Science.gov

Sample records for aerosol forming potential

  1. Cloud Forming Potential of Aminium Carboxylate Aerosols

    NASA Astrophysics Data System (ADS)

    Gomez Hernandez, M. E.; McKeown, M.; Taylor, N.; Collins, D. R.; Lavi, A.; Rudich, Y.; Zhang, R.

    2014-12-01

    Atmospheric aerosols affect visibility, air quality, human health, climate, and in particular the aerosol direct and indirect forcings represent the largest uncertainty in climate projections. In this paper, we present laboratory measurements of the hygroscopic growth factors (HGf) and cloud condensation nuclei (CCN) activity of a series of aminium carboxylate salt aerosols, utilizing a Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) coupled to a Condensation Particle Counter (CPC) and a CCN counter. HGf measurements were conducted for size-selected aerosols with diameters ranging from 46 nm to 151 nm and at relative humidity (RH%) values ranging from 10 to 90%. In addition, we have calculated the CCN activation diameters for the aminium carboxylate aerosols and derived the hygroscopicity parameter (k or kappa) values for all species using three methods, i.e., the mixing rule approximation, HGf, and CCN results. Our results show that variations in the ratio of acid to base directly affect the activation diameter, HGf, and (k) values of the aminium carboxylate aerosols. Atmospheric implications of the variations in the chemical composition of aminium carboxylate aerosols on their cloud forming potential will be discussed.

  2. The atmospheric aerosol-forming potential of whole gasoline vapor

    SciTech Connect

    Odum, J.R.; Jungkamp, T.P.W.; Griffin, R.J.

    1997-04-04

    A series of sunlight-irradiated, smog-chamber experiments confirmed that the atmosphere organic aerosol formation potential of whole gasoline vapor can be accounted for solely in terms of the aromatic fraction of the fuel. The total amount of secondary organic aerosol produced from the atmospheric oxidation of whole gasoline vapor can be represented as the sum of the contributions of the individual aromatic molecular constituents of the fuel. The urban atmospheric, anthropogenic hydrocarbon profile is approximated well by evaporated whole gasoline, and thus these results suggest that it is possible to model atmospheric secondary organic aerosol formation. 23 refs., 3 figs., 2 tabs.

  3. Cloud forming potential of oligomers relevant to secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Xu, Wen; Guo, Song; Gomez-Hernandez, Mario; Zamora, Misti L.; Secrest, Jeremiah; Marrero-Ortiz, Wilmarie; Zhang, Annie L.; Collins, Don R.; Zhang, Renyi

    2014-09-01

    The hygroscopic growth factor (HGF) and cloud condensation nuclei (CCN) activity are measured for surrogates that mimic atmospherically relevant oligomers, including glyoxal trimer dihydrate, methyl glyoxal trimer dihydrate, sucrose, methyl glyoxal mixtures with sulfuric acid and glycolic acid, and 2,4-hexandienal mixtures with sulfuric acid and glycolic acid. For the single-component aerosols, the measured HGF ranges from 1.3 to 1.4 at a relative humidity of 90%, and the hygroscopicity parameter (κ) is in the range of 0.06 to 0.19 on the basis of the measured CCN activity and 0.13 to 0.22 on the basis of the measured HGF, compared to the calculated values of 0.08 to 0.16. Large differences exist in the κ values derived using the measured HGF and CCN data for the multi-component aerosols. Our results reveal that, in contrast to the oxidation process, oligomerization decreases particle hygroscopicity and CCN activity and provides guidance for analyzing the organic species in ambient aerosols.

  4. Elemental sulfur aerosol-forming mechanism

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Francisco, Joseph S.

    2017-01-01

    Elemental sulfur aerosols are ubiquitous in the atmospheres of Venus, ancient Earth, and Mars. There is now an evolving body of evidence suggesting that these aerosols have also played a role in the evolution of early life on Earth. However, the exact details of their formation mechanism remain an open question. The present theoretical calculations suggest a chemical mechanism that takes advantage of the interaction between sulfur oxides, SOn (n = 1, 2, 3) and hydrogen sulfide (nH2S), resulting in the efficient formation of a Sn+1 particle. Interestingly, the SOn + nH2S → Sn+1 + nH2O reactions occur via low-energy pathways under water or sulfuric acid catalysis. Once the Sn+1 particles are formed, they may further nucleate to form larger polysulfur aerosols, thus providing a chemical framework for understanding the formation mechanism of S0 aerosols in different environments.

  5. Separating Cloud Forming Nuclei from Interstitial Aerosol

    SciTech Connect

    Kulkarni, Gourihar R.

    2012-09-12

    It has become important to characterize the physicochemical properties of aerosol that have initiated the warm and ice clouds. The data is urgently needed to better represent the aerosol-cloud interaction mechanisms in the climate models. The laboratory and in-situ techniques to separate precisely the aerosol particles that act as cloud condensation nuclei (CCN) and ice nuclei (IN), termed as cloud nuclei (CN) henceforth, have become imperative in studying aerosol effects on clouds and the environment. This review summarizes these techniques, design considerations, associated artifacts and challenges, and briefly discusses the need for improved designs to expand the CN measurement database.

  6. Characteristics of aerosolized ice forming marine biogenic particles

    NASA Astrophysics Data System (ADS)

    Alpert, Peter A.

    atomus and Emiliania huxleyi, cells and cell fragments efficiently nucleate ice in the deposition mode, however, only T. pseudonana and N. atomus form ice in the immersion mode, presumably due to different cell wall compositions. This further corroborates the role of phytoplanktonic species for aerosolization of marine biogenic cloud active particles. Experimental data are used to parameterize marine biogenic particle fluxes and heterogeneous ice nucleation as a function of biological activity. The atmospheric implications of the results and their implementation into cloud and climate models are discussed.

  7. Aerosol pollution potential from major population centers

    NASA Astrophysics Data System (ADS)

    Kunkel, D.; Tost, H.; Lawrence, M. G.

    2012-09-01

    Major population centers (MPCs) or mega-cities represent the largest of growing urban agglomerations with major societal and environmental implications. In terms of air quality they are seen as localized but strong emission sources of aerosols and trace gases which in turn affect air pollution levels in the city or in downwind regions. In the state-of-the-art atmospheric chemistry general circulation model EMAC, generic aerosol and gas phase tracers with equal emission source strengths at 46 MPC locations are used to study the balance between local pollution build up and pollution export, either vertically into the upper troposphere or horizontally, but remaining in the lower atmosphere. The insoluble gas phase tracers with fixed lifetimes are transported with the atmospheric circulation, while the aerosol tracers also undergo gravitational sedimentation as well as dry and wet deposition processes. The strength of low-level tracer export depends on the location of the emission source and prevailing meteorology, in particular on atmospheric stability and the height of the boundary layer and the mixing out of this layer. In contrast, vertical transport of tracer mass depends on the tracer's solubility: the more soluble a tracer is the less mass reaches altitudes above five kilometers. Hence, the mass of insoluble gas phase tracer above five kilometers can be up to ten times higher than the hydrophilic aerosol mass from the same source. In the case of aerosol tracers, pollution build up around the source is determined by meteorological factors which have only indirect effects on tracer lifetime, like surface wind, boundary layer height, and turbulent mixing as well as those which affect the lifetime of the tracers such as precipitation. The longer a tracer stays in the atmosphere, the lower is the relative importance of the location of the source to the atmospheric mass and thus the lower is the relative local pollution build up. We further use aerosol deposition

  8. Aerosol pollution potential from major population centers

    NASA Astrophysics Data System (ADS)

    Kunkel, D.; Tost, H.; Lawrence, M. G.

    2013-04-01

    Major population centers (MPCs), or megacities, represent the largest of growing urban agglomerations with major societal and environmental implications. In terms of air quality, they are seen as localized but strong emission sources of aerosols and trace gases which in turn affect air pollution levels in the city or in downwind regions. In the state-of-the-art atmospheric chemistry general circulation model EMAC, generic aerosol and gas-phase tracers with equal emission source strengths at 46 MPC locations are used to study the balance between local pollution build-up and pollution export, either vertically into the upper troposphere or horizontally in the lower troposphere. The insoluble gas-phase tracers with fixed lifetimes are transported with the atmospheric circulation, while the aerosol tracers also undergo gravitational sedimentation as well as dry and wet deposition processes. The strength of low-level tracer export depends on the location of the emission source and prevailing meteorology, in particular on atmospheric stability and the height of the boundary layer and the mixing out of this layer. In contrast, vertical transport of tracer mass depends on the tracer's solubility: the more soluble a tracer is, the less mass reaches altitudes above five kilometers. Hence, the mass of insoluble gas-phase tracer above five kilometers can be up to ten times higher than the hydrophilic aerosol mass from the same source. In the case of aerosol tracers, pollution build-up around the source is determined by meteorological factors which have only indirect effects on tracer lifetime, like surface wind, boundary layer height, and turbulent mixing, as well as those which affect the lifetime of the tracers such as precipitation. The longer a tracer stays in the atmosphere, the lower is the relative importance of the location of the source to the atmospheric mass, and thus the lower is the relative local pollution build-up. We further use aerosol deposition fields to

  9. Potential of Aerosol Liquid Water to Facilitate Organic Aerosol Formation: Assessing Knowledge Gaps about Precursors and Partitioning.

    PubMed

    Sareen, Neha; Waxman, Eleanor M; Turpin, Barbara J; Volkamer, Rainer; Carlton, Annmarie G

    2017-03-06

    Isoprene epoxydiol (IEPOX), glyoxal, and methylglyoxal are ubiquitous water-soluble organic gases (WSOGs) that partition to aerosol liquid water (ALW) and clouds to form aqueous secondary organic aerosol (aqSOA). Recent laboratory-derived Setschenow (or salting) coefficients suggest glyoxal's potential to form aqSOA is enhanced by high aerosol salt molality, or "salting-in". In the southeastern U.S., aqSOA is responsible for a significant fraction of ambient organic aerosol, and correlates with sulfate mass. However, the mechanistic explanation for this correlation remains elusive, and an assessment of the importance of different WSOGs to aqSOA is currently missing. We employ EPA's CMAQ model to the continental U.S. during the Southern Oxidant and Aerosol Study (SOAS) to compare the potential of glyoxal, methylglyoxal, and IEPOX to partition to ALW, as the initial step toward aqSOA formation. Among these three studied compounds, IEPOX is a dominant contributor, ∼72% on average in the continental U.S., to potential aqSOA mass due to Henry's Law constants and molecular weights. Glyoxal contributes significantly, and application of the Setschenow coefficient leads to a greater than 3-fold model domain average increase in glyoxal's aqSOA mass potential. Methylglyoxal is predicted to be a minor contributor. Acid or ammonium - catalyzed ring-opening IEPOX chemistry as well as sulfate-driven ALW and the associated molality may explain positive correlations between SOA and sulfate during SOAS and illustrate ways in which anthropogenic sulfate could regulate biogenic aqSOA formation, ways not presently included in atmospheric models but relevant to development of effective control strategies.

  10. Skin exposure to deodorants/antiperspirants in aerosol form.

    PubMed

    Steiling, W; Buttgereit, P; Hall, B; O'Keeffe, L; Safford, B; Tozer, S; Coroama, M

    2012-06-01

    Many cosmetic products are available in spray form. Even though the principal targets of these products are the skin and hair, spraying leads to the partitioning of the product between the target and the surrounding air. In the previous COLIPA study (Hall et al., 2007) the daily use of deodorant/antiperspirant (Deo/AP) in spray form was quantified in terms of the amount of product dispensed from the spray can, without specifically quantifying the product fraction reaching the skin during use. Results of the present study provide this additional information, necessary for a reliable safety assessment of sprayed Deo/AP products. In a novel experimental approach the information obtained from real-life movement analysis (automated motion imaging) of volunteers using their own products was integrated with the aerosol cloud sampling data obtained from the same products, leading to the computation of the product deposited on the skin. The 90th percentile values, expressed as percent deposition relative to the can weight loss after spraying, are 23.5% and 11.4% for ethanol-based and non-ethanol-based products, respectively. Additionally, the study has generated data on the skin area covered by the products, spray duration time, spray angle and spray distance from the skin.

  11. Potential Climate Effects of Dust Aerosols' over West Africa

    NASA Astrophysics Data System (ADS)

    JI, Z.; Wang, G.; Pal, J. S.; Yu, M.

    2014-12-01

    Climate in West Africa is under the influence of the West African monsoon circulation and mineral dust emitted from the Sahara desert (which is the world's largest source of mineral dust emission). Dust aerosols alter the atmospheric radiative fluxes and act as cloud condensation nuclei in the process of emission, transportation and deposition. However, our understanding regarding how dust aerosols influence the present-day and future climate of West Africa is very limited. In this study, a regional climate model RegCM4.3.4-CLM4.5 is used to investigate the potential climatic effects of dust aerosols both in present (1981-2000) and future (2081-2100) periods over WA. First, the model performance and dust climatic effects are evaluated. The contribution of dust climatic effects under RCP8.5 scenario and their confounding effects with land use change are assessed. Our results indicate that the model can reproduce with reasonable accuracy the spatial and temporal distribution of climatology, aerosol optical depth and surface concentration over WA. The shortwave radiative forcing of dust is negative in the surface and positive in the atmosphere, with greater changes in JJA and MAM compared to those in SON and DJF. Over most of West Africa, cooling is the dominant effect on temperature. Their impact on precipitation features a dipole pattern, with decrease in the north and increase in the south of West Africa. Despite the dust-induced decrease of precipitation amount, dusts cause extreme precipitation to increase. To evaluate the uncertainties surrounding our modeling results, sensitivity experiments driven by ICBC from MIROC-ESM and CESM and their dynamic downscaling results are used for comparisons. Results from these sensitivity experiments indicate that the impact of dust aerosols on present and future climate is robust.

  12. Aerosols formed from the chemical reaction of monoterpenes and ozone

    NASA Astrophysics Data System (ADS)

    Yokouchi, Y.; Ambe, Y.

    Chamber experiments were conducted to study the aerosol products from the ozonolysis of the major atmospheric monoterpenes; α-pinene, β-pinene and limonene. It was found that the α-pinene-O 3 reaction produced mainly 2', 2'-dimethyl-3'-acetyl cyclobutyl ethanal (pinonaldehyde), the β-pinene-O 3 reaction, mainly 6,6-dimethyl-bicyclo [3.1.1] heptan-2-one and the limonene-O 3 reaction, several unidentified products. These products were sought in forest aerosols and pinonaldehyde was detected in the atmosphere.

  13. Aerosols formed from the chemical reaction of monoterpenes and ozone

    NASA Astrophysics Data System (ADS)

    Yokouchi, Y.; Ambe, Y.

    Chamber experiments were conducted to study the aerosol products from the ozonolysis of the major atmospheric monoterpenes; α-pinene, β-pinene and limonene. It was found that the α-pinend-O 3 reaction produced mainly 2'. 2'-dimethyl-3'-acetyl cyclobutyl ethanal (pinonaldehyde), the β-pinene-O 3 reaction, mainly 6,6-dimethyl-bicyclo [3.1.1] heptan-2-one and the limonene-O 3 reaction, several unidentified products. These products were sought in forest aerosols and pinonaldehyde was detected in the atmosphere.

  14. Aerosols

    Atmospheric Science Data Center

    2013-04-17

    ... article title:  Aerosols over Central and Eastern Europe     View Larger Image ... last weeks of March 2003, widespread aerosol pollution over Europe was detected by several satellite-borne instruments. The Multi-angle ...

  15. Combustion aerosols formed during burning of radioactively contaminated materials: Experimental results

    SciTech Connect

    Halverson, M.A.; Ballinger, M.Y.; Dennis, G.W.

    1987-03-01

    Safety assessments and environmental impact statements for nuclear fuel cycle facilities require an estimate of potential airborne releases. Radioactive aerosols generated by fires were investigated in experiments in which combustible solids and liquids were contaminated with radioactive materials and burned. Uranium in powder and liquid form was used to contaminate five fuel types: polychloroprene, polystyrene, polymethylmethacrylate, cellulose, and a mixture of 30% tributylphosphate (TBP) in kerosene. Heat flux, oxygen concentration, air flow, contaminant concentration, and type of ignition were varied in the experiments. The highest release (7.1 wt %) came from burning TBP/kerosene over contaminated nitric acid. Burning cellulose contaminated with uranyl nitrate hexahydrate liquid gave the lowest release (0.01 wt %). Rate of release and particle size distribution of airborne radioactive particles were highly dependent on the type of fuel burned.

  16. Can Secondary Organic Aerosol Formed in Atmospheric Simulation Chamber Be Continuously Aging?

    NASA Astrophysics Data System (ADS)

    Qi, L.; Nakao, S.; Malloy, Q.; Warren, B.; Cocker, D.

    2009-12-01

    Recent smog chamber studies have found that the oxidative processing (i.e. aging) of organic aerosol affects the chemical and physical properties for both aromatic and terpene aerosol precursors. Evidence from laboratory experiments suggests that organic aerosol can be converted from a hydrophobic to a hydrophilic state with aging. Several possible chemical mechanisms have been proposed based on chamber studies from other research groups e.g. heterogeneous reaction at the particle surface. Previous experiments conducted in the UC Riverside/CE-CERT environment chamber have shown little evidence of particle aging in terms of changes in hygroscopic properties from α-pinene dark ozonolysis systems. In this study, we simulate chemical aging of carbonaceous aerosol generated from α-pinene ozonolysis, α-pinene photooxidation and m-xylene photooxidation with an emphasis on the further uptake of oxidants, the evolution of aerosol hygroscopicity, particle density and elemental chemical composition (C:O:H) estimated from aerosol mass spectra to further investigate chamber secondary organic aerosol (SOA) aging behavior. Experimental results indicate that the SOA formed from photooxidation systems do get more functionalized as the oxidative age process go while dark ozonolysis SOA do not show aging phenomena within the normal chamber experiment duration.

  17. Contributions of organic peroxides to secondary aerosol formed from reactions of monoterpenes with O3.

    PubMed

    Docherty, Kenneth S; Wu, Wilbur; Lim, Yong Bin; Ziemann, Paul J

    2005-06-01

    The role of organic peroxides in secondary organic aerosol (SOA) formation from reactions of monoterpenes with O3 was investigated in a series of environmental chamber experiments. Reactions were performed with endocyclic (alpha-pinene and delta3-carene) and exocyclic (beta-pinene and sabinene) alkenes in dry and humid air and in the presence of the OH radical scavengers: cyclohexane, 1-propanol, and formaldehyde. A thermal desorption particle beam mass spectrometer was used to probe the identity and volatility of SOA components, and an iodometric-spectrophotometric method was used to quantify organic peroxides. Thermal desorption profiles and mass spectra showed that the most volatile SOA components had vapor pressures similar to pinic acid and that much of the SOA consisted of less volatile species that were probably oligomeric compounds. Peroxide analyses indicated that the SOA was predominantly organic peroxides, providing evidence that the oligomers were mostly peroxyhemiacetals formed by heterogeneous reactions of hydroperoxides and aldehydes. For example, it was estimated that organic peroxides contributed approximately 47 and approximately 85% of the SOA mass formed in the alpha- and beta-pinene reactions, respectively. Reactions performed with different OH radical scavengers indicated that most of the hydroperoxides were formed through the hydroperoxide channel rather than by reactions of stabilized Criegee intermediates. The effect of the OH radical scavenger on the SOA yield was also investigated, and the results were consistent with results of recent experiments and model simulations that support a mechanism based on changes in the [HO2]/[RO2] ratios. These are the first measurements of organic peroxides in monoterpene SOA, and the results have important implications for understanding the mechanisms of SOA formation and the potential effects of atmospheric aerosol particles on the environment and human health.

  18. Infrared spectroscopy and Mie scattering of acetylene aerosols formed in a low temperature diffusion cell

    NASA Technical Reports Server (NTRS)

    Dunder, T.; Miller, R. E.

    1990-01-01

    A method is described for forming and spectroscopically characterizing cryogenic aerosols formed in a low temperature gas cell. By adjusting the cell pressure, gas composition and flow rate, the size distribution of aerosol particles can be varied over a wide range. The combination of pressure and flow rate determine the residence time of the aerosols in the cell and hence the time available for the particles to grow. FTIR spectroscopy, over the range from 600/cm to 6000/cm, is used to characterize the aerosols. The particle size distribution can be varied so that, at one extreme, the spectra show only absorption features associated with the infrared active vibrational bands and, at the other, they display both absorption and Mie scattering. In the latter case, Mie scattering theory is used to obtain semiquantitative aerosol size distributions, which can be understood in terms of the interplay between nucleation and condensation. In the case of acetylene aerosols, the infrared spectra suggest that the particles exist in the high temperature cubic phase of the solid.

  19. Particle size analysis of radioactive aerosols formed by irradiation of argon using 65 MeV quasi-monoenergetic neutrons.

    PubMed

    Endo, A; Noguchi, H; Tanaka, Su; Kanda, Y; Oki, Y; Iida, T; Sato, K; Tsuda, S

    2002-04-01

    The size distributions of 38Cl and 39Cl aerosols formed from the irradiation of argon gas containing di-octyl phthalate (DOP) aerosols by 65 MeV quasi-monoenergetic neutrons were measured to study the formation mechanism of radioactive aerosols in high-energy radiation fields. Both the number size distribution and the activity-weighted size distribution were measured using an electrical low-pressure impactor. It was found that the 35Cl and 39Cl aerosols are formed by attachment of the radioactive atoms generated by the neutron-induced reaction to the DOP aerosol particles.

  20. Aldol Condensation Products and Polyacetals in Organic Films Formed from Reactions of Propanal in Sulfuric Acid at Upper Troposphere/Lower Stratosphere (UT/LS) Aerosol Acidities

    NASA Astrophysics Data System (ADS)

    Bui, J. V. H.; Perez-Montano, S.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.; Van Wyngarden, A. L.

    2015-12-01

    Aerosols in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt. %) which is highly reflective towards UV and visible radiation. However, airborne measurements have shown that these particles may also contain a significant amount of organic material. Experiments combining organics (propanal, glyoxal and/or methylglyoxal) with sulfuric acid at concentrations typical of UT/LS aerosols produced highly colored surface films (and solutions) that have the potential to impact chemical, optical and/or cloud-forming properties of aerosols. In order to assess the potential for such films to impact aerosol chemistry or climate properties, experiments were performed to identify the chemical processes responsible for film formation. Surface films were analyzed via Attenuated Total Reflectance-FTIR and Nuclear Magnetic Resonance spectroscopies and are shown to consist primarily of aldol condensation products and cyclic and linear polyacetals, the latter of which are likely responsible for separation from the aqueous phase.

  1. Potential indirect effects of aerosol on tropical cyclone development

    NASA Astrophysics Data System (ADS)

    Krall, Geoffrey

    Observational and model evidence suggest that a 2008 Western Pacific typhoon (NURI) came into contact with and ingested elevated concentrations of aerosol as it neared the Chinese coast. This study uses a regional model with two-moment bin emulating microphysics to simulate the typhoon as it enters the field of elevated aerosol concentration. A continental field of cloud condensation nuclei (CCN) was prescribed based on satellite and global aerosol model output, then increased for further sensitivity tests. The typhoon was simulated for 96 hours beginning 17 August 2008, the final 60 of which were under varying CCN concentrations as it neared the Philippines and coastal China. The model was initialized with both global reanalysis model data and irregularly spaced dropsonde data from a 2008 observational campaign using an objective analysis routine. At 36 hours, the internal nudging of the model was switched off and allowed to evolve on its own. As the typhoon entered the field of elevated CCN in the sensitivity tests, the presence of additional CCN resulted in a significant perturbation of windspeed, convective fluxes, and hydrometeor species behavior. Initially ingested in the outer rainbands of the storm, the additional CCN resulted in an initial damping and subsequent invigoration of convection. The increase in convective fluxes strongly lag-correlates with increased amounts of supercooled liquid water within the storm domain. As the convection intensified in the outer rainbands the storm drifted over the developing cold-pools, affecting the inflow of air into the convective towers of the typhoon. Changes in the timing and amount of rain produced in each simulation resulted in differing cold-pool strengths and size. The presence of additional CCN increased resulted in an amplification of convection within the storm, except for the extremely high CCN concentration simulation, which showed a damped convection due to the advection of pristine ice away from the

  2. Gas phase emissions from cooking processes and their secondary aerosol production potential

    NASA Astrophysics Data System (ADS)

    Klein, Felix; Platt, Stephen; Bruns, Emily; Termime-roussel, Brice; Detournay, Anais; Mohr, Claudia; Crippa, Monica; Slowik, Jay; Marchand, Nicolas; Baltensperger, Urs; Prevot, Andre; El Haddad, Imad

    2014-05-01

    Long before the industrial evolution and the era of fossil fuels, high concentrations of aerosol particles were alluded to in heavily populated areas, including ancient Rome and medieval London. Recent radiocarbon measurements (14C) conducted in modern megacities came as a surprise: carbonaceous aerosol (mainly organic aerosol, OA), a predominant fraction of particulate matter (PM), remains overwhelmingly non-fossil despite extensive fossil fuel combustion. Such particles are directly emitted (primary OA, POA) or formed in-situ in the atmosphere (secondary OA, SOA) via photochemical reactions of volatile organic compounds (VOCs). Urban levels of non-fossil OA greatly exceed the levels measured in pristine environments strongly impacted by biogenic emissions, suggesting a contribution from unidentified anthropogenic non-fossil sources to urban OA. Positive matrix factorization (PMF) techniques applied to ambient aerosol mass spectrometer (AMS, Aerodyne) data identify primary cooking emissions (COA) as one of the main sources of primary non-fossil OA in major cities like London (Allan et al., 2010), New York (Sun et al., 2011) and Beijing (Huang et al., 2010). Cooking processes can also emit VOCs that can act as SOA precursors, potentially explaining in part the high levels of oxygenated OA (OOA) identified by the AMS in urban areas. However, at present, the chemical nature of these VOCs and their secondary aerosol production potential (SAPP) remain virtually unknown. The approach adopted here involves laboratory quantification of PM and VOC emission factors from the main primary COA emitting processes and their SAPP. Primary emissions from deep-fat frying, vegetable boiling, vegetable frying and meat cooking for different oils, meats and vegetables were analysed under controlled conditions after ~100 times dilution. A high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a high resolution proton transfer time-of-flight mass spectrometer (PTR

  3. Potential Impacts of Pollution Aerosol and Dust Acting As Cloud-Nucleating Aerosol on Precipitation in the Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Jha, V.; Cotton, W. R.; Carrio, G. G.

    2014-12-01

    The southwest US has huge demands on water resources. The Colorado River Basin (CRB) is potentially affected by anthropogenic aerosol pollution and dust acting as cloud-nucleating aerosol as well as impacting snowpack albedo.The specific objective of this research is to quantify the impacts of both dust and pollution aerosols on wintertime precipitation in the Colorado Mountains for the years 2005-2006. We examine the combined effects of anthropogenic pollution aerosol and dust serving as cloud condensation nuclei (CCN), ice nuclei (IN) and giant CCN(GCCN) on precipitation in the CRB. Anthropogenic pollution can enhance droplet concentrations, and decrease collision and coalescence and ice particle riming largely via the "spillover" effect. Dust can serve as IN and enhance precipitation in wintertime orographic clouds. Dust coated with sulfates or originating over dry lake beds can serve as GCCN which when wetted can result in larger cloud droplets and thereby enhance the warm-rain collision and coalescence process and ice particle riming. But smaller dust particles coated with sulfates, can decrease collision and coalescence and ice particle riming similar to anthropogenic pollution aerosols. The Colorado State University (CSU) Regional Atmospheric Modeling System (RAMS) version 6.0 is used for this study. RAMS was modified to ingest GEOS-CHEM output data and periodically update aerosol fields. GEOS-CHEM is a chemical transport model which uses assimilated meteorological data from the NASA Goddard Earth Observation System (GEOS). The aerosol data comprise a sum of hydrophobic and hydrophilic black carbon and organic aerosol, hydrophilic SOAs, hydrocarbon oxidation and inorganic aerosols (nitrate, sulfate and ammonium). In addition, a RAMS-based dust source and transport model is used. Preliminary analysis suggests pollution dominates over dust resulting in a decrease in precipitation via the spillover effect. Dust serving as GCCN and IN tend to enhance ice

  4. Sampling, characterization, and remote sensing of aerosols formed in the atmospheric hydrolysis of uranium hexafluoride

    SciTech Connect

    Bostick, W.D.; McCulla, W.H.; Pickrell, P.W.

    1984-05-01

    When gaseous uranium hexafluoride (UF/sub 6/) is released into the atmosphere, it rapidly reacts with ambient moisture to form an aerosol of uranyl fluoride (UO/sub 2/F/sub 2/) and hydrogen fluoride (HF). As part of our Safety Analysis program, we have performed several experimental releases of HF/sub 6/ in contained volumes in order to investigate techniques for sampling and characterizing the aerosol materials. The aggregate particle morphology and size distribution have been found to be dependent upon several conditions, including the temperature of the UF/sub 6/ at the time of its release, the relative humidity of the air into which it is released, and the elapsed time after the release. Aerosol composition and settling rate have been investigated using stationary samplers for the separate collection of UO/sub 2/F/sub 2/ and HF and via laser spectroscopic remote sensing (Mie scatter and infrared spectroscopy). 25 refs., 16 figs., 5 tabs.

  5. Potential of polarization lidar to provide profiles of CCN- and INP-relevant aerosol parameters

    NASA Astrophysics Data System (ADS)

    Mamouri, R. E.; Ansmann, A.

    2015-12-01

    We investigate the potential of polarization lidar to provide vertical profiles of aerosol parameters from which cloud condensation nucleus (CCN) and ice nucleating particle (INP) number concentrations can be estimated. We show that height profiles of number concentrations of aerosol particles with radius > 50 nm (APC50, reservoir of favorable CCN) and with radius > 250 nm (APC250, reservoir of favorable INP), as well as profiles of the aerosol particle surface area concentration (ASC, used in INP parameterization) can be retrieved from lidar-derived aerosol extinction coefficients (AEC) with relative uncertainties of a factor of around 2 (APC50), and of about 25-50 % (APC250, ASC). Of key importance is the potential of polarization lidar to identify mineral dust particles and to distinguish and separate the aerosol properties of basic aerosol types such as mineral dust and continental pollution (haze, smoke). We investigate the relationship between AEC and APC50, APC250, and ASC for the main lidar wavelengths of 355, 532 and 1064 nm and main aerosol types (dust, pollution, marine). Our study is based on multiyear Aerosol Robotic Network (AERONET) photometer observations of aerosol optical thickness and column-integrated particle size distribution at Leipzig, Germany, and Limassol, Cyprus, which cover all realistic aerosol mixtures of continental pollution, mineral dust, and marine aerosol. We further include AERONET data from field campaigns in Morocco, Cabo Verde, and Barbados, which provide pure dust and pure marine aerosol scenarios. By means of a simple relationship between APC50 and the CCN-reservoir particles (APCCCN) and published INP parameterization schemes (with APC250 and ASC as input) we finally compute APCCCN and INP concentration profiles. We apply the full methodology to a lidar observation of a heavy dust outbreak crossing Cyprus with dust up to 8 km height and to a case during which anthropogenic pollution dominated.

  6. Chemical Characterization of Secondary Organic Aerosol Formed Through Cloud Processing of Methylglyoxal

    NASA Astrophysics Data System (ADS)

    Altieri, K. E.; Seitzinger, S. P.; Carlton, A. G.; Turpin, B. J.; Klein, G. C.; Marshall, A. G.

    2007-12-01

    There is increasing evidence suggesting that secondary organic aerosol (SOA) forms as a result of low volatility product formation in atmospheric aqueous phase reactions. In this work aqueous phase photooxidation experiments between methylglyoxal (an isoprene oxidation product) and hydroxyl radical were conducted to simulate the cloud processing of methylglyoxal. The results verify that, as predicted, oxalic acid forms through cloud processing of methylglyoxal. This work adds to the growing body of literature (Altieri et al., 2006; Carlton et al., 2006; Carlton et al., 2007; Crahan et al., 2004; Warneck, 2003; 2005; Yu et al., 2005) supporting the hypothesis that cloud processing is a substantial source of oxalic acid to the atmosphere. Oxalic acid is the most abundant dicarboxylic acid in the atmosphere and a contributor to SOA. The formation of additional monomer products (e.g., malic acid, succinic acid, glycolic acid) and the development of an oligomer system were also identified through use of a combination of electrospray ionization mass spectrometry (ESI-MS) techniques: a quadrupole ESI-MS, an ion trap ESI-MS-MS, and an ultra-high resolution ESI FT-ICR MS. We propose a mechanism of oligomer formation through esterification of monomers with a hydroxy acid formed from hydroxyl radical initiated reactions. Oligomers were only recently identified as cloud processing products (Altieri et al., 2006), and this work is the first chemical characterization of oligomers formed through cloud processing reactions. The chemical characterization includes the distribution of molecular weights, elemental compositions, structure, and organic mass to organic carbon (OM:OC) ratio. Methylglyoxal is a water- soluble product of both biogenic and anthropogenic hydrocarbon oxidation. The varied and multiple sources of methylglyoxal suggest there is strong potential for these low volatility products (e.g., oxalic acid and oligomers) to significantly contribute to SOA.

  7. Free amino acids in Antarctic aerosol: potential markers for the evolution and fate of marine aerosol

    NASA Astrophysics Data System (ADS)

    Barbaro, E.; Zangrando, R.; Vecchiato, M.; Piazza, R.; Cairns, W. R. L.; Capodaglio, G.; Barbante, C.; Gambaro, A.

    2015-05-01

    To investigate the impact of marine aerosols on global climate change it is important to study their chemical composition and size distribution. Amino acids are a component of the organic nitrogen in aerosols and particles containing amino acids have been found to be efficient ice nuclei. The main aim of this study was to investigate the L- and D-free amino acid composition as possible tracers of primary biological production in Antarctic aerosols from three different areas: two continental bases, Mario Zucchelli Station (MZS) on the coast of the Ross Sea, Concordia Station at Dome C on the Antarctic Plateau, and the Southern Ocean near the Antarctic continent. Studying the size distribution of amino acids in aerosols allowed us to characterize this component of the water-soluble organic carbon (WSOC) in marine aerosols near their source and after long-range transport. The presence of only free L-amino acids in our samples is indicative of the prevalence of phytoplanktonic material. Sampling at these three points allowed us to study the reactivity of these compounds during long-range transport. The mean total amino acid concentration detected at MZS was 11 pmol m-3, a higher percentage of amino acids were found in the fine fraction. The aerosol samples collected at Dome C had the lowest amino acid values (0.7 and 0.8 pmol m-3), and the coarse particles were found to have higher concentrations of amino acids compared to the coastal site. The amino acid composition in the aerosol collected at Dome C had also changed compared to the coastal site, suggesting that physical and chemical transformations had occurred during long range transport. During the sampling cruise on the R/V Italica on the Southern Ocean, high concentrations of amino acids were found in the total suspended particles, this we attribute to the presence of intact biological material (as microorganisms or plant material) in the sample.

  8. Aqueous aerosol SOA formation: impact on aerosol physical properties.

    PubMed

    Woo, Joseph L; Kim, Derek D; Schwier, Allison N; Li, Ruizhi; McNeill, V Faye

    2013-01-01

    Organic chemistry in aerosol water has recently been recognized as a potentially important source of secondary organic aerosol (SOA) material. This SOA material may be surface-active, therefore potentially affecting aerosol heterogeneous activity, ice nucleation, and CCN activity. Aqueous aerosol chemistry has also been shown to be a potential source of light-absorbing products ("brown carbon"). We present results on the formation of secondary organic aerosol material in aerosol water and the associated changes in aerosol physical properties from GAMMA (Gas-Aerosol Model for Mechanism Analysis), a photochemical box model with coupled gas and detailed aqueous aerosol chemistry. The detailed aerosol composition output from GAMMA was coupled with two recently developed modules for predicting a) aerosol surface tension and b) the UV-Vis absorption spectrum of the aerosol, based on our previous laboratory observations. The simulation results suggest that the formation of oligomers and organic acids in bulk aerosol water is unlikely to perturb aerosol surface tension significantly. Isoprene-derived organosulfates are formed in high concentrations in acidic aerosols under low-NO(x) conditions, but more experimental data are needed before the potential impact of these species on aerosol surface tension may be evaluated. Adsorption of surfactants from the gas phase may further suppress aerosol surface tension. Light absorption by aqueous aerosol SOA material is driven by dark glyoxal chemistry and is highest under high-NO(x) conditions, at high relative humidity, in the early morning hours. The wavelength dependence of the predicted absorption spectra is comparable to field observations and the predicted mass absorption efficiencies suggest that aqueous aerosol chemistry can be a significant source of aerosol brown carbon under urban conditions.

  9. Characterization of potential impurities and degradation products in electronic cigarette formulations and aerosols.

    PubMed

    Flora, Jason W; Meruva, Naren; Huang, Chorng B; Wilkinson, Celeste T; Ballentine, Regina; Smith, Donna C; Werley, Michael S; McKinney, Willie J

    2016-02-01

    E-cigarettes are gaining popularity in the U.S. as well as in other global markets. Currently, limited published analytical data characterizing e-cigarette formulations (e-liquids) and aerosols exist. While FDA has not published a harmful and potentially harmful constituent (HPHC) list for e-cigarettes, the HPHC list for currently regulated tobacco products may be useful to analytically characterize e-cigarette aerosols. For example, most e-cigarette formulations contain propylene glycol and glycerin, which may produce aldehydes when heated. In addition, nicotine-related chemicals have been previously reported as potential e-cigarette formulation impurities. This study determined e-liquid formulation impurities and potentially harmful chemicals in aerosols of select commercial MarkTen(®) e-cigarettes manufactured by NuMark LLC. The potential hazard of the identified formulation impurities and aerosol chemicals was also estimated. E-cigarettes were machine puffed (4-s duration, 55-mL volume, 30-s intervals) to battery exhaustion to maximize aerosol collection. Aerosols analyzed for carbonyls were collected in 20-puff increments to account for analyte instability. Tobacco specific nitrosamines were measured at levels observed in pharmaceutical grade nicotine. Nicotine-related impurities in the e-cigarette formulations were below the identification and qualification thresholds proposed in ICH Guideline Q3B(R2). Levels of potentially harmful chemicals detected in the aerosols were determined to be below published occupational exposure limits.

  10. Free amino acids in Antarctic aerosol: potential markers for the evolution and fate of marine aerosol

    NASA Astrophysics Data System (ADS)

    Barbaro, E.; Zangrando, R.; Vecchiato, M.; Piazza, R.; Cairns, W. R. L.; Capodaglio, G.; Barbante, C.; Gambaro, A.

    2015-01-01

    To investigate the impact of marine aerosols on global climate change it is important to study their chemical composition and size distribution. Amino acids are a component of the organic nitrogen in aerosols, particles containing amino acids have been found to be efficient ice nuclei. The main aim of this study was to investigate the L- and D-free amino acid composition as possible tracers of primary biological production in Antarctic aerosols from three different areas: two continental bases, Mario Zucchelli Station (MZS) on the coast of the Ross Sea, Concordia Station at Dome C on the Antarctic Plateau, and the Southern Ocean near the Antarctic continent. Studying the size distribution of amino acids in aerosols allowed us to characterize this component of the water-soluble organic carbon (WSOC) in marine aerosols near their source and after long-range transport. The presence of only free L-amino acids in our samples is indicative of the prevalence of phytoplanktonic material. Sampling at these three points allowed us to study the reactivity of these compounds during long-range transport. The mean total amino acid concentration detected at MZS was 11 pmol m-3, a higher percentage of amino acids were found in the fine fraction. The aerosol samples collected at Dome C had the lowest amino acid values (0.7 and 0.8 pmol m-3) and the coarse particles were found to be enriched with amino acids compared to the coastal site. The amino acid composition had also changed suggesting that physical and chemical transformations had occurred during long range transport. During the sampling cruise on the R/V talica on the Southern Ocean, high concentrations of amino acids were found in the total suspended particles, this we attribute to the presence of intact biological material in the sample.

  11. Shape and optical properties of aerosols formed by photolysis of acetylene, ethylene, and hydrogen cyanide

    NASA Astrophysics Data System (ADS)

    Bar-Nun, A.; Kleinfeld, I.; Ganor, E.

    1988-07-01

    The shapes and sizes of photochemically produced aerosol particles of polyacetylene, polyethylene, and polyhydrogen cyanide were studied experimentally. All of the single particles were found to be perfectly spherical and semiliquid. However, they aggregate readily, with a sticking coefficient near unity, to form nonspherical particles, which could give rise to the observed polarization from Titan's and Jupiter's upper haze layers. The absorbance of polyacetylene was remeasured and corrected, and it is now much closer to that of polyethylene. The measured real and imaginary indices of refraction of the two materials make them both suitable material for Titan's and Jupiter's upper haze layers. However, the larger abundance and higher rate of polymerization of acetylene would make it the dominant aerosol-forming material in both atmospheres.

  12. Shape and optical properties of aerosols formed by photolysis of acetylene, ethylene, and hydrogen cyanide

    SciTech Connect

    Bar-Nun, A.; Kleinfeld, I.; Ganor, E.

    1988-07-20

    The shapes and sizes of photochemically produced aerosol particles of polyacetylene, polyethylene, and polyhydrogen cyanide were studied experimentally. All of the single particles were found to be perfectly spherical and semiliquid. However, they aggregate readily, with a sticking coefficient near unity, to form nonspherical particles, which could give rise to the observed polarization from Titan's and Jupiter's upper haze layers. The absorbance of polyacetylene was remeasured and corrected, and it is now much closer to that of polyethylene. The measured real and imaginary indices of refraction of the two materials make them both suitable material for Titan's and Jupiter's upper haze layers. However, the larger abundance and higher rate of polymerization of acetylene would make it the dominant aerosol-forming material in both atmospheres. copyright American Geophysical Union 1988

  13. Potential emission flux to aerosol pollutants over Bengal Gangetic plain through combined trajectory clustering and aerosol source fields analysis

    NASA Astrophysics Data System (ADS)

    Kumar, D. Bharath; Verma, S.

    2016-09-01

    A hybrid source-receptor analysis was carried out to evaluate the potential emission flux to winter monsoon (WinMon) aerosols over Bengal Gangetic plain urban (Kolkata, Kol) and semi-urban atmospheres (Kharagpur, Kgp). This was done through application of fuzzy c-mean clustering to back-trajectory data combined with emission flux and residence time weighted aerosols analysis. WinMon mean aerosol optical depth (AOD) and angstrom exponent (AE) at Kol (AOD: 0.77; AE: 1.17) were respectively slightly higher than and nearly equal to that at Kgp (AOD: 0.71; AE: 1.18). Out of six source region clusters over Indian subcontinent and two over Indian oceanic region, the cluster mean AOD was the highest when associated with the mean path of air mass originating from the Bay of Bengal and the Arabian sea clusters at Kol and that from the Indo-Gangetic plain (IGP) cluster at Kgp. Spatial distribution of weighted AOD fields showed the highest potential source of aerosols over the IGP, primarily over upper IGP (e.g. Punjab, Haryana), lower IGP (e.g. Uttarpradesh) and eastern region (e.g. west Bengal, Bihar, northeast India) clusters. The emission flux contribution potential (EFCP) of fossil fuel (FF) emissions at surface (SL) of Kol/Kgp, elevated layer (EL) of Kol, and of biomass burning (BB) emissions at SL of Kol were primarily from upper, lower, upper/lower IGP clusters respectively. The EFCP of FF/BB emissions at Kgp-EL/SL, and that of BB at EL of Kol/Kgp were mainly from eastern region and Africa (AFR) clusters respectively. Though the AFR cluster was constituted of significantly high emission flux source potential of dust emissions, the EFCP of dust from northwest India (NWI) was comparable to that from AFR at Kol SL/EL.

  14. Potential Impact of South Asian Anthropogenic Aerosols on Northern Hemisphere Climate

    NASA Astrophysics Data System (ADS)

    Bollasina, M. A.; Ming, Y.; Ramaswamy, V.

    2014-12-01

    South Asia has one of the world's highest aerosol loading due to the dramatic increase of anthropogenic emissions from the 1950s associated with rapid urbanization and population growth. The possible large-scale impact of the late 20th century increase of South Asian aerosol emissions on climate away from the source regions was studied by means of historical ensemble experiments with a state-of-the-art coupled climate model with fully interactive aerosols and a representation of both direct and indirect aerosol effects. The key characteristics of the northern hemisphere responses are examined separately for winter and summer, and show that regional aerosols induce significant planetary-scale teleconnection patterns. In both seasons, the large-scale aerosol imprint originates from substantial changes in the regional precipitation distribution. During the winter, in response to anomalous surface cooling in the northern Indian Ocean, aerosols cause a westward shift of convection over the eastern Indian Ocean and compensating subsidence to the west and over the Maritime continent. During the summer, aerosols are collocated with rainfall, and cause a widespread drying over South Asia mostly by indirect effects. In both cases, the impact of the regional diabatic heating anomaly propagates remotely by exciting a northern hemisphere wave-train which, enhanced by regional feedbacks, leads to remarkable changes in near-surface climate, including circulation and temperature, over Eurasia, the northern Pacific and North America. Depending on the region, the induced anomalies may have opposite signs between the two seasons, and may thus contribute to reinforcing or dampening those due greenhouse gases. These results underscore the potential influence of Asian aerosols on global climate, which is a compelling problem as regional aerosol loading will continue to be large in the coming decades.

  15. Potential of polarization lidar to provide profiles of CCN- and INP-relevant aerosol parameters

    NASA Astrophysics Data System (ADS)

    Mamouri, Rodanthi-Elisavet; Ansmann, Albert

    2016-05-01

    We investigate the potential of polarization lidar to provide vertical profiles of aerosol parameters from which cloud condensation nucleus (CCN) and ice nucleating particle (INP) number concentrations can be estimated. We show that height profiles of particle number concentrations n50, dry considering dry aerosol particles with radius > 50 nm (reservoir of CCN in the case of marine and continental non-desert aerosols), n100, dry (particles with dry radius > 100 nm, reservoir of desert dust CCN), and of n250, dry (particles with dry radius > 250 nm, reservoir of favorable INP), as well as profiles of the particle surface area concentration sdry (used in INP parameterizations) can be retrieved from lidar-derived aerosol extinction coefficients σ with relative uncertainties of a factor of 1.5-2 in the case of n50, dry and n100, dry and of about 25-50 % in the case of n250, dry and sdry. Of key importance is the potential of polarization lidar to distinguish and separate the optical properties of desert aerosols from non-desert aerosol such as continental and marine particles. We investigate the relationship between σ, measured at ambient atmospheric conditions, and n50, dry for marine and continental aerosols, n100, dry for desert dust particles, and n250, dry and sdry for three aerosol types (desert, non-desert continental, marine) and for the main lidar wavelengths of 355, 532, and 1064 nm. Our study is based on multiyear Aerosol Robotic Network (AERONET) photometer observations of aerosol optical thickness and column-integrated particle size distribution at Leipzig, Germany, and Limassol, Cyprus, which cover all realistic aerosol mixtures. We further include AERONET data from field campaigns in Morocco, Cabo Verde, and Barbados, which provide pure dust and pure marine aerosol scenarios. By means of a simple CCN parameterization (with n50, dry or n100, dry as input) and available INP parameterization schemes (with n250, dry and sdry as input) we finally compute

  16. Potential impact of dust aerosols on the pre-Helene (2006) mesoscale convective vortex

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Sokolik, I. N.; Curry, J. A.

    2011-12-01

    The potential impact of dust aerosols on the early development of Hurricane Helene (2006) was examined using the Weather Research and Forecasting (WRF) and WRF-Chem model. The goal of this study is to examine the extent to which dust aerosols can influence the intensity, track, and structure of a developing TC through the microphysical and radiation processes. Remote sensing observations from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), CloudSat, Moderate Resolution Imaging Spectroradiometer (MODIS), and Tropical Rainfall Measuring Mission (TRMM) were utilized to examine the distributions and characteristics of dust particles, hydrometeors, cloud top temperature, latent heat release and precipitation, as well as to constrain and evaluate the model simulations. The WRF simulations were conducted by implementing an ice nucleation parameterization accounting for the deliquescent heterogeneous freezing (DHF) mode. The DHF mode refers to the freezing process for internally mixed aerosols with soluble and insoluble species that can serve as both cloud condensation nuclei (CCN) and ice nuclei (IN), such as dust. Simulations showed the tendency of DHF mode to promote ice formation at lower altitudes in strong updraft cores, increase the local latent heat release, and produce more low clouds and less high clouds. Further more, a series of WRF-Chem simulations were conducted, which includes aerosol emission scheme, a radiative transfer scheme accounting for aerosol optical properties, and a dual moment microphysics scheme that will account for environmental aerosols as nuclei. Differences between the results from WRF and WRF-Chem simulations were examined.

  17. Chemical Characterization of Secondary Organic Aerosol Formed from Atmospheric Aqueous-phase Reactions of Phenolic Compounds

    NASA Astrophysics Data System (ADS)

    Yu, L.; Smith, J.; Anastasio, C.; Zhang, Q.

    2012-12-01

    Phenolic compounds, which are released in significant amounts from biomass burning, may undergo fast aqueous-phase reactions to form secondary organic aerosol (SOA) in the atmosphere. Understanding the aqueous-phase reaction mechanisms of these compounds and the composition of their reaction products is thus important for constraining SOA sources and predicting organic aerosol properties in models. In this study, we investigate the aqueous-phase reactions of three phenols (phenol, guaiacol and syringol) with two oxidants - excited triplet states (3C*) of non-phenolic aromatic carbonyls and hydroxyl radical (OH). By employing four analytical methods including high-resolution aerosol mass spectrometry, total organic carbon analysis, ion chromatography, and liquid chromatography-mass spectrometry, we thoroughly characterize the chemical compositions of the low volatility reaction products of phenols and propose formation mechanisms based on this information. Our results indicate that phenolic SOA is highly oxygenated, with O/C ratios in the range of 0.83-1.03, and that the SOA of phenol is usually more oxidized than those of guaiacol and syringol. Among the three precursors, syringol generates the largest fraction of higher molecular weight (MW) products. For the same precursor, the SOA formed via reaction with 3C* is less oxidized than that formed via reaction with OH. In addition, oxidation by 3C* enhances the formation of higher MW species, including phenolic dimers, higher oligomers and hydroxylated products, compared to reactions initiated by OH, which appear to favor the formation of organic acids. However, our results indicate that the yields of small organic acids (e.g., formate, acetate, oxalate, and malate) are low for both reaction pathways, together accounting for less than 5% of total SOA mass.

  18. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    NASA Astrophysics Data System (ADS)

    Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.

    2015-04-01

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt%) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and

  19. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    NASA Astrophysics Data System (ADS)

    Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.

    2014-11-01

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, Attenuated Total Reflectance-Fourier Transform Infrared and 1H Nuclear Magnetic Resonance spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene, which was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence for products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and methylglyoxal

  20. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    PubMed Central

    Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.

    2016-01-01

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40–80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance–Fourier transform infrared (ATR-FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and

  1. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities.

    PubMed

    Van Wyngarden, A L; Pérez-Montaño, S; Bui, J V H; Li, E S W; Nelson, T E; Ha, K T; Leong, L; Iraci, L T

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and (1)H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and

  2. Dense nanocrystalline yttrium iron garnet films formed at room temperature by aerosol deposition

    SciTech Connect

    Johnson, Scooter D. Glaser, Evan R.; Cheng, Shu-Fan; Hite, Jennifer

    2016-04-15

    Highlights: • We deposit yttrium iron garnet films at room temperature using aerosol deposition. • Films are 96% of theoretical density for yttrium iron garnet. • We report magnetic and structural properties post-deposition and post-annealing. • Low-temperature annealing decreases the FMR linewidth. • We discuss features of the FMR spectra at each anneal temperature. - Abstract: We have employed aerosol deposition to form polycrystalline yttrium iron garnet (YIG) films on sapphire at room temperature that are 90–96% dense. We characterize the structural and dynamic magnetic properties of the dense films using scanning electron microscopy, X-ray diffraction, and ferromagnetic resonance techniques. We find that the as-deposited films are pure single-phase YIG formed of compact polycrystallites ∼20 nm in size. The ferromagnetic resonance mode occurs at 2829 G with a linewidth of 308 G. We perform a series of successive anneals up to 1000 °C on a film to explore heat treatment on the ferromagnetic resonance linewidth. We find the narrowest linewidth of 98 G occurs after a 750 °C anneal.

  3. Novel insight on photochemistry at interfaces: potential impact on Seconday Aerosol Formation?

    NASA Astrophysics Data System (ADS)

    Rossignol, S.; George, C.; Aregahegn, K.

    2014-12-01

    Traditionally, the driving forces for SOA growth is believed to be the partitioning onto aerosol seeds of condensable gases, either emitted primarily or resulting from the gas phase oxidation of organic gases. However, even the most up-to-date models based on such mechanisms cannot account for the SOA mass observed in the atmosphere, suggesting the existence of other, yet unknown formation processes. The present study shows experimental evidence that particulate phase chemistry produces photo-sensitizers that lead to photo-induced formation and growth of secondary organic aerosol in the near UV and the presence of volatile organic compounds (VOC) such as terpenes. By means of an aerosol flow tube reactor equipped with Scanning Mobility Particle Sizer (SMPS), Differential Mobility Analyzer (DMA) and Condensation Particle Sizer (CPC), we identified that traces in the aerosol phase of glyoxal chemistry products, namely imidazole-2-carboxaldehyde (IC) are strong photo-sensitizers when irradiated with near-UV. In the presence of volatile organic compounds such as terpenes, this chemistry leads to a fast aerosol growth. Given the potential importance of this new photosensitized growth pathway for ambient OA, the related reaction mechanism was investigated at a molecular level. Bulk and flow tube experiments were performed to identify major products of the reaction of limonene with the triplet state of IC by direct (+/-)ESI-HRMS and UPLC/(+/-)HESI-HRMS analysis. Detection of recombination products of IC with limonene or with itself, in bulk and flow tube experiment ts, showed that IC is able to initiate a radical chemistry in the aerosol phase under realistic irradiation conditions. Furthermore, highly oxygenated limonene reaction products were detected, clearly explaining the observed OA growth. The chemistry of peroxy radicals derived from limonene upon addition of oxygen explains the formation of such low-volatile compounds without any traditional gas phase oxidant

  4. Notes and correspondence: An alternative form for potential vorticity

    NASA Technical Reports Server (NTRS)

    Lait, Leslie R.

    1994-01-01

    A form of potential vorticity is described that has conversation properties similar to those of Ertel's potential vorticity (EPV) but removes the exponential variation with height displayed by EPV. This form is thus more suitable for inspecting vertical cross sections of potential vorticity and for use (with potential temperature) as a quasi-conserved coordinate in the analysis of chemical constituent data.

  5. Mitigating secondary aerosol generation potentials from biofuel use in the energy sector.

    PubMed

    Tiwary, Abhishek; Colls, Jeremy

    2010-01-01

    This paper demonstrates secondary aerosol generation potential of biofuel use in the energy sector from the photochemical interactions of precursor gases on a life cycle basis. The paper is divided into two parts-first, employing life cycle analysis (LCA) to evaluate the extent of the problem for a typical biofuel based electricity production system using five baseline scenarios; second, proposing adequate mitigation options to minimise the secondary aerosol generation potential on a life cycle basis. The baseline scenarios cover representative technologies for 2010 utilising energy crop (miscanthus), short rotation coppiced chips and residual/waste wood in different proportions. The proposed mitigation options include three approaches-biomass gasification prior to combustion, delaying the harvest of biomass, and increasing the geographical distance between the biomass plant and the harvest site (by importing the biofuels). Preliminary results indicate that the baseline scenarios (assuming all the biomass is sourced locally) bear significant secondary aerosol formation potential on a life cycle basis from photochemical neutralisation of acidic emissions (hydrogen chloride and sulphur dioxide) with ammonia. Our results suggest that gasification of miscanthus biomass would provide the best option by minimising the acidic emissions from the combustion plant whereas the other two options of delaying the harvest or importing biofuels from elsewhere would only lead to marginal reduction in the life cycle aerosol loadings of the systems.

  6. A role of aerosol particles in forming urban skyglow and skyglow from distant cities

    NASA Astrophysics Data System (ADS)

    Kocifaj, Miroslav; Kómar, Ladislav

    2016-05-01

    Aerosol particles may represent the largest uncertainty about skyglow change in many locations under clear-sky conditions. This is because aerosols are ubiquitous in the atmosphere and influence the ground-reaching radiation in different ways depending on their concentrations, origins, shapes, sizes, and compositions. Large particles tend to scatter in Fraunhofer diffraction regime, while small particles can be treated in terms of Rayleigh formalism. However, the role of particle microphysics in forming the skyglow still remains poorly quantified. We have shown in this paper that the chemistry is somehow important for backscattering from large particles that otherwise work as efficient attenuators of light pollution if composed of absorbing materials. The contribution of large particles to the urban skyglow diminishes as they become more spherical in shape. The intensity of backscattering from non-absorbing particles is more-or-less linearly decreasing function of particle radius even if number size distribution is inversely proportional to the fourth power of particle radius. This is due to single particle backscattering that generally increases steeply as the particle radius approaches large values. Forward scattering depends on the particle shape but is independent of the material composition, thus allowing for a simplistic analytical model of skyglow from distant cities. The model we have developed is based on mean value theorem for integrals and incorporates the parametrizable Garstang's emission pattern, intensity decay along optical beam path, and near-forward scattering in an atmospheric environment. Such model can be used by modellers and experimentalists for rapid estimation of skyglow from distant light sources.

  7. Mass spectrometry investigation of Titan aerosols analogs formed with traces of aromatic compounds

    NASA Astrophysics Data System (ADS)

    Gautier, Thomas; Trainer, Melissa; Sebree, Joshua; Li, Xiang; Pinnick, Veronica; Getty, Stephanie; Brinckerhoff, Will

    2016-06-01

    The detection of benzene at ppm levels in Titan's atmosphere [1] by Cassini's Ion and Neutral Mass Spectrometer (INMS) supports the idea that aromatic and heteroaromatic reaction pathways may play an important role in Titan's aerosols formation. In laboratory studies it has been shown that these aromatic molecules are easily dissociated by ultraviolet radiation and can therefore contribute significantly to aerosol formation [2] and be used to dope the production of aerosol analogs [3]. In this work we investigate the effect on the aerosol composition and growth pattern of the chemical nature of the aromatic reactant used to produce aerosol. Analysis are performed using Laser Desorption-Time of Flight mass spectrometry (LD-TOF) and Fourier Transform Infrared Spectroscopy (FTIR) Infrared analysis of our samples shows that inclusion of aromatic compounds as trace precursors allows to better fit laboratory data to Titan aerosol spectra observed by Cassini [3,4]. The improvement is especially visible on the far infrared (˜200 cm-1) bands observed by CIRS [5]. LDMS results show that the aerosol growth patterns depend both on the number of rings and on the nitrogen content of the trace precursor used. We also perform MS/MS analysis on some prominent peaks of aerosol mass spectra. This MS/MS approach allows us to identify some of the key compounds in the aerosol growth processes.

  8. Assessing the oxidative potential of isoprene-derived epoxides and secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Kramer, Amanda J.; Rattanavaraha, Weruka; Zhang, Zhenfa; Gold, Avram; Surratt, Jason D.; Lin, Ying-Hsuan

    2016-04-01

    Fine particulate matter (PM2.5) is known to contribute to adverse health effects, such as asthma, cardiopulmonary disease, and lung cancer. Secondary organic aerosol (SOA) is a major component of PM2.5 and can be enhanced by atmospheric oxidation of biogenic volatile organic compounds in the presence of anthropogenic pollutants, such as nitrogen oxides (NOx) and sulfur dioxide. However, whether biogenic SOA contributes to adverse health effects remains unclear. The objective of this study was to assess the potential of isoprene-derived epoxides and SOA for generating reactive oxygen species (ROS) in light of the recent recognition that atmospheric oxidation of isoprene in the presence of acidic sulfate aerosol is a major contributor to the global SOA burden. The dithiothreitol (DTT) assay was used to characterize the ROS generation by the isoprene-derived epoxides, trans-β-isoprene epoxydiol (trans-β-IEPOX) and methacrylic acid epoxide (MAE), and their hydrolysis products, the 2-methyltetrol diastereomers (2-MT), 2-methylglyceric acid (2-MG), their organosulfate derivatives, as well as an isoprene-derived hydroxyhydroperoxide (ISOPOOH). In addition, ROS generation potential was evaluated for total SOA produced from photooxidation of isoprene and methacrolein (MACR) as well as from the reactive uptake of trans-β-IEPOX and MAE onto acidified sulfate aerosol. The high-NOx regime, which yields 2-MG-, MAE- and MACR-derived SOA has a higher ROS generation potential than the low-NOx regime, which yields 2-MT, IEPOX- and isoprene-derived SOA. ISOPOOH has an ROS generation potential similar to 1,4-naphthoquinone (1,4-NQ), suggesting a significant contribution of aerosol-phase organic peroxides to PM oxidative potential. MAE- and MACR-derived SOA show equal or greater ROS generation potential than reported in studies on diesel exhaust PM, highlighting the importance of a comprehensive investigation of the toxicity of isoprene-derived SOA.

  9. Relationship Between Aerosol Number Size Distribution and Atmospheric Electric Potential Gradient in an Urban Area

    NASA Astrophysics Data System (ADS)

    Wright, Matthew; Matthews, James; Bacak, Asan; Silva, Hugo; Priestley, Michael; Percival, Carl; Shallcross, Dudley

    2016-04-01

    Small ions are created in the atmosphere by ground based radioactive decay and solar and cosmic radiation ionising the air. The ionosphere is maintained at a high potential relative to the Earth due to global thunderstorm activity, a current from the ionosphere transfers charge back to the ground through the weakly ionised atmosphere. A potential gradient (PG) exists between the ionosphere and the ground that can be measured in fair weather using devices such as an electric field mill. PG is inversely-proportional to the conductivity of the air and therefore to the number of ions of a given electrical mobility; a reduction of air ions will cause an increase of PG. Aerosols in the atmosphere act as a sink of air ions with an attachment rate dependent on aerosol size distribution and ion mobility. These relationships have been used to infer high particulate, and hence pollution, levels in historic datasets of atmospheric PG. A measurement campaign was undertaken in Manchester, UK for three weeks in July and August where atmospheric PG was measured with an electric field mill (JCI131, JCI Chilworth) on a second floor balcony, aerosol size distribution measured with a scanning mobility particle sizer (SMPS, TSI3936), aerosol concentration measured with a condensation particle counter (CPC, Grimm 5.403) and local meteorological measurements taken on a rooftop measurement site ~200 m away. Field mill and CPC data were taken at 1 s intervals and SMPS data in 2.5 minute cycles. Data were excluded for one hour either side of rainfall as rainclouds and droplets can carry significant charge which would affect PG. A quantity relating to the attachment of ions to aerosol (Ion Sink) was derived from the effective attachment coefficient of the aerosols. Further measurements with the field mill and CPC were taken at the same location in November 2015 when bonfire events would be expected to increase aerosol concentrations. During the summer measurements, particle number count (PNC

  10. Understanding the toxicological potential of aerosol organic compounds using informatics based screening

    NASA Astrophysics Data System (ADS)

    Topping, David; Decesari, Stefano; Bassan, Arianna; Pavan, Manuela; Ciacci, Andrea

    2016-04-01

    Exposure to atmospheric particulate matter is responsible for both short-term and long-term adverse health effects. So far, all efforts spent in achieving a systematic epidemiological evidence of specific aerosol compounds determining the overall aerosol toxicity were unsuccessful. The results of the epidemiological studies apparently conflict with the laboratory toxicological analyses which have highlighted very different chemical and toxicological potentials for speciated aerosol compounds. Speciation remains a problem, especially for organic compounds: it is impossible to conduct screening on all possible molecular species. At the same time, research on toxic compounds risks to be biased towards the already known compounds, such as PAHs and dioxins. In this study we present results from an initial assessment of the use of in silico methods (i.e. (Q)SAR, read-across) to predict toxicity of atmospheric organic compounds including evaluation of applicability of a variety of popular tools (e.g. OECD QSAR Toolbox) for selected endpoints (e.g. genotoxicity). Compounds are categorised based on the need of new experimental data for the development of in silico approaches for toxicity prediction covering this specific chemical space, namely the atmospheric aerosols. Whilst only an initial investigation, we present recommendations for continuation of this work.

  11. Potential sea salt aerosol sources from frost flowers in the pan-Arctic region

    SciTech Connect

    Xu, Li; Russell, Lynn M.; Burrows, Susannah M.

    2016-09-23

    In order to better represent observed wintertime aerosol concentrations at Barrow, Alaska, we implemented an observationally-based parameterization for estimating sea salt production from frost flowers in the Community Earth System Model (CESM). In this work, we evaluate the potential influence of this sea salt source on the pan-Arctic (60ºN-90ºN) climate. Results show that frost flower salt emissions substantially increase the modeled surface sea salt aerosol concentration in the winter months when new sea ice and frost flowers are present. The parameterization reproduces both the magnitude and seasonal variation of the observed submicron sea salt aerosol concentration at surface in Barrow during winter much better than the standard CESM simulation without a frost-flower salt particle source. Adding these frost flower salt particle emissions increases aerosol optical depth by 10% and results in a small cooling at surface. The increase in salt particle mass concentrations of a factor of 8 provides nearly two times the cloud condensation nuclei concentration, as well as 10% increases in cloud droplet number and 40% increases in liquid water content near coastal regions adjacent to continents. These cloud changes reduce longwave cloud forcing by 3% and cause a small surface warming, increasing the downward longwave flux at the surface by 2 W m-2 in the pan-Arctic under the present-day climate.

  12. Yttrium Iron Garnet Thick Films Formed by the Aerosol Deposition Method for Microwave Inductors

    NASA Astrophysics Data System (ADS)

    Johnson, Scooter; Newman, Harvey; Glaser, E. R.; Cheng, Shu-Fan; Tadjer, Marko; Kub, Fritz; Eddy, Charles, Jr.

    2014-03-01

    We have employed the aerosol deposition method (ADM) to direct-write 40 μm-thick polycrystalline films of yttrium iron garnet (YIG, Y3Fe5O12) at room temperature onto patterned gold inductors on sapphire substrates at a deposition rate of 1-3 μm/min as a first step toward integration into microwave magnetic circuits. A challenge to integrating magnetic films into current semiconductor technology is the high-temperature regime (900-1400°C) at which conventional ferrite preparation takes place. The ability of the ADM to form dense, thick films at room temperature makes this a promising approach for integrated magnetics where low-temperature deposition and thick films are required. The ADM YIG film has an rms roughness of 3-4 μm, is comprised of nano-crystalline grains with a density 50% of the theoretical value. XRD patterns of the as-deposited film and starting powder indicate a polycrystalline single-phase film. In-plane VSM and FMR measurements reveal a saturation of 22 emu/g, coercivity of 27 Oe, and linewidth of 360 Oe. Early measurements of air-filled and YIG-filled gold inductors between 0.01-10 GHz indicate an improved inductance of nearly a factor of 2 at low frequency. At higher frequency, resonance effects diminish this improvement. This work is sponsored by the Office of Naval Research under program number N0001413WX20845 (Dr. Daniel Green, Program Manager).

  13. Potential Aerosol Mass (PAM) flow reactor measurements of SOA formation in a Ponderosa Pine forest in the southern Rocky Mountains during BEACHON-RoMBAS

    NASA Astrophysics Data System (ADS)

    Palm, B. B.; Ortega, A. M.; Campuzano Jost, P.; Day, D. A.; Kaser, L.; Karl, T.; Jud, W.; Hansel, A.; Fry, J.; Brown, S. S.; Zarzana, K. J.; Dube, W. P.; Wagner, N.; Draper, D.; Brune, W. H.; Jimenez, J. L.

    2012-12-01

    A Potential Aerosol Mass (PAM) photooxidation flow reactor was used in combination with an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer to characterize biogenic secondary organic aerosol (SOA) formation in a terpene-dominated forest during the July-August 2011 Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen - Rocky Mountain Biogenic Aerosol Study (BEACHON-RoMBAS) field campaign at the U.S. Forest Service Manitou Forest Observatory, Colorado, as well as in corresponding laboratory experiments. In the PAM reactor, a chosen oxidant (OH, O3, or NO3) was generated and controlled over a range of values up to 10,000 times ambient levels. High oxidant concentrations accelerated the gas-phase, heterogeneous, and possibly aqueous oxidative aging of volatile organic compounds (VOCs), inorganic gases, and existing aerosol, which led to repartitioning into the aerosol phase. PAM oxidative processing represented from a few hours up to ~20 days of equivalent atmospheric aging during the ~3 minute reactor residence time. During BEACHON-RoMBAS, PAM photooxidation enhanced SOA at intermediate OH exposure (1-10 equivalent days) but resulted in net loss of OA at long OH exposure (10-20 equivalent days), demonstrating the competing effects of functionalization vs. fragmentation (and possibly photolysis) as aging increased. PAM oxidation also resulted in f44 vs. f43 and Van Krevelen diagram (H/C vs. O/C) slopes similar to ambient oxidation, suggesting the PAM reactor employs oxidation pathways similar to ambient air. Single precursor aerosol yields were measured using the PAM reactor in the laboratory as a function of organic aerosol concentration and reacted hydrocarbon amounts. When applying the laboratory PAM yields with complete consumption of the most abundant VOCs measured at the forest site (monoterpenes, sesquiterpenes, MBO, and toluene), a simple model underpredicted the amount of SOA formed in the PAM reactor in the

  14. Asymptotic form of the Kohn-Sham correlation potential

    SciTech Connect

    Joubert, D. P.

    2007-07-15

    The density-functional correlation potential of a finite system is shown to asymptotically approach a nonzero constant along a nodal surface of the energetically highest occupied orbital and zero everywhere else. This nonuniform asymptotic form of the correlation potential exactly cancels the nonuniform asymptotic behavior of the exact exchange potential discussed by Della Sala and Goerling [Phys. Rev. Lett. 89, 33003 (2002)]. The sum of the exchange and correlation potentials therefore asymptotically tends to -1/r everywhere, consistent with the asymptotic form of the Kohn-Sham potential as analyzed by Almbladh and von Barth [Phys. Rev. B 31, 3231 (1985)].

  15. Enhanced UV Absorption in Carbonaceous Aerosols during MILAGRO and Identification of Potential Organic Contributors.

    NASA Astrophysics Data System (ADS)

    Mangu, A.; Kelley, K. L.; Marchany-Rivera, A.; Kilaparty, S.; Gunawan, G.; Gaffney, J. S.; Marley, N. A.

    2007-12-01

    ), and nitrated PAH compounds for comparison. Potential organic aerosol components are identified which contribute to the enhanced absorption observed in the field. The wavelength dependence of the mass specific absorption is obtained from these spectra and total carbon measurements. The wavelength dependence of the aerosol complex refractive index (m = n +ik) in the UV-visible spectral region is determined by application of the Kramers Kronig function. The importance of the aerosol absorption in the infrared spectral region to radiative forcing will be discussed. 1. Marley, N.A., J.S. Gaffney, J.C. Baird, C.A. Blazer, P.J. Drayton, and J.E. Frederick, Aerosol Sci. Technol., 34, 535-549, (2001). 2. N.A. Marley, J.S. Gaffney, and K.A. Orlandini, Chapter 7 in Humic/Fulvic Acids and Organic Colloidal Materials in the Environment, ACS Symposium Series 651, American Chemical Society, Washington, D.C., pp. 96-107, 1996. This work was conducted as part of the Department of Energy's Atmospheric Science Program as part of the Megacity Aerosol Experiment - Mexico City during MILAGRO. This research was supported by the Office of Science (BER), U.S. Department of Energy Grant No. DE-FG02-07ER64329. We also wish to thank Mexican Scientists and students for their assistance from the Instituto Mexicano de Petroleo (IMP) and CENICA.

  16. Global aerosol retrieval by synergistic use of ESA ENVISAT instruments and potential for long-term aerosol records from Sentinel-3

    NASA Astrophysics Data System (ADS)

    North, P. R.; Bevan, S. L.; Brockmann, C.; Fischer, J.; Gomez-Chova, L.; Grey, W.; Heckel, A.; Moreno, J. F.; Munoz Mari, J.; Preusker, R.; Regner, P.

    2009-12-01

    We present research on for improved global aerosol retrieval by synergistic use of optical sensors on the European Space Agency ENVISAT satellite, MERIS and AATSR. Previously aerosol retrievals have been developed in isolation for these instruments, using spectral and mult-angular approaches respectively. These sensors will be succeeded with improved specification on the Sentinel-3 mission (2012-2030) with the aim to offer data suitable for long-term climate records. The research aims to use combined multi-angular and spectral approaches to constrain the inverse problem. The MERIS and AATSR instruments onboard ENVISAT provide similar resolution and swath but complementary information, encompassing different spectral domains and viewing geometries. Substantial success has been obtained previously by a number of researchers in using the instruments independently; for example MERIS aerosol retrieval using spectral methods over known targets, and AATSR approaches using the dual-view capability. The research explores the gain by using information from both instruments simultaneously to constrain atmospheric profile, characterise cloud, and provide improved atmospheric correction to surface reflectance. Results suggest improved estimation of aerosol properties compared to single-instrument retrievals, when compared with AERONET. A sensitivity study is performed to evaluate potential of Sentinel-3 for aerosol retreval, to be launched in 2012, which will give continuity with enhanced instrument specifications for the successor instruments OLCI and SLSTR.

