Science.gov

Sample records for aerosol generator voag

  1. Hydrogen bonding at the aerosol interface

    SciTech Connect

    Zhang, J.X.; Aiello, D.; Aker, P.M. )

    1995-01-12

    Morphology-dependent stimulated Raman scattering (MDSRS) has been used to monitor the degree of hydrogen bonding in water aerosols generated by a vibrating orifice aerosol generator (VOAG). The results show that aerosols created by a VOAG suffer extensive structural disruption and that the disruption is most pronounced at the aerosol surface. Laboratory aerosols prepared in this way do not appropriately mimic those found in the atmosphere, and the mass accommodation coefficients measured using such aerosols should not be used in global climate modeling calculations. 25 refs., 10 figs.

  2. Solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1992-03-17

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration is disclosed. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  3. Improved solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1988-07-19

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  4. Solid aerosol generator

    DOEpatents

    Prescott, Donald S.; Schober, Robert K.; Beller, John

    1992-01-01

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates.

  5. Monodisperse aerosol generator

    DOEpatents

    Ortiz, Lawrence W.; Soderholm, Sidney C.

    1990-01-01

    An aerosol generator is described which is capable of producing a monodisperse aerosol within narrow limits utilizing an aqueous solution capable of providing a high population of seed nuclei and an organic solution having a low vapor pressure. The two solutions are cold nebulized, mixed, vaporized, and cooled. During cooling, particles of the organic vapor condense onto the excess seed nuclei, and grow to a uniform particle size.

  6. Highly stable aerosol generator

    DOEpatents

    DeFord, H.S.; Clark, M.L.

    1981-11-03

    An improved compressed air nebulizer has been developed such that a uniform aerosol particle size and concentration may be produced over long time periods. This result is achieved by applying a vacuum pressure to the makeup assembly and by use of a vent tube between the atmosphere and the makeup solution. By applying appropriate vacuum pressures to the makeup solution container and by proper positioning of the vent tube, a constant level of aspirating solution may be maintained within the aspirating assembly with aspirating solution continuously replaced from the makeup solution supply. This device may also be adapted to have a plurality of aerosol generators and only one central makeup assembly. 2 figs.

  7. Highly stable aerosol generator

    DOEpatents

    DeFord, Henry S.; Clark, Mark L.

    1981-01-01

    An improved compressed air nebulizer has been developed such that a uniform aerosol particle size and concentration may be produced over long time periods. This result is achieved by applying a vacuum pressure to the makeup assembly and by use of a vent tube between the atmosphere and the makeup solution. By applying appropriate vacuum pressures to the makeup solution container and by proper positioning of the vent tube, a constant level of aspirating solution may be maintained within the aspirating assembly with aspirating solution continuously replaced from the makeup solution supply. This device may also be adapted to have a plurality of aerosol generators and only one central makeup assembly.

  8. Preliminary aerosol generator design studies

    NASA Technical Reports Server (NTRS)

    Stampfer, J. F., Jr.

    1976-01-01

    The design and construction of a prototype vaporization generator for highly dispersed sodium chloride aerosols is described. The aerosol generating system is to be used in the Science Simulator of the Cloud Physics Laboratory Project and as part of the Cloud Physics Laboratory payload to be flown on the shuttle/spacelab.

  9. Wind Power Charged Aerosol Generator

    SciTech Connect

    Marks, A.M.

    1980-07-01

    This describes experimental results on a Charged Aerosol Wind/Electric Power Generator, using Induction Electric Charging with a water jet issuing under water pressure from a small diameter (25-100 ..mu..m) orifice.

  10. Generation of a monodispersed aerosol

    NASA Technical Reports Server (NTRS)

    Schenck, H.; Mikasa, M.; Devicariis, R.

    1974-01-01

    The identity and laboratory test methods for the generation of a monodispersed aerosol are reported on, and are subjected to the following constraints and parameters; (1) size distribution; (2) specific gravity; (3) scattering properties; (4) costs; (5) production. The procedure called for the collection of information from the literature, commercial available products, and experts working in the field. The following topics were investigated: (1) aerosols; (2) air pollution -- analysis; (3) atomizers; (4) dispersion; (5) particles -- optics, size analysis; (6) smoke -- generators, density measurements; (7) sprays; (8) wind tunnels -- visualization.

  11. ATI TDA 5A aerosol generator evaluation

    SciTech Connect

    Gilles, D.A.

    1998-07-27

    Oil based aerosol ``Smoke`` commonly used for testing the efficiency and penetration of High Efficiency Particulate Air filters (HEPA) and HEPA systems can produce flammability hazards that may not have been previously considered. A combustion incident involving an aerosol generator has caused an investigation into the hazards of the aerosol used to test HEPA systems at Hanford.

  12. Test-Aerosol Generator For Calibrating Particle Counters

    NASA Technical Reports Server (NTRS)

    Mogan, Paul A.; Adams, Alois J.; Schwindt, Christian J.; Hodge, Timothy R.; Mallow, Tim J.; Duong, Anh A.; Bukauskas, Vyto V.

    1996-01-01

    Apparatus generates clean, stable aerosol stream for use in testing and calibrating laser-based aerosol-particle counter. Size and concentration of aerosol particles controlled to ensure accurate calibration. Cheap, widely available medical nebulizers used to generate aerosols.

  13. Aerosol generation by raindrop impact on soil

    NASA Astrophysics Data System (ADS)

    Joung, Young Soo; Buie, Cullen R.

    2015-01-01

    Aerosols are investigated because of their significant impact on the environment and human health. To date, windblown dust and sea salt from sea spray through bursting bubbles have been considered the chief mechanisms of environmental aerosol dispersion. Here we investigate aerosol generation from droplets hitting wettable porous surfaces including various classifications of soil. We demonstrate that droplets can release aerosols when they influence porous surfaces, and these aerosols can deliver elements of the porous medium to the environment. Experiments on various porous media including soil and engineering materials reveal that knowledge of the surface properties and impact conditions can be used to predict when frenzied aerosol generation will occur. This study highlights new phenomena associated with droplets on porous media that could have implications for the investigation of aerosol generation in the environment.

  14. Let's Not Forget the Vo-Ag Students Who Want to Farm

    ERIC Educational Resources Information Center

    Berg, Marlin R.

    1974-01-01

    Livestock production, crop production, farm management and records, and agricultural mechanics should be the heart of the Vo-Ag curriculum in rural areas, supplemented by natural resources, forestry, agriculture occupations and placement, because production agriculture education meets community needs and is an inseparable component of preparation…

  15. Copper oxide aerosol: generation and characterization.

    PubMed

    Peoples, S M; McCarthy, J F; Chen, L C; Eppelsheimer, D; Amdur, M O

    1988-06-01

    Effluent gases from high temperature systems such as fossil fuel combustion and pyrometallurgical processes contain inorganic material which has the potential to interact with sulfur dioxide (SO2) on the surface of particles to form an irritant aerosol. The submicron fraction of this inorganic material is especially important as the fine particles may penetrate deep into the lung and cause serious health effects. A laboratory furnace was designed to produce a submicrometer copper oxide aerosol to stimulate emissions from copper smelters and other pyrometallurgical operations. The ultimate aim of this research is to investigate the interaction of SO2 and the copper oxide aerosol at different temperatures and humidities in order to determine the reaction products and their potential health effects upon inhalation. The initial work, as presented in this paper, was to reproducibly generate a submicrometer copper oxide aerosol and to characterize it in terms of size, morphology and composition. Two experimental regimes were set up. One admitted filtered air, without water vapor, into the furnace, and the other admitted filtered air and water vapor. The size and morphology of the aerosols were determined using an electrical aerosol analyzer and transmission electron microscopy. The particles appear as chain aggregates with a count median diameter of 0.026 micron when no water vapor was added and 0.031 micron when water vapor was added into the furnace. Composition of the aerosol was determined using x-ray photoelectron spectroscopy. The aerosol, with or without water in the furnace, consists of a mixture of copper(I) oxide and copper(II) hydroxide. PMID:3400592

  16. Fast onset medications through thermally generated aerosols.

    PubMed

    Rabinowitz, Joshua D; Wensley, Martin; Lloyd, Peter; Myers, Daniel; Shen, William; Lu, Amy; Hodges, Craig; Hale, Ron; Mufson, Daniel; Zaffaroni, Alejandro

    2004-05-01

    Smoking involves heating a drug to form a mixture of drug vapor and gaseous degradation products. These gases subsequently cool and condense into aerosol particles that are inhaled. Here, we demonstrate rapid and reliable systemic delivery of pure pharmaceutical compounds without degradation products through a related process that also involves inhalation of thermally generated aerosol. Drug is coated as a thin film on a metallic substrate and vaporized by heating the metal. The thin nature of the drug coating minimizes the length of time during which the drug is exposed to elevated temperatures, thereby preventing its thermal decomposition. The vaporized, gas-phase drug rapidly condenses and coagulates into micrometer-sized aerosol particles. For the commonly prescribed antimigraine drug rizatriptan, inhalation of these particles results in nearly instantaneous systemic drug action. PMID:14752061

  17. Generating monodisperse pharmacological aerosols using the spinning-top aerosol generator.

    PubMed

    Biddiscombe, Martyn F; Barnes, Peter J; Usmani, Omar S

    2006-01-01

    Pharmacological aerosols of precisely controlled particle size and narrow dispersity can be generated using the spinning-top aerosol generator (STAG). The ability of the STAG to generate monodisperse aerosols from solutions of raw drug compounds makes it a valuable research instrument. In this paper, the versatility of this instrument has been further demonstrated by aerosolizing a range of commercially available nebulized pulmonary therapy preparations. Nebules of Flixotide (fluticasone propionate), Pulmicort (budesonide), Combivent (salbutamol sulphate and ipratropium bromide), Bricanyl (terbutaline sulphate), Atrovent(ipratropium bromide), and Salamol (salbutamol sulphate) were each mixed with ethanol and delivered to the STAG. Monodisperse drug aerosol distributions were generated with MMADs of 0.95-6.7 microm. To achieve larger particle sizes from the nebulizer drug suspensions, the STAG formed compound particle agglomerates derived from the smaller insoluble drug particles. These compound agglomerates behaved aerodynamically as a single particle, and this was verified using an aerodynamic particle sizer and an Andersen Cascade Impactor. Scanning electron microscope images demonstrated their physical structure. On the other hand using the nebulizer drug solutions, spherical particles proportional to the original droplet diameter were generated. The aerosols generated by the STAG can allow investigators to study the scientific principles of inhaled drug deposition and lung physiology for a range of therapeutic agents. PMID:17034300

  18. Generation and characterization of aerosols and vapors for inhalation experiments.

    PubMed Central

    Tillery, M I; Wood, G O; Ettinger, H J

    1976-01-01

    Control of aerosol and vapor characteristics that affect the toxicity of inhaled contaminants often determines the methods of generating exposure atmospheres. Generation methods for aerosols and vapors are presented. The characteristics of the resulting exposure atmosphere and the limitations of the various generation methods are discussed. Methods and instruments for measuring the airborne contaminant with respect to various charcteristics are also described. PMID:797565

  19. Generation and characterization of biological aerosols for laser measurements

    SciTech Connect

    Cheng, Yung-Sung; Barr, E.B.

    1995-12-01

    Concerns for proliferation of biological weapons including bacteria, fungi, and viruses have prompted research and development on methods for the rapid detection of biological aerosols in the field. Real-time instruments that can distinguish biological aerosols from background dust would be especially useful. Sandia National Laboratories (SNL) is developing a laser-based, real-time instrument for rapid detection of biological aerosols, and ITRI is working with SNL scientists and engineers to evaluate this technology for a wide range of biological aerosols. This paper describes methods being used to generate the characterize the biological aerosols for these tests. In summary, a biosafe system has been developed for generating and characterizing biological aerosols and using those aerosols to test the SNL laser-based real-time instrument. Such tests are essential in studying methods for rapid detection of airborne biological materials.

  20. Radiative impact of aerosols generated from biomass burning

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.; Vulcan, Donna V.; Welch, Ronald M.

    1995-01-01

    Atmospheric aerosol particles play a vital role in the Earth's radiative energy budget. They exert a net cooling influence on climate by directly reflecting the solar radiation to space and by modifying the shortwave reflective properties of clouds. Each year, increasing amounts of aerosol particles are released into the atmosphere due to biomass burning, dust storms, forest fires, and volcanic activity. These particles significantly perturb the radiative balance on local, regional, and global scales. While the detection of aerosols over water is a well established procedure, the detection of aerosols over land is often difficult due to the poor contrast between the aerosols and the underlying terrain. In this study, we use textural measures in order to detect aerosols generated from biomass burning over South America, using AVHRR data. The regional radiative effects are then examined using ERBE data. Preliminary results show that the net radiative forcing of aerosols is about -36 W/sq m.

  1. Relationship between fluid bed aerosol generator operation and the aerosol produced

    SciTech Connect

    Carpenter, R.L.; Yerkes, K.

    1980-12-01

    The relationships between bed operation in a fluid bed aerosol generator and aerosol output were studied. A two-inch diameter fluid bed aerosol generator (FBG) was constructed using stainless steel powder as a fluidizing medium. Fly ash from coal combustion was aerosolized and the influence of FBG operating parameters on aerosol mass median aerodynamic diameter (MMAD), geometric standard deviation (sigma/sub g/) and concentration was examined. In an effort to extend observations on large fluid beds to small beds using fine bed particles, minimum fluidizing velocities and elutriation constant were computed. Although FBG minimum fluidizing velocity agreed well with calculations, FBG elutriation constant did not. The results of this study show that the properties of aerosols produced by a FBG depend on fluid bed height and air flow through the bed after the minimum fluidizing velocity is exceeded.

  2. Generation, behavior, and toxicity of ammonium sulfite aerosols

    SciTech Connect

    Rothenberg, S.J.; Dahl, A.R.; Barr, E.B.; Wolff, R.K.

    1986-01-01

    Ammonium sulfite aerosols were continuously generated for periods up to 6 h by gas phase reaction of sulfur dioxide, ammonia, and water vapor in nitrogen carrier gas. Concentrations from 1 to 500 mg/m/sup 3/ were obtained. Aerosol leaving the generator was greater than 90% sulfite, but when diluted with air preparatory to animal exposures, the aerosol was rapidly oxidized. Sulfite concentrations in a large exposure chamber with a long residence time were consistently less than 25 percent of the aerosol mass. Sulfite concentrations in a nose-only or head-only inhalation chamber 1 ft downstream from a radial air injection system ranged from 10 to 80 percent sulfite. The latter system, with a short residence time, was used to expose animals to aerosols. Effects of the mixed sulfite/sulfate aerosol on acute mortality of guinea pigs and tracheal mucous clearance of dogs were measured and no effects were observed.

  3. Capstone Depleted Uranium Aerosols: Generation and Characterization

    SciTech Connect

    Parkhurst, MaryAnn; Szrom, Fran; Guilmette, Ray; Holmes, Tom; Cheng, Yung-Sung; Kenoyer, Judson L.; Collins, John W.; Sanderson, T. Ellory; Fliszar, Richard W.; Gold, Kenneth; Beckman, John C.; Long, Julie

    2004-10-19

    In a study designed to provide an improved scientific basis for assessing possible health effects from inhaling depleted uranium (DU) aerosols, a series of DU penetrators was fired at an Abrams tank and a Bradley fighting vehicle. A robust sampling system was designed to collect aerosols in this difficult environment and continuously monitor the sampler flow rates. Aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. They were also analyzed for uranium oxide phases, particle morphology, and dissolution in vitro. The resulting data provide input useful in human health risk assessments.

  4. Enhanced Deep Blue aerosol retrieval algorithm: The second generation

    NASA Astrophysics Data System (ADS)

    Hsu, N. C.; Jeong, M.-J.; Bettenhausen, C.; Sayer, A. M.; Hansell, R.; Seftor, C. S.; Huang, J.; Tsay, S.-C.

    2013-08-01

    The aerosol products retrieved using the Moderate Resolution Imaging Spectroradiometer (MODIS) collection 5.1 Deep Blue algorithm have provided useful information about aerosol properties over bright-reflecting land surfaces, such as desert, semiarid, and urban regions. However, many components of the C5.1 retrieval algorithm needed to be improved; for example, the use of a static surface database to estimate surface reflectances. This is particularly important over regions of mixed vegetated and nonvegetated surfaces, which may undergo strong seasonal changes in land cover. In order to address this issue, we develop a hybrid approach, which takes advantage of the combination of precalculated surface reflectance database and normalized difference vegetation index in determining the surface reflectance for aerosol retrievals. As a result, the spatial coverage of aerosol data generated by the enhanced Deep Blue algorithm has been extended from the arid and semiarid regions to the entire land areas. In this paper, the changes made in the enhanced Deep Blue algorithm regarding the surface reflectance estimation, aerosol model selection, and cloud screening schemes for producing the MODIS collection 6 aerosol products are discussed. A similar approach has also been applied to the algorithm that generates the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Deep Blue products. Based upon our preliminary results of comparing the enhanced Deep Blue aerosol products with the Aerosol Robotic Network (AERONET) measurements, the expected error of the Deep Blue aerosol optical thickness (AOT) is estimated to be better than 0.05 + 20%. Using 10 AERONET sites with long-term time series, 79% of the best quality Deep Blue AOT values are found to fall within this expected error.

  5. Generation and Characterization of Indoor Fungal Aerosols for Inhalation Studies.

    PubMed

    Madsen, Anne Mette; Larsen, Søren T; Koponen, Ismo K; Kling, Kirsten I; Barooni, Afnan; Karottki, Dorina Gabriela; Tendal, Kira; Wolkoff, Peder

    2016-04-01

    In the indoor environment, people are exposed to several fungal species. Evident dampness is associated with increased respiratory symptoms. To examine the immune responses associated with fungal exposure, mice are often exposed to a single species grown on an agar medium. The aim of this study was to develop an inhalation exposure system to be able to examine responses in mice exposed to mixed fungal species aerosolized from fungus-infested building materials. Indoor airborne fungi were sampled and cultivated on gypsum boards. Aerosols were characterized and compared with aerosols in homes. Aerosols containing 10(7)CFU of fungi/m(3)air were generated repeatedly from fungus-infested gypsum boards in a mouse exposure chamber. Aerosols contained Aspergillus nidulans,Aspergillus niger, Aspergillus ustus, Aspergillus versicolor,Chaetomium globosum,Cladosporium herbarum,Penicillium brevicompactum,Penicillium camemberti,Penicillium chrysogenum,Penicillium commune,Penicillium glabrum,Penicillium olsonii,Penicillium rugulosum,Stachybotrys chartarum, and Wallemia sebi They were all among the most abundant airborne species identified in 28 homes. Nine species from gypsum boards and 11 species in the homes are associated with water damage. Most fungi were present as single spores, but chains and clusters of different species and fragments were also present. The variation in exposure level during the 60 min of aerosol generation was similar to the variation measured in homes. Through aerosolization of fungi from the indoor environment, cultured on gypsum boards, it was possible to generate realistic aerosols in terms of species composition, concentration, and particle sizes. The inhalation-exposure system can be used to study responses to indoor fungi associated with water damage and the importance of fungal species composition. PMID:26921421

  6. Generation and Characterization of Indoor Fungal Aerosols for Inhalation Studies

    PubMed Central

    Larsen, Søren T.; Koponen, Ismo K.; Kling, Kirsten I.; Barooni, Afnan; Karottki, Dorina Gabriela; Tendal, Kira; Wolkoff, Peder

    2016-01-01

    In the indoor environment, people are exposed to several fungal species. Evident dampness is associated with increased respiratory symptoms. To examine the immune responses associated with fungal exposure, mice are often exposed to a single species grown on an agar medium. The aim of this study was to develop an inhalation exposure system to be able to examine responses in mice exposed to mixed fungal species aerosolized from fungus-infested building materials. Indoor airborne fungi were sampled and cultivated on gypsum boards. Aerosols were characterized and compared with aerosols in homes. Aerosols containing 107 CFU of fungi/m3 air were generated repeatedly from fungus-infested gypsum boards in a mouse exposure chamber. Aerosols contained Aspergillus nidulans, Aspergillus niger, Aspergillus ustus, Aspergillus versicolor, Chaetomium globosum, Cladosporium herbarum, Penicillium brevicompactum, Penicillium camemberti, Penicillium chrysogenum, Penicillium commune, Penicillium glabrum, Penicillium olsonii, Penicillium rugulosum, Stachybotrys chartarum, and Wallemia sebi. They were all among the most abundant airborne species identified in 28 homes. Nine species from gypsum boards and 11 species in the homes are associated with water damage. Most fungi were present as single spores, but chains and clusters of different species and fragments were also present. The variation in exposure level during the 60 min of aerosol generation was similar to the variation measured in homes. Through aerosolization of fungi from the indoor environment, cultured on gypsum boards, it was possible to generate realistic aerosols in terms of species composition, concentration, and particle sizes. The inhalation-exposure system can be used to study responses to indoor fungi associated with water damage and the importance of fungal species composition. PMID:26921421

  7. Enhanced Deep Blue Aerosol Retrieval Algorithm: The Second Generation

    NASA Technical Reports Server (NTRS)

    Hsu, N. C.; Jeong, M.-J.; Bettenhausen, C.; Sayer, A. M.; Hansell, R.; Seftor, C. S.; Huang, J.; Tsay, S.-C.

    2013-01-01

    The aerosol products retrieved using the MODIS collection 5.1 Deep Blue algorithm have provided useful information about aerosol properties over bright-reflecting land surfaces, such as desert, semi-arid, and urban regions. However, many components of the C5.1 retrieval algorithm needed to be improved; for example, the use of a static surface database to estimate surface reflectances. This is particularly important over regions of mixed vegetated and non- vegetated surfaces, which may undergo strong seasonal changes in land cover. In order to address this issue, we develop a hybrid approach, which takes advantage of the combination of pre-calculated surface reflectance database and normalized difference vegetation index in determining the surface reflectance for aerosol retrievals. As a result, the spatial coverage of aerosol data generated by the enhanced Deep Blue algorithm has been extended from the arid and semi-arid regions to the entire land areas.

  8. Aerosol Generation by Modern Flush Toilets

    PubMed Central

    Johnson, David; Lynch, Robert; Marshall, Charles; Mead, Kenneth; Hirst, Deborah

    2015-01-01

    A microbe-contaminated toilet will produce bioaerosols when flushed. We assessed toilet plume aerosol from high efficiency (HET), pressure-assisted high efficiency (PAT), and flushometer (FOM) toilets with similar bowl water and flush volumes. Total and droplet nuclei “bioaerosols” were assessed. Monodisperse 0.25–1.9-μm fluorescent microspheres served as microbe surrogates in separate trials in a mockup 5 m3 water closet (WC). Bowl water seeding was approximately 1012 particles/mL. Droplet nuclei were sampled onto 0.2-μm pore size mixed cellulose ester filters beginning 15 min after the flush using open-face cassettes mounted on the WC walls. Pre- and postflush bowl water concentrations were measured. Filter particle counts were analyzed via fluorescent microscopy. Bowl headspace droplet count size distributions were bimodal and similar for all toilet types and flush conditions, with 95% of droplets <2 μm diameter and >99% <5 μm. Up to 145,000 droplets were produced per flush, with the high-energy flushometer producing over three times as many as the lower energy PAT and over 12 times as many as the lowest energy HET despite similar flush volumes. The mean numbers of fluorescent droplet nuclei particles aerosolized and remaining airborne also increased with flush energy. Fluorescent droplet nuclei per flush decreased with increasing particle size. These findings suggest two concurrent aerosolization mechanisms—splashing for large droplets and bubble bursting for the fine droplets that form droplet nuclei. PMID:26635429

  9. Inkjet aerosol generator as monodisperse particle number standard

    NASA Astrophysics Data System (ADS)

    Iida, Kenjiro; Sakurai, Hiromu; Ehara, Kensei

    2013-05-01

    Inkjet technology can be applied to generate highly monodisperse aerosol particles in micrometer range at a precisely controlled rate. AIST has been developing an inkjet aerosol generator (AIST-IAG), and the device will soon become the secondary measurement standard for aerosol particle number concentration in 0.35 μm to 10 μm range. The AIST-IAG can generate both solid and liquid particles consisting of water-soluble ionic compounds. We first report the characteristics of the particle sizes of the generated particles. The full width half maximum of the particle size distribution is about 2 percent, and the particle diameter of the IAG particles was calibrated as a function of the particle mass within 0.6-10 μm range using polystyrene latex sphere as reference material. Then we report the capability of the AIST-IAG as the particle number standard. The particle generation efficiency ηIAG was defined as the number of aerosol particles exiting from the AIST-IAG divided by the rate of the droplet generation, and the values of ηIAG within 0.35-10 μm is essentially 100%, and the 95% confidence interval of the values is less than 1%. The result strongly supports that the AISTIAG can be used to calibrate the counting efficiency of the optical particle counters in submicrometer to micrometer range.

  10. A Cough Aerosol Simulator for the Study of Disease Transmission by Human Cough-Generated Aerosols

    PubMed Central

    Lindsley, William G.; Reynolds, Jeffrey S.; Szalajda, Jonathan V.; Noti, John D.; Beezhold, Donald H.

    2015-01-01

    Aerosol particles expelled during human coughs are a potential pathway for infectious disease transmission. However, the importance of airborne transmission is unclear for many diseases. To better understand the role of cough aerosol particles in the spread of disease and the efficacy of different types of protective measures, we constructed a cough aerosol simulator that produces a humanlike cough in a controlled environment. The simulated cough has a 4.2 l volume and is based on coughs recorded from influenza patients. In one configuration, the simulator produces a cough aerosol containing particles from 0.1 to 100 µm in diameter with a volume median diameter (VMD) of 8.5 µm and a geometric standard deviation (GSD) of 2.9. In a second configuration, the cough aerosol has a size range of 0.1–30 µm, a VMD of 3.4 µm, and a GSD of 2.3. The total aerosol volume expelled during each cough is 68 µl. By generating a controlled and reproducible artificial cough, the simulator allows us to test different ventilation, disinfection, and personal protection scenarios. The system can be used with live pathogens, including influenza virus, which allows isolation precautions used in the healthcare field to be tested without risk of exposure for workers or patients. The information gained from tests with the simulator will help to better understand the transmission of infectious diseases, develop improved techniques for infection control, and improve safety for healthcare workers and patients. PMID:26500387

  11. Generation and characterization of large-particle aerosols using a center flow tangential aerosol generator with a nonhuman-primate, head-only aerosol chamber

    PubMed Central

    Bohannon, J. Kyle; Lackemeyer, Matthew G.; Kuhn, Jens H.; Wada, Jiro; Bollinger, Laura; Jahrling, Peter B.; Johnson, Reed F.

    2016-01-01

    Aerosol droplets or particles produced from infected respiratory secretions have the potential to infect another host through inhalation. These respiratory particles can be polydisperse and range from 0.05–500 μm in diameter. Animal models of infection are generally established to facilitate the potential licensure of candidate prophylactics and/or therapeutics. Consequently, aerosol-based animal infection models are needed to properly study and counter airborne infections. Ideally, experimental aerosol exposure should reliably result in animal disease that faithfully reproduces the modelled human disease. Few studies have been performed to explore the relationship between exposure particle size and induced disease course for infectious aerosol particles. The center flow tangential aerosol generator (CenTAG™) produces large-particle aerosols capable of safely delivering a variety of infectious aerosols to nonhuman primates within a Class III Biological Safety Cabinet (BSC) for establishment or refinement of nonhuman primate infectious disease models. Here we report the adaptation of this technology to the Animal Biosafety Level 4 (ABSL-4) environment for the future study of high-consequence viral pathogens and the characterization of CenTAG™-created sham (no animal, no virus) aerosols using a variety of viral growth media and media supplements. PMID:25970823

  12. Generation and characterization of large-particle aerosols using a center flow tangential aerosol generator with a non-human-primate, head-only aerosol chamber.

    PubMed

    Bohannon, J Kyle; Lackemeyer, Matthew G; Kuhn, Jens H; Wada, Jiro; Bollinger, Laura; Jahrling, Peter B; Johnson, Reed F

    2015-01-01

    Aerosol droplets or particles produced from infected respiratory secretions have the potential to infect another host through inhalation. These respiratory particles can be polydisperse and range from 0.05 to 500 µm in diameter. Animal models of infection are generally established to facilitate the potential licensure of candidate prophylactics and/or therapeutics. Consequently, aerosol-based animal infection models are needed to properly study and counter airborne infections. Ideally, experimental aerosol exposure should reliably result in animal disease that faithfully reproduces the modeled human disease. Few studies have been performed to explore the relationship between exposure particle size and induced disease course for infectious aerosol particles. The center flow tangential aerosol generator (CenTAG™) produces large-particle aerosols capable of safely delivering a variety of infectious aerosols to non-human primates (NHPs) within a Class III Biological Safety Cabinet (BSC) for establishment or refinement of NHP infectious disease models. Here, we report the adaptation of this technology to the Animal Biosafety Level 4 (ABSL-4) environment for the future study of high-consequence viral pathogens and the characterization of CenTAG™-created sham (no animal, no virus) aerosols using a variety of viral growth media and media supplements. PMID:25970823

  13. An aerosol generator for the resuspension of cotton dust.

    PubMed

    Weyel, D A; Ellakkani, M; Alarie, Y; Karol, M

    1984-12-01

    An aerosol generator, the Pitt 3 model, was designed, fabricated, and characterized for the resuspension of inhalable particles from bulk cotton dust. The generator was constructed around a loudspeaker whose energy is transferred into an air column through latex rubber dams. This action tumbles the bulk dust, and small particles are loosened which can then be carried out of the column with the air passing through it. Thirty to forty grams of bulk cotton dust produced a stable aerosol concentration for at least 90 min. The maximum output of about 100 mg/m3 can be reduced to lower concentrations by adding dilution air. In one application, the generator produced a stable aerosol cloud in the range of 2 to 30 mg/m3 with a mass median aerodynamic diameter (MMAD) of about 3 microns and a geometric standard deviation (sigma g) of about 1.5. In another application the concentration in an animal exposure chamber was kept at 20.8 mg/m3 with an MMAD = 2.5 microns and a sigma g = 1.8 for over 6 months. The Pitt 3 generator proved to be trouble-free and produced large amounts of inhalable particles from bulk cotton dust. The generator was also used to generate dust clouds from silica powder, fly ash, and cellulose dust. The only requirement for successful resuspension of any dust with this generator is the presence of small particles in the bulk feed dust. PMID:6506079

  14. Aerosol generation by blower motors as a bias in assessing aerosol penetration into cabin filtration systems.

    PubMed

    Heitbrink, William A; Collingwood, Scott

    2005-01-01

    In cabin filtration systems, blower motors pressurize a vehicle cabin with clean filtered air and recirculate air through an air-conditioning evaporator coil and a heater core. The exposure reduction offered by these cabins is evaluated by optical particle counters that measure size-dependent aerosol concentration inside and outside the cabin. The ratio of the inside-to-outside concentration is termed penetration. Blower motors use stationary carbon brushes to transmit an electrical current through a rotating armature that abrades the carbon brushes. This creates airborne dust that may affect experimental evaluations of aerosol penetration. To evaluate the magnitude of these dust emissions, blower motors were placed in a test chamber and operated at 12 and 13.5 volts DC. A vacuum cleaner drew 76 m3/hour (45 cfm) of air through HEPA filters, the test chamber, and through a 5 cm diameter pipe. An optical particle counter drew air through an isokinetic sampling probe and measured the size-dependent particle concentrations from 0.3 to 15 microm. The concentration of blower motor aerosol was between 2 x 10(5) and 1.8 x 10(6) particles/m3. Aerosol penetration into three stationary vehicles, two pesticide application vehicles and one tractor were measured at two conditions: low concentration (outside in the winter) and high concentration (inside repair shops and burning incense sticks used as a supplemental aerosol source). For particles smaller than 1 microm, the in-cabin concentrations can be explained by the blower motor emissions. For particles larger than 1 microm, other aerosol sources, such as resuspended dirt, are present. Aerosol generated by the operation of the blower motor and by other sources can bias the exposure reduction measured by optical particle counters. PMID:15764523

  15. A method for generating pulmonary neutrophilia using aerosolized lipopolysaccharide.

    PubMed

    Roos, Abraham B; Berg, Tove; Ahlgren, Kerstin M; Grunewald, Johan; Nord, Magnus

    2014-01-01

    Acute lung injury (ALI) is a severe disease characterized by alveolar neutrophilia, with limited treatment options and high mortality. Experimental models of ALI are key in enhancing our understanding of disease pathogenesis. Lipopolysaccharide (LPS) derived from gram positive bacteria induces neutrophilic inflammation in the airways and lung parenchyma of mice. Efficient pulmonary delivery of compounds such as LPS is, however, difficult to achieve. In the approach described here, pulmonary delivery in mice is achieved by challenge to aerosolized Pseudomonas aeruginosa LPS. Dissolved LPS was aerosolized by a nebulizer connected to compressed air. Mice were exposed to a continuous flow of LPS aerosol in a Plexiglas box for 10 min, followed by 2 min conditioning after the aerosol was discontinued. Tracheal intubation and subsequent bronchoalveolar lavage, followed by formalin perfusion was next performed, which allows for characterization of the sterile pulmonary inflammation. Aerosolized LPS generates a pulmonary inflammation characterized by alveolar neutrophilia, detected in bronchoalveolar lavage and by histological assessment. This technique can be set up at a small cost with few appliances, and requires minimal training and expertise. The exposure system can thus be routinely performed at any laboratory, with the potential to enhance our understanding of lung pathology. PMID:25548888

  16. Externally pressurized porous cylinder for multiple surface aerosol generation and method of generation

    DOEpatents

    Apel, Charles T.; Layman, Lawrence R.; Gallimore, David L.

    1988-01-01

    A nebulizer for generating aerosol having small droplet sizes and high efficiency at low sample introduction rates. The nebulizer has a cylindrical gas permeable active surface. A sleeve is disposed around the cylinder and gas is provided from the sleeve to the interior of the cylinder formed by the active surface. In operation, a liquid is provided to the inside of the gas permeable surface. The gas contacts the wetted surface and forms small bubbles which burst to form an aerosol. Those bubbles which are large are carried by momentum to another part of the cylinder where they are renebulized. This process continues until the entire sample is nebulized into aerosol sized droplets.

  17. Generation of tailored microparticles by photopolymerization and evaporation of binary microdroplets of highly volatile solvents

    NASA Astrophysics Data System (ADS)

    Gao, Zhiqiang

    Highly monodisperse polymer microspheres were synthesized by in-situ photopolymerization of microdroplets containing monomers and additives generated by a vibrating orifice aerosol generator (VOAG), and characterized by optical microscopy and scanning electron microscopy (SEM). Optimum reaction conditions of preparing monodisperse solid polymer particles (temperature, monomer concentration, tank pressure, vibrating frequency, and dispersion air) were obtained. The VOAG system was modified and improved so that microdroplets of various solutions may be produced within the range of optimum operation conditions. Many liquids, or solutions such as water, acetone, ethanol, Freon, monomer solutions, aqueous solutions, organic solutions and so on were comprehensively used in the system. Microdroplets with the diameter in the range of 5 to 100 ptm can be tuned and tailored according to variable purposes. Evaporation processes, properties, and characters of microdroplets such as changes in size and refractive index were studied through analyzing elastic and Raman scattering spectra collected from a linear stream of microdroplets. Raman spectra from microdroplets were obtained with a 9040 single monochromator. The resolution and accuracy of the monochromator was improved through an optical assembly that eliminates strong background light. Theoretical peaks of TE and TM modes were compared and matched well with experimental peaks from elastic and inelastic spectra. Mathematical models about evaporation of microdroplets involving volatile and nonvolatile components are used to explain experimental data. Fast mass and energy transport processes were studied in monodisperse microdroplets of Freon 113 and dibutyl phthalate (DBP). There exist the gradients of concentration, temperature, and refractive index inside microdroplets during the rapid processes of evaporation or growth. Raman spectra from microdroplets of aqueous solution of CO2 and carbonates were also studied to

  18. Aerosol phase generation of In-Se nanoparticles.

    PubMed

    Geretovszky, Zs; Deppert, K; Karlsson, L S; Karlsson, M N A; Malm, l J O; Mühlberg, M

    2006-03-01

    Results on the generation and heat treatment of In-Se nanoparticles, made by heterogeneous condensation of selenium on indium nanoparticles synthesised via the evaporation/condensation route are reported. In-situ aerosol measurements are complemented with ex-situ analysis, to provide structural, morphological, and compositional information on the In-Se nanoparticles. Our results indicate that prior to heat treatment In-Se nanoparticles have a shape in the aerosol phase, similar to an asymmetric dumbbell. The bigger particle of the dumbbell structure is made up of amorphous Se, while the overall composition of the polycrystalline smaller particle is around InSe. The smaller particle has an intrinsic structure, and consists of different InSe-compounds, with a decreasing In content towards the shell. The shape of the In-Se nanoparticles is different in the aerosol phase and on the surface of the samples. The observed variety of particle sizes and shapes on the sample surface is shown to be partly due to the agglomeration of the aerosol phase binaries (i.e., dumbbells) via coalescence on the surface of the sample and wetting of the sample surface by the Se nanoparticles. These processes make the bigger particle of the dumbbell structure appear almost perfectly hemispherical on the sample surfaces. During heat treatment at lower temperatures mainly the evaporative removal of the big Se particle of the dumbbell structure will take place. Annealing of the smaller particles starts to dominate at temperatures above 240 degrees C and makes the composition of the small particles closer to that of the thermodynamically most favoured In2Se3. PMID:16573110

  19. A New Method to Generate Micron-Sized AerosolS With Narrow Size Distribution

    NASA Astrophysics Data System (ADS)

    Gañón-Calvo, Alfonso; Barrero, Antonio

    1996-11-01

    Aerosols in the micron-size range with a remarkable monodisperse size distribution can be generated from the breaking up process of a capillary microjet. The size of the main droplets and satellites depend on the jet diameter, d_j, as well as the flow rate, Q, and liquid properties which eventually determine the jet`s breaking up. Therefore, the generation and control of capillary microjets is essential to produce sprays of small droplets with narrow size histograms. Electrosprays has been up to now one of the most successful techniques to produce monodisperse micron-size aerosols. As an alternative, we report here a new method, aerospray, to generate capillary micro jets which can compete against the electrospray for the production of aerosols of small droplets with very narrow size distribution. The method is outlined in the following. Liquid coming out from the exit of a capillary needle is sucked by means of a high speed gas stream (usually air) which flows throughout a hole separating two chambers at different pressures. Under certain parametric conditions of liquid properties, liquid and air flow rates, and geometric characteristics (needle and hole diameters, distance from the needle to the hole, etc), the liquid forms a steady capillary microjet of very small diameter which is speeded up an stabilized by the action of the viscous stresses at the gas liquid interface. The jet passes through the hole and goes out the outside chamber where eventually breaks up into microdroplets by varicose instabilities. Measurements from Laser-Doppler PDA Analizer of these aerosprays show that both the droplet size and its standard deviation are comparable to those obtained by electrospray techniques. On the other hand, using the aerospray, the standard deviation of the resulting droplet size distribution is of the order of those that can be obtained by ultrasonic atomization but the mean diameters can be more than one order of magnitude smaller.

  20. Externally pressurized porous cylinder for multiple surface aerosol generation and method of generation

    DOEpatents

    Apel, C.T.; Layman, L.R.; Gallimore, D.L.

    1988-05-10

    A nebulizer is described for generating aerosol having small droplet sizes and high efficiency at low sample introduction rates. The nebulizer has a cylindrical gas permeable active surface. A sleeve is disposed around the cylinder and gas is provided from the sleeve to the interior of the cylinder formed by the active surface. In operation, a liquid is provided to the inside of the gas permeable surface. The gas contacts the wetted surface and forms small bubbles which burst to form an aerosol. Those bubbles which are large are carried by momentum to another part of the cylinder where they are renebulized. This process continues until the entire sample is nebulized into aerosol sized droplets. 2 figs.

  1. A New Electrospray Aerosol Generator with High Particle Transmission Efficiency

    PubMed Central

    Fu, Huijing; Patel, Anand C.; Holtzman, Michael J.; Chen, Da-Ren

    2012-01-01

    A new single-capillary electrospray (ES) aerosol generator has been developed for monodisperse particle production with maximal transmission efficiency. The new generator consists of both a spray chamber in a point-to-orifice-plate configuration and a charge reduction chamber that can hold up to 4 Nuclespot ionizers (Model P-2042, NRD Inc.). The 2 chambers are partitioned by an orifice plate. To optimize the particle transmission efficiency of the prototype, a systematic study was performed on the generator by varying the system setup and operation. Two key dimensions of the generator setup, the orifice diameter and the distance from the capillary tip to the orifice plate, were varied. Fluorescence analysis was applied to characterize the loss of ES-generated particles at different locations of the prototype. It was found that particle loss in the generator could be reduced by either increasing the orifice diameter or decreasing the distance between the capillary tip and the orifice plate. Increasing either the total radioactivity of the ionizers or the flowrate of the particle carrier gas also further decreased the particle loss in the system. The maximum particle transmission efficiency of 88.0% was obtained with the spray chamber fully opened to the charge reduction chamber, the capillary tip at the same level as the orifice plate, and 4 bipolar ionizers installed. PMID:22829715

  2. A New Electrospray Aerosol Generator with High Particle Transmission Efficiency.

    PubMed

    Fu, Huijing; Patel, Anand C; Holtzman, Michael J; Chen, Da-Ren

    2011-01-01

    A new single-capillary electrospray (ES) aerosol generator has been developed for monodisperse particle production with maximal transmission efficiency. The new generator consists of both a spray chamber in a point-to-orifice-plate configuration and a charge reduction chamber that can hold up to 4 Nuclespot ionizers (Model P-2042, NRD Inc.). The 2 chambers are partitioned by an orifice plate. To optimize the particle transmission efficiency of the prototype, a systematic study was performed on the generator by varying the system setup and operation. Two key dimensions of the generator setup, the orifice diameter and the distance from the capillary tip to the orifice plate, were varied. Fluorescence analysis was applied to characterize the loss of ES-generated particles at different locations of the prototype. It was found that particle loss in the generator could be reduced by either increasing the orifice diameter or decreasing the distance between the capillary tip and the orifice plate. Increasing either the total radioactivity of the ionizers or the flowrate of the particle carrier gas also further decreased the particle loss in the system. The maximum particle transmission efficiency of 88.0% was obtained with the spray chamber fully opened to the charge reduction chamber, the capillary tip at the same level as the orifice plate, and 4 bipolar ionizers installed. PMID:22829715

  3. Aerosols generated by spills of viscous solutions and slurries

    SciTech Connect

    Ballinger, M Y; Hodgson, W H

    1986-12-01

    Safety assessments and environmental impact statements for nuclear fuel cycle facilities require an estimate of potential airborne releases caused by accidents. Aerosols generated by accidents are being investigated by Pacific Northwest Laboratory to develop methods for estimating source terms from these accidents. Experiments were run by spilling viscous solutions and slurries to determine the mass and particle-size distribution of the material made airborne. In all cases, 1 L of solution was spilled from a height of 3 m. Aqueous solutions of sucrose (0 to 56%) gave a range of viscosities from 1.3 to 46 cp. The percent of spill mass made airborne from the spills of these solutions ranged from 0.001 to 0.0001. The mass of particles made airborne decreased as solution viscosity increased. Slurry loading ranged from 25 to 51% total solids. The maximum source airborne (0.0046 wt %) occurred with the slurry that had the lightest loading of soluble solids. The viscosity of the carrying solution also had an impact on the source term from spilling slurries. The effect of surface tension on the source term was examined in two experiments. Surface tension was halved in these spills by adding a surfactant. The maximum weight percent airborne from these spills was 0.0045, compared to 0.003 for spills with twice the surface tension. The aerodynamic mass medium diameters for the aerosols produced by spills of the viscous solutions, slurries, and low surface tension liquids ranged from 0.6 to 8.4 ..mu..m, and the geometric standard deviation ranged from 3.8 to 28.0.

  4. Reactive uptake of HOCl to laboratory generated sea salt particles and nascent sea-spray aerosol

    NASA Astrophysics Data System (ADS)

    Campbell, N. R.; Ryder, O. S.; Bertram, T. H.

    2013-12-01

    Field observations suggest that the reactive uptake of HOCl on marine aerosol particles is an important source of chlorine radicals, particularly under low NOx conditions. However to date, laboratory measurements disagree on the magnitude of the reactive uptake coefficient for HOCl by a factor of 5 (γ(HOCl) ranges between 0.0004 and 0.0018), and there are no measurements of γ(HOCl) on nascent sea-spray aerosol. Here, we present measurements of the reactive uptake of HOCl to laboratory generated sodium chloride and sea-spray aerosol particles generated in a novel Marine Aerosol Reference Tank (MART), coupled to an entrained aerosol flow reactor and Chemical Ionization Mass Spectrometer (CIMS). Measurements of γ(HOCl) retrieved here are compared against those in the literature, and the role of organic coatings on nascent sea-spray aerosol is explored.

  5. Influence of realistic airflow rate on aerosol generation by nebulizers.

    PubMed

    Vecellio, Laurent; Kippax, Paul; Rouquette, Stephane; Diot, Patrice

    2009-04-17

    Mathematical models are available which predict aerosol deposition in the respiratory system assuming that the aerosol concentration and size are constant during inhalation. In this study, we constructed a sinusoidal breathing model to calculate the aerosol concentration produced by a nebulizer as a function of inhalation time. The laser diffraction technique (Spraytec, Malvern Instruments Ltd., Malvern, UK) was used to validate this model as it allows the aerosol concentration and particle size to be measured in real time. Each nebulizer was attached to a special glass measurement cell and a sine-wave pump. Two standard jet nebulizers (Mistyneb and Microneb), two breath-enhanced jet nebulizers (Pari LC+ and Atomisor NL9M) and three mesh nebulizers (Eflow, Aeroneb Go and Aeroneb Pro with Idehaler) were characterized. Results obtained were consistent in terms of curve profile between the proposed model and the laser diffraction measurements. The standard jet and mesh nebulizers produced significant variations in aerosol concentration during inhalation, whereas the breath-enhanced jet nebulizers produced a constant aerosol concentration. All of the nebulizers produced a relatively constant particle size distribution. Our findings confirm that the concentration observed during inhalation is often not constant over time. The laser diffraction method allows the concentration and size of particles for each unit volume of air inhaled to be measured and could therefore be used to predict the aerosol deposition pattern more precisely. PMID:19150494

  6. Bedding disposal cabinet for containment of aerosols generated by animal cage cleaning procedures.

    PubMed Central

    Baldwin, C L; Sabel, F L; Henke, C B

    1976-01-01

    Laboratory tests with aerosolized spores and animal room tests with uranine dye indicate the effectiveness of a prototype bedding disposal cabinet in reducing airborne contamination generated by cage cleaning procedures. Images PMID:826219

  7. Bedding disposal cabinet for containment of aerosols generated by animal cage cleaning procedures.

    PubMed

    Baldwin, C L; Sabel, F L; Henke, C B

    1976-02-01

    Laboratory tests with aerosolized spores and animal room tests with uranine dye indicate the effectiveness of a prototype bedding disposal cabinet in reducing airborne contamination generated by cage cleaning procedures. PMID:826219

  8. In Vitro Evaluation of a Device for Intra-Pulmonary Aerosol Generation and Delivery

    PubMed Central

    Syedain, Zeeshan H.; Naqwi, Amir A.; Dolovich, Myrna; Somani, Arif

    2015-01-01

    For infants born with respiratory distress syndrome (RDS), liquid bolus delivery of surfactant administered through an endotracheal tube is common practice. While this method is generally effective, complications such as transient hypoxia, hypercapnia, and altered cerebral blood flow may occur. Aerosolized surfactant therapy has been explored as an alternative. Unfortunately, past efforts have led to disappointing results as aerosols were generated outside the lungs with significant pharyngeal deposition and minimal intrapulmonary instillation. A novel aerosol generator (Microjet™) is evaluated herein for intrapulmonary aerosol generation within an endotracheal tube and tested with Curosurf and Infasurf surfactants. Compared with other aerosol delivery devices, this process utilizes low air flow (range 0.01-0.2 L/min) that is ideal for limiting potential barotrauma to the premature newborn lung. The mass mean diameter (MMD) of the particles for both tested surfactants was less than 4 μm, which is ideal for both uniform and distal lung delivery. As an indicator of phospholipid function, surfactant surface tension was measured before and after aerosol formation; with no significant difference. Moreover, this device has an outside diameter of <1mm, which permits insertion into an endotracheal tube (of even 2.0 mm). In the premature infant where intravenous access is either technically challenging or difficult, aerosol drug delivery may provide an alternative route in patient resuscitation, stabilization and care. Other potential applications of this type of device include the delivery of nutrients, antibiotics, and analgesics via the pulmonary route. PMID:26884641

  9. First Estimates of the Radiative Forcing of Aerosols Generated from Biomass Burning Using Satellite Data

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.; Kliche, Donna A.; Chou, Joyce; Welch, Ronald M.

    1996-01-01

    Collocated measurements from the Advanced Very High Resolution Radiometer (AVHRR) and the Earth Radiation Budget Experiment (ERBE) scanner are used to examine the radiative forcing of atmospheric aerosols generated from biomass burning for 13 images in South America. Using the AVHRR, Local Area Coverage (LAC) data, a new technique based on a combination of spectral and textural measures is developed for detecting these aerosols. Then, the instantaneous shortwave, longwave, and net radiative forcing values are computed from the ERBE instantaneous scanner data. Results for the selected samples from 13 images show that the mean instantaneous net radiative forcing for areas with heavy aerosol loading is about -36 W/sq m and that for the optically thin aerosols are about -16 W/sq m. These results, although preliminary, provide the first estimates of radiative forcing of atmospheric aerosols from biomass burning using satellite data.

  10. First Estimates of the Radiative Forcing of Aerosols Generated from Biomass Burning using Satellite Data

    NASA Technical Reports Server (NTRS)

    Chistopher, Sundar A.; Kliche, Donna V.; Chou, Joyce; Welch, Ronald M.

    1996-01-01

    Collocated measurements from the Advanced Very High Resolution Radiometer (AVHRR) and the Earth Radiation Budget Experiment (ERBE) scanner are used to examine the radiative forcing of atmospheric aerosols generated from biomass burning for 13 images in South America. Using the AVHRR, Local Area Coverage (LAC) data, a new technique based on a combination of spectral and textural measures is developed for detecting these aerosols. Then, the instantaneous shortwave, longwave, and net radiative forcing values are computed from the ERBE instantaneous scanner data. Results for the selected samples from 13 images show that the mean instantaneous net radiative forcing for areas with heavy aerosol loading is about -36 W/sq m and that for the optically thin aerosols are about -16 W/sq m. These results, although preliminary, provide the first estimates of radiative forcing of atmospheric aerosols from biomass burning using satellite data.

  11. AEROSOLS GENERATED BY LIQUID SLUDGE APPLICATION TO LAND

    EPA Science Inventory

    A preliminary screen was conducted at six sites to characterize sludge with regard to bacterial and viral microorganisms, trace metals, organoechlorine pesticides, and PCB's, and to evaluate each site for its suitability for aerosol monitoring. Four sites were selected for aeroso...

  12. High-efficiency particulate air filter test stand and aerosol generator for particle loading studies.

    PubMed

    Arunkumar, R; Hogancamp, Kristina U; Parsons, Michael S; Rogers, Donna M; Norton, Olin P; Nagel, Brian A; Alderman, Steven L; Waggoner, Charles A

    2007-08-01

    This manuscript describes the design, characterization, and operational range of a test stand and high-output aerosol generator developed to evaluate the performance of 30 x 30 x 29 cm(3) nuclear grade high-efficiency particulate air (HEPA) filters under variable, highly controlled conditions. The test stand system is operable at volumetric flow rates ranging from 1.5 to 12 standard m(3)/min. Relative humidity levels are controllable from 5%-90% and the temperature of the aerosol stream is variable from ambient to 150 degrees C. Test aerosols are produced through spray drying source material solutions that are introduced into a heated stainless steel evaporation chamber through an air-atomizing nozzle. Regulation of the particle size distribution of the aerosol challenge is achieved by varying source solution concentrations and through the use of a postgeneration cyclone. The aerosol generation system is unique in that it facilitates the testing of standard HEPA filters at and beyond rated media velocities by consistently providing, into a nominal flow of 7 standard m(3)/min, high mass concentrations (approximately 25 mg/m(3)) of dry aerosol streams having count mean diameters centered near the most penetrating particle size for HEPA filters (120-160 nm). Aerosol streams that have been generated and characterized include those derived from various concentrations of KCl, NaCl, and sucrose solutions. Additionally, a water insoluble aerosol stream in which the solid component is predominantly iron (III) has been produced. Multiple ports are available on the test stand for making simultaneous aerosol measurements upstream and downstream of the test filter. Types of filter performance related studies that can be performed using this test stand system include filter lifetime studies, filtering efficiency testing, media velocity testing, evaluations under high mass loading and high humidity conditions, and determination of the downstream particle size distributions. PMID

  13. High-efficiency particulate air filter test stand and aerosol generator for particle loading studies

    NASA Astrophysics Data System (ADS)

    Arunkumar, R.; Hogancamp, Kristina U.; Parsons, Michael S.; Rogers, Donna M.; Norton, Olin P.; Nagel, Brian A.; Alderman, Steven L.; Waggoner, Charles A.

    2007-08-01

    This manuscript describes the design, characterization, and operational range of a test stand and high-output aerosol generator developed to evaluate the performance of 30×30×29cm3 nuclear grade high-efficiency particulate air (HEPA) filters under variable, highly controlled conditions. The test stand system is operable at volumetric flow rates ranging from 1.5to12standardm3/min. Relative humidity levels are controllable from 5%-90% and the temperature of the aerosol stream is variable from ambient to 150°C. Test aerosols are produced through spray drying source material solutions that are introduced into a heated stainless steel evaporation chamber through an air-atomizing nozzle. Regulation of the particle size distribution of the aerosol challenge is achieved by varying source solution concentrations and through the use of a postgeneration cyclone. The aerosol generation system is unique in that it facilitates the testing of standard HEPA filters at and beyond rated media velocities by consistently providing, into a nominal flow of 7standardm3/min, high mass concentrations (˜25mg/m3) of dry aerosol streams having count mean diameters centered near the most penetrating particle size for HEPA filters (120-160nm). Aerosol streams that have been generated and characterized include those derived from various concentrations of KCl, NaCl, and sucrose solutions. Additionally, a water insoluble aerosol stream in which the solid component is predominantly iron (III) has been produced. Multiple ports are available on the test stand for making simultaneous aerosol measurements upstream and downstream of the test filter. Types of filter performance related studies that can be performed using this test stand system include filter lifetime studies, filtering efficiency testing, media velocity testing, evaluations under high mass loading and high humidity conditions, and determination of the downstream particle size distributions.

  14. Development and characterization of a resistance spot welding aerosol generator and inhalation exposure system.

    PubMed

    Afshari, Aliakbar; Zeidler-Erdely, Patti C; McKinney, Walter; Chen, Bean T; Jackson, Mark; Schwegler-Berry, Diane; Friend, Sherri; Cumpston, Amy; Cumpston, Jared L; Leonard, H Donny; Meighan, Terence G; Frazer, David G; Antonini, James M

    2014-10-01

    Limited information exists regarding the health risks associated with inhaling aerosols that are generated during resistance spot welding of metals treated with adhesives. Toxicology studies evaluating spot welding aerosols are non-existent. A resistance spot welding aerosol generator and inhalation exposure system was developed. The system was designed by directing strips of sheet metal that were treated with an adhesive to two electrodes of a spot welder. Spot welds were made at a specified distance from each other by a computer-controlled welding gun in a fume collection chamber. Different target aerosol concentrations were maintained within the exposure chamber during a 4-h exposure period. In addition, the exposure system was run in two modes, spark and no spark, which resulted in different chemical profiles and particle size distributions. Complex aerosols were produced that contained both metal particulates and volatile organic compounds (VOCs). Size distribution of the particles was multi-modal. The majority of particles were chain-like agglomerates of ultrafine primary particles. The submicron mode of agglomerated particles accounted for the largest portion of particles in terms of particle number. Metal expulsion during spot welding caused the formation of larger, more spherical particles (spatter). These spatter particles appeared in the micron size mode and accounted for the greatest amount of particles in terms of mass. With this system, it is possible to examine potential mechanisms by which spot welding aerosols can affect health, as well as assess which component of the aerosol may be responsible for adverse health outcomes. PMID:25140455

  15. Electrospray neutralization process and apparatus for generation of nano-aerosol and nano-structured materials

    DOEpatents

    Bailey, Charles L.; Morozov, Victor; Vsevolodov, Nikolai N.

    2010-08-17

    The claimed invention describes methods and apparatuses for manufacturing nano-aerosols and nano-structured materials based on the neutralization of charged electrosprayed products with oppositely charged electrosprayed products. Electrosprayed products include molecular ions, nano-clusters and nano-fibers. Nano-aerosols can be generated when neutralization occurs in the gas phase. Neutralization of electrospan nano-fibers with molecular ions and charged nano-clusters may result in the formation of fibrous aerosols or free nano-mats. Nano-mats can also be produced on a suitable substrate, forming efficient nano-filters.

  16. Direct aerosol chemical composition measurements to evaluate the physicochemical differences between controlled sea spray aerosol generation schemes

    NASA Astrophysics Data System (ADS)

    Collins, D. B.; Zhao, D. F.; Ruppel, M. J.; Laskina, O.; Grandquist, J. R.; Modini, R. L.; Stokes, M. D.; Russell, L. M.; Bertram, T. H.; Grassian, V. H.; Deane, G. B.; Prather, K. A.

    2014-11-01

    Controlled laboratory studies of the physical and chemical properties of sea spray aerosol (SSA) must be under-pinned by a physically and chemically accurate representation of the bubble-mediated production of nascent SSA particles. Bubble bursting is sensitive to the physico-chemical properties of seawater. For a sample of seawater, any important differences in the SSA production mechanism are projected into the composition of the aerosol particles produced. Using direct chemical measurements of SSA at the single-particle level, this study presents an intercomparison of three laboratory-based, bubble-mediated SSA production schemes: gas forced through submerged sintered glass filters ("frits"), a pulsed plunging-waterfall apparatus, and breaking waves in a wave channel filled with natural seawater. The size-resolved chemical composition of SSA particles produced by breaking waves is more similar to particles produced by the plunging waterfall than those produced by sintered glass filters. Aerosol generated by disintegrating foam produced by sintered glass filters contained a larger fraction of organic-enriched particles and a different size-resolved elemental composition, especially in the 0.8-2 μm dry diameter range. Interestingly, chemical differences between the methods only emerged when the particles were chemically analyzed at the single-particle level as a function of size; averaging the elemental composition of all particles across all sizes masked the differences between the SSA samples. When dried, SSA generated by the sintered glass filters had the highest fraction of particles with spherical morphology compared to the more cubic structure expected for pure NaCl particles produced when the particle contains relatively little organic carbon. In addition to an intercomparison of three SSA production methods, the role of the episodic or "pulsed" nature of the waterfall method on SSA composition was under-taken. In organic-enriched seawater, the continuous

  17. Neurotoxicity following acute inhalation of aerosols generated during resistance spot weld-bonding of carbon steel.

    PubMed

    Sriram, Krishnan; Jefferson, Amy M; Lin, Gary X; Afshari, Aliakbar; Zeidler-Erdely, Patti C; Meighan, Terence G; McKinney, Walter; Jackson, Mark; Cumpston, Amy; Cumpston, Jared L; Leonard, Howard D; Frazer, David G; Antonini, James M

    2014-10-01

    Welding generates complex metal aerosols, inhalation of which is linked to adverse health effects among welders. An important health concern of welding fume (WF) exposure is neurological dysfunction akin to Parkinson's disease (PD). Some applications in manufacturing industry employ a variant welding technology known as "weld-bonding" that utilizes resistance spot welding, in combination with adhesives, for metal-to-metal welding. The presence of adhesives raises additional concerns about worker exposure to potentially toxic components like Methyl Methacrylate, Bisphenol A and volatile organic compounds (VOCs). Here, we investigated the potential neurotoxicological effects of exposure to welding aerosols generated during weld-bonding. Male Sprague-Dawley rats were exposed (25 mg/m³ targeted concentration; 4 h/day × 13 days) by whole-body inhalation to filtered air or aerosols generated by either weld-bonding with sparking (high metal, low VOCs; HM) or without sparking (low metal; high VOCs; LM). Fumes generated under these conditions exhibited complex aerosols that contained both metal oxide particulates and VOCs. LM aerosols contained a greater fraction of VOCs than HM, which comprised largely metal particulates of ultrafine morphology. Short-term exposure to LM aerosols caused distinct changes in the levels of the neurotransmitters, dopamine (DA) and serotonin (5-HT), in various brain areas examined. LM aerosols also specifically decreased the mRNA expression of the olfactory marker protein (Omp) and tyrosine hydroxylase (Th) in the olfactory bulb. Consistent with the decrease in Th, LM also reduced the expression of dopamine transporter (Slc6a3; Dat), as well as, dopamine D2 receptor (Drd2) in the olfactory bulb. In contrast, HM aerosols induced the expression of Th and dopamine D5 receptor (Drd5) mRNAs, elicited neuroinflammation and blood-brain barrier-related changes in the olfactory bulb, but did not alter the expression of Omp. Our findings

  18. Neurotoxicity following acute inhalation of aerosols generated during resistance spot weld-bonding of carbon steel

    PubMed Central

    Sriram, Krishnan; Jefferson, Amy M.; Lin, Gary X.; Afshari, Aliakbar; Zeidler-Erdely, Patti C.; Meighan, Terence G.; McKinney, Walter; Jackson, Mark; Cumpston, Amy; Cumpston, Jared L.; Leonard, Howard D.; Frazer, David G.; Antonini, James M.

    2015-01-01

    Welding generates complex metal aerosols, inhalation of which is linked to adverse health effects among welders. An important health concern of welding fume (WF) exposure is neurological dysfunction akin to Parkinson’s disease (PD). Some applications in manufacturing industry employ a variant welding technology known as “weld-bonding” that utilizes resistance spot welding, in combination with adhesives, for metal-to-metal welding. The presence of adhesives raises additional concerns about worker exposure to potentially toxic components like Methyl Methacrylate, Bisphenol A and volatile organic compounds (VOCs). Here, we investigated the potential neurotoxicological effects of exposure to welding aerosols generated during weld-bonding. Male Sprague–Dawley rats were exposed (25 mg/m3 targeted concentration; 4 h/day × 13 days) by whole-body inhalation to filtered air or aerosols generated by either weld-bonding with sparking (high metal, low VOCs; HM) or without sparking (low metal; high VOCs; LM). Fumes generated under these conditions exhibited complex aerosols that contained both metal oxide particulates and VOCs. LM aerosols contained a greater fraction of VOCs than HM, which comprised largely metal particulates of ultrafine morphology. Short-term exposure to LM aerosols caused distinct changes in the levels of the neurotransmitters, dopamine (DA) and serotonin (5-HT), in various brain areas examined. LM aerosols also specifically decreased the mRNA expression of the olfactory marker protein (Omp) and tyrosine hydroxylase (Th) in the olfactory bulb. Consistent with the decrease in Th, LM also reduced the expression of dopamine transporter (Slc6a3; Dat), as well as, dopamine D2 receptor (Drd2) in the olfactory bulb. In contrast, HM aerosols induced the expression of Th and dopamine D5 receptor (Drd5) mRNAs, elicited neuroinflammation and blood–brain barrier-related changes in the olfactory bulb, but did not alter the expression of Omp. Our findings

  19. High-Efficiency Generation and Delivery of Aerosols Through Nasal Cannula During Noninvasive Ventilation

    PubMed Central

    Walenga, Ross L.; Son, Yoen-Ju; Hindle, Michael

    2013-01-01

    Abstract Background Previous studies have demonstrated the delivery of pharmaceutical aerosols through nasal cannula and the feasibility of enhanced condensational growth (ECG) with a nasal interface. The objectives of this study were to develop a device for generating submicrometer aerosols with minimal depositional loss in the formation process and to improve aerosol delivery efficiencies through nasal cannulas. Methods A combination of in vitro experiments and computational fluid dynamics (CFD) simulations that used the strengths of each method was applied. Aerosols were formed using a conventional mesh nebulizer, mixed with ventilation gas, and heated to produce submicrometer sizes. An improved version of the mixer and heater unit was developed based on CFD simulations, and performance was verified with experiments. Aerosol delivery was considered through a commercial large-bore adult cannula, a divided (D) design for use with ECG, and a divided and streamlined (DS) design. Results The improved mixer design reduced the total deposition fraction (DF) of drug within the mixer by a factor of 3 compared with an initial version, had a total DF of approximately 10%, and produced submicrometer aerosols at flow rates of 10 and 15 L/min. Compared with the commercial and D designs for submicrometer aerosols, the DS cannula reduced depositional losses by a factor of 2–3 and retained only approximately 5% or less of the nebulized dose at all flow rates considered. For conventional-sized aerosols (3.9 and 4.7 μm), the DS device provided delivery efficiencies of approximately 80% and above at flow rates of 2–15 L/min. Conclusions Submicrometer aerosols can be formed using a conventional mesh nebulizer and delivered through a nasal cannula with total delivery efficiencies of 80–90%. Streamlining the nasal cannula significantly improved the delivery efficiency of both submicrometer and micrometer aerosols; however, use of submicrometer particles with ECG delivery

  20. Aerosol Data Assimilation with the Next Generation Meteorological Satellite (Himawari-8)

    NASA Astrophysics Data System (ADS)

    Yumimoto, K.; Sekiyama, T. T.; Murakami, H.; Kikuchi, M.; Nagao, T. M.; Tanaka, T. Y.; Ogi, A.; Maki, T.

    2015-12-01

    The Japan Meteorological Agency (JMA) launched a new generation geostationary meteorological satellite, Himawari-8, on 7 October 2014. The Advanced Himawari Imager (AHI) aboard Himawari-8 is a 16 channel multispectral imager including three observational bands (i.e. RGB) in visible lights with 1km horizontal and 10-minite temporal resolutions covering the East Asia and Western Pacific regions. The visible imaging sensor allows us to obtain aerosol optical observations with unprecedented spatial and temporal resolutions and horizontal coverage. Meteorological Research Institute (MRI)/JMA have been developing an aerosol data assimilation system with a global aerosol transport model (MASINGAR mk-2) and the Local Ensemble Transform Kalman Filter (LETKF) for the operational aerosol (Asian dust) forecasting system (Yumimoto et al., under review). In this study, we have the first attempt to assimilate aerosol retrievals derived from the next generation meteorological satellite in the assimilation system. Our preliminary experiment results show that assimilation of full disk aerosol optical thickness (AOT) from Himawari-8 successfully reduces overestimates of anthropogenic pollution outflow from the Asian Continent, and compensates underestimates of dust outflow from the Australian continent.

  1. Aerosol data assimilation using data from Himawari-8, a next-generation geostationary meteorological satellite

    NASA Astrophysics Data System (ADS)

    Yumimoto, K.; Nagao, T. M.; Kikuchi, M.; Sekiyama, T. T.; Murakami, H.; Tanaka, T. Y.; Ogi, A.; Irie, H.; Khatri, P.; Okumura, H.; Arai, K.; Morino, I.; Uchino, O.; Maki, T.

    2016-06-01

    Himawari-8, a next-generation geostationary meteorological satellite, was launched on 7 October 2014 and became operational on 7 July 2015. The advanced imager on board Himawari-8 is equipped with 16 observational bands (including three visible and three near-infrared bands) that enable retrieval of full-disk aerosol optical properties at 10 min intervals from geostationary (GEO) orbit. Here we show the first application of aerosol optical properties (AOPs) derived from Himawari-8 data to aerosol data assimilation. Validation of the assimilation experiment by comparison with independent observations demonstrated successful modeling of continental pollution that was not predicted by simulation without assimilation and reduced overestimates of dust front concentrations. These promising results suggest that AOPs derived from Himawari-8/9 and other planned GEO satellites will considerably improve forecasts of air quality, inverse modeling of emissions, and aerosol reanalysis through assimilation techniques.

  2. A novel micropump droplet generator for aerosol drug delivery: Design simulations

    PubMed Central

    Su, Guoguang; Longest, P. Worth; Pidaparti, Ramana M.

    2010-01-01

    One challenge of generating a liquid aerosol is finding an efficient way to break up bulk amounts of the compound into micron-sized droplets. Traditional methods of aerosol generation focus on the principle of creating the liquid droplets by blowing air at high speed over or through a liquid. In this study, a novel micropump droplet generator (MDG) is proposed based on a microfluidics device to produce monodisperse droplets on demand (DoD). The micropump design was employed to both pump the fluid into the air and to encourage droplet breakup and aerosol formation. Computational simulation modeling of the new MDG was developed and validated with comparisons to experimental data for current generators. The device was found to produce an aerosol similar to a vibrating orifice DoD device. Most importantly, the input power required by the newly proposed device (MDG) was several orders of magnitude below existing DoD generators for a similar droplet output. Based on the simulation results obtained in comparison with current DoD generators, the MDG device performed effectively at higher frequencies, smaller nozzle diameters, and regardless of the liquid viscosity of the solution. PMID:21151580

  3. Influence of atmospheric parameters on vertical profiles and horizontal transport of aerosols generated in the surf zone

    NASA Astrophysics Data System (ADS)

    Kusmierczyk-Michulec, J.; Tedeschi, G.; Van Eijk, A. M. J.; Piazzola, J.

    2013-10-01

    The vertical and horizontal transport of aerosols generated over the surf zone is discussed. Experimental data were collected during the second campaign of the Surf Zone Aerosol Experiment that took place in Duck NC (USA) in November 2007. The Empirical Orthogonal Function (EOF) method was used to analyze the vertical concentration gradients, and allowed separating the surf aerosols from aerosols advected from elsewhere. The numerical Marine Aerosol Concentration Model (MACMod) supported the analysis by confirming that the concentration gradients are more pronounced under stable conditions and that aerosol plumes are then more confined to the surface. The model also confirmed the experimental observations made during two boat runs along the offshore wind vector that surf-generated aerosols are efficiently advected out to sea over several tens of kilometers.

  4. Measuring aerosols generated inside armoured vehicles perforated by depleted uranium ammunition.

    PubMed

    Parkhurst, M A

    2003-01-01

    In response to questions raised after the Gulf War about the health significance of exposure to depleted uranium (DU), the US Department of Defense initiated a study designed to provide an improved scientific basis for assessment of possible health effects on soldiers in vehicles struck by these munitions. As part of this study, a series of DU penetrators were fired at an Abrams tank and a Bradley fighting vehicle, and the aerosols generated by vehicle perforation were collected and characterised. A robust sampling system was designed to collect aerosols in this difficult environment and monitor continuously the sampler flow rates. The aerosol samplers selected for these tests included filter cassettes, cascade impactors, a five-stage cyclone and a moving filter. Sampler redundancy was an integral part of the sampling system to offset losses from fragment damage. Wipe surveys and deposition trays collected removable deposited particulate matter. Interior aerosols were analysed for uranium concentration and particle size distribution as a function of time. They were also analysed for uranium oxide phases, particle morphology and dissolution in vitro. These data, currently under independent peer review, will provide input for future prospective and retrospective dose and health risk assessments of inhaled or ingested DU aerosols. This paper briefly discusses the target vehicles, firing trajectories, aerosol samplers and instrumentation control systems, and the types of analyses conducted on the samples. PMID:14526950

  5. Dioxinlike properties of a trichloroethylene combustion-generated aerosol

    SciTech Connect

    Villalobos, S.A.; Anderson, M.J.; Hinton, D.E.

    1996-07-01

    Conventional chemical analyses of incineration by-products identify compounds of known toxicity but often fail to indicate the presence of other chemicals that may pose health risks. In a previous report, extracts from soot aerosols formed during incomplete combustion of trichloroethylene (TCE) and pyrolysis of plastics exhibited a dioxinlike response when subjected to a keratinocyte assay. To verify this dioxinlike effect, the complete extract, its polar and nonpolar fractions, some containing primarily halogenated aromatic hydrocarbons, were evaluated for toxicity using an embryo assay, for antiestrogenicity using primary liver cell cultures, and for the ability to transform the aryl hydrocarbon receptor into its DNA binding form using liver cytosol in a gel retardation assay. Each of these assays detect dioxinlike effects. Medaka (Oryzias latipes) embryos and primary liver cell cultures of rainbow trout (Oncorhynchus mykiss) were exposed to concentrations of extract ranging from 0.05 to 45 {mu}g/l. 67 refs., 7 figs., 3 tabs.

