOA, especially in regions under significant influence of wood combustion. An important class of compounds formed during physical and chemical aging of the primary BBA in the atmosphere is nitrocatechols, known as strong absorbers of UV and Vis light (Claeys et al. 2012). Very recently, methyl-nitrocatechols were proposed as suitable markers for highly oxidized secondary BBA (Iinuma et al. 2010, Kitanovski et al. 2012). In the present work, the formation of SOA through aqueous phase photooxidation and nitration of guaiacol was examined. The key objective was to chemically characterize the main low-volatility products and further to check their possible presence in the urban atmospheric aerosols. The aqueous phase reactions were performed in a thermostated reactor under simulated sunlight in the presence of H2O2 and nitrite. Guaiacol reaction products were first concentrated by solid-phase extraction (SPE) and then subjected to semi-preparative liquid chromatography.The main product compounds were fractionated and isolated as pure solids and their structure was further elucidated by using nuclear magnetic resonance spectroscopy (1H, 13C and 2D NMR) and direct infusion negative ion electro-spray ionization tandem mass spectrometry (( )ESI-MS/MS). The main photonitration products of guaiacol (4

  13. Aerosol processing of fine Ag:(Bi,Pb)2223 composite particles

    NASA Astrophysics Data System (ADS)

    Mancic, Lidija; Marinkovic, Bojan; Vulic, Predrag; Milosevic, Olivera

    2004-08-01

    This paper represents an attempt in the obtaining of metal-ceramic composite precursor powders in the Ag:Bi-based superconductor system with uniform distribution of comprised phases through spray pyrolysis method. The process involves aerosol formation ultrasonically (800 kHz) from the urea-modified nitrates precursor solution (for the fixed cation ratio Bi:Pb:Sr:Ca:Cu=1.8:0.2:2:2:3 and for the Ag fraction of 20 wt.%) and control over the aerosol decomposition united with self-combustion of droplets in a high-temperature tubular flow reactor in the temperature range up to 820 °C. Following the initial attempts in providing of the 2223 phase high contents, particles were additionally calcined for 2 h in air and oxygen, at 825 and 810 °C respectively. Structure, morphology and compositional stoichiometry of synthesized powders were followed in accordance to various analysis methods (XRD, DTA, SEM and EDS).

  14. Organic peroxide and OH formation in aerosol and cloud water: laboratory evidence for this aqueous chemistry

    NASA Astrophysics Data System (ADS)

    Lim, Y. B.; Turpin, B. J.

    2015-06-01

    Aqueous chemistry in atmospheric waters (e.g., cloud droplets or wet aerosols) is well accepted as an atmospheric pathway to produce secondary organic aerosol (SOAaq). Water-soluble organic compounds with small carbon numbers (C2-C3) are precursors for SOAaq and products include organic acids, organic sulfates, and high molecular weight compounds/oligomers. Fenton reactions and the uptake of gas-phase OH radicals are considered to be the major oxidant sources for aqueous organic chemistry. However, the sources and availability of oxidants in atmospheric waters are not well understood. The degree to which OH is produced in the aqueous phase affects the balance of radical and non-radical aqueous chemistry, the properties of the resulting aerosol, and likely its atmospheric behavior. This paper demonstrates organic peroxide formation during aqueous photooxidation of methylglyoxal using ultra high resolution Fourier Transform Ion Cyclotron Resonance electrospray ionization mass spectrometry (FTICR-MS). Organic peroxides are known to form through gas-phase oxidation of volatile organic compounds. They contribute secondary organic aerosol (SOA) formation directly by forming peroxyhemiacetals, and epoxides, and indirectly by enhancing gas-phase oxidation through OH recycling. We provide simulation results of organic peroxide/peroxyhemiacetal formation in clouds and wet aerosols and discuss organic peroxides as a source of condensed-phase OH radicals and as a contributor to aqueous SOA.

  15. Organic aerosol formation from biogenic compounds over the Ponderosa pine forest in Colorado

    NASA Astrophysics Data System (ADS)

    Roux, Alma Hodzic; Lee-Taylor, Julia; Cui, Yuyan; Madronich, Sasha

    2013-05-01

    The secondary organic aerosol (SOA) formation and regional growth from biogenic precursors is of particular interest given their abundance in the atmosphere, and has been investigated during the Rocky Mountain Biogenic Aerosol field Study in 2011 in the pine forest canopy (dominated by terpene emissions) using both WRF/Chem 4km simulations and the GECKO-A explicit chemistry box-model runs. We have quantified the relative contribution of different biogenic precursors to SOA levels that were measured by the aerosol mass spectrometer at the site, and investigated the relative contribution of OH, O3 and NO3 chemistry to the formed SOA mass during day-and nighttime. Although, the local production and mass concentrations of submicron organic aerosols at the site seem relatively modest ˜1-2 ug/m3, we show that the optically active regional mass is increased as the SOA formation continues for several days in the background forest air. We investigate whether the simplified SOA parameterizations used in 3D models can capture this growth. In addition, preliminary comparisons of the number concentrations and the composition of ultrafine particles (8 - 30nm) from WRF/Chem simulations and TD-CIMS measurements are also discussed, and the contribution of organic aerosols to CCN formation is quantified.

  16. The Multifaceted Planetesimal Formation Process

    NASA Astrophysics Data System (ADS)

    Johansen, A.; Blum, J.; Tanaka, H.; Ormel, C.; Bizzarro, M.; Rickman, H.

    Accumulation of dust and ice particles into planetesimals is an important step in the planet formation process. Planetesimals are the seeds of both terrestrial planets and the solid cores of gas and ice giants forming by core accretion. Leftover planetesimals in the form of asteroids, transneptunian objects, and comets provide a unique record of the physical conditions in the solar nebula. Debris from planetesimal collisions around other stars signposts that the planetesimal formation process, and hence planet formation, is ubiquitous in the Galaxy. The planetesimal formation stage extends from micrometer-sized dust and ice to bodies that can undergo runaway accretion. The latter ranges in size from 1 km to 1000 km, dependent on the planetesimal eccentricity excited by turbulent gas density fluctuations. Particles face many barriers during this growth, arising mainly from inefficient sticking, fragmentation, and radial drift. Two promising growth pathways are mass transfer, where small aggregates transfer up to 50% of their mass in high-speed collisions with much larger targets, and fluffy growth, where aggregate cross sections and sticking probabilities are enhanced by a low internal density. A wide range of particle sizes, from 1 mm to 10 m, concentrate in the turbulent gas flow. Overdense filaments fragment gravitationally into bound particle clumps, with most mass entering planetesimals of contracted radii from 100 km to 500 km, depending on local disk properties. We propose a hybrid model for planetesimal formation where particle growth starts unaided by self-gravity but later proceeds inside gravitationally collapsing pebble clumps to form planetesimals with a wide range of sizes.

  17. Insights into secondary organic aerosol formation mechanisms from measured gas/particle partitioning of specific organic tracer compounds.

    PubMed

    Zhao, Yunliang; Kreisberg, Nathan M; Worton, David R; Isaacman, Gabriel; Weber, Robin J; Liu, Shang; Day, Douglas A; Russell, Lynn M; Markovic, Milos Z; VandenBoer, Trevor C; Murphy, Jennifer G; Hering, Susanne V; Goldstein, Allen H

    2013-04-16

    In situ measurements of organic compounds in both gas and particle phases were made with a thermal desorption aerosol gas chromatography (TAG) instrument. The gas/particle partitioning of phthalic acid, pinonaldehyde, and 6,10,14-trimethyl-2-pentadecanone is discussed in detail to explore secondary organic aerosol (SOA) formation mechanisms. Measured fractions in the particle phase (f(part)) of 6,10,14-trimethyl-2-pentadecanone were similar to those expected from the absorptive gas/particle partitioning theory, suggesting that its partitioning is dominated by absorption processes. However, f(part) of phthalic acid and pinonaldehyde were substantially higher than predicted. The formation of low-volatility products from reactions of phthalic acid with ammonia is proposed as one possible mechanism to explain the high f(part) of phthalic acid. The observations of particle-phase pinonaldehyde when inorganic acids were fully neutralized indicate that inorganic acids are not required for the occurrence of reactive uptake of pinonaldehyde on particles. The observed relationship between f(part) of pinonaldehyde and relative humidity suggests that the aerosol water plays a significant role in the formation of particle-phase pinonaldehyde. Our results clearly show it is necessary to include multiple gas/particle partitioning pathways in models to predict SOA and multiple SOA tracers in source apportionment models to reconstruct SOA.

  18. Hygroscopicity and chemical composition of Antarctic sub-micrometre aerosol particles and observations of new particle formation

    NASA Astrophysics Data System (ADS)

    Asmi, E.; Frey, A.; Virkkula, A.; Ehn, M.; Manninen, H. E.; Timonen, H.; Tolonen-Kivimäki, O.; Aurela, M.; Hillamo, R.; Kulmala, M.

    2009-12-01

    The Antarctic near-coastal sub-micrometre aerosol particle features in summer were characterised based on measured data on aerosol hygroscopicity, size distributions, volatility and chemical ion and organic carbon mass concentrations. Hysplit model was used to calculate the history of the air masses to predict the particle origin. Additional measurements of meteorological parameters were utilised. The hygroscopic properties of particles mostly resembled those of marine aerosols. The measurements took place at 130 km from the Southern Ocean, which was the most significant factor affecting the particle properties. This is explained by the lack of additional sources on the continent of Antarctica. The Southern Ocean was thus a likely source of the particles and nucleating and condensing vapours. The particles were very hygroscopic (HGF 1.75 at 90 nm) and very volatile. Most of the sub-100 nm particle volume volatilised below 100 °C. Based on chemical data, particle hygroscopic and volatile properties were explained by a large fraction of non-neutralised sulphuric acid together with organic material. The hygroscopic growth factors assessed from chemical data were similar to measured. Hygroscopicity was higher in dry continental air masses compared with the moist marine air masses. This was explained by the aging of the marine organic species and lower methanesulphonic acid volume fraction together with the changes in the inorganic aerosol chemistry as the aerosol had travelled long time over the continental Antarctica. Special focus was directed in detailed examination of the observed new particle formation events. Indications of the preference of negative over positive ions in nucleation could be detected. However, in a detailed case study, the neutral particles dominated the particle formation process. Freshly nucleated particles had the smallest hygroscopic growth factors, which increased subsequent to particle aging.

  19. Hygroscopicity and chemical composition of Antarctic sub-micrometre aerosol particles and observations of new particle formation

    NASA Astrophysics Data System (ADS)

    Asmi, E.; Frey, A.; Virkkula, A.; Ehn, M.; Manninen, H. E.; Timonen, H.; Tolonen-Kivimäki, O.; Aurela, M.; Hillamo, R.; Kulmala, M.

    2010-05-01

    The Antarctic near-coastal sub-micrometre aerosol particle features in summer were characterised based on measured data on aerosol hygroscopicity, size distributions, volatility and chemical ion and organic carbon mass concentrations. Hysplit model was used to calculate the history of the air masses to predict the particle origin. Additional measurements of meteorological parameters were utilised. The hygroscopic properties of particles mostly resembled those of marine aerosols. The measurements took place at 130 km from the Southern Ocean, which was the most significant factor affecting the particle properties. This is explained by the lack of additional sources on the continent of Antarctica. The Southern Ocean was thus a likely source of the particles and nucleating and condensing vapours. The particles were very hygroscopic (HGF 1.75 at 90 nm) and very volatile. Most of the sub-100 nm particle volume volatilised below 100 °C. Based on chemical data, particle hygroscopic and volatile properties were explained by a large fraction of non-neutralised sulphuric acid together with organic material. The hygroscopic growth factors assessed from chemical data were similar to measured. Hygroscopicity was higher in dry continental air masses compared with the moist marine air masses. This was explained by the aging of the marine organic species and lower methanesulphonic acid volume fraction together with the changes in the inorganic aerosol chemistry as the aerosol had travelled long time over the continental Antarctica. Special focus was directed in detailed examination of the observed new particle formation events. Indications of the preference of negative over positive ions in nucleation could be detected. However, in a detailed case study, the neutral particles dominated the particle formation process. Freshly nucleated particles had the smallest hygroscopic growth factors, which increased subsequent to particle aging.

  20. oVOC production from tropospheric alkyne oxidation and contribution to aerosol formation and growth

    NASA Astrophysics Data System (ADS)

    Goodall, Iain

    2013-04-01

    Ethyne (C2H2) is one of the simplest volatile organic compounds (VOC) and is predominantly emitted via anthropogenic processes and reacts with nitrogen oxides (NOx) in the presence of sunlight to form tropospheric ozone (O3). The dominant oxidation product of ethyne is the dicarbonyl species glyoxal (CHOCHO), which is thought to be a significant contributor to secondary organic aerosol (SOA) formation via irreversible oligomerisation reactions upon the surface of hydrated aerosol particulates and within cloud droplets. A series of chamber experiments were performed at the EUPHORE facility (Valencia, Spain) to study the atmospheric oxidation of ethyne, to determine oxidation product yields and to monitor SOA formation and growth by dicarbonyl oligomerisation. A Proton Transfer Reaction-Time of Flight- Mass Spectrometer (PTR-ToF-MS) was deployed by the University of Leicester to monitor precursor decay and the subsequent evolution of any gas-phase oxidised volatile organic compounds (oVOC). This was further complemented by a Broadband Cavity Enhanced Absorption Spectrometer (BBCEAS) for specific dicarbonyl and NO2 measurements. Aqueous extracts of chamber SOA were taken from filters collected during the experiments and subsequently analysed offline. The work explores the yields of low molecular weight products of ethyne oxidation for light and dark reactions, with varying levels of NOx and OH. Novel experiments were performed under atmospherically relevant conditions utilising natural lighting rather than artificial lighting. Reaction yields have been assessed with the aim of contributing to the ethyne and glyoxal mechanisms in the Master Chemical Mechanism (MCM; http://mcm.leeds.ac.uk/MCM), and have been compared with previously reported values determined from experiments performed under artificial lighting conditions.

  1. Rapid gas hydrate formation process

    DOEpatents

    Brown, Thomas D.; Taylor, Charles E.; Unione, Alfred J.

    2013-01-15

    The disclosure provides a method and apparatus for forming gas hydrates from a two-phase mixture of water and a hydrate forming gas. The two-phase mixture is created in a mixing zone which may be wholly included within the body of a spray nozzle. The two-phase mixture is subsequently sprayed into a reaction zone, where the reaction zone is under pressure and temperature conditions suitable for formation of the gas hydrate. The reaction zone pressure is less than the mixing zone pressure so that expansion of the hydrate-forming gas in the mixture provides a degree of cooling by the Joule-Thompson effect and provides more intimate mixing between the water and the hydrate-forming gas. The result of the process is the formation of gas hydrates continuously and with a greatly reduced induction time. An apparatus for conduct of the method is further provided.

  2. Simulation of semi-explicit mechanisms of SOA formation from glyoxal in aerosol in a 3-D model

    NASA Astrophysics Data System (ADS)

    Knote, C.; Hodzic, A.; Jimenez, J. L.; Volkamer, R.; Orlando, J. J.; Baidar, S.; Brioude, J.; Fast, J.; Gentner, D. R.; Goldstein, A. H.; Hayes, P. L.; Knighton, W. B.; Oetjen, H.; Setyan, A.; Stark, H.; Thalman, R.; Tyndall, G.; Washenfelder, R.; Waxman, E.; Zhang, Q.

    2014-06-01

    New pathways to form secondary organic aerosol (SOA) have been postulated recently. Glyoxal, the smallest dicarbonyl, is one of the proposed precursors. It has both anthropogenic and biogenic sources, and readily partitions into the aqueous phase of cloud droplets and deliquesced particles where it undergoes both reversible and irreversible chemistry. In this work we extend the regional scale chemistry transport model WRF-Chem to include detailed gas-phase chemistry of glyoxal formation as well as a state-of-the-science module describing its partitioning and reactions in the aerosol aqueous-phase. A comparison of several proposed mechanisms is performed to quantify the relative importance of different formation pathways and their regional variability. The CARES/CalNex campaigns over California in summer 2010 are used as case studies to evaluate the model against observations. A month-long simulation over the continental United States (US) enables us to extend our results to the continental scale. In all simulations over California, the Los Angeles (LA) basin was found to be the hot spot for SOA formation from glyoxal, which contributes between 1% and 15% of the model SOA depending on the mechanism used. Our results indicate that a mechanism based only on a reactive (surface limited) uptake coefficient leads to higher SOA yields from glyoxal compared to a more detailed description that considers aerosol phase state and chemical composition. In the more detailed simulations, surface uptake is found to give the highest SOA mass yields compared to a volume process and reversible formation. We find that the yields of the latter are limited by the availability of glyoxal in aerosol water, which is in turn controlled by an increase in the Henry's law constant depending on salt concentrations ("salting-in"). A time dependence in this increase prevents substantial partitioning of glyoxal into aerosol water at high salt concentrations. If this limitation is removed, volume

  3. Processing of aerosol particles within the Habshan pollution plume

    NASA Astrophysics Data System (ADS)

    Semeniuk, T. A.; Bruintjes, R.; Salazar, V.; Breed, D.; Jensen, T.; Buseck, P. R.

    2015-03-01

    The Habshan industrial site in the United Arab Emirates produces a regional-scale pollution plume associated with oil and gas processing, discharging high loadings of sulfates and chlorides into the atmosphere, which interact with the ambient aerosol population. Aerosol particles and trace gas chemistry at this site were studied on two flights in the summer of 2002. Measurements were collected along vertical plume profiles to show changes associated with atmospheric processing of particle and gas components. Close to the outlet stack, particle concentrations were over 10,000 cm-3, dropping to <2000 cm-3 in more dilute plume around 1500 m above the stack. Particles collected close to the stack and within the dilute plume were individually measured for size, morphology, composition, and mixing state using transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy. Close to the stack, most coarse particles consisted of mineral dust and NaCl crystals from burning oil brines, while sulfate droplets dominated the fine mode. In more dilute plume, at least 1500 m above the stack, the particle spectrum was more diverse, with a significant increase in internally mixed particle types. Dilute plume samples consisted of coarse NaCl/silicate aggregates or NaCl-rich droplets, often with a sulfate component, while fine-fraction particles were of mixed cation sulfates, also internally mixed with nanospherical soot or silicates. Thus, both chloride and sulfate components of the pollution plume rapidly reacted with ambient mineral dust to form coated and aggregate particles, enhancing particle size, hygroscopicity, and reactivity of the coarse mode. The fine-fraction sulfate-bearing particles formed in the plume contribute to regional transport of sulfates, while coarse sulfate-bearing fractions locally reduced the SO2 loading through sedimentation. The chloride- and sulfate-bearing internally mixed particles formed in the plume markedly changed the

  4. Impacts of oxidation aging on secondary organic aerosol formation, particle growth rate, cloud condensation nuclei abundance, and aerosol climate forcing

    NASA Astrophysics Data System (ADS)

    Yu, F.; Luo, G.

    2014-12-01

    Particle composition measurements indicate that organic aerosol (OA) makes up ~20-90% of submicron particulate mass and secondary OA (SOA) accounts for a large fraction (~ 72 ±21%) of these OA masses at many locations around the globe. The volatility changes of secondary organic gases (SOG) associated with oxidation aging as well as the contribution of highly oxidized low volatile SOG (LV-SOG) to the condensational growth of secondary particles have been found to be important in laboratory and field measurements but are poorly represented in global models. A novel scheme to extend the widely used two-product SOA formation model, by adding a third product arising from the oxidation aging (i.e., LV-SOG) and considering the dynamic transfer of mass from higher to lower volatile products, has been developed and implemented into a global chemical transport model (GEOS-Chem) and a community atmosphere model (CESM-CAM5). The scheme requires only minor changes to the existing two-product SOA formation model and is computationally efficient. With the oxidation rate constrained by laboratory measurements, we show that the new scheme predicts a much higher SOA mass concentrations, improving the agreement with aerosol mass spectrometer SOA measurements. The kinetic condensation of LV-SOG on ultrafine particles, simulated by a size-resolved (sectional) advanced particle microphysics (APM) model incorporated into in GEOS-Chem and CAM5, increases the particle growth rate substantially and improves the agreement of simulated cloud condensation nuclei (CCN) concentrations with observations. Based on GEOS-Chem-APM simulations, the new SOA formation scheme increases global mean low troposphere SOA mass concentration by ~130% and CCN abundance by ~ 15%, and optical depth of secondary particles and coated black carbon and primary organic carbon particles by ~10%. As a result, aerosol radiative cooling effect (direct + first indirect) is enhanced by -0.9 W/m2, with large spatial

  5. The formation of sulfate and elemental sulfur aerosols under varying laboratory conditions: implications for early earth.

    PubMed

    DeWitt, H Langley; Hasenkopf, Christa A; Trainer, Melissa G; Farmer, Delphine K; Jimenez, Jose L; McKay, Christopher P; Toon, Owen B; Tolbert, Margaret A

    2010-10-01

    The presence of sulfur mass-independent fractionation (S-MIF) in sediments more than 2.45 × 10(9) years old is thought to be evidence for an early anoxic atmosphere. Photolysis of sulfur dioxide (SO(2)) by UV light with λ < 220 nm has been shown in models and some initial laboratory studies to create a S-MIF; however, sulfur must leave the atmosphere in at least two chemically different forms to preserve any S-MIF signature. Two commonly cited examples of chemically different sulfur species that could have exited the atmosphere are elemental sulfur (S(8)) and sulfuric acid (H(2)SO(4)) aerosols. Here, we use real-time aerosol mass spectrometry to directly detect the sulfur-containing aerosols formed when SO(2) either photolyzes at wavelengths from 115 to 400 nm, to simulate the UV solar spectrum, or interacts with high-energy electrons, to simulate lightning. We found that sulfur-containing aerosols form under all laboratory conditions. Further, the addition of a reducing gas, in our experiments hydrogen (H(2)) or methane (CH(4)), increased the formation of S(8). With UV photolysis, formation of S(8) aerosols is highly dependent on the initial SO(2) pressure; and S(8) is only formed at a 2% SO(2) mixing ratio and greater in the absence of a reductant, and at a 0.2% SO(2) mixing ratio and greater in the presence of 1000 ppmv CH(4). We also found that organosulfur compounds are formed from the photolysis of CH(4) and moderate amounts of SO(2). The implications for sulfur aerosols on early Earth are discussed. Key Words: S-MIF-Archean atmosphere-Early Earth-Sulfur aerosols.

  6. Impacts of new particle formation on aerosol cloud condensation nuclei (CCN) activity in Shanghai: case study

    NASA Astrophysics Data System (ADS)

    Leng, C.; Zhang, Q.; Zhang, D.; Zhang, H.; Xu, C.; Li, X.; Kong, L.; Tao, J.; Cheng, T.; Zhang, R.; Chen, J.; Qiao, L.; Lou, S.; Wang, H.; Chen, C.

    2014-07-01

    New particle formation (NPF) events and their impacts on cloud condensation nuclei (CCN) were investigated using continuous measurements collected in urban Shanghai from 1 to 30 April 2012. During the campaign, NPF occurred in 8 out of the 30 days and enhanced CCN number concentration (NCCN) by a actor of 1.2-1.8, depending on supersaturation (SS). The NPF event on 3 April 2012 was chosen as an example to investigate the NPF influence on CCN activity. In this NPF event, secondary aerosols were produced continuously and increased PM2.5 mass concentration at a~rate of 4.33 μg cm-3 h-1, and the growth rate (GR) and formation rate (FR) were on average 5 nm h-1 and 0.36 cm-3 s-1, respectively. The newly formed particles grew quickly from nucleation mode (10-20 nm) into CCN size range. NCCN increased rapidly at SS of 0.4-1.0% but weakly at SS of 0.2%. Correspondingly, aerosol CCN activities (fractions of activated aerosol particles in total aerosols, NCCN / NCN) were significantly enhanced from 0.24-0.60 to 0.30-0.91 at SS of 0.2-1.0% due to the NPF. On the basis of the κ-Köhler theory, aerosol size distributions and chemical composition measured simultaneously were used to predict NCCN. There was a good agreement between the predicted and measured NCCN (R2 = 0.96, Npredicted / Nmeasured = 1.04). This study reveals that NPF exerts large impacts on aerosol particle abundance and size spectra, thus significantly promotes NCCN and aerosol CCN activity in this urban environment. The GR of NPF is the key factor controlling the newly formed particles to become CCN at all SS levels, whereas the FR is an effective factor only under high SS (e.g. 1.0%) conditions.

  7. Effects of temperature on the formation of secondary organic aerosol from amine precursors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerosol formation is directly influenced by meteorological properties such as temperature and relative humidity. Temperature, for example, directly affects the gas-to-particle partitioning of amine salts and semi-volatile organic amine products. These salts are formed in areas with high agricultur...

  8. Aerosol formation in basaltic lava fountaining: Eyjafjallajökull volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Ilyinskaya, Evgenia; Martin, Robert S.; Oppenheimer, Clive

    2012-10-01

    A short-lived episode of basaltic lava fountaining at Eyjafjallajökull volcano (March - April 2010) produced a low-altitude, ash-poor plume. We measured the composition of aerosol particles (sampled using a cascade impactor and filter packs), gases (sampled using filter packs), and volatile species scavenged by scoria and external water in order to investigate the formation and speciation of near-source aerosol (<2 min from emission). Samples were analyzed for volatile species (S, Cl and F) and metals (Na, K, Ca and Mg). The aerosol mass showed two unusual features: the prevalent size mode was finer than typically found in volcanic plumes (˜0.2μm, compared to >0.4 μm), and its composition was dominated by chloride rather than sulfate. We used two thermodynamic equilibrium models (E-AIM and HSC Chemistry v5.1) to show that the formation of particulate Cl- by condensation of HCl gas is more responsive to changes in ambient temperature than the oxidation of SO2 to SO42-, so that a low SO42-/Cl- ratio in aerosol particles is characteristic of volcanic emissions in cold climates. Field measurements suggested that the efficiency of SO2 to SO42- conversion inside the vent increased with lower explosivity. Volatiles adsorbed on the surface of scoria had significantly higher SO42-/halogen molar ratios than the aerosol samples. Several potential explanations for these differences are discussed.

  9. Secondary Organic Aerosol Formation and Aging in a Flow Reactor in the Forested Southeast US during SOAS

    NASA Astrophysics Data System (ADS)

    Hu, W.; Palm, B. B.; Hacker, L.; Campuzano Jost, P.; Day, D. A.; Simoes de Sa, S.; Fry, J.; Ayres, B. R.; Draper, D. C.; Ortega, A. M.; Kiendler-Scharr, A.; Panujoka, A.; Virtanen, A.; Miettinen, P.; Krechmer, J.; Canagaratna, M. R.; Thompson, S.; Yatavelli, L. R.; Stark, H.; Worsnop, D. R.; Lechner, M.; Martin, S. T.; Farmer, D.; Brown, S. S.; Jimenez, J. L.

    2013-12-01

    A major field campaign (Southern Oxidant and Aerosol Study, SOAS) was conducted in summer 2013 in a forested area (Centreville Supersite) in the southeast U.S. To investigate secondary organic aerosol (SOA) formation from biogenic volatile organic compounds (BVOCs), 3 flow reactors (potential aerosol mass, PAM) were used to expose ambient air to oxidants and their output was analyzed by state-of-art gas and aerosol instruments including a High-Resolution Aerosol Mass Spectrometer (HR-AMS), a High-Resolution Proton-Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-TOFMS), and for the first time, two different High-Resolution Time-of-Flight Chemical Ionization Mass Spectrometers (HRToF-CIMS), and an SMPS. Ambient air was exposed 24/7 to variable concentrations of each of the 3 main atmospheric oxidants (OH, O3 and NO3) to investigate SOA formation and aging. The OH exposure was estimated by 3 different methods (empirical parameterization, carbon monoxide consumption, and chemical box model). Effective OH exposures up to 7e12 molec cm-3 s were achieved, which is equivalent to over a month of aging in the atmosphere. High SOA formation of up to 12 μg m-3 above ambient concentrations of 5 μg m-3 was observed under intermediate OH exposures, while very high OH exposures led to destruction of ambient OA by ≈ 30%, indicating shifting contributions of functionalization vs. fragmentation, which is similar to previous results from urban and terpene-dominated environments. The highest SOA enhancements were 3-4 times higher than the ambient OA. More SOA is typically formed during nighttime when terpenes are higher and lower during daytime when isoprene is higher. SOA formation is also observed after exposure of ambient air to O3 or NO3, although the amount and oxidation was lower than for OH exposure. Formation of organic nitrates in the NO3 reaction will be discussed. High SOA formation (above 40 μg m-3) and a large number of CIMS ions, indicating many different

  10. Laboratory Experiments and Modeling for Interpreting Field Studies of Secondary Organic Aerosol Formation Using an Oxidation Flow Reactor

    SciTech Connect

    Jimenez, Jose-Luis

    2016-02-01

    This grant was originally funded for deployment of a suite of aerosol instrumentation by our group in collaboration with other research groups and DOE/ARM to the Ganges Valley in India (GVAX) to study aerosols sources and processing. Much of the first year of this grant was focused on preparations for GVAX. That campaign was cancelled due to political reasons and with the consultation with our program manager, the research of this grant was refocused to study the applications of oxidation flow reactors (OFRs) for investigating secondary organic aerosol (SOA) formation and organic aerosol (OA) processing in the field and laboratory through a series of laboratory and modeling studies. We developed a gas-phase photochemical model of an OFR which was used to 1) explore the sensitivities of key output variables (e.g., OH exposure, O3, HO2/OH) to controlling factors (e.g., water vapor, external reactivity, UV irradiation), 2) develop simplified OH exposure estimation equations, 3) investigate under what conditions non-OH chemistry may be important, and 4) help guide design of future experiments to avoid conditions with undesired chemistry for a wide range of conditions applicable to the ambient, laboratory, and source studies. Uncertainties in the model were quantified and modeled OH exposure was compared to tracer decay measurements of OH exposure in the lab and field. Laboratory studies using OFRs were conducted to explore aerosol yields and composition from anthropogenic and biogenic VOC as well as crude oil evaporates. Various aspects of the modeling and laboratory results and tools were applied to interpretation of ambient and source measurements using OFR. Additionally, novel measurement methods were used to study gas/particle partitioning. The research conducted was highly successful and details of the key results are summarized in this report through narrative text, figures, and a complete list of publications acknowledging this grant.

  11. Emission of sunscreen salicylic esters from desert vegetation and their contribution to aerosol formation

    NASA Astrophysics Data System (ADS)

    Matsunaga, S. N.; Guenther, A. B.; Potosnak, M. J.; Apel, E. C.

    2008-12-01

    Biogenic volatile organic compounds (BVOC) produced by plants are known to have an important role in atmospheric chemistry. However, our knowledge of the range of BVOCs produced by different plant processes is still expanding, and there remain poorly understood categories of BVOCs. In this study, emissions of a novel class of BVOC emissions were investigated in a desert region. Our study considered 8 species of common desert plants: blackbrush (Coleogyne ramosissima), desert willow (Chilopsis linearis), mesquite (Prosopis glandulosa), mondel pine (Pinus eldarica), pinyon pine (Pinus monophylla), cottonwood (Populus deltoides), saguaro cactus (Carnegiea gigantea) and yucca (Yucca baccata). The measurements focused on BVOCs with relatively high molecular weight (>C15) and/or an oxygenated functional group. Significantly high emission rates of two salicylic esters were found for blackbrush, desert willow and mesquite with emission rates of 3.1, 1.0 and 4.8μgC dwg-1 h-1, respectively (dwg; dry weight of the leaves in gram). The salicylic esters were identified as 2-ethylhexenyl salicylate (2-EHS) and 3,3,5-trimethylcyclohexenyl salicylate (homosalate) and are known as effective ultraviolet (UV) absorbers. We propose that the plants derive a protective benefit against UV radiation from the salicylic esters and that the emission process is driven by the physical evaporation of the salicylic esters due to the high ambient temperatures. In addition, the salicylic esters are predicted to be an effective precursor of secondary organic aerosol (SOA) because they probably produce oxidation products that can condense onto the aerosol phase. We estimated the contribution of the sunscreen esters themselves and their oxidation products on the SOA formation for the Las Vegas area using a BVOC emission model. The contribution was estimated to reach 50% of the biogenic terpenoid emission in the landscapes dominated by desert willow and mesquite and 13% in the Las Vegas area. The

  12. Aerosolization, Chemical Characterization, Hygroscopicity and Ice Formation of Marine Biogenic Particles

    NASA Astrophysics Data System (ADS)

    Alpert, P. A.; Radway, J.; Kilthau, W.; Bothe, D.; Knopf, D. A.; Aller, J. Y.

    2013-12-01

    The oceans cover the majority of the earth's surface, host nearly half the total global primary productivity and are a major source of atmospheric aerosol particles. However, effects of biological activity on sea spray generation and composition, and subsequent cloud formation are not well understood. Our goal is to elucidate these effects which will be particularly important over nutrient rich seas, where microorganisms can reach concentrations of 10^9 per mL and along with transparent exopolymer particles (TEP) can become aerosolized. Here we report the results of mesocosm experiments in which bubbles were generated by two methods, either recirculating impinging water jets or glass frits, in natural or artificial seawater containing bacteria and unialgal cultures of three representative phytoplankton species, Thalassiosira pseudonana, Emiliania huxleyi, and Nannochloris atomus. Over time we followed the size distribution of aerosolized particles as well as their hygroscopicity, heterogeneous ice nucleation potential, and individual physical-chemical characteristics. Numbers of cells and the mass of dissolved and particulate organic carbon (DOC, POC), TEP (which includes polysaccharide-containing microgels and nanogels >0.4 μm in diameter) were determined in the bulk water, the surface microlayer, and aerosolized material. Aerosolized particles were also impacted onto substrates for ice nucleation and water uptake experiments, elemental analysis using computer controlled scanning electron microscopy and energy dispersive analysis of X-rays (CCSEM/EDX), and determination of carbon bonding with scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Regardless of bubble generation method, the overall concentration of aerosol particles, TEP, POC and DOC increased as concentrations of bacterial and phytoplankton cells increased, stabilized, and subsequently declined. Particles <100 nm generated by means of jets

  13. Ambient measurements of chemical and physical properties of organic aerosols: Insights into formation, growth, and heterogeneous chemistry

    NASA Astrophysics Data System (ADS)

    Ziemba, Luke D.