  17. Potential sea salt aerosol sources from frost flowers in the pan-Arctic region

    NASA Astrophysics Data System (ADS)

    Xu, Li; Russell, Lynn M.; Burrows, Susannah M.

    2016-09-01

    In order to better represent observed wintertime aerosol mass and number concentrations in the pan-Arctic (60°N-90°N) region, we implemented an observationally based parameterization for estimating sea salt production from frost flowers in the Community Earth System Model (CESM, version 1.2.1). In this work, we evaluate the potential influence of this sea salt source on the pan-Arctic climate. Results show that frost flower salt emissions increase the modeled surface sea salt aerosol mass concentration by roughly 200% at Barrow and 100% at Alert and accumulation-mode number concentration by about a factor of 2 at Barrow and more than a factor of 10 at Alert in the winter months when new sea ice and frost flowers are present. The magnitude of sea salt aerosol mass and number concentrations at the surface in Barrow during winter simulated by the model configuration that includes this parameterization agrees better with observations by 48% and 12%, respectively, than the standard CESM simulation without a frost flower salt particle source. At Alert, the simulation with this parameterization overestimates observed sea salt aerosol mass concentration by 150% during winter in contrast to the underestimation of 63% in the simulation without this frost flower source, while it produces particle number concentration about 14% closer to observation than the standard CESM simulation. However, because the CESM version used here underestimates transported sulfate in winter, the reference accumulation-mode number concentrations at Alert are also underestimated. Adding these frost flower salt particle emissions increases sea salt aerosol optical depth by 10% in the pan-Arctic region and results in a small cooling at the surface. The increase in salt aerosol mass concentrations of a factor of 8 provides nearly two times the cloud condensation nuclei concentration at supersaturation of 0.1%, as well as 10% increases in cloud droplet number and 40% increases in liquid water content

  18. Evaluating the potential influence of inter-continental transport of sulfate aerosols on air quality

    NASA Astrophysics Data System (ADS)

    Mauzerall, D. L.; Liu, J.

    2007-12-01

    In this study, we compare the potential influence of inter-continental transport of sulfate aerosols on the air quality of continental regions. We use a global chemical transport model, Model of Ozone and Related Tracers, version 2 (MOZART-2), to quantify the source-receptor relationships of inter-continental transport of sulfate aerosols among ten regions in 2000. In order to compare the importance of foreign emissions relative to domestic emissions and estimate the effect of future changes in emissions on human exposure, we define an "influence potential" (IP). The IP quantifies the human exposure that occurs in a receptor region as a result of a unit of SO2 emissions from a source region. We find that due to the non-linear nature of sulfate production, regions with low SO2 emissions usually have large domestic IP, and vice versa. An exception is East Asia (EA), which has both high SO2 emissions and relatively large domestic IP, mostly caused by the spatial coincidence of emissions and population. We find that intercontinental IPs are usually less than domestic IPs by 1-3 orders of magnitude. SO2 emissions from the Middle East (ME) and Europe (EU) have the largest potential to influence populations in surrounding regions. By comparing the IP ratios (IPR) between foreign and domestic SO2 emissions, we find that the IPR values range from 0.00001 to 0.16 and change with season. Therefore, if reducing human exposure to sulfate aerosols is the objective, all regions should first focus on reducing domestic SO2 emissions. In addition, we find that relatively high IPR values exist among the EU, ME, the former Soviet Union (FSU) and African (AF) regions. Therefore, based on the IP and IPR values, we conclude that a regional agreement among EA countries, and an inter-regional agreement among EU, ME, FSU and north AF regions to control sulfur emissions would benefit public health in these regions.

  19. Potential influence of inter-continental transport of sulfate aerosols on air quality

    NASA Astrophysics Data System (ADS)

    Liu, Junfeng; Mauzerall, Denise L.

    2007-10-01

    In this study, we compare the potential influence of inter-continental transport of sulfate aerosols on the air quality of (different) continental regions. We use a global chemical transport model, Model of Ozone and Related Tracers, version 2 (MOZART-2), to quantify the source receptor relationships of inter-continental transport of sulfate aerosols among ten regions in 2000. In order to compare the importance of foreign with domestic emissions and to estimate the effect of future changes in emissions on human exposure, we define an 'influence potential' (IP). The IP quantifies the human exposure that occurs in a receptor region as a result of a unit of SO2 emissions from a source region. We find that due to the non-linear nature of sulfate production, regions with low SO2 emissions usually have large domestic IP, and vice versa. An exception is East Asia (EA), which has both high SO2 emissions and relatively large domestic IP, mostly caused by the spatial coincidence of emissions and population. We find that inter-continental IPs are usually less than domestic IPs by 1 3 orders of magnitude. SO2 emissions from the Middle East (ME) and Europe (EU) have the largest potential to influence populations in surrounding regions. By comparing the IP ratios (IPR) between foreign and domestic SO2 emissions, we find that the IPR values range from 0.000 01 to 0.16 and change with season. Therefore, if reducing human exposure to sulfate aerosols is the objective, all regions should first focus on reducing domestic SO2 emissions. In addition, we find that relatively high IPR values exist among the EU, ME, the former Soviet Union (FSU) and African (AF) regions. Therefore, on the basis of the IP and IPR values, we conclude that a regional agreement among EA countries, and an inter-regional agreement among EU, ME, FSU and (north) AF regions to control sulfur emissions could benefit public health in these regions.

  20. ACTRIS aerosol vertical profile data and observations: potentiality and first examples of integrated studies with models

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Benedetti, Angela; D'Amico, Giuseppe; Myhre, Cathrine Lund; Schulz, Michael; Wandinger, Ulla; Laj, Paolo; Pappalardo, Gelsomina

    2016-04-01

    The ACTRIS-2 project, funded by Horizon 2020, addresses the scope of integrating state-of-the-art European ground-based stations for long term observations of aerosols, clouds and short lived gases, capitalizing on the work of FP7-ACTRIS. It aims at achieving the construction of a user-oriented RI, unique in the EU-RI landscape for providing 4-D integrated high-quality data from near-surface to high altitude (vertical profiles and total-column) which are relevant to climate and air-quality research. ACTRIS-2 develops and implements, in a large network of stations in Europe and beyond, observational protocols that permit the harmonization of collected data and their dissemination. ACTRIS secures provision and dissemination of a unique set of data and data-products that would not otherwise be available with the same level of quality and standardization. This results from a 10-year plus effort in constructing a research infrastructure capable of responding to community needs and requirements, and has been engaged since the start of the FP5 EU commission program. ACTRIS ensures compliance with reporting requirements (timing, format, traceability) defined by the major global observing networks. EARLINET (European Aerosol research Lidar NETwork), the aerosol vertical profiling component of ACTRIS, is providing since May 2000 vertical profiles of aerosol extinction and backscatter over Europe. A new structure of the EARLINET database has been designed in a more user oriented approach reporting new data products which are more effective for specific uses of different communities. In particular, a new era is starting with the Copernicus program during which the aerosol vertical profiling capability will be fundamental for assimilation and validation purposes. The new data products have been designed thanks to a strong link with EARLINET data users, first of all modeling and satellite communities, established since the beginning of EARLINET and re-enforced within ACTRIS2

  1. Potential modulations of pre-monsoon aerosols during El Niño: impact on Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Fadnavis, S.; Roy, Chaitri; Sabin, T. P.; Ayantika, D. C.; Ashok, K.

    2016-11-01

    The potential role of aerosol loading on the Indian summer monsoon rainfall during the El Niño years are examined using satellite-derived observations and a state of the art fully interactive aerosol-chemistry-climate model. The Aerosol Index (AI) from TOMS (1978-2005) and Aerosol Optical Depth (AOD) from MISR spectroradiometer (2000-2010) indicate a higher-than-normal aerosol loading over the Indo-Gangetic plain (IGP) during the pre-monsoon season with a concurrent El Niño. Sensitivity experiments using ECHAM5-HAMMOZ climate model suggests that this enhanced loading of pre-monsoon absorbing aerosols over the Indo-Gangetic plain can reduce the drought during El Niño years by invoking the `Elevated-Heat-Pump' mechanism through an anomalous aerosol-induced warm core in the atmospheric column. This anomalous heating upshot the relative strengthening of the cross-equatorial moisture inflow associated with the monsoon and eventually reduces the severity of drought during El Niño years. The findings are subject to the usual limitations such as the uncertainties in observations, and limited number of El Niño years (during the study period).

  2. Indoor terpene emissions from cooking with herbs and pepper and their secondary organic aerosol production potential.

    PubMed

    Klein, Felix; Farren, Naomi J; Bozzetti, Carlo; Daellenbach, Kaspar R; Kilic, Dogushan; Kumar, Nivedita K; Pieber, Simone M; Slowik, Jay G; Tuthill, Rosemary N; Hamilton, Jacqueline F; Baltensperger, Urs; Prévôt, André S H; El Haddad, Imad

    2016-11-10

    Cooking is widely recognized as an important source of indoor and outdoor particle and volatile organic compound emissions with potential deleterious effects on human health. Nevertheless, cooking emissions remain poorly characterized. Here the effect of herbs and pepper on cooking emissions was investigated for the first time to the best of our knowledge using state of the art mass spectrometric analysis of particle and gas-phase composition. Further, the secondary organic aerosol production potential of the gas-phase emissions was determined by smog chamber aging experiments. The emissions of frying meat with herbs and pepper include large amounts of mono-, sesqui- and diterpenes as well as various terpenoids and p-cymene. The average total terpene emission rate from the use of herbs and pepper during cooking is estimated to be 46 ± 5 gg(-1)Herbs min(-1). These compounds are highly reactive in the atmosphere and lead to significant amounts of secondary organic aerosol upon aging. In summary we demonstrate that cooking with condiments can constitute an important yet overlooked source of terpenes in indoor air.

  3. Indoor terpene emissions from cooking with herbs and pepper and their secondary organic aerosol production potential

    NASA Astrophysics Data System (ADS)

    Klein, Felix; Farren, Naomi J.; Bozzetti, Carlo; Daellenbach, Kaspar R.; Kilic, Dogushan; Kumar, Nivedita K.; Pieber, Simone M.; Slowik, Jay G.; Tuthill, Rosemary N.; Hamilton, Jacqueline F.; Baltensperger, Urs; Prévôt, André S. H.; El Haddad, Imad

    2016-11-01

    Cooking is widely recognized as an important source of indoor and outdoor particle and volatile organic compound emissions with potential deleterious effects on human health. Nevertheless, cooking emissions remain poorly characterized. Here the effect of herbs and pepper on cooking emissions was investigated for the first time to the best of our knowledge using state of the art mass spectrometric analysis of particle and gas-phase composition. Further, the secondary organic aerosol production potential of the gas-phase emissions was determined by smog chamber aging experiments. The emissions of frying meat with herbs and pepper include large amounts of mono-, sesqui- and diterpenes as well as various terpenoids and p-cymene. The average total terpene emission rate from the use of herbs and pepper during cooking is estimated to be 46 ± 5 gg-1Herbs min-1. These compounds are highly reactive in the atmosphere and lead to significant amounts of secondary organic aerosol upon aging. In summary we demonstrate that cooking with condiments can constitute an important yet overlooked source of terpenes in indoor air.

  4. Indoor terpene emissions from cooking with herbs and pepper and their secondary organic aerosol production potential

    PubMed Central

    Klein, Felix; Farren, Naomi J.; Bozzetti, Carlo; Daellenbach, Kaspar R.; Kilic, Dogushan; Kumar, Nivedita K.; Pieber, Simone M.; Slowik, Jay G.; Tuthill, Rosemary N.; Hamilton, Jacqueline F.; Baltensperger, Urs; Prévôt, André S. H.; El Haddad, Imad

    2016-01-01

    Cooking is widely recognized as an important source of indoor and outdoor particle and volatile organic compound emissions with potential deleterious effects on human health. Nevertheless, cooking emissions remain poorly characterized. Here the effect of herbs and pepper on cooking emissions was investigated for the first time to the best of our knowledge using state of the art mass spectrometric analysis of particle and gas-phase composition. Further, the secondary organic aerosol production potential of the gas-phase emissions was determined by smog chamber aging experiments. The emissions of frying meat with herbs and pepper include large amounts of mono-, sesqui- and diterpenes as well as various terpenoids and p-cymene. The average total terpene emission rate from the use of herbs and pepper during cooking is estimated to be 46 ± 5 gg-1Herbs min-1. These compounds are highly reactive in the atmosphere and lead to significant amounts of secondary organic aerosol upon aging. In summary we demonstrate that cooking with condiments can constitute an important yet overlooked source of terpenes in indoor air. PMID:27830718

  5. Combined trajectory clustering and aerosol fields analysis to evaluate the potential emission flux to aerosol pollutants in an urban and semi-urban atmospheres in eastern India

    NASA Astrophysics Data System (ADS)

    Kumar, B. D.; Verma, S.

    2015-12-01

    A hybrid source-receptor analysis was carried out to evaluate the potential emission flux to winter monsoon (WinMon) aerosols over eastern India urban (Kolkata, Kol) and semi-urban atmospheres (Kharagpur, Kgp). This was done through application of fuzzy c-mean clustering to back-trajectory data combined with emission flux and residence time weighted aerosols analysis. WinMon mean aerosol optical depth (AOD) and angstrom exponent (AE) at Kol were respectively slightly higher than and nearly equal to that at Kgp. Out of six source region clusters over Indian subcontinent and two over Indian oceanic region, the cluster mean AOD was the highest when associated with the mean path of air mass originating from the Bay of Bengal (BoB) and the Arabian sea (AS) clusters at Kol and that from the Indo-Gangetic plain (IGP)cluster at Kgp. Spatial distribution of weighted AOD fields showed the highest potential source of aerosols over the IGP, majorly over upper IGP (IGP-U), lower IGP (IGP-L) and eastern region (ER) clusters. The emission flux contribution potential (EFCP) of fossil fuel (FF) emissions at surface (SL) of Kol/Kgp , elevated layer (EL) of Kol, and of biomass burning (BB) emissions at SL of Kol were majorly from IGP-U, IGP-L and IGP-U/L clusters respectively. The EFCP of FF/BB emissions at Kgp-EL/SL, and that of BB at EL of Kol/Kgp were mainly from ER and Africa (AFR) clusters respectively. Though the AFR cluster was constituted of significantly high emission flux source potential of dust emissions, the EFCP of dust from NWI was comparable to that from AFR at Kol SL/EL.

  6. Phytoplankton blooms weakly influence the cloud forming ability of sea spray aerosol

    NASA Astrophysics Data System (ADS)

    Collins, Douglas B.; Bertram, Timothy H.; Sultana, Camille M.; Lee, Christopher; Axson, Jessica L.; Prather, Kimberly A.

    2016-09-01

    After many field studies, the establishment of connections between marine microbiological processes, sea spray aerosol (SSA) composition, and cloud condensation nuclei (CCN) has remained an elusive challenge. In this study, we induced algae blooms to probe how complex changes in seawater composition impact the ability of nascent SSA to act as CCN, quantified by using the apparent hygroscopicity parameter (κapp). Throughout all blooms, κapp ranged between 0.7 and 1.4 (average 0.95 ± 0.15), consistent with laboratory investigations using algae-produced organic matter, but differing from climate model parameterizations and in situ SSA generation studies. The size distribution of nascent SSA dictates that changes in κapp associated with biological processing induce less than 3% change in expected CCN concentrations for typical marine cloud supersaturations. The insignificant effect of hygroscopicity on CCN concentrations suggests that the SSA production flux and/or secondary aerosol chemistry may be more important factors linking ocean biogeochemistry and marine clouds.

  7. New process additive reduces HF cloud-forming potential

    SciTech Connect

    Sheckler, J.C.; Hammershaimb, H.U. ); Ross, L.J. ); Comey, K.R. III )

    1994-08-22

    The Texaco-UOP HF additive technology has demonstrated significant aerosol reduction in both small-scale and large-scale releases. The pilot plant testing did not indicate any adverse impact on the alkylation reaction, as was confirmed in a short trial at Texaco Refining and Marketing Inc.'s El Dorado, Kan., refinery in 1992. Equipment to enable continuous addition of the additive was installed in the second quarter of 1994 at the refinery. The paper discusses HF alkylation, mitigation technology, additive development, aerosol reduction, and testing on pilot scale and large scale.

  8. Synthesis and Analysis of Putative Terpene Oxidation Products and the Secondary Organic Aerosol Particles that Form from Them

    NASA Astrophysics Data System (ADS)

    Ebben, C. J.; Strick, B. F.; Upshur, M.; Shrestha, M.; Velarde, L.; Lu, Z.; Wang, H.; Xiao, D.; Batista, V. S.; Martin, S. T.; Thomson, R. J.; Geiger, F. M.

    2013-12-01

    The terpenes isoprene and α-pinene are abundant volatile organic compounds (VOCs) that are emitted by trees and oxidized in the atmosphere. However, the chemical processes involved in the formation of secondary organic aerosol (SOA) particles from VOCs are not well understood. In this work, we use a combined synthetic, analytical, and theoretical approach to gain a molecular level understanding of the chemistry involved in the formation of SOA particles from VOC precursors. To this end, we have synthesized putative products of isoprene and α-pinene oxidation and the oligomers that form from them. Specifically, we have focused on the epoxide and 2-methyltetraols that form from isoprene oxidation by hydroxyl radicals, as well as products of α-pinene ozonolysis. In our analysis, we utilize a spectroscopic technique called sum frequency generation (SFG). SFG is a coherent, surface-specific, vibrational spectroscopy that uses infrared and visible laser light fields, overlapped spatially and temporally at a surface, to probe vibrational transitions within molecules. Our use of this technique allows us to assess the chemical identity of aerosol-forming components at their surfaces, where interactions with the gas phase occur. The spectral responses from these compounds are compared to those of synthetic isoprene- and α-pinene-derived aerosol particles, as well as natural aerosol particles collected in tropical and boreal forests to begin to predict the constituents that may be present at the surfaces of these particles. In addition, isotope editing is utilized to gain a better understanding of α-pinene. The rigidity of this molecule makes it difficult to understand spectroscopically. The combination of synthesis with deuterium labeling, theory, and broadband and high-resolution SFG spectroscopy in the C-H and C-D stretching regions allow us to determine the orientation of this important molecule on a surface, which could have implications for its reactivity in the

  9. Mass spectral analysis of organic aerosol formed downwind of the Deepwater Horizon oil spill: field studies and laboratory confirmations.

    PubMed

    Bahreini, R; Middlebrook, A M; Brock, C A; de Gouw, J A; McKeen, S A; Williams, L R; Daumit, K E; Lambe, A T; Massoli, P; Canagaratna, M R; Ahmadov, R; Carrasquillo, A J; Cross, E S; Ervens, B; Holloway, J S; Hunter, J F; Onasch, T B; Pollack, I B; Roberts, J M; Ryerson, T B; Warneke, C; Davidovits, P; Worsnop, D R; Kroll, J H

    2012-08-07

    In June 2010, the NOAA WP-3D aircraft conducted two survey flights around the Deepwater Horizon (DWH) oil spill. The Gulf oil spill resulted in an isolated source of secondary organic aerosol (SOA) precursors in a relatively clean environment. Measurements of aerosol composition and volatile organic species (VOCs) indicated formation of SOA from intermediate-volatility organic compounds (IVOCs) downwind of the oil spill (Science2011, 331, doi 10.1126/science.1200320). In an effort to better understand formation of SOA in this environment, we present mass spectral characteristics of SOA in the Gulf and of SOA formed in the laboratory from evaporated light crude oil. Compared to urban primary organic aerosol, high-mass-resolution analysis of the background-subtracted SOA spectra in the Gulf (for short, "Gulf SOA") showed higher contribution of C(x)H(y)O(+) relative to C(x)H(y)(+) fragments at the same nominal mass. In each transect downwind of the DWH spill site, a gradient in the degree of oxidation of the Gulf SOA was observed: more oxidized SOA (oxygen/carbon = O/C ∼0.4) was observed in the area impacted by fresher oil; less oxidized SOA (O/C ∼0.3), with contribution from fragments with a hydrocarbon backbone, was found in a broader region of more-aged surface oil. Furthermore, in the plumes originating from the more-aged oil, contribution of oxygenated fragments to SOA decreased with downwind distance. Despite differences between experimental conditions in the laboratory and the ambient environment, mass spectra of SOA formed from gas-phase oxidation of crude oil by OH radicals in a smog chamber and a flow tube reactor strongly resembled the mass spectra of Gulf SOA (r(2) > 0.94). Processes that led to the observed Gulf SOA characteristics are also likely to occur in polluted regions where VOCs and IVOCs are coemitted.

  10. Modelling size and structure of nanoparticles formed from drying of submicron solution aerosols

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Arpan A.; Pawar, Amol A.; Venkataraman, Chandra; Mehra, Anurag

    2015-01-01

    Drying of submicron solution aerosols, under controlled conditions, has been explored to prepare nanoparticles for drug delivery applications. A computational model of solution drop evaporation is developed to study the evolution of solute gradients inside the drop and predict the size and shell thickness of precipitating nanoparticles. The model considers evaporation as a two-stage process involving droplet shrinkage and shell growth. It was corroborated that droplet evaporation rate controls the solute distribution within a droplet and the resulting particle structure (solid or shell type). At higher gas temperatures, rapid build-up of solute near drop surface from high evaporation rates results in early attainment of critical supersaturation solubility and a steeper solute gradient, which favours formation of larger, shell-type particles. At lower gas temperatures, formation of smaller, solid nanoparticles is indicated. The computed size and shell thickness are in good agreement with experimentally prepared lipid nanoparticles. This study indicates that solid or shell structure of precipitated nanoparticles is strongly affected by evaporation rate, while initial solute concentration in the precursor solution and atomized droplet size affect shell thickness. For the gas temperatures considered, evaporative cooling leads to droplet temperature below the melting point of the lipid solute. Thus, we conclude that control over nanoparticle size and structure, of thermolabile precursor materials suitable for drug delivery, can be achieved by controlling evaporation rates, through selection of aerosol processing conditions.

  11. Influence of oxygenated organic aerosols (OOAs) on the oxidative potential of diesel and biodiesel particulate matter.

    PubMed

    Stevanovic, S; Miljevic, B; Surawski, N C; Fairfull-Smith, K E; Bottle, S E; Brown, R; Ristovski, Z D

    2013-07-16

    Generally, the magnitude of pollutant emissions from diesel engines running on biodiesel fuel is ultimately coupled to the structure of the fuel's constituent molecules. Previous studies demonstrated the relationship between the organic fraction of particulate matter (PM) and its oxidative potential. Herein, emissions from a diesel engine running on different biofuels were analyzed in more detail to explore the role that different organic fractions play in the measured oxidative potential. In this work, a more detailed chemical analysis of biofuel PM was undertaken using a compact time of flight aerosol mass spectrometer (c-ToF AMS). This enabled a better identification of the different organic fractions that contribute to the overall measured oxidative potentials. The concentration of reactive oxygen species (ROS) was measured using a profluorescent nitroxide molecular probe 9-(1,1,3,3-tetramethylisoindolin-2-yloxyl-5-ethynyl)-10-(phenylethynyl)anthracene (BPEAnit). Therefore, the oxidative potential of the PM, measured through the ROS content, although proportional to the total organic content in certain cases, shows a much higher correlation with the oxygenated organic fraction as measured by the c-ToF AMS. This highlights the importance of knowing the surface chemistry of particles for assessing their health impacts. It also sheds light onto new aspects of particulate emissions that should be taken into account when establishing relevant metrics for assessing health implications of replacing diesel with alternative fuels.

  12. Radiocarbon based source apportionment of black carbon in the form of PM10 elemental carbon aerosol particles at the Zeppelin Observatory, Svalbard

    NASA Astrophysics Data System (ADS)

    Winiger, Patrik; Andersson, August; Espen Yttri, Karl; Tunved, Peter; Gustafsson, Örjan

    2015-04-01

    Black carbon (BC) aerosol particles are formed from incomplete combustion of fossil fuel and biomass. Transported into the Arctic, they potentially contributes to climate warming. However, there are still large uncertainties related to the climate effects of BC, including aspects of radiative properties, mixing state of the particles, transport, atmospheric lifetime and sources. The current study aims to reduce source uncertainties by applying a top-down (observational) source-diagnostic isotope approach and comparing these to bottom-up (modeling) emission inventories to better constrain the source types and source regions. The use of natural abundance radiocarbon (Δ14C) is a powerful tool to distinguish between fossil (void of 14C) and biomass (contemporary 14C) combustion sources. Due to the well-defined end-members, 14C-measurements (alone) provide high precision (

  13. Increase in upper tropospheric and lower stratospheric aerosol levels and its potential connection with Asian pollution

    PubMed Central

    Vernier, J-P; Fairlie, T D; Natarajan, M; Wienhold, F G; Bian, J; Martinsson, B G; Crumeyrolle, S; Thomason, L W; Bedka, K M

    2015-01-01

    Satellite observations have shown that the Asian Summer Monsoon strongly influences the upper troposphere and lower stratosphere (UTLS) aerosol morphology through its role in the formation of the Asian Tropopause Aerosol Layer (ATAL). Stratospheric Aerosol and Gas Experiment II solar occultation and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar observations show that summertime UTLS Aerosol Optical Depth (AOD) between 13 and 18 km over Asia has increased by three times since the late 1990s. Here we present the first in situ balloon measurements of aerosol backscatter in the UTLS from Western China, which confirm high aerosol levels observed by CALIPSO since 2006. Aircraft in situ measurements suggest that aerosols at lower altitudes of the ATAL are largely composed of carbonaceous and sulfate materials (carbon/sulfur elemental ratio ranging from 2 to 10). Back trajectory analysis from Cloud-Aerosol Lidar with Orthogonal Polarization observations indicates that deep convection over the Indian subcontinent supplies the ATAL through the transport of pollution into the UTLS. Time series of deep convection occurrence, carbon monoxide, aerosol, temperature, and relative humidity suggest that secondary aerosol formation and growth in a cold, moist convective environment could play an important role in the formation of ATAL. Finally, radiative calculations show that the ATAL layer has exerted a short-term regional forcing at the top of the atmosphere of −0.1 W/m2 in the past 18 years. Key Points Increase of summertime upper tropospheric aerosol levels over Asia since the 1990s Upper tropospheric enhancement also observed by in situ backscatter measurements Significant regional radiative forcing of −0.1 W/m2 PMID:26691186

  14. Characterisation of Secondary Organic Aerosol Formed from the Photooxidation of Isoprene during Cloud Condensation-Evaporation Cycles (CUMULUS Project)

    NASA Astrophysics Data System (ADS)

    Doussin, J. F.; Giorio, C.; Bregonzio-Rozier, L.; Siekmann, F.; Temime-Roussel, B.; Gratien, A.; Ravier, S.; Pangui, E.; Tapparo, A.; Kalberer, M.; Vermeylen, R.; Claeys, M.; Monod, A.

    2014-12-01

    Biogenic volatile organic compounds (BVOCs) undergo many oxidation processes in the atmosphere accompanied by formation of water-soluble compounds. These compounds could partition into atmospheric water droplets, and react within the aqueous phase producing higher molecular weight and less volatile compounds which could form new aerosol (Ervens et al., 2011). This work investigates the formation and composition of secondary organic aerosol (SOA) from the photooxidation of isoprene and methacrolein (its main first-generation oxidation product) and the effect of cloud water on SOA formation and composition. The experiments were performed within the CUMULUS project (CloUd MULtiphase chemistry of organic compoUndS in the troposphere) at the 4.2 m3 stainless steel CESAM chamber (Wang et al., 2011). In each experiment, isoprene or methacrolein was injected in the chamber together with HONO under dry conditions before irradiation. The experimental protocol was optimised to generate cloud events in the chamber, lasting for ca. 10 minutes in the presence of light. Gas phase compounds were analyzed on-line by a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-ToF-MS), a Fourier Transform Infrared Spectrometer (FTIR), NOx and O3 analyzers. SOA formation and composition were analysed on-line with a Scanning Mobility Particle Sizer (SMPS) and an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and off-line through sampling on filters and analysis in GC-MS and LC-MS. We observed that during cloud formation water soluble gas-phase oxidation products readily partitioned into cloud droplets and new SOA was promptly produced. Chemical composition, elemental ratios and density of SOA were compared before, during cloud formation and after cloud evaporation. Ervens, B. et al. (2011) Atmos. Chem. Phys. 11, 11069-11102. Wang, J. et al. (2011) Atmos. Measur. Tech. 4, 2465-2494.

  15. Chemical characterization of the main secondary organic aerosol (SOA) products formed through aqueous-phase photonitration of guaiacol

    NASA Astrophysics Data System (ADS)

    Kitanovski, Z.; Čusak, A.; Grgić, I.; Claeys, M.

    2014-04-01

    Guaiacol (2-methoxyphenol) and its derivatives can be emitted into the atmosphere by thermal degradation (i.e. burning) of wood lignins. Due to its volatility, guaiacol is predominantly distributed in the atmospheric gaseous phase. Recent studies have shown the importance of aqueous-phase reactions in addition to the dominant gas-phase and heterogeneous reactions of guaiacol, in the formation of secondary organic aerosol (SOA) in the atmosphere. The main objectives of the present study were to chemically characterize the low-volatility SOA products of the aqueous-phase photonitration of guaiacol and examine their possible presence in urban atmospheric aerosols. The aqueous-phase reactions were carried out under simulated sunlight and in the presence of H2O2 and nitrite. The formed guaiacol reaction products were concentrated by using solid-phase extraction (SPE) and then purified by means of semi-preparative high-performance liquid chromatography (HPLC). The fractionated individual compounds were isolated as pure solids and further analyzed with liquid-state 1H, 13C and 2D nuclear magnetic resonance (NMR) spectroscopy and direct infusion negative ion electrospray ionization tandem mass spectrometry ((-)ESI-MS/MS). The NMR and product ion (MS2) spectra were used for unambiguous product structure elucidation. The main products of guaiacol photonitration are 4-nitroguaiacol (4NG), 6-nitroguaiacol (6NG), and 4,6-dinitroguaiacol (4,6DNG). Using the isolated compounds as standards, 4NG and 4,6DNG were unambiguously identified in winter PM10 aerosols from the city of Ljubljana (Slovenia) by means of HPLC/(-)ESI-MS/MS. Owing to the strong absorption of UV and visible light, 4,6DNG could be an important constituent of atmospheric "brown" carbon, especially in regions affected by biomass burning.

  16. Airborne measurements of cloud forming nuclei and aerosol particles at Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    Radke, L. F.; Langer, G.; Hindman, E. E., II

    1978-01-01

    Results of airborne measurements of the sizes and concentrations of aerosol particles, ice nuclei, and cloud condensation nuclei that were taken at Kennedy Space Center, Florida, are presented along with a detailed description of the instrumentation and measuring capabilities of the University of Washington airborne measuring facility (Douglas B-23). Airborne measurements made at Ft. Collins, Colorado, and Little Rock, Arkansas, during the ferry of the B-23 are presented. The particle concentrations differed significantly between the clean air over Ft. Collins and the hazy air over Little Rock and Kennedy Space Center. The concentrations of cloud condensation nuclei over Kennedy Space Center were typical of polluted eastern seaboard air. Three different instruments were used to measure ice nuclei: one used filters to collect the particles, and the others used optical and acoustical methods to detect ice crystals grown in portable cloud chambers. A comparison of the ice nucleus counts, which are in good agreement, is presented.

  17. Modelling the chemically aged and mixed aerosols over the eastern central Atlantic Ocean - potential impacts

    NASA Astrophysics Data System (ADS)

    Astitha, M.; Kallos, G.; Spyrou, C.; O'Hirok, W.; Lelieveld, J.; Denier van der Gon, H. A. C.

    2010-07-01

    Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size distribution, using chemistry-transport models, satellite data and in situ measurements. We focus on August 2005, a period with intense hurricane and tropical storm activity over the Atlantic Ocean. A mixture of anthropogenic (sulphates, nitrates), natural (desert dust, sea salt) and chemically aged (sulphate and nitrate on dust) aerosols is found entering the hurricane genesis region, most likely interacting with clouds in the area. Results from our modelling study suggest rather small amounts of accumulation mode desert dust, sea salt and chemically aged dust aerosols in this Atlantic Ocean region. Aerosols of smaller size (Aitken mode) are more abundant in the area and in some occasions sulphates of anthropogenic origin and desert dust are of the same magnitude in terms of number concentrations. Typical aerosol number concentrations are derived for the vertical layers near shallow cloud formation regimes, indicating that the aerosol number concentration can reach several thousand particles per cubic centimetre. The vertical distribution of the aerosols shows that the desert dust particles are often transported near the top of the marine cloud layer as they enter into the region where deep convection is initiated. The anthropogenic sulphate aerosol can be transported within a thick layer and enter the cloud deck through multiple ways (from the top, the base of the cloud, and by entrainment). The sodium (sea salt related) aerosol is mostly found below the cloud base. The results of this work may provide insights relevant for studies that consider aerosol influences on cloud processes and storm development in the Central Atlantic region.

  18. Chemically aged and mixed aerosols over the Central Atlantic Ocean - potential impacts

    NASA Astrophysics Data System (ADS)

    Astitha, M.; Kallos, G.; Spyrou, C.; O'Hirok, W.; Lelieveld, J.; Denier van der Gon, H. A. C.

    2010-02-01

    Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size distribution, using chemistry-transport models, satellite data and in situ measurements. We focus on August 2005, a period with intense hurricane and tropical storm activity over the Atlantic Ocean. A mixture of anthropogenic (sulphates, nitrates), natural (desert dust, sea salt) and chemically aged (sulphate and nitrate on dust) aerosols is found entering the hurricane genesis region, most likely interacting with clouds in the area. Results from our modelling study suggest rather small amounts of accumulation mode desert dust, sea salt and chemically aged dust aerosols in this Atlantic Ocean region. Aerosols of smaller size (Aitken mode) are more abundant in the area and in some occasions sulphates of anthropogenic origin and desert dust are of the same magnitude in terms of number concentrations. Typical aerosol number concentrations are derived for the vertical layers near shallow cloud formation regimes, designating that the aerosol number concentration can reach several thousand particles per cubic centimetre. The vertical distribution of the aerosols indicates that the desert dust particles are often transported near the top of the marine cloud layer as they enter into the region where deep convection is initiated. The anthropogenic sulphate aerosol can be transported within a thick layer and enter the cloud deck through multiple ways (from the top, the base of the cloud and entrainment). The sodium (sea salt related) aerosol is mostly found below the cloud base. The results of this work may provide insights relevant for studies that consider aerosol influences on cloud processes and storm development in the Central Atlantic region.

  19. Optical elements formed by compressed gases: Analysis and potential applications

    NASA Technical Reports Server (NTRS)

    Howes, W. L.

    1986-01-01

    Spherical, cylindrical, and conical shock waves are optically analogous to gas lenses. The geometrical optics of these shock configurations are analyzed as they pertain to flow visualization instruments, particularly the rainbow schlieren apparatus and single-pass interferometers. It is proposed that a lens or mirror formed by gas compressed between plastic sheets has potential as a fluid visualization test object; as the objective mirror in a very large space-based telescope, communication antenna, or energy collector; as the objective mirror in inexpensive commercial telescopes; and as a component in fluid visualization apparatuses.

  20. Potential sensitivity of photosynthesis and isoprene emission to direct radiative effects of atmospheric aerosol pollution

    NASA Astrophysics Data System (ADS)

    Strada, S.; Unger, N.

    2015-09-01

    A global Earth system model is applied to quantify the impacts of direct anthropogenic aerosol effective radiative forcing on gross primary productivity (GPP) and isoprene emission. The impacts of different pollution aerosol sources (all anthropogenic, biomass burning and non-biomass burning) are investigated by performing sensitivity experiments. On the global scale, our results show that land carbon fluxes (GPP and isoprene emission) are not sensitive to pollution aerosols, even under a global decline in surface solar radiation (direct + diffuse) by ~ 9 %. At the regional scale, plant productivity (GPP) and isoprene emission show a robust but opposite sensitivity to pollution aerosols, in regions where complex canopies dominate. In eastern North America and Europe, anthropogenic pollution aerosols (mainly from non-biomass burning sources) enhance GPP by +8-12 % on an annual average, with a stronger increase during the growing season (> 12 %). In the Amazon basin and central Africa, biomass burning aerosols increase GPP by +2-5 % on an annual average, with a peak in the Amazon basin during the dry-fire season (+5-8 %). In Europe and China, anthropogenic pollution aerosols drive a decrease in isoprene emission of -2 to -12 % on the annual average. Anthropogenic aerosols affect land carbon fluxes via different mechanisms and we suggest that the dominant mechanism varies across regions: (1) light scattering dominates in the eastern US; (2) cooling in the Amazon basin; and (3) reduction in direct radiation in Europe and China.

  1. Terpenylic and Related Lactone-Containing Acids: Novel Monoterpene Secondary Organic Aerosol Tracers with Dimer-Forming Properties

    NASA Astrophysics Data System (ADS)

    Claeys, M.; Iinuma, Y.; Szmigielski, R.; Farhat, Y.; Surratt, J. D.; Blockhuys, F.; van Alsenoy, C.; Böge, O.; Sierau, B.; Gómez-González, Y.; Vermeylen, R.; van der Veken, P.; Shahgholi, M.; Chan, A. W.; Herrmann, H.; Seinfeld, J.; Maenhaut, W.

    2009-12-01

    Blue haze is a natural phenomenon that is observed in forested regions worldwide and is due to the formation of secondary organic aerosol (SOA) particles. While evidence exists for organic molecular clusters in the size range of < 2 nm, the chemical structures of the nucleating particles have remained unresolved. In the present study, novel SOA products from the monoterpene α-pinene with unique dimer-forming properties have been identified as lactone-containing terpenoic acids, i.e., terpenylic (molecular weight (MW) 172), terebic (MW 158) and 2-hydroxyterpenylic acid (MW 188), and diaterpenylic acid acetate (MW 232). The structural characterizations were based on synthesis of reference compounds and detailed interpretation of negative ion electrospray ionization mass spectral [(-)ESI-MS] data, including accurate mass and MSn ion trap measurements. Terpenylic acid and diaterpenylic acid acetate are early oxidation products formed upon both photooxidation and ozonolysis, and are abundant SOA tracers in ambient fine aerosol from coniferous forest sites (e.g., K-puszta, Hungary). Terebic and 2-hydroxyterpenylic acid can be explained by further oxidation of terpenylic acid, and are also prominent tracers in ambient fine aerosol. Quantum chemical calculations support that non-covalent dimer formation involving double hydrogen bonding interactions between carboxyl groups of the monomers is energetically favorable. Lactone-containing terpenoic acids also form through photooxidation from monoterpenes other than α-pinene, i.e., terebic acid from Δ3-carene, and terpenylic, homoterpenylic (MW 186), and terebic acid from β-pinene. A distinct feature of terpenylic acid and related lactone-containing acids is that they can be selectively detected in positive ion (+)ESI-MS, unlike isobaric dicarboxylic terpenoic acids such as norpinic (MW 172) and pinic acid (MW 186). Interestingly, terpenylic, terebic and homoterpenylic acid were already reported in the early German

  2. Nitrogen Containing Organic Compounds and Oligomers in Secondary Organic Aerosol Formed by Photooxidation of Isoprene

    SciTech Connect

    Nguyen, Tran B.; Laskin, Julia; Laskin, Alexander; Nizkorodov, Serguei

    2011-07-06

    Electrospray ionization high-resolution mass spectrometry (ESI HR-MS) was used to probe molecular structures of oligomers in secondary organic aerosol (SOA) generated in laboratory experiments on isoprene photooxidation at low- and high-NOx conditions. Up to 80-90% of the observed products are oligomers and up to 33% are nitrogen-containing organic compounds (NOC). We observe oligomers with up to 8 monomer units in length. Tandem mass spectrometry (MSn) confirms NOC compounds are organic nitrates and elucidates plausible chemical building blocks contributing to oligomer formation. Most organic nitrates are comprised of methylglyceric acid units. Other important multifunctional C2-C5 monomer units are identified including methylglyoxal, hydroxyacetone, hydroxyacetic acid, glycolaldehyde, and 2-methyltetrols. The majority of the NOC oligomers contain only one nitrate moiety resulting in a low average N:C ratio of 0.019. Average O:C ratios of the detected SOA compounds are 0.54 under the low-NOx conditions and 0.83 under the high-NOx conditions. Our results underscore the importance of isoprene photooxidation as a source of NOC in organic particulate matter.

  3. Can secondary organic aerosol formed in an atmospheric simulation chamber continuously age?

    NASA Astrophysics Data System (ADS)

    Qi, Li; Nakao, Shunsuke; Malloy, Quentin; Warren, Bethany; Cocker, David R.

    2010-08-01

    This work investigates the oxidative aging process of SOA derived from select aromatic ( m-xylene) and biogenic (α-pinene) precursors within an environmental chamber. Simultaneous measurements of SOA hygroscopicity, volatility, particle density, and elemental chemical composition (C:O:H) reveal only slight particle aging for up to the first 16 h of formation. The chemical aging observed is consistent with SOA that is decreasing in volatility and increasing in O/C and hydrophilicity. Even after aging, the O/C (0.25 and 0.40 for α-pinene and m-xylene oxidation, respectively) was below the OOAI and OOAII ambient fractions measured by high-resolution aerosol mass spectra coupled with Positive Matrix Factorization (PMF). The rate of increase in O/C does not appear to be sufficient to achieve OOAI or OOAII levels of oxygenation within regular chamber experiment duration. No chemical aging was observed for SOA during dark α-pinene ozonolysis with a hydroxyl radical scavenger present. This finding is consistent with observations by other groups that SOA from this system is comprised of first generation products.

  4. Speciation and pulmonary effects of acidic SO x formed on the surface of ultrafine zinc oxide aerosols

    NASA Astrophysics Data System (ADS)

    Amdur, Mary O.; Chen, Lung Chi; Guty, John; Lam, Hua Fuan; Miller, Patricia D.

    Ultrafine metal oxides and SO 2 react during coal combustion or smelting operations to form primary emissions coated with an acidic SO x layer. A ZnO-SO 2-H 2O (mixed 500°C) system generates such particles to provide greatly needed information on both quantitative composition of the surface layer and its effects on the lung. Total S on the particles is related to ZnO concentration and is predominantly S VI. As a surface layer, 20 μg m -3 H 2SO 4 decreases pulmonary diffusing capacity in guinea pigs after four daily 3-h exposures and produces bronchial hypersensitivity following a single 1-h exposure. That 200 μg m -3 H 2SO 4 aerosols of equivalent particle size are needed to produce the same degree of bronchial hypersensitivity emphasizes the importance of the surface layer.

  5. Characterisation of secondary organic aerosol formed during cloud condensation-evaporation cycles from isoprene photooxidation (CUMULUS project)

    NASA Astrophysics Data System (ADS)

    Giorio, Chiara; Bregonzio, Lola; Siekmann, Frank; Temime-Roussel, Brice; Ravier, Sylvain; Pangui, Edouard; Tapparo, Andrea; Kalberer, Markus; Monod, Anne; Doussin, Jean-François

    2014-05-01

    Biogenic volatile organic compounds (BVOCs) undergo many reactions in the atmosphere and form a wide range of oxidised and water-soluble compounds. These compounds could partition into atmospheric water droplets, and react within the aqueous phase producing higher molecular weight and less volatile compounds which could remain in the particle phase after water evaporation (Ervens et al., 2011). The aim of this work is the characterisation of secondary organic aerosol (SOA) formed from the photooxidation of isoprene and the effect of cloud water on SOA formation and composition. The experiments were performed during the CUMULUS project (CloUd MULtiphase chemistry of organic compoUndS in the troposphere), at the 4.2 m3 stainless steel CESAM chamber at LISA (Wang et al., 2011). In each experiment, isoprene was injected in the chamber together with HONO under dry conditions before irradiation. Gas phase compounds were analyzed on-line by a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-ToF-MS), a Fourier Transform Infrared Spectrometer (FTIR), NOx and O3 analyzers. SOA formation and composition were analysed on-line with a Scanning Mobility Particle Sizer (SMPS) and an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS). Particular attention has been focused on SOA formation and aging during cloud condensation-evaporation cycles simulated in the smog chamber. In all experiments, we observed that during cloud formation water soluble gas-phase oxidation products readily partitioned into cloud droplets and new SOA was promptly produced which partly persisted after cloud evaporation. Chemical composition, elemental ratios and density of SOA, measured with the HR-ToF-AMS, were compared before, during cloud formation and after cloud evaporation. Experiments with other precursors, i.e. methacrolein, and effects of the presence of seeds were also investigated. Ervens, B. et al. (2011) Atmos. Chem. Phys. 11, 11069 11102. Wang, J. et al

  6. Trends in aerosol optical depth over Indian region: Potential causes and impact indicators

    NASA Astrophysics Data System (ADS)

    Babu, S. Suresh; Manoj, M. R.; Moorthy, K. Krishna; Gogoi, Mukunda M.; Nair, Vijayakumar S.; Kompalli, Sobhan Kumar; Satheesh, S. K.; Niranjan, K.; Ramagopal, K.; Bhuyan, P. K.; Singh, Darshan

    2013-10-01

    first regional synthesis of long-term (back to ~ 25 years at some stations) primary data (from direct measurement) on aerosol optical depth from the ARFINET (network of aerosol observatories established under the Aerosol Radiative Forcing over India (ARFI) project of Indian Space Research Organization over Indian subcontinent) have revealed a statistically significant increasing trend with a significant seasonal variability. Examining the current values of turbidity coefficients with those reported ~ 50 years ago reveals the phenomenal nature of the increase in aerosol loading. Seasonally, the rate of increase is consistently high during the dry months (December to March) over the entire region whereas the trends are rather inconsistent and weak during the premonsoon (April to May) and summer monsoon period (June to September). The trends in the spectral variation of aerosol optical depth (AOD) reveal the significance of anthropogenic activities on the increasing trend in AOD. Examining these with climate variables such as seasonal and regional rainfall, it is seen that the dry season depicts a decreasing trend in the total number of rainy days over the Indian region. The insignificant trend in AOD observed over the Indo-Gangetic Plain, a regional hot spot of aerosols, during the premonsoon and summer monsoon season is mainly attributed to the competing effects of dust transport and wet removal of aerosols by the monsoon rain. Contributions of different aerosol chemical species to the total dust, simulated using Goddard Chemistry Aerosol Radiation and Transport model over the ARFINET stations, showed an increasing trend for all the anthropogenic components and a decreasing trend for dust, consistent with the inference deduced from trend in Angstrom exponent.

  7. Potential sensitivity of photosynthesis and isoprene emission to direct radiative effects of atmospheric aerosol pollution

    NASA Astrophysics Data System (ADS)

    Strada, Susanna; Unger, Nadine

    2016-04-01

    A global Earth system model is applied to quantify the impacts of direct anthropogenic aerosol effective radiative forcing on gross primary productivity (GPP) and isoprene emission. The impacts of different pollution aerosol sources (anthropogenic, biomass burning, and non-biomass burning) are investigated by performing sensitivity experiments. The model framework includes all known light and meteorological responses of photosynthesis, but uses fixed canopy structures and phenology. On a global scale, our results show that global land carbon fluxes (GPP and isoprene emission) are not sensitive to pollution aerosols, even under a global decline in surface solar radiation (direct + diffuse) by ˜ 9 %. At a regional scale, GPP and isoprene emission show a robust but opposite sensitivity to pollution aerosols in regions where forested canopies dominate. In eastern North America and Eurasia, anthropogenic pollution aerosols (mainly from non-biomass burning sources) enhance GPP by +5-8 % on an annual average. In the northwestern Amazon Basin and central Africa, biomass burning aerosols increase GPP by +2-5 % on an annual average, with a peak in the northwestern Amazon Basin during the dry-fire season (+5-8 %). The prevailing mechanism varies across regions: light scattering dominates in eastern North America, while a reduction in direct radiation dominates in Europe and China. Aerosol-induced GPP productivity increases in the Amazon and central Africa include an additional positive feedback from reduced canopy temperatures in response to increases in canopy conductance. In Eurasia and northeastern China, anthropogenic pollution aerosols drive a decrease in isoprene emission of -2 to -12 % on an annual average. Future research needs to incorporate the indirect effects of aerosols and possible feedbacks from dynamic carbon allocation and phenology.

  8. Distinct weekly cycles of thunderstorms and a potential connection with aerosol type in China

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Li, Zhanqing; Liu, Lin; Zhou, Lijing; Cribb, Maureen; Zhang, Fang

    2016-08-01

    This study identified distinct weekly cycles in thunderstorm activities and convection-associated variables in two regions of China dominated by different types of aerosol during the summers of 1983-2005. In both regions, visibility has similar weekly cycle: lower on weekdays than on weekends. Barring any possible "natural" weekly cycles, the findings of the poorest and best visibility on Friday and Monday, respectively, point to the weekly variations in anthropogenic emissions. However, the phases of the thunderstorm cycles between the two regions were different. In central China, thunderstorms occurred more frequently from Saturday to Monday than on other days. The cycles were out of phase in southeast China. It is hypothesized that the phase difference is associated with aerosol type. In central China aerosol absorption is strong, which suppresses convection more on weekdays. In southeast China aerosols are less absorbing but more hygroscopic, which helps invigorate thunderstorms more on weekdays.

  9. Study of morphology of aerosol aggregates formed during co-pyrolysis of C3H8 + Fe(CO)5

    NASA Astrophysics Data System (ADS)

    Ivanova, N. A.; Onischuk, A. A.; di Stasio, S.; Baklanov, A. M.; Makhov, G. A.

    2007-04-01

    Formation of aerosol nanoparticles as well as carbon nanotubes and nanofilaments is studied during co-pyrolysis of iron pentacarbonyl and propane with argon as a carrier gas in a flow reactor. Gaseous intermediates from propane thermal decomposition (CH4, C2H6 and C3H4) and Fe(CO)5 conversion are monitored by gas chromatography and IR-spectroscopy, respectively. The aerosol morphology is studied by transmission electron microscopy (TEM) and high resolution TEM. The aerosol particle concentration and size distribution are measured by an automated diffusion battery. The crystal phase composition of particles is studied by x-ray diffractometry. The decomposition of the Fe(CO)5 + Ar mixture resulted in an iron aggregate formation composed of fine primary particles. In the case of lower pyrolysis temperatures, about 450 K, the primary particle mean diameter is about 10 nm, and consequently, the majority of the primary particles are superparamagnetic, thus forming compact aggregates. At intermediate pyrolysis temperatures in the range 800-1040 K the primary particle diameter is about 20-30 nm, and most of the particles are ferromagnetic in nature. The coagulation of these particles results in a chain-like aggregate formation. Finally, at temperatures higher than the Curie point (1043 K) the ferromagnetic properties vanish and the formation of compact aggregates is observed again. The co-pyrolysis of Fe(CO)5 and C3H8 mixed with Ar carrier gas resulted in aerosol aggregate structures dramatically different from those formed by iron pentacarbonyl pyrolysis. In particular, in the temperature range 1070-1280 K, we observed Fe3C particles connected by long carbon nanotubes (CNTs). The aggregate morphology is described in terms of a fractal-like dimension Df, which is determined from TEM images on the basis of a scaling power law linking the aggregate mass (M) and radius (R), M{\\sim}R^{D_f} . The Fe3C-CNT aggregate morphology is a function of the inlet ratio between propane

  10. The characterisation of secondary organic aerosol formed during the photodecomposition of 1,3-butadiene in air containing nitric oxide

    NASA Astrophysics Data System (ADS)

    Angove, D. E.; Fookes, C. J. R.; Hynes, R. G.; Walters, C. K.; Azzi, M.

    The formation of secondary organic aerosol (SOA) at yields of 0.4-0.5% and having a geometric mean diameter <100 nm has been observed during indoor environmental chamber experiments on 1.0-2.2 ppmv 1,3-butadiene in the presence of 0.5-1.1 ppmv NO. The SOA was collected on glass fibre filters, some of which were acetylated using a pyridine/acetic anhydride mixture immediately after collection. Analysis of the SOA by Fourier transform infrared spectroscopy (FTIR) resulted in bands assigned to OH stretching in alcoholic and carboxylic hydroxyl groups, NO stretching in NO 3 and C dbnd O stretching at 1728 cm -1, the latter indicative of formate esters rather than aldehydes or ketones. Initial NMR spectra showed a broad polymeric-like feature, which separated into peaks representative of monomeric units as the SOA hydrolysed over 3 days. Subsequent GC-MS and NMR analyses were used to identify 18 species, which represented 75-80% of the SOA mass. Some of the unidentified mass is probably composed of organic nitrates. Low vapour pressure (⩽10 -7 Torr) species detected were glycerol, threitol, erythritol and isomeric forms tentatively identified as threonic and erythronic acid nitrate. Gel permeation chromatography of acetylated SOA gave a polymer molecular weight distribution range up to ˜4.0×10 5 g mol -1, with a peak molecular weight of 6.12×10 4 g mol -1. A chemical mechanism for the formation of endogenous seed aerosol directly from 1,3-butadiene is presented. It is proposed that the SOA is polymeric and composed of C1-C4 oxygenated species, including formate esters and hemiacetal formates.

  11. Direct Quantification of Ice Nucleation Active Bacteria in Aerosols and Precipitation: Their Potential Contribution as Ice Nuclei

    NASA Astrophysics Data System (ADS)

    Hill, T. C.; DeMott, P. J.; Garcia, E.; Moffett, B. F.; Prenni, A. J.; Kreidenweis, S. M.; Franc, G. D.

    2013-12-01

    Ice nucleation active (INA) bacteria are a potentially prodigious source of highly active (≥-12°C) atmospheric ice nuclei, especially from agricultural land. However, we know little about the conditions that promote their release (eg, daily or seasonal cycles, precipitation, harvesting or post-harvest decay of litter) or their typical contribution to the pool of boundary layer ice nucleating particles (INP). To initiate these investigations we developed a quantitative Polymerase Chain Reaction (qPCR) test of the ina gene, the gene that codes for the ice nucleating protein, to directly count INA bacteria in environmental samples. The qPCR test amplifies most forms of the gene and is highly sensitive, able to detect perhaps a single gene copy (ie, a single bacterium) in DNA extracted from precipitation. Direct measurement of the INA bacteria is essential because environmental populations will be a mixture of living, viable-but-not culturable, moribund and dead cells, all of which may retain ice nucleating proteins. Using the qPCR test on leaf washings of plants from three farms in Wyoming, Colorado and Nebraska we found INA bacteria to be abundant on crops, especially on cereals. Mid-summer populations on wheat and barley were ~108/g fresh weigh of foliage. Broadleaf crops, such as corn, alfalfa, sugar beet and potato supported 105-107/g. Unexpectedly, however, in the absence of a significant physical disturbance, such as harvesting, we were unable to detect the ina gene in aerosols sampled above the crops. Likewise, in fresh snow samples taken over two winters, ina genes from a range of INA bacteria were detected in about half the samples but at abundances that equated to INA bacterial numbers that accounted for only a minor proportion of INP active at -10°C. By contrast, in a hail sample from a summer thunderstorm we found 0.3 INA bacteria per INP at -10°C and ~0.5 per hail stone. Although the role of the INA bacteria as warm-temperature INP in these samples

  12. Oxidative potential of secondary organic aerosols produced from photooxidation of different hydrocarbons using outdoor chamber under ambient sunlight

    NASA Astrophysics Data System (ADS)

    Jiang, Huanhuan; Jang, Myoseon; Sabo-Attwood, Tara; Robinson, Sarah E.

    2016-04-01

    The oxidative potential of various secondary organic aerosols (SOA) was measured using dithiothreitol (DTT) assay to understand how organic aerosols react with cellular materials. SOA was produced via the photooxidation of four different hydrocarbons (toluene, 1,3,5-trimethylbenzene, isoprene and α-pinene) in the presence of NOx using a large outdoor photochemical smog chamber. The DTT consumption rate was normalized by the aerosol mass, which is expressed as DTTmass. Toluene SOA and isoprene SOA yielded higher DTTmass than 1,3,5-trimethylbenzene SOA or α-pinene SOA. In order to discover the correlation between the molecular structure and oxidative potential, the DTT responses of selected model compounds were also measured. Among them, conjugated aldehydes, quinones, and H2O2 showed considerable DTT response. To investigate the correlation between DTT response and cell responses in vitro, the expression of biological markers, i.e. IL-6, IL-8, and HMOX-1 were studied using small airway epithelial cells. Higher cellular expression of IL-8 was observed with toluene SOA exposure compared to 1,3,5-trimethylbenzene SOA exposure, which aligned with the results from DTT assay. Our study also suggests that within the urban atmosphere, the contribution of toluene SOA and isoprene SOA to the oxidative potential of ambient SOA will be more significant than that of α-pinene SOA.

  13. Photochemical Aging of α-pinene and β-pinene Secondary Organic Aerosol formed from Nitrate Radical Oxidation.

    PubMed

    Nah, Theodora; Sanchez, Javier; Boyd, Christopher M; Ng, Nga Lee

    2016-01-05

    The nitrate radical (NO3) is the dominant nighttime oxidant in most urban and rural environments and reacts rapidly with biogenic volatile organic compounds to form secondary organic aerosol (SOA) and organic nitrates (ON). Here, we study the formation of SOA and ON from the NO3 oxidation of two monoterpenes (α-pinene and β-pinene) and investigate how they evolve during photochemical aging. High SOA mass loadings are produced in the NO3+β-pinene reaction, during which we detected 41 highly oxygenated gas- and particle-phase ON possessing 4 to 9 oxygen atoms. The fraction of particle-phase ON in the β-pinene SOA remains fairly constant during photochemical aging. In contrast to the NO3+β-pinene reaction, low SOA mass loadings are produced during the NO3+α-pinene reaction, during which only 5 highly oxygenated gas- and particle-phase ON are detected. The majority of the particle-phase ON evaporates from the α-pinene SOA during photochemical aging, thus exhibiting a drastically different behavior from that of β-pinene SOA. Our results indicate that nighttime ON formed by NO3+monoterpene chemistry can serve as either permanent or temporary NOx sinks depending on the monoterpene precursor.

  14. Nature, Origin, Potential Composition, and Climate Impact of the Asian Tropopause Aerosol Layer (ATAL)

    NASA Technical Reports Server (NTRS)

    Fairlie, T. D.; Vernier, J.-P.; Thomason, L. W.; Natarajan, M.; Bedka, K.; Wienhold, F.; Bian J.; Martinsson, B.

    2015-01-01

    Satellite observations from SAGE II and CALIPSO indicate that summertime aerosol extinction has more than doubled in the Asian Tropopause Aerosol Layer (ATAL) since the late 1990s. Here we show remote and in-situ observations, together with results from a chemical transport model (CTM), to explore the likely composition, origin, and radiative forcing of the ATAL. We show in-situ balloon measurements of aerosol backscatter, which support the high levels observed by CALIPSO since 2006. We also show in situ measurements from aircraft, which indicate a predominant carbonaceous contribution to the ATAL (Carbon/Sulfur ratios of 2- 10), which is supported by the CTM results. We show that the peak in ATAL aerosol lags by 1 month the peak in CO from MLS, associated with deep convection over Asia during the summer monsoon. This suggests that secondary formation and growth of aerosols in the upper troposphere on monthly timescales make a significant contribution to ATAL. Back trajectory calculations initialized from CALIPSO observations provide evidence that deep convection over India is a significant source for ATAL through the vertical transport of pollution to the upper troposphere.

  15. Determinants of the bronchial response to high molecular weight occupational agents in a dry aerosol form.

    PubMed

    Nguyen, B; Weytjens, K; Cloutier, Y; Ghezzo, H; Malo, J L

    1998-10-01

    In occupational challenge tests with isocyanate vapours, bronchial responsiveness is determined by the total dose rather than the concentration or duration of exposure. Whether the same applies for high molecular weight (HMW) agents in powder form is unknown. The aim of this study was to determine whether the total dose of HMW agents in powder form is responsible for the immediate reaction documented in specific challenge tests. Included in the study were nine subjects (seven males and two females) with a diagnosis of occupational asthma proved by specific challenge tests carried out on a preliminary visit. Two challenge tests (using a closed-circuit exposure chamber) were performed at an interval of 2 weeks; the concentrations administered in a random order on these two visits were half and double the one that had caused a 20% fall in forced expiratory volume in one second (FEV1) on a preliminary visit. The duration of exposure was adjusted until a significant fall in FEV1 (target of 20%) occurred. The two concentrations obtained were significantly different, by 2.07+/-0.36-fold (SD). The observed durations of exposure leading to a 20% fall in FEV1 on the two visits also differed significantly by 0.46+/-0.32-fold. Consequently, the cumulative efficient doses were not significantly different between the two visits: 12+/-5.4 and 9+/-5 mg x mL(-1) x min(-1), respectively. The corresponding cumulative dose ratio was 0.96+/-0.61. The expected duration of exposure (10.8+/-24 min) was not significantly different from the observed duration (5.4+/-9 min). The mean and 95% confidence interval for the difference in concentration between the two visits was 1.83-fold (1.48-2.21). In conclusion, the total dose rather than the concentration or duration of exposure per se determines bronchial responsiveness to high molecular weight agents in powder form.

  16. Potential role of aerosolized amphotericin B formulations in the prevention and adjunctive treatment of invasive fungal infections.

    PubMed

    Drew, Richard

    2006-06-01

    The incidence of invasive fungal infections (IFIs) continues to increase, largely due to the steady rise in the number of at-risk patients and the increased use of aggressive immunosuppressant agents. Many available treatments are often limited by concerns about efficacy, safety, drug interactions, and/or cost. Owing to the poor treatment outcomes of immunosuppressed patients with IFIs, new preventative and treatment strategies are being investigated. Among these are the aerosolized formulations of amphotericin B. Published experience with the use of aerosolized amphotericin B deoxycholate (AmBd) in the prevention of IFIs has raised concerns regarding challenges in drug administration and tolerability. However, evolving data regarding administration of lipid-based formulations of amphotericin B indicate potential advantages over AmBd in the prevention and adjunctive treatment of IFIs.

  17. Sources, Composition, and Properties of Newly Formed and Regional Organic Aerosol in a Boreal Forest during the Biogenic Aerosol: Effects on Clouds and Climate Field Campaign Report

    SciTech Connect

    Thornton, Joel

    2016-05-01

    The Thornton Laboratory participated in the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Biogenic Aerosol Effects on Clouds and Climate (BAECC) campaign in Finland by deploying our mass spectrometer. We then participated in environmental simulation chamber studies at Pacific Northwest National Laboratory (PNNL). Thereafter, we analyzed the results as demonstrated in the several presentations and publications. The field campaign and initial environmental chamber studies are described below.

  18. Aerosol Plume during a Polluted Event Occuring Over Paris Area and its Potential Photochemical Effect

    NASA Astrophysics Data System (ADS)

    Randriamiarisoa, H.; Chazette, P.; Sanak, J.; Hauglustaine, D.

    2002-12-01

    As in many big cities, there are several pollution events in Paris area. A thorough understanding of the processes leading on the formation of pollutants and their transport during pollution episodes is necessary. One of the pertinent factors, which contributions on atmospheric chemistry and radiative effect are not yet well known, is the aerosol. ESQUIF (Etude et Simulation de la QUalité de l?air en Ile de France) is the first program dedicated to study such issues over the Paris area. It was carried out from summer 1998 to winter 2000 (Menut et al., 2000). To characterize all the properties of the urban aerosol, many campaigns were coordinated using both ground and airborne measurements (Chazette et al., 2000). We are focusing on the 31st of July 2000 where a well-defined polluted plume has been observed. Aerosol number concentrations in different size classes were measured and show that urban aerosol in Paris area is mainly submicronic. The absorbent part of the aerosol, mainly associated to the black carbon component, has been observed to be associated to particles with diameter less than 0.1 æm. The single scattering albedo has been assessed to be close to 0.85 leading to a significant influence on the photochemical chemistry. Indeed, a significant decrease of the daily maximum ozone concentration has been calculated using the INCA model and will be presented. ACKNOWLEDGEMENTS The Programme National de Chimie Atmosphérique, INSU supported this work. REFERENCES Chazette P., H. Randriamiarisoa, J. Sanak, C. Flamant, J. Pelon, M. Sicard, H. Cachier, F. Aulagnier, R. Sarda-Esteve, L. Gomes, S. Alfaro and A. Gaudichet (2001). ESQUIF 2000 : Aerosol survey over the Ile-de-France area, J. Aerosol Sci ., 32/suppl. 1, S439-S440. Menut, L., R. Vautard, C. Flamant, A. Abonnel, M. Beekmann, P. Chazette, P.H. Flamant, D. Gombert, D. Guédalia, D. Kley, M.P. Lefebvre, B. Lossec, D. Martin, G. Mégie, P. Perros, M. Sicard and G. Toupance (2000). Measurements and modelling

  19. Oxygen Isotope Anomaly in the Carbonate Fractions of Aerosols and its Potential to Assess Urban Pollution

    NASA Astrophysics Data System (ADS)

    Shaheen, R.; Abramian, A.; Dominguez, G.; Jackson, T.; Thiemens, M. H.

    2008-12-01

    Mineral dust is emitted into the atmosphere from arid regions in Asia yearly, accounting for ~36% of global aerosol emissions, 5900 Tg yr-1 [IPCC 2007]. Increasing anthropogenic emissions and persistent dust emissions not only have reduced the air quality in Asia itself, but are also affecting the pollutant deposition into the Pacific Ocean and air quality in downwind areas. The carbonate component of mineral dust (calcite (CaCO3) and dolomite (CaMg(CO3)2) is particularly reactive and can comprise as much as 30% of the total mineral dust aerosol, depending on the source region [Claquin et al., 1999]. Carbonate can affect atmospheric chemical processes and aerosol characteristics because the acid neutralizing capacity of this species facilitates the heterogeneous conversion of sulphate and nitrate. Understanding heterogeneous reactions occurring on the surface of aerosol particles will lead to a better understanding of the fate and transport of molecules in the troposphere as well as to resolve their role in air quality and pollution. The primary goal of this work is to develop an isotope methodology for carbonates that can be used as a chemical marker for the origin of polluted air plumes and chemical transformation during the long range transport of air masses. We will discuss the carbon and oxygen isotope composition of the CO2 released from the fine (< 1 μm) and coarse (> 1 μm) particles collected at two different sites [Mt. Soledad (800 ft) and Scripps Pier, La Jolla, California] and its possible utility as a tracer to identify the long-range transport of aerosol from local pollution events. The degree of urban influence of sampled air parcels at each site was quantified through back-trajectory analysis of NOAA HYSPLIT output data. Interestingly, the isotopes of oxygen did not follow standard mass dependent relationship (δ17O ~ 0.52 δ18O) rather have excess 17O (Δ17O = δ17O- 0.52δ18O) ranging from 0.9 to 3.9 per mil. A highly significant correlation (r2

  20. Potential climate effect of mineral aerosols over West Africa. Part I: model validation and contemporary climate evaluation

    NASA Astrophysics Data System (ADS)

    Ji, Zhenming; Wang, Guiling; Pal, Jeremy S.; Yu, Miao

    2016-02-01

    Mineral dusts present in the atmosphere can play an important role in climate over West Africa and surrounding regions. However, current understanding regarding how dust aerosols influence climate of West Africa is very limited. In this study, a regional climate model is used to investigate the potential climatic impacts of dust aerosols. Two sets of simulations driven by reanalysis and Earth System Model boundary conditions are performed with and without the representation of dust processes. The model, regardless of the boundary forcing, captures the spatial and temporal variability of the aerosol optical depth and surface concentration. The shortwave radiative forcing of dust is negative at the surface and positive in the atmosphere, with greater changes in the spring and summer. The presence of mineral dusts causes surface cooling and lower troposphere heating, resulting in a stabilization effect and reduction in precipitation in the northern portion of the monsoon close to the dust emissions region. This results in an enhancement of precipitation to the south. While dusts cause the lower troposphere to stabilize, upper tropospheric cooling makes the region more prone to intense deep convection as is evident by a simulated increase in extreme precipitation. In a companion paper, the impacts of dust emissions on future West African climate are investigated.

  1. Airflow dynamics of human jets: sneezing and breathing - potential sources of infectious aerosols.

    PubMed

    Tang, Julian W; Nicolle, Andre D; Klettner, Christian A; Pantelic, Jovan; Wang, Liangde; Suhaimi, Amin Bin; Tan, Ashlynn Y L; Ong, Garrett W X; Su, Ruikun; Sekhar, Chandra; Cheong, David D W; Tham, Kwok Wai

    2013-01-01

    Natural human exhalation flows such as coughing, sneezing and breathing can be considered as 'jet-like' airflows in the sense that they are produced from a single source in a single exhalation effort, with a relatively symmetrical, conical geometry. Although coughing and sneezing have garnered much attention as potential, explosive sources of infectious aerosols, these are relatively rare events during daily life, whereas breathing is necessary for life and is performed continuously. Real-time shadowgraph imaging was used to visualise and capture high-speed images of healthy volunteers sneezing and breathing (through the nose - nasally, and through the mouth - orally). Six volunteers, who were able to respond to the pepper sneeze stimulus, were recruited for the sneezing experiments (2 women: 27.5±6.36 years; 4 men: 29.25±10.53 years). The maximum visible distance over which the sneeze plumes (or puffs) travelled was 0.6 m, the maximum sneeze velocity derived from these measured distances was 4.5 m/s. The maximum 2-dimensional (2-D) area of dissemination of these sneezes was 0.2 m(2). The corresponding derived parameter, the maximum 2-D area expansion rate of these sneezes was 2 m(2)/s. For nasal breathing, the maximum propagation distance and derived velocity were 0.6 m and 1.4 m/s, respectively. The maximum 2-D area of dissemination and derived expansion rate were 0.11 m(2) and 0.16 m(2)/s, respectively. Similarly, for mouth breathing, the maximum propagation distance and derived velocity were 0.8 m and 1.3 m/s, respectively. The maximum 2-D area of dissemination and derived expansion rate were 0.18 m(2) and 0.17 m(2)/s, respectively. Surprisingly, a comparison of the maximum exit velocities of sneezing reported here with those obtained from coughing (published previously) demonstrated that they are relatively similar, and not extremely high. This is in contrast with some earlier estimates of sneeze velocities, and some reasons for this difference are discussed.

  2. Airflow Dynamics of Human Jets: Sneezing and Breathing - Potential Sources of Infectious Aerosols

    PubMed Central

    Tang, Julian W.; Nicolle, Andre D.; Klettner, Christian A.; Pantelic, Jovan; Wang, Liangde; Suhaimi, Amin Bin; Tan, Ashlynn Y. L.; Ong, Garrett W. X.; Su, Ruikun; Sekhar, Chandra; Cheong, David D. W.; Tham, Kwok Wai

    2013-01-01

    Natural human exhalation flows such as coughing, sneezing and breathing can be considered as ‘jet-like’ airflows in the sense that they are produced from a single source in a single exhalation effort, with a relatively symmetrical, conical geometry. Although coughing and sneezing have garnered much attention as potential, explosive sources of infectious aerosols, these are relatively rare events during daily life, whereas breathing is necessary for life and is performed continuously. Real-time shadowgraph imaging was used to visualise and capture high-speed images of healthy volunteers sneezing and breathing (through the nose – nasally, and through the mouth - orally). Six volunteers, who were able to respond to the pepper sneeze stimulus, were recruited for the sneezing experiments (2 women: 27.5±6.36 years; 4 men: 29.25±10.53 years). The maximum visible distance over which the sneeze plumes (or puffs) travelled was 0.6 m, the maximum sneeze velocity derived from these measured distances was 4.5 m/s. The maximum 2-dimensional (2-D) area of dissemination of these sneezes was 0.2 m2. The corresponding derived parameter, the maximum 2-D area expansion rate of these sneezes was 2 m2/s. For nasal breathing, the maximum propagation distance and derived velocity were 0.6 m and 1.4 m/s, respectively. The maximum 2-D area of dissemination and derived expansion rate were 0.11 m2 and 0.16 m2/s, respectively. Similarly, for mouth breathing, the maximum propagation distance and derived velocity were 0.8 m and 1.3 m/s, respectively. The maximum 2-D area of dissemination and derived expansion rate were 0.18 m2 and 0.17 m2/s, respectively. Surprisingly, a comparison of the maximum exit velocities of sneezing reported here with those obtained from coughing (published previously) demonstrated that they are relatively similar, and not extremely high. This is in contrast with some earlier estimates of sneeze velocities, and some reasons for this difference are discussed. PMID

  3. A unique approach to determine the ice nucleating potential of soot-containing aerosol from biomass combustion

    NASA Astrophysics Data System (ADS)

    Levin, E. J.; McMeeking, G. R.; McCluskey, C.; DeMott, P. J.; Kreidenweis, S. M.