  6. A closed-loop control "playback" smoking machine for generating mainstream smoke aerosols.

    PubMed

    Shihadeh, Alan; Azar, Sima

    2006-01-01

    A first generation smoking machine capable of reading and replicating detailed puffing behavior from recorded smoking topography data is presented. Unlike standard smoking machines, which model human puffing behavior as a steady periodic waveform with a fixed puff frequency, volume, and duration, this novel machine generates a mainstream smoke aerosol by automatically "playing-back" puff topography recordings. Because combustion chemistry is highly non-linear, representing real smoking behavior with a smoothed periodic waveform may result in a tobacco smoke aerosol with a significantly different chemical composition and physical properties than that generated by a smoker. The machine presented here utilizes a rapid closed-loop control algorithm coded in Labview to generate smoke aerosols for toxicological assessment and inhalation studies. To illustrate its use, dry particulate matter and carbon monoxide yields generated using the playback and equivalent periodic puffing regimens are compared for a single smoking session by a 26-year-old male narghile water-pipe smoker. It was found that the periodic puffing regimen yielded 20% less carbon monoxide (CO) than the played-back smoking session, indicating that steady periodic smoking regimens, which are widely used in tobacco smoke research, may not produce realistic smoke aerosols. PMID:16796538

  7. Time-of-flight aerosol mass spectrometry: Measuring gaseous iodine species after selective uptake in lab-generated aerosols

    NASA Astrophysics Data System (ADS)

    Kundel, Michael; Ries, Marco; Schott, Mathias; Hoffmann, Thorsten

    2010-05-01

    Reactive iodine species play an important role in the marine atmospheric chemistry. Recent studies show that iodine containing compounds (e.g. I2 and ICl) are involved in the tropospheric ozone depletion, the enrichment of iodine in marine aerosols and the formation of new particles in the marine boundary layer (MBL). Various laboratory and field measurements report that molecular iodine (I2) and organoiodine compounds (e.g. CH3I, CH2I2) are the most important precursors for reactive iodine in the MBL[1],[2]. However, the identification and quantification of reactive iodine containing compounds are still analytical challenges. Here, we present a new application of the time-of-flight aerosol mass spectrometer (ToF-AMS) for the quantification of gaseous I2 and ICl in real-time. Time-of-flight aerosol mass spectrometry enables the real-time analysis of the particle size, the particle mass and the chemical composition of non-refractory aerosols[3]. The aerosol enters the ToF-AMS through a critical orifice of 100 μm inner diameter. An aerodynamic lens system focuses the particles in a size range of 50-600 nm as a narrow beam into the vacuum system. While most of the air is removed by a skimmer, the particle beam is transmitted into the particle-sizing chamber. After passing the particle-sizing chamber, the non-refractory particles are flash-vaporized on a heated tungsten surface (500-600 °C) and then ionized by electron impact. The generated ions are extracted by an orthogonal extractor into the time-of-flight mass spectrometer, where the time resolved particle mass detection is performed. Since gaseous compounds are removed inside the ToF-AMS, a direct measurement of gaseous iodine species is not possible. Therefore gaseous iodine species have to be transferred from the gas phase to the particle phase before entering the ToF-AMS. For this purpose α-cyclodextrin (α-CD) particles were used as selective sampling probes for I2 and 1,3,5-trimethoxybenzene (1,3,5-TMB

  8. Computer-automated silica aerosol generator and animal inhalation exposure system

    PubMed Central

    McKinney, Walter; Chen, Bean; Schwegler-Berry, Diane; Frazer, Dave G.

    2015-01-01

    Inhalation exposure systems are necessary tools for determining the dose response relationship of inhaled toxicants under a variety of exposure conditions. The objective of this study was to develop an automated computer controlled system to expose small laboratory animals to precise concentrations of uniformly dispersed airborne silica particles. An acoustical aerosol generator was developed which was capable of re-suspending particles from bulk powder. The aerosolized silica output from the generator was introduced into the throat of a venturi tube. The turbulent high-velocity air stream within the venturi tube increased the dispersion of the re-suspended powder. That aerosol was then used to expose small laboratory animals to constant aerosol concentrations, up to 20mg/m3, for durations lasting up to 8h. Particle distribution and morphology of the silica aerosol delivered to the exposure chamber were characterized to verify that a fully dispersed and respirable aerosol was being produced. The inhalation exposure system utilized a combination of airflow controllers, particle monitors, data acquisition devices and custom software with automatic feedback control to achieve constant and repeatable exposure environments. The automatic control algorithm was capable of maintaining median aerosol concentrations to within ±0.2 mg/m3 of a user selected target concentration during exposures lasting from 2 to 8 h. The system was able to reach 95% of the desired target value in <10min during the beginning phase of an exposure. This exposure system provided a highly automated tool for conducting inhalation toxicology studies involving silica particles. PMID:23796015

  9. Study for radionuclide transfer ratio of aerosols generated during heat cutting

    SciTech Connect

    Iguchi, Yukihiro; Baba, Tsutomu; Kawakami, Hiroto; Kitahara, Takashi; Watanabe, Atsushi; Kodama, Mitsuhiro

    2007-07-01

    The metallic elements with a low melting point and high vapor pressure seemed to transfer in aerosols selectively at dismantling reactor internals using heat cutting. Therefore, the arc melting tests of neutron irradiated zirconium alloy were conducted to investigate the radionuclide transfer behavior of aerosols generated during the heat cutting of activated metals. The arc melting test was conducted using a tungsten inert gas welding machine in an inert gas or air atmosphere. The radioactive aerosols were collected by filter and charcoal filter. The test sample was obtained from Zry-2 fuel cladding irradiated in a Japanese boiling water reactor for five fuel cycles. The activity analysis, chemical composition measurement and scanning electron microscope observation of aerosols were carried out. Some radionuclides were enriched in the aerosols generated in an inert gas atmosphere and the radionuclide transfer ratio did not change remarkably by the presence of air. The transfer ratio of Sb-125 was almost the same as that of Co-60. It was expected that Sb-125 was enriched from other elements since Sb is an element with a low melting point and high vapor pressure compared with the base metal (Zr). In the viewpoint of the environmental impact assessment, it became clear that the influence if Sb-125 is comparable to Co-60. The transfer ratio of Mn-54 was one order higher compared with other radionuclides. The results were discussed on the basis of thermal properties and oxide formation energy of the metallic elements. (authors)

  10. NEW VERSATILE AEROSOL GENERATION SYSTEM DEVELOPED FOR USE IN A LARGE WIND TUNNEL

    EPA Science Inventory

    A new aerosol generation system was developed to accommodate a variety of research activities performed within a large wind tunnel. Because many of the velocity measurements are taken in the wind tunnel with a laser Doppler anemometer (LDA), it is necessary to maintain an aero...

  11. [Use of an aerosol generator (Guard) to control injurious insects in forestry, agriculture, and medical disinsection].

    PubMed

    Abdraziakov, O N; Ermishev, Iu V; Levkov, P A

    2012-01-01

    The Guard aerosol generator is a universal multioperational device without a field-of-use restriction in the application of permitted chemical and biological substances, by combining the function of a controlled dispersion aerosol generator and a remote small- and large-drop sprayer in one mechanism and can use aerosol pesticides. The drop fractionation range is as follows: 3-50, 50-100, 100-300, and 200-400 microm for aerosol, dead water, small-drop, and large-drop spraying, respectively, with smooth and step control of working liquid drops. Treatment using the Guard generator has been shown to be highly effective against agricultural and forestry pests. This paper describes the advantages of the Guard sprayer over those of the conventional air and ground ones. The long-term use of the Guard generator to control mosquitoes and ticks in the Tyumen region could substantially improve the epidemiological situation of tick-borne infections and protect children's recreation centers from attacks of bloodsuckers. PMID:22774514

  12. Direct aerosol chemical composition measurements to evaluate the physicochemical differences between controlled sea spray aerosol generation schemes

    NASA Astrophysics Data System (ADS)

    Collins, D. B.; Zhao, D. F.; Ruppel, M. J.; Laskina, O.; Grandquist, J. R.; Modini, R. L.; Stokes, M. D.; Russell, L. M.; Bertram, T. H.; Grassian, V. H.; Deane, G. B.; Prather, K. A.

    2014-07-01

    Controlled laboratory studies of the physical and chemical properties of sea spray aerosol (SSA) must be underpinned by a physically and chemically accurate representation of the bubble mediated production of nascent SSA particles. Since bubble bursting is sensitive to the physicochemical properties of seawater, any important differences in the SSA production mechanism are projected into SSA composition. Using direct chemical measurements of SSA at the single-particle level, this study presents an inter-comparison of three laboratory-based, bubble-mediated SSA production schemes: gas forced through submerged sintered glass filters ("frits"), a pulsed plunging waterfall apparatus, and breaking waves in a wave channel filled with natural seawater. The size-resolved chemical composition of SSA particles produced by breaking waves is more similar to particles produced by the plunging waterfall than sintered glass filters. Aerosol generated by disintegrating foam produced by sintered glass filters contained a larger fraction of organic enriched particles and a different size-resolved elemental composition, especially in the 0.8-2 μm size range. These particles, when dried, had more spherical morphologies compared to the more cubic structure expected for pure NaCl particles, which can be attributed to the presence of additional organic carbon. In addition to an inter-comparison of three SSA production methods, the role of the episodic or "pulsed" nature of the waterfall method utilized in this study on SSA composition was undertaken. In organic-enriched seawater, the continuous operation of the plunging waterfall mechanism resulted in the accumulation of surface foam and an over-expression of organic matter in SSA particles compared to pulsed plunging waterfall. Throughout this set of experiments, comparative differences in the SSA number size distribution were coincident with differences in aerosol composition, indicating that the production mechanism of SSA exerts

  13. Radiative Effects of Aerosols Generated from Biomass Burning, Dust Storms, and Forest Fires

    NASA Technical Reports Server (NTRS)

    Christopher Sundar A.; Vulcan, Donna V.; Welch, Ronald M.

    1996-01-01

    Atmospheric aerosol particles, both natural and anthropogenic, are important to the earth's radiative balance. They scatter the incoming solar radiation and modify the shortwave reflective properties of clouds by acting as Cloud Condensation Nuclei (CCN). Although it has been recognized that aerosols exert a net cooling influence on climate (Twomey et al. 1984), this effect has received much less attention than the radiative forcings due to clouds and greenhouse gases. The radiative forcing due to aerosols is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign (Houghton et al. 1990). Atmospheric aerosol particles generated from biomass burning, dust storms and forest fires are important regional climatic variables. A recent study by Penner et al. (1992) proposed that smoke particles from biomass burning may have a significant impact on the global radiation balance. They estimate that about 114 Tg of smoke is produced per year in the tropics through biomass burning. The direct and indirect effects of smoke aerosol due to biomass burning could add up globally to a cooling effect as large as 2 W/sq m. Ackerman and Chung (1992) used model calculations and the Earth Radiation Budget Experiment (ERBE) data to show that in comparison to clear days, the heavy dust loading over the Saudi Arabian peninsula can change the Top of the Atmosphere (TOA) clear sky shortwave and longwave radiant exitance by 40-90 W/sq m and 5-20 W/sq m, respectively. Large particle concentrations produced from these types of events often are found with optical thicknesses greater than one. These aerosol particles are transported across considerable distances from the source (Fraser et al. 1984). and they could perturb the radiative balance significantly. In this study, the regional radiative effects of aerosols produced from biomass burning, dust storms and forest fires are examined using the Advanced Very High Resolution Radiometer (AVHRR) Local Area

  14. Physicochemical Characterization of Lake Spray Aerosol Generated from Great Lakes Water Samples

    NASA Astrophysics Data System (ADS)

    Ault, A. P.; Axson, J. L.; May, N.; Pratt, K.

    2014-12-01

    Wave breaking across bodies of water releases particles into the air which can impact climate and human health. Similar to sea spray aerosols formed through marine wave breaking, freshwater lakes generate lake spray aerosol (LSA). LSA can impact climate directly through scattering/absorption and indirectly through cloud nucleation. In addition, these LSA are suggested to impact human health through inhalation of these particles during algal bloom periods characterized by toxic cyanobacteria. Few studies have been conducted to assess the physical and chemical properties of freshwater LSA. Herein, we discuss constructing a LSA generation system and preliminary physical and chemical characterization of aerosol generated from water samples collected at various sites across Lake Erie, Lake Huron, Lake Superior, and Lake Michigan. Information on aerosol size distributions, number concentrations, and chemical composition will be discussed as a function of lake water blue-green algae concentration, dissolved organic carbon concentration, temperature, conductivity, and dissolved oxygen concentration. These studies represent a first step towards evaluating the potential for LSA to impact climate and health in the Great Lakes region.

  15. [Pollution characteristics of microbial aerosols generated from a municipal sewage treatment plant].

    PubMed

    Qiu, Xiong-Hui; Li, Yan-Peng; Niu, Tie-Jun; Li, Mei-Ling; Ma, Zhi-Hui; Miao, Ying; Wang, Xiang-Jun

    2012-07-01

    To characterize the pollution characteristics of microbial aerosols emitted from municipal sewage treatment plants, microbial aerosols were sampled with an Andersen 6-stage impactor at different treatment units of a Xi'an sewage treatment plant between June 2011 and July 2011. The plate-culture and colony-counting methods were employed to determine the concentrations, particle size distributions and median diameters of the airborne bacteria, fungi and actinomycetes. The results showed that the highest concentrations of bacteria (7 866 CFU x m(-3) +/- 960 CFU x m(-3)) and actinomycetes (2 139 CFU x m(-3) +/- 227 CFU x m(-3)) were found in the sludge-dewatering house while the highest fungi concentration (2156 CFU x m(-3) +/- 119 CFU x m(-3)) in the oxidation ditch. The airborne bacteria, fungi and actinomycetes all showed a skewed distribution in particle size. The peaks of bacteria and fungi were in the size range of 2.1-3.3 microm, whereas the peak of airborne actinomycetes was between 1. 1-2.1 microm in size. In general, the order of the median diameters of different microbial aerosols generated from the sewage treatment plant was airborne bacteria > airborne fungi > airborne actinomycetes. In addition, the spatial variation characteristics of microbial aerosols showed that the larger the particle size of the microorganism, the faster the reducing rate of the aerosol concentration. The variations in the reducing rate of concentration with particle sizes can be ordered as airborne bacteria > airborne fungi > airborne actinomycetes. PMID:23002590

  16. Dioxinlike properties of a trichloroethylene combustion-generated aerosol.

    PubMed Central

    Villalobos, S A; Anderson, M J; Denison, M S; Hinton, D E; Tullis, K; Kennedy, I M; Jones, A D; Chang, D P; Yang, G; Kelly, P

    1996-01-01

    Conventional chemical analyses of incineration by-products identify compounds of known toxicity but often fail to indicate the presence of other chemicals that may pose health risks. In a previous report, extracts from soot aerosols formed during incomplete combustion of trichloroethylene (TCE) and pyrolysis of plastics exhibited a dioxinlike response when subjected to a keratinocyte assay. To verify this dioxinlike effect, the complete extract, its polar and nonpolar fractions, some containing primarily halogenated aromatic hydrocarbons, were evaluated for toxicity using an embryo assay, for antiestrogenicity using primary liver cell cultures, and for the ability to transform the aryl hydrocarbon receptor into its DNA binding form using liver cytosol in a gel retardation assay. Each of these assays detect dioxinlike effects. Medaka (Oryzias latipes) embryos and primary liver cell cultures of rainbow trout (Oncorhynchus mykiss) were exposed to concentrations of extract ranging from 0.05 to 45 micrograms/l. Cardiotoxicity with pericardial, yolk sac, and adjacent peritoneal edema occurred after exposure of embryos to concentrations of 7 micrograms/l or greater. These same exposure levels were associated with abnormal embryo development and, at the higher concentrations, death. Some of the fractions were toxic but none was as toxic as the whole extract. In liver cells, total cellular protein and cellular lactate dehydrogenase activity were not altered by in vitro exposure to whole extract (0.05-25 micrograms/l). However, induction of cytochrome P4501A1 protein and ethoxyresorufin O-deethylase activity occurred. In the presence of whole extract, estradiol-dependent vitellogenin synthesis was reduced. Of the fractions, only fraction 1 (nonpolar) showed a similar trend, although vitellogenin synthesis inhibition was not significant. The soot extract and fractions bound to the Ah receptor and showed a significantly positive result in the gel retardation/DNA binding test

  17. Aerosol generation and characterization of multi-walled carbon nanotubes exposed to cells cultured at the air-liquid interface.

    PubMed

    Polk, William W; Sharma, Monita; Sayes, Christie M; Hotchkiss, Jon A; Clippinger, Amy J

    2016-01-01

    Aerosol generation and characterization are critical components in the assessment of the inhalation hazards of engineered nanomaterials (NMs). An extensive review was conducted on aerosol generation and exposure apparatus as part of an international expert workshop convened to discuss the design of an in vitro testing strategy to assess pulmonary toxicity following exposure to aerosolized particles. More specifically, this workshop focused on the design of an in vitro method to predict the development of pulmonary fibrosis in humans following exposure to multi-walled carbon nanotubes (MWCNTs). Aerosol generators, for dry or liquid particle suspension aerosolization, and exposure chambers, including both commercially available systems and those developed by independent researchers, were evaluated. Additionally, characterization methods that can be used and the time points at which characterization can be conducted in order to interpret in vitro exposure results were assessed. Summarized below is the information presented and discussed regarding the relevance of various aerosol generation and characterization techniques specific to aerosolized MWCNTs exposed to cells cultured at the air-liquid interface (ALI). The generation of MWCNT aerosols relevant to human exposures and their characterization throughout exposure in an ALI system is critical for extrapolation of in vitro results to toxicological outcomes in humans. PMID:27108236

  18. Physical Properties of Ambient and Laboratory-Generated Secondary Organic Aerosol

    SciTech Connect

    O'Brien, Rachel E.; Neu, Alexander; Epstein, Scott A.; MacMillan, Amanda; Wang, Bingbing; Kelly, Stephen T.; Nizkorodov, Sergey; Laskin, Alexander; Moffet, Ryan C.; Gilles, Mary K.

    2014-06-17

    The size and thickness of organic aerosol particles collected by impaction in five field campaigns were compared to those of laboratory generated secondary organic aerosols (SOA). Scanning transmission x-ray microscopy (STXM) was used to measure the total carbon absorbance (TCA) by individual particles as a function of their projection areas on the substrate. Because they flatten less upon impaction, particles with higher viscosity and surface tension can be identified by a steeper slope on a plot of TCA vs. size. The slopes of the ambient data are statistically similar indicating a small range of average viscosities and surface tensions across five field campaigns. Steeper slopes were observed for the plots corresponding to ambient particles, while smaller slopes were indicative of the laboratory generated SOA. This comparison indicates that ambient organic particles have higher viscosities and surface tensions than those typically generated in laboratory SOA studies.

  19. Mitigating secondary aerosol generation potentials from biofuel use in the energy sector.

    PubMed

    Tiwary, Abhishek; Colls, Jeremy

    2010-01-01

    This paper demonstrates secondary aerosol generation potential of biofuel use in the energy sector from the photochemical interactions of precursor gases on a life cycle basis. The paper is divided into two parts-first, employing life cycle analysis (LCA) to evaluate the extent of the problem for a typical biofuel based electricity production system using five baseline scenarios; second, proposing adequate mitigation options to minimise the secondary aerosol generation potential on a life cycle basis. The baseline scenarios cover representative technologies for 2010 utilising energy crop (miscanthus), short rotation coppiced chips and residual/waste wood in different proportions. The proposed mitigation options include three approaches-biomass gasification prior to combustion, delaying the harvest of biomass, and increasing the geographical distance between the biomass plant and the harvest site (by importing the biofuels). Preliminary results indicate that the baseline scenarios (assuming all the biomass is sourced locally) bear significant secondary aerosol formation potential on a life cycle basis from photochemical neutralisation of acidic emissions (hydrogen chloride and sulphur dioxide) with ammonia. Our results suggest that gasification of miscanthus biomass would provide the best option by minimising the acidic emissions from the combustion plant whereas the other two options of delaying the harvest or importing biofuels from elsewhere would only lead to marginal reduction in the life cycle aerosol loadings of the systems. PMID:19878969

  20. The occupational exposure limit for fluid aerosol generated in metalworking operations: limitations and recommendations.

    PubMed

    Park, Donguk

    2012-03-01

    The aim of this review was to assess current knowledge related to the occupational exposure limit (OEL) for fluid aerosols including either mineral or chemical oil that are generated in metalworking operations, and to discuss whether their OEL can be appropriately used to prevent several health risks that may vary among metalworking fluid (MWF) types. The OEL (time-weighted average; 5 mg/m(3), short-term exposure limit ; 15 mg/m(3)) has been applied to MWF aerosols without consideration of different fluid aerosol-size fractions. The OEL, is also based on the assumption that there are no significant differences in risk among fluid types, which may be contentious. Particularly, the health risks from exposure to water-soluble fluids may not have been sufficiently considered. Although adoption of The National Institute for Occupational Safety and Health's recommended exposure limit for MWF aerosol (0.5 mg/m(3)) would be an effective step towards minimizing and evaluating the upper respiratory irritation that may be caused by neat or diluted MWF, this would fail to address the hazards (e.g., asthma and hypersensitivity pneumonitis) caused by microbial contaminants generated only by the use of water-soluble fluids. The absence of an OEL for the water-soluble fluids used in approximately 80-90 % of all applicants may result in limitations of the protection from health risks caused by exposure to those fluids. PMID:22953224

  1. Design, demonstration and performance of a versatile electrospray aerosol generator for nanomaterial research and applications

    NASA Astrophysics Data System (ADS)

    Jennerjohn, Nancy; Eiguren-Fernandez, Arantzazu; Prikhodko, Sergey; Fung, David C.; Hirakawa, Karen S.; Zavala-Mendez, Jose D.; Hinds, William; Kennedy, Nola J.

    2010-06-01

    Carbon nanotubes are difficult to aerosolize in a controlled manner. We present a method for generating aerosols not only of carbon nanotubes, but also of many reference and proprietary materials including quantum dots, diesel particulate matter, urban dust, and their mixtures, using electrospraying. This method can be used as a teaching tool, or as the starting point for advanced research, or to deliver nanomaterials in animal exposure studies. This electrospray system generates 180 µg of nanotubes per m3 of carrier gas, and thus aerosolizes an occupationally relevant mass concentration of nanotubes. The efficiency achievable for single-walled carbon nanotubes is 9.4%. This system is simple and quick to construct using ordinary lab techniques and affordable materials. Since it is easy to replace soiled parts with clean ones, experiments on different types of nanomaterial can be performed back to back without contamination from previous experiments. In this paper, the design, fabrication, operation and characterization of our versatile electrospray method are presented. Also, the morphological changes that carbon nanotubes undergo as they make the transition from dry powders to aerosol particles are presented.

  2. Effect of aerosol particles generated by ultrasonic humidifiers on the lung in mouse

    PubMed Central

    2013-01-01

    Background Ultrasonic humidifiers silently generate water droplets as a cool fog and produce most of the dissolved minerals in the fog in the form of an aerosolized “white dust.” However, the health effect of these airborne particles is largely unknown. This study aimed to characterize the aerosol particles generated by ultrasonic humidifiers and to investigate their effect on the lung tissue of mice. Methods An ultrasonic humidifier was operated with tap water, high-silica water, ultrapure water, or other water types. In a chamber (0.765 m3, ventilation ratio 11.5 m3/hr), male ICR mice (10-week-old) were exposed by inhalation to an aerosol-containing vapor generated by the humidifier. After exposure for 7 or 14 days, lung tissues and bronchoalveolar lavage fluid (BALF) were collected from each mouse and examined by microarray, quantitative reverse transcription-polymerase chain reaction, and light and electron microscopy. Results Particles generated from the humidifier operated with tap water had a mass concentration of 0.46 ± 0.03 mg/m3, number concentration of (5.0 ± 1.1) × 104/cm3, and peak size distribution of 183 nm. The particles were phagocytosed by alveolar macrophages in the lung of mice. Inhalation of particles caused dysregulation of genes related to mitosis, cell adhesion molecules, MHC molecules and endocytosis, but did not induce any signs of inflammation or tissue injury in the lung. Conclusion These results indicate that aerosol particles released from ultrasonic humidifiers operated with tap water initiated a cellular response but did not cause severe acute inflammation in pulmonary tissue. Additionally, high mineral content tap water is not recommended and de-mineralized water should be recommended in order to exclude any adverse effects. PMID:24359587

  3. Effect of operation conditions of the drop-on-demand aerosol generator on aerosol characteristics: Pseudo-cinematographic and plasma mass spectrometric studies

    NASA Astrophysics Data System (ADS)

    Orlandini v. Niessen, Jan O.; Krone, Karin M.; Bings, Nicolas H.

    2014-02-01

    The recently presented drop-on-demand (DOD) aerosol generator overcomes some of the drawbacks of pneumatic nebulization, as its aerosol is no longer generated by gas-liquid interaction. In the current study, an advanced imaging technique is presented, based on a CCD camera equipped with magnifying telecentric optics to allow for fast, automated and precise aerosol characterization as well as fundamental studies on the droplet generation processes by means of pseudo-cinematography. The DOD aerosol generator is thoroughly characterized regarding its droplet size distribution, which shows few distinct populations rather than a continuous distribution. Other important figures, such as the Sauter diameter (D3,2) of 22 μm and the span of 0.4 were also determined. Additionally, the influence of the electrical operation conditions of the dosing device on the aerosol generation process is described. The number and volume of the generated droplets were found to be very reproducible and user-variable, e.g. from 17 to 27 μm (D3,2), within a span of 0.07-0.89. The performances of different setups of the DOD as liquid sample introduction system in ICP-MS are correlated to the respective achievable aerosol characteristics and are also compared to the performance of a state-of-the-art μ-flow nebulizer (EnyaMist). The DOD system allowed for improved sensitivity, but slightly elevated signal noise and overall comparable limits of detection. The results are critically discussed and future directions are outlined.

  4. Transition metal associations with primary biological particles in sea spray aerosol generated in a wave channel.

    PubMed

    Guasco, Timothy L; Cuadra-Rodriguez, Luis A; Pedler, Byron E; Ault, Andrew P; Collins, Douglas B; Zhao, Defeng; Kim, Michelle J; Ruppel, Matthew J; Wilson, Scott C; Pomeroy, Robert S; Grassian, Vicki H; Azam, Farooq; Bertram, Timothy H; Prather, Kimberly A

    2014-01-21

    In the ocean, breaking waves generate air bubbles which burst at the surface and eject sea spray aerosol (SSA), consisting of sea salt, biogenic organic species, and primary biological aerosol particles (PBAP). Our overall understanding of atmospheric biological particles of marine origin remains poor. Here, we perform a control experiment, using an aerosol time-of-flight mass spectrometer to measure the mass spectral signatures of individual particles generated by bubbling a salt solution before and after addition of heterotrophic marine bacteria. Upon addition of bacteria, an immediate increase occurs in the fraction of individual particle mass spectra containing magnesium, organic nitrogen, and phosphate marker ions. These biological signatures are consistent with 21% of the supermicrometer SSA particles generated in a previous study using breaking waves in an ocean-atmosphere wave channel. Interestingly, the wave flume mass spectral signatures also contain metal ions including silver, iron, and chromium. The nascent SSA bioparticles produced in the wave channel are hypothesized to be as follows: (1) whole or fragmented bacterial cells which bioaccumulated metals and/or (2) bacteria-derived colloids or biofilms which adhered to the metals. This study highlights the potential for transition metals, in combination with specific biomarkers, to serve as unique indicators for the presence of marine PBAP, especially in metal-impacted coastal regions. PMID:24328130

  5. Overview of the Capstone depleted uranium study of aerosols from impact with armored vehicles: test setup and aerosol generation, characterization, and application in assessing dose and risk.

    PubMed

    Parkhurst, Mary Ann; Guilmette, Raymond A

    2009-03-01

    The Capstone Depleted Uranium (DU) Aerosol Characterization and Risk Assessment Study was conducted to generate data about DU aerosols generated during the perforation of armored combat vehicles with large-caliber DU penetrators, and to apply the data in assessments of human health risks to personnel exposed to these aerosols, primarily through inhalation, during the 1991 Gulf War or in future military operations. The Capstone study consisted of two components: 1) generating, sampling, and characterizing DU aerosols by firing at and perforating combat vehicles, and 2) applying the source-term quantities and characteristics of the aerosols to the evaluation of doses and risks. This paper reviews the background of the study including the bases for the study, previous reviews of DU particles and health assessments from DU used by the U.S. military, the objectives of the study components, the participants and oversight teams, and the types of exposures it was intended to evaluate. It then discusses exposure scenarios used in the dose and risk assessment and provides an overview of how the field tests and dose and risk assessments were conducted. PMID:19204481

  6. Hygroscopic properties of smoke-generated organic aerosol particles emitted in the marine atmosphere

    NASA Astrophysics Data System (ADS)

    Wonaschütz, A.; Coggon, M.; Sorooshian, A.; Modini, R.; Frossard, A. A.; Ahlm, L.; Mülmenstädt, J.; Roberts, G. C.; Russell, L. M.; Dey, S.; Brechtel, F. J.; Seinfeld, J. H.

    2013-10-01

    During the Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE), a plume of organic aerosol was produced by a smoke generator and emitted into the marine atmosphere from aboard the R/V Point Sur. In this study, the hygroscopic properties and the chemical composition of the plume were studied at plume ages between 0 and 4 h in different meteorological conditions. In sunny conditions, the plume particles had very low hygroscopic growth factors (GFs): between 1.05 and 1.09 for 30 nm and between 1.02 and 1.1 for 150 nm dry size at a relative humidity (RH) of 92%, contrasted by an average marine background GF of 1.6. New particles were produced in large quantities (several 10 000 cm-3), which lead to substantially increased cloud condensation nuclei (CCN) concentrations at supersaturations between 0.07 and 0.88%. Ratios of oxygen to carbon (O : C) and water-soluble organic mass (WSOM) increased with plume age: from < 0.001 to 0.2, and from 2.42 to 4.96 μg m-3, respectively, while organic mass fractions decreased slightly (~ 0.97 to ~ 0.94). High-resolution aerosol mass spectrometer (AMS) spectra show that the organic fragment m/z 43 was dominated by C2H3O+ in the small, new particle mode and by C3H7+ in the large particle mode. In the marine background aerosol, GFs for 150 nm particles at 40% RH were found to be enhanced at higher organic mass fractions: an average GF of 1.06 was observed for aerosols with an organic mass fraction of 0.53, and a GF of 1.04 for an organic mass fraction of 0.35.

  7. Emissions and Characteristics of Ice Nucleating Particles Associated with Laboratory Generated Nascent Sea Spray Aerosol

    NASA Astrophysics Data System (ADS)

    McCluskey, C. S.; Hill, T. C. J.; Beall, C.; Sultana, C. M.; Moore, K.; Cornwell, G.; Lee, C.; Al-Mashat, H.; Laskina, O.; Trueblood, J.; Grassian, V. H.; Prather, K. A.; Kreidenweis, S. M.; DeMott, P. J.

    2015-12-01

    Accurate emission rates and activity spectra of atmospheric ice nucleating particles (INPs) are required for proper representation of aerosol-cloud interactions in atmospheric modeling studies. However, few investigations have quantified or characterized oceanic INP emissions. In conjunction with the Center for Aerosol Impacts on the Climate and the Environment, we have directly measured changes in INP emissions and properties of INPs from nascent sea spray aerosol (SSA) through the evolution of phytoplankton blooms. Multiple offline and online instruments were used to monitor aerosol chemistry and size, and bulk water characteristics during two phytoplankton bloom experiments. Two methods were utilized to monitor the number concentrations of INPs from 0 to -34 °C: The online CSU continuous flow diffusion chamber (CFDC) and collections processed offline using the CSU ice spectrometer. Single particle analyses were performed on ice crystal residuals downstream of the CFDC, presumed to be INPs, via scanning transmission electron microscopy (STEM) and Raman microspectroscopy. Preliminary results indicate that laboratory-generated nascent SSA corresponds to number concentrations of INPs that are generally consistent with open ocean regions, based on current knowledge. STEM analyses revealed that the sizes of ice crystal residuals that were associated with nascent SSA ranged from 0.3 to 2.5 μm. Raman microspectroscopy analysis of 1 μm sized residuals found a variety of INP identities, including long chain organics, diatom fragments and polysaccharides. Our data suggest that biological processes play a significant role in ocean INP emissions by generating the species and compounds that were identified during these studies.

  8. Photoacoustic optical properties at UV, VIS, and near IR wavelengths for laboratory generated and winter time ambient urban aerosols

    NASA Astrophysics Data System (ADS)

    Gyawali, M.; Arnott, W. P.; Zaveri, R. A.; Song, C.; Moosmüller, H.; Liu, L.; Mishchenko, M. I.; Chen, L.-W. A.; Green, M. C.; Watson, J. G.; Chow, J. C.

    2012-03-01

    We present the laboratory and ambient photoacoustic (PA) measurement of aerosol light absorption coefficients at ultraviolet wavelength (i.e., 355 nm) and compare with measurements at 405, 532, 870, and 1047 nm. Simultaneous measurements of aerosol light scattering coefficients were achieved by the integrating reciprocal nephelometer within the PA's acoustic resonator. Absorption and scattering measurements were carried out for various laboratory-generated aerosols, including salt, incense, and kerosene soot to evaluate the instrument calibration and gain insight on the spectral dependence of aerosol light absorption and scattering. Ambient measurements were obtained in Reno, Nevada, between 18 December 2009 and 18 January 2010. The measurement period included days with and without strong ground level temperature inversions, corresponding to highly polluted (freshly emitted aerosols) and relatively clean (aged aerosols) conditions. Particulate matter (PM) concentrations were measured and analyzed with other tracers of traffic emissions. The temperature inversion episodes caused very high concentration of PM2.5 and PM10 (particulate matter with aerodynamic diameters less than 2.5 μm and 10 μm, respectively) and gaseous pollutants: carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO2). The diurnal change of absorption and scattering coefficients during the polluted (inversion) days increased approximately by a factor of two for all wavelengths compared to the clean days. The spectral variation in aerosol absorption coefficients indicated a significant amount of absorbing aerosol from traffic emissions and residential wood burning. The analysis of single scattering albedo (SSA), Ångström exponent of absorption (AEA), and Ångström exponent of scattering (AES) for clean and polluted days provides evidences that the aerosol aging and coating process is suppressed by strong temperature inversion under cloudy conditions. In general, measured UV

  9. Photoacoustic optical properties at UV, VIS, and near IR wavelengths for laboratory generated and winter time ambient urban aerosols

    SciTech Connect

    Gyawali, Madhu S.; Arnott, W. Patrick; Zaveri, Rahul A.; Song, Chen; Moosmuller, H.; Liu, Li; Mishchenko, M.; Chen, L-W A.; Green, M.; Watson, J. G.; Chow, J. C.

    2012-03-08

    We present the laboratory and ambient photoacoustic (PA) measurement of aerosol light absorption coefficients at ultraviolet wavelength (i.e., 355 nm) and compare with measurements at 405, 532, 870, and 1047 nm. Simultaneous measurements of aerosol light scattering coefficients were achieved by the integrating reciprocal nephelometer within the PA's acoustic resonator. Absorption and scattering measurements were carried out for various laboratory generated aerosols, including salt, incense, and kerosene soot to evaluate the instrument calibration and gain insight on the spectral dependence of aerosol light absorption and scattering. Ambient measurements were obtained in Reno, Nevada, between 18 December 2009 and 18 January 2010. The measurement period included days with and without strong ground level temperature inversions, corresponding to highly polluted (freshly emitted aerosols) and relatively clean (aged aerosols) conditions. Particulate matter (PM) concentrations were measured and analyzed with other tracers of traffic emissions. The temperature inversion episodes caused very high concentration of PM{sub 2.5} and PM{sub 10} (particulate matter with aerodynamic diameters less than 2.5 {mu}m and 10 {mu}m, respectively) and gaseous pollutants: carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO{sub 2}). The diurnal change of absorption and scattering coefficients during the polluted (inversion) days increased approximately by a factor of two for all wavelengths compared to the clean days. The spectral variation in aerosol absorption coefficients indicated a significant amount of absorbing aerosol from traffic emissions and residential wood burning. The analysis of single scattering albedo (SSA), Angstrom exponent of absorption (AEA), and Angstrom exponent of scattering (AES) for clean and polluted days provides evidences that the aerosol aging and coating process is suppressed by strong temperature inversion under cloudy conditions. In general

  10. Photoacoustic Optical Properties at UV, VIS, and near IR Wavelengths for Laboratory Generated and Winter Time Ambient Urban Aerosols

    NASA Technical Reports Server (NTRS)

    Gyawali, M.; Arnott, W. P.; Zaveri, R. A.; Song, C.; Moosmuller, H.; Liu, L.; Mishchenko, M. I.; Chen, L.-W.A.; Green, M. C.; Watson, J. G.; Chow, J. C.

    2012-01-01

    We present the laboratory and ambient photoacoustic (PA) measurement of aerosol light absorption coefficients at ultraviolet wavelength (i.e., 355 nm) and compare with measurements at 405, 532, 870, and 1047 nm. Simultaneous measurements of aerosol light scattering coefficients were achieved by the integrating reciprocal nephelometer within the PA's acoustic resonator. Absorption and scattering measurements were carried out for various laboratory generated aerosols, including salt, incense, and kerosene soot to evaluate the instrument calibration and gain insight on the spectral dependence of aerosol light absorption and scattering. Ambient measurements were obtained in Reno, Nevada, between 18 December 2009 and 18 January 2010. The measurement period included days with and without strong ground level temperature inversions, corresponding to highly polluted (freshly emitted aerosols) and relatively clean (aged aerosols) conditions. Particulate matter (PM) concentrations were measured and analyzed with other tracers of traffic emissions. The temperature inversion episodes caused very high concentration of PM (sub 2.5) and PM( sub 10) (particulate matter with aerodynamic diameters less than 2.5 micrometers and 10 micrometers, respectively) and gaseous pollutants: carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO2). The diurnal change of absorption and scattering coefficients during the polluted (inversion) days increased approximately by a factor of two for all wavelengths compared to the clean days. The spectral variation in aerosol absorption coefficients indicated a significant amount of absorbing aerosol from traffic emissions and residential wood burning. The analysis of single scattering albedo (SSA), Angstrom exponent of absorption (AEA), and Angstrom exponent of scattering (AES) for clean and polluted days provides evidences that the aerosol aging and coating process is suppressed by strong temperature inversion under cloudy conditions. In

  11. Aerosol Generation and Circulation in the Shore Zone of a Large Alpine Lake - Lake Tahoe, CA.

    NASA Astrophysics Data System (ADS)

    Vancuren, R. A.; Pederson, J. R.; Lashgari, A.; Dolislager, L.; McCauley, E.

    2007-12-01

    The temporal, spatial, and size-distribution patterns of particles in ambient air over shore areas and the surface of Lake Tahoe (Nevada and California) were studied as part of the 2003-2004 Lake Tahoe Atmospheric Deposition Study (LTADS). The concentration of population along the shoreline of Lake Tahoe makes accurate characterization of local aerosol generation and transport especially important in estimation of annual particle flux onto the surface of the lake. Road dust and smoke are major components of aerosols around the lake, and strong gradients in concentrations and size distributions occur as functions of location, land use, traffic activity, and time of day. Measurements taken while cruising on the lake show that aerosol concentrations in near-shore areas are primarily controlled by a combination of diurnal cycling of land- and lake- breezes coupled with varying particle emissions driven by cycles of human activity. Source-associated particle size distributions were shown to be conserved over wide ranges of particle concentrations. Particle concentrations over water were shown to be highly localized, with highest concentrations just offshore from urbanized areas, lowest concentrations along undeveloped shoreline, and low-to-intermediate concentrations over the middle areas of the lake. Based in part on these observations, particle deposition to the lake is seen to be dominated by mesoscale processes, with only minor contributions from regional or large scale atmospheric circulation.

  12. Advanced nebulizer designs employing vibrating mesh/aperture plate technologies for aerosol generation.

    PubMed

    Waldrep, J C; Dhand, R

    2008-04-01

    Recent technological advances and improved nebulizer designs have overcome many limitations of jet nebulizers. Newer devices employ a vibrating mesh or aperture plate (VM/AP) for the generation of therapeutic aerosols with consistent, increased efficiency, predominant aerosol fine particle fractions, low residuals, and the ability to nebulize even microliter volumes. These enhancements are achieved through several different design features and include improvements that promote patient compliance, such as compact design, portability, shorter treatment durations, and quiet operation. Current VM/AP devices in clinical use are the Omron MicroAir, the Nektar Aeroneb, and the Pari eFlow. However, some devices are only approved for use with specific medications. Development of "smart nebulizers" such as the Respironics I-neb couple VM technologies with coordinated delivery and optimized inhalation patterns to enhance inhaled drug delivery of specialized, expensive formulations. Ongoing development of advanced aerosol technologies should improve clinical outcomes and continue to expand therapeutic options as newer inhaled drugs become available. PMID:18393813

  13. Aerosol generation and charging phenomena in plasma- enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Forsyth, Bruce Riley

    This thesis is concerned with advancing the theoretical study of the origin and acquisition of particle charge from aerosol generation. A newly designed integral mobility charge analyzer was constructed and calibrated to measure the electrical charge distribution on aerosol particles between 10 nanometer (nm) and 10 micrometer ( m m). The charge analyzer can be used in a wide variety of laboratory and industrial applications due to its broad operating range. Initially, the analyzer performance was tested by generating a variety of aerosol particles with and without neutralization by two different radioactive sources. As a result, experimental charge distributions can be compared with analytical and numerical models of spray and contact electrification related to the interface's double layer. The liquid surface can be simply modeled as a flat plate electrical capacitor with a stored dipole charge layer near the interface. Experimental research will investigate the charge state of a surface double layer using the interaction of dissolved particles. Ion interactions with a particle- liquid interface in the electrical double layer can be analyzed by measuring the aerosol charge distribution from different concentrations of salts, colloids and organic solutions. However, the main thesis research goal is to monitor charged contaminants in process exhaust using the developed integral mobility charge analyzer. Experimental measurements can then be correlated with the dynamic behavior of different nucleated species in the reactor. Hypothetically, particles formed in the plasma volume will have a different charge and size distribution than exhaust line particles originating from unreacted gas species in the pump line. A thorough understanding of the charge level of particles within the plasma volume is necessary to understand the charging, trapping and behavior of contaminant species in the CVD film processes. Charge neutralization by free ion attachment in the exhaust lines

  14. Development of the aerosol generation system for simulating the dry deposition behavior of radioaerosol emitted by the accident of FDNPP

    NASA Astrophysics Data System (ADS)

    Zhang, Z.

    2015-12-01

    A large amount of radioactivity was discharged by the accident of FDNPP. The long half-life radionuclide, 137Cs was transported through the atmosphere mainly as the aerosol form and deposited to the forests in Fukushima prefecture. After the dry deposition of the 137Cs, the foliar uptake process would occur. To evaluate environmental transfer of radionuclides, the dry deposition and following foliar uptake is very important. There are some pioneering studies for radionuclide foliar uptake with attaching the solution containing stable target element on the leaf, however, cesium oxide aerosols were used for these deposition study [1]. In the FDNPP case, 137Cs was transported in sulfate aerosol form [2], so the oxide aerosol behaviors could not represent the actual deposition behavior in this accident. For evaluation of whole behavior of 137Cs in vegetation system, fundamental data for deposition and uptake process of sulfate aerosol was desired. In this study, we developed aerosol generation system for simulating the dry deposition and the foliar uptake behaviors of aerosol in the different chemical constitutions. In this system, the method of aerosol generation based on the spray drying. Solution contained 137Cs was send to a nozzle by a syringe pump and spraying with a high speed air flow. The sprayed mist was generated in a chamber in the relatively high temperature. The solution in the mist was dried quickly, and micro size solid aerosols consisting 137Cs were generated. The aerosols were suctioned by an ejector and transported inside a tube by the dry air flow, then were directly blown onto the leaves. The experimental condition, such as the size of chamber, chamber temperature, solution flow rate, air flow rate and so on, were optimized. In the deposition experiment, the aerosols on leaves were observed by a SEM/EDX system and the deposition amount was evaluated by measuring the stable Cs remaining on leaf. In the presentation, we will discuss the detail

  15. Near-Range Receiver Unit of Next Generation PollyXT Used with Koldeway Aerosol Raman Lidar in Arctic

    NASA Astrophysics Data System (ADS)

    Stachlewska, Iwona S.; Markowicz, Krzysztof M.; Ritter, Christoph; Neuber, Roland; Heese, Birgit; Engelmann, Ronny; Linne, Holger

    2016-06-01

    The Near-range Aerosol Raman lidar (NARLa) receiver unit, that was designed to enhance the detection range of the NeXT generation PollyXT Aerosol-Depolarization-Raman (ADR) lidar of the University of Warsaw, was employed next the Koldeway Aerosol Raman Lidar (KARL) at the AWI-IPEV German-French station in Arctic during Spring 2015. Here we introduce shortly design of both lidars, the scheme of their installation next to each other, and preliminary results of observations aiming at arctic haze investigation by the lidars and the iCAP a set of particle counter and aethalometer installed under a tethered balloon.

  16. Multiple Stokes wavelength generation in H2, D2, and CH4 for lidar aerosol measurements

    NASA Technical Reports Server (NTRS)

    Chu, Zhiping; Wilkerson, Thomas D.; Singh, Upendra N.

    1991-01-01

    Experimental results are reported of multiple Stokes generation of a frequency-doubled Nd:YAG laser in H2, D2, and CH4 in a focusing geometry. The energies at four Stokes orders were measured as functions of pump energy and gas pressure. The characteristics of the Stokes radiation generated in these gases are compared for optical production of multiple wavelengths. The competition between Raman components is analyzed in terms of cascade Raman scattering and four-wave mixing. The results indicate the possibility of using these generation processes for atmospheric aerosol measurements by means of multiwavelength lidar systems. Also, this study distinguishes between the gases, as regards the tendency to produce several wavelengths (H2,D2) versus the preference to produce mainly first Stokes radiation (CH4).

  17. Optical properties of secondary organic aerosols generated by photooxidation of aromatic hydrocarbons

    PubMed Central

    Li, Kun; Wang, Weigang; Ge, Maofa; Li, Jiangjun; Wang, Dong

    2014-01-01

    The refractive index (RI) is the fundamental characteristic that affects the optical properties of aerosols, which could be some of the most important factors influencing direct radiative forcing. The secondary organic aerosols (SOAs) generated by the photooxidation of benzene, toluene, ethylbenzene and m-xylene (BTEX) under low-NOx and high-NOx conditions are explored in this study. The particles generated in our experiments are considered to be spherical, based on atomic force microscopy (AFM) images, and nonabsorbent at a wavelength of 532 nm, as determined by ultraviolet-visible light (UV-Vis) spectroscopy. The retrieved RIs at 532 nm for the SOAs range from 1.38–1.59, depending on several factors, such as different precursors and NOx levels. The RIs of the SOAs are altered differently as the NOx concentration increases as follows: the RIs of the SOAs derived from benzene and toluene increase, whereas those of the SOAs derived from ethylbenzene and m-xylene decrease. Finally, by comparing the experimental data with the model values, we demonstrate that the models likely overestimate the RI values of the SOA particles to a certain extent, which in turn overestimates the global direct radiative forcing of the organic particles. PMID:24815734

  18. Performance of an improved monodisperse aerosol generation interface for liquid chromatography/mass spectrometry

    SciTech Connect

    Winkler, P.C.; Perkins, D.D.; Williams, W.K.; Browner, R.F.

    1988-03-01

    An improved monodisperse aerosol generation interface for liquid chromatography/mass spectrometry interfacing (MAG-IC-LC/MS) is described. The interface has an aerodynamically superior momentum separator, which results in decreased analyte loss in passing through the interface. The interface is shown to perform well with a quadrupole mass spectrometer, in addition to earlier studies with a magnetic sector instrument. A new method of forming aerosol has been developed, which reduces the dead volume significantly over earlier designs. The performance of the interface has been evaluated by studying its capabilities for (1) generating electron impact spectra of searchable quality for selected compounds of interest, (2) operating with typical liquid chromatographic separation conditions, including reverse phase and gradient elution, and (3) providing low detection limits for both full scan and selective ion monitoring detection of a range of compounds. Studies include identification of the components of a mixture of cis and trans isomers of the thermally labile compound retinol (vitamin A) acetate. Full scan (m/z 80-350) electron impact spectra were readily obtained with 50-ng injection on-column. Detection limits for this compound were 10 ng full scan and 1 ng with selected ion monitoring. Identification of a free (nonderivatized) fatty acid mixture was also readily obtained, using a reversed-phase separation in gradient mode.

  19. Second Generation Inactivated Eastern Equine Encephalitis Virus Vaccine Candidates Protect Mice against a Lethal Aerosol Challenge

    PubMed Central

    Honnold, Shelley P.; Bakken, Russell R.; Fisher, Diana; Lind, Cathleen M.; Cohen, Jeffrey W.; Eccleston, Lori T.; Spurgers, Kevin B.; Maheshwari, Radha K.; Glass, Pamela J.

    2014-01-01

    Currently, there are no FDA-licensed vaccines or therapeutics for eastern equine encephalitis virus (EEEV) for human use. We recently developed several methods to inactivate CVEV1219, a chimeric live-attenuated eastern equine encephalitis virus (EEEV). Dosage and schedule studies were conducted to evaluate the immunogenicity and protective efficacy of three potential second-generation inactivated EEEV (iEEEV) vaccine candidates in mice: formalin-inactivated CVEV1219 (fCVEV1219), INA-inactivated CVEV1219 (iCVEV1219) and gamma-irradiated CVEV1219 (gCVEV1219). Both fCVEV1219 and gCVEV1219 provided partial to complete protection against an aerosol challenge when administered by different routes and schedules at various doses, while iCVEV1219 was unable to provide substantial protection against an aerosol challenge by any route, dose, or schedule tested. When evaluating antibody responses, neutralizing antibody, not virus specific IgG or IgA, was the best correlate of protection. The results of these studies suggest that both fCVEV1219 and gCVEV1219 should be evaluated further and considered for advancement as potential second-generation inactivated vaccine candidates for EEEV. PMID:25116127

  20. Photoacoustic optical properties at UV, VIS, and near IR wavelengths for laboratory generated and winter time ambient urban aerosols

    NASA Astrophysics Data System (ADS)

    Gyawali, M.; Arnott, W. P.; Zaveri, R. A.; Song, C.; Moosmüller, H.; Liu, L.; Mishchenko, M. I.; Chen, L.-W. A.; Green, M. C.; Watson, J. G.; Chow, J. C.

    2011-09-01

    We present the first laboratory and ambient photoacoustic (PA) measurement of aerosol light absorption coefficients at ultraviolet (UV) wavelength (i.e. 355 nm) and compare with measurements at 405, 532, 870, and 1047 nm. Simultaneous measurements of aerosol light scattering coefficients were achieved by the integrating reciprocal nephelometer within the PA';s acoustic resonator. Absorption and scattering measurements were carried out for various laboratory-generated aerosols, including salt, incense, and kerosene soot to evaluate the instrument calibration and gain insight on the spectral dependence of aerosol light absorption and scattering. Exact T-matrix method calculations were used to model the absorption and scattering characteristics of fractal-like agglomerates of different compactness and varying number of monomers. With these calculations, we attempted to estimate the number of monomers and fractal dimension of laboratory generated kerosene soot. Ambient measurements were obtained in Reno, Nevada, between 18 December 2009, and 18 January 2010. The measurement period included days with and without strong ground level temperature inversions, corresponding to highly polluted (freshly emitted aerosols) and relatively clean (aged aerosols) conditions. Particulate matter (PM) concentrations were measured and analyzed with other tracers of traffic emissions. The temperature inversion episodes caused very high concentration of PM2.5 and PM10 (particulate matter with aerodynamic diameters less than 2.5 μm and 10 μm, respectively) and gaseous pollutants: carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO2). The diurnal change of absorption and scattering coefficients during the polluted (inversion) days increased approximately by a factor of two for all wavelengths compared to the clean days. The spectral variation in aerosol absorption coefficients indicated a significant amount of absorbing aerosol from traffic emissions and residential wood

  1. A novel aerosol generator for homogenous distribution of powder over the lungs after pulmonary administration to small laboratory animals.

    PubMed

    Tonnis, Wouter F; Bagerman, Marieke; Weij, Michel; Sjollema, Jelmer; Frijlink, Henderik W; Hinrichs, Wouter L J; de Boer, Anne H

    2014-11-01

    To evaluate powder formulations for pulmonary administration in pre-clinic research, the powder should be administered to the lungs of small laboratory animals. To do so properly, a device is needed that generates particles small enough to reach deep into the lungs. In this study a newly developed aerosol generator was tested for pulmonary administration of powder to the lungs of mice and its performance was compared to the only currently available device, the Penn-Century insufflator. Results showed that both devices generated powder particles of approximately the same size distribution, but the fine particle fraction needed for deep lung administration was strongly improved when the aerosol generator was used.Imaging studies in mice showed that powder particles from the aerosol generator deposited into the deep lung, where powder from the Penn-Century insufflator did not reach further than the conducting airways.Furthermore, powder administered by using the aerosol generator was more homogenously distributed over the five individual lungs lobes than powder administrated by using the Penn-Century insufflator. PMID:25460152

  2. Aerosol and nucleation research in support of NASA cloud physics experiments in space. [ice nuclei generator for the atmospheric cloud physics laboratory on Spacelab

    NASA Technical Reports Server (NTRS)

    Vali, G.; Rogers, D.; Gordon, G.; Saunders, C. P. R.; Reischel, M.; Black, R.

    1978-01-01

    Tasks performed in the development of an ice nucleus generator which, within the facility concept of the ACPL, would provide a test aerosol suitable for a large number and variety of potential experiments are described. The impact of Atmospheric Cloud Physics Laboratory scientific functional requirements on ice nuclei generation and characterization subsystems was established. Potential aerosol generating systems were evaluated with special emphasis on reliability, repeatability and general suitability for application in Spacelab. Possible contamination problems associated with aerosol generation techniques were examined. The ice nucleating abilities of candidate test aerosols were examined and the possible impact of impurities on the nucleating abilities of those aerosols were assessed as well as the relative merits of various methods of aerosol size and number density measurements.

  3. Evaporation Kinetics of Laboratory Generated Secondary Organic Aerosols at Elevated Relative Humidity

    SciTech Connect

    Wilson, Jacqueline M.; Imre, D.; Beranek, Josef; Shrivastava, ManishKumar B.; Zelenyuk, Alla

    2015-01-06

    Secondary organic aerosols (SOA) dominate atmospheric organic aerosols that affect climate, air quality, and health. Recent studies indicate that, contrary to previously held assumptions, at low relative humidity (RH) these particles are semi-solid and evaporate orders of magnitude slower than expected. Elevated relative humidity has the potential to affect significantly formation, properties, and atmospheric evolution of SOA particles. Here we present a study of the effect of RH on the room-temperature evaporation kinetics of SOA particles formed by ozonolysis of α-pinene and limonene. Experiments were carried out on SOA particles generated, evaporated, and aged at 0%, 50% and 90% RH. We find that in all cases evaporation begins with a relatively fast phase, during which 30% to 70% of the particle mass evaporates in 2 hours, followed by a much slower evaporation rate. Evaporation kinetics at 0% and 50% RH are nearly the same, while at 90% RH a slightly larger fraction evaporates. In all cases, aging the particles prior to inducing evaporation reduces the evaporative losses, with aging at elevated RH leading to more significant effect. In all cases, SOA evaporation is nearly size-independent, providing direct evidence that oligomers play a crucial role in determining the evaporation kinetics.

  4. Heterogeneous oxidation reactions relevant to tropospheric aerosol chemistry studied by sum frequency generation

    NASA Astrophysics Data System (ADS)

    Stokes, Grace; Buchbinder, Avram; Gibbs-Davis, Julianne; Scheidt, Karl; Geiger, Franz

    2008-03-01

    Unsaturated organic molecules (terpenes) that commonly form molecular films on tropospheric aerosols can be oxidized by ozone, influencing the microphysics of cloud formation and thus the earth's climate. Using a laboratory approach that combines organic synthesis with surface spectroscopy, we track the ozone oxidation reactions of tropospherically relevant terpenes bound to glass surfaces that serve as mimics for mineral dust. Specifically, vibrational broadband sum frequency generation (SFG) is used to study a number of tailor-made terpene-modified glass surfaces and to track their interactions with ozone in real time. Exposure of these surfaces to ppm levels of ozone at 1 atm and 300 K yield initial reaction probabilities that are significantly higher than corresponding gas phase reactions. SFG spectra help elucidate the molecular orientations of the surface-bound terpenes and the accessibility of reactive C=C bonds. Our work shows the successful use of SFG spectroscopy to determine heterogeneous atmospheric reaction probabilities and bridges the gap between atmospheric aerosol science and surface spectroscopy.

  5. New data for aerosols generated by releases of pressurized powders and solutions in static air

    SciTech Connect

    Ballinger, M.Y.; Sutter, S.L.; Hodgson, W.H.

    1987-05-01

    Safety assessments and environmental impact statements for nuclear fuel cycle facilities require an estimate of potential airborne releases. Aerosols generated by accidents are being investigated by Pacific Northwest Laboratory to develop radioactive source-term estimation methods. Experiments measuring the mass airborne and particle size distribution of aerosols produced by pressurized releases were run. Carbon dioxide was used to pressurize uranine solutions to 50, 250, and 500 psig before release. The mass airborne from these experiments was higher than for comparable air-pressurized systems, but not as great as expected based on the amount of gas dissolved in the liquid and the volume of liquid ejected from the release equipment. Flashing sprays of uranine at 60, 125, and 240 psig produced a much larger source term than all other pressurized releases performed under this program. Low-pressure releases of depleted uranium dioxide at 9, 17.5, and 24.5 psig provided data in the energy region between 3-m spills and 50-psig pressurized releases.

  6. Design and operation of a batch-feed fluidizing bed aerosol generator for inhalation toxicity studies

    SciTech Connect

    Shiotsuka, R.N.; Peck, R.W. Jr.; Drew, R.T.

    1985-02-01

    A fluidizing bed aerosol generator (FBG), designed for inhalation toxicity studies, was constructed and tested. A key design feature contributing to its operational stability was the partial masking of the screen supporting the bronze beads. This caused 20-80% of the bed to fluidize under normal operating conditions. The non-fluidizing areas functioned as reservoirs to feed the fluidizing areas. Using a bed volume of 1000 cc of bronze beads and 20 g of MnO/sub 2/ dust, the mass output rate ranged from 0.1 to 1.0 mg/min when operated at plenum pressures of 1.04 x 10/sup 2/ to 2.42 x 10/sup 2/ kPa (minimum fluidization pressure was approximately 82.8 kPa). During daily operation at three different output rates, the FBG produced aerosols with little change in particle size distributions or concentration when operated six hours/day for five days. Furthermore, when the FBG was operated at a fixed output rate for 15 days with two recharges of MnO/sub 2/ dust, the particle size distribution did not show any cumulative increase. Thus, long-term operation of this FBG should result in a reproducible range of concentration and particle size distribution.

  7. Evaporation kinetics of laboratory-generated secondary organic aerosols at elevated relative humidity.

    PubMed

    Wilson, Jacqueline; Imre, Dan; Beránek, Josef; Shrivastava, Manish; Zelenyuk, Alla

    2015-01-01

    Secondary organic aerosols (SOA) dominate atmospheric organic aerosols that affect climate, air quality, and health. Recent studies indicate that, contrary to previously held assumptions, at low relative humidity (RH) these particles are semisolid and evaporate orders of magnitude slower than expected. Elevated relative humidity has the potential to affect significantly formation, properties, and atmospheric evolution of SOA particles. Here we present a study of the effect of RH on the room-temperature evaporation kinetics of SOA particles formed by ozonolysis of α-pinene and limonene. Experiments were carried out on α-pinene SOA particles generated, evaporated, and aged at <5%, 50 and 90% RH, and on limonene SOA particles at <5% and 90% RH. We find that in all cases evaporation begins with a relatively fast phase, during which 30-70% of the particle mass evaporates in 2 h, followed by a much slower evaporation rate. Evaporation kinetics at <5% and 50% RH are nearly the same, while at 90% RH a slightly larger fraction evaporates. In all cases, aging the particles prior to inducing evaporation reduces the evaporative losses; with aging at elevated RH leading to a more significant effect. In all cases, the observed SOA evaporation is nearly size-independent. PMID:25494490

  8. Ambient and indoor particulate aerosols generated by dairies in the Southern High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives were to quantify and size ambient aerosolized dust in and around the facilities of four Southern High Plains dairies of New Mexico and to determine where health of workers might be vulnerable to particulate aerosols, based on aerosol concentrations that exceed national air quality sta...

  9. A critical review of ultralow-volume aerosols of insecticide applied with vehicle-mounted generators for adult mosquito control.

    PubMed

    Mount, G A

    1998-09-01

    This review of ultralow-volume (ULV) ground aerosols for adult mosquito control includes discussion on application volume, aerosol generators, droplet size, meteorology, swath, dispersal speed, assay methods, insecticide efficacy, and nontarget effects. It summarizes the efficacy of ULV insecticidal aerosols against many important pest and disease-bearing species of mosquitoes in a wide range of locations and habitats in the United States and in some countries of Asia and the Americas. Fourteen conclusions were drawn from the review. 1) ULV ground aerosol applications of insecticide are as efficacious against adult mosquitoes as high- or low-volume aerosols. 2) ULV aerosols with an optimum droplet size spectrum can be produced by several types of nozzles including vortex, pneumatic, and rotary. Droplet size of a particular insecticide formulation is dependent primarily on nozzle air pressure or rotation speed and secondarily on insecticide flow rate. 3) Label flow rates of insecticide for ULV aerosol application can be delivered accurately during routine operations with speed-correlated metering systems within a calibrated speed range, usually not exceeding 20 mph. 4) The most economical and convenient method of droplet size determination for ULV aerosols of insecticide is the waved-slide technique. 5) The efficacy of ULV ground aerosols against adult mosquitoes is related to droplet size because it governs air transport and impingement. The optimum droplet size for mosquito adulticiding is 8-15 microns volume median diameter (VMD) on the basis of laboratory wind-tunnel tests and field research with caged mosquitoes. 6) In general, ULV aerosols should be applied following sunset when mosquitoes are active and meteorological conditions are favorable for achieving maximum levels of control. Application can be made during daytime hours when conditions permit, but rates may have to be increased. The critical meteorological factors are wind velocity and direction

  10. Ultrafine calcium aerosol: Generation and use as a sorbent for sulfur in coal combustion. Volume 1, Experimental work: Final report, August 1, 1988--October 31, 1991

    SciTech Connect

    Alam, M.K.; Nahar, N.U.; Stewart, G.D.; Prudich, M.E.

    1991-11-01

    Studies conducted at Ohio University and elsewhere have demonstrated that ultrafine aerosols, which have the highest surface area per unit mass, have enhanced potential to efficiently remove sulfur dioxide form combustion gases. Therefore it is proposed to generate a very fine aerosol calcium-rich sorbent (or similar aerosols) for gas conditioning. The aerosol will be generated by vaporization of the sorbent compound and subsequent homogeneous nucleation. In experimental studies liquids as well as solids will be converted into ultrafine aerosols by using suitable aerosol generator. The aerosol generator could be a simple bubbler or a flame spray jet using powders of calcium ``Compounds. Studies will then be carried out, to determine the dynamics of sulfur dioxide capture by the ultrafine aerosol. The primary objective of this research was to generate fine aerosols and to use them for coal combustion SO{sub 2}/NO{sub x} gas removal purposes. From the background study on the dry scrubbing system, it can be concluded that the most important experimental parameters are addition ratio, reactor temperature, residence time, total inlet flow rate and inlet SO{sub 2} concentration. Addition ratio is the inlet molar ratio of calcium to sulfur. Before any experimentation, it was necessary to decide and investigate the values of each of the parameters. Each of these parameters were investigated individually and the effects on SO{sub 2} removal were determined.

  11. Computational fluid dynamics (CFD) simulations of aerosol in a U-shaped steam generator tube

    NASA Astrophysics Data System (ADS)

    Longmire, Pamela

    scenario evaluated but ranged from 1.61 to 3.2. At the outlet, the computed AMMD (1.9 mum) had GSD between 1.12 and 2.76. Decontamination factors (DF), computed based on deposition from trajectory calculations, were just over 3.5 for the bend and 4.4 at the outlet. Computed DFs were consistent with expert elicitation cited in NUREG-1150 for aerosol retention in steam generators.

  12. The generation of diesel exhaust particle aerosols from a bulk source in an aerodynamic size range similar to atmospheric particles

    PubMed Central

    Cooney, Daniel J; Hickey, Anthony J

    2008-01-01

    The influence of diesel exhaust particles (DEP) on the lungs and heart is currently a topic of great interest in inhalation toxicology. Epidemiological data and animal studies have implicated airborne particulate matter and DEP in increased morbidity and mortality due to a number of cardiopulmonary diseases including asthma, chronic obstructive pulmonary disorder, and lung cancer. The pathogeneses of these diseases are being studied using animal models and cell culture techniques. Real-time exposures to freshly combusted diesel fuel are complex and require significant infrastructure including engine operations, dilution air, and monitoring and control of gases. A method of generating DEP aerosols from a bulk source in an aerodynamic size range similar to atmospheric DEP would be a desirable and useful alternative. Metered dose inhaler technology was adopted to generate aerosols from suspensions of DEP in the propellant hydrofluoroalkane 134a. Inertial impaction data indicated that the particle size distributions of the generated aerosols were trimodal, with count median aerodynamic diameters less than 100 nm. Scanning electron microscopy of deposited particles showed tightly aggregated particles, as would be expected from an evaporative process. Chemical analysis indicated that there were no major changes in the mass proportion of 2 specific aromatic hydrocarbons (benzo[a]pyrene and benzo[k]fluoranthene) in the particles resulting from the aerosolization process. PMID:19337412

  13. Organic aerosols associated with the generation of reactive oxygen species (ROS) by water-soluble PM2.5.

    PubMed

    Verma, Vishal; Fang, Ting; Xu, Lu; Peltier, Richard E; Russell, Armistead G; Ng, Nga Lee; Weber, Rodney J

    2015-04-01

    We compare the relative toxicity of various organic aerosol (OA) components identified by an aerosol mass spectrometer (AMS) based on their ability to generate reactive oxygen species (ROS). Ambient fine aerosols were collected from urban (three in Atlanta, GA and one in Birmingham, AL) and rural (Yorkville, GA and Centerville, AL) sites in the Southeastern United States. The ROS generating capability of the water-soluble fraction of the particles was measured by the dithiothreitol (DTT) assay. Water-soluble PM extracts were further separated into the hydrophobic and hydrophilic fractions using a C-18 column, and both fractions were analyzed for DTT activity and water-soluble metals. Organic aerosol composition was measured at selected sites using a high-resolution time-of-flight AMS. Positive matrix factorization of the AMS spectra resolved the organic aerosol into isoprene-derived OA (Isop_OA), hydrocarbon-like OA (HOA), less-oxidized oxygenated OA, (LO-OOA), more-oxidized OOA (MO-OOA), cooking OA (COA), and biomass burning OA (BBOA). The association of the DTT activity of water-soluble PM2.5 (WS_DTT) with these factors was investigated by linear regression techniques. BBOA and MO-OOA were most consistently linked with WS_DTT, with intrinsic water-soluble activities of 151 ± 20 and 36 ± 22 pmol/min/μg, respectively. Although less toxic, MO-OOA was most widespread, contributing to WS_DTT activity at all sites and during all seasons. WS_DTT activity was least associated with biogenic secondary organic aerosol. The OA components contributing to WS_DTT were humic-like substances (HULIS), which are abundantly emitted in biomass burning (BBOA) and include highly oxidized OA from multiple sources (MO-OOA). Overall, OA contributed approximately 60% to the WS_DTT activity, with the remaining probably from water-soluble metals, which were mostly associated with the hydrophilic WS_DTT fraction. PMID:25748105

  14. A study of a singlet-oxygen generator with a twisted aerosol flow

    SciTech Connect

    Adamenkov, A A; Vyskubenko, B A; Il'in, S P; Krukovskii, I M

    2002-06-30

    The results of a study of a singlet-oxygen generator (SOG) with a twisted aerosol flow are presented. The output parameters of the generator obtained in experiments exceed the corresponding characteristics reported earlier in the literature. The maximum chemical efficiency of the reactor amounts to {approx} 70%. The flux density of the electron energy stored by the excited oxygen molecules in the reaction zone is above 1.5 kJ cm{sup -2} s{sup -1}. The measured singlet-oxygen yield is {approx} 60% at a pressure of 100 Torr. Adding a buffer gas (N{sub 2}) to chlorine ensures an increase in the outlet pressure up to 250 Torr without a decrease in the singlet-oxygen yield. The utilisation of chlorine under such conditions exceeds 95 %. The SOG design with a twisted flow ensures atmospheric pressure of the waste solution at the reactor outlet, thus significantly simplifying the development of a system for liquid recycling. (active media)

  15. Characterization of secondary organic aerosol generated from ozonolysis of α-pinene mixtures

    NASA Astrophysics Data System (ADS)

    Amin, Hardik S.; Hatfield, Meagan L.; Huff Hartz, Kara E.

    2013-03-01

    In the atmosphere, multiple volatile organic compounds (VOCs) co-exist, and they can be oxidized concurrently and generate secondary organic aerosol (SOA). In this work, SOA is formed by the oxidation (in presence of excess ozone) of mixtures containing α-pinene and other VOCs. The VOC mixtures were made so their composition approached a commercially-available α-pinene-based essential oil, Siberian fir needle oil. The SOA products were sampled using filters, solvent extracted and analyzed by gas chromatography/mass spectrometry with trimethylsilyl derivatization. The individual product yields for SOA generated from α-pinene changed upon the addition of other VOCs. An increase in concentration of non-reactive VOCs (bornyl acetate, camphene, and borneol) lead to a decrease in individual product yields of characteristic α-pinene SOA products. Although these experiments were carried out under higher VOC and ozone concentrations in comparison to the atmosphere, this work suggests that the role of non-reactive VOCs should be explored in SOA products formation.

  16. Physicochemical characteristics of aerosol particles generated during the milling of beryllium silicate ores: implications for risk assessment.

    PubMed

    Stefaniak, Aleksandr B; Chipera, Steve J; Day, Gregory A; Sabey, Phil; Dickerson, Robert M; Sbarra, Deborah C; Duling, Mathew G; Lawrence, Robert B; Stanton, Marcia L; Scripsick, Ronald C

    2008-01-01

    Inhalation of beryllium dusts generated during milling of ores and cutting of beryl-containing gemstones is associated with development of beryllium sensitization and low prevalence of chronic beryllium disease (CBD). Inhalation of beryllium aerosols generated during primary beryllium production and machining of the metal, alloys, and ceramics are associated with sensitization and high rates of CBD, despite similar airborne beryllium mass concentrations among these industries. Understanding the physicochemical properties of exposure aerosols may help to understand the differential immunopathologic mechanisms of sensitization and CBD and lead to more biologically relevant exposure standards. Properties of aerosols generated during the industrial milling of bertrandite and beryl ores were evaluated. Airborne beryllium mass concentrations among work areas ranged from 0.001 microg/m(3) (beryl ore grinding) to 2.1 microg/m(3) (beryl ore crushing). Respirable mass fractions of airborne beryllium-containing particles were < 20% in low-energy input operation areas (ore crushing, hydroxide product drumming) and > 80% in high-energy input areas (beryl melting, beryl grinding). Particle specific surface area decreased with processing from feedstock ores to drumming final product beryllium hydroxide. Among work areas, beryllium was identified in three crystalline forms: beryl, poorly crystalline beryllium oxide, and beryllium hydroxide. In comparison to aerosols generated by high-CBD risk primary production processes, aerosol particles encountered during milling had similar mass concentrations, generally lower number concentrations and surface area, and contained no identifiable highly crystalline beryllium oxide. One possible explanation for the apparent low prevalence of CBD among workers exposed to beryllium mineral dusts may be that characteristics of the exposure material do not contribute to the development of lung burdens sufficient for progression from sensitization to

  17. Simulation test of aerosol generation from vessels in the pre-treatment system of fuel reprocessing

    SciTech Connect

    Fujine, Sachio; Kitamura, Koichiro; Kihara, Takehiro

    1997-08-01

    Aerosol concentration and droplet size are measured in off-gas of vessel under various conditions by changing off-gas flow rate, stirring air flow rate, salts concentration and temperature of nitrate solution. Aerosols are also measured under evaporation and air-lift operation. 4 refs., 6 figs.