    Organic aerosols are a ubiquitous component of the troposphere, from heavily polluted cities to the remote Arctic. In Chapters II, III, and V of this dissertation, the formation of organic aerosol through observations of ambient size distributions is addressed. Chapter IV presents a new pathway for the formation of nitrous acid (HONO) in the urban atmosphere. In Chapter II, the size-resolved chemical composition of sub-micron aerosol was measured at a suburban forested site in North Carolina. Two events were identified in which particle growth, presumably by gas-to-particle conversion, was dominated by accumulation of organic aerosol mass. Growth rates between 1.2 nm hr-1 and 4.9 nm hr-1 were observed. Using a mass-spectral deconvolution method coupled with linear regression analysis, the sub-micron organic aerosol mass observed during the campaign, and during events, was determined to have been influenced by both local and regional secondary processes with only a minor influence from combustion sources. In Chapter III, the chemical characteristics of sub-10-micron aerosol were explored as a function of ambient particle size at a coastal and inland site in New England. Average organic carbon (OC) concentrations of 4.9 microg C m-3 and 3.4 microg C m-3 were observed at the coastal site at the Isles of Shoals (IOS) and at the slightly inland site at Thompson Farm (TF), respectively. An average of 84 and 72% of OC was found to be water-soluble at IOS and TF, respectively. Size distributions indicate that the formation of dicarboxylic acids, especially oxalic acid, is driven by aqueous-phase reactions. A chemical fingerprint analysis suggests that all water-soluble OC at IOS resembles secondary organic aerosol (SOA), while WSOC at TF appears to result from mixed sources. In Chapter IV, a newly identified formation pathway for nitrous acid (HONO) is presented. HONO is an important precursor to hydroxyl radicals in the troposphere and thus contributes to the oxidative

  14. Aqueous organic chemistry in the atmosphere: sources and chemical processing of organic aerosols.

    PubMed

    McNeill, V Faye

    2015-02-03

    Over the past decade, it has become clear that aqueous chemical processes occurring in cloud droplets and wet atmospheric particles are an important source of organic atmospheric particulate matter. Reactions of water-soluble volatile (or semivolatile) organic gases (VOCs or SVOCs) in these aqueous media lead to the formation of highly oxidized organic particulate matter (secondary organic aerosol; SOA) and key tracer species, such as organosulfates. These processes are often driven by a combination of anthropogenic and biogenic emissions, and therefore their accurate representation in models is important for effective air quality management. Despite considerable progress, mechanistic understanding of some key aqueous processes is still lacking, and these pathways are incompletely represented in 3D atmospheric chemistry and air quality models. In this article, the concepts, historical context, and current state of the science of aqueous pathways of SOA formation are discussed.

  15. Combined effects of organic aerosol loading and fog processing on organic aerosols oxidation and composition

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhishek; Tripathi, Sachchida; Gupta, Tarun

    2016-04-01

    Fog is a natural meteorological phenomenon that occurs throughout the world, it contains substantial quantity of liquid water and generally seen as a natural cleansing agent but it also has the potential to form highly oxidized secondary organic aerosols (SOA) via aqueous processing of ambient aerosols. On the other hand higher organic aerosols (OA) loading tend to decrease the overall oxidation level (O/C) of the particle phase organics, due to enhanced partitioning of less oxidized organics from gas to particle phase. However, combined impact of these two parameters; aqueous oxidation and OA loading, on the overall oxidation ratio (O/C) of ambient OA has never been studied. To assess this, real time ambient sampling using HR-ToF-AMS was carried out at Kanpur, India from 15 December 2014 - 10 February 2015. In first 3 weeks of this campaign, very high OA loading is (134 ± 42 μg/m3) observed (termed as high loading or HL period) while loading is substantially reduced from 2nd January, 2016 (56 ± 20 μg/m3, termed as low loading or LL period) . However, both the loading period was affected by several fog episodes (10 in HL and 7 in LL), thus providing the opportunity of studying the combined effects of fog and OA loading on OA oxidation. It is found that O/C ratio is very strongly anti-correlated with OA loading in both the loading period, however, slope of this ant-correlation is much steep during HL period than in LL period. Source apportionment of OA revealed that there is drastic change in the types of OA from HL to LL period, clearly indicating difference in OA composition from HL to LL period. During foggy night continuous oxidation of OA is observed from early evening to early morning with 15-20% enhancement in O/C ratio, while the same is absent during non-foggy period, clearly indicating the efficient fog processing of ambient OA. It is also found that night time fog aqueous oxidation can be as effective as daytime photo chemistry in oxidation of OA. Fog

  16. The kinetics of aerosol particle formation and removal in NPP severe accidents

    NASA Astrophysics Data System (ADS)

    Zatevakhin, Mikhail A.; Arefiev, Valentin K.; Semashko, Sergey E.; Dolganov, Rostislav A.

    2016-06-01

    Severe Nuclear Power Plant (NPP) accidents are accompanied by release of a massive amount of energy, radioactive products and hydrogen into the atmosphere of the NPP containment. A valid estimation of consequences of such accidents can only be carried out through the use of the integrated codes comprising a description of the basic processes which determine the consequences. A brief description of a coupled aerosol and thermal-hydraulic code to be used for the calculation of the aerosol kinetics within the NPP containment in case of a severe accident is given. The code comprises a KIN aerosol unit integrated into the KUPOL-M thermal-hydraulic code. Some features of aerosol behavior in severe NPP accidents are briefly described.

  17. Secondary organic aerosol formation from idling gasoline passenger vehicle emissions investigated in a smog chamber

    NASA Astrophysics Data System (ADS)

    Nordin, E. Z.; Eriksson, A. C.; Roldin, P.; Nilsson, P. T.; Carlsson, J. E.; Kajos, M. K.; Hellén, H.; Wittbom, C.; Rissler, J.; Löndahl, J.; Swietlicki, E.; Svenningsson, B.; Bohgard, M.; Kulmala, M.; Hallquist, M.; Pagels, J. H.

    2013-06-01

    Gasoline vehicles have recently been pointed out as potentially the main source of anthropogenic secondary organic aerosol (SOA) in megacities. However, there is a lack of laboratory studies to systematically investigate SOA formation in real-world exhaust. In this study, SOA formation from pure aromatic precursors, idling and cold start gasoline exhaust from three passenger vehicles (EURO2-EURO4) were investigated with photo-oxidation experiments in a 6 m3 smog chamber. The experiments were carried out down to atmospherically relevant organic aerosol mass concentrations. The characterization instruments included a high-resolution aerosol mass spectrometer and a proton transfer mass spectrometer. It was found that gasoline exhaust readily forms SOA with a signature aerosol mass spectrum similar to the oxidized organic aerosol that commonly dominates the organic aerosol mass spectra downwind of urban areas. After a cumulative OH exposure of ~5 × 106 cm-3 h, the formed SOA was 1-2 orders of magnitude higher than the primary OA emissions. The SOA mass spectrum from a relevant mixture of traditional light aromatic precursors gave f43 (mass fraction at m/z = 43), approximately two times higher than to the gasoline SOA. However O : C and H : C ratios were similar for the two cases. Classical C6-C9 light aromatic precursors were responsible for up to 60% of the formed SOA, which is significantly higher than for diesel exhaust. Important candidates for additional precursors are higher-order aromatic compounds such as C10 and C11 light aromatics, naphthalene and methyl-naphthalenes. We conclude that approaches using only light aromatic precursors give an incomplete picture of the magnitude of SOA formation and the SOA composition from gasoline exhaust.

  18. Heterogeneous photochemistry of imidazole-2-carboxaldehyde: HO2 radical formation and aerosol growth

    NASA Astrophysics Data System (ADS)

    González Palacios, Laura; Corral Arroyo, Pablo; Aregahegn, Kifle Z.; Steimer, Sarah S.; Bartels-Rausch, Thorsten; Nozière, Barbara; George, Christian; Ammann, Markus; Volkamer, Rainer

    2016-09-01

    The multiphase chemistry of glyoxal is a source of secondary organic aerosol (SOA), including its light-absorbing product imidazole-2-carboxaldehyde (IC). IC is a photosensitizer that can contribute to additional aerosol ageing and growth when its excited triplet state oxidizes hydrocarbons (reactive uptake) via H-transfer chemistry. We have conducted a series of photochemical coated-wall flow tube (CWFT) experiments using films of IC and citric acid (CA), an organic proxy and H donor in the condensed phase. The formation rate of gas-phase HO2 radicals (PHO2) was measured indirectly by converting gas-phase NO into NO2. We report on experiments that relied on measurements of NO2 formation, NO loss and HONO formation. PHO2 was found to be a linear function of (1) the [IC] × [CA] concentration product and (2) the photon actinic flux. Additionally, (3) a more complex function of relative humidity (25 % < RH < 63 %) and of (4) the O2 / N2 ratio (15 % < O2 / N2 < 56 %) was observed, most likely indicating competing effects of dilution, HO2 mobility and losses in the film. The maximum PHO2 was observed at 25-55 % RH and at ambient O2 / N2. The HO2 radicals form in the condensed phase when excited IC triplet states are reduced by H transfer from a donor, CA in our system, and subsequently react with O2 to regenerate IC, leading to a catalytic cycle. OH does not appear to be formed as a primary product but is produced from the reaction of NO with HO2 in the gas phase. Further, seed aerosols containing IC and ammonium sulfate were exposed to gas-phase limonene and NOx in aerosol flow tube experiments, confirming significant PHO2 from aerosol surfaces. Our results indicate a potentially relevant contribution of triplet state photochemistry for gas-phase HO2 production, aerosol growth and ageing in the atmosphere.

  19. Formation of secondary aerosols from gasoline vehicle exhaust when mixing with SO2

    NASA Astrophysics Data System (ADS)

    Liu, T.; Wang, X.; Hu, Q.; Deng, W.; Zhang, Y.; Ding, X.; Fu, X.; Bernard, F.; Zhang, Z.; Lü, S.; He, Q.; Bi, X.; Chen, J.; Sun, Y.; Yu, J.; Peng, P.; Sheng, G.; Fu, J.

    2016-01-01

    Sulfur dioxide (SO2) can enhance the formation of secondary aerosols from biogenic volatile organic compounds (VOCs), but its influence on secondary aerosol formation from anthropogenic VOCs, particularly complex mixtures like vehicle exhaust, remains uncertain. Gasoline vehicle exhaust (GVE) and SO2, a typical pollutant from coal burning, are directly co-introduced into a smog chamber, in this study, to investigate the formation of secondary organic aerosols (SOA) and sulfate aerosols through photooxidation. New particle formation was enhanced, while substantial sulfate was formed through the oxidation of SO2 in the presence of high concentration of SO2. Homogenous oxidation by OH radicals contributed a negligible fraction to the conversion of SO2 to sulfate, and instead the oxidation by stabilized Criegee intermediates (sCIs), formed from alkenes in the exhaust reacting with ozone, dominated the conversion of SO2. After 5 h of photochemical aging, GVE's SOA production factor revealed an increase by 60-200 % in the presence of high concentration of SO2. The increase could principally be attributed to acid-catalyzed SOA formation as evidenced by the strong positive linear correlation (R2 = 0.97) between the SOA production factor and in situ particle acidity calculated by the AIM-II model. A high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) resolved OA's relatively lower oxygen-to-carbon (O : C) (0.44 ± 0.02) and higher hydrogen-to-carbon (H : C) (1.40 ± 0.03) molar ratios for the GVE / SO2 mixture, with a significantly lower estimated average carbon oxidation state (OSc) of -0.51 ± 0.06 than -0.19 ± 0.08 for GVE alone. The relative higher mass loading of OA in the experiments with SO2 might be a significant explanation for the lower SOA oxidation degree.

  20. Formation of secondary aerosols from gasoline vehicle exhausts when mixing with SO2

    NASA Astrophysics Data System (ADS)

    Liu, T.; Wang, X.; Hu, Q.; Deng, W.; Zhang, Y.; Ding, X.; Fu, X.; Bernard, F.; Zhang, Z.; Lü, S.; He, Q.; Bi, X.; Chen, J.; Sun, Y.; Yu, J.; Peng, P.; Sheng, G.; Fu, J.

    2015-09-01

    Sulfur dioxide (SO2) can enhance the formation of secondary aerosols from biogenic volatile organic compounds (VOCs), but its influence on secondary aerosol formation from anthropogenic VOCs, particularly complex mixtures like vehicle exhausts, is still poorly understood. Here we directly co-introduced gasoline vehicles exhausts (GVE) and SO2, a typical pollutant from coal burning, into a smog chamber to investigate the formation of secondary organic aerosols (SOA) and sulfate aerosols through photooxidation. In the presence of high concentration of SO2, new particle formation was enhanced while substantial sulfate was formed through the oxidation of SO2. The homogenous oxidation by OH radicals contributed a negligible fraction to the conversion of SO2 to sulfate, and instead the oxidation by stabilized Criegee intermediates (sCIs), formed from alkenes in the exhaust reacting with ozone, dominated the conversion of SO2. After 5 h of photochemical aging, GVE's SOA production factor revealed an increase by 60-200 % in the presence of high concentration of SO2. This increase could largely be attributed to acid-catalyzed SOA formation, which was evidenced by the strong positive linear correlation (R2 = 0.97) between the SOA production factor and in-situ particle acidity calculated by AIM-II model. A high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) resolved OA's relatively lower oxygen-to-carbon (O : C) and higher hydrogen-to-carbon (H : C) molar ratios for the GVE/SO2 mixture, with a much lower estimated average carbon oxidation state (OSc) of -0.51 ± 0.06 than that of -0.19 ± 0.08 for GVE alone. The relative higher mass loading of OA in the experiments with SO2 might be the major reason for the lower oxidation degree of SOA.

  1. Insights into the molecular level composition, sources, and formation mechanisms of dissolved organic matter in aerosols and precipitation

    NASA Astrophysics Data System (ADS)

    Altieri, Katye Elisabeth

    Atmospheric aerosols scatter and absorb light influencing the global radiation budget and climate, and are associated with adverse effects on human health. Precipitation is an important removal mechanism for atmospheric dissolved organic matter (DOM), and a potentially important input for receiving ecosystems. However, the sources, formation, and composition of atmospheric DOM in aerosols and precipitation are not well understood. This dissertation investigates the composition and formation mechanisms of secondary organic aerosol (SOA) formed through cloud processing reactions, elucidates the composition and sources of DOM in rainwater, and provides links connecting the two. Photochemical batch aqueous-phase reactions of organics with both biogenic and anthropogenic sources (i.e., methylglyoxal, pyruvic acid) and OH radical were performed to simulate cloud processing. The composition of products formed through cloud processing experiments and rainwater collected in New Jersey, USA was investigated using a combination of electrospray ionization mass spectrometry techniques, including ultra-high resolution Fourier transform ion cyclotron resonance mass spectrometry. This dissertation has resulted in the first evidence that oligomers form through cloud processing reactions, the first detailed chemical mechanism of aqueous phase oligomerization, the first identification of oligomers, organosulfates, and nitrooxy organosulfates in precipitation, and the first molecular level chemical characterization of organic nitrogen in precipitation. The formation of oligomers in SOA helps to explain the presence of large multifunctional compounds and humic like substances (HULIS) that dominate particulate organic mass. Oligomers have low vapor pressures and remain in the particle phase after cloud evaporation, enhancing SOA. The chemical properties of the oligomers suggest that they are less hygroscopic than the monomeric reaction products (i.e., organic acids). Their elemental

  2. Secondary Aerosol Formation from Oxidation of Aromatics Hydrocarbons by Cl atoms

    NASA Astrophysics Data System (ADS)

    Cai, X.; Griffin, R.

    2006-12-01

    Aerosol Formation From the Oxidation of Aromatic Hydrocarbons by Chlorine Atmospheric secondary organic aerosol (SOA) affects regional and global air quality. The formation mechanisms of SOA via the oxidation of volatile organic compounds by hydroxyl radicals, ozone, and nitrate radicals have been studied intensively during the last decade. Chlorine atoms (Cl) also have been hypothesized to be effective oxidants in marine and industrially influenced areas. Recent work by the authors has indicated that significant amounts of SOA are formed from the oxidation of monoterpenes by Cl. Aromatic hydrocarbons are important for generation of both SOA and ozone in urban areas because of their large emission rates and high reactivity. The goal of this work was to quantify the SOA formation potentials of two representative aromatic hydrocarbons through laboratory chamber experiments in which oxidation was initiated by Cl. The system constructed for this study includes an experimental chamber, a gas chromatograph for quantification of aromatic mixing ratios, a Scanning Mobility Particle Spectrometer to measure SOA size distributions, a zero air generator, and an illuminating system. The model aromatic hydrocarbons chosen for this study are toluene and m-xylene. Aerosol yields are estimated based on measured aerosol volume concentration, the concentration of consumed hydrocarbon, and estimation of wall loss of the newly formed aerosol. Toluene and m-xylene exhibit similar SOA yields from the oxidation initiated by Cl. The toluene SOA yield from Cl-initiated oxidation, however, depends on the ratio between the mixing ratios of the initial chlorine source and toluene in the chamber. For toluene experiments with higher such ratios, SOA yields vary from 0.05 to 0.079 for generated aerosol ranging from 4.2 to12.0 micrograms per cubic meter. In the lower ratio experiments, SOA yields are from 0.033 to 0.064, corresponding to generated aerosol from 3.0 to 11.0 micrograms per cubic

  3. Emissions of biogenic volatile organic compounds and subsequent formation of secondary organic aerosols in a Larix kaempferi forest

    NASA Astrophysics Data System (ADS)

    Mochizuki, T.; Miyazaki, Y.; Ono, K.; Wada, R.; Takahashi, Y.; Saigusa, N.; Kawamura, K.; Tani, A.

    2015-10-01

    highlights the importance of intra-canopy processes that promote biogenic SOA formation in the presence of significant inflow of oxidants together with anthropogenic aerosols and their precursors.

  4. Aqueous-Phase Reactions of Isoprene with Sulfoxy Radical Anions as a way of Wet Aerosol Formation in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Kuznietsova, I.; Rudzinski, K. J.; Szmigielski, R.; Laboratory of the Environmental Chemistry

    2011-12-01

    Atmospheric aerosols exhibit an important role in the environment. They have implications on human health and life, and - in the larger scale - on climate, the Earth's radiative balance and the cloud's formation. Organic matter makes up a significant fraction of atmospheric aerosols (~35% to ~90%) and may originate from direct emissions (primary organic aerosol, POA) or result from complex physico-chemical processes of volatile organic compounds (secondary organic aerosol, SOA). Isoprene (2-methyl-buta-1,3-diene) is one of the relevant volatile precursor of ambient SOA in the atmosphere. It is the most abundant non-methane hydrocarbon emitted to the atmosphere as a result of living vegetation. According to the recent data, the isoprene emission rate is estimated to be at the level of 500 TgC per year. While heterogeneous transformations of isoprene have been well documented, aqueous-phase reactions of this hydrocarbon with radical species that lead to the production of new class of wet SOA components such as polyols and their sulfate esters (organosulfates), are still poorly recognized. The chain reactions of isoprene with sulfoxy radical-anions (SRA) are one of the recently researched route leading to the formation of organosulfates in the aqueous phase. The letter radical species originate from the auto-oxidation of sulfur dioxide in the aqueous phase and are behind the phenomenon of atmospheric acid rain formation. This is a complicated chain reaction that is catalyzed by transition metal ions, such as manganese(II), iron(III) and propagated by sulfoxy radical anions . The presented work addresses the chemical interaction of isoprene with sulfoxy radical-anions in the water solution in the presence of nitrite ions and nitrous acid, which are important trace components of the atmosphere. We showed that nitrite ions and nitrous acid significantly altered the kinetics of the auto-oxidation of SO2 in the presence of isoprene at different solution acidity from 2 to 8

  5. Substantial secondary organic aerosol formation in a coniferous forest: observations of both day- and nighttime chemistry

    NASA Astrophysics Data System (ADS)

    Lee, Alex K. Y.; Abbatt, Jonathan P. D.; Leaitch, W. Richard; Li, Shao-Meng; Sjostedt, Steve J.; Wentzell, Jeremy J. B.; Liggio, John; Macdonald, Anne Marie

    2016-06-01

    Substantial biogenic secondary organic aerosol (BSOA) formation was investigated in a coniferous forest mountain region in Whistler, British Columbia. A largely biogenic aerosol growth episode was observed, providing a unique opportunity to investigate BSOA formation chemistry in a forested environment with limited influence from anthropogenic emissions. Positive matrix factorization of aerosol mass spectrometry (AMS) measurement identified two types of BSOA (BSOA-1 and BSOA-2), which were primarily generated by gas-phase oxidation of monoterpenes and perhaps sesquiterpenes. The temporal variations of BSOA-1 and BSOA-2 can be explained by gas-particle partitioning in response to ambient temperature and the relative importance of different oxidation mechanisms between day and night. While BSOA-1 arises from gas-phase ozonolysis and nitrate radical chemistry at night, BSOA-2 is likely less volatile than BSOA-1 and consists of products formed via gas-phase oxidation by OH radical and ozone during the day. Organic nitrates produced through nitrate radical chemistry can account for 22-33 % of BSOA-1 mass at night. The mass spectra of BSOA-1 and BSOA-2 have higher values of the mass fraction of m/z 91 (f91) compared to the background organic aerosol. Using f91 to evaluate BSOA formation pathways in this unpolluted, forested region, heterogeneous oxidation of BSOA-1 is a minor production pathway of BSOA-2.

  6. Impact of NOx on secondary organic aerosol (SOA) formation from β-pinene photooxidation

    NASA Astrophysics Data System (ADS)

    Sarrafzadeh, Mehrnaz; Pullinen, Iida; Springer, Monika; Kleist, Einhard; Tillmann, Ralf; Mentel, Thomas F.; Kiendler-Scharr, Astrid; Hastie, Donald R.; Wildt, Jürgen

    2016-04-01

    Secondary organic aerosols (SOA) generated from atmospheric oxidation of volatile organics contributes substantially to the global aerosol load. It has been shown that odd nitrogen (NOx) has a significant influence on the formation of this SOA. In this study, we investigated SOA formation from β-pinene photooxidation in the Jülich Plant Atmosphere Chamber (JPAC) under varying NOx conditions. At higher-NOx levels, the SOA yield was significantly suppressed by increasing the NOx concentration. However at lower-NOx levels the opposite trend, an increase in SOA with increasing NOx concentration, was observed. This increase was likely due to the increased OH concentration in the stirred flow reactor. By holding the OH concentration constant for all experiments we removed the potential effect of OH concentration on SOA mass growth. In this case increasing the NOx concentration only decreased the SOA yield. In addition, the impact of NOx on SOA formation was explored in the presence of ammonium sulfate seed aerosols. This suggested that SOA yield was only slightly suppressed under increasing NOx concentrations when seed aerosol was present.

  7. Apartment Compartmentalization With an Aerosol-Based Sealing Process

    SciTech Connect

    Maxwell, S.; Berger, D.; Harrington, C.

    2015-03-01

    Air sealing of building enclosures is a difficult and time-consuming process. Current methods in new construction require laborers to physically locate small and sometimes large holes in multiple assemblies and then manually seal each of them. The innovation demonstrated under this research study was the automated air sealing and compartmentalization of buildings through the use of an aerosolized sealant, developed by the Western Cooling Efficiency Center at University of California Davis. CARB sought to demonstrate this new technology application in a multifamily building in Queens, NY. The effectiveness of the sealing process was evaluated by three methods: air leakage testing of overall apartment before and after sealing, point-source testing of individual leaks, and pressure measurements in the walls of the target apartment during sealing.

  8. A modeling perspective of the ChArMEx intensive campaign: origin of photo-oxidant and organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Cholakian, Arineh; Beekmann, Matthias; Siour, Guillaume; Coll, Isabelle; Colette, Augustin; Gros, Valerie; Marchand, Nicolas; Sciare, Jean; Colomb, Aurélie; Gheusi, François; Sauvage, Stéphane

    2016-04-01

    During the summers of 2013 and 2014, two three-week intensive campaigns took place over the western Mediterranean in order to investigate the origins of photo-oxidants as well as the sources and processes of formation of organic aerosols in this region. Within the frame of the MISTRAL/ChArMEx program, an extensive number of chemical compounds were investigated by means of ground-based and also airborne measurements. In this paper, a modeling perspective of the 2013 campaign is given, using the CHIMERE chemistry-transport model, dealing with two aspects: 1) representativeness of the simulations with respect to the complex orography of Cape Corsica, 2) evaluation of secondary organic aerosol simulations in the western Mediterranean region with different model configurations using a variety of experimental data. The model has been configured in a way to fit the specificities of this unique region. The base simulations are performed in a domain covering the entire Europe as well as the northern Africa with a low resolution (30 km). In order to take into account the orographic complexity of the area where the ground-based measurements were performed (Ersa, Cape Corsica), nested simulations with a high resolution (1km horizontal resolution) focused on this site were performed with the goal of increasing the representativeness of the simulations. Still, this resolution does not allow to correctly represent the altitude of the Cape Corsica measurement site (533 m asl). To solve this problem, a large number of grid cells in the vicinity of the measurements site, all having different altitudes, were used to find the extrapolated concentration of an indicative list of species towards the exact altitude of the aforementioned site and to estimate an orographic representativeness error, which was shown to be less important for organic aerosols among said species. Alongside the base simulations, other series of simulations using multiple configurations of the Volatility Basis Set

  9. Formation of anthropogenic secondary organic aerosol (SOA) and its influence on biogenic SOA properties

    NASA Astrophysics Data System (ADS)

    Emanuelsson, E. U.; Hallquist, M.; Kristensen, K.; Glasius, M.; Bohn, B.; Fuchs, H.; Kammer, B.; Kiendler-Scharr, A.; Nehr, S.; Rubach, F.; Tillmann, R.; Wahner, A.; Wu, H.-C.; Mentel, Th. F.

    2012-08-01

    Secondary organic aerosol (SOA) formation from mixed anthropogenic and biogenic precursors has been studied exposing reaction mixtures to natural sunlight in the SAPHIR chamber in Jülich, Germany. Several experiments with exclusively anthropogenic precursors were performed to establish a relationship between yield and organic aerosol mass loading for the atmospheric relevant range of aerosol loads of 0.01 to 10 μg m-3. The yields (0.5-9%) were comparable to previous data and further used for the detailed evaluation of the mixed biogenic and anthropogenic experiments. For the mixed experiments a number of different oxidation schemes were addressed. The reactivity, the sequence of addition, and the amount of the precursors influenced the SOA properties. Monoterpene oxidation products, including carboxylic acids and dimer esters were identified in the aged aerosol at levels comparable to ambient air. OH radicals were measured by Laser Induced Fluorescence, which allowed for establishing relations of aerosol properties and composition to the experimental OH dose. Furthermore, the OH measurements in combination with the derived yields for anthropogenic SOA enabled application of a simplified model to calculate the chemical turnover of the anthropogenic precursor and corresponding anthropogenic contribution to the mixed aerosol. The estimated anthropogenic contributions were ranging from small (≈8%) up to significant fraction (>50%) providing a suitable range to study the effect of aerosol composition on the aerosol volatility (volume fraction remaining at 343 K: 0.86-0.94). The anthropogenic aerosol had higher oxygen to carbon ratio O/C and was less volatile than the biogenic fraction. However, in order to produce significant amount of anthropogenic SOA the reaction mixtures needed a higher OH dose that also increased O/C and provided a less volatile aerosol. A strong positive correlation was found between changes in volatility and O/C with the exception during dark

  10. Influence of metal-mediated aerosol-phase oxidation on secondary organic aerosol formation from the ozonolysis and OH-oxidation of α-pinene

    PubMed Central

    Chu, Biwu; Liggio, John; Liu, Yongchun; He, Hong; Takekawa, Hideto; Li, Shao-Meng; Hao, Jiming

    2017-01-01

    The organic component is the most abundant fraction of atmospheric submicron particles, while the formation mechanisms of secondary organic aerosol (SOA) are not fully understood. The effects of sulfate seed aerosols on SOA formation were investigated with a series of experiments carried out using a 9 m3 smog chamber. The presence of FeSO4 or Fe2(SO4)3 seed aerosols decreased SOA yields and increased oxidation levels in both ozonolysis and OH-oxidation of α-pinene compared to that in the presence of ZnSO4 or (NH4)2SO4. These findings were explained by metal-mediated aerosol-phase oxidation of organics: reactive radicals were generated on FeSO4 or Fe2(SO4)3 seed aerosols and reacted further with the organic mass. This effect would help to explain the high O/C ratios of organics in ambient particles that thus far cannot be reproduced in laboratory and model studies. In addition, the gap in the SOA yields between experiments with different seed aerosols was more significant in OH-oxidation experiments compared to ozonolysis experiments, while the gap in estimated O/C ratios was less obvious. This may have resulted from the different chemical compositions and oxidation levels of the SOA generated in the two systems, which affect the branching ratio of functionalization and fragmentation during aerosol oxidation. PMID:28059151

  11. Influence of metal-mediated aerosol-phase oxidation on secondary organic aerosol formation from the ozonolysis and OH-oxidation of α-pinene

    NASA Astrophysics Data System (ADS)

    Chu, Biwu; Liggio, John; Liu, Yongchun; He, Hong; Takekawa, Hideto; Li, Shao-Meng; Hao, Jiming

    2017-01-01

    The organic component is the most abundant fraction of atmospheric submicron particles, while the formation mechanisms of secondary organic aerosol (SOA) are not fully understood. The effects of sulfate seed aerosols on SOA formation were investigated with a series of experiments carried out using a 9 m3 smog chamber. The presence of FeSO4 or Fe2(SO4)3 seed aerosols decreased SOA yields and increased oxidation levels in both ozonolysis and OH-oxidation of α-pinene compared to that in the presence of ZnSO4 or (NH4)2SO4. These findings were explained by metal-mediated aerosol-phase oxidation of organics: reactive radicals were generated on FeSO4 or Fe2(SO4)3 seed aerosols and reacted further with the organic mass. This effect would help to explain the high O/C ratios of organics in ambient particles that thus far cannot be reproduced in laboratory and model studies. In addition, the gap in the SOA yields between experiments with different seed aerosols was more significant in OH-oxidation experiments compared to ozonolysis experiments, while the gap in estimated O/C ratios was less obvious. This may have resulted from the different chemical compositions and oxidation levels of the SOA generated in the two systems, which affect the branching ratio of functionalization and fragmentation during aerosol oxidation.

  12. Aerosol impacts on radiative and microphysical properties of clouds and precipitation formation

    NASA Astrophysics Data System (ADS)

    Alizadeh-Choobari, O.; Gharaylou, M.

    2017-03-01

    Through modifying the number concentration and size of cloud droplets, aerosols have intricate impacts on radiative and microphysical properties of clouds, which together influence precipitation processes. Aerosol-cloud interactions for a mid-latitude convective cloud system are investigated using a two-moment aerosol-aware bulk microphysical scheme implemented into the Weather Research and Forecasting (WRF) model. Three sensitivity experiments with initial identical dynamic and thermodynamic conditions, but different cloud-nucleating aerosol concentrations were conducted. Increased aerosol number concentration has resulted in more numerous cloud droplets of overall smaller sizes, through which the optical properties of clouds have been changed. While the shortwave cloud forcing is significantly increased in more polluted experiments, changes in the aerosol number concentration have negligible impacts on the longwave cloud forcing. For the first time, it is found that polluted clouds have higher cloud base heights, the feature that is caused by more surface cooling due to a higher shortwave cloud forcing, as well as a drier boundary layer in the polluted experiment compared to the clean. The polluted experiment was also associated with a higher liquid water content (LWC), caused by an increase in the number of condensation of water vapor due to higher concentration of hygroscopic aerosols acting as condensation nuclei. The domain-averaged accumulated precipitation is little changed under both polluted and clean atmosphere. Nevertheless, changes in the rate of precipitation are identified, such that under polluted atmosphere light rain is reduced, while both moderate and heavy rain are intensified, confirming the fact that if an ample influx of water vapor exists, an increment of hygroscopic aerosols can increase the amount of precipitation.

  13. Nonequilibrium Atmospheric Secondary Organic Aerosol Formation and Growth

    SciTech Connect

    Perraud, Veronique M.; Bruns, Emily A.; Ezell, Michael J.; Johnson, Stanley N.; Yu, Yong; Alexander, M. L.; Zelenyuk, Alla; Imre, D.; Chang, W. L.; Dabdub, Donald; Pankow, James F.; Finlayson-Pitts, Barbara J.

    2012-02-21

    Airborne particles play a critical role in air quality, human health effects, visibility and climate. Secondary organic aerosols (SOA) account for a significant portion of total airborne particles. They are formed in reactions of organic gases that produce low volatility and semi-volatile organic compounds (SVOCs). Current atmospheric models assume that SOA are liquids into which SVOCs undergo equilibrium partitioning and grow the particles. However a large discrepancy between model predictions and field measurements of SOA is commonly observed. We report here laboratory studies of the oxidation of a-pinene by ozone and nitrate radicals and show that particle composition is actually consistent with a kinetically determined growth mechanism, and not with equilibrium partitioning between the gas phase and liquid particles. If this is indeed a general phenomenon in air, the formulation of atmospheric SOA models will have to be revised to reflect this new paradigm. This will have significant impacts on quantifying the role of SOA in air quality, visibility, and climate.

  14. Secondary organic aerosol formation from gasoline passenger vehicle emissions investigated in a smog chamber

    NASA Astrophysics Data System (ADS)

    Nordin, E. Z.; Eriksson, A. C.; Roldin, P.; Nilsson, P. T.; Carlsson, J. E.; Kajos, M. K.; Hellén, H.; Wittbom, C.; Rissler, J.; Löndahl, J.; Swietlicki, E.; Svenningsson, B.; Bohgard, M.; Kulmala, M.; Hallquist, M.; Pagels, J.

    2012-12-01

    Gasoline vehicles have elevated emissions of volatile organic compounds during cold starts and idling and have recently been pointed out as potentially the main source of anthropogenic secondary organic aerosol (SOA) in megacities. However, there is a lack of laboratory studies to systematically investigate SOA formation in real-world exhaust. In this study, SOA formation from pure aromatic precursors, idling and cold start gasoline exhaust from one Euro II, one Euro III and one Euro IV passenger vehicles were investigated using photo-oxidation experiments in a 6 m3 smog chamber. The experiments were carried out at atmospherically relevant organic aerosol mass concentrations. The characterization methods included a high resolution aerosol mass spectrometer and a proton transfer mass spectrometer. It was found that gasoline exhaust readily forms SOA with a signature aerosol mass spectrum similar to the oxidized organic aerosol that commonly dominates the organic aerosol mass spectra downwind urban areas. After 4 h aging the formed SOA was 1-2 orders of magnitude higher than the Primary OA emissions. The SOA mass spectrum from a relevant mixture of traditional light aromatic precursors gave f43 (mass fraction at m/z = 4 3) approximately two times higher than to the gasoline SOA. However O : C and H : C ratios were similar for the two cases. Classical C6-C9 light aromatic precursors were responsible for up to 60% of the formed SOA, which is significantly higher than for diesel exhaust. Important candidates for additional precursors are higher order aromatic compounds such as C10, C11 light aromatics, naphthalene and methyl-naphthalenes.

  15. Understanding aerosol formation mechanisms in a subtropical atmosphere impacted by biomass burning and agroindustry

    NASA Astrophysics Data System (ADS)

    Souza, Michele L.; Allen, Andrew G.; Cardoso, Arnaldo A.

    2017-01-01

    This work provides evidence for the existence of strong seasonality in homogeneous and heterogeneous aerosol formation in a subtropical region affected by agricultural biomass burning. Acquisitions of aerosol size distributions were made in central São Paulo State between August 2011 and November 2012, using a scanning mobility particle sizer (SMPS) system. Aerosols were also collected using a high volume impactor for analysis of major ions in the < 0.49 μm size fraction. The SMPS data were grouped into three size fractions: < 25 nm, 25-100 nm, and 100-615 nm, which were used to represent the nucleation, Aitken, and lower accumulation mode size ranges, respectively. Different aerosol types and atmospheric conditions were shown to influence the relative contributions of the different aerosol size fractions and their interrelationships. The total number concentrations of particles in the nucleation size range varied between 4.03 × 10- 3 and 5.18 × 104 cm- 3, concentrations in the Aitken size range varied between 1.60 × 101 and 3.17 × 104 cm- 3, and concentrations in the accumulation size range varied between 0.00 and 6.67 × 103 cm- 3. Distinct seasonal differences in particle formation were observed, with evidence for the preferential occurrence of homogeneous nucleation during the wetter summer months and heterogeneous nucleation during the winter when there were strong emissions from biomass burning. Homogeneous nucleation of new particles was inhibited in the winter, due to the greater surface area of existing aerosols available for the uptake of reactive gases. Consequently, the nucleation and Aitken modes were favored in the wet (summer) and dry (winter biomass burning) periods, respectively. The accumulation mode showed peaks in the summer and winter, which could be explained by hygroscopic particle growth and heterogeneous reactions, respectively.