    2013-12-01

    Ice nucleating particles (INP) play a crucial role in cloud and precipitation development in mixed phase clouds by catalyzing ice formation at temperatures warmer than -36 C. Despite their importance, however, there is still considerable uncertainty as to the sources and chemical nature of INP. Water insoluble particles such as mineral dust and certain biological aerosols have been shown to be efficient ice nuclei, and soot particles have also been suggested as potential INP. Biomass burning, such as wildfires and prescribed burning, is a large contributor to atmospheric soot concentrations, and could therefore be a potentially important source of INP. Both laboratory and field studies have detected enhanced INP concentrations in smoke plumes; however, the chemical composition of these INP is still uncertain as fires emit and loft a complex mixture of aerosol particles. In this work we employ a novel approach to selectively remove soot aerosol from the sample stream to determine the specific contribution of soot to INP concentrations. A number of commonly consumed biomass fuels were burned in the U.S. Forest Service combustion laboratory during the FLAME-4 (Fire Laboratory At Missoula Experiment - 4) study. Number concentrations of INP acting in the condensation and immersion freezing modes and total aerosol greater than 500 nm in diameter (N500) were measured using the Colorado State University Continuous Flow Diffusion Chamber (CFDC). To determine the contribution of soot to INP concentrations, the sample stream was passed through a Single Particle Soot Photometer (SP2; Droplet Measurement Technologies) which employs laser induced incandescence (LII) to detect soot containing particles and total soot mass. During LII, soot containing particles are vaporized and removed from the sample while non-soot containing particles pass through the instrument unaffected. By sampling the exhaust of the SP2 with the CFDC and alternately cycling laser power on and off we were

  4. Modeling organic aerosols in a megacity: potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Jimenez, J. L.; Madronich, S.; Canagaratna, M. R.; Decarlo, P. F.; Kleinman, L.; Fast, J.

    2010-06-01

    It has been established that observed local and regional levels of secondary organic aerosols (SOA) in polluted areas cannot be explained by the oxidation and partitioning of anthropogenic and biogenic VOC precursors, at least using current mechanisms and parameterizations. In this study, the 3-D regional air quality model CHIMERE is applied to estimate the potential contribution to SOA formation of recently identified semi-volatile and intermediate volatility organic precursors (S/IVOC) in and around Mexico City for the MILAGRO field experiment during March 2006. The model has been updated to include explicitly the volatility distribution of primary organic aerosols (POA), their gas-particle partitioning and the gas-phase oxidation of the vapors. Two recently proposed parameterizations, those of Robinson et al. (2007) ("ROB") and Grieshop et al. (2009) ("GRI") are compared and evaluated against surface and aircraft measurements. The 3-D model results are assessed by comparing with the concentrations of OA components from Positive Matrix Factorization of Aerosol Mass Spectrometer (AMS) data, and for the first time also with oxygen-to-carbon ratios derived from high-resolution AMS measurements. The results show a substantial enhancement in predicted SOA concentrations (2-4 times) with respect to the previously published base case without S/IVOCs (Hodzic et al., 2009), both within and downwind of the city leading to much reduced discrepancies with the total OA measurements. Model improvements in OA predictions are associated with the better-captured SOA magnitude and diurnal variability. The predicted production from anthropogenic and biomass burning S/IVOC represents 40-60% of the total measured SOA at the surface during the day and is somewhat larger than that from commonly measured aromatic VOCs, especially at the T1 site at the edge of the city. The SOA production from the continued multi-generation S/IVOC oxidation products continues actively downwind. Similar

  5. Modeling organic aerosols in a megacity: Potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol formation

    SciTech Connect

    Hodzic, A.; Kleinman, L.; Jimenez, J. L.; Madronich, S.; Canagaratna, M. R.; DeCarlo, P. F.; Fast, J.

    2010-06-01

    It has been established that observed local and regional levels of secondary organic aerosols (SOA) in polluted areas cannot be explained by the oxidation and partitioning of anthropogenic and biogenic VOC precursors, at least using current mechanisms and parameterizations. In this study, the 3-D regional air quality model CHIMERE is applied to estimate the potential contribution to SOA formation of recently identified semi-volatile and intermediate volatility organic precursors (S/IVOC) in and around Mexico City for the MILAGRO field experiment during March 2006. The model has been updated to include explicitly the volatility distribution of primary organic aerosols (POA), their gas-particle partitioning and the gas-phase oxidation of the vapors. Two recently proposed parameterizations, those of Robinson et al. (2007) ('ROB') and Grieshop et al. (2009) ('GRI') are compared and evaluated against surface and aircraft measurements. The 3-D model results are assessed by comparing with the concentrations of OA components from Positive Matrix Factorization of Aerosol Mass Spectrometer (AMS) data, and for the first time also with oxygen-to-carbon ratios derived from high-resolution AMS measurements. The results show a substantial enhancement in predicted SOA concentrations (2-4 times) with respect to the previously published base case without S/IVOCs (Hodzic et al., 2009), both within and downwind of the city leading to much reduced discrepancies with the total OA measurements. Model improvements in OA predictions are associated with the better-captured SOA magnitude and diurnal variability. The predicted production from anthropogenic and biomass burning S/IVOC represents 40-60% of the total measured SOA at the surface during the day and is somewhat larger than that from commonly measured aromatic VOCs, especially at the T1 site at the edge of the city. The SOA production from the continued multi-generation S/IVOC oxidation products continues actively downwind. Similar

  6. Characterisation of microstructures formed in isopropyl palmitate/water/Aerosol OT:1-butanol (2:1) system.

    PubMed

    Boonme, P; Krauel, K; Graf, A; Rades, T; Junyaprasert, V B

    2006-11-01

    The aim of this work was to determine the type and microstructure of microemulsion samples formed in IPP/water/AerosolOT:1-butanol (2:1) systems as a case study for the investigation of microemulsions. The concentration of the surfactant/cosurfactant mixture was kept constant while the ratio of water to oil was varied. Several techniques were used to investigate the types and phase transitions of the microemulsion formulations. The experimental methods used included visual observation cross-polarized light microscopy (PLM) appearance, conductivity, viscosity, cryo-field emission scanning electron microscopy (cryo-FESEM), differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR), and fluorescence resonance energy transfer (FRET). Taken together, the results of the various techniques imply that the systems investigated are undergoing two transitions as a function of water concentration. Between 10-15%w/w of water, the systems change from headgroup hydrated surfactant solutions in oil (or possibly very small reversed micellar systems) to w/o microemulsions. These systems then change to o/w microemulsions between 25-30%w/w of water. The transitions however, appear to be gradual, as for example the DSC data indicates a transition between 15-20%w/w of water. Furthermore, for some methods the changes observed were very weak, and only with supportive data of other techniques can the phase behaviour of the microemulsion systems be interpreted with confidence. Interestingly, no indication of the presence of a bicontinuous intermediate microstructure was found. Liquid crystal formation was detected in samples containing 55%w/w of water.

  7. Optimizing Interacting Potentials to Form Targeted Materials Structures

    SciTech Connect

    Torquato, Salvatore

    2015-09-28

    Conventional applications of the principles of statistical mechanics (the "forward" problems), start with particle interaction potentials, and proceed to deduce local structure and macroscopic properties. Other applications (that may be classified as "inverse" problems), begin with targeted configurational information, such as low-order correlation functions that characterize local particle order, and attempt to back out full-system configurations and/or interaction potentials. To supplement these successful experimental and numerical "forward" approaches, we have focused on inverse approaches that make use of analytical and computational tools to optimize interactions for targeted self-assembly of nanosystems. The most original aspect of our work is its inherently inverse approach: instead of predicting structures that result from given interaction potentials among particles, we determine the optimal potential that most robustly stabilizes a given target structure subject to certain constraints. Our inverse approach could revolutionize the manner in which materials are designed and fabricated. There are a number of very tangible properties (e.g. zero thermal expansion behavior), elastic constants, optical properties for photonic applications, and transport properties.

  8. Chemical oxidative potential of secondary organic aerosol (SOA) generated from the photooxidation of biogenic and anthropogenic volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Tuet, Wing Y.; Chen, Yunle; Xu, Lu; Fok, Shierly; Gao, Dong; Weber, Rodney J.; Ng, Nga L.

    2017-01-01

    Particulate matter (PM), of which a significant fraction is comprised of secondary organic aerosols (SOA), has received considerable attention due to its health implications. In this study, the water-soluble oxidative potential (OPWS) of SOA generated from the photooxidation of biogenic and anthropogenic hydrocarbon precursors (isoprene, α-pinene, β-caryophyllene, pentadecane, m-xylene, and naphthalene) under different reaction conditions (RO2+ HO2 vs. RO2+ NO dominant, dry vs. humid) was characterized using dithiothreitol (DTT) consumption. The measured intrinsic OPWS-DTT values ranged from 9 to 205 pmol min-1 µg-1 and were highly dependent on the specific hydrocarbon precursor, with naphthalene and isoprene SOA generating the highest and lowest OPWS-DTT values, respectively. Humidity and RO2 fate affected OPWS-DTT in a hydrocarbon-specific manner, with naphthalene SOA exhibiting the most pronounced effects, likely due to the formation of nitroaromatics. Together, these results suggest that precursor identity may be more influential than reaction condition in determining SOA oxidative potential, demonstrating the importance of sources, such as incomplete combustion, to aerosol toxicity. In the context of other PM sources, all SOA systems, with the exception of naphthalene SOA, were less DTT active than ambient sources related to incomplete combustion, including diesel and gasoline combustion as well as biomass burning. Finally, naphthalene SOA was as DTT active as biomass burning aerosol, which was found to be the most DTT-active OA source in a previous ambient study. These results highlight a need to consider SOA contributions (particularly from anthropogenic hydrocarbons) to health effects in the context of hydrocarbon emissions, SOA yields, and other PM sources.

  9. Novel forms of carbon as potential anodes for lithium batteries

    SciTech Connect

    Winans, R.E.; Carrado, K.A.

    1994-06-01

    The objective of this study is to design and synthesize novel carbons as potential electrode materials for lithium rechargeable batteries. A synthetic approach which utilizes inorganic templates is described and initial characterization results are discussed. The templates also act as a catalyst enabling carbon formation at low temperatures. This synthetic approach should make it easier to control the surface and bulk characteristics of these carbons.

  10. Modeling organic aerosols in a megacity: potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol formation

    SciTech Connect

    Hodzic, Alma; Jimenez, Jose L.; Madronich, Sasha; Canagaratna, M. R.; DeCarlo, Peter F.; Kleinman, Lawrence I.; Fast, Jerome D.

    2010-06-21

    It has been established that observed local and regional levels of secondary organic aerosols (SOA) in polluted areas cannot be explained by the oxidation and partitioning of traditional anthropogenic and biogenic VOC precursors. In this study, the 3D regional air quality model CHIMERE is applied to quantify the contribution to SOA formation of recently identified semi-volatile and intermediate volatility organic vapors (S/IVOC) in and around Mexico City for the MILAGRO field experiment during March 2006. The model has been updated to explicitly include the volatility distribution of primary organic aerosols (POA), their gas-particle partitioning and the gas-phase oxidation of the vapors. Two recently proposed parameterizations, those of Robinson et al. (2007) ("ROB") and Grieshop et al. (2009) ("GRI") are compared and evaluated against surface and aircraft measurements. For the first time, 3D model results are assessed by comparing with the concentrations of OA components from Positive Matrix Factorization of Aerosol Mass Spectrometer (AMS) data, but also against and oxygen-to-carbon ratios derived from high-resolution AMS measurements. The results show a substantial enhancement in predicted SOA concentrations (3-6 times) with respect to the previously published base case without S/IVOCs (Hodzic et al., 2009), both within and downwind of the city leading to much reduced discrepancies with the total OA measurements. The predicted anthropogenic POA levels are found to agree within 20% with the observed HOA concentrations for both the ROB and GRI simulations, consistent with the interpretation of the emissions inventory by previous studies. The impact of biomass burning POA within the city is underestimated in comparison to the AMS BBOA, presumably due to insufficient nighttime smoldering emissions. Model improvements in OA predictions are associated with the better-captured SOA magnitude and diurnal variability. The production from anthropogenic and biomass burning

  11. Potential feedback between aerosols and meteorological conditions in a heavy pollution event over the Tibetan Plateau and Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Yang, Junhua; Duan, Keqin; Kang, Shichang; Ji, Zhenming; Shi, Peihong

    2016-04-01

    A regional climate model WRF-Chem was used to investigate the feedback between aerosols and meteorological conditions in atmospheric boundary layer over the Tibetan Plateau (TP) and Indo-Gangetic Plain (IGP). The numerical experiments with and without the aerosol effects are driven by reanalysis from March 1-31, 2009, when a heavy pollution event (March 13-19) occurred. Results showed that the model can capture the spatial and temporal meteorological conditions and aerosols optical characteristics during the heavy pollution days. Aerosols induce cooling at the surface and warming in the middle of troposphere due to their radiative effects, and result in the atmospheric boundary layer (ABL) trend to more stable over the IGP. Aerosols-induced 2-meter relative humidity (RH2) is increased, which superposes the stable ABL lead to the surface PM2.5 concentration increases by up to 21 ug m-3 (15%) over the IGP. For the TP, the atmospheric profile does not change too much due to the fewer aerosols' radiative effects in the ABL comparing to those over the IGP. The aerosols-induced RH2 decreases because of the cloud albedo and cloud lifetime effect and leads to the surface PM2.5 concentration reduce up to 17 ug m-3 (13%). It is implicated that a negative/positive feedback between aerosols concentration and changes of aerosol-induced meteorological conditions over the TP/IGP, which is like/unlike the situations in other heavy polluted regions (e.g., the North China Plain). The results have a potential implication of air pollution on weather and environment over the TP and IGP.

  12. Investigation of the formation of benzoyl peroxide, benzoic anhydride, and other potential aerosol products from gas-phase reactions of benzoylperoxy radicals

    NASA Astrophysics Data System (ADS)

    Strollo, Christen M.; Ziemann, Paul J.

    2016-04-01

    The secondary organic aerosol (SOA) products of the reaction of benzaldehyde with Cl atoms and with OH radicals in air in the absence of NOx were investigated in an environmental chamber in order to better understand the possible role of organic peroxy radical self-reactions in SOA formation. SOA products and authentic standards were analyzed using mass spectrometry and liquid chromatography, and results show that the yields of benzoyl peroxide (C6H5C(O)OO(O)CC6H5) and benzoic anhydride (C6H5C(O)O(O)CC6H5), two potential products from the gas-phase self-reaction of benzoylperoxy radicals (C6H5C(O)OO·), were less than 0.1%. This is in contrast to results of recent studies that have shown that the gas-phase self-reactions of β-nitrooxyperoxy radicals formed from reactions of isoprene with NO3 radicals form dialkyl peroxides that contribute significantly to gas-phase and SOA products. Such reactions have also been proposed to explain the gas-phase formation of extremely low volatility dimers from autooxidation of terpenes. The results obtained here indicate that, at least for benzoylperoxy radicals, the self-reactions form only benzoyloxy radicals. Analyses of SOA composition and volatility were inconclusive, but it appears that the SOA may consist primarily of oligomers formed through heterogeneous/multiphase reactions possibly involving some combination of phenol, benzaldehyde, benzoic acid, and peroxybenzoic acid.

  13. Remote sensing of desert dust aerosols over the Sahel : potential use for health impact studies

    NASA Astrophysics Data System (ADS)

    Deroubaix, A. D.; Martiny, N. M.; Chiapello, I. C.; Marticorena, B. M.

    2012-04-01

    Since the end of the 70's, remote sensing monitors the desert dust aerosols due to their absorption and scattering properties and allows to make long time series which are necessary for air quality or health impact studies. In the Sahel, a huge health problem is the Meningitis Meningococcal (MM) epidemics that occur during the dry season : the dust has been suspected to be crucial to understand their onsets and dynamics. The Aerosol absorption Index (AI) is a semi-quantitative index derived from TOMS and OMI observations in the UV available at a spatial resolution of 1° (1979-2005) and 0.25° (2005-today) respectively. The comparison of the OMI-AI and AERONET Aerosol Optical thickness (AOT) shows a good agreement at a daily time-step (correlation ~0.7). The comparison of the OMI-AI with the Particle Matter (PM) measurement of the Sahelian Dust Transect is lower (~0.4) at a daily time-step but it increases at a weekly time-step (~0.6). The OMI-AI reproduces the dust seasonal cycle over the Sahel and we conclude that the OMI-AI product at a 0.25° spatial resolution is suitable for health impact studies, especially at a weekly epidemiological time-step. Despite the AI is sensitive to the aerosol altitude, it provides a daily spatial information on dust. A preliminary investigation analysis of the link between weekly OMI AI and weekly WHO epidemiological data sets is presented in Mali and Niger, showing a good agreement between the AI and the onset of the MM epidemics with a constant lag (between 1 and 2 week). The next of this study is to analyse a deeper AI time series constituted by TOMS and OMI data sets. Based on the weekly ratios PM/AI at 2 stations of the Sahelian Dust Transect, a spatialized proxy for PM from the AI has been developed. The AI as a proxy for PM and other climate variables such as Temperature (T°), Relative Humidity (RH%) and the wind (intensity and direction) could then be used to analyze the link between those variables and the MM epidemics

  14. A reduced-form approach to characterizing sulfate aerosol effects on climate in integrated assessment models. Final report

    SciTech Connect

    Wigley, T.M.L.

    1996-04-01

    The objective of this study was to devise a methodology for estimating the spatial patterns of future climate change accounting for the effects of both greenhouse gases and sulfate aerosols under a wide range of emissions scenarios, using the results of General Circulation Models.

  15. Dimethyl Sulfide Emissions from Dairies and Agriculture as a Potential Contributor to Sulfate Aerosols in the California Central Valley

    NASA Astrophysics Data System (ADS)

    Lebel, E.; Marrero, J. E.; Bertram, T. H.; Blake, D. R.

    2014-12-01

    Whole air samples have been collected throughout Southern California during the previous five years of the NASA Student Airborne Research Program (SARP). During a flight over the Salton Sea in 2014, higher concentrations of dimethyl sulfide (DMS), a known marine emitted gas, were observed over neighboring agricultural land than over the sea itself. A comparison of DMS to methyl iodide, another known marine emitted gas, showed minimal correlation, revealing that DMS was being emitted from local sources. Ground samples at the Salton Sea verified that the DMS was not transported from the Pacific Ocean. Previous SARP studies have shown that DMS is emitted from dairies. The enhancements in ethanol (another dairy tracer) and DMS in several airborne samples collected south of the Salton Sea suggest dairy emissions of the observed DMS. DMS is a compound of interest because its oxidation can form cloud condensation nuclei. Based on data from all six SARP flights between 2009-2014, we propose that dairy and farming emissions of DMS in the San Joaquin Valley may be impacting aerosol loading in this region. A simple model that takes into account the particulate matter mass loadings was used to calculate the percent contribution of DMS to aerosol formation for the San Joaquin Valley.

  16. Potential Organic Aerosol Formation from Biogenic Compounds: Model and Measurement analysis of the BEACHON-RoMBAS 2011 field data

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Lee-Taylor, J.; Aumont, B.; Madronich, S.; Palm, B. B.; Campuzano Jost, P.; Day, D. A.; Jimenez, J. L.; Karl, T.; Apel, E. C.; Kaser, L.; Hansel, A.

    2012-12-01

    comparing the results of GECKO with the experimental results of the Potential Aerosol Mass (PAM, Kang et al., ACP, 2007) photochemical reactor analyzed by an AMS and SMPS (Palm et al., this conference). PAM is a flowtube reactor through which ambient air is continually sampled and exposed for 4 minutes to high levels of oxidants (100-10000 higher than atmospheric conditions), allowing quantification of the maximum aerosol mass that can be produced by oxidation of biogenic VOCs and its chemical evolution with oxidant exposure. PAM measurements were simulated by running the GECKO-A model for the RoMBAS conditions with ambient to extremely high amounts of oxidants: [OH] of 1e7 to 2.5e10 molec/cc and [O3] of 50 to 20,000 ppb. The results show that all precursor gases were rapidly oxidized, yielding substantial concentrations of low volatility compounds and SOA. The simulations are performed for daytime and nighttime mixtures. Similarities and differences between the PAM measurements and GECKO-A predictions, especially for very high OH (~1e10 molec/cc) exposure, are discussed.

  17. Examination of the potential impacts of dust and pollution aerosol acting as cloud nucleating aerosol on water resources in the Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Jha, Vandana

    In this study we examine the cumulative effect of dust acting as cloud nucleating aerosol (cloud condensation nuclei (CCN), giant cloud condensation nuclei (GCCN), and ice nuclei (IN)) along with anthropogenic aerosol pollution acting primarily as CCN, over the entire Colorado Rocky Mountains from the months of October to April in the year 2004-2005; the snow year. This ˜6.5 months analysis provides a range of snowfall totals and variability in dust and anthropogenic aerosol pollution. The specific objectives of this research is to quantify the impacts of both dust and pollution aerosols on wintertime precipitation in the Colorado Mountains using the Regional Atmospheric Modeling System (RAMS). In general, dust enhances precipitation primarily by acting as IN, while aerosol pollution reduces water resources in the CRB via the so-called "spill-over" effect, by enhancing cloud droplet concentrations and reducing riming rates. Dust is more episodic and aerosol pollution is more pervasive throughout the winter season. Combined response to dust and aerosol pollution is a net reduction of water resources in the CRB. The question is by how much are those water resources affected? Our best estimate is that total winter-season precipitation loss for for the CRB the 2004-2005 winter season due to the combined influence of aerosol pollution and dust is 5,380,00 acre-feet of water. Sensitivity studies for different cases have also been run for the specific cases in 2004-2005 winter season to analyze the impact of changing dust and aerosol ratios on precipitation in the Colorado River Basin. The dust is varied from 3 to 10 times in the experiments and the response is found to be non monotonic and depends on various environmental factors. The sensitivity studies show that adding dust in a wet system increases precipitation when IN affects are dominant. For a relatively dry system high concentrations of dust can result in over-seeding the clouds and reductions in precipitation

  18. Worldwide impact of aerosol's time scale on the predicted long-term concentrating solar power potential.

    PubMed

    Ruiz-Arias, Jose A; Gueymard, Christian A; Santos-Alamillos, Francisco J; Pozo-Vázquez, David

    2016-08-10

    Concentrating solar technologies, which are fuelled by the direct normal component of solar irradiance (DNI), are among the most promising solar technologies. Currently, the state-of the-art methods for DNI evaluation use datasets of aerosol optical depth (AOD) with only coarse (typically monthly) temporal resolution. Using daily AOD data from both site-specific observations at ground stations as well as gridded model estimates, a methodology is developed to evaluate how the calculated long-term DNI resource is affected by using AOD data averaged over periods from 1 to 30 days. It is demonstrated here that the use of monthly representations of AOD leads to systematic underestimations of the predicted long-term DNI up to 10% in some areas with high solar resource, which may result in detrimental consequences for the bankability of concentrating solar power projects. Recommendations for the use of either daily or monthly AOD data are provided on a geographical basis.

  19. Ambient measurement of fluorescent aerosol particles with a WIBS in the Yangtze River Delta of China: potential impacts of combustion-related aerosol particles

    NASA Astrophysics Data System (ADS)

    Yu, Xiawei; Wang, Zhibin; Zhang, Minghui; Kuhn, Uwe; Xie, Zhouqing; Cheng, Yafang; Pöschl, Ulrich; Su, Hang

    2016-09-01

    Fluorescence characteristics of aerosol particles in a polluted atmosphere were studied using a wideband integrated bioaerosol spectrometer (WIBS-4A) in Nanjing, Yangtze River Delta area of China. We observed strong diurnal and day-to-day variations of fluorescent aerosol particles (FAPs). The average number concentrations of FAPs (1-15 µm) detected in the three WIBS measurement channels (FL1: 0.6 cm-3, FL2: 3.4 cm-3, FL3: 2.1 cm-3) were much higher than those observed in forests and rural areas, suggesting that FAPs other than bioaerosols were detected. We found that the number fractions of FAPs were positively correlated with the black carbon mass fraction, especially for the FL1 channel, indicating a large contribution of combustion-related aerosols. To distinguish bioaerosols from combustion-related FAPs, we investigated two classification schemes for use with WIBS data. Our analysis suggests a strong size dependence for the fractional contributions of different types of FAPs. In the FL3 channel, combustion-related particles seem to dominate the 1-2 µm size range while bioaerosols dominate the 2-5 µm range. The number fractions of combustion-related particles and non-combustion-related particles to total aerosol particles were ˜ 11 and ˜ 5 %, respectively.

  20. Urban stress-induced biogenic VOC emissions and SOA-forming potentials in Beijing

    NASA Astrophysics Data System (ADS)

    Ghirardo, Andrea; Xie, Junfei; Zheng, Xunhua; Wang, Yuesi; Grote, Rüdiger; Block, Katja; Wildt, Jürgen; Mentel, Thomas; Kiendler-Scharr, Astrid; Hallquist, Mattias; Butterbach-Bahl, Klaus; Schnitzler, Jörg-Peter

    2016-03-01

    Trees can significantly impact the urban air chemistry by the uptake and emission of reactive biogenic volatile organic compounds (BVOCs), which are involved in ozone and particle formation. Here we present the emission potentials of "constitutive" (cBVOCs) and "stress-induced" BVOCs (sBVOCs) from the dominant broadleaf woody plant species in the megacity of Beijing. Based on the municipal tree census and cuvette BVOC measurements on leaf level, we built an inventory of BVOC emissions, and assessed the potential impact of BVOCs on secondary organic aerosol (SOA) formation in 2005 and 2010, i.e., before and after realizing the large tree-planting program for the 2008 Olympic Games. We found that sBVOCs, such as fatty acid derivatives, benzenoids, and sesquiterpenes, constituted a significant fraction ( ˜ 40 %) of the total annual BVOC emissions, and we estimated that the overall annual BVOC budget may have doubled from ˜ 4.8 × 109 g C year-1 in 2005 to ˜ 10.3 × 109 g C year-1 in 2010 due to the increase in urban greening, while at the same time the emission of anthropogenic VOCs (AVOCs) decreased by 24 %. Based on the BVOC emission assessment, we estimated the biological impact on SOA mass formation potential in Beijing. Constitutive and stress-induced BVOCs might produce similar amounts of secondary aerosol in Beijing. However, the main contributors of SOA-mass formations originated from anthropogenic sources (> 90 %). This study demonstrates the general importance to include sBVOCs when studying BVOC emissions. Although the main problems regarding air quality in Beijing still originate from anthropogenic activities, the present survey suggests that in urban plantation programs, the selection of low-emitting plant species has some potential beneficial effects on urban air quality.

  1. Influenza A virus transmission via respiratory aerosols or droplets as it relates to pandemic potential

    PubMed Central

    Richard, Mathilde; Fouchier, Ron A.M.

    2015-01-01

    Many respiratory viruses of humans originate from animals. For instance, there are now eight paramyxoviruses, four coronaviruses and four orthomxoviruses that cause recurrent epidemics in humans but were once confined to other hosts. In the last decade, several members of the same virus families have jumped the species barrier from animals to humans. Fortunately, these viruses have not become established in humans, because they lacked the ability of sustained transmission between humans. However, these outbreaks highlighted the lack of understanding of what makes a virus transmissible. In part triggered by the relatively high frequency of occurrence of influenza A virus zoonoses and pandemics, the influenza research community has started to investigate the viral genetic and biological traits that drive virus transmission via aerosols or respiratory droplets between mammals. Here we summarize recent discoveries on the genetic and phenotypic traits required for airborne transmission of zoonotic influenza viruses of subtypes H5, H7 and H9 and pandemic viruses of subtypes H1, H2 and H3. Increased understanding of the determinants and mechanisms of respiratory virus transmission is not only key from a basic scientific perspective, but may also aid in assessing the risks posed by zoonotic viruses to human health, and preparedness for such risks. PMID:26385895

  2. Water soluble organic carbon in aerosols (PM1, PM2.5, PM10) and various precipitation forms (rain, snow, mixed) over the southern Baltic Sea station.

    PubMed

    Witkowska, Agnieszka; Lewandowska, Anita U

    2016-12-15

    In the urbanized coastal zone of the Southern Baltic, complex measurements of water soluble organic carbon (WSOC) were conducted between 2012 and 2015, involving atmospheric precipitation in its various forms (rain, snow, mixed) and PM1, PM2.5 and PM10 aerosols. WSOC constituted about 60% of the organic carbon mass in aerosols of various sizes. The average concentration of WSOC was equal to 2.6μg∙m(-3) in PM1, 3.6μg∙m(-3) in PM2.5 and 4.4μg∙m(-3) in PM10. The lowest concentration of WSOC was noted in summer as a result of effective removal of this compound with rainfall. The highest WSOC concentrations in PM2.5 and PM10 aerosols were measured in spring, which should be associated with developing vegetation on land and in the sea. On the other hand, the highest WSOC concentrations in PM1 occurred in winter at low air temperatures and greatest atmospheric stability, when there were increased carbon emissions from fuel combustion in the communal-utility sector and from transportation. WSOC concentrations in precipitation were determined by its form. Mixed precipitation turned out to be the richest in soluble organic carbon (5.1mg·dm(-3)), while snow contained the least WSOC (1.7mg·dm(-3)). Snow and rain cleaned carbon compounds from the atmosphere more effectively when precipitation lasted longer than 24h, while in the case of mixed precipitation WSOC was removed most effectively within the first 24h.

  3. On the 3-form formulation of axion potentials from D-brane instantons

    NASA Astrophysics Data System (ADS)

    García-Valdecasas, Eduardo; Uranga, Angel

    2017-02-01

    The study of axion models and quantum corrections to their potential has experienced great progress by phrasing the axion potential in terms of a 3-form field eating up the 2-form field dual to the axion. Such reformulation of the axion potential has been described for axion monodromy models and for axion potentials from non-perturbative gauge dynamics. In this paper we propose a 3-form description of the axion potentials from non-gauge D-brane instantons. Interestingly, the required 3-form field does not arise in the underlying geometry, but rather shows up in the KK compactification in the generalized geometry obtained when the backreaction of the D-brane instanton is taken into account.

  4. Present and potential future contributions of sulfate, black and organic carbon aerosols from China to global air quality, premature mortality and radiative forcing

    NASA Astrophysics Data System (ADS)

    Saikawa, E.; Naik, V.; Horowitz, L. W.; Liu, J.; Mauzerall, D. L.

    2008-12-01

    Aerosols are harmful to human health and have both direct and indirect effects on climate. China is a major contributor to global emissions of sulfur dioxide (SO2), a sulfate (SO42-) precursor, organic carbon (OC), and black carbon (BC) aerosols. Although increasingly examined, the effect of present and potential future levels of these emissions on global premature mortality and climate change has not been well quantified. Through both direct and indirect effects, SO42- and OC exert negative radiative forcing (cooling) while BC exerts positive forcing (warming). We analyze the effect of China's emissions of SO2, SO42-, OC and BC in 2000 and for three emission scenarios in 2030 on global surface aerosol concentrations, premature mortality, and radiative forcing. Using global models of chemical transport (MOZART-2) and radiative transfer (GFDL RTM), and combining simulation results with gridded population data, mortality rates, and concentration-response relationships from the epidemiological literature, we estimate the contribution of Chinese aerosols to global annual premature mortality and to radiative forcing in 2000 and 2030. In 2000, we estimate these aerosols cause 385,320 premature deaths in China and an additional 18 240 globally. In 2030, aggressive emission controls lead to a reduction in premature deaths to 200,370 in China and 7,740 elsewhere, while under a high emissions scenario premature deaths would increase to 602,950 in China and to 29,750 elsewhere. Because the negative radiative forcing from SO42- and OC is larger than the positive forcing from BC, the Chinese aerosols lead to global net direct radiative forcing of -74 mW m-2 in 2000 and between -15 and -97 mW m-2 in 2030 based on the emissions scenario. Our analysis suggests that environmental policies that simultaneously improve public health and mitigate climate change would be highly beneficial (eg. reductions in BC emissions).

  5. Expert consensus on an in vitro approach to assess pulmonary fibrogenic potential of aerosolized nanomaterials

    EPA Science Inventory

    Report from an international workshop with the goal of reviewing the state-of-the-science and determine the technical needs to develop an in vitro system that will reduce and eventually replace the use of animals for evaluating the potential inhalation toxicity of nanomaterials (...

  6. Airborne measurements of cloud-forming nuclei and aerosol particles in stabilized ground clouds produced by solid rocket booster firings

    NASA Technical Reports Server (NTRS)

    Hindman, E. E., II; Ala, G. G.; Parungo, F. P.; Willis, P. T.; Bendura, R. J.; Woods, D.

    1978-01-01

    Airborne measurements of cloud volumes, ice nuclei and cloud condensation nuclei, liquid particles, and aerosol particles were obtained from stabilized ground clouds (SGCs) produced by Titan 3 launches at Kennedy Space Center, 20 August and 5 September 1977. The SGCs were bright, white, cumulus clouds early in their life and contained up to 3.5 g/m3 of liquid in micron to millimeter size droplets. The measured cloud volumes were 40 to 60 cu km five hours after launch. The SGCs contained high concentrations of cloud condensation nuclei active at 0.2%, 0.5%, and 1.0% supersaturation for periods of three to five hours. The SGCs also contained high concentrations of submicron particles. Three modes existed in the particle population: a 0.05 to 0.1 micron mode composed of aluminum-containing particles, a 0.2 to 0.8 micron mode, and a 2.0 to 10 micron mode composed of particles that contained primarily aluminum.

  7. Trace Metals Derived from Electronic Cigarette (ECIG) Generated Aerosol: Potential Problem of ECIG Devices That Contain Nickel

    PubMed Central

    Palazzolo, Dominic L.; Crow, Andrew P.; Nelson, John M.; Johnson, Robert A.

    2017-01-01

    Introduction: ECIGs are currently under scrutiny concerning their safety, particularly in reference to the impact ECIG liquids (E-liquids) have on human health. One concern is that aerosolized E-liquids contain trace metals that could become trapped in respiratory tissues and induce pathology. Methods: To mimic this trapping, peristaltic pumps were used to generate and transport aerosol onto mixed cellulose ester (MCE) membranes where aluminum (Al), arsenic (As), cadmium (Cd), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) were subsequently captured and quantified. The presence of trace metals on unexposed MCE membranes and on MCE membranes exposed to mainstream smoke served as control and comparison, respectively. The presence of these metals was also determined from the E-liquid before aerosolization and untouched by the ECIG device. All metals were quantified using ICP-MS. The ECIG core assembly was analyzed using scanning electron microscopy with elemental analysis capability. Results: The contents (μg) of Al, As, Cd, Cu, Fe, Mn, Ni, Pb, and Zn on control MCE membranes were 1.2 ± 0.2, 0.050 ± 0.002, 0.047 ± 0.003, 0.05 ± 0.01, 0.001 ± 0.001, 0.16 ± 0.04, 0.005 ± 0.003, 0.014 ± 0.006, and 0.09 ± 0.02, respectively. The contents of all trace metals on MCE membranes exposed to aerosol were similar to controls, except Ni which was significantly (p < 0.01) higher (0.024 ± 0.004 μg). In contrast, contents of Al, As, Fe, Mn, and Zn on MCE membranes exposed to smoke were significantly higher (p < 0.05) than controls. The contents of Al, As, Cu, Fe, and Mn on smoke-exposed MCE membranes were also significantly higher (p < 0.05) than their content on aerosol-exposed membranes. The contents per cigarette equivalent of metals in E-liquid before aerosolization were negligible compared to amounts of aerosolized E-liquid, except for Fe (0.002 μg before and 0.001 μg after). Elemental analysis of the core assembly reveals the

  8. Aqueous benzene-diols react with an organic triplet excited state and hydroxyl radical to form secondary organic aerosol.

    PubMed

    Smith, Jeremy D; Kinney, Haley; Anastasio, Cort

    2015-04-21

    Chemical processing in atmospheric aqueous phases, such as cloud and fog drops, can play a significant role in the production and evolution of secondary organic aerosol (SOA). In this work we examine aqueous SOA production via the oxidation of benzene-diols (dihydroxy-benzenes) by the triplet excited state of 3,4-dimethoxybenzaldehyde, (3)DMB*, and by hydroxyl radical, ˙OH. Reactions of the three benzene-diols (catechol (CAT), resorcinol (RES) and hydroquinone (HQ)) with (3)DMB* or ˙OH proceed rapidly, with rate constants near diffusion-controlled values. The two oxidants exhibit different behaviors with pH, with rate constants for (3)DMB* increasing as pH decreases from pH 5 to 2, while rate constants with ˙OH decrease in more acidic solutions. Mass yields of SOA were near 100% for all three benzene-diols with both oxidants. We also examined the reactivity of atmospherically relevant mixtures of phenols and benzene-diols in the presence of (3)DMB*. We find that the kinetics of phenol and benzene-diol loss, and the production of SOA mass, in mixtures are generally consistent with rate constants determined in experiments containing a single phenol or benzene-diol. Combining our aqueous kinetic and SOA mass yield data with previously published gas-phase data, we estimate a total SOA production rate from benzene-diol oxidation in a foggy area with significant wood combustion to be nearly 0.6 μg mair(-3) h(-1), with approximately half from the aqueous oxidation of resorcinol and hydroquinone, and half from the gas-phase oxidation of catechol.

  9. Present and potential future contributions of sulfate, black and organic carbon aerosols from China to global air quality, premature mortality and radiative forcing

    NASA Astrophysics Data System (ADS)

    Saikawa, Eri; Naik, Vaishali; Horowitz, Larry W.; Liu, Junfeng; Mauzerall, Denise L.

    Aerosols are harmful to human health and have both direct and indirect effects on climate. China is a major contributor to global emissions of sulfur dioxide (SO 2), a sulfate (SO 42-) precursor, organic carbon (OC), and black carbon (BC) aerosols. Although increasingly examined, the effect of present and potential future levels of these emissions on global premature mortality and climate change has not been well quantified. Through both direct radiative effects and indirect effects on clouds, SO 42- and OC exert negative radiative forcing (cooling) while BC exerts positive forcing (warming). We analyze the effect of China's emissions of SO 2, SO 42-, OC and BC in 2000 and for three emission scenarios in 2030 on global surface aerosol concentrations, premature mortality, and radiative forcing (RF). Using global models of chemical transport (MOZART-2) and radiative transfer (GFDL RTM), and combining simulation results with gridded population data, mortality rates, and concentration-response relationships from the epidemiological literature, we estimate the contribution of Chinese aerosols to global annual premature mortality and to RF in 2000 and 2030. In 2000, we estimate these aerosols cause approximately 470 000 premature deaths in China and an additional 30 000 deaths globally. In 2030, aggressive emission controls lead to a 50% reduction in premature deaths from the 2000 level to 240 000 in China and 10 000 elsewhere, while under a high emissions scenario premature deaths increase 50% from the 2000 level to 720 000 in China and to 40 000 elsewhere. Because the negative RF from SO 42- and OC is larger than the positive forcing from BC, Chinese aerosols lead to global net direct RF of -74 mW m -2 in 2000 and between -15 and -97 mW m -2 in 2030 depending on the emissions scenario. Our analysis indicates that increased effort to reduce greenhouse gases is essential to address climate change as China's anticipated reduction of aerosols will result in the

  10. Volcanic aerosol layer formed in the tropical upper troposphere by the eruption of Mt. Merapi, Java, in November 2010 observed by the spaceborne lidar CALIOP

    NASA Astrophysics Data System (ADS)

    Shibata, Takashi; Kinoshita, Taro

    2016-02-01

    Mt. Merapi in Java, Indonesia, erupted in November 2010. The eruption was proved to be the source of the aerosol layer observed by a ground-based lidar at Biak, Indonesia, in January 2011 using data on the global distribution of aerosols observed by the spaceborne cloud-aerosol lidar with orthogonal polarization (CALIOP). These data were used to describe how the volcanic aerosols produced by the volcanic eruption diffused throughout the tropical tropopause layer (TTL). The equivalent maximum total amount of volcanic SO2 estimated from the spatially integrated total amount of aerosols was 0.09 Tg, which is one-third to half that of gaseous SO2 after the eruption was observed by the ozone monitoring instrument satellite. The obtained cirrus-cloud-appearance frequency data exhibit a seasonal cycle having its maximum in winter and no detectable variations that are synchronized with the increase in TTL volcanic aerosols.

  11. Effect of Hydrophilic Organic Seed Aerosols on Secondary Organic Aerosol Formation from Ozonolysis of α-Pinene

    SciTech Connect

    Song, Chen; Zaveri, Rahul A.; Shilling, John E.; Alexander, M. L.; Newburn, Matthew K.

    2011-07-26

    Gas-particle partitioning theory is widely used in atmospheric models to predict organic aerosol loadings. This theory predicts that secondary organic aerosol (SOA) yield of an oxidized VOC product will increase as the mass loading of preexisting organic aerosol increases. In a previous study, we showed that the presence of model hydrophobic primary organic aerosol (POA) had no detectable effect on the secondary organic aerosol (SOA) yields from ozonolysis of {alpha}-pinene, suggesting that the condensing SOA compounds form a separate phase from the preexisting POA. However, non-polar, hydrophobic POA may gradually become polar and hydrophilic as it undergoes oxidative aging while POA formed from biomass burning is already somewhat polar and hydrophilic. In this study, we investigate the effects of model hydrophilic POA such as fulvic acid, adipic acid and citric acid on the gas-particle partitioning of SOA from {alpha}-pinene ozonolysis. The results show that only citric acid seed significantly enhances the absorption of {alpha}-pinene SOA into the particle-phase. The other two POA seed particles have negligible effect on the {alpha}-pinene SOA yields, suggesting that {alpha}-pinene SOA forms a well-mixed organic aerosol phase with citric acid while a separate phase with adipic acid and fulvic acid. This finding highlights the need to improve the thermodynamics treatment of organics in current aerosol models that simply lump all hydrophilic organic species into a single phase, thereby potentially introducing an erroneous sensitivity of SOA mass to emitted POA.

  12. OCEANFILMS-2: Representing coadsorption of saccharides in marine films and potential impacts on modeled marine aerosol chemistry

    NASA Astrophysics Data System (ADS)

    Burrows, Susannah M.; Gobrogge, Eric; Fu, Li; Link, Katie; Elliott, Scott M.; Wang, Hongfei; Walker, Rob

    2016-08-01

    Here we show that the addition of chemical interactions between soluble monosaccharides and an insoluble lipid surfactant monolayer improves agreement of modeled sea spray chemistry with observed marine aerosol chemistry. In particular, the alkane:hydroxyl mass ratio in modeled sea spray organic matter is reduced from a median of 2.73 to a range of 0.41-0.69, reducing the discrepancy with previous Fourier transform infrared spectroscopy (FTIR) observations of clean marine aerosol (ratio: 0.24-0.38). The overall organic fraction of submicron sea spray also increases, allowing organic mass fractions in the range 0.5-0.7 for submicron sea spray particles over highly active phytoplankton blooms. Sum frequency generation experiments support the modeling approach by demonstrating that soluble monosaccharides can strongly adsorb to a lipid monolayer likely via Coulomb interactions under appropriate conditions. These laboratory findings motivate further research to determine the relevance of coadsorption mechanisms for real-world, sea spray aerosol production.

  13. Rationalising polymer selection for supersaturated film forming systems produced by an aerosol spray for the transdermal delivery of methylphenidate.

    PubMed

    Edwards, A; Qi, S; Liu, F; Brown, M B; McAuley, W J

    2017-05-01

    Film forming systems offer a number of advantages for topical and transdermal drug delivery, in particular enabling production of a supersaturated state which can greatly improve drug absorption and bioavailability. However the suitability of individual film forming polymers to stabilise the supersaturated state and optimise delivery of drugs is not well understood. This study reports the use of differential scanning calorimetry (DSC) to measure the solubility of methylphenidate both as the free base and as the hydrochloride salt in two polymethacrylate copolymers, Eudragit RS (EuRS) and Eudragit E (EuE) and relates this to the ability of films formed using these polymers to deliver methylphenidate across a model membrane. EuRS provided greater methylphenidate delivery when the drug was formulated as the free base in comparison EuE because the lower solubility of the drug in EuRS provided a higher degree of drug saturation in the polymeric film. In contrast EuE provided greater delivery of methylphenidate hydrochloride as EuRS could not prevent its crystallisation from a supersaturated state. Methylphenidate flux across the membrane could be directly related to degree of saturation of the drug in the film formulation as estimated by the drug solubility in the individual polymers demonstrating the importance of drug solubility in the polymer included in film forming systems for topical/transdermal drug delivery. In addition DSC has been demonstrated to be a useful tool for determining the solubility of drugs in polymers used in film forming systems and the approaches outlined here are likely to be useful for predicting the suitability of polymers for particular drugs in film forming transdermal drug delivery systems.

  14. In-cloud processes of methacrolein under simulated conditions - Part 3: Hygroscopic and volatility properties of the formed secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Michaud, V.; El Haddad, I.; Liu, Yao; Sellegri, K.; Laj, P.; Villani, P.; Picard, D.; Marchand, N.; Monod, A.

    2009-07-01

    The hygroscopic and volatility properties of secondary organic aerosol (SOA) produced from the nebulization of solutions after aqueous phase photooxidation of methacrolein was experimentally studied in a laboratory, using a Volatility-Hygroscopicity Tandem DMA (VHTDMA). The obtained SOA were 80% 100°C-volatile after 5 h of reaction and only 20% 100°C-volatile after 22 h of reaction. The Hygroscopic Growth Factor (HGF) of the SOA produced from the nebulization of solutions after aqueous-phase photooxidation of methacrolein is 1.34-1.43, which is significantly higher than the HGF of SOA formed by gas-phase photooxidation of terpenes, usually found almost hydrophobic. These hygroscopic properties were confirmed for SOA formed by the nebulization of the same solutions where NaCl was added. The hygroscopic properties of the cloud droplet residuals decrease with the reaction time, in parallel with the formation of more refractory compounds. This decrease was mainly attributed to the 250°C-refractive fraction (presumably representative of the highest molecular weight compounds), which evolved from moderately hygroscopic (HGF of 1.52) to less hygroscopic (HGF of 1.36). Oligomerization is suggested as a process responsible for the decrease of both volatility and hygroscopicity with time. The NaCl seeded experiments enabled us to show that 19±4 mg L-1 of SOA was produced after 9.5 h of reaction and 41±9 mg L-1 after 22 h of in-cloud reaction. Because more and more SOA is formed as the reaction time increases, our results show that the reaction products formed during the aqueous-phase OH-oxidation of methacrolein may play a major role in the properties of residual particles upon the droplet's evaporation. Therefore, the specific physical properties of SOA produced during cloud processes should be taken into account for a global estimation of SOA and their atmospheric impacts.

  15. A national effort to identify fry processing clones with low acrylamide-forming potential

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acrylamide is a suspected human carcinogen. Processed potato products, such as chips and fries, contribute to dietary intake of acrylamide. One of the most promising approaches to reducing acrylamide consumption is to develop and commercialize new potato varieties with low acrylamide-forming potenti...

  16. Surface study of films formed on copper and brass at open circuit potential

    NASA Astrophysics Data System (ADS)

    Procaccini, R.; Schreiner, W. H.; Vázquez, M.; Ceré, S.

    2013-03-01

    The corrosion resistance of Cu-Zn alloys strongly depends on the quality of the protective passive film. This study focuses on the influence of Zn on the composition of oxide films on copper and brass (Cu77Zn21Al2) in borax 0.1 mol L-1 (pH 9.2) solution, where the solubility of copper oxides is minimal. The effect of the presence of chloride ions at low concentration (0.01 mol L-1) in the electrolyte was also evaluated. Both conditions were studied using a set of different electrochemical, optical and surface techniques such as cyclic voltammetry, differential reflectance, X-ray photoelectron spectroscopy and Raman spectroscopy. A duplex Cu2O/CuO layer forms on copper at potentials positive to the open circuit potential (OCP), while in the case of brass, zinc compounds are also incorporated to the surface film. It also became evident that a surface film can be formed on these materials even at potentials negative to the OCP. Zn(II) species are the main constituents of the films growing on brass, while copper oxides are incorporated to the surface film when approaching the OCP. The presence of chloride ions at low concentrations contributes to the dissolution of the oxo-hydroxides formed during the early stages of the aging process at open circuit potential. Also, copper chloro-compounds are formed, as shown by Raman spectroscopy for both copper and brass electrodes.

  17. METHYLATED ARSENICIII SPECIES ARE POTENTIAL PROXIMATE OR ULTIMATE GENOTOXIC FORMS OF ARSENIC

    EPA Science Inventory

    METHYLATED ARSENIC(III) SPECIES ARE POTENTIAL PROXIMATE OR UL TIMA TE GENOTOXIC FORMS OF ARSENIC

    Inorganic arsenic (iAs, arsenite and arsenate) has been thought to act as a genotoxicant without reacting directly with DNA; neither iAs nor As(V) methylated metabolites are e...

  18. Consequences of Autonomous and Team-Oriented Forms of Dispositional Proactivity for Demonstrating Advancement Potential

    ERIC Educational Resources Information Center

    Hirschfeld, Robert R.; Thomas, Christopher H.; Bernerth, Jeremy B.

    2011-01-01

    Under the paradigm of individualism, proactive personality has garnered much attention in connection with indicators of career success. We regard this construct as an autonomous form of dispositional proactivity and explored it along with team-oriented proactivity as a predictor of self-perceived influence and observed advancement potential in a…

  19. The potential of LIRIC to validate the vertical profiles of the aerosol mass concentration estimated by an air quality model

    NASA Astrophysics Data System (ADS)

    Siomos, Nikolaos; Filoglou, Maria; Poupkou, Anastasia; Liora, Natalia; Dimopoulos, Spyros; Melas, Dimitris; Chaikovsky, Anatoli; Balis, Dimitris

    2015-04-01

    Vertical profiles of the aerosol mass concentration derived by a retrieval algorithm that uses combined sunphotometer and LIDAR data (LIRIC) were used in order to validate the mass concentration profiles estimated by the air quality model CAMx. LIDAR and CIMEL measurements of the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki were used for this validation.The aerosol mass concentration profiles of the fine and coarse mode derived by CAMx were compared with the respective profiles derived by the retrieval algorithm. For the coarse mode particles, forecasts of the Saharan dust transportation model BSC-DREAM8bV2 were also taken into account. Each of the retrieval algorithm's profiles were matched to the models' profile with the best agreement within a time window of four hours before and after the central measurement. OPAC, a software than can provide optical properties of aerosol mixtures, was also employed in order to calculate the angstrom exponent and the lidar ratio values for 355nm and 532nm for each of the model's profiles aiming in a comparison with the angstrom exponent and the lidar ratio values derived by the retrieval algorithm for each measurement. The comparisons between the fine mode aerosol concentration profiles resulted in a good agreement between CAMx and the retrieval algorithm, with the vertical mean bias error never exceeding 7 μgr/m3. Concerning the aerosol coarse mode concentration profiles both CAMx and BSC-DREAM8bV2 values are severely underestimated, although, in cases of Saharan dust transportation events there is an agreement between the profiles of BSC-DREAM8bV2 model and the retrieval algorithm.

  20. Organic aerosols

    SciTech Connect

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN.

  1. Ground level environmental protein concentrations in various ecuadorian environments: potential uses of aerosolized protein for ecological research

    USGS Publications Warehouse

    Staton, Sarah J.R.; Woodward, Andrea; Castillo, Josemar A.; Swing, Kelly; Hayes, Mark A.

    2014-01-01

    Large quantities of free protein in the environment and other bioaerosols are ubiquitous throughout terrestrial ground level environments and may be integrative indicators of ecosystem status. Samples of ground level bioaerosols were collected from various ecosystems throughout Ecuador, including pristine humid tropical forest (pristine), highly altered secondary humid tropical forest (highly altered), secondary transitional very humid forest (regrowth transitional), and suburban dry montane deforested (suburban deforested). The results explored the sensitivity of localized aerosol protein concentrations to spatial and temporal variations within ecosystems, and their value for assessing environmental change. Ecosystem specific variations in environmental protein concentrations were observed: pristine 0.32 ± 0.09 μg/m3, highly altered 0.07 ± 0.05 μg/m3, regrowth transitional 0.17 ± 0.06 μg/m3, and suburban deforested 0.09 ± 0.04 μg/m3. Additionally, comparisons of intra-environmental differences in seasonal/daily weather (dry season 0.08 ± 0.03 μg/m3 and wet season 0.10 ± 0.04 μg/m3), environmental fragmentation (buffered 0.19 ± 0.06 μg/m3 and edge 0.15 ± 0.06 μg/m3), and sampling height (ground level 0.32 ± 0.09 μg/m3 and 10 m 0.24 ± 0.04 μg/m3) demonstrated the sensitivity of protein concentrations to environmental conditions. Local protein concentrations in altered environments correlated well with satellite-based spectral indices describing vegetation productivity: normalized difference vegetation index (NDVI) (r2 = 0.801), net primary production (NPP) (r2 = 0.827), leaf area index (LAI) (r2 = 0.410). Moreover, protein concentrations distinguished the pristine site, which was not differentiated in spectral indices, potentially due to spectral saturation typical of highly vegetated environments. Bioaerosol concentrations represent an inexpensive method to increase understanding of environmental changes, especially in densely vegetated

  2. Contribution of water-soluble and insoluble components and their hydrophobic/hydrophilic subfractions to the reactive oxygen species-generating potential of fine ambient aerosols.

    PubMed

    Verma, Vishal; Rico-Martinez, Roberto; Kotra, Neel; King, Laura; Liu, Jiumeng; Snell, Terry W; Weber, Rodney J

    2012-10-16

    Relative contributions of water- and methanol-soluble compounds and their hydrophobic/hydrophilic subfractions to the ROS (reactive oxygen species)-generating potential of ambient fine aerosols (D(p) < 2.5 μm) are assessed. ROS-generating (or oxidative) potential of the particulate matter (PM) was measured by the dithiothreitol (DTT) assay. Particles were collected on quartz filters (N = 8) at an urban site near central Atlanta during January-February 2012 using a PM(2.5) high-volume sampler. Filter punches were extracted separately in both water and methanol. Hydrophobic and hydrophilic fractions were then subsequently segregated via a C-18 solid phase extraction column. The DTT assay response was significantly higher for the methanol extract, and for both extracts a substantial fraction of PM oxidative potential was associated with the hydrophobic compounds as evident from a substantial attenuation in DTT response after passing PM extracts through the C-18 column (64% for water and 83% for methanol extract; both median values). The DTT activities of water and methanol extracts were correlated with the water-soluble (R = 0.86) and water-insoluble organic carbon (R = 0.94) contents of the PM, respectively. Brown carbon (BrC), which predominantly represents the hydrophobic organic fraction (referred to as humic-like substances, HULIS), was also correlated with DTT activity in both the water (R = 0.78) and methanol extracts (R = 0.83). Oxidative potential was not correlated with any metals measured in the extracts. These findings suggest that the hydrophobic components of both water-soluble and insoluble organic aerosols substantially contribute to the oxidative properties of ambient PM. Further investigation of these hydrophobic organic compounds could help identify sources of a significant fraction of ambient aerosol toxicity.

  3. Aromatic Structure in Simulates Titan Aerosol

    NASA Technical Reports Server (NTRS)

    Trainer, Melissa G.; Loeffler, M. J.; Anderson, C. M.; Hudson, R. L.; Samuelson, R. E.; Moore, M. A.

    2011-01-01

    Observations of Titan by the Cassini Composite Infrared Spectrometer (CIRS) between 560 and 20 per centimeter (approximately 18 to 500 micrometers) have been used to infer the vertical variations of Titan's ice abundances, as well as those of the aerosol from the surface to an altitude of 300 km [1]. The aerosol has a broad emission feature centered approximately at 140 per centimeter (71 micrometers). As seen in Figure 1, this feature cannot be reproduced using currently available optical constants from laboratory-generated Titan aerosol analogs [2]. The far-IR is uniquely qualified for investigating low-energy vibrational motions within the lattice structures of COITIDlex aerosol. The feature observed by CIRS is broad, and does not likely arise from individual molecules, but rather is representative of the skeletal movements of macromolecules. Since Cassini's arrival at Titan, benzene (C6H6) has been detected in the atmosphere at ppm levels as well as ions that may be polycyclic aromatic hydrocarbons (PAHs) [3]. We speculate that the feature may be a blended composite that can be identified with low-energy vibrations of two-dimensional lattice structures of large molecules, such as PAHs or nitrogenated aromatics. Such structures do not dominate the composition of analog materials generated from CH4 and N2 irradiation. We are performing studies forming aerosol analog via UV irradiation of aromatic precursors - specifically C6H6 - to understand how the unique chemical architecture of the products will influence the observable aerosol characteristics. The optical and chemical properties of the aromatic analog will be compared to those formed from CH4/N2 mixtures, with a focus on the as-yet unidentified far-IR absorbance feature. Preliminary results indicate that the photochemically-formed aromatic aerosol has distinct chemical composition, and may incorporate nitrogen either into the ring structure or adjoined chemical groups. These compositional differences are

  4. Periodic potentials in hybrid van der Waals heterostructures formed by supramolecular lattices on graphene

    NASA Astrophysics Data System (ADS)

    Gobbi, Marco; Bonacchi, Sara; Lian, Jian X.; Liu, Yi; Wang, Xiao-Ye; Stoeckel, Marc-Antoine; Squillaci, Marco A.; D'Avino, Gabriele; Narita, Akimitsu; Müllen, Klaus; Feng, Xinliang; Olivier, Yoann; Beljonne, David; Samorì, Paolo; Orgiu, Emanuele

    2017-03-01

    The rise of 2D materials made it possible to form heterostructures held together by weak interplanar van der Waals interactions. Within such van der Waals heterostructures, the occurrence of 2D periodic potentials significantly modifies the electronic structure of single sheets within the stack, therefore modulating the material properties. However, these periodic potentials are determined by the mechanical alignment of adjacent 2D materials, which is cumbersome and time-consuming. Here we show that programmable 1D periodic potentials extending over areas exceeding 104 nm2 and stable at ambient conditions arise when graphene is covered by a self-assembled supramolecular lattice. The amplitude and sign of the potential can be modified without altering its periodicity by employing photoreactive molecules or their reaction products. In this regard, the supramolecular lattice/graphene bilayer represents the hybrid analogue of fully inorganic van der Waals heterostructures, highlighting the rich prospects that molecular design offers to create ad hoc materials.

  5. OCEANFILMS-2: Representing coadsorption of saccharides in marine films and potential impacts on modeled marine aerosol chemistry

    SciTech Connect

    Burrows, Susannah M.; Gobrogge, Eric; Fu, Li; Link, Katie; Elliott, Scott M.; Wang, Hongfei; Walker, Rob

    2016-08-10

    Here we show that the addition of chemical interactions of soluble polysaccharides with a surfactant monolayer improves agreement of modeled sea spray chemistry with observed marine aerosol chemistry. In particular, the fraction of hydroxyl functional groups in modeled sea spray organic matter is increased, improving agreement with FTIR observations of marine aerosol composition. The overall organic fraction of submicron sea spray also increases, allowing organic mass fractions in the range 0.5 – 0.7 for submicron sea spray particles over highly active phytoplankton blooms. We show results from Sum Frequency Generation (SFG) experiments that support the modeling approach, by demonstrating that soluble polysaccharides can strongly adsorb to a lipid monolayer via columbic interactions under appropriate conditions.

  6. Spaceborne potential for examining taiga-tundra ecotone form and vulnerability

    NASA Astrophysics Data System (ADS)

    Montesano, Paul M.; Sun, Guoqing; Dubayah, Ralph O.; Ranson, K. Jon

    2016-07-01

    In the taiga-tundra ecotone (TTE), site-dependent forest structure characteristics can influence the subtle and heterogeneous structural changes that occur across the broad circumpolar extent. Such changes may be related to ecotone form, described by the horizontal and vertical patterns of forest structure (e.g., tree cover, density, and height) within TTE forest patches, driven by local site conditions, and linked to ecotone dynamics. The unique circumstance of subtle, variable, and widespread vegetation change warrants the application of spaceborne data including high-resolution (< 5 m) spaceborne imagery (HRSI) across broad scales for examining TTE form and predicting dynamics. This study analyzes forest structure at the patch scale in the TTE to provide a means to examine both vertical and horizontal components of ecotone form. We demonstrate the potential of spaceborne data for integrating forest height and density to assess TTE form at the scale of forest patches across the circumpolar biome by (1) mapping forest patches in study sites along the TTE in northern Siberia with a multi-resolution suite of spaceborne data and (2) examining the uncertainty of forest patch height from this suite of data across sites of primarily diffuse TTE forms. Results demonstrate the opportunities for improving patch-scale spaceborne estimates of forest height, the vertical component of TTE form, with HRSI. The distribution of relative maximum height uncertainty based on prediction intervals is centered at ˜ 40 %, constraining the use of height for discerning differences in forest patches. We discuss this uncertainty in light of a conceptual model of general ecotone forms and highlight how the uncertainty of spaceborne estimates of height can contribute to the uncertainty in identifying TTE forms. A focus on reducing the uncertainty of height estimates in forest patches may improve depiction of TTE form, which may help explain variable forest responses in the TTE to climate

  7. A high redox potential form of cytochrome c550 in photosystem II from Thermosynechococcus elongatus.

    PubMed

    Guerrero, Fernando; Sedoud, Arezki; Kirilovsky, Diana; Rutherford, A William; Ortega, José M; Roncel, Mercedes

    2011-02-25

    Cytochrome c(550) (cyt c(550)) is a component of photosystem II (PSII) from cyanobacteria, red algae, and some other eukaryotic algae. Its physiological role remains unclear. In the present work, measurements of the midpoint redox potential (E(m)) were performed using intact PSII core complexes preparations from a histidine-tagged PSII mutant strain of the thermophilic cyanobacterium Thermosynechococcus (T.) elongatus. When redox titrations were done in the absence of redox mediators, an E(m) value of +200 mV was obtained for cyt c(550). This value is ∼300 mV more positive than that previously measured in the presence of mediators (E(m) = -80 mV). The shift from the high potential form (E(m) = +200 mV) to the low potential form (E(m) = -80 mV) of cyt c(550) is attributed to conformational changes, triggered by the reduction of a component of PSII that is sequestered and out of equilibrium with the medium, most likely the Mn(4)Ca cluster. This reduction can occur when reduced low potential redox mediators are present or under highly reducing conditions even in the absence of mediators. Based on these observations, it is suggested that the E(m) of +200 mV obtained without mediators could be the physiological redox potential of the cyt c(550) in PSII. This value opens the possibility of a redox function for cyt c(550) in PSII.

  8. Aerosol contributions to speleothem geochemistry

    NASA Astrophysics Data System (ADS)

    Dredge, J. A.; Fairchild, I. J.; Harrison, R.; Woodhead, J. D.; Hellstrom, J.

    2011-12-01

    The term "aerosols" encompasses the suspension of both fine solid or liquid particles within a gaseous medium. Aerosols become suspended into the earth's atmosphere through a multitude of processes both natural and anthropogenic. Atmospheric aerosols enter cave networks as a result of cave ventilation processes and are either deposited, or cycled and removed from the system. Speleothem offer a multiproxy palaeoclimate resource; many of the available proxies have been extensively investigated and utilised for palaeoclimatic reconstructions in a range of studies. The potential contribution of aerosols to speleothem chemistry and their applicability for palaeoenvironmental reconstructions remains untested and the extent of their value as an addition to palaeoclimate sciences unknown. Aerosols through incorporation into speleothem may provide a novel palaeoenvironmental resource. The aerosol component of interest is that which is transported into the cave atmosphere and deposited and are available for incorporation into precipitated calcite. Aerosol deposition and therefore distribution in the cave has shown to be a complex function of ventilation and changing environmental factors. Through detailed monitoring aerosols have been detected, identified, characterised and quantified to determine their prominence in the cave system. Investigations are on a case study basis, searching for suitable aerosol proxies of environmentally significant emission processes. Case studies include: Palaeofires at Yarrangobilly Caves, Australia; anthropogenic emissions at St Michaels Cave, Gibraltar and Cheddar gorge, UK; and drip water aerosol production and geochemical addition in Obir cave, Austria. Monitoring has allowed for the temporal and spatial determination of aerosols in karst networks. Speleothem samples will be analysed in combination with in-situ monitoring to determine incorporation factors and record preservation. By understanding how aerosols are transmitted within the

  9. Characterization of the Aerosol-based Synthesis of Uranium Particles as a Potential Reference Material for Micro Analytical Methods.

    PubMed

    Middendorp, Ronald; Dürr, Martin; Knott, Alexander; Pointurier, Fabien; Ferreira Sanchez, Dario; Samson, Valerie Ann; Grolimund, Daniel

    2017-03-27

    A process for production of micrometer-sized particles composed of uranium oxide using aerosol spray pyrolysis is characterized with respect to the various production parameters. The aerosol is generated using a vibrating orifice aerosol generator providing monodisperse droplets, which are oxidized in a subsequent heat treatment. The final particles are characterized with micro analytical methods to determine size, shape, internal morphology, chemical and structural properties in order to assess the suitability of the produced particles as a reference material for micro analytical methods, in particular for mass-spectrometry. It is demonstrated that physico-chemical processes during particle formation and the heat treatment to chemically transform particles into an oxide strongly influence the particle shape and the internal morphology. Synchrotron μ-X-ray based techniques combined with μ-Raman spectroscopy have been applied to demonstrate that the obtained micro particles consist of a triuranium octoxide phase. Our studies demonstrate that the process is capable of delivering spherical particles with determined uniform size and ele-mental as well as chemical composition. The particles therefore represent a suitable base material to fulfill the homogeneity and stability requirements of a reference material for micro analytical methods applied in, for example, international safeguards or nuclear forensics.

  10. A Critical Examination of Spatial Biases Between MODIS and MISR Aerosol Products - Application for Potential AERONET Deployment

    NASA Technical Reports Server (NTRS)

    Shi, Y.; Zhang, J.; Reid, J. S.; Hyer, E. J.; Eck, T. F.; Holben, B. N.; Kahn, R. A.

    2011-01-01

    AErosol RObotic NETwork (AERONET) data are the primary benchmark for evaluating satellite-retrieved aerosol properties. However, despite its extensive coverage, the representativeness of the AERONET data is rarely discussed. Indeed, many studies have shown that satellite retrieval biases have a significant degree of spatial correlation that may be problematic for higher-level processes or inverse-emissions-modeling studies. To consider these issues and evaluate relative performance in regions of few surface observations, cross-comparisons between the Aerosol Optical Depth (AOD) products of operational MODIS Collection 5.1 Dark Target (DT) and operational MODIS Collection 5.1 Deep Blue (DB) with MISR version 22 were conducted. Through such comparisons, we can observe coherent spatial features of the AOD bias while side-stepping the full analysis required for determining when or where either retrieval is more correct. We identify regions where MODIS to MISR AOD ratios were found to be above 1.4 and below 0.7. Regions where lower boundary condition uncertainty is likely to be a dominant factor include portions of Western North America, the Andes mountains, Saharan Africa, the Arabian Peninsula, and Central Asia. Similarly, microphysical biases may be an issue in South America, and specific parts of Southern Africa, India Asia, East Asia, and Indonesia. These results help identify high-priority locations for possible future deployments of both in situ and ground based remote sensing measurements. The Supplement includes a km1 file.

  11. Assessment of toxic potential of primary and secondary particulates/aerosols from biodiesel vis-à-vis mineral diesel fuelled engine.

    PubMed

    Agarwal, Avinash Kumar; Gupta, Tarun; Dixit, Neelabh; Shukla, Pravesh Chandra

    2013-05-01

    Toxicity of engine out emissions from primary and secondary aerosols has been a major cause of concern for human health and environmental impact. This study aims to evaluate comparative toxicity of nanoparticles emitted from a modern common rail direct injection engine (CRDI) fuelled with biodiesel blend (B20) vis-à-vis mineral diesel. The toxicity and potential health hazards of exhaust particles were assessed using various parameters such as nanoparticle size and number distribution, surface area distribution, elemental and organic carbon content and polycyclic aromatic hydrocarbons adsorbed onto the particle surfaces, followed by toxic equivalent factor assessment. It was found that biodiesel particulate toxicity was considerably lower in comparison to mineral diesel.

  12. Newly-formed emotional memories guide selective attention processes: Evidence from event-related potentials

    PubMed Central

    Schupp, Harald T.; Kirmse, Ursula; Schmälzle, Ralf; Flaisch, Tobias; Renner, Britta

    2016-01-01

    Emotional cues can guide selective attention processes. However, emotional stimuli can both activate long-term memory representations reflecting general world knowledge and engage newly formed memory representations representing specific knowledge from the immediate past. Here, the self-completion feature of associative memory was utilized to assess the regulation of attention processes by newly-formed emotional memory. First, new memory representations were formed by presenting pictures depicting a person either in an erotic pose or as a portrait. Afterwards, to activate newly-built memory traces, edited pictures were presented showing only the head region of the person. ERP recordings revealed the emotional regulation of attention by newly-formed memories. Specifically, edited pictures from the erotic compared to the portrait category elicited an early posterior negativity and late positive potential, similar to the findings observed for the original pictures. A control condition showed that the effect was dependent on newly-formed memory traces. Given the large number of new memories formed each day, they presumably make an important contribution to the regulation of attention in everyday life. PMID:27321471

  13. Evaluation of the mutagenic potential of different forms of energy production.

    PubMed

    Léonard, A; Léonard, E D

    1983-08-01

    The consequence of exposure to the effluents of power plants that elicits the most concern is probably the induction of cancers. Due mainly to the high uncertainty of epidemiological surveys on exposure to low doses of mutagens, observations performed up to now on man have provided contradictory and inconclusive results. Since a high correlation exists between the mutagenicity of environmental agents and their carcinogenic properties, an attempt has been made to evaluate the carcinogenic potential of the different forms of energy production on the basis of the results of short term tests performed on the effluents of several power plants. Any energy source is associated with such risks and, in spite of the fact that real comparative studies were not available, coal as a source of energy presents obviously higher mutagenic potential than nuclear power. Renewable forms of energy are cleaner but are, however, not entirely devoid of health impacts.

  14. The influence of hyperon potential on the black-hole-forming failed supernovae

    SciTech Connect

    Nakazato, Ken'ichiro; Sumiyoshi, Kohsuke

    2012-11-12

    We investigate the emergence of hyperons in black-hole-forming failed supernovae, which are caused by the dynamical collapse of nonrotating massive stars. Attractive and repulsive cases are examined for the potential of {Sigma} hyperons to find that it affects the accompanied neutrino emission through the core-collapse dynamics. The neutrino duration time during black hole formation for the repulsive case is {approx}15% longer than that for the attractive case.

  15. Aerosol gels

    NASA Technical Reports Server (NTRS)

    Sorensen, Christopher M. (Inventor); Chakrabarti, Amitabha (Inventor); Dhaubhadel, Rajan (Inventor); Gerving, Corey (Inventor)

    2010-01-01

    An improved process for the production of ultralow density, high specific surface area gel products is provided which comprises providing, in an enclosed chamber, a mixture made up of small particles of material suspended in gas; the particles are then caused to aggregate in the chamber to form ramified fractal aggregate gels. The particles should have a radius (a) of up to about 50 nm and the aerosol should have a volume fraction (f.sub.v) of at least 10.sup.-4. In preferred practice, the mixture is created by a spark-induced explosion of a precursor material (e.g., a hydrocarbon) and oxygen within the chamber. New compositions of matter are disclosed having densities below 3.0 mg/cc.

  16. Using event related potentials to identify a user's behavioural intention aroused by product form design.

    PubMed

    Ding, Yi; Guo, Fu; Zhang, Xuefeng; Qu, Qingxing; Liu, Weilin

    2016-07-01

    The capacity of product form to arouse user's behavioural intention plays a decisive role in further user experience, even in purchase decision, while traditional methods rarely give a fully understanding of user experience evoked by product form, especially the feeling of anticipated use of product. Behavioural intention aroused by product form designs has not yet been investigated electrophysiologically. Hence event related potentials (ERPs) were applied to explore the process of behavioural intention when users browsed different smart phone form designs with brand and price not taken into account for mainly studying the brain activity evoked by variety of product forms. Smart phone pictures with different anticipated user experience were displayed with equiprobability randomly. Participants were asked to click the left mouse button when certain picture gave them a feeling of behavioural intention to interact with. The brain signal of each participant was recorded by Curry 7.0. The results show that pictures with an ability to arouse participants' behavioural intention for further experience can evoke enhanced N300 and LPPs (late positive potentials) in central-parietal, parietal and occipital regions. The scalp topography shows that central-parietal, parietal and occipital regions are more activated. The results indicate that the discrepancy of ERPs can reflect the neural activities of behavioural intention formed or not. Moreover, amplitude of ERPs occurred in corresponding brain areas can be used to measure user experience. The exploring of neural correlated with behavioural intention provide an accurate measurement method of user's perception and help marketers to know which product can arouse users' behavioural intention, maybe taken as an evaluating indicator of product design.

  17. Climatic Effects of Marine Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Xu, J.; Meskhidze, N.; Zhang, Y.; Gantt, B.; Ghan, S. J.; Nenes, A.; Liu, X.; Easter, R. C.; Zaveri, R. A.