  18. Explosion generation of microatomized liquid-drop aerosols and their evolution

    NASA Astrophysics Data System (ADS)

    Vorozhtsov, B. I.; Kudryashova, O. B.; Ishmatov, A. N.; Akhmadeev, I. R.; Sakovich, G. V.

    2010-12-01

    The formation of a microatomized aerosol was investigated with the use of a model of an explosion atomizer based on a hydrodynamic shock tube with atomization through a clearance (nozzle). It is shown that the cavitation of the liquid subjected to atomization plays a great role in the production of a microatomized liquid-drop aerosol. A mathematical model describing the genesis of an aerosol cloud is proposed. The time of propagation of a compression wave in the liquid subjected to atomization and the time of its outflow from the atomizer were estimated, the size distribution of the aerosol particles was constructed, and the dependence of this distribution on the coagulation, evaporation, and precipitation of the aerosol particles was determined. A technique for undisturbed measurement of the genesis of an aerosol is described. Results of an experimental investigation of the dispersion parameters of an aerosol and the processes of formation and propagation of an aerosol cloud produced as a result of the explosion atomization of a liquid are presented.

  19. Ambient spark generation to synthesize carbon-encapsulated metal nanoparticles in continuous aerosol manner

    NASA Astrophysics Data System (ADS)

    Byeon, Jeong Hoon; Park, Jae Hong; Yoon, Ki Young; Hwang, Jungho

    2009-11-01

    We report the use of spark generation in an inert gas atmosphere to synthesize carbon-encapsulated metal nanoparticles (CEMNs) in a continuous aerosol manner using a metal (nickel, cobalt, iron)-graphite carbon electrode configuration without the use of a vacuum. The spark-generated particles consisted of CEMNs and carbonaceous aggregated debris. The outer layer of the CEMNs showed parallel fringes (ordered graphitic nanostructures) while the debris consisted of disordered nanostructures. Electron and X-ray diffraction showed that both metal and graphite in the CEMNs were the pure elements except for iron-carbon, which contained a carbide phase. Based on the order of the activation energies for carbon diffusion into a metal: iron-carbon (10.5-16.5 kcal mol-1) < cobalt-carbon (34.7 kcal mol-1) ~ nickel-carbon (33.0-34.8 kcal mol-1), it was concluded that carbide particles form more easily from elemental iron than nickel or cobalt. The metal-to-carbon mass fractions of the spark-generated particles from nickel (anode)-carbon (cathode), cobalt-carbon, and iron-carbon spark configurations were 18.7, 28.3, and 11.2%, respectively, while the mass fractions for the configurations of metal (cathode)-carbon (anode) were 6.4, 9.1, and 4.3%, respectively. Similarly, the yield of CEMNs from the metal (anode)-carbon (cathode) electrodes was higher (54, 61, and 53%) than that of metal (cathode)-carbon (anode) electrodes (18, 30, and 18%).

  20. High-Resolution Mass Spectroscopic Analysis of Secondary Organic Aerosol Generated by Ozonolysis of Isoprene

    SciTech Connect

    Nguyen, Tran B; Bateman, Adam P; Bones, David L; Nizkorodov, Serguei; Laskin, Julia; Laskin, Alexander

    2010-02-01

    The chemical composition of secondary organic aerosol (SOA) generated from the ozonolysis of isoprene (C5H8) in the presence of an OH scavenger was examined using high-resolution electrospray ionization mass spectrometry (ESI-MS). The chemical composition of SOA is complex, with more than 1000 assigned peaks observed in the positive and negative ion mode spectra. Only a small fraction of peaks corresponds to known products of isoprene oxidation, such as pyruvic acid, glycolic acid, methylglyoxal, etc. The absolute majority of the detected peaks correspond to highly oxidized oligomeric constituents of SOA, with an average O:C molar ratio of ~0.6. The corresponding organic mass (OM) to organic oxygen (OO) ratio is OM/OO ~2.4. Approximately 8% of oxygen atoms in SOA are in the form of peroxides as quantified with an iodide test. Double bond equivalency (DBE) factors, representing the sum of all double bonds and rings, increase by 1 for every 2-3 additional carbon atoms in the molecule. The prevalent oligomer building blocks are therefore carbonyls or carboxylic acids with a C2-C3 skeleton. Kendrick analysis suggests that simple aldehydes, specifically formaldehyde, acetaldehyde, and methylglyoxal can serve as monomeric building blocks in the observed oligomers. The large number of reactive functional groups, especially organic peroxides and carbonyls, suggests that isoprene/O3 SOA should be prone to chemical and photochemical aging.

  1. Assimilation of next generation geostationary aerosol optical depth retrievals to improve air quality simulations

    NASA Astrophysics Data System (ADS)

    Saide, Pablo E.; Kim, Jhoon; Song, Chul H.; Choi, Myungje; Cheng, Yafang; Carmichael, Gregory R.

    2014-12-01

    Planned geostationary satellites will provide aerosol optical depth (AOD) retrievals at high temporal and spatial resolution which will be incorporated into current assimilation systems that use low-Earth orbiting (e.g., Moderate Resolution Imaging Spectroradiometer (MODIS)) AOD. The impacts of such additions are explored in a real case scenario using AOD from the Geostationary Ocean Color Imager (GOCI) on board of the Communication, Ocean, and Meteorology Satellite, a geostationary satellite observing northeast Asia. The addition of GOCI AOD into the assimilation system generated positive impacts, which were found to be substantial in comparison to only assimilating MODIS AOD. We found that GOCI AOD can help significantly to improve surface air quality simulations in Korea for dust, biomass burning smoke, and anthropogenic pollution episodes when the model represents the extent of the pollution episodes and retrievals are not contaminated by clouds. We anticipate future geostationary missions to considerably contribute to air quality forecasting and provide better reanalyses for health assessments and climate studies.

  2. The organic fraction of bubble-generated, accumulation mode Sea Spray Aerosol (SSA)

    NASA Astrophysics Data System (ADS)

    Modini, R. L.; Harris, B.; Ristovski, Z. D.

    2010-03-01

    Recent studies have detected a dominant accumulation mode (~100 nm) in the Sea Spray Aerosol (SSA) number distribution. There is evidence to suggest that particles in this mode are composed primarily of organics. To investigate this hypothesis we conducted experiments on NaCl, artificial SSA and natural SSA particles with a Volatility-Hygroscopicity-Tandem-Differential-Mobility-Analyser (VH-TDMA). NaCl particles were atomiser generated and a bubble generator was constructed to produce artificial and natural SSA particles. Natural seawater samples for use in the bubble generator were collected from biologically active, terrestrially-affected coastal water in Moreton Bay, Australia. Differences in the VH-TDMA-measured volatility curves of artificial and natural SSA particles were used to investigate and quantify the organic fraction of natural SSA particles. Hygroscopic Growth Factor (HGF) data, also obtained by the VH-TDMA, were used to confirm the conclusions drawn from the volatility data. Both datasets indicated that the organic fraction of our natural SSA particles evaporated in the VH-TDMA over the temperature range 170-200 °C. The organic volume fraction for 71-77 nm natural SSA particles was 8±6%. Organic volume fraction did not vary significantly with varying water residence time (40 s to 24 h) in the bubble generator or SSA particle diameter in the range 38-173 nm. At room temperature we measured shape- and Kelvin-corrected HGF at 90% RH of 2.46±0.02 for NaCl, 2.35±0.02 for artifical SSA and 2.26±0.02 for natural SSA particles. Overall, these results suggest that the natural accumulation mode SSA particles produced in these experiments contained only a minor organic fraction, which had little effect on hygroscopic growth. Our measurement of 8±6% is an order of magnitude below two previous measurements of the organic fraction in SSA particles of comparable sizes. We stress that our results were obtained using coastal seawater and they can't necessarily

  3. The organic fraction of bubble-generated, accumulation mode Sea Spray Aerosol (SSA)

    NASA Astrophysics Data System (ADS)

    Modini, R. L.; Harris, B.; Ristovski, Z. D.

    2009-10-01

    Recent studies have detected a dominant accumulation mode (~100 nm) in the Sea Spray Aerosol (SSA) number distribution. There is evidence to suggest that particles in this mode are composed primarily of organics. To investigate this hypothesis we conducted experiments on NaCl, artificial SSA and natural SSA particles with a Volatility-Hygroscopicity-Tandem-Differential-Mobility-Analyser (VH-TDMA). NaCl particles were atomiser generated and a bubble generator was constructed to produce artificial and natural SSA particles. Natural seawater samples for use in the bubble generator were collected from biologically active, terrestrially-affected coastal water in Moreton Bay, Australia. Differences in the VH-TDMA-measured volatility curves of artificial and natural SSA particles were used to investigate and quantify the organic fraction of natural SSA particles. Hygroscopic Growth Factor (HGF) data, also obtained by the VH-TDMA, were used to confirm the conclusions drawn from the volatility data. Both datasets indicated that the organic fraction of our natural SSA particles evaporated in the VH-TDMA over the temperature range 170-200°C. The organic volume fraction for 71-77 nm natural SSA particles was 8±6%. Organic volume fraction did not vary significantly with varying water residence time (40 s0 to 24 h) in the bubble generator or SSA particle diameter in the range 38-173 nm. At room temperature we measured shape- and Kelvin-corrected HGF at 90% RH of 2.46±0.02 for NaCl, 2.35±0.02 for artifical SSA and 2.26±0.02 for natural SSA particles. Overall, these results suggest that the natural accumulation mode SSA particles produced in these experiments contained only a minor organic fraction, which had little effect on hygroscopic growth. Our measurement of 8±6% is an order of magnitude below two previous measurements of the organic fraction in SSA particles of comparable sizes. Further studies with a variety of different seawaters are required to better quantify how

  4. Multi-generational oxidation model to simulate secondary organic aerosol in a 3-D air quality model

    NASA Astrophysics Data System (ADS)

    Jathar, S. H.; Cappa, C. D.; Wexler, A. S.; Seinfeld, J. H.; Kleeman, M. J.

    2015-08-01

    Multi-generational gas-phase oxidation of organic vapors can influence the abundance, composition and properties of secondary organic aerosol (SOA). Only recently have SOA models been developed that explicitly represent multi-generational SOA formation. In this work, we integrated the statistical oxidation model (SOM) into SAPRC-11 to simulate the multi-generational oxidation and gas/particle partitioning of SOA in the regional UCD/CIT (University of California, Davis/California Institute of Technology) air quality model. In the SOM, evolution of organic vapors by reaction with the hydroxyl radical is defined by (1) the number of oxygen atoms added per reaction, (2) the decrease in volatility upon addition of an oxygen atom and (3) the probability that a given reaction leads to fragmentation of the organic molecule. These SOM parameter values were fit to laboratory smog chamber data for each precursor/compound class. SOM was installed in the UCD/CIT model, which simulated air quality over 2-week periods in the South Coast Air Basin of California and the eastern United States. For the regions and episodes tested, the two-product SOA model and SOM produce similar SOA concentrations but a modestly different SOA chemical composition. Predictions of the oxygen-to-carbon ratio qualitatively agree with those measured globally using aerosol mass spectrometers. Overall, the implementation of the SOM in a 3-D model provides a comprehensive framework to simulate the atmospheric evolution of organic aerosol.

  5. The Statistical Evolution of Multiple Generations of Oxidation Products in the Photochemical Aging of Chemically Reduced Organic Aerosol

    SciTech Connect

    Wilson, Kevin R.; Smith, Jared D.; Kessler, Sean; Kroll, Jesse H.

    2011-10-03

    The heterogeneous reaction of hydroxyl radicals (OH) with squalane and bis(2-ethylhexyl) sebacate (BES) particles are used as model systems to examine how distributions of reactionproducts evolve during the oxidation of chemically reduced organic aerosol. A kinetic model of multigenerational chemistry, which is compared to previously measured (squalane) and new(BES) experimental data, reveals that it is the statistical mixtures of different generations of oxidation products that control the average particle mass and elemental composition during thereaction. The model suggests that more highly oxidized reaction products, although initially formed with low probability, play a large role in the production of gas phase reaction products.In general, these results highlight the importance of considering atmospheric oxidation as a statistical process, further suggesting that the underlying distribution of molecules could playimportant roles in aerosol formation as well as in the evolution of key physicochemical properties such as volatility and hygroscopicity.

  6. Aerosols containing Legionella pneumophila generated by shower heads and hot-water faucets.

    PubMed Central

    Bollin, G E; Plouffe, J F; Para, M F; Hackman, B

    1985-01-01

    Shower heads and hot-water faucets containing Legionella pneumophila were evaluated for aerosolization of the organism with a multistage cascade impaction air sampler. Air was collected above two shower doors and from the same rooms approximately 3 ft (91 cm) from the shower doors while the hot water was running. Low numbers (3 to 5 CFU/15 ft3 [0.43 m3] of air) of L. pneumophila were recovered above both shower doors, but none was recovered from the air in either room outside the shower door. Approximately 90% (7 of 8 CFU) of the L. pneumophila recovered were trapped in aerosol particles between 1 and 5 micron in diameter. Air was collected 1 to 3 ft (30 to 91 cm) from 14 sinks while the hot water was running. Low numbers (1 to 5 CFU/15 ft3 of air) were recovered from 6 of 19 air samples obtained. Approximately 50% (6 of 13 CFU) of the organisms recovered were trapped in aerosol particles between 1 and 8 microns in diameter. Shower heads and hot-water taps containing L. pneumophila can aerosolize low numbers of the organism during routine use. The aerosol particle size is small enough to penetrate to the lower human respiratory system. Thus, these sites may be implicated as a means of transmission of L. pneumophila from potable water to the patient. PMID:4091548

  7. AEROSOLS CONTAINING 'LEGIONELLA PNEUMOPHILA' GENERATED BY SHOWER HEADS AND HOT-WATER FAUCETS

    EPA Science Inventory

    Shower heads and hot-water faucets containing Legionella pneumophila were evaluated for aerosolization of the organism with a multistage cascade impaction air sampler. Air was collected above two shower doors and from the same rooms approximately 3 ft (91 cm) from the shower door...

  8. Multi-generational oxidation model to simulate secondary organic aerosol in a 3-D air quality model

    NASA Astrophysics Data System (ADS)

    Jathar, S. H.; Cappa, C. D.; Wexler, A. S.; Seinfeld, J. H.; Kleeman, M. J.

    2015-02-01

    Multi-generational gas-phase oxidation of organic vapors can influence the abundance, composition and properties of secondary organic aerosol (SOA). Only recently have SOA models been developed that explicitly represent multi-generational SOA formation. In this work, we integrated the statistical oxidation model (SOM) into SAPRC-11 to simulate the multi-generational oxidation and gas/particle partitioning of SOA in the regional UCD/CIT air quality model. In SOM, evolution of organic vapors by reaction with the hydroxyl radical is defined by (1) the number of oxygen atoms added per reaction, (2) the decrease in volatility upon addition of an oxygen atom and (3) the probability that a given reaction leads to fragmentation of the organic molecule. These SOM parameter values were fit to laboratory "smog chamber" data for each precursor/compound class. The UCD/CIT model was used to simulate air quality over two-week periods in the South Coast Air Basin of California and the eastern United States. For the regions and episodes tested, the traditional two-product SOA model and SOM produce similar SOA concentrations but a modestly different SOA chemical composition. Predictions of the oxygen-to-carbon ratio qualitatively agree with those measured globally using aerosol mass spectrometers. Overall, the implementation of the SOM in a 3-D model provides a comprehensive framework to simulate the atmospheric evolution of OA.

  9. Ambient and indoor particulate aerosols generated by dairies in the southern High Plains.

    PubMed

    Purdy, C W; Clark, R N; Straus, D C

    2009-12-01

    The objectives were to quantify and size ambient aerosolized dust in and around the facilities of 4 southern High Plains dairies of New Mexico and to determine where health of workers might be vulnerable to particulate aerosols, based on aerosol concentrations that exceed national air quality standards. Ambient dust air samples were collected upwind (background) and downwind of 3 dairy location sites (loafing pen boundary, commodity, and compost field). The indoor milking parlor, a fourth site, was monitored immediately upwind and downwind. Aerosolized particulate samples were collected using high-volume sequential reference air samplers, laser aerosol monitors, and cyclone air samplers. The overall (main effects and estimable interactions) statistical general linear model statement for particulate matter (PM(10); particulate matter with an aerodynamic diameter of up to 10 microm) and PM(2.5) resulted in a greater mean concentration of dust in the winter (PM(10) = 97.4 +/- 4.4 microg/m(3); PM(2.5) = 32.6 +/- 2.6 microg/m(3)) compared with the summer (PM(10) = 71.9 +/- 5.0 microg/m(3); PM(2.5) = 18.1 +/- 1.2 microg/m(3)). The upwind and downwind boundary PM(10) concentrations were significantly higher in the winter (upwind = 64.3 +/- 9.5 microg/m(3); downwind = 119.8 +/- 13.0 microg/m(3)) compared with the summer (upwind = 35.2 +/- 7.5 microg/m(3); downwind = 66.8 +/- 11.8 microg/m(3)). The milking parlor PM(10) and PM(2.5) concentration data were significantly higher in the winter (PM(10) = 119.5 +/- 5.8 microg/m(3); PM(2.5) = 55.3 +/- 5.8microg/m(3)) compared with the summer (PM(10) = 88.6.0 +/- 5.8 microg/m(3); PM(2.5) = 21.0 +/- 2.1 microg/m(3)). Personnel should be protected from high aerosol concentrations found at the commodity barn, compost field, and milking parlor during the winter. PMID:19923606

  10. Combining real-time PCR and next-generation DNA sequencing to provide quantitative comparisons of fungal aerosol populations

    NASA Astrophysics Data System (ADS)

    Dannemiller, Karen C.; Lang-Yona, Naama; Yamamoto, Naomichi; Rudich, Yinon; Peccia, Jordan

    2014-02-01

    We examined fungal communities associated with the PM10 mass of Rehovot, Israel outdoor air samples collected in the spring and fall seasons. Fungal communities were described by 454 pyrosequencing of the internal transcribed spacer (ITS) region of the fungal ribosomal RNA encoding gene. To allow for a more quantitative comparison of fungal exposure in humans, the relative abundance values of specific taxa were transformed to absolute concentrations through multiplying these values by the sample's total fungal spore concentration (derived from universal fungal qPCR). Next, the sequencing-based absolute concentrations for Alternaria alternata, Cladosporium cladosporioides, Epicoccum nigrum, and Penicillium/Aspergillus spp. were compared to taxon-specific qPCR concentrations for A. alternata, C. cladosporioides, E. nigrum, and Penicillium/Aspergillus spp. derived from the same spring and fall aerosol samples. Results of these comparisons showed that the absolute concentration values generated from pyrosequencing were strongly associated with the concentration values derived from taxon-specific qPCR (for all four species, p < 0.005, all R > 0.70). The correlation coefficients were greater for species present in higher concentrations. Our microbial aerosol population analyses demonstrated that fungal diversity (number of fungal operational taxonomic units) was higher in the spring compared to the fall (p = 0.02), and principal coordinate analysis showed distinct seasonal differences in taxa distribution (ANOSIM p = 0.004). Among genera containing allergenic and/or pathogenic species, the absolute concentrations of Alternaria, Aspergillus, Fusarium, and Cladosporium were greater in the fall, while Cryptococcus, Penicillium, and Ulocladium concentrations were greater in the spring. The transformation of pyrosequencing fungal population relative abundance data to absolute concentrations can improve next-generation DNA sequencing-based quantitative aerosol exposure

  11. Dry powder aerosols generated by standardized entrainment tubes from drug blends with lactose monohydrate: 1. Albuterol sulfate and disodium cromoglycate.

    PubMed

    Xu, Zhen; Mansour, Heidi M; Mulder, Tako; McLean, Richard; Langridge, John; Hickey, Anthony J

    2010-08-01

    The major objective of this study was: discriminatory assessment of dry powder aerosol performance using standardized entrainment tubes (SETs) and lactose-based formulations with two model drugs. Drug/lactose interactive physical mixtures (2%w/w) were prepared. Their properties were measured: solid-state characterization of phase behavior and molecular interactions by differential scanning calorimetry and X-ray powder diffraction; particle morphology and size by scanning electron microscopy and laser diffraction; aerosol generation by SETs and characterization by twin-stage liquid impinger and Andersen cascade impactor operated at 60 L/min. The fine particle fraction (FPF) was correlated with SET shear stress (tau(s)), using a novel powder aerosol deaggregation equation (PADE). Drug particles were <5 microm in volume diameter with narrow unimodal distribution (Span <1). The lowest shear SET (tau(s) = 0.624 N/m(2)) gave a higher emitted dose (ED approximately 84-93%) and lower FPF (FPF(6.4) approximately 7-25%). In contrast, the highest shear SET (tau(s) = 13.143 N/m(2)) gave a lower ED (ED approximately 75-89%) and higher FPF (FPF(6.4) approximately 15-46%). The performance of disodium cromoglycate was superior to albuterol sulfate at given tau(s), as was milled with respect to sieved lactose monohydrate. Excellent correlation was observed (R(2) approximately 0.9804-0.9998) when pulmonary drug particle release from the surface of lactose carriers was interpreted by PADE linear regression for dry powder formulation evaluation and performance prediction. PMID:20198688

  12. Ferrocyanide Safety Program: Analysis of postulated energetic reactions and resultant aerosol generation in Hanford Site Waste Tanks

    SciTech Connect

    Postma, A.K.; Dickinson, D.R.

    1995-09-01

    This report reviews work done to estimate the possible consequences of postulated energetic reactions in ferrocyanide waste stored in underground tanks at the Hanford Site. The issue of explosive reactions was raised in the 1987 Environmental Impact Statement (EIS), where a detonation-like explosion was postulated for the purpose of defining an upper bound on dose consequences for various disposal options. A review of the explosion scenario by the General Accounting Office (GAO) indicated that the aerosol generation and consequent radioactive doses projected for the explosion postulated in the EIS were understated by one to two orders of magnitude. The US DOE has sponsored an extensive study of the hazard posed by uncontrolled exothermic reactions in ferrocyanide waste, and results obtained during the past three years have allowed this hazard to be more realistically assessed. The objective of this report is to summarize the improved knowledge base that now indicates that explosive or vigorous chemical reactions are not credible in the ferrocyanide waste stored in underground tanks. This improved understanding supports the decision not to proceed with further analyses or predictions of the consequences of such an event or with aerosol tests in support of such predictions. 53 refs., 2 tabs.

  13. The Impact of Aerosols Generated from Biomass Burning, Dust Storms, and Volcanoes Upon the Earth's Radiative Energy Budget

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.

    1997-01-01

    A new technique for detecting aerosols from biomass burning and dust is developed. The radiative forcing of aerosols is estimated over four major ecosystems in South America. A new smoke and fire detection scheme is developed for biomass burning aerosols over South America. Surface shortware irradiance calculations are developed in the presence of biomass burning aerosols during the SCAR-B experiment. This new approach utilizes ground based, aircraft, and satellite measurements.

  14. A perspective on SOA generated in aerosol water from glyoxal and methylglyoxal and its impacts on climate-relevant aerosol properties

    NASA Astrophysics Data System (ADS)

    Sareen, N.; McNeill, V. F.

    2011-12-01

    In recent years, glyoxal and methylglyoxal have emerged to be potentially important SOA precursors with significant implications for climate-related aerosol properties. Here we will discuss how the chemistry of these and similar organic compounds in aerosol water can affect the aerosol optical and cloud formation properties. Aqueous-phase SOA production from glyoxal and methylglyoxal is a potential source of strongly light-absorbing organics, or "brown carbon". We characterized the kinetics of brown carbon formation from these precursors in mixtures of ammonium sulfate and water using UV-Vis spectrophotometry. This mechanism has been incorporated into a photochemical box model with coupled gas phase-aqueous aerosol chemistry. Methylglyoxal and related compounds also may impact an aerosol's ability to act as a cloud condensation nucleus. We recently showed via pendant drop tensiometry and aerosol chamber studies that uptake of methylglyoxal from the gas phase driven by aqueous-phase oligomerization chemistry is a potentially significant, previously unidentified source of surface-active organic material in aerosols. Results from pendant drop tensiometry showed significantly depressed surface tension in methylglyoxal-ammonium sulfate solutions. We further found that ammonium sulfate particles exposed to gas-phase methylglyoxal in a 3.5 m3 aerosol reaction chamber activate into cloud droplets at sizes up to 15% lower at a given supersaturation than do pure ammonium sulfate particles. The observed enhancement exceeds that predicted based on Henry's Law and our measurements of surface tension depression in bulk solutions, suggesting that surface adsorption of methylglyoxal plays a role in determining CCN activity. Methylglyoxal and similar gas-phase surfactants may be an important and overlooked source of enhanced CCN activity in the atmosphere. To characterize the SOA products formed in these solutions, an Aerosol Chemical Ionization Mass Spectrometer (CIMS) was used

  15. An image-based automatic mesh generation and numerical simulation for a population-based analysis of aerosol delivery in the human lungs

    NASA Astrophysics Data System (ADS)

    Miyawaki, Shinjiro; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long

    2013-11-01

    The authors propose a method to automatically generate three-dimensional subject-specific airway geometries and meshes for computational fluid dynamics (CFD) studies of aerosol delivery in the human lungs. The proposed method automatically expands computed tomography (CT)-based airway skeleton to generate the centerline (CL)-based model, and then fits it to the CT-segmented geometry to generate the hybrid CL-CT-based model. To produce a turbulent laryngeal jet known to affect aerosol transport, we developed a physiologically-consistent laryngeal model that can be attached to the trachea of the above models. We used Gmsh to automatically generate the mesh for the above models. To assess the quality of the models, we compared the regional aerosol distributions in a human lung predicted by the hybrid model and the manually generated CT-based model. The aerosol distribution predicted by the hybrid model was consistent with the prediction by the CT-based model. We applied the hybrid model to 8 healthy and 16 severe asthmatic subjects, and average geometric error was 3.8% of the branch radius. The proposed method can be potentially applied to the branch-by-branch analyses of a large population of healthy and diseased lungs. NIH Grants R01-HL-094315 and S10-RR-022421, CT data provided by SARP, and computer time provided by XSEDE.

  16. Generation of aerosols by the electrical explosion of wires at reduced air pressure

    SciTech Connect

    Sedoi, V.S.; Valevich, V.V.; Katz, J.D.

    1998-12-31

    The exploding wire method of particle production allows the authors to model the high speed formation of aerosols because of the fast heating and evaporation rates inherent to this technique. The method is also of interest from the viewpoint of controlling the production of aerosols of a particular material with a specific particle size distribution at a specific efficiency. The electrical explosion of iron, aluminum, titanium, and copper wires have been investigated in various gases at pressures from 0.01 to 1 atm. In these experiments the energy density introduced into the material, w, is normalized to the sublimation energy of the material, w{sub s}. The energy density also controls the heating rate. Particle and agglomerate sizes were determined using transmission electron microscopy and laser scattering methods. The specific surface area of the powder was measured by low-temperature adsorption. The phase composition was determined by X-ray diffraction. Increasing the energy density increases the internal energy of the material, the expansion velocity and the number of condensation centers, while the final particle size decreases. With an exothermic oxidation reaction, the optimum energy density can be less than the sublimation energy of the material. As a result, metal oxides are formed. Electrical explosion of wires, at reduced air pressures, allows for the production of ultra-fine powders of oxides of various metals with particle sizes of less than 50 nm. The method is environmentally safe and does not require excess energy expenditures. The electrical explosion of wire at reduced pressure allows for new possibilities in the production of ultra-fine powders (UFP).

  17. Neural network radiative transfer solvers for the generation of high resolution solar irradiance spectra parameterized by cloud and aerosol parameters

    NASA Astrophysics Data System (ADS)

    Taylor, M.; Kosmopoulos, P. G.; Kazadzis, S.; Keramitsoglou, I.; Kiranoudis, C. T.

    2016-01-01

    This paper reports on the development of a neural network (NN) model for instantaneous and accurate estimation of solar radiation spectra and budgets geared toward satellite cloud data using a ≈2.4 M record, high-spectral resolution look up table (LUT) generated with the radiative transfer model libRadtran. Two NN solvers, one for clear sky conditions dominated by aerosol and one for cloudy skies, were trained on a normally-distributed and multiparametric subset of the LUT that spans a very broad class of atmospheric and meteorological conditions as inputs with corresponding high resolution solar irradiance target spectra as outputs. The NN solvers were tested by feeding them with a large (10 K record) "off-grid" random subset of the LUT spanning the training data space, and then comparing simulated outputs with target values provided by the LUT. The NN solvers demonstrated a capability to interpolate accurately over the entire multiparametric space. Once trained, the NN solvers allow for high-speed estimation of solar radiation spectra with high spectral resolution (1 nm) and for a quantification of the effect of aerosol and cloud optical parameters on the solar radiation budget without the need for a massive database. The cloudy sky NN solver was applied to high spatial resolution (54 K pixel) cloud data extracted from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the geostationary Meteosat Second Generation 3 (MSG3) satellite and demonstrated that coherent maps of spectrally-integrated global horizontal irradiance at this resolution can be produced on the order of 1 min.

  18. Generation of thick Ba2YCu3O7 films by aerosol deposition

    NASA Astrophysics Data System (ADS)

    Kodas, T. T.; Engler, E. M.; Lee, V. Y.

    1989-05-01

    Thick superconducting films were fabricated by producing high-purity Ba2YCu3O7 particles by aerosol decomposition in a gaseous flow system, depositing the particles directly from the gas phase onto surfaces by thermophoresis, and then sintering and annealing the deposited particulate films in an oxygen flow. Particulate films with thicknesses of 1 mm were deposited on the inside surfaces of copper tubes and sintered to provide uniform adherent coatings with sharp superconducting transitions above 91 K. High-purity powders based on the Bi-Sr-Ca-Cu-O and Tl-Ca-Ba-Cu-O systems were also produced and sintered to form bulk ceramics with transitions at 80 and 110 K, respectively, suggesting that the process is general and can be used for a variety of materials. Advantages of the process include the ease of obtaining the correct oxygen content and the ability to fabricate thick films of fine grained material while minimizing exposure to carbon and other contaminants.

  19. Aging of secondary organic aerosol generated from the ozonolysis of α-pinene: effects of ozone, light and temperature

    NASA Astrophysics Data System (ADS)

    Denjean, C.; Formenti, P.; Picquet-Varrault, B.; Camredon, M.; Pangui, E.; Zapf, P.; Katrib, Y.; Giorio, C.; Tapparo, A.; Temime-Roussel, B.; Monod, A.; Aumont, B.; Doussin, J. F.

    2014-09-01

    A series of experiments was conducted in the CESAM simulation chamber to investigate the evolution of the physical and chemical properties of secondary organic aerosol (SOA) during different forcing. The present experiments represent a first attempt to comprehensively investigate the influence of oxidative processing, photochemistry, and diurnal temperature cycling upon SOA properties. SOA generated from the ozonolysis of α-pinene were exposed to (1) elevated ozone concentrations, (2) light (under controlled temperature conditions), or (3) light and heat (6 °C light-induced temperature increase), and the resultant changes in SOA optical properties (i.e. absorption and scattering), hygroscopicity and chemical composition were measured using a suite of instrumentation interfaced to the CESAM chamber. The complex refractive index (CRI) was derived from integrated nephelometer measurements at 525 nm wavelength, using Mie scattering calculations and measured number size distributions. The particle size growth factor (GF) was measured with a hygroscopic tandem differential mobility analyzer (H-TDMA). An aerosol mass spectrometer (AMS) was used for the determination of the f44 / f43 and O : C ratio of the particles bulk. No change in SOA size or chemical composition was observed during O3 and light exposure at constant temperature; in addition, GF and CRI of the SOA remained constant with forcing. By contrast, illumination of the SOA in the absence of temperature control led to an increase in the real part of the CRI from 1.35 (±0.03) to 1.49 (±0.03), an increase of the GF from 1.04 (±0.02) to 1.14 (±0.02) and an increase of the f44 / f43 ratio from 1.73 (±0.03) to 2.23 (±0.03). These surprising results suggest that SOA properties may be governed more by local temperature fluctuations than by oxidative processing and photochemistry.

  20. Molecular Characterization of Brown Carbon (BrC) Chromophores in Secondary Organic Aerosol Generated From Photo-Oxidation of Toluene

    SciTech Connect

    Lin, Peng; Liu, Jiumeng; Shilling, John E.; Kathmann, Shawn M.; Laskin, Julia; Laskin, Alexander

    2015-09-28

    Atmospheric Brown carbon (BrC) is a significant contributor to light absorption and climate forcing. However, little is known about a fundamental relationship between the chemical composition of BrC and its optical properties. In this work, light-absorbing secondary organic aerosol (SOA) was generated in the PNNL chamber from toluene photo-oxidation in the presence of NOx (Tol-SOA). Molecular structures of BrC components were examined using nanospray desorption electrospray ionization (nano-DESI) and liquid chromatography (LC) combined with UV/Vis spectroscopy and electrospray ionization (ESI) high-resolution mass spectrometry (HRMS). The chemical composition of BrC chromophores and the light absorption properties of toluene SOA (Tol-SOA) depend strongly on the initial NOx concentration. Specifically, Tol-SOA generated under high-NOx conditions (defined here as initial NOx/toluene of 5/1) appears yellow and mass absorption coefficient of the bulk sample (MACbulk@365nm = 0.78 m2 g-1) is nearly 80 fold higher than that measured for the Tol-SOA sample generated under low-NOx conditions (NOx/toluene < 1/300). Fifteen compounds, most of which are nitrophenols, are identified as major BrC chromophores responsible for the enhanced light absorption of Tol-SOA material produced in the presence of NOx. The integrated absorbance of these fifteen chromophores accounts for 40-60% of the total light absorbance by Tol-SOA at wavelengths between 300 nm and 500 nm. The combination of tandem LC-UV/Vis-ESI/HRMS measurements provides an analytical platform for predictive understanding of light absorption properties by BrC and their relationship to the structure of individual chromophores. General trends in the UV/vis absorption by plausible isomers of the BrC chromophores were evaluated using theoretical chemistry calculations. The molecular-level understanding of BrC chemistry is helpful for better understanding the evolution and behavior of light absorbing aerosols in the atmosphere.

  1. Molecular characterization of brown carbon (BrC) chromophores in secondary organic aerosol generated from photo-oxidation of toluene.

    PubMed

    Lin, Peng; Liu, Jiumeng; Shilling, John E; Kathmann, Shawn M; Laskin, Julia; Laskin, Alexander

    2015-09-28

    Atmospheric brown carbon (BrC) is a significant contributor to light absorption and climate forcing. However, little is known about a fundamental relationship between the chemical composition of BrC and its optical properties. In this work, light-absorbing secondary organic aerosol (SOA) was generated in the PNNL chamber from toluene photo-oxidation in the presence of NOx (Tol-SOA). Molecular structures of BrC components were examined using nanospray desorption electrospray ionization (nano-DESI) and liquid chromatography (LC) combined with UV/Vis spectroscopy and electrospray ionization (ESI) high-resolution mass spectrometry (HRMS). The chemical composition of BrC chromophores and the light absorption properties of toluene SOA (Tol-SOA) depend strongly on the initial NOx concentration. Specifically, Tol-SOA generated under high-NOx conditions (defined here as initial NOx/toluene of 5/1) appears yellow and mass absorption coefficient of the bulk sample (MACbulk@365 nm = 0.78 m(2) g(-1)) is nearly 80 fold higher than that measured for the Tol-SOA sample generated under low-NOx conditions (NOx/toluene < 1/300). Fifteen compounds, most of which are nitrophenols, are identified as major BrC chromophores responsible for the enhanced light absorption of Tol-SOA material produced in the presence of NOx. The integrated absorbance of these fifteen chromophores accounts for 40-60% of the total light absorbance by Tol-SOA at wavelengths between 300 nm and 500 nm. The combination of tandem LC-UV/Vis-ESI/HRMS measurements provides an analytical platform for predictive understanding of light absorption properties by BrC and their relationship to the structure of individual chromophores. General trends in the UV/Vis absorption by plausible isomers of the BrC chromophores were evaluated using theoretical chemistry calculations. The molecular-level understanding of BrC chemistry is helpful for better understanding the evolution and behavior of light absorbing aerosols in the

  2. Fluid dynamic studies on scattering aerosol and its generation for application as tracer particles in supersonic flow measurements utilizing laser Doppler velocimeter

    NASA Technical Reports Server (NTRS)

    Mazumder, M. K.; Hoyle, B. D.; Kirsch, K. J.

    1974-01-01

    An experimental study on the particle-fluid interactions of scattering aerosols was performed using monodisperse aerosols of different particle sizes for the application of laser Doppler velocimeters in subsonic turbulence measurements. Particle response was measured by subjecting the particles to an acoustically excited oscillatory fluid velocity field and by comparing the ratio of particle velocity amplitude to the fluid velocity amplitude as a function of particle size and the frequency of oscillation. Particle velocity was measured by using a differential laser Doppler velocimeter. The test aerosols were fairly monodisperse with a mean diameter that could be controlled over the size range from 0.1 to 1.0 micron. Experimental results on the generation of a fairly monodisperse aerosol of solid particles and liquid droplets and on the aerosol response in the frequency range 100 Hz to 100 kHz are presented. It is indicated that a unit density spherical scatterer of 0.3 micron-diameter would be an optimum choice as tracer particles for subsonic air turbulence measurements.

  3. Aging of secondary organic aerosol generated from the ozonolysis of α-pinene: effects of ozone, light and temperature

    NASA Astrophysics Data System (ADS)

    Denjean, C.; Formenti, P.; Picquet-Varrault, B.; Camredon, M.; Pangui, E.; Zapf, P.; Katrib, Y.; Giorio, C.; Tapparo, A.; Temime-Roussel, B.; Monod, A.; Aumont, B.; Doussin, J. F.

    2015-01-01

    A series of experiments was conducted in the CESAM (French acronym for Experimental Multiphasic Atmospheric Simulation Chamber) simulation chamber to investigate the evolution of the physical and chemical properties of secondary organic aerosols (SOAs) during different forcings. The present experiments represent a first attempt to comprehensively investigate the influence of oxidative processing, photochemistry, and diurnal temperature cycling upon SOA properties. SOAs generated from the ozonolysis of α-pinene were exposed under dry conditions (< 1% relative humidity) to (1) elevated ozone concentrations, (2) light (under controlled temperature conditions) or (3) light and heat (6 °C light-induced temperature increase), and the resultant changes in SOA optical properties (i.e. absorption and scattering), hygroscopicity and chemical composition were measured using a suite of instrumentation interfaced to the CESAM chamber. The complex refractive index (CRI) was derived from integrated nephelometer measurements of 525 nm wavelength, using Mie scattering calculations and measured number size distributions. The particle size growth factor (GF) was measured with a hygroscopic tandem differential mobility analyzer (H-TDMA). An aerosol mass spectrometer (AMS) was used for the determination of the f44 / f43 and O : C ratio of the particles bulk. No change in SOA size or chemical composition was observed during O3 and light exposure at constant temperature; in addition, GF and CRI of the SOA remained constant with forcing. On the contrary, illumination of SOAs in the absence of temperature control led to an increase in the real part of the CRI from 1.35 (±0.03) to 1.49 (±0.03), an increase of the GF from 1.04 (±0.02) to 1.14 (±0.02) and an increase of the f44 / f43 ratio from 1.73 (±0.03) to 2.23 (±0.03). The simulation of the experiments using the master chemical mechanism (MCM) and the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere

  4. Quantification of Optical and Physical Properties of Combustion-Generated Carbonaceous Aerosols (

    PubMed Central

    Perera, Inoka Eranda; Litton, Charles D.

    2016-01-01

    A series of experiments were conducted to quantify and characterize the optical and physical properties of combustion-generated aerosols during both flaming and smoldering combustion of three materials common to underground mines—Pittsburgh Seam coal, Styrene Butadiene Rubber (a common mine conveyor belt material), and Douglas-fir wood—using a combination of analytical and gravimetric measurements. Laser photometers were utilized in the experiments for continuous measurement of aerosol mass concentrations and for comparison to measurements made using gravimetric filter samples. The aerosols of interest lie in the size range of tens to a few hundred nanometers, out of range of the standard photometer calibration. To correct for these uncertainties, the photometer mass concentrations were compared to gravimetric samples to determine if consistent correlations existed. The response of a calibrated and modified combination ionization/photoelectric smoke detector was also used. In addition, the responses of this sensor and a similar, prototype ionization/photoelectric sensor, along with discrete angular scattering, total scattering, and total extinction measurements, were used to define in real time the size, morphology, and radiative transfer properties of these differing aerosols that are generally in the form of fractal aggregates. SEM/TEM images were also obtained in order to compare qualitatively the real-time, continuous experimental measurements with the visual microscopic measurements. These data clearly show that significant differences exist between aerosols from flaming and from smoldering combustion and that these differences produce very different scattering and absorption signatures. The data also indicate that ionization/photoelectric sensors can be utilized to measure continuously and in real time aerosol properties over a broad spectrum of applications related to adverse environmental and health effects.

  5. Direct Deposition of Gas Phase Generated Aerosol Gold Nanoparticles into Biological Fluids - Corona Formation and Particle Size Shifts

    PubMed Central

    Svensson, Christian R.; Messing, Maria E.; Lundqvist, Martin; Schollin, Alexander; Deppert, Knut; Pagels, Joakim H.; Rissler, Jenny; Cedervall, Tommy

    2013-01-01

    An ongoing discussion whether traditional toxicological methods are sufficient to evaluate the risks associated with nanoparticle inhalation has led to the emergence of Air-Liquid interface toxicology. As a step in this process, this study explores the evolution of particle characteristics as they move from the airborne state into physiological solution. Airborne gold nanoparticles (AuNP) are generated using an evaporation-condensation technique. Spherical and agglomerate AuNPs are deposited into physiological solutions of increasing biological complexity. The AuNP size is characterized in air as mobility diameter and in liquid as hydrodynamic diameter. AuNP:Protein aggregation in physiological solutions is determined using dynamic light scattering, particle tracking analysis, and UV absorption spectroscopy. AuNPs deposited into homocysteine buffer form large gold-aggregates. Spherical AuNPs deposited in solutions of albumin were trapped at the Air-Liquid interface but was readily suspended in the solutions with a size close to that of the airborne particles, indicating that AuNP:Protein complex formation is promoted. Deposition into serum and lung fluid resulted in larger complexes, reflecting the formation of a more complex protein corona. UV absorption spectroscopy indicated no further aggregation of the AuNPs after deposition in solution. The corona of the deposited AuNPs shows differences compared to AuNPs generated in suspension. Deposition of AuNPs from the aerosol phase into biological fluids offers a method to study the protein corona formed, upon inhalation and deposition in the lungs in a more realistic way compared to particle liquid suspensions. This is important since the protein corona together with key particle properties (e.g. size, shape and surface reactivity) to a large extent may determine the nanoparticle effects and possible translocation to other organs. PMID:24086363

  6. Photochemical aging of secondary organic aerosols generated from the photooxidation of polycyclic aromatic hydrocarbons in the gas-phase.

    PubMed

    Riva, Matthieu; Robinson, Ellis S; Perraudin, Emilie; Donahue, Neil M; Villenave, Eric

    2015-05-01

    Aging processes of secondary organic aerosol (SOA) may be a source of oxygenated organic aerosols; however, the chemical processes involved remain unclear. In this study, we investigate photochemical aging of SOA produced by the gas-phase oxidation of naphthalene by hydroxyl radicals and acenaphthylene by ozone. We monitored the SOA composition using a high-resolution time-of-flight aerosol mass spectrometer. We initiated SOA aging with UV photolysis alone and with OH radicals in the presence or absence of light and at different NOx levels. For naphthalene, the organic composition of the particulate phase seems to be dominated by highly oxidized compounds such as carboxylic acids, and aging data may be consistent with diffusion limitations. For acenaphthylene, the fate of oxidized products and the moderately oxidized aerosol seem to indicate that functionalization reactions might be the main aging process were initiated by the cumulative effect of light and OH radicals. PMID:25856309

  7. The impact of marine surface organic enrichment on the measured hygroscopicity parameter of laboratory generated sea-spray aerosols

    NASA Astrophysics Data System (ADS)

    Schill, S.; Novak, G.; Zimmermann, K.; Bertram, T. H.

    2014-12-01

    The ocean serves as a major source for atmospheric aerosol particles, yet the chemicophysical properties of sea spray aerosol to date are not well characterized. Understanding the transfer of organic compounds, present in the sea surface microlayer (SSML), to sea-spray particles and their resulting impact on cloud formation is important for predicting aerosol impact on climate in remote marine environments. Here, we present a series of laboratory experiments designed to probe the fractionation of select organic molecules during wave breaking. We use a representative set of organic mimics (e.g. sterols, sugars, lipids, proteins, fatty acids) to test a recent physically based model of organic enrichment in sea-spray aerosol [Burrows et al., 2014] that is based on Langmuir absorption equilibria. Experiments were conducted in the UCSD Marine Aerosol Reference Tank (MART) permitting accurate representation of wave breaking processes in the laboratory. We report kappa values for the resulting sea-spray aerosols and compare them to a predictions made using Kappa-Köhler Theory driven by a linear combination of the pure component kappa values. Hygroscopicity determinations made using the model systems are discussed within the context of measurements of CCN activity made using natural, coastal water.

  8. Dry powder aerosols generated by standardized entrainment tubes from alternative sugar blends: 3. Trehalose dihydrate and D-mannitol carriers.

    PubMed

    Mansour, Heidi M; Xu, Zhen; Hickey, Anthony J

    2010-08-01

    The relationship between physicochemical properties of drug/carrier blends and aerosol drug powder delivery was evaluated. Four pulmonary drugs each representing the major pulmonary therapeutic classes and with a different pharmacological action were employed. Specifically, the four pulmonary drugs were albuterol sulfate, ipratropium bromide monohydrate, disodium cromoglycate, and fluticasone propionate. The two carrier sugars, each representing a different sugar class, were D-mannitol and trehalose dihydrate. Dry powder aerosols (2%, w/w, drug in carrier) delivered using standardized entrainment tubes (SETs) were characterized by twin-stage liquid impinger. The fine particle fraction (FPF) was correlated with SET shear stress, tau(s), and the maximum fine particle fraction (FPF(max)) was correlated with a deaggregation constant, k(d), by using a powder aerosol deaggregation equation (PADE) by nonlinear and linear regression analyses applied to pharmaceutical inhalation aerosol systems in the solid state. For the four pulmonary drugs representing the major pulmonary therapeutic classes and two chemically distinct pulmonary sugar carriers (non-lactose types) aerosolized with SETs having well-defined shear stress values, excellent correlation and predictive relationships were demonstrated for the novel and rigorous application of PADE for dry powder inhalation aerosol dispersion within a well-defined shear stress range, in the context of pulmonary drug/sugar carrier physicochemical and interfacial properties. PMID:20229601

  9. Charge separation in the aerodynamic breakup of micrometer-sized water droplets.

    PubMed

    Zilch, Lloyd W; Maze, Joshua T; Smith, John W; Ewing, George E; Jarrold, Martin F

    2008-12-25

    Charged water droplets generated by electrospray, sonic spray, and a vibrating orifice aerosol generator (VOAG) have been studied by digital macrophotography and image charge detection mass spectrometry. Image charge detection mass spectrometry provides information on the droplet size, charge, and velocity after transmission through a capillary interface. The digital images provide the droplet size distribution before they enter the capillary. Droplets with 10-100 microm radii generated by sonic spray and VOAG are reduced to 2-3 microm radii by transmission through the capillary interface. The droplets from sonic spray and VOAG are much more highly charged than expected for random charging, and positive droplets are much more prevalent than negative. For positive mode electrospray, >99% of the detected droplets carry a positive charge, whereas for negative mode electrospray, <30% of the detected droplets carry a negative charge (i.e., >70% carry a positive charge). These observation can all be accounted for by the aerodynamic breakup of the droplets in the capillary interface. This breakup reduces the droplets to a terminal size at which point further breakup does not occur. Charge separation during droplet breakup is responsible for the relatively high charges on the sonic spray and VOAG droplets and for the preference for positively charged droplets. The charge separation can be explained using the bag mechanism for droplet breakup and the electrical bilayer at the surface of water. PMID:19035820

  10. Development, Application, and Transition of Aerosol and Trace Gas Products Derived from Next-Generation Satellite Observations to Operations

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Naeger, Aaron; Zavodsky, Bradley; McGrath, Kevin; LaFontaine, Frank

    2016-01-01

    NASA Short-term Prediction Research and Transition (SPoRT) Center has a history of successfully transitioning unique observations and research capabilities to the operational weather community to improve short-term forecasts. SPoRTstrives to bridge the gap between research and operations by maintaining interactive partnerships with end users to develop products that match specific forecast challenges, provide training, and assess the products in the operational environment. This presentation focuses on recent product development, application, and transition of aerosol and trace gas products to operations for specific forecasting applications. Recent activities relating to the SPoRT ozone products, aerosol optical depth composite product, sulfur dioxide, and aerosol index products are discussed.

  11. Complex refractive index of secondary organic aerosol generated from isoprene/NOx photooxidation in the presence and absence of SO2

    NASA Astrophysics Data System (ADS)

    Nakayama, Tomoki; Sato, Kei; Tsuge, Masashi; Imamura, Takashi; Matsumi, Yutaka

    2015-08-01

    We report the first measurements of the complex refractive index (RI) at 375, 405, 532, and 781 nm for secondary organic aerosol (SOA) generated from isoprene/NOx photooxidation. At all wavelengths studied, slightly greater real components of the RI were observed for the SOA generated in the absence of SO2 compared with those generated in its presence. Considering the chemical properties, the differences in the oxidation state and/or ratio of particle density to molecular weight of compounds in the SOA are considered to be the main factors determining the real components. The imaginary components at ≤532 nm were found to increase with increasing initial SO2 concentration. The highly conjugated oligomers are suggested to be plausible chromophore candidates. This study suggests that when large amounts of SOA are generated after mixing of isoprene with NOx and SOx, light absorption of these SOAs may compete with that of black carbon, especially at ultraviolet wavelengths.

  12. The generation of aerosols by accidents which may occur during plant-scale production of micro-organisms.

    PubMed Central

    Ashcroft, J.; Pomeroy, N. P.

    1983-01-01

    Experiments have been performed to simulate accidents which may occur during large-scale production of micro-organisms. Four types of accident, which were considered to be the most likely to result in the greatest hazard to health, were simulated using a bacterial model. The accidents were all concerned with faults occurring in the operation of the microbial fermenter. Gross contamination of surfaces occurred in all experiments, but only three types of accident produced a measurable aerosol. PMID:6350448

  13. Organic aerosols

    SciTech Connect

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN.

  14. Chemical characterization of biogenic secondary organic aerosol generated from plant emissions under baseline and stressed conditions: inter- and intra-species variability for six coniferous species

    NASA Astrophysics Data System (ADS)

    Faiola, C. L.; Wen, M.; VanReken, T. M.

    2015-04-01

    The largest global source of secondary organic aerosol (SOA) in the atmosphere is derived from the oxidation of biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. Alterations to the biogenic volatile organic compound (BVOC) profile could impact the characteristics of the SOA formed from those emissions. This study investigated the impacts of one global change stressor, increased herbivory, on the composition of SOA derived from real plant emissions. Herbivory was simulated via application of methyl jasmonate (MeJA), a proxy compound. Experiments were repeated under pre- and post-treatment conditions for six different coniferous plant types. Volatile organic compounds (VOCs) emitted from the plants were oxidized to form SOA via dark ozone-initiated chemistry. The SOA chemical composition was measured using a Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS). The aerosol mass spectra of pre-treatment biogenic SOA from all plant types tended to be similar with correlations usually greater than or equal to 0.90. The presence of a stressor produced characteristic differences in the SOA mass spectra. Specifically, the following m/z were identified as a possible biogenic stress AMS marker with the corresponding HR ion(s) shown in parentheses: m/z 31 (CH3O+), m/z 58 (C2H2O2+, C3H6O+), m/z 29 (C2H5+), m/z 57 (C3H5O+), m/z 59 (C2H3O2+, C3H7O+), m/z 71 (C3H3O2+, C4H7O+), and m/z 83 (C5H7O+). The first aerosol mass spectrum of SOA generated from the oxidation of the plant stress hormone, MeJA, is also presented. Elemental analysis results demonstrated an O : C range of baseline biogenic SOA between 0.3 and 0.47. The O : C of standard MeJA SOA was 0.52. Results presented here could be used to help identify a biogenic plant stress marker in ambient data sets collected in forest environments.

  15. Chemical characterization of biogenic secondary organic aerosol generated from plant emissions under baseline and stressed conditions: inter- and intra-species variability for six coniferous species

    DOE PAGESBeta

    Faiola, C. L.; Wen, M.; VanReken, T. M.

    2015-04-01

    The largest global source of secondary organic aerosol (SOA) in the atmosphere is derived from the oxidation of biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. Alterations to the biogenic volatile organic compound (BVOC) profile could impact the characteristics of the SOA formed from those emissions. This study investigated the impacts of one global change stressor, increased herbivory, on the composition of SOA derived from real plant emissions. Herbivory was simulated via application of methyl jasmonate (MeJA), a proxy compound. Experiments were repeated under pre- andmore » post-treatment conditions for six different coniferous plant types. Volatile organic compounds (VOCs) emitted from the plants were oxidized to form SOA via dark ozone-initiated chemistry. The SOA chemical composition was measured using a Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS). The aerosol mass spectra of pre-treatment biogenic SOA from all plant types tended to be similar with correlations usually greater than or equal to 0.90. The presence of a stressor produced characteristic differences in the SOA mass spectra. Specifically, the following m/z were identified as a possible biogenic stress AMS marker with the corresponding HR ion(s) shown in parentheses: m/z 31 (CH3O+), m/z 58 (C2H2O2+, C3H6O+), m/z 29 (C2H5+), m/z 57 (C3H5O+), m/z 59 (C2H3O2+, C3H7O+), m/z 71 (C3H3O2+, C4H7O+), and m/z 83 (C5H7O+). The first aerosol mass spectrum of SOA generated from the oxidation of the plant stress hormone, MeJA, is also presented. Elemental analysis results demonstrated an O : C range of baseline biogenic SOA between 0.3 and 0.47. The O : C of standard MeJA SOA was 0.52. Results presented here could be used to help identify a biogenic plant stress marker in ambient data sets collected in forest environments.« less

  16. Investigation of the spectral responses of laser generated aerosol from household coals using a state-of-the-art multi-wavelength photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Ajtai, Tibor; Utry, Noemi; Pinter, Mate; Kiss-Albert, Gergely; Smausz, Tomi; Konya, Zoltan; Hopp, Bela; Szabo, Gabor; Bozoki, Zoltan

    2016-04-01

    We present the investigation of the inherent, spectral features of laser generated and chemically characterized residential coal aerosols generated in our recently introduced laser ablation based LAC generator. The optical absorption and the scattering features of the generated aerosol were investigated by our state-of-the-art multi wavelength PAS instrument (4λ-PAS) and a multi wavelength cosinus sensor (Aurora 3000). The quantified wavelength dependency (AAE and SAE) are deduced from the measured data. Finally, relationship between the optical and the thermochemical characteristics is revealed. Atmospheric light absorbing carbonaceous particulate matter (LAC) is in the middle of scientific interest especially because of its climatic and adverse health relevance. The latest scientific assessments identified atmospheric soot as the second most important anthropogenic emission regarding its climatic effect and as one of the most harmful atmospheric constituents based on its health aspects. LAC dominantly originates from anthropogenic sources, so its real time and selective identification is also essential for the means of its legal regulation. Despite of its significance the inherent properties of LAC are rarely described and the available data is widely spread even in the case of the most intensively studied black or elementary carbon. Therefore, the investigation of the inherent climate and health relevant properties of atmospheric soot is a highly actual issue. Moreover investigation of the optical and toxic properties of LAC originating from the combustion of household coals is almost completely missing from literature. There are two major reasons for that. Firstly, the characteristic parameters of soot are complex and vary in a wide range and depend not only on the initial burning conditions and the type of fuels but also the ambient factors. The other is the lack of a soot standard material and a generator which are suitable for modelling the real atmospheric

  17. Aerosol particles generated by diesel-powered school buses at urban schools as a source of children's exposure

    NASA Astrophysics Data System (ADS)

    Hochstetler, Heather A.; Yermakov, Mikhail; Reponen, Tiina; Ryan, Patrick H.; Grinshpun, Sergey A.

    2011-03-01

    Various heath effects in children have been associated with exposure to traffic-related particulate matter (PM), including emissions from school buses. In this study, the indoor and outdoor aerosol at four urban elementary schools serviced by diesel-powered school buses was characterized with respect to the particle number concentrations and size distributions as well as the PM2.5 mass concentrations and elemental compositions. It was determined that the presence of school buses significantly affected the outdoor particle size distribution, specifically in the ultrafine fraction. The time-weighted average of the total number concentration measured outside the schools was significantly associated with the bus and the car counts. The concentration increase was consistently observed during the morning drop-off hours and in most of the days during the afternoon pick-up period (although at a lower degree). Outdoor PM2.5 mass concentrations measured at schools ranged from 3.8 to 27.6 μg m-3. The school with the highest number of operating buses exhibited the highest average PM2.5 mass concentration. The outdoor mass concentrations of elemental carbon (EC) and organic carbon (OC) were also highest at the school with the greatest number of buses. Most (47/55) correlations between traffic-related elements identified in the outdoor PM2.5 were significant with elements identified in the indoor PM2.5. Significant associations were observed between indoor and outdoor aerosols for EC, EC/OC, and the total particle number concentration. Day-to-day and school-to-school variations in Indoor/Outdoor (I/O) ratios were related to the observed differences in opening windows and doors, which enhanced the particle penetration, as well as indoor activities at schools. Overall, the results on I/O ratio obtained in this study reflect the sizes of particles emitted by diesel-powered school bus engines (primarily, an ultrafine fraction capable of penetrating indoors).

  18. Aerosol lenses propagation model.

    PubMed

    Tremblay, Grégoire; Roy, Gilles

    2011-09-01

    We propose a model based on the properties of cascading lenses modulation transfer function (MTF) to reproduce the irradiance of a screen illuminated through a dense aerosol cloud. In this model, the aerosol cloud is broken into multiple thin layers considered as individual lenses. The screen irradiance generated by these individual layers is equivalent to the point-spread function (PSF) of each aerosol lens. Taking the Fourier transform of the PSF as a MTF, we cascade the lenses MTF to find the cloud MTF. The screen irradiance is found with the Fourier transform of this MTF. We show the derivation of the model and we compare the results with the Undique Monte Carlo simulator for four aerosols at three optical depths. The model is in agreement with the Monte Carlo for all the cases tested. PMID:21886230

  19. Photodegradation of secondary organic aerosol generated from limonene oxidation by ozone studied with chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pan, X.; Underwood, J. S.; Xing, J.-H.; Mang, S. A.; Nizkorodov, S. A.

    2009-06-01

    Photodegradation of secondary organic aerosol (SOA) prepared by ozone-initiated oxidation of D-limonene is studied with an action spectroscopy approach, which relies on detection of volatile photoproducts with chemical ionization mass-spectrometry as a function of the UV irradiation wavelength. Efficient photodegradation is observed for a broad range of ozone (0.1-300 ppm) and D-limonene (0.02-3 ppm) concentrations used in the preparation of SOA. The observed photoproducts are dominated by oxygenated C1-C3 compounds such as methanol, formic acid, acetaldehyde, acetic acid, and acetone. The irradiation wavelength dependence of the combined yield of the photoproducts closely tracks the absorption spectrum of the SOA material suggesting that photodegradation is not limited to the UV wavelengths. Kinetic simulations suggest that RO2+HO2/RO2 reactions represent the dominant route to photochemically active carbonyl and peroxide species in the limonene SOA prepared in these experiments. Similar photodegradation processes are likely to occur in realistic SOA produced by OH- or O3-initiated oxidation of biogenic volatile organic compounds in clean air.

  20. Photodegradation of secondary organic aerosol generated from limonene oxidation by ozone studied with chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pan, X.; Underwood, J. S.; Xing, J.-H.; Mang, S. A.; Nizkorodov, S. A.

    2009-02-01

    Photodegradation of secondary organic aerosol (SOA) prepared by ozone-initiated oxidation of D-limonene is studied with an action spectroscopy approach, which relies on detection of volatile photoproducts with chemical ionization mass-spectrometry as a function of the UV irradiation wavelength. Efficient photodegradation is observed for a broad range of ozone and D-limonene concentrations (0.1-300 ppm) used in the preparation of SOA. The observed photoproducts are dominated by oxygenated C1-C3 compounds such as methanol, formic acid, acetaldehyde, acetic acid, and acetone. The irradiation wavelength dependence of the combined yield of the photoproducts closely tracks the absorption spectrum of the SOA material suggesting that photodegradation is not limited to the UV wavelengths. Kinetic simulations suggest that RO2+HO2/RO2 reactions represent the dominant route to photochemically active carbonyl and peroxide species in the limonene SOA material. Similar photodegradation processes are likely to occur in realistic SOA produced by OH- or O3-initiated oxidation of biogenic volatile organic compounds in clean air.

  1. Large-area assembly of three-dimensional nanoparticle structures via ion assisted aerosol lithography with a multi-pin spark discharge generator

    NASA Astrophysics Data System (ADS)

    Ha, Kyungyeon; Choi, Hoseop; Jung, Kinam; Han, Kyuhee; Lee, Jong-Kwon; Ahn, KwangJun; Choi, Mansoo

    2014-06-01

    We present an approach utilizing ion assisted aerosol lithography (IAAL) with a newly designed multi-pin spark discharge generator (SDG) for fabricating large-area three-dimensional (3D) nanoparticle-structure (NPS) arrays. The design of the multi-pin SDG allows us to uniformly construct 3D NPSs on a large area of 50 mm × 50 mm in a parallel fashion at atmospheric pressure. The ion-induced focusing capability of IAAL significantly reduces the feature size of 3D NPSs compared to that of the original pre-patterns formed on a substrate. The spatial uniformity of 3D NPSs is above 95% using the present multi-pin SDG, which is far superior to that of the previous single-pin SDG with less than 32% uniformity. The effect of size distributions of nanoparticles generated via the multi-pin SDG on the 3D NPSs also has been studied. In addition, we measured spectral reflectance for the present 3D NPSs coated with Ag, demonstrating enhanced diffuse reflectance.

  2. Risk in the mist? Deriving data to quantify microbial health risks associated with aerosol generation by water-efficient devices during typical domestic water-using activities.

    PubMed

    O'Toole, J; Keywood, M; Sinclair, M; Leder, K

    2009-01-01

    The aim of this study was to address existing data gaps and to determine the size distribution of aerosols associated with water-efficient devices during typical domestic activities. This information is important to assist in understanding infection spread during water-using activities and in designing water regulations. Three water-using scenarios were evaluated: i) showering using a water-efficient showerhead; ii) use of a high pressure spray unit for cleaning cars and iii) toilet flushing using a dual flush low volume flush device. For each scenario a control condition (conventional lower efficiency device) was selected for benchmarking purposes. Shower module results highlighted the complexity of particle generation and removal processes and showed that more than 90% of total particle mass in the breathing zone was attributed to particle diameters greater than 6 mum. Conversely, results for car washing experiments showed that particle diameters up to 6 mum constituted the major part of the total mass generated by both water-efficient and conventional devices. Even under worse case scenario conditions for toilet flushing, particle measurements were at or below the level of detection of the measuring instrumentation. The data provide information that assists in health risk assessment and in determining future research directions, including methodological aspects. PMID:19934513

  3. Cloud condensation nucleus activity comparison of dry- and wet-generated mineral dust aerosol: the significance of soluble material

    NASA Astrophysics Data System (ADS)

    Garimella, S.; Huang, Y.-w.; Seewald, J. S.; Cziczo, D. J.

    2013-11-01

    This study examines the interaction of clay mineral particles and water vapor to determine the conditions required for cloud droplet formation. Droplet formation conditions are investigated for three clay minerals: illite, sodium-rich montmorillonite, and Arizona Test Dust. Using wet and dry particle generation coupled to a differential mobility analyzer (DMA) and cloud condensation nuclei counter, the critical activation of the clay mineral particles as cloud condensation nuclei is characterized. Electron microscopy (EM) is used to determine non-sphericity in particle shape. EM is also used to determine particle surface area and account for transmission of multiply charged particles by the DMA. Single particle mass spectrometry and ion chromatography are used to investigate soluble material in wet-generated samples and demonstrate that wet and dry generation yield compositionally different particles. Activation results are analyzed in the context of both κ-Köhler theory and Frenkel, Halsey, and Hill (FHH) adsorption activation theory. This study has two main results: (1) κ-Köhler is a suitable framework, less complex than FHH theory, to describe clay mineral nucleation activity despite apparent differences in κ with respect to size. For dry-generated particles the size dependence is likely an artifact of the shape of the size distribution: there is a sharp drop-off in particle concentration at ~300 nm, and a large fraction of particles classified with a mobility diameter less than ~300 nm are actually multiply charged, resulting in a much lower critical supersaturation for droplet activation than expected. For wet-generated particles, deviation from κ-Köhler theory is likely a result of the dissolution and redistribution of soluble material. (2) Wet-generation is found to be unsuitable for simulating the lofting of fresh dry dust because it changes the size-dependent critical supersaturations by fractionating and re-partitioning soluble material.

  4. Cloud condensation nucleus activity comparison of dry- and wet-generated mineral dust aerosol: the significance of soluble material

    NASA Astrophysics Data System (ADS)

    Garimella, S.; Huang, Y.-W.; Seewald, J. S.; Cziczo, D. J.

    2014-06-01

    This study examines the interaction of clay mineral particles and water vapor for determining the conditions required for cloud droplet formation. Droplet formation conditions are investigated for two common clay minerals, illite and sodium-rich montmorillonite, and an industrially derived sample, Arizona Test Dust. Using wet and dry particle generation coupled to a differential mobility analyzer (DMA) and cloud condensation nuclei counter, the critical activation of the clay mineral particles as cloud condensation nuclei is characterized. Electron microscopy (EM) is used in order to determine non-sphericity in particle shape. It is also used in order to determine particle surface area and account for transmission of multiply charged particles by the DMA. Single particle mass spectrometry and ion chromatography are used to investigate soluble material in wet-generated samples and demonstrate that wet and dry generation yield compositionally different particles. Activation results are analyzed in the context of both κ-Köhler theory (κ-KT) and Frenkel-Halsey-Hill (FHH) adsorption activation theory. This study has two main results: (1) κ-KT is the suitable framework to describe clay mineral nucleation activity. Apparent differences in κ with respect to size arise from an artifact introduced by improper size-selection methodology. For dust particles with mobility sizes larger than ~300 nm, i.e., ones that are within an atmospherically relevant size range, both κ-KT and FHH theory yield similar critical supersaturations. However, the former requires a single hygroscopicity parameter instead of the two adjustable parameters required by the latter. For dry-generated particles, the size dependence of κ is likely an artifact of the shape of the size distribution: there is a sharp drop-off in particle concentration at ~300 nm, and a large fraction of particles classified with a mobility diameter less than ~300 nm are actually multiply charged, resulting in a much

  5. Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model - Part 1: Assessing the influence of constrained multi-generational ageing

    NASA Astrophysics Data System (ADS)

    Jathar, S. H.; Cappa, C. D.; Wexler, A. S.; Seinfeld, J. H.; Kleeman, M. J.

    2016-02-01

    Multi-generational oxidation of volatile organic compound (VOC) oxidation products can significantly alter the mass, chemical composition and properties of secondary organic aerosol (SOA) compared to calculations that consider only the first few generations of oxidation reactions. However, the most commonly used state-of-the-science schemes in 3-D regional or global models that account for multi-generational oxidation (1) consider only functionalization reactions but do not consider fragmentation reactions, (2) have not been constrained to experimental data and (3) are added on top of existing parameterizations. The incomplete description of multi-generational oxidation in these models has the potential to bias source apportionment and control calculations for SOA. In this work, we used the statistical oxidation model (SOM) of Cappa and Wilson (2012), constrained by experimental laboratory chamber data, to evaluate the regional implications of multi-generational oxidation considering both functionalization and fragmentation reactions. SOM was implemented into the regional University of California at Davis / California Institute of Technology (UCD/CIT) air quality model and applied to air quality episodes in California and the eastern USA. The mass, composition and properties of SOA predicted using SOM were compared to SOA predictions generated by a traditional two-product model to fully investigate the impact of explicit and self-consistent accounting of multi-generational oxidation.Results show that SOA mass concentrations predicted by the UCD/CIT-SOM model are very similar to those predicted by a two-product model when both models use parameters that are derived from the same chamber data. Since the two-product model does not explicitly resolve multi-generational oxidation reactions, this finding suggests that the chamber data used to parameterize the models captures the majority of the SOA mass formation from multi-generational oxidation under the conditions

  6. Review of models applicable to accident aerosols

    SciTech Connect

    Glissmeyer, J.A.

    1983-07-01

    Estimations of potential airborne-particle releases are essential in safety assessments of nuclear-fuel facilities. This report is a review of aerosol behavior models that have potential applications for predicting aerosol characteristics in compartments containing accident-generated aerosol sources. Such characterization of the accident-generated aerosols is a necessary step toward estimating their eventual release in any accident scenario. Existing aerosol models can predict the size distribution, concentration, and composition of aerosols as they are acted on by ventilation, diffusion, gravity, coagulation, and other phenomena. Models developed in the fields of fluid mechanics, indoor air pollution, and nuclear-reactor accidents are reviewed with this nuclear fuel facility application in mind. The various capabilities of modeling aerosol behavior are tabulated and discussed, and recommendations are made for applying the models to problems of differing complexity.

  7. Global Aerosols

    Atmospheric Science Data Center

    2013-04-19

    ... sizes and from multiple sources, including biomass burning, mineral dust, sea salt and regional industrial pollution. A color scale is ... desert source region. Deserts are the main sources of mineral dust, and MISR obtains aerosol optical depth at visible wavelengths ...

  8. International Cooperative for Aerosol Prediction Workshop on Aerosol Forecast Verification

    NASA Technical Reports Server (NTRS)

    Benedetti, Angela; Reid, Jeffrey S.; Colarco, Peter R.

    2011-01-01

    The purpose of this workshop was to reinforce the working partnership between centers who are actively involved in global aerosol forecasting, and to discuss issues related to forecast verification. Participants included representatives from operational centers with global aerosol forecasting requirements, a panel of experts on Numerical Weather Prediction and Air Quality forecast verification, data providers, and several observers from the research community. The presentations centered on a review of current NWP and AQ practices with subsequent discussion focused on the challenges in defining appropriate verification measures for the next generation of aerosol forecast systems.

  9. 40 CFR Table F-1 to Subpart F of... - Performance Specifications for PM2.5 Class II Equivalent Samplers

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Solid VOAG produced aerosol at 2 km/hr and 24 km/hr Dp50 = 2.5 µm ± 0.2 µm Numerical Analysis Results: 95% ≤ Rc ≤ 105%. § 53.63 Wind Tunnel Inlet Aspiration Test Liquid VOAG produced aerosol at 2 km/hr... Polydisperse liquid aerosol produced by air nebulization of A.C.S. reagent grade glycerol, 99.5% minimum...

  10. Relating hygroscopicity and optical properties to chemical composition and structure of secondary organic aerosol particles generated from the ozonolysis of α-pinene

    NASA Astrophysics Data System (ADS)

    Denjean, C.; Formenti, P.; Picquet-Varrault, B.; Pangui, E.; Zapf, P.; Katrib, Y.; Giorio, C.; Tapparo, A.; Monod, A.; Temime-Roussel, B.; Decorse, P.; Mangeney, C.; Doussin, J. F.