  16. The Formation of Sulfate and Elemental Sulfur Aerosols Under Varying Laboratory Conditions: Implications for Early Earth

    NASA Technical Reports Server (NTRS)

    DeWitt, H. Langley; Hasenkopf, Christa A.; Trainer, Melissa G.; Farmer, Delphine K.; Jimenez, Jose L.; McKay, Christopher P.; Toon, Owen B.; Tolbert, Margaret A.

    2010-01-01

    The presence of sulfur mass-independent fractionation (S-MIF) in sediments more than 2.45 x 10(exp 9) years old is thought to be evidence for an early anoxic atmosphere. Photolysis of sulfur dioxide (SO2) by UV light with lambda < 220 nm has been shown in models and some initial laboratory studies to create a S-MIF; however, sulfur must leave the atmosphere in at least two chemically different forms to preserve any S-MIF signature. Two commonly cited examples of chemically different sulfur species that could have exited the atmosphere are elemental sulfur (S8) and sulfuric acid (H2S04) aerosols. Here, we use real-time aerosol mass spectrometry to directly detect the sulfur-containing aerosols formed when SO2 either photolyzes at wavelengths from 115 to 400 nm, to simulate the UV solar spectrum, or interacts with high-energy electrons, to simulate lightning. We found that sulfur-containing aerosols form under all laboratory conditions. Further, the addition of a reducing gas, in our experiments hydrogen (H2) or methane (CH4), increased the formation of S8. With UV photolysis, formation of S8 aerosols is highly dependent on the initial SO2 pressure; and S8 is only formed at a 2% SO2 mixing ratio and greater in the absence of a reductant, and at a 0.2% SO2 mixing ratio and greater in the presence of 1000 ppmv CH4. We also found that organosulfur compounds are formed from the photolysis of CH4 and moderate amounts of SO2, The implications for sulfur aerosols on early Earth are discussed.

  17. Secondary organic aerosol formation from photo-oxidation of unburned fuel: experimental results and implications for aerosol formation from combustion emissions.

    PubMed

    Jathar, Shantanu H; Miracolo, Marissa A; Tkacik, Daniel S; Donahue, Neil M; Adams, Peter J; Robinson, Allen L

    2013-11-19

    We conducted photo-oxidation experiments in a smog chamber to investigate secondary organic aerosol (SOA) formation from eleven different unburned fuels: commercial gasoline, three types of jet fuel, and seven different diesel fuels. The goals were to investigate the influence of fuel composition on SOA formation and to compare SOA production from unburned fuel to that from diluted exhaust. The trends in SOA production were largely consistent with differences in carbon number and molecular structure of the fuel, i.e., fuels with higher carbon numbers and/or more aromatics formed more SOA than fuels with lower carbon numbers and/or substituted alkanes. However, SOA production from different diesel fuels did not depend strongly on aromatic content, highlighting the important contribution of large alkanes to SOA formation from mixtures of high carbon number (lower volatility) precursors. In comparison to diesels, SOA production from higher volatility fuels such as gasoline appeared to be more sensitive to aromatic content. On the basis of a comparison of SOA mass yields (SOA mass formed per mass of fuel reacted) and SOA composition (as measured by an aerosol mass spectrometer) from unburned fuels and diluted exhaust, unburned fuels may be reasonable surrogates for emissions from uncontrolled engines but not for emissions from engines with after treatment devices such as catalytic converters.

  18. Secondary organic aerosol formation from ozone-initiated reactions with nicotine and secondhand tobacco smoke

    NASA Astrophysics Data System (ADS)

    Sleiman, Mohamad; Destaillats, Hugo; Smith, Jared D.; Liu, Chen-Lin; Ahmed, Musahid; Wilson, Kevin R.; Gundel, Lara A.

    2010-11-01

    We used controlled laboratory experiments to evaluate the aerosol-forming potential of ozone reactions with nicotine and secondhand smoke. Special attention was devoted to real-time monitoring of the particle size distribution and chemical composition of SOA as they are believed to be key factors determining the toxicity of SOA. The experimental approach was based on using a vacuum ultraviolet photon ionization time-of-flight aerosol mass spectrometer (VUV-AMS), a scanning mobility particle sizer (SMPS) and off-line thermal desorption coupled to mass spectrometry (TD-GC-MS) for gas-phase byproducts analysis. Results showed that exposure of SHS to ozone induced the formation of ultrafine particles (<100 nm) that contained high molecular weight nitrogenated species ( m/ z 400-500), which can be due to accretion/acid-base reactions and formation of oligomers. In addition, nicotine was found to contribute significantly (with yields 4-9%) to the formation of secondary organic aerosol through reaction with ozone. The main constituents of the resulting SOA were tentatively identified and a reaction mechanism was proposed to elucidate their formation. These findings identify a new component of thirdhand smoke that is associated with the formation of ultrafine particles (UFP) through oxidative aging of secondhand smoke. The significance of this chemistry for indoor exposure and health effects is highlighted.

  19. Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States

    PubMed Central

    Xu, Lu; Guo, Hongyu; Boyd, Christopher M.; Klein, Mitchel; Bougiatioti, Aikaterini; Cerully, Kate M.; Hite, James R.; Kreisberg, Nathan M.; Knote, Christoph; Olson, Kevin; Koss, Abigail; Goldstein, Allen H.; Hering, Susanne V.; de Gouw, Joost; Baumann, Karsten; Lee, Shan-Hu; Nenes, Athanasios; Weber, Rodney J.; Ng, Nga Lee

    2015-01-01

    Secondary organic aerosol (SOA) constitutes a substantial fraction of fine particulate matter and has important impacts on climate and human health. The extent to which human activities alter SOA formation from biogenic emissions in the atmosphere is largely undetermined. Here, we present direct observational evidence on the magnitude of anthropogenic influence on biogenic SOA formation based on comprehensive ambient measurements in the southeastern United States (US). Multiple high-time-resolution mass spectrometry organic aerosol measurements were made during different seasons at various locations, including urban and rural sites in the greater Atlanta area and Centreville in rural Alabama. Our results provide a quantitative understanding of the roles of anthropogenic SO2 and NOx in ambient SOA formation. We show that isoprene-derived SOA is directly mediated by the abundance of sulfate, instead of the particle water content and/or particle acidity as suggested by prior laboratory studies. Anthropogenic NOx is shown to enhance nighttime SOA formation via nitrate radical oxidation of monoterpenes, resulting in the formation of condensable organic nitrates. Together, anthropogenic sulfate and NOx can mediate 43–70% of total measured organic aerosol (29–49% of submicron particulate matter, PM1) in the southeastern US during summer. These measurements imply that future reduction in SO2 and NOx emissions can considerably reduce the SOA burden in the southeastern US. Updating current modeling frameworks with these observational constraints will also lead to more accurate treatment of aerosol formation for regions with substantial anthropogenic−biogenic interactions and consequently improve air quality and climate simulations. PMID:25535345

  20. Assessing the Performance of Computationally Simple and Complex Representations of Aerosol Processes using a Testbed Methodology

    NASA Astrophysics Data System (ADS)

    Fast, J. D.; Ma, P.; Easter, R. C.; Liu, X.; Zaveri, R. A.; Rasch, P.

    2012-12-01

    Predictions of aerosol radiative forcing in climate models still contain large uncertainties, resulting from a poor understanding of certain aerosol processes, the level of complexity of aerosol processes represented in models, and the ability of models to account for sub-grid scale variability of aerosols and processes affecting them. In addition, comparing the performance and computational efficiency of new aerosol process modules used in various studies is problematic because different studies often employ different grid configurations, meteorology, trace gas chemistry, and emissions that affect the temporal and spatial evolution of aerosols. To address this issue, we have developed an Aerosol Modeling Testbed (AMT) to systematically and objectively evaluate aerosol process modules. The AMT consists of the modular Weather Research and Forecasting (WRF) model, a series of testbed cases for which extensive in situ and remote sensing measurements of meteorological, trace gas, and aerosol properties are available, and a suite of tools to evaluate the performance of meteorological, chemical, aerosol process modules. WRF contains various parameterizations of meteorological, chemical, and aerosol processes and includes interactive aerosol-cloud-radiation treatments similar to those employed by climate models. In addition, the physics suite from a global climate model, Community Atmosphere Model version 5 (CAM5), has also been ported to WRF so that these parameterizations can be tested at various spatial scales and compared directly with field campaign data and other parameterizations commonly used by the mesoscale modeling community. In this study, we evaluate simple and complex treatments of the aerosol size distribution and secondary organic aerosols using the AMT and measurements collected during three field campaigns: the Megacities Initiative Local and Global Observations (MILAGRO) campaign conducted in the vicinity of Mexico City during March 2006, the

  1. Transformation of logwood combustion emissions in a smog chamber: formation of secondary organic aerosol and changes in the primary organic aerosol upon daytime and nighttime aging

    NASA Astrophysics Data System (ADS)

    Tiitta, Petri; Leskinen, Ari; Hao, Liqing; Yli-Pirilä, Pasi; Kortelainen, Miika; Grigonyte, Julija; Tissari, Jarkko; Lamberg, Heikki; Hartikainen, Anni; Kuuspalo, Kari; Kortelainen, Aki-Matti; Virtanen, Annele; Lehtinen, Kari E. J.; Komppula, Mika; Pieber, Simone; Prévôt, André S. H.; Onasch, Timothy B.; Worsnop, Douglas R.; Czech, Hendryk; Zimmermann, Ralf; Jokiniemi, Jorma; Sippula, Olli

    2016-10-01

    Organic aerosols (OA) derived from small-scale wood combustion emissions are not well represented by current emissions inventories and models, although they contribute substantially to the atmospheric particulate matter (PM) levels. In this work, a 29 m3 smog chamber in the ILMARI facility of the University of Eastern Finland was utilized to investigate the formation of secondary organic aerosol (SOA) from a small-scale modern masonry heater commonly used in northern Europe. Emissions were oxidatively aged in the smog chamber for a variety of dark (i.e., O3 and NO3) and UV (i.e., OH) conditions, with OH concentration levels of (0.5-5) × 106 molecules cm-3, achieving equivalent atmospheric aging of up to 18 h. An aerosol mass spectrometer characterized the direct OA emissions and the SOA formed from the combustion of three wood species (birch, beech and spruce) using two ignition processes (fast ignition with a VOC-to-NOx ratio of 3 and slow ignition with a ratio of 5).Dark and UV aging increased the SOA mass fraction with average SOA productions 2.0 times the initial OA mass loadings. SOA enhancement was found to be higher for the slow ignition compared with fast ignition conditions. Positive matrix factorization (PMF) was used to separate SOA, primary organic aerosol (POA) and their subgroups from the total OA mass spectra. PMF analysis identified two POA and three SOA factors that correlated with the three major oxidizers: ozone, the nitrate radical and the OH radical. Organonitrates (ONs) were observed to be emitted directly from the wood combustion and additionally formed during oxidation via NO3 radicals (dark aging), suggesting small-scale wood combustion may be a significant ON source. POA was oxidized after the ozone addition, forming aged POA, and after 7 h of aging more than 75 % of the original POA was transformed. This process may involve evaporation and homogeneous gas-phase oxidation as well as heterogeneous oxidation of particulate organic matter

  2. Secondary inorganic aerosol formation and its shortwave direct radiative forcing in China

    NASA Astrophysics Data System (ADS)

    Huang, Xin

    2015-04-01

    Secondary inorganic aerosol (SIA), including sulfate, nitrate and ammonium, is an important part of fine particle. SIA plays a significant role in shortwave radiation transfer. Numerical simulation is usually used to study SIA formation and its climate effect. In this work, we used the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) to study SIA formation and its direct radiative forcing (DRF) over China. SO2 oxidation pathways related to mineral aerosol, including transition metal-catalyzed oxidation in aqueous phase and heterogeneous reactions, play an important role in sulfate production, but they are not well treated in current atmospheric models. In this work, we improved the WRF-Chem model by simulating the enhancement role of mineral aerosol in sulfate production. Firstly, we estimated mineral cations based on local measurements in order to well represent aqueous phase acidity. Secondly, we scaled the transition metal concentration to the mineral aerosol levels according to the existing observations and improved transition metal-catalyzed oxidation calculation. Lastly, heterogeneous reactions of acid gases on the surface of mineral aerosol were included in this simulation. Accuracy in the prediction of sulfate by the model was significantly improved and we concluded that mineral aerosol can facilitate SO2 oxidation and subsequent sulfate formation. It was demonstrated that, over China, mineral aerosol was responsible for 21.8% of annual mean sulfate concentration. The enhanced aqueous oxidation was more significant compared to the heterogeneous reactions. In winter, mineral aerosol was responsible for 39.6% of sulfate production. In summer, gaseous oxidation and aqueous oxidation of SO2 by hydrogen peroxide and ozone were the dominant pathways of sulfate formation. Mineral aerosol only contributed 11.9% to the total sulfate production. The increase in annual mean sulfate concentration due to mineral aerosol could reach up to over 6

  3. Modeling aerosol formation in opposed-flow diffusion flames.

    PubMed

    Violi, Angela; D'Anna, Andrea; D'Alessio, Antonio; Sarofim, Adel F

    2003-06-01

    The microstructures of atmospheric pressure, counter-flow, sooting, flat, laminar ethylene diffusion flames have been studied numerically by using a new kinetic model developed for hydrocarbon oxidation and pyrolysis. Modeling results are in reasonable agreement with experimental data in terms of concentration profiles of stable species and gas-phase aromatic compounds. Modeling results are used to analyze the controlling steps of aromatic formation and soot growth in counter-flow configurations. The formation of high molecular mass aromatics in diffusion controlled conditions is restricted to a narrow area close to the flame front where these species reach a molecular weight of about 1000 u. Depending on the flame configuration, soot formation is controlled by the coagulation of nanoparticles or by the addition of PAH to soot nuclei.

  4. Simulating the formation of carbonaceous aerosol in a European Megacity (Paris) during the MEGAPOLI summer and winter campaigns

    NASA Astrophysics Data System (ADS)

    Fountoukis, Christos; Megaritis, Athanasios G.; Skyllakou, Ksakousti; Charalampidis, Panagiotis E.; Denier van der Gon, Hugo A. C.; Crippa, Monica; Prévôt, André S. H.; Fachinger, Friederike; Wiedensohler, Alfred; Pilinis, Christodoulos; Pandis, Spyros N.

    2016-03-01

    We use a three-dimensional regional chemical transport model (PMCAMx) with high grid resolution and high-resolution emissions (4 × 4 km2) over the Paris greater area to simulate the formation of carbonaceous aerosol during a summer (July 2009) and a winter (January/February 2010) period as part of the MEGAPOLI (megacities: emissions, urban, regional, and global atmospheric pollution and climate effects, and Integrated tools for assessment and mitigation) campaigns. Model predictions of carbonaceous aerosol are compared against Aerodyne aerosol mass spectrometer and black carbon (BC) high time resolution measurements from three ground sites. PMCAMx predicts BC concentrations reasonably well reproducing the majority (70 %) of the hourly data within a factor of two during both periods. The agreement for the summertime secondary organic aerosol (OA) concentrations is also encouraging (mean bias = 0.1 µg m-3) during a photochemically intense period. The model tends to underpredict the summertime primary OA concentrations in the Paris greater area (by approximately 0.8 µg m-3) mainly due to missing primary OA emissions from cooking activities. The total cooking emissions are estimated to be approximately 80 mg d-1 per capita and have a distinct diurnal profile in which 50 % of the daily cooking OA is emitted during lunch time (12:00-14:00 LT) and 20 % during dinner time (20:00-22:00 LT). Results also show a large underestimation of secondary OA in the Paris greater area during wintertime (mean bias = -2.3 µg m-3) pointing towards a secondary OA formation process during low photochemical activity periods that is not simulated in the model.

  5. Simulating the formation of carbonaceous aerosol in a European Megacity (Paris) during the MEGAPOLI summer and winter campaigns

    NASA Astrophysics Data System (ADS)

    Fountoukis, C.; Megaritis, A. G.; Skyllakou, K.; Charalampidis, P. E.; Denier van der Gon, H. A. C.; Crippa, M.; Prévôt, A. S. H.; Freutel, F.; Wiedensohler, A.; Pilinis, C.; Pandis, S. N.

    2015-09-01

    We use a three dimensional regional chemical transport model (PMCAMx) with high grid resolution and high resolution emissions (4 km × 4 km) over the Paris greater area to simulate the formation of carbonaceous aerosol during a summer (July 2009) and a winter (January/February 2010) period as part of the MEGAPOLI (Megacities: Emissions, urban, regional, and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation) campaigns. Model predictions of carbonaceous aerosol are compared against Aerodyne aerosol mass spectrometer and black carbon (BC) high time resolution measurements from three ground sites. PMCAMx predicts BC concentrations reasonably well reproducing the majority (70 %) of the hourly data within a factor of two during both periods. The agreement for the summertime secondary organic aerosol (OA) concentrations is also encouraging (mean bias = 0.1 μg m-3) during a photochemically intense period. The model tends to underpredict the summertime primary OA concentrations in the Paris greater area (by approximately 0.8 μg m-3) mainly due to missing primary OA emissions from cooking activities. The total cooking emissions are estimated to be approximately 80 mg d-1 per capita and have a distinct diurnal profile in which 50 % of the daily cooking OA is emitted during lunch time (12:00-14:00 LT) and 20 % during dinner time (20:00-22:00 LT). Results also show a large underestimation of secondary OA in the Paris greater area during wintertime (mean bias = -2.3 μg m-3) pointing towards a secondary OA formation process during low photochemical activity periods that is not simulated in the model.

  6. Secondary organic aerosol formation from primary aliphatic amines with NO3 radical

    NASA Astrophysics Data System (ADS)

    Malloy, Q. G. J.; Qi, Li; Warren, B.; Cocker, D. R., III; Erupe, M. E.; Silva, P. J.

    2008-07-01

    Primary aliphatic amines are an important class of nitrogen containing compounds found to be emitted from automobiles, waste treatment facilities and agricultural animal operations. A series of experiments conducted at the UC-Riverside/CE-CERT Environmental Chamber is presented in which oxidation of methylamine, ethylamine, propylamine, and butylamine with NO3 has been investigated. Very little aerosol formation is observed in the presence of O3 only. However, after addition of NO, and by extension NO3, large yields of aerosol mass loadings (~44% for butylamine) are seen. Aerosol generated was determined to be organic in nature due to the small fraction of NO and NO2 in the total signal (<17% for all amines tested) as detected by an aerosol mass spectrometer (AMS). We propose a reaction mechanism between carbonyl containing species and the parent amine leading to formation of particulate imine products. These findings can have significant impacts on rural communities and lead to elevated nighttime PM loadings, when significant levels on NO3 exist.

  7. Secondary organic aerosol formation from primary aliphatic amines with NO3 radical

    NASA Astrophysics Data System (ADS)

    Malloy, Q. G. J.; Qi, Li; Warren, B.; Cocker, D. R., III; Erupe, M. E.; Silva, P. J.

    2009-03-01

    Primary aliphatic amines are an important class of nitrogen containing compounds emitted from automobiles, waste treatment facilities and agricultural animal operations. A series of experiments conducted at the UC-Riverside/CE-CERT Environmental Chamber is presented in which oxidation of methylamine, ethylamine, propylamine, and butylamine with O3 and NO3 have been investigated. Very little aerosol formation is observed in the presence of O3 only. However, after addition of NO, and by extension NO3, large aerosol mass yields (~44% for butylamine) are seen. Aerosol generated was determined to be organic in nature due to the small fraction of NO and NO2 in the total signal (<1% for all amines tested) as detected by an aerosol mass spectrometer (AMS). We propose a reaction mechanism between carbonyl containing species and the parent amine leading to formation of particulate imine products. These findings can have significant impacts on rural communities with elevated nighttime PM loadings, when significant levels of NO3 exist.

  8. Secondary organic aerosol formation and composition from the photo-oxidation of methyl chavicol (estragole)

    NASA Astrophysics Data System (ADS)

    Pereira, K. L.; Hamilton, J. F.; Rickard, A. R.; Bloss, W. J.; Alam, M. S.; Camredon, M.; Muñoz, A.; Vásquez, M.; Borrás, E.; Ródenas, M.

    2013-12-01

    The increasing demand for palm oil for uses in biofuel and food products is leading to rapid expansion of oil palm agriculture. Methyl chavicol (also known as estragole and 1-allyl-4-methoxybenzene) is an oxygenated biogenic volatile organic compound that was recently identified as the main floral emission from an oil palm plantation in Malaysian Borneo. The emissions of methyl chavicol observed may impact regional atmospheric chemistry, but little is known of its ability to form secondary organic aerosol (SOA). The photo-oxidation of methyl chavicol was investigated at the European Photoreactor chamber as a part of the atmospheric chemistry of methyl chavicol (ATMECH) project. Aerosol samples were collected using a particle into liquid sampler (PILS) and analysed offline using an extensive range of instruments including; high performance liquid chromatography mass spectrometry (HPLC-ITMS), high performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-QTOFMS) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The SOA yield was determined as 18-29% depending on initial precursor (VOC : NOx) mixing ratios. In total, 59 SOA compounds were observed and the structures of 10 compounds have been identified using high resolution tandem mass spectrometry. The addition of hydroxyl and/or nitro functional groups to the aromatic ring appears to be an important mechanistic pathway for aerosol formation. This results in the formation of compounds with both low volatility and high O : C ratios, where functionalisation rather than fragmentation is mainly observed as a~result of the stability of the ring. The SOA species observed can be characterized as semi-volatile to low volatile oxygenated organic aerosol (SVOOA and LVOOA) components and therefore may be important in aerosol formation and growth.

  9. Secondary organic aerosol formation and composition from the photo-oxidation of methyl chavicol (estragole)

    NASA Astrophysics Data System (ADS)

    Pereira, K. L.; Hamilton, J. F.; Rickard, A. R.; Bloss, W. J.; Alam, M. S.; Camredon, M.; Muñoz, A.; Vázquez, M.; Borrás, E.; Ródenas, M.

    2014-06-01

    The increasing demand for palm oil for uses in biofuel and food products is leading to rapid expansion of oil palm agriculture. Methyl chavicol (also known as estragole and 1-allyl-4-methoxybenzene) is an oxygenated biogenic volatile organic compound (VOC) that was recently identified as the main floral emission from an oil palm plantation in Malaysian Borneo. The emissions of methyl chavicol observed may impact regional atmospheric chemistry, but little is known of its ability to form secondary organic aerosol (SOA). The photo-oxidation of methyl chavicol was investigated at the European Photoreactor chamber as a part of the atmospheric chemistry of methyl chavicol (ATMECH) project. Aerosol samples were collected using a particle into liquid sampler (PILS) and analysed offline using an extensive range of instruments including; high-performance liquid chromatography mass spectrometry (HPLC-ITMS), high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-QTOFMS) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The SOA yield was determined as 18 and 29% for an initial VOC mixing ratio of 212 and 460 ppbv (parts per billion by volume) respectively; using a VOC:NOx ratio of ~5:1. In total, 59 SOA compounds were observed and the structures of 10 compounds have been identified using high-resolution tandem mass spectrometry. The addition of hydroxyl and/or nitro-functional groups to the aromatic ring appears to be an important mechanistic pathway for aerosol formation. This results in the formation of compounds with both low volatility and high O:C ratios, where functionalisation rather than fragmentation is mainly observed as a result of the stability of the ring. The SOA species observed can be characterised as semi-volatile to low-volatility oxygenated organic aerosol (SVOOA and LVOOA) components and therefore may be important in aerosol formation and growth.

  10. Determination of cloud and aerosol layers using CALIPSO and image processing

    NASA Astrophysics Data System (ADS)

    Alias, A. N.; MatJafri, M. Z.; Lim, H. S.; Abdullah, K.; Saleh, N. Mohd.

    2008-10-01

    The height of cloud and aerosol layers in the atmosphere is believed to affect climate change and air pollution because both of them have important direct effects on the radiation balance of the earth. In this paper, we study the ability of Cloud Aerosol LIDAR and Infrared Pathfinder Satellite Observation (CALIPSO) data to detect, locate and distinguish between cloud and aerosol layers in the atmosphere over Peninsula Malaysia. We also used image processing technique to differentiate between cloud and aerosol layers from the CALIPSO images. The cloud and aerosol layers mostly are seen at troposphere (>10 km) and lower stratosphere (>15km). The results shows that CALIPSO can be used to determine cloud and aerosol layers and image processing technique has successfully distinguished them in the atmosphere.

  11. Rapid Formation of Molecular Bromine from Deliquesced NaBr Aerosol in the Presence of Ozone and UV Light

    EPA Science Inventory

    The formation of gas-phase bromine from aqueous sodium bromide aerosols is investigated through a combination of chamber experiments and chemical kinetics modeling. Experiments show that Br2(g) is produced rapidly from deliquesced NaBr aerosols in the presence of OH radicals prod...

  12. Solid ammonium sulfate aerosols as ice nuclei: a pathway for cirrus cloud formation.

    PubMed

    Abbatt, J P D; Benz, S; Cziczo, D J; Kanji, Z; Lohmann, U; Möhler, O

    2006-09-22

    Laboratory measurements support a cirrus cloud formation pathway involving heterogeneous ice nucleation by solid ammonium sulfate aerosols. Ice formation occurs at low ice-saturation ratios consistent with the formation of continental cirrus and an interhemispheric asymmetry observed for cloud onset. In a climate model, this mechanism provides a widespread source of ice nuclei and leads to fewer but larger ice crystals as compared with a homogeneous freezing scenario. This reduces both the cloud albedo and the longwave heating by cirrus. With the global ammonia budget dominated by agricultural practices, this pathway might further couple anthropogenic activity to the climate system.

  13. Multiphase processing of organic hydroxynitrates in secondary organic aerosol from the radical-initiated oxidation of multi-olefinic monoterpenes

    NASA Astrophysics Data System (ADS)

    Slade, J. H.; Lee, L. S.; Shepson, P. B.; De Perre, C.

    2015-12-01

    One of the greatest challenges facing atmospheric and climate science is understanding the impacts human activities have on the natural environment and atmospheric chemistry. The production of condensable organic compounds due to interactions between atmospheric oxidants, nitrogenous pollutants, and biogenic volatile organic compounds (BVOCs) emitted from the terrestrial biosphere can contribute significantly to the formation and growth of secondary organic aerosol (SOA). Aerosol particles influence atmospheric radiative transfer, cloud formation, and thus atmospheric temperatures. Due to their solubility in water and adsorptive nature, hydroxylated organic nitrates (HORONO2) may contribute significantly to the formation and chemical aging of SOA, and serve as an important sink for NOx (NO+NO2). We recently observed that a monoterpene β-hydroxy-organic nitrate (C10H17NO4), produced from the OH oxidation of α-pinene in the presence of NOx, undergoes rapid processing in the aerosol phase via an acid-catalyzed and pH-dependent hydrolysis mechanism, potentially impacting SOA growth and molecular composition. Further processing in the aerosol phase via polymerization and formation of organosulfates is expected, yet studies related to product identification and their formation mechanisms are limited. In this presentation, I will discuss recent laboratory-based reaction chamber studies of gas-phase organic nitrate production, SOA formation, and acidity-dependent aerosol-phase processing of organic nitrates produced from the NO3 oxidation of γ-terpinene. This BVOC is a diolefin, which as modeling studies suggest, may be an important nighttime organic nitrate precursor. Gas-phase organic nitrate compounds resulting from NO3 oxidation were qualitatively identified applying I- chemical ionization mass spectrometry (CIMS) and quantified via calibration using synthetic standards generated in our laboratory. Aerosol-phase analysis was carried out employing Fourier transform

  14. Insights into different nitrate formation mechanisms from seasonal variations of secondary inorganic aerosols in Shanghai

    NASA Astrophysics Data System (ADS)

    Tao, Ye; Ye, Xingnan; Ma, Zhen; Xie, Yuanyuan; Wang, Ruyu; Chen, Jianmin; Yang, Xin; Jiang, Shuqin

    2016-11-01

    The dominant mechanisms for the formation of fine particulate nitrate during four seasons were proposed by evaluating the correlations between [NO3-]/[SO42-] and [NH4+]/[SO42-]. Size-resolved aerosols were collected in Shanghai from April 2013 to January 2014. The concentration of fine particulate nitrate was below one tenth of the concentration of sulfate in summer, whereas fine particulate nitrate dominated over sulfate in winter. Influenced by aged sea salt aerosols, the molar ratio of [Na+]/[NH4+] reached 53 ± 49% and the depletion of chloride was very significant (0.83) during autumn. In spring, the increase of nitrate concentration became evident for [NH4+]/[SO42-]>2, indicating that sulfate is fully neutralized. During summertime, nighttime hydrolysis of N2O5 dominated the fine particulate nitrate formation. The thresholds of [NH4+]/[SO42-] for nitrate formation in autumn and winter were wrongly characterized by the linear regression between [NO3-]/[SO42-] and [NH4+]/[SO42-], because considerable amounts of Na2SO4 and NH4Cl were present. Replaced by free ammonium in the function equation, it was established that the winter and spring aerosols shared the same nitrate formation mechanism. On the basis of free sulfate, it was evident that both homogeneous neutralization and hydrolysis of N2O5 mechanisms were involved during autumn.

  15. Quantifying the ionic reaction channels in the Secondary Organic Aerosol formation from glyoxal

    NASA Astrophysics Data System (ADS)

    Maxut, Aurelia; Nozière, Barbara; Rossignol, Stéphanie; George, Christian; Waxman, Eleanor Marie; Laskin, Alexander; Slowik, Jay; Dommen, Josef; Prévôt, André; Baltensperger, Urs; Volkamer, Rainer

    2014-05-01

    Glyoxal, a common organic gas in the atmosphere, has been identified in recent years as an important Secondary Organic Aerosol (SOA) precursor (Volkamer et al., 2007). But, unlike with other precursors, the SOA is largely produced by particle-phase reactions (Volkamer et al., 2009) and equilibria (Kampf et al. 2013) that are still not entirely characterized. Since 2009 series of smog chamber experiments have been performed within the Eurochamp program at the Paul Scherrer Institute, Switzerland, to investigate SOA formation from glyoxal. In these experiments, glyoxal was produced by the gas-phase oxidation of acetylene in the presence of seeds, the seed composition and other conditions being varied. The 2011 campaign resulted in the identification of salting processes controlling the glyoxal partitioning in the seeds (Kampf et al. 2013). This presentation will report results of the 2013 campaign focusing on the identification of the various reactions (ionic or photo-induced) contributing to the SOA mass. In particular, the contribution of the ionic reactions, i.e. mediated by NH4+, were investigated by quantifying the formation of imidazoles (imidazole, imidazole-2-carboxaldehyde, 2,2'-biimidazole) from the small condensation channel of glyoxal with ammonia. For this, the SOA produced were collected on quartz filters and analyzed by Orbitrap LC/MS (Q-Exactive Thermo Fisher). The formation of other products such as organic acids was also investigated to determine potential competing reactions. Time-resolved MOUDI sampling coupled with nano-DESY/ESI-MS/MS analysis was also used to identify nitrogen- and sulphur-containing products from all the reactions. The results obtained for a range of conditions will be presented and compared with recent mechanistic information on the ionic reaction channels (Nozière et al., in preparation, 2013). The implementation of all this new information into a glyoxal-SOA model will be discussed.

  16. Effect of high concentrations of inorganic seed aerosols on secondary organic aerosol formation in the m-xylene/NO x photooxidation system

    NASA Astrophysics Data System (ADS)

    Lu, Zifeng; Hao, Jiming; Takekawa, Hideto; Hu, Lanhua; Li, Junhua

    High concentrations (>15 μm 3 cm -3) of CaSO 4, Ca(NO 3) 2 and (NH 4) 2SO 4 were selected as surrogates of dry neutral, aqueous neutral and dry acidic inorganic seed aerosols, respectively, to study the effects of inorganic seeds on secondary organic aerosol (SOA) formation in irradiated m-xylene/NO x photooxidation systems. The results indicate that neither ozone formation nor SOA formation is significantly affected by the presence of neutral aerosols (both dry CaSO 4 and aqueous Ca(NO 3) 2), even at elevated concentrations. The presence of high concentrations of (NH 4) 2SO 4 aerosols (dry acidic) has no obvious effect on ozone formation, but it does enhance SOA generation and increase SOA yields. In addition, the effect of dry (NH 4) 2SO 4 on SOA yield is found to be positively correlated with the (NH 4) 2SO 4 surface concentration, and the effect is pronounced only when the surface concentration reaches a threshold value. Further, it is proposed that the SOA generation enhancement is achieved by particle-phase heterogeneous reactions induced and catalyzed by the acidity of dry (NH 4) 2SO 4 seed aerosols.

  17. Dependence of Ice Formation in Sierra Winter Orographic Clouds on the Mixing State of Aerosols Serving as Ice Nuclei

    NASA Astrophysics Data System (ADS)

    DeMott, P. J.; Prather, K. A.; Sullivan, R. C.; Suski, K.; Comstock, J. M.; Tomlinson, J. M.; Rosenfeld, D.; Prenni, A. J.; Cazorla, A.

    2011-12-01

    The CalWater study of February to March 2011 offered the opportunity for observations of aerosols from local, regional and long distance sources as they were integrated into clouds and precipitation in the Sierra Nevada. Single particle chemical analysis of cloud particle residual nuclei and surface precipitation, and their association with changes in cloud microphysical differences, suggest that ice initiation and precipitation formation were strongly affected by intrusions of Asian dust. This is consistent with coincident processing of aerosols present in ambient air and cloud particle residuals as ice nuclei. Elevated ice nuclei concentrations were associated with the presence of dust detected in cloud particle residuals, and dust particles dominated ice nuclei chemical compositions assessed by transmission electron microscopy x-ray analyses at these same times. Evidence of the role of Asian dust as ice nuclei during 2011 are consistent with back trajectory analyses and with recently published observational findings from CalWater Early Start data from 2009. The relative roles of aerosols from the marine boundary layer, biomass burning, and pollution as ice nuclei will also be discussed.

  18. Biotic stress accelerates formation of climate-relevant aerosols in boreal forests

    NASA Astrophysics Data System (ADS)

    Joutsensaari, J.; Yli-Pirilä, P.; Korhonen, H.; Arola, A.; Blande, J. D.; Heijari, J.; Kivimäenpää, M.; Mikkonen, S.; Hao, L.; Miettinen, P.; Lyytikäinen-Saarenmaa, P.; Faiola, C. L.; Laaksonen, A.; Holopainen, J. K.