    2009-12-01

    Recent studies suggest that the emissions of primary organic matter (POM) of marine biogenic origin and secondary organic aerosol (SOA) from phytoplankton-produced volatile organic compounds can lead to changes of chemical composition and size distribution of marine aerosol, thus modifying the cloud droplet activation potential and affecting climate. In this study, the effects of marine organic aerosol emissions and the dissolved marine organic aerosol components as surfactant are explored using the National Center of Atmospheric Research’s Community Atmosphere Model, coupled with the Pacific Northwest National Laboratory’s Modal Aerosol Model (CAM-MAM). Primary marine organic aerosol emissions are separated into sub- and super-micron modes, and calculated based on wind speed-dependent sea-spray mass flux and remotely-sensed surface chlorophyll-a concentration. Two distinct sea spray emission functions used in this study yield different amounts and spatial distributions of sub-micron marine POM mass flux. The super-micron sea-spray flux is determined based on simulated sea-spray number flux. Both sub and super-micron marine POM are assumed to be mostly water-insoluble and added in the accumulation mode and coarse sea-salt mode, respectively. A prescribed soluble mass fraction of 50% is assumed for marine SOA, formed from phytoplankton-emitted isoprene and allowed to be condensed on existing aerosols in different modes. Surfactant effects from the soluble part of sub-micron marine POM are included in the cloud droplet activation parameterization by some modifications based on the mass fraction of dissolved marine POM. 10 year model simulations are conducted to examine the effects of marine organic aerosols on cloud microphysical and optical properties. Analyses of model results show that different marine aerosol emissions and cloud droplet activation mechanisms can yield 9% to 16% increase in global maritime mean cloud droplet number concentration. Changes

  18. Emission characteristics of volatile organic compounds and their secondary organic aerosol formation potentials from a petroleum refinery in Pearl River Delta, China.

    PubMed

    Zhang, Zhijuan; Wang, Hao; Chen, Dan; Li, Qinqin; Thai, Phong; Gong, Daocheng; Li, Yang; Zhang, Chunlin; Gu, Yinggang; Zhou, Lei; Morawska, Lidia; Wang, Boguang

    2017-04-15

    A campaign was carried out to measure the emission characteristics of volatile organic compounds (VOCs) in different areas of a petroleum refinery in the Pearl River Delta (PRD) region in China. In the refining area, 2-methylpentane, 2,3-dimethylbutane, methylcyclopentane, 3-methylhexane, and butane accounted for >50% of the total VOCs; in the chemical industry area, 2-methylpentane, p-diethylbenzene, 2,3-dimethylbutane, m-diethylbenzene and 1,2,4-trimethylbenzene were the top five VOCs detected; and in the wastewater treatment area, the five most abundant species were 2-methylpentane, 2,3-dimethylbutane, methylcyclopentane, 3-methylpentane and p-diethylbenzene. The secondary organic aerosol (SOA) formation potential was estimated using the fractional aerosol coefficients (FAC), secondary organic aerosol potential (SOAP), and SOA yield methods. The FAC method suggests that toluene, p-diethylbenzene, and p-diethylbenzene are the largest contributors to the SOA formation in the refining, chemical industry, and wastewater treatment areas, respectively. With the SOAP method, it is estimated that toluene is the largest contributor to the SOA formation in the refining area, but o-ethyltoluene contributes the most both in the chemical industry and wastewater treatment areas. For the SOA yield method, aromatics dominate the yields and account for nearly 100% of the total in the three areas. The SOA concentrations estimated of the refining, chemical industry and wastewater treatment areas are 30, 3835 and 137μgm(-3), respectively. Despite the uncertainties and limitations associated with the three methods, the SOA yield method is suggested to be used for the estimation of SOA formation from the petroleum refinery. The results of this study have demonstrated that the control of VOCs, especially aromatics such as toluene, ethyltoluene, benzene and diethylbenzene, should be a focus of future regulatory measures in order to reduce PM pollution in the PRD region.

  19. The Impact of Geoengineering Aerosols on Stratospheric Temperature and Ozone

    NASA Technical Reports Server (NTRS)

    Heckendorn, P.; Weisenstein, D.; Fueglistaler, S.; Luo, B. P.; Rozanov, E.; Schraner, M.; Thomason, L. W.; Peter, T.

    2011-01-01

    Anthropogenic greenhouse gas emissions are warming the global climate at an unprecedented rate. Significant emission reductions will be required soon to avoid a rapid temperature rise. As a potential interim measure to avoid extreme temperature increase, it has been suggested that Earth's albedo be increased by artificially enhancing stratospheric sulfate aerosols. We use a 3D chemistry climate model, fed by aerosol size distributions from a zonal mean aerosol model. to simulate continuous injection of 1-10 Mt/a into the lower tropical stratosphere. In contrast to the case for all previous work, the particles are predicted to grow to larger sizes than are observed after volcanic eruptions. The reason is the continuous supply of sulfuric acid and hence freshly formed small aerosol particles, which enhance the formation of large aerosol particles by coagulation and, to a lesser extent, by condensation. Owing to their large size, these particles have a reduced albedo. Furthermore, their sedimentation results in a non-linear relationship between stratospheric aerosol burden and annual injection, leading to a reduction of the targeted cooling. More importantly, the sedimenting particles heat the tropical cold point tropopause and, hence, the stratospheric entry mixing ratio of H2O increases. Therefore, geoengineering by means of sulfate aerosols is predicted to accelerate the hydroxyl catalyzed ozone destruction cycles and cause a significant depletion of the ozone layer even though future halogen concentrations will he significantly reduced.

  20. The Impact of Geoengineering Aerosols on Stratospheric Temperature and Ozone

    NASA Technical Reports Server (NTRS)

    Heckendorn, P.; Weisenstein, D.; Fueglistaler, S.; Luo, B. P.; Rozanov, E.; Schraner, M.; Peter, T.; Thomason, L. W.

    2009-01-01

    Anthropogenic greenhouse gas emissions are warming the global climate at an unprecedented rate. Significant emission reductions will be required soon to avoid a rapid temperature rise. As a potential interim measure to avoid extreme temperature increase, it has been suggested that Earth's albedo be increased by artificially enhancing stratospheric sulfate aerosols. We use a 3D chemistry climate model, fed by aerosol size distributions from a zonal mean aerosol model, to simulate continuous injection of 1-10 Mt/a into the lower tropical stratosphere. In contrast to the case for all previous work, the particles are predicted to grow to larger sizes than are observed after volcanic eruptions. The reason is the continuous supply of sulfuric acid and hence freshly formed small aerosol particles, which enhance the formation of large aerosol particles by coagulation and, to a lesser extent, by condensation. Owing to their large size, these particles have a reduced albedo. Furthermore, their sedimentation results in a non-linear relationship between stratospheric aerosol burden and annual injection, leading to a reduction of the targeted cooling. More importantly, the sedimenting particles heat the tropical cold point tropopause and, hence, the stratospheric entry mixing ratio of H2O increases. Therefore, geoengineering by means of sulfate aerosols is predicted to accelerate the hydroxyl catalyzed ozone destruction cycles and cause a significant depletion of the ozone layer even though future halogen concentrations will be significantly reduced.

  1. One-parameter families of supersymmetric isospectral potentials from Riccati solutions in function composition form

    SciTech Connect

    Rosu, Haret C.; Mancas, Stefan C.; Chen, Pisin

    2014-04-15

    In the context of supersymmetric quantum mechanics, we define a potential through a particular Riccati solution of the composition form (F∘f)(x)=F(f(x)) and obtain a generalized Mielnik construction of one-parameter isospectral potentials when we use the general Riccati solution. Some examples for special cases of F and f are given to illustrate the method. An interesting result is obtained in the case of a parametric double well potential generated by this method, for which it is shown that the parameter of the potential controls the heights of the localization probability in the two wells, and for certain values of the parameter the height of the localization probability can be higher in the smaller well. -- Highlights: •Function-composition generalization of parametric isospectral potentials is presented. •Mielnik one-parameter family of harmonic potentials is obtained as a particular case. •Graphical discussion of regular and singular regions in the parameter space is given.

  2. Aerosol Emission Monitoring and Assessment of Potential Exposure to Multi-walled Carbon Nanotubes in the Manufacture of Polymer Nanocomposites.

    PubMed

    Thompson, Drew; Chen, Sheng-Chieh; Wang, Jing; Pui, David Y H

    2015-11-01

    Recent animal studies have shown that carbon nanotubes (CNTs) may pose a significant health risk to those exposed in the workplace. To further understand this potential risk, effort must be taken to measure the occupational exposure to CNTs. Results from an assessment of potential exposure to multi-walled carbon nanotubes (MWCNTs) conducted at an industrial facility where polymer nanocomposites were manufactured by an extrusion process are presented. Exposure to MWCNTs was quantified by the thermal-optical analysis for elemental carbon (EC) of respirable dust collected by personal sampling. All personal respirable samples collected (n = 8) had estimated 8-h time weighted average (TWA) EC concentrations below the limit of detection for the analysis which was about one-half of the recommended exposure limit for CNTs, 1 µg EC/m(3) as an 8-h TWA respirable mass concentration. Potential exposure sources were identified and characterized by direct-reading instruments and area sampling. Area samples analyzed for EC yielded quantifiable mass concentrations inside an enclosure where unbound MWCNTs were handled and near a pelletizer where nanocomposite was cut, while those analyzed by electron microscopy detected the presence of MWCNTs at six locations throughout the facility. Through size selective area sampling it was identified that the airborne MWCNTs present in the workplace were in the form of large agglomerates. This was confirmed by electron microscopy where most of the MWCNT structures observed were in the form of micrometer-sized ropey agglomerates. However, a small fraction of single, free MWCNTs was also observed. It was found that the high number concentrations of nanoparticles, ~200000 particles/cm(3), present in the manufacturing facility were likely attributable to polymer fumes produced in the extrusion process.

  3. Aerosol Emission Monitoring and Assessment of Potential Exposure to Multi-walled Carbon Nanotubes in the Manufacture of Polymer Nanocomposites

    PubMed Central

    Thompson, Drew; Chen, Sheng-Chieh; Wang, Jing; Pui, David Y.H.

    2015-01-01

    Recent animal studies have shown that carbon nanotubes (CNTs) may pose a significant health risk to those exposed in the workplace. To further understand this potential risk, effort must be taken to measure the occupational exposure to CNTs. Results from an assessment of potential exposure to multi-walled carbon nanotubes (MWCNTs) conducted at an industrial facility where polymer nanocomposites were manufactured by an extrusion process are presented. Exposure to MWCNTs was quantified by the thermal-optical analysis for elemental carbon (EC) of respirable dust collected by personal sampling. All personal respirable samples collected (n = 8) had estimated 8-h time weighted average (TWA) EC concentrations below the limit of detection for the analysis which was about one-half of the recommended exposure limit for CNTs, 1 µg EC/m3 as an 8-h TWA respirable mass concentration. Potential exposure sources were identified and characterized by direct-reading instruments and area sampling. Area samples analyzed for EC yielded quantifiable mass concentrations inside an enclosure where unbound MWCNTs were handled and near a pelletizer where nanocomposite was cut, while those analyzed by electron microscopy detected the presence of MWCNTs at six locations throughout the facility. Through size selective area sampling it was identified that the airborne MWCNTs present in the workplace were in the form of large agglomerates. This was confirmed by electron microscopy where most of the MWCNT structures observed were in the form of micrometer-sized ropey agglomerates. However, a small fraction of single, free MWCNTs was also observed. It was found that the high number concentrations of nanoparticles, ~200000 particles/cm3, present in the manufacturing facility were likely attributable to polymer fumes produced in the extrusion process. PMID:26209597

  4. Towards the regulation of aerosol emissions by their potential health impact: Assessing adverse effects of aerosols from wood combustion and ship diesel engine emissions by combining comprehensive data on the chemical composition and their toxicological effects on human lung cells

    NASA Astrophysics Data System (ADS)

    Zimmermann, R.; Streibel, T.; Dittmar, G.; Kanashova, T.; Buters, J.; Öder, S.; Paur, H. R.; Dilger, M.; Weiss, C.; Harndorf, H.; Stengel, B.; Hirvonen, M. R.; Jokiniemi, J.; Hiller, K.; Sapcariu, S.; Sippula, O.; Orasche, J.; Müller, L.; Rheda, A.; Passig, J.; Radischat, C.; Czech, H.; Tiita, P.; Jalava, P.; Kasurinen, S.; Schwemer, T.; Yli-Prilä, P.; Tissari, J.; Lamberg, H.; Schnelle-Kreis, J.

    2014-12-01

    Ship engine emissions are important regarding lung and cardiovascular diseases in coastal regions worldwide. Bio mass burning is made responsible for adverse health effects in many cities and rural regions. The Virtual Helmholtz Institute-HICE (www.hice-vi.eu) addresses chemical & physical properties and health effects of anthropogenic combustion emissions. Typical lung cell responses to combustion aerosols include inflammation and apoptosis, but a molecular link with the specific chemical composition in particular of ship emissions has not been established. Through an air-liquid interface exposure system (ALI), we exposed human lung cells at-site to exhaust fumes from a ship engine running on common heavy fuel oil (HFO) and cleaner-burning diesel fuel (DF) as well as to emissions of wood combustion compliances. A special field deployable ALI-exposition system and a mobile S2-biological laboratory were developed for this study. Human alveolar basal epithelial cells (A549 etc.) are ALI-exposed to fresh, diluted (1:40-1:100) combustion aerosols and subsequently were toxicologically and molecular-biologically characterized. Advanced chemical analyses of the exhaust aerosols were combined with transcriptional, proteomic and metabolomic profiling to characterise the cellular responses. The HFO ship emissions contained high concentrations of toxic compounds (transition metals, organic toxicants) and particle masses. The cellular responses included inflammation and oxidative stress. Surprisingly, the DF ship emissions, which predominantly contain rather "pure" carbonaceous soot and much less known toxicants, induced significantly broader biological effects, affecting essential cellular pathways (e.g., mitochondrial function and intracellular transport). Therefore the use of distillate fuels for shipping (this is the current emission reduction strategy of the IMO) appears insufficient for diminishing health effects. The study suggests rather reducing the particle emissions

  5. Evaluation of aerosol contamination during debonding procedures.

    PubMed

    Toroğlu, M S; Haytaç, M C; Köksal, F

    2001-08-01

    The aim of this study was to show how the aerosol generated by the use of an air turbine handpiece during debonding procedures increases the potential risk factor for the distribution of infectious agents. A second aim of the study was to evaluate the effectiveness of a preprocedural chlorhexidine mouth rinse in reducing the number of colony forming units (CFU) found in aerosol samples. Blood agar plates were attached to the face shields and the dental chair table and were used for collecting the aerosol samples. In the first part of the study, 260 samples were collected for the baseline group in an empty room, 36 samples were collected for the control group (C), in which the orthodontist, dental assistant, and the patient were in the operatory room, and 42 samples were collected for the debonding group (DB). The microbiologic analysis showed significant differences between the baseline group and the control group (P < .05). Furthermore, aerosol contamination increased significantly during the debonding procedure when compared with the control group (P < .01). In the second part of the study, an air turbine handpiece was used to remove excess adhesive from the tooth surface on one side of the mouth and air samples were collected. The patients then were instructed to rinse their mouths with 0.2% chlorhexidine gluconate for 1 minute, and the orthodontist worked on the other side of the mouth and the air sampling was repeated. An insignificant reduction was found in the number of colony forming units following the chlorhexidine mouth rinse. Results of this study indicated that orthodontists are exposed to high levels of aerosol generation and contamination during the debonding procedure, and preprocedural chlorhexidine gluconate mouth rinse appears to be ineffective in decreasing the exposure to infectious agents. Therefore, barrier equipment should be used to prevent aerosol contamination.

  6. Online measurements of ambient fluorescent aerosol particles by WIBS at a polluted regional site in the North China Plain: potential impact of burning activities

    NASA Astrophysics Data System (ADS)

    Su, H.; Wang, Z.; Cheng, Y.; Xie, Z.; Kecorius, S.; McMeeking, G. R.; Yu, X.; Pöhlker, C.; Zhang, M.; Wiedensohler, A.; Kuhn, U.; Poeschl, U.; Huffman, J. A.

    2015-12-01

    Online measurements of ambient fluorescent aerosol particles by WIBS at a polluted regional site in the North China Plain: potential impact of burning activities Zhibin Wang1, Xiawei Yu1,3, Simonas Kecorius2, Zhouqing Xie3, Gavin McMeeking4, Christopher Pöhlker1, Minghui, Zhang1, Alfred Wiedensohler2, Uwe Kuhn1, Yafang Cheng1, Ulrich Pöschl1, Hang Su1,*1Multiphase Chemistry and Biogeochemistry Departments, Max Planck Institute for Chemistry, Mainz 55128, Germany2Leibniz-Institute for Tropospheric Research, Leipzig 04318, Germany3School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China4Droplet Measurement Technologies, Boulder 80301, USA ABSTRACTBioaerosols are the main subset of super-micron particles, and significantly influence the evolution of cloud and precipitation, as well as the public health. Currently, the detection of ambient biological materials in real-time is mainly based on the presence of fluorophores in the particles. In this study, we present the wideband integrated bioaerosol spectrometer (WIBS) measurement results to characterize the fluorescent aerosol particles (FAP) at a polluted regional site (Xianghe, 39.80 °N, 116.96 °E) in the North China Plain. We observed substantially much higher number concentration of FAP as compared with those of previous studies in clean environments. We found the good agreement between the FAP number fraction in coarse mode particles (> 1 mm) and BC mass fraction in fine particles (< 1 mm), possibly indicating a majority of the observed FAP is to a certain extent related to the anthropogenic burning activities nearby. This interference and uncertainty should be especially noticed when performing fluorescence measurements in the polluted area, where the certain non-biological compounds (such as SOA, PAH and soot) may significantly lead to a positive fluorescence measurement artifacts and an overestimation of actual fluorescent biological aerosol particles. We also

  7. Ionic surface active compounds in atmospheric aerosols.

    PubMed

    Sukhapan, Jariya; Brimblecombe, Peter

    2002-04-27

    Surfactants in the atmosphere have several potential roles in atmospheric chemistry. They can form films on aqueous surfaces, which lowers the surface tension and possibly delays water evaporation and gaseous transportation across the aqueous interface. They can also increase the solubility of organic compounds in the aqueous phase. Recently, the decrease of surface tension in cloud growing droplets has been suggested as relevant to increases in the number of droplets of smaller size, potentially enhancing cloud albedo. Natural surfactants in the lung aid gas transfer and influence the dissolution rate of aerosol particles, so surfactants in atmospheric aerosols, once inhaled, may interact with pulmonary surfactants. Ambient aerosols were collected from the edge of Norwich, a small city in a largely agricultural region of England, and analysed for surfactants. Methylene blue, a conventional dye for detecting anionic surfactants, has been used as a colorimetric agent. The concentration of surfactants expressed as methylene blue active substances (MBAS) is in the range of 6-170 pmol m(-3)(air). A negative correlation with chloride aerosol indicates that these surfactants are probably not the well-known surfactants derived from marine spray. A more positive correlation with aerosol nitrate and gaseous NOx supports an association with more polluted inland air masses. The surfactants found in aerosols seem to be relatively strong acids, compared with weaker acids such as the long-chain carboxylic acids previously proposed as atmospheric surfactants. Surfactants from the oxidation of organic materials (perhaps vegetation- or soil-derived) seem a likely source of these substances in the atmosphere.

  8. Renormalization versus strong form factors for one-boson-exchange potentials

    NASA Astrophysics Data System (ADS)

    Calle Cordón, A.; Ruiz Arriola, E.

    2010-04-01

    We analyze the one-boson-exchange potential from the point of view of renormalization theory. We show that the nucleon-meson Lagrangian, while predicting the NN force, does not predict the NN scattering matrix nor the deuteron properties unambiguously due to the appearance of short distance singularities. While the problem has traditionally been circumvented by introducing vertex functions via phenomenological strong form factors, we propose to impose physical renormalization conditions on the scattering amplitude at low energies. Working in the large Nc approximation with π, σ, ρ, and ω mesons we show that, once these conditions are applied, results for low-energy phases of proton-neutron scattering as well as deuteron properties become largely insensitive to the form factors and to the vector mesons yielding reasonable agreement with the data and for realistic values of the coupling constants.

  9. Aerosol Observing System (AOS) Handbook

    SciTech Connect

    Jefferson, A

    2011-01-17

    The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earth’s radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

  10. Experimental Aerosol Inoculation and Investigation of Potential Lateral Transmission of Mycobacterium bovis in Virginia Opossum (Didelphis virginiana).

    PubMed

    Fenton, Karla A; Fitzgerald, Scott D; Bolin, Steve; Kaneene, John; Sikarskie, James; Greenwald, Rena; Lyashchenko, Konstantin

    2012-01-01

    An endemic focus of Mycobacterium bovis (M. bovis) infection in the state of Michigan has contributed to a regional persistence in the animal population. The objective of this study was to determine if Virginia opossums (Didelphis virginiana) contribute to disease persistence by experimentally assessing intraspecies lateral transmission. One wild caught pregnant female opossum bearing 11 joeys (young opossum) and one age-matched joey were obtained for the study. Four joeys were aerosol inoculated with M. bovis (inoculated), four joeys were noninoculated (exposed), and four joeys plus the dam were controls. Four replicate groups of one inoculated and one exposed joey were housed together for 45 days commencing 7 days after experimental inoculation. At day 84 opossums were sacrificed. All four inoculated opossums had a positive test band via rapid test, culture positive, and gross/histologic lesions consistent with caseogranulomatous pneumonia. The exposed and control groups were unremarkable on gross, histology, rapid test, and culture. In conclusion, M. bovis infection within the inoculated opossums was confirmed by gross pathology, histopathology, bacterial culture, and antibody tests. However, M. bovis was not detected in the control and exposed opossums. There was no appreciable lateral transmission of M. bovis after aerosol inoculation and 45 days of cohabitation between infected and uninfected opossums.

  11. Experimental Aerosol Inoculation and Investigation of Potential Lateral Transmission of Mycobacterium bovis in Virginia Opossum (Didelphis virginiana)

    PubMed Central

    Fenton, Karla A.; Fitzgerald, Scott D.; Bolin, Steve; Kaneene, John; Sikarskie, James; Greenwald, Rena; Lyashchenko, Konstantin

    2012-01-01

    An endemic focus of Mycobacterium bovis (M. bovis) infection in the state of Michigan has contributed to a regional persistence in the animal population. The objective of this study was to determine if Virginia opossums (Didelphis virginiana) contribute to disease persistence by experimentally assessing intraspecies lateral transmission. One wild caught pregnant female opossum bearing 11 joeys (young opossum) and one age-matched joey were obtained for the study. Four joeys were aerosol inoculated with M. bovis (inoculated), four joeys were noninoculated (exposed), and four joeys plus the dam were controls. Four replicate groups of one inoculated and one exposed joey were housed together for 45 days commencing 7 days after experimental inoculation. At day 84 opossums were sacrificed. All four inoculated opossums had a positive test band via rapid test, culture positive, and gross/histologic lesions consistent with caseogranulomatous pneumonia. The exposed and control groups were unremarkable on gross, histology, rapid test, and culture. In conclusion, M. bovis infection within the inoculated opossums was confirmed by gross pathology, histopathology, bacterial culture, and antibody tests. However, M. bovis was not detected in the control and exposed opossums. There was no appreciable lateral transmission of M. bovis after aerosol inoculation and 45 days of cohabitation between infected and uninfected opossums. PMID:22701815

  12. General form of the color potential produced by color charges of the quark

    NASA Astrophysics Data System (ADS)

    Nayak, Gouranga C.

    2013-03-01

    Constant electric charge e satisfies the continuity equation ∂ μ j μ ( x) = 0 where j μ ( x) is the current density of the electron. However, the Yang-Mills color current density j μa ( x) of the quark satisfies the equation D μ [ A] j μa ( x) = 0 which is not a continuity equation (∂ μ j μa ( x) = 0) which implies that a color charge q a ( t) of the quark is not constant but it is time dependent where a = 1 ,2 , . . .8 are color indices. In this paper we derive general form of color potential produced by color charges of the quark. We find that the general form of the color potential produced by the color charges of the quark at rest is given by {\\varPhi^a}(x)=A_0^a( {t,x} )={{q^b}( {t-{r/c} )}}{r}{{[ {{exp [ {gint {drfrac{{Q( {t-frac{r/c} )-1}}{r}} } ]}}{{gint {dr{Q( {t-frac{r/c} )}}{r}} }}} ]}_{ab }} where dr integration is an indefinite integration, {Q_{ab }}( {{tau_0}} )={f^{abd }}{q^d}( {{tau_0}} ),r=| {overrightarrow{x}-overrightarrow{X}( {{tau_0}} )} |,{tau_0}=t-r/c is the retarded time, c is the speed of light, overrightarrow{X}( {{tau_0}} ) is the position of the quark at the retarded time and the repeated color indices b, d(= 1 , 2 , . . . 8) are summed. For constant color charge q a we reproduce the Coulomb-like potential {\\varPhi^a}(x)={{q^a}}/r which is consistent with the Maxwell theory where constant electric charge e produces the Coulomb potential \\varPhi (x)=e/r.

  13. Periodic potentials in hybrid van der Waals heterostructures formed by supramolecular lattices on graphene

    PubMed Central

    Gobbi, Marco; Bonacchi, Sara; Lian, Jian X.; Liu, Yi; Wang, Xiao-Ye; Stoeckel, Marc-Antoine; Squillaci, Marco A.; D'Avino, Gabriele; Narita, Akimitsu; Müllen, Klaus; Feng, Xinliang; Olivier, Yoann; Beljonne, David; Samorì, Paolo; Orgiu, Emanuele

    2017-01-01

    The rise of 2D materials made it possible to form heterostructures held together by weak interplanar van der Waals interactions. Within such van der Waals heterostructures, the occurrence of 2D periodic potentials significantly modifies the electronic structure of single sheets within the stack, therefore modulating the material properties. However, these periodic potentials are determined by the mechanical alignment of adjacent 2D materials, which is cumbersome and time-consuming. Here we show that programmable 1D periodic potentials extending over areas exceeding 104 nm2 and stable at ambient conditions arise when graphene is covered by a self-assembled supramolecular lattice. The amplitude and sign of the potential can be modified without altering its periodicity by employing photoreactive molecules or their reaction products. In this regard, the supramolecular lattice/graphene bilayer represents the hybrid analogue of fully inorganic van der Waals heterostructures, highlighting the rich prospects that molecular design offers to create ad hoc materials. PMID:28322229

  14. Epinephrine converts long-term potentiation from transient to durable form in awake rats.

    PubMed

    Korol, D L; Gold, P E

    2008-01-01

    Neuroendocrine responses to an emotional or arousing experience modulate memory for the event. Extensive evidence suggests that epinephrine plays an important role in the regulation of memory formation by emotions and arousal. Some forms of synaptic plasticity are similarly responsive to modulation by stress and arousal. The present experiment examined the effects of epinephrine on induction and maintenance of long-term potentiation (LTP) in awake rats. Rats were prepared with bilaterally implanted electrodes for recording evoked field potentials in dentate granule cells following perforant pathway stimulation. LTP was induced with high-frequency stimulation parameters that resulted in modest early potentiation of the EPSP that decayed within 20 min. Epinephrine enhanced the magnitude of early LTP induction and also extended the durability of LTP from minutes to at least several days. Epinephrine did not alter baseline responses or modulate pre-LTP input-output curves. The enhancement of LTP by epinephrine was dose-dependent, following an inverted-U dose-response curve similar to that seen in memory enhancement experiments, suggesting considerable convergence of epinephrine modulation of memory and LTP. In extending substantially the maintenance of LTP after induction, the present finding offer potential means to study the neurobiology of rapid forgetting seen in aged rodents and other animals and the neurobiology of the impaired forgetting seen in post-traumatic stress disorder.

  15. Effects of water availability on free amino acids, sugars, and acrylamide-forming potential in potato.

    PubMed

    Muttucumaru, Nira; Powers, Stephen J; Elmore, J Stephen; Mottram, Donald S; Halford, Nigel G

    2015-03-11

    Irrigation is used frequently in potato cultivation to maximize yield, but water availability may also affect the composition of the crop, with implications for processing properties and food safety. Five varieties of potatoes, including drought-tolerant and -sensitive types, which had been grown with and without irrigation, were analyzed to show the effect of water supply on concentrations of free asparagine, other free amino acids, and sugars and on the acrylamide-forming potential of the tubers. Two varieties were also analyzed under more severe drought stress in a glasshouse. Water availability had profound effects on tuber free amino acid and sugar concentrations, and it was concluded that potato farmers should irrigate only if necessary to maintain the health and yield of the crop, because irrigation may increase the acrylamide-forming potential of potatoes. Even mild drought stress caused significant changes in composition, but these differed from those caused by more extreme drought stress. Free proline concentration, for example, increased in the field-grown potatoes of one variety from 7.02 mmol/kg with irrigation to 104.58 mmol/kg without irrigation, whereas free asparagine concentration was not affected significantly in the field but almost doubled from 132.03 to 242.26 mmol/kg in response to more severe drought stress in the glasshouse. Furthermore, the different genotypes were affected in dissimilar fashion by the same treatment, indicating that there is no single, unifying potato tuber drought stress response.

  16. Hydrogel-forming Microneedle Arrays Exhibit Antimicrobial Properties: Potential for Enhanced Patient Safety

    PubMed Central

    Donnelly, Ryan F.; Singh, Thakur Raghu Raj; Alkilani, Ahlam Zaid; McCrudden, Maelíosa T.C.; O’Mahony, Conor; Armstrong, Keith; McLoone, Nabla; Kole, Prashant; Woolfson, A. David

    2014-01-01

    We describe, for the first time, the microbial characterisation of hydrogel-forming polymeric microneedle arrays and the potential for passage of microorganisms into skin following microneedle penetration. Uniquely, we also present insights into the storage stability of these hydroscopic formulations, from physical and microbiological viewpoints, and examine clinical performance and safety in human volunteers. Experiments employing excised porcine skin and radiolabelled microorganisms showed that microorganisms can penetrate skin beyond the stratum corneum following microneedle puncture. Indeed, the numbers of microorganisms crossing the stratum corneum following microneedle puncture was greater than 105 cfu in each case. However, no microorganisms crossed the epidermal skin. When using a 21G hypodermic needle, more than 104 microorganisms penetrated into the viable tissue and 106 cfu of C. albicans and S. epidermidis completely crossed the epidermal skin in 24 h. The hydrogel-forming materials contained no microorganisms following de-moulding and exhibited no microbial growth during storage, while also maintaining their mechanical strength, apart from when stored at relative humidities of 86%. No microbial penetration through the swelling microneedles was detectable, while human volunteer studies confirmed that skin or systemic infection is highly unlikely when polymeric microneedles are used for transdermal drug delivery. Since no pharmacopoeial standards currently exist for microneedle-based products, the exact requirements for a proprietary product based on hydrogel-forming microneedles are at present unclear. However, we are currently working towards a comprehensive specification set for this microneedle system that may inform future developments in this regard. PMID:23644043

  17. Hydrogel-forming microneedle arrays exhibit antimicrobial properties: potential for enhanced patient safety.

    PubMed

    Donnelly, Ryan F; Singh, Thakur Raghu Raj; Alkilani, Ahlam Zaid; McCrudden, Maelíosa T C; O'Neill, Shannon; O'Mahony, Conor; Armstrong, Keith; McLoone, Nabla; Kole, Prashant; Woolfson, A David

    2013-07-15

    We describe, for the first time, the microbial characterisation of hydrogel-forming polymeric microneedle arrays and the potential for passage of microorganisms into skin following microneedle penetration. Uniquely, we also present insights into the storage stability of these hydroscopic formulations, from physical and microbiological viewpoints, and examine clinical performance and safety in human volunteers. Experiments employing excised porcine skin and radiolabelled microorganisms showed that microorganisms can penetrate skin beyond the stratum corneum following microneedle puncture. Indeed, the numbers of microorganisms crossing the stratum corneum following microneedle puncture were greater than 10⁵ cfu in each case. However, no microorganisms crossed the epidermal skin. When using a 21G hypodermic needle, more than 10⁴ microorganisms penetrated into the viable tissue and 10⁶ cfu of Candida albicans and Staphylococcus epidermidis completely crossed the epidermal skin in 24 h. The hydrogel-forming materials contained no microorganisms following de-moulding and exhibited no microbial growth during storage, while also maintaining their mechanical strength, apart from when stored at relative humidities of 86%. No microbial penetration through the swelling microneedles was detectable, while human volunteer studies confirmed that skin or systemic infection is highly unlikely when polymeric microneedles are used for transdermal drug delivery. Since no pharmacopoeial standards currently exist for microneedle-based products, the exact requirements for a proprietary product based on hydrogel-forming microneedles are at present unclear. However, we are currently working towards a comprehensive specification set for this microneedle system that may inform future developments in this regard.

  18. A comparison of the tube forming potentials of early and late endothelial progenitor cells.

    PubMed

    Mukai, Nana; Akahori, Taichi; Komaki, Motohiro; Li, Qin; Kanayasu-Toyoda, Toshie; Ishii-Watabe, Akiko; Kobayashi, Akiko; Yamaguchi, Teruhide; Abe, Mayumi; Amagasa, Teruo; Morita, Ikuo

    2008-02-01

    The identification of circulating endothelial progenitor cells (EPCs) has revolutionized approaches to cell-based therapy for injured and ischemic tissues. However, the mechanisms by which EPCs promote the formation of new vessels remain unclear. In this study, we obtained early EPCs from human peripheral blood and late EPCs from umbilical cord blood. Human umbilical vascular endothelial cells (HUVECs) were also used. Cells were evaluated for their tube-forming potential using our novel in vitro assay system. Cells were seeded linearly along a 60 mum wide path generated by photolithographic methods. After cells had established a linear pattern on the substrate, they were transferred onto Matrigel. Late EPCs formed tubular structures similar to those of HUVECs, whereas early EPCs randomly migrated and failed to form tubular structures. Moreover, late EPCs participate in tubule formation with HUVECs. Interestingly, late EPCs in Matrigel migrated toward pre-existing tubular structures constructed by HUVECs, after which they were incorporated into the tubules. In contrast, early EPCs promote sprouting of HUVECs from tubular structures. The phenomena were also observed in the in vivo model. These observations suggest that early EPCs cause the disorganization of pre-existing vessels, whereas late EPCs constitute and orchestrate vascular tube formation.

  19. Direct Measurement of Surface Dissolution Rates in Potential Nuclear Waste Forms: The Example of Pyrochlore.

    PubMed

    Fischer, Cornelius; Finkeldei, Sarah; Brandt, Felix; Bosbach, Dirk; Luttge, Andreas

    2015-08-19

    The long-term stability of ceramic materials that are considered as potential nuclear waste forms is governed by heterogeneous surface reactivity. Thus, instead of a mean rate, the identification of one or more dominant contributors to the overall dissolution rate is the key to predict the stability of waste forms quantitatively. Direct surface measurements by vertical scanning interferometry (VSI) and their analysis via material flux maps and resulting dissolution rate spectra provide data about dominant rate contributors and their variability over time. Using pyrochlore (Nd2Zr2O7) pellet dissolution under acidic conditions as an example, we demonstrate the identification and quantification of dissolution rate contributors, based on VSI data and rate spectrum analysis. Heterogeneous surface alteration of pyrochlore varies by a factor of about 5 and additional material loss by chemo-mechanical grain pull-out within the uppermost grain layer. We identified four different rate contributors that are responsible for the observed dissolution rate range of single grains. Our new concept offers the opportunity to increase our mechanistic understanding and to predict quantitatively the alteration of ceramic waste forms.

  20. The impact of changing surface ocean conditions on the dissolution of aerosol iron

    NASA Astrophysics Data System (ADS)

    Fishwick, Matthew P.; Sedwick, Peter N.; Lohan, Maeve C.; Worsfold, Paul J.; Buck, Kristen N.; Church, Thomas M.; Ussher, Simon J.

    2014-11-01

    The proportion of aerosol iron (Fe) that dissolves in seawater varies greatly and is dependent on aerosol composition and the physicochemical conditions of seawater, which may change depending on location or be altered by global environmental change. Aerosol and surface seawater samples were collected in the Sargasso Sea and used to investigate the impact of these changing conditions on aerosol Fe dissolution in seawater. Our data show that seawater temperature, pH, and oxygen concentration, within the range of current and projected future values, had no significant effect on the dissolution of aerosol Fe. However, the source and composition of aerosols had the most significant effect on the aerosol Fe solubility, with the most anthropogenically influenced samples having the highest fractional solubility (up to 3.2%). The impact of ocean warming and acidification on aerosol Fe dissolution is therefore unlikely to be as important as changes in land usage and fossil fuel combustion. Our experimental results also reveal important changes in the size distribution of soluble aerosol Fe in solution, depending on the chemical conditions of seawater. Under typical conditions, the majority (77-100%) of Fe released from aerosols into ambient seawater existed in the colloidal (0.02-0.4 µm) size fraction. However, in the presence of a sufficient concentration of strong Fe-binding organic ligands (10 nM) most of the aerosol-derived colloidal Fe was converted to soluble Fe (<0.02 µm). This finding highlights the potential importance of organic ligands in retaining aerosol Fe in a biologically available form in the surface ocean.

  1. Recognition memory for object form and object location: an event-related potential study.

    PubMed

    Mecklinger, A; Meinshausen, R M

    1998-09-01

    In this study, the processes associated with retrieving object forms and object locations from working memory were examined with the use of simultaneously recorded event-related potential (ERP) activity. Subjects memorized object forms and their spatial locations and made either object-based or location-based recognition judgments. In Experiment 1, recognition performance was higher for object locations than for object forms. Old responses evoked more positive-going ERP activity between 0.3 and 1.8 sec poststimulus than did new responses. The topographic distribution of these old/new effects in the P300 time interval was task specific, with object-based recognition judgments being associated with anteriorly focused effects and location-based judgments with posteriorly focused effects. Late old/new effects were dominant at right frontal recordings. Using an interference paradigm, it was shown in Experiment 2 that visual representations were used to rehearse both object forms and object locations in working memory. The results of Experiment 3 indicated that the observed differential topographic distributions of the old/new effects in the P300 time interval are unlikely to reflect differences between easy and difficult recognition judgments. More specific effects were obtained for a subgroup of subjects for which the processing characteristics during location-based judgments presumably were similar to those in Experiment 1. These data, together with those from Experiment 1, indicate that different brain areas are engaged in retrieving object forms and object locations from working memory. Further analyses support the view that retrieval of object forms relies on conceptual semantic representation, whereas retrieving object locations is based on structural representations of spatial information. The effects in the later time intervals may play a functional role in post-retrieval processing, such as recollecting information from the study episode or other processes

  2. Apparatus having reduced background for measuring radiation activity in aerosol particles

    DOEpatents

    Rodgers, John C.; McFarland, Andrew R.; Oritz, Carlos A.; Marlow, William H.

    1992-01-01

    Apparatus having reduced background for measuring radiation activity in aerosol particles. A continuous air monitoring sampler is described for use in detecting the presence of alpha-emitting aerosol particles. An inlet fractionating screen has been demonstrated to remove about 95% of freshly formed radon progeny from the aerosol sample, and approximately 33% of partially aged progeny. Addition of an electrical condenser and a modified dichotomous virtual impactor are expected to produce considerable improvement in these numbers, the goal being to enrich the transuranic (TRU) fraction of the aerosols. This offers the possibility of improving the signal-to-noise ratio for the detected alpha-particle energy spectrum in the region of interest for detecting TRU materials associated with aerosols, thereby enhancing the performance of background-compensation algorithms for improving the quality of alarm signals intended to warn personnel of potentially harmful quantities of TRU materials in the ambient air.

  3. Universal scaling of potential energy functions describing intermolecular interactions. I. Foundations and scalable forms of new generalized Mie, Lennard-Jones, Morse, and Buckingham exponential-6 potentials.

    PubMed

    Xantheas, Sotiris S; Werhahn, Jasper C

    2014-08-14

    Based on the formulation of the analytical expression of the potential V(r) describing intermolecular interactions in terms of the dimensionless variables r* = r/r(m) and ɛ* = V/ɛ, where r(m) is the separation at the minimum and ɛ the well depth, we propose more generalized scalable forms for the commonly used Mie, Lennard-Jones, Morse, and Buckingham exponential-6 potential energy functions. These new generalized forms have an additional parameter from the original forms and revert to the original ones for some choice of that parameter. In this respect, the original forms of those potentials can be considered as special cases of the more general forms that are introduced. We also propose a scalable, non-revertible to the original one, 4-parameter extended Morse potential.

  4. Safe handling of potential peroxide forming compounds and their corresponding peroxide yielded derivatives.

    SciTech Connect

    Sears, Jeremiah Matthew; Boyle, Timothy J.; Dean, Christopher J.

    2013-06-01

    This report addresses recent developments concerning the identification and handling of potential peroxide forming (PPF) and peroxide yielded derivative (PYD) chemicals. PPF chemicals are described in terms of labeling, shelf lives, and safe handling requirements as required at SNL. The general peroxide chemistry concerning formation, prevention, and identification is cursorily presented to give some perspective to the generation of peroxides. The procedure for determining peroxide concentrations and the proper disposal methods established by the Hazardous Waste Handling Facility are also provided. Techniques such as neutralization and dilution are provided for the safe handling of any PYD chemicals to allow for safe handling. The appendices are a collection of all available SNL documentation pertaining to PPF/PYD chemicals to serve as a single reference.

  5. Fabrication and Properties of Technetium-Bearing Pyrochlores and Perovskites as Potential Waste Forms - 13222

    SciTech Connect

    Hartmann, Thomas; Alaniz, Ariana J.; Antonio, Daniel J.

    2013-07-01

    Technetium-99 (t{sub 1/2}= 2.13x10{sup 5} years) is important from a nuclear waste perspective and is one of the most abundant, long-lived radioisotopes in used nuclear fuel (UNF). As such, it is targeted in UNF separation strategies such as UREX+, for isolation and encapsulation in solid waste forms for storage in a nuclear repository. We report here results regarding the incorporation of Tc-99 into ternary oxides of different structure types: pyrochlore (Nd{sub 2}Tc{sub 2}O{sub 7}), perovskite (SrTcO{sub 3}), and layered perovskite (Sr{sub 2}TcO{sub 4}). The goal was to determine synthesis conditions of these potential waste forms to immobilize Tc-99 as tetravalent technetium and to harvest crystallographic, thermophysical and hydrodynamic data. The objective of this research is to provide fundamental crystallographic and thermophysical data on advanced ceramic Tc-99 waste forms such as pyrochlore, perovskite, and layered perovskite in support of our current efforts on the corrosion of technetium-bearing waste forms. The ceramic Tc-99-bearing waste forms exhibit good crystallinity. The lattice parameters and crystal structures of the technetium host phases could be refined with high accuracies of ±3, ±4, and ±7 fm (10{sup -15} m), for Nd{sub 2}Tc{sub 2}O{sub 7}, SrTcO{sub 3}, and Sr{sub 2}TcO{sub 4}, respectively. The associated refinement residuals (R{sub Wp}) for the patterns are 4.1 %, 4.7 % and 6.7 %, and the refinement residuals for the individual phases (R{sub Bragg}) are 2.0 %, 2.4 % and 3.9 %, respectively. Thermophysical properties of the oxides SrTcO{sub 3}, Sr{sub 2}TcO{sub 4}, and Nd{sub 2}Tc{sub 2}O{sub 7} were analyzed using AC magnetic susceptibility measurements to further harvest information on the critical temperature (T{sub c}) for superconductivity. In our experiments the strontium technetates, SrTcO{sub 3} and Sr{sub 2}TcO{sub 4}, show superconductivity at rather high critical temperatures of T{sub c} = 7.8 K and 7 K, respectively. On the

  6. Potentially pathogenic Escherichia coli can form a biofilm under conditions relevant to the food production chain.

    PubMed

    Nesse, Live L; Sekse, Camilla; Berg, Kristin; Johannesen, Karianne C S; Solheim, Heidi; Vestby, Lene K; Urdahl, Anne Margrete

    2014-04-01

    The biofilm-producing abilities of potentially human-pathogenic serotypes of Escherichia coli from the ovine reservoir were studied at different temperatures and on different surfaces. A possible influence of the hydrophobicity of the bacterial cells, as well as the presence of two virulence factors, the Shiga toxin-encoding (Stx) bacteriophage and the eae gene, was also studied. A total of 99 E. coli isolates of serotypes O26:H11, O103:H2, and O103:H25 isolated from sheep feces were included. The results show that isolates of all three E. coli serotypes investigated can produce biofilm on stainless steel, glass, and polystyrene at 12, 20, and 37°C. There was a good general correlation between the results obtained on the different surfaces. E. coli O103:H2 isolates produced much more biofilm than those of the other two serotypes at all three temperatures. In addition, isolates of serotype O26:H11 produced more biofilm than those of O103:H25 at 37°C. The hydrophobicity of the isolates varied between serotypes and was also influenced by temperature. The results strongly indicated that hydrophobicity influenced the attachment of the bacteria rather than their ability to form biofilm once attached. Isolates with the eae gene produced less biofilm at 37°C than isolates without this gene. The presence of a Stx bacteriophage did not influence biofilm production. In conclusion, our results show that potentially human-pathogenic E. coli from the ovine reservoir can form biofilm on various surfaces and at several temperatures relevant for food production and handling.

  7. Genomic distribution and functional analyses of potential G-quadruplex-forming sequences in Saccharomyces cerevisiae

    PubMed Central

    Hershman, Steve G.; Chen, Qijun; Lee, Julia Y.; Kozak, Marina L.; Yue, Peng; Wang, Li-San; Johnson, F. Brad

    2008-01-01

    Although well studied in vitro, the in vivo functions of G-quadruplexes (G4-DNA and G4-RNA) are only beginning to be defined. Recent studies have demonstrated enrichment for sequences with intramolecular G-quadruplex forming potential (QFP) in transcriptional promoters of humans, chickens and bacteria. Here we survey the yeast genome for QFP sequences and similarly find strong enrichment for these sequences in upstream promoter regions, as well as weaker but significant enrichment in open reading frames (ORFs). Further, four findings are consistent with roles for QFP sequences in transcriptional regulation. First, QFP is correlated with upstream promoter regions with low histone occupancy. Second, treatment of cells with N-methyl mesoporphyrin IX (NMM), which binds G-quadruplexes selectively in vitro, causes significant upregulation of loci with QFP-possessing promoters or ORFs. NMM also causes downregulation of loci connected with the function of the ribosomal DNA (rDNA), which itself has high QFP. Third, ORFs with QFP are selectively downregulated in sgs1 mutants that lack the G4-DNA-unwinding helicase Sgs1p. Fourth, a screen for yeast mutants that enhance or suppress growth inhibition by NMM revealed enrichment for chromatin and transcriptional regulators, as well as telomere maintenance factors. These findings raise the possibility that QFP sequences form bona fide G-quadruplexes in vivo and thus regulate transcription. PMID:17999996

  8. Hydrogel-forming microneedle arrays: Potential for use in minimally-invasive lithium monitoring.

    PubMed

    Eltayib, Eyman; Brady, Aaron J; Caffarel-Salvador, Ester; Gonzalez-Vazquez, Patricia; Zaid Alkilani, Ahlam; McCarthy, Helen O; McElnay, James C; Donnelly, Ryan F

    2016-05-01

    We describe, for the first time, hydrogel-forming microneedle (s) (MN) arrays for minimally-invasive extraction and quantification of lithium in vitro and in vivo. MN arrays, prepared from aqueous blends of hydrolysed poly(methyl-vinylether-co-maleic anhydride) and crosslinked by poly(ethyleneglycol), imbibed interstitial fluid (ISF) upon skin insertion. Such MN were always removed intact. In vitro, mean detected lithium concentrations showed no significant difference following 30min MN application to excised neonatal porcine skin for lithium citrate concentrations of 0.9 and 2mmol/l. However, after 1h application, the mean lithium concentrations extracted were significantly different, being appropriately concentration-dependent. In vivo, rats were orally dosed with lithium citrate equivalent to 15mg/kg and 30mg/kg lithium carbonate, respectively. MN arrays were applied 1h after dosing and removed 1h later. The two groups, having received different doses, showed no significant difference between lithium concentrations in serum or MN. However, the higher dosed rats demonstrated a lithium concentration extracted from MN arrays equivalent to a mean increase of 22.5% compared to rats which received the lower dose. Hydrogel-forming MN clearly have potential as a minimally-invasive tool for lithium monitoring in outpatient settings. We will now focus on correlation between serum and MN lithium concentrations.

  9. Subcellular distribution and chemical forms of cadmium in Impatiens walleriana in relation to its phytoextraction potential.

    PubMed

    Lai, Hung-Yu

    2015-11-01

    Impatiens (Impatiens walleriana) has been shown to be a potential cadmium (Cd) hyperaccumulator, but its mechanisms in accumulation and detoxification have not been reported. Rooted cuttings of Impatiens were planted in artificially Cd-contaminated soils for 50 days with total target concentrations of 0, 10, 20, 40, 80, and 120 mg/kg. The subcellular distribution and chemical forms of Cd in the different organs were analyzed after the pot experiment. Compared with the control group, various Cd treatments affected the growth exhibitions of Impatiens, but most of them were not statistically significant. The Cd accumulation of different organs increased with an increase in the soil Cd concentrations for most of the treatments, and it was in the decreasing order of root>stem>leaf. In the roots of Impatiens, Cd was mainly compartmentalized in the soluble fraction (Fs), which has a high migration capacity and will further translocate to the shoot. The Cd was mainly compartmentalized in the cell wall fraction (Fcw) in the shoots as a mechanism of tolerance. Most of the Cd in the various organs of Impatiens was mainly in the forms of pectate and protein-integrated (FNaCl), whereas a minor portion was a water soluble fraction (FW). The experimental results show that the Cd in the Fs, FW, and FNaCl in the roots of Impatiens had a high mobility and will further translocate to the shoot. They could be used to estimate the Cd accumulated in the shoots of Impatiens.

  10. Mechanistic understanding of aerosol emissions from a brazing operation.

    PubMed

    Zimmer, A T; Biswas, P

    2000-01-01

    Welding operations produce gaseous and aerosol by-products that can have adverse health effects. A laboratory furnace study was conducted to aid understanding of the chemical and aerosol behavior of a widely used, self-fluxing brazing alloy (89% Cu, 6% Ag, 5% P) that is also used with a supplemental fluxing compound to prevent oxidation at the molten metal surface. The results indicate that the aerosols generated by the alloy are transient (produced over a short duration of time) and are associated with mass transfer of phosphorus species from the molten metal surface to the surrounding gas. In contrast, when the alloy was used in conjunction with the supplemental fluxing compound, a relatively nontransient, submicron-size aerosol was generated that was several orders of magnitude higher in concentration. Thermodynamic equilibrium analysis suggests that fluoride (a major constituent in the fluxing compound) played a significant role in reacting with the brazing alloy metals to form gas phase metal fluoride compounds that had high vapor pressures when compared with their elemental or oxide forms. As these metal-fluoride vapors cooled, submicron-size particles were formed mainly through nucleation and condensation growth processes. In addition, the equilibrium results revealed the potential formation of severe pulmonary irritants (HF and BF3) from heating the supplemental fluxing compound. These results demonstrated the importance of fluxing compounds in the formation of brazing fumes, and suggest that fluxing compounds could be selected that serve their metallurgical intention and suppress the formation of aerosols.

  11. Natural Organic Matter Exposed to Sulfate Radicals Increases Its Potential to Form Halogenated Disinfection Byproducts.

    PubMed

    Lu, Junhe; Dong, Wei; Ji, Yuefei; Kong, Deyang; Huang, Qingguo

    2016-05-17

    Sulfate radical-based advanced oxidation processes (SR-AOPs) are considered as viable technologies to degrade a variety of recalcitrant organic pollutants. This study demonstrates that o-phthalic acid (PA) could lead to the formation of brominated disinfection byproducts (DBPs) in SR-AOPs in the presence of bromide. However, PA does not generate DBPs in conventional halogenation processes. We found that this was attributed to the formation of phenolic intermediates susceptible to halogenation, such as salicylic acid through the oxidation of PA by SO4(•-). In addition, reactive bromine species could be generated from Br(-) oxidation by SO4(•-). Similar in situ generation of phenolic functionalities likely occurred by converting carboxylic substituents on aromatics to hydroxyl when natural organic matter (NOM) was exposed to trace level SO4(•-). It was found that such structural reconfiguration led to a great increase in the reactivity of NOM toward free halogen and, thus, its DBP formation potential. After a surface water sample was treated with 0.1 μM persulfate for 48 h, its potential to form chloroform, trichloroacetic acid, and dichloroacetic acid increased from 197.8, 54.3, and 27.6 to 236.2, 86.6, and 57.6 μg/L, respectively. This is the first report on possible NOM reconfiguration upon exposure to low-level SO4(•-) that has an implication in DBP formation. The findings highlight potential risks associated with SO4(•-)-based oxidation processes and help to avoid such risks in design and operation.

  12. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    NASA Astrophysics Data System (ADS)

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; Rubach, F.; Kleist, E.; Wildt, J.; Mentel, Th. F.; Carrasquillo, A. J.; Daumit, K. E.; Hunter, J. F.; Kroll, J. H.; Worsnop, D. R.; Thornton, J. A.

    2015-07-01

    We measured a large suite of gas- and particle-phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas and particle phases, the latter being detected by temperature-programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO-HR-ToF-CIMS are highly correlated with, and explain at least 25-50 % of, the organic aerosol mass measured by an Aerodyne aerosol mass spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from high molecular weight organics and/or oligomers (i.e., multi-phase accretion reaction products). Approximately 50 % of the HR-ToF-CIMS particle-phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption-temperature-based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas-particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the conversion of

  13. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    NASA Astrophysics Data System (ADS)

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; Rubach, F.; Kleist, E.; Wildt, J.; Mentel, Th. F.; Carrasquillo, A.; Daumit, K.; Hunter, J.; Kroll, J. H.; Worsnop, D.; Thornton, J. A.

    2015-02-01

    We measured a large suite of gas and particle phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas and particle phases, the latter being detected upon temperature programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO HR-ToF-CIMS are highly correlated with, and explain at least 25-50% of, the organic aerosol mass measured by an Aerodyne Aerosol Mass Spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from large molecular weight organics and/or oligomers (i.e. multi-phase accretion reaction products). Approximately 50% of the HR-ToF-CIMS particle phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption temperature based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas-particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the conversion of

  14. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    DOE PAGES

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; ...

    2015-02-18

    We measured a large suite of gas and particle phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gasmore » and particle phases, the latter being detected upon temperature programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO HR-ToF-CIMS are highly correlated with, and explain at least 25–50% of, the organic aerosol mass measured by an Aerodyne Aerosol Mass Spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from large molecular weight organics and/or oligomers (i.e. multi-phase accretion reaction products). Approximately 50% of the HR-ToF-CIMS particle phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption temperature based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas–particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the

  15. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    DOE PAGES

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; ...

    2015-07-16

    We measured a large suite of gas- and particle-phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas andmore » particle phases, the latter being detected by temperature-programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO–HR-ToF-CIMS are highly correlated with, and explain at least 25–50 % of, the organic aerosol mass measured by an Aerodyne aerosol mass spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from high molecular weight organics and/or oligomers (i.e., multi-phase accretion reaction products). Approximately 50 % of the HR-ToF-CIMS particle-phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption-temperature-based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas-particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the

  16. ENCAPSULATED AEROSOLS

    DTIC Science & Technology

    acetate, polymerized rapidly and produced some polymer film encapsulation of the aerosol droplets. A two-stage microcapsule generator was designed...encapsulating material, the generator also produced microcapsules of dibutyl phosphite in polyethylene, nitrocellulose, and natural rubber.

  17. AN INITIAL ASSESSMENT OF POTENTIAL PRODUCTION TECHNOLOGIES FOR EPSILON-METAL WASTE FORMS

    SciTech Connect

    Rohatgi, Aashish; Strachan, Denis M.

    2011-03-01

    This report examines and ranks a total of seven materials processing techniques that may be potentially utilized to consolidate the undissolved solids from nuclear fuel reprocessing into a low-surface area form. Commercial vendors of processing equipment were contacted and literature researched to gather information for this report. Typical equipment and their operation, corresponding to each of the seven techniques, are described in the report based upon the discussions and information provided by the vendors. Although the report does not purport to describe all the capabilities and issues of various consolidation techniques, it is anticipated that this report will serve as a guide by highlighting the key advantages and disadvantages of these techniques. The processing techniques described in this report were broadly classified into those that employed melting and solidification, and those in which the consolidation takes place in the solid-state. Four additional techniques were examined that were deemed impractical, but were included for completeness. The techniques were ranked based on criteria such as flexibility in accepting wide-variety of feed-stock (chemistry, form, and quantity), ease of long-term maintenance, hot cell space requirements, generation of additional waste streams, cost, and any special considerations. Based on the assumption of ~2.5 L of waste to be consolidated per day, sintering based techniques, namely, microwave sintering, spark plasma sintering and hot isostatic pressing, were ranked as the top-3 choices, respectively. Melting and solidification based techniques were ranked lower on account of generation of volatile phases and difficulties associated with reactivity and containment of the molten metal.

  18. Effects of Fungicide Treatment on Free Amino Acid Concentration and Acrylamide-Forming Potential in Wheat.

    PubMed

    Curtis, Tanya Y; Powers, Stephen J; Halford, Nigel G

    2016-12-28

    Acrylamide forms from free asparagine and reducing sugars during frying, baking, roasting, or high-temperature processing, and cereal products are major contributors to dietary acrylamide intake. Free asparagine concentration is the determining factor for acrylamide-forming potential in cereals, and this study investigated the effect of fungicide application on free asparagine accumulation in wheat grain. Free amino acid concentrations were measured in flour from 47 varieties of wheat grown in a field trial in 2011-2012. The wheat had been supplied with nitrogen and sulfur and treated with growth regulators and fungicides. Acrylamide formation was measured after the flour had been heated at 180 °C for 20 min. Flour was also analyzed from 24 (of the 47) varieties grown in adjacent plots that were treated in identical fashion except that no fungicide was applied, resulting in visible infection by Septoria tritici, yellow rust, and brown rust. Free asparagine concentration in the fungicide-treated wheat ranged from 1.596 to 3.987 mmol kg(-1), with a significant (p < 0.001 to p = 0.006, F test) effect of variety for not only free asparagine but all of the free amino acids apart from cysteine and ornithine. There was also a significant (p < 0.001, F test) effect of variety on acrylamide formation, which ranged from 134 to 992 μg kg(-1). There was a significant (p < 0.001, F test) correlation between free asparagine concentration and acrylamide formation. Both free asparagine concentration and acrylamide formation increased in response to a lack of fungicide treatment, the increases in acrylamide ranging from 2.7 to 370%. Free aspartic acid concentration also increased, whereas free glutamic acid concentration increased in some varieties but decreased in others, and free proline concentration decreased. The study showed disease control by fungicide application to be an important crop management measure for mitigating the problem of acrylamide formation in wheat

  19. Influences from soluble and insoluble aerosols on precipitation and lightning in deep convection

    NASA Astrophysics Data System (ADS)

    Phillips, Vaughan; Formenton, Marco; Lienert, Barry

    2013-04-01

    Observations reported in past studies in the literature have revealed correlations between measures of aerosol loading and lightning occurrence. Recent advances in simulating cloud-microphysical processes have highlighted their control by aerosol conditions. New hypotheses about aerosol-precipitation-lightning interactions have emerged. Most deep convective clouds globally have warm bases with precipitation controlled by coalescence and by loadings of soluble aerosols, which form droplets. However, those over mountainous continental regions often have cooler bases and can generate much hail that reaches the ground. Cold-base convective clouds were observed to produce lightning over the High Plains of the USA during the Severe Thunderstorms Electrification and Precipitation Study (STEPS) in the summer of 2000. Cold-base thunderstorms can be without an active coalescence process, due to the low adiabatic liquid water content limiting droplet sizes. There is then the potential for a greater influence from ice-nucleating insoluble aerosols on ice-precipitation production, charge separation and lightning, relative to soluble aerosols. In the presentation, an aerosol-cloud model (hybrid bin/2-moment bulk microphysics, prognostic aerosol component with 6 aerosol species) with a new electrification component is described. The model treats non-inductive charge separation and has a lightning discharge scheme. A simulation of a STEPS case of a cold-base thunderstorm is validated against aircraft, radar and electrical observations. Sensitivity tests are presented to show the roles of ice multiplication and ice-nucleating aerosols, such as dust and soot from biomass-burning plumes, in controlling ice-precipitation production and lightning frequencies for the cold-base thunderstorm. Their influence is compared with that from soluble aerosol loadings. The roles of cloud-base temperature and wet growth of hail and graupel are discussed.

  20. Evaluation of the Tobacco Heating System 2.2. Part 3: Influence of the tobacco blend on the formation of harmful and potentially harmful constituents of the Tobacco Heating System 2.2 aerosol.

    PubMed

    Schaller, Jean-Pierre; Pijnenburg, Johannes P M; Ajithkumar, Anu; Tricker, Anthony R

    2016-11-30

    The Tobacco Heating System (THS2.2), which uses "heat-not-burn" technology, generates an aerosol from tobacco heated to a lower temperature than occurs when smoking a combustible cigarette. The concentrations of harmful and potentially harmful constituents (HPHCs) are significantly lower in THS2.2 mainstream aerosol than in smoke produced by combustible cigarettes. Different tobacco types and 43 tobacco blends were investigated to determine how the blend impacted the overall reductions of HPHCs in the THS2.2 mainstream aerosol. The blend composition had minimal effects on the yields of most HPHCs in the aerosol. Blends containing high proportions of nitrogen-rich tobacco, e.g., air-cured, and some Oriental tobaccos, produced higher acetamide, acrylamide, ammonia, and nitrogen oxide yields than did other blends. Most HPHCs were found to be released mainly through the distillation of HPHCs present in the tobacco plug or after being produced in simple thermal reactions. HPHC concentrations in the THS2.2 aerosol may therefore be further minimized by limiting the use of flue- and fire-cured tobaccos which may be contaminated by HPHCs during the curing process and carefully selecting nitrogen rich tobaccos with low concentrations of endogenous HPHCs for use in the tobacco plug blend.

  1. Carbon Isotopic Measurements and Aerosol Optical Determinations during CARES: Indications of the Importance of Background Biogenic Aerosols

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.; Begum, M.; Sturchio, N. C.; Guilderson, T. P.

    2011-12-01

    High volume size-fractionated aerosol samples were obtained in Cool, CA during the Carbonaceous Aerosol and Radiative Effects Study (CARES) in June of 2010. This site was chosen to study the regional impacts of carbonaceous aerosols originating from the Sacramento area. Samples were collected for 6 to 24 hour time periods on quartz fiber filters by using slotted impactors to allow for collection of sample size cuts above and below one micron. Both total carbon content and carbon isotopic composition, including 13C/12C and 14C, were determined on the samples. In addition, Ångstrom absorption exponents (AAEs) were determined for the region of 300-900 nm on the sub-micron size cut by using state of the art diffuse reflectance UV-visible spectroscopy with integrating sphere technology. The overall carbonaceous aerosol loadings were found to be quite low and relatively constant during the study, suggesting that most of the aerosols at the site were locally formed background aerosols. The 14C data is consistent with a substantial fraction (~80 %) being from modern carbon sources and 13C/12C results indicate that the carbon source was from C-3 plants. This is consistent with a significant fraction of the aerosols in the area arising from secondary formation from biogenic precursor emissions from trees, most likely mono- and sesquiterpenes. These results are compared to past results obtained in Mexico City and discussed in terms of the potential importance of biogenic emissions to UV absorbing aerosols as these are anticipated to increase with climate change. This work was supported by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-07ER64328 and Grant No. DE-FG02-07-ER64329 as part of the Atmospheric Systems Research program.

  2. Aerosol and monsoon climate interactions over Asia: AEROSOL AND MONSOON CLIMATE INTERACTIONS

    SciTech Connect

    Li, Zhanqing; Lau, W. K. -M.; Ramanathan, V.; Wu, G.; Ding, Y.; Manoj, M. G.; Liu, J.; Qian, Y.; Li, J.; Zhou, T.; Fan, J.; Rosenfeld, D.; Ming, Y.; Wang, Y.; Huang, J.; Wang, B.; Xu, X.; Lee, S. -S.; Cribb, M.; Zhang, F.; Yang, X.; Zhao, C.; Takemura, T.; Wang, K.; Xia, X.; Yin, Y.; Zhang, H.; Guo, J.; Zhai, P. M.; Sugimoto, N.; Babu, S. S.; Brasseur, G. P.

    2016-11-15

    Asian monsoons and aerosols have been studied extensively which are intertwined in influencing the climate of Asia. This paper provides a comprehensive review of ample studies on Asian aerosol, monsoon and their interactions. The region is the primary source of aerosol emissions of varies species, influenced by distinct weather and climatic regimes. On continental scale, aerosols reduce surface insolation and weaken the land-ocean thermal contrast, thus inhibiting the development of monsoons. Locally, aerosol radiative effects alter the thermodynamic stability and convective potential of the lower atmosphere leading to reduced temperatures, increased atmospheric stability, and weakened wind and atmospheric circulation. The atmospheric thermodynamic state may also be altered by the aerosol serving as cloud condensation nuclei or ice nuclei. Many mechanisms have been put forth regarding how aerosols modulate the amplitude, frequency, intensity, and phase of numerous monsoon climate variables. A wide range of theoretical, observational, and modeling findings on the Asian monsoon, aerosols, and their interactions are synthesized. A new paradigm is proposed on investigating aerosol-monsoon interactions, in which natural aerosols such as desert dust, black carbon from biomass burning, and biogenic aerosols from vegetation are considered integral components of an intrinsic aerosol-monsoon climate system, subject to external forcings of global warming, anthropogenic aerosols, and land use and change. Future research on aerosol-monsoon interactions calls for an integrated approach and international collaborations based on long-term sustained observations, process measurements, and improved models, as well as using observations to constrain model simulations and projections.

  3. Aerosol Variability Observed with Rpas

    NASA Astrophysics Data System (ADS)

    Altstädter, B.; Lampert, A.; Scholtz, A.; Bange, J.; Platis, A.; Hermann, M.; Wehner, B.

    2013-08-01

    To observe the origin, vertical and horizontal distribution and variability of aerosol particles, and especially ultrafine particles recently formed, we plan to employ the remotely piloted aircraft system (RPAS) Carolo-P360 "ALADINA" of TU Braunschweig. The goal of the presented project is to investigate the vertical and horizontal distribution, transport and small-scale variability of aerosol particles in the atmospheric boundary layer using RPAS. Two additional RPAS of type MASC of Tübingen University equipped with turbulence instrumentation add the opportunity to study the interaction of the aerosol concentration with turbulent transport and exchange processes of the surface and the atmosphere. The combination of different flight patterns of the three RPAS allows new insights in atmospheric boundary layer processes. Currently, the different aerosol sensors are miniaturized at the Leibniz Institute for Tropospheric Research, Leipzig and together with the TU Braunschweig adapted to fit into the RPAS. Moreover, an additional meteorological payload for measuring temperature, humidity and turbulence properties is constructed by Tübingen University. Two condensation particle counters determine the total aerosol number with a different lower detection threshold in order to investigate the horizontal and vertical aerosol variability and new particle formation (aerosol particles of some nm diameter). Further the aerosol size distribution in the range from about 0.300 to ~5 μm is given by an optical particle counter.

  4. Smoke and Pollution Aerosol Effect on Cloud Cover

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Koren, Ilan

    2006-01-01

    Pollution and smoke aerosols can increase or decrease the cloud cover. This duality in the effects of aerosols forms one of the largest uncertainties in climate research. Using solar measurements from Aerosol Robotic Network sites around the globe, we show an increase in cloud cover with an increase in the aerosol column concentration and an inverse dependence on the aerosol absorption of sunlight. The emerging rule appears to be independent of geographical location or aerosol type, thus increasing our confidence in the understanding of these aerosol effects on the clouds and climate. Preliminary estimates suggest an increase of 5% in cloud cover.

  5. Universal scaling of potential energy functions describing intermolecular interactions. I. Foundations and scalable forms of new generalized Mie, Lennard-Jones, Morse, and Buckingham exponential-6 potentials

    SciTech Connect

    Xantheas, Sotiris S.; Werhahn, Jasper C.

    2014-08-14

    Based on the formulation of the analytical expression of the potential V(r) describing intermolecular interactions in terms of the dimensionless variables r*=r/rm and !*=V/!, where rm is the separation at the minimum and ! the well depth, we propose more generalized scalable forms for the commonly used Lennard-Jones, Mie, Morse and Buckingham exponential-6 potential energy functions (PEFs). These new generalized forms have an additional parameter from and revert to the original ones for some choice of that parameter. In this respect, the original forms can be considered as special cases of the more general forms that are introduced. We also propose a scalable, but nonrevertible to the original one, 4-parameter extended Morse potential.

  6. A regional climate study of aerosol impacts on Indian monsoon and precipitations over the Himalayas

    NASA Astrophysics Data System (ADS)

    Solmon, F.; Von Hardenberg, J.; Nair, V.; Palazzi, E.

    2013-12-01

    In the context of the PAPRIKA program we are studying the potential effects of aerosol particle on Indian climate and Himalayan region. Using the RegCM4 regional climate model we performed some experiments including on-line representation of natural and anthropogenic aerosols for present day and future conditions over the CORDEX-India domain. Dynamical boundary forcing is taken for ERAI-Interim over the period 2000-2010, and chemical boundary-conditions are prescribed as a monthly climatology form an ECEARTH/CAM simulation for present day. Different set of anthropogenic emissions (SO2, carbonaceous aerosols) are considered (IPCC RCP4.5 and REAS) whereas natural aerosol (dust and sea-salt) are calculated on line. In order to account for aerosol radiative feedback on surface energy budget over the oceans, we also implemented a 'q-flux' slab ocean model as an alternative to pure SST forcing. After a step of validation of aerosol simulation against observations, we investigate through a series of experiments the dynamical feedback of direct radiative effect of aerosol over this domain, focusing specifically on Indian Monsoon and precipitation over the Himalayas. We discriminate the effect of anthropogenic vs. natural aerosol while outlining the main mechanism of the regional climate response, as well as the sensitivity to emissions inventory. Our results will be discussed notably against previous GCM based studies. Finally we will possibly discuss future projections based on RCP4.5 EC-EARTH forcing and including aerosol effects, as well as the potential radiative effects of absorbing aerosol deposition on the Himalayan snow covers.

  7. Comparative relief-forming potential of rocky terrestrial planets and icy saturnian satellites

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2009-04-01

    Comparative relief-forming potential of rocky terrestrial planets and icy saturnian satellites. G. Kochemasov IGEM of the Russian Academy of Sciences, Moscow, Russia, kochem.36@mail.ru The wave planetology [1-3 & others] states that "orbits make structures". Its third theorem ("Celestial bodies are granular") is to say that sizes of tectonic granules are inversely proportional to orbital frequencies: higher frequency - smaller granule, and vice versa, lower frequency - larger granule. Thus, Mercury is very fine-grained, Venus fine-grained, Earth medium-grained, Mars coarse-grained. The following row of granule sizes confirms it: Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2 (R-a planet radius). A geometrical model of this presents a circle with inscribed in it standing waves: for Mercury 16 waves, for Venus 6 waves, for Earth 4 waves (a cross!), for Mars 2 waves [4]. This geometrization is rather descriptive as it shows how waves amplitudes increase with the Solar distance and oscillations around a circle (wave heights) can be measured [5]. These heights are as follows: Mercury 2πR/64.08, Venus 2πR/24.34, Earth 2πR/16.44, Mars 2πR/8.8. These heights reduced to the Earth's one (taken as 1) are as follows: Mercury 0.256, Venus 0.675, Earth 1.0, Mars 1.868. Now we are looking at the real relief ranges (spans). They are as follows in km: Mercury ~5 (a bit less than 5 km according to one laser altimetry profile by Messenger spacecraft in 2007), Venus ~14, Earth ~20, Mars ~30. This last figure may be increased by heights of collapsed cones of huge marcian volcanoes having calderas radii 40-50 km and presumed slope angle 5-6 degrees that gives additional 4-5 km for the martian relief range making it ~35 km. Taking the Earth range as 1, one gets the following row of relative heights: Mercury 0.25, Venus 0.7, Earth 1.0, Mars 1.75. Comparing two rows of relative heights (theoretic and real) one sees that they are rather similar: Mercury 0.256 (0.25), Venus 0

  8. Toxigenic potential and heat survival of spore-forming bacteria isolated from bread and ingredients.

    PubMed

    De Bellis, Palmira; Minervini, Fiorenza; Di Biase, Mariaelena; Valerio, Francesca; Lavermicocca, Paola; Sisto, Angelo

    2015-03-16

    Fifty-four spore-forming bacterial strains isolated from bread ingredients and bread, mainly belonging to the genus Bacillus (including Bacillus cereus), together with 11 reference strains were investigated to evaluate their cytotoxic potential and heat survival in order to ascertain if they could represent a risk for consumer health. Therefore, we performed a screening test of cytotoxic activity on HT-29 cells using bacterial culture filtrates after growing bacterial cells in Brain Heart Infusion medium and in the bread-based medium Bread Extract Broth (BEB). Moreover, immunoassays and PCR analyses, specifically targeting already known toxins and related genes of B. cereus, as well as a heat spore inactivation assay were carried out. Despite of strain variability, the results clearly demonstrated a high cytotoxic activity of B. cereus strains, even if for most of them it was significantly lower in BEB medium. Cytotoxic activity was also detected in 30% of strains belonging to species different from B. cereus, although, with a few exceptions (e.g. Bacillus simplex N58.2), it was low or very low. PCR analyses detected the presence of genes involved in the production of NHE, HBL or CytK toxins in B. cereus strains, while genes responsible for cereulide production were not detected. Production of NHE and HBL toxins was also confirmed by specific immunoassays only for B. cereus strains even if PCR analyses revealed the presence of related toxin genes also in some strains of other species. Viable spore count was ascertained after a heat treatment simulating the bread cooking process. Results indicated that B. amyloliquefaciens strains almost completely survived the heat treatment showing less than 2 log-cycle reductions similarly to two strains of B. cereus group III and single strains belonging to Bacillus subtilis, Bacillus mojavensis and Paenibacillus spp. Importantly, spores from strains of the B. cereus group IV exhibited a thermal resistance markedly lower than B

  9. Environmental controls on coastal coarse aerosols: implications for microbial content and deposition in the near-shore environment.