    2015-03-01

    Secondary organic aerosol (SOA) were generated from the ozonolysis of α-pinene in the CESAM (French acronym for Experimental Multiphasic Atmospheric Simulation Chamber) simulation chamber. The SOA formation and aging were studied by following their optical, hygroscopic and chemical properties. The optical properties were investigated by determining the particle complex refractive index (CRI). The hygroscopicity was quantified by measuring the effect of relative humidity (RH) on the particle size (size growth factor, GF) and on the scattering coefficient (scattering growth factor, f(RH)). The oxygen to carbon atomic ratios (O : C) of the particle surface and bulk were used as a sensitive parameter to correlate the changes in hygroscopic and optical properties of the SOA composition during their formation and aging in CESAM. The real CRI at 525 nm wavelength decreased from 1.43-1.60 (±0.02) to 1.32-1.38 (±0.02) during the SOA formation. The decrease in the real CRI correlated to the O : C decrease from 0.68 (±0.20) to 0.55 (±0.16). In contrast, the GF remained roughly constant over the reaction time, with values of 1.02-1.07 (±0.02) at 90% (±4.2%) RH. Simultaneous measurements of O : C of the particle surface revealed that the SOA was not composed of a homogeneous mixture, but contained less oxidised species at the surface which may limit water absorption. In addition, an apparent change in both mobility diameter and scattering coefficient with increasing RH from 0 to 30% was observed for SOA after 14 h of reaction. We postulate that this change could be due to a change in the viscosity of the SOA from a predominantly glassy state to a predominantly liquid state.

  11. Method for producing monodisperse aerosols

    DOEpatents

    Ortiz, Lawrence W.; Soderholm, Sidney C.

    1990-01-01

    An aerosol generator is described which is capable of producing a monodisperse aerosol within narrow limits utilizing an aqueous solution capable of providing a high population of seed nuclei and an organic solution having a low vapor pressure. The two solutions are cold nebulized, mixed, vaporized, and cooled. During cooling, particles of the organic vapor condense onto the excess seed nuclei, and grow to a uniform particle size.

  12. The Aerosol Coarse Mode Initiative

    NASA Astrophysics Data System (ADS)

    Arnott, W. P.; Adhikari, N.; Air, D.; Kassianov, E.; Barnard, J.

    2014-12-01

    Many areas of the world show an aerosol volume distribution with a significant coarse mode and sometimes a dominant coarse mode. The large coarse mode is usually due to dust, but sea salt aerosol can also play an important role. However, in many field campaigns, the coarse mode tends to be ignored, because it is difficult to measure. This lack of measurements leads directly to a concomitant "lack of analysis" of this mode. Because, coarse mode aerosols can have significant effects on radiative forcing, both in the shortwave and longwave spectrum, the coarse mode -- and these forcings -- should be accounted for in atmospheric models. Forcings based only on fine mode aerosols have the potential to be misleading. In this paper we describe examples of large coarse modes that occur in areas of large aerosol loading (Mexico City, Barnard et al., 2010) as well as small loadings (Sacramento, CA; Kassianov et al., 2012; and Reno, NV). We then demonstrate that: (1) the coarse mode can contribute significantly to radiative forcing, relative to the fine mode, and (2) neglecting the coarse mode may result in poor comparisons between measurements and models. Next we describe -- in general terms -- the limitations of instrumentation to measure the coarse mode. Finally, we suggest a new initiative aimed at examining coarse mode aerosol generation mechanisms; transport and deposition; chemical composition; visible and thermal IR refractive indices; morphology; microphysical behavior when deposited on snow and ice; and specific instrumentation needs. Barnard, J. C., J. D. Fast, G. Paredes-Miranda, W. P. Arnott, and A. Laskin, 2010: Technical Note: Evaluation of the WRF-Chem "Aerosol Chemical to Aerosol Optical Properties" Module using data from the MILAGRO campaign, Atmospheric Chemistry and Physics, 10, 7325-7340. Kassianov, E. I., M. S. Pekour, and J. C. Barnard, 2012: Aerosols in Central California: Unexpectedly large contribution of coarse mode to aerosol radiative forcing

  13. Tropospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    It is widely believed that "On a clear day you can see forever," as proclaimed in the 1965 Broadway musical of the same name. While an admittedly beautiful thought, we all know that this concept is only figurative. Aside from Earth's curvature and Rayleigh scattering by air molecules, aerosols - colloidal suspensions of solid or liquid particles in a gas - limit our vision. Even on the clearest day, there are billions of aerosol particles per cubic meter of air.Atmospheric aerosols are commonly referred to as smoke, dust, haze, and smog, terms that are loosely reflective of their origin and composition. Aerosol particles have arisen naturally for eons from sea spray, volcanic emissions, wind entrainment of mineral dust, wildfires, and gas-to-particle conversion of hydrocarbons from plants and dimethylsulfide from the oceans. However, over the industrial period, the natural background aerosol has been greatly augmented by anthropogenic contributions, i.e., those produced by human activities. One manifestation of this impact is reduced visibility (Figure 1). Thus, perhaps more than in other realms of geochemistry, when considering the composition of the troposphere one must consider the effects of these activities. The atmosphere has become a reservoir for vast quantities of anthropogenic emissions that exert important perturbations on it and on the planetary ecosystem in general. Consequently, much recent research focuses on the effects of human activities on the atmosphere and, through them, on the environment and Earth's climate. For these reasons consideration of the geochemistry of the atmosphere, and of atmospheric aerosols in particular, must include the effects of human activities. (201K)Figure 1. Impairment of visibility by aerosols. Photographs at Yosemite National Park, California, USA. (a) Low aerosol concentration (particulate matter of aerodynamic diameter less than 2.5 μm, PM2.5=0.3 μg m-3; particulate matter of aerodynamic diameter less than 10

  14. Wet scavenging limits the detection of aerosol effects on precipitation

    NASA Astrophysics Data System (ADS)

    Gryspeerdt, E.; Stier, P.; White, B. A.; Kipling, Z.

    2015-07-01

    Satellite studies of aerosol-cloud interactions usually make use of retrievals of both aerosol and cloud properties, but these retrievals are rarely spatially co-located. While it is possible to retrieve aerosol properties above clouds under certain circumstances, aerosol properties are usually only retrieved in cloud-free scenes. Generally, the smaller spatial variability of aerosols compared to clouds reduces the importance of this sampling difference. However, as precipitation generates an increase in spatial variability of aerosols, the imperfect co-location of aerosol and cloud property retrievals may lead to changes in observed aerosol-cloud-precipitation relationships in precipitating environments. In this work, we use a regional-scale model, satellite observations and reanalysis data to investigate how the non-coincidence of aerosol, cloud and precipitation retrievals affects correlations between them. We show that the difference in the aerosol optical depth (AOD)-precipitation relationship between general circulation models (GCMs) and satellite observations can be explained by the wet scavenging of aerosol. Using observations of the development of precipitation from cloud regimes, we show how the influence of wet scavenging can obscure possible aerosol influences on precipitation from convective clouds. This obscuring of aerosol-cloud-precipitation interactions by wet scavenging suggests that even if GCMs contained a perfect representation of aerosol influences on convective clouds, the difficulty of separating the "clear-sky" aerosol from the "all-sky" aerosol in GCMs may prevent them from reproducing the correlations seen in satellite data.

  15. Aerosol Quality Monitor (AQUAM)

    NASA Astrophysics Data System (ADS)

    Liang, X.; Ignatov, A.

    2011-12-01

    The Advanced Clear-Sky Processor for Oceans (ACSPO) developed at NESDIS generates three products from AVHRR, operationally: clear sky radiances in all bands, and sea surface temperature (SST) derived from clear-sky brightness temperatures (BT) in Ch3B (centered at 3.7 μm), Ch4 (11 μm) and Ch5 (12 μm), and aerosol optical depths (AOD) derived from clear-sky reflectances in Ch1 (0.63), Ch2 (0.83) and Ch3A (1.61 μm). An integral part of ACSPO is the fast Community Radiative Transfer Model (CRTM), which calculates first-guess clear-sky BTs using global NCEP forecast atmospheric and Reynolds SST fields. Simulated BTs are employed in ACSPO for improved cloud screening, physical (RTM-based) SST inversions, and to monitor and validate satellite BTs. The model minus observation biases are monitored online in near-real time using the Monitoring IR Clear-sky radiances over Oceans for SST (MICROS; http://www.star.nesdis.noaa.gov/sod/sst/micros/). A persistent positive M-O bias is observed in MICROS, partly attributed to missing aerosol in CRTM input, causing "M" to be warmer than "O". It is thus necessary to include aerosols in CRTM and quantify their effects on AVHRR BTs and SSTs. However, sensitivity of thermal bands to aerosol is only minimal, and use of solar reflectance bands is preferable to evaluate the accuracy of CRTM modeling, with global aerosol fields as input (from e.g. Goddard Chemistry Aerosol Radiation and Transport, GOCART, or Navy Aerosol Analysis and Prediction System, NAAPS). Once available, the corresponding M-O biases in solar reflectance bands will be added to MICROS. Also, adding CRTM simulated reflectances in ACSPO would greatly improve cloud detection, help validate CRTM in the solar reflectance bands, and assist aerosol retrievals. Running CRTM with global aerosol as input is very challenging, computationally. While CRTM is being optimized to handle such global scattering computations, a near-real time web-based Aerosol Quality Monitor (AQUAM

  16. Global Aerosol Climatology Project.

    NASA Astrophysics Data System (ADS)

    Mishchenko, Michael; Penner, Joyce; Anderson, Donald

    2002-02-01

    This paper is concerned with uncertainties in the Advanced Very High Resolution Radiometer (AVHRR)-based retrieval of optical depth for heavy smoke aerosol plumes generated from forest fires that occurred in Canada due to a lack of knowledge on their optical properties (single-scattering albedo and asymmetry parameter). Typical values of the optical properties for smoke aerosols derived from such field experiments as Smoke, Clouds, and Radiation-Brazil (SCAR-B); Transport and Atmospheric Chemistry near the Equator-Atlantic (TRACE-A); Biomass Burning Airborne and Spaceborne Experiment in the Amazonas (BASE-A); and Boreal Ecosystem-Atmosphere Study (BOREAS) were first assumed for retrieving smoke optical depths. It is found that the maximum top-of-atmosphere (TOA) reflectance values calculated by models with these aerosol parameters are less than observations whose values are considerably higher. A successful retrieval would require an aerosol model that either has a substantially smaller asymmetry parameter (g < 0.4 versus g > 0.5), or higher single-scattering albedo ( 0.9 versus < 0.9), or both (e.g., g = 0.39 and = 0.91 versus g = 0.57 and = 0.87) than the existing models. Several potential causes were examined including small smoke particle size, low black carbon content, humidity effect, calibration errors, inaccurate surface albedo, mixture of cloud and aerosol layers, etc. A more sound smoke aerosol model is proposed that has a lower content of black carbon (mass ratio = 0.015) and smaller size (mean radius = 0.02 m for dry smoke particles), together with consideration of the effect of relative humidity. Ground-based observations of smoke suggest that for < 2.5 there is an increasing trend in and a decreasing trend in g with increases in , which is consistent with the results of satellite retrievals. Using these relationships as constraints, more plausible values of can be obtained for heavy smoke aerosol. The possibility of smoke-cloud mixtures is also

  17. Stratospheric aerosols and climatic change

    NASA Technical Reports Server (NTRS)

    Baldwin, B.; Pollack, J. B.; Summers, A.; Toon, O. B.; Sagan, C.; Van Camp, W.

    1976-01-01

    Generated primarily by volcanic explosions, a layer of submicron silicate particles and particles made of concentrated sulfuric acids solution is present in the stratosphere. Flights through the stratosphere may be a future source of stratospheric aerosols, since the effluent from supersonic transports contains sulfurous gases (which will be converted to H2SO4) while the exhaust from Space Shuttles contains tiny aluminum oxide particles. Global heat balance calculations have shown that the stratospheric aerosols have made important contributions to some climatic changes. In the present paper, accurate radiative transfer calculations of the globally-averaged surface temperature (T) are carried out to estimate the sensitivity of the climate to changes in the number of stratospheric aerosols. The results obtained for a specified model atmosphere, including a vertical profile of the aerosols, indicate that the climate is unlikely to be affected by supersonic transports and Space Shuttles, during the next decades.

  18. 40 CFR Table F-1 to Subpart F of... - Performance Specifications for PM 2.5 Class II Equivalent Samplers

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... II Equivalent Samplers Performance test Specifications Acceptance criteria § 53.62 Full Wind Tunnel... Results: 95% ≤Rc ≤105%. § 53.63 Wind Tunnel Inlet Aspiration Test Liquid VOAG produced aerosol at 2...

  19. 40 CFR Table F-1 to Subpart F of... - Performance Specifications for PM 2.5 Class II Equivalent Samplers

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... II Equivalent Samplers Performance test Specifications Acceptance criteria § 53.62 Full Wind Tunnel... Results: 95% ≤ Rc ≤ 105%. § 53.63 Wind Tunnel Inlet Aspiration Test Liquid VOAG produced aerosol at 2...

  20. 40 CFR Table F-1 to Subpart F of... - Performance Specifications for PM2.5 Class II Equivalent Samplers

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Equivalent Samplers Performance test Specifications Acceptance criteria § 53.62 Full Wind Tunnel Evaluation...% ≤ Rc ≤ 105%. § 53.63 Wind Tunnel Inlet Aspiration Test Liquid VOAG produced aerosol at 2 km/hr and...

  1. 40 CFR Table F-1 to Subpart F of... - Performance Specifications for PM2.5 Class II Equivalent Samplers

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Equivalent Samplers Performance test Specifications Acceptance criteria § 53.62 Full Wind Tunnel Evaluation...: 95% ≤ Rc ≤ 105%. § 53.63 Wind Tunnel Inlet Aspiration Test Liquid VOAG produced aerosol at 2...

  2. MODELING AND EXPERIMENTAL EVALUATION OF AN AEROSOL GENERATOR FOR VERY HIGH NUMBER CURRENTS BASED ON A FREE TURBULENT JET. (R827354C008)

    EPA Science Inventory

    In this paper we report on theoretical and experimental work on aerosol formation in a free turbulent jet. A hot DEHS vapor issues through a circular nozzle into slowly moving cold air. Vapor concentration and temperatures are such that particles are formed via homogeneous nuc...

  3. Effects of acute inhalation of aerosols generated during resistance spot welding with mild-steel on pulmonary, vascular and immune responses in rats

    PubMed Central

    Zeidler-Erdely, Patti C.; Meighan, Terence G.; Erdely, Aaron; Fedan, Jeffrey S.; Thompson, Janet A.; Bilgesu, Suzan; Waugh, Stacey; Anderson, Stacey; Marshall, Nikki B.; Afshari, Aliakbar; McKinney, Walter; Frazer, David G.; Antonini, James M.

    2015-01-01

    Spot welding is used in the automotive and aircraft industries, where high-speed, repetitive welding is needed to join thin sections of metal. Epoxy adhesives are applied as sealers to the metal seams. Pulmonary function abnormalities and airway irritation have been reported in spot welders, but no animal toxicology studies exist. Therefore, the goal of this study was to investigate vascular, immune and lung toxicity measures after exposure to these metal fumes in an animal model. Male Sprague-Dawley rats were exposed by inhalation to 25 mg/m3 to either mild-steel spot welding aerosols with sparking (high metal, HM) or without sparking (low metal, LM) for 4 h/d for 3, 8 and 13 d. Shams were exposed to filtered air. Bronchoalveolar lavage (BAL), lung gene expression and ex vivo BAL cell challenge were performed to assess lung toxicity. Lung resistance (RL) was evaluated before and after challenge with inhaled methacholine (MCh). Functional assessment of the vascular endothelium in isolated rat tail arteries and leukocyte differentiation in the spleen and lymph nodes via flow cytometry was also done. Immediately after exposure, baseline RL was significantly elevated in the LM spot welding aerosols, but returned to control level by 24 h postexposure. Airway reactivity to MCh was unaffected. Lung inflammation and cytotoxicity were mild and transient. Lung epithelial permeability was significantly increased after 3 and 8 d, but not after 13 d of exposure to the HM aerosol. HM aerosols also caused vascular endothelial dysfunction and increased CD4+, CD8+ and B cells in the spleen. Only LM aerosols caused increased IL-6 and MCP-1 levels compared with sham after ex vivo LPS stimulation in BAL macrophages. Acute inhalation of mild-steel spot welding fumes at occupationally relevant concentrations may act as an irritant as evidenced by the increased RL and result in endothelial dysfunction, but otherwise had minor effects on the lung. PMID:25140454

  4. Aerosol feed direct methanol fuel cell

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor); Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor)

    2002-01-01

    Improvements to fuel cells include introduction of the fuel as an aerosol of liquid fuel droplets suspended in a gas. The particle size of the liquid fuel droplets may be controlled for optimal fuel cell performance by selection of different aerosol generators or by separating droplets based upon size using a particle size conditioner.

  5. BEHAVIOR OF CONSTANT RATE AEROSOL REACTORS (JOURNAL VERSION)

    EPA Science Inventory

    An aerosol reactor is a gaseous system in which fine particles are formed by chemical reaction in either a batch or flow process. Such reactors are used to study the aerosol formation process, as in a smog reactor, or to generate a product such as a pigment or a catalytic aerosol...

  6. Atmospheric Aerosols

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Lawless, James G. (Technical Monitor)

    1994-01-01

    Aerosols, defined as particles and droplets suspended in air, are always present in the atmosphere. They are part of the earth-atmosphere climate system, because they interact with both incoming solar and outgoing terrestrial radiation. They do this directly through scattering and absorption, and indirectly through effects on clouds. Submicrometer aerosols usually predominate in terms of number of particles per unit volume of air. They have dimensions close to the wavelengths of visible light, and thus scatter radiation from the sun very effectively. They are produced in the atmosphere by chemical reactions of sulfur-, nitrogen- and carbon-containing gases of both natural and anthropogenic origins. Light absorption is dominated by particles containing elemental carbon (soot), produced by incomplete combustion of fossil fuels and by biomass burning. Light-scattering dominates globally, although absorption can be significant at high latitudes, particularly over highly reflective snow- or ice-covered surfaces. Other aerosol substances that may be locally important are those from volcanic eruptions, wildfires and windblown dust.

  7. An AERONET-based aerosol classification using the Mahalanobis distance

    NASA Astrophysics Data System (ADS)

    Hamill, Patrick; Giordano, Marco; Ward, Carolyne; Giles, David; Holben, Brent

    2016-09-01

    We present an aerosol classification based on AERONET aerosol data from 1993 to 2012. We used the AERONET Level 2.0 almucantar aerosol retrieval products to define several reference aerosol clusters which are characteristic of the following general aerosol types: Urban-Industrial, Biomass Burning, Mixed Aerosol, Dust, and Maritime. The classification of a particular aerosol observation as one of these aerosol types is determined by its five-dimensional Mahalanobis distance to each reference cluster. We have calculated the fractional aerosol type distribution at 190 AERONET sites, as well as the monthly variation in aerosol type at those locations. The results are presented on a global map and individually in the supplementary material. Our aerosol typing is based on recognizing that different geographic regions exhibit characteristic aerosol types. To generate reference clusters we only keep data points that lie within a Mahalanobis distance of 2 from the centroid. Our aerosol characterization is based on the AERONET retrieved quantities, therefore it does not include low optical depth values. The analysis is based on "point sources" (the AERONET sites) rather than globally distributed values. The classifications obtained will be useful in interpreting aerosol retrievals from satellite borne instruments.

  8. Dry powder aerosols generated by standardized entrainment tubes from drug blends with lactose monohydrate: 2. Ipratropium bromide monohydrate and fluticasone propionate.

    PubMed

    Xu, Zhen; Mansour, Heidi M; Mulder, Tako; McLean, Richard; Langridge, John; Hickey, Anthony J

    2010-08-01

    The objectives of this study were: systematic investigation of dry powder aerosol performance using standardized entrainment tubes (SETs) and lactose-based formulations with two model drugs; mechanistic evaluation of performance data by powder aerosol deaggregation equation (PADE). The drugs (IPB and FP) were prepared in sieved and milled lactose carriers (2% w/w). Aerosol studies were performed using SETs (shear stresses tau(s) = 0.624-13.143 N/m(2)) by twin-stage liquid impinger, operated at 60 L/min. PADE was applied for formulation screening. Excellent correlation was observed when PADE was adopted correlating FPF to tau(s). Higher tau(s) corresponded to higher FPF values followed by a plateau representing invariance of FPF with increasing tau(s). The R(2) values for PADE linear regression were 0.9905-0.9999. Performance described in terms of the maximum FPF (FPF(max): 15.0-37.6%) resulted in a rank order of ML-B/IPB > ML-A/IPB > SV-A/IPB > SV-B/IPB > ML-B/FP > ML-A/FP > SV-B/FP > SV-A/FP. The performance of IPB was superior to FP in all formulations. The difference in lactose monohydrate carriers was less pronounced for the FPF in IPB than in FP formulations. The novel PADE offers a robust method for evaluating aerodynamic performance of dry powder formulations within a defined tau(s) range. PMID:20222025

  9. A System to Create Stable Nanoparticle Aerosols from Nanopowders.

    PubMed

    Ding, Yaobo; Riediker, Michael

    2016-01-01

    Nanoparticle aerosols released from nanopowders in workplaces are associated with human exposure and health risks. We developed a novel system, requiring minimal amounts of test materials (min. 200 mg), for studying powder aerosolization behavior and aerosol properties. The aerosolization procedure follows the concept of the fluidized-bed process, but occurs in the modified volume of a V-shaped aerosol generator. The airborne particle number concentration is adjustable by controlling the air flow rate. The system supplied stable aerosol generation rates and particle size distributions over long periods (0.5-2 hr and possibly longer), which are important, for example, to study aerosol behavior, but also for toxicological studies. Strict adherence to the operating procedures during the aerosolization experiments ensures the generation of reproducible test results. The critical steps in the standard protocol are the preparation of the material and setup, and the aerosolization operations themselves. The system can be used for experiments requiring stable aerosol concentrations and may also be an alternative method for testing dustiness. The controlled aerosolization made possible with this setup occurs using energy inputs (may be characterized by aerosolization air velocity) that are within the ranges commonly found in occupational environments where nanomaterial powders are handled. This setup and its operating protocol are thus helpful for human exposure and risk assessment. PMID:27501179

  10. Effects of acute inhalation of aerosols generated during resistance spot welding with mild-steel on pulmonary, vascular and immune responses in rats.

    PubMed

    Zeidler-Erdely, Patti C; Meighan, Terence G; Erdely, Aaron; Fedan, Jeffrey S; Thompson, Janet A; Bilgesu, Suzan; Waugh, Stacey; Anderson, Stacey; Marshall, Nikki B; Afshari, Aliakbar; McKinney, Walter; Frazer, David G; Antonini, James M

    2014-10-01

    Spot welding is used in the automotive and aircraft industries, where high-speed, repetitive welding is needed to join thin sections of metal. Epoxy adhesives are applied as sealers to the metal seams. Pulmonary function abnormalities and airway irritation have been reported in spot welders, but no animal toxicology studies exist. Therefore, the goal of this study was to investigate vascular, immune and lung toxicity measures after exposure to these metal fumes in an animal model. Male Sprague-Dawley rats were exposed by inhalation to 25 mg/m³ to either mild-steel spot welding aerosols with sparking (high metal, HM) or without sparking (low metal, LM) for 4 h/d for 3, 8 and 13 d. Shams were exposed to filtered air. Bronchoalveolar lavage (BAL), lung gene expression and ex vivo BAL cell challenge were performed to assess lung toxicity. Lung resistance (R(L)) was evaluated before and after challenge with inhaled methacholine (MCh). Functional assessment of the vascular endothelium in isolated rat tail arteries and leukocyte differentiation in the spleen and lymph nodes via flow cytometry was also done. Immediately after exposure, baseline R(L) was significantly elevated in the LM spot welding aerosols, but returned to control level by 24 h postexposure. Airway reactivity to MCh was unaffected. Lung inflammation and cytotoxicity were mild and transient. Lung epithelial permeability was significantly increased after 3 and 8 d, but not after 13 d of exposure to the HM aerosol. HM aerosols also caused vascular endothelial dysfunction and increased CD4+, CD8+ and B cells in the spleen. Only LM aerosols caused increased IL-6 and MCP-1 levels compared with sham after ex vivo LPS stimulation in BAL macrophages. Acute inhalation of mild-steel spot welding fumes at occupationally relevant concentrations may act as an irritant as evidenced by the increased R(L) and result in endothelial dysfunction, but otherwise had minor effects on the lung. PMID:25140454

  11. Direct impact aerosol sampling by electrostatic precipitation

    DOEpatents

    Braden, Jason D.; Harter, Andrew G.; Stinson, Brad J.; Sullivan, Nicholas M.

    2016-02-02

    The present disclosure provides apparatuses for collecting aerosol samples by ionizing an air sample at different degrees. An air flow is generated through a cavity in which at least one corona wire is disposed and electrically charged to form a corona therearound. At least one grounded sample collection plate is provided downstream of the at least one corona wire so that aerosol ions generated within the corona are deposited on the at least one grounded sample collection plate. A plurality of aerosol samples ionized to different degrees can be generated. The at least one corona wire may be perpendicular to the direction of the flow, or may be parallel to the direction of the flow. The apparatus can include a serial connection of a plurality of stages such that each stage is capable of generating at least one aerosol sample, and the air flow passes through the plurality of stages serially.

  12. Multi-Sensor Aerosol Products Sampling System

    NASA Technical Reports Server (NTRS)

    Petrenko, M.; Ichoku, C.; Leptoukh, G.

    2011-01-01

    Global and local properties of atmospheric aerosols have been extensively observed and measured using both spaceborne and ground-based instruments, especially during the last decade. Unique properties retrieved by the different instruments contribute to an unprecedented availability of the most complete set of complimentary aerosol measurements ever acquired. However, some of these measurements remain underutilized, largely due to the complexities involved in analyzing them synergistically. To characterize the inconsistencies and bridge the gap that exists between the sensors, we have established a Multi-sensor Aerosol Products Sampling System (MAPSS), which consistently samples and generates the spatial statistics (mean, standard deviation, direction and rate of spatial variation, and spatial correlation coefficient) of aerosol products from multiple spacebome sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS. Samples of satellite aerosol products are extracted over Aerosol Robotic Network (AERONET) locations as well as over other locations of interest such as those with available ground-based aerosol observations. In this way, MAPSS enables a direct cross-characterization and data integration between Level-2 aerosol observations from multiple sensors. In addition, the available well-characterized co-located ground-based data provides the basis for the integrated validation of these products. This paper explains the sampling methodology and concepts used in MAPSS, and demonstrates specific examples of using MAPSS for an integrated analysis of multiple aerosol products.

  13. Aerosol beam-focus laser-induced plasma spectrometer device

    DOEpatents

    Cheng, Meng-Dawn

    2002-01-01

    An apparatus for detecting elements in an aerosol includes an aerosol beam focuser for concentrating aerosol into an aerosol beam; a laser for directing a laser beam into the aerosol beam to form a plasma; a detection device that detects a wavelength of a light emission caused by the formation of the plasma. The detection device can be a spectrometer having at least one grating and a gated intensified charge-coupled device. The apparatus may also include a processor that correlates the wavelength of the light emission caused by the formation of the plasma with an identity of an element that corresponds to the wavelength. Furthermore, the apparatus can also include an aerosol generator for forming an aerosol beam from bulk materials. A method for detecting elements in an aerosol is also disclosed.

  14. Aerosol Models for the CALIPSO Lidar Inversion Algorithms

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Winker, David M.; Won, Jae-Gwang

    2003-01-01

    We use measurements and models to develop aerosol models for use in the inversion algorithms for the Cloud Aerosol Lidar and Imager Pathfinder Spaceborne Observations (CALIPSO). Radiance measurements and inversions of the AErosol RObotic NETwork (AERONET1, 2) are used to group global atmospheric aerosols using optical and microphysical parameters. This study uses more than 105 records of radiance measurements, aerosol size distributions, and complex refractive indices to generate the optical properties of the aerosol at more 200 sites worldwide. These properties together with the radiance measurements are then classified using classical clustering methods to group the sites according to the type of aerosol with the greatest frequency of occurrence at each site. Six significant clusters are identified: desert dust, biomass burning, urban industrial pollution, rural background, marine, and dirty pollution. Three of these are used in the CALIPSO aerosol models to characterize desert dust, biomass burning, and polluted continental aerosols. The CALIPSO aerosol model also uses the coarse mode of desert dust and the fine mode of biomass burning to build a polluted dust model. For marine aerosol, the CALIPSO aerosol model uses measurements from the SEAS experiment 3. In addition to categorizing the aerosol types, the cluster analysis provides all the column optical and microphysical properties for each cluster.

  15. Aerosol transport in the coastal environment and effects on extinction

    NASA Astrophysics Data System (ADS)

    Vignati, Elizabetta; de Leeuw, Gerrit; Berkowicz, Ruwim

    1998-11-01

    The aerosol in the coastal environment consists of a complicated mixture of anthropogenic and rural aerosol generated over land, and sea spray aerosol. Also, particles are generate dover sea by physical and chemical processes and the chemical composition may change due to condensation/evaporation of gaseous materials. The actual composition is a function of air mass history and fetch. At the land-sea transition the continental sources cease to exist, and thus the concentrations of land-based particles and gases will gradually decrease. At the same time, sea spray is generated due to the interaction between wind and waves in a developing wave field. A very intense source for sea spray aerosol is the surf zone. Consequently, the aerosol transported over sea in off-shore winds will abruptly charge at the land-sea transition and then gradually loose its continental character, while also the contribution of the surf-generated aerosol will decrease. The latter will be compensated, at least in part, by the production of sea spray aerosol. A Coastal Aerosol Transport model is being developed describing the evolution of the aerosol size distribution in an air column advected from the coast line over sea in off-shore winds. Both removal and production are taken into account. The result are applied to estimate the effect of the changing size distribution on the extinction coefficients. In this contribution, preliminary results are presented from a study of the effects of the surf-generated aerosol and the surface production.

  16. Generations.

    PubMed

    Chambers, David W

    2005-01-01

    Groups naturally promote their strengths and prefer values and rules that give them an identity and an advantage. This shows up as generational tensions across cohorts who share common experiences, including common elders. Dramatic cultural events in America since 1925 can help create an understanding of the differing value structures of the Silents, the Boomers, Gen Xers, and the Millennials. Differences in how these generations see motivation and values, fundamental reality, relations with others, and work are presented, as are some applications of these differences to the dental profession. PMID:16623137

  17. Modeling the Absorbing Aerosol Index

    NASA Technical Reports Server (NTRS)

    Penner, Joyce; Zhang, Sophia

    2003-01-01

    We propose a scheme to model the absorbing aerosol index and improve the biomass carbon inventories by optimizing the difference between TOMS aerosol index (AI) and modeled AI with an inverse model. Two absorbing aerosol types are considered, including biomass carbon and mineral dust. A priori biomass carbon source was generated by Liousse et al [1996]. Mineral dust emission is parameterized according to surface wind and soil moisture using the method developed by Ginoux [2000]. In this initial study, the coupled CCM1 and GRANTOUR model was used to determine the aerosol spatial and temporal distribution. With modeled aerosol concentrations and optical properties, we calculate the radiance at the top of the atmosphere at 340 nm and 380 nm with a radiative transfer model. The contrast of radiance at these two wavelengths will be used to calculate AI. Then we compare the modeled AI with TOMS AI. This paper reports our initial modeling for AI and its comparison with TOMS Nimbus 7 AI. For our follow-on project we will model the global AI with aerosol spatial and temporal distribution recomputed from the IMPACT model and DAO GEOS-1 meteorology fields. Then we will build an inverse model, which applies a Bayesian inverse technique to optimize the agreement of between model and observational data. The inverse model will tune the biomass burning source strength to reduce the difference between modelled AI and TOMS AI. Further simulations with a posteriori biomass carbon sources from the inverse model will be carried out. Results will be compared to available observations such as surface concentration and aerosol optical depth.

  18. The Impact of Aerosol Particle Mixing State on the Hygroscopicity of Sea Spray Aerosol.

    PubMed

    Schill, Steven R; Collins, Douglas B; Lee, Christopher; Morris, Holly S; Novak, Gordon A; Prather, Kimberly A; Quinn, Patricia K; Sultana, Camille M; Tivanski, Alexei V; Zimmermann, Kathryn; Cappa, Christopher D; Bertram, Timothy H

    2015-06-24

    Aerosol particles influence global climate by determining cloud droplet number concentrations, brightness, and lifetime. Primary aerosol particles, such as those produced from breaking waves in the ocean, display large particle-particle variability in chemical composition, morphology, and physical phase state, all of which affect the ability of individual particles to accommodate water and grow into cloud droplets. Despite such diversity in molecular composition, there is a paucity of methods available to assess how particle-particle variability in chemistry translates to corresponding differences in aerosol hygroscopicity. Here, an approach has been developed that allows for characterization of the distribution of aerosol hygroscopicity within a chemically complex population of atmospheric particles. This methodology, when applied to the interpretation of nascent sea spray aerosol, provides a quantitative framework for connecting results obtained using molecular mimics generated in the laboratory with chemically complex ambient aerosol. We show that nascent sea spray aerosol, generated in situ in the Atlantic Ocean, displays a broad distribution of particle hygroscopicities, indicative of a correspondingly broad distribution of particle chemical compositions. Molecular mimics of sea spray aerosol organic material were used in the laboratory to assess the volume fractions and molecular functionality required to suppress sea spray aerosol hygroscopicity to the extent indicated by field observations. We show that proper accounting for the distribution and diversity in particle hygroscopicity and composition are important to the assessment of particle impacts on clouds and global climate. PMID:27162963

  19. The Impact of Aerosol Particle Mixing State on the Hygroscopicity of Sea Spray Aerosol

    PubMed Central

    2015-01-01

    Aerosol particles influence global climate by determining cloud droplet number concentrations, brightness, and lifetime. Primary aerosol particles, such as those produced from breaking waves in the ocean, display large particle–particle variability in chemical composition, morphology, and physical phase state, all of which affect the ability of individual particles to accommodate water and grow into cloud droplets. Despite such diversity in molecular composition, there is a paucity of methods available to assess how particle–particle variability in chemistry translates to corresponding differences in aerosol hygroscopicity. Here, an approach has been developed that allows for characterization of the distribution of aerosol hygroscopicity within a chemically complex population of atmospheric particles. This methodology, when applied to the interpretation of nascent sea spray aerosol, provides a quantitative framework for connecting results obtained using molecular mimics generated in the laboratory with chemically complex ambient aerosol. We show that nascent sea spray aerosol, generated in situ in the Atlantic Ocean, displays a broad distribution of particle hygroscopicities, indicative of a correspondingly broad distribution of particle chemical compositions. Molecular mimics of sea spray aerosol organic material were used in the laboratory to assess the volume fractions and molecular functionality required to suppress sea spray aerosol hygroscopicity to the extent indicated by field observations. We show that proper accounting for the distribution and diversity in particle hygroscopicity and composition are important to the assessment of particle impacts on clouds and global climate. PMID:27162963

  20. Global Atmospheric Aerosol Modeling

    NASA Technical Reports Server (NTRS)

    Hendricks, Johannes; Aquila, Valentina; Righi, Mattia

    2012-01-01

    Global aerosol models are used to study the distribution and properties of atmospheric aerosol particles as well as their effects on clouds, atmospheric chemistry, radiation, and climate. The present article provides an overview of the basic concepts of global atmospheric aerosol modeling and shows some examples from a global aerosol simulation. Particular emphasis is placed on the simulation of aerosol particles and their effects within global climate models.

  1. Type of Aerosols Determination Over Malaysia by AERONET Data

    NASA Astrophysics Data System (ADS)

    Lim, H.; Tan, F.; Abdullah, K.; Holben, B. N.

    2013-12-01

    Aerosols are one of the most interesting studies by the researchers due to the complicated of their characteristic and are not yet well quantified. Besides that there still have huge uncertainties associated with changes in Earth's radiation budget. The previous study by other researchers shown a lot of difficulties and challenges in quantifying aerosol influences arise. As well as the heterogeneity from the aerosol loading and properties: spatial, temporal, size, and composition. In this study, we were investigated the aerosol characteristics over two regions with different environmental conditions and aerosol sources contributed. The study sites are Penang and Kuching, Malaysia where ground-based AErosol RObotic NETwork (AERONET) sun-photometer was deployed. The types of the aerosols for both study sites were identified by analyzing aerosol optical depth, angstrom parameter and spectral de-convolution algorithm product from sun-photometer. The analysis was carried out associated with the in-situ meteorological data of relative humidity, visibility and air pollution index. The major aerosol type over Penang found in this study was hydrophobic aerosols. Whereas the hydrophilic type of the aerosols was highly distributed in Kuching. The major aerosol size distributions for both regions were identified in this study. The result also shows that the aerosol optical properties were affected by the types and characteristic of aerosols. Therefore, in this study we generated an algorithm to determine the aerosols in Malaysia by considered the environmental factors. From this study we found that the source of aerosols should always being consider in to retrieve the accurate information of aerosol for air quality study.

  2. Aerosol gels

    NASA Technical Reports Server (NTRS)

    Sorensen, Christopher M. (Inventor); Chakrabarti, Amitabha (Inventor); Dhaubhadel, Rajan (Inventor); Gerving, Corey (Inventor)

    2010-01-01

    An improved process for the production of ultralow density, high specific surface area gel products is provided which comprises providing, in an enclosed chamber, a mixture made up of small particles of material suspended in gas; the particles are then caused to aggregate in the chamber to form ramified fractal aggregate gels. The particles should have a radius (a) of up to about 50 nm and the aerosol should have a volume fraction (f.sub.v) of at least 10.sup.-4. In preferred practice, the mixture is created by a spark-induced explosion of a precursor material (e.g., a hydrocarbon) and oxygen within the chamber. New compositions of matter are disclosed having densities below 3.0 mg/cc.

  3. Paint spray tests for respirators: aerosol characteristics.

    PubMed

    Ackley, M W

    1980-05-01

    Liquid paint is sprayed from an atomizing nozzle to form an aerosol for testing paint spray respirators. The generated aerosol conditions are dependent upon liguid properties, spray-nozzle flow conditions and droplet evaporation. A technique was developed for controlling the aerosol concentrations reliably. Particle-size distributions of lacquer and enamel have been measured. The lacquer distribution was found to be multi-modal. Aerosol concentration dradients arise when the nozzle is not properly positioned. Filter loading resistance is significantly affected by these concentration variations. With regard to selection of standard aerosol test be improved by modifying the current NIOSH criteria to include a description of the particle-size distribution, a more precise definition of the paint and paint thinner chemical compositions, and a narrower concentration range. PMID:6932174

  4. Characterization of Cooking-Related Aerosols

    NASA Astrophysics Data System (ADS)

    Niedziela, R. F.; Blanc, L. E.

    2010-12-01

    The temperatures at which food is cooked are usually high enough to drive oils and other organic compounds out of materials which are being prepared for consumption. As these compounds move away from the hot cooking surface and into the atmosphere, they can participate in chemical reactions or condense to form particles. Given the high concentration of cooking in urban areas, cooking-related aerosols likely contribute to the overall amount of particulate matter on a local scale. Reported here are results for the mid-infrared optical characterization of aerosols formed during the cooking of several meat and vegetable samples in an inert atmosphere. The samples were heated in a novel aerosol generator that is designed to collect particles formed immediately above the cooking surface and inject them into a laminar aerosol flow cell. Preliminary results for the chemical processing of cooking-related aerosols in synthetic air will also be presented.

  5. Distribution of iron in size resolved aerosols generated by femtosecond laser ablation: Influence of cell geometry and implications for in situ isotopic measurements using LA-MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    d'Abzac, F.; Czaja, A. D.; Beard, B. L.; Schauer, J. J.; Johnson, C.

    2012-12-01

    Laser Ablation (LA) Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is a common and reliable method for the in situ chemical analysis in geosciences. In contrast, use of LA for analyzing naturally occurring mass dependent isotope fractionation in geological samples is not widely used because of the difficulties of differentiating laser induced isotope fractionation from naturally occurring mass dependent isotope fractionation. A critical aspect for accurate in situ stable isotope analysis is the chemical and isotopic composition, size, and morphology of aerosols generated by LA. We report on the iron mass distribution over the particle size distribution (PSD) of aerosols produced by femtosecond LA of magnetite and pyrite. A Photon Machines "Analyte" fs-G2 was used that provides τ~150fs pulses in the near UV (λ=263nm) with an adjustable repetition rate 1aerosols were collected on Teflon filters using a MOUDI cascade impactor, according to their aerodynamic diameter, within a range of da<0.056μm to da>18μm (Marple, Rubow et al., 1991). Filters loads were dissolved in HCl (magnetite) or HNO3 (pyrite) and iron concentration was determined spectroscopically using the ferrozine method or by isotope dilution mass spectrometery. The PSD for a given cell is similar for both pyrite and magnetite and is independent of fluence (1-3J.cm-2). However, significant differences appear from one cell to the other. The cylindrical cell gives a unimodal distribution with a peak centered on da=0.18μm and spread from da=0.056μm to 0.56μm (83% of the total Fe mass). Using the Helex cell the PSD is bi modal with ~1/3 of the particles having a da<0.056μm in addition to the peak at da=0.18μm. Importantly we note that for a given mineral

  6. Near real time vapor detection and enhancement using aerosol adsorption

    DOEpatents

    Novick, V.J.; Johnson, S.A.

    1999-08-03

    A vapor sample detection method is described where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample. 13 figs.

  7. Near real time vapor detection and enhancement using aerosol adsorption

    DOEpatents

    Novick, Vincent J.; Johnson, Stanley A.

    1999-01-01

    A vapor sample detection method where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample.

  8. Providing Adequate Vo-Ag Facilities--A High Priority

    ERIC Educational Resources Information Center

    Carson, A. L.

    1977-01-01

    Discusses factors and features for consideration in planning facilities for agriculture programs. Issues covered are industry relocation, school consolidation, legislation, and program diversification and specialization. (TA)

  9. Curriculum Development in Arkansas' Largest Vo-Ag Department

    ERIC Educational Resources Information Center

    Ashlock, Anthony

    1977-01-01

    Six new vocational agriculture curriculum guides which are being developed at Stuttgart High School in Arkansas will cover the following instructional areas: soybean and rice production, horticulture, farm buildings design and layout, agriculture metal working, agricultural farm building and structures, and farm machinery. (BM)

  10. Aerosol typing - key information from aerosol studies

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  11. Experimental Technique for Studying Aerosols of Lyophilized Bacteria

    PubMed Central

    Cox, Christopher S.; Derr, John S.; Flurie, Eugene G.; Roderick, Roger C.

    1970-01-01

    An experimental technique is presented for studying aerosols generated from lyophilized bacteria by using Escherichia coli B, Bacillus subtilis var. niger, Enterobacter aerogenes, and Pasteurella tularensis. An aerosol generator capable of creating fine particle aerosols of small quantities (10 mg) of lyophilized powder under controlled conditions of exposure to the atmosphere is described. The physical properties of the aerosols are investigated as to the distribution of number of aerosol particles with particle size as well as to the distribution of number of bacteria with particle size. Biologically unstable vegetative cells were quantitated physically by using 14C and Europium chelate stain as tracers, whereas the stable heat-shocked B. subtilis spores were assayed biologically. The physical persistence of the lyophilized B. subtilis aerosol is investigated as a function of size of spore-containing particles. The experimental result that physical persistence of the aerosol in a closed aerosol chamber increases as particle size is decreased is satisfactorily explained on the bases of electrostatic, gravitational, inertial, and diffusion forces operating to remove particles from the particular aerosol system. The net effect of these various forces is to provide, after a short time interval in the system (about 2 min), an aerosol of fine particles with enhanced physical stability. The dependence of physical stability of the aerosol on the species of organism and the nature of the suspending medium for lyophilization is indicated. Also, limitations and general applicability of both the technique and results are discussed. PMID:4992657

  12. Spectra Aerosol Light Scattering and Absorption for Laboratory and Urban Aerosol

    NASA Astrophysics Data System (ADS)

    Gyawali, Madhu S.

    Atmospheric aerosols considerably influence the climate, reduce visibility, and cause problems in human health. Aerosol light absorption and scattering are the important factors in the radiation transfer models. However, these properties are associated with large uncertainties in climate modeling. In addition, atmospheric aerosols widely vary in composition and size; their optical properties are highly wavelength dependent. This work presents the spectral dependence of aerosol light absorption and scattering throughout the ultraviolet to near-infrared regions. Data were collected in Reno, NV from 2008 to 2010. Also presented in this study are the aerosol optical and physical properties during carbonaceous aerosols and radiative effects study (CARES) conducted in Sacramento area during 2010. Measurements were made using photoacoustic instruments (PA), including a novel UV 355 nm PA of our design and manufacture. Comparative analyses are presented for three main categories: (1) aerosols produced by wildfires and traffic emissions, (2) laboratory-generated and wintertime ambient urban aerosols, and (3) urban plume and biogenic emissions. In these categories, key questions regarding the light absorption by secondary organic aerosols (SOA), so-called brown carbon (BrC), and black carbon (BC) will be discussed. An effort is made to model the emission and aging of urban and biomass burning aerosol by applying shell-core calculations. Multispectral PA measurements of aerosols light absorption and scattering coefficients were used to calculate the Angstrom exponent of absorption (AEA) and single scattering albedo (SSA). The AEA and SSA values were analyzed to differentiate the aerosol sources. The California wildfire aerosols exhibited strong wavelength dependence of aerosol light absorption with AEA as lambda -1 for 405 and 870 nm, in contrast to the relatively weak wavelength dependence of traffic emissions aerosols for which AEA varied approximately as lambda-1. By using

  13. Identifying Aerosol Type/Mixture from Aerosol Absorption Properties Using AERONET

    NASA Technical Reports Server (NTRS)

    Giles, D. M.; Holben, B. N.; Eck, T. F.; Sinyuk, A.; Dickerson, R. R.; Thompson, A. M.; Slutsker, I.; Li, Z.; Tripathi, S. N.; Singh, R. P.; Zibordi, G.

    2010-01-01

    Aerosols are generated in the atmosphere through anthropogenic and natural mechanisms. These sources have signatures in the aerosol optical and microphysical properties that can be used to identify the aerosol type/mixture. Spectral aerosol absorption information (absorption Angstrom exponent; AAE) used in conjunction with the particle size parameterization (extinction Angstrom exponent; EAE) can only identify the dominant absorbing aerosol type in the sample volume (e.g., black carbon vs. iron oxides in dust). This AAE/EAE relationship can be expanded to also identify non-absorbing aerosol types/mixtures by applying an absorption weighting. This new relationship provides improved aerosol type distinction when the magnitude of absorption is not equal (e.g, black carbon vs. sulfates). The Aerosol Robotic Network (AERONET) data provide spectral aerosol optical depth and single scattering albedo - key parameters used to determine EAE and AAE. The proposed aerosol type/mixture relationship is demonstrated using the long-term data archive acquired at AERONET sites within various source regions. The preliminary analysis has found that dust, sulfate, organic carbon, and black carbon aerosol types/mixtures can be determined from this AAE/EAE relationship when applying the absorption weighting for each available wavelength (Le., 440, 675, 870nm). Large, non-spherical dust particles absorb in the shorter wavelengths and the application of 440nm wavelength absorption weighting produced the best particle type definition. Sulfate particles scatter light efficiently and organic carbon particles are small near the source and aggregate over time to form larger less absorbing particles. Both sulfates and organic carbon showed generally better definition using the 870nm wavelength absorption weighting. Black carbon generation results from varying combustion rates from a number of sources including industrial processes and biomass burning. Cases with primarily black carbon showed

  14. Aerosol property retrieval from geostationary observations

    NASA Astrophysics Data System (ADS)

    Govaerts, Yves

    The Meteosat satellites play an important role for the generation of consistent long time series of aerosol properties. This importance relies on (i) the long duration of past (Meteosat First Generation, MFG) starting in 1982, present (Meteosat Second Generation, MSG) and future (Meteosat Third Generation, MTG) missions and (ii) their frequent cycle of acquisition that can be used to document the anisotropy of the surface and therefore the lower boundary condition for aerosol retrieval over land surfaces. Hence, a similar approach is used for the processing of each Meteosat generation based on a joint retrieval of surface reflectance and aerosol properties using an Optimal Estimation approach. Daily accumulation of the frequent Meteosat observations is used to discriminate the radiative effects that result from the surface anisotropy, from those caused by the aerosol scattering. The inverted forward model explicitly accounts for the surface anisotropy and the multiple scattering for the coupled surface-atmosphere system. Pinty et al. (2000) pioneered with the development of an original method to characterise simultaneously surface anisotropy and atmospheric scattering properties for the processing of MFG. Although these observations are limited to one single large VIS band poorly characterised, the main advantage of MFG relies in the duration of the archive (1982 - 2006), knowing that prior to 2000 space observations were very scarce. Despite these radiometric limitations, it is possible to detect major aerosol events like dust storms, fire plumes or pollution events, even over land surfaces. SEVIRI, on-board MSG, offers additional capabilities with its three solar channels and 15 min repeat cycle. AOD retrieval is much more accurate than with MFG and it is possible to discriminate among various aerosol classes. The additional FCI solar channels on-board MTG will offer improved capabilities with respect to MSG/SEVIRI for the retrieval of aerosol concentration and

  15. Aerosol versus solution composition in occupational exposures.

    PubMed

    Rondia, D; Closset, J

    1985-11-01

    Some industrial processes, such as the electrolysis of zinc solutions, anodic oxidation of aluminum, ore flotation, etc., result in the generation of gas microbubbles; the composition of their liquid envelope depends on, but is not identical to, the composition of the bulk of the liquid phase. An aerosol of respirable size, often toxic or irritant, results from the bursting of the bubbles at a certain height above the liquid. Some factors governing the discrepancy between the composition of the aerosol and that of the liquid have been studied for metal ions in oceanic aerosols. It is not known if these factors also apply to concentrated solutions and to anions. PMID:4081778

  16. Effect of Dust and Anthropogenic Aerosols on Columnar Aerosol Optical Properties over Darjeeling (2200 m asl), Eastern Himalayas, India

    PubMed Central

    Chatterjee, Abhijit; Ghosh, Sanjay K.; Adak, Anandamay; Singh, Ajay K.; Devara, Panuganti C. S.; Raha, Sibaji

    2012-01-01

    Background The loading of atmospheric particulate matter (aerosol) in the eastern Himalaya is mainly regulated by the locally generated anthropogenic aerosols from the biomass burning and by the aerosols transported from the distance sources. These different types of aerosol loading not only affect the aerosol chemistry but also produce consequent signature on the radiative properties of aerosol. Methodology/Principal Findings An extensive study has been made to study the seasonal variations in aerosol components of fine and coarse mode aerosols and black carbon along with the simultaneous measurements of aerosol optical depth on clear sky days over Darjeeling, a high altitude station (2200 masl) at eastern Himalayas during the year 2008. We observed a heavy loading of fine mode dust component (Ca2+) during pre-monsoon (Apr – May) which was higher by 162% than its annual mean whereas during winter (Dec – Feb), the loading of anthropogenic aerosol components mainly from biomass burning (fine mode SO42− and black carbon) were higher (76% for black carbon and 96% for fine mode SO42−) from their annual means. These high increases in dust aerosols during pre-monsoon and anthropogenic aerosols during winter enhanced the aerosol optical depth by 25 and 40%, respectively. We observed that for every 1% increase in anthropogenic aerosols, AOD increased by 0.55% during winter whereas for every 1% increase in dust aerosols, AOD increased by 0.46% during pre-monsoon. Conclusion/Significance The natural dust transport process (during pre-monsoon) plays as important a role in the radiation effects as the anthropogenic biomass burning (during winter) and their differential effects (rate of increase of the AOD with that of the aerosol concentration) are also very similar. This should be taken into account in proper modeling of the atmospheric environment over eastern Himalayas. PMID:22792264

  17. Aerosol mobility size spectrometer

    DOEpatents

    Wang, Jian; Kulkarni, Pramod

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  18. SAMPLING DURATION DEPENDENCE OF SEMI-CONTINUOUS ORGANIC CARBON MEASUREMENTS ON STEADY STATE SECONDARY ORGANIC AEROSOLS

    EPA Science Inventory

    Semi-continuous organic carbon concentrations were measured through several experiments of statically generated secondary organic aerosol formed by hydrocarbon + NOx irradiations. Repeated, randomized measurements of these steady state aerosols reveal decreases in the observed c...

  19. Ensemble-Based Assimilation of Aerosol Observations in GEOS-5

    NASA Technical Reports Server (NTRS)

    Buchard, V.; Da Silva, A.

    2016-01-01

    MERRA-2 is the latest Aerosol Reanalysis produced at NASA's Global Modeling Assimilation Office (GMAO) from 1979 to present. This reanalysis is based on a version of the GEOS-5 model radiatively coupled to GOCART aerosols and includes assimilation of bias corrected Aerosol Optical Depth (AOD) from AVHRR over ocean, MODIS sensors on both Terra and Aqua satellites, MISR over bright surfaces and AERONET data. In order to assimilate lidar profiles of aerosols, we are updating the aerosol component of our assimilation system to an Ensemble Kalman Filter (EnKF) type of scheme using ensembles generated routinely by the meteorological assimilation. Following the work performed with the first NASA's aerosol reanalysis (MERRAero), we first validate the vertical structure of MERRA-2 aerosol assimilated fields using CALIOP data over regions of particular interest during 2008.

  20. AEROSOL AND GAS MEASUREMENT

    EPA Science Inventory

    Measurements provide fundamental information for evaluating and managing the impact of aerosols on air quality. Specific measurements of aerosol concentration and their physical and chemical properties are required by different users to meet different user-community needs. Befo...

  1. Aerosols and environmental pollution

    NASA Astrophysics Data System (ADS)

    Colbeck, Ian; Lazaridis, Mihalis

    2010-02-01

    The number of publications on atmospheric aerosols has dramatically increased in recent years. This review, predominantly from a European perspective, summarizes the current state of knowledge of the role played by aerosols in environmental pollution and, in addition, highlights gaps in our current knowledge. Aerosol particles are ubiquitous in the Earth’s atmosphere and are central to many environmental issues; ranging from the Earth’s radiative budget to human health. Aerosol size distribution and chemical composition are crucial parameters that determine their dynamics in the atmosphere. Sources of aerosols are both anthropogenic and natural ranging from vehicular emissions to dust resuspension. Ambient concentrations of aerosols are elevated in urban areas with lower values at rural sites. A comprehensive understanding of aerosol ambient characteristics requires a combination of measurements and modeling tools. Legislation for ambient aerosols has been introduced at national and international levels aiming to protect human health and the environment.

  2. Aerosol distribution apparatus

    DOEpatents

    Hanson, W.D.

    An apparatus for uniformly distributing an aerosol to a plurality of filters mounted in a plenum, wherein the aerosol and air are forced through a manifold system by means of a jet pump and released into the plenum through orifices in the manifold. The apparatus allows for the simultaneous aerosol-testing of all the filters in the plenum.

  3. Vapor-aerosol physicochemical laboratory

    SciTech Connect

    Lore, J.D.; Skeen, L.M.

    1985-10-01

    A laboratory capable of generating and characterizing vapors and aerosols at typical ambient concentration levels observed in chemical processing operations has been established at the ORGD Plant, operated by Martin Marietta Energy Systems, Inc. for the USDOE. A three-stage generation system (TSGS), originally developed by SRI, International, for the analytical methods validation studies sponsored by NIOSH, has been installed. Several aerosol/particulate monitors, controlled by microcomputers, provide the means for semi-real-time particle size and mass concentration measurements over the size range 0.1 to 10 ..mu..m. A full complement of chemical analysis instrumentation including laser Raman spectroscopy and gas chromatography-mass spectrometry is available for in-situ or sequential measurements of TSGS diluents. 2 refs., 7 figs., 2 tabs.

  4. Tropopsheric Aerosol Chemistry via Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Worsnop, Douglas

    2008-03-01

    A broad overview of size resolved aerosol chemistry in urban, rural and remote regions is evolving from deployment of aerosol mass spectrometers (AMS) throughout the northern hemisphere. Using thermal vaporization and electron impact ionization as universal detector of non-refractory inorganic and organic composition, the accumulation of AMS results represent a library of mass spectral signatures of aerosol chemistry. For organics in particular, mass spectral factor analysis provides a procedure for classifying (and simplifying) complex mixtures composed of the hundreds or thousands of individual compounds. Correlations with parallel gas and aerosol measurements (e.g. GC/MS, HNMR, FTIR) supply additional chemical information needed to interpret mass spectra. The challenge is to separate primary and secondary; anthropogenic, biogenic and biomass burning sources - and subsequent - transformations of aerosol chemistry and microphysics.

  5. Radiative Importance of Aerosol-Cloud Interaction

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee

    1999-01-01

    even greater consequences. Presently we know that through the use of fossil fuel and land-use changes we have increased the concentration of greenhouse gases in the atmosphere. In parallel, we have seen a modest increase of global temperature in the last century. These two observations have been linked as cause and effect by climate models, but this connection is still experimentally not verified. The spatial and seasonal distribution of aerosol forcing is different from that of greenhouse gases, thus generating a different spatial fingerprint of climate change. This fingerprint was suggested as a method to identify the response of the climate system to anthropogenic forcing of greenhouse gases and aerosol. The aerosol fingerprint may be the only way to firmly establish the presence (or absence) of human impact on climate. Aerosol-cloud interaction through the indirect effect will be an important component of establishing this fingerprint.

  6. The relationship between aerosol model uncertainty and radiative forcing uncertainty

    NASA Astrophysics Data System (ADS)

    Carslaw, Ken; Lee, Lindsay; Reddington, Carly

    2016-04-01

    There has been no systematic assessment of how reduction in the uncertainty of global aerosol models will feed through to the uncertainty in the predicted forcing. We use a global model perturbed parameter ensemble to show that tight observational constraint of aerosol concentrations in the model has a relatively small effect on the aerosol-related uncertainty in the calculated aerosol-cloud forcing between pre-industrial and present day periods. One factor is the low sensitivity of present-day aerosol to natural emissions that determine the pre-industrial aerosol state. But the major cause of the weak constraint is that the full uncertainty space of the model generates a large number of model variants that are "equally acceptable" compared to present-day aerosol observations. The narrow range of aerosol concentrations in the observationally constrained model gives the impression of low aerosol model uncertainty, but this hides a range of very different aerosol models. These multiple so-called "equifinal" model variants predict a wide range of forcings. Equifinality in the aerosol model means that tuning of a small number of model processes to achieve model-observation agreement could give a misleading impression of model robustness.

  7. Springtime Dust Aerosols at White Sands Missile Range, New Mexico

    NASA Astrophysics Data System (ADS)

    Cahill, C. F.; Yee, Y.; Gill, T. E.; Ruiz, A.; Emmert, S. P.; Cahill, T. A.; Wilson, F.; Ellison, E.

    2005-12-01

    Windblown dust can reduce visibility and create a health hazard. Current dust models, such as CARMA, are used to predict the atmospheric dust aerosol loading during dust storms. However, size-fractionated aerosol measurements are needed to improve and validate the aerosol generation portions of the models. Therefore, from April 19 through May 23, 2005, two size-fractionated (8 size bins between 10 and 0.07 microns in aerodynamic diameter) drum aerosol impactors were deployed on and downwind of a playa at the White Sands Missile Range in New Mexico to collect aerosol samples to help determine the size and amount of dust particles generated as a function of wind speed. The aerosol samplers were co-located with meteorological sensors and passive blowing dust/sand collectors. The meteorological data for the sampling period, including wind speed and direction, were provided by the Meteorological Division of the White Sands Missile Range. The mass, elemental composition and optical absorption of the aerosols collected during the study are correlated with wind speed and other meteorological parameters to determine the emission, as a function of size, of dust aerosols at different wind speeds. This data will be used to initialize and/or validate dust models, calculate the visibility degradation associated with a given aerosol loading, and help predict the effects of dust aerosols on humans.

  8. Aerosol backscatter studies supporting LAWS

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry

    1989-01-01

    Optimized Royal Signals and Radar Establishment (RSRE), Laser True Airspeed System (LATAS) algorithm for low backscatter conditions was developed. The algorithm converts backscatter intensity measurements from focused continuous-wave (CW) airborne Doppler lidar into backscatter coefficients. The performance of optimized algorithm under marginal backscatter signal conditions was evaluated. The 10.6 micron CO2 aerosol backscatter climatologies were statistically analyzed. Climatologies reveal clean background aerosol mode near 10(exp -10)/kg/sq m/sr (mixing ratio units) through middle and upper troposhere, convective mode associated with planetary boundary layer convective activity, and stratospheric mode associated with volcanically-generated aerosols. Properties of clean background mode are critical to design and simulation studies of Laser Atmospheric Wind Sounder (LAWS), a MSFC facility Instrument on the Earth Observing System (Eos). Previous intercomparisons suggested correlation between aerosol backscatter at CO2 wavelength and water vapor. Field measurements of backscatter profiles with MSFC ground-based Doppler lidar system (GBDLS) were initiated in late FY-88 to coincide with independent program of local rawinsonde releases and overflights by Multi-spectral Atmospheric Mapping Sensor (MAMS), a multi-channel infrared radiometer capable of measuring horizontal and vertical moisture distributions. Design and performance simulation studies for LAWS would benefit from the existence of a relationship between backscatter and water vapor.

  9. Chemistry of α-pinene and naphthalene oxidation products generated in a Potential Aerosol Mass (PAM) chamber as measured by acetate chemical ionization mass spectrometry

    DOE PAGESBeta

    Chhabra, P. S.; Lambe, A. T.; Canagaratna, M. R.; Stark, H.; Jayne, J. T.; Onasch, T. B.; Davidovits, P.; Kimmel, J. R.; Worsnop, D. R.

    2014-07-01

    Recent developments in high resolution, time-of-flight chemical ionization mass spectrometry (HR-ToF-CIMS) have made possible the direct detection of atmospheric organic compounds in real-time with high sensitivity and with little or no fragmentation, including low volatility, highly oxygenated organic vapors that are precursors to secondary organic aerosol formation. Here, for the first time, we examine gas-phase O3 and OH oxidation products of α-pinene and naphthalene formed in the PAM flow reactor with an HR-ToF-CIMS using acetate reagent ion chemistry. Integrated OH exposures ranged from 1.2 × 1011 to 9.7 × 1011 molec cm−3 s, corresponding to approximately 1.0 to 7.5 daysmore » of equivalent atmospheric oxidation. Measured gas-phase organic acids are similar to those previously observed in environmental chamber studies. For both precursors, we find that acetate-CIMS spectra capture both functionalization (oxygen addition) and fragmentation (carbon loss) as a function of OH exposure. The level of fragmentation is observed to increase with increased oxidation. We present a method that estimates vapor pressures of organic molecules using the measured O/C ratio, H/C ratio, and carbon number for each compound detected by the CIMS. The predicted condensed-phase SOA average acid yields and O/C and H/C ratios agree within uncertainties with previous AMS measurements and ambient CIMS results. While acetate reagent ion chemistry is used to selectively measure organic acids, in principle this method can be applied to additional reagent ion chemistries depending on the application.« less

  10. Overview of ACE-Asia Spring 2001 Investigations on Aerosol Radiative Effects and Related Aerosol Properties

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Valero, F. P. J.; Flatau, P. J.; Bergin, M.; Holben, B.; Nakajima, T.; Pilewskie, P.; Bergstrom, R.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    depth gradient, with AOD(500 nm) extremes from 0.1 to 1.1. On the Pacific transit from Honolulu to Hachijo AOD(500 nm) averaged 0.2, including increases to 0.4 after several storms, suggesting the strong impact of wind-generated seasalt. The AOD maximum, found in the Sea of Japan, was influenced by dust and anthropogenic sources. (4) In Beijing, single scattering albedo retrieved from AERONET sun-sky radiometry yielded midvisible SSA=0.88 with strong wavelength dependence, suggesting a significant black carbon component. SSA retrieved during dust episodes was approx. 0.90 and variable but wavelength neutral reflecting the presence of urban haze with the dust. Downwind at Anmyon Island SSA was considerably higher, approx. 0.94, but wavelength neutral for dust episodes and spectrally dependent during non dust periods. (5) Satellite retrievals show major aerosol features moving from Asia over the Pacific; however, determining seasonal-average aerosol effects is hampered by sampling frequency and large-scale cloud systems that obscure key parts of aerosol patterns. Preliminary calculations using, satellite-retrieved AOD fields and initial ACE-Asia aerosol properties (including sulfates, soot, and dust) yield clear-sky aerosol radiative effects in the seasonal-average ACE-Asia plume exceeding those of manmade greenhouse gases. Quantifying all-sky direct aerosol radiative effects is complicated by the need to define the height of absorbing aerosols with respect to cloud decks.

  11. Aerosol chamber and modelling studies on the reaction of soot aerosols with ozone

    SciTech Connect

    Moehler, O.; Naumann, K.H.; Saathoff, H.

    1995-12-31

    Heterogeneous processes in atmospheric aerosols are known to play important roles in the chemical transformation of air pollutants. Especially irregularly shaped aerosol particles like soot have large surface areas to interact with trace gases. The overall efficiency of those processes depends on various parameters like the particle shape, the chemical surface conditions, the surface reaction mechanisms and the gas transport processes to and from the surface. The shape and surface of soot particles are transformed due to their heterogeneous chemical activity. Therefore, the surface reaction efficiency of atmospheric soot particles also depends on their age and history. The scope of this work is to investigate the ozone depletion potential of soot particles at typical atmospheric conditions. The experiments are carried out in a cylindrical aerosol vessel with a volume of 3.7 m{sup 3}. The soot aerosol is produced with a sparc generator and introduced into the aerosol vessel together with the ozone. The variation of the number concentration, the mass concentration and the size distribution of the soot aerosol within the aerosol vessel is measured and electron micrographs are taken to obtain information on the particle morphology. The ozone concentration is continuously monitored by UV-absorption. The experimental data are compared with model results to analyze the physical and chemical processes in the aerosol system in more detail. The aerosol model developed at our institute is based on the concept of fractal geometry and calculates the dynamic behaviour of irregularly shaped aerosols. More recently, the model was extended to describe the interaction of the aerosol particles with gases. This paper summarizes first results of the experimental and modelling work. The possible impact on tropospheric chemistry will be discussed.

  12. Global Aerosol Remote Sensing from MODIS

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Kaufman, Yoram J.; Remer, Lorraine A.; Chu, D. Allen; Mattoo, Shana; Tanre, Didier; Levy, Robert; Li, Rong-Rong; Martins, Jose V.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    The physical characteristics, composition, abundance, spatial distribution and dynamics of global aerosols are still very poorly known, and new data from satellite sensors have long been awaited to improve current understanding and to give a boost to the effort in future climate predictions. The derivation of aerosol parameters from the MODerate resolution Imaging Spectro-radiometer (MODIS) sensors aboard the Earth Observing System (EOS) Terra and Aqua polar-orbiting satellites ushers in a new era in aerosol remote sensing from space. Terra and Aqua were launched on December 18, 1999 and May 4, 2002 respectively, with daytime equator crossing times of approximately 10:30 am and 1:30 pm respectively. Several aerosol parameters are retrieved at 10-km spatial resolution (level 2) from MODIS daytime data. The MODIS aerosol algorithm employs different approaches to retrieve parameters over land and ocean surfaces, because of the inherent differences in the solar spectral radiance interaction with these surfaces. The parameters retrieved include: aerosol optical thickness (AOT) at 0.47, 0.55 and 0.66 micron wavelengths over land, and at 0.47, 0.55, 0.66, 0.87, 1.2, 1.6, and 2.1 micron over ocean; Angstrom exponent over land and ocean; and effective radii, and the proportion of AOT contributed by the small mode aerosols over ocean. To ensure the quality of these parameters, a substantial part of the Terra-MODIS aerosol products were validated globally and regionally, based on cross correlation with corresponding parameters derived from ground-based measurements from AERONET (AErosol RObotic NETwork) sun photometers. Similar validation efforts are planned for the Aqua-MODIS aerosol products. The MODIS level 2 aerosol products are operationally aggregated to generate global daily, eight-day (weekly), and monthly products at one-degree spatial resolution (level 3). MODIS aerosol data are used for the detailed study of local, regional, and global aerosol concentration

  13. Where and What Is Pristine Marine Aerosol?

    NASA Astrophysics Data System (ADS)

    Russell, L. M.; Frossard, A. A.; Long, M. S.; Burrows, S. M.; Elliott, S.; Bates, T. S.; Quinn, P.

    2014-12-01

    The sources and composition of atmospheric marine aerosol particles have been measured by functional group composition (from Fourier transform infrared spectroscopy) to identify the organic composition of the pristine primary marine (ocean-derived) particles as 65% hydroxyl, 21% alkane, 6% amine, and 7% carboxylic acid functional groups [Frossard et al., 2014a,b]. Pristine but non-primary components from photochemical reactions (likely from biogenic marine vapor emissions) add carboxylic acid groups. Non-pristine contributions include shipping effluent in seawater and ship emissions, which add additional alkane groups (up to 70%), and coastal or continental emissions mix in alkane and carboxylic acid groups. The pristine primary marine (ocean-derived) organic aerosol composition is nearly identical to model generated primary marine aerosol particles from bubbled seawater, indicating that its overall functional group composition is the direct consequence of the organic constituents of the seawater source. While the seawater organic functional group composition was nearly invariant across all three ocean regions studied and the ratio of organic carbon to sodium (OC/Na+) in the generated primary marine aerosol particles remained nearly constant over a broad range of chlorophyll-a concentrations, the generated primary marine aerosol particle alkane group fraction increased with chlorophyll-a concentrations. In addition, the generated primary marine aerosol particles have a hydroxyl group absorption peak location characteristic of monosaccharides and disaccharides, where the seawater hydroxyl group peak location is closer to that of polysaccharides. References Cited Frossard, Amanda A., Lynn M. Russell, Paola Massoli, Timothy S. Bates, and Patricia K. Quinn, "Side-by-Side Comparison of Four Techniques Explains the Apparent Differences in the Organic Composition of Generated and Ambient Marine Aerosol Particles," Aerosol Science and Technology - Aerosol Research Letter

  14. Chemical characterization of secondary organic aerosol constituents from isoprene ozonolysis in the presence of acidic aerosol

    NASA Astrophysics Data System (ADS)

    Riva, Matthieu; Budisulistiorini, Sri Hapsari; Zhang, Zhenfa; Gold, Avram; Surratt, Jason D.

    2016-04-01

    Isoprene is the most abundant non-methane hydrocarbon emitted into Earth's atmosphere and is predominantly derived from terrestrial vegetation. Prior studies have focused largely on the hydroxyl (OH) radical-initiated oxidation of isoprene and have demonstrated that highly oxidized compounds, such as isoprene-derived epoxides, enhance the formation of secondary organic aerosol (SOA) through heterogeneous (multiphase) reactions on acidified sulfate aerosol. However, studies on the impact of acidified sulfate aerosol on SOA formation from isoprene ozonolysis are lacking and the current work systematically examines this reaction. SOA was generated in an indoor smog chamber from isoprene ozonolysis under dark conditions in the presence of non-acidified or acidified sulfate seed aerosol. The effect of OH radicals on SOA chemical composition was investigated using diethyl ether as an OH radical scavenger. Aerosols were collected and chemically characterized by ultra performance liquid chromatography/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-QTOFMS) and gas chromatography/electron impact ionization-mass spectrometry (GC/EI-MS). Analysis revealed the formation of highly oxidized compounds, including organosulfates (OSs) and 2-methylterols, which were significantly enhanced in the presence of acidified sulfate seed aerosol. OSs identified in the chamber experiments were also observed and quantified in summertime fine aerosol collected from two rural locations in the southeastern United States during the 2013 Southern Oxidant and Aerosol Study (SOAS).

  15. Evaluation of the discmini personal aerosol monitor for submicrometer sodium chloride and metal aerosols

    NASA Astrophysics Data System (ADS)

    Mills, Jessica Breyan

    This work evaluated the robust, lightweight DiSCmini (DM) aerosol monitor for its ability to measure the concentration and mean diameter of submicrometer aerosols. Tests were conducted with monodispersed and polydispersed aerosols composed of two particle types (sodium chloride, NaCl, and spark generated metal particles, which simulate particles found in welding fume) at three different steady-state concentration ranges (Low, <103; Medium, 103-104; and High, >104 particles/cm3). Particle number concentration, lung deposited surface area (LDSA) concentration, and mean size measured with the DM were compared to those measured with reference instruments, a scanning mobility particle sizer (SMPS) and a handheld condensation particle counter (CPC). Particle number concentrations measured with the DM were within 16% of those measured by the CPC for polydispersed aerosols. Poorer agreement was observed for monodispersed aerosols (+/-35% for most tests and +101% for 300-nm NaCl). LDSA concentrations measured by the DM were 96% to 155% of those estimated with the SMPS. The geometric mean diameters measured with the DM were within 30% of those measured with the SMPS for monodispersed aerosols and within 25% for polydispersed aerosols (except for the case when the aerosol contained a substantial number of particles larger than 300 nm). The accuracy of the DM is reasonable for particles smaller than 300 nm but caution should be exercised when particles larger than 300 nm are present.