    2015-11-01

    Boreal forests are a major source of climate-relevant biogenic secondary organic aerosols (SOAs) and will be greatly influenced by increasing temperature. Global warming is predicted to not only increase emissions of reactive biogenic volatile organic compounds (BVOCs) from vegetation directly but also induce large-scale insect outbreaks, which significantly increase emissions of reactive BVOCs. Thus, climate change factors could substantially accelerate the formation of biogenic SOAs in the troposphere. In this study, we have combined results from field and laboratory experiments, satellite observations and global-scale modelling in order to evaluate the effects of insect herbivory and large-scale outbreaks on SOA formation and the Earth's climate. Field measurements demonstrated 11-fold and 20-fold increases in monoterpene and sesquiterpene emissions respectively from damaged trees during a pine sawfly (Neodiprion sertifer) outbreak in eastern Finland. Laboratory chamber experiments showed that feeding by pine weevils (Hylobius abietis) increased VOC emissions from Scots pine and Norway spruce seedlings by 10-50 fold, resulting in 200-1000-fold increases in SOA masses formed via ozonolysis. The influence of insect damage on aerosol concentrations in boreal forests was studied with a global chemical transport model GLOMAP and MODIS satellite observations. Global-scale modelling was performed using a 10-fold increase in monoterpene emission rates and assuming 10 % of the boreal forest area was experiencing outbreak. Results showed a clear increase in total particulate mass (local max. 480 %) and cloud condensation nuclei concentrations (45 %). Satellite observations indicated a 2-fold increase in aerosol optical depth over western Canada's pine forests in August during a bark beetle outbreak. These results suggest that more frequent insect outbreaks in a warming climate could result in substantial increase in biogenic SOA formation in the boreal zone and, thus

  19. Biotic stress accelerates formation of climate-relevant aerosols in boreal forests

    NASA Astrophysics Data System (ADS)

    Joutsensaari, J.; Yli-Pirilä, P.; Korhonen, H.; Arola, A.; Blande, J. D.; Heijari, J.; Kivimäenpää, M.; Mikkonen, S.; Hao, L.; Miettinen, P.; Lyytikäinen-Saarenmaa, P.; Faiola, C. L.; Laaksonen, A.; Holopainen, J. K.

    2015-04-01

    Boreal forests are a major source of climate-relevant biogenic secondary organic aerosols (SOA) and will be greatly influenced by increasing temperature. Global warming is predicted to increase emissions of reactive biogenic volatile organic compounds (BVOC) from vegetation directly, but will also induce large-scale insect outbreaks, which significantly increase emissions of reactive BVOC. Thus, climate change factors could substantially accelerate the formation of biogenic SOA in the troposphere. In this study, we have combined results from field and laboratory experiments, satellite observations and global scale modelling in order to evaluate the effects of insect herbivory and large-scale outbreaks on SOA formation and the Earth's climate. Field measurements demonstrated 11-fold and 20-fold increases in monoterpene and sesquiterpene emissions, respectively, from damaged trees during a pine sawfly (Neodiprion sertifer) outbreak in eastern Finland. Laboratory chamber experiments showed that feeding by pine weevils (Hylobius abietis) increased VOC emissions from Scots pine and Norway spruce seedlings by 10-50 fold resulting in 200-1000 fold increases in SOA masses formed via ozonolysis. The influence of insect damage on aerosol concentrations in boreal forests was studied with a global chemical transport model GLOMAP and MODIS satellite observations. Global scale modelling was performed using a 10-fold increase in monoterpene emission rates and assuming 10% of the boreal forest area was experiencing outbreak. Results showed a clear increase in total particulate mass (local max. 480%) and cloud condensation nuclei concentrations (45%). Satellite observations indicated a two-fold increase in aerosol optical depth (AOD) over western Canada's pine forests in August during a bark beetle outbreak. These results suggest that more frequent insect outbreaks in a warming climate could result in substantial increase in biogenic SOA formation in the boreal zone and, thus

  20. FY 2010 Fourth Quarter Report: Evaluation of the Dependency of Drizzle Formation on Aerosol Properties

    SciTech Connect

    Lin, W; McGraw, R; Liu, Y; Wang, J; Vogelmann, A; Daum, PH

    2010-10-01

    Metric for Quarter 4: Report results of implementation of composite parameterization in single-column model (SCM) to explore the dependency of drizzle formation on aerosol properties. To better represent VOCALS conditions during a test flight, the Liu-Duam-McGraw (LDM) drizzle parameterization is implemented in the high-resolution Weather Research and Forecasting (WRF) model, as well as in the single-column Community Atmosphere Model (CAM), to explore this dependency.

  1. A Computational Approach to Understanding Aerosol Formation and Oxidant Chemistry in the Troposphere

    SciTech Connect

    Francisco, Joseph S.; Kathmann, Shawn M.; Schenter, Gregory K.; Dang, Liem X.; Xantheas, Sotiris S.; Garrett, Bruce C.; Du, Shiyu; Dixon, David A.; Bianco, Roberto; Wang, Shuzhi; Hynes, James T.; Morita, Akihiro; Peterson, Kirk A.

    2006-04-18

    An understanding of the mechanisms and kinetics of aerosol formation and ozone production in the troposphere is currently a high priority because these phenomena are recognized as two major effects of energy-related air pollution. Atmospheric aerosols are of concern because of their effect on visibility, climate, and human health. Equally important, aerosols can change the chemistry of the atmosphere, in dramatic fashion, by providing new chemical pathways (in the condensed phase) unavailable in the gas phase. The oxidation of volatile organic compounds (VOCs) and inorganic compounds (e.g., sulfuric acid, ammonia, nitric acid, ions, and mineral) can produce precursor molecules that act as nucleation seeds. The U.S. Department of Energy (DOE) Atmospheric Chemistry Program (ACP) has identified the need to evaluate the causes of variations in tropospheric aerosol chemical composition and concentrations, including determining the sources of aerosol particles and the fraction of such that are of primary and secondary origin. In particular, the ACP has called for a deeper understanding into aerosol formation because nucleation creates substantial concentrations of fresh particles that, via growth and coagulation, influence the Earth's radiation budget. Tropospheric ozone is also of concern primarily because of its impact on human health. Ozone levels are controlled by NOx and by VOCs in the lower troposphere. The VOCs can be either from natural emissions from such sources as vegetation and phytoplankton or from anthropogenic sources such as automobiles and oil-fueled power production plants. The major oxidant for VOCs in the atmosphere is the OH radical. With the increase in VOC emissions, there is rising concern regarding the available abundance of HOx species needed to initiate oxidation. Over the last five years, there have been four field studies aimed at initial measurements of HOx species (OH and HO? radicals). These measurements revealed HOx levels that are two to

  2. Laboratory studies on secondary organic aerosol formation from crude oil vapors.

    PubMed

    Li, R; Palm, B B; Borbon, A; Graus, M; Warneke, C; Ortega, A M; Day, D A; Brune, W H; Jimenez, J L; de Gouw, J A

    2013-01-01

    Airborne measurements of aerosol composition and gas phase compounds over the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico in June 2010 indicated the presence of high concentrations of secondary organic aerosol (SOA) formed from organic compounds of intermediate volatility. In this work, we investigated SOA formation from South Louisiana crude oil vapors reacting with OH in a Potential Aerosol Mass flow reactor. We use the dependence of evaporation time on the saturation concentration (C*) of the SOA precursors to separate the contribution of species of different C* to total SOA formation. This study shows consistent results with those at the DWH oil spill: (1) organic compounds of intermediate volatility with C* = 10(5)-10(6) μg m(-3) contribute the large majority of SOA mass formed, and have much larger SOA yields (0.37 for C* = 10(5) and 0.21 for C* = 10(6) μg m(-3)) than more volatile compounds with C*≥10(7) μg m(-3), (2) the mass spectral signature of SOA formed from oxidation of the less volatile compounds in the reactor shows good agreement with that of SOA formed at DWH oil spill. These results also support the use of flow reactors simulating atmospheric SOA formation and aging.

  3. Measurements of aerosol chemistry during new particle formation events at a remote rural mountain site.

    PubMed

    Creamean, Jessie M; Ault, Andrew P; Ten Hoeve, John E; Jacobson, Mark Z; Roberts, Gregory C; Prather, Kimberly A

    2011-10-01

    Determining the major sources of particles that act as cloud condensation nuclei (CCN) represents a critical step in the development of a more fundamental understanding of aerosol impacts on cloud formation and climate. Reported herein are direct measurements of the CCN activity of newly formed ambient particles, measured at a remote rural site in the Sierra Nevada Mountains of Northern California. Nucleation events in the winter of 2009 occurred during two pristine periods following precipitation, with higher gas-phase SO(2) concentrations during the second period, when faster particle growth occurred (7-8 nm/h). Amines, as opposed to ammonia, and sulfate were detected in the particle phase throughout new particle formation (NPF) events, increasing in number as the particles grew to larger sizes. Interestingly, long-range transport of SO(2) from Asia appeared to potentially play a role in NPF during faster particle growth. Understanding the propensity of newly formed particles to act as CCN is critical for predicting the effects of NPF on orographic cloud formation during winter storms along the Sierra Nevada Mountain range. The potential impact of newly formed particles in remote regions needs to be compared with that of transported urban aerosols when evaluating the impact of aerosols on clouds and climate.

  4. Real-Time Observations of Secondary Aerosol Formation and Aging from Different Emission Sources and Environments

    NASA Astrophysics Data System (ADS)

    Ortega, A. M.; Palm, B. B.; Hayes, P. L.; Day, D. A.; Cubison, M.; Brune, W. H.; Hu, W.; Flynn, J. H.; Grossberg, N.; Lefer, B. L.; Rappenglueck, B.; Bon, D.; Graus, M.; Warneke, C.; Gilman, J.; Kuster, W.; De Gouw, J. A.; Jimenez, J. L.

    2013-12-01

    To investigate atmospheric processing of direct urban and wildfire emissions, we deployed a photochemical flow reactor (Potential Aerosol Mass, PAM) with submicron aerosol size and chemical composition measurements during FLAME-3, a biomass-burning study at USDA Fire Sciences Laboratory in Missoula, MT, and CalNex, a field study investigating the nexus of air quality and climate change at a receptor site in the LA-Basin at Pasadena, CA. The reactor produces OH concentrations up to 4 orders of magnitude higher than in ambient air, achieving equivalent aging of ~2 weeks in 5 minutes of processing. The OH exposure (OHexp) was stepped every 20 min in both field studies. Results show the value of this approach as a tool for in-situ evaluation of changes in OA concentration and composition due to photochemical processing. In FLAME-3, the average OA enhancement factor was 1.42 × 0.36 of the initial POA. Reactive VOCs, such as toluene, monoterpenes, and acetaldehyde, decreased with increased OHexp; however, formic acid, acetone, and some unidentified OVOCs increased after significant exposure. Net SOA formation in the photochemical reactor increased with OHexp, typically peaking around 3 days of equivalent atmospheric photochemical age (OHexp ~3.9e11 molecules cm-3 s), then leveling off at higher exposures. Unlike other studies, no decrease in OA is observed at high exposure, likely due to lower max OHexp in this study due to very high OH reactivity. The amount of additional OA mass added from aging is positively correlated with initial POA concentration, but not with the total VOC concentration or the concentration of known SOA precursors. The mass of SOA formed often exceeded the mass of the known VOC precursors, indicating the likely importance of primary semivolatile/intermediate volatility species, and possibly of unidentified VOCs as SOA precursors in biomass burning smoke. Results from CalNex show enhancement of OA and inorganic aerosol from gas-phase precursors

  5. Aerosol formation by ozonolysis of α- and β-pinene with initial concentrations below 1 ppb

    NASA Astrophysics Data System (ADS)

    Saathoff, Harald; Naumann, Karl-Heinz; Möhler, Ottmar

    2014-05-01

    Secondary organic aerosols (SOA) from the oxidation of biogenic volatile organic compounds (BVOC) are a large fraction of the tropospheric aerosol especially over tropical continental regions. The dominant SOA forming compounds are monoterpenes of which pinene is the most abundant. The reactions of monoterpenes with OH radicals, NO3 radicals, and ozone yield secondary organic aerosol mass in highly variable yields. Despite the various studies on SOA formation the influence of temperature and precursor concentrations on SOA yields are still major uncertainties in tropospheric aerosol models. In previous studies we observed a negative temperature dependence of SOA yields for SOA from ozonolysis α-pinene and limonene (Saathoff et al., 2009). However, this study as well as most of the literature data for measured SOA yields is limited to terpene concentrations of several ppb and higher (e.g. Bernard et al., 2012), hence about an order of magnitude higher than terpene concentrations even near their sources. Monoterpene concentrations in and above tropical or boral forests reach values up to a few tenth of a ppb during daytime decreasing rapidly with altitude in the boundary layer (Kesselmeier et al. 2000; Boy et al., 2004). Therefore we investigated the yield of SOA material from the ozonolysis of α- and β-pinene under simulated tropospheric conditions in the large aerosol chamber AIDA on time scales of several hours and for terpene concentrations between 0.1 and 1 ppb. The temperatures investigated were 243, 274, and 296 K with relative humidities ranging from 25% to 41%. The organic aerosol was generated by controlled oxidation with an excess of ozone (220-930 ppb) and the aerosol yield is calculated from size distributions measured with differential mobility analysers (SMPS, TSI, 3071 & 3080N) in the size range between 2 and 820 nm. On the basis of the measured initial particle size distribution, particle number concentration (CPC, TSI, 3775, 3776, 3022), and

  6. Optically thin ice clouds in Arctic; Formation processes

    NASA Astrophysics Data System (ADS)

    Jouan, Caroline; Pelon, Jacques; Girard, Eric; Blanchet, Jean-Pierre; Wobrock, Wolfram; Gayet, Jean-Franćois; Schwarzenböck, Alfons; Gultepe, Ismail; Delanoë, Julien; Mioche, Guillaume

    2010-05-01

    Arctic ice cloud formation during winter is poorly understood mainly due to lack of observations and the remoteness of this region. Yet, their influence on Northern Hemisphere weather and climate is of paramount importance, and the modification of their properties, linked to aerosol-cloud interaction processes, needs to be better understood. Large concentration of aerosols in the Arctic during winter is associated to long-range transport of anthropogenic aerosols from the mid-latitudes to the Arctic. Observations show that sulphuric acid coats most of these aerosols. Laboratory and in-situ measurements show that at cold temperature (< -30°C), acidic coating lowers the freezing point and deactivates ice nuclei (IN). Therefore, the IN concentration is reduced in these regions and there is less competition for the same available moisture. As a result, large ice crystals form in relatively small concentrations. It is hypothesized that the observed low concentration of large ice crystals in thin ice clouds is linked to the acidification of aerosols. To check this, it is necessary to analyse cloud properties in the Arctic. Extensive measurements from ground-based sites and satellite remote sensing (CloudSat and CALIPSO) reveal the existence of two types of extended optically thin ice clouds (TICs) in the Arctic during the polar night and early spring. The first type (TIC-1) is seen only by the lidar, but not the radar, and is found in pristine environment whereas the second type (TIC-2) is detected by both sensors, and is associated with high concentration of aerosols, possibly anthropogenic. TIC-2 is characterized by a low concentration of ice crystals that are large enough to precipitate. To further investigate the interactions between TICs clouds and aerosols, in-situ, airborne and satellite measurements of specific cases observed during the POLARCAT and ISDAC field experiments are analyzed. These two field campaigns took place respectively over the North Slope of

  7. The role of biogenic, biomass burning and urban pollution aerosol particles in controlling key atmospheric processes in Amazonia

    NASA Astrophysics Data System (ADS)

    Artaxo, P.; Ferreira De Brito, J.; Barbosa, H. M.; Rizzo, L. V.; Sena, E. T.; Cirino, G.; Arana, A.; Yanez-Serrano, A. M.

    2013-05-01

    As part of the LBA (The Large Scale Biosphere Atmosphere Experiment in Amazonia) experiment, a research program run in the last 10 years had help to understand critical atmospheric processes in Amazonia. The vegetation in Amazonia is a direct source of aerosol particles to the atmosphere as well as a source of biogenic trace gases that generates particles trough gas-to-particle conversion. Biomass burning is also a large source of particles and trace gases to the atmosphere. Over the last 10 years, the LBA experiment has unveiled several key processes that control Amazonian composition and influence regional climate. A significant fraction (60-80%) of airborne particles can act as Cloud Condensation Nuclei (CCN), influencing cloud formation and development. The radiation balance is strongly influenced by biomass burning particles, and surface radiative forcing up to -250 w/m2 is measured. A network of 8 sites with AERONET sunphotometers measures aerosol optical depth (AOD) and derive aerosol size distribution and optical properties. Aerosols are composed of more than 70% of organic material, with significant absorption characteristics. The aerosol radiative forcing during the biomass burning season can reach very high values, and the increase in diffuse radiation increases the carbon uptake by the forest for AOD values smaller than 1.2 at 500nm. For large AOD, the solar flux is strongly reduced making the carbon uptake approach zero for AOD larger than 3.0. The composition of aerosols is mostly organic, with contribution of K, Ca, Si, and other trace elements. The aerosol has high capability to serve as Cloud Condensation Nuclei (CCN), contributing with high water vapor amounts to the significant cloud cover over the region. In the last 20 years, an urbanization process took over for most of the Amazonian region, increasing urban pollution that interacts with forest emissions to produce a quite unique pattern of aerosols and pollutants around large urban areas such

  8. Secondary organic aerosol formation and primary organic aerosol oxidation from biomass burning smoke in a flow reactor during FLAME-3

    NASA Astrophysics Data System (ADS)

    Ortega, A. M.; Day, D. A.; Cubison, M. J.; Brune, W. H.; Bon, D.; de Gouw, J. A.; Jimenez, J. L.

    2013-05-01

    We report the physical and chemical effects of photochemically aging dilute biomass-burning smoke. A potential aerosol mass "PAM" flow reactor was used with analysis by a high-resolution aerosol mass spectrometer and a proton-transfer reaction ion-trap mass spectrometer during the FLAME-3 campaign. Hydroxyl (OH) radical concentrations in the reactor reached up to ~ 1000 times average tropospheric levels, producing effective OH exposures equivalent to up to 5 days aging in the atmosphere. VOC observations show aromatics and terpenes decrease with aging, while formic acid and other unidentified oxidation products increase. Unidentified gas-phase oxidation products, previously observed in atmospheric and laboratory measurements, were observed here, including evidence of multiple generations of photochemistry. Substantial new organic aerosol (OA) mass ("net SOA"; secondary OA) was observed from aging biomass-burning smoke, resulting in an total OA average of 1.42 ± 0.36 times the initial primary OA (POA) after oxidation. This study confirms that the net SOA to POA ratio of biomass burning smoke is far lower on average than that observed for urban emissions. Although most fuels were very reproducible, significant differences were observed among the biomasses, with some fuels resulting in a doubling of the OA mass, while for others a very small increase or even a decrease was observed. Net SOA formation in the photochemical reactor increased with OH exposure (OHexp), typically peaking around three days of equivalent atmospheric photochemical age (OHexp ~ 3.9 × 1011 molecules cm-3 s-1), then leveling off at higher exposures. The amount of additional OA mass added from aging is positively correlated with initial POA concentration, but not with the total VOC concentration or the concentration of known SOA precursors. The mass of SOA formed often exceeds the mass of the known VOC precursors, indicating the likely importance of primary semivolatile/intermediate volatility

  9. Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multilayer model ADCHAM

    NASA Astrophysics Data System (ADS)

    Roldin, P.; Eriksson, A. C.; Nordin, E. Z.; Hermansson, E.; Mogensen, D.; Rusanen, A.; Boy, M.; Swietlicki, E.; Svenningsson, B.; Zelenyuk, A.; Pagels, J.

    2014-08-01

    We have developed the novel Aerosol Dynamics, gas- and particle-phase chemistry model for laboratory CHAMber studies (ADCHAM). The model combines the detailed gas-phase Master Chemical Mechanism version 3.2 (MCMv3.2), an aerosol dynamics and particle-phase chemistry module (which considers acid-catalysed oligomerization, heterogeneous oxidation reactions in the particle phase and non-ideal interactions between organic compounds, water and inorganic ions) and a kinetic multilayer module for diffusion-limited transport of compounds between the gas phase, particle surface and particle bulk phase. In this article we describe and use ADCHAM to study (1) the evaporation of liquid dioctyl phthalate (DOP) particles, (2) the slow and almost particle-size-independent evaporation of α-pinene ozonolysis secondary organic aerosol (SOA) particles, (3) the mass-transfer-limited uptake of ammonia (NH3) and formation of organic salts between ammonium (NH4+) and carboxylic acids (RCOOH), and (4) the influence of chamber wall effects on the observed SOA formation in smog chambers. ADCHAM is able to capture the observed α-pinene SOA mass increase in the presence of NH3(g). Organic salts of ammonium and carboxylic acids predominantly form during the early stage of SOA formation. In the smog chamber experiments, these salts contribute substantially to the initial growth of the homogeneously nucleated particles. The model simulations of evaporating α-pinene SOA particles support the recent experimental findings that these particles have a semi-solid tar-like amorphous-phase state. ADCHAM is able to reproduce the main features of the observed slow evaporation rates if the concentration of low-volatility and viscous oligomerized SOA material at the particle surface increases upon evaporation. The evaporation rate is mainly governed by the reversible decomposition of oligomers back to monomers. Finally, we demonstrate that the mass-transfer-limited uptake of condensable organic compounds

  10. Metals and Rare Earth Elements in polar aerosol as specific markers of natural and anthropogenic aerosol sources areas and atmospheric transport processes

    NASA Astrophysics Data System (ADS)

    Giardi, Fabio; Becagli, Silvia; Caiazzo, Laura; Cappelletti, David; Grotti, Marco; Malandrino, Mery; Salzano, Roberto; Severi, Mirko; Traversi, Rita; Udisti, Roberto

    2016-04-01

    Metals and Rare Earth Elements (REEs) in the aerosol have conservative properties from the formation to the deposition and can be useful to identify and quantify their natural and anthropic sources and to study the atmospheric transport processes. In spite of their importance relatively little is known about metals and especially REEs in the Artic atmosphere due to their low concentration in such environment. The present work reports the first attempt to determine and interpret the behaviour of metals and REEs in polar aerosol at high temporal resolution. Daily PM10 samples of arctic atmospheric particulate were collected on Teflon filters, during six spring-summer campaigns, since 2010, in the laboratory of Gruvebadet in Ny Ålesund (78°56' N, 11°56' E, Svalbard Islands, Norway). Chemical analyses were carried out through Inductively Coupled Plasma Mass Spectrometer provided with a desolvation nebulizer inlet system, allowing to reduce isobaric interferences and thus to quantify trace and ultra-trace metals in very low concentration in the Arctic aerosol samples. The results are useful in order to study sources areas, transport processes and depositional effects of natural and anthropic atmospheric particulate reaching the Arctic from southern industrialized areas; moreover, the observed seasonal trends give information about the different impact of natural and anthropic emissions driven by phenomena such as the Arctic Haze and the melting of the snow. In particular Rare Earth Elements (often in the ppt range) can be considered as soil's fingerprints of the particulate source areas and their determination, together with air-mass backtrajectory analysis, allow to identify dust source areas for the arctic mineral aerosol.

  11. Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multilayer model ADCHAM

    SciTech Connect

    Roldin, P.; Eriksson, A. C.; Nordin, E. Z.; Hermansson, E.; Mogensen, Ditte; Rusanen, A.; Boy, Michael; Swietlicki, E.; Svenningsson, Birgitta; Zelenyuk, Alla; Pagels, J.

    2014-08-11

    We have developed the novel Aerosol Dynamics, gas- and particle- phase chemistry model for laboratory CHAMber studies (ADCHAM). The model combines the detailed gas phase Master Chemical Mechanism version 3.2, an aerosol dynamics and particle phase chemistry module (which considers acid catalysed oligomerization, heterogeneous oxidation reactions in the particle phase and non-ideal interactions between organic compounds, water and inorganic ions) and a kinetic multilayer module for diffusion limited transport of compounds between the gas phase, particle surface and particle bulk phase. In this article we describe and use ADCHAM to study: 1) the mass transfer limited uptake of ammonia (NH3) and formation of organic salts between ammonium (NH4+) and carboxylic acids (RCOOH), 2) the slow and almost particle size independent evaporation of α-pinene secondary organic aerosol (SOA) particles, and 3) the influence of chamber wall effects on the observed SOA formation in smog chambers.

  12. Aerosol and CCN properties at Princess Elisabeth station, East Antarctica: seasonality, new particle formation events and properties around precipitation events

    NASA Astrophysics Data System (ADS)

    Mangold, Alexander; Laffineur, Quentin; De Backer, Hugo; Herenz, Paul; Wex, Heike; Gossart, Alexandra; Souverijns, Niels; Gorodetskaya, Irina; Van Lipzig, Nicole

    2016-04-01

    Since 2010, several complementary ground-based instruments for measuring the aerosol composition of the Antarctic atmosphere have been operated at the Belgian Antarctic research station Princess Elisabeth, in Dronning Maud Land, East Antarctica (71.95° S, 23.35° E, 1390 m asl.). In addition, three ground-based remote sensing instruments for cloud and precipitation observations have been installed for continuous operation, including a ceilometer (cloud base height, type, vertical extent), a 24 Ghz micro-rain radar (vertical profiles of radar effective reflectivity and Doppler velocity), and a pyrometer (cloud base temperature). The station is inhabited from November to end of February and operates under remote control during the other months. In this contribution, the general aerosol and cloud condensation nuclei (CCN) properties will be described with a special focus on new particle formation events and around precipitation events. New particle formation events are important for the atmospheric aerosol budget and they also show that aerosols are not only transported to Antarctica but are also produced there, also inland. Aerosols are essential for cloud formation and therefore also for precipitation, which is the only source for mass gain of the Antarctic ice sheet. Measured aerosol properties comprise size distribution, total number, total mass concentration, mass concentration of light-absorbing aerosol and absorption coefficient and total scattering coefficient. In addition, a CCN counter has been operated during austral summers 2013/14, 2014/15 and 2015/16. The baseline total number concentration N-total was around some hundreds of particles/cm3. During new particle formation events N-total increased to some thousands of particles/cm3. Simultaneous measurements of N-total, size distribution and CCN number revealed that mostly the number of particles smaller than 100 nm increased and that the concentration of cloud condensation nuclei increased only very

  13. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, Xiaowen; Khain, Alexander; Matsui, Toshihisa; Lang, Stephen; Simpson, Joanne

    2008-01-01

    Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds [NRC, 2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path [Twomey, 1977] and the "semi-direct" effect on cloud coverage [e.g., Ackerman et al ., 2001]." Enhanced aerosol concentrations can also suppress warm rain processes by producing a narrow droplet spectrum that inhibits collision and coalescence processes [e.g., Squires and Twomey, 1961; Warner and Twomey, 1967; Warner, 1968; Rosenfeld, 19991. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect [Albrecht, 1989], is even more complex, especially for mixed-phase convective clouds. Table 1 summarizes the key observational studies identifying the microphysical properties, cloud characteristics, thermodynamics and dynamics associated with cloud systems from high-aerosol continental environments. For example, atmospheric aerosol concentrations can influence cloud droplet size distributions, warm-rain process, cold-rain process, cloud-top height, the depth of the mixed phase region, and occurrence of lightning. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing an enhanced source of cloud condensation nuclei (CCN). Hypotheses have been developed to explain the effect of urban regions on convection and precipitation [van den Heever and Cotton, 2007 and Shepherd, 2005

  14. Formation of anthropogenic secondary organic aerosol (SOA) and its influence on biogenic SOA properties

    NASA Astrophysics Data System (ADS)

    Emanuelsson, E. U.; Hallquist, M.; Kristensen, K.; Glasius, M.; Bohn, B.; Fuchs, H.; Kammer, B.; Kiendler-Scharr, A.; Nehr, S.; Rubach, F.; Tillmann, R.; Wahner, A.; Wu, H.-C.; Mentel, Th. F.

    2013-03-01

    Secondary organic aerosol (SOA) formation from mixed anthropogenic and biogenic precursors has been studied exposing reaction mixtures to natural sunlight in the SAPHIR chamber in Jülich, Germany. In this study aromatic compounds served as examples of anthropogenic volatile organic compound (VOC) and a mixture of α-pinene and limonene as an example for biogenic VOC. Several experiments with exclusively aromatic precursors were performed to establish a relationship between yield and organic aerosol mass loading for the atmospheric relevant range of aerosol loads of 0.01 to 10 μg m-3. The yields (0.5 to 9%) were comparable to previous data and further used for the detailed evaluation of the mixed biogenic and anthropogenic experiments. For the mixed experiments a number of different oxidation schemes were addressed. The reactivity, the sequence of addition, and the amount of the precursors influenced the SOA properties. Monoterpene oxidation products, including carboxylic acids and dimer esters were identified in the aged aerosol at levels comparable to ambient air. OH radicals were measured by Laser Induced Fluorescence, which allowed for establishing relations of aerosol properties and composition to the experimental OH dose. Furthermore, the OH measurements in combination with the derived yields for aromatic SOA enabled application of a simplified model to calculate the chemical turnover of the aromatic precursor and corresponding anthropogenic contribution to the mixed aerosol. The estimated anthropogenic contributions were ranging from small (≈8%) up to significant fraction (>50%) providing a suitable range to study the effect of aerosol composition on the aerosol volatility (volume fraction remaining (VFR) at 343 K: 0.86-0.94). The aromatic aerosol had higher oxygen to carbon ratio O/C and was less volatile than the biogenic fraction. However, in order to produce significant amount of aromatic SOA the reaction mixtures needed a higher OH dose that also

  15. Electrospray neutralization process and apparatus for generation of nano-aerosol and nano-structured materials

    SciTech Connect

    Bailey, Charles L.; Morozov, Victor; Vsevolodov, Nikolai N.

    2010-08-17

    The claimed invention describes methods and apparatuses for manufacturing nano-aerosols and nano-structured materials based on the neutralization of charged electrosprayed products with oppositely charged electrosprayed products. Electrosprayed products include molecular ions, nano-clusters and nano-fibers. Nano-aerosols can be generated when neutralization occurs in the gas phase. Neutralization of electrospan nano-fibers with molecular ions and charged nano-clusters may result in the formation of fibrous aerosols or free nano-mats. Nano-mats can also be produced on a suitable substrate, forming efficient nano-filters.

  16. A simplified model of aerosol removal by natural processes in reactor containments

    SciTech Connect

    Powers, D.A.; Washington, K.E.; Sprung, J.L.; Burson, S.B.

    1996-07-01

    Simplified formulae are developed for estimating the aerosol decontamination that can be achieved by natural processes in the containments of pressurized water reactors and in the drywells of boiling water reactors under severe accident conditions. These simplified formulae were derived by correlation of results of Monte Carlo uncertainty analyses of detailed models of aerosol behavior under accident conditions. Monte Carlo uncertainty analyses of decontamination by natural aerosol processes are reported for 1,000, 2,000, 3,000, and 4,000 MW(th) pressurized water reactors and for 1,500, 2,500, and 3,500 MW(th) boiling water reactors. Uncertainty distributions for the decontamination factors and decontamination coefficients as functions of time were developed in the Monte Carlo analyses by considering uncertainties in aerosol processes, material properties, reactor geometry and severe accident progression. Phenomenological uncertainties examined in this work included uncertainties in aerosol coagulation by gravitational collision, Brownian diffusion, turbulent diffusion and turbulent inertia. Uncertainties in aerosol deposition by gravitational settling, thermophoresis, diffusiophoresis, and turbulent diffusion were examined. Electrostatic charging of aerosol particles in severe accidents is discussed. Such charging could affect both the coagulation and deposition of aerosol particles. Electrostatic effects are not considered in most available models of aerosol behavior during severe accidents and cause uncertainties in predicted natural decontamination processes that could not be taken in to account in this work. Median (50%), 90 and 10% values of the uncertainty distributions for effective decontamination coefficients were correlated with time and reactor thermal power. These correlations constitute a simplified model that can be used to estimate the decontamination by natural aerosol processes at 3 levels of conservatism. Applications of the model are described.

  17. Aerosol Size Distributions Measured in the Upper Troposphere and Lower Stratosphere: Formation, Coagulation, Transport and Sedimentation of the Background Non-Volcanic Aerosols

    NASA Astrophysics Data System (ADS)

    Lee, S.; Wilson, J. C.; Reeves, J. M.; Brock, C. A.; Jonsson, H. H.; Lowenstein, M.; Mahoney, M. J.; Herman, R. L.; Anderson, J. G.; Xueref, I.; Gerbig, C.; Andrews, A. E.; Hinsta, E.

    2002-12-01

    This study presents the particle size distribution of non-volcanic aerosols in the lower stratosphere and upper troposphere measured from 1995 to 2000 during five different high-altitude aircraft missions (STRAT, POLARIS, WAM, ACCENT, and SOLVE). The Focused Cavity Aerosol Spectrometer (FCAS), Condensation Nucleus Counter (CNC), and Nucleation-Mode Aerosol Sizing Spectrometer (N-MASS) were used to characterize the particle sizes in the diameter range from 4 to 2000 nm. Measurements were made at latitudes from 3.4S to 90N and the pressure altitudes form 7 to 21 km. These particle size distributions were analyzed using the potential temperature, tropopause height, and the mixing ratio of gas phase tracers such as N2O, CO2, NOy, O3 and water vapor. Particle formation, growth and sedimentation were studied to examine how the aerosol dynamics and atmospheric transport (Holton et al., 1995) determine the steady state aerosol size distribution in the lower stratosphere. This comprehensive data set will help us to better understand the origins and fate of the stratospheric background aerosols. Reference: Holton, J. R., et al., Stratosphere-troposphere exchange, Rev. Geophys., 33, 403-439, 1995.

  18. Chamber studies to simulate secondary organic aerosol formation from the Deepwater Horizon oil spill

    NASA Astrophysics Data System (ADS)

    Daumit, K. E.; Carrasquillo, A. J.; Cross, E. S.; Hunter, J. F.; Bahreini, R.; Middlebrook, A. M.; De Gouw, J. A.; Williams, L. R.; Worsnop, D. R.; Kroll, J. H.

    2011-12-01

    Because atmospheric organic species are generally emitted from a large number of sources, over wide spatial and temporal scales, it is generally challenging to ascribe ambient organic aerosol (OA) to the oxidation of specific secondary organic aerosol (SOA) precursors. However, the Deepwater Horizon (DWH) oil spill (April 20-July 15, 2010), provided the unique circumstance of a large, well-defined source of gas-phase organics introduced into a relatively clean atmosphere. Here we describe a laboratory simulation of SOA formation downwind of the DWH spill, via the oxidation of South Louisiana-light (SL) crude oil by OH radicals in an environmental chamber. Intermediate and semi-volatile fractions of the SL crude oil are vaporized and oxidized by gas-phase OH radicals (formed from the photolysis of HONO). The chemical composition is monitored as a function of OH exposure. When OH exposures are approximately matched, laboratory-generated SOA and OA measured downwind of the oil spill exhibit extremely similar aerosol mass spectra, in strong support of the hypothesis that the OA measured downwind of the DWH oil spill was secondary in nature. More generally, this agreement indicates that in cases when SOA precursors are well-constrained, chamber experiments can reasonably reproduce key properties of ambient OA. Results of chamber studies on sub-fractions of the SL crude oil, aimed at identifying the classes of oil components most responsible for SOA formation, will be discussed.

  19. Interpretation of Secondary Organic Aerosol Formation from Diesel Exhaust Photooxidation in an Environmental Chamber

    SciTech Connect

    Nakao, Shunsuke; Shrivastava, ManishKumar B.; Nguyen, Anh; Jung, Hee-Jung; Cocker, David R.

    2011-04-14

    Secondary organic aerosol (SOA) formation from diesel exhaust in a smog chamber was investigated. Particle volume measurement based on mobility diameter is shown to underestimate SOA formation from diesel exhaust due to the external void space of agglomerate particles, in which case mass-based measurement technique is necessary. Rapid determination of particle effective density as a function of particle mass was performed by an Aerosol Particle Mass analyzer – Scanning Mobility Particle Sizer (APM-SMPS) to obtain particle mass concentration and fractal dimension. Continuous aging of aerosol was observed in terms of atomic ratio (O/C), from 0.05 to 0.25 in 12 hours, underscoring the importance of multi-generational oxidation of low-volatile organic vapors emitted from diesel engine as the significant source of oxygenated SOA. Experimental conditions possibly have strong impacts on physical evolution of diesel particulates in a smog chamber. Higher particle effective densities were observed when raw exhaust was injected into a full bag as opposed to filling a bag with diluted exhaust using an ejector diluter. When longer transfer line was used for injecting diesel exhaust into the smog chamber, rapid particle coagulation was observed, leading to increasing particle volume concentration in dark while its mass concentration is decreasing.