    PubMed

    Dueker, M Elias; Weathers, Kathleen C; O'Mullan, Gregory D; Juhl, Andrew R; Uriarte, Maria

    2011-04-15

    Coarse aerosols (particle diameter (D(p)) > 2 μm) produced in coastal surf zones carry chemical and microbial content to shore, forming a connection between oceanic, atmospheric, and terrestrial systems that is potentially relevant to coastal ecology and human health. In this context, the effects of tidal height, wind speed, and fog on coastal coarse aerosols and microbial content were quantified on the southern coast of Maine, USA. Aerosols at this site displayed clear marine influence and had high concentrations of ecologically relevant nutrients. Coarse aerosol concentrations significantly increased with tidal height (i.e., decreasing distance from waterline), onshore wind speed, and fog presence. As onshore wind speeds rose above 3 m s(-1), the mean half-deposition distance of coarse aerosols increased to an observed maximum of 47.6 ± 10.9 m from the water's edge at wind speeds from 5.5-8 m s(-1). Tidal height and fog presence did not significantly influence total microbial aerosol concentrations but did have a significant effect on culturable microbial aerosol fallout. At low wind speeds, culturable microbial aerosols falling out near-shore decreased by half at a distance of only 1.7 ± 0.4 m from the water's edge, indicating that these microbes may be associated with large coarse aerosols with rapid settling rates.

  10. CCN activity of aliphatic amine secondary aerosol

    NASA Astrophysics Data System (ADS)

    Tang, X.; Price, D.; Praske, E.; Vu, D.; Purvis-Roberts, K.; Silva, P. J.; Cocker, D. R., III; Asa-Awuku, A.

    2014-01-01

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g. hydroxyl radical and nitrate radical). The particle composition can contain both secondary organic aerosol (SOA) and inorganic salts. The fraction of organic to inorganic materials in the particulate phase influences aerosol hygroscopicity and cloud condensation nuclei (CCN) activity. SOA formed from trimethylamine (TMA) and butylamine (BA) reactions with hydroxyl radical (OH) is composed of organic material of low hygroscopicity (single hygroscopicity parameter, κ ≤ 0.25). Secondary aerosol formed from the tertiary aliphatic amine (TMA) with N2O5 (source of nitrate radical, NO3), contains less volatile compounds than the primary aliphatic amine (BA) aerosol. TMA + N2O5 form semi-volatile organics in low RH conditions that have κ ~ 0.20, indicative of slightly soluble organic material. As RH increases, several inorganic amine salts are formed as a result of acid-base reactions. The CCN activity of the humid TMA-N2O5 aerosol obeys Zdanovskii, Stokes, and Robinson (ZSR) ideal mixing rules. Higher CCN activity (κ > 0.3) was also observed for humid BA+N2O5 aerosols compared with dry aerosol (κ ~ 0.2), as a result of the formation of inorganic salts such as NH4NO3 and butylamine nitrate (C4H11N · HNO3). Compared with TMA, BA+N2O5 reactions produce more volatile aerosols. The BA+N2O5 aerosol products under humid experiments were found to be very sensitive to the temperature within the stream-wise continuous flow thermal gradient CCN counter. The CCN counter, when set above a 21 °C temperature difference, evaporates BA+N2O5 aerosol formed at RH ≥ 30%; κ ranges from 0.4 to 0.7 and is dependent on the instrument supersaturation (ss) settings. The aerosol behaves non-ideally, hence simple ZSR rules cannot be applied to the CCN results from the primary aliphatic amine system. Overall, aliphatic amine aerosol systems κ ranges from 0.2 < κ < 0.7. This work indicates that

  11. Laboratory studies of stratospheric aerosol chemistry

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.

    1996-01-01

    In this report we summarize the results of the two sets of projects funded by the NASA grant NAG2-632, namely investigations of various thermodynamic and nucleation properties of the aqueous acid system which makes up stratospheric aerosols, and measurements of reaction probabilities directly on ice aerosols with sizes corresponding to those of polar stratospheric cloud particles. The results of these investigations are of importance for the assessment of the potential stratospheric effects of future fleets of supersonic aircraft. In particular, the results permit to better estimate the effects of increased amounts of water vapor and nitric acid (which forms from nitrogen oxides) on polar stratospheric clouds and on the chemistry induced by these clouds.

  12. Stackable differential mobility analyzer for aerosol measurement

    DOEpatents

    Cheng, Meng-Dawn; Chen, Da-Ren

    2007-05-08

    A multi-stage differential mobility analyzer (MDMA) for aerosol measurements includes a first electrode or grid including at least one inlet or injection slit for receiving an aerosol including charged particles for analysis. A second electrode or grid is spaced apart from the first electrode. The second electrode has at least one sampling outlet disposed at a plurality different distances along its length. A volume between the first and the second electrode or grid between the inlet or injection slit and a distal one of the plurality of sampling outlets forms a classifying region, the first and second electrodes for charging to suitable potentials to create an electric field within the classifying region. At least one inlet or injection slit in the second electrode receives a sheath gas flow into an upstream end of the classifying region, wherein each sampling outlet functions as an independent DMA stage and classifies different size ranges of charged particles based on electric mobility simultaneously.

  13. Pools, channel form, and sediment storage in wood-restored streams: Potential effects on downstream reservoirs

    NASA Astrophysics Data System (ADS)

    Elosegi, Arturo; Díez, José Ramón; Flores, Lorea; Molinero, Jon

    2017-02-01

    Large wood (LW, or pieces of dead wood longer than 1 m and thicker than 10 cm in diameter) is a key element in forested streams, but its abundance has decreased worldwide as a result of snagging and clearing of riparian forests. Therefore, many restoration projects introduce LW into stream channels to enhance geomorphology, biotic communities, and ecosystem functioning. Because LW enhances the retention of organic matter and sediments, its restoration can reduce siltation in receiving reservoirs, although so far little information on this subject is available. We studied the effects of restoring the natural loading of LW in four streams in the Aiako Harria Natural Park (the Basque Country, Spain) in pool abundance, channel form, and storage of organic matter and sediments. In all reaches log jams induced the formation of new geomorphic features and changes in physical habitat, especially an increase in the number and size of pools and in the formation of gravel bars and organic deposits. The storage of organic matter increased 5- to 88-fold and streambed level rose 7 ± 4 to 21 ± 4 cm on average, resulting in the storage of 35.2 ± 19.7 to 711 ± 375 m3 (733-1400 m3 ha- 1 y- 1) of sediment per reach. Extrapolation of these results to the entire drainage basin suggests that basinwide restoration of LW loading would enhance the retention potential of stream channels by 66,817 ± 27,804 m3 (1075 m3 ha- 1 y- 1) of sediment and by 361 t (5.32 T ha- 1 y- 1) of organic matter, which represents 60% of the estimated annual inputs of sediments to the downstream Añarbe Reservoir and almost twice as much as the annual input of organic matter to the entire river network. Therefore, basinwide restoration of LW loading is a potentially important tool to manage catchments that feed reservoirs, where retention of sediments and organic matter can be considered important ecosystem services as they reduce reservoir siltation.

  14. A Study of Fasoracetam's Solid State Forms: A Potential Anti-Alzheimer Pharmaceutical.

    PubMed

    Harmsen, Bram; Robeyns, Koen; Wouters, Johan; Leyssens, Tom

    2017-01-19

    Different solid state forms of the research chemical fasoracetam, which counters the effects of Alzheimer's disease, have been subjected to a thermal and structural analysis. Single crystals were obtained from solution evaporation and from the melt. Single-crystal X-ray analyses of the crystals show the existence of 2 hydrated and 1 non-hydrated crystalline form of fasoracetam. Under ambient conditions, the hydrate form I is found to be the most stable form, showing a melting point of 57C. This low melting point, combined with possible water losses could cause problems when formulating the hydrated form and impact the storage conditions of the compound.

  15. Insect form vision as one potential shaping force of spider web decoration design.

    PubMed

    Cheng, R-C; Yang, E-C; Lin, C-P; Herberstein, M E; Tso, I-M

    2010-03-01

    Properties of prey sensory systems are important factors shaping the design of signals generated by organisms exploiting them. In this study we assessed how prey sensory preference affected the exploiter signal design by investigating the evolutionary relationship and relative attractiveness of linear and cruciate form web decorations built by Argiope spiders. Because insects have an innate preference for bilaterally symmetrical patterns, we hypothesized that cruciate form decorations were evolved from linear form due to their higher visual attractiveness to insects. We first reconstructed a molecular phylogeny of the Asian members of the genus Argiope using mitochondrial markers to infer the evolutionary relationship of two decoration forms. Results of ancestral character state reconstruction showed that the linear form was ancestral and the cruciate form derived. To evaluate the luring effectiveness of two decoration forms, we performed field experiments in which the number and orientation of decoration bands were manipulated. Decoration bands arranged in a cruciate form were significantly more attractive to insects than those arranged in a linear form, no matter whether they were composed of silks or dummies. Moreover, dummy decoration bands arranged in a cruciate form attracted significantly more insects than those arranged in a vertical/horizontal form. Such results suggest that pollinator insects' innate preference for certain bilateral or radial symmetrical patterns might be one of the driving forces shaping the arrangement pattern of spider web decorations.

  16. The potential of computed crystal energy landscapes to aid solid-form development.

    PubMed

    Price, Sarah L; Reutzel-Edens, Susan M

    2016-06-01

    Solid-form screening to identify all solid forms of an active pharmaceutical ingredient (API) has become increasingly important in ensuring the quality by design of pharmaceutical products and their manufacturing processes. However, despite considerable enlargement of the range of techniques that have been shown capable of producing novel solid forms, it is possible that practically important forms might not be found in the short timescales currently allowed for solid-form screening. Here, we report on the state-of-the-art use of computed crystal energy landscapes to complement pharmaceutical solid-form screening. We illustrate how crystal energy landscapes can help establish molecular-level understanding of the crystallization behavior of APIs and enhance the ability of solid-form screening to facilitate pharmaceutical development.

  17. Potential Toxicity of Up-Converting Nanoparticles Encapsulated with a Bilayer Formed by Ligand Attraction

    PubMed Central

    2015-01-01

    The cellular toxicity of nanoparticles that were capped with a bilayered ligand was studied using an up-converting (UC) phosphor material as a representative nanoparticle (NP). The results indicate that although UC NPs are known to be nontoxic, the toxicity of the NPs depends strongly on ligand coordination conditions, in addition to the other commonly known parameters such as size, structure, surface charge etc. Oleate-capped hydrophobic NaYF4:Yb,Er NPs were surface modified to yield three extreme conditions: bare particles that were stripped of the oleate ligands; particles with covalently bound poly(ethylene glycol) (PEG) ligands; and particles with an bilayer of PEG-oleate ligands using the oleate surface group that was remained after synthesis. It was found that the bare particles and the covalent PEG NPs induced little toxicity. However, particles that were rendered biocompatible by forming a bilayer with an amphiphilic ligand (i.e., PEG-oleate) resulted in significant cell toxicity. These findings strongly suggest that the PEG-oleate group dissociated from the bilayered oleate-capped NPs, resulting in significant toxicity by exposing the hydrophobic oleate-capped NPs to the cell. Based on results with bare particles, the NaLnF4:Yb,Er (Ln = Y, Gd) up-converting phosphors are essentially less-toxic. Capping and functionalizing these particles with ligand intercalation may, however, not be a suitable method for rendering the NPs suitable for bioapplication as the ligand can potentially dissociate upon cellular interaction, leading to significant toxicity. PMID:24971524

  18. Form factors and the s-wave component of the two-pion-exchange three-nucleon potential

    SciTech Connect

    Robilotta, M.R.; Isidro Filho, M.P.; Coelho, H.T.; Das, T.K.

    1985-02-01

    We argue that the straightforward introduction of ..pi..N form factors into the s-wave component of the two-pion-exchange three-nucleon potential based on chiral symmetry is not free of problems. These can be avoided by means of a redefinition of the potential which considers its physical content.

  19. Stratospheric Aerosols for Solar Radiation Management

    NASA Astrophysics Data System (ADS)

    Kravitz, Ben

    SRM in the context of this entry involves placing a large amount of aerosols in the stratosphere to reduce the amount of solar radiation reaching the surface, thereby cooling the surface and counteracting some of the warming from anthropogenic greenhouse gases. The way this is accomplished depends on the specific aerosol used, but the basic mechanism involves backscattering and absorbing certain amounts of solar radiation aloft. Since warming from greenhouse gases is due to longwave (thermal) emission, compensating for this warming by reduction of shortwave (solar) energy is inherently imperfect, meaning SRM will have climate effects that are different from the effects of climate change. This will likely manifest in the form of regional inequalities, in that, similarly to climate change, some regions will benefit from SRM, while some will be adversely affected, viewed both in the context of present climate and a climate with high CO2 concentrations. These effects are highly dependent upon the means of SRM, including the type of aerosol to be used, the particle size and other microphysical concerns, and the methods by which the aerosol is placed in the stratosphere. SRM has never been performed, nor has deployment been tested, so the research up to this point has serious gaps. The amount of aerosols required is large enough that SRM would require a major engineering endeavor, although SRM is potentially cheap enough that it could be conducted unilaterally. Methods of governance must be in place before deployment is attempted, should deployment even be desired. Research in public policy, ethics, and economics, as well as many other disciplines, will be essential to the decision-making process. SRM is only a palliative treatment for climate change, and it is best viewed as part of a portfolio of responses, including mitigation, adaptation, and possibly CDR. At most, SRM is insurance against dangerous consequences that are directly due to increased surface air

  20. Spectroscopic studies of non-volatile residue formed by photochemistry of solid C4N2: A model of condensed aerosol formation on Titan

    NASA Astrophysics Data System (ADS)

    Couturier-Tamburelli, Isabelle; Gudipati, Murthy S.; Lignell, Antti; Jacovi, Ronen; Piétri, Nathalie

    2014-05-01

    Following our recent communication (Gudipati, M.S. et al. [2013]. Nat. Commun. 4, 1648. http://dx.doi.org/10.1038/ncomms2649) on the discovery of condensed-phase non-volatile polymeric material with similar spectral features as tholins, we present here a comprehensive spectroscopic study of photochemical formation of polymeric material from condensed dicyanoacetylene (C4N2) ice films. C4N2 is chosen as starting material for the laboratory simulations because of the detection of this and similar molecules (nitriles and cyanoacetylenes) in Titan’s atmosphere. UV-Vis and infrared spectra obtained during long-wavelength (>300 nm) photon irradiation and subsequent warming of the ice films are used to analyze changes in C4N2 ice, evolution of tholins, and derive photopolymerization mechanisms. Our data analysis revealed that many processes occur during the photolysis of condensed Titan’s aerosol analogs, including isomerization and polymerization leading to the formation of long-chain as well as aromatic cyclic polymer molecules. In the light of tremendous new data from the Cassini mission on the seasonal variations in Titan’s atmosphere, our laboratory study and its results provide fresh insight into the formation and evolution of aerosols and haze in Titan’s atmosphere.

  1. Nano- and Microparticles in Welding Aerosol: Electronic and Microscopic Analysis

    NASA Astrophysics Data System (ADS)

    Kirichenko, K. Yu.; Drozd, V. A.; Chaika, V. V.; Gridasov, A. V.; Kholodov, A. S.; Karabtsov, A. A.; Golokhvast, K. S.

    The paper presents the first results of the research of the morphological and material composition of the particles in welding aerosol. It is shown that in terms of morphology the particles are hollow and solid balls, sometimes covered with easily chipped off shell. There are also objects of other forms- ovals, polygons and needles. Fragments of the shell of hollow spheres have the size of up to 10 μm (PM10) and jagged edges, making them and nano-sized particles the most potentially dangerous to human health components of welding aerosol. It is found that the aerosol particles are mainly composed of Fe> Mn> Zn> Ti, but there are minor components of Si, Cl, Zr, Co, Cr, Br, Al, Ca, Mg, K, C, S.

  2. Tropospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    It is widely believed that "On a clear day you can see forever," as proclaimed in the 1965 Broadway musical of the same name. While an admittedly beautiful thought, we all know that this concept is only figurative. Aside from Earth's curvature and Rayleigh scattering by air molecules, aerosols - colloidal suspensions of solid or liquid particles in a gas - limit our vision. Even on the clearest day, there are billions of aerosol particles per cubic meter of air.Atmospheric aerosols are commonly referred to as smoke, dust, haze, and smog, terms that are loosely reflective of their origin and composition. Aerosol particles have arisen naturally for eons from sea spray, volcanic emissions, wind entrainment of mineral dust, wildfires, and gas-to-particle conversion of hydrocarbons from plants and dimethylsulfide from the oceans. However, over the industrial period, the natural background aerosol has been greatly augmented by anthropogenic contributions, i.e., those produced by human activities. One manifestation of this impact is reduced visibility (Figure 1). Thus, perhaps more than in other realms of geochemistry, when considering the composition of the troposphere one must consider the effects of these activities. The atmosphere has become a reservoir for vast quantities of anthropogenic emissions that exert important perturbations on it and on the planetary ecosystem in general. Consequently, much recent research focuses on the effects of human activities on the atmosphere and, through them, on the environment and Earth's climate. For these reasons consideration of the geochemistry of the atmosphere, and of atmospheric aerosols in particular, must include the effects of human activities. (201K)Figure 1. Impairment of visibility by aerosols. Photographs at Yosemite National Park, California, USA. (a) Low aerosol concentration (particulate matter of aerodynamic diameter less than 2.5 μm, PM2.5=0.3 μg m-3; particulate matter of aerodynamic diameter less than 10

  3. High and low potential forms of the QA quinone electron acceptor in Photosystem II of Thermosynechococcus elongatus and spinach.

    PubMed

    Ido, Kunio; Gross, Christine M; Guerrero, Fernando; Sedoud, Arezki; Lai, Thanh-Lan; Ifuku, Kentaro; Rutherford, A William; Krieger-Liszkay, Anja

    2011-01-01

    The redox potential of Q(A) in Photosystem II (PSII) from Thermosynechococcus elongatus was titrated monitoring chlorophyll fluorescence. A high potential form (E(m)=+60 ± 25 mV) was found in the absence of Mn(4)Ca, the active site for water oxidation. The low potential form (E(m)=-60 ± 48 mV), which is difficult to measure in conventional titration experiments, could be "locked in" by cross-linking the active enzyme. This indicates that the presence of Mn(4)Ca is relayed to the quinone site by significant structural changes in the protein. The presence of high and low potential forms agrees with what has been seen in plants, algae from our lab and in T. elongatus (Shibamoto et al., Biochemistry 48 (2009) 10682-10684). In the latter work, the potentials of Q(A) were shifted to lower potentials compared to other measurements. The redox potential of Q(A) in Mn-depleted PSII from spinach was titrated in the presence of redox mediators and the midpoint potential was shifted by 80 mV towards a more negative value compared to titrations without mediators. The lower values of the midpoint potential of the (Q(A)/Q(A)(-)) redox couple in the literature could be due to a perturbation due to a specific mediator.

  4. Secondary Organic Aerosol Formation from 2-Methyl-3-Buten-2-ol (MBO) Photooxidation: Evidence for Acid-Catalyzed Reactive Uptake of Epoxide

    NASA Astrophysics Data System (ADS)

    Surratt, J. D.; Zhang, H.; Worton, D. R.; Lewandowski, M.; Ortega, J.; Zhang, Z.; Lin, Y.; Park, J.; Kristensen, K.; Bhathela, N.; Campuzano-Jost, P.; Day, D. A.; Jimenez, J. L.; Jaoui, M.; Offenberg, J. H.; Kleindienst, T. E.; Gilman, J. B.; De Gouw, J. A.; Park, C.; Schade, G. W.; Frossard, A. A.; Russell, L. M.; Kaser, L.; Jud, W.; Hansel, A.; Karl, T.; Glasius, M.; Gold, A.; Seinfeld, J.; Guenther, A. B.

    2012-12-01

    2-methyl-3-buten-2-ol (MBO) is an important biogenic volatile organic compound (BVOC) emitted by pine trees and a potential precursor of atmospheric secondary organic aerosol (SOA) in forested regions. In the present study, hydroxyl radical (OH)-initiated oxidation of MBO was examined in smog chambers under varied aerosol acidity levels. Results indicate SOA was enhanced with increasing aerosol acidity especially under low-NO conditions. Chemical characterization of laboratory-generated MBO SOA reveals that an organosulfate species (C5H12O6S, MW 200) formed and was substantially enhanced with elevated aerosol acidity. This organosulfate species was also observed and correlated with aerosol acidity from ambient fine aerosol (PM2.5) samples that were collected from different field campaigns where MBO emissions are important, demonstrating that it is a molecular tracer for MBO-initiated SOA in the atmosphere. Importantly, this compound can account for as high as 1% of the total organic aerosol mass in the atmosphere. It is hypothesized that MBO epoxide generated under low-NO conditions is the precursor to MBO SOA based upon the above results. Thus, the MBO epoxide was synthesized in high purity to investigate its potential to form SOA via reactive uptake in a series of controlled dark chamber studies. Our results suggest the MBO epoxide substantially forms SOA only in the presence of acidic seed aerosols. The chemical characterization results of the SOA constituents are consistent with field measurements in terms of the major SOA tracers.

  5. Potential feedback between aerosols and meteorological conditions in a heavy pollution event over the Tibetan Plateau and Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Yang, Junhua; Duan, Keqin; Kang, Shichang; Shi, Peihong; Ji, Zhenming

    2016-06-01

    A regional climate model, WRF-Chem, was used to investigate the feedback between aerosols and meteorological conditions in the planetary boundary layer (PBL) over the Tibetan Plateau (TP) and Indo-Gangetic Plain (IGP). The numerical experiments (15-km horizontal resolution) with and without the aerosol effects are driven by reanalysis of data for 1-31 March 2009, when a heavy pollution event (13-19 March) occurred. The results showed that the model captured the spatial and temporal meteorological conditions and aerosol optical characteristics during the heavy pollution days. Aerosols induced cooling at the surface and warming in the middle troposphere due to their radiative effects, and resulted in a more stable PBL over the IGP. Aerosol-induced 2-m relative humidity (RH) was increased. The stable PBL likely led to the surface PM2.5 concentration increase of up to 21 μg m-3 (15 %) over the IGP. For the TP, the atmospheric profile did not drastically change due to fewer radiative effects of aerosols in the PBL compared with those over the IGP. The aerosol-induced RH decreased due to cloud albedo and cloud lifetime effect, and led to a reduction in surface PM2.5 concentration of up to 17 μg m-3 (13 %). These results suggest a negative and positive feedback over the TP and IGP, respectively, between aerosol concentrations and changes of aerosol-induced meteorological conditions. Similar positive feedbacks have been observed in other heavily polluted regions (e.g., the North China Plain). The results have implications for the study of air pollution on weather and environment over the TP and IGP.

  6. The role of anthropogenic species in Biogenic aerosol formation

    EPA Science Inventory

    Isoprene is a widely recognized source of organic aerosol in the southeastern United States. Models have traditionally represented isoprene-derived aerosol as semivolatile species formed from the initial isoprene + OH reaction. Recent laboratory and field studies indicate later g...

  7. The Aerosol Coarse Mode Initiative

    NASA Astrophysics Data System (ADS)

    Arnott, W. P.; Adhikari, N.; Air, D.; Kassianov, E.; Barnard, J.

    2014-12-01

    Many areas of the world show an aerosol volume distribution with a significant coarse mode and sometimes a dominant coarse mode. The large coarse mode is usually due to dust, but sea salt aerosol can also play an important role. However, in many field campaigns, the coarse mode tends to be ignored, because it is difficult to measure. This lack of measurements leads directly to a concomitant "lack of analysis" of this mode. Because, coarse mode aerosols can have significant effects on radiative forcing, both in the shortwave and longwave spectrum, the coarse mode -- and these forcings -- should be accounted for in atmospheric models. Forcings based only on fine mode aerosols have the potential to be misleading. In this paper we describe examples of large coarse modes that occur in areas of large aerosol loading (Mexico City, Barnard et al., 2010) as well as small loadings (Sacramento, CA; Kassianov et al., 2012; and Reno, NV). We then demonstrate that: (1) the coarse mode can contribute significantly to radiative forcing, relative to the fine mode, and (2) neglecting the coarse mode may result in poor comparisons between measurements and models. Next we describe -- in general terms -- the limitations of instrumentation to measure the coarse mode. Finally, we suggest a new initiative aimed at examining coarse mode aerosol generation mechanisms; transport and deposition; chemical composition; visible and thermal IR refractive indices; morphology; microphysical behavior when deposited on snow and ice; and specific instrumentation needs. Barnard, J. C., J. D. Fast, G. Paredes-Miranda, W. P. Arnott, and A. Laskin, 2010: Technical Note: Evaluation of the WRF-Chem "Aerosol Chemical to Aerosol Optical Properties" Module using data from the MILAGRO campaign, Atmospheric Chemistry and Physics, 10, 7325-7340. Kassianov, E. I., M. S. Pekour, and J. C. Barnard, 2012: Aerosols in Central California: Unexpectedly large contribution of coarse mode to aerosol radiative forcing

  8. Method for forming a potential hydrocarbon sensor with low sensitivity to methane and CO

    DOEpatents

    Mukundan, Rangachary; Brosha, Eric L.; Garzon, Fernando

    2003-12-02

    A hydrocarbon sensor is formed with an electrolyte body having a first electrolyte surface with a reference electrode depending therefrom and a metal oxide electrode body contained within the electrolyte body and having a first electrode surface coplanar with the first electrolyte surface. The sensor was formed by forming a sintered metal-oxide electrode body and placing the metal-oxide electrode body within an electrolyte powder. The electrolyte powder with the metal-oxide electrode body was pressed to form a pressed electrolyte body containing the metal-oxide electrode body. The electrolyte was removed from an electrolyte surface above the metal-oxide electrode body to expose a metal-oxide electrode surface that is coplanar with the electrolyte surface. The electrolyte body and the metal-oxide electrode body were then sintered to form the hydrocarbon sensor.

  9. Radioactive Aerosols as an Index of Air Pollution in the City of Thessaloniki, Greece

    SciTech Connect

    Ioannidou, A.; Papastefanou, C.

    2010-01-21

    This study summarizes results of an investigation done in order to find out how the radioactive aerosols of {sup 7}Be could serve as indicators of air pollution conditions. Beryllium-7 is a cosmic-ray produced radionuclide with an important fraction of its production to take place in the upper troposphere. Once it is formed is rapidly associated with submicron aerosol particles and participates in the formation and growth of the accumulation mode aerosols, which is a major reservoir of pollutants in the atmosphere. In order to define any influence of AMAD of {sup 7}Be aerosols by air pollution conditions, the aerodynamic size distribution of {sup 7}Be aerosols was determined by collecting samples at different locations in the suburban area of the city of Thessaloniki, including rural areas, industrial areas, high elevations, marine environment and the airport area. The aerodynamic size distribution of {sup 7}Be aerosols in different locations was obtained by using Andersen 1-ACFM cascade impactors and the Activity Median Aerodynamic Diameter (AMAD) was determined. Some dependency of the AMADs on height has been observed, while in near marine environment the {sup 7}Be activity size distribution was dominant in the upper size range of aerosol particles. Low AMADs as low as 0.62 to 0.74 {mu}m of {sup 7}Be aerosols have been observed at locations characterized with relative low pollution, while it is concluded that in the activity size distribution of ambient aerosols, {sup 7}Be changes to larger particle sizes in the presence of pollutants, since low AMADs of {sup 7}Be aerosols have been observed at low polluted locations. Preliminary data of simultaneous measurements of {sup 214}Pb and {sup 212}Pb with gaseous air pollutants CO, NO, NO{sub X}, SO{sub 2} and total suspended particulate matter (TSP) show that radon decay products near the ground could be a useful index of air pollution potential conditions and transport processes in the boundary layer.

  10. Cut-off net acid generation pH in predicting acid-forming potential in mine spoils.

    PubMed

    Liao, B; Huang, L N; Ye, Z H; Lan, C Y; Shu, W S

    2007-01-01

    Acidification of mine wastes can lead to a series of environmental problems, such as acid drainage, heavy metal mobilization, and ecosystem degradation. Prediction of acid-forming potential is one of the key steps in management of sulfide-bearing mine wastes. In this paper, the acid-forming potential of 180 mine waste samples collected from 17 mine sites in China were studied using a net acid generation (NAG) method. The samples contained different contents of total sulfur (ranging from 0.6 to 200 g kg(-1)), pyritic sulfur (ranging from 0 to 100 g kg(-1)), and acid neutralization capacity (ANC, ranging from -41 to 274 kg H2SO4 t(-1)). Samples with high acid-forming potential are generally due to their high sulfur content or low acid neutralization capacity. After the samples were oxidized by H2O2, the amounts of acid generation and the final NAG pH were measured. Results indicated that the final NAG pH gave a well-defined demarcation between acid-forming and non-acid-forming materials. Samples with final NAG pH >or= 5 could be classified as non-acid-forming materials, while those with NAG pH forming materials. Materials with NAG pH > 2.5, but < 5, had low risk of being acid-forming. The confirmation of cut-off NAG pH will be used as a rapid and cost-effective operational monitoring tool for the in-pit prediction of acid-forming potential of mine wastes and classification of waste types.

  11. Nighttime aqueous-phase secondary organic aerosols in Los Angeles and its implication for fine particulate matter composition and oxidative potential

    NASA Astrophysics Data System (ADS)

    Saffari, Arian; Hasheminassab, Sina; Shafer, Martin M.; Schauer, James J.; Chatila, Talal A.; Sioutas, Constantinos

    2016-05-01

    Recent investigations suggest that aqueous phase oxidation of hydrophilic organic compounds can be a significant source of secondary organic aerosols (SOA) in the atmosphere. Here we investigate the possibility of nighttime aqueous phase formation of SOA in Los Angeles during winter, through examination of trends in fine particulate matter (PM2.5) carbonaceous content during two contrasting seasons. Distinctive winter and summer trends were observed for the diurnal variation of organic carbon (OC) and secondary organic carbon (SOC), with elevated levels during the nighttime in winter, suggesting an enhanced formation of SOA during that period. The nighttime ratio of SOC to OC was positively associated with the relative humidity (RH) at high RH levels (above 70%), which is when the liquid water content of the ambient aerosol would be high and could facilitate dissolution of hydrophilic primary organic compounds into the aqueous phase. Time-integrated collection and analysis of wintertime particles at three time periods of the day (morning, 6:00 a.m.-9:00 a.m.; afternoon, 11:00 a.m.-3:00 p.m.; night, 8:00 p.m.-4:00 a.m.) revealed higher levels of water soluble organic carbon (WSOC) and organic acids during the night and afternoon periods compared to the morning period, indicating that the SOA formation in winter continues throughout the nighttime. Furthermore, diurnal trends in concentrations of semi-volatile organic compounds (SVOCs) from primary emissions showed that partitioning of SVOCs from the gas to the particle phase due to the decreased nighttime temperatures cannot explain the substantial OC and SOC increase at night. The oxidative potential of the collected particles (quantified using a biological macrophage-based reactive oxygen species assay, in addition to the dithiothreitol assay) was comparable during afternoon and nighttime periods, but higher (by at least ∼30%) compared to the morning period, suggesting that SOA formation processes possibly

  12. Performance Potential of Grinding Tools on Flexible Backing Produced of Grains with the Controlled Form

    NASA Astrophysics Data System (ADS)

    Shatko, D. B.; Lyukshin, V. S.; Bakumenko, V. N.

    2016-08-01

    The paper provides consideration to the approaches to designing new grinding tools on flexible backing - flap grinding wheels and grinding belts having abrasive grains with certain form and orientation in their structure. Methods to estimate the shape of abrasive grains have been analyzed. Experimental data has been presented how the form of a grain affects characteristics of tools on flexible backing. Recommendations on practical application of new tools have been given

  13. Long-term aerosol and trace gas measurements in Eastern Lapland, Finland: the impact of Kola air pollution to new particle formation and potential CCN

    NASA Astrophysics Data System (ADS)

    Kyrö, Ella-Maria; Väänänen, Riikka; Kerminen, Veli-Matti; Virkkula, Aki; Asmi, Ari; Nieminen, Tuomo; Dal Maso, Miikka; Petäjä, Tuukka; Keronen, Petri; Aalto, Pasi; Riipinen, Ilona; Lehtipalo, Katrianne; Hari, Pertti; Kulmala, Markku

    2014-05-01

    Sulphur and primary emissions have been decreasing largely all over Europe, resulting in improved air quality and decreased direct radiation forcing by aerosols. The smelter industry in Kola Peninsula is one of largest sources of anthropogenic SO2 within the Arctic domain and since late 1990s the sulphur emissions have been decreasing rapidly (Paatero et al., 2008; Prank et al., 2010). New particle formation (NPF) is tightly linked with the oxidizing product of SO2, namely sulphuric acid (H2SO4), since it is known to be the key component in atmospheric nucleation (Sipilä et al., 2010). Thus, decreasing sulphur pollution may lead to less NPF. However, low values of condensation sink (CS), which is determined by the amount of pre-existing particles, favours NPF. We used 14 years (1998-2011) of aerosol number size distribution and trace gas data from SMEAR I station in Eastern Lapland, Finland, to investigate these relationships between SO2, NPF and CS. The station is a clean background station with occasional sulphur pollution episodes when the air masses arrive over Kola Peninsula. We found that while SO2 decreased by 11.3 % / year, the number of clear NPF event days was also decreasing by 9.9 % / year. At the same time, CS was decreasing also (-8.0 % / year) leading to formation of more particles per single NPF event (J3 increased by 29.7 % / year in 2006-2011) but the low vapour concentrations of H2SO4 (proxy decreased by 6.2 % / year) did not allow them to grow into climatically relevant sizes. Over the time, concentrations of potential CCN (cloud condensing nuclei) were also decreasing with more moderate pace, -4.0 % / year. The events started on average earlier after sunrise when the SO2 concentration during the start of the event was higher and NPF occurred more frequently in air masses which were travelling over Kola. Despite the total decrease in sulphur pollution originating from Kola there is currently no evidence of cleaning of the emissions, rather the

  14. Potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol in the Mexico City region

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Jimenez, J. L.; Madronich, S.; Canagaratna, M. R.; Decarlo, P. F.; Kleinman, L.; Fast, J.

    2010-01-01

    It has been established that observed local and regional levels of secondary organic aerosols (SOA) in polluted areas cannot be explained by the oxidation and partitioning of anthropogenic and biogenic VOC precursors, at least using current mechanisms and parameterizations. In this study, the 3-D regional air quality model CHIMERE is applied to quantify the contribution to SOA formation of recently identified semi-volatile and intermediate volatility organic vapors (S/IVOC) in and around Mexico City for the MILAGRO field experiment during March 2006. The model has been updated to include explicitly the volatility distribution of primary organic aerosols (POA), their gas-particle partitioning and the gas-phase oxidation of the vapors. Two recently proposed parameterizations, those of Robinson et al. (2007) ("ROB") and Grieshop et al. (2009) ("GRI") are compared and evaluated against surface and aircraft measurements. The 3-D model results are assessed by comparing with the concentrations of OA components from Positive Matrix Factorization of Aerosol Mass Spectrometer (AMS) data, and for the first time also with oxygen-to-carbon ratios derived from high-resolution AMS measurements. The results show a substantial enhancement in predicted SOA concentrations (3-6 times) with respect to the previously published base case without S/IVOCs (Hodzic et al., 2009), both within and downwind of the city leading to much reduced discrepancies with the total OA measurements. The predicted anthropogenic POA levels are found to agree within 20% with the observed HOA concentrations for both the ROB and GRI simulations, consistent with the interpretation of the emissions inventory by previous studies. The impact of biomass burning POA within the city is underestimated in comparison to the AMS BBOA, presumably due to insufficient nighttime smoldering emissions. Model improvements in OA predictions are associated with the better-captured SOA magnitude and diurnal variability. The

  15. Potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol in the Mexico City region

    SciTech Connect

    Hodzic, A.; Kleinman, L.; Jimenez, J. L.; Madronich, S.; Canagaratna, M. R.; DeCarlo, P. F.; Fast, J.

    2010-03-01

    It has been established that observed local and regional levels of secondary organic aerosols (SOA) in polluted areas cannot be explained by the oxidation and partitioning of anthropogenic and biogenic VOC precursors, at least using current mechanisms and parameterizations. In this study, the 3-D regional air quality model CHIMERE is applied to quantify the contribution to SOA formation of recently identified semi-volatile and intermediate volatility organic vapors (S/IVOC) in and around Mexico City for the MILAGRO field experiment during March 2006. The model has been updated to include explicitly the volatility distribution of primary organic aerosols (POA), their gas-particle partitioning and the gas-phase oxidation of the vapors. Two recently proposed parameterizations, those of Robinson et al. (2007) ('ROB') and Grieshop et al. (2009) ('GRI') are compared and evaluated against surface and aircraft measurements. The 3-D model results are assessed by comparing with the concentrations of OA components from Positive Matrix Factorization of Aerosol Mass Spectrometer (AMS) data, and for the first time also with oxygen-to-carbon ratios derived from high-resolution AMS measurements. The results show a substantial enhancement in predicted SOA concentrations (3–6 times) with respect to the previously published base case without S/IVOCs (Hodzic et al., 2009), both within and downwind of the city leading to much reduced discrepancies with the total OA measurements. The predicted anthropogenic POA levels are found to agree within 20% with the observed HOA concentrations for both the ROB and GRI simulations, consistent with the interpretation of the emissions inventory by previous studies. The impact of biomass burning POA within the city is underestimated in comparison to the AMS BBOA, presumably due to insufficient nighttime smoldering emissions. Model improvements in OA predictions are associated with the better-captured SOA magnitude and diurnal variability. The

  16. The Potential of The Synergy of Sunphotometer and Lidar Data to Validate Vertical Profiles of The Aerosol Mass Concentration Estimated by An Air Quality Model

    NASA Astrophysics Data System (ADS)

    Siomos, N.; Filioglou, M.; Poupkou, A.; Liora, N.; Dimopoulos, S.; Melas, D.; Chaikovsky, A.; Balis, D. S.

    2016-06-01

    Vertical profiles of the aerosol mass concentration derived by the Lidar/Radiometer Inversion Code (LIRIC), that uses combined sunphotometer and lidar data, were used in order to validate the aerosol mass concentration profiles estimated by the air quality model CAMx. Lidar and CIMEL measurements performed at the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki, Greece (40.5N, 22.9E) from the period 2013-2014 were used in this study.

  17. Follow the Carbon: Isotopic Labeling Studies of Early Earth Aerosol

    NASA Astrophysics Data System (ADS)

    Hicks, Raea K.; Day, Douglas A.; Jimenez, Jose L.; Tolbert, Margaret A.

    2016-11-01

    Despite the faint young Sun, early Earth might have been kept warm by an atmosphere containing the greenhouse gases CH4 and CO2 in mixing ratios higher than those found on Earth today. Laboratory and modeling studies suggest that an atmosphere containing these trace gases could lead to the formation of organic aerosol haze due to UV photochemistry. Chemical mechanisms proposed to explain haze formation rely on CH4 as the source of carbon and treat CO2 as a source of oxygen only, but this has not previously been verified experimentally. In the present work, we use isotopically labeled precursor gases and unit-mass resolution (UMR) and high-resolution (HR) aerosol mass spectrometry to examine the sources of carbon and oxygen to photochemical aerosol formed in a CH4/CO2/N2 atmosphere. UMR results suggest that CH4 contributes 70-100% of carbon in the aerosol, while HR results constrain the value from 94% to 100%. We also confirm that CO2 contributes approximately 10% of the total mass to the aerosol as oxygen. These results have implications for the geochemical interpretations of inclusions found in Archean rocks on Earth and for the astrobiological potential of other planetary atmospheres.

  18. Follow the Carbon: Isotopic Labeling Studies of Early Earth Aerosol.

    PubMed

    Hicks, Raea K; Day, Douglas A; Jimenez, Jose L; Tolbert, Margaret A

    2016-11-01

    Despite the faint young Sun, early Earth might have been kept warm by an atmosphere containing the greenhouse gases CH4 and CO2 in mixing ratios higher than those found on Earth today. Laboratory and modeling studies suggest that an atmosphere containing these trace gases could lead to the formation of organic aerosol haze due to UV photochemistry. Chemical mechanisms proposed to explain haze formation rely on CH4 as the source of carbon and treat CO2 as a source of oxygen only, but this has not previously been verified experimentally. In the present work, we use isotopically labeled precursor gases and unit-mass resolution (UMR) and high-resolution (HR) aerosol mass spectrometry to examine the sources of carbon and oxygen to photochemical aerosol formed in a CH4/CO2/N2 atmosphere. UMR results suggest that CH4 contributes 70-100% of carbon in the aerosol, while HR results constrain the value from 94% to 100%. We also confirm that CO2 contributes approximately 10% of the total mass to the aerosol as oxygen. These results have implications for the geochemical interpretations of inclusions found in Archean rocks on Earth and for the astrobiological potential of other planetary atmospheres. Key Words: Atmosphere-Early Earth-Planetary atmospheres-Carbon dioxide-Methane. Astrobiology 16, 822-830.

  19. Light extinction by Secondary Organic Aerosol: an intercomparison of three broadband cavity spectrometers

    NASA Astrophysics Data System (ADS)

    Varma, R. M.; Ball, S. M.; Brauers, T.; Dorn, H.-P.; Heitmann, U.; Jones, R. L.; Platt, U.; Pöhler, D.; Ruth, A. A.; Shillings, A. J. L.; Thieser, J.; Wahner, A.; Venables, D. S.

    2013-07-01

    Broadband optical cavity spectrometers are maturing as a technology for trace gas detection, but only recently have they been used to retrieve the extinction coefficient of aerosols. Sensitive broadband extinction measurements allow explicit separation of gas and particle phase spectral contributions, as well as continuous spectral measurements of aerosol extinction in favourable cases. In this work, we report an intercomparison study of the aerosol extinction coefficients measured by three such instruments: a broadband cavity ring-down spectrometer (BBCRDS), a cavity-enhanced differential optical absorption spectrometer (CE-DOAS), and an incoherent broadband cavity-enhanced absorption spectrometer (IBBCEAS). Experiments were carried out in the SAPHIR atmospheric simulation chamber as part of the NO3Comp campaign to compare the measurement capabilities of NO3 and N2O5 instrumentation. Aerosol extinction coefficients between 655 and 690 nm are reported for secondary organic aerosols (SOA) formed by the NO3 oxidation of β-pinene under dry and humid conditions. Despite different measurement approaches and spectral analysis procedures, the three instruments retrieved aerosol extinction coefficients that were in close agreement. The refractive index of SOA formed from the β-pinene + NO3 reaction was 1.61, and was not measurably affected by the chamber humidity or by aging of the aerosol over several hours. This refractive index is significantly larger than SOA refractive indices observed in other studies of OH and ozone-initiated terpene oxidations, and may be caused by the large proportion of organic nitrates in the particle phase. In an experiment involving ammonium sulphate particles the aerosol extinction coefficients as measured by IBBCEAS were found to be in reasonable agreement with those calculated using Mie theory. The results of the study demonstrate the potential of broadband cavity spectrometers for determining the optical properties of aerosols.

  20. Light extinction by secondary organic aerosol: an intercomparison of three broadband cavity spectrometers

    NASA Astrophysics Data System (ADS)

    Varma, R. M.; Ball, S. M.; Brauers, T.; Dorn, H.-P.; Heitmann, U.; Jones, R. L.; Platt, U.; Pöhler, D.; Ruth, A. A.; Shillings, A. J. L.; Thieser, J.; Wahner, A.; Venables, D. S.

    2013-11-01

    Broadband optical cavity spectrometers are maturing as a technology for trace-gas detection, but only recently have they been used to retrieve the extinction coefficient of aerosols. Sensitive broadband extinction measurements allow explicit separation of gas and particle phase spectral contributions, as well as continuous spectral measurements of aerosol extinction in favourable cases. In this work, we report an intercomparison study of the aerosol extinction coefficients measured by three such instruments: a broadband cavity ring-down spectrometer (BBCRDS), a cavity-enhanced differential optical absorption spectrometer (CE-DOAS), and an incoherent broadband cavity-enhanced absorption spectrometer (IBBCEAS). Experiments were carried out in the SAPHIR atmospheric simulation chamber as part of the NO3Comp campaign to compare the measurement capabilities of NO3 and N2O5 instrumentation. Aerosol extinction coefficients between 655 and 690 nm are reported for secondary organic aerosols (SOA) formed by the NO3 oxidation of β-pinene under dry and humid conditions. Despite different measurement approaches and spectral analysis procedures, the three instruments retrieved aerosol extinction coefficients that were in close agreement. The refractive index of SOA formed from the β-pinene + NO3 reaction was 1.61, and was not measurably affected by the chamber humidity or by aging of the aerosol over several hours. This refractive index is significantly larger than SOA refractive indices observed in other studies of OH and ozone-initiated terpene oxidations, and may be caused by the large proportion of organic nitrates in the particle phase. In an experiment involving ammonium sulfate particles, the aerosol extinction coefficients as measured by IBBCEAS were found to be in reasonable agreement with those calculated using the Mie theory. The results of the study demonstrate the potential of broadband cavity spectrometers for determining the optical properties of aerosols.

  1. Collaborative research. Study of aerosol sources and processing at the GVAX Pantnagar Supersite

    SciTech Connect

    Worsnop, Doug; Volkamer, Rainer

    2012-08-13

    The Two Column Aerosol Project (TCAP) investigated uncertainties in the aerosol direct effect in the northern hemisphere mid-latitudes. The University of Colorado 2D-MAX-DOAS and LED-CE-DOAS instruments were collocated with DOE’s Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) and Mobile Aerosol Observing System (MAOS) during the TCAP-1 campaign at Cape Cod, MA (1 July to 13 August 2012). We have performed atmospheric radiation closure studies to evaluate the use of a novel parameter, i.e., the Raman Scattering Probability (RSP). We have performed first measurements of RSP almucantar scans, and measure RSP in spectra of scattered solar photons at 350nm and 430nm. Radiative Transfer Modelling of RSP demonstrate that the RSP measurement is maximally sensitive to infer even extremely low aerosol optical depth (AOD < 0.01) reliably by DOAS at low solar relative azimuth angles. We further assess the role of elevated aerosol layers on near surface observations of oxygen collision complexes, O 2-O2. Elevated aerosol layers modify the near surface absorption of O2-O2 and RSP. The combination of RSP and O2-O2 holds largely unexplored potential to better constrain elevated aerosol layers and measure column aerosol optical properties such as aerosol effective radius, extinction, aerosol phase functions and refractive indices. The TCAP deployment also provides a time series of reactive trace gas vertical profiles, i.e., nitrogen dioxide (NO2) and glyoxal (C2H2O2), which are measured simultaneously with the aerosol optical properties by DOAS. NO2 is an important precursor for ozone (O3) that modifies oxidative capacity. Glyoxal modifies oxidative capacity and is a source for brown carbon by forming secondary organic aerosol (SOA) via multiphase reactions in aerosol and cloud water. We have performed field measurements of these gases

  2. Development of a supercritical fluid extraction-gas chromatography-mass spectrometry method for the identification of highly polar compounds in secondary organic aerosols formed from biogenic hydrocarbons in smog chamber experiments.

    PubMed

    Chiappini, L; Perraudin, E; Durand-Jolibois, R; Doussin, J F

    2006-11-01

    A new one-step method for the analysis of highly polar components of secondary organic aerosols (SOA) has been developed. This method should lead to a better understanding of SOA formation and evolution since it enables the compounds responsible for SOA formation to be identified. Since it is based on supercritical fluid extraction coupled to gas chromatography-mass spectrometry, it minimizes the analysis time and significantly enhances sensitivity, which makes it suitable for trace-level compounds, which are constituents of SOA. One of the key features of this method is the in situ derivatisation step: an online silylation allowing the measurement of highly polar, polyfunctional compounds, which is a prerequisite for the elucidation of chemical mechanisms. This paper presents the development of this analytical method and highlights its ability to address this major atmospheric issue through the analysis of SOA formed from the ozonolysis of a biogenic hydrocarbon (sabinene). Ozonolysis of sabinene was performed in a 6 m3 Teflon chamber. The aerosol components were derivatised in situ. More than thirty products, such as sabinaketone, sabinic acid and other multifunctional compounds including dicarboxylic acids and oxoacids, were measured. Nine of them were identified and quantified. The sensitivity and the linearity (0.91

  3. Toward new techniques to measure heterogeneous oxidation of aerosol: Electrodynamic Balance-Mass Spectrometry (EDB-MS) and Aerosol X-ray Photoelectron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jacobs, M. I.; Heine, N.; Xu, B.; Davies, J. F.; Kirk, B. B.; Kostko, O.; Alayoglu, S.; Wilson, K. R.; Ahmed, M.

    2015-12-01

    The chemical composition and physical properties of aerosol can be changed via heterogeneous oxidation with the OH radical. However, the physical state of the aerosol influences the kinetics of this reaction; liquid particles with a high diffusion coefficient are expected to be well mixed and homogenously oxidized, while oxidation of solid, diffusion-limited aerosol is expected to occur primarily on the surface, creating steep chemical gradients within the particle. We are working to develop several new techniques to study the heterogeneous oxidation of different types of aerosol. We are developing a "modular" electrodynamic balance (EDB) that will enable us to study heterogeneous oxidation at aqueous interfaces using a mass-spectrometer (and potentially other detection techniques). Using a direct analysis in real time (DART) interface, preliminary droplet train measurements have demonstrated single-droplet mass spectrometry to be possible. With long reaction times in our EDB, we will be able to study heterogeneous oxidation of a wide variety of organic species in aqueous droplets. Additionally, we are working to use aerosol photoemission and velocity map imaging (VMI) to study the surface of aerosol particles as they undergo heterogeneous oxidation. With VMI, we're able to collect electrons with a 4π collection efficiency over conventional electron energy analyzers. Preliminary results looking at the ozonolysis of squalene using ultraviolet photoelectron spectroscopy (UPS) show that heterogeneous oxidation kinetic data can be extracted from photoelectron spectra. By moving to X-ray photoemission spectroscopy (XPS), we will determine elemental and chemical composition of the aerosol surface. Thus, aerosol XPS will provide information on the steep chemical gradients that form as diffusion-limited aerosol undergo heterogeneous oxidation.

  4. a General Transformation to Canonical Form for Potentials in Pairwise Intermolecular Interactions

    NASA Astrophysics Data System (ADS)

    Walton, Jay R.; Rivera-Rivera, Luis A.; Lucchese, Robert R.; Bevan, John W.

    2015-06-01

    A generalized formulation of explicit transformations is introduced to investigate the concept of a canonical potential in both fundamental chemical and intermolecular bonding. Different classes of representative ground electronic state pairwise interatomic interactions are referenced to a single canonical potential illustrating application of explicit transformations. Specifically, accurately determined potentials of the diatomic molecules H_2, H_2^+, HF, LiH, argon dimer, and one-dimensional dissociative coordinates in Ar-HBr, OC-HF, and OC-Cl_2 are investigated throughout their bound potentials. The advantages of the current formulation for accurately evaluating equilibrium dissociation energies and a fundamentally different unified perspective on nature of intermolecular interactions will be emphasized. In particular, this canonical approach has relevance to previous assertions that there is no very fundamental distinction between van der Waals bonding and covalent bonding or for that matter hydrogen and halogen bonds.

  5. Finite Element Simulation of Sheet Metal Forming Using Anisotropic Strain-Rate Potentials

    SciTech Connect

    Rabahallah, Meziane; Balan, Tudor; Bouvier, Salima; Bacroix, Brigitte; Teodosiu, Cristian

    2007-05-17

    In continuum mechanics, plastic anisotropy is described using anisotropic stress potentials or, alternatively, strain-rate potentials. In this work, a stress update algorithm is developed for this later case. The implicit, backward Euler method is adopted. A specific numerical treatment is required to deal with the plasticity criterion, which is not defined explicitly. Also, a sub-stepping procedure is adopted in order to deal with the strong nonlinearity of the yield surfaces when applied to FCC materials. The resulting algorithm is implemented in the static implicit version of the Abaqus FE code. Several recent plastic potentials have been implemented in this framework and their parameters identified for a number of BCC and FCC materials. Numerical simulations of a cup drawing process are performed in order to address the robustness of the implementation and the ability of these potentials to predict e.g. earing for materials with different anisotropy.

  6. Influence of particle size and chemistry on the cloud nucleating properties of aerosols

    NASA Astrophysics Data System (ADS)

    Quinn, P. K.; Bates, T. S.; Coffman, D. J.; Covert, D. S.

    2008-02-01

    The ability of an aerosol particle to act as a cloud condensation nuclei (CCN) is a function of the size of the particle, its composition and mixing state, and the supersaturation of the cloud. In-situ data from field studies provide a means to assess the relative importance of these parameters. During the 2006 Texas Air Quality - Gulf of Mexico Atmospheric Composition and Climate Study (TexAQS-GoMACCS), the NOAA RV Ronald H. Brown encountered a wide variety of aerosol types ranging from marine near the Florida panhandle to urban and industrial in the Houston-Galveston area. These varied sources provided an opportunity to investigate the role of aerosol sources and chemistry in the potential activation of particles to form cloud droplets. Measurements were made of CCN concentrations, aerosol chemical composition in the size range relevant for particle activation in warm clouds, and aerosol size distributions. Variability in aerosol composition was parameterized by the mass fraction of Hydrocarbon-like Organic Aerosol (HOA) for particle diameters less than 200 nm (vacuum aerodynamic). The HOA mass fraction in this size range was lowest for marine aerosol and highest for aerosol sampled close to anthropogenic sources. Combining all data from the experiment reveals that composition (defined by HOA mass fraction) explains 40% of the variance in the critical diameter for particle activation at the instrumental supersaturation (S) of 0.44%. Correlations between HOA mass fraction and aerosol mean diameter show that these two parameters are essentially independent of one another for this data set. We conclude that, based on the variability of the HOA mass fraction observed during TexAQS-GoMACCS, variability in particle composition played a significant role in determining the fraction of particles that could activate to form cloud droplets. Using a simple model based on Köhler theory and the assumption that HOA is insoluble, we estimate the degree to which calculated CCN

  7. Aerosol fabrication methods for monodisperse nanoparticles

    DOEpatents

    Jiang, Xingmao; Brinker, C Jeffrey

    2014-10-21

    Exemplary embodiments provide materials and methods for forming monodisperse particles. In one embodiment, the monodisperse particles can be formed by first spraying a nanoparticle-containing dispersion into aerosol droplets and then heating the aerosol droplets in the presence of a shell precursor to form core-shell particles. By removing either the shell layer or the nanoparticle core of the core-shell particles, monodisperse nanoparticles can be formed.

  8. [Characteristics of slow electrical potentials in healthy subjects and in patients with various forms of neuroses].

    PubMed

    Slezin, V B; Kamenskaia, V G; Tomanov, L V; Shchukina, N V

    1988-01-01

    The shapes of the slow brain potentials--conditioned negative wave (CNW) and postimperative negative wave (PNW)--were compared in normal and neurotic subjects. Instruction-directed performance was used to investigate the physiological mechanisms of neuroses and to develop the diagnostic psychophysiologic tests with simultaneous recording of the slow potentials. These were evaluated by calculation of asymmetry and power amplification coefficients for CNW and PNW while more and more complicated instructions were given.

  9. Assessing applicants to the NASA flight program for their renal stone-forming potential

    NASA Technical Reports Server (NTRS)

    Pak, Charles Y. C.; Hill, Kathy; Cintron, Nitza M.; Huntoon, Carolyn

    1989-01-01

    Because spaceflight can provoke the formation of kidney stones, 24-hour urine samples for 104 male applicants were analyzed for stone-forming risk factors prior to their selection into the NASA astronaut-mission specialist corps. A high level of supersaturation (with either calcium oxalate, brushite, or monosodium urate) was noted in these applicants which predisposes them to the crystallization of stone-forming calcium salts. It is suggested that most of the abnormal stone risk factors found were environmental, rather than metabolic, in origin.

  10. Combined X-Ray and Raman Spectroscopic Techniques for the Characterization of Sea Spray Aerosol

    NASA Astrophysics Data System (ADS)

    Aller, J. Y.; Alpert, P. A.; Knopf, D. A.; Kilthau, W.; Bothe, D.; Charnawskas, J. C.; Gilles, M. K.; OBrien, R. E.; Moffet, R.; Radway, J.

    2014-12-01

    Sea spray aerosol along with mineral dust dominates the global mass flux of particles to the atmosphere. Marine aerosol particles are of particular interest because of their continual impact on cloud formation, precipitation, atmospheric chemical processes, and thus global climate. Here we report on the physical/chemical characteristics of sub-surface waters, aerosolized sea spray particles, and particles/organic species present in surface microlayer (SML) samples collected during oceanic field campaigns and generated during laboratory experiments, revealing a biogenic primary source of the organic fraction of airborne particles. We also report on ice nucleation experiments with aerosolized particles collected during the May 2014 WACS II North Atlantic cruise and with laboratory generated exudate material from diatom cultures with the potential to impact cirrus and mixed phase clouds. Physicochemical analyses using a multi-modal approach which includes Scanning Transmission X-ray Microscopy coupled with Near-Edge Absorption Fine Structure Spectroscopy (STXM/NEXAFS) and Raman spectroscopy confirm the presence and chemical similarity of polysaccharide-rich transparent exopolymer (TEP) material and proteins in both SML sea spray aerosol and ice forming aerosol particles, regardless of the extent of biological activity in surface waters. Our results demonstrate a direct relationship between the marine environment and composition of marine aerosol through primary particle emission.

  11. Aerosol measurement program strategy for global aerosol backscatter model development

    NASA Technical Reports Server (NTRS)

    Bowdle, David A.

    1985-01-01

    The purpose was to propose a balanced program of aerosol backscatter research leading to the development of a global model of aerosol backscatter. Such a model is needed for feasibility studies and systems simulation studies for NASA's prospective satellite-based Doppler lidar wind measurement system. Systems of this kind measure the Doppler shift in the backscatter return from small atmospheric aerosol wind tracers (of order 1 micrometer diameter). The accuracy of the derived local wind estimates and the degree of global wind coverage for such a system are limited by the local availability and by the global scale distribution of natural aerosol particles. The discussions here refer primarily to backscatter model requirements at CO2 wavelengths, which have been selected for most of the Doppler lidar systems studies to date. Model requirements for other potential wavelengths would be similar.

  12. Aerosol-halogen interaction: Change of physico-chemical properties of SOA by naturally released halogen species

    NASA Astrophysics Data System (ADS)

    Ofner, J.; Balzer, N.; Buxmann, J.; Grothe, H.; Krüger, H.; Platt, U.; Schmitt-Kopplin, P.; Zetzsch, C.

    2011-12-01

    Reactive halogen species are released by various sources like photo-activated sea-salt aerosol or salt pans and salt lakes. These heterogeneous release mechanisms have been overlooked so far, although their potential of interaction with organic aerosols like Secondary Organic Aerosol (SOA), Biomass Burning Organic Aerosol (BBOA) or Atmospheric Humic LIke Substances (HULIS) is completely unknown. Such reactions can constitute sources of gaseous organo-halogen compounds or halogenated organic particles in the atmospheric boundary layer. To study the interaction of organic aerosols with reactive halogen species (RHS), SOA was produced from α-pinene, catechol and guaiacol using an aerosol smog-chamber. The model SOAs were characterized in detail using a variety of physico-chemical methods (Ofner et al., 2011). Those aerosols were exposed to molecular halogens in the presence of UV/VIS irradiation and to halogens, released from simulated natural halogen sources like salt pans, in order to study the complex aerosol-halogen interaction. The heterogeneous reaction of RHS with those model aerosols leads to different gaseous species like CO2, CO and small reactive/toxic molecules like phosgene (COCl2). Hydrogen containing groups on the aerosol particles are destroyed to form HCl or HBr, and a significant formation of C-Br bonds could be verified in the particle phase. Carbonyl containing functional groups of the aerosol are strongly affected by the halogenation process. While changes of functional groups and gaseous species were visible using FTIR spectroscopy, optical properties were studied using Diffuse Reflectance UV/VIS spectroscopy. Overall, the optical properties of the processed organic aerosols are significantly changed. While chlorine causes a "bleaching" of the aerosol particles, bromine shifts the maximum of UV/VIS absorption to the red end of the UV/VIS spectrum. Further physico-chemical changes were recognized according to the aerosol size-distributions or the

  13. Atmospheric aerosol over Finnish Arctic: source analysis by the multilinear engine and the potential source contribution function

    NASA Astrophysics Data System (ADS)

    Yli-Tuomi, Tarja; Hopke, Philip K.; Paatero, Pentti; Basunia, M. Shamsuzzoha; Landsberger, Sheldon; Viisanen, Yrjö; Paatero, Jussi

    Week-long samples of total suspended particles were collected between 1964 and 1978 from Kevo at the Finnish Arctic and analyzed for a number of chemical species. The chemical composition data was analyzed using a mixed 2-way/3-way model. The results of receptor modeling were connected with the back trajectory data in a Potential Source Contribution Function analysis to determine the likely source areas. Nine sources, namely silver emissions, coal/oil shale combustion, biomass burning, non-ferrous smelters (two sources), crustal elements from remote sources, excess silicon from local sources, sea salt particles and biogenic sulfur emissions from marine algae were found. Although the emissions from industrial areas in the Kola Peninsula had an effect on the concentration of anthropogenic pollutants at Kevo, the highest concentrations during winter were transported from the sources in the mid-latitudes. The yearly strength of the biogenic sulfur emissions showed no dependence on the Northern Hemisphere temperature anomaly and thus, a climatic feedback loop could not be confirmed.

  14. Chemistry of α-pinene and naphthalene oxidation products generated in a Potential Aerosol Mass (PAM) chamber as measured by acetate chemical ionization mass spectrometry

    DOE PAGES

    Chhabra, P. S.; Lambe, A. T.; Canagaratna, M. R.; ...

    2014-07-01

    Recent developments in high resolution, time-of-flight chemical ionization mass spectrometry (HR-ToF-CIMS) have made possible the direct detection of atmospheric organic compounds in real-time with high sensitivity and with little or no fragmentation, including low volatility, highly oxygenated organic vapors that are precursors to secondary organic aerosol formation. Here, for the first time, we examine gas-phase O3 and OH oxidation products of α-pinene and naphthalene formed in the PAM flow reactor with an HR-ToF-CIMS using acetate reagent ion chemistry. Integrated OH exposures ranged from 1.2 × 1011 to 9.7 × 1011 molec cm−3 s, corresponding to approximately 1.0 to 7.5 daysmore » of equivalent atmospheric oxidation. Measured gas-phase organic acids are similar to those previously observed in environmental chamber studies. For both precursors, we find that acetate-CIMS spectra capture both functionalization (oxygen addition) and fragmentation (carbon loss) as a function of OH exposure. The level of fragmentation is observed to increase with increased oxidation. We present a method that estimates vapor pressures of organic molecules using the measured O/C ratio, H/C ratio, and carbon number for each compound detected by the CIMS. The predicted condensed-phase SOA average acid yields and O/C and H/C ratios agree within uncertainties with previous AMS measurements and ambient CIMS results. While acetate reagent ion chemistry is used to selectively measure organic acids, in principle this method can be applied to additional reagent ion chemistries depending on the application.« less

  15. Chemical characterization and physico-chemical properties of aerosols at Villum Research Station, Greenland during spring 2015

    NASA Astrophysics Data System (ADS)

    Glasius, M.; Iversen, L. S.; Svendsen, S. B.; Hansen, A. M. K.; Nielsen, I. E.; Nøjgaard, J. K.; Zhang, H.; Goldstein, A. H.; Skov, H.; Massling, A.; Bilde, M.

    2015-12-01

    The effects of aerosols on the radiation balance and climate are of special concern in Arctic areas, which have experienced warming at twice the rate of the global average. As future scenarios include increased emissions of air pollution, including sulfate aerosols, from ship traffic and oil exploration in the Arctic, there is an urgent need to obtain the fundamental scientific knowledge to accurately assess the consequences of pollutants to environment and climate. In this work, we studied the chemistry of aerosols at the new Villum Research Station (81°36' N, 16°40' W) in north-east Greenland during the "inauguration campaign" in spring 2015. The chemical composition of sub-micrometer Arctic aerosols was investigated using a Soot Particle Time-of-Flight Aerosol Mass Spectrometer (SP-ToF-AMS). Aerosol samples were also collected on filters using both a high-volume sampler and a low-volume sampler equipped with a denuder for organic gases. Chemical analyses of filter samples include determination of inorganic anions and cations using ion-chromatography, and analysis of carboxylic acids and organosulfates of anthropogenic and biogenic origin using ultrahigh-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS). Previous studies found that organosulfates constitute a surprisingly high fraction of organic aerosols during the Arctic Haze period in winter and spring. Investigation of organic molecular tracers provides useful information on aerosol sources and atmospheric processes. The physico-chemical properties of Arctic aerosols are also under investigation. These measurements include particle number size distribution, water activity and surface tension of aerosol samples in order to deduct information on their hygroscopicity and cloud-forming potential. The results of this study are relevant to understanding aerosol sources and processes as well as climate effects in the Arctic, especially during the Arctic haze

  16. The Human Potential Movement: Forms of Body/Movement/Nonverbal Experiencing.

    ERIC Educational Resources Information Center

    Caldwell, Stratton F.

    A social, humanistic movement has emerged which focuses on the desire of many affluent and advantaged citizens for personal, interpersonal, transpersonal, and organizational growth. It has been termed the "Human Potential Movement." Growth centers, which emphasize the integrated totality of the person, have developed all over the United…

  17. A satellite view of aerosols in the climate system

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tanre, Didier; Boucher, Olivier

    2002-01-01

    Anthropogenic aerosols are intricately linked to the climate system and to the hydrologic cycle. The net effect of aerosols is to cool the climate system by reflecting sunlight. Depending on their composition, aerosols can also absorb sunlight in the atmosphere, further cooling the surface but warming the atmosphere in the process. These effects of aerosols on the temperature profile, along with the role of aerosols as cloud condensation nuclei, impact the hydrologic cycle, through changes in cloud cover, cloud properties and precipitation. Unravelling these feedbacks is particularly difficult because aerosols take a multitude of shapes and forms, ranging from desert dust to urban pollution, and because aerosol concentrations vary strongly over time and space. To accurately study aerosol distribution and composition therefore requires continuous observations from satellites, networks of ground-based instruments and dedicated field experiments. Increases in aerosol concentration and changes in their composition, driven by industrialization and an expanding population, may adversely affect the Earth's climate and water supply.

  18. A satellite view of aerosols in the climate system.

    PubMed

    Kaufman, Yoram J; Tanré, Didier; Boucher, Olivier

    2002-09-12

    Anthropogenic aerosols are intricately linked to the climate system and to the hydrologic cycle. The net effect of aerosols is to cool the climate system by reflecting sunlight. Depending on their composition, aerosols can also absorb sunlight in the atmosphere, further cooling the surface but warming the atmosphere in the process. These effects of aerosols on the temperature profile, along with the role of aerosols as cloud condensation nuclei, impact the hydrologic cycle, through changes in cloud cover, cloud properties and precipitation. Unravelling these feedbacks is particularly difficult because aerosols take a multitude of shapes and forms, ranging from desert dust to urban pollution, and because aerosol concentrations vary strongly over time and space. To accurately study aerosol distribution and composition therefore requires continuous observations from satellites, networks of ground-based instruments and dedicated field experiments. Increases in aerosol concentration and changes in their composition, driven by industrialization and an expanding population, may adversely affect the Earth's climate and water supply.

  19. A Protein Synthesis and Nitric Oxide-Dependent Presynaptic Enhancement in Persistent Forms of Long-Term Potentiation

    ERIC Educational Resources Information Center

    Johnstone, Victoria P. A.; Raymond, Clarke R.

    2011-01-01

    Long-term potentiation (LTP) is an important process underlying learning and memory in the brain. At CA3-CA1 synapses in the hippocampus, three discrete forms of LTP (LTP1, 2, and 3) can be differentiated on the basis of maintenance and induction mechanisms. However, the relative roles of pre- and post-synaptic expression mechanisms in LTP1, 2,…

  20. Acrylamide-forming potential and agronomic properties of elite US potato germplasm from the National Fry Processing Trial

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Processed potato products, such as chips and fries, contribute to the dietary intake of acrylamide, a suspected human carcinogen. One of the most promising approaches for reducing acrylamide consumption is to develop and commercialize new potato varieties with low acrylamide-forming potential. To fa...

  1. Evolution of newly formed aerosol particles in the continental boundary layer: A case study including OH and H2SO4 measurements

    NASA Astrophysics Data System (ADS)

    Birmili, W.; Wiedensohler, A.; Plass-Dülmer, C.; Berresheim, H.

    2000-08-01

    An event of new particle formation is presented, based on simultaneous measurements of aerosol number size distributions, relevant gaseous components including H2SO4 and OH, and meteorological parameters. Measurements were conducted at Hohenpeissenberg, a rural continental mountain site in southern Germany. The event was observed under intense solar radiation, with total particle number concentrations increasing from 6000 to 25000 cm-3 within one hour, and ultrafine particles (3-11 nm) accounting for more than 50% of total number. Observed OH and H2SO4 concentrations reached maximum levels around 107 cm-3. A lower limit of the particle nucleation rate was estimated to be 3 cm-3·s-1, consistent with present models of ternary nucleation involving the H2SO4-H2O-NH3 system. Roughly 80% of the subsequent drop in ultrafine mode particle number concentration could be explained by coagulation. The observed particle growth rate of 2.1±0.1 nm/h was largely attributed to the condensation of measured H2SO4, assuming neutralization by ammonia.

  2. ENCAPSULATED AEROSOLS

    DTIC Science & Technology

    materials determine the range of applicability of each method. A useful microencapsulation method, based on coagulation by inertial force was developed...The generation apparatus, consisting of two aerosol generators in series, was utilized to produce many kinds of microcapsules . A fluid energy mill...was found useful for the production of some microcapsules . The permeability of microcapsule films and the effect of exposure time and humidity were

  3. Infection of phytoplankton by aerosolized marine viruses

    PubMed Central

    Sharoni, Shlomit; Trainic, Miri; Schatz, Daniella; Lehahn, Yoav; Flores, Michel J.; Bidle, Kay D.; Ben-Dor, Shifra; Rudich, Yinon; Vardi, Assaf

    2015-01-01

    Marine viruses constitute a major ecological and evolutionary driving force in the marine ecosystems. However, their dispersal mechanisms remain underexplored. Here we follow the dynamics of Emiliania huxleyi viruses (EhV) that infect the ubiquitous, bloom-forming phytoplankton E. huxleyi and show that EhV are emitted to the atmosphere as primary marine aerosols. Using a laboratory-based setup, we showed that the dynamic of EhV aerial emission is strongly coupled to the host–virus dynamic in the culture media. In addition, we recovered EhV DNA from atmospheric samples collected over an E. huxleyi bloom in the North Atlantic, providing evidence for aerosolization of marine viruses in their natural environment. Decay rate analysis in the laboratory revealed that aerosolized viruses can remain infective under meteorological conditions prevailing during E. huxleyi blooms in the ocean, allowing potential dispersal and infectivity over hundreds of kilometers. Based on the combined laboratory and in situ findings, we propose that atmospheric transport of EhV is an effective transmission mechanism for spreading viral infection over large areas in the ocean. This transmission mechanism may also have an important ecological impact on the large-scale host–virus “arms race” during bloom succession and consequently the turnover of carbon in the ocean. PMID:25964340

  4. Infection of phytoplankton by aerosolized marine viruses.

    PubMed

    Sharoni, Shlomit; Trainic, Miri; Schatz, Daniella; Lehahn, Yoav; Flores, Michel J; Bidle, Kay D; Ben-Dor, Shifra; Rudich, Yinon; Koren, Ilan; Vardi, Assaf

    2015-05-26

    Marine viruses constitute a major ecological and evolutionary driving force in the marine ecosystems. However, their dispersal mechanisms remain underexplored. Here we follow the dynamics of Emiliania huxleyi viruses (EhV) that infect the ubiquitous, bloom-forming phytoplankton E. huxleyi and show that EhV are emitted to the atmosphere as primary marine aerosols. Using a laboratory-based setup, we showed that the dynamic of EhV aerial emission is strongly coupled to the host-virus dynamic in the culture media. In addition, we recovered EhV DNA from atmospheric samples collected over an E. huxleyi bloom in the North Atlantic, providing evidence for aerosolization of marine viruses in their natural environment. Decay rate analysis in the laboratory revealed that aerosolized viruses can remain infective under meteorological conditions prevailing during E. huxleyi blooms in the ocean, allowing potential dispersal and infectivity over hundreds of kilometers. Based on the combined laboratory and in situ findings, we propose that atmospheric transport of EhV is an effective transmission mechanism for spreading viral infection over large areas in the ocean. This transmission mechanism may also have an important ecological impact on the large-scale host-virus "arms race" during bloom succession and consequently the turnover of carbon in the ocean.