  16. Characterization of a Vortex Shaking Method for Aerosolizing Fibers

    PubMed Central

    Ku, Bon Ki; Deye, Gregory; Turkevich, Leonid A.

    2015-01-01

    Generation of well-dispersed, well-characterized fibers is important in toxicology studies. A vortex-tube shaking method is investigated using glass fibers to characterize the generated aerosol. Controlling parameters that were studied included initial batch amounts of glass fibers, preparation of the powder (e.g., preshaking), humidity, and airflow rate. Total fiber number concentrations and aerodynamic size distributions were typically measured. The aerosol concentration is only stable for short times (t < 10 min) and then falls precipitously, with concomitant changes in the aerosol aerodynamic size distribution; the plateau concentration and its duration both increase with batch size. Preshaking enhances the initial aerosol concentration and enables the aerosolization of longer fibers. Higher humidity strongly affects the particle size distribution and the number concentration, resulting in a smaller modal diameter and a higher number concentration. Running the vortex shaker at higher flow rates (Q > 0.3 lpm), yields an aerosol with a particle size distribution representative of the batch powder; running the vortex shaker at a lower aerosol flow rate (Q ~ 0.1 lpm) only aerosolizes the shorter fibers. These results have implications for the use of the vortex shaker as a standard aerosol generator. PMID:26635428

  17. Microphysical processing of aerosol particles in orographic clouds

    NASA Astrophysics Data System (ADS)

    Pousse-Nottelmann, S.; Zubler, E. M.; Lohmann, U.

    2015-08-01

    An explicit and detailed treatment of cloud-borne particles allowing for the consideration of aerosol cycling in clouds has been implemented into COSMO-Model, the regional weather forecast and climate model of the Consortium for Small-scale Modeling (COSMO). The effects of aerosol scavenging, cloud microphysical processing and regeneration upon cloud evaporation on the aerosol population and on subsequent cloud formation are investigated. For this, two-dimensional idealized simulations of moist flow over two bell-shaped mountains were carried out varying the treatment of aerosol scavenging and regeneration processes for a warm-phase and a mixed-phase orographic cloud. The results allowed us to identify different aerosol cycling mechanisms. In the simulated non-precipitating warm-phase cloud, aerosol mass is incorporated into cloud droplets by activation scavenging and released back to the atmosphere upon cloud droplet evaporation. In the mixed-phase cloud, a first cycle comprises cloud droplet activation and evaporation via the Wegener-Bergeron-Findeisen (WBF) process. A second cycle includes below-cloud scavenging by precipitating snow particles and snow sublimation and is connected to the first cycle via the riming process which transfers aerosol mass from cloud droplets to snowflakes. In the simulated mixed-phase cloud, only a negligible part of the total aerosol mass is incorporated into ice crystals. Sedimenting snowflakes reaching the surface remove aerosol mass from the atmosphere. The results show that aerosol processing and regeneration lead to a vertical redistribution of aerosol mass and number. Thereby, the processes impact the total aerosol number and mass and additionally alter the shape of the aerosol size distributions by enhancing the internally mixed/soluble Aitken and accumulation mode and generating coarse-mode particles. Concerning subsequent cloud formation at the second mountain, accounting for aerosol processing and regeneration increases

  18. In Situ Chemical Characterization of Organic Aerosol Surfaces using Direct Analysis in Real Time

    NASA Astrophysics Data System (ADS)

    Chan, M.; Nah, T.; Wilson, K. R.

    2012-12-01

    Obtaining in situ information on the molecular composition of atmospheric aerosol is important for understanding the sources, formation mechanisms, aging and physiochemical properties of atmospheric aerosol. Most recently, we have used Direct Analysis in Real Time (DART), which is a "soft" atmospheric pressure ionization technique, for in situ chemical characterization of a variety of laboratory generated organic aerosol and heterogeneous processing oleic acid aerosol. A stream of aerosol particles is crossed with a thermal flow of metastable He atoms (produced by the DART source) in front of an inlet of a mass spectrometer. The thermally desorbed analytes are subsequently ionized with minimal fragmentation by reactive species in the DART ionization source (e.g., metastable He atoms). The ion signal scales with the aerosol surface area rather than aerosol volume, suggesting that aerosol particles are not completely vaporized in the ionization region. The DART can thus measure the chemical composition as a function of aerosol depth. Probing aerosol depth is determined by the thermal desorption rates of aerosol particles. Here, we investigate how the experimental parameters (e.g., DART gas temperature and residence time) and the physiochemical properties of aerosol particles (e.g., enthalpy of vaporization) affect the probing aerosol depth and the desorption-ionization mechanism of aerosol particles in the DART using a series of model organic compounds. We also demonstrate the potential application of DART for in situ chemically analyzing wet aerosol particles undergoing oxidation reactions.

  19. Workshop Summary: International Cooperative for Aerosol Prediction Workshop On Aerosol Forecast Verification

    NASA Technical Reports Server (NTRS)

    Benedetti, Angela; Reid, Jeffrey S.; Colarco, Peter R.

    2011-01-01

    The purpose of this workshop was to reinforce the working partnership between centers who are actively involved in global aerosol forecasting, and to discuss issues related to forecast verification. Participants included representatives from operational centers with global aerosol forecasting requirements, a panel of experts on Numerical Weather Prediction and Air Quality forecast verification, data providers, and several observers from the research community. The presentations centered on a review of current NWP and AQ practices with subsequent discussion focused on the challenges in defining appropriate verification measures for the next generation of aerosol forecast systems.

  20. The economics and ethics of aerosol geoengineering strategies

    NASA Astrophysics Data System (ADS)

    Goes, Marlos; Keller, Klaus; Tuana, Nancy

    2010-05-01

    Anthropogenic greenhouse gas emissions are changing the Earth's climate and impose substantial risks for current and future generations. What are scientifically sound, economically viable, and ethically defendable strategies to manage these climate risks? Ratified international agreements call for a reduction of greenhouse gas emissions to avoid dangerous anthropogenic interference with the climate system. Recent proposals, however, call for a different approach: geoengineering climate by injecting aerosol precursors into the stratosphere. Published economic studies typically neglect the risks of aerosol geoengineering due to (i) a potential failure to sustain the aerosol forcing and (ii) due to potential negative impacts associated with aerosol forcings. Here we use a simple integrated assessment model of climate change to analyze potential economic impacts of aerosol geoengineering strategies over a wide range of uncertain parameters such as climate sensitivity, the economic damages due to climate change, and the economic damages due to aerosol geoengineering forcings. The simplicity of the model provides the advantages of parsimony and transparency, but it also imposes considerable caveats. For example, the analysis is based on a globally aggregated model and is hence silent on intragenerational distribution of costs and benefits. In addition, the analysis neglects the effects of future learning and is based on a simple representation of climate change impacts. We use this integrated assessment model to show three main points. First, substituting aerosol geoengineering for the reduction of greenhouse gas emissions can fail the test of economic efficiency. One key to this finding is that a failure to sustain the aerosol forcing can lead to sizeable and abrupt climatic changes. The monetary damages due to such a discontinuous aerosol geoengineering can dominate the cost-benefit analysis because the monetary damages of climate change are expected to increase with

  1. New Directions: Emerging Satellite Observations of Above-cloud Aerosols and Direct Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Zhang, Zhibo

    2013-01-01

    Spaceborne lidar and passive sensors with multi-wavelength and polarization capabilities onboard the A-Train provide unprecedented opportunities of observing above-cloud aerosols and direct radiative forcing. Significant progress has been made in recent years in exploring these new aerosol remote sensing capabilities and generating unique datasets. The emerging observations will advance the understanding of aerosol climate forcing.

  2. Observation of Organic Molecules at the Aerosol Surface.

    PubMed

    Wu, Yajing; Li, Wanyi; Xu, Bolei; Li, Xia; Wang, Han; McNeill, V Faye; Rao, Yi; Dai, Hai-Lung

    2016-06-16

    Organic molecules at the gas-particle interface of atmospheric aerosols influence the heterogeneous chemistry of the aerosol and impact climate properties. The ability to probe the molecules at the aerosol particle surface in situ therefore is important but has been proven challenging. We report the first successful observations of molecules at the surface of laboratory-generated aerosols suspended in air using the surface-sensitive technique second harmonic light scattering (SHS). As a demonstration, we detect trans-4-[4-(dibutylamino)styryl]-1-methylpyridinium iodide and determine its population and adsorption free energy at the surface of submicron aerosol particles. This work illustrates a new and versatile experimental approach for studying how aerosol composition may affect the atmospheric properties. PMID:27249662

  3. Effect of Relative Humidity on Dynamic Aerosols of Adenovirus 12

    PubMed Central

    Davis, Gary W.; Griesemer, Richard A.; Shadduck, John A.; Farrell, Robert L.

    1971-01-01

    Dynamic aerosols of adenovirus 12 were generated in the same Henderson apparatus under conditions of high, medium, and low relative humidity. High relative humidities resulted in more recovery of adenovirus 12 from aerosols and lungs of newborn Syrian hamsters. At 89, 51, and 32% relative humidity, the total infectious virus recovered from a 20-min aerosol was 106.7, 106.0, and 104.3 TCD50, respectively. Hamsters exposed to these 20-min aerosols retained measured lung doses of 103.0, 102.4, and 101.0 TCD50, respectively. The measured retained lung doses were compared to calculated inhaled lung doses based on both total virus aerosolized and total virus recovery from the aerosols. PMID:4930277

  4. Susceptibility of Tribolium confusum (Coleoptera: Tenebrionidae) to pyrethrin aerosol: effects of aerosol particle size, concentration, and exposure conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of laboratory studies were conducted to assess effect of droplet size on efficacy of pyrethrin aerosol against adults of Tribolium confusum Jacqueline DuVal, the confused flour beetle. A vertical flow aerosol exposure chamber that generated a standardized particle size diameter was used for...

  5. The Two-Column Aerosol Project: Phase I—Overview and impact of elevated aerosol layers on aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Berg, Larry K.; Fast, Jerome D.; Barnard, James C.; Burton, Sharon P.; Cairns, Brian; Chand, Duli; Comstock, Jennifer M.; Dunagan, Stephen; Ferrare, Richard A.; Flynn, Connor J.; Hair, Johnathan W.; Hostetler, Chris A.; Hubbe, John; Jefferson, Anne; Johnson, Roy; Kassianov, Evgueni I.; Kluzek, Celine D.; Kollias, Pavlos; Lamer, Katia; Lantz, Kathleen; Mei, Fan; Miller, Mark A.; Michalsky, Joseph; Ortega, Ivan; Pekour, Mikhail; Rogers, Ray R.; Russell, Philip B.; Redemann, Jens; Sedlacek, Arthur J.; Segal-Rosenheimer, Michal; Schmid, Beat; Shilling, John E.; Shinozuka, Yohei; Springston, Stephen R.; Tomlinson, Jason M.; Tyrrell, Megan; Wilson, Jacqueline M.; Volkamer, Rainer; Zelenyuk, Alla; Berkowitz, Carl M.

    2016-01-01

    The Two-Column Aerosol Project (TCAP), conducted from June 2012 through June 2013, was a unique study designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere between and within two atmospheric columns; one fixed near the coast of North America (over Cape Cod, MA) and a second moveable column over the Atlantic Ocean several hundred kilometers from the coast. The U.S. Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) was deployed at the base of the Cape Cod column, and the ARM Aerial Facility was utilized for the summer and winter intensive observation periods. One important finding from TCAP is that four of six nearly cloud-free flight days had aerosol layers aloft in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2). These layers contributed up to 60% of the total observed aerosol optical depth (AOD). Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning material and nitrate compared to aerosol found near the surface. In addition, while there was a great deal of spatial and day-to-day variability in the aerosol chemical composition and optical properties, no systematic differences between the two columns were observed.

  6. Thermoluminescent aerosol analysis

    NASA Technical Reports Server (NTRS)

    Rogowski, R. S.; Long, E. R., Jr. (Inventor)

    1977-01-01

    A method for detecting and measuring trace amounts of aerosols when reacted with ozone in a gaseous environment was examined. A sample aerosol was exposed to a fixed ozone concentration for a fixed period of time, and a fluorescer was added to the exposed sample. The sample was heated in a 30 C/minute linear temperature profile to 200 C. The trace peak was measured and recorded as a function of the test aerosol and the recorded thermoluminescence trace peak of the fluorescer is specific to the aerosol being tested.

  7. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1997-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size resolved aerosol microphysics and chemistry. Both profiles included pollution haze layer from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core.

  8. Constraining the aerosol influence on cloud fraction

    NASA Astrophysics Data System (ADS)

    Gryspeerdt, E.; Quaas, J.; Bellouin, N.

    2016-04-01

    Aerosol-cloud interactions have the potential to modify many different cloud properties. There is significant uncertainty in the strength of these aerosol-cloud interactions in analyses of observational data, partly due to the difficulty in separating aerosol effects on clouds from correlations generated by local meteorology. The relationship between aerosol and cloud fraction (CF) is particularly important to determine, due to the strong correlation of CF to other cloud properties and its large impact on radiation. It has also been one of the hardest to quantify from satellites due to the strong meteorological covariations involved. This work presents a new method to analyze the relationship between aerosol optical depth (AOD) and CF. By including information about the cloud droplet number concentration (CDNC), the impact of the meteorological covariations is significantly reduced. This method shows that much of the AOD-CF correlation is explained by relationships other than that mediated by CDNC. By accounting for these, the strength of the global mean AOD-CF relationship is reduced by around 80%. This suggests that the majority of the AOD-CF relationship is due to meteorological covariations, especially in the shallow cumulus regime. Requiring CDNC to mediate the AOD-CF relationship implies an effective anthropogenic radiative forcing from an aerosol influence on liquid CF of -0.48 W m-2 (-0.1 to -0.64 W m-2), although some uncertainty remains due to possible biases in the CDNC retrievals in broken cloud scenes.

  9. A spectroscopic tour through the liquid aerosol interface: Implications for atmospheric chemistry

    SciTech Connect

    Zhang, J.X.; Aiello, D.; Aker, P.M.

    1994-12-20

    A novel nonlinear Raman spectroscopic technique has been used to image the extent of hydrogen bonding at water aerosol interfaces. The aerosols probed were generated in the laboratory using the vibrating orifice technique. The spectroscopic results show that the aerosols suffer severe hydrogen bond disruption and that the structural impairment is more pronounced at the surface. Laboratory aerosols generated this way do not mimic those found naturally. Thus mass accommodation coefficients measured using such aerosols should not be used in global climate-modeling calculations. 13 refs., 5 figs.

  10. HOUSTON AEROSOL CHARACTERIZATION STUDY

    EPA Science Inventory

    An intensive field study of ambient aerosols was conducted in Houston between September 14 and October 14, 1978. Measurements at 12 sites were made using (1) two relocatable monitoring systems instrumented for aerosol and gaseous pollutants, (2) a network of high volume samplers ...

  11. Global Aerosol Observations

    Atmospheric Science Data Center

    2013-04-19

    ... atmosphere, directly influencing global climate and human health. Ground-based networks that accurately measure column aerosol amount and ... being used to improve Air Quality Models and for regional health studies. To assess the human-health impact of chronic aerosol exposure, ...

  12. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer

    Mccomiskey, Allison

    2008-01-15

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  13. Portable Aerosol Contaminant Extractor

    DOEpatents

    Carlson, Duane C.; DeGange, John J.; Cable-Dunlap, Paula

    2005-11-15

    A compact, portable, aerosol contaminant extractor having ionization and collection sections through which ambient air may be drawn at a nominal rate so that aerosol particles ionized in the ionization section may be collected on charged plate in the collection section, the charged plate being readily removed for analyses of the particles collected thereon.

  14. Separating Dust Mixtures and Other External Aerosol Mixtures Using Airborne High Spectral Resolution Lidar Data

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Ferrare, R. A.; Vaughan, M.; Hostetler, C. A.; Rogers, R. R.; Hair, J. W.; Cook, A. L.; Harper, D. B.

    2013-12-01

    Knowledge of aerosol type is important for source attribution and for determining the magnitude and assessing the consequences of aerosol radiative forcing. The NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL-1) has acquired considerable datasets of both aerosol extensive parameters (e.g. aerosol optical depth) and intensive parameters (e.g. aerosol depolarization ratio, lidar ratio) that can be used to infer aerosol type. An aerosol classification methodology has been used extensively to classify HSRL-1 aerosol measurements of different aerosol types including dust, smoke, urban pollution, and marine aerosol. However, atmospheric aerosol is frequently not a single pure type, but instead occurs as a mixture of types, and this mixing affects the optical and radiative properties of the aerosol. Here we present a comprehensive and unified set of rules for characterizing external mixtures using several key aerosol intensive parameters: extinction-to-backscatter ratio (i.e. lidar ratio), backscatter color ratio, and depolarization ratio. Our mixing rules apply not just to the scalar values of aerosol intensive parameters, but to multi-dimensional normal distributions with variance in each measurement dimension. We illustrate the applicability of the mixing rules using examples of HSRL-1 data where mixing occurred between different aerosol types, including advected Saharan dust mixed with the marine boundary layer in the Caribbean Sea and locally generated dust mixed with urban pollution in the Mexico City surroundings. For each of these cases we infer a time-height cross section of mixing ratio along the flight track and we partition aerosol extinction into portions attributed to the two pure types. Since multiple aerosol intensive parameters are measured and included in these calculations, the techniques can also be used for cases without significant depolarization (unlike similar work by earlier researchers), and so a third example of a

  15. Indirect and semi-direct aerosol campaign: The impact of Arctic aerosols on clouds

    DOE PAGESBeta

    McFarquhar, Greg M.; Ghan, Steven; Verlinde, Johannes; Korolev, Alexei; Strapp, J. Walter; Schmid, Beat; Tomlinson, Jason M.; Wolde, Menqistu; Brooks, Sarah D.; Cziczo, Dan; et al

    2011-02-01

    A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the boundary layer in the vicinity of Barrow, Alaska, was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC). ISDAC's primary aim was to examine the effects of aerosols, including those generated by Asian wildfires, on clouds that contain both liquid and ice. ISDAC utilized the Atmospheric Radiation Measurement Pro- gram's permanent observational facilities at Barrow and specially deployed instruments measuring aerosol, ice fog, precipitation, and radiation. The National Research Council of Canada Convair-580 flew 27 sorties and collected data using an unprecedented 41more » stateof- the-art cloud and aerosol instruments for more than 100 h on 12 different days. Aerosol compositions, including fresh and processed sea salt, biomassburning particles, organics, and sulfates mixed with organics, varied between flights. Observations in a dense arctic haze on 19 April and above, within, and below the single-layer stratocumulus on 8 and 26 April are enabling a process-oriented understanding of how aerosols affect arctic clouds. Inhomogeneities in reflectivity, a close coupling of upward and downward Doppler motion, and a nearly constant ice profile in the single-layer stratocumulus suggests that vertical mixing is responsible for its longevity observed during ISDAC. Data acquired in cirrus on flights between Barrow and Fairbanks, Alaska, are improving the understanding of the performance of cloud probes in ice. Furthermore, ISDAC data will improve the representation of cloud and aerosol processes in models covering a variety of spatial and temporal scales, and determine the extent to which surface measurements can provide retrievals of aerosols, clouds, precipitation, and radiative heating.« less

  16. Indirect and semi-direct aerosol campaign: The impact of Arctic aerosols on clouds

    SciTech Connect

    McFarquhar, Greg M.; Ghan, Steven; Verlinde, Johannes; Korolev, Alexei; Strapp, J. Walter; Schmid, Beat; Tomlinson, Jason M.; Wolde, Menqistu; Brooks, Sarah D.; Cziczo, Dan; Dubey, Manvendra K.; Fan, Jiwen; Flynn, Connor; Gultepe, Ismail; Hubbe, John; Gilles, Mary K.; Laskin, Alexander; Lawson, Paul; Leaitch, W. Richard; Liu, Peter; Liu, Xiaohong; Lubin, Dan; Mazzoleni, Claudio; Macdonald, Ann -Marie; Moffet, Ryan C.; Morrison, Hugh; Ovchinnikov, Mikhail; Ronfeld, Debbie; Shupe, Matthew D.; Xie, Shaocheng; Zelenyuk, Alla; Bae, Kenny; Freer, Matt; Glen, Andrew

    2011-02-01

    A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the boundary layer in the vicinity of Barrow, Alaska, was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC). ISDAC's primary aim was to examine the effects of aerosols, including those generated by Asian wildfires, on clouds that contain both liquid and ice. ISDAC utilized the Atmospheric Radiation Measurement Pro- gram's permanent observational facilities at Barrow and specially deployed instruments measuring aerosol, ice fog, precipitation, and radiation. The National Research Council of Canada Convair-580 flew 27 sorties and collected data using an unprecedented 41 stateof- the-art cloud and aerosol instruments for more than 100 h on 12 different days. Aerosol compositions, including fresh and processed sea salt, biomassburning particles, organics, and sulfates mixed with organics, varied between flights. Observations in a dense arctic haze on 19 April and above, within, and below the single-layer stratocumulus on 8 and 26 April are enabling a process-oriented understanding of how aerosols affect arctic clouds. Inhomogeneities in reflectivity, a close coupling of upward and downward Doppler motion, and a nearly constant ice profile in the single-layer stratocumulus suggests that vertical mixing is responsible for its longevity observed during ISDAC. Data acquired in cirrus on flights between Barrow and Fairbanks, Alaska, are improving the understanding of the performance of cloud probes in ice. Furthermore, ISDAC data will improve the representation of cloud and aerosol processes in models covering a variety of spatial and temporal scales, and determine the extent to which surface measurements can provide retrievals of aerosols, clouds, precipitation, and radiative heating.

  17. Whole-body nanoparticle aerosol inhalation exposures.

    PubMed

    Yi, Jinghai; Chen, Bean T; Schwegler-Berry, Diane; Frazer, Dave; Castranova, Vince; McBride, Carroll; Knuckles, Travis L; Stapleton, Phoebe A; Minarchick, Valerie C; Nurkiewicz, Timothy R

    2013-01-01

    Inhalation is the most likely exposure route for individuals working with aerosolizable engineered nano-materials (ENM). To properly perform nanoparticle inhalation toxicology studies, the aerosols in a chamber housing the experimental animals must have: 1) a steady concentration maintained at a desired level for the entire exposure period; 2) a homogenous composition free of contaminants; and 3) a stable size distribution with a geometric mean diameter < 200 nm and a geometric standard deviation σg < 2.5 (5). The generation of aerosols containing nanoparticles is quite challenging because nanoparticles easily agglomerate. This is largely due to very strong inter-particle forces and the formation of large fractal structures in tens or hundreds of microns in size (6), which are difficult to be broken up. Several common aerosol generators, including nebulizers, fluidized beds, Venturi aspirators and the Wright dust feed, were tested; however, none were able to produce nanoparticle aerosols which satisfy all criteria (5). A whole-body nanoparticle aerosol inhalation exposure system was fabricated, validated and utilized for nano-TiO2 inhalation toxicology studies. Critical components: 1) novel nano-TiO2 aerosol generator; 2) 0.5 m(3) whole-body inhalation exposure chamber; and 3) monitor and control system. Nano-TiO2 aerosols generated from bulk dry nano-TiO2 powders (primary diameter of 21 nm, bulk density of 3.8 g/cm(3)) were delivered into the exposure chamber at a flow rate of 90 LPM (10.8 air changes/hr). Particle size distribution and mass concentration profiles were measured continuously with a scanning mobility particle sizer (SMPS), and an electric low pressure impactor (ELPI). The aerosol mass concentration (C) was verified gravimetrically (mg/m(3)). The mass (M) of the collected particles was determined as M = (Mpost-Mpre), where Mpre and Mpost are masses of the filter before and after sampling (mg). The mass concentration was calculated as C = M

  18. Whole-Body Nanoparticle Aerosol Inhalation Exposures

    PubMed Central

    Yi, Jinghai; Chen, Bean T.; Schwegler-Berry, Diane; Frazer, Dave; Castranova, Vince; McBride, Carroll; Knuckles, Travis L.; Stapleton, Phoebe A.; Minarchick, Valerie C.; Nurkiewicz, Timothy R.

    2013-01-01

    Inhalation is the most likely exposure route for individuals working with aerosolizable engineered nano-materials (ENM). To properly perform nanoparticle inhalation toxicology studies, the aerosols in a chamber housing the experimental animals must have: 1) a steady concentration maintained at a desired level for the entire exposure period; 2) a homogenous composition free of contaminants; and 3) a stable size distribution with a geometric mean diameter < 200 nm and a geometric standard deviation σg < 2.5 5. The generation of aerosols containing nanoparticles is quite challenging because nanoparticles easily agglomerate. This is largely due to very strong inter-particle forces and the formation of large fractal structures in tens or hundreds of microns in size 6, which are difficult to be broken up. Several common aerosol generators, including nebulizers, fluidized beds, Venturi aspirators and the Wright dust feed, were tested; however, none were able to produce nanoparticle aerosols which satisfy all criteria 5. A whole-body nanoparticle aerosol inhalation exposure system was fabricated, validated and utilized for nano-TiO2 inhalation toxicology studies. Critical components: 1) novel nano-TiO2 aerosol generator; 2) 0.5 m3 whole-body inhalation exposure chamber; and 3) monitor and control system. Nano-TiO2 aerosols generated from bulk dry nano-TiO2 powders (primary diameter of 21 nm, bulk density of 3.8 g/cm3) were delivered into the exposure chamber at a flow rate of 90 LPM (10.8 air changes/hr). Particle size distribution and mass concentration profiles were measured continuously with a scanning mobility particle sizer (SMPS), and an electric low pressure impactor (ELPI). The aerosol mass concentration (C) was verified gravimetrically (mg/m3). The mass (M) of the collected particles was determined as M = (Mpost-Mpre), where Mpreand Mpost are masses of the filter before and after sampling (mg). The mass concentration was calculated as C = M/(Q*t), where Q is

  19. Organosulfate Formation in Biogenic Secondary Organic Aerosol

    EPA Science Inventory

    Organosulfates of isoprene, α-pinene, and β-pinene have recently been identified in both laboratory-generated and ambient secondary organic aerosol (SOA). In this study, the mechanism and ubiquity of organosulfate formation in biogenic SOA is investigated by a comprehensive seri...

  20. Influence of moisture on the behavior of aerosols

    SciTech Connect

    Adams, R.E.; Longest, A.W.; Tobias, M.L.

    1986-01-01

    The behavior of aerosols assumed to be characteristic of those generated during light water reactor (LWR) accident sequences and released into containment has been studied in the Nuclear Safety Pilot Plant (NSPP) located at the Oak Ridge National Laboratory (ORNL). It has been observed that in a saturated steam-air environment a change occurs in the shape of aerosol agglomerates of U/sub 3/O/sub 8/ aerosol, Fe/sub 2/O/sub 3/ aerosol, and mixed U/sub 3/O/sub 8/-Fe/sub 2/O/sub 3/ aerosol from branched-chain to spherical, and that the rate of reduction in the airborne aerosol mass concentration is increased relative to the rate observed in a dry atmosphere. The effect of a steam-air environment on the behavior of concrete aerosol is different. The shape of the agglomerated concrete aerosol is intermediate between branched-chain and spherical and the effect on the rate of reduction in airborne mass concentration appears to be slight. In a related project the shape of an agglomerated Fe/sub 2/O/sub 3/ aerosol was observed to change from branched-chain to spherical at, or near, 100% relative humidity.

  1. Aerosol Optical Properties in Southeast Asia From AERONET Observations

    NASA Astrophysics Data System (ADS)

    Eck, T. F.; Holben, B. N.; Boonjawat, J.; Le, H. V.; Schafer, J. S.; Reid, J. S.; Dubovik, O.; Smirnov, A.

    2003-12-01

    There is little published data available on measured optical properties of aerosols in the Southeast Asian region. The AERONET project and collaborators commenced monitoring of aerosol optical properties in February 2003 at four sites in Thailand and two sites in Viet Nam to measure the primarily anthropogenic aerosols generated by biomass burning and fossil fuel combustion/ industrial emissions. Automatic sun/sky radiometers at each site measured spectral aerosol optical depth in 7 wavelengths from 340 to 1020 nm and combined with directional radiances in the almucantar, retrievals were made of spectral single scattering albedo and aerosol size distributions. Angstrom exponents, size distributions and spectral single scattering albedo of primarily biomass burning aerosols at rural sites are compared to measurements made at AERONET sites in other major biomass burning regions in tropical southern Africa, South America, and in boreal forest regions. Additionally, the aerosol single scattering albedo and size distributions measured in Bangkok, Thailand are compared with those measured at other urban sites globally. The influences of aerosols originating from other regions outside of Southeast Asia are analyzed using trajectory analyses. Specifically, cases of aerosol transport and mixing from Southern China and from India are presented.

  2. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1996-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size-resolved aerosol microphysics and chemistry. Both profiles included a pollution haze from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core. The soot core increased the calculated extinction by about 10% in the most polluted drier layer relative to a pure sulfate aerosol but had significantly less effect at higher humidities. A 3 km descent through a boundary layer air mass dominated by pollutant aerosol with relative humidities (RH) 10-77% yielded a close agreement between the measured and calculated aerosol optical depths (550 nm) of 0.160 (+/- 0.07) and 0. 157 (+/- 0.034) respectively. During descent the aerosol mass scattering coefficient per unit sulfate mass varied from about 5 to 16 m(exp 2)/g and primarily dependent upon ambient RH. However, the total scattering coefficient per total fine mass was far less variable at about 4+/- 0.7 m(exp 2)/g. A subsequent descent through a Saharan dust layer located above the pollution aerosol layer revealed that both layers contributed similarly to aerosol optical depth. The scattering per unit mass of the coarse aged dust was estimated at 1.1 +/- 0.2 m(exp 2)/g. The large difference (50%) in measured and calculated optical depth for the dust layer exceeded measurements.

  3. Preparation and characterization of magnetizable aerosols.

    PubMed

    Baumann, Romy; Glöckl, Gunnar; Nagel, Stefan; Weitschies, Werner

    2012-04-11

    Magnetizable aerosols can be used for inhalative magnetic drug targeting in order to enhance the drug concentration at a certain target site within the lung. The aim of the present study was to clarify how a typical ferrofluid can be atomized in a reproducible way. The influence of the atomization principle, the concentration of magnetic nanoparticles within the carrier liquid and the addition of commonly used pharmaceutical excipients on the aerosol droplet size were investigated. Iron oxide (magnetite) nanoparticles were synthesized by alkaline precipitation of mixtures of iron(II)- and iron(III)-chloride and coated with citric acid. The resulting ferrofluid was characterized by photon correlation spectroscopy and vibrating sample magnetometry. Two different nebulizers (Pari Boy and eFlow) with different atomization principles were used to generate ferrofluid aerosols. A range of substances that influence the surface tension, viscosity, density or vapor pressure of the ferrofluid were added to investigate their impact on the generated aerosol droplets. The particle size was determined by laser diffraction. A stable ferrofluid with a magnetic core diameter of 10.7 ± 0.45 nm and a hydrodynamic diameter of 124 nm was nebulized by Pari Boy and eFlow. The aerosol droplet size of Pari Boy was approximately 2.5 μm and remained unaffected by the addition of substances that changed the physical properties of the solvent. The droplet size of aerosols generated by eFlow was approximately 5 μm. It was significantly reduced by the addition of Cremophor RH 40, glycerol, polyvinyl pyrrolidone and ethanol. PMID:22306649

  4. Exploring Atmospheric Aerosol Chemistry with Advanced High-Resolution Mass Spectrometry and Particle Imaging Methods

    NASA Astrophysics Data System (ADS)

    Nizkorodov, S.

    2014-12-01

    Physical and chemical complexity of atmospheric aerosols presents significant challenges both to experimentalists working on aerosol characterization and to modelers trying to parameterize critical aerosol properties. Multi-modal approaches that combine state-of-the-art experimental, theoretical, and modeling methods are becoming increasingly important in aerosol research. This presentation will discuss recent applications of unique high-resolution mass spectrometry and particle imaging tools developed at two Department of Energy's user facilities, the Environmental Molecular Science Laboratory (EMSL) and Advanced Light Source (ALS), to studies of molecular composition, photochemical aging, and properties of laboratory-generated and field aerosols. Specifically, this presentation will attempt to address the following questions: (a) how do NO2, SO2, and NH3 affect molecular level composition of anthropogenic aerosols?; (b) what factors determine viscosity/surface tension of organic aerosol particles?; (c) how does photolysis affect molecular composition and optical properties of organic aerosols?

  5. Measurement of the ambient organic aerosol volatility distribution: application during the Finokalia Aerosol Measurement Experiment (FAME-2008)

    NASA Astrophysics Data System (ADS)

    Lee, B. H.; Kostenidou, E.; Hildebrandt, L.; Riipinen, I.; Engelhart, G. J.; Mohr, C.; Decarlo, P. F.; Mihalopoulos, N.; Prevot, A. S. H.; Baltensperger, U.; Pandis, S. N.

    2010-07-01

    A variable residence time thermodenuder (TD) was combined with an Aerodyne Aerosol Mass Spectrometer (AMS) and a Scanning Mobility Particle Sizer (SMPS) to measure the volatility distribution of aged organic aerosol in the Eastern Mediterranean during the Finokalia Aerosol Measurement Experiment in May of 2008 (FAME-2008). A new method for the quantification of the organic aerosol volatility distribution was developed combining measurements of all three instruments together with an aerosol dynamics model. Challenges in the interpretation of ambient thermodenuder-AMS measurements include the potential resistances to mass transfer during particle evaporation, the effects of particle size on the evaporated mass fraction, the changes in the AMS collection efficiency and particle density as the particles evaporate partially in the TD, and finally potential losses inside the TD. Our proposed measurement and data analysis method accounts for all of these problems combining the AMS and SMPS measurements. The AMS collection efficiency of the aerosol that passed through the TD was found to be approximately 10% lower than the collection efficiency of the aerosol that passed through the bypass. The organic aerosol measured at Finokalia is approximately 2 orders of magnitude less volatile than fresh laboratory-generated biogenic secondary organic aerosol. This low volatility is consistent with its highly oxygenated AMS mass spectrum. The results are found to be highly sensitive to the mass accommodation coefficient of the evaporating species.

  6. Aerosol climate time series from ESA Aerosol_cci (Invited)

    NASA Astrophysics Data System (ADS)

    Holzer-Popp, T.

    2013-12-01

    Within the ESA Climate Change Initiative (CCI) the Aerosol_cci project (mid 2010 - mid 2013, phase 2 proposed 2014-2016) has conducted intensive work to improve algorithms for the retrieval of aerosol information from European sensors AATSR (3 algorithms), PARASOL, MERIS (3 algorithms), synergetic AATSR/SCIAMACHY, OMI and GOMOS. Whereas OMI and GOMOS were used to derive absorbing aerosol index and stratospheric extinction profiles, respectively, Aerosol Optical Depth (AOD) and Angstrom coefficient were retrieved from the other sensors. Global datasets for 2008 were produced and validated versus independent ground-based data and other satellite data sets (MODIS, MISR). An additional 17-year dataset is currently generated using ATSR-2/AATSR data. During the three years of the project, intensive collaborative efforts were made to improve the retrieval algorithms focusing on the most critical modules. The team agreed on the use of a common definition for the aerosol optical properties. Cloud masking was evaluated, but a rigorous analysis with a pre-scribed cloud mask did not lead to improvement for all algorithms. Better results were obtained using a post-processing step in which sudden transitions, indicative of possible occurrence of cloud contamination, were removed. Surface parameterization, which is most critical for the nadir only algorithms (MERIS and synergetic AATSR / SCIAMACHY) was studied to a limited extent. The retrieval results for AOD, Ångström exponent (AE) and uncertainties were evaluated by comparison with data from AERONET (and a limited amount of MAN) sun photometer and with satellite data available from MODIS and MISR. Both level2 and level3 (gridded daily) datasets were validated. Several validation metrics were used (standard statistical quantities such as bias, rmse, Pearson correlation, linear regression, as well as scoring approaches to quantitatively evaluate the spatial and temporal correlations against AERONET), and in some cases

  7. Seawater mesocosm experiments in the Arctic uncover differential transfer of marine bacteria to aerosols.

    PubMed

    Fahlgren, Camilla; Gómez-Consarnau, Laura; Zábori, Julia; Lindh, Markus V; Krejci, Radovan; Mårtensson, E Monica; Nilsson, Douglas; Pinhassi, Jarone

    2015-06-01

    Biogenic aerosols critically control atmospheric processes. However, although bacteria constitute major portions of living matter in seawater, bacterial aerosolization from oceanic surface layers remains poorly understood. We analysed bacterial diversity in seawater and experimentally generated aerosols from three Kongsfjorden sites, Svalbard. Construction of 16S rRNA gene clone libraries from paired seawater and aerosol samples resulted in 1294 sequences clustering into 149 bacterial and 34 phytoplankton operational taxonomic units (OTUs). Bacterial communities in aerosols differed greatly from corresponding seawater communities in three out of four experiments. Dominant populations of both seawater and aerosols were Flavobacteriia, Alphaproteobacteria and Gammaproteobacteria. Across the entire dataset, most OTUs from seawater could also be found in aerosols; in each experiment, however, several OTUs were either selectively enriched in aerosols or little aerosolized. Notably, a SAR11 clade OTU was consistently abundant in the seawater, but was recorded in significantly lower proportions in aerosols. A strikingly high proportion of colony-forming bacteria were pigmented in aerosols compared with seawater, suggesting that selection during aerosolization contributes to explaining elevated proportions of pigmented bacteria frequently observed in atmospheric samples. Our findings imply that atmospheric processes could be considerably influenced by spatiotemporal variations in the aerosolization efficiency of different marine bacteria. PMID:25682947

  8. Satellite Perspective of Aerosol Intercontinental Transport: From Qualitative Tracking to Quantitative Characterization

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Remer, Lorraine A.; Kahn, Ralph A.; Chin, Mian; Zhang, Yan

    2012-01-01

    Evidence of aerosol intercontinental transport (ICT) is both widespread and compelling. Model simulations suggest that ICT could significantly affect regional air quality and climate, but the broad inter-model spread of results underscores a need of constraining model simulations with measurements. Satellites have inherent advantages over in situ measurements to characterize aerosol ICT, because of their spatial and temporal coverage. Significant progress in satellite remote sensing of aerosol properties during the Earth Observing System (EOS) era offers opportunity to increase quantitative characterization and estimates of aerosol ICT, beyond the capability of pre-EOS era satellites that could only qualitatively track aerosol plumes. EOS satellites also observe emission strengths and injection heights of some aerosols, aerosol precursors, and aerosol-related gases, which can help characterize aerosol ICT. After an overview of these advances, we review how the current generation of satellite measurements have been used to (1) characterize the evolution of aerosol plumes (e.g., both horizontal and vertical transport, and properties) on an episodic basis, (2) understand the seasonal and inter-annual variations of aerosol ICT and their control factors, (3) estimate the export and import fluxes of aerosols, and (4) evaluate and constrain model simulations. Substantial effort is needed to further explore an integrated approach using measurements from on-orbit satellites (e.g., A-Train synergy) for observational characterization and model constraint of aerosol intercontinental transport and to develop advanced sensors for future missions.

  9. Silicon production in an aerosol reactor

    NASA Technical Reports Server (NTRS)

    Wu, J. J.; Alam, M. K.; Johnson, B. E.; Flagan, R. C.

    1984-01-01

    An aerosol reactor for the growth of large silicon particles by silane pyrolysis was shown to demonstrate the following properties: (1) generate seed particles by pyrolysis of a small amount of silane; (2) mix seed aerosol with primary silane flow, limiting number concentration such that the amount of silane is sufficient to grow the desired size of particles from the seed; and (3) react the silane at a rate which is controlled such that the seed particles scavenge the condensible vapors rapidly enough to inhibit further nucleation.

  10. Aerosol Measurements from Current and Future EUMETSAT Satellites

    NASA Astrophysics Data System (ADS)

    Lang, Ruediger; Munro, Rosemary; Kokhanovsky, Alexander; Grzegorski, Michael; Poli, Gabriele; Holdak, Andriy; Retscher, Christian; Marbach, Thierry

    2014-05-01

    EUMETSAT supports the operational monitoring and forecasting of atmospheric composition including various aerosol optical properties through specific products from its geostationary and polar-orbiting satellites. Meteosat imagery is used to characterise aerosols in the atmosphere, including volcanic ash and dust storms at high temporal resolution, while the GOME-2, AVHRR and IASI and instruments on Metop observe aerosol optical properties from the UV/vis to the infra-red spectral region from a polar morning orbit. The role of EUMETSAT in observing aerosol optical properties will expand further towards the 2020 timeframe when EUMETSAT also becomes the operator of the Copernicus Sentinel-3, 4 and 5 missions. This expanding role will be realised through additional atmospheric composition sounding instruments such as the UVN/Sentinel-4 on the Meteosat Third Generation (MTG) geostationary platforms and the 3MI, METimage, and Sentinel-5 instruments on the EPS Second Generation (EPS-SG) satellites. The synergistic use of imager, spectrometer and interferometer data will, with the availability of this new generation of instrumentation and with the need for measuring aerosol optical properties at short-time scales, high spatial resolution and over a broad spectra region, play and increasingly important role in the field of aerosol remote sensing. With its new Polar Multi-mission Aerosol optical properties (PMAp) product, providing aerosol and cloud optical depth information, as well as fine mode, dust and volcanic ash characterisation over ocean and in the future also over land, EUMETSAT has recently been implementing the first framework for such synergistic retrievals for the remote sensing of aerosol optical properties from GOME-2, AVHRR and IASI instruments on Metop. We will present an overview of the ongoing and the future developments at EUMETSAT concerning aerosol remote sensing from Metop as well as from the current MSG geostationary platforms and from the future

  11. Aerosol delivery of liposome-encapsulated ciprofloxacin: aerosol characterization and efficacy against Francisella tularensis infection in mice.

    PubMed

    Conley, J; Yang, H; Wilson, T; Blasetti, K; Di Ninno, V; Schnell, G; Wong, J P

    1997-06-01

    The aerosol delivery of liposome-encapsulated ciprofloxacin by using 12 commercially available jet nebulizers was evaluated in this study. Aerosol particles containing liposome-encapsulated ciprofloxacin generated by the nebulizers were analyzed with a laser aerodynamic particle sizer. Mean mass aerodynamic diameters (MMADs) and geometric standard deviations (GSDs) were determined, and the drug contents of the sampling filters from each run onto which aerosolized liposome-encapsulated ciprofloxacin had been deposited were analyzed spectrophotometrically. The aerosol particles of liposome-encapsulated ciprofloxacin generated by these nebulizers ranged from 1.94 to 3.5 microm, with GSDs ranging from 1.51 to 1.84 microm. The drug contents of the sampling filters exposed for 1 min to aerosolized liposome-encapsulated ciprofloxacin range from 12.7 to 40.5 microg/ml (0.06 to 0.2 mg/filter). By using the nebulizer selected on the basis of most desirable MMADs, particle counts, and drug deposition, aerosolized liposome-encapsulated ciprofloxacin was used for the treatment of mice infected with 10 times the 50% lethal dose of Francisella tularensis. All mice treated with aerosolized liposome-encapsulated ciprofloxacin survived the infection, while all ciprofloxacin-treated or untreated control mice succumbed to the infection (P < 0.001). These results suggest that aerosol delivery of liposome-encapsulated ciprofloxacin to the lower respiratory tract is feasible and that it may provide an effective therapy for the treatment of respiratory tract infections. PMID:9174185

  12. The effect of organic aerosol material on aerosol reactivity towards ozone

    NASA Astrophysics Data System (ADS)

    Batenburg, Anneke; Gaston, Cassandra; Thornton, Joel; Virtanen, Annele

    2015-04-01

    After aerosol particles are formed or emitted into the atmosphere, heterogeneous reactions with gaseous oxidants cause them to 'age'. Aging can change aerosol properties, such as the hygroscopicity, which is an important parameter in how the particles scatter radiation and form clouds. Conversely, heterogeneous reactions on aerosol particles play a significant role in the cycles of various atmospheric trace gases. Organic compounds, a large part of the total global aerosol matter, can exist in liquid or amorphous (semi)solid physical phases. Different groups have shown that reactions with ozone (O3) can be limited by bulk diffusion in organic aerosol, particularly in viscous, (semi)solid materials, and that organic coatings alter the surface interactions between gas and aerosol particles. We aim to better understand and quantify how the viscosity and phase of organic aerosol matter affect gas-particle interactions. We have chosen the reaction of O3 with particles composed of a potassium iodide (KI) core and a variable organic coating as a model system. The reaction is studied in an aerosol flow reactor that consists of a laminar flow tube and a movable, axial injector for the injection of O3. The aerosol-containing air is inserted at the tube's top. The interaction length (and therefore time), between the particles and the O3 can be varied by moving the injector. Alternatively, the production of aerosol particles can be modulated. The remaining O3 concentration is monitored from the bottom of the tube and particle concentrations are measured simultaneously, which allows us to calculate the reactive uptake coefficient γ. We performed exploratory experiments with internally mixed KI and polyethylene glycol (PEG) particles at the University of Washington (UW) in a setup with a residence time around 50 s. Aerosol particles were generated in an atomizer from solutions with varying concentrations of KI and PEG and inserted into the flow tube after they were diluted and

  13. Sugars in Antarctic aerosol

    NASA Astrophysics Data System (ADS)

    Barbaro, Elena; Kirchgeorg, Torben; Zangrando, Roberta; Vecchiato, Marco; Piazza, Rossano; Barbante, Carlo; Gambaro, Andrea

    2015-10-01

    The processes and transformations occurring in the Antarctic aerosol during atmospheric transport were described using selected sugars as source tracers. Monosaccharides (arabinose, fructose, galactose, glucose, mannose, ribose, xylose), disaccharides (sucrose, lactose, maltose, lactulose), alcohol-sugars (erythritol, mannitol, ribitol, sorbitol, xylitol, maltitol, galactitol) and anhydrosugars (levoglucosan, mannosan and galactosan) were measured in the Antarctic aerosol collected during four different sampling campaigns. For quantification, a sensitive high-pressure anion exchange chromatography was coupled with a single quadrupole mass spectrometer. The method was validated, showing good accuracy and low method quantification limits. This study describes the first determination of sugars in the Antarctic aerosol. The total mean concentration of sugars in the aerosol collected at the "Mario Zucchelli" coastal station was 140 pg m-3; as for the aerosol collected over the Antarctic plateau during two consecutive sampling campaigns, the concentration amounted to 440 and 438 pg m-3. The study of particle-size distribution allowed us to identify the natural emission from spores or from sea-spray as the main sources of sugars in the coastal area. The enrichment of sugars in the fine fraction of the aerosol collected on the Antarctic plateau is due to the degradation of particles during long-range atmospheric transport. The composition of sugars in the coarse fraction was also investigated in the aerosol collected during the oceanographic cruise.

  14. Polarimetric Remote Sensing of Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Hasekamp, O. P.; Stap, A.; di Noia, A.; Rietjens, J.; Smit, M.; van Harten, G.; Snik, F.

    2014-12-01

    To reduce the large uncertainty on the aerosol effects on cloud formation and climate, accurate satellite measurements of aerosol optical properties (optical thickness, single scattering albedo, phase function) and microphysical properties (size distribution, refractive index, shape) are essential. Satellite instruments that perform multi-angle photopolarimetric measurements have the capability to provide these aerosol properties with sufficient accuracy. The only satellite instrument that provided a multi-year data set of multi-angle photopolarimetric measurements is the POLDER-3 instrument onboard the PARASOL microsatellite that operated between 2005-2013. PARASOL provides measurements of a ground scene under (up to) 16 viewing geometries in 9 spectral bands (3 for polarization). In order to make full use of the capability of PARASOL measurements of intensity and polarization properties of reflected light at multiple viewing angles and multiple wavelengths, we developed a retrieval algorithm that considers a continuous parameter space for aerosol microphysical properties (size distribution and refractive index) and properly accounts for land or ocean reflection by retrieving land and ocean parameters simultaneously with aerosol properties. Here, we present the key aspects of our PARASOL retrievals (inverse method, forward model, information content, cloud screening, computational aspects) as well as a validation of retrieved aerosol properties with ground-based measurements of the AERONET network. Also, we discuss required improvements for the next generation of polarimetric instruments dedicated to aerosol remote sensing and introduce a new spectropolarimetric instrument named SPEX. We will demonstrate the capabilities of SPEX based on ground based field measurements and characterization measurements in the labatory.

  15. Aromatic Structure in Simulates Titan Aerosol

    NASA Technical Reports Server (NTRS)

    Trainer, Melissa G.; Loeffler, M. J.; Anderson, C. M.; Hudson, R. L.; Samuelson, R. E.; Moore, M. A.

    2011-01-01

    Observations of Titan by the Cassini Composite Infrared Spectrometer (CIRS) between 560 and 20 per centimeter (approximately 18 to 500 micrometers) have been used to infer the vertical variations of Titan's ice abundances, as well as those of the aerosol from the surface to an altitude of 300 km [1]. The aerosol has a broad emission feature centered approximately at 140 per centimeter (71 micrometers). As seen in Figure 1, this feature cannot be reproduced using currently available optical constants from laboratory-generated Titan aerosol analogs [2]. The far-IR is uniquely qualified for investigating low-energy vibrational motions within the lattice structures of COITIDlex aerosol. The feature observed by CIRS is broad, and does not likely arise from individual molecules, but rather is representative of the skeletal movements of macromolecules. Since Cassini's arrival at Titan, benzene (C6H6) has been detected in the atmosphere at ppm levels as well as ions that may be polycyclic aromatic hydrocarbons (PAHs) [3]. We speculate that the feature may be a blended composite that can be identified with low-energy vibrations of two-dimensional lattice structures of large molecules, such as PAHs or nitrogenated aromatics. Such structures do not dominate the composition of analog materials generated from CH4 and N2 irradiation. We are performing studies forming aerosol analog via UV irradiation of aromatic precursors - specifically C6H6 - to understand how the unique chemical architecture of the products will influence the observable aerosol characteristics. The optical and chemical properties of the aromatic analog will be compared to those formed from CH4/N2 mixtures, with a focus on the as-yet unidentified far-IR absorbance feature. Preliminary results indicate that the photochemically-formed aromatic aerosol has distinct chemical composition, and may incorporate nitrogen either into the ring structure or adjoined chemical groups. These compositional differences are

  16. Fire aerosol experiment and comparisons with computer code predictions

    NASA Astrophysics Data System (ADS)

    Gregory, W. S.; Nichols, B. D.; White, B. W.; Smith, P. R.; Leslie, I. H.; Corkran, J. R.

    1988-08-01

    Los Alamos National Laboratory, in cooperation with New Mexico State University, has carried on a series of tests to provide experimental data on fire-generated aerosol transport. These data will be used to verify the aerosol transport capabilities of the FIRAC computer code. FIRAC was developed by Los Alamos for the U.S. Nuclear Regulatory Commission. It is intended to be used by safety analysts to evaluate the effects of hypothetical fires on nuclear plants. One of the most significant aspects of this analysis deals with smoke and radioactive material movement throughout the plant. The tests have been carried out using an industrial furnace that can generate gas temperatures to 300 C. To date, we have used quartz aerosol with a median diameter of about 10 microns as the fire aerosol simulant. We also plan to use fire-generated aerosols of polystyrene and polymethyl methacrylate (PMMA). The test variables include two nominal gas flow rates (150 and 300 cu ft/min) and three nominal gas temperatures (ambient, 150 C, and 300 C). The test results are presented in the form of plots of aerosol deposition vs length of duct. In addition, the mass of aerosol caught in a high-efficiency particulate air (HEPA) filter during the tests is reported. The tests are simulated with the FIRAC code, and the results are compared with the experimental data.

  17. Intercomparison of aerosol instruments: number concentration

    SciTech Connect

    Knutson, E O; Sinclair, D; Tu, K W; Hinchliffe, L; Franklin, H

    1982-05-01

    An intercomparison of aerosol instruments conducted February 23-27, 1981, at the Environmental Measurements Laboratory (EML) focused on five instruments: the Pollak and TSI condensation nucleus counters; the Active Scattering Aerosol Spectrometer (ASAS-X); and two aerosol electrometers. Test aerosols of sodium chloride and ammonium fluorescein generated by nebulization/electrostatic classification were used to obtain 195 lines of comparison data. Concentrations measured by the ASAS-X and the TSI aerosol electrometer averaged respectively 1.388 and 1.581 times that measured by the Pollak. These ratios were very stable during the week and there was little effect of particle size or material. Most other comparisons were equally stable. However, a review of past work at EML and elsewhere led to the disturbing conclusion that these ratios may change from year to year, or from season to season. A filter sample was taken from microscopy, concurrent with readings from the ASAS-X and the TSI condensation nucleus counters. In this sample, the two instruments differed by 20%. Within its 20% uncertainty, the filter result matched both the TSI and ASAS-X readings.

  18. Trace elemental characteristics of aerosols emitted from municipal incinerators

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1978-01-01

    As part of a continuing investigation of high temperature combustion aerosols, elemental composition of size differentiated aerosols emitted from a local municipal incinerator was studied. Aerosols were aerodynamically separated into eight diameter groups ranging from 0.43 mm to 20 mm, collected, and analyzed by charged particle induced X-ray emission technique. On line data collection and reduction codes generated aerial densities for elements from Na to U with sensitivities in the ng/cu m range for most elements. From the total weights of aerosols collected per stage, their size distribution was determined to be bimodal, with one group centered at a diameter of 0.54 mm and the other at a diameter of 5.6 mm. Measured elemental concentrations in various size ranges indicate that K and S show a strong tendency to concentrate on aerosol surfaces. A weaker trend for surface preference was also observed for Mn and Ni, but other elements show no such trend.

  19. Production of Highly Charged Pharmaceutical Aerosols Using a New Aerosol Induction Charger

    PubMed Central

    Golshahi, Laleh; Longest, P. Worth; Holbrook, Landon; Snead, Jessica; Hindle, Michael

    2015-01-01

    Purpose Properly charged particles can be used for effective lung targeting of pharmaceutical aerosols. The objective of this study was to characterize the performance of a new induction charger that operates with a mesh nebulizer for the production of highly charged submicrometer aerosols to bypass the mouth-throat and deliver clinically relevant doses of medications to the lungs. Methods Variables of interest included combinations of model drug (i.e. albuterol sulfate) and charging excipient (NaCl) as well as strength of the charging field (1–5 kV/cm). Aerosol charge and size were measured using a modified electrical low pressure impactor system combined with high performance liquid chromatography. Results At the approximate mass median aerodynamic diameter (MMAD) of the aerosol (~ 0.4 μm), the induction charge on the particles was an order of magnitude above the field and diffusion charge limit. The nebulization rate was 439.3 ± 42.9 μl/min, which with a 0.1 % w/v solution delivered 419.5 ± 34.2 μg of medication per minute. A new correlation was developed to predict particle charge produced by the induction charger. Conclusions The combination of the aerosol induction charger and predictive correlations will allow for the practical generation and control of charged submicrometer aerosols for targeting deposition within the lungs. PMID:25823649

  20. The design of an aerosol test tunnel for occupational hygiene investigations

    NASA Astrophysics Data System (ADS)

    Blackford, D. B.; Heighington, K.

    An aerosol test tunnel which provides large working sections is described and its performance evaluated. Air movement within the tunnel is achieved with a powerful D.C. motor and centrifugal fan. Test dusts are dispersed and injected into the tunnel by means of an aerosol generator. A unique divertor valve allows aerosol laden air to be either cleaned by a commercial pulse jet filtration unit or recycled around the tunnel to obtain a high aerosol concentration. The tunnel instrumentation is managed by a microcomputer which automatically controls the airspeed and aerosol concentration.

  1. Generating aerosols for laser velocimeter seeding

    NASA Technical Reports Server (NTRS)

    Agarwal, J. K.

    1985-01-01

    The laser velocimeter (LV) is a unique tool for fluid flow measurements. In such measurements, even though the fluid velocity is of primary interest, the LV signal originates from seed particles present in the fluid and the LV actually measures the velocity of these particles. Thus it is important that a sufficient number of seed particles be present in the fluid and they scatter sufficient light to produce LV signals. Also, the seed particles should follow the fluid with high fidelity. Aerodynamic diameter is the true measure of a particle's ability to follow the flow. The aerodynamic diameter of a particle is defined as the diameter of a unit density sphere with same settling velocity as the particle in question. It is affected by geometric diameter, density and shape of the particle. For LV seeding, particles with smaller aerodynamic diameter are desirable because they follow the flow more readily. On the other hand, in general, the particle's ability to scatter light increases with its geometric diameter and its refractive index.

  2. Volcanic Aerosol Radiative Properties

    NASA Technical Reports Server (NTRS)

    Lacis, Andrew

    2015-01-01

    Large sporadic volcanic eruptions inject large amounts of sulfur bearing gases into the stratosphere which then get photochemically converted to sulfuric acid aerosol droplets that exert a radiative cooling effect on the global climate system lasting for several years.

  3. Palaeoclimate: Aerosols and rainfall

    NASA Astrophysics Data System (ADS)

    Partin, Jud

    2015-03-01

    Instrumental records have hinted that aerosol emissions may be shifting rainfall over Central America southwards. A 450-year-long precipitation reconstruction indicates that this shift began shortly after the Industrial Revolution.

  4. Emergency Protection from Aerosols

    SciTech Connect

    Cristy, G.A.

    2001-11-13

    Expedient methods were developed that could be used by an average person, using only materials readily available, to protect himself and his family from injury by toxic (e.g., radioactive) aerosols. The most effective means of protection was the use of a household vacuum cleaner to maintain a small positive pressure on a closed house during passage of the aerosol cloud. Protection factors of 800 and above were achieved.

  5. MISR Aerosol Typing

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2014-01-01

    AeroCom is an open international initiative of scientists interested in the advancement of the understanding of global aerosol properties and aerosol impacts on climate. A central goal is to more strongly tie and constrain modeling efforts to observational data. A major element for exchanges between data and modeling groups are annual meetings. The meeting was held September 20 through October 2, 1014 and the organizers would like to post the presentations.

  6. RACORO aerosol data processing

    SciTech Connect

    Elisabeth Andrews

    2011-10-31

    The RACORO aerosol data (cloud condensation nuclei (CCN), condensation nuclei (CN) and aerosol size distributions) need further processing to be useful for model evaluation (e.g., GCM droplet nucleation parameterizations) and other investigations. These tasks include: (1) Identification and flagging of 'splash' contaminated Twin Otter aerosol data. (2) Calculation of actual supersaturation (SS) values in the two CCN columns flown on the Twin Otter. (3) Interpolation of CCN spectra from SGP and Twin Otter to 0.2% SS. (4) Process data for spatial variability studies. (5) Provide calculated light scattering from measured aerosol size distributions. Below we first briefly describe the measurements and then describe the results of several data processing tasks that which have been completed, paving the way for the scientific analyses for which the campaign was designed. The end result of this research will be several aerosol data sets which can be used to achieve some of the goals of the RACORO mission including the enhanced understanding of cloud-aerosol interactions and improved cloud simulations in climate models.

  7. Linking biogenic hydrocarbons to biogenic aerosol in the Borneo rainforest

    NASA Astrophysics Data System (ADS)

    Hamilton, J. F.; Alfarra, M. R.; Robinson, N.; Ward, M. W.; Lewis, A. C.; McFiggans, G. B.; Coe, H.; Allan, J. D.

    2013-11-01

    Emissions of biogenic volatile organic compounds are though to contribute significantly to secondary organic aerosol formation in the tropics, but understanding these transformation processes has proved difficult, due to the complexity of the chemistry involved and very low concentrations. Aerosols from above a Southeast Asian tropical rainforest in Borneo were characterised using liquid chromatography-ion trap mass spectrometry, high-resolution aerosol mass spectrometry and Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) techniques. Oxygenated compounds were identified in ambient organic aerosol that could be directly traced back to isoprene, monoterpenes and sesquiterpene emissions, by combining field data on chemical structures with mass spectral data generated from synthetically produced products created in a simulation chamber. Eighteen oxygenated species of biogenic origin were identified in the rainforest aerosol from the precursors isoprene, α-pinene, limonene, α-terpinene and β-caryophyllene. The observations provide the unambiguous field detection of monoterpene and sesquiterpene oxidation products in SOA above a pristine tropical rainforest. The presence of 2-methyl tetrol organosulfates and an associated sulfated dimer provides direct evidence that isoprene in the presence of sulfate aerosol can make a contribution to biogenic organic aerosol above tropical forests. High-resolution mass spectrometry indicates that sulfur can also be incorporated into oxidation products arising from monoterpene precursors in tropical aerosol.

  8. Linking biogenic hydrocarbons to biogenic aerosol in the Borneo rainforest

    NASA Astrophysics Data System (ADS)

    Hamilton, J. F.; Alfarra, M. R.; Robinson, N.; Ward, M. W.; Lewis, A. C.; McFiggans, G. B.; Coe, H.; Allan, J. D.

    2013-07-01

    Emissions of biogenic volatile organic compounds are though to contribute significantly to secondary organic aerosol formation in the tropics, but understanding the process of these transformations has proved difficult, due to the complexity of the chemistry involved and very low concentrations. Aerosols from above a South East Asian tropical rainforest in Borneo were characterised using liquid chromatography-ion trap mass spectrometry, high resolution aerosol mass spectrometry and fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) techniques. Oxygenated compounds were identified in ambient organic aerosol that could be directly traced back to isoprene, monoterpenes and sesquiterpene emissions, by combining field data on chemical structures with mass spectral data generated from synthetically produced products created in a simulation chamber. Eighteen oxygenated species of biogenic origin were identified in the rainforest aerosol from the precursors isoprene, α-pinene, limonene, α-terpinene and β-caryophyllene. The observations provide the unambiguous field detection of monoterpene and sesquiterpene oxidation products in SOA above a pristine tropical rainforest. The presence of 2-methyltetrol organosulfates and an associated sulfated dimer provides direct evidence that isoprene in the presence of sulfate aerosol can make a contribution to biogenic organic aerosol above tropical forests. High-resolution mass spectrometry indicates that sulfur can also be incorporated into oxidation products arising from monoterpene precursors in tropical aerosol.

  9. Urban aerosol effects on surface insolation and surface temperature

    NASA Astrophysics Data System (ADS)

    Jin, M.; Burian, S. J.; Remer, L. A.; Shepherd, M. J.

    2007-12-01

    Urban aerosol particulates may play a fundamental role in urban microclimates and city-generated mesoscale circulations via its effects on energy balance of the surface. Key questions that need to be addressed include: (1) How do these particles affect the amount of solar energy reaching the surface and resulting surface temperature? (2) Is the effect the same in all cities? and (3) How does it vary from city to city? Using NASA AERONET in-situ observations, a radiative transfer model, and a regional climate mode (MM5), we assess aerosol effects on surface insolation and surf ace temperature for dense urban-polluted regions. Two big cities, one in a developing country (Beijing, P.R. China) and another in developed country (New York City, USA), are selected for inter-comparison. The study reveals that aerosol effects on surface temperature depends largely on aerosols' optical and chemical properties as well as atmosphere and land surface conditions, such as humidity and land cover. Therefore, the actual magnitudes of aerosol effects differ from city to city. Aerosol measurements from AERONET show both average and extreme cases for aerosol impacts on surface insolation. In general, aerosols reduce surface insolation by 30Wm-2. Nevertheless, in extreme cases, such reduction can exceed 100 Wm-2. Consequently, this reduces surface skin temperature 2-10C in an urban environment.

  10. It's a Sooty Problem: Black Carbon and Aerosols from Space

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.

    2005-01-01

    Our knowledge of atmospheric aerosols (smoke, pollution, dust or sea salt particles, small enough to be suspended in the air), their evolution, composition, variability in space and time and interaction with solar radiation, clouds and precipitation is lacking despite decades of research. Just recently we recognized that understanding the global aerosol system is fundamental for progress in climate change and hydrological cycle research. While a single instrument was used to demonstrate 50 yrs ago that the global CO2 levels are rising, posing thread to our climate, we need an may of satellites, surface networks of radiometers, elaborated laboratory and field experiments coupled with chemical transport models to understand the global aerosol system. This complexity of the aerosol problem results from their short lifetime (1 week), variability of the chemical composition and complex chemical and physical processes in the atmosphere. The result is a heterogeneous distribution of aerosol and their properties. The new generation of satellites and surface networks of radiometers provides exciting opportunities to measure the aerosol properties and their interaction with clouds and climate. However farther development in the satellite capability, aerosol chemical models and climate models is needed to fully decipher the aerosol secrets with accuracy required to predict future climates.

  11. A 10-year global gridded Aerosol Optical Thickness Reanalysis for climate and applied applications

    NASA Astrophysics Data System (ADS)

    Lynch, P.; Reid, J. S.; Zhang, J.; Westphal, D. L.; Campbell, J. R.; Curtis, C. A.; Hegg, D.; Hyer, E. J.; Sessions, W.; Shi, Y.; Turk, J.

    2013-12-01

    While standalone satellite and model aerosol products see wide utilization, there is a significant need of a best-available fused product on a regular grid for numerous climate and applied applications. Remote sensing and modeling technologies have now advanced to a point where aerosol data assimilation is an operational reality at numerous centers. It is inevitable that, like meteorological reanalyses, aerosol reanalyses will see heavy use in the near future. A first long term, 2003-2012 global 1x1 degree and 6-hourly aerosol optical thickness (AOT) reanalysis product has been generated. The goal of this effort is not only for climate applications, but to generate a dataset that can be used by the US Navy to understand operationally hindering aerosol events, aerosol impacts on numerical weather prediction, and application of electro-optical technologies. The reanalysis utilizes Navy Aerosol Analysis and Prediction System (NAAPS) at its core and assimilates quality controlled collection 5 Moderate Resolution Imaging Spectroradiometer (MODIS) AOD with minor corrections from Multi-angle Imaging SpectroRaditometer (MISR). A subset of this product includes Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar assimilation since its launch in mid-2006. Surface aerosol sources, including dust and smoke, in the aerosol model have been regionally tuned so that fine and coarse mode AOTs best match those resolve by ground-based Aerosol Robotic Network (AERONET). The AOT difference between the model and satellite AOT is then used to adjust other aerosol processes, eg., sources, dry deposition, etc. Aerosol wet deposition is constrained with satellite-retrieved precipitation. The final AOT reanalysis is shown to exhibit good agreement with AERONET. Here we review the development of the reanalysis and consider issues particular to aerosol reanalyses that make them distinct from standard meteorological reanalyses. Considerations are also made for extending such work

  12. Development and Characterization of a Thermodenuder for Aerosol Volatility Measurements

    SciTech Connect

    Dr. Timothy Onasch

    2009-09-09

    This SBIR Phase I project addressed the critical need for improved characterization of carbonaceous aerosol species in the atmosphere. The proposed work focused on the development of a thermodenuder (TD) system capable of systematically measuring volatility profiles of primary and secondary organic aerosol species and providing insight into the effects of absorbing and nonabsorbing organic coatings on particle absorption properties. This work provided the fundamental framework for the generation of essential information needed for improved predictions of ambient aerosol loadings and radiative properties by atmospheric chemistry models. As part of this work, Aerodyne Research, Inc. (ARI) continued to develop and test, with the final objective of commercialization, an improved thermodenuder system that can be used in series with any aerosol instrument or suite of instruments (e.g., aerosol mass spectrometers-AMS, scanning mobility particle sizers-SMPS, photoacoustic absorption spectrometers-PAS, etc.) to obtain aerosol chemical, physical, and optical properties as a function of particle volatility. In particular, we provided the proof of concept for the direct coupling of our improved TD design with a full microphysical model to obtain volatility profiles for different organic aerosol components and to allow for meaningful comparisons between different TD-derived aerosol measurements. In a TD, particles are passed through a heated zone and a denuding (activated charcoal) zone to remove semi-volatile material. Changes in particle size, number concentration, optical absorption, and chemical composition are subsequently detected with aerosol instrumentation. The aerosol volatility profiles provided by the TD will strengthen organic aerosol emission inventories, provide further insight into secondary aerosol formation mechanisms, and provide an important measure of particle absorption (including brown carbon contributions and identification, and absorption enhancements

  13. Sampling submicron T1 bacteriophage aerosols.

    PubMed

    Harstad, J B

    1965-11-01

    Liquid impingers, filter papers, and fritted bubblers were partial viable collectors of radioactive submicron T1 bacteriophage aerosols at 30, 55, and 85% relative humidity. Sampler differences for viable collection were due to incomplete physical collection (slippage) and killing of phage by the samplers. Dynamic aerosols of a mass median diameter of 0.2 mu were produced with a Dautrebande generator from concentrated aqueous purified phage suspensions containing extracellular soluble radioactive phosphate as a physical tracer. There was considerable destruction of phage by the Dautrebande generator; phage titers of the Dautrebande suspension decreased exponentially, but there was a progressive (linear) increase in tracer titers. Liquid impingers recovered the most viable phage but allowed considerable (30 to 48%) slippage, which varies inversely with the aerosol relative humidity. Filter papers were virtually complete physical collectors of submicron particles but were the most destructive. Fritted bubbler slippage was more than 80%. With all samplers, phage kill was highest at 85% relative humidity and lowest at 55% relative humidity. An electrostatic precipitator was used to collect aerosol samples for particle sizing with an electron microscope. The particle size was slightly larger at 85% relative humidity than at 30 or 55% relative humidity. PMID:5866038

  14. Aerosol delivery of synthetic lung surfactant

    PubMed Central

    Hernández-Juviel, José M.; Waring, Alan J.

    2014-01-01

    Background. Nasal continuous positive airway pressure (nCPAP) is a widely accepted technique of non-invasive respiratory support in premature infants with respiratory distress syndrome due to lack of lung surfactant. If this approach fails, the next step is often intubation, mechanical ventilation (MV) and intratracheal instillation of clinical lung surfactant. Objective. To investigate whether aerosol delivery of advanced synthetic lung surfactant, consisting of peptide mimics of surfactant proteins B and C (SP-B and SP-C) and synthetic lipids, during nCPAP improves lung function in surfactant-deficient rabbits. Methods. Experimental synthetic lung surfactants were produced by formulating 3% Super Mini-B peptide (SMB surfactant), a highly surface active SP-B mimic, and a combination of 1.5% SMB and 1.5% of the SP-C mimic SP-Css ion-lock 1 (BC surfactant), with a synthetic lipid mixture. After testing aerosol generation using a vibrating membrane nebulizer and aerosol conditioning (particle size, surfactant composition and surface activity), we investigated the effects of aerosol delivery of synthetic SMB and BC surfactant preparations on oxygenation and lung compliance in saline-lavaged, surfactant-deficient rabbits, supported with either nCPAP or MV. Results. Particle size distribution of the surfactant aerosols was within the 1–3 µm distribution range and surfactant activity was not affected by aerosolization. At a dose equivalent to clinical surfactant therapy in premature infants (100 mg/kg), aerosol delivery of both synthetic surfactant preparations led to a quick and clinically relevant improvement in oxygenation and lung compliance in the rabbits. Lung function recovered to a greater extent in rabbits supported with MV than with nCPAP. BC surfactant outperformed SMB surfactant in improving lung function and was associated with higher phospholipid values in bronchoalveolar lavage fluid; these findings were irrespective of the type of ventilatory support

  15. Fluorescence lifetime imaging of optically levitated aerosol: a technique to quantitatively map the viscosity of suspended aerosol particles.