  20. Potential Aerosol Mass (PAM) flow reactor measurements of SOA formation in a Ponderosa Pine forest in the southern Rocky Mountains during BEACHON-RoMBAS

    NASA Astrophysics Data System (ADS)

    Palm, B. B.; Ortega, A. M.; Campuzano Jost, P.; Day, D. A.; Kaser, L.; Karl, T.; Jud, W.; Hansel, A.; Fry, J.; Brown, S. S.; Zarzana, K. J.; Dube, W. P.; Wagner, N.; Draper, D.; Brune, W. H.; Jimenez, J. L.

    2012-12-01

    A Potential Aerosol Mass (PAM) photooxidation flow reactor was used in combination with an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer to characterize biogenic secondary organic aerosol (SOA) formation in a terpene-dominated forest during the July-August 2011 Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen - Rocky Mountain Biogenic Aerosol Study (BEACHON-RoMBAS) field campaign at the U.S. Forest Service Manitou Forest Observatory, Colorado, as well as in corresponding laboratory experiments. In the PAM reactor, a chosen oxidant (OH, O3, or NO3) was generated and controlled over a range of values up to 10,000 times ambient levels. High oxidant concentrations accelerated the gas-phase, heterogeneous, and possibly aqueous oxidative aging of volatile organic compounds (VOCs), inorganic gases, and existing aerosol, which led to repartitioning into the aerosol phase. PAM oxidative processing represented from a few hours up to ~20 days of equivalent atmospheric aging during the ~3 minute reactor residence time. During BEACHON-RoMBAS, PAM photooxidation enhanced SOA at intermediate OH exposure (1-10 equivalent days) but resulted in net loss of OA at long OH exposure (10-20 equivalent days), demonstrating the competing effects of functionalization vs. fragmentation (and possibly photolysis) as aging increased. PAM oxidation also resulted in f44 vs. f43 and Van Krevelen diagram (H/C vs. O/C) slopes similar to ambient oxidation, suggesting the PAM reactor employs oxidation pathways similar to ambient air. Single precursor aerosol yields were measured using the PAM reactor in the laboratory as a function of organic aerosol concentration and reacted hydrocarbon amounts. When applying the laboratory PAM yields with complete consumption of the most abundant VOCs measured at the forest site (monoterpenes, sesquiterpenes, MBO, and toluene), a simple model underpredicted the amount of SOA formed in the PAM reactor in the

  1. Photolytic processing of secondary organic aerosols dissolved in cloud droplets

    SciTech Connect

    Bateman, Adam P; Nizkorodov, Serguei; Laskin, Julia; Laskin, Alexander

    2011-05-26

    The effect of UV irradiation on the molecular composition of aqueous extracts of secondary organic aerosol (SOA) was investigated. SOA was prepared by the dark reaction of ozone and d-limonene at 0.05 - 1 ppm precursor concentrations and collected with a particle-into-liquid sampler (PILS). The PILS extracts were photolyzed by 300 - 400 nm radiation for up to 24 hours. Water-soluble SOA constituents were analyzed using high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) at different stages of photolysis for all SOA precursor concentrations. Exposure to UV radiation increased the average O/C ratio and decreased the average double bond equivalent (DBE) of the dissolved SOA compounds. Oligomeric compounds were significantly reduced by photolysis relative to the monomeric compounds. Direct pH measurements showed that compounds containing carboxylic acids increased upon photolysis. Methanol reactivity analysis revealed significant photodissociation of molecules containing carbonyl groups and formation of carboxylic acids. Aldehydes, such as limononaldehyde, were almost completely removed. The removal of carbonylswas confirmed by the UV-Vis absorption spectroscopy of the SOA extracts where the absorbance in the carbonyl n→π* band decreased significantly upon photolysis. The effective quantum yield (the number of carbonyls destroyed per photon absorbed) was estimated as ~ 0.03. The concentration of peroxides did not change significantly during photolysis as quantified with an iodometric test. Although organic peroxides were photolyzed, the likely end products of photolysis were smaller peroxides, including hydrogen peroxide, resulting in a no net change in the peroxide content.

  2. Characterization of new particle and secondary aerosol formation during summertime in Beijing, China

    NASA Astrophysics Data System (ADS)

    Zhang, Y. M.; Zhang, X. Y.; Sun, J. Y.; Lin, W. L.; Gong, S. L.; Shen, X. J.; Yang, S.

    2011-07-01

    Size-resolved aerosol number and mass concentrations and the mixing ratios of O3 and various trace gases were continuously measured at an urban station before and during the Beijing Olympic and Paralympic Games (5 June to 22 September, 2008). 23 new particle formation (NPF) events were identified; these usually were associated with changes in wind direction and/or rising concentrations of gas-phase precursors or after precipitation events. Most of the NPF events started in the morning and continued to noon as particles in the nucleation mode grew into the Aitken mode. From noon to midnight, the aerosols grew into the accumulation mode through condensation and coagulation. Ozone showed a gradual rise starting around 10:00 local time, reached its peak around 15:00 and then declined as the organics increased. The dominant new particle species were organics (40-75% of PM1) and sulphate; nitrate and ammonium were more minor contributors.

  3. Emission of sunscreen salicylic esters from desert vegetation and their contribution to aerosol formation

    NASA Astrophysics Data System (ADS)

    Matsunaga, S. N.; Guenther, A. B.; Potosnak, M. J.; Apel, E. C.

    2008-07-01

    Biogenic volatile organic compounds (BVOC) produced by plants are known to have an important role in atmospheric chemistry. However, our knowledge of the range of BVOCs produced by different plant processes is still expanding, and there remain poorly understood categories of BVOCs. In this study, emissions of a novel class of BVOC emissions were investigated in a desert region. Our study considered 8 species of common desert plants: blackbrush (Coleogyne ramosissima), desert willow (Chilopsis linearis), mesquite (Prosopis glandulosa), mondel pine (Pinus eldarica), pinyon pine (Pinus monophylla), cottonwood (Populus deltoides), saguaro cactus (Carnegiea gigantea) and yucca (Yucca baccata). The measurements focused on BVOCs with relatively high molecular weight (>C15) and/or an oxygenated functional group. Significantly high emission rates of two salicylic esters were found for blackbrush, desert willow and mesquite with emission rates of 1.4, 2.1 and 0.46 μgC dwg-1 h-1, respectively. The salicylic esters were identified as 2-ethylhexenyl salicylate (2-EHS) and 3,3,5-trimethylcyclohexenyl salicylate (homosalate) and are known as effective ultraviolet (UV) absorbers. We propose that the plants derive a protective benefit against UV radiation from the salicylic esters and that the emission process is driven by the physical evaporation of the salicylic esters due to the high ambient temperatures. In addition, the salicylic esters are predicted to be an effective precursor of secondary organic aerosol (SOA) because of their low vapor pressure due to a high number of carbon atoms (15 or 16) and the presence of three oxygen atoms. We estimated the contribution of the sunscreen esters themselves and their oxidation products on the SOA formation for the Las Vegas region using a BVOC emission model. The contribution was estimated to reach 90% of the biogenic SOA in the landscapes dominated by desert willow and mesquite and 25% in Las Vegas area.

  4. Simulation of aromatic SOA formation using the lumping model integrated with explicit gas-phase kinetic mechanisms and aerosol-phase reactions

    NASA Astrophysics Data System (ADS)

    Im, Y.; Jang, M.; Beardsley, R. L.

    2013-03-01

    The Unified Partitioning-Aerosol phase Reaction (UNIPAR) model has been developed to predict the secondary organic aerosol (SOA) formation through multiphase reactions. An explicit gas-kinetic model was employed to express gas-phase oxidation of aromatic hydrocarbons. Gas-phase products are grouped based on volatility (6 levels) and reactivity (5 levels) and used to construct the stoichiometric coefficients (αi,j) matrix, the set of parameters used to describe the concentrations of organic compounds in multiphase. Weighting of the αi,j matrix as a function of NOx improved the evaluation of NOx effects on SOA. The total amount of organic matter (OMT) is predicted by two modules in the UNIPAR model: OMP by a partitioning process and OMAR by aerosol-phase reactions. OMP is estimated using the SOA partitioning model that has been used in a regional air quality model (CMAQ 5.0.1). OMAR predicts multiphase reactions of organic compounds, such as oligomerization, acid-catalyzed reactions, and organosulfate (OS) formation. The model was evaluated with the SOA data produced from the photooxidation of toluene and 1,3,5-trimethylbenzene using an outdoor reactor (UF-APHOR chamber). The model reasonably simulates SOA formation under various aerosol acidities, NOx concentrations, humidities and temperatures. Furthermore, the OS fraction in the SOA predicted by the model was in good agreement with the experimentally measured OS fraction.

  5. Reactive oxidation products promote secondary organic aerosol formation from green leaf volatiles

    NASA Astrophysics Data System (ADS)

    Hamilton, J. F.; Lewis, A. C.; Carey, T. J.; Wenger, J. C.; Garcia, E. Borrás. I.; Muñoz, A.

    2009-02-01

    Green leaf volatiles (GLVs) are an important group of chemicals released by vegetation which have emission fluxes that can be significantly increased when plants are damaged or stressed. A series of simulation chamber experiments has been conducted at the European Photoreactor in Valencia, Spain, to investigate secondary organic aerosol (SOA) formation from the atmospheric oxidation of the major GLVs cis-3-hexenylacetate and cis-3-hexen-1-ol. Liquid chromatography-ion trap mass spectrometry was used to identify chemical species present in the SOA. Cis-3-hexen-1-ol proved to be a more efficient SOA precursor due to the high reactivity of its first generation oxidation product, 3-hydroxypropanal, which can hydrate and undergo further reactions with other aldehydes resulting in SOA dominated by higher molecular weight oligomers. The lower SOA yields produced from cis-3-hexenylacetate are attributed to the acetate functionality, which inhibits oligomer formation in the particle phase. Based on observed SOA yields and best estimates of global emissions, these compounds may be calculated to be a substantial unidentified global source of SOA, contributing 1-5 TgC yr-1, equivalent to around a third of that predicted from isoprene. Molecular characterization of the SOA, combined with organic mechanistic information, has provided evidence that the formation of organic aerosols from GLVs is closely related to the reactivity of their first generation atmospheric oxidation products, and indicates that this may be a simple parameter that could be used in assessing the aerosol formation potential for other unstudied organic compounds in the atmosphere.

  6. Formation of hydroxyl radicals from photolysis of secondary organic aerosol material

    NASA Astrophysics Data System (ADS)

    Badali, K. M.; Zhou, S.; Aljawhary, D.; Antiñolo, M.; Chen, W. J.; Lok, A.; Mungall, E.; Wong, J. P. S.; Zhao, R.; Abbatt, J. P. D.

    2015-02-01

    This paper demonstrates that OH radicals are formed by photolysis of secondary organic aerosol (SOA) material formed by terpene ozonolysis. The SOA aerosol is collected on filters, dissolved in water containing a radical trap (benzoic acid), and then exposed to ultraviolet light in a photochemical reactor. The OH formation rates, which are similar for both α-pinene and limonene SOA, are measured from the formation rate of p-hydroxybenzoic acid as measured using offline HPLC analysis. To evaluate whether the OH is formed by photolysis of H2O2 or organic hydroperoxides (ROOH), the peroxide content of the SOA was measured using the horseradish peroxidase-dichlorofluorescein (HRP-DCF) assay, which was calibrated using H2O2. The OH formation rates from SOA are five times faster than from the photolysis of H2O2 solutions whose concentrations correspond to the peroxide content of the SOA solutions assuming that the HRP-DCF signal arises from H2O2 alone. The higher rates of OH formation from SOA are likely due to ROOH photolysis. This result is substantiated by photolysis experiments conducted with t-butyl hydroperoxide and cumene hydroperoxide which produce over three times more OH than photolysis of equivalent concentrations of H2O2. Relative to the peroxide level in the SOA, the quantum yield for OH generation from α-pinene SOA is 0.8 ± 0.4. This is the first demonstration of an efficient photolytic source of OH in SOA, one that may affect both cloudwater and aerosol chemistry.

  7. Comparison of different gas-phase mechanisms and aerosol modules for simulating particulate matter formation.

    PubMed

    Kim, Youngseob; Couvidat, Florian; Sartelet, Karine; Seigneur, Christian

    2011-11-01

    The effects of two gas-phase chemical kinetic mechanisms, Regional Atmospheric Chemistry Mechanism version 2 (RACM2) and Carbon-Bond 05 (CB05), and two secondary organic aerosol (SOA) modules, the Secondary Organic Aerosoi Model (SORGAM) and AER/EPRI/Caltech model (AEC), on fine (aerodynamic diameter < or =2.5 microm) particulate matter (PM2.5) formation is studied. The major sources of uncertainty in the chemistry of SOA formation are investigated. The use of all major SOA precursors and the treatment of SOA oligomerization are found to be the most important factors for SOA formation, leading to 66% and 60% more SOA, respectively. The explicit representation of high-NO, and low-NOx gas-phase chemical regimes is also important with increases in SOA of 30-120% depending on the approach used to implement the distinct SOA yields within the gas-phase chemical kinetic mechanism; further work is needed to develop gas-phase mechanisms that are fully compatible with SOA formation algorithms. The treatment of isoprene SOA as hydrophobic or hydrophilic leads to a significant difference, with more SOA being formed in the latter case. The activity coefficients may also be a major source of uncertainty, as they may differ significantly between atmospheric particles, which contain a myriad of SOA, primary organic aerosol (POA), and inorganic aerosol species, and particles formed in a smog chamber from a single precursor under dry conditions. Significant interactions exist between the uncertainties of the gas-phase chemistry and those of the SOA module.

  8. Reactive oxidation products promote secondary organic aerosol formation from green leaf volatiles

    NASA Astrophysics Data System (ADS)

    Hamilton, J. F.; Lewis, A. C.; Carey, T. J.; Wenger, J. C.; Garcia, E. Borrás. I.; Muñoz, A.

    2009-06-01

    Green leaf volatiles (GLVs) are an important group of chemicals released by vegetation which have emission fluxes that can be significantly increased when plants are damaged or stressed. A series of simulation chamber experiments has been conducted at the European Photoreactor in Valencia, Spain, to investigate secondary organic aerosol (SOA) formation from the atmospheric oxidation of the major GLVs cis-3-hexenylacetate and cis-3-hexen-1-ol. Liquid chromatography-ion trap mass spectrometry was used to identify chemical species present in the SOA. Cis-3-hexen-1-ol proved to be a more efficient SOA precursor due to the high reactivity of its first generation oxidation product, 3-hydroxypropanal, which can hydrate and undergo further reactions with other aldehydes resulting in SOA dominated by higher molecular weight oligomers. The lower SOA yields produced from cis-3-hexenylacetate are attributed to the acetate functionality, which inhibits oligomer formation in the particle phase. Based on observed SOA yields and best estimates of global emissions, these compounds may be calculated to be a substantial unidentified global source of SOA, contributing 1-5 TgC yr-1, equivalent to around a third of that predicted from isoprene. Molecular characterization of the SOA, combined with organic mechanistic information, has provided evidence that the formation of organic aerosols from GLVs is closely related to the reactivity of their first generation atmospheric oxidation products, and indicates that this may be a simple parameter that could be used in assessing the aerosol formation potential for other unstudied organic compounds in the atmosphere.

  9. Collaborative research. Study of aerosol sources and processing at the GVAX Pantnagar Supersite

    SciTech Connect

    Worsnop, Doug; Volkamer, Rainer

    2012-08-13

    during TCAP, and conducted laboratory experiments to quantify for the first time the Setschenow salting constant, KS, of glyoxal in sulfate aerosols. Knowledge about KS is prerequisite to predict how increasing sulfate concentrations since pre-industrial times have modified the formation of SOA from biogenic gases in atmospheric models.

  10. Organic Aerosol Formation in the Humid, Photochemically-Active Southeastern US: SOAS Experiments and Simulations

    NASA Astrophysics Data System (ADS)

    Sareen, N.; Lim, Y. B.; Carlton, A. G.; Turpin, B. J.

    2013-12-01

    Aqueous multiphase chemistry in the atmosphere can lead to rapid transformation of organic compounds, forming highly oxidized low volatility organic aerosol and, in some cases, light absorbing (brown) carbon. Because liquid water is globally abundant, this chemistry could substantially impact climate, air quality, health, and the environment. Gas-phase precursors released from biogenic and anthropogenic sources are oxidized and fragmented forming water-soluble gases that can undergo reactions in the aqueous phase (in clouds, fogs, and wet aerosols) leading to the formation of secondary organic aerosol (SOAAQ). Recent studies have highlighted the role of certain precursors like glyoxal, methylglyoxal, glycolaldehyde, acetic acid, acetone, and epoxides in the formation of SOAAQ. The goal of this work is to identify other precursors that are atmospherically important. In this study, ambient mixtures of water-soluble gases were scrubbed from the atmosphere at Brent, Alabama during the Southern Oxidant and Aerosol Study (SOAS). Four mist chambers in parallel collected ambient gases in a DI water medium at 20-25 LPM with a 4 hr collection time. Total organic carbon (TOC) values in daily composited samples were 64-180 μM. Aqueous OH radical oxidation experiments were conducted with these mixtures in a newly designed cuvette chamber to understand the formation of SOA through gas followed by aqueous chemistry. OH radicals (3.5E-2 μM [OH] s-1) were formed in-situ in the chamber, continuously by H2O2 photolysis. Precursors and products of these aqueous OH experiments were characterized using ion chromatography (IC), electrospray ionization mass spectrometry (ESI-MS), and IC-ESI-MS. ESI-MS results from a June 12th, 2013 sample showed precursors to be primarily odd, positive mode ions, indicative of the presence of non-nitrogen containing alcohols, aldehydes, organic peroxides, or epoxides. Products were seen in the negative mode and included organic acid ions like pyruvate

  11. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Shiraiwa, M.; Yee, L. D.; Schilling, K.; Loza, C. L.; Craven, J. S.; Zuend, A.; Ziemann, P. J.; Seinfeld, J.

    2013-12-01

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosol (SOA). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multi-generation gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a mid-experiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. The results of the current work have a number of implications for SOA models. While the dynamics of an aerosol size distribution reflects the mechanism of growth, we demonstrate here that it provides a key constraint in interpreting laboratory and ambient SOA formation. This work, although carried out specifically for the long chain alkane, dodecane, is expected to be widely applicable to other major classes of SOA precursors. SOA consists of a myriad of organic compounds containing various functional groups, which can generally undergo heterogeneous/multiphase reactions forming low-volatility products such as oligomers and other high molecular mass compounds. If particle-phase chemistry is indeed

  12. Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Chan, A. W. H.; Chan, M. N.; Surratt, J. D.; Chhabra, P. S.; Loza, C. L.; Crounse, J. D.; Yee, L. D.; Flagan, R. C.; Wennberg, P. O.; Seinfeld, J. H.

    2010-08-01

    Aldehydes are an important class of products from atmospheric oxidation of hydrocarbons. Isoprene (2-methyl-1,3-butadiene), the most abundantly emitted atmospheric non-methane hydrocarbon, produces a significant amount of secondary organic aerosol (SOA) via methacrolein (a C4-unsaturated aldehyde) under urban high-NOx conditions. Previously, we have identified peroxy methacryloyl nitrate (MPAN) as the important intermediate to isoprene and methacrolein SOA in this NOx regime. Here we show that as a result of this chemistry, NO2 enhances SOA formation from methacrolein and two other α, β-unsaturated aldehydes, specifically acrolein and crotonaldehyde, a NOx effect on SOA formation previously unrecognized. Oligoesters of dihydroxycarboxylic acids and hydroxynitrooxycarboxylic acids are observed to increase with increasing NO2/NO ratio, and previous characterizations are confirmed by both online and offline high-resolution mass spectrometry techniques. Molecular structure also determines the amount of SOA formation, as the SOA mass yields are the highest for aldehydes that are α, β-unsaturated and contain an additional methyl group on the α-carbon. Aerosol formation from 2-methyl-3-buten-2-ol (MBO232) is insignificant, even under high-NO2 conditions, as PAN (peroxy acyl nitrate, RC(O)OONO2) formation is structurally unfavorable. At atmospherically relevant NO2/NO ratios (3-8), the SOA yields from isoprene high-NOx photooxidation are 3 times greater than previously measured at lower NO2/NO ratios. At sufficiently high NO2 concentrations, in systems of α, β-unsaturated aldehydes, SOA formation from subsequent oxidation of products from acyl peroxyl radicals+NO2 can exceed that from RO2+HO2 reactions under the same inorganic seed conditions, making RO2+NO2 an important channel for SOA formation.

  13. Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Chan, A. W. H.; Chan, M. N.; Surratt, J. D.; Chhabra, P. S.; Loza, C. L.; Crounse, J. D.; Yee, L. D.; Flagan, R. C.; Wennberg, P. O.; Seinfeld, J. H.

    2010-04-01

    Aldehydes are an important class of products from atmospheric oxidation of hydrocarbons. Isoprene (2-methyl-1,3-butadiene), the most abundantly emitted atmospheric non-methane hydrocarbon, produces a significant amount of secondary organic aerosol (SOA) via methacrolein (a C4-unsaturated aldehyde) under urban high-NOx conditions. Previously, we have identified peroxy methacryloyl nitrate (MPAN) as the important intermediate to isoprene and methacrolein SOA in this NOx regime. Here we show that as a result of this chemistry, NO2 enhances SOA formation from methacrolein and two other α, β-unsaturated aldehydes, specifically acrolein and crotonaldehyde, a NOx effect on SOA formation previously unrecognized. Oligoesters of dihydroxycarboxylic acids and hydroxynitrooxycarboxylic acids are observed to increase with increasing NO2/NO ratio, and previous characterizations are confirmed by both online and offline high-resolution mass spectrometry techniques. Molecular structure also determines the amount of SOA formation, as the SOA mass yields are the highest for aldehydes that are α, β-unsaturated and contain an additional methyl group on the α-carbon. Aerosol formation from 2-methyl-3-buten-2-ol (MBO232) is insignificant, even under high-NO2 conditions, as PAN (peroxy acyl nitrate, RC(O)OONO2) formation is structurally unfavorable. At atmospherically relevant NO2/NO ratios, the SOA yields from isoprene high-NOxphotooxidation are 3 times greater than previously measured at lower NO2/NO ratios. At sufficiently high NO2 concentrations, in systems of α, β-unsaturated aldehydes, SOA formation from subsequent oxidation of products from acyl peroxyl radicals+NO2 can exceed that from RO2+HO2 reactions under the same inorganic seed conditions, making RO2+NO2 an important channel for SOA formation.

  14. Process evaluation of sea salt aerosol concentrations at remote marine locations

    NASA Astrophysics Data System (ADS)

    Struthers, H.; Ekman, A. M.; Nilsson, E. D.

    2011-12-01

    Sea salt, an important natural aerosol, is generated by bubbles bursting at the surface of the ocean. Sea salt aerosol contributes significantly to the global aerosol burden and radiative budget and are a significant source of cloud condensation nuclei in remote marine areas (Monahan et al., 1986). Consequently, changes in marine aerosol abundance is expected to impact on climate forcing. Estimates of the atmospheric burden of sea salt aerosol mass derived from chemical transport and global climate models vary greatly both in the global total and the spatial distribution (Texor et al. 2006). This large uncertainty in the sea salt aerosol distribution in turn contributes to the large uncertainty in the current estimates of anthropogenic aerosol climate forcing (IPCC, 2007). To correctly attribute anthropogenic climate change and to veraciously project future climate, natural aerosols including sea salt must be understood and accurately modelled. In addition, the physical processes that determine the sea salt aerosol concentration are susceptible to modification due to climate change (Carslaw et al., 2010) which means there is the potential for feedbacks within the climate/aerosol system. Given the large uncertainties in sea salt aerosol modelling, there is an urgent need to evaluate the process description of sea salt aerosols in global models. An extremely valuable source of data for model evaluation is the long term measurements of PM10 sea salt aerosol mass available from a number of remote marine observation sites around the globe (including the GAW network). Sea salt aerosol concentrations at remote marine locations depend strongly on the surface exchange (emission and deposition) as well as entrainment or detrainment to the free troposphere. This suggests that the key parameters to consider in any analysis include the sea surface water temperature, wind speed, precipitation rate and the atmospheric stability. In this study, the sea salt aerosol observations

  15. Aerosol Properties and Processes: A Path from Field and Laboratory Measurements to Global Climate Models

    SciTech Connect

    Ghan, Steven J.; Schwartz, Stephen E.

    2007-07-01

    Aerosols exert a substantial influence on climate and climate change through a variety of complex mechanisms. Consequently there is a need to represent aerosol effects in global climate models, and models have begun to include representations of these effects. However, the treatment of aerosols in current global climate models is presently highly simplified, omitting many important processes and feedbacks. Consequently there is need for substantial improvement. Here we describe the U. S. Department of Energy strategy for improving the treatment of aerosol properties and processes in global climate models. The strategy begins with a foundation of field and laboratory measurements that provide the basis for modules of selected aerosol properties and processes. These modules are then integrated in regional aerosol models, which are evaluated by comparing with field measurements. Issues of scale are then addressed so that the modules can be applied to global aerosol models, which are evaluated by comparing with global satellite measurements. Finally, the validated set of modules are applied to global climate models for multi-century simulations. This strategy can be applied to successive generations of global climate models.

  16. Formation and aging of secondary organic aerosol from toluene: changes in chemical composition, volatility, and hygroscopicity

    DOE PAGES

    Hildebrandt Ruiz, L.; Paciga, A. L.; Cerully, K. M.; ...

    2015-07-24

    Secondary organic aerosol (SOA) is transformed after its initial formation, but this chemical aging of SOA is poorly understood. Experiments were conducted in the Carnegie Mellon environmental chamber to form secondary organic aerosol (SOA) from the photo-oxidation of toluene and other small aromatic volatile organic compounds (VOCs) in the presence of NOx under different oxidizing conditions. The effects of the oxidizing condition on organic aerosol (OA) composition, mass yield, volatility, and hygroscopicity were explored. Higher exposure to the hydroxyl radical resulted in different OA composition, average carbon oxidation state (OSc), and mass yield. The OA oxidation state generally increased duringmore » photo-oxidation, and the final OA OSc ranged from -0.29 to 0.16 in the performed experiments. The volatility of OA formed in these different experiments varied by as much as a factor of 30, demonstrating that the OA formed under different oxidizing conditions can have a significantly different saturation concentration. There was no clear correlation between hygroscopicity and oxidation state for this relatively hygroscopic SOA.« less

  17. Effect of Hydrophilic Organic Seed Aerosols on Secondary Organic Aerosol Formation from Ozonolysis of α-Pinene

    SciTech Connect

    Song, Chen; Zaveri, Rahul A.; Shilling, John E.; Alexander, M. L.; Newburn, Matthew K.

    2011-07-26

    Gas-particle partitioning theory is widely used in atmospheric models to predict organic aerosol loadings. This theory predicts that secondary organic aerosol (SOA) yield of an oxidized VOC product will increase as the mass loading of preexisting organic aerosol increases. In a previous study, we showed that the presence of model hydrophobic primary organic aerosol (POA) had no detectable effect on the secondary organic aerosol (SOA) yields from ozonolysis of {alpha}-pinene, suggesting that the condensing SOA compounds form a separate phase from the preexisting POA. However, non-polar, hydrophobic POA may gradually become polar and hydrophilic as it undergoes oxidative aging while POA formed from biomass burning is already somewhat polar and hydrophilic. In this study, we investigate the effects of model hydrophilic POA such as fulvic acid, adipic acid and citric acid on the gas-particle partitioning of SOA from {alpha}-pinene ozonolysis. The results show that only citric acid seed significantly enhances the absorption of {alpha}-pinene SOA into the particle-phase. The other two POA seed particles have negligible effect on the {alpha}-pinene SOA yields, suggesting that {alpha}-pinene SOA forms a well-mixed organic aerosol phase with citric acid while a separate phase with adipic acid and fulvic acid. This finding highlights the need to improve the thermodynamics treatment of organics in current aerosol models that simply lump all hydrophilic organic species into a single phase, thereby potentially introducing an erroneous sensitivity of SOA mass to emitted POA.

  18. Sources and atmospheric processing of winter aerosols in Seoul, Korea: insights from real-time measurements using a high-resolution aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Kim, Hwajin; Zhang, Qi; Bae, Gwi-Nam; Kim, Jin Young; Bok Lee, Seung

    2017-02-01

    quality in Seoul during winter is influenced strongly by secondary aerosol formation, with sulfate, nitrate, ammonium, SV-OOA, and LV-OOA together accounting for 64 % of the PM1 mass during this study. However, aerosol sources and composition were found to be significantly different between clean and polluted periods. During stagnant periods with low wind speed (WS) and high relative humidity (RH), PM concentration was generally high (average ±1σ = 43.6 ± 12.4 µg m-3) with enhanced fractions of nitrate (27 %) and SV-OOA (8 %), which suggested a strong influence from local production of secondary aerosol. Low-PM loading periods (12.6 ± 7.1 µg m-3) tended to occur under higher-WS and lower-RH conditions and appeared to be more strongly influenced by regional air masses, as indicated by higher mass fractions of sulfate (12 %) and LV-OOA (20 %) in PM1. Overall, our results indicate that PM pollutants in urban Korea originate from complex emission sources and atmospheric processes and that their concentrations and composition are controlled by various factors, including meteorological conditions, local anthropogenic emissions, and upwind sources.

  19. Impacts of Sulfate Seed Acidity and Water Content on Isoprene Secondary Organic Aerosol Formation.

    PubMed

    Wong, Jenny P S; Lee, Alex K Y; Abbatt, Jonathan P D

    2015-11-17

    The effects of particle-phase water and the acidity of pre-existing sulfate seed particles on the formation of isoprene secondary organic aerosol (SOA) was investigated. SOA was generated from the photo-oxidation of isoprene in a flow tube reactor at 70% relative humidity (RH) and room temperature in the presence of three different sulfate seeds (effloresced and deliquesced ammonium sulfate and ammonium bisulfate) under low NOx conditions. High OH exposure conditions lead to little isoprene epoxydiol (IEPOX) SOA being generated. The primary result is that particle-phase water had the largest effect on the amount of SOA formed, with 60% more SOA formation occurring with deliquesced ammonium sulfate seeds as compared to that on effloresced ones. The additional organic material was highly oxidized. Although the amount of SOA formed did not exhibit a dependence on the range of seed particle acidity examined, perhaps because of the low amount of IEPOX SOA, the levels of high-molecular-weight material increased with acidity. While the uptake of organics was partially reversible under drying, the results nevertheless indicate that particle-phase water enhanced the amount of organic aerosol material formed and that the RH cycling of sulfate particles may mediate the extent of isoprene SOA formation in the atmosphere.

  20. Effect of Pellet Boiler Exhaust on Secondary Organic Aerosol Formation from α-Pinene.

    PubMed

    Kari, Eetu; Hao, Liqing; Yli-Pirilä, Pasi; Leskinen, Ari; Kortelainen, Miika; Grigonyte, Julija; Worsnop, Douglas R; Jokiniemi, Jorma; Sippula, Olli; Faiola, Celia L; Virtanen, Annele

    2017-02-07

    Interactions between anthropogenic and biogenic emissions, and implications for aerosol production, have raised particular scientific interest. Despite active research in this area, real anthropogenic emission sources have not been exploited for anthropogenic-biogenic interaction studies until now. This work examines these interactions using α-pinene and pellet boiler emissions as a model test system. The impact of pellet boiler emissions on secondary organic aerosol (SOA) formation from α-pinene photo-oxidation was studied under atmospherically relevant conditions in an environmental chamber. The aim of this study was to identify which of the major pellet exhaust components (including high nitrogen oxide (NOx), primary particles, or a combination of the two) affected SOA formation from α-pinene. Results demonstrated that high NOx concentrations emitted by the pellet boiler reduced SOA yields from α-pinene, whereas the chemical properties of the primary particles emitted by the pellet boiler had no effect on observed SOA yields. The maximum SOA yield of α-pinene in the presence of pellet boiler exhaust (under high-NOx conditions) was 18.7% and in the absence of pellet boiler exhaust (under low-NOx conditions) was 34.1%. The reduced SOA yield under high-NOx conditions was caused by changes in gas-phase chemistry that led to the formation of organonitrate compounds.

  1. Formation of Secondary Particulate Matter by Reactions of Gas Phase Hexanal with Sulfate Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Zhang, J.

    2003-12-01

    The formation of secondary particulate matter from the atmospheric oxidation of organic compounds can significantly contribute to the particulate burden, but the formation of organic secondary particulate matter is poorly understood. One way of producing organic secondary particulate matter is the oxidation of hydrocarbons with seven or more carbon atoms to get products with low vapor pressure. However, several recent reports suggest that relatively low molecular weight carbonyls can enter the particle phase by undergoing heterogeneous reactions. This may be a very important mechanism for the formation of organic secondary particulate matter. Atmospheric aldehydes are important carbonyls in the gas phase, which form via the oxidation of hydrocarbons emitted from anthropogenic and biogenic sources. In this poster, we report the results on particle growth by the heterogeneous reactions of hexanal. A 5 L Continuous Stirred Tank Reactor (CSTR) is set up to conduct the reactions in the presence of seed aerosol particles of deliquesced ammonia bisulfate. Hexanal is added into CSTR by syringe pump, meanwhile the concentrations of hexanal are monitored with High Pressure Liquid Chromatograph (HPLC 1050). A differential Mobility Analyzer (TSI 3071) set to an appropriate voltage is employed to obtain monodisperse aerosols, and another DMA associated with a Condensation Nuclear Counter (TSI 7610) is used to measure the secondary particle size distribution by the reaction in CSTR. This permits the sensitive determination of particle growth due to the heterogeneous reaction, very little growth occurs when hexanal added alone. Results for the simultaneous addition of hexanal and alcohols will also be presented.

  2. Contribution of methyl group to secondary organic aerosol formation from aromatic hydrocarbon photooxidation

    NASA Astrophysics Data System (ADS)

    Li, Lijie; Qi, Li; Cocker, David R.

    2017-02-01

    The complete atmospheric oxidation pathways leading to secondary organic aerosol remain elusive for aromatic compounds including the role of methyl substitutes on oxidation. This study investigates the contribution of methyl group to Secondary Organic Aerosol (SOA) formation during the photooxidation of aromatic hydrocarbons under low NOx condition by applying methyl carbon labeled aromatic hydrocarbons ((13C2) m-xylene and (13C2) p-xylene). Particle and gas phase oxidation products are analyzed by a series of mass spectrometers (HR-TOF-AMS, PTR-MS and SIFT-MS). The methyl group carbon containing oxidation products partition to the particle-phase at a lower rate than the carbons originating from the aromatic ring as a result of ring opening reactions. Further, the methyl carbon in the original aromatic structure is at least 7 times less likely to be oxidized when forming products that partition to SOA than the aromatic ring carbon. Therefore, oxidation of the methyl group in xylenes exerts little impact on SOA formation in current study. This study provides supporting evidence for a recent finding - a similarity in the SOA formation and composition from aromatic hydrocarbons regardless of the alkyl substitutes.