  5. Characterization of Cooking-Related Aerosols

    NASA Astrophysics Data System (ADS)

    Niedziela, R. F.; Blanc, L. E.

    2010-12-01

    The temperatures at which food is cooked are usually high enough to drive oils and other organic compounds out of materials which are being prepared for consumption. As these compounds move away from the hot cooking surface and into the atmosphere, they can participate in chemical reactions or condense to form particles. Given the high concentration of cooking in urban areas, cooking-related aerosols likely contribute to the overall amount of particulate matter on a local scale. Reported here are results for the mid-infrared optical characterization of aerosols formed during the cooking of several meat and vegetable samples in an inert atmosphere. The samples were heated in a novel aerosol generator that is designed to collect particles formed immediately above the cooking surface and inject them into a laminar aerosol flow cell. Preliminary results for the chemical processing of cooking-related aerosols in synthetic air will also be presented.

  6. Applications of UV Scattering and Absorbing Aerosol Indices

    NASA Astrophysics Data System (ADS)

    Penning de Vries, M.; Beirle, S.; Wagner, T.

    2009-04-01

    Aerosols cause a substantial amount of radiative forcing, but quantifying this amount is difficult: determining aerosol concentrations in the atmosphere and, especially, characterizing their (optical) properties, has proved to be quite a challenge. A good way to monitor aerosol characteristics on a global scale is to perform satellite remote sensing. Most satellite aerosol retrieval algorithms are based on fitting of aerosol-induced changes in earth reflectance, which are usually subtle and have a smooth wavelength dependence. In such algorithms certain aerosol models are assumed, where optical parameters such as single scattering albedo, asymmetry parameter and size parameter (or Angstrom exponent) are defined. Another, semi-quantitative technique for detecting aerosols is the calculation of UV Aerosol Indices (UVAI). The Absorbing and Scattering Aerosol Indices detect "UV-absorbing" aerosols (most notably mineral dust, black and brown carbon particles) and "scattering" aerosols (sulfate and secondary organic aerosol particles), respectively. UVAI are essentially a measure of the contrast between two wavelengths in the UV range. The advantages of UVAI are: they can be determined in the presence of clouds, they are rather insensitive to surface type, and they are very sensitive to aerosols. The Absorbing Aerosol Index (AAI) has been in use for over a decade, and the Scattering Aerosol Index (SAI) was recently introduced by our group. Whereas the AAI is mainly used to detect desert dust and biomass burning plumes, the SAI can be used to study regions with high concentrations of non-absorbing aerosols, either anthropogenic (e.g. sulfate aerosols in eastern China) or biogenic (e.g. secondary organic aerosols formed from VOCs emitted by plants). Here we will present our recent UVAI results from SCIAMACHY: we will discuss the seasonal trend of SAI, and correlate our UVAI data with other datasets such as trace gases (HCHO, NO2, CO) and fire counts from the (A

  7. Toxicity of atmospheric aerosols on marine phytoplankton

    PubMed Central

    Paytan, Adina; Mackey, Katherine R. M.; Chen, Ying; Lima, Ivan D.; Doney, Scott C.; Mahowald, Natalie; Labiosa, Rochelle; Post, Anton F.

    2009-01-01

    Atmospheric aerosol deposition is an important source of nutrients and trace metals to the open ocean that can enhance ocean productivity and carbon sequestration and thus influence atmospheric carbon dioxide concentrations and climate. Using aerosol samples from different back trajectories in incubation experiments with natural communities, we demonstrate that the response of phytoplankton growth to aerosol additions depends on specific components in aerosols and differs across phytoplankton species. Aerosol additions enhanced growth by releasing nitrogen and phosphorus, but not all aerosols stimulated growth. Toxic effects were observed with some aerosols, where the toxicity affected picoeukaryotes and Synechococcus but not Prochlorococcus. We suggest that the toxicity could be due to high copper concentrations in these aerosols and support this by laboratory copper toxicity tests preformed with Synechococcus cultures. However, it is possible that other elements present in the aerosols or unknown synergistic effects between these elements could have also contributed to the toxic effect. Anthropogenic emissions are increasing atmospheric copper deposition sharply, and based on coupled atmosphere–ocean calculations, we show that this deposition can potentially alter patterns of marine primary production and community structure in high aerosol, low chlorophyll areas, particularly in the Bay of Bengal and downwind of South and East Asia. PMID:19273845

  8. Toxicity of atmospheric aerosols on marine phytoplankton

    USGS Publications Warehouse

    Paytan, A.; Mackey, K.R.M.; Chen, Y.; Lima, I.D.; Doney, S.C.; Mahowald, N.; Labiosa, R.; Post, A.F.

    2009-01-01

    Atmospheric aerosol deposition is an important source of nutrients and trace metals to the open ocean that can enhance ocean productivity and carbon sequestration and thus influence atmospheric carbon dioxide concentrations and climate. Using aerosol samples from different back trajectories in incubation experiments with natural communities, we demonstrate that the response of phytoplankton growth to aerosol additions depends on specific components in aerosols and differs across phytoplankton species. Aerosol additions enhanced growth by releasing nitrogen and phosphorus, but not all aerosols stimulated growth. Toxic effects were observed with some aerosols, where the toxicity affected picoeukaryotes and Synechococcus but not Prochlorococcus.We suggest that the toxicity could be due to high copper concentrations in these aerosols and support this by laboratory copper toxicity tests preformed with Synechococcus cultures. However, it is possible that other elements present in the aerosols or unknown synergistic effects between these elements could have also contributed to the toxic effect. Anthropogenic emissions are increasing atmospheric copper deposition sharply, and based on coupled atmosphere-ocean calculations, we show that this deposition can potentially alter patterns of marine primary production and community structure in high aerosol, low chlorophyll areas, particularly in the Bay of Bengal and downwind of South and East Asia.

  9. Aerosol beam-focus laser-induced plasma spectrometer device

    DOEpatents

    Cheng, Meng-Dawn

    2002-01-01

    An apparatus for detecting elements in an aerosol includes an aerosol beam focuser for concentrating aerosol into an aerosol beam; a laser for directing a laser beam into the aerosol beam to form a plasma; a detection device that detects a wavelength of a light emission caused by the formation of the plasma. The detection device can be a spectrometer having at least one grating and a gated intensified charge-coupled device. The apparatus may also include a processor that correlates the wavelength of the light emission caused by the formation of the plasma with an identity of an element that corresponds to the wavelength. Furthermore, the apparatus can also include an aerosol generator for forming an aerosol beam from bulk materials. A method for detecting elements in an aerosol is also disclosed.

  10. Entropic potential field formed for a linear-motor protein near a filament: Statistical-mechanical analyses using simple models.

    PubMed

    Amano, Ken-Ichi; Yoshidome, Takashi; Iwaki, Mitsuhiro; Suzuki, Makoto; Kinoshita, Masahiro

    2010-07-28

    We report a new progress in elucidating the mechanism of the unidirectional movement of a linear-motor protein (e.g., myosin) along a filament (e.g., F-actin). The basic concept emphasized here is that a potential field is entropically formed for the protein on the filament immersed in solvent due to the effect of the translational displacement of solvent molecules. The entropic potential field is strongly dependent on geometric features of the protein and the filament, their overall shapes as well as details of the polyatomic structures. The features and the corresponding field are judiciously adjusted by the binding of adenosine triphosphate (ATP) to the protein, hydrolysis of ATP into adenosine diphosphate (ADP)+Pi, and release of Pi and ADP. As the first step, we propose the following physical picture: The potential field formed along the filament for the protein without the binding of ATP or ADP+Pi to it is largely different from that for the protein with the binding, and the directed movement is realized by repeated switches from one of the fields to the other. To illustrate the picture, we analyze the spatial distribution of the entropic potential between a large solute and a large body using the three-dimensional integral equation theory. The solute is modeled as a large hard sphere. Two model filaments are considered as the body: model 1 is a set of one-dimensionally connected large hard spheres and model 2 is a double helical structure formed by two sets of connected large hard spheres. The solute and the filament are immersed in small hard spheres forming the solvent. The major findings are as follows. The solute is strongly confined within a narrow space in contact with the filament. Within the space there are locations with sharply deep local potential minima along the filament, and the distance between two adjacent locations is equal to the diameter of the large spheres constituting the filament. The potential minima form a ringlike domain in model 1

  11. Ultrafine calcium aerosol: Generation and use as a sorbent for sulfur in coal combustion. Volume 1, Experimental work: Final report, August 1, 1988--October 31, 1991

    SciTech Connect

    Alam, M.K.; Nahar, N.U.; Stewart, G.D.; Prudich, M.E.

    1991-11-01

    Studies conducted at Ohio University and elsewhere have demonstrated that ultrafine aerosols, which have the highest surface area per unit mass, have enhanced potential to efficiently remove sulfur dioxide form combustion gases. Therefore it is proposed to generate a very fine aerosol calcium-rich sorbent (or similar aerosols) for gas conditioning. The aerosol will be generated by vaporization of the sorbent compound and subsequent homogeneous nucleation. In experimental studies liquids as well as solids will be converted into ultrafine aerosols by using suitable aerosol generator. The aerosol generator could be a simple bubbler or a flame spray jet using powders of calcium ``Compounds. Studies will then be carried out, to determine the dynamics of sulfur dioxide capture by the ultrafine aerosol. The primary objective of this research was to generate fine aerosols and to use them for coal combustion SO{sub 2}/NO{sub x} gas removal purposes. From the background study on the dry scrubbing system, it can be concluded that the most important experimental parameters are addition ratio, reactor temperature, residence time, total inlet flow rate and inlet SO{sub 2} concentration. Addition ratio is the inlet molar ratio of calcium to sulfur. Before any experimentation, it was necessary to decide and investigate the values of each of the parameters. Each of these parameters were investigated individually and the effects on SO{sub 2} removal were determined.

  12. Study By Uv-visible Spectrometry of Gas/solid Interactions In Titan's Simulated Atmosphere, A.k.a. How Aerosols Are Formed On Titan ?

    NASA Astrophysics Data System (ADS)

    Bernard, J.-M.; Coll, P.; Jolly, A.; Bénilan, Y.; Cernogora, G.; Raulin, F.

    The atmospheric chemistry on Titan is reproduced during laboratory simulation ex- periments since several years. The device we developed at LISA leaded to the identi- fication of 70 gaseous compounds (46 hydrocarbons and 24 nitrogenous compounds), while the chemical composition of the solid phase is still not known in spite of IR spectrometry and pyrolysis analysis. These simulations are based on a initial mixture of N2/CH4, submitted to a glow discharge, at continuous flow and at low temperature in order to simulate as well as possible Titan's atmosphere. The highlighting identi- fication of C4N2, detected on Titan but never identified previously in experimental simulations, validates the representativity of the LISA experiment. The aim of the project presented today is a UV-visible spectrometry in situ study of the reactional environment where are produced the solid phase, considered as an analogue of Titan's aerosols. The analysis of the evolution of the compounds (molecules/radicals/ions) present in the reactor will allow the identification of those responsible of the building of the solid phase, at gas/solid interface. A second step will be the modeling of the mechanisms taking place in the reactor, which are very badly known at the present time. The final stage of this work will be to use a full theoretical model of plasma chemistry, still developed. We will present today the first results obtained by emission spectroscopy, during an experimental simulation of Titan's atmosphere, and point out the decreasing of some compounds in parallel to the formation of solid phase.

  13. N-Acyl-phosphoramidates as potential novel form of gemcitabine prodrugs.

    PubMed

    Baraniak, Janina; Pietkiewicz, Aleksandra; Kaczmarek, Renata; Radzikowska, Ewa; Kulik, Katarzyna; Krolewska, Karolina; Cieslak, Marcin; Krakowiak, Agnieszka; Nawrot, Barbara

    2014-04-01

    Gemcitabine (dFdC) is a cytidine analog remarkably active against a wide range of solid tumors. Inside a cell, gemcitabine is phosphorylated by deoxycytidine kinase to yield gemcitabine monophosphate, further converted to gemcitabine di- and triphosphate. The most frequent form of acquired resistance to gemcitabine in vitro is the deoxycytidine kinase deficiency. Thus, proper prodrugs carrying the 5'-pdFdC moiety may help to overcome this problem. A series of new derivatives of gemcitabine possessing N-acyl(thio)phosphoramidate moieties were prepared and their cytotoxic properties were determined. N-Acyl-phosphoramidate derivatives of gemcitabine have similar cytotoxicity as gemcitabine itself, and have been found accessible to the cellular enzymes. The nicotinic carboxamide derivative of gemcitabine 5'-O-phosphorothioate occurred to be the best inhibitor of bacterial DNA polymerase I and human DNA polymerase α.

  14. Phenotypic and genetic divergence within a single whitefish form – detecting the potential for future divergence

    PubMed Central

    Hirsch, Philipp Emanuel; Eckmann, Reiner; Oppelt, Claus; Behrmann-Godel, Jasminca

    2013-01-01

    Human-induced nutrient input can change the selection regime and lead to the loss of biodiversity. For example, eutrophication caused speciation reversal in polymorphic whitefish populations through a flattening of littoral–pelagic selection gradients. We investigated the current state of phenotypic and genetic diversity in whitefish (Coregonus macrophthalmus) in a newly restored lake whose nutrient load has returned to pre-eutrophication levels and found that whitefish spawning at different depths varied phenotypically and genetically: individuals spawning at shallower depth had fewer gill rakers, faster growth, and a morphology adapted to benthic feeding, and they showed higher degrees of diet specialization than deeper spawning individuals. Microsatellite analyses complemented the phenotype analyses by demonstrating reproductive isolation along different spawning depths. Our results indicate that whitefish still retain or currently regain phenotypic and genetic diversity, which was lost during eutrophication. Hence, the population documented here has a potential for future divergence because natural selection can target phenotypes specialized along re-established littoral–pelagic selection gradients. The biodiversity, however, will have better chances to return if managers acknowledge the evolutionary potential within the local whitefish and adapt fishing and stocking measures. PMID:24478795

  15. The Kinematic and Chemical Properties of a Potential Core-forming Clump: Perseus B1-E

    NASA Astrophysics Data System (ADS)

    Sadavoy, S. I.; Shirley, Y.; Di Francesco, J.; Henning, Th.; Currie, M. J.; André, Ph.; Pezzuto, S.

    2015-06-01

    We present 13CO and {{C}18}O (1-0), (2-1), and (3-2) maps toward the core-forming Perseus B1-E clump using observations from the James Clerk Maxwell Telescope, the Submillimeter Telescope of the Arizona Radio Observatory, and the IRAM 30 m telescope. We find that the 13CO and {{C}18}O line emission both have very complex velocity structures, indicative of multiple velocity components within the ambient gas. The (1-0) transitions reveal a radial velocity gradient across B1-E of ˜ 1 km {{s}-1} p{{c}-1} that increases from northwest to southeast, whereas the majority of the Perseus cloud has a radial velocity gradient increasing from southwest to northeast. In contrast, we see no evidence of a velocity gradient associated with the denser Herschel-identified substructures in B1-E. Additionally, the denser substructures have much lower systemic motions than the ambient clump material, which indicates that they are likely decoupled from the large-scale gas. Nevertheless, these substructures themselves have broad line widths (˜0.4 km {{s}-1}) similar to that of the {{C}18}O gas in the clump, which suggests they inherited their kinematic properties from the larger-scale, moderately dense gas. Finally, we find evidence of {{C}18}O depletion only toward one substructure, B1-E2, which is also the only object with narrow (transonic) line widths. We suggest that as prestellar cores form, their chemical and kinematic properties are linked in evolution, such that these objects must first dissipate their turbulence before they deplete in CO.

  16. Aerosol Climate Time Series Evaluation In ESA Aerosol_cci

    NASA Astrophysics Data System (ADS)

    Popp, T.; de Leeuw, G.; Pinnock, S.

    2015-12-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. By the end of 2015 full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which are also validated. The paper will summarize and discuss the results of major reprocessing and validation conducted in 2015. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension with successor instruments of the Sentinel family will be described and the complementarity of the different satellite aerosol products

  17. Aerosol Size Distributions Measured in the Upper Troposphere and Lower Stratosphere: Formation, Coagulation, Transport and Sedimentation of the Background Non-Volcanic Aerosols

    NASA Astrophysics Data System (ADS)

    Lee, S.; Wilson, J. C.; Reeves, J. M.; Brock, C. A.; Jonsson, H. H.; Lowenstein, M.; Mahoney, M. J.; Herman, R. L.; Anderson, J. G.; Xueref, I.; Gerbig, C.; Andrews, A. E.; Hinsta, E.

    2002-12-01

    This study presents the particle size distribution of non-volcanic aerosols in the lower stratosphere and upper troposphere measured from 1995 to 2000 during five different high-altitude aircraft missions (STRAT, POLARIS, WAM, ACCENT, and SOLVE). The Focused Cavity Aerosol Spectrometer (FCAS), Condensation Nucleus Counter (CNC), and Nucleation-Mode Aerosol Sizing Spectrometer (N-MASS) were used to characterize the particle sizes in the diameter range from 4 to 2000 nm. Measurements were made at latitudes from 3.4S to 90N and the pressure altitudes form 7 to 21 km. These particle size distributions were analyzed using the potential temperature, tropopause height, and the mixing ratio of gas phase tracers such as N2O, CO2, NOy, O3 and water vapor. Particle formation, growth and sedimentation were studied to examine how the aerosol dynamics and atmospheric transport (Holton et al., 1995) determine the steady state aerosol size distribution in the lower stratosphere. This comprehensive data set will help us to better understand the origins and fate of the stratospheric background aerosols. Reference: Holton, J. R., et al., Stratosphere-troposphere exchange, Rev. Geophys., 33, 403-439, 1995.

  18. New Insights On The Link Between Oceanic Vegetation and Marine Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Facchini, M.; Rinaldi, M.; Decesari, S.; Finessi, E.; Carbone, C.; Fuzzi, S.; Ceburnis, D.; O'Dowd, C.

    2008-12-01

    Until a few years ago the link between vegetation and aerosol particles in marine environment was centered on the DMS emission from phytoplankton and the sulphur cycle. More recently, observation carried out in the North Atlantic as well as in other marine locations evidenced a seasonal dependence of sub micron particle chemical composition on biological oceanic activity and a potentially important marine aerosol organic component from primary and/or secondary formation processes associated to marine vegetation and its seasonal cycle. Here we show recent results obtained within the EC project MAP which allowed to discriminate primary and secondary organic marine aerosol components of biogenic origin. Bubble-mediated experiments carried out during phytoplankton blooms in the North Atlantic revealed that organic carbon in nascent submicron spray particles was highly enriched in the finest fraction, constituting up to 77 % in mass of the aerosol in the 0.125-0.25 micrometer size range and was almost entirely water insoluble (96% on average). 1H NMR analysis showed that WIOM in nascent marine aerosol forms from aggregation of lipopolysaccharides exuded by phytoplankton. Being marine aerosol WIOC mainly associated to primary production mechanisms, a direct consequence of this observation is that the water soluble fraction (WSOC) is mainly accounted for by secondary organic aerosol. This fact was also clearly evidenced by the analysis of the WSOC fraction of marine aerosol samples collected during MAP. The aerosol WSOC was dominated by MSA and two organic N species (ammonium salts of biogenic amines) and by several oxygenated species (mainly carboxylic acids and ketons). These results evidence the important contribution of organic nitrogen in North Atlantic marine SOA.

  19. Mutations in BCKD-kinase Lead to a Potentially Treatable Form of Autism with Epilepsy

    PubMed Central

    Novarino, Gaia; El-Fishawy, Paul; Kayserili, Hulya; Meguid, Nagwa A.; Scott, Eric M.; Schroth, Jana; Silhavy, Jennifer L.; Kara, Majdi; Khalil, Rehab O.; Ben-Omran, Tawfeg; Ercan-Sencicek, A. Gulhan; Hashish, Adel F.; Sanders, Stephan J.; Gupta, Abha R.; Hashem, Hebatalla S.; Matern, Dietrich; Gabriel, Stacey; Sweetman, Larry; Rahimi, Yasmeen; Harris, Robert A.; State, Matthew W.; Gleeson, Joseph G.

    2013-01-01

    Autism spectrum disorders are a genetically heterogeneous constellation of syndromes characterized by impairments in reciprocal social interaction. Available somatic treatments have limited efficacy. We have identified inactivating mutations in the gene BCKDK (Branched Chain Ketoacid Dehydrogenase Kinase) in consanguineous families with autism, epilepsy, and intellectual disability. The encoded protein is responsible for phosphorylation-mediated inactivation of the E1α subunit of branched-chain ketoacid dehydrogenase (BCKDH). Patients with homozygous BCKDK mutations display reductions in BCKDK messenger RNA and protein, E1α phosphorylation, and plasma branched-chain amino acids. Bckdk knockout mice show abnormal brain amino acid profiles and neurobehavioral deficits that respond to dietary supplementation. Thus, autism presenting with intellectual disability and epilepsy caused by BCKDK mutations represents a potentially treatable syndrome. PMID:22956686

  20. Comparison of form in potential functions while maintaining upright posture during exposure to stereoscopic video clips.

    PubMed

    Kutsuna, Kenichiro; Matsuura, Yasuyuki; Fujikake, Kazuhiro; Miyao, Masaru; Takada, Hiroki

    2013-01-01

    Visually induced motion sickness (VIMS) is caused by sensory conflict, the disagreement between vergence and visual accommodation while observing stereoscopic images. VIMS can be measured by psychological and physiological methods. We propose a mathematical methodology to measure the effect of three-dimensional (3D) images on the equilibrium function. In this study, body sway in the resting state is compared with that during exposure to 3D video clips on a liquid crystal display (LCD) and on a head mounted display (HMD). In addition, the Simulator Sickness Questionnaire (SSQ) was completed immediately afterward. Based on the statistical analysis of the SSQ subscores and each index for stabilograms, we succeeded in determining the quantity of the VIMS during exposure to the stereoscopic images. Moreover, we discuss the metamorphism in the potential functions to control the standing posture during the exposure to stereoscopic video clips.

  1. Aerosol and monsoon climate interactions over Asia

    NASA Astrophysics Data System (ADS)

    Li, Zhanqing; Lau, W. K.-M.; Ramanathan, V.; Wu, G.; Ding, Y.; Manoj, M. G.; Liu, J.; Qian, Y.; Li, J.; Zhou, T.; Fan, J.; Rosenfeld, D.; Ming, Y.; Wang, Y.; Huang, J.; Wang, B.; Xu, X.; Lee, S.-S.; Cribb, M.; Zhang, F.; Yang, X.; Zhao, C.; Takemura, T.; Wang, K.; Xia, X.; Yin, Y.; Zhang, H.; Guo, J.; Zhai, P. M.; Sugimoto, N.; Babu, S. S.; Brasseur, G. P.

    2016-12-01

    The increasing severity of droughts/floods and worsening air quality from increasing aerosols in Asia monsoon regions are the two gravest threats facing over 60% of the world population living in Asian monsoon regions. These dual threats have fueled a large body of research in the last decade on the roles of aerosols in impacting Asian monsoon weather and climate. This paper provides a comprehensive review of studies on Asian aerosols, monsoons, and their interactions. The Asian monsoon region is a primary source of emissions of diverse species of aerosols from both anthropogenic and natural origins. The distributions of aerosol loading are strongly influenced by distinct weather and climatic regimes, which are, in turn, modulated by aerosol effects. On a continental scale, aerosols reduce surface insolation and weaken the land-ocean thermal contrast, thus inhibiting the development of monsoons. Locally, aerosol radiative effects alter the thermodynamic stability and convective potential of the lower atmosphere leading to reduced temperatures, increased atmospheric stability, and weakened wind and atmospheric circulations. The atmospheric thermodynamic state, which determines the formation of clouds, convection, and precipitation, may also be altered by aerosols serving as cloud condensation nuclei or ice nuclei. Absorbing aerosols such as black carbon and desert dust in Asian monsoon regions may also induce dynamical feedback processes, leading to a strengthening of the early monsoon and affecting the subsequent evolution of the monsoon. Many mechanisms have been put forth regarding how aerosols modulate the amplitude, frequency, intensity, and phase of different monsoon climate variables. A wide range of theoretical, observational, and modeling findings on the Asian monsoon, aerosols, and their interactions are synthesized. A new paradigm is proposed on investigating aerosol-monsoon interactions, in which natural aerosols such as desert dust, black carbon from

  2. Investigation of the aerosols produced by a high-speed, hand-held grinder using various substrates.

    PubMed

    Zimmer, Anthony T; Maynard, Andrew D

    2002-11-01

    Mechanical processes such as grinding are classically thought to form micrometer scale aerosols through abrasion and attrition. High-speed grinding has been used as the basis for testing the hypothesis that ultrafine particles do not form a substantial component of mechanically generated aerosols. A wide variety of grinding substrates were selected for evaluation to represent the broad spectrum of materials available. To characterize the particle size distribution over particle sizes ranging from 4.2 nm to 20.5 microm, the aerosol-laden air collected from an enclosed chamber was split and directed to three aerosol instruments operated in parallel. Transmission electron microscope samples of the various grinding substrates were also collected. The results demonstrate that ultrafine particles do have the potential to form a significant component of a grinding aerosol for a number of substrates. It appears that the ultrafine aerosols were formed by the following processes: (i) from within the grinding motor, (ii) from the combustion of amenable grinding substrates and (iii) from volatilization of amenable grinding materials at the grinding wheel/substrate interface.

  3. Electronic cigarette solutions and resultant aerosol profiles.

    PubMed

    Herrington, Jason S; Myers, Colton

    2015-10-30

    Electronic cigarettes (e-cigarettes) are growing in popularity exponentially. Despite their ever-growing acceptance, their aerosol has not been fully characterized. The current study focused on evaluating e-cigarette solutions and their resultant aerosol for potential differences. A simple sampling device was developed to draw e-cigarette aerosol into a multi-sorbent thermal desorption (TD) tube, which was then thermally extracted and analyzed via a gas chromatography (GC) mass spectrometry (GC-MS) method. This novel application provided detectable levels of over one hundred fifteen volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs) from a single 40mL puff. The aerosol profiles from four commercially available e-cigarettes were compared to their respective solution profiles with the same GC-MS method. Solution profiles produced upwards of sixty four unidentified and identified (some only tentatively) constituents and aerosol profiles produced upwards of eighty two compounds. Results demonstrated distinct analyte profiles between liquid and aerosol samples. Most notably, formaldehyde, acetaldehyde, acrolein, and siloxanes were found in the aerosol profiles; however, these compounds were never present in the solutions. These results implicate the aerosolization process in the formation of compounds not found in solutions; have potential implications for human health; and stress the need for an emphasis on electronic cigarette aerosol testing.

  4. [To the potential use of alcoholic cardiomyopathy echocardiography assessment of forming].

    PubMed

    Kryzhanovskiĭ, S A; Kolik, L G; Tsorin, I B; Ionova, E O; Stoliaruk, V N; Vititnova, M B; Nadorova, A V; Seredenin, S B

    2014-01-01

    Chronic alcohol abuse leads not only to a significant human psychic and social degradation, but also promotes the alcoholic cardiomyopathy formation, that is one of the leading causes of high mortality of alcoholics. However, to date in clinic there are no unified approaches in the prevention and treatment of alcoholic cardiomyopathy, first of all, due to the lack of the adequate model in the experimental pharmacology, which can assess the stages of formation of alcoholic cardiomyopathy objective and in real time, and thus create the basis for the search and study the mechanisms of action of drugs for the treatment of this serious disease. Studing the possibility of echocardiography using in experiments with rats exposed to prolonged forced alcoholism is one of the approaches to solve this problem. It was shown that the significant changes of intracardiac echocardiography hemodynamics corresponding to the known from the clinic, begining to form from the 20th week of systematic consumption of alcohol by rats. At this time interval the reduction in inotropic function of the heart in alcoholized rats compared to control is observed: fraction shortening (FS) is 41.9% (40.3-42.2) and 51.3% (48.8-59.1) respectively, and ejection fraction (EF) 78.8 (77.4-79.2) and 87.5% (84.6-92.4) respectively, p = 0.0215. The dilated heart failure develops in the rats from the 24 week of regular alcohol consumption, as evidenced not only by dynamic reducing of FS and FV, but also by the dilatation ofthe heart. For example, the end-systolic size of the left ventricle in animals consuming alcohol compared with control increased more than 2 times (4.31 mm (3.80-4.41) and 2.0 mm (1.85-2.36); p = 0.0008, and the end-diastolic dimension was 5.95 mm (5.13-6.37) and 4.52 mm (3.85-4.90) respectively; p = 0.0171. Thus, the echocardiographic picture characteristic for alcoholic dilated cardiomyopathy is formed by the end of the 24th week of chronic alcoholiation.

  5. Spindle-shaped Microstructures: Potential Models for Planktonic Life Forms on Other Worlds

    NASA Technical Reports Server (NTRS)

    Oehler, Dorothy Z.; Walsh, Maud M.; Sugitani, Kenichiro; House, Christopher H.

    2014-01-01

    Spindle-shaped, organic microstructures ("spindles") are now known from Archean cherts in three localities (Figs. 1-4): The 3 Ga Farrel Quartzite from the Pilbara of Australia [1]; the older, 3.3-3.4 Ga Strelley Pool Formation, also from the Pilbara of Australia [2]; and the 3.4 Ga Kromberg Formation of the Barberton Mountain Land of South Africa [3]. Though the spindles were previously speculated to be pseudofossils or epigenetic organic contaminants, a growing body of data suggests that these structures are bona fide microfossils and further, that they are syngenetic with the Archean cherts in which they occur [1-2, 4-10]. As such, the spindles are among some of the oldest-known organically preserved microfossils on Earth. Moreover, recent delta C-13 study of individual spindles from the Farrel Quartzite (using Secondary Ion Mass Spectrometry [SIMS]) suggests that the spindles may have been planktonic (living in open water), as opposed to benthic (living as bottom dwellers in contact with muds or sediments) [9]. Since most Precambrian microbiotas have been described from benthic, matforming communities, a planktonic lifestyle for the spindles suggests that these structures could represent a segment of the Archean biosphere that is poorly known. Here we synthesize the recent work on the spindles, and we add new observations regarding their geographic distribution, robustness, planktonic habit, and long-lived success. We then discuss their potential evolutionary and astrobiological significance.

  6. Assessment of reducing ozone forming potential for vehicles using liquefied petroleum gas as an alternative fuel

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Chung; Lo, Jiunn-Guang; Wang, Jia-Lin

    Liquefied petroleum gas (LPG) is currently used in a small fleet of taxis as an alternative fuel to gasoline in Taipei, Taiwan as part of an incentive program promoted by Taiwan EPA to improve urban air quality. Under the test procedure in accordance with the US FTP-75 protocol to simulate an average urban driving pattern, the exhaust from four LPG and four gasoline-powered vehicles was analyzed for the percent composition of NMHCs. Emission factors for individual NMHCs were apportioned from the emission factors of total hydrocarbon based on chemical composition of the exhaust from both types of vehicles. After adjusting for ozone formation potential (OFP) by maximum incremental reactivity, the average OFP for LPG vehicles was estimated to be only 52.8% (g-O 3/veh-km) of the gasoline vehicles, or 3.3% of ozone reduction in Taipei metropolitan area, should all taxis be converted to LPG fuel. Composition analysis of the local LPG revealed that propane, butane and isobutane were the three major components and negligible amounts of alkenes were also found. In addition, the leakage from a LPG service station was substantially smaller than from a gasoline service station because of the closed design with the LPG pumping systems.

  7. UVB radiation as a potential selective factor favoring microcystin producing bloom forming Cyanobacteria.

    PubMed

    Ding, Yi; Song, Lirong; Sedmak, Bojan

    2013-01-01

    Due to the stratospheric ozone depletion, several organisms will become exposed to increased biologically active UVB (280-320 nm) radiation, not only at polar but also at temperate and tropical latitudes. Bloom forming cyanobacteria are exposed to UVB radiation on a mass scale, particularly during the surface bloom and scum formation that can persist for long periods of time. All buoyant species of cyanobacteria are at least periodically exposed to higher irradiation during their vertical migration to the surface that usually occurs several times a day. The aim of this study is to assess the influence on cyanobacteria of UVB radiation at realistic environmental intensities. The effects of two UVB intensities of 0.5 and 0.99 W/m(2) in up to 0.5 cm water depth were studied in vitro on Microcystis aeruginosa strains, two microcystin producing and one non-producing. After UVB exposure their ability to proliferate was estimated by cell counting, while cell fitness and integrity were evaluated using light microscopy, autofluorescence and immunofluorescence. Gene damage was assessed by TUNEL assay and SYBR Green staining of the nucleoide area. We conclude that UVB exposure causes damage to the genetic material, cytoskeletal elements, higher sedimentation rates and consequent cell death. In contrast to microcystin producers (PCC7806 and FACHB905), the microcystin non-producing strain PCC7005 is more susceptible to the deleterious effects of radiation, with weak recovery ability. The ecological relevance of the results is discussed using data from eleven years' continuous UVB radiation measurements within the area of Ljubljana city (Slovenia, Central Europe). Our results suggest that increased solar radiation in temperate latitudes can have its strongest effect during cyanobacterial bloom formation in spring and early summer. UVB radiation in this period may significantly influence strain composition of cyanobacterial blooms in favor of microcystin producers.

  8. UVB Radiation as a Potential Selective Factor Favoring Microcystin Producing Bloom Forming Cyanobacteria

    PubMed Central

    Ding, Yi; Song, Lirong; Sedmak, Bojan

    2013-01-01

    Due to the stratospheric ozone depletion, several organisms will become exposed to increased biologically active UVB (280–320 nm) radiation, not only at polar but also at temperate and tropical latitudes. Bloom forming cyanobacteria are exposed to UVB radiation on a mass scale, particularly during the surface bloom and scum formation that can persist for long periods of time. All buoyant species of cyanobacteria are at least periodically exposed to higher irradiation during their vertical migration to the surface that usually occurs several times a day. The aim of this study is to assess the influence on cyanobacteria of UVB radiation at realistic environmental intensities. The effects of two UVB intensities of 0.5 and 0.99 W/m2 in up to 0.5 cm water depth were studied in vitro on Microcystis aeruginosa strains, two microcystin producing and one non-producing. After UVB exposure their ability to proliferate was estimated by cell counting, while cell fitness and integrity were evaluated using light microscopy, autofluorescence and immunofluorescence. Gene damage was assessed by TUNEL assay and SYBR Green staining of the nucleoide area. We conclude that UVB exposure causes damage to the genetic material, cytoskeletal elements, higher sedimentation rates and consequent cell death. In contrast to microcystin producers (PCC7806 and FACHB905), the microcystin non-producing strain PCC7005 is more susceptible to the deleterious effects of radiation, with weak recovery ability. The ecological relevance of the results is discussed using data from eleven years’ continuous UVB radiation measurements within the area of Ljubljana city (Slovenia, Central Europe). Our results suggest that increased solar radiation in temperate latitudes can have its strongest effect during cyanobacterial bloom formation in spring and early summer. UVB radiation in this period may significantly influence strain composition of cyanobacterial blooms in favor of microcystin producers. PMID

  9. Characterization of the dynamics of glass-forming liquids from the properties of the potential energy landscape.

    PubMed

    Banerjee, Sumilan; Dasgupta, Chandan

    2012-02-01

    We develop a framework for understanding the difference between strong and fragile behavior in the dynamics of glass-forming liquids from the properties of the potential energy landscape. Our approach is based on a master equation description of the activated jump dynamics among the local minima of the potential energy (the so-called inherent structures) that characterize the potential energy landscape of the system. We study the dynamics of a small atomic cluster using this description as well as molecular dynamics simulations and demonstrate the usefulness of our approach for this system. Many of the remarkable features of the complex dynamics of glassy systems emerge from the activated dynamics in the potential energy landscape of the atomic cluster. The dynamics of the system exhibits typical characteristics of a strong supercooled liquid when the system is allowed to explore the full configuration space. This behavior arises because the dynamics is dominated by a few lowest-lying minima of the potential energy and the potential energy barriers between these minima. When the system is constrained to explore only a limited region of the potential energy landscape that excludes the basins of attraction of a few lowest-lying minima, the dynamics is found to exhibit the characteristics of a fragile liquid.

  10. Properties of aerosol processed by ice clouds

    NASA Astrophysics Data System (ADS)

    Rudich, Y.; Adler, G.; Moise, T.; Erlick-Haspel, C.

    2012-12-01

    We suggest that highly porous aerosol (HPA) can form in the upper troposphere/lower stratosphere when ice particles encounter sub-saturation leading to ice sublimation similar to freeze drying. This process can occur at the lower layers of cirrus clouds (few km), at anvils of high convective clouds and thunderstorms, in clouds forming in atmospheric gravitational waves, in contrails and in high convective clouds injecting to the stratosphere. A new experimental system that simulates freeze drying of proxies for atmospheric aerosol at atmospheric pressure was constructed and various proxies for atmospheric soluble aerosol were studied. The properties of resulting HPA were characterized by various methods. It was found that the resulting aerosol have larger sizes (extent depends on substance and mixing), lower density (largevoid fraction), lower optical extinction and higher CCN activity and IN activity. Implication of HPA's unique properties and their atmospheric consequences to aerosol processing in ice clouds and to cloud cycles will be discussed.

  11. Impact of aftertreatment devices on primary emissions and secondary organic aerosol formation potential from in-use diesel vehicles: results from smog chamber experiments

    NASA Astrophysics Data System (ADS)

    Chirico, R.; Decarlo, P. F.; Heringa, M. F.; Tritscher, T.; Richter, R.; Prevot, A. S. H.; Dommen, J.; Weingartner, E.; Wehrle, G.; Gysel, M.; Laborde, M.; Baltensperger, U.

    2010-06-01

    Diesel particulate matter (DPM) is a significant source of aerosol in urban areas and has been linked to adverse health effects. Although newer European directives have introduced increasingly stringent standards for primary PM emissions, gaseous organics emitted from diesel cars can still lead to large amounts of secondary organic aerosol (SOA) in the atmosphere. Here we present results from smog chamber investigations characterizing the primary organic aerosol (POA) and the corresponding SOA formation at atmospherically relevant concentrations for three in-use diesel vehicles with different exhaust aftertreatment systems. One vehicle lacked exhaust aftertreatment devices, one vehicle was equipped with a diesel oxidation catalyst (DOC) and the final vehicle used both a DOC and diesel particulate filter (DPF). The experiments presented here were obtained from the vehicles at conditions representative of idle mode, and for one car in addition at a speed of 60 km/h. An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was used to measure the organic aerosol (OA) concentration and to obtain information on the chemical composition. For the conditions explored in this paper, primary aerosols from vehicles without a particulate filter consisted mainly of black carbon (BC) with a low fraction of organic matter (OM, OM/BC<0.5), while the subsequent aging by photooxidation resulted in a consistent production of SOA only for the vehicles without a DOC and with a deactivated DOC. After 5 h of aging ~80% of the total organic aerosol was on average secondary and the estimated "emission factor" for SOA was 0.23-0.56 g/kg fuel burned. In presence of both a DOC and a DPF, primary particles with a mobility diameter above 5 nm were 300±19 cm-3, and only 0.01 g SOA per kg fuel burned was produced within 5 h after lights on. The mass spectra indicate that POA was mostly a non-oxidized OA with an oxygen to carbon atomic ratio (O/C) ranging from 0.097 to 0

  12. Impact of aftertreatment devices on primary emissions and secondary organic aerosol formation potential from in-use diesel vehicles: results from smog chamber experiments

    NASA Astrophysics Data System (ADS)

    Chirico, R.; Decarlo, P. F.; Heringa, M. F.; Tritscher, T.; Richter, R.; Prévôt, A. S. H.; Dommen, J.; Weingartner, E.; Wehrle, G.; Gysel, M.; Laborde, M.; Baltensperger, U.

    2010-12-01

    Diesel particulate matter (DPM) is a significant source of aerosol in urban areas and has been linked to adverse health effects. Although newer European directives have introduced increasingly stringent standards for primary PM emissions, gaseous organics emitted from diesel cars can still lead to large amounts of secondary organic aerosol (SOA) in the atmosphere. Here we present results from smog chamber investigations characterizing the primary organic aerosol (POA) and the corresponding SOA formation at atmospherically relevant concentrations for three in-use diesel vehicles with different exhaust aftertreatment systems. One vehicle lacked exhaust aftertreatment devices, one vehicle was equipped with a diesel oxidation catalyst (DOC) and the third vehicle used both a DOC and diesel particulate filter (DPF). The experiments presented here were obtained from the vehicles at conditions representative of idle mode, and for one car in addition at a speed of 60 km/h. An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was used to measure the organic aerosol (OA) concentration and to obtain information on the chemical composition. For the conditions explored in this paper, primary aerosols from vehicles without a particulate filter consisted mainly of black carbon (BC) with a low fraction of organic matter (OM, OM/BC < 0.5), while the subsequent aging by photooxidation resulted in a consistent production of SOA only for the vehicles without a DOC and with a deactivated DOC. After 5 h of aging ~80% of the total organic aerosol was on average secondary and the estimated "emission factor" for SOA was 0.23-0.56 g/kg fuel burned. In presence of both a DOC and a DPF, only 0.01 g SOA per kg fuel burned was produced within 5 h after lights on. The mass spectra indicate that POA was mostly a non-oxidized OA with an oxygen to carbon atomic ratio (O/C) ranging from 0.10 to 0.19. Five hours of oxidation led to a more oxidized OA with an O/C range of 0

  13. Using the OMI Aerosol Index and Absorption Aerosol Optical Depth to evaluate the NASA MERRA Aerosol Reanalysis

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2014-12-01

    A radiative transfer interface has been developed to simulate the UV Aerosol Index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and Aerosol Absorption Optical Depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of Aerosol Optical Depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the Aerosol Robotic Network (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the South African and South American biomass burning regions indicates that revising the spectrally-dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  14. Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2015-05-01

    A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the AErosol RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  15. Tracing the potential planet-forming regions around seven pre-main-sequence stars

    NASA Astrophysics Data System (ADS)

    Schegerer, A. A.; Wolf, S.; Hummel, C. A.; Quanz, S. P.; Richichi, A.

    2009-07-01

    regions of these disks. We conclude from this observational result that more evolved dust grains can be found in the more central disk regions. Based on observations made with Telescopes of the European Organisation for Astronomical Research in the Southern Hemisphere (ESO) at the Paranal Observatory, Chile, under the programs 074.C-0342(A), 075.C-0064(A,B), 075.C-0413(A,B), and 076.C-0356(A). Appendix A is only available in electronic form at http://www.aanda.org

  16. The Potential of Dark Septate Endophytes to Form Root Symbioses with Ectomycorrhizal and Ericoid Mycorrhizal Middle European Forest Plants

    PubMed Central

    Lukešová, Tereza; Kohout, Petr; Větrovský, Tomáš; Vohník, Martin

    2015-01-01

    The unresolved ecophysiological significance of Dark Septate Endophytes (DSE) may be in part due to existence of morphologically indistinguishable cryptic species in the most common Phialocephala fortinii s. l.—Acephala applanata species complex (PAC). We inoculated three middle European forest plants (European blueberry, Norway spruce and silver birch) with 16 strains of eight PAC cryptic species and other DSE and ectomycorrhizal/ericoid mycorrhizal fungi and focused on intraradical structures possibly representing interfaces for plant-fungus nutrient transfer and on host growth response. The PAC species Acephala applanata simultaneously formed structures resembling ericoid mycorrhiza (ErM) and DSE microsclerotia in blueberry. A. macrosclerotiorum, a close relative to PAC, formed ectomycorrhizae with spruce but not with birch, and structures resembling ErM in blueberry. Phialocephala glacialis, another close relative to PAC, formed structures resembling ErM in blueberry. In blueberry, six PAC strains significantly decreased dry shoot biomass compared to ErM control. In birch, one A. macrosclerotiorum strain increased root biomass and the other shoot biomass in comparison with non-inoculated control. The dual mycorrhizal ability of A. macrosclerotiorum suggested that it may form mycorrhizal links between Ericaceae and Pinaceae. However, we were unable to detect this species in Ericaceae roots growing in a forest with presence of A. macrosclerotiorum ectomycorrhizae. Nevertheless, the diversity of Ericaceae mycobionts was high (380 OTUs) with individual sites often dominated by hitherto unreported helotialean and chaetothyrialean/verrucarialean species; in contrast, typical ErM fungi were either absent or low in abundance. Some DSE apparently have a potential to form mycorrhizae with typical middle European forest plants. However, except A. applanata, the tested representatives of all hitherto described PAC cryptic species formed typical DSE colonization without

  17. The potential of Dark Septate Endophytes to form root symbioses with ectomycorrhizal and ericoid mycorrhizal middle European forest plants.

    PubMed

    Lukešová, Tereza; Kohout, Petr; Větrovský, Tomáš; Vohník, Martin

    2015-01-01

    The unresolved ecophysiological significance of Dark Septate Endophytes (DSE) may be in part due to existence of morphologically indistinguishable cryptic species in the most common Phialocephala fortinii s. l.--Acephala applanata species complex (PAC). We inoculated three middle European forest plants (European blueberry, Norway spruce and silver birch) with 16 strains of eight PAC cryptic species and other DSE and ectomycorrhizal/ericoid mycorrhizal fungi and focused on intraradical structures possibly representing interfaces for plant-fungus nutrient transfer and on host growth response. The PAC species Acephala applanata simultaneously formed structures resembling ericoid mycorrhiza (ErM) and DSE microsclerotia in blueberry. A. macrosclerotiorum, a close relative to PAC, formed ectomycorrhizae with spruce but not with birch, and structures resembling ErM in blueberry. Phialocephala glacialis, another close relative to PAC, formed structures resembling ErM in blueberry. In blueberry, six PAC strains significantly decreased dry shoot biomass compared to ErM control. In birch, one A. macrosclerotiorum strain increased root biomass and the other shoot biomass in comparison with non-inoculated control. The dual mycorrhizal ability of A. macrosclerotiorum suggested that it may form mycorrhizal links between Ericaceae and Pinaceae. However, we were unable to detect this species in Ericaceae roots growing in a forest with presence of A. macrosclerotiorum ectomycorrhizae. Nevertheless, the diversity of Ericaceae mycobionts was high (380 OTUs) with individual sites often dominated by hitherto unreported helotialean and chaetothyrialean/verrucarialean species; in contrast, typical ErM fungi were either absent or low in abundance. Some DSE apparently have a potential to form mycorrhizae with typical middle European forest plants. However, except A. applanata, the tested representatives of all hitherto described PAC cryptic species formed typical DSE colonization without

  18. Effects of variety and nutrient availability on the acrylamide-forming potential of rye grain.

    PubMed

    Postles, Jennifer; Powers, Stephen J; Elmore, J Stephen; Mottram, Donald S; Halford, Nigel G

    2013-05-01

    Acrylamide is a probable human carcinogen that forms in plant-derived foods when free asparagine and reducing sugars react at high temperatures. The identification of rye varieties with low acrylamide-forming potential or agronomic conditions that produce raw material with low acrylamide precursor concentrations would reduce the acrylamide formed in baked rye foods without the need for additives or potentially costly changes to processes. This work compared five commercial rye varieties grown under a range of fertilisation regimes to investigate the effects of genotype and nutrient (nitrogen and sulphur) availability on the accumulation of acrylamide precursors. A strong correlation was established between the free asparagine concentration of grain and the acrylamide formed upon heating. The five rye varieties accumulated different concentrations of free asparagine in the grain, indicating that there is genetic control of this trait and that variety selection could be useful in reducing acrylamide levels in rye products. High levels of nitrogen fertilisation were found to increase the accumulation of free asparagine, showing that excessive nitrogen application should be avoided in order not to exacerbate the problem of acrylamide formation. This effect of nitrogen was mitigated in two of the varieties by the application of sulphur.

  19. Effects of variety and nutrient availability on the acrylamide-forming potential of rye grain

    PubMed Central

    Postles, Jennifer; Powers, Stephen J.; Elmore, J. Stephen; Mottram, Donald S.; Halford, Nigel G.

    2013-01-01

    Acrylamide is a probable human carcinogen that forms in plant-derived foods when free asparagine and reducing sugars react at high temperatures. The identification of rye varieties with low acrylamide-forming potential or agronomic conditions that produce raw material with low acrylamide precursor concentrations would reduce the acrylamide formed in baked rye foods without the need for additives or potentially costly changes to processes. This work compared five commercial rye varieties grown under a range of fertilisation regimes to investigate the effects of genotype and nutrient (nitrogen and sulphur) availability on the accumulation of acrylamide precursors. A strong correlation was established between the free asparagine concentration of grain and the acrylamide formed upon heating. The five rye varieties accumulated different concentrations of free asparagine in the grain, indicating that there is genetic control of this trait and that variety selection could be useful in reducing acrylamide levels in rye products. High levels of nitrogen fertilisation were found to increase the accumulation of free asparagine, showing that excessive nitrogen application should be avoided in order not to exacerbate the problem of acrylamide formation. This effect of nitrogen was mitigated in two of the varieties by the application of sulphur. PMID:23805028

  20. Multi-Parameter Aerosol Scattering Sensor

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.; Fischer, David G.

    2011-01-01

    This work relates to the development of sensors that measure specific aerosol properties. These properties are in the form of integrated moment distributions, i.e., total surface area, total mass, etc., or mathematical combinations of these moment distributions. Specifically, the innovation involves two fundamental features: a computational tool to design and optimize such sensors and the embodiment of these sensors in actual practice. The measurement of aerosol properties is a problem of general interest. Applications include, but are not limited to, environmental monitoring, assessment of human respiratory health, fire detection, emission characterization and control, and pollutant monitoring. The objectives for sensor development include increased accuracy and/or dynamic range, the inclusion in a single sensor of the ability to measure multiple aerosol properties, and developing an overall physical package that is rugged, compact, and low in power consumption, so as to enable deployment in harsh or confined field applications, and as distributed sensor networks. Existing instruments for this purpose include scattering photometers, direct-reading mass instruments, Beta absorption devices, differential mobility analyzers, and gravitational samplers. The family of sensors reported here is predicated on the interaction of light and matter; specifically, the scattering of light from distributions of aerosol particles. The particular arrangement of the sensor, e.g. the wavelength(s) of incident radiation, the number and location of optical detectors, etc., can be derived so as to optimize the sensor response to aerosol properties of practical interest. A key feature of the design is the potential embodiment as an extremely compact, integrated microsensor package. This is of fundamental importance, as it enables numerous previously inaccessible applications. The embodiment of these sensors is inherently low maintenance and high reliability by design. The novel and

  1. Development, Validation, and Potential Enhancements to the Second-Generation Operational Aerosol Product at the National Environmental Satellite, Data, and Information Service of the National Oceanic and Atmospheric Administration

    NASA Technical Reports Server (NTRS)

    Stowe, Larry L.; Ignatov, Alexander M.; Singh, Ramdas R.

    1997-01-01

    A revised (phase 2) single-channel algorithm for aerosol optical thickness, tau(sup A)(sub SAT), retrieval over oceans from radiances in channel 1 (0.63 microns) of the Advanced Very High Resolution Radiometer (AVHRR) has been implemented at the National Oceanic and Atmospheric Administration's National Environmental Satellite Data and Information Service for the NOAA 14 satellite launched December 30, 1994. It is based on careful validation of its operational predecessor (phase 1 algorithm), implemented for NOAA 14 in 1989. Both algorithms scale the upward satellite radiances in cloud-free conditions to aerosol optical thickness using an updated radiative transfer model of the ocean and atmosphere. Application of the phase 2 algorithm to three matchup Sun-photometer and satellite data sets, one with NOAA 9 in 1988 and two with NOAA 11 in 1989 and 1991, respectively, show systematic error is less than 10%, with a random error of sigma(sub tau) approx. equal 0.04. First results of tau(sup A)(sub SAT) retrievals from NOAA 14 using the phase 2 algorithm, and from checking its internal consistency, are presented. The potential two-channel (phase 3) algorithm for the retrieval of an aerosol size parameter, such as the Junge size distribution exponent, by adding either channel 2 (0.83 microns) from the current AVHRR instrument, or a 1.6-microns channel to be available on the Tropical Rainfall Measurement Mission and the NOAA-KLM satellites by 1997 is under investigation. The possibility of using this additional information in the retrieval of a more accurate estimate of aerosol optical thickness is being explored.

  2. Estimating Marine Aerosol Particle Volume and Number from Maritime Aerosol Network Data

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Smirnov, A.; Hsu, N. C.; Munchak, L. A.; Holben, B. N.

    2012-01-01

    As well as spectral aerosol optical depth (AOD), aerosol composition and concentration (number, volume, or mass) are of interest for a variety of applications. However, remote sensing of these quantities is more difficult than for AOD, as it is more sensitive to assumptions relating to aerosol composition. This study uses spectral AOD measured on Maritime Aerosol Network (MAN) cruises, with the additional constraint of a microphysical model for unpolluted maritime aerosol based on analysis of Aerosol Robotic Network (AERONET) inversions, to estimate these quantities over open ocean. When the MAN data are subset to those likely to be comprised of maritime aerosol, number and volume concentrations obtained are physically reasonable. Attempts to estimate surface concentration from columnar abundance, however, are shown to be limited by uncertainties in vertical distribution. Columnar AOD at 550 nm and aerosol number for unpolluted maritime cases are also compared with Moderate Resolution Imaging Spectroradiometer (MODIS) data, for both the present Collection 5.1 and forthcoming Collection 6. MODIS provides a best-fitting retrieval solution, as well as the average for several different solutions, with different aerosol microphysical models. The average solution MODIS dataset agrees more closely with MAN than the best solution dataset. Terra tends to retrieve lower aerosol number than MAN, and Aqua higher, linked with differences in the aerosol models commonly chosen. Collection 6 AOD is likely to agree more closely with MAN over open ocean than Collection 5.1. In situations where spectral AOD is measured accurately, and aerosol microphysical properties are reasonably well-constrained, estimates of aerosol number and volume using MAN or similar data would provide for a greater variety of potential comparisons with aerosol properties derived from satellite or chemistry transport model data.

  3. Apparatus for rapid measurement of aerosol bulk chemical composition

    DOEpatents

    Lee, Yin-Nan E.; Weber, Rodney J.

    2003-01-01

    An apparatus and method for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution are provided. The apparatus includes a modified particle size magnifier for producing activated aerosol particles and a collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical methods. The method provided for on-line measurement of chemical composition of aerosol particles includes exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.

  4. Apparatus for rapid measurement of aerosol bulk chemical composition

    DOEpatents

    Lee, Yin-Nan E.; Weber, Rodney J.; Orsini, Douglas

    2006-04-18

    An apparatus for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution is provided. The apparatus includes an enhanced particle size magnifier for producing activated aerosol particles and an enhanced collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical means. Methods for on-line measurement of chemical composition of aerosol particles are also provided, the method including exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; and flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.

  5. Aerosols and past environments: A global investigation into cave aerosol identification, distribution, and contribution to speleothem geochemistry

    NASA Astrophysics Data System (ADS)

    Dredge, J. A.; Fairchild, I. J.; Harrison, R. M.; Woodhead, J. D.; Hellstrom, J.; Mattey, D.

    2013-12-01

    A new sector of interest is developing within cave science regarding the influence of aerosols on the cave environment and the potential speleothem palaeoenvironmental aerosol record which may be preserved. This paper presents the results from a global collaboration project which explored all aspects of aerosols in the cave environment. Cave aerosol identification, introduction and distribution Cave aerosol multivariable environmental monitoring projects were carried out in the UK, Spain, Austria and Australia. Results demonstrate that cave ventilation is the predominant control on the introduction and distribution of aerosols throughout the cave environment (Dredge et al., 2013). Consequently, aerosol transportation processes vary as a result of seasonal ventilation changes and cave morphological features. Cave aerosol contribution to speleothem geochemistry Aerosol contributions to speleothem geochemistry were determined by comparing monitored aerosol deposition to speleothem trace element data. Significant aerosol contribution scenarios were identified as: hiatus events, high aerosol flux situations and secondary microbial concentration processes. Modelling indicates that a >99.9% reduction in drip water flow rates is required to reduce trace element supply quantities to equal that of aerosol supply (Dredge et al., 2013). Aerosol palaeoclimate and palaeoenvironmental records Aerosol contributions and the ability to utilise aerosol records in speleothem are investigated in samples from Gibraltar and Australia. Long range dust sources and past atmospheric circulation over several glacial cycles is studied through Sr isotope analysis of a Flowstone core from Gibraltar. Results of organic fire proxy analysis from Australian speleothem samples indicate an aerosol deposition forest fire record. In addition to primary fire deposition, secondary biological feedbacks and subsequent bioaccumulation processes in the cave environment are explored by microbial analysis

  6. A Global Data Assimilation System for Atmospheric Aerosol

    NASA Technical Reports Server (NTRS)

    daSilva, Arlindo

    1999-01-01

    We will give an overview of an aerosol data assimilation system which combines advances in remote sensing of atmospheric aerosols, aerosol modeling and data assimilation methodology to produce high spatial and temporal resolution 3D aerosol fields. Initially, the Goddard Aerosol Assimilation System (GAAS) will assimilate TOMS, AVHRR and AERONET observations; later we will include MODIS and MISR. This data assimilation capability will allows us to integrate complementing aerosol observations from these platforms, enabling the development of an assimilated aerosol climatology as well as a global aerosol forecasting system in support of field campaigns. Furthermore, this system provides an interactive retrieval framework for each aerosol observing satellites, in particular TOMS and AVHRR. The Goddard Aerosol Assimilation System (GAAS) takes advantage of recent advances in constituent data assimilation at DAO, including flow dependent parameterizations of error covariances and the proper consideration of model bias. For its prognostic transport model, GAAS will utilize the Goddard Ozone, Chemistry, Aerosol, Radiation and Transport (GOCART) model developed at NASA/GSFC Codes 916 and 910.3. GOCART includes the Lin-Rood flux-form, semi-Langrangian transport model with parameterized aerosol chemistry and physical processes for absorbing (dust and black carbon) and non-absorbing aerosols (sulfate and organic carbon). Observations and model fields are combined using a constituent version of DAO's Physical-space Statistical Analysis System (PSAS), including its adaptive quality control system. In this talk we describe the main components of this assimilation system and present preliminary results obtained by assimilating TOMS data.

  7. Aerosol volatility in a boreal forest environment

    NASA Astrophysics Data System (ADS)

    Häkkinen, S. A. K.; ńijälä, M.; Lehtipalo, K.; Junninen, H.; Virkkula, A.; Worsnop, D. R.; Kulmala, M.; Petäjä, T.; Riipinen, I.

    2012-04-01

    Climate and health effects of atmospheric aerosols are determined by their properties such as their chemical composition. Aerosol chemical composition can be studied indirectly by measuring volatility of aerosol particles. The volatility of submicron aerosol particles (20-500 nm) was studied in a boreal forest site at SMEAR II (Station for Measuring Ecosystem-Atmosphere Relations II) station (Vesala et al., 1998) in Hyytiälä, Finland, during 01/2008-05/2010. The instrument used for the measurements was VDMPS (Volatility Differential Mobility Particle Sizer), which consists of two separate instruments: DMPS (Differential Mobility Particle Sizer, Aalto et al., 2001) and TD (Thermodenuder, Wehner et al., 2002). Aerosol evaporation was examined by heating the aerosol and comparing the total aerosol mass before and after heating. In the VDMPS system ambient aerosol sample was heated up to temperatures ranging from 80 °C to 280 °C. The higher the heating temperature was the more aerosol material was evaporated. There was a non-volatile residual present in aerosol particles when heated up to 280 °C. This residual explained (20±8)% of the total aerosol mass. Aerosol non-volatile mass fraction was highest during winter and smallest during summer months. The role of black carbon in the observed non-volatile residual was determined. Black carbon explained 40 to 90% of the non-volatile mass. Especially during colder seasons noticeable amount of non-volatile material, something else than black carbon, was observed. According to Kalberer et al. (2004) some atmospheric organic species can form polymers that have high evaporation temperatures. Also low-volatile organic salts may contribute to the non-volatile aerosol (Smith et al., 2010). Aerosol mass composition measured directly with AMS (Aerosol Mass Spectrometer, Jayne et al., 2000) was analyzed in order to examine the properties of the non-volatile material (other than black carbon). The AMS measurements were performed

  8. In-cloud processes of methacrolein under simulated conditions - Part 3: Hygroscopic and volatility properties of the formed Secondary Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Michaud, V.; El Haddad, I.; Liu, Y.; Sellegri, K.; Laj, P.; Villani, P.; Picard, D.; Marchand, N.; Monod, A.

    2009-03-01

    The hygroscopic and volatility properties of SOA produced from the nebulization of solutions after aqueous phase photooxidation of methacrolein was experimentally studied in laboratory, using a Volatility-Hygroscopicity Tandem DMA (VHTDMA). The obtained SOA were 80% 100°C-volatile after 5 h of reaction and only 20% 100°C-volatile after 22 h of reaction. The Hygroscopic Growth Factor (HGF) of the SOA produced from the nebulization of solutions after aqueous-phase photooxidation of methacrolein is 1.34-1.43, which is significantly higher than the HGF of SOA formed by gas-phase phtooxidation of terpenes, usually found nearly hydrophobic. These hygroscopic properties were confirmed for SOA formed by the nebulization of the same solutions where NaCl was added. The hygroscopic properties of the cloud droplet residuals decrease with the reaction time, in parallel with the formation of more refractory compounds. This decrease was mainly attributed to the 250°C-refractive fraction (presumably representative of the highest molecular weigh compounds), evolved from moderately hygroscopic (HGF of 1.52) to less hygroscopic (HGF of 1.36). Oligomerization is suggested as a process responsible for the decrease of both volatility and hygroscopicity with time. The NaCl seeded experiments enabled us to show that 19±4 mg L-1 of SOA was produced after 9.5 h of reaction and 41±9 mg L-1 after 22 h of in-cloud reaction. Because more and more SOA is formed as the reaction time increases, our results show that the reaction products formed during the aqueous-phase OH-oxidation of methacrolein may play a major role in the properties of residual particles upon droplet's evaporation. Therefore, the specific physical properties of SOA produced during cloud processes should be taken into account for a global estimation of SOA and their atmospheric impacts.

  9. Global Atmospheric Aerosol Modeling

    NASA Technical Reports Server (NTRS)

    Hendricks, Johannes; Aquila, Valentina; Righi, Mattia

    2012-01-01

    Global aerosol models are used to study the distribution and properties of atmospheric aerosol particles as well as their effects on clouds, atmospheric chemistry, radiation, and climate. The present article provides an overview of the basic concepts of global atmospheric aerosol modeling and shows some examples from a global aerosol simulation. Particular emphasis is placed on the simulation of aerosol particles and their effects within global climate models.

  10. Climate-relevant physical properties of molecular constituents for isoprene-derived secondary organic aerosol material

    NASA Astrophysics Data System (ADS)

    Upshur, M. A.; Strick, B. F.; McNeill, V. F.; Thomson, R. J.; Geiger, F. M.

    2014-10-01

    Secondary organic aerosol (SOA) particles, formed from gas-phase biogenic volatile organic compounds (BVOCs), contribute large uncertainties to the radiative forcing that is associated with aerosols in the climate system. Reactive uptake of surface-active organic oxidation products of BVOCs at the gas-aerosol interface can potentially decrease the overall aerosol surface tension and therefore influence their propensity to act as cloud condensation nuclei (CCN). Here, we synthesize and measure some climate-relevant physical properties of SOA particle constituents consisting of the isoprene oxidation products α-, δ-, and cis- and trans-β-IEPOX (isoprene epoxide), as well as syn- and anti-2-methyltetraol. Following viscosity measurements, we use octanol-water partition coefficients to quantify the relative hydrophobicity of the oxidation products while dynamic surface tension measurements indicate that aqueous solutions of α- and trans-β-IEPOX exhibit significant surface tension depression. We hypothesize that the surface activity of these compounds may enhance aerosol CCN activity, and that trans-β-IEPOX may be highly relevant for surface chemistry of aerosol particles relative to other IEPOX isomers.

  11. Defense mechanisms of the respiratory system and aerosol production systems.

    PubMed

    Zarogoulidis, Paul; Darwiche, Kaid; Yarmus, Lonny; Spyratos, Dionysios; Secen, Nevena; Hohenforst-Schmidt, Wolfgang; Katsikogiannis, Nikolaos; Huang, Haidong; Gschwendtner, Andreas; Zarogoulidis, Konstantinos

    2014-03-01

    Aerosolized therapies have been used in everyday clinical practice for decades. Experimentation with different delivery systems have led to the creation of aerosolized insulin, antibiotics, gene therapy and chemotherapy. Several of these therapies are already clinically available while others are being investigated in active clinical trials. The main factors affecting the efficiency and safety of the aerosolized therapies are the production of the aerosol, distribution/deposition of the aerosol throughout the lung parenchyma, respiratory defense mechanisms and tissue/pharmaceutical molecule interactions. Current methods of aerosol production and distribution will be presented along with an overview of the respiratory defense mechanisms. In addition, methods of aerosol evaluation in conjunction with a future perspective of the potential development of aerosol therapies will be presented.

  12. Spatial and temporal distribution of Arctic aerosols: new insights from the CALIPSO satellite

    NASA Astrophysics Data System (ADS)

    Di Pierro, Maurizio

    The Arctic is a receptor of pollution transported from distant regions. Pollution reaches the Arctic both in gaseous and aerosol form, both of which have important climatic and ecological implications. This dissertation focuses on aerosols in the Arctic, specifically their transport to and their distribution in space and time within the arctic troposphere. The cornerstone of this thesis is the analysis of the retrievals made by the satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), a two-wavelength polarization-sensitive lidar that measures the atmospheric attenuated backscatter return and provides high-resolution vertical profiles of aerosols and clouds. Chapter 2 uses CALIOP observations to follow the evolution of pollution aerosols transported from East Asia to the Arctic. The transport pathway is elucidated with backtrajectories and aerosol simulations with the GEOS-Chem chemical transport model. The polluted air mass experiences strong ascent within a cyclonic circulation near the source region. Once in the free troposphere, a block in the upper-air flow forces the circulation to take on a strongly southerly route. Since the air mass reaches the Arctic very rapidly (3-5 days), the aerosol scavenging is incomplete. Transport is nearly-isentropic except in its initial phase. Once in the Arctic, the aerosol plume slowly subsides due to radiative cooling. Using six years of CALIOP observations, Chapter 3 focuses on the horizontal, vertical and temporal distribution of Arctic aerosols. At low altitudes in the High Arctic (poleward of 70°N), aerosol extinctions maximize in winter/early spring and reach their lowest values during summer. In the lower troposphere in the Low Arctic, in addition to the winter/early spring maximum, aerosol extinctions also display a secondary maximum in summer due to boreal forest fires. CALIOP measurements show that a major low-level Eurasian pollution transport pathway occurs on the western flank of the

  13. Influence of Aerosol Acidity on the Formation of Secondary Organic Aerosol from Biogenic Precursor Hydrocarbons

    EPA Science Inventory

    Secondary organic aerosol (SOA) formation and dynamics may be important factors for the role of aerosols in adverse health effects, visibility and climate change. Formation of SOA occurs when a parent volatile organic compound is oxidized to create products that form in a conden...

  14. Interannual variability of summertime aerosol optical depth over East Asia during 2000-2011: a potential influence from El Niño Southern Oscillation

    NASA Astrophysics Data System (ADS)

    Liu, Yikun; Liu, Junfeng; Tao, Shu

    2013-12-01

    Aerosols degrade air quality, perturb atmospheric radiation, and impact regional and global climate. Due to the rapid increase in anthropogenic emissions, aerosol loading over East Asia (EA) is markedly higher than other industrialized regions, which motivates a need to characterize the evolution of aerosols and understand the associated drivers. Based on the MISR satellite data during 2000-2011, a wave-like interannual variation of summertime aerosol optical depth (SAOD) is observed over the highly populated North China Plain (NCP) in East Asia. Specifically, the peak-to-trough ratio of SAOD ranges from 1.4 to 1.6, with a period of 3-4 years. This variation pattern differs apparently from what has been seen in EA emissions, indicating a periodic change in regional climate pattern during the past decade. Investigations of meteorological fields over the region reveal that the high SAOD is generally associated with the enhanced Philippine Sea Anticyclone Anomaly (PSAA) which weakens southeasterlies over northeastern EA and depresses air ventilation. Alternatively, higher temperature and lower relative humidity are found to be coincident with reduced SAOD. The behavior of PSAA has been found previously to be modulated by the El Niño Southern Oscillations (ENSO), therefore ENSO could disturb the EA SAOD as well. Rather than changing coherently with the ENSO activity, the SAOD peaks over NCP are found to be accompanied by the rapid transition of El Niño warm to cold phases developed four months ahead. An index measuring the development of ENSO during January-April is able to capture the interannual variability of SAOD over NCP during 2000-2011. This finding indicates a need to integrate the large-scale periodic climate variability in the design of regional air quality policy.

  15. Aerosol Cloud-Precipitation Interaction: Facts and Fiction

    NASA Astrophysics Data System (ADS)

    Cotton, W. R.; Levin, Z.

    2006-12-01

    In this talk we summarize the major findings and conclusions made in the WMO International Aerosol Precipitation Science Assessment Group (IAPSAG) report on aerosol impacts on precipitation. At the time of writing this abstract external reviews of the report have been received and by the time of the fall AGU meeting the final draft should be completed. The objective of the report is to stress the potential importance to the hydrological cycle of the effects of pollution on clouds and precipitation. We emphasize that once the precipitation cycle is altered in clouds by varying amounts of CCN, GCCN, and IN concentrations, the cloud responses can be vary nonlinear. Thus in some cases precipitation is decreased with increasing aerosols and others it is increased. Examples from modeling studies suggest that increased concentrations of CCN can lead to vertical redistributions in latent heating that can invigorate the updrafts of convective clouds and lead to large heavier raining storm systems. Other modeling studies indicate the opposite response and the indication is that it is due to the complex interplay of cold pools produced by storms and their mesoscale or large-scale environment. Thus it is dangerous to generalize that aerosols will always decrease or increase precipitation as the cloud response is a function of the variable large scale environment and the detailed nature of the cloud systems that form in those environments.

  16. Organosulfates as Tracers for Secondary Organic Aerosol (SOA) Formation from 2-Methyl-3-Buten-2-ol (MBO) in the Atmosphere

    PubMed Central

    2012-01-01

    2-Methyl-3-buten-2-ol (MBO) is an important biogenic volatile organic compound (BVOC) emitted by pine trees and a potential precursor of atmospheric secondary organic aerosol (SOA) in forested regions. In the present study, hydroxyl radical (OH)-initiated oxidation of MBO was examined in smog chambers under varied initial nitric oxide (NO) and aerosol acidity levels. Results indicate measurable SOA from MBO under low-NO conditions. Moreover, increasing aerosol acidity was found to enhance MBO SOA. Chemical characterization of laboratory-generated MBO SOA reveals that an organosulfate species (C5H12O6S, MW 200) formed and was substantially enhanced with elevated aerosol acidity. Ambient fine aerosol (PM2.5) samples collected from the BEARPEX campaign during 2007 and 2009, as well as from the BEACHON-RoMBAS campaign during 2011, were also analyzed. The MBO-derived organosulfate characterized from laboratory-generated aerosol was observed in PM2.5 collected from these campaigns, demonstrating that it is a molecular tracer for MBO-initiated SOA in the atmosphere. Furthermore, mass concentrations of the MBO-derived organosulfate are well correlated with MBO mixing ratio, temperature, and acidity in the field campaigns. Importantly, this compound accounted for an average of 0.25% and as high as 1% of the total organic aerosol mass during BEARPEX 2009. An epoxide intermediate generated under low-NO conditions is tentatively proposed to produce MBO SOA. PMID:22849588

  17. Organosulfates as tracers for secondary organic aerosol (SOA) formation from 2-methyl-3-buten-2-ol (MBO) in the atmosphere.