    PubMed

    Fitzgerald, C; Hosny, N A; Tong, H; Seville, P C; Gallimore, P J; Davidson, N M; Athanasiadis, A; Botchway, S W; Ward, A D; Kalberer, M; Kuimova, M K; Pope, F D

    2016-08-21

    We describe a technique to measure the viscosity of stably levitated single micron-sized aerosol particles. Particle levitation allows the aerosol phase to be probed in the absence of potentially artefact-causing surfaces. To achieve this feat, we combined two laser based techniques: optical trapping for aerosol particle levitation, using a counter-propagating laser beam configuration, and fluorescent lifetime imaging microscopy (FLIM) of molecular rotors for the measurement of viscosity within the particle. Unlike other techniques used to measure aerosol particle viscosity, this allows for the non-destructive probing of viscosity of aerosol particles without interference from surfaces. The well-described viscosity of sucrose aerosol, under a range of relative humidity conditions, is used to validate the technique. Furthermore we investigate a pharmaceutically-relevant mixture of sodium chloride and salbutamol sulphate under humidities representative of in vivo drug inhalation. Finally, we provide a methodology for incorporating molecular rotors into already levitated particles, thereby making the FLIM/optical trapping technique applicable to real world aerosol systems, such as atmospheric aerosols and those generated by pharmaceutical inhalers. PMID:27430158

  16. Preparation of freestanding germanium nanocrystals by ultrasonic aerosol pyrolysis

    NASA Astrophysics Data System (ADS)

    Stoldt, Conrad R.; Haag, Michael A.; Larsen, Brian A.

    2008-07-01

    This letter reports a synthetic route adaptable for the continuous, large-scale production of germanium (Ge) nanocrystals for emerging electronic and optoelectronic applications. Using an ultrasonic aerosol pyrolysis approach, diamond cubic Ge nanocrystals with dense, spherical morphologies and sizes ranging from 3to14nm are synthesized at 700°C from an ultrasonically generated aerosol of tetrapropylgermane (TPG) precursor and toluene solvent. The ultimate crystal size demonstrates a near linear relationship within the range of TPG concentrations investigated, while the shape of the measured size distributions predicts multiple particle formation mechanisms during aerosol decomposition and condensation.

  17. Apparatus and method for the characterization of respirable aerosols

    DOEpatents

    Clark, Douglas K.; Hodges, Bradley W.; Bush, Jesse D.; Mishima, Jofu

    2016-05-31

    An apparatus for the characterization of respirable aerosols, including: a burn chamber configured to selectively contain a sample that is selectively heated to generate an aerosol; a heating assembly disposed within the burn chamber adjacent to the sample; and a sampling segment coupled to the burn chamber and configured to collect the aerosol such that it may be analyzed. The apparatus also includes an optional sight window disposed in a wall of the burn chamber such that the sample may be viewed during heating. Optionally, the sample includes one of a Lanthanide, an Actinide, and a Transition metal.

  18. AEROSOL CHARACTERIZATION WITH CENTRIFUCAL AEROSOL SPECTROMETERS: THEORY AND EXPERIMENT

    EPA Science Inventory

    A general mathematical model describing the motion of particles in aerosol centrifuges has been developed. t has been validated by comparisons of theoretically predicted calibration sites with experimental data from tests sizing aerosols in instruments of three different spiral d...

  19. Dark Targets, Aerosols, Clouds and Toys

    NASA Astrophysics Data System (ADS)

    Remer, L. A.

    2015-12-01

    Today if you use the Thomson-Reuters Science Citations Index to search for "aerosol*", across all scientific disciplines and years, with no constraints, and you sort by number of citations, you will find a 2005 paper published in the Journal of the Atmospheric Sciences in the top 20. This is the "The MODIS Aerosol Algorithm, Products and Validation". Although I am the first author, there are in total 12 co-authors who each made a significant intellectual contribution to the paper or to the algorithm, products and validation described. This paper, that algorithm, those people lie at the heart of a lineage of scientists whose collaborations and linked individual pursuits have made a significant contribution to our understanding of radiative transfer and climate, of aerosol properties and the global aerosol system, of cloud physics and aerosol-cloud interaction, and how to measure these parameters and maximize the science that can be obtained from those measurements. The 'lineage' had its origins across the globe, from Soviet Russia to France, from the U.S. to Israel, from the Himalayas, the Sahel, the metropolises of Sao Paulo, Taipei, and the cities of east and south Asia. It came together in the 1990s and 2000s at the NASA Goddard Space Flight Center, using cultural diversity as a strength to form a common culture of scientific creativity that continues to this day. The original algorithm has spawned daughter algorithms that are being applied to new satellite and airborne sensors. The original MODIS products have been fundamental to analyses as diverse as air quality monitoring and aerosol-cloud forcing. AERONET, designed originally for the need of validation, is now its own thriving institution, and the lineage continues to push forward to provide new technology for the coming generations.

  20. Orbiting lidar simulations. I - Aerosol and cloud measurements by an independent-wavelength technique

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Morley, B. M.; Livingston, J. M.; Grams, G. W.; Patterson, E. M.

    1982-01-01

    Aerosol and cloud measurements have been simulated for a Space Shuttle lidar. Expected errors - in signal, transmission, density, and calibration - are calculated algebraically and checked by simulating measurements and retrievals using random-number generators. By day, vertical structure is retrieved for tenuous clouds, Saharan aerosols, and boundary layer aerosols (at 0.53 and 1.06 micron) as well as strong volcanic stratospheric aerosols (at 0.53 micron). By night, all these constituents are retrieved plus upper tropospheric and stratospheric aerosols (at 1.06 micron), mesospheric aerosols (at 0.53 micron), and noctilucent clouds (at 1.06 and 0.53 micron). The vertical resolution was 0.1-0.5 km in the troposphere, 0.5-2.0 km above, except 0.25-1.0 km in the mesospheric cloud and aerosol layers; horizontal resolution was 100-2000 km.

  1. Aerosol chemistry in GLOBE

    NASA Technical Reports Server (NTRS)

    Clarke, Antony D.; Rothermel, Jeffry; Jarzembski, Maurice A.

    1993-01-01

    This task addresses the measurement and understanding of the physical and chemical properties of aerosol in remote regions that are responsible for aerosol backscatter at infrared wavelengths. Because it is representative of other clean areas, the remote Pacific is of extreme interest. Emphasis is on the determination size dependent aerosol properties that are required for modeling backscatter at various wavelengths and upon those features that may be used to help understand the nature, origin, cycling and climatology of these aerosols in the remote troposphere. Empirical relationships will be established between lidar measurements and backscatter derived from the aerosol microphysics as required by the NASA Doppler Lidar Program. This will include the analysis of results from the NASA GLOBE Survey Mission Flight Program. Additional instrument development and deployment will be carried out in order to extend and refine this data base. Identified activities include participation in groundbased and airborne experiments. Progress to date includes participation in, analysis of, and publication of results from Mauna Loa Backscatter Intercomparison Experiment (MABIE) and Global Backscatter Experiment (GLOBE).

  2. Biological aerosol background characterization

    NASA Astrophysics Data System (ADS)

    Blatny, Janet; Fountain, Augustus W., III

    2011-05-01

    To provide useful information during military operations, or as part of other security situations, a biological aerosol detector has to respond within seconds or minutes to an attack by virulent biological agents, and with low false alarms. Within this time frame, measuring virulence of a known microorganism is extremely difficult, especially if the microorganism is of unknown antigenic or nucleic acid properties. Measuring "live" characteristics of an organism directly is not generally an option, yet only viable organisms are potentially infectious. Fluorescence based instruments have been designed to optically determine if aerosol particles have viability characteristics. Still, such commercially available biological aerosol detection equipment needs to be improved for their use in military and civil applications. Air has an endogenous population of microorganisms that may interfere with alarm software technologies. To design robust algorithms, a comprehensive knowledge of the airborne biological background content is essential. For this reason, there is a need to study ambient live bacterial populations in as many locations as possible. Doing so will permit collection of data to define diverse biological characteristics that in turn can be used to fine tune alarm algorithms. To avoid false alarms, improving software technologies for biological detectors is a crucial feature requiring considerations of various parameters that can be applied to suppress alarm triggers. This NATO Task Group will aim for developing reference methods for monitoring biological aerosol characteristics to improve alarm algorithms for biological detection. Additionally, they will focus on developing reference standard methodology for monitoring biological aerosol characteristics to reduce false alarm rates.

  3. SURVIVAL OF BACTERIA DURING AEROSOLIZATION

    EPA Science Inventory

    One form of commercial application of microorganisms, including genetically engineered microorganisms is as an aerosol. To study the effect of aerosol-induced stress on bacterial survival, nonrecombinant spontaneous antibiotic-resistant mutants of four organisms, Enterobacter clo...

  4. Other medications for aerosol delivery.

    PubMed

    Rubin, Bruce K

    2006-01-01

    Although aerosol therapy is most commonly used to treat asthma and COPD, there are a large number of aerosol medications now used or in development for other diseases. Mucoactive agents have long been available by aerosol, but now we have truly effective drugs to improve effective airway clearance including dornase alfa, hyperosmolar saline, and aerosol surfactant. Inhaled antibiotics are available for the treatment of cystic fibrosis, bronchiectasis and other chronic airway infections. With the development of devices that can target aerosol to the deep lung, the opportunity to deliver medications systemically by the aerosol route has become a reality. Insulin, recently approved in the US as aerosol therapy, and other peptides are systemically absorbed from the distal airway and alveolus. Aerosol gene transfer therapy to correct abnormalities associated with cystic fibrosis, primary ciliary dyskinesia and other airway diseases also holds great potential. PMID:16798603

  5. Atmospheric Chemistry: Nature's plasticized aerosols

    NASA Astrophysics Data System (ADS)

    Ziemann, Paul J.

    2016-01-01

    The structure of atmospheric aerosol particles affects their reactivity and growth rates. Measurements of aerosol properties over the Amazon rainforest indicate that organic particles above tropical rainforests are simple liquid drops.

  6. Characterization of biomass burning aerosols from forest fire in Indonesia

    NASA Astrophysics Data System (ADS)

    Fujii, Y.; Iriana, W.; Okumura, M.; Lestari, P.; Tohno, S.; Akira, M.; Okuda, T.

    2012-12-01

    Biomass burning (forest fire, wild fire) is a major source of pollutants, generating an estimate of 104 Tg per year of aerosol particles worldwide. These particles have adverse human health effects and can affect the radiation budget and climate directly and indirectly. Eighty percent of biomass burning aerosols are generated in the tropics and about thirty percent of them originate in the tropical regions of Asia (Andreae, 1991). Several recent studies have reported on the organic compositions of biomass burning aerosols in the tropical regions of South America and Africa, however, there is little data about forest fire aerosols in the tropical regions of Asia. It is important to characterize biomass burning aerosols in the tropical regions of Asia because the aerosol properties vary between fires depending on type and moisture of wood, combustion phase, wind conditions, and several other variables (Reid et al., 2005). We have characterized PM2.5 fractions of biomass burning aerosols emitted from forest fire in Indonesia. During the dry season in 2012, PM2.5 aerosols from several forest fires occurring in Riau, Sumatra, Indonesia were collected on quartz and teflon filters with two mini-volume samplers. Background aerosols in forest were sampled during transition period of rainy season to dry season (baseline period). Samples were analyzed with several analytical instruments. The carbonaceous content (organic and elemental carbon, OC and EC) of the aerosols was analyzed by a thermal optical reflectance technique using IMPROVE protocol. The metal, inorganic ion and organic components of the aerosols were analyzed by X-ray Fluorescence (XRF), ion chromatography and gas chromatography-mass spectrometry, respectively. There was a great difference of chemical composition between forest fire and non-forest fire samples. Smoke aerosols for forest fires events were composed of ~ 45 % OC and ~ 2.5 % EC. On the other hand, background aerosols for baseline periods were

  7. BIOCOMPATIBLE FLUORESCENT MICROSPHERES: SAFE PARTICLES FOR MATERIAL PENETRATION STUDIES

    SciTech Connect

    Farquar, G; Leif, R

    2009-07-15

    Biocompatible polymers with hydrolyzable chemical bonds have been used to produce safe, non-toxic fluorescent microspheres for material penetration studies. The selection of polymeric materials depends on both biocompatibility and processability, with tailored fluorescent properties depending on specific applications. Microspheres are composed of USFDA-approved biodegradable polymers and non-toxic fluorophores and are therefore suitable for tests where human exposure is possible. Micropheres were produced which contain unique fluorophores to enable discrimination from background aerosol particles. Characteristics that affect dispersion and adhesion can be modified depending on use. Several different microsphere preparation methods are possible, including the use of a vibrating orifice aerosol generator (VOAG), a Sono-Tek atomizer, an emulsion technique, and inkjet printhead. Applications for the fluorescent microspheres include challenges for biodefense system testing, calibrants for biofluorescence sensors, and particles for air dispersion model validation studies.

  8. Aerosol processing of materials: Aerosol dynamics and microstructure evolution

    NASA Astrophysics Data System (ADS)

    Gurav, Abhijit Shankar

    Spray pyrolysis is an aerosol process commonly used to synthesize a wide variety of materials in powder or film forms including metals, metal oxides and non-oxide ceramics. It is capable of producing high purity, unagglomerated, and micrometer to submicron-size powders, and scale-up has been demonstrated. This dissertation deals with the study of aerosol dynamics during spray pyrolysis of multicomponent systems involving volatile phases/components, and aspects involved with using fuel additives during spray processes to break apart droplets and particles in order to produce powders with smaller sizes. The gas-phase aerosol dynamics and composition size distributions were measured during spray pyrolysis of (Bi, Pb)-Sr-Ca-Cu-O, and Sr-Ru-O and Bi-Ru-O at different temperatures. A differential mobility analyzer (DMA) was used in conjunction with a condensation particle counter (CPC) to monitor the gas-phase particle size distributions, and a Berner-type low-pressure impactor was used to obtain mass size distributions and size-classified samples for chemical analysis. (Bi, Pb)-Sr-Ca-Cu-O powders made at temperatures up to 700sp°C maintained their initial stoichiometry over the whole range of particle sizes monitored, however, those made at 800sp°C and above were heavily depleted in lead in the size range 0.5-5.0 mum. When the reactor temperature was raised from 700 and 800sp°C to 900sp°C, a large number ({˜}10sp7\\ #/cmsp3) of new ultrafine particles were formed from PbO vapor released from the particles and the reactor walls at the beginning of high temperature runs (at 900sp°C). The metal ruthenate systems showed generation of ultrafine particles (<40-50 nm) at the beginning of runs at 800-900sp°C and also as a steady state process at a reactor temperature of 1000sp°C. The methods of aerosol dynamics measurements were also used to monitor the gas-phase particle size distributions during the generation of fullerene (Csb{60}) nano-particles (30 to 50 nm size

  9. Aerosol characterization with lidar methods

    NASA Astrophysics Data System (ADS)

    Sugimoto, Nobuo; Nishizawa, Tomoaki; Shimizu, Atsushi; Matsui, Ichiro

    2014-08-01

    Aerosol component analysis methods for characterizing aerosols were developed for various types of lidars including polarization-sensitive Mie scattering lidars, multi-wavelength Raman scattering lidars, and multi-wavelength highspectral- resolution lidars. From the multi-parameter lidar data, the extinction coefficients for four aerosol components can be derived. The microphysical parameters such as single scattering albedo and effective radius can be also estimated from the derived aerosol component distributions.

  10. Mexico City Aerosol Transect

    NASA Astrophysics Data System (ADS)

    Lewandowski, P. A.; Eichinger, W. E.; Prueger, J.; Holder, H. L.

    2007-12-01

    A radiative impact study was conducted in Mexico City during MILAGRO/MIRAGE campaign in March of 2006. On a day when the predominant wind was from the north to the south, authors measured radiative properties of the atmosphere in six locations across the city ranging from the city center, through the city south limits and the pass leading out of the city (causing pollutants to funnel through the area). A large change in aerosol optical properties has been noticed. The aerosol optical depth has generally increased outside of the city and angstrom coefficient has changed significantly towards smaller values. Aerosol size distribution was calculated using SkyRadPack. The total optical depths allowed coincidental lidar data to calculate total extinction profiles for all the locations for 1064nm.

  11. Cantera Aerosol Dynamics Simulator

    SciTech Connect

    Moffat, Harry

    2004-09-01

    The Cantera Aerosol Dynamics Simulator (CADS) package is a general library for aerosol modeling to address aerosol general dynamics, including formation from gas phase reactions, surface chemistry (growth and oxidation), bulk particle chemistry, transport by Brownian diffusion, thermophoresis, and diffusiophoresis with linkage to DSMC studies, and thermal radiative transport. The library is based upon Cantera, a C++ Cal Tech code that handles gas phase species transport, reaction, and thermodynamics. The method uses a discontinuous galerkin formulation for the condensation and coagulation operator that conserves particles, elements, and enthalpy up to round-off error. Both O-D and 1-D time dependent applications have been developed with the library. Multiple species in the solid phase are handled as well. The O-D application, called Tdcads (Time Dependent CADS) is distributed with the library. Tdcads can address both constant volume and constant pressure adiabatic homogeneous problems. An extensive set of sample problems for Tdcads is also provided.

  12. Aerosol Angstrom Absorption Coefficient Comparisons during MILAGRO.

    NASA Astrophysics Data System (ADS)

    Marley, N. A.; Marchany-Rivera, A.; Kelley, K. L.; Mangu, A.; Gaffney, J. S.

    2007-12-01

    Measurements of aerosol absorption were obtained as part of the MAX-Mex component of the MILAGRO field campaign at site T0 (Instituto Mexicano de Petroleo in Mexico City) by using a 7-channel aethalometer (Thermo- Anderson) during the month of March, 2006. The absorption measurements obtained in the field at 370, 470, 520, 590, 660, 880, and 950 nm were used to determine the aerosol Angstrom absorption exponents by linear regression. Since, unlike other absorbing aerosol species (e.g. humic like substances, nitrated PAHs), black carbon absorption is relatively constant from the ultraviolet to the infrared with an Angstrom absorption exponent of -1 (1), a comparison of the Angstrom exponents can indicate the presence of aerosol components with an enhanced UV absorption over that expected from BC content alone. The Angstrom exponents determined from the aerosol absorption measurements obtained in the field varied from - 0.7 to - 1.3 during the study and was generally lower in the afternoon than the morning hours, indicating an increase in secondary aerosol formation and photochemically generated UV absorbing species in the afternoon. Twelve-hour integrated samples of fine atmospheric aerosols (<0.1micron) were also collected at site T0 and T1 (Universidad Technologica de Tecamac, State of Mexico) from 5 am to 5 pm (day) and from 5 pm to 5 am (night) during the month of March 2006. Samples were collected on quartz fiber filters with high volume impactor samplers. Continuous absorption spectra of these aerosol samples have been obtained in the laboratory from 280 to 900nm with the use of an integrating sphere coupled to a UV spectrometer (Beckman DU with a Labsphere accessory). The integrating sphere allows the detector to collect and spatially integrate the total radiant flux reflected from the sample and therefore allows for the measurement of absorption on highly reflective or diffusely scattering samples. These continuous spectra have also been used to obtain the

  13. MODIS Observation of Aerosols over Southern Africa During SAFARI 2000: Data, Validation, and Estimation of Aerosol Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Kaufman, Yoram; Remer, Lorraine; Chu, D. Allen; Mattoo, Shana; Tanre, Didier; Levy, Robert; Li, Rong-Rong; Kleidman, Richard; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Aerosol properties, including optical thickness and size parameters, are retrieved operationally from the MODIS sensor onboard the Terra satellite launched on 18 December 1999. The predominant aerosol type over the Southern African region is smoke, which is generated from biomass burning on land and transported over the southern Atlantic Ocean. The SAFARI-2000 period experienced smoke aerosol emissions from the regular biomass burning activities as well as from the prescribed burns administered on the auspices of the experiment. The MODIS Aerosol Science Team (MAST) formulates and implements strategies for the retrieval of aerosol products from MODIS, as well as for validating and analyzing them in order to estimate aerosol effects in the radiative forcing of climate as accurately as possible. These activities are carried out not only from a global perspective, but also with a focus on specific regions identified as having interesting characteristics, such as the biomass burning phenomenon in southern Africa and the associated smoke aerosol, particulate, and trace gas emissions. Indeed, the SAFARI-2000 aerosol measurements from the ground and from aircraft, along with MODIS, provide excellent data sources for a more intensive validation and a closer study of the aerosol characteristics over Southern Africa. The SAFARI-2000 ground-based measurements of aerosol optical thickness (AOT) from both the automatic Aerosol Robotic Network (AERONET) and handheld Sun photometers have been used to validate MODIS retrievals, based on a sophisticated spatio-temporal technique. The average global monthly distribution of aerosol from MODIS has been combined with other data to calculate the southern African aerosol daily averaged (24 hr) radiative forcing over the ocean for September 2000. It is estimated that on the average, for cloud free conditions over an area of 9 million square kin, this predominantly smoke aerosol exerts a forcing of -30 W/square m C lose to the terrestrial

  14. Indian aerosols: present status.

    PubMed

    Mitra, A P; Sharma, C

    2002-12-01

    This article presents the status of aerosols in India based on the research activities undertaken during last few decades in this region. Programs, like International Geophysical Year (IGY), Monsoon Experiment (MONEX), Indian Middle Atmospheric Program (IMAP) and recently conducted Indian Ocean Experiment (INDOEX), have thrown new lights on the role of aerosols in global change. INDOEX has proved that the effects of aerosols are no longer confined to the local levels but extend at regional as well as global scales due to occurrence of long range transportation of aerosols from source regions along with wind trajectories. The loading of aerosols in the atmosphere is on rising due to energy intensive activities for developmental processes and other anthropogenic activities. One of the significant observation of INDOEX is the presence of high concentrations of carbonaceous aerosols in the near persistent winter time haze layer over tropical Indian Ocean which have probably been emitted from the burning of fossil-fuels and biofuels in the source region. These have significant bearing on the radiative forcing in the region and, therefore, have potential to alter monsoon and hydrological cycles. In general, the SPM concentrations have been found to be on higher sides in ambient atmosphere in many Indian cities but the NOx concentrations have been found to be on lower side. Even in the haze layer over Indian Ocean and surrounding areas, the NOx concentrations have been reported to be low which is not conducive of O3 formation in the haze/smog layer. The acid rain problem does not seem to exist at the moment in India because of the presence of neutralizing soil dust in the atmosphere. But the high particulate concentrations in most of the cities' atmosphere in India are of concern as it can cause deteriorated health conditions. PMID:12492171

  15. GENERATION OF FUMES SIMULATING PARTICULATE AIR POLLUTANTS

    EPA Science Inventory

    The report describes techniques developed for generating large quantities of reproducible, stable, inorganic, fine-particle aerosol fumes. These fumes simulated particulate air pollutants emitted from power generation, basic oxygen furnaces, electric arc furnaces, and zinc smelti...

  16. Influence of Aerosol Acidity on the Chemical Composition of Secondary Organic Aerosol from β-caryophyllene

    NASA Astrophysics Data System (ADS)

    Chan, M.; Surratt, J. D.; Chan, A. W.; Schlling, K.; Offenberg, J. H.; Lewandowski, M.; Edney, E.; Kleindienst, T. E.; Jaoui, M.; Edgerton, E. S.; Tanner, R. L.; Shaw, S. L.; Zheng, M.; Knipping, E. M.; Seinfeld, J.

    2011-12-01

    The secondary organic aerosol (SOA) yield of β-caryophyllene photooxidation is enhanced by aerosol acidity. In the present study, the influence of aerosol acidity on the chemical composition of β-caryophyllene SOA is investigated using ultra performance liquid chromatography/electrospray ionization-time-of-flight mass spectrometry (UPLC/ESI- TOFMS). A number of first- , second- and higher-generation gas-phase products having carbonyl and carboxylic acid functional groups are detected in the particle phase. Particle-phase reaction products formed via hydration and organosulfate formation processes are also detected. Increased acidity leads to different effects on the abundance of individual products; significantly, abundances of organosulfates are correlated with aerosol acidity. The increase of certain particle-phase reaction products with increased acidity provides chemical evidence to support the acid-enhanced SOA yields. Based on the agreement between the chromatographic retention times and accurate mass measurements of chamber and field samples, three β-caryophyllene products (i.e., β-nocaryophyllon aldehyde, β-hydroxynocaryophyllon aldehyde, and β-dihydroxynocaryophyllon aldehyde) are suggested as chemical tracers for β-caryophyllene SOA. These compounds are detected in both day and night ambient samples collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS).

  17. Influence of aerosol acidity on the chemical composition of secondary organic aerosol from β-caryophyllene

    NASA Astrophysics Data System (ADS)

    Chan, M. N.; Surratt, J. D.; Chan, A. W. H.; Schilling, K.; Offenberg, J. H.; Lewandowski, M.; Edney, E. O.; Kleindienst, T. E.; Jaoui, M.; Edgerton, E. S.; Tanner, R. L.; Shaw, S. L.; Zheng, M.; Knipping, E. M.; Seinfeld, J. H.

    2011-02-01

    The secondary organic aerosol (SOA) yield of β-caryophyllene photooxidation is enhanced by aerosol acidity. In the present study, the influence of aerosol acidity on the chemical composition of β-caryophyllene SOA is investigated using ultra performance liquid chromatography/electrospray ionization-time-of-flight mass spectrometry (UPLC/ESI-TOFMS). A number of first-, second- and higher-generation gas-phase products having carbonyl and carboxylic acid functional groups are detected in the particle phase. Particle-phase reaction products formed via hydration and organosulfate formation processes are also detected. Increased acidity leads to different effects on the abundance of individual products; significantly, abundances of organosulfates are correlated with aerosol acidity. To our knowledge, this is the first detection of organosulfates and nitrated organosulfates derived from a sesquiterpene. The increase of certain particle-phase reaction products with increased acidity provides chemical evidence to support the acid-enhanced SOA yields. Based on the agreement between the chromatographic retention times and accurate mass measurements of chamber and field samples, three β-caryophyllene products (i.e., β-nocaryophyllon aldehyde, β-hydroxynocaryophyllon aldehyde, and β-dihydroxynocaryophyllon aldehyde) are suggested as chemical tracers for β-caryophyllene SOA. These compounds are detected in both day and night ambient samples collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS).

  18. Influence of aerosol acidity on the chemical composition of Secondary Organic Aerosol from β-caryophyllene

    NASA Astrophysics Data System (ADS)

    Chan, M. N.; Surratt, J. D.; Chan, A. W. H.; Schilling, K.; Offenberg, J. H.; Lewandowski, M.; Edney, E. O.; Kleindienst, T. E.; Jaoui, M.; Edgerton, E. S.; Tanner, R. L.; Shaw, S. L.; Zheng, M.; Knipping, E. M.; Seinfeld, J. H.

    2010-11-01

    The secondary organic aerosol (SOA) yield of β-caryophyllene photooxidation is enhanced by aerosol acidity. In the present study, the influence of aerosol acidity on the chemical composition of β-caryophyllene SOA is investigated using ultra performance liquid chromatography/electrospray ionization-time-of-flight mass spectrometry (UPLC/ESI-TOFMS). A number of first-, second- and higher-generation gas-phase products having carbonyl and carboxylic acid functional groups are detected in the particle phase. Particle-phase reaction products formed via hydration and organosulfate formation processes are also detected. Increase of acidity leads to different effects on the abundance of individual products; significantly, abundances of organosulfates are correlated with aerosol acidity. To our knowledge, this is the first detection of organosulfates and nitrated organosulfates derived from a sesquiterpene. The increase of certain particle-phase reaction products with increased acidity provides chemical evidence to support the acid-enhanced SOA yields. Based on the agreement between the chromatographic retention times and accurate mass measurements of chamber and field samples, three β-caryophyllene products (i.e., β-nocaryophyllon aldehyde, β-hydroxynocaryophyllon aldehyde, and β-dihydroxynocaryophyllon aldehyde) are identified as chemical tracers for β-caryophyllene SOA. These compounds are detected in both day and night ambient samples collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS).

  19. Chamber for Aerosol Deposition of Bioparticles

    NASA Technical Reports Server (NTRS)

    Kern, Roger; Kirschner, Larry

    2008-01-01

    Laboratory apparatus is depicted that is a chamber for aerosol deposition of bioparticles on surfaces of test coupons. It is designed for primary use in inoculating both flat and three-dimensional objects with approximately reproducible, uniform dispersions of bacterial spores of the genus Bacillus so that the objects could be used as standards for removal of the spores by quantitative surface sampling and/or cleaning processes. The apparatus is also designed for deposition of particles other than bacterial spores, including fungal spores, viruses, bacteriophages, and standard micron-sized beads. The novelty of the apparatus lies in the combination of a controllable nebulization system with a settling chamber large enough to contain a significant number of test coupons. Several companies market other nebulizer systems, but none are known to include chambers for deposition of bioparticles to mimic the natural fallout of bioparticles. The nebulization system is an expanded and improved version of commercially available aerosol generators that include nebulizers and drying columns. In comparison with a typical commercial aerosol generator, this system includes additional, higher-resolution flowmeters and an additional pressure regulator. Also, unlike a typical commercial aerosol generator, it includes stopcocks for separately controlling flows of gases to the nebulizer and drying column. To maximize the degree of uniformity of dispersion of bioaerosol, the chamber is shaped as an axisymmetrical cylinder and the aerosol generator is positioned centrally within the chamber and aimed upward like a fountain. In order to minimize electric charge associated with the aerosol particles, the drying column is made of aluminum, the drying column is in direct contact with an aluminum base plate, and three equally spaced Po-210 antistatic strips are located at the exit end of the drying column. The sides and top of the chamber are made of an acrylic polymer; to prevent

  20. On the relationship between aerosol model uncertainty and radiative forcing uncertainty

    NASA Astrophysics Data System (ADS)

    Lee, Lindsay A.; Reddington, Carly L.; Carslaw, Kenneth S.

    2016-05-01

    The largest uncertainty in the historical radiative forcing of climate is caused by the interaction of aerosols with clouds. Historical forcing is not a directly measurable quantity, so reliable assessments depend on the development of global models of aerosols and clouds that are well constrained by observations. However, there has been no systematic assessment of how reduction in the uncertainty of global aerosol models will feed through to the uncertainty in the predicted forcing. We use a global model perturbed parameter ensemble to show that tight observational constraint of aerosol concentrations in the model has a relatively small effect on the aerosol-related uncertainty in the calculated forcing between preindustrial and present-day periods. One factor is the low sensitivity of present-day aerosol to natural emissions that determine the preindustrial aerosol state. However, the major cause of the weak constraint is that the full uncertainty space of the model generates a large number of model variants that are equally acceptable compared to present-day aerosol observations. The narrow range of aerosol concentrations in the observationally constrained model gives the impression of low aerosol model uncertainty. However, these multiple “equifinal” models predict a wide range of forcings. To make progress, we need to develop a much deeper understanding of model uncertainty and ways to use observations to constrain it. Equifinality in the aerosol model means that tuning of a small number of model processes to achieve model‑observation agreement could give a misleading impression of model robustness.

  1. On the relationship between aerosol model uncertainty and radiative forcing uncertainty.

    PubMed

    Lee, Lindsay A; Reddington, Carly L; Carslaw, Kenneth S

    2016-05-24

    The largest uncertainty in the historical radiative forcing of climate is caused by the interaction of aerosols with clouds. Historical forcing is not a directly measurable quantity, so reliable assessments depend on the development of global models of aerosols and clouds that are well constrained by observations. However, there has been no systematic assessment of how reduction in the uncertainty of global aerosol models will feed through to the uncertainty in the predicted forcing. We use a global model perturbed parameter ensemble to show that tight observational constraint of aerosol concentrations in the model has a relatively small effect on the aerosol-related uncertainty in the calculated forcing between preindustrial and present-day periods. One factor is the low sensitivity of present-day aerosol to natural emissions that determine the preindustrial aerosol state. However, the major cause of the weak constraint is that the full uncertainty space of the model generates a large number of model variants that are equally acceptable compared to present-day aerosol observations. The narrow range of aerosol concentrations in the observationally constrained model gives the impression of low aerosol model uncertainty. However, these multiple "equifinal" models predict a wide range of forcings. To make progress, we need to develop a much deeper understanding of model uncertainty and ways to use observations to constrain it. Equifinality in the aerosol model means that tuning of a small number of model processes to achieve model-observation agreement could give a misleading impression of model robustness. PMID:26848136

  2. On the relationship between aerosol model uncertainty and radiative forcing uncertainty

    PubMed Central

    Reddington, Carly L.; Carslaw, Kenneth S.

    2016-01-01

    The largest uncertainty in the historical radiative forcing of climate is caused by the interaction of aerosols with clouds. Historical forcing is not a directly measurable quantity, so reliable assessments depend on the development of global models of aerosols and clouds that are well constrained by observations. However, there has been no systematic assessment of how reduction in the uncertainty of global aerosol models will feed through to the uncertainty in the predicted forcing. We use a global model perturbed parameter ensemble to show that tight observational constraint of aerosol concentrations in the model has a relatively small effect on the aerosol-related uncertainty in the calculated forcing between preindustrial and present-day periods. One factor is the low sensitivity of present-day aerosol to natural emissions that determine the preindustrial aerosol state. However, the major cause of the weak constraint is that the full uncertainty space of the model generates a large number of model variants that are equally acceptable compared to present-day aerosol observations. The narrow range of aerosol concentrations in the observationally constrained model gives the impression of low aerosol model uncertainty. However, these multiple “equifinal” models predict a wide range of forcings. To make progress, we need to develop a much deeper understanding of model uncertainty and ways to use observations to constrain it. Equifinality in the aerosol model means that tuning of a small number of model processes to achieve model−observation agreement could give a misleading impression of model robustness. PMID:26848136

  3. Development, Validation, and Potential Enhancements to the Second-Generation Operational Aerosol Product at the National Environmental Satellite, Data, and Information Service of the National Oceanic and Atmospheric Administration

    NASA Technical Reports Server (NTRS)

    Stowe, Larry L.; Ignatov, Alexander M.; Singh, Ramdas R.

    1997-01-01

    A revised (phase 2) single-channel algorithm for aerosol optical thickness, tau(sup A)(sub SAT), retrieval over oceans from radiances in channel 1 (0.63 microns) of the Advanced Very High Resolution Radiometer (AVHRR) has been implemented at the National Oceanic and Atmospheric Administration's National Environmental Satellite Data and Information Service for the NOAA 14 satellite launched December 30, 1994. It is based on careful validation of its operational predecessor (phase 1 algorithm), implemented for NOAA 14 in 1989. Both algorithms scale the upward satellite radiances in cloud-free conditions to aerosol optical thickness using an updated radiative transfer model of the ocean and atmosphere. Application of the phase 2 algorithm to three matchup Sun-photometer and satellite data sets, one with NOAA 9 in 1988 and two with NOAA 11 in 1989 and 1991, respectively, show systematic error is less than 10%, with a random error of sigma(sub tau) approx. equal 0.04. First results of tau(sup A)(sub SAT) retrievals from NOAA 14 using the phase 2 algorithm, and from checking its internal consistency, are presented. The potential two-channel (phase 3) algorithm for the retrieval of an aerosol size parameter, such as the Junge size distribution exponent, by adding either channel 2 (0.83 microns) from the current AVHRR instrument, or a 1.6-microns channel to be available on the Tropical Rainfall Measurement Mission and the NOAA-KLM satellites by 1997 is under investigation. The possibility of using this additional information in the retrieval of a more accurate estimate of aerosol optical thickness is being explored.

  4. The Cell Membrane as a Major Site of Damage during Aerosolization of Escherichia coli▿

    PubMed Central

    Thomas, Richard J.; Webber, Daniel; Hopkins, Rebecca; Frost, Andrew; Laws, Thomas; Jayasekera, Pramukh N.; Atkins, Timothy

    2011-01-01

    This study aimed to provide data on the survival and site of damage of Escherichia coli cells following aerosolization using two different techniques, nebulization and flow focusing. Four metabolic stains were assessed for their ability to detect respiratory activities and membrane homeostasis in aerosolized E. coli cells. The degree of sublethal injury increased significantly over the 10-min period of aerosolization in E. coli cells aerosolized by using the Collison nebulizer, reaching up to 99.9% of the population. In contrast, a significantly lower proportion of the population was sublethally damaged during aerosolization using the flow-focusing aerosol generator (FFAG). Concomitantly, loss of membrane homeostasis increased at a higher rate in nebulized cells (68 to 71%) than in those aerosolized by using the FFAG (32 to 34%). The activities of respiratory enzymes decreased at increased rates in nebulized cells (27 to 37%) compared to the rates of decrease in cells aerosolized by using the FFAG (59 to 61%). The results indicate that the physiology of an aerosolized bacterium is linked to the method of aerosol generation and may affect the interpretation of a range of aerobiological phenomenon. PMID:21148696

  5. Aerosol sensing technologies in the mining industry

    NASA Astrophysics Data System (ADS)

    Janisko, Samuel J.; Noll, James D.; Cauda, Emanuele E.

    2011-06-01

    Recent health, safety and environmental regulations are causing an increased demand for monitoring of aerosols in the mining industry. Of particular concern are airborne concentrations of combustible and toxic rock dusts as well as particulate matter generated from diesel engines in underground mines. In response, the National Institute for Occupational Safety and Health (NIOSH) has been evaluating a number of real time sensing technologies for potential use in underground mines. In particular, extensive evaluation has been done on filter-based light extinction using elemental carbon (EC) as a surrogate measurement of total diesel particulate matter (DPM) mass concentration as well as mechanical tapered element oscillating microbalance (TEOM) technology for measurement of both DPM and rock dust mass concentrations. Although these technologies are promising in their ability to accurately measure mine aerosols for their respective applications, there are opportunities for design improvements or alternative technologies that may significantly enhance the monitoring of mine aerosols. Such alterations can lead to increases in sensitivity or a reduction in the size and cost of these devices. This paper provides a brief overview of current practices and presents results of NIOSH research in this area. It concludes with a short discussion of future directions in mine aerosol sensing research.

  6. Study of fifteen respirable aerosol samplers used in occupational hygiene.

    PubMed

    Görner, P; Wrobel, R; Micka, V; Skoda, V; Denis, J; Fabriès, J F

    2001-01-01

    European and international standards lay down criteria for the size-selective aerosol sampling in occupational hygiene. Aerosol samplers are supposed to match these target sampling criteria. This study focused on 15 aerosol samplers used to sample the conventional respirable fraction. An aerodynamic particle sizer (APS) method was used to measure the sampling efficiency of the samplers in a low-velocity wind tunnel. Polydisperse coal dust was generated as the test aerosol. The data were fitted by an appropriate mathematical model. For some instruments the results show serious deviations from the conventional target curve, whereas other devices meet the convention quite well. The flow rate of certain cyclone-separator-based instruments was optimized to adjust their sampling efficiency. The mass concentration bias and accuracy of the samplers were calculated for a number of ranges of particle size distributions of aerosols commonly found in industrial workplaces. Finally, the performance of each sampler was evaluated using bias and accuracy maps. Most of these samplers are suitable for sampling the CEN-ISO-ACGIH respirable fraction of aerosols, but several require modification of the flow rate. For real industrial situations, the rough knowledge of the aerosol size distribution can guide the choice of an appropriate sampling technique. PMID:11137698

  7. Particle size distributions of several commonly used seeding aerosols

    NASA Technical Reports Server (NTRS)

    Crosswy, F. L.

    1985-01-01

    During the course of experimentation, no solid particle powder could be found which produced an aerosol with a narrow particle size distribution when fluidization was the only flow process used in producing the aerosol. The complication of adding particle size fractionation processes to the aerosol generation effort appears to be avoidable. In this regard, a simple sonic orifice is found to be effective in reducing the percentage of agglomerates in the several metal oxide powders tested. Marginally beneficial results are obtained for a 0.5/99.5 percent by weight mixture of the flow agent and metal oxide powder. However, agglomeration is observed to be enhanced when the flow agent percentage is increased to 5 percent. Liquid atomization using the Collison nebulizer as well as a version of the Laskin nozzle resulted in polydispersed aerosols with particle size distributions heavily weighted by the small particle end of the size spectrum. The aerosol particle size distributions produced by the vaporization/condensation seeder are closer to the ideal monodispersed aerosol than any of the other aerosols tested. In addition, this seeding approach affords a measure of control over particle size and particle production rate.

  8. Global Aerosol Profiling by Orbital Lidar, GLAS Results and Validation

    NASA Technical Reports Server (NTRS)

    Spinhirne, J. D.; Palm, S. P.; Hlavka, D. L.; Hart, W. D.; Mahesh, A.; Welton, E. J.

    2004-01-01

    The Geoscience Laser Altimeter System (GLAS) launched in 2003 is the first polar orbiting satellite lidar. The instrument was designed for high performance observations of the distribution and optical scattering cross sections of clouds and aerosol. GLAS is approaching six months of on orbit data operation. These data from thousands of orbits illustrate the ability of space lidar to accurately and dramatically measure the height distribution of global aerosol to an unprecedented degree. There were many intended science applications of the GLAS data and significant results have already been realized, profiling is a fundamentally new measurement from space with multiple applications. A most important aerosol application is providing input to global aerosol generation transport models. Another is improved measurement of aerosol optical depth. A main approach to verify the aerosol optical depth retrieval is comparison to surface measurements by Aeronet. A special feature of the GLAS satellite bus is to rapidly point the lidar instrument at off nadir targets with less than 100 m accuracy. About a dozen selected Aeronet sites were pointed at whenever the GLAS lidar came within 5 degrees of zenith. These plus a more general comparison to nearby sites support the GLAS data product values. In addition the GLAS data can be used to add vertical distribution information to Aeronet aerosol measurements. As an EOS project instrument, GLAS data products are openly available to the science community. First year results from GLAS are summarized.

  9. Global Aerosol Profiling by Orbital Lidar, GLAS Results and Validation

    NASA Technical Reports Server (NTRS)

    Spinhirne, J. D.; Palm, S. P.; Hlavka, D. L.; Hart, W. D.; Mahesh, A.; Welton, E. J.

    2004-01-01

    The Geoscience Laser Altimeter System (GLAS) launched in 2003 is the first polar orbiting satellite lidar. The instrument was designed for high performance observations of the distribution and optical scattering cross sections of clouds and aerosol. GLAS is approaching six months of on orbit data operation. These data from thousands of orbits illustrate the ability of space lidar to accurately and dramatically measure the height distribution of global aerosol to an unprecedented degree. There were many intended science applications of the GLAS data and significant results have already been realized. profiling is a fundamentally new measurement from space with multiple applications. A most important aerosol application is providing input to global aerosol generation and transport models. Another is improved measurement of aerosol optical depth. A main approach to verify the aerosol optical depth retrieval is comparison to surface measurements by Aeronet. A special feature of the GLAS satellite bus is to rapidly point the lidar instrument at off nadir targets with less than 100 m accuracy. About a dozen selected Aeronet sites were pointed at whenever the G U S lidar came within 5 degrees of zenith. These plus a more general comparison to nearby sites support the G U S data product values. In addition the GUS data can be used to add vertical distribution information to Aeronet aerosol measurements.. As an EOS project instrument, GLAS data products are openly available to the science community. First year results from G U S are summarized.

  10. MAPTIP experiment, marine aerosol properties and thermal imager performance

    SciTech Connect

    Eijk, A.M.J. van; Leeuw, G. de; Jensen, D.R.

    1994-12-31

    During the fall of 1993, a field experimental study on Marine Aerosol Properties and Thermal Imager Performance (MAPTIP) was conducted in the Dutch coastal waters. The objectives of the MAPTIP trial were: (1) to improve and validate vertical marine aerosol models by providing an extensive set of aerosol and meteorological measurements, within a coastal environment, at different altitudes and for a range of meteorological conditions; (2) to make aerosol and meteorological observations in the first 10 m above the ocean surface with a view to extending existing aerosol models to incorporate near-surface effects; (3) to assess marine boundary layer effects on thermal imaging systems. Aerosol and meteorological instruments, as well as thermal imagers and calibrated targets, were used at several platforms and locations. Measurements have been made of atmospheric turbulence and refractivity effects at wavelengths in the IR and visible, to assess the marine boundary layer effects on the degradation of thermal images. Calibrated targets at different altitudes were observed to the maximum observable range under a wide variety of conditions in both the 3--5 and 8--12 gm bands, These data will be used for the development and validation of IRST models and IR ship signature models with the view of determining the effects of marine-generated aerosols, turbulence and meteorological profiles on their performance.

  11. Molecular transformations accompanying the aging of laboratory secondary organic aerosol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aging of fresh secondary organic aerosol, generated by alpha-pinene ozonolysis in a flow tube reactor, was studied by passing it through a second reaction chamber where hydroxyl radicals were generated. Two types of experiments were performed: plug injection experiments where the particle mass a...

  12. Geometrical Optics of Dense Aerosols

    SciTech Connect

    Hay, Michael J.; Valeo, Ernest J.; Fisch, Nathaniel J.

    2013-04-24

    Assembling a free-standing, sharp-edged slab of homogeneous material that is much denser than gas, but much more rare ed than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed fi eld, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the nite particle density reduces the eff ective Stokes number of the flow, a critical result for controlled focusing. __________________________________________________

  13. Uncertainties of aerosol retrieval from neglecting non-sphericity of dust aerosols

    NASA Astrophysics Data System (ADS)

    Li, Chi; Xue, Yong; Yang, Leiku; Guang, Jie

    2013-04-01

    The Mie theory is conventionally applied to calculate aerosol optical properties in satellite remote sensing applications, while dust aerosols cannot be well modeled by the Mie calculation for their non-sphericity. It has been cited in Mishchenko et al. (1995; 1997) that neglecting non-sphericity can severely influence aerosol optical depth (AOD, ?) retrieval in case of dust aerosols because of large difference of phase functions under spherical and non-spherical assumptions, whereas this uncertainty has not been thoroughly studied. This paper aims at a better understanding of uncertainties on AOD retrieval caused by aerosol non-sphericity. A dust aerosol model with known refractive index and size distribution is generated from long-term AERONET observations since 1999 over China. Then aerosol optical properties, such as the extinction, phase function, single scattering albedo (SSA) are calculated respectively in the assumption of spherical and non-spherical aerosols. Mie calculation is carried out for spherical assumption, meanwhile for non-spherical aerosol modeling, we adopt the pre-calculated scattering kernels and software package presented by Dubovik et al. (2002; 2006), which describes dust as a shape mixture of randomly oriented polydisperse spheroids. Consequently we generate two lookup tables (LUTspheric and LUTspheroid) from simulated satellite received reflectance at top of atmosphere (TOA) under varieties of observing conditions and aerosol loadings using Second Simulation of a Satellite Signal in the Solar Spectrum - Vector (6SV) code. All the simulations are made at 550 nm, and for simplicity the Lambertian surface is assumed. Using the obtained LUTs we examine the differences of TOA reflectance (Δ?TOA = ?spheric - ?spheroid) under different surface reflectance and aerosol loadings. Afterwards AOD is retrieved using LUTspheric from the simulated TOA reflectance by LUTspheroid in order to detect the retrieval errors (Δ? = ?retreived -?input) induced

  14. New algorithm to derive the microphysical properties of the aerosols from lidar measurements using OPAC aerosol classification schemes

    NASA Astrophysics Data System (ADS)

    Talianu, Camelia; Labzovskii, Lev; Toanca, Florica

    2014-05-01

    This paper presents a new method to retrieve the aerosol complex refractive index and effective radius from multiwavelength lidar data, using an integrated model-measurement approach. In the model, aerosols are assumed to be a non-spherical ensemble of internally mixed components, with variable proportions. OPAC classification schemes and basic components are used to calculate the microphysical properties, which are then fed into the T-matrix calculation code to generate the corresponding optical parameters. Aerosol intensive parameters (lidar ratios, extinction and backscatter Angstrom coefficients, and linear particle depolarization ratios) are computed at the altitude of the aerosol layers determined from lidar measurements, and iteratively compared to the values obtained by simulation for a certain aerosol type, for which the critical component's proportion in the overall mixture is varied. Microphysical inversion based on the Truncated Singular Value Decomposition (TSVD) algorithm is performed for selected cases of spherical aerosols, and comparative results of the two methods are shown. Keywords: Lidar, aerosols, Data inversion, Optical parameters, Complex Refractive Index Acknowledgments: This work has been supported by grants of the Romanian National Authority for Scientific Research, Programme for Research- Space Technology and Advanced Research - STAR, project numbers 38/2012 - CAPESA and 55/2013 - CARESSE, and by the European Community's FP7-INFRASTRUCTURES-2010-1 under grant no. 262254 - ACTRIS and by the European Community's FP7-PEOPLE-2011-ITN under grant no. 289923 - ITARS

  15. ACID AEROSOL MEASUREMENT WORKSHOP

    EPA Science Inventory

    This report documents the discussion and results of the U.S. EPA Acid Aerosol Measurement Workshop, conducted February 1-3, 1989, in Research Triangle Park, North Carolina. t was held in response to recommendations by the Clean Air Scientific Advisory Committee (CASAC) regarding ...

  16. EXPOSURES TO ACIDIC AEROSOLS

    EPA Science Inventory

    Ambient monitoring of acid aerosol in four U.S. cities and in a rural region of southern Ontario clearly show distinct periods of strong acidity. easurements made in Kingston, TN, and Stuebenville, OH, resulted in 24-hr H+ ion concentrations exceeding 100 nmole/m3 more than 10 ti...

  17. FORMATION OF PHOTOCHEMICAL AEROSOLS

    EPA Science Inventory

    The objective was to develop a better understanding of smog aerosol formation with particular reference to haze in the Southern California area. This study combined laboratory work with ambient air studies. Counting of particles by light scattering was the principle physical tech...

  18. LMFBR source term experiments in the Fuel Aerosol Simulant Test (FAST) facility

    SciTech Connect

    Petrykowski, J.C.; Longest, A.W.

    1985-01-01

    The transport of uranium dioxide (UO/sub 2/) aerosol through liquid sodium was studied in a series of ten experiments in the Fuel Aerosol Simulant Test (FAST) facility at Oak Ridge National Laboratory (ORNL). The experiments were designed to provide a mechanistic basis for evaluating the radiological source term associated with a postulated, energetic core disruptive accident (CDA) in a liquid metal fast breeder reactor (LMFBR). Aerosol was generated by capacitor discharge vaporization of UO/sub 2/ pellets which were submerged in a sodium pool under an argon cover gas. Measurements of the pool and cover gas pressures were used to study the transport of aerosol contained by vapor bubbles within the pool. Samples of cover gas were filtered to determine the quantity of aerosol released from the pool. The depth at which the aerosol was generated was found to be the most critical parameter affecting release. The largest release was observed in the baseline experiment where the sample was vaporized above the sodium pool. In the nine ''undersodium'' experiments aerosol was generated beneath the surface of the pool at depths varying from 30 to 1060 mm. The mass of aerosol released from the pool was found to be a very small fraction of the original specimen. It appears that the bulk of aerosol was contained by bubbles which collapsed within the pool. 18 refs., 11 figs., 4 tabs.

  19. Assimilation of Aerosols from Biomass Burning by the Radiative Transfer Model Brasil-Sr

    NASA Astrophysics Data System (ADS)

    Costa, R. S.; Gonçalves, A. R.; Souza, J. G.; Martins, F. R.; Pereira, E. B.

    2015-12-01

    The radiative transfer model BRASIL-SR is the main tool used by the Earth System Science Centre from the National Institute for Space Research (CCST / INPE) for solar energy resource assessment. Due to large and frequent events of burning biomass in Brazil there is a need to improve the aerosol representation in this model, mainly during the dry season (September - November) in Northern and Central Brazil. The standard aerosol representation in this model is inadequate to capture these events. It is based on the mean monthly climatological horizontal visibility with latitudinal values based on coarse global observation data. To improve the aerosol representation, climatological data of daily horizontal visibility from National Institute of Meteorology (INMET) was used to generate monthly averages from 1999 to 2012. To do a better representation of aerosols from burning biomass events, from megacities aerosol generation, and from transport processes, horizontal visibility estimates performed using aerosol optical thickness at 550 nm data from MACC Project Reanalysis model were used to adjust the aerosol representation in regions were the simple horizontal visibility fails. A methodology to generate these new visibility data from the Reanalysis was made and the resulting data was compared with the average horizontal visibility to implement a new corrected database. The solar irradiation simulated by the model using this new aerosol representation proved to be better than the previous version of the model in all regions with high aerosol loading.

  20. FTIR Analysis of Functional Groups in Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Shokri, S. M.; McKenzie, G.; Dransfield, T. J.

    2012-12-01

    Secondary organic aerosols (SOA) are suspensions of particulate matter composed of compounds formed from chemical reactions of organic species in the atmosphere. Atmospheric particulate matter can have impacts on climate, the environment and human health. Standardized techniques to analyze the characteristics and composition of complex secondary organic aerosols are necessary to further investigate the formation of SOA and provide a better understanding of the reaction pathways of organic species in the atmosphere. While Aerosol Mass Spectrometry (AMS) can provide detailed information about the elemental composition of a sample, it reveals little about the chemical moieties which make up the particles. This work probes aerosol particles deposited on Teflon filters using FTIR, based on the protocols of Russell, et al. (Journal of Geophysical Research - Atmospheres, 114, 2009) and the spectral fitting algorithm of Takahama, et al (submitted, 2012). To validate the necessary calibration curves for the analysis of complex samples, primary aerosols of key compounds (e.g., citric acid, ammonium sulfate, sodium benzoate) were generated, and the accumulated masses of the aerosol samples were related to their IR absorption intensity. These validated calibration curves were then used to classify and quantify functional groups in SOA samples generated in chamber studies by MIT's Kroll group. The fitting algorithm currently quantifies the following functionalities: alcohols, alkanes, alkenes, amines, aromatics, carbonyls and carboxylic acids.

  1. Rethinking organic aerosols: semivolatile emissions and photochemical aging.

    PubMed

    Robinson, Allen L; Donahue, Neil M; Shrivastava, Manish K; Weitkamp, Emily A; Sage, Amy M; Grieshop, Andrew P; Lane, Timothy E; Pierce, Jeffrey R; Pandis, Spyros N

    2007-03-01

    Most primary organic-particulate emissions are semivolatile; thus, they partially evaporate with atmospheric dilution, creating substantial amounts of low-volatility gas-phase material. Laboratory experiments show that photo-oxidation of diesel emissions rapidly generates organic aerosol, greatly exceeding the contribution from known secondary organic-aerosol precursors. We attribute this unexplained secondary organic-aerosol production to the oxidation of low-volatility gas-phase species. Accounting for partitioning and photochemical processing of primary emissions creates a more regionally distributed aerosol and brings model predictions into better agreement with observations. Controlling organic particulate-matter concentrations will require substantial changes in the approaches that are currently used to measure and regulate emissions. PMID:17332409

  2. Development of synthetic GOES-R ABI aerosol products

    NASA Astrophysics Data System (ADS)

    Hoff, R. M.; Kondragunta, S.; Ciren, P.; Xu, C.; Zhang, H.; Huff, A.

    2014-09-01

    An Observing Systems Simulation Experiment (OSSE) for GOES-R Advanced Baseline Imager (ABI) aerosol products has been carried out. The generation of simulated data involves prediction of aerosol chemical composition fields at one-hour resolution and 12 km × 12 km spacing. These data are then fed to a radiative transfer model to simulate the on-orbit radiances that the GOES-R ABI will see in six channels. This allows the ABI aerosol algorithm to be tested to produce products that will be available after launch. In cooperation with a user group of 40+ state and local air quality forecasters, the system has been tested in real-time experiments where the results mimic what the forecasters will see after 2016 when GOES-R launches. Feedback from this group has allowed refinement of the web display system for the ABI aerosol products and has creatively called for new products that were not envisaged by the satellite team.

  3. Interpretation of Aerosol Optical and Morphological Properties during the Carbonaceous Aerosols and Radiative Effects Study in Sacramento, June 2010

    NASA Astrophysics Data System (ADS)

    Gorkowski, K.; Mazzoleni, C.; China, S.; Sharma, N.; Flowers, B. A.; Dubey, M. K.; Gyawali, M. S.; Arnott, W. P.; Zaveri, R. A.

    2010-12-01

    The Sacramento Carbonaceous Aerosols and Radiative Effects Study (CARES) utilized two ground sites T0 and T1 along with an aircraft platform to characterize carbonaceous aerosol chemical and physical properties and their evolution. The T0 site was chosen within the Sacramento metropolitan area for measuring primary and secondary aerosols generated in the city. The T1 site was chosen East of Sacramento on the Sierra foothill to study the evolution and processing of the Sacramento aerosol plume and to assess the characteristics of the background air. To reach T1, the Sacramento aerosols traveled often over the Blodgett Forest resulting in significant aging due coagulation, condensation, and photochemical processes. The ground sites were chosen for this unique and reoccurring transport pattern of the aerosols. The campaign took place in June 2010. Six Integrated Photoacoustic/Nephelometer Spectrometers (IPNSs) were installed at the sites to simultaneously record aerosol light scattering and absorption data. The optical properties of the aerosols were measured at 355nm (ultraviolet), 375nm (ultraviolet), 405nm (blue), 532nm (green), and 781nm (red). In conjugation with the IPNSs, aerosol filters for electron microscopy analysis were collected at each site; these were examined using a field emission scanning electron microscope to study the aerosol morphology. The origins of the air masses did vary daily, but a few general trends emerged. The processing of the IPNS data with a wavelet denoising technique greatly enhanced the signal to noise ratio of the measurements enabling a better understanding of the aerosol optical properties for various airmasses with different characteristics. Typically signals at both sites were lower than expected, however the processed signals from T0 clearly showed a daily rise and dilution of the Sacramento plume. Using the processed signals from both sites the transportation of the Sacramento plume was detectable. The IPNS data were

  4. Amazon basin ozone and aerosol: Wet season observations

    SciTech Connect

    Gregory, G.L.; Browell, E.V.; Warren, L.S.; Hudgins, C.H. )

    1990-09-20

    The tropical environment is recognized as having a major impact on global tropospheric chemistry. The data show that the wet season Amazon Basin is an effective sink for ozone and a net source for aerosols. Mixed layer ozone at 150-m altitude averaged 8.5 ppbv compared to about 18 ppbv at 3-km altitude. In addition, a negative ozone gradient (decreasing value to the surface) was observed within the mixed layer. The averaged wet season mixed layer ozone was about 7 ppbv lower than observed during the dry season. This is attributed to the enhanced convective activity associated with the wet season and the change in mixed layer photochemistry from net ozone production (dry season) to a net destruction (wet season). The net sink characteristics of the wet season mixed layer are seen throughout the troposphere of the Amazon Basin in that ozone (3- to 4-km altitude) is typically 15-25 ppbv as compared to dry season values of 30-35 ppbv. In terms of the aerosol source characteristics of the Amazon Basin, mixed layer aerosols (0.1- to 0.4-{mu}m diameter) are a factor of 5-10 higher than observed in the troposphere with mixed layer values of 100-200 aerosols/cm{sup 3}. Analyses of both tropospheric and mixed layer aerosol samples show aerosols which are multisource. Tropospheric samples have size distributions which are trimodal and show modes at aerosol diameters which suggest the aerosols are (1) of lifetimes <1 hour, (2) of lifetimes of days, and (3) mechanically generated elements (e.g., wind-blow dust). Mixed layer data show two of the three modes with no mode which represent aerosols with lifetimes of days.

  5. Anomalies in the South American Monsoon Induced by Aerosols

    NASA Technical Reports Server (NTRS)

    Lau, K. M. William; Kyu-Mong, Kim

    2007-01-01

    We have investigated the direct effects of aerosols on the water cycle of the South American monsoon using the NASA finite-volume general circulation model (fvGCM). Global aerosol forcings are computed from radiative transfer functions derived from global distributions of five species of aerosols, i.e., dust, black carbon, organic carbon, sulphate and sea salt from the Goddard Chemistry Aerosol Radiation Transport (GOCART) model. Comparing fvGCM experiments without aerosol forcing, and with different combinations of aerosol forcing, we evaluate the impacts of aerosol direct heating on the onset, maintenance and evolution of the South American summer monsoon. We find that during the pre-monsoon season (September-October-November) Saharan dust contribute to heating of the atmosphere over the central and eastern equatorial Atlantic/Africa region through the elevated heat pump mechanism. The heating generates an anomalous Walker circulation with sinking motion, and low level northeasterlies over the Caribbean and northwestern South America. The low level flow is blocked by the Andes, and turn south and southeastward, increasing the low level jet (LLJ) along the eastern slope of the Andes. The increased LLJ transports more moisture from the Atlantic and the Amazon, enhancing the moisture convergence over subtropical land regions of South America. The moisture convergence was further accelerated by atmospheric heating by biomass burning over the Amazon. The net results of the dust and biomass heating are: a) an advance of the monsoon rainy season, b) an enhanced LLJ and c) a shifting the South America monsoon land precipitation equatorward, with increased rain over southern Brazil and reduced rain over the La Plata basin. ramifications of this elevated heating heat pump mechanism in aerosol monsoon water cycle on climate variability and change will be discussed. The ramifications of this "elevated heating heat pump" mechanism in aerosol monsoom water cycle on climate

  6. Optical Properties of Black and Brown Carbon Aerosols from Laboratory Combustion of Wildland Fuels

    NASA Astrophysics Data System (ADS)

    Beres, N. D.; Molzan, J.

    2015-12-01

    Aerosol light absorption in the solar spectral region (300 nm - 2300 nm) of the atmosphere is key for the direct aerosol radiative forcing, which is determined by aerosol single scattering albedo (SSA), asymmetry parameter, and by the albedo of the underlying surface. SSA is of key importance for the sign and quantity of aerosol direct radiative forcing; that is, does the aerosol make the earth look darker (heating) or whiter (cooling)? In addition, these optical properties are needed for satellite retrievals of aerosol optical depth and properties. During wildland fires, aerosol optical absorption is largely determined by black carbon (BC) and brown carbon (BrC) emissions. BC is strongly absorbing throughout the solar spectrum, while BrC absorption strongly increases toward shorter wavelength and can be neglected in the red and infrared. Optical properties of BrC emitted from wildland fires are poorly understood and need to be studied as function of fuel type and moisture content and combustion conditions. While much more is known about BC optical properties, knowledge for the ultraviolet (UV) spectral region is still lacking and critically needed for satellite remote sensing (e.g., TOMS, OMI) and for modeling of tropospheric photochemistry. Here, a project to better characterize biomass burning aerosol optical properties is described. It utilizes a laboratory biomass combustion chamber to generate aerosols through combustion of different wildland fuels of global and regional importance. Combustion aerosol optics is characterized with an integrating nephelometer to measure aerosol light scattering and a photoacoustic instrument to measure aerosol light absorption. These measurements will yield optical properties that are needed to improve qualitative and quantitative understanding of aerosol radiative forcing and satellite retrievals for absorbing carbonaceous aerosols from combustion of wildland fuels.

  7. The interaction of bromine with micron and submicron aerosols.

    PubMed

    Spatola, J A; Gentry, J W

    1980-11-01

    This study was undertaken to gain a better understanding of the reactions of aerosols with gases and vapors. The experimental system was designed in which both phases were dispersed. A collision-type nebulizer was used to generate monodisperse aerosols of 0.234, 0.500, 0.804, 1.101 and 2.020 microns diameter. Bromine concentrations of 100 and 200 ppm were produced to interact with the aerosolS. A light-scattering optical particle counter was used to determine the particle number concentration. Reacted aerosol collected on Teflon filters was analyzed by energy-dispersive x-ray fluorescence. Two temperature regimes were selected: approximately 26 degrees C and 60 degrees C. Separate runs were also conducted for the extreme case of zero curvature using 25 microns thick polystyrene sheet. Data generated from this study show a strong dependence of bromine levels on particle size. As the particle size increased, the amount of bromine per particle (ng Br/particle) also increased. However, on a weight-to-weight basis (ng Br/ng aerosol), the amount of bromine was found to increase with decreasing particle size. The concentration dependence on particle diameter was more strongly associated with values between d2 and d3. This dependence, together with other experimental data, supports a shrinking-unreacted core physical model for the actual reaction. When Br2 concentration or reaction temperature was increased, higher levels of bromine resulted in the aerosol. Runs where both temperature and concentration were increased showed lower levels of bromine than with an increase in either variable. One possible explanation is that the relative rates of reaction on the surface of the particle and diffusion through the reacted shell may be the influencing factors. Brominated polystyrene sheet material showed substantially lower bromine levels than the aerosols. PMID:7457368

  8. Biological availability of lead in a paint aerosol. 1. Physical and chemical characterization of a lead paint aerosol.

    PubMed

    Kalman, D; Schumacher, R; Covert, D; Eaton, D L

    1984-09-01

    This study was conducted to determine the physical and chemical characteristics of an aerosol of lead-based paint, generated in an industrial spray operation, that might influence the biological availability of lead present in inhaled aerosols. Paint aerosols were collected, and mass-size distribution was determined using a portable cascade impactor under actual occupational conditions. Approx. 2% of the particulate mass collected was in the respirable range (less than 10 micron mean aerodynamic diameter), although the maximum airborne concentration of lead was found to be 2-3 mg/m3. The lead concentration in a dried aerosol was very resistant to chemical digestion. Analysis by X-ray diffraction, atomic absorption spectroscopy and inductively coupled plasma emission spectroscopy showed approx. 11% lead by dry weight, although the wet weight concentration of lead reported by the manufacturer was 12.8%. PMID:6485003

  9. Measurement of the ambient organic aerosol volatility distribution: application during the Finokalia Aerosol Measurement Experiment (FAME-2008)

    NASA Astrophysics Data System (ADS)

    Lee, B. H.; Kostenidou, E.; Hildebrandt, L.; Riipinen, I.; Engelhart, G. J.; Mohr, C.; Decarlo, P. F.; Mihalopoulos, N.; Prevot, A. S. H.; Baltensperger, U.; Pandis, S. N.

    2010-12-01

    A variable residence time thermodenuder (TD) was combined with an Aerodyne Aerosol Mass Spectrometer (AMS) and a Scanning Mobility Particle Sizer (SMPS) to measure the volatility distribution of aged organic aerosol in the Eastern Mediterranean during the Finokalia Aerosol Measurement Experiment in May of 2008 (FAME-2008). A new method for the quantification of the organic aerosol volatility distribution was developed combining measurements of all three instruments together with an aerosol dynamics model. Challenges in the interpretation of ambient thermodenuder-AMS measurements include the potential resistances to mass transfer during particle evaporation, the effects of particle size on the evaporated mass fraction, the changes in the AMS collection efficiency and particle density as the particles evaporate partially in the TD, and finally potential losses inside the TD. Our proposed measurement and data analysis method accounts for all of these problems combining the AMS and SMPS measurements. The AMS collection efficiency of the aerosol that passed through the TD was found to be approximately 10% lower than the collection efficiency of the aerosol that passed through the bypass. The organic aerosol measured at Finokalia is approximately 2 or more orders of magnitude less volatile than fresh laboratory-generated monoterpene (α-pinene, β-pinene and limonene under low NOx conditions) secondary organic aerosol. This low volatility is consistent with its highly oxygenated AMS mass spectrum. The results are found to be highly sensitive to the mass accommodation coefficient of the evaporating species. This analysis is based on the assumption that there were no significant reactions taking place inside the thermodenuder.

  10. Light absorption by secondary organic aerosol from α-pinene: Effects of oxidants, seed aerosol acidity, and relative humidity

    SciTech Connect

    Song, Chen; Gyawali, Madhu; Zaveri, Rahul A.; Shilling, John E.; Arnott, W. Patrick

    2013-10-25

    It is well known that light absorption from dust and black carbon aerosols has a warming effect on climate while light scattering from sulfate, nitrate, and sea salt aerosols has a cooling effect. However, there are large uncertainties associated with light absorption and scattering by different types of organic aerosols, especially in the near-UV and UV spectral regions. In this paper, we present the results from a systematic laboratory study focused on measuring light absorption by secondary organic aerosols (SOAs) generated from dark α-pinene + O3 and α-pinene + NOx + O3 systems in the presence of neutral and acidic sulfate seed aerosols. Light absorption was monitored using photoacoustic spectrometers at four different wavelengths: 355, 405, 532, and 870 nm. Significant light absorption at 355 and 405 nm was observed for the SOA formed from α-pinene + O3 + NO3 system only in the presence of highly acidic sulfate seed aerosols under dry conditions. In contrast, no absorption was observed when the relative humidity was elevated to greater than 27% or in the presence of neutral sulfate seed aerosols. Organic nitrates in the SOA formed in the presence of neutral sulfate seed aerosols were found to be nonabsorbing, while the light-absorbing compounds are speculated to be aldol condensation oligomers with nitroxy organosulfate groups that are formed in highly acidic sulfate aerosols. Finally and overall, these results suggest that dark α-pinene + O3 and α-pinene + NOx + O3 systems do not form light-absorbing SOA under typical atmospheric conditions.

  11. Light absorption by secondary organic aerosol from α-pinene: Effects of oxidants, seed aerosol acidity, and relative humidity

    NASA Astrophysics Data System (ADS)

    Song, Chen; Gyawali, Madhu; Zaveri, Rahul A.; Shilling, John E.; Arnott, W. Patrick

    2013-10-01

    is well known that light absorption from dust and black carbon aerosols has a warming effect on climate while light scattering from sulfate, nitrate, and sea salt aerosols has a cooling effect. However, there are large uncertainties associated with light absorption and scattering by different types of organic aerosols, especially in the near-UV and UV spectral regions. In this paper, we present the results from a systematic laboratory study focused on measuring light absorption by secondary organic aerosols (SOAs) generated from dark α-pinene + O3 and α-pinene + NOx + O3 systems in the presence of neutral and acidic sulfate seed aerosols. Light absorption was monitored using photoacoustic spectrometers at four different wavelengths: 355, 405, 532, and 870 nm. Significant light absorption at 355 and 405 nm was observed for the SOA formed from α-pinene + O3 + NO3 system only in the presence of highly acidic sulfate seed aerosols under dry conditions. In contrast, no absorption was observed when the relative humidity was elevated to greater than 27% or in the presence of neutral sulfate seed aerosols. Organic nitrates in the SOA formed in the presence of neutral sulfate seed aerosols were found to be nonabsorbing, while the light-absorbing compounds are speculated to be aldol condensation oligomers with nitroxy organosulfate groups that are formed in highly acidic sulfate aerosols. Overall, these results suggest that dark α-pinene + O3 and α-pinene + NOx + O3 systems do not form light-absorbing SOA under typical atmospheric conditions.

  12. The economics (or lack thereof) of aerosol geoengineering

    NASA Astrophysics Data System (ADS)

    Goes, M.; Keller, K.; Tuana, N.

    2009-04-01

    Anthropogenic greenhouse gas emissions are changing the Earth's climate and impose substantial risks for current and future generations. What are scientifically sound, economically viable, and ethically defendable strategies to manage these climate risks? Ratified international agreements call for a reduction of greenhouse gas emissions to avoid dangerous anthropogenic interference with the climate system. Recent proposals, however, call for the deployment of a different approach: to geoengineer climate by injecting aerosol precursors into the stratosphere. Published economic studies typically suggest that substituting aerosol geoengineering for abatement of carbon dioxide emissions results in large net monetary benefits. However, these studies neglect the risks of aerosol geoengineering due to (i) the potential for future geoengineering failures and (ii) the negative impacts associated with the aerosol forcing. Here we use a simple integrated assessment model of climate change to analyze potential economic impacts of aerosol geoengineering strategies over a wide range of uncertain parameters such as climate sensitivity, the economic damages due to climate change, and the economic damages due to aerosol geoengineering forcing. The simplicity of the model provides the advantages of parsimony and transparency, but it also imposes severe caveats on the interpretation of the results. For example, the analysis is based on a globally aggregated model and is hence silent on the question of intragenerational distribution of costs and benefits. In addition, the analysis neglects the effects of endogenous learning about the climate system. We show that the risks associated with a future geoengineering failure and negative impacts of aerosol forcings can cause geoenginering strategies to fail an economic cost-benefit test. One key to this finding is that a geoengineering failure would lead to dramatic and abrupt climatic changes. The monetary damages due to this failure can

  13. Examining the role of NOx and acidity on organic aerosol formation through predictions of key isoprene aerosol species in the United States

    EPA Science Inventory

    Isoprene is a significant contributor to organic aerosol in the Southeastern United States. Later generation isoprene products, specifically isoprene epoxydiols (IEPOX) and methacryloylperoxynitrate (MPAN), have been identified as SOA precursors. The contribution of each pathway ...

  14. Evolution of laser-induced plasma in solvent aerosols

    NASA Astrophysics Data System (ADS)

    Hening, Alexandru; Wroblewski, Ronald; George, Robert; McGirr, Scott

    2014-10-01

    This paper describes a novel technique for the detection of contaminants in air using the process of laser-induced filamentation. This work is focused primarily on the visible and infrared spectrum. Characterization of the temporal and spatial evolution of laser-generated plasma in solvent aerosols is necessary for the development of potential applications. Atmospheric aerosols impact capabilities of applications such as range from laser-induced ionized micro channels and filaments able to transfer high electric pulses over a few hundreds of meters, to the generation of plasma artifacts in air, far away from the laser source.