  3. Secondary organic aerosol formation initiated by α-terpineol ozonolysis in indoor air.

    PubMed

    Yang, Y; Waring, M S

    2016-12-01

    Secondary organic aerosol (SOA) owing to reactive organic gas (ROG) ozonolysis can be an important indoor particle source. However, SOA formation owing to ozonolysis of α-terpineol, which is emitted by consumer product usage and reacts strongly with ozone, has not been systematically quantified. Therefore, we conducted 21 experiments to investigate the SOA formation initiated by α-terpineol ozonolysis for high (0.84 h(-1) ), moderate (0.61 h(-1) ), and low (0.36 h(-1) ) air exchange rates (AER), which is the frequency with which indoor is replaced by outdoor air. α-Terpineol concentrations of 6.39 to 226 ppb were combined with high ozone (~25 ppm) to ensure rapid and complete ozonolysis. No reactants were replenished, so SOA peaked quickly and then decreased due to AER and surface losses, and peak SOA ranged from 2.03 to 281 μg/m(3) at unit density. SOA mass formation was parameterized with the aerosol mass fraction (AMF), a.k.a. the SOA yield, and AMFs ranged from 0.056 to 0.24. The AMFs strongly and positively correlated with reacted α-terpineol, whereas they weakly and negatively correlated with higher AERs. One-product, two-product, and volatility basis set (VBS) models were fit to the AMF data. Predictive modeling demonstrated that α-terpineol ozonolysis could meaningfully form SOA in indoor air.

  4. Effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events

    NASA Astrophysics Data System (ADS)

    Quan, Jiannong; Liu, Quan; Li, Xia; Gao, Yang; Jia, Xingcan; Sheng, Jiujiang; Liu, Yangang

    2015-12-01

    The effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events was investigated by analysis of comprehensive measurements of aerosol composition and concentrations [e.g., particular matters (PM2.5), nitrate (NO3), sulfate (SO4), ammonium (NH4)], gas-phase precursors [e.g., nitrogen oxides (NOx), sulfur dioxide (SO2), and ozone (O3)], and relevant meteorological parameters [e.g., visibility and relative humidity (RH)]. The measurements were conducted in Beijing, China from Sep. 07, 2012 to Jan. 16, 2013. The results show that the conversion ratios of N from NOx to nitrate (Nratio) and S from SO2 to sulfate (Sratio) both significantly increased in haze events, suggesting enhanced conversions from NOx and SO2 to their corresponding particle phases in the late haze period. Further analysis shows that Nratio and Sratio increased with increasing RH, with Nratio and Sratio being only 0.04 and 0.03, respectively, when RH < 40%, and increasing up to 0.16 and 0.12 when RH reached 60-80%, respectively. The enhanced conversion ratios of N and S in the late haze period is likely due to heterogeneous aqueous reactions, because solar radiation and thus the photochemical capacity are reduced by the increases in aerosols and RH. This point was further affirmed by the relationships of Nratio and Sratio to O3: the conversion ratios increase with decreasing O3 concentration when O3 concentration is lower than <15 ppb but increased with increasing O3 when O3 concentration is higher than 15 ppb. The results suggest that heterogeneous aqueous reactions likely changed aerosols and their precursors during the haze events: in the beginning of haze events, the precursor gases accumulated quickly due to high emission and low reaction rate; the occurrence of heterogeneous aqueous reactions in the late haze period, together with the accumulated high concentrations of precursor gases such as SO2 and NOx, accelerated the formation of secondary

  5. Secondary organic aerosol formation from gasoline vehicle emissions in a new mobile environmental reaction chamber

    NASA Astrophysics Data System (ADS)

    Platt, S. M.; El Haddad, I.; Zardini, A. A.; Clairotte, M.; Astorga, C.; Wolf, R.; Slowik, J. G.; Temime-Roussel, B.; Marchand, N.; Ježek, I.; Drinovec, L.; Močnik, G.; Möhler, O.; Richter, R.; Barmet, P.; Bianchi, F.; Baltensperger, U.; Prévôt, A. S. H.

    2012-10-01

    We present a new mobile environmental reaction chamber for the simulation of the atmospheric aging of aerosols from different emissions sources without limitation from the instruments or facilities available at any single site. The chamber can be mounted on a trailer for transport to host facilities or for mobile measurements. Photochemistry is simulated using a set of 40 UV lights (total power 4 KW). Characterisation of the emission spectrum of these lights shows that atmospheric photochemistry can be accurately simulated over a range of temperatures from -7-25 °C. A photolysis rate of NO2, JNO2, of (8.0 ± 0.7) × 10-3 molecules cm-3 s-1 was determined at 25 °C. Further, we present the first application of the mobile chamber and demonstrate its utility by quantifying primary organic aerosol (POA) emission and secondary organic aerosol (SOA) production from a Euro 5 light duty gasoline vehicle. Exhaust emissions were sampled during the New European Driving Cycle (NEDC), the standard driving cycle for European regulatory purposes, and injected into the chamber. The relative concentrations of oxides of nitrogen (NOx) and total hydrocarbon (THC) during the aging of emissions inside the chamber were controlled using an injection system developed as a part of the new mobile chamber set up. Total OA (POA + SOA) emission factors of (370 ± 18) × 10-3 g kg-1 fuel, or (14.6 ± 0.8) × 10-3 g km-1, after aging, were calculated from concentrations measured inside the smog chamber during two experiments. The average SOA/POA ratio for the two experiments was 15.1, a much larger increase than has previously been seen for diesel vehicles, where smog chamber studies have found SOA/POA ratios of 1.3-1.7. Due to this SOA formation, carbonaceous particulate matter (PM) emissions from a gasoline vehicle may approach those of a diesel vehicle of the same class. Furthermore, with the advent of emission controls requiring the use of diesel particle filters, gasoline vehicle emissions

  6. Effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events

    SciTech Connect

    Quan, Jiannong; Liu, Yangang; Liu, Quan; Li, Xia; Gao, Yang; Jia, Xingcan; Sheng, Jiujiang

    2015-09-30

    In this study, the effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events was investigated by analysis of comprehensive measurements of aerosol composition and concentrations [e.g., particular matters (PM2.5), nitrate (NO3), sulfate (SO4), ammonium (NH4)], gas-phase precursors [e.g., nitrogen oxides (NOx), sulfur dioxide (SO2), and ozone (O3)], and relevant meteorological parameters [e.g., visibility and relative humidity (RH)]. The measurements were conducted in Beijing, China from Sep. 07, 2012 to Jan. 16, 2013. The results show that the conversion ratios of N from NOx to nitrate (Nratio) and S from SO2 to sulfate (Sratio) both significantly increased in haze events, suggesting enhanced conversions from NOx and SO2 to their corresponding particle phases in the late haze period. Further analysis shows that Nratio and Sratio increased with increasing RH, with Nratio and Sratio being only 0.04 and 0.03, respectively, when RH < 40%, and increasing up to 0.16 and 0.12 when RH reached 60–80%, respectively. The enhanced conversion ratios of N and S in the late haze period is likely due to heterogeneous aqueous reactions, because solar radiation and thus the photochemical capacity are reduced by the increases in aerosols and RH. This point was further affirmed by the relationships of Nratio and Sratio to O3: the conversion ratios increase with decreasing O3 concentration when O3 concentration is lower than <15 ppb but increased with increasing O3 when O3 concentration is higher than 15 ppb. The results suggest that heterogeneous aqueous reactions likely changed aerosols and their precursors during the haze events: in the beginning of haze events, the precursor gases accumulated quickly

  7. Effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events

    DOE PAGES

    Quan, Jiannong; Liu, Yangang; Liu, Quan; ...

    2015-09-30

    In this study, the effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events was investigated by analysis of comprehensive measurements of aerosol composition and concentrations [e.g., particular matters (PM2.5), nitrate (NO3), sulfate (SO4), ammonium (NH4)], gas-phase precursors [e.g., nitrogen oxides (NOx), sulfur dioxide (SO2), and ozone (O3)], and relevant meteorological parameters [e.g., visibility and relative humidity (RH)]. The measurements were conducted in Beijing, China from Sep. 07, 2012 to Jan. 16, 2013. The results show that the conversion ratios of N from NOx to nitrate (Nratio) and S from SO2 to sulfate (Sratio) bothmore » significantly increased in haze events, suggesting enhanced conversions from NOx and SO2 to their corresponding particle phases in the late haze period. Further analysis shows that Nratio and Sratio increased with increasing RH, with Nratio and Sratio being only 0.04 and 0.03, respectively, when RH < 40%, and increasing up to 0.16 and 0.12 when RH reached 60–80%, respectively. The enhanced conversion ratios of N and S in the late haze period is likely due to heterogeneous aqueous reactions, because solar radiation and thus the photochemical capacity are reduced by the increases in aerosols and RH. This point was further affirmed by the relationships of Nratio and Sratio to O3: the conversion ratios increase with decreasing O3 concentration when O3 concentration is lower than <15 ppb but increased with increasing O3 when O3 concentration is higher than 15 ppb. The results suggest that heterogeneous aqueous reactions likely changed aerosols and their precursors during the haze events: in the beginning of haze events, the precursor gases accumulated quickly due to high emission and low reaction rate; the occurrence of heterogeneous aqueous reactions in the late haze period, together with the accumulated high concentrations of precursor gases such as SO2 and NOx, accelerated the

  8. SOA Formation from Aqueous Processing of BVOCs in the Southeastern United States during SOAS

    NASA Astrophysics Data System (ADS)

    Skog, K.; Keutsch, F. N.

    2013-12-01

    Secondary organic aerosol (SOA) contributes to climate change and adversely affects human health, but the formation of SOA is poorly understood. Recent studies have shown that aqueous processing of water soluble compounds like glyoxal and glycolaldehyde can help close the gap in our understanding of SOA formation. During June and July of 2013, a comprehensive suite of instruments were deployed at the Southern Oxidant and Aerosol Study (SOAS) Centreville, AL ground site measuring oxidants, glyoxal and glycolaldehyde as well as their precursors, anthropogenic influence, aerosol properties and meteorology. Results from a zero-dimensional gas phase photochemical model and a zero-dimensional aqueous SOA model will be compared to the observations. Analysis will focus on the modeled contribution of glyoxal and glycolaldehyde in the context of closing the aqueous SOA budget.

  9. Modelling and measurements of urban aerosol processes on the neighborhood scale in Rotterdam, Oslo and Helsinki

    NASA Astrophysics Data System (ADS)

    Karl, M.; Kukkonen, J.; Keuken, M. P.; Lützenkirchen, S.; Pirjola, L.; Hussein, T.

    2015-12-01

    This study evaluates the influence of aerosol processes on the particle number (PN) concentrations in three major European cities on the temporal scale of one hour, i.e. on the neighborhood and city scales. We have used selected measured data of particle size distributions from previous campaigns in the cities of Helsinki, Oslo and Rotterdam. The aerosol transformation processes were evaluated using an aerosol dynamics model MAFOR, combined with a simplified treatment of roadside and urban atmospheric dispersion. We have compared the model predictions of particle number size distributions with the measured data, and conducted sensitivity analyses regarding the influence of various model input variables. We also present a simplified parameterization for aerosol processes, which is based on the more complex aerosol process computations; this simple model can easily be implemented to both Gaussian and Eulerian urban dispersion models. Aerosol processes considered in this study were (i) the coagulation of particles, (ii) the condensation and evaporation of n-alkanes, and (iii) dry deposition. The chemical transformation of gas-phase compounds was not taken into account. It was not necessary to model the nucleation of gas-phase vapors, as the computations were started with roadside conditions. Dry deposition and coagulation of particles were identified to be the most important aerosol dynamic processes that control the evolution and removal of particles. The effect of condensation and evaporation of organic vapors emitted by vehicles on particle numbers and on particle size distributions was examined. Under inefficient dispersion conditions, condensational growth contributed significantly to the evolution of PN from roadside to the neighborhood scale. The simplified parameterization of aerosol processes can predict particle number concentrations between roadside and the urban background with an inaccuracy of ∼ 10 %, compared to the fully size-resolved MAFOR model.

  10. Optically thin ice clouds in Arctic : Formation processes

    NASA Astrophysics Data System (ADS)

    Jouan, C.; Girard, E.; Pelon, J.; Blanchet, J.; Wobrock, W.; Gultepe, I.; Gayet, J.; Delanoë, J.; Mioche, G.; Adam de Villiers, R.

    2010-12-01

    Arctic ice cloud formation during winter is poorly understood mainly due to lack of observations and the remoteness of this region. Their influence on Northern Hemisphere weather and climate is of paramount importance, and the modification of their properties, linked to aerosol-cloud interaction processes, needs to be better understood. Large concentration of aerosols in the Arctic during winter is associated to long-range transport of anthropogenic aerosols from the mid-latitudes to the Arctic. Observations show that sulphuric acid coats most of these aerosols. Laboratory and in-situ measurements show that at cold temperature (<-30°C), acidic coating lowers the freezing point and deactivates ice nuclei (IN). Therefore, the IN concentration is reduced in these regions and there is less competition for the same available moisture. As a result, large ice crystals form in relatively small concentrations. It is hypothesized that the observed low concentration of large ice crystals in thin ice clouds is linked to the acidification of aerosols. Extensive measurements from ground-based sites and satellite remote sensing (CloudSat and CALIPSO) reveal the existence of two types of extended optically thin ice clouds (TICs) in the Arctic during the polar night and early spring. The first type (TIC-1) is seen only by the lidar, but not the radar, and is found in pristine environment whereas the second type (TIC-2) is detected by both sensors, and is associated with high concentration of aerosols, possibly anthropogenic. TIC-2 is characterized by a low concentration of ice crystals that are large enough to precipitate. To further investigate the interactions between TICs clouds and aerosols, in-situ, airborne and satellite measurements of specific cases observed during the POLARCAT and ISDAC field experiments are analyzed. These two field campaigns took place respectively over the North Slope of Alaska and Northern part of Sweden in April 2008. Analysis of cloud type can be

  11. Potential Organic Aerosol Formation from Biogenic Compounds: Model and Measurement analysis of the BEACHON-RoMBAS 2011 field data

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Lee-Taylor, J.; Aumont, B.; Madronich, S.; Palm, B. B.; Campuzano Jost, P.; Day, D. A.; Jimenez, J. L.; Karl, T.; Apel, E. C.; Kaser, L.; Hansel, A.

    2012-12-01

    The scientific understanding of the formation of organic aerosols (OA) from biogenic precursors and their ageing, especially in the presence of anthropogenic pollution, is still limited. The Rocky Mountain Biogenic Aerosol field Study (RoMBAS) took place in summer 2011 at the Manitou Forest Observatory in the Colorado Front Range as part of the NCAR Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen (BEACHON) project with the specific objective of characterizing the formation and growth of biogenic particles in the forest canopy that is dominated by terpene and MBO biogenic emissions. Here we present the results of the box model Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) that was applied at the measurement site to study local production of secondary OA (SOA), as well as the results of the 3D regional Weather Research and Forecasting model with chemistry (WRF/Chem) that was run at 4km horizontal resolution to simulate the regional transport and chemistry. First, we quantify the relative contribution of various biogenic and anthropogenic precursors to SOA levels that were measured by the Aerosol Mass Spectrometer (AMS). The GECKO-A model is initialized from measured VOC concentrations, and uses MEGAN biogenic emissions and WRF/Chem meteorological forcing. The predicted SOA daytime levels at the site of ~0.7-1.0 microg/m3 are consistent with the observations. The SOA production in GECKO from individual VOC precursors is estimated and compared with WRF/Chem predictions which are based on simplified two-product parameterizations as commonly used in regional models. The sensitivity of the SOA formation to the deposition of semi-volatile vapors, and to an increase in NOx and NO3 levels is also discussed for this site that is frequently influenced by advection of the anthropogenic plumes from Denver. Second, we examine how the organic vapors age after several days of atmospheric processing by

  12. Reactions of SIV species with organic compounds: formation mechanisms of organo-sulfur derivatives in atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Passananti, Monica; Shang, Jing; Dupart, Yoan; Perrier, Sébastien; George, Christian

    2015-04-01

    Secondary organic aerosol (SOA) have an important impact on climate, air quality and human health. However the chemical reactions involved in their formation and growth are not fully understood or well-constrained in climate models. It is well known that inorganic sulfur (mainly in oxidation states (+IV) and (+VI)) plays a key role in aerosol formation, for instance sulfuric acid is known to be a good nucleating gas. In addition, acid-catalyzed heterogeneous reactions of organic compounds has shown to produce new particles, with a clear enhancement in the presence of ozone (Iinuma 2013). Organosulfates have been detected in tropospheric particles and aqueous phases, which suggests they are products of secondary organic aerosol formation process (Tolocka 2012). Originally, the production of organosulfates was explained by the esterification reaction of alcohols, but this reaction in atmosphere is kinetically negligible. Other formation pathways have been suggested such as hydrolysis of peroxides and reaction of organic matter with sulfite and sulfate radical anions (SO3-, SO4-) (Nozière 2010), but it remains unclear if these can completely explain atmospheric organo-sulfur aerosol loading. To better understand the formation of organo-sulfur compounds, we started to investigate the reactivity of SIV species (SO2 and SO32-) with respect to specific functional groups (organic acids and double bonds) on atmospherically relevant carboxylic acids and alkenes. The experiments were carried out in the homogeneous aqueous phase and at the solid-gas interface. A custom built coated-wall flow tube reactor was developed to control relativity humidity, SO2 concentration, temperature and gas flow rate. Homogeneous and heterogeneous reaction kinetics were measured and resulting products were identified using liquid chromatography coupled with an orbitrap mass spectrometer (LC-HR-MS). The experiments were performed with and without the presence of ozone in order to evaluate any

  13. Processes and problems in secondary star formation

    SciTech Connect

    Klein, R.I.; Whitaker, R.W.; Sandford M.T. II

    1984-03-01

    Recent developments relating the conditions in molecular clouds to star formation triggered by a prior stellar generation are reviewed. Primary processes are those that lead to the formation of a first stellar generation. The secondary processes that produce stars in response to effects caused by existing stars are compared and evaluated in terms of the observational data presently available. We discuss the role of turbulence to produce clumpy cloud structures and introduce new work on colliding inter-cloud gas flows leading to non-linear inhomogeneous cloud structures in an intially smooth cloud. This clumpy morphology has important consequences for secondary formation. The triggering processes of supernovae, stellar winds, and H II regions are discussed with emphasis on the consequences for radiation driven implosion as a promising secondary star formation mechanism. Detailed two-dimensional, radiation-hydrodynamic calculations of radiation driven implosion are discussed. This mechanism is shown to be highly efficient in synchronizing the formation of new stars in congruent to 1-3 x 10/sup 4/ years and could account for the recent evidence for new massive star formation in several UCHII regions. It is concluded that, while no single theory adequately explains the variety of star formation observed, a uniform description of star formation is likely to involve several secondary processes. Advances in the theory of star formation will require multiple dimensional calculations of coupled processes. The important non-linear interactions include hydrodynamics, radiation transport, and magnetic fields.

  14. Oligomerization reaction of the Criegee intermediate leads to secondary organic aerosol formation in ethylene ozonolysis.

    PubMed

    Sakamoto, Yosuke; Inomata, Satoshi; Hirokawa, Jun

    2013-12-05

    Ethylene ozonolysis was investigated in laboratory experiments using a Teflon bag reactor. A negative ion chemical ionization mass spectrometer (NI-CIMS) using SO2Cl(-) and Cl(-) as reagent ions was used for product analysis. In addition to the expected gas-phase products, such as formic acid and hydroperoxymethyl formate, oligomeric hydroperoxides composed of the Criegee intermediate (CH2OO) as a chain unit were observed. Furthermore, we observed secondary organic aerosol (SOA) formation from the ethylene ozonolysis, and the particle-phase products were also analyzed by NI-CIMS. The CH2OO oligomers were also observed as particle-phase components, suggesting that the oligomeric hydroperoxides formed in the gas phase partition into the particle phase. By adding methanol as a stabilized Criegee intermediate scavenger, both the gas-phase oligomer formation and SOA formation were strongly suppressed. This indicates that CH2OO plays a critical role in the formation of oligomeric hydroperoxides followed by SOA formation in ethylene ozonolysis. A new formation mechanism for the oligomeric hydroperoxides, which includes sequential addition of CH2OO to hydroperoxides, is proposed.

  15. Secondary organic aerosol formation from isoprene photooxidation during cloud condensation-evaporation cycles

    NASA Astrophysics Data System (ADS)

    Brégonzio-Rozier, L.; Giorio, C.; Siekmann, F.; Pangui, E.; Morales, S. B.; Temime-Roussel, B.; Gratien, A.; Michoud, V.; Cazaunau, M.; DeWitt, H. L.; Tapparo, A.; Monod, A.; Doussin, J.-F.

    2016-02-01

    The impact of cloud events on isoprene secondary organic aerosol (SOA) formation has been studied from an isoprene / NOx / light system in an atmospheric simulation chamber. It was shown that the presence of a liquid water cloud leads to a faster and higher SOA formation than under dry conditions. When a cloud is generated early in the photooxidation reaction, before any SOA formation has occurred, a fast SOA formation is observed with mass yields ranging from 0.002 to 0.004. These yields are 2 and 4 times higher than those observed under dry conditions. When the cloud is generated at a later photooxidation stage, after isoprene SOA is stabilized at its maximum mass concentration, a rapid increase (by a factor of 2 or higher) of the SOA mass concentration is observed. The SOA chemical composition is influenced by cloud generation: the additional SOA formed during cloud events is composed of both organics and nitrate containing species. This SOA formation can be linked to the dissolution of water soluble volatile organic compounds (VOCs) in the aqueous phase and to further aqueous phase reactions. Cloud-induced SOA formation is experimentally demonstrated in this study, thus highlighting the importance of aqueous multiphase systems in atmospheric SOA formation estimations.

  16. Effect of Hydrophobic Primary Organic Aerosols on Secondary Organic Aerosol Formation from Ozonolysis of α-Pinene

    SciTech Connect

    Song, Chen; Zaveri, Rahul A.; Alexander, M. Lizabeth; Thornton, Joel A.; Madronich, Sasha; Ortega, John V.; Zelenyuk, Alla; Yu, Xiao-Ying; Laskin, Alexander; Maughan, A. D.

    2007-10-16

    Semi-empirical secondary organic aerosol (SOA) models typically assume a well-mixed organic aerosol phase even in the presence of hydrophobic primary organic aerosols (POA). This assumption significantly enhances the modeled SOA yields as additional organic mass is made available to absorb greater amounts of oxidized secondary organic gases than otherwise. We investigate the applicability of this critical assumption by measuring SOA yields from ozonolysis of α-pinene (a major biogenic SOA precursor) in a smog chamber in the absence and in the presence of dioctyl phthalate (DOP) and lubricating oil seed aerosol. These particles serve as surrogates for urban hydrophobic POA. The results show that these POA did not enhance the SOA yields. If these results are found to apply to other biogenic SOA precursors, then the semi-empirical models used in many global models would predict significantly less biogenic SOA mass and display reduced sensitivity to anthropogenic POA emissions than previously thought.

  17. The importance of aerosol composition and mixing state on predicted CCN concentration and the variation of the importance with atmospheric processing of aerosol

    SciTech Connect

    Wang, J.; Cubison, M.; Aiken, A.; Jimenez, J.; Collins, D.; Gaffney, J.; Marley, N.

    2010-03-15

    -independent particle composition leads to substantial overestimation of CCN concentration for freshly emitted aerosols in early morning, but can reasonably predict the CCN concentration after the aerosols underwent atmospheric processing for several hours. This analysis employing various simplifications provides insights into the essential information of particle chemical composition that needs to be represented in models to adequately predict CCN concentration and cloud microphysics.

  18. The NASA-AMES Research Center Stratospheric Aerosol Model. 1. Physical Processes and Computational Analogs

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Hamill, P.; Toon, O. B.; Whitten, R. C.; Kiang, C. S.

    1979-01-01

    A time-dependent one-dimensional model of the stratospheric sulfate aerosol layer is presented. In constructing the model, a wide range of basic physical and chemical processes are incorporated in order to avoid predetermining or biasing the model predictions. The simulation, which extends from the surface to an altitude of 58 km, includes the troposphere as a source of gases and condensation nuclei and as a sink for aerosol droplets. The size distribution of aerosol particles is resolved into 25 categories with particle radii increasing geometrically from 0.01 to 2.56 microns such that particle volume doubles between categories.

  19. Functionalization vs. fragmentation: n-aldehyde oxidation mechanisms and secondary organic aerosol formation.

    PubMed

    Chacon-Madrid, Heber J; Presto, Albert A; Donahue, Neil M

    2010-11-14

    Because of their relatively well-understood chemistry and atmospheric relevance, aldehydes represent a good model system for carbon-carbon fragmentation reactions in organic-aerosol aging mechanisms. Small aldehydes such as ethanal and propanal react with OH radicals under high NO(x) conditions to form formaldehyde and ethanal, respectively, with nearly unit yield. CO(2) is formed as a coproduct. This path implies the formation of the C(n-1) aldehyde, or an aldehyde with one fewer methylene group than the parent. However, as the carbon number of the n-aldehyde increases, reaction with the carbon backbone becomes more likely and the C(n-1) formation path becomes less important. In this work we oxidized n-pentanal, n-octanal, n-undecanal and n-tridecanal with OH radicals at high NO(x). The C(n-1) aldehyde molar yields after the peroxyl radical + NO reaction were 69 ± 15, 36 ± 10, 16 ± 5 and 4 ± 1%, respectively. Complementary structure-activity relationship calculations of important rate constants enable estimates of branching ratios between several intermediates of the C(n)n-aldehyde reaction with OH: C(n) peroxyacyl nitrate versus C(n) alkoxyacyl radical formation, C(n-1) alkyl nitrate versus C(n-1) alkoxy radical, and C(n-1) aldehyde formation versus isomerization products. We also measured SOA mass yields, which we compare with analogous n-alkanes to understand the effect of fragmentation on organic-aerosol formation.

  20. Transmission Electron Microscopy Analysis of Tarball Formation and Volatility from Biomass-burning Aerosol Particles during the 2013 BBOP Campaign

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Adachi, K.; Chand, D.; Kleinman, L. I.; Sedlacek, A. J., III

    2014-12-01

    Tar balls, a subset of organic aerosol that is characterized by spherical shape and amorphous composition, are presumed to be brown-carbon (BrC) particles that contribute to light absorption in the atmosphere. Because of their distinctive shapes, compositions, and lack of crystallinity, tar balls are uniquely identifiable using transmission electron microscopy (TEM). Using samples collected during BBOP, we performed a detailed investigation of their compositions, formation processes, and occurrence. They primarily originated from wildfires and are most abundant in relatively aged plumes (>several hours from emission). Their features are similar to those from Mexico measured during the 2006 MILAGRO campaign, but their number fractions are more abundant in the Idaho, Oregon, and Washington samples of BBOP. In order to determine the TB robustness with respect to heating, an experiment was carried out on a TEM grid containing a mixture of organic particles, nanosphere soot, and TBs during which the sample temperature was ramped from ~30 to 650 ºC. The TEM results collected at 30 and 600 ºC, the latter representing the filament temperature used by the AMS, indicate that material of lower volatility is lost by 600 ºC. Although there was some loss of material during the 15-minute temperature ramp, TBs were still present at the higher temperature. These preliminary findings suggest that the efficiency of AMS detection of TBs may be significantly less than unity and potentially translate to an underreporting of the aerosol mass for wildfire plumes. If tar balls have low AMS detection efficiencies, an underestimate in organic aerosol mass will result.

  1. Formation of secondary organic aerosol in the Paris pollution plume and its impact on surrounding regions

    NASA Astrophysics Data System (ADS)

    Zhang, Q. J.; Beekmann, M.; Freney, E.; Sellegri, K.; Pichon, J. M.; Schwarzenboeck, A.; Colomb, A.; Bourrianne, T.; Michoud, V.; Borbon, A.

    2015-03-01

    Secondary pollutants such as ozone, secondary inorganic aerosol, and secondary organic aerosol formed in the plume of megacities can affect regional air quality. In the framework of the FP7/EU MEGAPOLI project, an intensive campaign was launched in the Greater Paris Region in July 2009. The major objective was to quantify different sources of organic aerosol (OA) within a megacity and in its plume. In this study, we use airborne measurements aboard the French ATR-42 aircraft to evaluate the regional chemistry-transport model CHIMERE within and downwind the Paris region. Slopes of the plume OA levels vs. Ox (= O3 + NO2) show secondary OA (SOA) formation normalized with respect to photochemical activity and are used for specific evaluation of the OA scheme in the model. Simulated and observed slopes are in good agreement, when the most realistic "high-NOx" yields are used in the Volatility-Basis-Set scheme implemented into the model. In addition, these slopes are relatively stable from one day to another, which suggest that they are characteristic for the given megacity plume environment. Since OA within the plume is mainly formed from anthropogenic precursors (VOC and primary OA, POA), this work allows a specific evaluation of anthropogenic SOA and SOA formed from primary semi-volatile and intermediate volatile VOCs (SI-SOA) formation scheme in a model. For specific plumes, this anthropogenic OA build-up can reach about 10 μg m-3. For the average of the month of July 2009, maximum increases occur close to the agglomeration for primary OA are noticed at several tens (for POA) to hundred (for SI-SOA) kilometers of distance from the Paris agglomeration.

  2. Limited effect of anthropogenic nitrogen oxides on Secondary Organic Aerosol formation

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Unger, N.; Hodzic, A.; Emmons, L.; Knote, C.; Tilmes, S.; Lamarque, J.-F.; Yu, P.

    2015-08-01

    Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NOx = NO + NO2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product Volatility Basis Set (VBS) scheme, including NOx-dependent SOA yields and aging parameterizations. The predicted organic aerosol amounts capture both the magnitude and distribution of US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of two compared to Aerosol Mass Spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different region and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9 to 5.6, 6.4 to 12.0 and 0.9 to 2.8 % for global, the southeast US and the Amazon NOx perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to buffering in chemical pathways (low- and high-NOx pathways, O3 versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.

  3. Limited effect of anthropogenic nitrogen oxides on secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Unger, N.; Hodzic, A.; Emmons, L.; Knote, C.; Tilmes, S.; Lamarque, J.-F.; Yu, P.

    2015-12-01

    Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but it can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NOx = NO + NO2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR (National Center for Atmospheric Research) Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product volatility basis set (VBS) scheme, including NOx-dependent SOA yields and aging parameterizations. Small differences are found for the no-aging VBS and 2-product schemes; large increases in SOA production and the SOA-to-OA ratio are found for the aging scheme. The predicted organic aerosol amounts capture both the magnitude and distribution of US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of 2 compared to aerosol mass spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different regions and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9-5.6, 6.4-12.0 and 0.9-2.8 % for global, southeast US and Amazon NOx perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to a limited shift in chemical regime, to buffering in chemical pathways (low- and high-NOx pathways, O3 versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.

  4. Limited effect of anthropogenic nitrogen oxides on Secondary Organic Aerosol formation

    DOE PAGES

    Zheng, Y.; Unger, N.; Hodzic, A.; ...

    2015-08-28

    Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NOx = NO + NO2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product Volatility Basis Set (VBS) scheme, including NOx-dependent SOA yields and aging parameterizations. The predicted organic aerosol amounts capture both the magnitude and distribution ofmore » US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of two compared to Aerosol Mass Spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different region and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9 to 5.6, 6.4 to 12.0 and 0.9 to 2.8 % for global, the southeast US and the Amazon NOx perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to buffering in chemical pathways (low- and high-NOx pathways, O3 versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.« less

  5. Limited effect of anthropogenic nitrogen oxides on secondary organic aerosol formation

    DOE PAGES

    Zheng, Y.; Unger, N.; Hodzic, A.; ...

    2015-12-08

    Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but it can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NOx = NO + NO2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR (National Center for Atmospheric Research) Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product volatility basis set (VBS) scheme, including NOx-dependent SOA yields and aging parameterizations. Small differences are found for themore » no-aging VBS and 2-product schemes; large increases in SOA production and the SOA-to-OA ratio are found for the aging scheme. The predicted organic aerosol amounts capture both the magnitude and distribution of US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of 2 compared to aerosol mass spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different regions and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9–5.6, 6.4–12.0 and 0.9–2.8 % for global, southeast US and Amazon NOx perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to a limited shift in chemical regime, to buffering in chemical pathways (low- and high-NOx pathways, O3 versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.« less

  6. Sources and source processes of organic nitrogen aerosols in the atmosphere

    NASA Astrophysics Data System (ADS)

    Erupe, Mark E.

    The research in this dissertation explored the sources and chemistry of organic nitrogen aerosols in the atmosphere. Two approaches were employed: field measurements and laboratory experiments. In order to characterize atmospheric aerosol, two ambient studies were conducted in Cache Valley in Northern Utah during strong winter inversions of 2004 and 2005. The economy of this region is heavily dependent on agriculture. There is also a fast growing urban population. Urban and agricultural emissions, aided by the valley geography and meteorology, led to high concentrations of fine particles that often exceeded the national ambient air quality standards. Aerosol composition was dominated by ammonium nitrate and organic species. Mass spectra from an aerosol mass spectrometer revealed that the organic ion peaks were consistent with reduced organic nitrogen compounds, typically associated with animal husbandry practices. Although no direct source characterization studies have been undertaken in Cache Valley with an aerosol mass spectrometer, spectra from a study at a swine facility in Ames, Iowa, did not show any evidence of reduced organic nitrogen species. This, combined with temporal and diurnal characteristics of organic aerosol peaks, was a pointer that the organic nitrogen species in Cache Valley likely formed from secondary chemistry. Application of multivariate statistical analyses to the organic aerosol spectra further supported this hypothesis. To quantify organic nitrogen signals observed in ambient studies as well as understand formation chemistry, three categories of laboratory experiments were performed. These were calibration experiments, smog chamber studies, and an analytical method development. Laboratory calibration experiments using standard calibrants indicated that quantifying the signals from organic nitrogen species was dependent on whether they formed through acid-base chemistry or via secondary organic aerosol pathway. Results from smog chamber

  7. Impacts of Combustion Conditions and Photochemical Processing on the Light Absorption of Biomass Combustion Aerosol.

    PubMed

    Martinsson, J; Eriksson, A C; Nielsen, I Elbæk; Malmborg, V Berg; Ahlberg, E; Andersen, C; Lindgren, R; Nyström, R; Nordin, E Z; Brune, W H; Svenningsson, B; Swietlicki, E; Boman, C; Pagels, J H

    2015-12-15

    The aim was to identify relationships between combustion conditions, particle characteristics, and optical properties of fresh and photochemically processed emissions from biomass combustion. The combustion conditions included nominal and high burn rate operation and individual combustion phases from a conventional wood stove. Low temperature pyrolysis upon fuel addition resulted in "tar-ball" type particles dominated by organic aerosol with an absorption Ångström exponent (AAE) of 2.5-2.7 and estimated Brown Carbon contributions of 50-70% to absorption at the climate relevant aethalometer-wavelength (520 nm). High temperature combustion during the intermediate (flaming) phase was dominated by soot agglomerates with AAE 1.0-1.2 and 85-100% of absorption at 520 nm attributed to Black Carbon. Intense photochemical processing of high burn rate flaming combustion emissions in an oxidation flow reactor led to strong formation of Secondary Organic Aerosol, with no or weak absorption. PM1 mass emission factors (mg/kg) of fresh emissions were about an order of magnitude higher for low temperature pyrolysis compared to high temperature combustion. However, emission factors describing the absorption cross section emitted per kg of fuel consumed (m(2)/kg) were of similar magnitude at 520 nm for the diverse combustion conditions investigated in this study. These results provide a link between biomass combustion conditions, emitted particle types, and their optical properties in fresh and processed plumes which can be of value for source apportionment and balanced mitigation of biomass combustion emissions from a climate and health perspective.