    PubMed

    Zhang, Haofei; Worton, David R; Lewandowski, Michael; Ortega, John; Rubitschun, Caitlin L; Park, Jeong-Hoo; Kristensen, Kasper; Campuzano-Jost, Pedro; Day, Douglas A; Jimenez, Jose L; Jaoui, Mohammed; Offenberg, John H; Kleindienst, Tadeusz E; Gilman, Jessica; Kuster, William C; de Gouw, Joost; Park, Changhyoun; Schade, Gunnar W; Frossard, Amanda A; Russell, Lynn; Kaser, Lisa; Jud, Werner; Hansel, Armin; Cappellin, Luca; Karl, Thomas; Glasius, Marianne; Guenther, Alex; Goldstein, Allen H; Seinfeld, John H; Gold, Avram; Kamens, Richard M; Surratt, Jason D

    2012-09-04

    2-Methyl-3-buten-2-ol (MBO) is an important biogenic volatile organic compound (BVOC) emitted by pine trees and a potential precursor of atmospheric secondary organic aerosol (SOA) in forested regions. In the present study, hydroxyl radical (OH)-initiated oxidation of MBO was examined in smog chambers under varied initial nitric oxide (NO) and aerosol acidity levels. Results indicate measurable SOA from MBO under low-NO conditions. Moreover, increasing aerosol acidity was found to enhance MBO SOA. Chemical characterization of laboratory-generated MBO SOA reveals that an organosulfate species (C(5)H(12)O(6)S, MW 200) formed and was substantially enhanced with elevated aerosol acidity. Ambient fine aerosol (PM(2.5)) samples collected from the BEARPEX campaign during 2007 and 2009, as well as from the BEACHON-RoMBAS campaign during 2011, were also analyzed. The MBO-derived organosulfate characterized from laboratory-generated aerosol was observed in PM(2.5) collected from these campaigns, demonstrating that it is a molecular tracer for MBO-initiated SOA in the atmosphere. Furthermore, mass concentrations of the MBO-derived organosulfate are well correlated with MBO mixing ratio, temperature, and acidity in the field campaigns. Importantly, this compound accounted for an average of 0.25% and as high as 1% of the total organic aerosol mass during BEARPEX 2009. An epoxide intermediate generated under low-NO conditions is tentatively proposed to produce MBO SOA.

  18. Aerosols in central California: Unexpectedly large contribution of coarse mode to aerosol radiative forcing

    NASA Astrophysics Data System (ADS)

    Kassianov, Evgueni; Pekour, Mikhail; Barnard, James

    2012-10-01

    The majority of previous studies dealing with effect of coarse mode aerosols (supermicron) on the radiation budget have focused primarily on regions where total aerosol loadings are substantial. We reexamine this effect for a relatively clean area using a unique 1-month dataset collected during the recent Carbonaceous Aerosol and Radiative Effects Study (CARES, June 2010) in the central California region near Sacramento. Here we define “clean” as aerosol optical depths less than 0.1 at 0.5 μm. We demonstrate that coarse mode particles contributed substantially (more than 50%) and frequently (up to 85% of time) to the total aerosol volume during this study. In contrast to conventional expectations that the radiative impact of coarse mode aerosols should be small for clean regions, we find that neglecting large particles may lead to significant overestimation, up to 45%, of direct aerosol radiative forcing despite very small aerosol optical depths. Our findings highlight the potential for substantial impacts of coarse mode aerosols on radiative properties over clean areas and the need for more explicit inclusion of coarse mode aerosols in climate-related observational studies.

  19. Excess TNF-α in the blood activates monocytes with the potential to directly form cholesteryl ester-laden cells.

    PubMed

    Zhu, Ming; Lei, Lei; Zhu, Zhenhua; Li, Qin; Guo, Dongqing; Xu, Jiajia; Chen, Jia; Sha, Huifang; Zhang, Xiaowei; Yang, Xinying; Song, Baoliang; Li, Boliang; Yan, Yan; Xiong, Ying

    2015-11-01

    The tumor necrosis factor-α (TNF-α) and monocytic cells play a critical role in the development of atherosclerosis, which is the major cause of coronary heart disease (CHD). In this work, we investigated the effect of excess TNF-α on monocytes in the blood and found that blood monocytes from the CHD patients had the potential to directly form cholesteryl ester (CE)-laden cells under the in vitro incubation with oxLDL. The plasma levels of proinflammatory cytokines, such as TNF-α, interleukin 6 (IL-6), and C reactive protein (CRP), in the CHD patients were significantly higher than those in the control healthy volunteers. However, only the plasma level of TNF-α, but not of IL-6 or CRP, is positively correlated with the potential of blood monocytes to directly form CE-laden cells. By using human blood monocytes and monocytic THP-1 cells, the activating effect of TNF-α on the formation of the CE-laden cells was demonstrated, which could be specifically blocked by the anti-TNF-α antibody. Furthermore, it was also revealed that TNF-α could boost adhesion and oxLDL uptake of the monocytes by enhancing the expression of the functional adhesion molecules and scavenger receptors, respectively. Finally, the results of in vivo and in vitro experiments with a mouse model confirmed that excess TNF-α in the blood activates monocytes with the potential to directly form CE-laden cells. These data demonstrate that excess TNF-α in the blood is the primary trigger for the development of atherosclerosis and CHD.

  20. Impact of Aerosols on Convective Clouds and Precipitation

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Chen, Jen-Ping; Li, Zhanqing; Wang, Chien; Zhang, Chidong; Li, Xiaowen

    2012-01-01

    Aerosols are a critical.factor in the atmospheric hydrological cycle and radiation budget. As a major agent for clouds to form and a significant attenuator of solar radiation, aerosols affect climate in several ways. Current research suggests that aerosols have a major impact on the dynamics, microphysics, and electrification properties of continental mixed-phase convective clouds. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing a significant source of cloud condensation nuclei (CCN). Such pollution . effects on precipitation potentially have enormous climatic consequences both in terms of feedbacks involving the land surface via rainfall as well as the surface energy budget and changes in latent heat input to the atmosphere. Basically, aerosol concentrations can influence cloud droplet size distributions, the warm-rain process, the cold-rain process, cloud-top heights, the depth of the mixed-phase region, and the occurrence of lightning. Recently, many cloud resolution models (CRMs) have been used to examine the role of aerosols on mixed-phase convective clouds. These modeling studies have many differences in terms of model configuration (two- or three-dimensional), domain size, grid spacing (150-3000 m), microphysics (two-moment bulk, simple or sophisticated spectral-bin), turbulence (1st or 1.5 order turbulent kinetic energy (TKE)), radiation, lateral boundary conditions (i.e., closed, radiative open or cyclic), cases (isolated convection, tropical or midlatitude squall lines) and model integration time (e.g., 2.5 to 48 hours). Among these modeling studies, the most striking difference is that cumulative precipitation can either increase or decrease in response to higher concentrations of CCN. In this presentation, we review past efforts and summarize our current understanding of the effect of aerosols on convective precipitation processes. Specifically, this paper addresses the following topics

  1. Nonlinear response of the surface electrostatic potential formed at metal oxide/electrolyte interfaces. A Monte Carlo simulation study

    SciTech Connect

    Zarzycki, Piotr P.; Rosso, Kevin M.

    2010-01-01

    An analysis of surface potential nonlinearity at metal oxide/electrolyte interfaces is presented. By using Grand Canonical Monte Carlo simulations of a simple lattice model of an interface, we show a correlation exists between ionic strength as well as surface site densities and the non-Nernstian response of a metal oxide electrode. We propose two approaches to deal with the 0-nonlinearity: one based on perturbative expansion of the Gibbs free energy and another based on assumption of the pH-dependence of surface potential slope. The theoretical anal ysis based on our new potential form gives excellent performance at extreme pH regions, where classical formulae based on the Poisson-Boltzmann equation fail. The new formula is general and independent of any underlying assumptions. For this reason, it can be directly applied to experimental surface potential measurements, including those for individual surfaces of single crystals, as we present for data reported by Kallay and Preocanin [Kallay, Preocanin J. Colloid and Interface20 Sci. 318 (2008) 290].

  2. Closed-form solution of mid-potential between two parallel charged plates with more extensive application

    NASA Astrophysics Data System (ADS)

    Shang, Xiang-Yu; Yang, Chen; Zhou, Guo-Qing

    2015-10-01

    Efficient calculation of the electrostatic interactions including repulsive force between charged molecules in a biomolecule system or charged particles in a colloidal system is necessary for the molecular scale or particle scale mechanical analyses of these systems. The electrostatic repulsive force depends on the mid-plane potential between two charged particles. Previous analytical solutions of the mid-plane potential, including those based on simplified assumptions and modern mathematic methods, are reviewed. It is shown that none of these solutions applies to wide ranges of inter-particle distance from 0 to 10 and surface potential from 1 to 10. Three previous analytical solutions are chosen to develop a semi-analytical solution which is proven to have more extensive applications. Furthermore, an empirical closed-form expression of mid-plane potential is proposed based on plenty of numerical solutions. This empirical solution has extensive applications, as well as high computational efficiency. Project supported by the National Key Basic Research Program of China (Grant No. 2012CB026103), the National Natural Science Foundation of China (Grant No. 51009136), and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2011212).

  3. Spatially Refined Aerosol Direct Radiative Forcing Efficiencies

    EPA Science Inventory

    Global aerosol direct radiative forcing (DRF) is an important metric for assessing potential climate impacts of future emissions changes. However, the radiative consequences of emissions perturbations are not readily quantified nor well understood at the level of detail necessary...

  4. Spatially Refined Aerosol Direct Radiative Focusing Efficiencies

    EPA Science Inventory

    Global aerosol direct radiative forcing (DRF) is an important metric for assessing potential climate impacts of future emissions changes. However, the radiative consequences of emissions perturbations are not readily quantified nor well understood at the level of detail necessary...

  5. A Study of Cloud Processing of Organic Aerosols Using Models and CHAPS Data

    SciTech Connect

    Ervens, Barbara

    2012-01-17

    The main theme of our work has been the identification of parameters that mostly affect the formation and modification of aerosol particles and their interaction with water vapor. Our detailed process model studies led to simplifications/parameterizations of these effects that bridge detailed aerosol information from laboratory and field studies and the need for computationally efficient expressions in complex atmospheric models. One focus of our studies has been organic aerosol mass that is formed in the atmosphere by physical and/or chemical processes (secondary organic aerosol, SOA) and represents a large fraction of atmospheric particulate matter. Most current models only describe SOA formation by condensation of low volatility (or semivolatile) gas phase products and neglect processes in the aqueous phase of particles or cloud droplets that differently affect aerosol size and vertical distribution and chemical composition (hygroscopicity). We developed and applied models of aqueous phase SOA formation in cloud droplets and aerosol particles (aqSOA). Placing our model results into the context of laboratory, model and field studies suggests a potentially significant contribution of aqSOA to the global organic mass loading. The second focus of our work has been the analysis of ambient data of particles that might act as cloud condensation nuclei (CCN) at different locations and emission scenarios. Our model studies showed that the description of particle chemical composition and mixing state can often be greatly simplified, in particular in aged aerosol. While over the past years many CCN studies have been successful performed by using such simplified composition/mixing state assumptions, much more uncertainty exists in aerosol-cloud interactions in cold clouds (ice or mixed-phase). Therefore we extended our parcel model that describes warm cloud formation by ice microphysics and explored microphysical parameters that determine the phase state and lifetime of

  6. Incremental Reactivity Effects on Secondary Organic Aerosol Formation in Urban Atmospheres with and without Biogenic Influence

    NASA Astrophysics Data System (ADS)

    Kacarab, Mary; Li, Lijie; Carter, William P. L.; Cocker, David R., III

    2016-04-01

    Two different surrogate mixtures of anthropogenic and biogenic volatile organic compounds (VOCs) were developed to study secondary organic aerosol (SOA) formation at atmospheric reactivities similar to urban regions with varying biogenic influence levels. Environmental chamber simulations were designed to enable the study of the incremental aerosol formation from select anthropogenic (m-Xylene, 1,2,4-Trimethylbenzene, and 1-Methylnaphthalene) and biogenic (α-pinene) precursors under the chemical reactivity set by the two different surrogate mixtures. The surrogate reactive organic gas (ROG) mixtures were based on that used to develop the maximum incremental reactivity (MIR) factors for evaluation of O3 forming potential. Multiple incremental aerosol formation experiments were performed in the University of California Riverside (UCR) College of Engineering Center for Environmental Research and Technology (CE-CERT) dual 90m3 environmental chambers. Incremental aerosol yields were determined for each of the VOCs studied and compared to yields found from single precursor studies. Aerosol physical properties of density, volatility, and hygroscopicity were monitored throughout experiments. Bulk elemental chemical composition from high-resolution time of flight aerosol mass spectrometer (HR-ToF-AMS) data will also be presented. Incremental yields and SOA chemical and physical characteristics will be compared with data from previous single VOC studies conducted for these aerosol precursors following traditional VOC/NOx chamber experiments. Evaluation of the incremental effects of VOCs on SOA formation and properties are paramount in evaluating how to best extrapolate environmental chamber observations to the ambient atmosphere and provides useful insights into current SOA formation models. Further, the comparison of incremental SOA from VOCs in varying surrogate urban atmospheres (with and without strong biogenic influence) allows for a unique perspective on the impacts

  7. Aerosol typing - key information from aerosol studies

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  8. Near real time vapor detection and enhancement using aerosol adsorption

    DOEpatents

    Novick, Vincent J.; Johnson, Stanley A.

    1999-01-01

    A vapor sample detection method where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample.

  9. Near real time vapor detection and enhancement using aerosol adsorption

    DOEpatents

    Novick, V.J.; Johnson, S.A.

    1999-08-03

    A vapor sample detection method is described where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample. 13 figs.

  10. Aerosol optical properties measurement by recently developed cavity-enhanced aerosol single scattering albedometer

    NASA Astrophysics Data System (ADS)

    Zhao, Weixiong; Xu, Xuezhe; Zhang, Qilei; Fang, Bo; Qian, Xiaodong; Chen, Weidong; Gao, Xiaoming; Zhang, Weijun

    2015-04-01

    Development of appropriate and well-adapted measurement technologies for real-time in-situ measurement of aerosol optical properties is an important step towards a more accurate and quantitative understanding of aerosol impacts on climate and the environment. Aerosol single scattering albedo (SSA, ω), the ratio between the scattering (αscat) and extinction (αext) coefficients, is an important optical parameter that governs the relative strength of the aerosol scattering and absorption capacity. Since the aerosol extinction coefficient is the sum of the absorption and scattering coefficients, a commonly used method for the determination of SSA is to separately measure two of the three optical parameters - absorption, scattering and extinction coefficients - with different instruments. However, as this method involves still different instruments for separate measurements of extinction and absorption coefficients under different sampling conditions, it might cause potential errors in the determination of SSA value, because aerosol optical properties are very sensitive to the sampling conditions such as temperature and relative humidity (RH). In this paper, we report on the development of a cavity-enhanced aerosol single scattering albedometer incorporating incoherent broad-band cavity-enhanced spectroscopy (IBBCEAS) and an integrating sphere (IS) for direct in-situ measurement of aerosol scattering and extinction coefficients on the exact same sample volume. The cavity-enhanced albedometer holds great promise for high-sensitivity and high-precision measurement of ambient aerosol scattering and extinction coefficients (hence absorption coefficient and SSA determination) and for absorbing trace gas concentration. In addition, simultaneous measurements of aerosol scattering and extinction coefficients enable a potential application for the retrieval of particle number size distribution and for faster retrieval of aerosols' complex RI. The albedometer was deployed to

  11. Characterization of aerosols produced by surgical procedures

    SciTech Connect

    Yeh, H.C.; Muggenburg, B.A.; Lundgren, D.L.; Guilmette, R.A.; Snipes, M.B.; Jones, R.K.; Turner, R.S.

    1994-07-01

    In many surgeries, especially orthopedic procedures, power tools such as saws and drills are used. These tools may produce aerosolized blood and other biological material from bone and soft tissues. Surgical lasers and electrocautery tools can also produce aerosols when tissues are vaporized and condensed. Studies have been reported in the literature concerning production of aerosols during surgery, and some of these aerosols may contain infectious material. Garden et al. (1988) reported the presence of papilloma virus DNA in the fumes produced from laser surgery, but the infectivity of the aerosol was not assessed. Moon and Nininger (1989) measured the size distribution and production rate of emissions from laser surgery and found that particles were generally less than 0.5 {mu}m diameter. More recently there has been concern expressed over the production of aerosolized blood during surgical procedures that require power tools. In an in vitro study, the production of an aerosol containing the human immunodeficiency virus (HIV) was reported when power tools were used to cut tissues with blood infected with HIV. Another study measured the size distribution of blood aerosols produced by surgical power tools and found blood-containing particles in a number of size ranges. Health care workers are anxious and concerned about whether surgically produced aerosols are inspirable and can contain viable pathogens such as HIV. Other pathogens such as hepatitis B virus (HBV) are also of concern. The Occupational Safety and Health funded a project at the National Institute for Inhalation Toxicology Research Institute to assess the extent of aerosolization of blood and other tissues during surgical procedures. This document reports details of the experimental and sampling approach, methods, analyses, and results on potential production of blood-associated aerosols from surgical procedures in the laboratory and in the hospital surgical suite.

  12. Geomorphology Toolbox for Assessing the Potential Effects of Land-use Change and Management Practices on Stream Form and Integrity

    NASA Astrophysics Data System (ADS)

    Raff, D. A.; Bledsoe, B. P.

    2004-12-01

    An important contribution that engineers and geomorphologists can make to environmental management is to develop techniques that empower non-specialists to make rational planning decisions within the context of a changing environment. Existing models can be used to assess the potential hydrologic effects of land-use change on receiving waters, but practical tools for translating these results into predictions regarding channel stability and effects on stream biota are currently unavailable to local planners. To improve watershed management in the context of changing land uses, we present a flexible, changeable package of mechanistic and statistical models to provide estimates of long-term changes in stream erosion potential, channel processes, and instream disturbance regime. These models are developed in Visual Basic for Applications/ Excel and contains a suite of stream / land-use management modules that are designed to operate with either continuous or single-event hydrologic input in a variety of formats. Based on input channel geometry and flow series, the various modules provide users with estimates of the following characteristics for pre- and post-land use change conditions: (1) the temporal distribution of hydraulic parameters including shear stress, specific stream power, and potential mobility of various particle sizes; (2) effective discharge / sediment yield; (3) potential changes in sediment transport and yield as a result of altered flow and sedimentation regimes; (4) frequency, depth, and duration of bed scour; (5) several geomorphically relevant hydrologic metrics relating to channel form, flow effectiveness and "flashiness". An attractive feature of this approach for stormwater management is a set of user-friendly tools to examine time-integrated sediment transport and scour characteristics across a range of flows and time periods associated with varying stormwater mitigation schemes. These modules give end users a suite of tools to compare the

  13. A Simple Model of Global Aerosol Indirect Effects

    SciTech Connect

    Ghan, Steven J.; Smith, Steven J.; Wang, Minghuai; Zhang, Kai; Pringle, K. J.; Carslaw, K. S.; Pierce, Jeffrey; Bauer, Susanne E.; Adams, P. J.

    2013-06-28

    Most estimates of the global mean indirect effect of anthropogenic aerosol on the Earth’s energy balance are from simulations by global models of the aerosol lifecycle coupled with global models of clouds and the hydrologic cycle. Extremely simple models have been developed for integrated assessment models, but lack the flexibility to distinguish between primary and secondary sources of aerosol. Here a simple but more physically-based model expresses the aerosol indirect effect using analytic representations of droplet nucleation, cloud and aerosol vertical structure, and horizontal variability in cloud water and aerosol concentration. Although the simple model is able to produce estimates of aerosol indirect effects that are comparable to those from some global aerosol models using the same global mean aerosol properties, the estimates are found to be sensitive to several uncertain parameters, including the preindustrial cloud condensation nuclei concentration, primary and secondary anthropogenic emissions, the size of the primary particles, the fraction of the secondary anthropogenic emissions that accumulates on the coarse mode, the fraction of the secondary mass that forms new particles, and the sensitivity of liquid water path to droplet number concentration. Aerosol indirect effects are surprisingly linear in emissions. This simple model provides a much stronger physical basis for representing aerosol indirect effects than previous representations in integrated assessment models designed to quickly explore the parameter space of emissions-climate interactions. The model also produces estimates that depend on parameter values in ways that are consistent with results from detailed global aerosol-climate simulation models.

  14. Asian Aerosols: A Geophysical Fluid Dynamics Laboratory general circulation model sensitivity study of model response to aerosol optical depth and aerosol absorption

    NASA Astrophysics Data System (ADS)

    Randles, C. A.; Ramaswamy, V.

    2007-12-01

    in northwestern India relative to the control run. In contrast, the presence of a purely scattering aerosol weakens the monsoonal circulation relative to the control run and inhibits precipitation in this same region. This study has potential implications for aerosol reduction strategies that seek to mitigate air pollution concerns. At higher optical depths, if absorbing aerosol is present, reduction of scattering aerosol alone may have a lesser effect on precipitation changes, implying that reductions in black carbon aerosol should be undertaken at the same time as reductions in sulfate aerosol.

  15. Hospital washbasin water: risk of Legionella-contaminated aerosol inhalation.

    PubMed

    Cassier, P; Landelle, C; Reyrolle, M; Nicolle, M C; Slimani, S; Etienne, J; Vanhems, P; Jarraud, S

    2013-12-01

    The contamination of aerosols by washbasin water colonized by Legionella in a hospital was evaluated. Aerosol samples were collected by two impingement technologies. Legionella was never detected by culture in all the (aerosol) samples. However, 45% (18/40) of aerosol samples were positive for Legionella spp. by polymerase chain reaction, with measurable concentrations in 10% of samples (4/40). Moreover, immunoassay detected Legionella pneumophila serogroup 1 and L. anisa, and potentially viable bacteria were seen on viability testing. These data suggest that colonized hospital washbasins could represent risks of exposure to Legionella aerosol inhalation, especially by immunocompromised patients.

  16. Change in global aerosol composition since preindustrial times

    NASA Astrophysics Data System (ADS)

    Tsigaridis, K.; Krol, M.; Dentener, F. J.; Balkanski, Y.; Lathière, J.; Metzger, S.; Hauglustaine, D. A.; Kanakidou, M.

    2006-06-01

    To elucidate human induced changes of aerosol load and composition in the atmosphere, a coupled aerosol and gas-phase chemistry transport model of the troposphere and lower stratosphere has been used. This is the first 3-d modeling study that focuses on aerosol chemical composition change since preindustrial times considering the secondary organic aerosol formation together with all other main aerosol components including nitrate. In particular, we evaluate non-sea-salt sulfate (nss-SO4=), ammonium (NH4+), nitrate (NO3-), black carbon (BC), sea-salt, dust, primary and secondary organics (POA and SOA) with a focus on the importance of secondary organic aerosols. Our calculations show that the aerosol optical depth (AOD) has increased by about 21% since preindustrial times. This enhancement of AOD is attributed to a rise in the atmospheric load of BC, nss-SO4=, NO3-, POA and SOA by factors of 3.3, 2.6, 2.7, 2.3 and 1.2, respectively, whereas we assumed that the natural dust and sea-salt sources remained constant. The nowadays increase in carbonaceous aerosol loading is dampened by a 34-42% faster conversion of hydrophobic to hydrophilic carbonaceous aerosol leading to higher removal rates. These changes between the various aerosol components resulted in significant modifications of the aerosol chemical composition. The relative importance of the various aerosol components is critical for the aerosol climatic effect, since atmospheric aerosols behave differently when their chemical composition changes. According to this study, the aerosol composition changed significantly over the different continents and with height since preindustrial times. The presence of anthropogenically emitted primary particles in the atmosphere facilitates the condensation of the semi-volatile species that form SOA onto the aerosol phase, particularly in the boundary layer. The SOA burden that is dominated by the natural component has increased by 24% while its contribution to the AOD has

  17. Change in global aerosol composition since preindustrial times

    NASA Astrophysics Data System (ADS)

    Tsigaridis, K.; Krol, M.; Dentener, F. J.; Balkanski, Y.; Lathière, J.; Metzger, S.; Hauglustaine, D. A.; Kanakidou, M.

    2006-11-01

    To elucidate human induced changes of aerosol load and composition in the atmosphere, a coupled aerosol and gas-phase chemistry transport model of the troposphere and lower stratosphere has been used. The present 3-D modeling study focuses on aerosol chemical composition change since preindustrial times considering the secondary organic aerosol formation together with all other main aerosol components including nitrate. In particular, we evaluate non-sea-salt sulfate (nss-SO4=), ammonium (NH4+), nitrate (NO3-), black carbon (BC), sea-salt, dust, primary and secondary organics (POA and SOA) with a focus on the importance of secondary organic aerosols. Our calculations show that the aerosol optical depth (AOD) has increased by about 21% since preindustrial times. This enhancement of AOD is attributed to a rise in the atmospheric load of BC, nss-SO4=, NO3aerosol loading is dampened by a 34-42% faster conversion of hydrophobic to hydrophilic carbonaceous aerosol leading to higher removal rates. These changes between the various aerosol components resulted in significant modifications of the aerosol chemical composition. The relative importance of the various aerosol components is critical for the aerosol climatic effect, since atmospheric aerosols behave differently when their chemical composition changes. According to this study, the aerosol composition changed significantly over the different continents and with height since preindustrial times. The presence of anthropogenically emitted primary particles in the atmosphere facilitates the condensation of the semi-volatile species that form SOA onto the aerosol phase, particularly in the boundary layer. The SOA burden that is dominated by the natural component has increased by 24% while its contribution to the AOD has increased

  18. Longwave radiative forcing by aqueous aerosols

    SciTech Connect

    Gaffney, J.S.; Marley, N.A.

    1995-01-01

    Recently, a great deal of interest has been focused on the role of aerosols in climatic change because of their potential cooling impacts due to light scattering. Recent advances in infrared spectroscopy using cylindrical internal reflectance have allowed the longwave absorption of dissolved aerosol species and the associated liquid water to be accurately determined and evaluated. Experimental measurements using these techniques have shown that dissolved sulfate, nitrate, and numerous other aerosol species will act to cause greenhouse effects. Preliminary calculations indicate that the longwave climate forcing (i.e., heating) for sulfate aerosol will be comparable in magnitude to the cooling effect produced by light scattering. However, more detailed modeling will clearly be needed to address the impact of the longwave forcing due to aerosols as a function of atmospheric height and composition. Their work has shown that aerosol composition will be important in determining longwave forcing, while shortwave forcing will be more related to the physical size of the aerosol droplets. On the basis of these studies, it is increasingly apparent that aerosols, fogs, and clouds play a key role in determining the radiative balance of the atmosphere and in controlling regional and global climates.

  19. Clinical and Pathological Findings Associated with Aerosol Exposure of Macaques to Ricin Toxin.

    PubMed

    Pincus, Seth H; Bhaskaran, Manoj; Brey, Robert N; Didier, Peter J; Doyle-Meyers, Lara A; Roy, Chad J

    2015-06-09

    Ricin is a potential bioweapon that could be used against civilian and military personnel. Aerosol exposure is the most likely route of contact to ricin toxin that will result in the most severe toxicity. Early recognition of ricin exposure is essential if specific antidotes are to be applied. Initial diagnosis will most likely be syndromic, i.e., fitting clinical and laboratory signs into a pattern which then will guide the choice of more specific diagnostic assays and therapeutic interventions. We have studied the pathology of ricin toxin in rhesus macaques exposed to lethal and sublethal ricin aerosols. Animals exposed to lethal ricin aerosols were followed clinically using telemetry, by clinical laboratory analyses and by post-mortem examination. Animals exposed to lethal aerosolized ricin developed fever associated with thermal instability, tachycardia, and dyspnea. In the peripheral blood a marked neutrophilia (without immature bands) developed at 24 h. This was accompanied by an increase in monocytes, but depletion of lymphocytes. Red cell indices indicated hemoconcentration, as did serum chemistries, with modest increases in sodium and blood urea nitrogen (BUN). Serum albumin was strikingly decreased. These observations are consistent with the pathological observations of fluid shifts to the lungs, in the form of hemorrhages, inflammatory exudates, and tissue edema. In macaques exposed to sublethal aerosols of ricin, late pathologic consequences included chronic pulmonary fibrosis, likely mediated by M2 macrophages. Early administration of supportive therapy, specific antidotes after exposure or vaccines prior to exposure have the potential to favorably alter this outcome.

  20. Basaltic fissure eruptions, plume heights, and atmospheric aerosols

    NASA Technical Reports Server (NTRS)

    Stothers, R. B.; Wolff, J. A.; Self, S.; Rampino, M. R.

    1986-01-01

    Convective plumes that rise above Hawaiian-style fire fountains consist of volcanic gases, aerosols, fine ash, and entrained heated air. Plume theory has been applied to observational estimates of the rate of thermal energy release from large fire fountains. The theoretically predicted heights of maintained plumes agree very well with the heights found from actual observations. Predicted plume heights for both central-vent (point-source) and fissure (line-source) eruptions indicate a stratospheric penetration by plumes that form over vents with very high magma-production rates. Flood basalt fissure eruptions that produce individual lava flows with volumes greater than 100 cu km at very high mass eruption rates are capable of injecting large quantities of sulfate aerosols into the lower stratosphere, with potentially drastic short-term atmospheric consequences, like acid precipitation, darkening of the sky, and climatic cooling.

  1. Simulations of Aerosol Microphysics in the NASA GEOS-5 Model

    NASA Technical Reports Server (NTRS)

    Colarco, Peter; Smith; Randles; daSilva

    2010-01-01

    Aerosol-cloud-chemistry interactions have potentially large but uncertain impacts on Earth's climate. One path to addressing these uncertainties is to construct models that incorporate various components of the Earth system and to test these models against data. To that end, we have previously incorporated the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) module online in the NASA Goddard Earth Observing System model (GEOS-5). GEOS-5 provides a platform for Earth system modeling, incorporating atmospheric and ocean general circulation models, a land surface model, a data assimilation system, and treatments of atmospheric chemistry and hydrologic cycle. Including GOCART online in this framework has provided a path for interactive aerosol-climate studies; however, GOCART only tracks the mass of aerosols as external mixtures and does not include the detailed treatments of aerosol size distribution and composition (internal mixtures) needed for aerosol-cloud-chemistry-climate studies. To address that need we have incorporated the Community Aerosol and Radiation Model for Atmospheres (CARMA) online in GEOS-5. CARMA is a sectional aerosol-cloud microphysical model, capable of treating both aerosol size and composition explicitly be resolving the aerosol distribution into a variable number of size and composition groupings. Here we present first simulations of dust, sea salt, and smoke aerosols in GEOS-5 as treated by CARMA. These simulations are compared to available aerosol satellite, ground, and aircraft data and as well compared to the simulated distributions in our current GOCART based system.

  2. High proliferative potential endothelial colony-forming cells contribute to hypoxia-induced pulmonary artery vasa vasorum neovascularization.

    PubMed

    Nijmeh, Hala; Balasubramaniam, Vivek; Burns, Nana; Ahmad, Aftab; Stenmark, Kurt R; Gerasimovskaya, Evgenia V

    2014-04-01

    Angiogenic expansion of the vasa vasorum (VV) is an important contributor to pulmonary vascular remodeling in the pathogenesis of pulmonary hypertension (PH). High proliferative potential endothelial progenitor-like cells have been described in vascular remodeling and angiogenesis in both systemic and pulmonary circulations. However, their role in hypoxia-induced pulmonary artery (PA) VV expansion in PH is not known. We hypothesized that profound PA VV neovascularization observed in a neonatal calf model of hypoxia-induced PH is due to increased numbers of subsets of high proliferative cells within the PA adventitial VV endothelial cells (VVEC). Using a single cell clonogenic assay, we found that high proliferative potential colony-forming cells (HPP-CFC) comprise a markedly higher percentage in VVEC populations isolated from the PA of hypoxic (VVEC-Hx) compared with control (VVEC-Co) calves. VVEC-Hx populations that comprised higher numbers of HPP-CFC also demonstrated markedly higher expression levels of CD31, CD105, and c-kit than VVEC-Co. In addition, significantly higher expression of CD31, CD105, and c-kit was observed in HPP-CFC vs. the VVEC of the control but not of hypoxic animals. HPP-CFC exhibited migratory and tube formation capabilities, two important attributes of angiogenic phenotype. Furthermore, HPP-CFC-Co and some HPP-CFC-Hx exhibited elevated telomerase activity, consistent with their high replicative potential, whereas a number of HPP-CFC-Hx exhibited impaired telomerase activity, suggestive of their senescence state. In conclusion, our data suggest that hypoxia-induced VV expansion involves an emergence of HPP-CFC populations of a distinct phenotype with increased angiogenic capabilities. These cells may serve as a potential target for regulating VVEC neovascularization.

  3. AEROSOL AND GAS MEASUREMENT

    EPA Science Inventory

    Measurements provide fundamental information for evaluating and managing the impact of aerosols on air quality. Specific measurements of aerosol concentration and their physical and chemical properties are required by different users to meet different user-community needs. Befo...

  4. Transient Sulfate Aerosols as a Signature of Exoplanet Volcanism.

    PubMed

    Misra, Amit; Krissansen-Totton, Joshua; Koehler, Matthew C; Sholes, Steven

    2015-06-01

    Geological activity is thought to be important for the origin of life and for maintaining planetary habitability. We show that transient sulfate aerosols could be a signature of exoplanet volcanism and therefore of a geologically active world. A detection of transient aerosols, if linked to volcanism, could thus aid in habitability evaluations of the exoplanet. On Earth, subduction-induced explosive eruptions inject SO2 directly into the stratosphere, leading to the formation of sulfate aerosols with lifetimes of months to years. We demonstrate that the rapid increase and gradual decrease in sulfate aerosol loading associated with these eruptions may be detectable in transit transmission spectra with future large-aperture telescopes, such as the James Webb Space Telescope (JWST) and European Extremely Large Telescope (E-ELT), for a planetary system at a distance of 10 pc, assuming an Earth-like atmosphere, bulk composition, and size. Specifically, we find that a signal-to-noise ratio of 12.1 and 7.1 could be achieved with E-ELT (assuming photon-limited noise) for an Earth analogue orbiting a Sun-like star and M5V star, respectively, even without multiple transits binned together. We propose that the detection of this transient signal would strongly suggest an exoplanet volcanic eruption, if potential false positives such as dust storms or bolide impacts can be ruled out. Furthermore, because scenarios exist in which O2 can form abiotically in the absence of volcanic activity, a detection of transient aerosols that can be linked to volcanism, along with a detection of O2, would be a more robust biosignature than O2 alone.

  5. Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO3− aerosol during the 2013 Southern Oxidant and Aerosol Study

    DOE PAGES

    Allen, H. M.; Draper, D. C.; Ayres, B. R.; ...

    2015-09-25

    Inorganic aerosol composition was measured in the southeastern United States, a region that exhibits high aerosol mass loading during the summer, as part of the 2013 Southern Oxidant and Aerosol Study (SOAS) campaign. Measurements using a Monitor for AeRosols and GAses (MARGA) revealed two periods of high aerosol nitrate (NO3−) concentrations during the campaign. These periods of high nitrate were correlated with increased concentrations of supermicron crustal and sea spray aerosol species, particularly Na+ and Ca2+, and with a shift towards aerosol with larger (1 to 2.5 μm) diameters. We suggest this nitrate aerosol forms by multiphase reactions of HNO3more » and particles, reactions that are facilitated by transport of crustal dust and sea spray aerosol from a source within the United States. The observed high aerosol acidity prevents the formation of NH4NO3, the inorganic nitrogen species often dominant in fine-mode aerosol at higher pH. In addition, calculation of the rate of the heterogeneous uptake of HNO3 on mineral aerosol supports the conclusion that aerosol NO3− is produced primarily by this process, and is likely limited by the availability of mineral cation-containing aerosol surface area. Modeling of NO3− and HNO3 by thermodynamic equilibrium models (ISORROPIA II and E-AIM) reveals the importance of including mineral cations in the southeastern United States to accurately balance ion species and predict gas–aerosol phase partitioning.« less

  6. Aerosol distribution apparatus

    DOEpatents

    Hanson, W.D.

    An apparatus for uniformly distributing an aerosol to a plurality of filters mounted in a plenum, wherein the aerosol and air are forced through a manifold system by means of a jet pump and released into the plenum through orifices in the manifold. The apparatus allows for the simultaneous aerosol-testing of all the filters in the plenum.

  7. Improved solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1988-07-19

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  8. Solid aerosol generator

    DOEpatents

    Prescott, Donald S.; Schober, Robert K.; Beller, John

    1992-01-01

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates.

  9. Solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1992-03-17

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration is disclosed. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  10. Suitability of a cytotoxicity assay for detection of potentially harmful compounds produced by freshwater bloom-forming algae.

    PubMed

    Sorichetti, Ryan J; McLaughlin, Jace T; Creed, Irena F; Trick, Charles G

    2014-01-01

    Detecting harmful bioactive compounds produced by bloom-forming pelagic algae is important to assess potential risks to public health. We investigated the application of a cell-based bioassay: the rainbow trout gill-w1 cytotoxicity assay (RCA) that detects changes in cell metabolism. The RCA was used to evaluate the cytotoxic effects of (1) six natural freshwater lake samples from cyanobacteria-rich lakes in central Ontario, Canada; (2) analytical standards of toxins and noxious compounds likely to be produced by the algal communities in these lakes; and (3) complex mixtures of compounds produced by cyanobacterial and chrysophyte cultures. RCA provided a measure of lake water toxicity that could not be reproduced using toxin or noxious compound standards. RCA was not sensitive to toxins and only sensitive to noxious compounds at concentrations higher than reported environmental averages (EC50≥10(3)nM). Cultured algae produced bioactive compounds that had recognizable dose dependent and toxic effects as indicated by RCA. Toxicity of these bioactive compounds depended on taxa (cyanobacteria, not chrysophytes), growth stage (stationary phase more toxic than exponential phase), location (intracellular more toxic than extracellular) and iron status (cells in high-iron treatment more toxic than cells in low-iron treatment). The RCA provides a new avenue of exploration and potential for the detection of natural lake algal toxic and noxious compounds.

  11. Aerosol Climate Time Series in ESA Aerosol_cci

    NASA Astrophysics Data System (ADS)

    Popp, Thomas; de Leeuw, Gerrit; Pinnock, Simon

    2016-04-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. Meanwhile, full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer, but also from ATSR instruments and the POLDER sensor), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which were also validated and improved in the reprocessing. For the three ATSR algorithms the use of an ensemble method was tested. The paper will summarize and discuss the status of dataset reprocessing and validation. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension

  12. Climate Change and Aerosol Feedbacks

    NASA Astrophysics Data System (ADS)

    Norman, Ann-Lise

    2008-05-01

    Climate instability is expected as mixing ratios of greenhouse gases in the Earth's atmosphere increase. The current trend in rising temperature can be related to anthropogenic greenhouse gas emissions. However, this trend may change as feedback mechanisms amplify; one of the least-understood aspects of climate change. Formation of cloud condensation nuclei from rising sulfate concentrations in the atmosphere may counteract the current warming trend. A key point is where the sulfate, and cloud condensation nuclei are formed. Is cloud formation widespread or localized near sulfate emission sources? A major source of atmospheric sulfate is dimethylsulfide, a compound related to biotic turnover in the surface ocean that constitutes a widespread natural source of aerosols over the remote ocean. A second major source contributing a significant proportion of atmospheric sulfate in the northern hemisphere is produced over continents from industrial activities and fossil fuel combustion. Distinguishing the source of sulfate in well-mixed air is important so that relationships with cloud formation, sea-ice in polar regions, and albedo can be explored. This distinction in sulfate sources can be achieved using isotope apportionment techniques. Recent measurements show an increase in biogenic sulfate coincident with rising temperatures in the Arctic and large amounts sulfur from DMS oxidation over the Atlantic, potentially indicating a widespread biotic feedback to warming over northern oceans.

  13. Identifying Aerosol Type/Mixture from Aerosol Absorption Properties Using AERONET

    NASA Technical Reports Server (NTRS)

    Giles, D. M.; Holben, B. N.; Eck, T. F.; Sinyuk, A.; Dickerson, R. R.; Thompson, A. M.; Slutsker, I.; Li, Z.; Tripathi, S. N.; Singh, R. P.; Zibordi, G.

    2010-01-01

    Aerosols are generated in the atmosphere through anthropogenic and natural mechanisms. These sources have signatures in the aerosol optical and microphysical properties that can be used to identify the aerosol type/mixture. Spectral aerosol absorption information (absorption Angstrom exponent; AAE) used in conjunction with the particle size parameterization (extinction Angstrom exponent; EAE) can only identify the dominant absorbing aerosol type in the sample volume (e.g., black carbon vs. iron oxides in dust). This AAE/EAE relationship can be expanded to also identify non-absorbing aerosol types/mixtures by applying an absorption weighting. This new relationship provides improved aerosol type distinction when the magnitude of absorption is not equal (e.g, black carbon vs. sulfates). The Aerosol Robotic Network (AERONET) data provide spectral aerosol optical depth and single scattering albedo - key parameters used to determine EAE and AAE. The proposed aerosol type/mixture relationship is demonstrated using the long-term data archive acquired at AERONET sites within various source regions. The preliminary analysis has found that dust, sulfate, organic carbon, and black carbon aerosol types/mixtures can be determined from this AAE/EAE relationship when applying the absorption weighting for each available wavelength (Le., 440, 675, 870nm). Large, non-spherical dust particles absorb in the shorter wavelengths and the application of 440nm wavelength absorption weighting produced the best particle type definition. Sulfate particles scatter light efficiently and organic carbon particles are small near the source and aggregate over time to form larger less absorbing particles. Both sulfates and organic carbon showed generally better definition using the 870nm wavelength absorption weighting. Black carbon generation results from varying combustion rates from a number of sources including industrial processes and biomass burning. Cases with primarily black carbon showed

  14. Crystalline Ceramic Waste Forms: Report Detailing Data Collection In Support Of Potential FY13 Pilot Scale Melter Test

    SciTech Connect

    Brinkman, K. S.; Amoroso, J.; Marra, J. C.; Fox, K. M.

    2012-09-21

    The research conducted in this work package is aimed at taking advantage of the long term thermodynamic stability of crystalline ceramics to create more durable waste forms (as compared to high level waste glass) in order to reduce the reliance on engineered and natural barrier systems. Durable ceramic waste forms that incorporate a wide range of radionuclides have the potential to broaden the available disposal options and to lower the storage and disposal costs associated with advanced fuel cycles. Assemblages of several titanate phases have been successfully demonstrated to incorporate radioactive waste elements, and the multiphase nature of these materials allows them to accommodate variation in the waste composition. Recent work has shown that they can be successfully produced from a melting and crystallization process. The objective of this report is to summarize the data collection in support of future melter demonstration testing for crystalline ceramic waste forms. The waste stream used as the basis for the development and testing is a combination of the projected Cs/Sr separated stream, the Trivalent Actinide - Lanthanide Separation by Phosphorous reagent Extraction from Aqueous Komplexes (TALSPEAK) waste stream consisting of lanthanide fission products, the transition metal fission product waste stream resulting from the transuranic extraction (TRUEX) process, and a high molybdenum concentration with relatively low noble metal concentrations. The principal difficulties encountered during processing of the ?reference ceramic? waste form by a melt and crystallization process were the incomplete incorporation of Cs into the hollandite phase and the presence of secondary Cs-Mo non-durable phases. In the single phase hollandite system, these issues were addressed in this study by refining the compositions to include Cr as a transition metal element and the use of Ti/TiO{sub 2} buffer to maintain reducing conditions. Initial viscosity studies of ceramic waste

  15. African Dust Aerosols as Atmospheric Ice Nuclei

    NASA Technical Reports Server (NTRS)

    DeMott, Paul J.; Brooks, Sarah D.; Prenni, Anthony J.; Kreidenweis, Sonia M.; Sassen, Kenneth; Poellot, Michael; Rogers, David C.; Baumgardner, Darrel

    2003-01-01

    Measurements of the ice nucleating ability of aerosol particles in air masses over Florida having sources from North Africa support the potential importance of dust aerosols for indirectly affecting cloud properties and climate. The concentrations of ice nuclei within dust layers at particle sizes below 1 pn exceeded 1/cu cm; the highest ever reported with our device at temperatures warmer than homogeneous freezing conditions. These measurements add to previous direct and indirect evidence of the ice nucleation efficiency of desert dust aerosols, but also confirm their contribution to ice nuclei populations at great distances from source regions.

  16. In situ observations of aerosol and chlorine monoxide after the 1991 eruption of Mount Pinatubo - Effect of reactions on sulfate aerosol

    NASA Technical Reports Server (NTRS)

    Wilson, J. C.; Jonsson, H. H.; Brock, C. A.; Toohey, D. W.; Avallone, L. M.; Baumgardner, D.; Dye, J. E.; Poole, L. R.; Woods, D. C.; Decoursey, R. J.

    1993-01-01

    Highly resolved aerosol size distributions measured from high-altitude aircraft can be used to describe the effect of the 1991 eruption of Mount Pinatubo on the stratospheric aerosol. In some air masses, aerosol mass mixing ratios increased by factors exceeding 100 and aerosol surface area concentrations increased by factors of 30 or more. Increases in aerosol surface area concentration were accompanied by increases in chlorine monoxide at mid-latitudes when confounding factors were controlled. This observation supports the assertion that reactions occurring on the aerosol can increase the fraction of stratospheric chlorine that occurs in ozone-destroying forms.

  17. Identification of aerosol composition from multi-wavelength lidar measurements

    NASA Technical Reports Server (NTRS)

    Wood, S. A.

    1984-01-01

    This paper seeks to develop the potential of lidar for the identification of the chemical composition of atmospheric aerosols. Available numerical computations suggest that aerosols can be identified by the wavelength dependence of aerosol optical properties. Since lidar can derive the volume backscatter coefficient as a function of wavelength, a multi-wavelength lidar system may be able to provide valuable information on the composition of aerosols. This research theoretically investigates the volume backscatter coefficients for the aerosol classes, sea-salts, and sulfates, as a function of wavelength. The results show that these aerosol compositions can be characterized and identified by their backscatter wavelength dependence. A method to utilize multi-wavelength lidar measurements to discriminate between compositionally different thin aerosol layers is discussed.

  18. Aerosol algorithm evaluation within aerosol-CCI

    NASA Astrophysics Data System (ADS)

    Kinne, Stefan; Schulz, Michael; Griesfeller, Jan

    Properties of aerosol retrievals from space are difficult. Even data from dedicated satellite sensors face contaminations which limit the accuracy of aerosol retrieval products. Issues are the identification of complete cloud-free scenes, the need to assume aerosol compositional features in an underdetermined solution space and the requirement to characterize the background at high accuracy. Usually the development of aerosol is a slow process, requiring continuous feedback from evaluations. To demonstrate maturity, these evaluations need to cover different regions and seasons and many different aerosol properties, because aerosol composition is quite diverse and highly variable in space and time, as atmospheric aerosol lifetimes are only a few days. Three years ago the ESA Climate Change Initiative started to support aerosol retrieval efforts in order to develop aerosol retrieval products for the climate community from underutilized ESA satellite sensors. The initial focus was on retrievals of AOD (a measure for the atmospheric column amount) and of Angstrom (a proxy for aerosol size) from the ATSR and MERIS sensors on ENVISAT. The goal was to offer retrieval products that are comparable or better in accuracy than commonly used NASA products of MODIS or MISR. Fortunately, accurate reference data of ground based sun-/sky-photometry networks exist. Thus, retrieval assessments could and were conducted independently by different evaluation groups. Here, results of these evaluations for the year 2008 are summarized. The capability of these newly developed retrievals is analyzed and quantified in scores. These scores allowed a ranking of competing efforts and also allow skill comparisons of these new retrievals against existing and commonly used retrievals.

  19. Atmospheric Ion-induced Aerosol Nucleation

    NASA Astrophysics Data System (ADS)

    Curtius, J.; Lovejoy, E. R.; Froyd, K. D.

    2006-08-01

    Ion-induced nucleation has been suggested to be a potentially important mechanism for atmospheric aerosol formation. Ions are formed in the background atmosphere by galactic cosmic rays. A possible connection between galactic cosmic rays and cloudiness has been However, the predictions of current atmospheric nucleation models are highly uncertain because the models are usually based on the liquid drop model that estimates cluster thermodynamics based on bulk properties (e.g., liquid drop density and surface tension). Sulfuric acid (H2SO4) and water are assumed to be the most important nucleating agents in the free troposphere. Measurements of the molecular thermodynamics for the growth and evaporation of cluster ions containing H2SO4 and H2O were performed using a temperature-controlled laminar flow reactor coupled to a linear quadrupole mass spectrometer as well as a temperature-controlled ion trap mass spectrometer. The measurements were complemented by quantum chemical calculations of the cluster ion structures. The analysis yielded a complete set of H2SO4 and H2O binding thermodynamics extending from molecular cluster ions to the bulk, based on experimental thermodynamics for the small clusters. The data were incorporated into a kinetic aerosol model to yield quantitative predictions of the rate of ion-induced nucleation for atmospheric conditions. The model predicts that the negative ion-H2SO4-H2O nucleation mechanism is an efficient source of new particles in the middle and upper troposphere.

  20. Cloud condensation nuclei (CCN) activity of aliphatic amine secondary aerosol

    NASA Astrophysics Data System (ADS)

    Tang, X.; Price, D.; Praske, E.; Vu, D. N.; Purvis-Roberts, K.; Silva, P. J.; Cocker, D. R., III; Asa-Awuku, A.

    2014-06-01

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g., hydroxyl radical and nitrate radical). The particle can contain both secondary organic aerosol (SOA) and inorganic salts. The ratio of organic to inorganic materials in the particulate phase influences aerosol hygroscopicity and cloud condensation nuclei (CCN) activity. SOA formed from trimethylamine (TMA) and butylamine (BA) reactions with hydroxyl radical (OH) is composed of organic material of low hygroscopicity (single hygroscopicity parameter, κ, ≤ 0.25). Secondary aerosol formed from the tertiary aliphatic amine (TMA) with N2O5 (source of nitrate radical, NO3) contains less volatile compounds than the primary aliphatic amine (BA) aerosol. As relative humidity (RH) increases, inorganic amine salts are formed as a result of acid-base reactions. The CCN activity of the humid TMA-N2O5 aerosol obeys Zdanovskii, Stokes, and Robinson (ZSR) ideal mixing rules. The humid BA + N2O5 aerosol products were found to be very sensitive to the temperature at which the measurements were made within the streamwise continuous-flow thermal gradient CCN counter; κ ranges from 0.4 to 0.7 dependent on the instrument supersaturation (ss) settings. The variance of the measured aerosol κ values indicates that simple ZSR rules cannot be applied to the CCN results from the primary aliphatic amine system. Overall, aliphatic amine aerosol systems' κ ranges within 0.2 < κ < 0.7. This work indicates that aerosols formed via nighttime reactions with amines are likely to produce hygroscopic and volatile aerosol, whereas photochemical reactions with OH produce secondary organic aerosol of lower CCN activity. The contributions of semivolatile secondary organic and inorganic material from aliphatic amines must be considered for accurate hygroscopicity and CCN predictions from aliphatic amine systems.

  1. Aerosol growth in Titan's ionosphere through particle charging

    NASA Astrophysics Data System (ADS)

    Lavvas, P.; Yelle, R. V.; Koskinen, T.; Bazin, A.; Vuitton, V.; Vigren, E.; Galand, M. F.; Wellbrock, A.; Coates, A. J.; Wahlund, J.; Crary, F.; Snowden, D. S.

    2012-12-01

    Observations of Titan's lower thermosphere and ionosphere by Cassini instruments demonstrate the presence of large mass negative ions of a few thousand amu, and the presence of positive ions up to a few hundred amu [1,2]. The mechanisms though responsible for the production of these large ions have so far remained elusive. A recent Titan flyby that probed deeper layers of Titan's thermosphere than usual, revealed a discrepancy in the observed positive ion and electron density, with the electron density lower than the abundance required to satisfy charge balance [3]. The remaining electron density was found in the form of the large mass negative ions. Aerosols can be charged on interaction with electrons and ions, while this charge can affect the particle coagulation, thus, their subsequent growth. Given the above observations we investigate here the potential role of aerosols in Titan's ionosphere and how this interaction affects the aerosol evolution. This investigation is performed with the use of a model that couples between the ionospheric photochemical evolution and the microphysical growth of aerosols in a self-consistent approach. Our results show that particle charging has an important role in the ionosphere. Most of the produced particles in the ionosphere attain a negative charge. Thus, they act as a sink for the free electrons with the remaining free electron densities consistent with the recent Cassini observations. Being negatively charged, the particles repel each other reducing in this way the coagulation rates and the growth of the aerosols. On the other hand, the negatively charged particles attract the abundant positive ions, which results to enhanced collisions between them. The mass added to the particles by the ions leads to an increase in their size and an increase in the resulting mass flux of the aerosols. Our simulated mass per charge spectra provide excellent fits to the observed positive and negative ion spectra from the Cassini Plasma

  2. Secondary organic aerosol formation from idling gasoline passenger vehicle emissions investigated in a smog chamber

    NASA Astrophysics Data System (ADS)

    Nordin, E. Z.; Eriksson, A. C.; Roldin, P.; Nilsson, P. T.; Carlsson, J. E.; Kajos, M. K.; Hellén, H.; Wittbom, C.; Rissler, J.; Löndahl, J.; Swietlicki, E.; Svenningsson, B.; Bohgard, M.; Kulmala, M.; Hallquist, M.; Pagels, J. H.

    2013-06-01

    Gasoline vehicles have recently been pointed out as potentially the main source of anthropogenic secondary organic aerosol (SOA) in megacities. However, there is a lack of laboratory studies to systematically investigate SOA formation in real-world exhaust. In this study, SOA formation from pure aromatic precursors, idling and cold start gasoline exhaust from three passenger vehicles (EURO2-EURO4) were investigated with photo-oxidation experiments in a 6 m3 smog chamber. The experiments were carried out down to atmospherically relevant organic aerosol mass concentrations. The characterization instruments included a high-resolution aerosol mass spectrometer and a proton transfer mass spectrometer. It was found that gasoline exhaust readily forms SOA with a signature aerosol mass spectrum similar to the oxidized organic aerosol that commonly dominates the organic aerosol mass spectra downwind of urban areas. After a cumulative OH exposure of ~5 × 106 cm-3 h, the formed SOA was 1-2 orders of magnitude higher than the primary OA emissions. The SOA mass spectrum from a relevant mixture of traditional light aromatic precursors gave f43 (mass fraction at m/z = 43), approximately two times higher than to the gasoline SOA. However O : C and H : C ratios were similar for the two cases. Classical C6-C9 light aromatic precursors were responsible for up to 60% of the formed SOA, which is significantly higher than for diesel exhaust. Important candidates for additional precursors are higher-order aromatic compounds such as C10 and C11 light aromatics, naphthalene and methyl-naphthalenes. We conclude that approaches using only light aromatic precursors give an incomplete picture of the magnitude of SOA formation and the SOA composition from gasoline exhaust.

  3. Secondary organic aerosol formation from gasoline passenger vehicle emissions investigated in a smog chamber

    NASA Astrophysics Data System (ADS)

    Nordin, E. Z.; Eriksson, A. C.; Roldin, P.; Nilsson, P. T.; Carlsson, J. E.; Kajos, M. K.; Hellén, H.; Wittbom, C.; Rissler, J.; Löndahl, J.; Swietlicki, E.; Svenningsson, B.; Bohgard, M.; Kulmala, M.; Hallquist, M.; Pagels, J.

    2012-12-01

    Gasoline vehicles have elevated emissions of volatile organic compounds during cold starts and idling and have recently been pointed out as potentially the main source of anthropogenic secondary organic aerosol (SOA) in megacities. However, there is a lack of laboratory studies to systematically investigate SOA formation in real-world exhaust. In this study, SOA formation from pure aromatic precursors, idling and cold start gasoline exhaust from one Euro II, one Euro III and one Euro IV passenger vehicles were investigated using photo-oxidation experiments in a 6 m3 smog chamber. The experiments were carried out at atmospherically relevant organic aerosol mass concentrations. The characterization methods included a high resolution aerosol mass spectrometer and a proton transfer mass spectrometer. It was found that gasoline exhaust readily forms SOA with a signature aerosol mass spectrum similar to the oxidized organic aerosol that commonly dominates the organic aerosol mass spectra downwind urban areas. After 4 h aging the formed SOA was 1-2 orders of magnitude higher than the Primary OA emissions. The SOA mass spectrum from a relevant mixture of traditional light aromatic precursors gave f43 (mass fraction at m/z = 4 3) approximately two times higher than to the gasoline SOA. However O : C and H : C ratios were similar for the two cases. Classical C6-C9 light aromatic precursors were responsible for up to 60% of the formed SOA, which is significantly higher than for diesel exhaust. Important candidates for additional precursors are higher order aromatic compounds such as C10, C11 light aromatics, naphthalene and methyl-naphthalenes.

  4. Phase transformation and growth of hygroscopic aerosols

    SciTech Connect

    Tang, I.N.

    1995-09-01

    Ambient aerosols frequently contain large portions of hygroscopic inorganic salts such as chlorides, nitrates, and sulfates in either pure or mixed forms. Such inorganic salt aerosols exhibit the properties of deliquescence and efflorescence in air. The phase transformation from a solid particle to a saline droplet usually occurs spontaneously when the relative humidity of the atmosphere reaches a level specific to the chemical composition of the aerosol particle. Conversely, when the relative humidity decreases and becomes low enough, the saline droplet will evaporate and suddenly crystallize, expelling all its water content. The phase transformation and growth of aerosols play an important role in many atmospheric processes affecting air quality, visibility degradation, and climate changes. In this chapter, an exposition of the underlying thermodynamic principles is given, and recent advances in experimental methods utilizing single-particle levitation are discussed. In addition, pertinent and available thermodynamic data, which are needed for predicting the deliquescence properties of single and multi-component aerosols, are compiled. This chapter is useful to research scientists who are either interested in pursuing further studies of aerosol thermodynamics, or required to model the dynamic behavior of hygroscopic aerosols in a humid environment.

  5. Electrically Driven Technologies for Radioactive Aerosol Abatement

    SciTech Connect

    David W. DePaoli; Ofodike A. Ezekoye; Costas Tsouris; Valmor F. de Almeida

    2003-01-28

    The purpose of this research project was to develop an improved understanding of how electriexecy driven processes, including electrocoalescence, acoustic agglomeration, and electric filtration, may be employed to efficiently treat problems caused by the formation of aerosols during DOE waste treatment operations. The production of aerosols during treatment and retrieval operations in radioactive waste tanks and during thermal treatment operations such as calcination presents a significant problem of cost, worker exposure, potential for release, and increased waste volume.

  6. Mechanisms of the different DNA adduct forming potentials of the urban air pollutants 2-nitrobenzanthrone and carcinogenic 3-nitrobenzanthrone.

    PubMed

    Stiborová, Marie; Martínek, Václav; Svobodová, Martina; Sístková, Jana; Dvorák, Zdenek; Ulrichová, Jitka; Simánek, Vilím; Frei, Eva; Schmeiser, Heinz H; Phillips, David H; Arlt, Volker M

    2010-07-19

    2-Nitrobenzanthrone (2-NBA) has recently been detected in ambient air particulate matter. Its isomer 3-nitrobenzanthrone (3-NBA) is a potent mutagen and suspected human carcinogen identified in diesel exhaust. We compared the efficiencies of human enzymatic systems [hepatic microsomes and cytosols, NAD(P)H:quinone oxidoreductase 1 (NQO1), xanthine oxidase, NADPH:cytochrome P450 reductase, N,O-acetyltransferases, and sulfotransferases] and human primary hepatocytes to activate 2-NBA and its isomer 3-NBA to species forming DNA adducts. In contrast to 3-NBA, 2-NBA was not metabolized at detectable levels by the tested human enzymatic systems and enzymes expressed in human hepatocytes, and no DNA adducts detectable by (32)P-postlabeling were generated by 2-NBA. Even NQO1, the most efficient human enzyme to bioactive 3-NBA, did not activate 2-NBA. Molecular docking of 2-NBA and 3-NBA to the active site of NQO1 showed similar binding affinities; however, the binding orientation of 2-NBA does not favor the reduction of the nitro group. This was in line with the inhibition of 3-NBA-DNA adduct formation by 2-NBA, indicating that 2-NBA can compete with 3-NBA for binding to NQO1, thereby decreasing the metabolic activation of 3-NBA. In addition, the predicted equilibrium conditions favor a 3 orders of magnitude higher dissociation of N-OH-3-ABA in comparison to N-OH-2-ABA. These findings explain the very different genotoxicity, mutagenicity, and DNA adduct forming potential of the two compounds. Collectively, our results suggest that 2-NBA possesses a relatively lower risk to humans than 3-NBA.

  7. Coherent Evaluation of Aerosol Data Products from Multiple Satellite Sensors

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles

    2011-01-01

    Aerosol retrieval from satellite has practically become routine, especially during the last decade. However, there is often disagreement between similar aerosol parameters retrieved from different sensors, thereby leaving users confused as to which sensors to trust for answering important science questions about the distribution, properties, and impacts of aerosols. As long as there is no consensus, and the inconsistencies are not well characterized and understood, there will be no way of developing reliable model inputs and climate data records from satellite aerosol measurements. Fortunately, the Aerosol Robotic Network (AERONET) is providing well-calibrated globally representative ground-based aerosol measurements corresponding to the satellite-retrieved products. Through a recently developed web-based Multi-sensor Aerosol Products Sampling System (MAPSS), we are utilizing the advantages offered by collocated AERONET and satellite products to characterize and evaluate aerosol retrieval from multiple sensors. Indeed, MAPSS and its companion statistical tool AeroStat are facilitating detailed comparative uncertainty analysis of satellite aerosol measurements from Terra-MODIS, Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, and Calipso-CALIOP. In this presentation, we will describe the strategy of the MAPSS system, its potential advantages for the aerosol community, and the preliminary results of an integrated comparative uncertainly analysis of aerosol products from multiple satellite sensors.

  8. Stratospheric Aerosol--Observations, Processes, and Impact on Climate

    NASA Technical Reports Server (NTRS)

    Kresmer, Stefanie; Thomason, Larry W.; von Hobe, Marc; Hermann, Markus; Deshler, Terry; Timmreck, Claudia; Toohey, Matthew; Stenke, Andrea; Schwarz, Joshua P.; Weigel, Ralf; Fueglistaler, Stephan; Prata, Fred J.; Vernier, Jean-Paul; Schlager, Hans; Barnes, John E.; Antuna-Marrero, Juan-Carlos; Fairlie, Duncan; Palm, Mathias; Mahieu, Emmanuel; Notholt, Justus; Rex, Markus; Bingen, Christine; Vanhellemont, Filip; Bourassa, Adam; Plane, John M. C.; Klocke, Daniel; Carn, Simon A.; Clarisse, Lieven; Trickl, Thomas; Neeley, Ryan; James, Alexander D.; Rieger, Landon; Wilson, James C.; Meland, Brian

    2016-01-01

    Interest in stratospheric aerosol and its role in climate have increased over the last decade due to the observed increase in stratospheric aerosol since 2000 and the potential for changes in the sulfur cycle induced by climate change. This review provides an overview about the advances in stratospheric aerosol research since the last comprehensive assessment of stratospheric aerosol was published in 2006. A crucial development since 2006 is the substantial improvement in the agreement between in situ and space-based inferences of stratospheric aerosol properties during volcanically quiescent periods. Furthermore, new measurement systems and techniques, both in situ and space based, have been developed for measuring physical aerosol properties with greater accuracy and for characterizing aerosol composition. However, these changes induce challenges to constructing a long-term stratospheric aerosol climatology. Currently, changes in stratospheric aerosol levels less than 20% cannot be confidently quantified. The volcanic signals tend to mask any nonvolcanically driven change, making them difficult to understand. While the role of carbonyl sulfide as a substantial and relatively constant source of stratospheric sulfur has been confirmed by new observations and model simulations, large uncertainties remain with respect to the contribution from anthropogenic sulfur dioxide emissions. New evidence has been provided that stratospheric aerosol can also contain small amounts of nonsulfatematter such as black carbon and organics. Chemistry-climate models have substantially increased in quantity and sophistication. In many models the implementation of stratospheric aerosol processes is coupled to radiation and/or stratospheric chemistry modules to account for relevant feedback processes.

  9. Nozzles for Focusing Aerosol Particles

    DTIC Science & Technology

    2009-10-01

    control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE ( DD -MM-YYYY) October 2009 2. REPORT TYPE Final 3. DATES...Figures Figure 1. The design of the first-generation aerodynamic focusing nozzle for aerosol particles used for SPFS and TAOS instrument prototypes...Some nozzles were fabricated in aluminum and some in steel. It has been used for SPFS and TAOS measurement technologies both in the laboratory and

  10. Aerosol retrieval experiments in the ESA Aerosol_cci project

    NASA Astrophysics Data System (ADS)

    Holzer-Popp, T.; de Leeuw, G.; Griesfeller, J.; Martynenko, D.; Klüser, L.; Bevan, S.; Davies, W.; Ducos, F.; Deuzé, J. L.; Graigner, R. G.; Heckel, A.; von Hoyningen-Hüne, W.; Kolmonen, P.; Litvinov, P.; North, P.; Poulsen, C. A.; Ramon, D.; Siddans, R.; Sogacheva, L.; Tanre, D.; Thomas, G. E.; Vountas, M.; Descloitres, J.; Griesfeller, J.; Kinne, S.; Schulz, M.; Pinnock, S.

    2013-08-01

    Within the ESA Climate Change Initiative (CCI) project Aerosol_cci (2010-2013), algorithms for the production of long-term total column aerosol optical depth (AOD) datasets from European Earth Observation sensors are developed. Starting with eight existing pre-cursor algorithms three analysis steps are conducted to improve and qualify the algorithms: (1) a series of experiments applied to one month of global data to understand several major sensitivities to assumptions needed due to the ill-posed nature of the underlying inversion problem, (2) a round robin exercise of "best" versions of each of these algorithms (defined using the step 1 outcome) applied to four months of global data to identify mature algorithms, and (3) a comprehensive validation exercise applied to one complete year of global data produced by the algorithms selected as mature based on the round robin exercise. The algorithms tested included four using AATSR, three using MERIS and one using PARASOL. This paper summarizes the first step. Three experiments were conducted to assess the potential impact of major assumptions in the various aerosol retrieval algorithms. In the first experiment a common set of four aerosol components was used to provide all algorithms with the same assumptions. The second experiment introduced an aerosol property climatology, derived from a combination of model and sun photometer observations, as a priori information in the retrievals on the occurrence of the common aerosol components. The third experiment assessed the impact of using a common nadir cloud mask for AATSR and MERIS algorithms in order to characterize the sensitivity to remaining cloud contamination in the retrievals against the baseline dataset versions. The impact of the algorithm changes was assessed for one month (September 2008) of data: qualitatively by inspection of monthly mean AOD maps and quantitatively by comparing daily gridded satellite data against daily averaged AERONET sun photometer

  11. Modeling Aerosol Effects on Clouds and Precipitation: Insights from CalWater 2015

    NASA Astrophysics Data System (ADS)

    Leung, L. R.; Lim, K. S. S.; Fan, J.; Prather, K. A.; DeMott, P. J.; Spackman, J. R.; Ralph, F. M.

    2015-12-01

    The CalWater 2015 field campaign took place in northern California from mid January through early March of 2015. The field campaign, including collaborations between CalWater 2 and ACAPEX, aims to improve understanding and modeling of large-scale dynamics and cloud and precipitation processes associated with atmospheric rivers (ARs) and aerosol-cloud interactions that influence precipitation variability and extremes in the western U.S. An observational strategy was employed using land and offshore assets to monitor (1) the evolution and structure of ARs from near their regions of development, (2) long range transport of aerosols in eastern North Pacific and potential interactions with ARs, and (3) how aerosols from long-range transport and local sources influence cloud and precipitation in the U.S. During the field campaign, an AR developed in the Northeast Pacific Ocean in early February and made landfall in northern California. In-situ aerosol and cloud measurements from the G-1 aircraft; remote sensing data of clouds and aerosols; and meteorological measurements from aircraft, ship, and ground-based instruments collected from February 5 - 8, 2015 are analyzed to characterize the large-scale environment and cloud and precipitation forming processes. Modeling experiments are designed using a regional model for simulations with a cloud resolving limited area domain and quasi-global coarser resolution domain to evaluate the impacts of aerosols on clouds and precipitation, and to explore the relative contributions of long-range transported and regional aerosols that interacted with the clouds before, during, and after AR landfall. Preliminary results will be discussed in the context of the field data as well as a multi-year simulation of the climatological contributions of long-range transported dust during AR landfall in California.

  12. The application of thermal methods for determining chemical composition of carbonaceous aerosols: a review.

    PubMed

    Chow, Judith C; Yu, Jian Zhen; Watson, John G; Ho, Steven Sai Hang; Bohannan, Theresa L; Hays, Michael D; Fung, Kochy K

    2007-09-01

    Thermal methods of various forms have been used to quantify carbonaceous materials. Thermal/optical carbon analysis provides measurements of organic and elemental carbon concentrations as well as fractions evolving at specific temperatures in ambient and source aerosols. Detection of thermally desorbed organic compounds with thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) identifies and quantifies over 100 individual organic compounds in particulate matter (PM) samples. The resulting mass spectra contain information that is consistent among, but different between, source emissions even in the absence of association with specific organic compounds. TD-GC/MS is a demonstrated alternative to solvent extraction for many organic compounds and can be applied to samples from existing networks. It is amenable to field-deployable instruments capable of measuring organic aerosol composition in near real-time. In this review, thermal stability of organic compounds is related to chemical structures, providing a basis for understanding thermochemical properties of carbonaceous aerosols. Recent advances in thermal methods applied to determine aerosol chemical compositions are summarized and their potential for uncovering aerosol chemistry are evaluated. Current limitations and future research needs of the thermal methods are included.

  13. Extensive closed cell marine stratocumulus downwind of Europe—A large aerosol cloud mediated radiative effect or forcing?

    NASA Astrophysics Data System (ADS)

    Goren, Tom; Rosenfeld, Daniel

    2015-06-01

    Marine stratocumulus clouds (MSC) cover large areas over the oceans and possess super sensitivity of their cloud radiative effect to changes in aerosol concentrations. Aerosols can cause transitions between regimes of fully cloudy closed cells and open cells. The possible role of aerosols in cloud cover has a big impact on the amount of reflected solar radiation from the clouds, thus potentially constitutes very large aerosol indirect radiative effect, which can exceed 100 Wm-2. It is hypothesized that continentally polluted clouds remain in closed cells regime for longer time from leaving continent and hence for longer distance away from land, thus occupying larger ocean areas with full cloud cover. Attributing this to anthropogenic aerosols would imply a very large negative radiative forcing with a significant climate impact. This possibility is confirmed by analyzing a detailed case study based on geostationary and polar-orbiting satellite observations of the microphysical and dynamical evolution of MSC. We show that large area of closed cells was formed over the northeast Atlantic Ocean downwind of Europe in a continentally polluted air mass. The closed cells undergo cleansing process that was tracked for 3.5 days that resulted with a rapid transition from closed to open cells once the clouds started drizzling heavily. The mechanism leading to the eventual breakup of the clouds due to both meteorological and aerosol considerations is elucidated. We termed this cleansing and cloud breakup process maritimization. Further study is needed to assess the climatological significance of such situations.

  14. Climate-relevant physical properties of molecular constituents relevant for isoprene-derived secondary organic aerosol material

    NASA Astrophysics Data System (ADS)

    Upshur, M. A.; Strick, B. F.; McNeill, V. F.; Thomson, R. J.; Geiger, F. M.

    2014-06-01

    Secondary organic aerosol (SOA) particles, formed from gas-phase biogenic volatile organic compounds (BVOCs), contribute large uncertainties to the radiative forcing that is associated with aerosols in the climate system. Reactive uptake of surface-active organic oxidation products of BVOCs at the gas-aerosol interface can potentially decrease the overall aerosol surface tension and therefore influence their propensity to act as cloud condensation nuclei (CCN). Here, we synthesize and measure some climate-relevant physical properties of SOA particle constituents consisting of the isoprene oxidation products α-, δ-, and cis- and {trans-β-IEPOX (isoprene epoxide), as well as syn- and anti-2-methyltetraol. Following viscosity measurements, we use octanol-water partition coefficients to quantify the relative hydrophobicity of the oxidation products while dynamic surface tension measurements indicate that aqueous solutions of α- and trans-β-IEPOX exhibit significant surface tension depression. We hypothesize that the surface activity of these compounds may enhance aerosol CCN activity, and that trans-β-IEPOX may be highly relevant for surface chemistry of aerosol particles relative to other IEPOX isomers.