  15. Direct and Semi-direct Effects of Aerosol on the Climate System

    NASA Astrophysics Data System (ADS)

    Mahajan, S.; Evans, K. J.; Hack, J. J.; Truesdale, J.

    2011-12-01

    High-resolution (1x1 degree) global tropospheric aerosol datasets are generated using the atmospheric component of CESM1.0 coupled to an active bulk aerosol model for the 1850's and the period 1960-2000. The interactive aerosol module incorporates surface and elevated emissions of anthropogenic and natural aerosol precursors and oxidants. Experiments performed with the new aerosol datasets in atmosphere only GCM runs reveal that current level of aerosols can cause significant surface cooling and shift precipitation when compared to pre-industrial levels of aerosols. Experiments performed with the atmosphere component coupled to a slab ocean model reveal that aerosols can enhance the land-sea contrast, and cross-equatorial SST gradient leading to enhanced reduction in monsoon and shift in the ITCZ over the tropical Atlantic as compared to the atmosphere only runs. AMIP style experiments with the new aerosol dataset further reveal that aerosols could have had a significant impact on the trends in regional surface temperature and precipitation in the later part of the 20th century.

  16. Jet and ultrasonic nebuliser output: use of a new method for direct measurement of aerosol output.

    PubMed Central

    Dennis, J H; Stenton, S C; Beach, J R; Avery, A J; Walters, E H; Hendrick, D J

    1990-01-01

    Output from jet nebulisers is calibrated traditionally by weighing them before and after nebulisation, but the assumption that the weight difference is a close measure of aerosol generation could be invalidated by the concomitant process of evaporation. A method has been developed for measuring aerosol output directly by using a solute (fluoride) tracer and aerosol impaction, and this has been compared with the traditional weight loss method for two Wright, six Turbo, and four Micro-Cirrus jet nebulisers and two Microinhaler ultrasonic nebulisers. The weight loss method overestimated true aerosol output for all jet nebulisers. The mean aerosol content, expressed as a percentage of the total weight loss, varied from as little as 15% for the Wright jet nebulisers to 54% (range 45-61%) for the Turbo and Micro-Cirrus jet nebulisers under the operating conditions used. In contrast, there was no discrepancy between weight loss and aerosol output for the ultrasonic nebulisers. These findings, along with evidence of both concentrating and cooling effects from jet nebulisation, confirm that total output from jet nebulisers contains two distinct fractions, vapour and aerosol. The vapour fraction, but not the aerosol fraction, was greatly influenced by reservoir temperature within the nebuliser; so the ratio of aerosol output to total weight loss varied considerably with temperature. It is concluded that weight loss is an inappropriate method of calibrating jet nebuliser aerosol output, and that this should be measured directly. PMID:2247862

  17. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    DOE PAGESBeta

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-03-02

    We used an electrostatic size classification technique to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Moreover, we counted size-segregated particles with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized bymore » the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10-5 to 10-11. Free molecular heat and mass transfer theory was

  18. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-05-01

    An electrostatic size classification technique was used to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Size-segregated particles were counted with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized by the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10- 5 to 10- 11. Free molecular heat and mass transfer theory was applied, but

  19. Carbonaceous aerosols of aviation and shipping emissions

    NASA Astrophysics Data System (ADS)

    Popovicheva, O. B.; Kireeva, E. D.; Timofeev, M. A.; Shonija, N. K.; Mogil'Nikov, V. P.

    2010-06-01

    This is a study of the physical and chemical properties of carbonaceous aerosols emitted by transport systems (namely, by aircraft gas turbine engines and large ship diesel engines) into the atmosphere. A comparative analysis of the morphology, size, elemental composition, and surface chemistry between aviation and diesel soot particles reveals the general and characteristic features of emissions from each source. The high pollution rate of diesel soot particles, considerable fraction of metal admixtures, and availability of char particles characterize the specific features of the formation of particles of this type. The main characteristics characterizing the interaction between aviation and shipping emission aerosols in the moist atmosphere (the composition of organic and water-soluble fractions at the surface) have been obtained. Due to high hygroscopicity, the microparticles can generate cloud condensation nuclei and initiate contrails and additional tropospheric cloudiness.

  20. Chemical aerosol flow synthesis of semiconductor nanoparticles.

    PubMed

    Didenko, Yuri T; Suslick, Kenneth S

    2005-09-01

    Nanometer-sized semiconductor particles (quantum dots) have been the subject of intense research during the past decade owing to their novel electronic, catalytic, and optical properties. Fundamental properties of these nanoparticles (1-20 nm diameter) can be systematically changed simply by controlling the size of the crystals while holding their chemical composition constant. We describe here a new methodology for the continuous production of fluorescent CdS, CdSe, and CdTe nanoparticles using ultrasonically generated aerosols of high boiling point solvents. Each submicron droplet serves as a separate nanoscale chemical reactor, with reactions proceeding as the liquid droplets (which hold both reactants and surface stabilizers) are heated in a gas stream. The method is inexpensive, scalable, and allows for the synthesis of high quality nanocrystals. This chemical aerosol flow synthesis (CAFS) can be extended to the synthesis of nanostructured metals, oxides, and other materials. PMID:16131177

  1. Graphical aerosol classification method using aerosol relative optical depth

    NASA Astrophysics Data System (ADS)

    Chen, Qi-Xiang; Yuan, Yuan; Shuai, Yong; Tan, He-Ping

    2016-06-01

    A simple graphical method is presented to classify aerosol types based on a combination of aerosol optical thickness (AOT) and aerosol relative optical thickness (AROT). Six aerosol types, including maritime (MA), desert dust (DD), continental (CO), sub-continental (SC), urban industry (UI) and biomass burning (BB), are discriminated in a two dimensional space of AOT440 and AROT1020/440. Numerical calculations are performed using MIE theory based on a multi log-normal particle size distribution, and the AROT ranges for each aerosol type are determined. More than 5 years of daily observations from 8 representative aerosol sites are applied to the method to confirm spatial applicability. Finally, 3 individual cases are analyzed according to their specific aerosol status. The outcomes indicate that the new graphical method coordinates well with regional characteristics and is also able to distinguish aerosol variations in individual situations. This technique demonstrates a novel way to estimate different aerosol types and provide information on radiative forcing calculations and satellite data corrections.

  2. Satellite Observations of the Effect of Natural and Anthropogenic Aerosols on Clouds

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.

    2006-01-01

    Our knowledge of atmospheric aerosols (smoke, pollution, dust or sea salt particles, small enough to be suspended in the air), their evolution, composition, variability in space and time and interaction with clouds and precipitation is still lacking despite decades of research. Understanding the global aerosol system is critical to quantifying anthropogenic climate change, to determine climate sensitivity from observations and to understand the hydrological cycle. While a single instrument was used to demonstrate 50 years ago that the global CO2 levels are rising, posing threat of global warming, we need an array of satellites and field measurements coupled with chemical transport models to understand the global aerosol system. This complexity of the aerosol problem results from their short lifetime (1 week) and variable chemical composition. A new generation of satellites provides exciting opportunities to measure the global distribution of aerosols, distinguishing natural from anthropogenic aerosol and measuring their interaction with clouds and climate.

  3. Aerosol Profile Measurements from the NASA Langley Research Center Airborne High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Obland, Michael D.; Hostetler, Chris A.; Ferrare, Richard A.; Hair, John W.; Roers, Raymond R.; Burton, Sharon P.; Cook, Anthony L.; Harper, David B.

    2008-01-01

    Since achieving first light in December of 2005, the NASA Langley Research Center (LaRC) Airborne High Spectral Resolution Lidar (HSRL) has been involved in seven field campaigns, accumulating over 450 hours of science data across more than 120 flights. Data from the instrument have been used in a variety of studies including validation and comparison with the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite mission, aerosol property retrievals combining passive and active instrument measurements, aerosol type identification, aerosol-cloud interactions, and cloud top and planetary boundary layer (PBL) height determinations. Measurements and lessons learned from the HSRL are leading towards next-generation HSRL instrument designs that will enable even further studies of aerosol intensive and extensive parameters and the effects of aerosols on the climate system. This paper will highlight several of the areas in which the NASA Airborne HSRL is making contributions to climate science.

  4. New Results from Space and Field Observations on the Aerosol Direct and Indirect Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Remer, Lorraine; Tanre, Didier; Boucher, Olivier; Chin, Mian; Dubovik, Oleg; Holben, Brent

    2002-01-01

    New space observations from the MODIS instrument on board the Terra satellite and analysis of POLDER data flown on the ADEOS satellite, show in great details the spatial and seasonal variability of the global aerosol system. These spaceborne instruments distinguish fine aerosol from man-made regional pollution and biomass burning from mostly natural coarse dust and sea salt aerosol. E.g. fine regional pollution in and around the Indian sub-continent, Europe and North America; smoke from biomass burning in Southern Africa and Southern America; coarse dust from West Africa and mixed dust pollution and smoke from West and central Africa and East Asia. These regions were also studied extensively in focused field experiments and by the distributed AERONET network. The results generate the first climatologies of the aerosol system, are used to derive the aerosol radiative effects and to estimate the anthropogenic component. The measurements are also used to evaluate each other and constrain aerosol transport models.

  5. Aerosol Observing System (AOS) Handbook

    SciTech Connect

    Jefferson, A

    2011-01-17

    The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earth’s radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

  6. Spatial Variability of AERONET Aerosol Optical Properties and Satellite Data in South Korea during NASA DRAGON-Asia Campaign.

    PubMed

    Lee, Hyung Joo; Son, Youn-Suk

    2016-04-01

    We investigated spatial variability in aerosol optical properties, including aerosol optical depth (AOD), fine-mode fraction (FMF), and single scattering albedo (SSA), observed at 21 Aerosol Robotic Network (AERONET) sites and satellite remote sensing data in South Korea during the spring of 2012. These dense AERONET networks established in a National Aeronautics and Space Administration (NASA) field campaign enabled us to examine the spatially detailed aerosol size distribution and composition as well as aerosol levels. The springtime particle air quality was characterized by high background aerosol levels and high contributions of coarse-mode aerosols to total aerosols. We found that between-site correlations and coefficient of divergence for AOD and FMF strongly relied on the distance between sites, particularly in the south-north direction. Higher AOD was related to higher population density and lower distance from highways, and the aerosol size distribution and composition reflected source-specific characteristics. The ratios of satellite NO2 to AOD, which indicate the relative contributions of local combustion sources to aerosol levels, represented higher local contributions in metropolitan Seoul and Pusan. Our study demonstrates that the aerosol levels were determined by both local and regional pollution and that the relative contributions of these pollutions to aerosols generated spatial heterogeneity in the particle air quality. PMID:26953969

  7. Cantera Aerosol Dynamics Simulator

    2004-09-01

    The Cantera Aerosol Dynamics Simulator (CADS) package is a general library for aerosol modeling to address aerosol general dynamics, including formation from gas phase reactions, surface chemistry (growth and oxidation), bulk particle chemistry, transport by Brownian diffusion, thermophoresis, and diffusiophoresis with linkage to DSMC studies, and thermal radiative transport. The library is based upon Cantera, a C++ Cal Tech code that handles gas phase species transport, reaction, and thermodynamics. The method uses a discontinuous galerkinmore » formulation for the condensation and coagulation operator that conserves particles, elements, and enthalpy up to round-off error. Both O-D and 1-D time dependent applications have been developed with the library. Multiple species in the solid phase are handled as well. The O-D application, called Tdcads (Time Dependent CADS) is distributed with the library. Tdcads can address both constant volume and constant pressure adiabatic homogeneous problems. An extensive set of sample problems for Tdcads is also provided.« less

  8. Aerosol Observability and Predictability: From Research to Operations for Chemical Weather Forecasting. Lagrangian Displacement Ensembles for Aerosol Data Assimilation

    NASA Technical Reports Server (NTRS)

    da Silva, Arlindo

    2010-01-01

    A challenge common to many constituent data assimilation applications is the fact that one observes a much smaller fraction of the phase space that one wishes to estimate. For example, remotely sensed estimates of the column average concentrations are available, while one is faced with the problem of estimating 3D concentrations for initializing a prognostic model. This problem is exacerbated in the case of aerosols because the observable Aerosol Optical Depth (AOD) is not only a column integrated quantity, but it also sums over a large number of species (dust, sea-salt, carbonaceous and sulfate aerosols. An aerosol transport model when driven by high-resolution, state-of-the-art analysis of meteorological fields and realistic emissions can produce skillful forecasts even when no aerosol data is assimilated. The main task of aerosol data assimilation is to address the bias arising from inaccurate emissions, and Lagrangian misplacement of plumes induced by errors in the driving meteorological fields. As long as one decouples the meteorological and aerosol assimilation as we do here, the classic baroclinic growth of error is no longer the main order of business. We will describe an aerosol data assimilation scheme in which the analysis update step is conducted in observation space, using an adaptive maximum-likelihood scheme for estimating background errors in AOD space. This scheme includes e explicit sequential bias estimation as in Dee and da Silva. Unlikely existing aerosol data assimilation schemes we do not obtain analysis increments of the 3D concentrations by scaling the background profiles. Instead we explore the Lagrangian characteristics of the problem for generating local displacement ensembles. These high-resolution state-dependent ensembles are then used to parameterize the background errors and generate 3D aerosol increments. The algorithm has computational complexity running at a resolution of 1/4 degree, globally. We will present the result of

  9. Assimilation of Aerosol Optical Depths

    NASA Astrophysics Data System (ADS)

    Verver, Gé; Henzing, Bas

    Climate predictions are hampered by the large uncertainties involved in the estima- tion of the effects of atmospheric aerosol (IPCC,2001). These uncertainties are caused partly because sources and sinks as well as atmospheric processing of the different types of aerosol are not accurately known. Moreover, the climate impact (especially the indirect effect) of a certain distribution of aerosol is hard to quantify. There have been different approaches to reduce these uncertainties. In recent years intensive ob- servational campaigns such as ACE and INDOEX have been carried out, aiming to in- crease our knowledge of atmospheric processes that determine the fate of atmospheric aerosols and to quantify the radiation effects. With the new satellite instruments such as SCIAMACHY and OMI it will be possible in the near future to derive the ge- ographical distribution of the aerosol optical depths (AOD) and perhaps additional information on the occurrence of different aerosol types. The goal of the ARIA project (started in 2001) is to assimilate global satellite de- rived aerosol optical depth (AOD) in an off-line chemistry/transport model TM3. The TM3 model (Jeuken et al. 2001) describes sources, sinks, transformation and transport processes of different types of aerosol (mineral dust, carbon, sulfate, nitrate) that are relevant to radiative forcing. All meteorological input is provided by ECMWF. The assimilation procedure constrains the aerosol distribution produced by the model on the basis of aerosol optical depths observed by satellite. The product, i.e. an optimal estimation of global aerosol distribution, is then available for the calculation of radia- tive forcing. Error analyses may provide valuable information on deficiencies of the model. In the ARIA project it is tried to extract additional information on the type of aerosol present in the atmosphere by assimilating AOD at multiple wavelengths. First results of the ARIA project will be presented. The values

  10. Atmospheric aerosols: Their Optical Properties and Effects

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Measured properties of atmospheric aerosol particles are presented. These include aerosol size frequency distribution and complex retractive index. The optical properties of aerosols are computed based on the presuppositions of thermodynamic equilibrium and of Mie-theory.

  11. How Well Will MODIS Measure Top of Atmosphere Aerosol Direct Radiative Forcing?

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Kaufman, Yoram J.; Levin, Zev; Ghan, Stephen; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The new generation of satellite sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS) will be able to detect and characterize global aerosols with an unprecedented accuracy. The question remains whether this accuracy will be sufficient to narrow the uncertainties in our estimates of aerosol radiative forcing at the top of the atmosphere. Satellite remote sensing detects aerosol optical thickness with the least amount of relative error when aerosol loading is high. Satellites are less effective when aerosol loading is low. We use the monthly mean results of two global aerosol transport models to simulate the spatial distribution of smoke aerosol in the Southern Hemisphere during the tropical biomass burning season. This spatial distribution allows us to determine that 87-94% of the smoke aerosol forcing at the top of the atmosphere occurs in grid squares with sufficient signal to noise ratio to be detectable from space. The uncertainty of quantifying the smoke aerosol forcing in the Southern Hemisphere depends on the uncertainty introduced by errors in estimating the background aerosol, errors resulting from uncertainties in surface properties and errors resulting from uncertainties in assumptions of aerosol properties. These three errors combine to give overall uncertainties of 1.5 to 2.2 Wm-2 (21-56%) in determining the Southern Hemisphere smoke aerosol forcing at the top of the atmosphere. The range of values depend on which estimate of MODIS retrieval uncertainty is used, either the theoretical calculation (upper bound) or the empirical estimate (lower bound). Strategies that use the satellite data to derive flux directly or use the data in conjunction with ground-based remote sensing and aerosol transport models can reduce these uncertainties.

  12. Stratospheric aerosols - Observation and theory

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Whitten, R. C.; Toon, O. B.

    1982-01-01

    Important chemical and physical roles of aerosols are discussed, and properties of stratospheric aerosols as revealed by experimental data are described. In situ measurements obtained by mechanical collection and scattered-light detection yield the overall size distribution of the aerosols, and analyses of preserved aerosol precursor gases by wet chemical, cryogenic and spectroscopic techniques indicate the photochemical sources of particle mass. Aerosol chemical reactions including those of gaseous precursors, those in aqueous solution, and those on particle surfaces are discussed, in addition to aerosol microphysical processes such as nucleation, condensation/evaporation, coagulation and sedimentation. Models of aerosols incorporating such chemical and physical processes are presented, and simulations are shown to agree with measurements. Estimates are presented for the potential aerosol changes due to emission of particles and gases by aerospace operations and industrial consumption of fossil fuels, and it is demonstrated that although the climatic effects of existing levels of stratospheric aerosol pollution are negligible, potential increases in those levels might pose a future threat.

  13. Volcanic aerosols and lunar eclipses.

    PubMed

    Keen, R A

    1983-12-01

    The moon is visible during total lunar eclipses due to sunlight refracted into the earth's shadow by the atmosphere. Stratospheric aerosols can profoundly affect the brightness of the eclipsed moon. Observed brightnesses of 21 lunar eclipses during 1960-1982 are compared with theoretical calculations based on refraction by an aerosol-free atmosphere to yield globally averaged aerosol optical depths. Results indicate the global aerosol loading from the 1982 eruption of El Chichón is similar in magnitude to that from the 1963 Agung eruption. PMID:17776243

  14. Organic Aerosol Component (OACOMP) Value-Added Product

    SciTech Connect

    Fast, J; Zhang, Q; tilp, A; Shippert, T; Parworth, C; Mei, F

    2013-08-23

    Organic aerosol (OA, i.e., the organic fraction of particles) accounts for 10–90% of the fine aerosol mass globally and is a key determinant of aerosol radiative forcing. But atmospheric OA is poorly characterized and its life cycle insufficiently represented in models. As a result, current models are unable to simulate OA concentrations and properties accurately. This deficiency represents a large source of uncertainty in quantification of aerosol effects and prediction of future climate change. Evaluation and development of aerosol models require data products generated from field observations. Real-time, quantitative data acquired with aerosol mass spectrometers (AMS) (Canagaratna et al. 2007) are critical to this need. The AMS determines size-resolved concentrations of non-refractory (NR) species in submicrometer particles (PM1) with fast time resolution suitable for both ground-based and aircraft deployments. The high-resolution AMS (HR-AMS), which is equipped with a high mass resolution time-of-flight mass spectrometer, can be used to determine the elemental composition and oxidation degrees of OA (DeCarlo et al. 2006).

  15. Characteristics of biological aerosols in dairy processing plants.

    PubMed

    Kang, Y J; Frank, J F

    1990-03-01

    The viable aerosol in dairy processing plant environments was characterized by using an Andersen six-stage sieve sampler and a Reuter centrifugal sampler. Artificially introduced Serratia marcescens were detected in the air during drain flooding and after rinsing the floor with a pressured water hose, thus illustrating the ability of a specific microorganism to be disseminated from drains and wet surfaces via physical disruption activities often observed in food plants. Once a high concentration of wet viable aerosol was generated, it took 40 or more min to return to the background level in the absence of forced ventilation or other activity. The greatest reduction in viable particles occurred during the first 10 min. Estimated mean aerosol particle sizes were decreased from approximately 4.6 to 3.2 mu with time lapse. The estimated mean aerosol particle sizes from actual dairy processing plant environments ranged from approximately 4.3 to 5.3 mu. In addition, a more heavily contaminated dairy processing environment contained larger aerosol particles. These results indicate that the RCS sampler will often overestimate the true aerosol concentration in highly contaminated air, because mean particle sizes are over 4 mu in diameter. PMID:2187913

  16. Aerosol Production in a Mixed Deciduous/Coniferous Forest

    NASA Astrophysics Data System (ADS)

    Slade, N.; Mielke, L.; Alaghmand, M.; Galloway, M.; Kammrath, A.; Keutsch, F.; Hansen, R.; Griffith, S.; Dusanter, S.; Stevens, P.; Carroll, M.; Bertman, S.; Shepson, P.

    2008-12-01

    Aerosols are of fundamental concern because of their impacts on air quality, human health and radiative forcing. Recent studies have focused on secondary organic aerosol (SOA) production due to oxidation of volatile organic compounds (VOCs), and more importantly biogenic-VOCs (BVOCs), in particular, isoprene. However, the SOA precursors are not well understood because the mechanisms have shown that isoprene oxidation can contribute to aerosol production through multiple generation oxidation products. For terpenes, it is more likely that primary or secondary oxidation products lead to particle formation. In the present study, we measured the aerosol size distribution, along with O3, HOx, NOx, NOy and BVOCs, in a mixed deciduous forest that is undergoing successional transition to a conifer-dominated species mix. This study was conducted in a rural forest environment in northern Michigan as a part of the summer 2008 PROPHET campaign at the University of Michigan Biological Station (UMBS). We examine here the potential BVOC contribution to aerosol formation. A TSI, inc. Scanning Mobility Particle Sizer (SMPS) was used to measure aerosol number density in the size range, 15 nm < x < 711 nm and a Proton Transfer Reaction - Linear Ion Trap (PTR-LIT) mass spectrometer for quantifying isoprene and other BVOCs, including methyl vinyl ketone and methacrolein, and total monoterpenes. Preliminary results show periods of new particle production. Here we use a unique set of BVOC, HOx, NOx, NOy, O3 and meteorological data to examine conditions leading to new particle production.

  17. PARAGON: A Systematic, Integrated Approach to Aerosol Observation and Modeling

    NASA Technical Reports Server (NTRS)

    Diner, David J.; Kahn, Ralph A.; Braverman, Amy J.; Davies, Roger; Martonchik, John V.; Menzies, Robert T.; Ackerman, Thomas P.; Seinfeld, John H.; Anderson, Theodore L.; Charlson, Robert J.; Bosenberg, Jens; Collins, William D.; Rasch, Philip J.; Holben, Brent N.; Hostetler, Chris A.; Wielicki, Bruce A.; Miller, Mark A.; Schwartz, Stephen E.; Ogren, John A.; Penner, Joyce E.; Stephens, Graeme L.; Torres, Omar; Travis, Larry D.; Yu, Bin

    2004-01-01

    Aerosols are generated and transformed by myriad processes operating across many spatial and temporal scales. Evaluation of climate models and their sensitivity to changes, such as in greenhouse gas abundances, requires quantifying natural and anthropogenic aerosol forcings and accounting for other critical factors, such as cloud feedbacks. High accuracy is required to provide sufficient sensitivity to perturbations, separate anthropogenic from natural influences, and develop confidence in inputs used to support policy decisions. Although many relevant data sources exist, the aerosol research community does not currently have the means to combine these diverse inputs into an integrated data set for maximum scientific benefit. Bridging observational gaps, adapting to evolving measurements, and establishing rigorous protocols for evaluating models are necessary, while simultaneously maintaining consistent, well understood accuracies. The Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON) concept represents a systematic, integrated approach to global aerosol Characterization, bringing together modern measurement and modeling techniques, geospatial statistics methodologies, and high-performance information technologies to provide the machinery necessary for achieving a comprehensive understanding of how aerosol physical, chemical, and radiative processes impact the Earth system. We outline a framework for integrating and interpreting observations and models and establishing an accurate, consistent and cohesive long-term data record.

  18. Spectral signatures of polar stratospheric clouds and sulfate aerosol

    SciTech Connect

    Massie, S.T.; Bailey, P.L.; Gille, J.C.; Lee, E.C.; Mergenthaler, J.L.; Roche, A.E.; Kumer, J.B.; Fishbein, E.F.; Waters, J.W.; Lahoz, W.A.

    1994-10-15

    Multiwavelength observations of Antarctic and midlatitude aerosol by the Cryogenic Limb Array Etalon Spectrometer (CLAES) experiment on the Upper Atmosphere Research Satellite are used to demonstrate a technique that identifies the location of polar stratospheric clouds. The technique discussed uses the normalized area of the triangle formed by the aerosol extinctions at 925, 1257, and 1605 cm{sup {minus}1} (10.8, 8.0, and 6.2 {mu}m) to derive a spectral aerosol measure M of the aerosol spectrum. Mie calculations for spherical particles and T-matrix calculations for spheroidal particles are used to generate theoretical spectral extinction curves for sulfate and polar stratospheric cloud particles. The values of the spectral aerosol measure M for the sulfate and polar stratospheric cloud particles are shown to be different. Aerosol extinction data, corresponding to temperatures between 180 and 220 K at a pressure of 46 hPa (near 21-km altitude) for 18 August 1992, are used to demonstrate the technique. Thermodynamic calculations, based upon frost-point calculation and laboratory phase-equilibrium studies of nitric acid trihydrate, are used to predict the location of nitric acid trihydrate cloud particles. 47 refs., 22 figs., 3 tabs.

  19. Spectral signatures of polar stratospheric clouds and sulfate aerosol

    NASA Technical Reports Server (NTRS)

    Massie, S. T.; Bailey, P. L.; Gille, J. C.; Lee, E. C.; Mergenthaler, J. L.; Roche, A. E.; Kumer, J. B.; Fishbein, E. F.; Waters, J. W.; Lahoz, W. A.

    1994-01-01

    Multiwavelength observations of Antarctic and midlatitude aerosol by the Cryogenic Limb Array Etalon Spectrometer (CLAES) experiment on the Upper Atmosphere Research Satellite (UARS) are used to demonstrate a technique that identifies the location of polar stratospheric clouds. The technique discussed uses the normalized area of the triangle formed by the aerosol extinctions at 925, 1257, and 1605/cm (10.8, 8.0, and 6.2 micrometers) to derive a spectral aerosol measure M of the aerosol spectrum. Mie calculations for spherical particles and T-matrix calculations for spheriodal particles are used to generate theoretical spectral extinction curves for sulfate and polar stratospheric cloud particles. The values of the spectral aerosol measure M for the sulfate and polar stratospheric cloud particles are shown to be different. Aerosol extinction data, corresponding to temperatures between 180 and 220 K at a pressure of 46 hPa (near 21-km altitude) for 18 August 1992, are used to demonstrate the technique. Thermodynamic calculations, based upon frost-point calculations and laboratory phase-equilibrium studies of nitric acid trihydrate, are used to predict the location of nitric acid trihydrate cloud particles.

  20. Long-term memory of atmospheric aerosols over India

    NASA Astrophysics Data System (ADS)

    B, A.

    2014-12-01

    Long-term memory of atmospheric variables is a least understood facet in atmospheric science. The temporal and spatial distribution of atmospheric aerosols depends largely on the atmospheric parameters. Time series analysis using a stochastic model reveals that atmospheric aerosols over India exhibit a long-term memory. Our analysis confirms that by using Autoregressive Integrated Moving Average (ARIMA) model we can parsimoniously model the aerosol optical depth (AOD) over the Indian region with a reasonably good accuracy. This major advantage of this method is that by using past observations we were able to generate forecasts for next 3 years. The forecasts thus generate shows a good fit with the observations. This persistence is due to the presence of temporal dependence between successive observations.

  1. Accounting for dust aerosol size distribution in radiative transfer

    NASA Astrophysics Data System (ADS)

    Li, Jiangnan; Min, Qilong; Peng, Yiran; Sun, Zhian; Zhao, Jian-Qi

    2015-07-01

    The impact of size distribution of mineral dust aerosol on radiative transfer was investigated using the Aerosol Robotic Network-retrieved aerosol size distributions. Three methods for determining the aerosol optical properties using size distributions were discussed. The first is referred to as a bin method in which the aerosol optical properties are determined for each bin of the size distribution. The second is named as an assembly mean method in which the aerosol optical properties are determined with an integration of the aerosol optical parameters over the observed size distribution. The third is a normal parameterization method based on an assumed size distribution. The bin method was used to generate the benchmark results in the radiation calculations against the methods of the assembly mean, and parameterizations based on two size distribution functions, namely, lognormal and gamma were examined. It is seen that the assembly mean method can produce aerosol radiative forcing with accuracy of better than 1%. The accuracies of the parameterizations based on lognormal and gamma size distributions are about 25% and 5%, respectively. Both the lognormal and gamma size distributions can be determined by two parameters, the effective radius and effective variance. The better results from the gamma size distribution can be explained by a third parameter of skewness which is found to be useful for judging how close the assumed distribution is to the observation result. The parameterizations based on the two assumed size distributions are also evaluated in a climate model. The results show that the reflected solar fluxes over the desert areas determined by the scheme based on the gamma size distribution are about 1 W m-2 less than those from the scheme based on the lognormal size distribution, bringing the model results closer to the observations.

  2. Results and code prediction comparisons of lithium-air reaction and aerosol behavior tests

    SciTech Connect

    Jeppson, D.W.

    1986-03-01

    The Hanford Engineering Development Laboratory (HEDL) Fusion Safety Support Studies include evaluation of potential safety and environmental concerns associated with the use of liquid lithium as a breeder and coolant for fusion reactors. Potential mechanisms for volatilization and transport of radioactive metallic species associated with breeder materials are of particular interest. Liquid lithium pool-air reaction and aerosol behavior tests were conducted with lithium masses up to 100 kg within the 850-m/sup 3/ containment vessel in the Containment Systems Test Facility. Lithium-air reaction rates, aerosol generation rates, aerosol behavior and characterization, as well as containment atmosphere temperature and pressure responses were determined. Pool-air reaction and aerosol behavior test results were compared with computer code calculations for reaction rates, containment atmosphere response, and aerosol behavior. The volatility of potentially radioactive metallic species from a lithium pool-air reaction was measured. The response of various aerosol detectors to the aerosol generated was determined. Liquid lithium spray tests in air and in nitrogen atmospheres were conducted with lithium temperatures of about 427/sup 0/ and 650/sup 0/C. Lithium reaction rates, containment atmosphere response, and aerosol generation and characterization were determined for these spray tests.

  3. Light Scattering Study of Titania Aerosols

    NASA Astrophysics Data System (ADS)

    Oh, Choonghoon; Sorensen, Chris

    1997-03-01

    We studied the fractal morphology of titania aerosols by light scattering. Titania aerosols were generated by the thermal decomposition of titanium tetraisopropoxide (TTIP) in a silica tube furnace. TTIP was evaporated at temperatures up to 80^circC and its vapor was carried by dry nitrogen to a furnace with temperature in the range of 400 - 600^circC. A TEM analysis of the generated particles showed a typical DLCA structure with a monomer diameter about 50 nm. The particles were then made to flow through a narrow outlet as a laminar stream. The light scattering from these particles was measured using a He-Ne laser as a light source. The measured structure factor clearly showed the Rayleigh, Guinier, and fractal regimes. The fractal morphological parameters, such as the cluster radius of gyration, the fractal dimension, and the fractal prefactor were studied from the structure factor as a function of particle generation conditions. The cluster radius of gyration was about 1 μm and showed a modest dependency on the generation conditions. The fractal dimension was about 1.7 in all cases. These results are in good agreement with the TEM analysis.

  4. Multiangle Imaging Spectroradiometer (MISR) Global Aerosol Optical Depth Validation Based on 2 Years of Coincident Aerosol Robotic Network (AERONET) Observations

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.; Gaitley, Barbara J.; Martonchik, John V.; Diner, David J.; Crean, Kathleen A.; Holben, Brent

    2005-01-01

    Performance of the Multiangle Imaging Spectroradiometer (MISR) early postlaunch aerosol optical thickness (AOT) retrieval algorithm is assessed quantitatively over land and ocean by comparison with a 2-year measurement record of globally distributed AERONET Sun photometers. There are sufficient coincident observations to stratify the data set by season and expected aerosol type. In addition to reporting uncertainty envelopes, we identify trends and outliers, and investigate their likely causes, with the aim of refining algorithm performance. Overall, about 2/3 of the MISR-retrieved AOT values fall within [0.05 or 20% x AOT] of Aerosol Robotic Network (AERONET). More than a third are within [0.03 or 10% x AOT]. Correlation coefficients are highest for maritime stations (approx.0.9), and lowest for dusty sites (more than approx.0.7). Retrieved spectral slopes closely match Sun photometer values for Biomass burning and continental aerosol types. Detailed comparisons suggest that adding to the algorithm climatology more absorbing spherical particles, more realistic dust analogs, and a richer selection of multimodal aerosol mixtures would reduce the remaining discrepancies for MISR retrievals over land; in addition, refining instrument low-light-level calibration could reduce or eliminate a small but systematic offset in maritime AOT values. On the basis of cases for which current particle models are representative, a second-generation MISR aerosol retrieval algorithm incorporating these improvements could provide AOT accuracy unprecedented for a spaceborne technique.

  5. Development of an Aerosol Model of Cryptococcus Reveals Humidity as an Important Factor Affecting the Viability of Cryptococcus during Aerosolization

    PubMed Central

    Springer, Deborah J.; Saini, Divey; Byrnes, Edmond J.; Heitman, Joseph; Frothingham, Richard

    2013-01-01

    Cryptococcus is an emerging global health threat that is annually responsible for over 1,000,000 infections and one third of all AIDS patient deaths. There is an ongoing outbreak of cryptococcosis in the western United States and Canada. Cryptococcosis is a disease resulting from the inhalation of the infectious propagules from the environment. The current and most frequently used animal infection models initiate infection via liquid suspension through intranasal instillation or intravenous injection. These models do not replicate the typically dry nature of aerosol exposure and may hinder our ability to decipher the initial events that lead to clearance or the establishment of infection. We have established a standardized aerosol model of murine infection for the human fungal pathogen Cryptococcus. Aerosolized cells were generated utilizing a Collison nebulizer in a whole-body Madison Chamber at different humidity conditions. The aerosols inside the chamber were sampled using a BioSampler to determine viable aerosol concentration and spray factor (ratio of viable aerosol concentration to total inoculum concentration). We have effectively delivered yeast and yeast-spore mixtures to the lungs of mice and observed the establishment of disease. We observed that growth conditions prior to exposure and humidity within the Madison Chamber during exposure can alter Cryptococcus survival and dose retained in mice. PMID:23894542

  6. Aerosol Absorption and Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Stier, Philip; Seinfeld, J. H.; Kinne, Stefan; Boucher, Olivier

    2007-01-01

    We present a comprehensive examination of aerosol absorption with a focus on evaluating the sensitivity of the global distribution of aerosol absorption to key uncertainties in the process representation. For this purpose we extended the comprehensive aerosol-climate model ECHAM5-HAM by effective medium approximations for the calculation of aerosol effective refractive indices, updated black carbon refractive indices, new cloud radiative properties considering the effect of aerosol inclusions, as well as by modules for the calculation of long-wave aerosol radiative properties and instantaneous aerosol forcing. The evaluation of the simulated aerosol absorption optical depth with the AERONET sun-photometer network shows a good agreement in the large scale global patterns. On a regional basis it becomes evident that the update of the BC refractive indices to Bond and Bergstrom (2006) significantly improves the previous underestimation of the aerosol absorption optical depth. In the global annual-mean, absorption acts to reduce the shortwave anthropogenic aerosol top-of-atmosphere (TOA) radiative forcing clear-sky from -0.79 to -0.53 W m(sup -2) (33%) and all-sky from -0.47 to -0.13W m(sup -2 (72%). Our results confirm that basic assumptions about the BC refractive index play a key role for aerosol absorption and radiative forcing. The effect of the usage of more accurate effective medium approximations is comparably small. We demonstrate that the diversity in the AeroCom land-surface albedo fields contributes to the uncertainty in the simulated anthropogenic aerosol radiative forcings: the usage of an upper versus lower bound of the AeroCom land albedos introduces a global annual-mean TOA forcing range of 0.19W m(sup -2) (36%) clear-sky and of 0.12W m(sup -2) (92%) all-sky. The consideration of black carbon inclusions on cloud radiative properties results in a small global annual-mean all-sky absorption of 0.05W m(sup -2) and a positive TOA forcing perturbation of 0

  7. Studies of organic aerosol and aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Duong, Hanh To

    Atmospheric aerosols can influence society and the environment in many ways including altering the planet's energy budget, the hydrologic cycle, and public health. However, the Fourth Assessment Report of the Intergovernmental Panel on Climate Change indicates that the anthropogenic radiative forcing associated with aerosol effects on clouds has the highest uncertainty in the future climate predictions. This thesis focuses on the nature of the organic fraction of ambient particles and how particles interact with clouds using a combination of tools including aircraft and ground measurements, models, and satellite data. Fine aerosol particles typically contain between 20 - 90% organic matter by mass and a major component of this fraction includes water soluble organic carbon (WSOC). Consequently, water-soluble organic species can strongly influence aerosol water-uptake and optical properties. However, the chemical composition of this fraction is not well-understood. PILS-TOC was used to characterize WSOC in ambient aerosol in Los Angeles, California. The spatial distribution of WSOC was found to be influenced by (i) a wide range of aerosol sources within this urban metropolitan area, (ii) transport of pollutants by the characteristic daytime sea breeze trajectory, (iii) topography, and (iv) secondary production during transport. Meteorology is linked with the strength of many of these various processes. Many methods and instruments have been used to study aerosol-cloud interactions. Each observational platform is characterized by different temporal/spatial resolutions and operational principles, and thus there are disagreements between different studies for the magnitude of mathematical constructs used to represent the strength of aerosol-cloud interactions. This work points to the sensitivity of the magnitude of aerosol-cloud interactions to cloud lifetime and spatial resolution of measurements and model simulations. Failure to account for above-cloud aerosol layers

  8. Pharmaceutical aerosols for the treatment and prevention of Tuberculosis

    PubMed Central

    Hanif, Shumaila N. M.; Garcia-Contreras, Lucila

    2012-01-01

    Historically, pharmaceutical aerosols have been employed for the treatment of obstructive airway diseases, such as asthma and chronic obstructive pulmonary disease, but in the past decades their use has been expanded to treat lung infections associated with cystic fibrosis and other respiratory diseases. Tuberculosis (TB) is acquired after inhalation of aerosol droplets containing the bacilli from the cough of infected individuals. Even though TB affects other organs, the lungs are the primary site of infection, which makes the pulmonary route an ideal alternative route to administer vaccines or drug treatments. Optimization of formulations and delivery systems for anti-TB vaccines and drugs, as well as the proper selection of the animal model to evaluate those is of paramount importance if novel vaccines or drug treatments are to be successful. Pharmaceutical aerosols for patient use are generated from metered dose inhalers, nebulizers, and dry powder inhalers (DPIs). In addition to the advantages of providing more efficient delivery of the drug, low cost, and portability, pharmaceutical dry powder aerosols are more stable than inhalable liquid dosage forms and do not require refrigeration. Methods to manufacture dry powders in respirable sizes include micronization, spray drying, and other proprietary technologies. Inhalable dry powders are characterized in terms of their drug content, particle size, and dispersibility to ensure deposition in the appropriate lung region and effective aerosolization from the device. These methods will be illustrated as they were applied for the manufacture and characterization of powders containing anti-tubercular agents and vaccines for pulmonary administration. The influence of formulation, selection of animal model, method of aerosol generation, and administration on the efficacy demonstrated in a given study will be illustrated by the evaluation of pharmaceutical aerosols of anti-TB drugs and vaccines in guinea pigs by our

  9. Electrostatic sampler for semivolatile aerosols: chemical artifacts.

    PubMed

    Volckens, John; Leith, David

    2002-11-01

    Electrostatic precipitators (ESPs) show promise as an alternative sampling method for semivolatile aerosols because they are less susceptible to adsorptive and evaporative artifacts than filter based methods. However, the corona discharge may after the chemical composition of a sampled aerosol. Chemical artifacts associated with electrostatic precipitation of semivolatile aerosols were investigated in the laboratory. ESPs and filters sampled both particles and vapors of alkanes, polycyclic aromatic hydrocarbons, and alkenes across varying concentrations. Gravimetric measurements between the two sampling methods were well correlated. Ozone generated by the ESP corona was the primary cause of alkene reactions in the gas phase. Particles collected within the corona region were vulnerable to irradiation by corona ions overtime. Particles collected outside the corona region did not react. Vapors passing through the corona reacted to a lesser extent. Vapors captured after passing through the ESP reacted with ozone that was not removed by the vapor trap. Chemical speciation of highly reactive compounds (i.e., alkenes or other compounds with relatively short half-lives outdoors) is not appropriate with ESPs. Electrostatic precipitation of these compounds is appropriate, however, when total organic carbon is of interest as the ESP does not alter the amount of mass measured gravimetrically. ESPs can make accurate measurements of more persistent semivolatile compounds, such as alkanes and PAHs. PMID:12433171

  10. Biogenic amines in submicron marine aerosol (Invited)

    NASA Astrophysics Data System (ADS)

    Facchini, M.

    2010-12-01

    Ammonium salts of dimethyl and diethyl amine (DMA+ and DEA+) have been detected in size segregated marine samples collected in the North Atlantic over open ocean and at a coastal site. DMA+ and DEA+ peak in the accumulation mode range while very low concentration, close to detection limit, are observed in the coarse size fractions, as well as in sea spray aerosol artificially generated in the laboratory using sea water. These results indicate a secondary formation pathway. DMA+ and DEA+ represent up to 20% of secondary organic aerosol (SOA) in our samples , and to our knowledge they are the most abundant organic species besides MSA ever detected in clean marine aerosol . Maximum concentrations have been observed during spring and summer when the biological activity is high and in clean marine air masses, thus indicating biogenic sources. Total organic nitrogen (ON) concentration also peaks in the accumulation mode range and represents in our samples a fraction from 32 to 54 % of the total SOA. Ammonium salt formation from biogenic amines might be an important source of marine SOA and atmospheric nitrogen at the global scale with a seasonal variation connected to the oceanic biological productivity and an atmospheric cycle parallel to that of the organosulfur species.

  11. Mechanistic understanding of aerosol emissions from a brazing operation.

    PubMed

    Zimmer, A T; Biswas, P

    2000-01-01

    Welding operations produce gaseous and aerosol by-products that can have adverse health effects. A laboratory furnace study was conducted to aid understanding of the chemical and aerosol behavior of a widely used, self-fluxing brazing alloy (89% Cu, 6% Ag, 5% P) that is also used with a supplemental fluxing compound to prevent oxidation at the molten metal surface. The results indicate that the aerosols generated by the alloy are transient (produced over a short duration of time) and are associated with mass transfer of phosphorus species from the molten metal surface to the surrounding gas. In contrast, when the alloy was used in conjunction with the supplemental fluxing compound, a relatively nontransient, submicron-size aerosol was generated that was several orders of magnitude higher in concentration. Thermodynamic equilibrium analysis suggests that fluoride (a major constituent in the fluxing compound) played a significant role in reacting with the brazing alloy metals to form gas phase metal fluoride compounds that had high vapor pressures when compared with their elemental or oxide forms. As these metal-fluoride vapors cooled, submicron-size particles were formed mainly through nucleation and condensation growth processes. In addition, the equilibrium results revealed the potential formation of severe pulmonary irritants (HF and BF3) from heating the supplemental fluxing compound. These results demonstrated the importance of fluxing compounds in the formation of brazing fumes, and suggest that fluxing compounds could be selected that serve their metallurgical intention and suppress the formation of aerosols. PMID:10885884

  12. AEROSOL EXPOSURE, PHYSICS, AND CHEMISTRY

    EPA Science Inventory

    A brief review is given of the "Knowledge" and the "Gaps in Knowledge" of aerosol exposure, physics and chemistry relevant to health effects of aerosols, and presented or discussed in platform or poster presentations at the Symposium on Particulate Air Pollution - Associations wi...

  13. Nanotechnology and pharmaceutical inhalation aerosols.

    PubMed

    Patel, A R; Vavia, P R

    2007-02-01

    Pharmaceutical inhalation aerosols have been playing a crucial role in the health and well being of millions of people throughout the world for many years. The technology's continual advancement, the ease of use and the more desirable pulmonary-rather-than-needle delivery for systemic drugs has increased the attraction for the pharmaceutical aerosol in recent years. But administration of drugs by the pulmonary route is technically challenging because oral deposition can be high, and variations in inhalation technique can affect the quantity of drug delivered to the lungs. Recent advances in nanotechnology, particularly drug delivery field have encouraged formulation scientists to expand their reach in solving tricky problems related to drug delivery. Moreover, application of nanotechnology to aerosol science has opened up a new category of pharmaceutical aerosols (collectively known as nanoenabled-aerosols) with added advantages and effectiveness. In this review, some of the latest approaches of nano-enabled aerosol drug delivery system (including nano-suspension, trojan particles, bioadhesive nanoparticles and smart particle aerosols) that can be employed successfully to overcome problems of conventional aerosol systems have been introduced. PMID:17375556

  14. Mount Saint Helens aerosol evolution

    NASA Technical Reports Server (NTRS)

    Oberbeck, V. R.; Farlow, N. H.; Snetsinger, K. G.; Ferry, G. V.; Fong, W.; Hayes, D. M.

    1982-01-01

    Stratospheric aerosol samples were collected using a wire impactor during the year following the eruption of Mt. St. Helens. Analysis of samples shows that aerosol volume increased for 6 months due to gas-to-particle conversion and then decreased to background levels in the following 6 months.

  15. Aerosol in the Pacific troposphere

    NASA Technical Reports Server (NTRS)

    Clarke, Antony D.

    1989-01-01

    The use of near real-time optical techniques is emphasized for the measurement of mid-tropospheric aerosol over the Central Pacific. The primary focus is on measurement of the aerosol size distribution over the range of particle diameters from 0.15 to 5.0 microns that are essential for modeling CO2 backscatter values in support of the laser atmospheric wind sounder (LAWS) program. The measurement system employs a LAS-X (Laser Aerosol Spectrometer-PMS, Boulder, CO) with a custom 256 channel pulse height analyzer and software for detailed measurement and analysis of aerosol size distributions. A thermal preheater system (Thermo Optic Aerosol Descriminator (TOAD) conditions the aerosol in a manner that allows the discrimination of the size distribution of individual aerosol components such as sulfuric acid, sulfates and refractory species. This allows assessment of the relative contribution of each component to the BCO2 signal. This is necessary since the different components have different sources, exhibit independent variability and provide different BCO2 signals for a given mass and particle size. Field activities involve experiments designed to examine both temporal and spatial variability of these aerosol components from ground based and aircraft platforms.

  16. INDOOR AEROSOLS AND EXPOSURE ASSESSMENT

    EPA Science Inventory

    This chapter provides an overview of both indoor aerosol concentration measurements, and the considerations for assessment of exposure to aerosols in non-occupational settings. The fixed-location measurements of concentration at an outdoor location, while commuting inside an a...

  17. Mount St. Helens aerosol evolution

    NASA Technical Reports Server (NTRS)

    Oberbeck, V. R.; Farlow, N. H.; Fong, W.; Snetsinger, K. G.; Ferry, G. V.; Hayes, D. M.

    1982-01-01

    Stratospheric aerosol samples were collected using a wire impactor during the year following the eruption of Mount St. Helens. Analysis of samples shows that aerosol volume increased for 6 months due to gas-to-particle conversion and then decreased to background levels in the following 6 months.

  18. Mount St. Helens aerosol evolution

    SciTech Connect

    Oberbeck, V.R.; Farlow, N.H.; Fong, W.; Snetsinger, K.G.; Ferry, G.V.; Hayes, D.M.

    1982-09-01

    Stratospheric aerosol samples were collected using a wire impactor during the year following the eruption of Mt. St. Helens. Analysis of samples show that aerosol volume increased for 6 months due to gas-to-particle conversion and then decreased to background levels in the following 6 months.

  19. Mount St. Helens aerosol evolution

    SciTech Connect

    Oberbeck, V.R.; Farlow, N.H.

    1982-08-01

    Stratospheric aerosol samples were collected using a wire impactor during the year following the eruption of Mount St. Helens. Analysis of samples shows that aerosol volume increased for 6 months due to gas-to-particle conversion and then decreased to background levels in the following 6 months.

  20. Growing up MODIS: Towards a mature aerosol climate data record

    NASA Astrophysics Data System (ADS)

    Levy, Robert C.

    2013-05-01

    Aerosols are major players within the Earth's climate system, affecting the radiation budget, clouds and the hydrological cycle. In high concentrations near the surface, aerosols (or particulate matter, PM) affect visibility, impact air quality, and can contribute to poor health. Among others, Yoram Kaufman recognized the importance of aerosols to climate, and helped to design new instrumentation and algorithms to retrieve and quantify global aerosol properties. One instrument, known as the Moderate Imaging Resolution Spectro-radiometer (MODIS), was deployed on the AM-1 satellite (later known as Terra), part of NASA's Earth Observing System (EOS). In 1998, armed with an M.S. and job experience in neither aerosols nor satellites, I was looking for a new job. I somehow found my way to the MODIS Aerosol team. It was only a year before Terra launch, and most major decisions about the MODIS aerosol retrieval algorithms had been finalized. Since then, we worked through launch, initial evaluation of the product with AERONET and field deployments, and continued efforts to understand the product and refine retrieval algorithms. I have had opportunities to participate in field experiments, write papers, and earn my PhD. The "second generation" algorithm for aerosol retrieval over land has been hugely successful. We have collected nearly a half-million collocations with AERONET and other dataseis, made new discoveries, and have contributed to research and operational projects globally. Due to the dedication of the entire team, the MODIS aerosol product now is one of the highlights of NASA's EOS program. It is used for climate research and air quality forecasting, as well for applications not even considered before the MODIS era. More recently, a focus is on stitching the MODIS aerosol product into the "climate data record" (CDR) for global aerosol, determining whether the product has sufficient length, consistency and continuity to determine climate variability and change

  1. Introduction of the aerosol feedback process in the model BOLCHEM

    NASA Astrophysics Data System (ADS)

    Russo, Felicita; Maurizi, Alberto; D'Isidoro, Massimo; Tampieri, Francesco

    2010-05-01

    Mediterranean sea including the Italian peninsula. The initial and lateral boundary conditions used were supplied by the European Centre for Medium-range Weather Forecasts (ECMWF) analysis available at 0.5°× 0.5° resolution. The simulations were carried out for August 1st 2003, during one of the warmest summers ever recorded in Europe. The aerosol species that were considered for this feedback exercise were sulphates, primary organic compounds and black carbon. For the remaining aerosol species the climatological values were used. To study the effect of the aerosol feedback on the meteorology we studied the variation of both the radiative flux at the surface in the visible portion of the spectrum and the surface temperature. Preliminary results show that the largest differences corresponded to the land portion of the domain. In particular over the Po Valley region the application of the aerosol feedback corresponded to a maximum decrease in radiative flux of 40W-m2. This difference in radiative fluxes generated a maximum decrease in surface temperature of 0.4°K. These values were in general agreement with the values found by Vogel B. et al (Vogel B. et al, Atmos. Chem. Phys., 9, 2009) using the model system COSMO-ART.

  2. Thermophoretically Dominated Aerosol Coagulation

    NASA Astrophysics Data System (ADS)

    Rosner, Daniel E.; Arias-Zugasti, Manuel

    2011-01-01

    A theory of aerosol coagulation due to size-dependent thermophoresis is presented. This previously overlooked effect is important when local temperature gradients are large, the sol population is composed of particles of much greater thermal conductivity than the carrier gas, with mean diameters much greater than the prevailing gas mean free path, and an adequate “spread” in sizes (as in metallurgical mists or fumes). We illustrate this via a population-balance analysis of the evolution of an initially log-normal distribution when this mechanism dominates ordinary Brownian diffusion.

  3. Aerosol Remote Sensing

    NASA Technical Reports Server (NTRS)

    Lenoble, Jacqueline (Editor); Remer, Lorraine (Editor); Tanre, Didier (Editor)

    2012-01-01

    This book gives a much needed explanation of the basic physical principles of radia5tive transfer and remote sensing, and presents all the instruments and retrieval algorithms in a homogenous manner. For the first time, an easy path from theory to practical algorithms is available in one easily accessible volume, making the connection between theoretical radiative transfer and individual practical solutions to retrieve aerosol information from remote sensing. In addition, the specifics and intercomparison of all current and historical methods are explained and clarified.

  4. Photochemical Aging of Organic Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Nizkorodov, S. A.; Bateman, A. P.; Dailo, M.; Do, T.; Mang, S. A.; Pan, X.; Underwood, J. S.; Walser, M. L.

    2007-05-01

    Secondary Organic Aerosol (SOA) particles are produced in the atmosphere as a result of oxidation of volatile organic compounds (VOC). Primary Organic Aerosol (POA) particles are directly emitted in the atmosphere by their sources. This research focuses on the mechanisms of direct photochemical processes taking place in model SOA and POA particles, the role of such processes in aging of organic aerosol particles, and the effect of photochemistry on particles' physicochemical properties. To address these questions, artificial SOA and POA particles are investigated with several laboratory-based approaches relying on cavity ring-down spectroscopy and mass-spectrometry. SOA particles generated by dark oxidation of d-Limonene, alpha-Pinene, and beta-Pinene by ozone are all found to absorb radiation in the tropospheric actinic window. The UV absorption photolyzes SOA constituents resulting in a release of small VOC molecules back in the gas-phase, and considerable change in SOA chemical composition. For terpenes featuring a terminal double bond, the main SOA photolysis products are invariably found to be formaldehyde and formic acid. Similar observations are obtained for products of ozonolysis of thin films of unsaturated fatty acids and self-assembled monolayers of unsaturated alkenes. For the case of fatty acids, a very detailed mechanism of ozonolysis and subsequent photolysis is proposed. The photolytic activity is primarily attributed to organic peroxides and aldehydes. These results convincingly demonstrate that photochemical processes occurring inside SOA and POA particles age the particles on time scales that are shorter than typical lifetimes of aerosol particles in the atmosphere.

  5. Atmospheric aerosols from Mauna Loa Observatory, Hawaii

    SciTech Connect

    Zoller, W.H.; Holmes, J.L. )

    1993-01-01

    Atmospheric aerosols have been collected for chemical analysis at the Mauna Loa Observatory in Hawaii since 1979. The samples were collected in two wind quadrants, a clean [open quotes]down-slope[close quotes] quadrant and a more contaminated [open quotes]up-slope[close quotes] quadrant. Some of the findings of this work have been the identification of Asian dust traveling to the Hawaiian Islands every spring of the year, and this dust dominates the yearly record because it is very intense and contains predominantly crustal dust along with pollutants from the Asian mainland, such as coal combustion in China. Additional interpretation of the data set of weekly samples has shown the presence of pollutants from both North and South America as well as different areas of Asia that are transported by wind systems to the central Pacific Ocean. By subtracting these episodic transport events, one can look at the oceanic background aerosols that are originating from the ocean and look at the occurrence of the natural aerosol generating systems in the oceanic region that are related to climatic change. One of the important groups of elements are the sulfur and halogen families and the naturally occurring volatile elements (selenium, arsenic, antimony, etc.) that are produced by biogenic activity in the world's oceans and affect the chemistry of the atmosphere, particularly clouds in remote marine areas. Investigations such as this work allow one to evaluate the importance of natural versus anthropogenic sources of the volatile elements to the atmosphere, allowing us to have a much better understanding of man's impact on climate. The nuclear analytical techniques are particularly well suited to this type of sample because it consists of aerosols deposited on a clean Teflon or cellulose substrate, which normally offers very little interference with the analysis.

  6. Reduction of Microbial Aerosols by Automatic Toilet Bowl Cleaners.

    ERIC Educational Resources Information Center

    Yahya, Moyasar; And Others

    1992-01-01

    A study of the impact of automatic toilet bowl cleaners on aerosol generation. Three toilet bowl cleaners containing 2.5, 6.7 or 18.2 percent surfactant materials were evaluated. Results indicate these cleaners significantly (p 0.05) reduce bacteria ejected from the bowl, and the cleaner containing the greatest amount of surfactant was the most…

  7. Comparison of coliphage and bacterial aerosols at a wastewater spray irrigation site.

    PubMed

    Bausum, H T; Schaub, S A; Kenyon, K F; Small, M J

    1982-01-01

    Microbiological aerosols were measured on a spray irrigation site at Fort Huachuca, Ariz. Indigenous bacteria and tracer bacteriophage were sampled from sprays of chlorinated and unchlorinated secondary-treatment wastewaters during day and night periods. Aerosol dispersal and downwind migration were determined. Bacterial and coliphage f2 aerosols were sampled by using Andersen viable type stacked-sieve and high-volume electrostatic precipitator samplers. Bacterial standard plate counts averaged 2.4 x 10(5) colony-forming units per ml in unchlorinated effluents. Bacterial aerosols reached 500 bacteria per m3 at 152 m downwind and 10,500 bacteria per m3 at 46m. Seeded coliphage f2 averaged 4.0 x 10(5) plaque-forming units per ml in the effluent and were detected 563 m downwind. Downwind microbial aerosol levels were somewhat enhanced by nighttime conditions. The median aerodynamic particle size of the microbial aerosols was approximately 5.0 micrometer. Chlorination reduced wastewater bacterial levels 99.97% and reduced aerosol concentrations to near background levels; coliphage f2 was reduced only 95.4% in the chlorinated effluent and was readily measured 137 m downwind. Microbiological source strength an meteorological data were used in conjunction with a dispersion model to generate mathematical predictions of aerosol strength at various sampler locations. The mean calculated survival of aerosolized bacteria (standard plate count) in the range 46 to 76 m downwind was 5.2%, and that of coliphage f2 was 4.3 %. PMID:7055376

  8. Occupational exposure to inhalable and total aerosol in the primary nickel production industry.

    PubMed Central

    Tsai, P J; Vincent, J H; Wahl, G; Maldonado, G

    1995-01-01

    OBJECTIVES--This paper describes a study that was carried out in the primary nickel production industry to investigate the levels of personal exposure to aerosols containing nickel and the impact on exposure assessment of introducing new personal sampling techniques with performance consistent with the latest particle size-selective criteria. METHODS--Experiments were carried out at workplaces in mining, milling, smelting, and refining works to investigate the effect of changing from the current method of total aerosol (with the widely used 37 mm filter holder) to the new method of measuring inhalable aerosol (with the Institute of Occupational Medicine (IOM) inhalable aerosol sampler). RESULTS--The results show that inhalable aerosol exposure concentrations--for both overall aerosol and for total nickel--were consistently and significantly higher than the corresponding total aerosol concentrations. Weighted least squares linear regression yielded IOM/37 mm factors ranging from about 1.2 to 4.0. The exposure data for each company process were found to be log-normally distributed. CONCLUSIONS--The results suggest the possibility of generating a single pragmatic factor for each company process for converting current total aerosol exposures to new exposures based on the inhalability concept contained in the latest particle size-selective criteria for aerosol exposure assessment. Such data may be important in determining new occupational exposure limits for nickel. PMID:8563841

  9. The Pharmaceutical Aerosol Deposition Device on Cell Cultures (PADDOCC) in vitro system: design and experimental protocol.

    PubMed

    Hein, Stephanie; Bur, Michael; Kolb, Tobias; Muellinger, Bernhard; Schaefer, Ulrich F; Lehr, Claus-Michael

    2010-08-01

    The development of aerosol medicines typically involves numerous tests on animals, due to the lack of adequate in vitro models. A new in vitro method for testing pharmaceutical aerosol formulations on cell cultures was developed, consisting of an aerosolisation unit fitting a commercial dry powder inhaler (HandiHaler(c), Boehringer Ingelheim, Germany), an air-flow control unit (Akita(c), Activaero, Germany) and a custom-made sedimentation chamber. This chamber holds three Snapwell(c) inserts with monolayers of pulmonary epithelial cells. The whole set-up, referred to as the Pharmaceutical Aerosol Deposition Device On Cell Cultures (PADDOCC) system, aims to mimic the complete process of aerosol drug delivery, encompassing aerosol generation, aerosol deposition onto pulmonary epithelial cells and subsequent drug transport across this biological barrier, to facilitate the investigation of new aerosol formulations in the early stages of development. We describe here, the development of the design and the protocol for this device. By testing aerosol formulations of budesonide and salbutamol sulphate, respectively, reproducible deposition of aerosol particles on, and the integrity of, the pulmonary cell monolayer could be demonstrated. PMID:20822321

  10. Aerosol characteristics in a coastal region (results from MAPTIP) Professional paper

    SciTech Connect

    Gathman, S.G.; Jensen, D.R.

    1995-08-01

    In coastal areas, the simplifying assumptions of horizontal homogeneity used in open ocean analysis are not always useable. Various human-generated aerosol sources such as towns and industrial centers can provide a complex portrait of merging plumes of non-natural aerosols which are advected out to the littoral zones. The extensive meteorological and aerosol measurements made during the Marine Aerosol Properties and Thermal Imager Performance (MAPTIP) experiment provided an ideal opportunity to view how these aerosol were advected from their sources to the littoral zone of the North Sea. MAPTIP was conducted along the Dutch coast in October/November 1993. The NCCOSC, RDTE DIV (NRaD) instrumented Navajo aircraft flew two star pattern flights a day during the experiment at altitudes below 500 feet. During these flights, aerosol size distribution measurements along the flight path were being continuously recorded. These measurements were utilized for making aerosol concentration maps of the various sized aerosol groups. This paper shows the mesoscale effects of aerosol advection making the marine boundary layer in a littoral zone much more complicated than that of an open ocean.

  11. Spatial and Temporal Monitoring of Aerosol over Selected Urban Areas in Egypt

    NASA Astrophysics Data System (ADS)

    Shokr, Mohammed; El-Tahan, Mohammed; Ibrahim, Alaa

    2015-04-01

    We utilize remote sensing data of atmospheric aerosols from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra and Aqua satellites to explore spatio-temporal patterns over selected urban sites in Egypt during 2000-2015. High resolution (10 x 10 km^2) Level 2, collection 5, quality-controlled product was used. The selected sites are characterized by different human and industrial activities as well as landscape and meteorological attributes. These have impacts on the dominant types and intensity of aerosols. Aerosol robotic network (AERONET) data were used to validate the calculations from MODIS. The suitability of the MODIS product in terms of spatial and temporal coverage as well as accuracy and robustness has been established. Seasonal patterns of aerosol concentration are identified and compared between the sites. Spatial gradient of aerosol is assessed in the vicinity of major aerosol-emission sites (e.g. Cairo) to determine the range of influence of the generated pollution. Peak aerosol concentrations are explained in terms of meteorological events and land cover. The limited trends found in the temporal records of the aerosol measurements will be confirmed using calibrated long-term ground observations. The study has been conducted under the PEER 2-239 research project titled "The Impact of Biogenic and Anthropogenic Atmospheric Aerosols to Climate in Egypt". Project website is CleanAirEgypt.org

  12. Spatial variation of the aerosol concentration and deposition over the Mediterranean coastal zone

    NASA Astrophysics Data System (ADS)

    Piazzola, J.; Tedeschi, G.; Blot, R.

    2010-07-01

    A model for the spatial variation of aerosol concentrations and deposition along the coastal zone is of great interest for studies on air and water quality. In coastal areas, sea-spray aerosols generated at the sea surface by the interaction between wind and waves add to a continental contribution emitted from natural and/or anthropogenic sources. To include coastal effects in the model for the prediction of aerosol concentrations, Piazzola et al. (2003) developed the coastal Mediterranean aerosol model. The present paper deals with an extension of the Mediterranean coastal aerosol to a regional scale applied to the prediction of the sea surface flux deposition. This was achieved by the development of an automatic coupling process between the aerosol model and a regional meso-scale meteorological model which allows accounting for the details of the orography of the coast. The results show a non-homogeneous spatial coverage of aerosol concentrations over the northwestern Mediterranean. The simulations were then validated using aerosol size distributions recorded on board the ship "Atalante" for two kinds of meteorological conditions. Error calculations show a good performance of the coupling process since it predicts the aerosol concentration to within a maximum factor of 3 for particle radii between 0.1 to 10 µm. This process was then used to provide the spatial distribution of the particle deposition fluxes over the study area.

  13. Quantifying the sensitivity of aerosol optical depths retrieved from MSG SEVIRI to a priori data

    NASA Astrophysics Data System (ADS)

    Bulgin, C. E.; Palmer, P. I.; Merchant, C. J.; Siddans, R.; Poulsen, C.; Grainger, R. G.; Thomas, G.; Carboni, E.; McConnell, C.; Highwood, E.

    2009-12-01

    Radiative forcing contributions from aerosol direct and indirect effects remain one of the most uncertain components of the climate system. Satellite observations of aerosol optical properties offer important constraints on atmospheric aerosols but their sensitivity to prior assumptions must be better characterized before they are used effectively to reduce uncertainty in aerosol radiative forcing. We assess the sensitivity of the Oxford-RAL Aerosol and Cloud (ORAC) optimal estimation retrieval of aerosol optical depth (AOD) from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) to a priori aerosol data. SEVIRI is a geostationary satellite instrument centred over Africa and the neighbouring Atlantic Ocean, routinely sampling desert dust and biomass burning outflow from Africa. We quantify the uncertainty in SEVIRI AOD retrievals in the presence of desert dust by comparing retrievals that use prior information from the Optical Properties of Aerosol and Cloud (OPAC) database, with those that use measured aerosol properties during the Dust Outflow and Deposition to the Ocean (DODO) aircraft campaign (August, 2006). We also assess the sensitivity of retrieved AODs to changes in solar zenith angle, and the vertical profile of aerosol effective radius and extinction coefficient input into the retrieval forward model. Currently the ORAC retrieval scheme retrieves AODs for five aerosol types (desert dust, biomass burning, maritime, urban and continental) and chooses the most appropriate AOD based on the cost functions. We generate an improved prior aerosol speciation database for SEVIRI based on a statistical analysis of a Saharan Dust Index (SDI) determined using variances of different brightness temperatures, and organic and black carbon tracers from the GEOS-Chem chemistry transport model. This database is described as a function of season and time of day. We quantify the difference in AODs between those chosen based on prior information from the SDI and GEOS

  14. Distribution of Aerosol During Diwali Festival in the Recent Decade over India

    NASA Astrophysics Data System (ADS)

    Gouda, K. C.; Bhat, N.; Goswami, P.

    2012-12-01

    Diwali is a very famous festival in India during which people play with crackers and fireworks. Due to burning of crackers and fireworks, the concentration of anthropogenic aerosol increases in the atmosphere. In the present work the temporal and spatial variation of atmospheric aerosol parameters like Aerosol Optical Thickness (AOT), Aerosol Depth (AOD), TWC, Aerosol Particle size etc. are analyzed using the high resolution satellite data from different sources. 10 year Climatology of the Aerosol over India is generated using the data before, after and during Diwali festival time for the period of 2002 to 2011. The three climatologies show different distribution of the aerosol parameters through out the country. The northern and eastern part shows more rich in the aerosol during the festival. To understand the temporal variability, analysis of aerosol properties are being carried out one week before the festival day and one week after the festival day and compared with the day of festival for all the years. It is observed that the AOD increases from the preceding days of the festival since people start playing with crackers and fireworks about two days prior to the main Diwali day especially in North India. It is also observed from the present study that during the Diwali month the aerosol parameters are maximum in Northern part of India which supports the practice of higher incidences of bio-mass burning and residues of waste agricultural crop's fire activities. Ten year (2002-2011) average distribution of MODIS derived Aerosol Optical Thickness (AOT) during Diwali over India is presented in figure 1. A complete evaluation of distribution of AOT, AOD, TWC, Rainfall, suspended particulate Material etc. along with statistical analysis are also presented in this work. Figure 1: Ten year (2002-2011) average distribution of MODIS derived Aerosol Optical Thickness (AOT) during Diwali over India

  15. Comparison of the DiSCmini aerosol monitor to a handheld condensation particle counter and a scanning mobility particle sizer for submicrometer sodium chloride and metal aerosols

    PubMed Central

    Mills, Jessica B.; Park, Jae Hong; Peters, Thomas M.

    2016-01-01

    We evaluated the robust, lightweight DiSCmini (DM) aerosol monitor for its ability to measure the concentration and mean diameter of submicrometer aerosols. Tests were conducted with monodispersed and polydispersed aerosols composed of two particle types (sodium chloride, NaCl, and spark generated metal particles, which simulate particles found in welding fume) at three different steady-state concentration ranges (Low, <103; Medium, 103–104; and High, >104 particles/cm3). Particle number concentration, lung deposited surface area (LDSA) concentration, and mean size measured with the DM were compared to those measured with reference instruments, a scanning mobility particle sizer (SMPS) and a handheld condensation particle counter (CPC). Particle number concentrations measured with the DM were within 21% of those measured by reference instruments for polydisperse aerosols. Poorer agreement was observed for monodispersed aerosols (±35% for most tests and +130% for 300-nm NaCl). LDSA concentrations measured by the DM were 96% to 155% of those estimated with the SMPS. The geometric mean diameters measured with the DM were within 30% of those measured with the SMPS for monodispersed aerosols and within 25% for polydispersed aerosols (except for the case when the aerosol contained a substantial number of particles larger than 300 nm). The accuracy of the DM is reasonable for particles smaller than 300 nm but caution should be exercised when particles larger than 300 nm are present. PMID:23473056

  16. Complex refractive indices of aerosols retrieved by continuous wave-cavity ring down aerosol spectrometer.

    PubMed

    Lang-Yona, N; Rudich, Y; Segre, E; Dinar, E; Abo-Riziq, A

    2009-03-01

    The major uncertainties associated with the direct impact of aerosols on climate call for fast and accurate characterization of their optical properties. Cavity ring down (CRD) spectroscopy provides highly sensitive measurement of aerosols' extinction coefficients from which the complex refractive index (RI) of the aerosol may be retrieved accurately for spherical particles of known size and number density, thus it is possible to calculate the single scattering albedo and other atmospherically relevant optical parameters. We present a CRD system employing continuous wave (CW) single mode laser. The single mode laser and the high repetition rate obtained significantly improve the sensitivity and reliability of the system, compared to a pulsed laser CRD setup. The detection limit of the CW-CRD system is between 6.67 x 10(-10) cm(-1) for an empty cavity and 3.63 x 10(-9) cm(-1) for 1000 particles per cm(3) inside the cavity, at a 400 Hz sampling and averaging of 2000 shots for one sample measurement taken in 5 s. For typical pulsed-CRD, the detection limit for an empty cavity is less than 3.8 x 10(-9) cm(-1) for 1000 shots averaged over 100 s at 10 Hz. The system was tested for stability, accuracy, and RI retrievals for scattering and absorbing laboratory-generated aerosols. Specifically, the retrieved extinction remains very stable for long measurement times (1 h) with an order of magnitude change in aerosol number concentration. In addition, the optical cross section (sigma(ext)) of a 400 nm polystyrene latex sphere (PSL) was determined within 2% error compared to the calculated value based on Mie theory. The complex RI of PSL, nigrosin, and ammonium sulfate (AS) aerosols were determined by measuring the extinction efficiency (Q(ext)) as a function of the size parameter ((piD)/lambda) and found to be in very good agreement with literature values. A mismatch in the retrieved RI of Suwannee River fulvic acid (SRFA) compared to a previous study was observed and is

  17. Regional signatures in the organic composition of marine aerosol particles

    NASA Astrophysics Data System (ADS)

    Frossard, Amanda A.; Russell, Lynn M.; Keene, William C.; Kieber, David J.; Quinn, Patricia K.; Bates, Timothy S.