  8. Diurnal Cycles of Aerosol Optical Properties at Pico Tres Padres, Mexico City: Evidences for Changes in Particle Morphology and Secondary Aerosol Formation

    NASA Astrophysics Data System (ADS)

    Mazzoleni, C.; Dubey, M.; Chakrabarty, R.; Moosmuller, H.; Onasch, T.; Zavala, M.; Herndon, S.; Kolb, C.

    2007-12-01

    Aerosol optical properties affect planetary radiative balance and depend on chemical composition, size distribution, and morphology. During the MILAGRO field campaign, we measured aerosol absorption and scattering in Mexico City using the Los Alamos aerosol photoacoustic (LAPA) instrument operating at 781 nm. The LAPA was mounted on-board the Aerodyne Research Inc. mobile laboratory, which hosted a variety of gaseous and aerosol instruments. During the campaign, the laboratory was moved to different sites, capturing spatial and temporal variability. Additionally, we collected ambient aerosols on Nuclepore filters for scanning electron microscopy (SEM) analysis. SEM images of selected filters were taken to study particle morphology. Between March 7th and 19th air was sampled at the top of Pico Tres Padres, a mountain on the north side of Mexico City. Aerosol absorption and scattering followed diurnal patterns related to boundary layer height and solar insulation. We report an analysis of aerosol absorption, scattering, and morphology for three days (9th, 11th and 12th of March 2006). The single scattering albedo (SSA, ratio of scattering to total extinction) showed a drop in the tens-of-minutes-to-hour time frame after the boundary layer grew above the sampling site. Later in the day the SSA rose steadily reaching a maximum in the afternoon. The SEM images showed a variety of aerosol shapes including fractal-like aggregates, spherical particles, and other shapes. The absorption correlated with the CO2 signal and qualitatively with the fraction of fractal-like particles to the total particle count. In the afternoon the SSA qualitatively correlated with a relative increase in spherical particles and total particle count. These observed changes in optical properties and morphology can be explained by the dominant contribution of freshly emitted particles in the morning and by secondary particle formation in the afternoon. SSA hourly averaged values ranged from ~0.63 in

  9. Chemical Characterization of Secondary Organic Aerosol Formed Through Cloud Processing of Methylglyoxal

    NASA Astrophysics Data System (ADS)

    Altieri, K. E.; Seitzinger, S. P.; Carlton, A. G.; Turpin, B. J.; Klein, G. C.; Marshall, A. G.

    2007-12-01

    There is increasing evidence suggesting that secondary organic aerosol (SOA) forms as a result of low volatility product formation in atmospheric aqueous phase reactions. In this work aqueous phase photooxidation experiments between methylglyoxal (an isoprene oxidation product) and hydroxyl radical were conducted to simulate the cloud processing of methylglyoxal. The results verify that, as predicted, oxalic acid forms through cloud processing of methylglyoxal. This work adds to the growing body of literature (Altieri et al., 2006; Carlton et al., 2006; Carlton et al., 2007; Crahan et al., 2004; Warneck, 2003; 2005; Yu et al., 2005) supporting the hypothesis that cloud processing is a substantial source of oxalic acid to the atmosphere. Oxalic acid is the most abundant dicarboxylic acid in the atmosphere and a contributor to SOA. The formation of additional monomer products (e.g., malic acid, succinic acid, glycolic acid) and the development of an oligomer system were also identified through use of a combination of electrospray ionization mass spectrometry (ESI-MS) techniques: a quadrupole ESI-MS, an ion trap ESI-MS-MS, and an ultra-high resolution ESI FT-ICR MS. We propose a mechanism of oligomer formation through esterification of monomers with a hydroxy acid formed from hydroxyl radical initiated reactions. Oligomers were only recently identified as cloud processing products (Altieri et al., 2006), and this work is the first chemical characterization of oligomers formed through cloud processing reactions. The chemical characterization includes the distribution of molecular weights, elemental compositions, structure, and organic mass to organic carbon (OM:OC) ratio. Methylglyoxal is a water- soluble product of both biogenic and anthropogenic hydrocarbon oxidation. The varied and multiple sources of methylglyoxal suggest there is strong potential for these low volatility products (e.g., oxalic acid and oligomers) to significantly contribute to SOA.

  10. Secondary organic aerosol formation from low-NO(x) photooxidation of dodecane: evolution of multigeneration gas-phase chemistry and aerosol composition.

    PubMed

    Yee, Lindsay D; Craven, Jill S; Loza, Christine L; Schilling, Katherine A; Ng, Nga Lee; Canagaratna, Manjula R; Ziemann, Paul J; Flagan, Richard C; Seinfeld, John H

    2012-06-21

    The extended photooxidation of and secondary organic aerosol (SOA) formation from dodecane (C(12)H(26)) under low-NO(x) conditions, such that RO(2) + HO(2) chemistry dominates the fate of the peroxy radicals, is studied in the Caltech Environmental Chamber based on simultaneous gas and particle-phase measurements. A mechanism simulation indicates that greater than 67% of the initial carbon ends up as fourth and higher generation products after 10 h of reaction, and simulated trends for seven species are supported by gas-phase measurements. A characteristic set of hydroperoxide gas-phase products are formed under these low-NO(x) conditions. Production of semivolatile hydroperoxide species within three generations of chemistry is consistent with observed initial aerosol growth. Continued gas-phase oxidation of these semivolatile species produces multifunctional low volatility compounds. This study elucidates the complex evolution of the gas-phase photooxidation chemistry and subsequent SOA formation through a novel approach comparing molecular level information from a chemical ionization mass spectrometer (CIMS) and high m/z ion fragments from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Combination of these techniques reveals that particle-phase chemistry leading to peroxyhemiacetal formation is the likely mechanism by which these species are incorporated in the particle phase. The current findings are relevant toward understanding atmospheric SOA formation and aging from the "unresolved complex mixture," comprising, in part, long-chain alkanes.

  11. Simulation of aromatic SOA formation using the lumping model integrated with explicit gas-phase kinetic mechanisms and aerosol-phase reactions

    NASA Astrophysics Data System (ADS)

    Im, Y.; Jang, M.; Beardsley, R. L.

    2014-04-01

    The Unified Partitioning-Aerosol phase Reaction (UNIPAR) model has been developed to predict the secondary organic aerosol (SOA) formation through multiphase reactions. The model was evaluated with aromatic SOA data produced from the photooxidation of toluene and 1,3,5-trimethylbenzene (135-TMB) under various concentrations of NOx and SO2 using an outdoor reactor (University of Florida Atmospheric PHotochemical Outdoor Reactor (UF-APHOR) chamber). When inorganic species (sulfate, ammonium and water) are present in aerosol, the prediction of both toluene SOA and 135-TMB SOA, in which the oxygen-to-carbon (O : C) ratio is lower than 0.62, are approached under the assumption of a complete organic/electrolyte-phase separation below a certain relative humidity. An explicit gas-kinetic model was employed to express gas-phase oxidation of aromatic hydrocarbons. Gas-phase products are grouped based on their volatility (6 levels) and reactivity (5 levels) and exploited to construct the stoichiometric coefficient (αi,j) matrix, the set of parameters used to describe the concentrations of organic compounds in multiphase. Weighting of the αi,j matrix as a function of NOx improved the evaluation of NOx effects on aromatic SOA. The total amount of organic matter (OMT) is predicted by two modules in the UNIPAR model: OMP by a partitioning process and OMAR by aerosol-phase reactions. The OMAR module predicts multiphase reactions of organic compounds, such as oligomerization, acid-catalyzed reactions, and organosulfate (OS) formation. The model reasonably simulates SOA formation under various aerosol acidities, NOx concentrations, humidities and temperatures. Furthermore, the OS fractions in the SOA predicted by the model were in good agreement with the experimentally measured OS fractions.

  12. Marine boundary layer cloud regimes and POC formation in a CRM coupled to a bulk aerosol scheme

    NASA Astrophysics Data System (ADS)

    Berner, A. H.; Bretherton, C. S.; Wood, R.; Muhlbauer, A.

    2013-12-01

    A cloud-resolving model (CRM) coupled to a new intermediate-complexity bulk aerosol scheme is used to study aerosol-boundary-layer-cloud-precipitation interactions and the development of pockets of open cells (POCs) in subtropical stratocumulus cloud layers. The aerosol scheme prognoses mass and number concentration of a single lognormal accumulation mode with surface and entrainment sources, evolving subject to processing of activated aerosol and scavenging of dry aerosol by clouds and rain. The CRM with the aerosol scheme is applied to a range of steadily forced cases idealized from a well-observed POC. The long-term system evolution is explored with extended two-dimensional (2-D) simulations of up to 20 days, mostly with diurnally averaged insolation and 24 km wide domains, and one 10 day three-dimensional (3-D) simulation. Both 2-D and 3-D simulations support the Baker-Charlson hypothesis of two distinct aerosol-cloud "regimes" (deep/high-aerosol/non-drizzling and shallow/low-aerosol/drizzling) that persist for days; transitions between these regimes, driven by either precipitation scavenging or aerosol entrainment from the free-troposphere (FT), occur on a timescale of ten hours. The system is analyzed using a two-dimensional phase plane with inversion height and boundary layer average aerosol concentrations as state variables; depending on the specified subsidence rate and availability of FT aerosol, these regimes are either stable equilibria or distinct legs of a slow limit cycle. The same steadily forced modeling framework is applied to the coupled development and evolution of a POC and the surrounding overcast boundary layer in a larger 192 km wide domain. An initial 50% aerosol reduction is applied to half of the model domain. This has little effect until the stratocumulus thickens enough to drizzle, at which time the low-aerosol portion transitions into open-cell convection, forming a POC. Reduced entrainment in the POC induces a negative feedback

  13. Ethylene glycol emissions from on-road vehicles: implications for aqueous phase secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Wood, E. C.; Knighton, W. B.; Fortner, E.; Herndon, S. C.; Onasch, T. B.; Franklin, J.; Harley, R. A.; Gentner, D. R.; Goldstein, A. H.

    2012-12-01

    Ethylene glycol (HOCH2CH2OH), used as an engine coolant for most on-road vehicles, is an intermediate volatility organic compound (IVOC) with a high Henry's Law Coefficient (kH > 10,000 M atm-1) . Oxidation of ethylene glycol, especially in the atmospheric aqueous phase (clouds, fog, wet aerosol), can lead to the formation of glycolaldehyde, oxalic acid, and ultimately secondary organic aerosol. We present measurements of unexpectedly high ethylene glycol emissions in the Caldecott Tunnel near San Francisco (Summer 2010) and the Washburn Tunnel near Houston (Spring 2009). Ethylene glycol was detected using a proton-transfer reaction mass spectrometer (PTR-MS) at m/z = 45, which is usually interpreted as acetaldehyde. Although not necessarily a tailpipe emission, effective fuel-based emission factors are calculated using the carbon balance method and range from 50 to 400 mg ethylene glycol per kg fuel. Total US and global emissions are estimated using these emission factors and fuel consumption rates and are compared to previous model estimates of ethylene glycol emissions (e.g., the Regional Atmospheric Chemistry Model). Compared to biogenically emitted isoprene, ethylene glycol is likely a minor source of glycolaldehyde globally, but may contribute significantly to glycolaldehyde, oxalate and SOA formation in areas dominated by urban emissions.

  14. Contrasting the impact of aerosols at northern and southern midlatitudes on heterogeneous ice formation

    NASA Astrophysics Data System (ADS)

    Kanitz, T.; Seifert, P.; Ansmann, A.; Engelmann, R.; Althausen, D.; Casiccia, C.; Rohwer, E. G.

    2011-09-01

    Three cloud data sets, each covering four months of observations, were recently recorded with a lidar at Punta Arenas (53°S), Chile, at Stellenbosch (34°S, near Cape Town), South Africa, and aboard the research vessel Polarstern during three north-south cruises. By comparing these observations with an 11-year cloud data set measured with a lidar at Leipzig (51°N), Germany, the occurrence of heterogeneous ice formation (as a function of cloud top temperature) for very different aerosol conditions in the northern and southern hemisphere is investigated. Large differences in the heterogeneous freezing behavior in the mostly layered clouds are found. For example, <20%, 30%-40% and around 70% of the cloud layers with cloud top temperatures from -15°C to -20°C, showed ice formation over Punta Arenas, Stellenbosch, and Leipzig, respectively. The observed strong contrast reflects the differences in the free tropospheric aerosol conditions at northern midlatitudes, that are controlled by anthropogenic pollution, mineral dust, forest fire smoke, terrestrial biological material and high southern midlatitudes with clean marine conditions.

  15. Review of Urban Secondary Organic Aerosol Formation from Gasoline and Diesel Motor Vehicle Emissions.

    PubMed

    Gentner, Drew R; Jathar, Shantanu H; Gordon, Timothy D; Bahreini, Roya; Day, Douglas A; El Haddad, Imad; Hayes, Patrick L; Pieber, Simone M; Platt, Stephen M; de Gouw, Joost; Goldstein, Allen H; Harley, Robert A; Jimenez, Jose L; Prévôt, André S H; Robinson, Allen L

    2017-02-07

    Secondary organic aerosol (SOA) is formed from the atmospheric oxidation of gas-phase organic compounds leading to the formation of particle mass. Gasoline- and diesel-powered motor vehicles, both on/off-road, are important sources of SOA precursors. They emit complex mixtures of gas-phase organic compounds that vary in volatility and molecular structure-factors that influence their contributions to urban SOA. However, the relative importance of each vehicle type with respect to SOA formation remains unclear due to conflicting evidence from recent laboratory, field, and modeling studies. Both are likely important, with evolving contributions that vary with location and over short time scales. This review summarizes evidence, research needs, and discrepancies between top-down and bottom-up approaches used to estimate SOA from motor vehicles, focusing on inconsistencies between molecular-level understanding and regional observations. The effect of emission controls (e.g., exhaust aftertreatment technologies, fuel formulation) on SOA precursor emissions needs comprehensive evaluation, especially with international perspective given heterogeneity in regulations and technology penetration. Novel studies are needed to identify and quantify "missing" emissions that appear to contribute substantially to SOA production, especially in gasoline vehicles with the most advanced aftertreatment. Initial evidence suggests catalyzed diesel particulate filters greatly reduce emissions of SOA precursors along with primary aerosol.

  16. Primary particulate emissions and secondary organic aerosol (SOA) formation from idling diesel vehicle exhaust in China.

    PubMed

    Deng, Wei; Hu, Qihou; Liu, Tengyu; Wang, Xinming; Zhang, Yanli; Song, Wei; Sun, Yele; Bi, Xinhui; Yu, Jianzhen; Yang, Weiqiang; Huang, Xinyu; Zhang, Zhou; Huang, Zhonghui; He, Quanfu; Mellouki, Abdelwahid; George, Christian

    2017-03-26

    In China diesel vehicles dominate the primary emission of particulate matters from on-road vehicles, and they might also contribute substantially to the formation of secondary organic aerosols (SOA). In this study tailpipe exhaust of three typical in-use diesel vehicles under warm idling conditions was introduced directly into an indoor smog chamber with a 30m(3) Teflon reactor to characterize primary emissions and SOA formation during photo-oxidation. The emission factors of primary organic aerosol (POA) and black carbon (BC) for the three types of Chinese diesel vehicles ranged 0.18-0.91 and 0.15-0.51gkg-fuel(-1), respectively; and the SOA production factors ranged 0.50-1.8gkg-fuel(-1) and SOA/POA ratios ranged 0.7-3.7 with an average of 2.2. The fuel-based POA emission factors and SOA production factors from this study for idling diesel vehicle exhaust were 1-3 orders of magnitude higher than those reported in previous studies for idling gasoline vehicle exhaust. The emission factors for total particle numbers were 0.65-4.0×10(15)particleskg-fuel(-1), and particles with diameters less than 50nm dominated in total particle numbers. Traditional C2-C12 precursor non-methane hydrocarbons (NMHCs) could only explain less than 3% of the SOA formed during aging and contribution from other precursors including intermediate volatile organic compounds (IVOC) needs further investigation.

  17. Stratospheric denitrification due to polar aerosol formation: Implications for a future atmosphere with increased CO2

    NASA Astrophysics Data System (ADS)

    Pitari, Giovanni; Ricciardulli, Lucrezia

    The amount of stratospheric denitrification produced by NAT aerosol formation is studied with a photochemical two-dimensional model which includes the effects of zonal asymmetries of the temperature field. The model photochemistry is coupled with a microphysical code for aerosol formation and growth, so that the permanent loss of stratospheric nitric acid and water vapor may be taken into account. The model results for nitric acid relative to the atmospheric chemical composition of 1980 are compared with LIMS data. We show that the level of denitrification may rise substantially if the polar vortex cools down, as it could be the case in a future atmosphere richer in carbon dioxide. A three-dimensional model is used to calculate the temperature perturbation due to an increase of CO2 from 335 ppmv of 1980 (baseline) up to 500 ppmv (predicted for 2050). The photochemical model adopting these new temperatures predicts an average 20% HNO3 column decrease poleward of 45N with respect to baseline. One consequence is that the relative weight of the NOx catalytic cycle for O3 destruction decreases with respect to the present atmosphere.

  18. Aerosol microphysical processes and properties in Canadian boreal forest fire plumes measured during BORTAS

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kimiko; Allen, James; Coe, Hugh; Taylor, Jonathan; Duck, Thomas; Pierce, Jeffrey

    2013-04-01

    Biomass burning emissions contribute significantly to aerosol concentrations and clound condensation nuclei in many regions of the atmosphere. Plume-aerosol characteristics vary according to age, fuel type, and region. These differences are poorly represented in regional and global aerosol models, and they contribute to large uncertainties in predicted size distributions in biomass-burning-dominated regions. The Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) measurement campaign was designed to invesigate boreal biomass burning emissions over Atlantic Canada during July-August of 2011. Aged (2-3 days) biomass burning aerosols originating from western Ontario were measured by an SMPS and AMS on board the British Atmospheric Research Aircraft. We identify the presence of plumes using CO concentrations and acetonitrile enhancement ratios. In-plume aerosol size distributions were collected for six aged plume profiles. The size distributions show an accumulation-mode median diameter of ~240 nm. However, there are persistant nucleation and Aitken modes present in the profiles, even 2-3 days from the source. Without continuous nucleation and condensation (likely SOA production), these small modes would be lost by coagulation in less than 1 day. We use an aerosol microphysics plume model to estimate the mean nucleation and condensation rates necessary to maintain the small aerosols, and calculate how these processes enhance the total number of particles and cloud condensation nuclei in the aged plume.

  19. Formation of secondary aerosols from biomass burning plumes: chamber simulation study

    NASA Astrophysics Data System (ADS)

    Wang, X.; Hu, Q.; Fang, Z.; Deng, W.

    2015-12-01

    Biomass burning contributed substantially to carbonaceous aerosols in China's ambient air, even in its highly industrialized megacities, based on recent source attributions by receptor modeling or by molecular and isotopic tracers. Although chemical evolution of biomass burning plumes in the ambient is a vital issue for the study of climatic and health effects, the understanding of secondary pollutants formation during the aging of biomass burning plumes is far from complete. Here we collected typical agriculture residues and forest plant branches in the Pearl River Delta in south China, and got them burned in laboratory-controlled conditions and introduced the plumes from burning these biomass directly into the GIGCAS indoor smog chamber with a reactor of 30 m3 to investigate the photochemical aging of the plumes. The inorganic trace gases, including SO2, NOx, NH3 and O3, were monitored online with chemiluminescence gas analyzers, precursor volatile organic compounds (VOCs) were monitor online with a PTR-ToF-MS and offline by a preconcentrator coupled with a gas chromatography-mass selective detector/flame ionization detector/electron capture detector (GC-MSD/FID/ECD), particle number concentrations and size distributions were obtained using a scanning mobility particle sizer (SMPS), and a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) was used to measure the chemical compositions and evolutions of submicron aerosols and to trace the change in the average element ratios of organics, like H/C, O/C, and N/C. The results from the study were summarized in the following aspects: 1) primary emission factors of gaseous and particulate pollutants from burning of typical biomass including agricultural remains and forest wood plants; 2) yields of secondary pollutants, including secondary inorganic and organic aerosols and gaseous products (like O3) during photochemical aging of biomass burning plumes; 3) relationship between the formed secondary

  20. Lidar Observation of Aerosol and Temperature Stratification over Urban Area During the Formation of a Stable Atmospheric PBL

    NASA Technical Reports Server (NTRS)

    Kolev, I.; Parvanov, O.; Kaprielov, B.; Mitev, V.; Simeonov, V.; Grigorov, I.

    1992-01-01

    In recent years, the processes in the atmospheric planetary boundary layer (PBL) over urban areas were intensely investigated, due to ecological problems related to the air, soil, and water pollution. New pollution sources in new residential districts, when in contradiction to the microclimate and topography requirements of that region, create a number of considerable hazards and problems. The present study is a continuation of our preceding investigations and aims at revealing the aerosol structure and stratification during the transition after sunset as measured by two lidars. Such observation of the nocturnal, stable PBL formation over an urban area in Bulgaria has not been reported before. The lidars' high time and spatial resolutions allow the changes of the internal structure of the PBL's part located above the surface layer to be observed.

  1. Characterization of carbonaceous aerosols at Mount Lu in South China: implication for secondary organic carbon formation and long-range transport.

    PubMed

    Li, Peng-hui; Wang, Yan; Li, Tao; Sun, Lei; Yi, Xianliang; Guo, Li-qiong; Su, Rui-hong

    2015-09-01

    In order to understand the sources and potential formation processes of atmospheric carbonaceous aerosols in South China, fine particle samples were collected at a high-elevation mountain site--Mount Lu (29°35' N, 115°59' E, 1165 m A.S.L.) during August-September, 2011. Eight carbonaceous fractions from particles were resolved following the IMPROVE thermal/optical reflectance protocol. During the observation campaign, the daily concentrations of PM2.5 at Mount Lu ranged from 7.69 to 116.39 μg/m(3), with an average of 58.76 μg/m(3). The observed average organic carbon (OC) and elemental carbon (EC) concentrations in PM2.5 were 3.78 and 1.28 μg/m(3), respectively. Secondary organic carbon (SOC) concentration, estimated by EC-tracer method, was 2.07 μg/m(3) on average, accounting for 45.0% of the total OC. The enhancement of secondary organic aerosol (SOA) formation was observed during cloud/fog processing, and heterogeneous acid-catalyzed reactions may have contributed to SOA formation as well. Back trajectory analysis indicated that air masses were mainly sourced from southern China during observation period, and this air mass source was featured by highest values of OC and effective carbon ratio (ECR). Relation of carbonaceous species and principal component analysis indicated that multiple sources contributed to the carbonaceous aerosols at Mount Lu.

  2. The Role of Affect in Attitude Formation toward New Technologies: The Case of Stratospheric Aerosol Injection.

    PubMed

    Merk, Christine; Pönitzsch, Gert

    2017-02-28

    This article analyzes determinants of technology acceptance and their interdependence. It highlights the role of affect in attitude formation toward new technologies and examines how it mediates the influence of stable psychological variables on the technology's acceptability. Based on theory and previous empirical evidence, we develop an analytical framework of attitude formation. We test this framework using survey data on attitudes toward stratospheric aerosol injection (SAI), a technology that could be used to counteract global warming. We show that affect is more important than risk and benefit perception in forming judgment about SAI. Negative and positive affect directly alter the perception of risks and benefits of SAI and its acceptability. Furthermore, affect is an important mediator between stable psychological variables-such as trust in governmental institutions, values, and attitudes-and acceptability. A person's affective response is thus guided by her general attitudes and values.

  3. Advection fog formation and aerosols produced by combustion-originated air pollution

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Liaw, G. S.; Vaughan, O. H., Jr.

    1980-01-01

    The way in which pollutants produced by the photochemical reaction of NO(X) and SO(X) affect the quality of the human environment through such phenomena as the formation of advection fog is considered. These pollutants provide the major source of condensation nuclei for the formation of fog in highways, airports and seaports. Results based on the monodisperse, multicomponent aerosol model show that: (1) condensation nuclei can grow and form a dense fog without the air having attained supersaturation; (2) the mass concentration range for NO(X) is one-third that of SO(X); and (3) the greater the mass concentration, the particle concentration, and the radius of condensation nuclei, the denser the fog that is formed.

  4. Fast laser-induced aerosol formation for visualization of gas flows

    NASA Technical Reports Server (NTRS)

    Hassa, C.; Hanson, R. K.

    1985-01-01

    A technique for aerosol seeding of gas flows by laser-induced particle formation is demonstrated using a pulsed Nd:YAG laser (1.06 microns) for optical breakdown of a mixture of SF6 and H2 in an inert carrier gas. It is noted that, contrary to the smoke-wire approach, the laser-induced particles form first in zones of high turbulence, since mixing enhances coagulation. The method also allows seeding to be performed in locations hardly accessible otherwise and is mechanically nonintrusive. Finally, a study of the mixture and the breakdown effects indicates that for H2:SF6 ratios between 3:1 and 15:1 the particle formation is only limited by the physics of the gas/particle conversion.

  5. Impact of chamber wall loss of gaseous organic compounds on secondary organic aerosol formation: explicit modeling of SOA formation from alkane and alkene oxidation

    NASA Astrophysics Data System (ADS)

    La, Y. S.; Camredon, M.; Ziemann, P. J.; Valorso, R.; Matsunaga, A.; Lannuque, V.; Lee-Taylor, J.; Hodzic, A.; Madronich, S.; Aumont, B.

    2015-09-01

    Recent studies have shown that low volatility gas-phase species can be lost onto the smog chamber wall surfaces. Although this loss of organic vapors to walls could be substantial during experiments, its effect on secondary organic aerosol (SOA) formation has not been well characterized and quantified yet. Here the potential impact of chamber walls on the loss of gaseous organic species and SOA formation has been explored using the Generator for Explicit Chemistry and Kinetics of the Organics in the Atmosphere (GECKO-A) modeling tool which explicitly represents SOA formation and gas/wall partitioning. The model was compared with 41 smog chamber experiments of SOA formation under OH oxidation of alkane and alkene series (linear, cyclic and C12-branched alkanes and terminal, internal and 2-methyl alkenes with 7 to 17 carbon atoms) under high NOx conditions. Simulated trends match observed trends within and between homologous series. The loss of organic vapors to the chamber walls is found to affect SOA yields as well as the composition of the gas and the particle phases. Simulated distributions of the species in various phases suggest that nitrates, hydroxynitrates and carbonylesters could substantially be lost onto walls. The extent of this process depends on the rate of gas/wall mass transfer, the vapor pressure of the species and the duration of the experiments. This work suggests that SOA yields inferred from chamber experiments could be underestimated up to 0.35 yield unit due to the loss of organic vapors to chamber walls.

  6. Impact of chamber wall loss of gaseous organic compounds on secondary organic aerosol formation: explicit modeling of SOA formation from alkane and alkene oxidation

    NASA Astrophysics Data System (ADS)

    La, Y. S.; Camredon, M.; Ziemann, P. J.; Valorso, R.; Matsunaga, A.; Lannuque, V.; Lee-Taylor, J.; Hodzic, A.; Madronich, S.; Aumont, B.

    2016-02-01

    Recent studies have shown that low volatility gas-phase species can be lost onto the smog chamber wall surfaces. Although this loss of organic vapors to walls could be substantial during experiments, its effect on secondary organic aerosol (SOA) formation has not been well characterized and quantified yet. Here the potential impact of chamber walls on the loss of gaseous organic species and SOA formation has been explored using the Generator for Explicit Chemistry and Kinetics of the Organics in the Atmosphere (GECKO-A) modeling tool, which explicitly represents SOA formation and gas-wall partitioning. The model was compared with 41 smog chamber experiments of SOA formation under OH oxidation of alkane and alkene series (linear, cyclic and C12-branched alkanes and terminal, internal and 2-methyl alkenes with 7 to 17 carbon atoms) under high NOx conditions. Simulated trends match observed trends within and between homologous series. The loss of organic vapors to the chamber walls is found to affect SOA yields as well as the composition of the gas and the particle phases. Simulated distributions of the species in various phases suggest that nitrates, hydroxynitrates and carbonylesters could substantially be lost onto walls. The extent of this process depends on the rate of gas-wall mass transfer, the vapor pressure of the species and the duration of the experiments. This work suggests that SOA yields inferred from chamber experiments could be underestimated up a factor of 2 due to the loss of organic vapors to chamber walls.

  7. Electron-molecule chemistry and charging processes on organic ices and Titan's icy aerosol surrogates

    NASA Astrophysics Data System (ADS)

    Pirim, C.; Gann, R. D.; McLain, J. L.; Orlando, T. M.

    2015-09-01

    Electron-induced polymerization processes and charging events that can occur within Titan's atmosphere or on its surface were simulated using electron irradiation and dissociative electron attachment (DEA) studies of nitrogen-containing organic condensates. The DEA studies probe the desorption of H- from hydrogen cyanide (HCN), acetonitrile (CH3CN), and aminoacetonitrile (NH2CH2CN) ices, as well as from synthesized tholin materials condensed or deposited onto a graphite substrate maintained at low temperature (90-130 K). The peak cross sections for H- desorption during low-energy (3-15 eV) electron irradiation were measured and range from 3 × 10-21 to 2 × 10-18 cm2. Chemical and structural transformations of HCN ice upon 2 keV electron irradiation were investigated using X-ray photoelectron and Fourier-transform infrared spectroscopy techniques. The electron-beam processed materials displayed optical properties very similar to tholins produced by conventional discharge methods. Electron and negative ion trapping lead to 1011 charges cm-2 on a flat surface which, assuming a radius of 0.05 μm for Titan aerosols, is ∼628 charges/radius (in μm). The facile charge trapping indicates that electron interactions with nitriles and complex tholin-like molecules could affect the conductivity of Titan's atmosphere due to the formation of large negative ion complexes. These negatively charged complexes can also precipitate onto Titan's surface and possibly contribute to surface reactions and the formation of dunes.

  8. Secondary organic aerosol formation from the ozonolysis of 2-carene and 3-carene

    NASA Astrophysics Data System (ADS)

    Mellouki, A.; Chen, H.; Bernard, F.; Cazaunau, M.; Grosselin, B.; Daele, V.; Chen, J.

    2013-12-01

    The atmospheric degradation of terpenes in the remote areas such as those with coniferous forests is known to lead to the formation and growth of atmospheric new particles. 2-carene and 3-carene have been reported to be present in number of such areas. Hence, their oxidation may represent an important source of secondary organic aerosols in some specific regions. 2-carene and 3-carene possess a structure of endocyclic double bonds which make them reactive toward ozone under atmospheric conditions. We have conducted a study on the reactions of ozone with 2-carene and 3-carene using a flow reactor dedicated to the investigation of secondary organic aerosol (SOA) formation. The reactor is equipped with an ozone generator and a movable injector which allows the reaction to occur within a short time range (typically 17 - 48 seconds). This enables us to investigate the initial steps of the SOA formation. In a first series of experiments, we have determined the rate constant for the reaction of ozone with 3-carene under pseudo-first-order conditions. The rate constant value measured was 3.8 x 10-17 molecule-1s-1, at 298 K, in agreement with the literatures and simulation chamber experiments. We have then investigated the SOA formation from the ozonolysis of 2-carene and 3-carene. By adjusting the residence time and initial concentration of carenes and ozone, number concentration of SOA have been measured for short reactions times and low concentrations of reactants. Nucleation thresholds of 2-carene and 3-carene were extracted from the plots of log N = f(Δ[Carenes]).

  9. Fuel composition and secondary organic aerosol formation: gas-turbine exhaust and alternative aviation fuels.

    PubMed

    Miracolo, Marissa A; Drozd, Greg T; Jathar, Shantanu H; Presto, Albert A; Lipsky, Eric M; Corporan, Edwin; Robinson, Allen L

    2012-08-07

    A series of smog chamber experiments were performed to investigate the effects of fuel composition on secondary particulate matter (PM) formation from dilute exhaust from a T63 gas-turbine engine. Tests were performed at idle and cruise loads with the engine fueled on conventional military jet fuel (JP-8), Fischer-Tropsch synthetic jet fuel (FT), and a 50/50 blend of the two fuels. Emissions were sampled into a portable smog chamber and exposed to sunlight or artificial UV light to initiate photo-oxidation. Similar to previous studies, neat FT fuel and a 50/50 FT/JP-8 blend reduced the primary particulate matter emissions compared to neat JP-8. After only one hour of photo-oxidation at typical atmospheric OH levels, the secondary PM production in dilute exhaust exceeded primary PM emissions, except when operating the engine at high load on FT fuel. Therefore, accounting for secondary PM production should be considered when assessing the contribution of gas-turbine engine emissions to ambient PM levels. FT fuel substantially reduced secondary PM formation in dilute exhaust compared to neat JP-8 at both idle and cruise loads. At idle load, the secondary PM formation was reduced by a factor of 20 with the use of neat FT fuel, and a factor of 2 with the use of the blend fuel. At cruise load, the use of FT fuel resulted in no measured formation of secondary PM. In every experiment, the secondary PM was dominated by organics with minor contributions from sulfate when the engine was operated on JP-8 fuel. At both loads, FT fuel produces less secondary organic aerosol than JP-8 because of differences in the composition of the fuels and the resultant emissions. This work indicates that fuel reformulation may be a viable strategy to reduce the contribution of emissions from combustion systems to secondary organic aerosol production and ultimately ambient PM levels.

  10. Examining the effects of anthropogenic emissions on isoprene-derived secondary organic aerosol formation during the 2013 Southern Oxidant and Aerosol Study (SOAS) at the Look Rock, Tennessee ground site

    NASA Astrophysics Data System (ADS)

    Budisulistiorini, S. H.; Li, X.; Bairai, S. T.; Renfro, J.; Liu, Y.; Liu, Y. J.; McKinney, K. A.; Martin, S. T.; McNeill, V. F.; Pye, H. O. T.; Nenes, A.; Neff, M. E.; Stone, E. A.; Mueller, S.; Knote, C.; Shaw, S. L.; Zhang, Z.; Gold, A.; Surratt, J. D.

    2015-08-01

    carbon (BC ~ 0.2 μg m-3). Particle-phase sulfate is fairly correlated (r2 ~ 0.3) with both methacrylic acid epoxide (MAE)/hydroxymethyl-methyl-α-lactone (HMML)- (henceforth called methacrolein (MACR)-derived SOA tracers) and IEPOX-derived SOA tracers, and more strongly correlated (r2 ~ 0.6) with the IEPOX-OA factor, in sum suggesting an important role of sulfate in isoprene SOA formation. Moderate correlation between the MACR-derived SOA tracer 2-methylglyceric acid with sum of reactive and reservoir nitrogen oxides (NOy; r2 = 0.38) and nitrate (r2 = 0.45) indicates the potential influence of anthropogenic emissions through long-range transport. Despite the lack of a clear association of IEPOX-OA with locally estimated aerosol acidity and liquid water content (LWC), box model calculations of IEPOX uptake using the simpleGAMMA model, accounting for the role of acidity and aerosol water, predicted the abundance of the IEPOX-derived SOA tracers 2-methyltetrols and the corresponding sulfates with good accuracy (r2 ~ 0.5 and ~ 0.7, respectively). The modeling and data combined suggest an anthropogenic influence on isoprene-derived SOA formation through acid-catalyzed heterogeneous chemistry of IEPOX in the southeastern US. However, it appears that this process was not limited by aerosol acidity or LWC at Look Rock during SOAS. Future studies should further explore the extent to which acidity and LWC as well as aerosol viscosity and morphology becomes a limiting factor of IEPOX-derived SOA, and their modulation by anthropogenic emissions.