  15. NASA's Aerosol Sampling Experiment Summary

    NASA Technical Reports Server (NTRS)

    Meyer, Marit E.

    2016-01-01

    In a spacecraft cabin environment, the size range of indoor aerosols is much larger and they persist longer than on Earth because they are not removed by gravitational settling. A previous aerosol experiment in 1991 documented that over 90 of the mass concentration of particles in the NASA Space Shuttle air were between 10 m and 100 m based on measurements with a multi-stage virtual impactor and a nephelometer (Liu et al. 1991). While the now-retired Space Shuttle had short duration missions (less than two weeks), the International Space Station (ISS) has been continually inhabited by astronauts for over a decade. High concentrations of inhalable particles on ISS are potentially responsible for crew complaints of respiratory and eye irritation and comments about 'dusty' air. Air filtration is the current control strategy for airborne particles on the ISS, and filtration modeling, performed for engineering and design validation of the air revitalization system in ISS, predicted that PM requirements would be met. However, aerosol monitoring has never been performed on the ISS to verify PM levels. A flight experiment is in preparation which will provide data on particulate matter in ISS ambient air. Particles will be collected with a thermophoretic sampler as well as with passive samplers which will extend the particle size range of sampling. Samples will be returned to Earth for chemical and microscopic analyses, providing the first aerosol data for ISS ambient air.

  16. Aerosols and lightning activity: The effect of vertical profile and aerosol type

    NASA Astrophysics Data System (ADS)

    Proestakis, E.; Kazadzis, S.; Lagouvardos, K.; Kotroni, V.; Amiridis, V.; Marinou, E.; Price, C.; Kazantzidis, A.

    2016-12-01

    The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite has been utilized for the first time in a study regarding lightning activity modulation due to aerosols. Lightning activity observations, obtained by the ZEUS long range Lightning Detection Network, European Centre for Medium range Weather Forecasts (ECMWF) Convective Available Potential Energy (CAPE) data and Cloud Fraction (CF) retrieved by MODIS on board Aqua satellite have been combined with CALIPSO CALIOP data over the Mediterranean basin and for the period March to November, from 2007 to 2014. The results indicate that lightning activity is enhanced during days characterized by higher Aerosol Optical Depth (AOD) values, compared to days with no lightning. This study contributes to existing studies on the link between lightning activity and aerosols, which have been based just on columnar AOD satellite retrievals, by performing a deeper analysis into the effect of aerosol profiles and aerosol types. Correlation coefficients of R = 0.73 between the CALIPSO AOD and the number of lightning strikes detected by ZEUS and of R = 0.93 between ECMWF CAPE and lightning activity are obtained. The analysis of extinction coefficient values at 532 nm indicates that at an altitudinal range exists, between 1.1 km and 2.9 km, where the values for extinction coefficient of lightning-active and non-lightning-active cases are statistically significantly different. Finally, based on the CALIPSO aerosol subtype classification, we have investigated the aerosol conditions of lightning-active and non-lightning-active cases. According to the results polluted dust aerosols are more frequently observed during non-lightning-active days, while dust and smoke aerosols are more abundant in the atmosphere during the lightning-active days.

  17. Characterization of urban aerosol using aerosol mass spectrometry and proton nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Cleveland, M. J.; Ziemba, L. D.; Griffin, R. J.; Dibb, J. E.; Anderson, C. H.; Lefer, B.; Rappenglück, B.

    2012-07-01

    Particulate matter was measured during August and September of 2006 in Houston as part of the Texas Air Quality Study II Radical and Aerosol Measurement Project. Aerosol size and composition were determined using an Aerodyne quadrupole aerosol mass spectrometer. Aerosol was dominated by sulfate (4.1 ± 2.6 μg m-3) and organic material (5.5 ± 4.0 μg m-3), with contributions of organic material from both primary (˜32%) and secondary (˜68%) sources. Secondary organic aerosol appears to be formed locally. In addition, 29 aerosol filter samples were analyzed using proton nuclear magnetic resonance (1H NMR) spectroscopy to determine relative concentrations of organic functional groups. Houston aerosols are less oxidized than those observed elsewhere, with smaller relative contributions of carbon-oxygen double bonds. These particles do not fit 1H NMR source apportionment fingerprints for identification of secondary, marine, and biomass burning organic aerosol, suggesting that a new fingerprint for highly urbanized and industrially influenced locations be established.

  18. SECONDARY ORGANIC AEROSOL FORMATION FROM THE IRRADIATION OF SIMULATED AUTOMOBILE EXHAUST

    EPA Science Inventory

    A laboratory study was conducted to evaluate the potential for secondary organic aerosol formation from emissions from automotive exhaust. The goal was to determine to what extent photochemical oxidation products of these hydrocarbons contribute to secondary organic aerosol (SO...

  19. The relative influence of aerosols and the environment on organized tropical and midlatitude deep convection

    NASA Astrophysics Data System (ADS)

    Grant, Leah Danielle

    In this two-part study, the relative impacts of aerosols and the environment on organized deep convection, including tropical sea-breeze convection and midlatitude supercellular and multicellular deep convection, are investigated within idealized cloud-resolving modeling simulations using the Regional Atmospheric Modeling System (RAMS). Part one explores aerosol-cloud-land surface interactions within tropical deep convection organized along a sea breeze front. The idealized RAMS domain setup is representative of the coastal Cameroon rainforest in equatorial Africa. In order to assess the potential sensitivity of sea-breeze convection to increasing anthropogenic activity and deforestation occurring in such regions, 27 total simulations are performed in which combinations of enhanced aerosol concentrations, reduced surface roughness length, and reduced soil moisture are included. Both enhanced aerosols and reduced soil moisture are found to individually reduce the precipitation due to reductions in downwelling shortwave radiation and surface latent heat fluxes, respectively, while perturbations to the roughness length do not have a large impact on the precipitation. The largest soil moisture perturbations dominate the precipitation changes due to reduced low-level moisture available to the convection, but if the soil moisture perturbation is moderate, synergistic interactions between soil moisture and aerosols enhance the sea breeze precipitation. This is found to result from evening convection that forms ahead of the sea breeze only when both effects are present. Interactions between the resulting gust fronts and the sea breeze front locally enhance convergence and therefore the rainfall. Part two of this study investigates the relative roles of midlevel dryness and aerosols on supercellular and multicellular convective morphology. A common storm-splitting situation is simulated wherein the right-moving storm becomes a dominant supercell and the left-moving storm

  20. Spatial and temporal distribution of atmospheric aerosols in the lowermost troposphere over the Amazonian tropical rainforest

    NASA Astrophysics Data System (ADS)

    Krejci, R.; Ström, J.; de Reus, M.; Williams, J.; Fischer, H.; Andreae, M. O.; Hansson, H.-C.

    2004-06-01

    We present measurements of aerosol physico-chemical properties below 5 km altitude over the tropical rain forest and the marine boundary layer (MBL) obtained during the LBA-CLAIRE 1998 project. The MBL aerosol size distribution some 50-100 km of the coast of French Guyana and Suriname showed a bi-modal shape typical of aged and cloud processed aerosol. The average particle number density in the MBL was 383 cm-3. The daytime mixed layer height over the rain forest for undisturbed conditions was estimated to be between 1200-1500 m. During the morning hours the height of the mixed layer increased by 4-5 cm s-1. The median daytime aerosol number density in the mixed layer increased from 450 cm-3 in the morning to almost 800 cm-3 in the late afternoon. The evolution of the aerosol size distribution in the daytime mixed layer over the rain forest showed two distinct patterns. Between dawn and midday, the Aitken mode particle concentrations increased, whereas later during the day, a sharp increase of the accumulation mode aerosol number densities was observed, resulting in a doubling of the morning accumulation mode concentrations from 150 cm-3 to 300 cm-3. Potential sources of the Aitken mode particles are discussed here including the rapid growth of ultrafine aerosol particles formed aloft and subsequently entrained into the mixed layer, as well as the contribution of emissions from the tropical vegetation to Aitken mode number densities. The observed increase of the accumulation mode aerosol number densities is attributed to the combined effect of: the direct emissions of primary biogenic particles from the rain forest and aerosol in-cloud processing by shallow convective clouds. Based on the similarities among the number densities, the size distributions and the composition of the aerosol in the MBL and the nocturnal residual layer we propose that the air originating in the MBL is transported above the nocturnal mixed layer up to 300-400 km inland over the rain forest

  1. Spatial and temporal distribution of atmospheric aerosols in the lowermost troposphere over the Amazonian tropical rainforest

    NASA Astrophysics Data System (ADS)

    Krejci, R.; Ström, J.; de Reus, M.; Williams, J.; Fischer, H.; Andreae, M. O.; Hansson, H.-C.

    2005-06-01

    We present measurements of aerosol physico-chemical properties below 5 km altitude over the tropical rain forest and the marine boundary layer (MBL) obtained during the LBA-CLAIRE 1998 project. The MBL aerosol size distribution some 50-100km of the coast of French Guyana and Suriname showed a bi-modal shape typical of aged and cloud processed aerosol. The average particle number density in the MBL was 383cm-3. The daytime mixed layer height over the rain forest for undisturbed conditions was estimated to be between 1200-1500m. During the morning hours the height of the mixed layer increased by 144-180mh-1. The median daytime aerosol number density in the mixed layer increased from 450cm-3 in the morning to almost 800cm-3 in the late afternoon. The evolution of the aerosol size distribution in the daytime mixed layer over the rain forest showed two distinct patterns. Between dawn and midday, the Aitken mode particle concentrations increased, whereas later during the day, a sharp increase of the accumulation mode aerosol number densities was observed, resulting in a doubling of the morning accumulation mode concentrations from 150cm-3 to 300cm-3. Potential sources of the Aitken mode particles are discussed here including the rapid growth of ultrafine aerosol particles formed aloft and subsequently entrained into the mixed layer, as well as the contribution of emissions from the tropical vegetation to Aitken mode number densities. The observed increase of the accumulation mode aerosol number densities is attributed to the combined effect of: the direct emissions of primary biogenic particles from the rain forest and aerosol in-cloud processing by shallow convective clouds. Based on the similarities among the number densities, the size distributions and the composition of the aerosol in the MBL and the nocturnal residual layer we propose that the air originating in the MBL is transported above the nocturnal mixed layer up to 300-400km inland over the rain forest by

  2. Rhodomyrtus tomentosa (Aiton) Hassk. ethanol extract and rhodomyrtone: a potential strategy for the treatment of biofilm-forming staphylococci.

    PubMed

    Saising, Jongkon; Ongsakul, Metta; Voravuthikunchai, Supayang Piyawan

    2011-12-01

    The anti-staphylococcal activity of an ethanol extract of Rhodomyrtus tomentosa and its pure compound, rhodomyrtone, as well as their effects on staphylococcal biofilm formation and biofilm-grown cells were assessed. MIC and minimal bactericidal concentration values of the ethanol extract and rhodomyrtone against planktonic cultures and biofilms of five clinical strains each of Staphylococcus aureus and Staphylococcus epidermidis, and American Type Culture Collection (ATCC) strains of both species, were 32-512 and 0.25-2 µg ml(-1), respectively. Results from time-kill studies indicated that rhodomyrtone at a concentration of 4× MIC could reduce the number of Staphylococcus aureus ATCC 25923 and Staphylococcus epidermidis ATCC 35984 cells by 99.9% within 3 and 13 h, respectively. The ability of rhodomyrtone and the ethanol extract to prevent biofilm formation and kill mature biofilms was assessed: both demonstrated better activity than vancomycin at inhibiting staphylococcal biofilm formation. In addition, the viability of 24 h and 5-day staphylococcal biofilm-grown cells decreased after treatment with the ethanol extract and rhodomyrtone. The ability to reduce biofilm formation and kill mature biofilms occurred in a dose-dependent manner. Scanning electron microscopy clearly confirmed that treatment with rhodomyrtone at 16× MIC could reduce 24 h biofilm formation and the numbers of staphylococci, whilst at 64× MIC this compound destroyed the organisms in the 5-day established biofilm. These results suggest that rhodomyrtone has the potential for further drug development for the treatment of biofilm-forming staphylococcal infections.

  3. Physical properties, chemical composition, and cloud forming potential of particulate emissions from a marine diesel engine at various load conditions.

    PubMed

    Petzold, A; Weingartner, E; Hasselbach, J; Lauer, P; Kurok, C; Fleischer, F

    2010-05-15

    Particulate matter (PM) emissions from one serial 4-stroke medium-speed marine diesel engine were measured for load conditions from 10% to 110% in test rig studies using heavy fuel oil (HFO). Testing the engine across its entire load range permitted the scaling of exhaust PM properties with load. Emission factors for particle number, particle mass, and chemical compounds were determined. The potential of particles to form cloud droplets (cloud condensation nuclei, CCN) was calculated from chemical composition and particle size. Number emission factors are (3.43 +/- 1.26) x 10(16) (kg fuel)(-1) at 85-110% load and (1.06 +/- 0.10) x 10(16) (kg fuel)(-1) at 10% load. CCN emission factors of 1-6 x 10(14) (kg fuel)(-1) are at the lower bound of data reported in the literature. From combined thermal and optical methods, black carbon (BC) emission factors of 40-60 mg/(kg fuel) were determined for 85-100% load and 370 mg/(kg fuel) for 10% load. The engine load dependence of the conversion efficiency for fuel sulfur into sulfate of (1.08 +/- 0.15)% at engine idle to (3.85 +/- 0.41)% at cruise may serve as input to global emission calculations for various load conditions.

  4. Calculation of eta-meson-nucleus quasibound states with optical potentials of the square-well and woods-saxon forms

    SciTech Connect

    Tryasuchev, V. A.; Isaev, A. V.

    2010-11-15

    The results obtained by calculating bound states of eta mesons and nuclei by using a squarewell optical potential are compared with their counterparts based on the use of an optical potential in the Woods-Saxon form. For any reasonable choice of range for a potential that has a sharp boundary, the results for the case of a diffuse boundary demonstrate the need for a greater baryon charge in order that an eta meson form a bound state with nuclei. The dependence of the probability for the formation of etamesonic nuclei on the diffuseness parameter of the optical potential involving the Woods-Saxon radial dependence is revealed.

  5. Uptake of Ambient Organic Gases to Acidic Sulfate Aerosols

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Li, S.

    2009-05-01

    The formation of secondary organic aerosols (SOA) in the atmosphere has been an area of significant interest due to its climatic relevance, its effects on air quality and human health. Due largely to the underestimation of SOA by regional and global models, there has been an increasing number of studies focusing on alternate pathways leading to SOA. In this regard, recent work has shown that heterogeneous and liquid phase reactions, often leading to oligomeric material, may be a route to SOA via products of biogenic and anthropogenic origin. Although oligomer formation in chamber studies has been frequently observed, the applicability of these experiments to ambient conditions, and thus the overall importance of oligomerization reactions remain unclear. In the present study, ambient air is drawn into a Teflon smog chamber and exposed to acidic sulfate aerosols which have been formed in situ via the reaction of SO3 with water vapor. The aerosol composition is measured with a High Resolution Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS), and particle size distributions are monitored with a scanning mobility particle sizer (SMPS). The use of ambient air and relatively low inorganic particle loading potentially provides clearer insight into the importance of heterogeneous reactions. Results of experiments, with a range of sulfate loadings show that there are several competing processes occurring on different timescales. A significant uptake of ambient organic gases to the particles is observed immediately followed by a slow shift towards higher m/z over a period of several hours indicating that higher molecular weight products (possibly oligomers) are being formed through a reactive process. The results suggest that heterogeneous reactions can occur with ambient organic gases, even in the presence of ammonia, which may have significant implications to the ambient atmosphere where particles may be neutralized after their formation.

  6. Aerosol activation properties and CCN closure during TCAP

    NASA Astrophysics Data System (ADS)

    Mei, F.; Tomlinson, J. M.; Shilling, J. E.; Wilson, J. M.; Zelenyuk, A.; Chand, D.; Comstock, J. M.; Hubbe, J.; Berg, L. K.; Schmid, B.

    2013-12-01

    The indirect effects of atmospheric aerosols currently remain the most uncertain components in forcing of climate change over the industrial period (IPCC, 2007). This large uncertainty is partially due to our incomplete understanding of the ability of particles to form cloud droplets under atmospherically relevant supersaturation. In addition, there is a large uncertainty in the aerosol optical depth (AOD) simulated by climate models near the North American coast and a wide variety in the types of clouds are observed over this region. The goal of the US Department of Energy Two Column Aerosol Project (TCAP) is to understand the processes responsible for producing and maintaining aerosol distributions and associated radiative and cloud forcing off the coast of North America. During the TCAP study, aerosol total number concentration, cloud condensation nuclei (CCN) spectra and aerosol chemical composition were in-situ measured from the DOE Gulfstream 1 (G-1) research aircraft during two Intensive Operations Periods (IOPs), one conducted in July 2012 and the other in February 2013. An overall aerosol size distribution was achieved by merging the observations from several instruments, including Ultra High Sensitivity Aerosol Spectrometer - Airborne (UHSAS-A, DMT), Passive Cavity Aerosol Spectrometer Probe (PCASP-200, DMT), and Cloud Aerosol Spectrometer (CAS, DMT). Aerosol chemical composition was characterized using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, Aerodyne Inc.) and single particle mass spectrometer, mini-SPLAT. Based on the aerosol size distribution, CCN number concentration (characterized by a DMT dual column CCN counter with a range from 0.1% to 0.4%), and chemical composition, a CCN closure was obtained. The sensitivity of CCN closure to organic hygroscopicity was investigated. The differences in aerosol/CCN properties between two columns, and between two phases, will be discussed.

  7. Climatology of Aerosol Optical Properties in Southern Africa

    NASA Technical Reports Server (NTRS)

    Queface, Antonio J.; Piketh, Stuart J.; Eck, Thomas F.; Tsay, Si-Chee

    2011-01-01

    A thorough regionally dependent understanding of optical properties of aerosols and their spatial and temporal distribution is required before we can accurately evaluate aerosol effects in the climate system. Long term measurements of aerosol optical depth, Angstrom exponent and retrieved single scattering albedo and size distribution, were analyzed and compiled into an aerosol optical properties climatology for southern Africa. Monitoring of aerosol parameters have been made by the AERONET program since the middle of the last decade in southern Africa. This valuable information provided an opportunity for understanding how aerosols of different types influence the regional radiation budget. Two long term sites, Mongu in Zambia and Skukuza in South Africa formed the core sources of data in this study. Results show that seasonal variation of aerosol optical thicknesses at 500 nm in southern Africa are characterized by low seasonal multi-month mean values (0.11 to 0.17) from December to May, medium values (0.20 to 0.27) between June and August, and high to very high values (0.30 to 0.46) during September to November. The spatial distribution of aerosol loadings shows that the north has high magnitudes than the south in the biomass burning season and the opposite in none biomass burning season. From the present aerosol data, no long term discernable trends are observable in aerosol concentrations in this region. This study also reveals that biomass burning aerosols contribute the bulk of the aerosol loading in August-October. Therefore if biomass burning could be controlled, southern Africa will experience a significant reduction in total atmospheric aerosol loading. In addition to that, aerosol volume size distribution is characterized by low concentrations in the non biomass burning period and well balanced particle size contributions of both coarse and fine modes. In contrast high concentrations are characteristic of biomass burning period, combined with

  8. Anionic, Cationic, and Nonionic Surfactants in Atmospheric Aerosols from the Baltic Coast at Askö, Sweden: Implications for Cloud Droplet Activation.

    PubMed

    Gérard, Violaine; Nozière, Barbara; Baduel, Christine; Fine, Ludovic; Frossard, Amanda A; Cohen, Ronald C

    2016-03-15

    Recent analyses of atmospheric aerosols from different regions have demonstrated the ubiquitous presence of strong surfactants and evidenced surface tension values, σ, below 40 mN m(-1), suspected to enhance the cloud-forming potential of these aerosols. In this work, this approach was further improved and combined with absolute concentration measurements of aerosol surfactants by colorimetric titration. This analysis was applied to PM2.5 aerosols collected at the Baltic station of Askö, Sweden, from July to October 2010. Strong surfactants were found in all the sampled aerosols, with σ = (32-40) ± 1 mN m(-1) and concentrations of at least 27 ± 6 mM or 104 ± 21 pmol m(-3). The absolute surface tension curves and critical micelle concentrations (CMC) determined for these aerosol surfactants show that (1) surfactants are concentrated enough in atmospheric particles to strongly depress the surface tension until activation, and (2) the surface tension does not follow the Szyszkowski equation during activation but is nearly constant and minimal, which provides new insights on cloud droplet activation. In addition, both the CMCs determined and the correlation (R(2) ∼ 0.7) between aerosol surfactant concentrations and chlorophyll-a seawater concentrations suggest a marine and biological origin for these compounds.

  9. Direct impact aerosol sampling by electrostatic precipitation

    SciTech Connect

    Braden, Jason D.; Harter, Andrew G.; Stinson, Brad J.; Sullivan, Nicholas M.

    2016-02-02

    The present disclosure provides apparatuses for collecting aerosol samples by ionizing an air sample at different degrees. An air flow is generated through a cavity in which at least one corona wire is disposed and electrically charged to form a corona therearound. At least one grounded sample collection plate is provided downstream of the at least one corona wire so that aerosol ions generated within the corona are deposited on the at least one grounded sample collection plate. A plurality of aerosol samples ionized to different degrees can be generated. The at least one corona wire may be perpendicular to the direction of the flow, or may be parallel to the direction of the flow. The apparatus can include a serial connection of a plurality of stages such that each stage is capable of generating at least one aerosol sample, and the air flow passes through the plurality of stages serially.

  10. Aerosol Transmission of Filoviruses

    PubMed Central

    Mekibib, Berhanu; Ariën, Kevin K.

    2016-01-01

    Filoviruses have become a worldwide public health concern because of their potential for introductions into non-endemic countries through international travel and the international transport of infected animals or animal products. Since it was first identified in 1976, in the Democratic Republic of Congo (formerly Zaire) and Sudan, the 2013–2015 western African Ebola virus disease (EVD) outbreak is the largest, both by number of cases and geographical extension, and deadliest, recorded so far in medical history. The source of ebolaviruses for human index case(s) in most outbreaks is presumptively associated with handling of bush meat or contact with fruit bats. Transmission among humans occurs easily when a person comes in contact with contaminated body fluids of patients, but our understanding of other transmission routes is still fragmentary. This review deals with the controversial issue of aerosol transmission of filoviruses. PMID:27223296

  11. Light Absorbing Aerosols in Mexico City

    NASA Astrophysics Data System (ADS)

    Marley, N. A.; Kelley, K. L.; Kilaparty, P. S.; Gaffney, J. S.

    2008-12-01

    The direct effects of aerosol radiative forcing has been identified by the IPCC as a major uncertainty in climate modeling. The DOE Megacity Aerosol Experiment-Mexico City (MAX-Mex), as part of the MILAGRO study in March of 2006, was undertaken to reduce these uncertainties by characterization of the optical, chemical, and physical properties of atmospheric aerosols emitted from this megacity environment. Aerosol samples collected during this study using quartz filters were characterized in the uv-visible-infrared by using surface spectroscopic techniques. These included the use of an integrating sphere approach combined with the use of Kubelka-Munk theory to obtain aerosol absorption spectra. In past work black carbon has been assumed to be the only major absorbing species in atmospheric aerosols with an broad band spectral profile that follows a simple inverse wavelength dependence. Recent work has also identified a number of other absorbing species that can also add to the overall aerosol absorption. These include primary organics from biomass and trash burning and secondary organic aerosols including nitrated PAHs and humic-like substances, or HULIS. By using surface diffuse reflection spectroscopy we have also obtained spectra in the infrared that indicate significant IR absorption in the atmospheric window-region. These data will be presented and compared to spectra of model compounds that allow for evaluation of the potential importance of these species in adding strength to the direct radiative forcing of atmospheric aerosols. This work was supported by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-07ER64327 as part of the Atmospheric Science Program.

  12. Modeling comprehensive chemical composition of weathered oil following a marine spill to predict ozone and potential secondary aerosol formation and constrain transport pathways

    NASA Astrophysics Data System (ADS)

    Drozd, Greg T.; Worton, David R.; Aeppli, Christoph; Reddy, Christopher M.; Zhang, Haofei; Variano, Evan; Goldstein, Allen H.

    2015-11-01

    Releases of hydrocarbons from oil spills have large environmental impacts in both the ocean and atmosphere. Oil evaporation is not simply a mechanism of mass loss from the ocean, as it also causes production of atmospheric pollutants. Monitoring atmospheric emissions from oil spills must include a broad range of volatile organic compounds (VOC), including intermediate-volatile and semivolatile compounds (IVOC, SVOC), which cause secondary organic aerosol (SOA) and ozone production. The Deepwater Horizon (DWH) disaster in the northern Gulf of Mexico during Spring/Summer of 2010 presented a unique opportunity to observe SOA production due to an oil spill. To better understand these observations, we conducted measurements and modeled oil evaporation utilizing unprecedented comprehensive composition measurements, achieved by gas chromatography with vacuum ultraviolet time of flight mass spectrometry (GC-VUV-HR-ToFMS). All hydrocarbons with 10-30 carbons were classified by degree of branching, number of cyclic rings, aromaticity, and molecular weight; these hydrocarbons comprise ˜70% of total oil mass. Such detailed and comprehensive characterization of DWH oil allowed bottom-up estimates of oil evaporation kinetics. We developed an evaporative model, using solely our composition measurements and thermodynamic data, that is in excellent agreement with published mass evaporation rates and our wind-tunnel measurements. Using this model, we determine surface slick samples are composed of oil with a distribution of evaporative ages and identify and characterize probable subsurface transport of oil.

  13. Heterogeneous photochemistry of imidazole-2-carboxaldehyde: HO2 radical formation and aerosol growth

    NASA Astrophysics Data System (ADS)

    González Palacios, Laura; Corral Arroyo, Pablo; Aregahegn, Kifle Z.; Steimer, Sarah S.; Bartels-Rausch, Thorsten; Nozière, Barbara; George, Christian; Ammann, Markus; Volkamer, Rainer

    2016-09-01

    The multiphase chemistry of glyoxal is a source of secondary organic aerosol (SOA), including its light-absorbing product imidazole-2-carboxaldehyde (IC). IC is a photosensitizer that can contribute to additional aerosol ageing and growth when its excited triplet state oxidizes hydrocarbons (reactive uptake) via H-transfer chemistry. We have conducted a series of photochemical coated-wall flow tube (CWFT) experiments using films of IC and citric acid (CA), an organic proxy and H donor in the condensed phase. The formation rate of gas-phase HO2 radicals (PHO2) was measured indirectly by converting gas-phase NO into NO2. We report on experiments that relied on measurements of NO2 formation, NO loss and HONO formation. PHO2 was found to be a linear function of (1) the [IC] × [CA] concentration product and (2) the photon actinic flux. Additionally, (3) a more complex function of relative humidity (25 % < RH < 63 %) and of (4) the O2 / N2 ratio (15 % < O2 / N2 < 56 %) was observed, most likely indicating competing effects of dilution, HO2 mobility and losses in the film. The maximum PHO2 was observed at 25-55 % RH and at ambient O2 / N2. The HO2 radicals form in the condensed phase when excited IC triplet states are reduced by H transfer from a donor, CA in our system, and subsequently react with O2 to regenerate IC, leading to a catalytic cycle. OH does not appear to be formed as a primary product but is produced from the reaction of NO with HO2 in the gas phase. Further, seed aerosols containing IC and ammonium sulfate were exposed to gas-phase limonene and NOx in aerosol flow tube experiments, confirming significant PHO2 from aerosol surfaces. Our results indicate a potentially relevant contribution of triplet state photochemistry for gas-phase HO2 production, aerosol growth and ageing in the atmosphere.

  14. The Aerosol, Clouds and Ecosystem (ACE) Mission

    NASA Astrophysics Data System (ADS)

    Schoeberl, M.; Remer, L.; Kahn, R.; Starr, D.; Hildebrand, P.; Colarco, P.; Diner, D.; Vane, D.; Im, E.; Behrenfeld, M.; Stephens, G.; Maring, H.; Bontempi, P.; Martins, J. V.

    2008-12-01

    The Aerosol, Clouds and Ecosystem (ACE) Mission is a second tier Decadal Survey mission designed to characterize the role of aerosols in climate forcing, especially their impact on precipitation and cloud formation. ACE also includes ocean biosphere measurements (chlorophyll and dissolved organic materials) which will be greatly improved by simultaneous measurements of aerosols. The nominal ACE payload includes lidar and multiangle spectropolarimetric polarimetric measurements of aerosols, radar measurements of clouds and multi-band spectrometer for the measurement of ocean ecosystems. An enhancement to ACE payload under consideration includes µ-wave radiometer measurements of cloud ice and water outside the nadir path of the radar/lidar beams. This talk will cover ACE instrument and science options, updates on the science team definition activity and science potential.

  15. Observing the confinement potential of bacterial pore-forming toxin receptors inside rafts with nonblinking Eu(3+)-doped oxide nanoparticles.

    PubMed

    Türkcan, Silvan; Masson, Jean-Baptiste; Casanova, Didier; Mialon, Geneviève; Gacoin, Thierry; Boilot, Jean-Pierre; Popoff, Michel R; Alexandrou, Antigoni

    2012-05-16

    We track single toxin receptors on the apical cell membrane of MDCK cells with Eu-doped oxide nanoparticles coupled to two toxins of the pore-forming toxin family: α-toxin of Clostridium septicum and ε-toxin of Clostridium perfringens. These nonblinking and photostable labels do not perturb the motion of the toxin receptors and yield long uninterrupted trajectories with mean localization precision of 30 nm for acquisition times of 51.3 ms. We were thus able to study the toxin-cell interaction at the single-molecule level. Toxins bind to receptors that are confined within zones of mean area 0.40 ± 0.05 μm(2). Assuming that the receptors move according to the Langevin equation of motion and using Bayesian inference, we determined mean diffusion coefficients of 0.16 ± 0.01 μm(2)/s for both toxin receptors. Moreover, application of this approach revealed a force field within the domain generated by a springlike confining potential. Both toxin receptors were found to experience forces characterized by a mean spring constant of 0.30 ± 0.03 pN/μm at 37°C. Furthermore, both toxin receptors showed similar distributions of diffusion coefficient, domain area, and spring constant. Control experiments before and after incubation with cholesterol oxidase and sphingomyelinase show that these two enzymes disrupt the confinement domains and lead to quasi-free motion of the toxin receptors. Our control data showing cholesterol and sphingomyelin dependence as well as independence of actin depolymerization and microtubule disruption lead us to attribute the confinement of both receptors to lipid rafts. These toxins require oligomerization to develop their toxic activity. The confined nature of the toxin receptors leads to a local enhancement of the toxin monomer concentration and may thus explain the virulence of this toxin family.

  16. A Thermally Stable Form of Bacterial Cocaine Esterase: A Potential Therapeutic Agent for Treatment of Cocaine Abuse

    SciTech Connect

    Brim, Remy L.; Nance, Mark R.; Youngstrom, Daniel W.; Narasimhan, Diwahar; Zhan, Chang-Guo; Tesmer, John J.G.; Sunahara, Roger K.; Woods, James H.

    2010-09-03

    Rhodococcal cocaine esterase (CocE) is an attractive potential treatment for both cocaine overdose and cocaine addiction. CocE directly degrades cocaine into inactive products, whereas traditional small-molecule approaches require blockade of the inhibitory action of cocaine on a diverse array of monoamine transporters and ion channels. The usefulness of wild-type (wt) cocaine esterase is hampered by its inactivation at 37 C. Herein, we characterize the most thermostable form of this enzyme to date, CocE-L169K/G173Q. In vitro kinetic analyses reveal that CocE-L169K/G173Q displays a half-life of 2.9 days at 37 C, which represents a 340-fold improvement over wt and is 15-fold greater than previously reported mutants. Crystallographic analyses of CocE-L169K/G173Q, determined at 1.6-{angstrom} resolution, suggest that stabilization involves enhanced domain-domain interactions involving van der Waals interactions and hydrogen bonding. In vivo rodent studies reveal that intravenous pretreatment with CocE-L169K/G173Q in mice provides protection from cocaine-induced lethality for longer time periods before cocaine administration than wt CocE. Furthermore, intravenous administration (pretreatment) of CocE-L169K/G173Q prevents self-administration of cocaine in a time-dependent manner. Termination of the in vivo effects of CoCE seems to be dependent on, but not proportional to, its clearance from plasma as its half-life is approximately 2.3 h and similar to that of wt CocE (2.2 h). Taken together these data suggest that CocE-L169K/G173Q possesses many of the properties of a biological therapeutic for treating cocaine abuse but requires additional development to improve its serum half-life.

  17. Nitrogen-sulfur compounds in stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Farlow, N. H.; Snetsinger, K. G.; Hayes, D. M.; Lem, H. Y.; Tooper, B. M.

    1978-01-01

    Two forms of nitrosyl sulfuric acid (NOHSO4 and NOHS2O7) have been tentatively identified in stratospheric aerosols. The first of these can be formed either directly from gas reactions of NO2 with SO2 or by gas-particle interactions between NO2 and H2SO4. The second product may form when SO3 is involved. Estimates based on these reactions suggest that the maximum quantity of NO that might be absorbed in stratospheric aerosols could vary from one-third to twice the amount of NO in the surrounding air. If these reactions occur in the stratosphere, then a mechanism exists for removing nitrogen oxides from that region by aerosol particle fallout. This process may typify another natural means that helps cleanse the lower stratosphere of excessive pollutants.

  18. Aerosol-cloud interactions in the ECHAM6-HAM2 GCM and Aerosol_cci/Cloud_cci satellite products

    NASA Astrophysics Data System (ADS)

    Neubauer, David; Lohmann, Ulrike

    2015-04-01

    The first indirect aerosol effect or cloud albedo effect can be estimated as a radiative forcing. While the sign of this forcing is agreed to be negative, model-based estimates of its magnitude show a large variability. The responses of cloud liquid water content and cloud cover to aerosol increases also referred to as secondary indirect aerosol effects or fast adjustments are uncertain as well. In studies that use the variability in the present day satellite data to infer aerosol-cloud interactions (ACI), or that constrain model parameterizations to better agree with satellite observations a less negative ACI radiative forcing is found. The projects of the Climate Change Initiative (CCI) programme of ESA aim at producing long time series of satellite data of essential climate variables with specific information on errors and uncertainties. The quantification of uncertainty in satellite retrievals provides an opportunity to get insights in the discrepancy between model based and satellite based estimates of ACI. Within the Aerosol_cci project susceptibilities of cloud properties from Cloud_cci to aerosol properties from Aerosol_cci datasets are to be compared to susceptibilities from the aerosol climate model ECHAM6-HAM2. Particularly interesting relationships for the first indirect aerosol effect and the second aerosol indirect effect will be investigated. Satellite studies show a strong effect of aerosol on cloud amount, which could be a methodological artefact such as aerosol swelling or meteorological covariation. The immediate vicinity of clouds needs to be excluded due to these potential cloud contaminations although it would be the most interesting region for associations between aerosol and clouds. As the resolution of the data can have an impact on statistical correlations between cloud and aerosol properties, the assessment will be done on different scales. First results will be presented at the conference.

  19. Overview of Aerosol Distribution

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram

    2005-01-01

    Our knowledge of atmospheric aerosols (smoke, pollution, dust or sea salt particles, small enough to be suspended in the air), their evolution, composition, variability in space and time and interaction with clouds and precipitation is still lacking despite decades of research. Understanding the global aerosol system is fundamental for progress in climate change and hydrological cycle research. While a single instrument was used to demonstrate 50 years ago that the global CO2 levels are rising, posing threat of global warming, we need an array of satellites and field measurements coupled with chemical transport models to understand the global aerosol system. This complexity of the aerosol problem results from their short lifetime (1 week) and variable chemical composition. A new generation of satellites provides exciting opportunities to measure the global distribution of aerosols, distinguishing natural from anthropogenic aerosol and measuring their interaction with clouds and climate. I shall discuss these topics and application of the data to air quality monitoring.

  20. Solar geoengineering using solid aerosol in the stratosphere

    NASA Astrophysics Data System (ADS)

    Weisenstein, D. K.; Keith, D. W.; Dykema, J. A.

    2015-10-01

    Solid aerosol particles have long been proposed as an alternative to sulfate aerosols for solar geoengineering. Any solid aerosol introduced into the stratosphere would be subject to coagulation with itself, producing fractal aggregates, and with the natural sulfate aerosol, producing liquid-coated solids. Solid aerosols that are coated with sulfate and/or have formed aggregates may have very different scattering properties and chemical behavior than uncoated non-aggregated monomers do. We use a two-dimensional (2-D) chemistry-transport-aerosol model to capture the dynamics of interacting solid and liquid aerosols in the stratosphere. As an example, we apply the model to the possible use of alumina and diamond particles for solar geoengineering. For 240 nm radius alumina particles, for example, an injection rate of 4 Tg yr-1 produces a global-average shortwave radiative forcing of -1.2 W m-2 and minimal self-coagulation of alumina although almost all alumina outside the tropics is coated with sulfate. For the same radiative forcing, these solid aerosols can produce less ozone loss, less stratospheric heating, and less forward scattering than sulfate aerosols do. Our results suggest that appropriately sized alumina, diamond or similar high-index particles may have less severe technology-specific risks than sulfate aerosols do. These results, particularly the ozone response, are subject to large uncertainties due to the limited data on the rate constants of reactions on the dry surfaces.

  1. Inactivation of biofilm cells of foodborne pathogen by aerosolized sanitizers.

    PubMed

    Park, Sang-Hyun; Cheon, Ho-Lyeong; Park, Ki-Hwan; Chung, Myung-Sub; Choi, Sang Ho; Ryu, Sangryeol; Kang, Dong-Hyun

    2012-03-15

    The objective of this study was to determine the effect of aerosolized sanitizers on the inactivation of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes biofilms. Biofilms were formed on a stainless steel and polyvinyl chloride (PVC) coupon by using a mixture of three strains each of three foodborne pathogens. Six day old biofilms on stainless steel and PVC coupons were treated with aerosolized sodium hypochlorite (SHC; 100 ppm) and peracetic acid (100, 200, and 400 ppm) in a model cabinet for 5, 10, 30, and 50 min. Treatment with 100 ppm PAA was more effective than the same concentration of SHC with increasing treatment time. Exposure to 100 ppm SHC and PAA for 50 min significantly (p<0.05) reduced biofilm cells of three foodborne pathogens (0.50 to 3.63 log CFU/coupon and 2.83 to more than 5.78 log CFU/coupon, respectively) compared to the control treatment. Exposure to 200 and 400 ppm PAA was more effective in reducing biofilm cells. Biofilm cells were reduced to below the detection limit (1.48 log CFU/coupon) between 10 and 30 min of exposure. The results of this study suggest that aerosolized sanitizers have a potential as a biofilm control method in the food industry.

  2. Satellite observations of aerosol and CO over Mexico City

    NASA Astrophysics Data System (ADS)

    Massie, Steven T.; Gille, John C.; Edwards, David P.; Nandi, Sreela

    The development of remote sensing satellite technology potentially will lead to the technical means to monitor air pollution emitted from large cities on a global basis. This paper presents observations by the moderate resolution imaging spectroradiometer (MODIS) and measurements of pollution in the troposphere (MOPITT) experiments of aerosol optical depths and CO mixing ratios, respectively, in the vicinity of Mexico City to illustrate current satellite capabilities. MOPITT CO mixing ratios over Mexico City, averaged between January-March 2002-2005, are 19% above regional values and the CO plume extends over 10° 2 in the free troposphere at 500 hPa. Time series of Red Automatica de Monitoreo Ambiental (RAMA) PM10, and (Aerosol Robotic Network) AERONET and MODIS aerosol optical depths, and RAMA and MOPITT CO time series are inter-compared to illustrate the different perspectives of ground based and satellite instrumentation. Finally, we demonstrate, by examining MODIS and MOPITT data in April 2003, that satellite data can be used to identify episodes in which pollution form fires influences the time series of ground based and satellite observations of urban pollution.

  3. An Analysis of AERONET Aerosol Absorption Properties and Classifications Representative of Aerosol Source Regions

    NASA Technical Reports Server (NTRS)

    Giles, David M.; Holben, Brent N.; Eck, Thomas F.; Sinyuk, Aliaksandr; Smirnov, Alexander; Slutsker, Ilya; Dickerson, R. R.; Thompson, A. M.; Schafer, J. S.

    2012-01-01

    Partitioning of mineral dust, pollution, smoke, and mixtures using remote sensing techniques can help improve accuracy of satellite retrievals and assessments of the aerosol radiative impact on climate. Spectral aerosol optical depth (tau) and single scattering albedo (omega (sub 0) ) from Aerosol Robotic Network (AERONET) measurements are used to form absorption [i.e., omega (sub 0) and absorption Angstrom exponent (alpha(sub abs))] and size [i.e., extinction Angstrom exponent (alpha(sub ext)) and fine mode fraction of tau] relationships to infer dominant aerosol types. Using the long-term AERONET data set (1999-2010), 19 sites are grouped by aerosol type based on known source regions to: (1) determine the average omega (sub 0) and alpha(sub abs) at each site (expanding upon previous work); (2) perform a sensitivity study on alpha(sub abs) by varying the spectral omega (sub 0); and (3) test the ability of each absorption and size relationship to distinguish aerosol types. The spectral omega (sub 0) averages indicate slightly more aerosol absorption (i.e., a 0.0 < delta omega (sub 0) <= 0.02 decrease) than in previous work and optical mixtures of pollution and smoke with dust show stronger absorption than dust alone. Frequency distributions of alpha(sub abs) show significant overlap among aerosol type categories and at least 10% of the alpha(sub abs) retrievals in each category are below 1.0. Perturbing the spectral omega (sub 0) by +/- 0.03 induces significant alpha(sub abs) changes from the unperturbed value by at least approx. +/- 0.6 for Dust, approx. +/-0.2 for Mixed, and approx. +/-0.1 for Urban/Industrial and Biomass Burning. The omega (sub 0)440nm and alpha(sub ext) 440-870nm relationship shows the best separation among aerosol type clusters, providing a simple technique for determining aerosol type from surface- and future space-based instrumentation.

  4. Aerosol, radiation, and climate

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.

    1983-01-01

    Airborne, spaceborne, and ground-based measurements are used to study the radiative and climatic effects of aerosols. The data, which are modelled with a hierarchy of radiation and climate models, and their implications are summarized. Consideration is given to volcanic aerosols, polar stratospheric clouds, and the Arctic haze. It is shown that several types of aerosols (volcanic particles and the Arctic haze) cause significant alterations to the radiation budget of the regions where they are located.

  5. Anthropogenic Aerosols in Asia, Radiative Forcing, and Climate Change

    NASA Astrophysics Data System (ADS)

    Ramaswamy, V.; Bollasina, M. A.; Ming, Y.; Ocko, I.; Persad, G.

    2014-12-01

    Aerosols arising as a result of human-induced emissions in Asia form a key 'driver' in causing pollution and in the forcing of anthropogenic climate change. The manner of the forced climate change is sensitive to the scattering and absorption properties of the aerosols and the aerosol-cloud microphysical interactions. Using the NOAA/ GFDL global climate models and observations from multiple platforms, we investigate the radiative perturbations due to the 20th Century sulfate and carbonaceous aerosol emissions and the resultant impacts on surface temperature, tropical precipitation, Indian monsoon, hemispheric circulation, and atmospheric and oceanic heat transports. The influence of the aerosol species has many contrasts with that due to the anthropogenic well-mixed greenhouse gas emissions e.g., the asymmetry in the hemispheric climate response, but is subject to larger uncertainties. The aerosol forcing expected in the future indicates a significant control on the 21st Century anthropogenic climate change in Asia.

  6. SAGE Aerosol Measurements. Volume 2: 1 January - 31 December 1980

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.

    1986-01-01

    The stratospheric Aerosol and Gas Experiment (SAGE) satellite system, launched on February 18, 1979, provides profiles of aerosol extinction at wavelengths of 1.00 and 0.45 micron, ozone concentration, and nitrogen dioxide concentration. Data taken during sunset events in the form of zonal averages and seasonal averages of the aerosol extinction at 1.00 and 0.45 micron, ratios of the aerosol extinction to the molecular extinction at 1.00 micron, and ratios of the aerosol extinction at 0.45 micron to the aerosol extinction at 1.00 micron are presented. The averages for l980 are shown in tables and in profile and contour plots (as a function of altitude and latitude). In addition, temperature data provided by the National Oceanic and Atmospheric Administration (NOAA) for the time and location of each SAGE measurement are averaged and shown in a similar format.

  7. The influence of metallurgy on the formation of welding aerosols.

    PubMed

    Zimmer, Anthony T

    2002-10-01

    Recent research has indicated that insoluble ultrafine aerosols (ie., particles whose physical diameters are less than 100 nm) may cause adverse health effects due to their small size, and that toxicological response may be more appropriately represented by particle number or particle surface area. Unfortunately, current exposure criteria and the associated air-sampling techniques are primarily mass-based. Welding processes are high-temperature operations that generate substantial number concentrations of ultrafine aerosols. Welding aerosols are formed primarily through the nucleation of metal vapors followed by competing growth mechanisms such as coagulation and condensation. Experimental results and mathematical tools are presented to illustrate how welding metallurgy influences the chemical aspects and dynamic processes that initiate and evolve the resultant aerosol. This research suggests that a fundamental understanding of metallurgy and aerosol physics can be exploited to suppress the formation of undesirable chemical species as well as the amount of aerosol generated during a welding process.

  8. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1997-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size resolved aerosol microphysics and chemistry. Both profiles included pollution haze layer from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core.

  9. EVALUATION OF MEDIA FOR RECOVERY OF AEROSOLIZED BACTERIA

    EPA Science Inventory

    Disease transmission by airborne bacteria is well known.Bacterial burden in indoor air is estimated by sampling the air and estimating Colony Forming Unites (CFU) using a variety of media.In this study, the recovery of bacteria, after aerosolization in an aerosol chamber, and emp...

  10. Cloud condensation nuclei activity of aliphatic amine secondary aerosol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g. hydroxyl radical and nitrate radical). The resulting particle composition can contain both secondary organic aerosol (SOA) and inorganic salts. The fraction of organic to inorganic materials in the particulate ...

  11. Global CALIPSO Observations of Aerosol Changes Near Clouds

    NASA Technical Reports Server (NTRS)

    Varnai, Tamas; Marshak, Alexander

    2011-01-01

    Several recent studies have found that clouds are surrounded by a transition zone of rapidly changing aerosol optical properties and particle size. Characterizing this transition zone is important for better understanding aerosol-cloud interactions and aerosol radiative effects, and also for improving satellite retrievals of aerosol properties. This letter presents a statistical analysis of a monthlong global data set of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar observations over oceans. The results show that the transition zone is ubiquitous over all oceans and extends up to 15 km away from clouds. They also show that near-cloud enhancements in backscatter and particle size are strongest at low altitudes, slightly below the top of the nearest clouds. Also, the enhancements are similar near illuminated and shadowy cloud sides, which confirms that the asymmetry of Moderate Resolution Imaging Spectroradiometer reflectances found in an earlier study comes from 3-D radiative processes and not from differences in aerosol properties. Finally, the effects of CALIPSO aerosol detection and cloud identification uncertainties are discussed. The findings underline the importance of accounting for the transition zone to avoid potential biases in studies of satellite aerosol products, aerosol-cloud interactions, and aerosol direct radiative effects.

  12. The aerosol radiative effects of uncontrolled combustion of domestic waste

    NASA Astrophysics Data System (ADS)

    Kodros, John K.; Cucinotta, Rachel; Ridley, David A.; Wiedinmyer, Christine; Pierce, Jeffrey R.

    2016-06-01

    Open, uncontrolled combustion of domestic waste is a potentially significant source of aerosol; however, this aerosol source is not generally included in many global emissions inventories. To provide a first estimate of the aerosol radiative impacts from domestic-waste combustion, we incorporate the Wiedinmyer et al. (2014) emissions inventory into GEOS-Chem-TOMAS, a global chemical-transport model with online aerosol microphysics. We find domestic-waste combustion increases global-mean black carbon and organic aerosol concentrations by 8 and 6 %, respectively, and by greater than 40 % in some regions. Due to uncertainties regarding aerosol optical properties, we estimate the globally averaged aerosol direct radiative effect to range from -5 to -20 mW m-2; however, this range increases from -40 to +4 mW m-2 when we consider uncertainties in emission mass and size distribution. In some regions with significant waste combustion, such as India and China, the aerosol direct radiative effect may exceed -0.4 W m-2. Similarly, we estimate a cloud-albedo aerosol indirect effect of -13 mW m-2, with a range of -4 to -49 mW m-2 due to emission uncertainties. In the regions with significant waste combustion, the cloud-albedo aerosol indirect effect may exceed -0.4 W m-2.

  13. OZONE-ISOPRENE REACTION: RE-EXAMINATION OF THE FORMATION OF SECONDARY ORGANIC AEROSOL

    EPA Science Inventory

    The reaction of ozone and isoprene has been studied to examine physical and chemical characteristics of the secondary organic aerosol formed. Using a scanning mobility particle sizer, the volume distribution of the aerosol was found in the range 0.05 - 0.2 µm. The aerosol yield w...

  14. Using Retrieved Aerosol Spectral Properties to Characterize Aerosol Composition and Mixing

    NASA Astrophysics Data System (ADS)

    Li, J.

    2015-12-01

    The spectral dependence of aerosol properties, such as aerosol absorption optical depth (AAOD) and single scattering albedo (SSA), can be used to infer aerosol composition. In particular, aerosol mixtures dominated by dust absorption will have monotonically increasing SSA with wavelength while that dominated by black carbon absorption has monotonically decreasing SSA spectra. However, spectral AAOD and SSA measured in reality may differ from these extreme cases, due to the complicated composition and mixing states. In this study, we use spectral SSA and AAOD retrieved from AERONET measurements, assisted by CALIPSO aerosol type product and Mie calculations, to characterize aerosol mixtures over representative regions. Moreover, in addition to the monotonically increasing or decreasing AAOD and SSA spectra, we find the spectral dependence of these two parameters are frequently peaked (at 675 nm or 870 nm) over several places including East Asia, India, West Africa and South America. We thus suggest that SSA spectral curvature, defined as the negative of the second derivative of SSA as a function of wavelength, can provide additional information on the composition of these aerosol mixtures. Further analysis indicates that moderate mixing of black carbon with dust or organic carbon is mainly responsible for producing the SSA curvature. An optimization scheme was developed to match the observed AAOD and SSA spectra with Mie calculations assuming different aerosol composition and mixing states. Results suggest that while external mixing can explain most of the observed AAOD and SSA spectral dependence, internal mixing or core-shell mode is also likely under many circumstances, such as East Asia during winter and post-monsoon and winter seasons over India. This method offers the potential to quantitatively infer aerosol composition from these spectral measurements of aerosol optical properties.

  15. Climate implications of carbonaceous aerosols: An aerosol microphysical study using the GISS/MATRIX climate model

    NASA Astrophysics Data System (ADS)

    Bauer, S. E.

    2009-12-01

    Recently, attention has been drawn towards black carbon aerosols as a likely short-term climate warming mitigation candidate. However the global and regional impacts of the direct and especially the indirect aerosol forcing effects are highly uncertain, due to the complex nature of aerosol evolution and its climate interactions. Black carbon is directly released as particle into the atmosphere, but then interacts with other gases and particles through condensation and coagulation processes leading to further aerosol growth, aging and internal mixing. Those aerosol characteristics determine their role in direct and indirect aerosol forcing, as their chemical composition and size distribution determine their optical properties and cloud activation potential. A new detailed aerosol microphysical scheme, MATRIX, embedded within the global GISS modelE climate model includes the above processes that determine the lifecycle and climate impact of aerosols. This study presents a quantitative assessment and an uncertainty estimate of the impact of microphysical processes involving black carbon and its optical properties on aerosol cloud activation and radiative forcing. We calculate an anthropogenic net radiative forcing of -0.46 W/m2, relative to emission changes between 1750 and 2000. This study finds the direct and indirect aerosol effect to be very sensitivity towards the size distribution of the emitted black and organic particles. The total net radiative forcing can vary between -0.26 to -0.47 W/m2. The models radiation transfer scheme reacts even more sensitive to black carbon core shell structure assumptions. Assuming that sulfates, nitrates and secondary organics can lead to a coating shell around a black carbon core can turn the overall net radiative forcing from a negative to a positive number. In the light of these sensitivities, black carbon mitigation experiments can show no to up to very significant impact to slower global warming.

  16. Aerodynamic Focusing Of High-Density Aerosols

    SciTech Connect

    Ruiz, D. E.; Fisch, Nathaniel

    2014-02-24

    High-density micron-sized particle aerosols might form the basis for a number of applications in which a material target with a particular shape might be quickly ionized to form a cylindrical or sheet shaped plasma. A simple experimental device was built in order to study the properties of high-density aerosol focusing for 1 m silica spheres. Preliminary results recover previous findings on aerodynamic focusing at low densities. At higher densities, it is demonstrated that the focusing properties change in a way which is consistent with a density dependent Stokes number.

  17. Photochemical organonitrate formation in wet aerosols

    NASA Astrophysics Data System (ADS)

    Lim, Yong Bin; Kim, Hwajin; Kim, Jin Young; Turpin, Barbara J.

    2016-10-01

    Water is the most abundant component of atmospheric fine aerosol. However, despite rapid progress, multiphase chemistry involving wet aerosols is still poorly understood. In this work, we report results from smog chamber photooxidation of glyoxal- and OH-containing ammonium sulfate or sulfuric acid particles in the presence of NOx and O3 at high and low relative humidity. Particles were analyzed using ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). During the 3 h irradiation, OH oxidation products of glyoxal that are also produced in dilute aqueous solutions (e.g., oxalic acids and tartaric acids) were formed in both ammonium sulfate (AS) aerosols and sulfuric acid (SA) aerosols. However, the major products were organonitrogens (CHNO), organosulfates (CHOS), and organonitrogen sulfates (CHNOS). These were also the dominant products formed in the dark chamber, indicating non-radical formation. In the humid chamber (> 70 % relative humidity, RH), two main products for both AS and SA aerosols were organonitrates, which appeared at m / z- 147 and 226. They were formed in the aqueous phase via non-radical reactions of glyoxal and nitric acid, and their formation was enhanced by photochemistry because of the photochemical formation of nitric acid via reactions of peroxy radicals, NOx and OH during the irradiation.

  18. Amino acids in Arctic aerosols

    NASA Astrophysics Data System (ADS)

    Scalabrin, E.; Zangrando, R.; Barbaro, E.; Kehrwald, N. M.; Gabrieli, J.; Barbante, C.; Gambaro, A.

    2012-11-01

    Amino acids are significant components of atmospheric aerosols, affecting organic nitrogen input to marine ecosystems, atmospheric radiation balance, and the global water cycle. The wide range of amino acid reactivities suggest that amino acids may serve as markers of atmospheric transport and deposition of particles. Despite this potential, few measurements have been conducted in remote areas to assess amino acid concentrations and potential sources. Polar regions offer a unique opportunity to investigate atmospheric processes and to conduct source apportionment studies of such compounds. In order to better understand the importance of amino acid compounds in the global atmosphere, we determined free amino acids (FAAs) in seventeen size-segregated aerosol samples collected in a polar station in the Svalbard Islands from 19 April until 14 September 2010. We used an HPLC coupled with a tandem mass spectrometer (ESI-MS/MS) to analyze 20 amino acids and quantify compounds at fmol m-3 levels. Mean total FAA concentration was 1070 fmol m-3 where serine and glycine were the most abundant compounds in almost all samples and accounted for 45-60% of the total amino acid relative abundance. The other eighteen compounds had average concentrations between 0.3 and 98 fmol m-3. The higher amino acid concentrations were present in the ultrafine aerosol fraction (< 0.49 μm) and accounted for the majority of the total amino acid content. Local marine sources dominate the boreal summer amino acid concentrations, with the exception of the regional input from Icelandic volcanic emissions.

  19. Amino acids in Arctic aerosols

    NASA Astrophysics Data System (ADS)

    Scalabrin, E.; Zangrando, R.; Barbaro, E.; Kehrwald, N. M.; Gabrieli, J.; Barbante, C.; Gambaro, A.

    2012-07-01

    Amino acids are significant components of atmospheric aerosols, affecting organic nitrogen input to marine ecosystems, atmospheric radiation balance, and the global water cycle. The wide range of amino acid reactivities suggest that amino acids may serve as markers of atmospheric transport and deposition of particles. Despite this potential, few measurements have been conducted in remote areas to assess amino acid concentrations and potential sources. Polar regions offer a unique opportunity to investigate atmospheric processes and to conduct source apportionment studies of such compounds. In order to better understand the importance of amino acid compounds in the global atmosphere, we determined free amino acids (FAAs) in seventeen size-segregated aerosol samples collected in a polar station in the Svalbard Islands from 19 April until 14 September 2010. We used an HPLC coupled with a tandem mass spectrometer (ESI-MS/MS) to analyze 20 amino acids to quantify compounds at fmol m-3 levels. Mean total FAA concentration was 1070 fmol m-3 where serine and glycine were the most abundant compounds in almost all samples and accounted for 45-60% of the total amino acid relative abundance. The other eighteen compounds had average concentrations between 0.3 and 98 fmol m-3. The higher amino acid concentrations were present in the ultrafine aerosol fraction (<0.49 μm) and accounted for the majority of the total amino acid content. Local marine sources dominate the boreal summer amino acid concentrations, with the exception of the regional input from Icelandic volcanics.

  20. Spectral radiometry and tropospheric aerosols: Report of panel

    NASA Technical Reports Server (NTRS)

    Fraser, Robert S.; Griggs, Michael; Lacis, Andrew A.; Mcmaster, L. R.

    1987-01-01

    The term aerosols, as used here, refers to the haze, smoke, and dust that appear in the troposphere. The term does not refer to the hydrometeors in cumulus and stratus clouds but does include the sulfuric acid-water droplets which are assumed to predominate in the stratospheric aerosol layer. The aerosol properties that were measured from satellites and those which can be made in the near term (up to 1992) will be reviewed. The capabilities that will exist in the years 1992 to 2000, with implementation of EOS, are then discussed. Finally, a few words will be said concerning the potential for aerosol measurements for the decade after 2000.

  1. Significant radiative impact of volcanic aerosol in the lowermost stratosphere.

    PubMed

    Andersson, Sandra M; Martinsson, Bengt G; Vernier, Jean-Paul; Friberg, Johan; Brenninkmeijer, Carl A M; Hermann, Markus; van Velthoven, Peter F J; Zahn, Andreas

    2015-07-09

    Despite their potential to slow global warming, until recently, the radiative forcing associated with volcanic aerosols in the lowermost stratosphere (LMS) had not been considered. Here we study volcanic aerosol changes in the stratosphere using lidar measurements from the NASA CALIPSO satellite and aircraft measurements from the IAGOS-CARIBIC observatory. Between 2008 and 2012 volcanism frequently affected the Northern Hemisphere stratosphere aerosol loadings, whereas the Southern Hemisphere generally had loadings close to background conditions. We show that half of the global stratospheric aerosol optical depth following the Kasatochi, Sarychev and Nabro eruptions is attributable to LMS aerosol. On average, 30% of the global stratospheric aerosol optical depth originated in the LMS during the period 2008-2011. On the basis of the two independent, high-resolution measurement methods, we show that the LMS makes an important contribution to the overall volcanic forcing.

  2. Testing the efficiency of aerosol containment during cell sorting.

    PubMed

    Schmid, I; Hultin, L E; Ferbas, J

    2001-05-01

    Production of droplets and microdroplets (aerosols) is part of the normal operation of a cell sorter. These aerosols may contain toxic, carcinogenic, or teratogenic fluorophores or known or unknown pathogens from viable biological specimens. Most newer models of commercially available instruments incorporate features designed to reduce the production of aerosols and prevent their release into the room. This unit presents two protocols for assessment of aerosol containment on jet-in-air flow sorters. In both procedures, lytic T4 bacteriophage is run through the instrument at high concentrations to tag aerosol droplets. The instrument is tested in normal operating mode and in simulated failure mode. Aerosols are detected by plaque formation on susceptible E. coli lawns. With the continuing increase in the sorting of viable human cells, it is vital for cytometrists to be aware of the potential dangers.

  3. Significant radiative impact of volcanic aerosol in the lowermost stratosphere

    PubMed Central

    Andersson, Sandra M.; Martinsson, Bengt G.; Vernier, Jean-Paul; Friberg, Johan; Brenninkmeijer, Carl A. M.; Hermann, Markus; van Velthoven, Peter F. J.; Zahn, Andreas

    2015-01-01

    Despite their potential to slow global warming, until recently, the radiative forcing associated with volcanic aerosols in the lowermost stratosphere (LMS) had not been considered. Here we study volcanic aerosol changes in the stratosphere using lidar measurements from the NASA CALIPSO satellite and aircraft measurements from the IAGOS-CARIBIC observatory. Between 2008 and 2012 volcanism frequently affected the Northern Hemisphere stratosphere aerosol loadings, whereas the Southern Hemisphere generally had loadings close to background conditions. We show that half of the global stratospheric aerosol optical depth following the Kasatochi, Sarychev and Nabro eruptions is attributable to LMS aerosol. On average, 30% of the global stratospheric aerosol optical depth originated in the LMS during the period 2008–2011. On the basis of the two independent, high-resolution measurement methods, we show that the LMS makes an important contribution to the overall volcanic forcing. PMID:26158244

  4. Evaluation of aerosol properties simulated by the high resolution global coupled chemistry-aerosol-microphysics model C-IFS-GLOMAP

    NASA Astrophysics Data System (ADS)

    Dhomse, Sandip; Mann, Graham; Carslaw, Ken; Flemming, Johannes; Morcrette, Jean-Jacques; Engelen, Richard; Remy, Samuel; Boucher, Olivier; Benduhn, Francois; Hewson, Will; Woodhouse, Matthew

    2016-04-01

    The EU Framework Programme GEMS and MACC consortium projects co-ordinated by the European Centre for Medium-range Weather Forecasts (ECMWF) have developed an operational global forecasting and reanalysis system (Composition-IFS) for atmospheric composition including greenhouse gases, reactive gases and aerosol. The current operational C-IFS system uses a mass-based aerosol model coupled to data assimilation of Aerosol Optical Depth measured by satellite (MODIS) to predict global aerosol properties. During MACC, the GLOMAP-mode aerosol microphysics scheme was added to the system, providing information on aerosol size and number for improved representation of aerosol-radiation and aerosol-cloud interactions, accounting also for simulated global variations in size distribution and internally-mixed particle composition. The IFS-GLOMAP system has recently been upgraded to couple with the sulphur cycle simulated in the online TM5 tropospheric chemistry module for global reactive gases. This C-IFS-GLOMAP system is also being upgraded to use a new "nitrate-extended" version of GLOMAP which realistically treats the size-resolved gas-particle partitioning of semi volatile gases ammonia and nitric acid. In this poster we described C-IFS-GLOMAP and present an evaluation of the global sulphate aerosol distribution simulated in this coupled aerosol-chemistry C-IFS-GLOMAP, comparing to surface observations in Europe, North America and the North Atlantic and contrasting to the fixed timescale sulphate production scheme developed in GEMS. We show that the coupling to the TM5 sulphur chemistry improves the seasonal cycle of sulphate aerosol, for example addressing a persistent wintertime sulphate high bias in northern Europe. The improved skill in simulated sulphate aerosol seasonal cycle is a pre-requisite to realistically characterise nitrate aerosol since biases in sulphate affect the amount of free ammonia available to form ammonium nitrate.

  5. Aerosol Radiative Forcing and Weather Forecasts in the ECMWF Model

    NASA Astrophysics Data System (ADS)

    Bozzo, A.; Benedetti, A.; Rodwell, M. J.; Bechtold, P.; Remy, S.

    2015-12-01

    Aerosols play an important role in the energy balance of the Earth system via direct scattering and absorpiton of short-wave and long-wave radiation and indirect interaction with clouds. Diabatic heating or cooling by aerosols can also modify the vertical stability of the atmosphere and influence weather pattern with potential impact on the skill of global weather prediction models. The Copernicus Atmosphere Monitoring Service (CAMS) provides operational daily analysis and forecast of aerosol optical depth (AOD) for five aerosol species using a prognostic model which is part of the Integrated Forecasting System of the European Centre for Medium-Range Weather Forecasts (ECMWF-IFS). The aerosol component was developed during the research project Monitoring Atmospheric Composition and Climate (MACC). Aerosols can have a large impact on the weather forecasts in case of large aerosol concentrations as found during dust storms or strong pollution events. However, due to its computational burden, prognostic aerosols are not yet feasible in the ECMWF operational weather forecasts, and monthly-mean climatological fields are used instead. We revised the aerosol climatology used in the operational ECMWF IFS with one derived from the MACC reanalysis. We analyse the impact of changes in the aerosol radiative effect on the mean model climate and in medium-range weather forecasts, also in comparison with prognostic aerosol fields. The new climatology differs from the previous one by Tegen et al 1997, both in the spatial distribution of the total AOD and the optical properties of each aerosol species. The radiative impact of these changes affects the model mean bias at various spatial and temporal scales. On one hand we report small impacts on measures of large-scale forecast skill but on the other hand details of the regional distribution of aerosol concentration have a large local impact. This is the case for the northern Indian Ocean where the radiative impact of the mineral

  6. Spatial and Temporal Patterns of Aerosol-Cloud Interactions

    NASA Astrophysics Data System (ADS)

    Fuchs, Julia; Cermak, Jan

    2014-05-01

    This study determines the spatial and temporal distribution of regions with frequent aerosol-cloud interactions (aci) and identifies their meteorological determinants based on CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) and ECMWF (European Centre for Medium-Range Weather Forecasts) data products. Atmospheric aerosols influence the microphysical structure of clouds, while both also respond to meteorological conditions. The potential radiative adjustments to changes in a cloud system associated with aerosol-cloud interactions are grouped and termed as effective radiative forcing due to aerosol-cloud interactions (ERFaci). It is difficult to distinguish, to what extent radiative forcing and precipitation patterns of clouds are a result of cloud feedbacks to aerosols or the existing meteorological conditions. A complete understanding of aerosol-cloud-meteorology interactions is crucial as the uncertainty range of ERFaci in climate change modeling could be significantly reduced. In the present study it is suggested that presence of hydrated aerosols is an implication for aci. Knowledge of their vertical and horizontal distribution and frequency over the globe would be important for understanding ERFaci. To identify regions with aerosol-cloud transitions the CAD score (cloud-aerosol discrimination) of the CALIOP (Cloud-Aerosol LIdar with Orthogonal Polarization) instrument on the CALIPSO satellite is used. It separates aerosols and clouds according to the probability distribution functions of 5 parameters (attenuated backscatter, total color ratio, volume depolarization ratio, altitude and latitude) and assigns the likelihood of cloud or aerosol presence. This parameter is used to calculate relative frequencies of aci on a global scale from 2006 to 2013.

  7. Secondary aerosol formation from stress-induced biogenic emissions and possible climate feedbacks

    NASA Astrophysics Data System (ADS)

    Mentel, Th. F.; Kleist, E.; Andres, S.; Dal Maso, M.; Hohaus, T.; Kiendler-Scharr, A.; Rudich, Y.; Springer, M.; Tillmann, R.; Uerlings, R.; Wahner, A.; Wildt, J.

    2013-09-01

    Atmospheric aerosols impact climate by scattering and absorbing solar radiation and by acting as ice and cloud condensation nuclei. Biogenic secondary organic aerosols (BSOAs) comprise an important component of atmospheric aerosols. Biogenic volatile organic compounds (BVOCs) emitted by vegetation are the source of BSOAs. Pathogens and insect attacks, heat waves and droughts can induce stress to plants that may impact their BVOC emissions, and hence the yield and type of formed BSOAs, and possibly their climatic effects. This raises questions of whether stress-induced changes in BSOA formation may attenuate or amplify effects of climate change. In this study we assess the potential impact of stress-induced BVOC emissions on BSOA formation for tree species typical for mixed deciduous and Boreal Eurasian forests. We studied the photochemical BSOA formation for plants infested by aphids in a laboratory setup under well-controlled conditions and applied in addition heat and drought stress. The results indicate that stress conditions substantially modify BSOA formation and yield. Stress-induced emissions of sesquiterpenes, methyl salicylate, and C17-BVOCs increase BSOA yields. Mixtures including these compounds exhibit BSOA yields between 17 and 33%, significantly higher than mixtures containing mainly monoterpenes (4-6% yield). Green leaf volatiles suppress SOA formation, presumably by scavenging OH, similar to isoprene. By classifying emission types, stressors and BSOA formation potential, we discuss possible climatic feedbacks regarding aerosol effects. We conclude that stress situations for plants due to climate change should be considered in climate-vegetation feedback mechanisms.

  8. Secondary aerosol formation from stress-induced biogenic emissions and possible climate feedbacks

    NASA Astrophysics Data System (ADS)

    Mentel, Th. F.; Kleist, E.; Andres, S.; Maso, M. D.; Hohaus, T.; Kiendler-Scharr, A.; Rudich, Y.; Springer, M.; Tillmann, R.; Uerlings, R.; Wahner, A.; Wildt, J.

    2013-03-01

    Atmospheric aerosols impact climate by scattering and absorbing solar radiation and by acting as ice and cloud condensation nuclei. Secondary organic aerosols (SOA) comprise an important component of atmospheric aerosols. Biogenic volatile organic compounds (BVOC) emitted by vegetation are a major source of SOA. Pathogens and insect attacks, heat waves and droughts can induce stress to plants that may impact their BVOC emissions, and hence the yield and type of formed SOA, and possibly their climatic effects. This raises questions whether stress-induced changes in SOA formation may attenuate or amplify effects of climate change. In this study we assess the potential impact of stress-induced BVOC emissions on SOA formation for tree species typical for mixed deciduous and Boreal Eurasian forests. We studied the photochemical SOA formation for infested plants in a laboratory setup under well-controlled conditions and applied in addition heat and drought stress. The results indicate that stress conditions substantially modify SOA formation. While sesquiterpenes, methyl salicylate, and C17-BVOC increase SOA yield, green leaf volatiles suppress SOA formation. By classifying emission types, stressors and SOA formation potential, we propose possible climatic feedbacks regarding aerosol effects. We conclude that stress situations for plants due to climate change should be considered in climate-vegetation feedback mechanisms.

  9. Electronic cigarette aerosol induces significantly less cytotoxicity than tobacco smoke

    PubMed Central

    Azzopardi, David; Patel, Kharishma; Jaunky, Tomasz; Santopietro, Simone; Camacho, Oscar M.; McAughey, John; Gaça, Marianna

    2016-01-01

    Abstract Electronic cigarettes (E-cigarettes) are a potential means of addressing the harm to public health caused by tobacco smoking by offering smokers a less harmful means of receiving nicotine. As e-cigarettes are a relatively new phenomenon, there are limited scientific data on the longer-term health effects of their use. This study describes a robust in vitro method for assessing the cytotoxic response of e-cigarette aerosols that can be effectively compared with conventional cigarette smoke. This was measured using the regulatory accepted Neutral Red Uptake assay modified for air–liquid interface (ALI) exposures. An exposure system, comprising a smoking machine, traditionally used for in vitro tobacco smoke exposure assessments, was adapted for use with e-cigarettes to expose human lung epithelial cells at the ALI. Dosimetric analysis methods using real-time quartz crystal microbalances for mass, and post-exposure chemical analysis for nicotine, were employed to detect/distinguish aerosol dilutions from a reference Kentucky 3R4F cigarette and two commercially available e-cigarettes (Vype eStick and ePen). ePen aerosol induced 97%, 94% and 70% less cytotoxicity than 3R4F cigarette smoke based on matched EC50 values at different dilutions (1:5 vs. 1:153 vol:vol), mass (52.1 vs. 3.1 μg/cm2) and nicotine (0.89 vs. 0.27 μg/cm2), respectively. Test doses where cigarette smoke and e-cigarette aerosol cytotoxicity were observed are comparable with calculated daily doses in consumers. Such experiments could form the basis of a larger package of work including chemical analyses, in vitro toxicology tests and clinical studies, to help assess the safety of current and next generation nicotine and tobacco products. PMID:27690199

  10. Secondary Organic Aerosol Formation from the Ozonolysis of Cycloalkenes

    NASA Astrophysics Data System (ADS)

    Keywood, M.; Varutbangkul, V.; Gao, S.; Brechtel, F.; Bahreini, R.; Flagan, R. C.; Seinfeld, J. H.

    2003-12-01

    Secondary organic aerosol (SOA) is ubiquitous in the atmosphere being present in both urban and remote locations and exerting influence on human health, visibility and climate. Despite its importance, our understanding of SOA formation still lacks essential elements, limiting our understanding of the effect of SOA on climate forcing. While there do exist experimental data on SOA yields from both biogenic and anthropogenic precursor compounds, it is difficult to extend these results to predict the aerosol-forming potential of precursor compounds not yet studied. In response to this, a series of chamber experiments were carried out in the Caltech Indoor Chamber Facility, where compounds from the cycloalkene and methyl-s