    2013-05-01

    Marine aerosol particles play an important role in the earth's radiative balance, yet the sources and composition of the organic fraction remain largely unconstrained. Recent measurements have been made in order to characterize the sources, composition, and concentration of aerosol particles in the marine boundary layer. The organic composition of submicron particles derived from multiple seawater regions have been measured using Fourier Transform Infrared (FTIR) spectroscopy. Cluster analysis of FTIR organic spectra suggest different spectral signatures based on collection location, seawater composition, and ambient conditions. Measurements including non-refractory aerosol composition from a high-resolution time of flight aerosol mass spectrometer (HR-ToF-AMS), seawater composition, and wind speed were used to interpret the cluster results, depending on the availability from each campaign. FTIR spectra of ambient particles are compared to FTIR spectra of primary marine particles generated from model ocean systems to infer the ambient particle production mechanisms and aging processes. Recent measurements used in the comparison include ambient and generated marine aerosol particles measured off the coast of California during CalNex in May and June 2010. Remote ambient marine aerosol particles were collected 100 miles off the coast of Monterey in the eastern Pacific during the EPEACE experiment in July 2011. Ambient and generated marine particles were measured in two different seawater types during WACS 2012 including colder, more productive water off the coast of the northeastern United States and warmer, oligotrophic water in the Sargasso Sea. These particles are also compared with those measured in the southeastern Pacific during VOCALS and the north Atlantic during ICEALOT.

  18. Contribution of isoprene-derived organosulfates to free tropospheric aerosol mass.

    PubMed

    Froyd, K D; Murphy, S M; Murphy, D M; de Gouw, J A; Eddingsaas, N C; Wennberg, P O

    2010-12-14

    Recent laboratory studies have demonstrated that isoprene oxidation products can partition to atmospheric aerosols by reacting with condensed phase sulfuric acid, forming low-volatility organosulfate compounds. We have identified organosulfate compounds in free tropospheric aerosols by single particle mass spectrometry during several airborne field campaigns. One of these organosulfates is identified as the sulfate ester of IEPOX, a second generation oxidation product of isoprene. The patterns of IEPOX sulfate ester in ambient data generally followed the aerosol acidity and NO(x) dependence established by laboratory studies. Detection of the IEPOX sulfate ester was most sensitive using reduced ionization laser power, when it was observed in up to 80% of particles in the tropical free troposphere. Based on laboratory mass calibrations, IEPOX added > 0.4% to tropospheric aerosol mass in the remote tropics and up to 20% in regions downwind of isoprene sources. In the southeastern United States, when acidic aerosol was exposed to fresh isoprene emissions, accumulation of IEPOX increased aerosol mass by up to 3%. The IEPOX sulfate ester is therefore one of the most abundant single organic compounds measured in atmospheric aerosol. Our data show that acidity-dependent IEPOX uptake is a mechanism by which anthropogenic SO(2) and marine dimethyl sulfide emissions generate secondary biogenic aerosol mass throughout the troposphere. PMID:21098310

  19. Time Series of Aerosol Column Optical Depth at the Barrow, Alaska, ARM Climate Research Facility for 2008 Fourth Quarter 2009 ARM and Climate Change Prediction Program Metric Report

    SciTech Connect

    C Flynn; AS Koontz; JH Mather

    2009-09-01

    The uncertainties in current estimates of anthropogenic radiative forcing are dominated by the effects of aerosols, both in relation to the direct absorption and scattering of radiation by aerosols and also with respect to aerosol-related changes in cloud formation, longevity, and microphysics (See Figure 1; Intergovernmental Panel on Climate Change, Assessment Report 4, 2008). Moreover, the Arctic region in particular is especially sensitive to changes in climate with the magnitude of temperature changes (both observed and predicted) being several times larger than global averages (Kaufman et al. 2009). Recent studies confirm that aerosol-cloud interactions in the arctic generate climatologically significant radiative effects equivalent in magnitude to that of green house gases (Lubin and Vogelmann 2006, 2007). The aerosol optical depth is the most immediate representation of the aerosol direct effect and is also important for consideration of aerosol-cloud interactions, and thus this quantity is essential for studies of aerosol radiative forcing.

  20. Aerosol mass spectrometry systems and methods

    SciTech Connect

    Fergenson, David P.; Gard, Eric E.

    2013-08-20

    A system according to one embodiment includes a particle accelerator that directs a succession of polydisperse aerosol particles along a predetermined particle path; multiple tracking lasers for generating beams of light across the particle path; an optical detector positioned adjacent the particle path for detecting impingement of the beams of light on individual particles; a desorption laser for generating a beam of desorbing light across the particle path about coaxial with a beam of light produced by one of the tracking lasers; and a controller, responsive to detection of a signal produced by the optical detector, that controls the desorption laser to generate the beam of desorbing light. Additional systems and methods are also disclosed.

  1. Inorganic Components of Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Wexler, Anthony Stein

    The inorganic components comprise 15% to 50% of the mass of atmospheric aerosols. For about the past 10 years the mass of these components was predicted assuming thermodynamic equilibrium between the volatile aerosol -phase inorganic species NH_4NO _3 and NH_4Cl and their gas-phase counterparts NH_3, HNO_3, and HCl. In this thesis I examine this assumption and prove that (1) the time scales for equilibration between the gas and aerosol phases are often too long for equilibrium to hold, and (2) even when equilibrium holds, transport considerations often govern the size distribution of these aerosol components. Water can comprise a significant portion of atmospheric aerosols under conditions of high relative humidity, whereas under conditions of sufficiently low relative humidity atmospheric aerosols tend to be dry. The deliquescence point is the relative humidity where the aerosol goes from a solid dry phase to an aqueous or mixed solid-aqueous phase. In this thesis I derive the temperature dependence of the deliquescence point and prove that in multicomponent solutions the deliquescence point is lower than for corresponding single component solutions. These theories of the transport, thermodynamic, and deliquescent properties of atmospheric aerosols are integrated into an aerosol inorganics model, AIM. The predictions of AIM compare well to fundamental thermodynamic measurements. Comparison of the prediction of AIM to those of other aerosol equilibrium models shows substantial disagreement in the predicted water content at lower relative humidities. The disagreement is due the improved treatment in AIM of the deliquescence properties of multicomponent solutions. In the summer and fall of 1987 the California Air Resources Board conducted the Southern California Air Quality Study, SCAQS, during which atmospheric aerosols were measured in Los Angeles. The size and composition of the aerosol and the concentrations of their gas phase counterparts were measured. When the

  2. OCS, stratospheric aerosols and climate

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Whitten, R. C.; Toon, O. B.; Pollack, J. B.; Hamill, P.

    1980-01-01

    The carbonyl sulfide budget in the atmosphere is examined, and the effects of stratospheric sulfate aerosol particles, formed in part from atmospheric carbonyl sulfate, on global climate are considered. From tropospheric measurements of carbon disulfide and the rate constant for the conversion of carbon disulfide to carbonyl sulfide, it is estimated that five Tg of carbonyl sulfide/year could be generated from carbon disulfide in the atmosphere. Direct sources of OCS include the refining and combustion of fossil fuels (1 Tg/year), natural and agricultural fires (0.2 to 0.3 Tg/year), and soils (0.5 Tg/year), yielding a total influx of from 1 to 10 Tg/year, up to 50% of which may be anthropogenic. Considerations of carbonyl sulfide sinks and concentrations indicate an atmospheric lifetime of one year, with OCS the major atmospheric sulfur compound. It is estimated that a ten-fold increase in atmospheric carbonyl sulfide would cause an optical depth perturbation comparable to that of a modest volcanic eruption, leading to an average global surface temperature decrease of 0.1 K, in addition to a possible greenhouse effect.

  3. Aerosol Climate Interactions in Climate System Models

    NASA Astrophysics Data System (ADS)

    Kiehl, J. T.

    2002-12-01

    Aerosols are widely recognized as an important process in Earth's climate system. Observations over the past decade have improved our understanding of the physical and chemical properties of aerosols. Recently, field observations have highlighted the pervasiveness of absorbing aerosols in the atmosphere. These aerosols are of particular interest, since they alter the vertical distribution of shortwave radiative heating between the surface and atmosphere. Given this increased knowledge of aerosols from various field programs, interest is focusing on how to integrate this understanding into global climate models. These types of models provide the best tool available to comprehensively study the potential effects of aerosols on Earth's climate system. Results from climate system model simulations that include aerosol effects will be presented to illustrate key aerosol climate interactions. These simulations employ idealized and realistic distributions of absorbing aerosols. The idealized aerosol simulations provide insight into the role of aerosol shortwave absorption on the global hydrologic cycle. The realistic aerosol distributions provide insight into the local response of aerosol forcing in the Indian subcontinent region. Emphasis from these simulations will be on the hydrologic cycle, since water availability is of emerging global environmental concern. This presentation will also consider what more is needed to significantly improve our ability to model aerosol processes in climate system models. Uncertainty in aerosol climate interactions remains a major source of uncertainty in our ability to project future climate change. Focus will be on interactions between aerosols and various physical, chemical and biogeochemical aspects of the Earth system.

  4. SAGE II aerosol data validation based on retrieved aerosol model size distribution from SAGE II aerosol measurements

    NASA Technical Reports Server (NTRS)

    Wang, Pi-Huan; Mccormick, M. P.; Mcmaster, L. R.; Chu, W. P.; Swissler, T. J.; Osborn, M. T.; Russell, P. B.; Oberbeck, V. R.; Livingston, J.; Rosen, J. M.

    1989-01-01

    Consideration is given to aerosol correlative measurements experiments for the Stratospheric Aerosol and Gas Experiment (SAGE) II, conducted between November 1984 and July 1986. The correlative measurements were taken with an impactor/laser probe, a dustsonde, and an airborne 36-cm lidar system. The primary aerosol quantities measured by the ground-based instruments are compared with those calculated from the aerosol size distributions from SAGE II aerosol extinction measurements. Good agreement is found between the two sets of measurements.

  5. Monitoring and tracking the trans-Pacific transport of aerosols using multi-satellite aerosol optical depth retrievals

    NASA Astrophysics Data System (ADS)

    Naeger, A. R.; Gupta, P.; Zavodsky, B.; McGrath, K. M.

    2015-10-01

    The primary goal of this study was to generate a near-real time (NRT) aerosol optical depth (AOD) product capable of providing a comprehensive understanding of the aerosol spatial distribution over the Pacific Ocean in order to better monitor and track the trans-Pacific transport of aerosols. Therefore, we developed a NRT product that takes advantage of observations from both low-earth orbiting and geostationary satellites. In particular, we utilize AOD products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) satellites. Then, we combine these AOD products with our own retrieval algorithms developed for the NOAA Geostationary Operational Environmental Satellite (GOES-15) and Japan Meteorological Agency (JMA) Multi-functional Transport Satellite (MTSAT-2) to generate a NRT daily AOD composite product. We present examples of the daily AOD composite product for a case study of trans-Pacific transport of Asian pollution and dust aerosols in mid-March 2014. Overall, the new product successfully tracks this aerosol plume during its trans-Pacific transport to the west coast of North America. However, we identify several areas across the domain of interest from Asia to North America where the new product can encounter significant uncertainties due to the inclusion of the geostationary AOD retrievals. The uncertainties associated with geostationary AOD retrievals are expected to be minimized after the successful launch of the next-generation advanced NOAA GOES-R and recently launched JMA Himawari satellites. Observations from these advanced satellites will ultimately provide an enhanced understanding of the spatial and temporal distribution of aerosols over the Pacific.

  6. Ganges Valley Aerosol Experiment: Science and Operations Plan

    SciTech Connect

    Kotamarthi, VR

    2010-06-21

    emissions; and dust. The extended AMF deployment will enable measurements under different regimes of the climate and aerosol abundance—in the wet monsoon period with low aerosol loading; in the dry, hot summer with aerosols dispersed throughout the atmospheric column; and in the cool, dry winter with aerosols confined mostly to the boundary later and mid-troposphere. Each regime, in addition, has its own distinct radiative and atmospheric dynamic drivers. The aircraft operational phase will assist in characterizing the aerosols at times when they have been observed to be at the highest concentrations. A number of agencies in India will collaborate with the proposed field study and provide support in terms of planning, aircraft measurements, and surface sites. The high concentration of aerosols in the upper Ganges Valley, together with hypotheses involving several possible mechanisms with direct impacts on the hydrologic cycle of the region, gives us a unique opportunity to generate data sets that will be useful both in understanding the processes at work and in providing answers regarding the effects of aerosols on climate in a region where the perturbation is the highest.

  7. Similarities in STXM-NEXAFS Spectra of Atmospheric Particles and Secondary Organic Aerosol Generated from Glyoxal, α-Pinene, Isoprene, 1,2,4-Trimethylbenzene, and d-Limonene

    SciTech Connect

    Shakya, Kabindra M.; Liu, Shang; Takahama, Satoshi; Russell, Lynn M.; Keutsch, Frank N.; Galloway, Melissa M.; Shilling, John E.; Hiranuma, Naruki; Song, Chen; Kim, Hwajin; Paulson, Suazanne E.; Pfaffenberger, Lisa; Barmet, Peter; Slowik, J. G.; Prevot, A. S. H.; Dommen, J.; Baltensperger, Urs

    2013-02-06

    Functional group composition of particles produced in smog chambers are examined using scanning transmission X-ray microscopy (STXM) with near-edge X-ray absorption fine structure (NEXAFS) spectroscopy in order to identify characteristic spectral signatures for secondary organic aerosol (SOA). Glyoxal uptake studies showed absorption for mainly alkyl, carbon-nitrogen (C-N), and carboxylic carbonyl groups. The SOA formed from the photooxidation of α-pinene (with and without isoprene) showed stronger absorptions for alkyl and carbonyl groups than the glyoxal studies. The mass ratio of carbonyl to acid group was larger in α-pinene-only experiments relative to the mixed α-pinene-isoprene experiments. The chamber particle spectra were compared with the ambient particle spectra from multiple field campaigns to understand the potential SOA sources. One hundred nineteen particles from six field campaigns had spectral features that were considered similar to the chamber-SOA particles: MILAGRO-2006 (9 particles), VOCALS-2008 (42 particles), Whistler-2008 (22 particles), Scripps Pier-2009 (9 particles), Bakersfield-2010 (25 particles), and Whistler-2010 (12 particles). These similarities with SOA formed from glyoxal, α-pinene (with and without isoprene), 1,2,4-trimethylbenzene, and limonene provide spectroscopic evidence of SOA products from these precursors in ambient particles.

  8. AERONET: The Aerosol Robotic Network

    DOE Data Explorer

    The AERONET (AErosol RObotic NETwork) program is a federation of ground-based remote sensing aerosol networks established by NASA and LOA-PHOTONS (CNRS) and is greatly expanded by collaborators from national agencies, institutes, universities, individual scientists, and partners. The program provides a long-term, continuous and readily accessible public domain database of aerosol optical, mircrophysical and radiative properties for aerosol research and characterization, validation of satellite retrievals, and synergism with other databases. The network imposes standardization of instruments, calibration, processing and distribution. AERONET collaboration provides globally distributed observations of spectral aerosol optical Depth (AOD), inversion products, and precipitable water in diverse aerosol regimes. Aerosol optical depth data are computed for three data quality levels: Level 1.0 (unscreened), Level 1.5 (cloud-screened), and Level 2.0 (cloud screened and quality-assured). Inversions, precipitable water, and other AOD-dependent products are derived from these levels and may implement additional quality checks.[Copied from http://aeronet.gsfc.nasa.gov/new_web/system_descriptions.html

  9. Deposition of graphene nanomaterial aerosols in human upper airways.

    PubMed

    Su, Wei-Chung; Ku, Bon Ki; Kulkarni, Pramod; Cheng, Yung Sung

    2016-01-01

    Graphene nanomaterials have attracted wide attention in recent years on their application to state-of-the-art technology due to their outstanding physical properties. On the other hand, the nanotoxicity of graphene materials also has rapidly become a serious concern especially in occupational health. Graphene naomaterials inevitably could become airborne in the workplace during manufacturing processes. The inhalation and subsequent deposition of graphene nanomaterial aerosols in the human respiratory tract could potentially result in adverse health effects to exposed workers. Therefore, investigating the deposition of graphene nanomaterial aerosols in the human airways is an indispensable component of an integral approach to graphene occupational health. For this reason, this study carried out a series of airway replica deposition experiments to obtain original experimental data for graphene aerosol airway deposition. In this study, graphene aerosols were generated, size classified, and delivered into human airway replicas (nasal and oral-to-lung airways). The deposition fraction and deposition efficiency of graphene aerosol in the airway replicas were obtained by a novel experimental approach. The experimental results acquired showed that the fractional deposition of graphene aerosols in airway sections studied were all less than 4%, and the deposition efficiency in each airway section was generally lower than 0.03. These results indicate that the majority of the graphene nanomaterial aerosols inhaled into the human respiratory tract could easily penetrate through the head airways as well as the upper part of the tracheobronchial airways and then transit down to the lower lung airways, where undesired biological responses might be induced. PMID:26317666

  10. Novel Measurements of Aerosol Particle Interfaces Using Biphasic Microfluidics

    NASA Astrophysics Data System (ADS)

    Metcalf, A. R.; Dutcher, C. S.

    2014-12-01

    Secondary organic aerosol (SOA) particles are nearly ubiquitous in the atmosphere and yet there remains large uncertainties in their formation processes and ambient properties. These particles are complex microenvironments, which can contain multiple interfaces due to internal aqueous-organic phase partitioning and to the external liquid-vapor surface. These aerosol interfaces can profoundly affect the fate of condensable organic compounds emitted into the atmosphere by altering the way in which organic vapors interact with the ambient aerosol. Aerosol interfaces affect particle internal structure, species uptake, equilibrium partitioning, activation to cloud condensation or ice nuclei, and optical properties. For example, organic thin films can shield the core of the aerosol from the ambient environment, which may disrupt equilibrium partitioning and mass transfer. To improve our ability to accurately predict the fate of SOA in the atmosphere, we must improve our knowledge of aerosol interfaces and their interactions with the ambient environment. Few technologies exist to accurately probe aerosol interfaces at atmospherically-relevant conditions. In this talk, a novel method using biphasic microscale flows will be introduced for generating, trapping, and perturbing complex interfaces at atmospherically relevant conditions. These microfluidic experiments utilize high-speed imaging to monitor interfacial phenomena at the microscale and are performed with phase contrast and fluorescence microscopy on a temperature-controlled inverted microscope stage. From these experiments, interfacial thermodynamic properties such as surface tension, rheological properties such as interfacial moduli, and kinetic properties such as mass transfer coefficients can be measured or inferred. Chemical compositions of the liquid phases studied here span a range of viscosities and include electrolyte and water soluble organic acid species often observed in the atmosphere, such as mixtures

  11. Assessment of Aerosol Distributions from GEOS-5 Using the CALIPSO Feature Mask

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth

    2010-01-01

    A-train sensors such as MODIS, MISR, and CALIPSO are used to determine aerosol properties, and in the process a means of estimating aerosol type (e.g. smoke vs. dust). Correct classification of aerosol type is important for climate assessment, air quality applications, and for comparisons and analysis with aerosol transport models. The Aerosols-Clouds-Ecosystems (ACE) satellite mission proposed in the NRC Decadal Survey describes a next generation aerosol and cloud suite similar to the current A-train, including a lidar. The future ACE lidar must be able to determine aerosol type effectively in conjunction with modeling activities to achieve ACE objectives. Here we examine the current capabilities of CALIPSO and the NASA Goddard Earth Observing System general circulation model and data assimilation system (GEOS-5), to place future ACE needs in context. The CALIPSO level 2 feature mask includes vertical profiles of aerosol layers classified by type. GEOS-5 provides global 3D aerosol mass for sulfate, sea salt, dust, and black and organic carbon. A GEOS aerosol scene classification algorithm has been developed to provide estimates of aerosol mixtures and extinction profiles along the CALIPSO orbit track. In previous work, initial comparisons between GEOS-5 derived aerosol mixtures and CALIPSO derived aerosol types were presented for July 2007. In general, the results showed that model and lidar derived aerosol types did not agree well in the boundary layer. Agreement was poor over Europe, where CALIPSO indicated the presence of dust and pollution mixtures yet GEOS-5 was dominated by pollution with little dust. Over the ocean in the tropics, the model appeared to contain less sea salt than detected by CALIPSO, yet at high latitudes the situation was reserved. Agreement between CALIPSO and GEOS-5, aerosol types improved above the boundary layer, primarily in dust and smoke dominated regions. At higher altitudes (> 5 km), the model contained aerosol layers not detected

  12. Aerosol growth in Titan's ionosphere.

    PubMed

    Lavvas, Panayotis; Yelle, Roger V; Koskinen, Tommi; Bazin, Axel; Vuitton, Véronique; Vigren, Erik; Galand, Marina; Wellbrock, Anne; Coates, Andrew J; Wahlund, Jan-Erik; Crary, Frank J; Snowden, Darci

    2013-02-19

    Photochemically produced aerosols are common among the atmospheres of our solar system and beyond. Observations and models have shown that photochemical aerosols have direct consequences on atmospheric properties as well as important astrobiological ramifications, but the mechanisms involved in their formation remain unclear. Here we show that the formation of aerosols in Titan's upper atmosphere is directly related to ion processes, and we provide a complete interpretation of observed mass spectra by the Cassini instruments from small to large masses. Because all planetary atmospheres possess ionospheres, we anticipate that the mechanisms identified here will be efficient in other environments as well, modulated by the chemical complexity of each atmosphere. PMID:23382231

  13. A fixed frequency aerosol albedometer.

    PubMed

    Thompson, Jonathan E; Barta, Nick; Policarpio, Danielle; Duvall, Richard

    2008-02-01

    A new method for the measurement of aerosol single scatter albedo (omega) at 532 nm was developed. The method employs cavity ring-down spectroscopy (CRDS) for measurement of aerosol extinction coefficient (b(ext)) and an integrating sphere nephelometer for determination of aerosol scattering coefficient (b(scat)). A unique feature of this method is that the extinction and scattering measurements are conducted simultaneously, on the exact same sample volume. Limits of detection (3s) for the extinction and scattering channel were 0.61 Mm(-1) and 2.7 Mm(-1) respectively. PMID:18542299

  14. eDPS Aerosol Collection

    SciTech Connect

    Venzie, J.

    2015-10-13

    The eDPS Aerosol Collection project studies the fundamental physics of electrostatic aerosol collection for national security applications. The interpretation of aerosol data requires understanding and correcting for biases introduced from particle genesis through collection and analysis. The research and development undertaken in this project provides the basis for both the statistical correction of existing equipment and techniques; as well as, the development of new collectors and analytical techniques designed to minimize unwanted biases while improving the efficiency of locating and measuring individual particles of interest.

  15. Initial size distributions and hygroscopicity of indoor combustion aerosol particles

    SciTech Connect

    Li, W.; Hopke, P.K.

    1993-10-01

    Cigarette smoke, incense smoke, natural gas flames, propane fuel flames, and candle flames are contributors of indoor aerosol particles. To provide a quantitative basis for the modeling of inhaled aerosol deposition pattern, the hygroscopic growth of particles from these five sources as well as the source size distributions were measured. Because the experiments were performed on the bases of particles of single size, it provided not only the averaged particle`s hygroscopic growth of each source, but also the detailed size change for particles of different sizes within the whole size spectrum. The source particle size distribution measurements found that cigarette smoke and incense smoke contained particles in the size range of 100-700 nm, while the natural gas, propane, and candle flames generated particles between 10 and 100 nm. The hygroscopic growth experiments showed that these combustion aerosol particles could grow 10% to 120%, depending on the particle sizes and origins. 18 refs., 15 figs., 3 tabs.

  16. FTIR studies of low temperature sulfuric acid aerosols

    NASA Technical Reports Server (NTRS)

    Anthony, S. E.; Tisdale, R. T.; Disselkamp, R. S.; Tolbert, M. A.; Wilson, J. C.

    1995-01-01

    Sub-micrometer sized sulfuric acid H2SO4 particles were generated using a constant output atomizer source. The particles were then exposed to water vapor before being injected into a low temperature cell. Multipass transmission Fourier Transformation Infrared (FTIR) spectroscopy was used to determine the phase and composition of the aerosols as a function of time for periods of up to five hours. Binary H2SO4H2O aerosols with compositions from 35 to 95 wt % H2SO4 remained liquid for over 3 hours at room temperatures ranging from 189-240 K. These results suggest that it is very difficut to freeze SSAs via homogeneous nucleation. Attempts to form aerosols more dilute than 35 wt % H2SO4 resulted in ice formation.

  17. Complex Aerosol Experiment in Western Siberia (April - October 2013)

    NASA Astrophysics Data System (ADS)

    Matvienko, G. G.; Belan, B. D.; Panchenko, M. V.; Romanovskii, O. A.; Sakerin, S. M.; Kabanov, D. M.; Turchinovich, S. A.; Turchinovich, Yu. S.; Eremina, T. A.; Kozlov, V. S.; Terpugova, S. A.; Pol'kin, V. V.; Yausheva, E. P.; Chernov, D. G.; Zuravleva, T. B.; Bedareva, T. V.; Odintsov, S. L.; Burlakov, V. D.; Arshinov, M. Yu.; Ivlev, G. A.; Savkin, D. E.; Fofonov, A. V.; Gladkikh, V. A.; Kamardin, A. P.; Balin, Yu. S.; Kokhanenko, G. P.; Penner, I. E.; Samoilova, S. V.; Antokhin, P. N.; Arshinova, V. G.; Davydov, D. K.; Kozlov, A. V.; Pestunov, D. A.; Rasskazchikova, T. M.; Simonenkov, D. V.; Sklyadneva, T. K.; Tolmachev, G. N.; Belan, S. B.; Shmargunov, V. P.

    2016-06-01

    The primary project objective was to accomplish the Complex Aerosol Experiment, during which the aerosol properties should be measured in the near-ground layer and free atmosphere. Three measurement cycles were performed during the project implementation: in spring period (April), when the maximum of aerosol generation is observed; in summer (July), when atmospheric boundary layer height and mixing layer height are maximal; and in late summer - early autumn (October), when the secondary particle nucleation period is recorded. Numerical calculations were compared with measurements of fluxes of downward solar radiation. It was shown that the relative differences between model and experimental values of fluxes of direct and total radiation, on the average, do not exceed 1% and 3% respectively.

  18. The AERONET network: atmospheric aerosol research in Ukraine

    NASA Astrophysics Data System (ADS)

    Milinevsky, G. P.

    2013-12-01

    The AERONET network is one of the most developed ground-based networks for aerosol monitoring. Solar radiance extinction, aureole brightness and sky light polarization measurements are used by the AERONET inversion retrieval algorithm to derive a variety of aerosol particle properties and parameters that are important for estimations of aerosol influences on air quality and climate change. In 2008 the AERONET has been extended in Ukraine: in addition to Sevastopol site (operated since 2006) the sunphotometer CIMEL CE318-2 has been installed at Kyiv site. New generation of sunphotometer (CE318N) has been used widely since 2011 in various sites of Ukraine as mobile station together with portable sunphotometer Microtops II. This article presents a short description of the AERONET, its development in Ukraine and prospects for future atmospheric research.

  19. Neural network computer simulation of medical aerosols.

    PubMed

    Richardson, C J; Barlow, D J

    1996-06-01

    Preliminary investigations have been conducted to assess the potential for using artificial neural networks to simulate aerosol behaviour, with a view to employing this type of methodology in the evaluation and design of pulmonary drug-delivery systems. Details are presented of the general purpose software developed for these tasks; it implements a feed-forward back-propagation algorithm with weight decay and connection pruning, the user having complete run-time control of the network architecture and mode of training. A series of exploratory investigations is then reported in which different network structures and training strategies are assessed in terms of their ability to simulate known patterns of fluid flow in simple model systems. The first of these involves simulations of cellular automata-generated data for fluid flow through a partially obstructed two-dimensional pipe. The artificial neural networks are shown to be highly successful in simulating the behaviour of this simple linear system, but with important provisos relating to the information content of the training data and the criteria used to judge when the network is properly trained. A second set of investigations is then reported in which similar networks are used to simulate patterns of fluid flow through aerosol generation devices, using training data furnished through rigorous computational fluid dynamics modelling. These more complex three-dimensional systems are modelled with equal success. It is concluded that carefully tailored, well trained networks could provide valuable tools not just for predicting but also for analysing the spatial dynamics of pharmaceutical aerosols. PMID:8832491

  20. Aerosol Monitoring Mission using an Advanced Nanosatellite

    NASA Astrophysics Data System (ADS)

    Pranajaya, Freddy; Zee, Robert E.

    The Space Flight Laboratory (SFL) at the University of Toronto Institute for Aerospace Studies (UTIAS) is currently developing a nanosatellite for the purpose of monitoring aerosol content in the atmosphere. The NEMO-AM (Nanosatellite for Earth Monitoring and Observation -Aerosol Monitoring) spacecraft is designed to perform multi-angle, dual-polarization observa-tions in three visible bands. The satellite is designed to detect aerosol content in the atmosphere over a specific region with a nominal ground resolution of up to 200 m and a minimum swath of 120 km. NEMO-AM is being built under a collaborative agreement between SFL and the Indian Space Research Organization (ISRO). SFL is responsible for the design, manufacturing and qualification of the spacecraft and the optical instrument. The NEMO-AM is based on the NEMO bus, which is the next evolution to the SFL Generic Nanosatellite Bus (GNB) technology. The NEMO bus has a primary structure measuring 20 cm by 20 cm by 40 cm and is capable of peak power generation up to 80W. A minimum of 30W is available to the payload. The high peak power generation enables the NEMO bus to support a dedicated state-of-the-art high speed transmitter. The NEMO bus is designed with a total mass of 15 kg, 9 kg of which is dedicated to the payload. It can be configured for full three-axis control with up to 1 arcmin pointing stability. NEMO spacecraft will be secured to launch vehicles using the XPOD Duo separation system. This paper will summarize the NEMO-AM mission and the innovative aspects of the NEMO bus.

  1. Direct numerical simulation of turbulent aerosol coagulation

    NASA Astrophysics Data System (ADS)

    Reade, Walter Caswell

    There are numerous systems-including both industrial applications and natural occurring phenomena-in which the collision/coagulation rates of aerosols are of significant interest. Two examples are the production of fine powders (such as titanium dioxide) and the formation of rain drops in the atmosphere. During the last decade, it has become apparent that dense aerosol particles behave much differently in a turbulent fluid than has been previously assumed. Particles with a response time on the order of the small-scale fluid time scale tend to collect in regions of low vorticity. The result is a particle concentration field that can be highly non-uniform. Sundaram and Collins (1997) recently demonstrated the effect that turbulence can have on the particle collision rate of a monodisperse system. The collision rates of finite-inertia particles can be as much as two orders of magnitude greater than particles that precisely follow the fluid streamlines. Sundaram and Collins derived a general collision expression that explicitly accounted for the two phenomena that affect the collision rate-changes in the particle concentration field and changes in the particle relative velocities. The result of Sundaram and Collins has generated further interest in the turbulent-aerosol problem. This thesis shows that, in addition to changing the rate that an aerosol size distribution might form, turbulence has the potential of dramatically changing the shape of the distribution. This result is demonstrated using direct numerical simulation of a turbulent-aerosol system over a wide range of particle parameters, and a moderate range of turbulence levels. Results show that particles with a small (but finite) initial inertia have the greatest potential of forming broad size distributions. The shape of the resulting size distribution is also affected by the initial size of the particles. Observations are explained using the statistics identified by Sundaram and Collins (1997). A major

  2. A Marine Aerosol Reference Tank system as a breaking wave analogue for the production of foam and sea-spray aerosols

    NASA Astrophysics Data System (ADS)

    Stokes, M. D.; Deane, G. B.; Prather, K.; Bertram, T. H.; Ruppel, M. J.; Ryder, O. S.; Brady, J. M.; Zhao, D.

    2013-04-01

    In order to better understand the processes governing the production of marine aerosols a repeatable, controlled method for their generation is required. The Marine Aerosol Reference Tank (MART) has been designed to closely approximate oceanic conditions by producing an evolving bubble plume and surface foam patch. The tank utilizes an intermittently plunging sheet of water and large volume tank reservoir to simulate turbulence, plume and foam formation, and the water flow is monitored volumetrically and acoustically to ensure the repeatability of conditions.

  3. Wavelength dependence of aerosol extinction coefficient for stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Yue, Glenn K.

    1986-01-01

    A simple empirical formula for the wavelength dependence of the aerosol extinction coefficient is proposed. The relationship between the constants in the formula and the variable parameter in the aerosol size distribution is explicitly expressed. Good agreement is found between the extinction coefficients calculated from the proposed formula and that calculated from Mie theory. The proposed expression is shown to be better than the Angstroem formula commonly used by atmospheric scientists.

  4. Atmospheric oxidation of isoprene and 1,3-butadiene: influence of aerosol acidity and relative humidity on secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Lewandowski, M.; Jaoui, M.; Offenberg, J. H.; Krug, J. D.; Kleindienst, T. E.

    2015-04-01

    The effects of acidic seed aerosols on the formation of secondary organic aerosol (SOA) have been examined in a number of previous studies, several of which have observed strong linear correlations between the aerosol acidity (measured as nmol H+ m-3 air sample volume) and the percent change in secondary organic carbon (SOC). The measurements have used several precursor compounds representative of different classes of biogenic hydrocarbons including isoprene, monoterpenes, and sesquiterpenes. To date, isoprene has displayed the most pronounced increase in SOC, although few measurements have been conducted with anthropogenic hydrocarbons. In the present study, we examine several aspects of the effect of aerosol acidity on the secondary organic carbon formation from the photooxidation of 1,3-butadiene, and extend the previous analysis of isoprene. The photooxidation products measured in the absence and presence of acidic sulfate aerosols were generated either through photochemical oxidation of SO2 or by nebulizing mixtures of ammonium sulfate and sulfuric acid into a 14.5 m3 smog chamber system. The results showed that, like isoprene and β-caryophyllene, 1,3-butadiene SOC yields linearly correlate with increasing acidic sulfate aerosol. The observed acid sensitivity of 0.11% SOC increase per nmol m-3 increase in H+ was approximately a factor of 3 less than that measured for isoprene. The results also showed that the aerosol yield decreased with increasing humidity for both isoprene and 1,3-butadiene, although to different degrees. Increasing the absolute humidity from 2 to 12 g m-3 reduced the 1,3-butadiene yield by 45% and the isoprene yield by 85%.

  5. Calculating Capstone depleted uranium aerosol concentrations from beta activity measurements.

    PubMed

    Szrom, Frances; Falo, Gerald A; Parkhurst, Mary Ann; Whicker, Jeffrey J; Alberth, David P

    2009-03-01

    Beta activity measurements were used as surrogate measurements of uranium mass in aerosol samples collected during the field testing phase of the Capstone Depleted Uranium (DU) Aerosol Study. These aerosol samples generated by the perforation of armored combat vehicles were used to characterize the DU source term for the subsequent Human Health Risk Assessment (HHRA) of Capstone aerosols. Establishing a calibration curve between beta activity measurements and uranium mass measurements is straightforward if the uranium isotopes are in equilibrium with their immediate short-lived, beta-emitting progeny. For DU samples collected during the Capstone study, it was determined that the equilibrium between the uranium isotopes and their immediate short-lived, beta-emitting progeny had been disrupted when penetrators had perforated target vehicles. Adjustments were made to account for the disrupted equilibrium and for wall losses in the aerosol samplers. Values for the equilibrium fraction ranged from 0.16 to 1, and the wall loss correction factors ranged from 1 to 1.92. This paper describes the process used and adjustments necessary to calculate uranium mass from proportional counting measurements. PMID:19204483

  6. Calculating Capstone Depleted Uranium Aerosol Concentrations from Beta Activity Measurements

    SciTech Connect

    Szrom, Fran; Falo, Gerald A.; Parkhurst, MaryAnn; Whicker, Jeffrey J.; Alberth, David P.

    2009-03-01

    Beta activity measurements were used as surrogate measurements of uranium mass in aerosol samples collected during the field testing phase of the Capstone Depleted Uranium (DU) Aerosol Study. These aerosol samples generated by the perforation of armored combat vehicles were used to characterize the depleted uranium (DU) source term for the subsequent human health risk assessment (HHRA) of Capstone aerosols. Establishing a calibration curve between beta activity measurements and uranium mass measurements is straightforward if the uranium isotopes are in equilibrium with their immediate short-lived, beta-emitting progeny. For DU samples collected during the Capstone study, it was determined that the equilibrium between the uranium isotopes and their immediate short lived, beta-emitting progeny had been disrupted when penetrators had perforated target vehicles. Adjustments were made to account for the disrupted equilibrium and for wall losses in the aerosol samplers. Correction factors for the disrupted equilibrium ranged from 0.16 to 1, and the wall loss correction factors ranged from 1 to 1.92.

  7. FTIR studies of low temperature sulfuric acid aerosols

    SciTech Connect

    Anthony, S.E.; Tisdale, R.T.; Disselkamp, R.S.

    1995-05-01

    Fourier transform infrared (FTIR) spectroscopy was used to study low temperature sulfuric acid aerosols representative of global stratospheric sulfate aerosols (SSAs). Sub-micrometer sized sulfuric acid (H{sub 2}SO{sub 4}) particles were generated using a constant output atomizer source. The particles were then exposed to water vapor before being injected into a low temperature cell. Multipass transmission FTIR spectroscopy was used to determine the phase and composition of the aerosols as a function of time for periods of up to 5 hours. Binary H{sub 2}SO{sub 4}/H{sub 2}O aerosols with compositions from 35 to 95 wt % H{sub 2}SO{sub 4} remained liquid for over 3 hours at temperatures ranging from 189-240 K. These results suggest that it is very difficult to freeze SSAs via homogeneous nucleation. Attempts to form aerosols more dilute than 35 wt % H{sub 2}SO{sub 4} resulted in ice formation. 18 refs., 7 figs.

  8. Aerosol delivery in ventilated newborn pigs: an MRI evaluation.

    PubMed

    Sood, Beena G; Shen, Yimin; Latif, Zahid; Chen, Xinguang; Sharp, Jody; Neelavalli, Jaladhar; Joshi, Aparna; Slovis, Thomas L; Haacke, E M

    2008-08-01

    Pulmonary deposition of inhaled drugs in ventilated neonates has not been studied in vivo. The objective of this study was to evaluate pulmonary delivery of gadopentetate dimeglumine (Gd-DTPA) following nebulization in ventilated piglets using magnetic resonance imaging. Seven ventilated piglets (5 +/- 2 d old, weight 1.8 +/- 0.5 kg) were scanned in the Bruker/Siemens 4T magnetic resonance scanner using T1 weighted spin-echo sequence. Aerosols of Gd-DTPA were generated continuously using the MiniHeart jet nebulizer. Breath-hold coronal images were obtained before and every 10 min during aerosolized Gd-DTPA for 90 min. Signal intensity (SI) changes over the lungs, kidneys, liver, skeletal muscle, and heart were evaluated. A significant increase in SI was observed in the lungs, kidney, and liver at 10, 20, and 40 min respectively after start of aerosol. At the end of 90 min, the SI increased by 95%, 101%, and 426% over the right lung, left lung, and kidney, respectively. A much smaller increase in SI was observed over the liver. In conclusion, we have demonstrated effective pulmonary aerosol delivery within 10 min of contrast nebulization in ventilated piglets. Contrast visualization in the kidneys within 20 min of aerosol initiation reflects alveolar absorption, glomerular filtration and renal concentration. PMID:18391839

  9. Aerosol Production from Charbroiled and Wet-Fried Meats

    NASA Astrophysics Data System (ADS)

    Niedziela, R. F.; Blanc, L. E.

    2012-12-01

    Previous work in our laboratory focused on the chemical and optical characterization of aerosols produced during the dry-frying of different meat samples. This method yielded a complex ensemble of particles composed of water and long-chain fatty acids with the latter dominated by oleic, stearic, and palmitic acids. The present study examines how wet-frying and charbroiling cooking methods affect the physical and chemical properties of their derived aerosols. Samples of ground beef, salmon, chicken, and pork were subject to both cooking methods in the laboratory, with their respective aerosols swept into a laminar flow cell where they were optically analyzed in the mid-infrared and collected through a gas chromatography probe for chemical characterization. This presentation will compare and contrast the nature of the aerosols generated in each cooking method, particularly those produced during charbroiling which exposes the samples, and their drippings, to significantly higher temperatures. Characterization of such cooking-related aerosols is important because of the potential impact of these particles on air quality, particularly in urban areas.

  10. Aerosol Transmission of Filoviruses.

    PubMed

    Mekibib, Berhanu; Ariën, Kevin K

    2016-01-01

    Filoviruses have become a worldwide public health concern because of their potential for introductions into non-endemic countries through international travel and the international transport of infected animals or animal products. Since it was first identified in 1976, in the Democratic Republic of Congo (formerly Zaire) and Sudan, the 2013-2015 western African Ebola virus disease (EVD) outbreak is the largest, both by number of cases and geographical extension, and deadliest, recorded so far in medical history. The source of ebolaviruses for human index case(s) in most outbreaks is presumptively associated with handling of bush meat or contact with fruit bats. Transmission among humans occurs easily when a person comes in contact with contaminated body fluids of patients, but our understanding of other transmission routes is still fragmentary. This review deals with the controversial issue of aerosol transmission of filoviruses. PMID:27223296

  11. Aerosol Transmission of Filoviruses

    PubMed Central

    Mekibib, Berhanu; Ariën, Kevin K.

    2016-01-01

    Filoviruses have become a worldwide public health concern because of their potential for introductions into non-endemic countries through international travel and the international transport of infected animals or animal products. Since it was first identified in 1976, in the Democratic Republic of Congo (formerly Zaire) and Sudan, the 2013–2015 western African Ebola virus disease (EVD) outbreak is the largest, both by number of cases and geographical extension, and deadliest, recorded so far in medical history. The source of ebolaviruses for human index case(s) in most outbreaks is presumptively associated with handling of bush meat or contact with fruit bats. Transmission among humans occurs easily when a person comes in contact with contaminated body fluids of patients, but our understanding of other transmission routes is still fragmentary. This review deals with the controversial issue of aerosol transmission of filoviruses. PMID:27223296

  12. Aerosol lidar ``M4``

    SciTech Connect

    Shelevoy, C.D.; Andreev, Y.M. |

    1994-12-31

    Small carrying aerosol lidar in which is used small copper vapor laser ``Malachite`` as source of sounding optical pulses is described. The advantages of metal vapor laser and photon counting mode in acquisition system of lidar gave ability to get record results: when lidar has dimensions (1 x .6 x .3 m) and weight (65 kg), it provides the sounding of air industrial pollutions at up to 20 km range in scanning sector 90{degree}. Power feed is less than 800 Wt. Lidar can be disposed as stationary so on the car, helicopter, light plane. Results of location of smoke tails and city smog in situ experiments are cited. Showed advantages of work of acquisition system in photon counting mode when dynamic range of a signal is up to six orders.

  13. Stratospheric aerosol geoengineering

    SciTech Connect

    Robock, Alan

    2015-03-30

    The Geoengineering Model Intercomparison Project, conducting climate model experiments with standard stratospheric aerosol injection scenarios, has found that insolation reduction could keep the global average temperature constant, but global average precipitation would reduce, particularly in summer monsoon regions around the world. Temperature changes would also not be uniform; the tropics would cool, but high latitudes would warm, with continuing, but reduced sea ice and ice sheet melting. Temperature extremes would still increase, but not as much as without geoengineering. If geoengineering were halted all at once, there would be rapid temperature and precipitation increases at 5–10 times the rates from gradual global warming. The prospect of geoengineering working may reduce the current drive toward reducing greenhouse gas emissions, and there are concerns about commercial or military control. Because geoengineering cannot safely address climate change, global efforts to reduce greenhouse gas emissions and to adapt are crucial to address anthropogenic global warming.

  14. Aerosol release and transport program. Quarterly progress report, October-December 1981. [LMFBR; PWR; BWR

    SciTech Connect

    Adams, R. E.; Tobias, M. L.

    1982-05-01

    This report summarizes progress for the Aerosol Release and Transport Program sponsored by the Nuclear Regulatory Commission's Office of Nuclear Regulatory Research, Division of Accident Evaluation, for the period October-December 1981. Topics discussed include (1) under-sodium tests in the Fuel Aerosol Simulant Test (FAST) Facility, (2) U/sub 3/O/sub 8/ and Fe/sub 2/O/sub 3/ in steam (light-water reactor accident) aerosol experiments in the Nuclear Safety Pilot Plant, (3) generation and characterization of cadmium and CdO aerosols in the basic aerosol experimental program, (4) core-melt tests of Zircaloy-clad fuel capsules, (5) initial results of a piston-model bubble oscillation code allowing liquid bypass, and (6) calculations with the UVABUBL code to compare with underwater and under-sodium period measurements in FAST experiments.

  15. Measurements of ocean derived aerosol off the coast of California

    NASA Astrophysics Data System (ADS)

    Bates, T. S.; Quinn, P. K.; Frossard, A. A.; Russell, L. M.; Hakala, J.; PetäJä, T.; Kulmala, M.; Covert, D. S.; Cappa, C. D.; Li, S.-M.; Hayden, K. L.; Nuaaman, I.; McLaren, R.; Massoli, P.; Canagaratna, M. R.; Onasch, T. B.; Sueper, D.; Worsnop, D. R.; Keene, W. C.

    2012-06-01

    Reliable characterization of particles freshly emitted from the ocean surface requires a sampling method that is able to isolate those particles and prevent them from interacting with ambient gases and particles. Here we report measurements of particles directly emitted from the ocean using a newly developed in situ particle generator (Sea Sweep). The Sea Sweep was deployed alongside R/V Atlantis off the coast of California during May of 2010. Bubbles were generated 0.75 m below the ocean surface with stainless steel frits and swept into a hood/vacuum hose to feed a suite of aerosol instrumentation on board the ship. The number size distribution of the directly emitted, nascent particles had a dominant mode at 55-60 nm (dry diameter) and secondary modes at 30-40 nm and 200-300 nm. The nascent aerosol was not volatile at 230°C and was not enriched in SO4=, Ca++, K+, or Mg++above that found in surface seawater. The organic component of the nascent aerosol (7% of the dry submicrometer mass) volatilized at a temperature between 230 and 600°C. The submicrometer organic aerosol characterized by mass spectrometry was dominated by non-oxygenated hydrocarbons. The nascent aerosol at 50, 100, and 145 nm dry diameter behaved hygroscopically like an internal mixture of sea salt with a small organic component. The CCN/CN activation ratio for 60 nm Sea Sweep particles was near 1 for all supersaturations of 0.3 and higher indicating that all of the particles took up water and grew to cloud drop size. The nascent organic aerosol mass fraction did not increase in regions of higher surface seawater chlorophyll but did show a positive correlation with seawater dimethylsulfide (DMS).

  16. Reactions and mass spectra of complex particles using Aerosol CIMS

    NASA Astrophysics Data System (ADS)

    Hearn, John D.; Smith, Geoffrey D.

    2006-12-01

    Aerosol chemical ionization mass spectrometry (CIMS) is used both on- and off-line for the analysis of complex laboratory-generated and ambient particles. One of the primary advantages of Aerosol CIMS is the low degree of ion fragmentation, making this technique well suited for investigating the reactivity of complex particles. To demonstrate the usefulness of this "soft" ionization, particles generated from meat cooking were reacted with ozone and the composition was monitored as a function of reaction time. Two distinct kinetic regimes were observed with most of the oleic acid in these particles reacting quickly but with 30% appearing to be trapped in the complex mixture. Additionally, detection limits are measured to be sufficiently low (100-200 ng/m3) to detect some of the more abundant constituents in ambient particles, including sulfate, which is measured in real-time at 1.2 [mu]g/m3. To better characterize complex aerosols from a variety of sources, a novel off-line collection method was also developed in which non-volatile and semi-volatile organics are desorbed from particles and concentrated in a cold U-tube. Desorption from the U-tube followed by analysis with Aerosol CIMS revealed significant amounts of nicotine in cigarette smoke and levoglucosan in oak and pine smoke, suggesting that this may be a useful technique for monitoring particle tracer species. Additionally, secondary organic aerosol formed from the reaction of ozone with R-limonene and volatile organics from orange peel were analyzed off-line showing large molecular weight products (m/z > 300 amu) that may indicate the formation of oligomers. Finally, mass spectra of ambient aerosol collected offline reveal a complex mixture of what appears to be highly processed organics, some of which may contain nitrogen.

  17. Chemical characterization of challenge aerosols for HEPA filter penetration testing

    SciTech Connect

    Strandberg, S.W.

    1985-04-01

    Quality assurance penetration testing of high efficiency particulate air (HEPA) filters use oil mists as challenge aerosols. Concern over the carcinogenic risk associated with the use of di-(2-ethylhexyl)phthalate (DEHP) has led to the investigation of alternative materials and generation methods for these aerosols. Since several commonly used generation methods for quality assurance testing of HEPA filters utilize heating of the starting material, it was determined essential to evaluate the starting material and the resultant aerosol which might contain thermal degradation by-products. A penetrometer utilizing flash vaporization has been developed by A.D. Little, Inc., for the US Government as a possible alternative generation method to the Q-127 thermally generated DEHP penetrometer. Tetraethylene glycol, oleic acid, and DEHP aerosols were generated in this unit, and particulate and vapor samples were collected and identified using gas chromatography/mass spectrometry techniques. Thermally generated DEHP by-products were also sampled and identified using a Q-107 penetrometer used in the testing of large HEPA filters. Determination of the toxicological hazards of starting materials and all of the identified compounds was made by reviewing available literature obtained on the Toxline system of the National Library of Medicine. No major degradation products were found in the flash vaporization penetrometer although a number of thermally generated by-products were found in the Q-107 penetrometer. Toxicologically, no hazards were found to preclude the use of either tetraethylene glycol or oleic acid as tested in the A.D. Little penetrometer. 133 refs., 5 figs., 9 tabs.

  18. A simple parameterization of aerosol emissions in RAMS

    NASA Astrophysics Data System (ADS)

    Letcher, Theodore

    Throughout the past decade, a high degree of attention has been focused on determining the microphysical impact of anthropogenically enhanced concentrations of Cloud Condensation Nuclei (CCN) on orographic snowfall in the mountains of the western United States. This area has garnered a lot of attention due to the implications this effect may have on local water resource distribution within the Region. Recent advances in computing power and the development of highly advanced microphysical schemes within numerical models have provided an estimation of the sensitivity that orographic snowfall has to changes in atmospheric CCN concentrations. However, what is still lacking is a coupling between these advanced microphysical schemes and a real-world representation of CCN sources. Previously, an attempt to representation the heterogeneous evolution of aerosol was made by coupling three-dimensional aerosol output from the WRF Chemistry model to the Colorado State University (CSU) Regional Atmospheric Modeling System (RAMS) (Ward et al. 2011). The biggest problem associated with this scheme was the computational expense. In fact, the computational expense associated with this scheme was so high, that it was prohibitive for simulations with fine enough resolution to accurately represent microphysical processes. To improve upon this method, a new parameterization for aerosol emission was developed in such a way that it was fully contained within RAMS. Several assumptions went into generating a computationally efficient aerosol emissions parameterization in RAMS. The most notable assumption was the decision to neglect the chemical processes in formed in the formation of Secondary Aerosol (SA), and instead treat SA as primary aerosol via short-term WRF-CHEM simulations. While, SA makes up a substantial portion of the total aerosol burden (much of which is made up of organic material), the representation of this process is highly complex and highly expensive within a numerical

  19. Background stratospheric aerosol reference model

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Wang, P.

    1989-01-01

    In this analysis, a reference background stratospheric aerosol optical model is developed based on the nearly global SAGE 1 satellite observations in the non-volcanic period from March 1979 to February 1980. Zonally averaged profiles of the 1.0 micron aerosol extinction for the tropics and the mid- and high-altitudes for both hemispheres are obtained and presented in graphical and tabulated form for the different seasons. In addition, analytic expressions for these seasonal global zonal means, as well as the yearly global mean, are determined according to a third order polynomial fit to the vertical profile data set. This proposed background stratospheric aerosol model can be useful in modeling studies of stratospheric aerosols and for simulations of atmospheric radiative transfer and radiance calculations in atmospheric remote sensing.

  20. 17 years of aerosol and clouds from the ATSR Series of Instruments

    NASA Astrophysics Data System (ADS)

    Poulsen, C. A.

    2015-12-01

    Aerosols play a significant role in Earth's climate by scattering and absorbing incoming sunlight and affecting the formation and radiative properties of clouds. The extent to which aerosols affect cloud remains one of the largest sources of uncertainty amongst all influences on climate change. Now, a new comprehensive datasets has been developed under the ESA Climate Change Initiative (CCI) programme to quantify how changes in aerosol levels affect these clouds. The unique dataset is constructed from the Optimal Retrieval of Aerosol and Cloud (ORAC) algorithm used in (A)ATSR (Along Track Scanning Radiometer) retrievals of aerosols generated in the Aerosol CCI and the CC4CL ( Community Code for CLimate) for cloud retrieval in the Cloud CCI. The ATSR instrument is a dual viewing instrument with on board visible and infra red calibration systems making it an ideal instrument to study trends of Aerosol and Clouds and their interactions. The data set begins in 1995 and ends in 2012. A new instrument in the series SLSTR(Sea and Land Surface Temperature Radiometer) will be launch in 2015. The Aerosol and Clouds are retreived using similar algorithms to maximise the consistency of the results These state-of-the-art retrievals have been merged together to quantify the susceptibility of cloud properties to changes in aerosol concentration. Aerosol-cloud susceptibilities are calculated from several thousand samples in each 1x1 degree globally gridded region. Two-D histograms of the aerosol and cloud properties are also included to facilitate seamless comparisons between other satellite and modelling data sets. The analysis of these two long term records will be discussed individually and the initial comparisons between these new joint products and models will be presented.

  1. Cough Aerosols of Mycobacterium tuberculosis Predict New Infection. A Household Contact Study

    PubMed Central

    Namugga, Olive; Mumbowa, Francis; Ssebidandi, Martin; Mbabazi, Olive; Moine, Stephanie; Mboowa, Gerald; Fox, Matthew P.; Reilly, Nancy; Ayakaka, Irene; Kim, Soyeon; Okwera, Alphonse; Joloba, Moses; Fennelly, Kevin P.

    2013-01-01

    Rationale: Airborne transmission of Mycobacterium tuberculosis results from incompletely characterized host, bacterial, and environmental factors. Sputum smear microscopy is associated with considerable variability in transmission. Objectives: To evaluate the use of cough-generated aerosols of M. tuberculosis to predict recent transmission. Methods: Patients with pulmonary tuberculosis (TB) underwent a standard evaluation and collection of cough aerosol cultures of M. tuberculosis. We assessed household contacts for new M. tuberculosis infection. We used multivariable logistic regression analysis with cluster adjustment to analyze predictors of new infection. Measurements and Main Results: From May 2009 to January 2011, we enrolled 96 sputum culture-positive index TB cases and their 442 contacts. Only 43 (45%) patients with TB yielded M. tuberculosis in aerosols. Contacts of patients with TB who produced high aerosols (≥10 CFU) were more likely to have a new infection compared with contacts from low-aerosol (1–9 CFU) and aerosol-negative cases (69%, 25%, and 30%, respectively; P = 0.009). A high-aerosol patient with TB was the only predictor of new M. tuberculosis infection in unadjusted (odds ratio, 5.18; 95% confidence interval, 1.52–17.61) and adjusted analyses (odds ratio, 4.81; 95% confidence interval, 1.20–19.23). Contacts of patients with TB with no aerosols versus low and high aerosols had differential tuberculin skin test and interferon-γ release assay responses. Conclusions: Cough aerosols of M. tuberculosis are produced by a minority of patients with TB but predict transmission better than sputum smear microscopy or culture. Cough aerosols may help identify the most infectious patients with TB and thus improve the cost-effectiveness of TB control programs. PMID:23306539

  2. AEROSOL, CLOUDS, AND CLIMATE CHANGE

    SciTech Connect

    SCHWARTZ, S.E.

    2005-09-01

    Earth's climate is thought to be quite sensitive to changes in radiative fluxes that are quite small in absolute magnitude, a few watts per square meter, and in relation to these fluxes in the natural climate. Atmospheric aerosol particles exert influence on climate directly, by scattering and absorbing radiation, and indirectly by modifying the microphysical properties of clouds and in turn their radiative effects and hydrology. The forcing of climate change by these indirect effects is thought to be quite substantial relative to forcing by incremental concentrations of greenhouse gases, but highly uncertain. Quantification of aerosol indirect forcing by satellite- or ground-based remote sensing has proved quite difficult in view of inherent large variation in the pertinent observables such as cloud optical depth, which is controlled mainly by liquid water path and only secondarily by aerosols. Limited work has shown instances of large magnitude of aerosol indirect forcing, with local instantaneous forcing upwards of 50 W m{sup 66}-2. Ultimately it will be necessary to represent aerosol indirect effects in climate models to accurately identify the anthropogenic forcing at present and over secular time and to assess the influence of this forcing in the context of other forcings of climate change. While the elements of aerosol processes that must be represented in models describing the evolution and properties of aerosol particles that serve as cloud condensation particles are known, many important components of these processes remain to be understood and to be represented in models, and the models evaluated against observation, before such model-based representations can confidently be used to represent aerosol indirect effects in climate models.

  3. Climate forcing by anthropogenic aerosols.

    PubMed

    Charlson, R J; Schwartz, S E; Hales, J M; Cess, R D; Coakley, J A; Hansen, J E; Hofmann, D J

    1992-01-24

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of shortwavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes. PMID:17842894

  4. Climate forcing by anthropogenic aerosols

    NASA Technical Reports Server (NTRS)

    Charlson, R. J.; Schwartz, S. E.; Hales, J. M.; Cess, R. D.; Coakley, J. A., Jr.; Hansen, J. E.; Hofmann, D. J.

    1992-01-01

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol, in particular, has imposed a major perturbation to this forcing. Both the direct scattering of short-wavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.

  5. Satellite Remote Sensing: Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2013-01-01

    Aerosols are solid or liquid particles suspended in the air, and those observed by satellite remote sensing are typically between about 0.05 and 10 microns in size. (Note that in traditional aerosol science, the term "aerosol" refers to both the particles and the medium in which they reside, whereas for remote sensing, the term commonly refers to the particles only. In this article, we adopt the remote-sensing definition.) They originate from a great diversity of sources, such as wildfires, volcanoes, soils and desert sands, breaking waves, natural biological activity, agricultural burning, cement production, and fossil fuel combustion. They typically remain in the atmosphere from several days to a week or more, and some travel great distances before returning to Earth's surface via gravitational settling or washout by precipitation. Many aerosol sources exhibit strong seasonal variability, and most experience inter-annual fluctuations. As such, the frequent, global coverage that space-based aerosol remote-sensing instruments can provide is making increasingly important contributions to regional and larger-scale aerosol studies.

  6. Satellite-Based Evidence of Wavelength-Dependent Aerosol Absorption in Biomass Burning Smoke Inferred from Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Jethva, H.; Torres, O.

    2012-01-01

    We provide satellite-based evidence of the spectral dependence of absorption in biomass burning aerosols over South America using near-UV measurements made by the Ozone Monitoring Instrument (OMI) during 2005-2007. In the current near-UV OMI aerosol algorithm (OMAERUV), it is implicitly assumed that the only absorbing component in carbonaceous aerosols is black carbon whose imaginary component of the refractive index is wavelength independent. With this assumption, OMI-derived aerosol optical depth (AOD) is found to be significantly over-estimated compared to that of AERONET at several sites during intense biomass burning events (August-September). Other well-known sources of error affecting the near-UV method of aerosol retrieval do not explain the large observed AOD discrepancies between the satellite and the ground-based observations. A number of studies have revealed strong spectral dependence in carbonaceous aerosol absorption in the near-UV region suggesting the presence of organic carbon in biomass burning generated aerosols. A sensitivity analysis examining the importance of accounting for the presence of wavelength-dependent aerosol absorption in carbonaceous particles in satellite-based remote sensing was carried out in this work. The results convincingly show that the inclusion of spectrally-dependent aerosol absorption in the radiative transfer calculations leads to a more accurate characterization of the atmospheric load of carbonaceous aerosols.

  7. CALIPSO Observations of Aerosol Properties Near Clouds

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Varnai, Tamas; Yang, Weidong

    2010-01-01

    Clouds are surrounded by a transition zone of rapidly changing aerosol properties. Characterizing this zone is important for better understanding aerosol-cloud interactions and aerosol radiative effects as well as for improving satellite measurements of aerosol properties. We present a statistical analysis of a global dataset of CALIPSO (Cloud-Aerosol Lidar and infrared Pathfinder Satellite Observation) Lidar observations over oceans. The results show that the transition zone extends as far as 15 km away from clouds and it is ubiquitous over all oceans. The use of only high confidence level cloud-aerosol discrimination (CAD) data confirms the findings. However, the results underline the need for caution to avoid biases in studies of satellite aerosol products, aerosol-cloud interactions, and aerosol direct radiative effects.

  8. Direct measurements of mass-specific optical cross sections of single-component aerosol mixtures.

    PubMed

    Radney, James G; Ma, Xiaofei; Gillis, Keith A; Zachariah, Michael R; Hodges, Joseph T; Zangmeister, Christopher D

    2013-09-01

    The optical properties of atmospheric aerosols vary widely, being dependent upon particle composition, morphology, and mixing state. This diversity and complexity of aerosols motivates measurement techniques that can discriminate and quantify a variety of single- and multicomponent aerosols that are both internally and externally mixed. Here, we present a new combination of techniques to directly measure the mass-specific extinction and absorption cross sections of laboratory-generated aerosols that are relevant to atmospheric studies. Our approach employs a tandem differential mobility analyzer, an aerosol particle mass analyzer, cavity ring-down and photoacoustic spectrometers, and a condensation particle counter. This suite of instruments enables measurement of aerosol particle size, mass, extinction and absorption coefficients, and aerosol number density, respectively. Taken together, these observables yield the mass-specific extinction and absorption cross sections without the need to model particle morphology or account for sample collection artifacts. Here we demonstrate the technique in a set of case studies which involve complete separation of aerosol by charge, separation of an external mixture by mass, and discrimination between particle types by effective density and single-scattering albedo. PMID:23875772

  9. Summary of the marine aerosol properties and thermal imager performance trial (MAPTIP). Professional paper

    SciTech Connect

    Leeuw, G. de; Eijik, A.M. van

    1995-08-01

    This paper describes a 1993 field experiment entitled Marine Aerosol Properties and Thermal Imager Performance Trial (MAPTIP) conducted by NATO AC/243 Panel 04/RSG.8 and 04/RSG.5 in the Dutch coastal waters. Objectives were: to improve and validate vertical marine aerosol models by providing an extensive set of aerosol and meteorological measurements, within a coastal environment at different altitudes and for a range of meteorological conditions; make aerosol and meteorological observations in the first 10 m of the ocean surface with a view to extending existing aerosol models to incorporate near-surface effects; and to assess marine boundary layer effects on thermal Imaging systems. Aerosol and meteorological instruments, as well as thermal imagers and calibrated targets, were utilized. This network of instrumentation has provided a comprehensive database of aerosol size distribution profiles and relevant meteorological variables throughout the marine atmospheric boundary layer. Thermal imagery was included to provide ground truth for assessing the low-level propagation effects near the ocean surface. Measurements were made of atmospheric turbulence and refractivity effects in the IR and RF bands to assess the marine boundary layer effects on the degradation of thermal images. Calibrated targets at different altitudes were observed and these data will be used for development and validation of IRST models and IR ship signature models for determining the effects of marine-generated aerosols turbulence and meteorological profiles on their performance.

  10. Relationship between Amazon biomass burning aerosols and rainfall over La Plata Basin

    NASA Astrophysics Data System (ADS)

    Camponogara, G.; Silva Dias, M. A. F.; Carrió, G. G.

    2013-09-01

    High aerosol loads are discharged into the atmosphere by biomass burning in Amazon and Central Brazil during the dry season. These particles can interact with clouds as cloud condensation nuclei (CCN) changing cloud microphysics and radiative properties and, thereby, affecting the radiative budget of the region. Furthermore, the biomass burning aerosols can be transported by the low level jet (LLJ) to La Plata Basin where many mesoscale convective systems (MCS) are observed during spring and summer. This work proposes to investigate whether the aerosols from biomass burning may affect the MCS in terms of rainfall over La Plata Basin during spring. Since the aerosol effect is very difficult to isolate because convective clouds are very sensitive to small environment disturbances, detailed analyses using different techniques are used. The binplot, 2D histograms and combined empirical orthogonal function (EOF) methods are used to separate certain environment conditions with the possible effects of aerosol loading. Reanalysis 2, TRMM-3B42 and AERONET data are used from 1999 up to 2012 during September-December. The results show that there are two patterns associated to rainfall-aerosol interaction in La Plata Basin: one in which the dynamic conditions are more important than aerosols to generate rain; and a second one where the aerosol particles have a role in rain formation, acting mainly to suppress rainfall over La Plata Basin.

  11. Air detoxification with nanosize TiO2 aerosol tested on mice.

    PubMed

    Besov, A S; Krivova, N A; Vorontsov, A V; Zaeva, O B; Kozlov, D V; Vorozhtsov, A B; Parmon, V N; Sakovich, G V; Komarov, V F; Smirniotis, P G; Eisenreich, N

    2010-01-15

    A method for fast air purification using high concentration aerosol of TiO(2) nanoparticles is evaluated in a model chemical catastrophe involving toxic vapors of diisopropyl fluorophosphate (DFP). Mice are used as human model in a closed 100 dm(3) chamber. Exposure of mice to 37 ppm of DFP vapor for 15 min resulted in acute poisoning. Spraying TiO(2) aerosol in 2 min after the start of exposure to DFP vapors resulted in quick removal of DFP vapors from the chamber's air. Animals did not show signs of poisoning after the decontamination experiment and exposure to TiO(2) aerosol alone. Reactive oxygen species (ROS) and antioxidant activity (AOA) of mice blood plasma were measured for animals exposed to sound of aerosol generator, DFP vapors, TiO(2) aerosol and DFP vapors+TiO(2) aerosol. Reduced ROS and increased AOA were found for mice exposure to sound, DFP and TiO(2) aerosol. Exposure to DFP and decontamination with TiO(2) nanoparticles resulted in decreased AOA in 48 h following the exposure. The results suggest that application of TiO(2) aerosol is a powerful method of air purification from toxic hydrolysable compounds with moderate health aftermaths and requires further study and optimization. PMID:19765900

  12. Climatological Aspects of the Optical Properties of Fine/Coarse Mode Aerosol Mixtures

    NASA Technical Reports Server (NTRS)

    Eck, T. F.; Holben, B. N.; Sinyuk, A.; Pinker, R. T.; Goloub, P.; Chen, H.; Chatenet, B.; Li, Z.; Singh, R. P.; Tripathi, S.N.; Reid, J. S.; Giles, D. M.; Dubovik O.; O'Neill, N. T.; Smirnov, A.; Wang, P.; Xia, X.

    2010-01-01

    Aerosol mixtures composed of coarse mode desert dust combined with fine mode combustion generated aerosols (from fossil fuel and biomass burning sources) were investigated at three locations that are in and/or downwind of major global aerosol emission source regions. Multiyear monitoring data at Aerosol Robotic Network sites in Beijing (central eastern China), Kanpur (Indo-Gangetic Plain, northern India), and Ilorin (Nigeria, Sudanian zone of West Africa) were utilized to study the climatological characteristics of aerosol optical properties. Multiyear climatological averages of spectral single scattering albedo (SSA) versus fine mode fraction (FMF) of aerosol optical depth at 675 nm at all three sites exhibited relatively linear trends up to 50% FMF. This suggests the possibility that external linear mixing of both fine and coarse mode components (weighted by FMF) dominates the SSA variation, where the SSA of each component remains relatively constant for this range of FMF only. However, it is likely that a combination of other factors is also involved in determining the dynamics of SSA as a function of FMF, such as fine mode particles adhering to coarse mode dust. The spectral variation of the climatological averaged aerosol absorption optical depth (AAOD) was nearly linear in logarithmic coordinates over the wavelength range of 440-870 nm for both the Kanpur and Ilorin sites. However, at two sites in China (Beijing and Xianghe), a distinct nonlinearity in spectral AAOD in logarithmic space was observed, suggesting the possibility of anomalously strong absorption in coarse mode aerosols increasing the 870 nm AAOD.

  13. Performance of personal inhalable aerosol samplers in very slowly moving air when facing the aerosol source.

    PubMed

    Witschger, O; Grinshpun, S A; Fauvel, S; Basso, G

    2004-06-01

    While personal aerosol samplers have been characterized primarily based on wind tunnel tests conducted at relatively high wind speeds, modern indoor occupational environments are usually represented by very slow moving air. Recent surveys suggest that elevated levels of occupational exposure to inhalable airborne particles are typically observed when the worker, operating in the vicinity of the dust source, faces the source. Thus, the first objective of this study was to design and test a new, low cost experimental protocol for measuring the sampling efficiency of personal inhalable aerosol samplers in the vicinity of the aerosol source when the samplers operate in very slowly moving air. In this system, an aerosol generator, which is located in the centre of a room-sized non-ventilated chamber, continuously rotates and omnidirectionally disperses test particles of a specific size. The test and reference samplers are equally distributed around the source at the same distance from the centre and operate in parallel (in most of our experiments, the total number of simultaneously operating samplers was 15). Radial aerosol transport is driven by turbulent diffusion and some natural convection. For each specific particle size and the sampler, the aerosol mass concentration is measured by weighing the collection filter. The second objective was to utilize the new protocol to evaluate three widely used aerosol samplers: the IOM Personal Inhalable Sampler, the Button Personal Inhalable Aerosol Sampler and the 25 mm Millipore filter holder (closed-face C25 cassette). The sampling efficiencies of each instrument were measured with six particle fractions, ranging from 6.9 to 76.9 micro m in their mass median aerodynamic diameter. The Button Sampler efficiency data demonstrated a good agreement with the standard inhalable convention and especially with the low air movement inhalabilty curve. The 25 mm filter holder was found to considerably under-sample the particles larger

  14. Holistic aerosol evaluation using synthesized aerosol aircraft measurements

    NASA Astrophysics Data System (ADS)

    Watson-Parris, Duncan; Reddington, Carly; Schutgens, Nick; Stier, Philip; Carslaw, Ken; Liu, Dantong; Allan, James; Coe, Hugh

    2016-04-01

    Despite ongoing efforts there are still large uncertainties in aerosol concentrations and loadings across many commonly used GCMs. This in turn leads to large uncertainties in the contributions of the direct and indirect aerosol forcing on climate. However, constraining these fields using earth observation data, although providing global coverage, is problematic for many reasons, including the large uncertainties in retrieving aerosol loadings. Additionally, the inability to retrieve aerosols in or around cloudy scenes leads to further sampling biases (Gryspeerdt 2015). Many in-situ studies have used regional datasets to attempt to evaluate the model uncertainties, but these are unable to provide an assessment of the models ability to represent aerosols properties on a global scale. Within the Global Aerosol Synthesis and Science Project (GASSP) we have assembled the largest collection of quality controlled, in-situ aircraft observations ever synthesized to a consistent format. This provides a global set of in-situ measurements of Cloud Condensation Nuclei (CCN) and Black Carbon (BC), amongst others. In particular, the large number of vertical profiles provided by this aircraft data allows us to investigate the vertical structure of aerosols across a wide range of regions and environments. These vertical distributions are particularly valuable when investigating the dominant processes above or below clouds where remote sensing data is not available. Here we present initial process-based assessments of the BC lifetimes and vertical distributions of CCN in the HadGEM-UKCA and ECHAM-HAM models using this data. We use point-by-point based comparisons to avoid the sampling issues associated with comparing spatio-temporal aggregations.

  15. Aerosol delivery of DNA/liposomes to the lung for cystic fibrosis gene therapy.

    PubMed

    Davies, Lee A; Nunez-Alonso, Graciela A; McLachlan, Gerry; Hyde, Stephen C; Gill, Deborah R

    2014-06-01

    Abstract Lung gene therapy is being evaluated for a range of acute and chronic diseases, including cystic fibrosis (CF). As these therapies approach clinical realization, it is becoming increasingly clear that the ability to efficiently deliver gene transfer agents (GTAs) to target cell populations within the lung may prove just as critical as the gene therapy formulation itself in terms of generating positive clinical outcomes. Key to the success of any aerosol gene therapy is the interaction between the GTA and nebulization device. We evaluated the effects of aerosolization on our preferred formulation, plasmid DNA (pDNA) complexed with the cationic liposome GL67A (pDNA/GL67A) using commercially available nebulizer devices. The relatively high viscosity (6.3±0.1 cP) and particulate nature of pDNA/GL67A formulations hindered stable aerosol generation in ultrasonic and vibrating mesh nebulizers but was not problematic in the jet nebulizers tested. Aerosol size characteristics varied significantly