  11. Comprehensive mapping and characteristic regimes of aerosol effects on the formation and evolution of pyro-convective clouds

    DOE PAGES

    Chang, D.; Cheng, Y.; Reutter, P.; ...

    2015-09-21

    Here, a recent parcel model study (Reutter et al., 2009) showed three deterministic regimes of initial cloud droplet formation, characterized by different ratios of aerosol concentrations (NCN) to updraft velocities. This analysis, however, did not reveal how these regimes evolve during the subsequent cloud development. To address this issue, we employed the Active Tracer High Resolution Atmospheric Model (ATHAM) with full microphysics and extended the model simulation from the cloud base to the entire column of a single pyro-convective mixed-phase cloud. A series of 2-D simulations (over 1000) were performed over a wide range of NCN and dynamic conditions. Themore » integrated concentration of hydrometeors over the full spatial and temporal scales was used to evaluate the aerosol and dynamic effects. The results show the following. (1) The three regimes for cloud condensation nuclei (CCN) activation in the parcel model (namely aerosol-limited, updraft-limited, and transitional regimes) still exist within our simulations, but net production of raindrops and frozen particles occurs mostly within the updraft-limited regime. (2) Generally, elevated aerosols enhance the formation of cloud droplets and frozen particles. The response of raindrops and precipitation to aerosols is more complex and can be either positive or negative as a function of aerosol concentrations. The most negative effect was found for values of NCN of ~ 1000 to 3000 cm–3. (3) The nonlinear properties of aerosol–cloud interactions challenge the conclusions drawn from limited case studies in terms of their representativeness, and ensemble studies over a wide range of aerosol concentrations and other influencing factors are strongly recommended for a more robust assessment of the aerosol effects.« less

  12. Comprehensive mapping and characteristic regimes of aerosol effects on the formation and evolution of pyro-convective clouds

    SciTech Connect

    Chang, D.; Cheng, Y.; Reutter, P.; Trentmann, J.; Burrows, S. M.; Spichtinger, P.; Nordmann, S.; Andreae, M. O.; Poschl, U.; Su, H.

    2015-09-21

    Here, a recent parcel model study (Reutter et al., 2009) showed three deterministic regimes of initial cloud droplet formation, characterized by different ratios of aerosol concentrations (NCN) to updraft velocities. This analysis, however, did not reveal how these regimes evolve during the subsequent cloud development. To address this issue, we employed the Active Tracer High Resolution Atmospheric Model (ATHAM) with full microphysics and extended the model simulation from the cloud base to the entire column of a single pyro-convective mixed-phase cloud. A series of 2-D simulations (over 1000) were performed over a wide range of NCN and dynamic conditions. The integrated concentration of hydrometeors over the full spatial and temporal scales was used to evaluate the aerosol and dynamic effects. The results show the following. (1) The three regimes for cloud condensation nuclei (CCN) activation in the parcel model (namely aerosol-limited, updraft-limited, and transitional regimes) still exist within our simulations, but net production of raindrops and frozen particles occurs mostly within the updraft-limited regime. (2) Generally, elevated aerosols enhance the formation of cloud droplets and frozen particles. The response of raindrops and precipitation to aerosols is more complex and can be either positive or negative as a function of aerosol concentrations. The most negative effect was found for values of NCN of ~ 1000 to 3000 cm–3. (3) The nonlinear properties of aerosol–cloud interactions challenge the conclusions drawn from limited case studies in terms of their representativeness, and ensemble studies over a wide range of aerosol concentrations and other influencing factors are strongly recommended for a more robust assessment of the aerosol effects.

  13. Using the Relationship between MODIS Aerosol Optical Thickness and OMI Trace Gas Columns to better understand Aerosol Formation and Chemical Composition

    NASA Astrophysics Data System (ADS)

    Veefkind, Pepijn; Boersma, Folkert; Wang, Jun; Levelt, Pieternel

    2010-05-01

    Aerosols are one of the leading uncertainties in global and regional climate change. One of the most important reasons for the limited understanding of the effects of aerosols is their strong temporal and spatial variability in chemical composition and size distribution. Important anthropogenic sources for aerosols are transportation, power plants, industries and biomass burning. Natural sources include windblown desert dust, sea spray, biogenic emissions, volcanoes, and biomass burning. Together, these sources form a complex chemical mixture of desert dust, sea salt, sulfates, nitrates and organic material. To better understand the Earth's climate system, accurate knowledge is needed on the complex relation between the emissions of precursor gases and primary aerosol particles, and aerosol composition. Satellite measurements have the horizontal and temporal coverage to assess the global effect of aerosols on climate. In addition to the information on aerosols, tropospheric columns of nitrogen dioxide (NO2), formaldehyde (HCHO) and sulfur dioxide (SO2) can be observed from space. In this contribution, the spatial and temporal correlations between AOT and tropospheric columns of NO2, SO2 and HCHO are used to derive information on the composition of the aerosols particles. Spatial correlation between AOT and NO2 indicate that the aerosols are from combustion processes, such as fossil fuel and biomass burning. The AOT to NO2 ratio provides zeroth order information on the combustion sources. This ratio is low for regions dominated by controlled fossil fuel combustion and high for biomass burning regions, whereas the difference of this ratio between these regions can be more than two orders of magnitude. Overall the GEOS-CHEM simulations can reproduce the observed AOT-NO2 ratios well. Spatial correlation between AOT and NO2 is found for many of the industrialized ad biomass burning regions in the world. Correlations with HCHO are especially important in biomass burning

  14. Secondary organic aerosol formation during the photooxidation of toluene: NOx dependence of chemical composition.

    PubMed

    Sato, Kei; Hatakeyama, Shiro; Imamura, Takashi

    2007-10-04

    The photooxidation of toluene is a potential source of secondary organic aerosol (SOA) in urban air, but only a small portion of the compounds present in SOA have been identified. In this study, we analyzed the chemical compositions of SOA produced by photoirradiation of the toluene/NOx/air system in laboratory chamber experiments by a combination of liquid chromatography-mass spectrometry, hybrid high-performance liquid chromatography-mass spectrometry, and iodometry-spectrophotometry. The dependence of the chemical composition on the initial NOx concentration was examined at initial NO concentrations ([NO]0) of 0.2 and 1 ppmv. Fifteen semivolatile products, including aromatic and ring-cleavage compounds, were quantified. However, the quantified products comprised only a small portion ( approximately 1 wt %) of the total aerosol mass. The total SOA yield ( approximately 13 wt %), the ratio of organic peroxides to total SOA mass ( approximately 17 wt %), and the density of SOA ( approximately 1.4 g cm-3) were independent of the NOx level, suggesting that the reaction mechanisms of the formation of major SOA products at [NO]0 = 0.2 and 1 ppmv are essentially the same. The negative-ion mass spectra of SOA samples showed that ion signals attributed to hemiacetal oligomers and/or decomposition products of peroxy hemiacetal oligomers were detected in the range of mass-to-charge ratios (m/z) between 200 and 500. The highest signals were detected at m/z = 155 and 177, and these were tentatively assigned to C7 unsaturated oxacyclic oxocarboxylic acids and C7 unsaturated oxacyclic dicarboxylic acids, respectively. We conclude that the major chemical components of the aerosol are hemiacetal and peroxy hemiacetal oligomers and low-molecular-weight dicarboxylic acids.

  15. Enhanced water vapor in Asian dust layer: Entrainment processes and implication for aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Yoon, Soon-Chang; Kim, Sang-Woo; Kim, Jiyoung; Sohn, Byung-Ju; Jefferson, Anne; Choi, Suk-Jin; Cha, Dong-Hyun; Lee, Dong-Kyou; Anderson, Theodore L.; Doherty, Sarah J.; Weber, Rodney J.

    The entrainment process of water vapor into the dust layer during Asian dust events and the effect of water vapor associated with the Asian dust layer (ADL) on aerosol hygroscopic properties are investigated. The entrainment processes of water vapor into the ADL is examined by using a PSU/NCAR MM5 together with the backward trajectory model, radiosonde data, and remotely sensed aerosol vertical distribution data. Two dust events in the spring of 1998 and 2001 are examined in detail. The results reveal that the water vapor mixing ratio (WVMR) derived by the MM5 fits in well with the WVMR observed by radiosonde, and is well coincident with the aerosol extinction coefficient ( σep) measured by the micro-pulse lidar. The temporal evolution of the vertical distributions of WVMR and σep exhibited similar features. On the basis of a well simulation of the enhanced water vapor within the dust layer by the MM5, we trace the dust storms to examine the entrainment mechanism. The enhancement of WVMR within the ADL was initiated over the mountainous areas. The relatively moist air mass in the well-developed mixing layer over the mountainous areas is advected upward from the boundary layer by an ascending motion. However, a large portion of the water vapor within the ADL is enhanced over the edge of a highland and the plains in China. This is well supported by the simulated WVMR and the wind vectors. Aircraft-based in situ measurements of the chemical and optical properties of aerosol enable a quantitative estimation of the effect of the enhanced WVMR on the aerosol hygroscopic properties. The submicron aerosol accompanied by the dust storm caused an increase of aerosol scattering through water uptakes during the transport. This increase could be explained by the chemical fact that water-soluble submicron pollution aerosols are enriched in the ADL.

  16. Reactive uptake of ammonia to secondary organic aerosols: kinetics of organonitrogen formation

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Liggio, J.; Staebler, R.; Li, S.-M.

    2015-06-01

    As a class of brown carbon, organonitrogen compounds originating from the heterogeneous uptake of NH3 by secondary organic aerosol (SOA) have received significant attention recently. In the current work, particulate organonitrogen formation during the ozonolysis of α-pinene and the OH oxidation of m-xylene in the presence of ammonia (34-125 ppb) is studied in a smog chamber equipped with a High Resolution Time-of-Flight Aerosol Mass Spectrometer and a Quantum Cascade Laser instrument. A large diversity of nitrogen containing organic (NOC) fragments was observed which were consistent with the reaction of ammonia with carbonyl containing SOA. The uptake coefficients of NH3 to SOA leading to organonitrogen compounds are reported for the first time and were in the range of ∼ 10-3-10-2, decreasing significantly to < 10-5 after 6 h of reaction. At the end of experiments (∼ 6 h) the NOC mass contributed 8.9 ± 1.7 and 31.5 ± 4.4 wt% to the total α-pinene and m-xylene derived SOA, and 4-15 wt% of the total nitrogen in the system. Uptake coefficients were also found to be positively correlated with particle acidity and negatively correlated with NH3 concentration, indicating that heterogeneous reactions were responsible for the observed NOC mass, possibly limited by liquid phase diffusion. Under these conditions, the data also indicate that the formation of NOC can compete kinetically with inorganic acid neutralization. The formation of NOC in this study suggests that a significant portion of the ambient particle associated N may be derived from NH3 heterogeneous reactions with SOA. NOC from such a mechanism may be an important and unaccounted for source of PM associated nitrogen, and a mechanism for medium or long-range transport and dry/wet deposition of atmospheric nitrogen.

  17. Reactive uptake of ammonia to secondary organic aerosols: kinetics of organonitrogen formation

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Liggio, J.; Staebler, R.; Li, S.-M.

    2015-12-01

    As a class of brown carbon, organonitrogen compounds originating from the heterogeneous uptake of NH3 by secondary organic aerosol (SOA) have received significant attention recently. In the current work, particulate organonitrogen formation during the ozonolysis of α-pinene and the OH oxidation of m-xylene in the presence of ammonia (34-125 ppb) was studied in a smog chamber equipped with a high resolution time-of-flight aerosol mass spectrometer and a quantum cascade laser instrument. A large diversity of nitrogen-containing organic (NOC) fragments was observed which were consistent with the reactions between ammonia and carbonyl-containing SOA. Ammonia uptake coefficients onto SOA which led to organonitrogen compounds were reported for the first time, and were in the range of ∼ 10-3-10-2, decreasing significantly to < 10-5 after 6 h of reaction. At the end of experiments (~ 6 h) the NOC mass contributed 8.9 ± 1.7 and 31.5 ± 4.4 wt % to the total α-pinene- and m-xylene-derived SOA, respectively, and 4-15 wt % of the total nitrogen in the system. Uptake coefficients were also found to be positively correlated with particle acidity and negatively correlated with NH3 concentration, indicating that heterogeneous reactions were responsible for the observed NOC mass, possibly limited by liquid phase diffusion. Under these conditions, the data also indicate that the formation of NOC can compete kinetically with inorganic acid neutralization. The formation of NOC in this study suggests that a significant portion of the ambient particle associated N may be derived from NH3 heterogeneous reactions with SOA. NOC from such a mechanism may be an important and unaccounted for source of PM associated nitrogen. This mechanism may also contribute to the medium or long-range transport and wet/dry deposition of atmospheric nitrogen.

  18. Contribution of Glyoxal to Secondary Organic Aerosol Formation in Los Angeles

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Young, C. J.; Brown, S. S.; Gilman, J. B.; Kuster, W. C.; de Gouw, J. A.

    2010-12-01

    Glyoxal (CHOCHO) is the simplest alpha-dicarbonyl and one of the most prevalent dicarbonyls in the atmosphere. It is an oxidation product of isoprene, and is also formed from the photooxidation of anthropogenic hydrocarbons, including aromatics and ethyne. In addition to its importance as a source of HOx, previous studies indicate that glyoxal reacts heterogeneously to form secondary organic aerosol. For the CalNex field campaign during summer 2010, we deployed a new glyoxal field instrument in Pasadena, California. This instrument consists of a broadband LED light source coupled to a cavity enhanced absorption spectrometer (IBBCEAS). The effective pathlength of the instrument is approximately 18 km. The measurement precision of the glyoxal instrument allows us to observe diurnal variability and trends. The glyoxal measurements were co-located with a comprehensive set of hydrocarbon measurements. These included the important photochemical precursors for CHOCHO, with measurements of isoprene, ethyne, ethene, monoterpenes, aromatics, and methylbutenol. We use the precursor concentrations to evaluate expected glyoxal concentrations. The difference between the expected gas-phase production of glyoxal and the measured concentrations indicates the contribution that glyoxal makes to secondary organic aerosol formation in Los Angeles.

  19. In-cloud measurements highlight the role of aerosol hygroscopicity in cloud droplet formation

    NASA Astrophysics Data System (ADS)

    Väisänen, Olli; Ruuskanen, Antti; Ylisirniö, Arttu; Miettinen, Pasi; Portin, Harri; Hao, Liqing; Leskinen, Ari; Komppula, Mika; Romakkaniemi, Sami; Lehtinen, Kari E. J.; Virtanen, Annele

    2016-08-01

    The relationship between aerosol hygroscopicity and cloud droplet activation was studied at the Puijo measurement station in Kuopio, Finland, during the autumn 2014. The hygroscopic growth of 80, 120 and 150 nm particles was measured at 90 % relative humidity with a hygroscopic tandem differential mobility analyzer. Typically, the growth factor (GF) distributions appeared bimodal with clearly distinguishable peaks around 1.0-1.1 and 1.4-1.6. However, the relative contribution of the two modes appeared highly variable reflecting the probable presence of fresh anthropogenic particle emissions. The hygroscopicity-dependent activation properties were estimated in a case study comprising four separate cloud events with varying characteristics. At 120 and 150 nm, the activation efficiencies within the low- and high-GF modes varied between 0-34 and 57-83 %, respectively, indicating that the less hygroscopic particles remained mostly non-activated, whereas the more hygroscopic mode was predominantly scavenged into cloud droplets. By modifying the measured GF distributions, it was estimated how the cloud droplet concentrations would change if all the particles belonged to the more hygroscopic group. According to κ-Köhler simulations, the cloud droplet concentrations increased up to 70 % when the possible feedback effects on effective peak supersaturation (between 0.16 and 0.29 %) were assumed negligible. This is an indirect but clear illustration of the sensitivity of cloud formation to aerosol chemical composition.

  20. Formation of Brown Aqueous Secondary Organic Aerosol during Multiphase Cloud Simulations using the CESAM Chamber Facility

    NASA Astrophysics Data System (ADS)

    Hawkins, L. N.; Welsh, H.; De Haan, D. O.; Doussin, J. F.; Pednekar, R.; Caponi, L.; Pangui, E.; Gratien, A.; Cazaunau, M.; Formenti, P.; Pajunoja, A.

    2015-12-01

    We investigated the formation of aqueous brown carbon (aqBrC) from methylglyoxal and methylamine in multiphase reactions using the CESAM chamber facility at the University Paris-Est Creteil. Following reaction in the chamber, droplets and particles were sampled with a Particle-Into-Liquid-Sampler (PILS), a capillary waveguide cell for UV/visible spectroscopy, and a total organic carbon analyzer (TOC). Particle size distributions were measured with a scanning mobility particle sizer and used to determine the mass absorption coefficient (a normalized absorbance measurement). Absorption spectra were recorded while aerosol or gas phase aqBrC precursors were introduced into the humid chamber. Sampling was continuous during and after cloud events. The events lasted 5-10 minutes and produced measurable brown carbon signal at 365 nm. When lights were used, absorbance at 365 nm decreased steadily indicating photobleaching of aqBrC products or preferential formation of different, non-absorbing products. Although absorptivity increases prior to cloud formation, cloud events produce sharp increased in aqBrC absorptivity. While measurable absorbance at 365 nm indicates aqBrC formation, very little absorbance was recorded beyond 450 nm indicating that the products were not as oligomerized as products observed in prior work in multi-day, bulk phase simulations.

  1. Secondary Organic Aerosol Formation by Molecular-Weight Building Reactions of Biogenic Oxidation Products

    NASA Astrophysics Data System (ADS)

    Barsanti, K.; Guenther, A.; Matsunaga, S.; Smith, J.

    2006-12-01

    Understanding the chemical composition of atmospheric organic aerosols (OA) remains one of the significant challenges to accurately representing OA in air quality and climate models. Meeting this challenge will require further understanding of secondary organic aerosols (SOA), of which biogenic emissions are thought to be major precursors. Of recent interest is the significance of higher-molecular weight (MW) compounds (i.e., "oligomers"). Theoretical, laboratory, and field study results suggest that relatively volatile oxidation products may contribute to SOA formation through multi-phase MW- building reactions. The significance of such reactions for biogenic SOA formation, including for newly considered precursors such as isoprene, is explored in this work. Theoretical and field studies are employed to: 1) identify MW-building reactions that may contribute to SOA formation in the atmosphere, 2) identify MW-building reaction products in ambient samples, and 3) parameterize atmospheric SOA formation by MW-building reactions of biogenic oxidation products. Likely reactions of biogenic oxidation products include ester, amide, and peroxyhemiacetal formation. Each of the proposed reactions involves known oxidation productions of biogenic precursors (e.g., carboxylic acids and aldehydes) reacting with one another and/or other atmospheric constituents (e.g., sulfuric acid and ammonia) to form higher-MW/lower-volatility products that can condense to form SOA. It has been suggested that products of MW-building reactions can revert to the parent reactants during sampling and analysis. Thus, relatively volatile compounds detected in ambient particle samples in fact may be decomposition products of higher-MW products. The contribution of relatively volatile biogenic oxidation products to SOA via ester, amide, and peroxyhemiacetal formation, as determined by studies based on fundamental thermodynamics and gas/particle partitioning theory, will be discussed; in addition to

  2. Sulfate Aerosol Formation and Oxidation Pathways on Haze Event over East Asia Region Focusing on Korea.

    NASA Astrophysics Data System (ADS)

    Choi, D.; Koo, Y. S.

    2014-12-01

    The aerosol transports from China largely contribute to high PM (Particulate Matter) concentration in Korea. Especially, secondary inorganic aerosol (SIA) such as nitrate, sulfate and ammonium are largely transported from China to Korea during haze event. The measured PM2.5 (Particle Matter with aerodynamic diameters less than 2.5㎛) concentrations at the supersite monitoring stations in Korea are normally over 100 ug/m3 and SIAs are major chemical species with more than 70% of PM2.5 during the event. According to our air quality forecast model, sulfate concentrations are largely under-predicted in winter and slightly over-predicted in summer. Those discrepancies between model predicted and observed sulfate concentrations are mainly due to uncertainties of precursor emissions of NOx, SO2, and VOCs (Volatile Organic Compounds) and chemical mechanism of the sulfate formation in the chemical forecast model of CMAQ (Community Multiscale Air Quality Model). Formation of sulfate is chemically linked to primary emissions of sulfur dioxide and to be abundancy of atmospheric oxidants such as hydroxyl radical, hydrogen peroxide, ozone, methyl hydroperoxide, and peroxyacetic acid. All of these oxidant species are formed via photochemical reactions with NOx and VOCs. The aim of this work is to investigate the dependency of sulfate formation on oxidant levels in winter and summer during episode event using CMAQ and its sulfate tracking probing tool. The sensitivity of the precursor emissions of SO2, NOx, VOCs and NH3 was also tested to understand the pathways of the sulfate formation. The results show that long range transport from China is a major factor to determine sulfate level in Korea during haze events and dominant mechanisms in the sulfate formation are the gas-phase OH and aqueous phase H2O2 reactions. NOx-SO2-VOCs chemical regimes for the sulfate formation is the VOCs limited regimes in Korea. The further details of the sensitivity run of the precursor emissions and

  3. Formation of secondary organic aerosol and oligomers from the ozonolysis of enol ethers

    NASA Astrophysics Data System (ADS)

    Sadezky, A.; Chaimbault, P.; Mellouki, A.; Römpp, A.; Winterhalter, R.; Le Bras, G.; Moortgat, G. K.

    2006-10-01

    Formation of secondary organic aerosol has been observed in the gas phase ozonolysis of a series of enol ethers, among them several alkyl vinyl ethers (AVE, ROCH=CH2), such as ethyl, propyl, n-butyl, iso-butyl, t-butyl vinyl ether, and ethyl propenyl ether (EPE, C2H5OCH=CHCH3). The ozonolysis has been studied in a 570 l spherical glass reactor at ambient pressure (730 Torr) and room temperature (296 K). Gas phase reaction products were investigated by in-situ FTIR spectroscopy, and secondary organic aerosol (SOA) formation was monitored by a scanning mobility particle sizer (SMPS). The chemical composition of the formed SOA was analysed by a hybrid mass spectrometer using electrospray ionization (ESI). The main stable gas phase reaction product is the respective alkyl formate ROC(O)H, formed with yields of 60 to 80%, implying that similar yields of the corresponding excited Criegee Intermediates (CI) CH2O2 for the AVE and CH3CHO2 for EPE are generated. Measured SOA yields are between 2 to 4% for all enol ethers. Furthermore, SOA formation is strongly reduced or suppressed by the presence of an excess of formic acid, which acts as an efficient CI scavenger. Chemical analysis of the formed SOA by ESI(+)/MS-TOF allows to identify oligomeric compounds in the mass range 200 to 800 u as its major constituents. Repetitive chain units are identified as CH2O2 (mass 46) for the AVE and C2H4O2 (mass 60) for EPE and thus have the same chemical compositions as the respective major Criegee Intermediates formed during ozonolysis of these ethers. The oligomeric structure and chain unit identity are confirmed by HPLC/ESI(+)/MS-TOF and ESI(+)/MS/MS-TOF experiments, whereby successive and systematic loss of a fragment with mass 46 for the AVE (and mass 60 for EPE) is observed. It is proposed that the oligomer has the following basic structure of an oligoperoxide, -[CH(R)-O-O]n-, where R=H for the AVE and R=CH3 for the EPE. Oligoperoxide formation is thus suggested to be another, so

  4. Formation of secondary organic aerosol and oligomers from the ozonolysis of enol ethers

    NASA Astrophysics Data System (ADS)

    Sadezky, A.; Chaimbault, P.; Mellouki, A.; Römpp, A.; Winterhalter, R.; Le Bras, G.; Moortgat, G. K.

    2006-06-01

    Formation of secondary organic aerosol has been observed in the gas phase ozonolysis of a series of enol ethers, among them several alkyl vinyl ethers (AVE, ROCH=CH2), such as ethyl, propyl, n-butyl, iso-butyl, t-butyl vinyl ether, and ethyl propenyl ether (EPE, C2H5OCH=CHCH3). The ozonolysis has been studied in a 570 l spherical glass reactor at atmospheric pressure (730 Torr) and temperature (296 K). Gas phase reaction products were investigated by in-situ FTIR spectroscopy, and secondary organic aerosol (SOA) formation was monitored by a scanning mobility particle sizer (SMPS). The chemical composition of the formed SOA was analysed by a hybrid mass spectrometer using electrospray ionization (ESI). The main stable gas phase reaction product is the respective alkyl formate ROC(O)H, formed with yields of 60 to 80%, implying that similar yields of the corresponding Criegee Intermediates (CI) CH2O2 for the AVE and CH3CHO2 for EPE are generated. Measured SOA yields are between 2 to 4% for all enol ethers. Furthermore, SOA formation is strongly reduced or suppressed by the presence of an excess of formic acid, which acts as an efficient CI scavenger. Chemical analysis of the formed SOA by ESI(+)/MS-TOF allows to identify oligomeric compounds in the mass range 200 to 800 u as its major constituents. Repetitive chain units are identified as CH2O2 (mass 46) for the AVE and C2H4O2 (mass 60) for EPE and thus have the same chemical compositions as the respective major Criegee Intermediates formed during ozonolysis of these ethers. The oligomeric structure and chain unit identity are confirmed by HPLC/ESI(+)/MS-TOF and ESI(+)/MS/MS-TOF experiments, whereby successive and systematic loss of a fragment with mass 46 for the AVE (and mass 60 for EPE) is observed. It is proposed that the oligomer has the following basic structure of an oligoperoxide, -[CH(R)-O-O]n-, where R=H for the AVE and R=CH3 for the EPE. Oligoperoxide formation is thus suggested to be another, so far

  5. AEROSOL GROWTH IN A STEADY-STATE, CONTINUOUS FLOW CHAMBER: APPLICATION TO STUDIES OF SECONDARY AEROSOL FORMATION

    EPA Science Inventory

    An analytical solution for the steady-state aerosol size distribution achieved in a steady-state, continuous flow chamber is derived, where particle growth is occurring by gas-to-particle conversion and particle loss is occurring by deposition to the walls of the chamber. The s...

  6. Characterization of Fe–Cr alloy metallic interconnects coated with LSMO using the aerosol deposition process

    SciTech Connect

    Huang, Jian-Jia; Fu, Yen-Pei; Wang, Jian-Yih; Cheng, Yung-Neng; Lee, Shyong; Hsu, Jin-Cherng

    2014-03-01

    Graphical abstract: - Highlights: • Lanthanum strontium manganite (LSMO) as the protective layer for metallic interconnects was successfully prepared by aerosol deposition method (AD). • The microstructure, electrical resistance and composition for LSMO-coated Fe–Cr alloys undergoing high temperature, long-hour oxidation were investigated. • The denser protective layer prepared by AD might effectively prohibit the growth of oxidized scale after long time running at 800 °C in air. - Abstract: A Fe–Cr alloy, used for metallic interconnects, was coated with a protective layer of lanthanum strontium manganite (LSMO) using the aerosol deposition method (AD). The effects of the LSMO protective layer, which was coated on the Fe–Cr interconnects using AD, on the area specific resistance (ASR) during high temperature oxidation and the Cr evaporation behaviors were systematically investigated in this paper. The microstructures, morphologies, and compositions of the oxidized scales that appeared on the LSMO-coated Fe–Cr alloy after annealing at 800 °C for 750 h in air were examined using SEM equipped with EDS. The EPMA mapping of the LSMO-coated Fe–Cr interconnects undergoing long term, high-temperature oxidation was used to explain the formation layers of the oxidized scale, which consists of (Mn,Cr){sub 3}O{sub 4} and Cr{sub 2}O{sub 3} layers. Moreover, the experimental results revealed that the AD process is a potential method for preparing denser protective layers with highly desirable electrical properties for metallic interconnects.

  7. Simulating the SOA formation of isoprene from partitioning and aerosol phase reactions in the presence of inorganics

    NASA Astrophysics Data System (ADS)

    Beardsley, Ross L.; Jang, Myoseon

    2016-05-01

    The secondary organic aerosol (SOA) produced by the photooxidation of isoprene with and without inorganic seed is simulated using the Unified Partitioning Aerosol Phase Reaction (UNIPAR) model. Recent work has found the SOA formation of isoprene to be sensitive to both aerosol acidity ([H+], mol L-1) and aerosol liquid water content (LWC) with the presence of either leading to significant aerosol phase organic mass generation and large growth in SOA yields (YSOA). Classical partitioning models alone are insufficient to predict isoprene SOA formation due to the high volatility of photooxidation products and sensitivity of their mass yields to variations in inorganic aerosol composition. UNIPAR utilizes the chemical structures provided by a near-explicit chemical mechanism to estimate the thermodynamic properties of the gas phase products, which are lumped based on their calculated vapor pressure (eight groups) and aerosol phase reactivity (six groups). UNIPAR then determines the SOA formation of each lumping group from both partitioning and aerosol phase reactions (oligomerization, acid-catalyzed reactions and organosulfate formation) assuming a single homogeneously mixed organic-inorganic phase as a function of inorganic composition and VOC / NOx (VOC - volatile organic compound). The model is validated using isoprene photooxidation experiments performed in the dual, outdoor University of Florida Atmospheric PHotochemical Outdoor Reactor (UF APHOR) chambers. UNIPAR is able to predict the experimental SOA formation of isoprene without seed, with H2SO4 seed gradually titrated by ammonia, and with the acidic seed generated by SO2 oxidation. Oligomeric mass is predicted to account for more than 65 % of the total organic mass formed in all cases and over 85 % in the presence of strongly acidic seed. The model is run to determine the sensitivity of YSOA to [H+], LWC and VOC / NOx, and it is determined that the SOA formation of isoprene is most strongly related to [H

  8. Simulating the SOA formation of isoprene from partitioning and aerosol phase reactions in the presence of inorganics

    NASA Astrophysics Data System (ADS)

    Beardsley, R. L.; Jang, M.

    2015-11-01

    The secondary organic aerosol (SOA) produced by the photooxidation of isoprene with and without inorganic seed is simulated using the Unified Partitioning Aerosol Phase Reaction (UNIPAR) model. Recent work has found the SOA formation of isoprene to be sensitive to both aerosol acidity ([H+]) and aerosol liquid water content (LWC) with the presence of either leading to significant aerosol phase organic mass generation and large growth in SOA yields (YSOA). Classical partitioning models alone are insufficient to predict isoprene SOA formation due to the high volatility of the photooxidation products and the sensitivity of their mass yields to variations in inorganic aerosol composition. UNIPAR utilizes the chemical structures provided by a near-explicit chemical mechanism to estimate the thermodynamic properties of the gas phase products, which are lumped based on their calculated vapor pressure (8 groups) and aerosol phase reactivity (6 groups). UNIPAR then determines the SOA formation of each lumping group from both partitioning and aerosol phase reactions (oligomerization, acid catalyzed reactions, and organosulfate formation) assuming a single homogeneously mixed organic-inorganic phase as a function of inorganic composition and VOC / NOx. The model is validated using isoprene photooxidation experiments performed in the dual, outdoor UF APHOR chambers. UNIPAR is able to predict the experimental SOA formation of isoprene without seed, with H2SO4 seed gradually titrated by ammonia, and with the acidic seed generated by SO2 oxidation. Oligomeric mass is predicted to account for more than 65 % of the total OM formed in all cases and over 85 % in the presence of strongly acidic seed. The model is run to determine the sensitivity of YSOA to [H+], LWC, and VOC / NOx, and it is determined that the SOA formation of isoprene is most strongly related to [H+] but is dynamically related to all three parameters. For VOC / NOx > 10, with increasing NOx both experimental and

  9. Modeling the Role of Alkanes, Polycyclic Aromatic Hydrocarbons, and Their Oligomers in Secondary Organic Aerosol Formation

    EPA Science Inventory

    A computationally efficient method to treat secondary organic aerosol (SOA) from various length and structure alkanes as well as SOA from polycyclic aromatic hydrocarbons (PAHs) is implemented in the Community Multiscale Air Quality (CMAQ) model to predict aerosol concentrations ...

  10. Lessons Learned About Organic Aerosol Formation in the Southeast U.S. Using Observations and Modeling

    EPA Science Inventory

    Isoprene emitted by vegetation is an important precursor of secondary organic aerosol (SOA). In this work, modeling of isoprene SOA via heterogeneous uptake is explored and compared to observations from the Southern Oxidant and Aerosol Study (SOAS).

  11. Formation of semivolatile inorganic aerosols in the Mexico City Metropolitan Area during the MILAGRO campaign

    NASA Astrophysics Data System (ADS)

    Karydis, V. A.; Tsimpidi, A. P.; Lei, W.; Molina, L. T.; Pandis, S. N.

    2011-12-01

    One of the most challenging tasks for chemical transport models (CTMs) is the prediction of the formation and partitioning of the major semi-volatile inorganic aerosol components (nitrate, chloride, ammonium) between the gas and particulate phases. In this work the PMCAMx-2008 CTM, which includes the recently developed aerosol thermodynamic model ISORROPIA-II, is applied in the Mexico City Metropolitan Area in order to simulate the formation of the major inorganic aerosol components. The main sources of SO2 (such as the Miguel Hidalgo Refinery and the Francisco Perez Rios Power Plant) in the Mexico City Metropolitan Area (MCMA) are located in Tula, resulting in high predicted PM1 (particulate matter with diameter less than 1 μm) sulfate concentrations (over 25 μg m-3) in that area. The average predicted PM1 nitrate concentrations are up to 3 μg m-3 (with maxima up to 11 μg m-3) in and around the urban center, mostly produced from local photochemistry. The presence of calcium coming from the Tolteca area (7 μg m-3) as well as the rest of the mineral cations (1 μg m-3 potassium, 1 μg m-3 magnesium, 2 μg m-3 sodium, and 3 μg m-3 calcium) from the Texcoco Lake resulted in the formation of a significant amount of aerosol nitrate in the coarse mode with concentrations up to 3 μg m-3 over these areas. PM1-10 (particulate matter with diameter between 1 and 10 μm) chloride is also high and its concentration exceeds 2 μg m-3 in Texcoco Lake. PM1 ammonium concentrations peak at the center of Mexico City (2 μg m-3) and the Tula vicinity (2.5 μg m-3). The performance of the model for the major inorganic PM components (sulfate, ammonium, nitrate, chloride, sodium, calcium, and magnesium) is encouraging. At the T0 measurement site, located in the Mexico City urban center, the average measured values of PM1 sulfate, nitrate, ammonium, and chloride are 3.5 μg m-3, 3.5 μg m-3, 2.1 μg m-3, and 0.36 μg m-3, respectively. The corresponding predicted values are 3.7

  12. Incorporation of new particle formation and early growth treatments into WRF/Chem: Model improvement, evaluation, and impacts of anthropogenic aerosols over East Asia

    NASA Astrophysics Data System (ADS)

    Cai, Changjie; Zhang, Xin; Wang, Kai; Zhang, Yang; Wang, Litao; Zhang, Qiang; Duan, Fengkui; He, Kebin; Yu, Shao-Cai

    2016-01-01

    New particle formation (NPF) provides an important source of aerosol particles and cloud condensation nuclei, which may result in enhanced cloud droplet number concentration (CDNC) and cloud shortwave albedo. In this work, several nucleation parameterizations and one particle early growth parameterization are implemented into the online-coupled Weather Research and Forecasting model coupled with chemistry (WRF/Chem) to improve the model's capability in simulating NPF and early growth of ultrafine particles over East Asia. The default 8-bin over the